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SUMMARY.

Solid-phase extraction has become an increasingly 

important technique over the last decade.
In this study, the properties of bonded silica 

sorbents for use in the solid-phase extraction of 

drugs from various biological fluids are investigated. 
Sorbents exhibiting predominantly non-polar, polar or 

ion-exchange interactions are all considered.

Initially, the extraction of some common 
benzodiazepines (diazepam, triazolam, flunitrazepam 

and their metabolites), from the urine of racing 
greyhounds is studied.
Further method development is described involving the 

extraction of xylazine (a veterinary tranquilliser), 
from greyhound urine, mazindol (a central nervous 
system stimulant), from racehorse urine, and basic 
drugs from human post-mortem urine samples.
Comparison of these solid-phase methods with existing 
solvent extraction procedures, from an efficiency 

point of view, is carried out for racing greyhound and 

human post-mortem samples.



Such comparisons are based on a number of criteria: 
the total time spent on extraction; solvent cost; 
glassware requirements; sample requirements; possible 

simultaneous extraction of a number of samples; 

potential automation of extraction; cleanliness of 

extracts, and necessity for evaporation and/or 

derivatisation steps prior to analysis.

The extraction methods presented are all reproducible 

and highly efficient as well as being economically 
viable for routine use in a toxicological laboratory. 
Further applications of solid-phase extractions are 

investigated.

A novel high-pressure liquid chromatographic (HPLC) 
analysis method for benzodiazepines is described, 
which is compatible with liquid chromatography-mass 
spectrometry (LC-MS).
New HPLC methods for xylazine and mazindol analysis 

are developed.
Finally, a potentially fully automated basic drug 
screening solid-phase extraction method and analysis 
by HPLC with diode array detection for the 
determination of drugs from human post-mortem urine 

samples is described. The results of this method were 
confirmed by gas chromatography-mass spectrometry 

(GC-MS).

- 2 -



1. AIMS.

The aims of this project were:

1. To study the potential use of bonded phase silica 

sorbents for the extraction of drugs of abuse from 
biological fluids.

2. To develop a single solid-phase extraction method
for the determination of benzodiazepines and their 

metabolites in the urine of racing greyhounds.

3. To develop a single solid-phase extraction method
for the determination of basic drugs in human 
post-mortem samples.

4. To compare solid-phase extraction methods with 
existing solvent extraction methods in order to 
determine the most efficient and economical procedure.

5. To develop new HPLC analysis systems for xylazine 
and mazindol.

6. To develop a fully automated basic drug screening
system for greyhound and human samples, incorporating
solid-phase extraction followed by HPLC analysis with 

diode array detection.

- 3 -



2. INTRODUCTION

2.1. Drugs
2.1.1 Benzodiazepines

Benzodiazepines have been widely used since the early 

19 60's as tranquillisers, anti-anxietics, sleep

inducers, hypnotics and anti-epileptics.

Benzodiazepines can also show amnesiac actions, whose 

degree and duration are pharmacodynamically dose
related and different for various benzodiazepine 

derivatives. Their wide availability has targeted them 
as potential drugs of abuse in sport and in everyday 

lif e .
All benzodiazepines undergo extensive biotransformation 
in the human body (Kaithsa, 1977) so the detection 
methods of benzodiazepines in biological fluids must

include the identification of metabolites due to the
lack of availability in sufficient amounts of the free 

unchanged drug.
Diazepam (Valium®)
Diazepam-(7-chioro-2,3-dihydro-1-methyl-5-pheny1-1H-1,4-b 
enzodiazepin-2-one) was approved for human use in 1963 
and is still the most widely prescribed benzodiazepine 

for the treatment of anxiety in the young and the 
elderly (Bellantuono et al., 1980; Nolan and O'Malley, 

1988) .
It also displays anti-convulsant properties, so it is 
used in the treatment of epilepsy.

- 4 -



The recommended single therapeutic dose is lOmg for 
humans and 5mg for greyhounds (Baselt et al.# 1977).
Although diazepam elimination is very slow, with an 
elimination half-life of over 24 hours, the long 
half-life is not reflected in a long duration of 
clinical effect (Shader and Greenblatt, 1981).
Metabolic studies in man and in animals (Schwartz et 
al., 1965) have shown that the compound is
biotransformed into three major metabolites (Figure 
1) . These metabolites are also pharmacologically
active : N-desmethyldiazepam having been studied most
extensively and shown to produce physical dependance in 
animals (McNicholas et al., 1985).
The presence and persistence in the body of both
N-desmethyldiazepam and oxazepam is significant, since 
both possess anti-convulsant properties.
Diazepam's third major metabolite, temazepam, is used 
clinically for the treatment of insomnia (Fillingim, 

1979) .
It is therefore important to monitor the concentration 
of all four compounds in the urine of humans and racing 
greyhounds in any analytical scheme designed to detect 
the misuse of diazepam.
Triazolam (Halcion®)
Triazolam-(8-chloro-6-(o-chlorophenyl)-l-methyl-4H-s-tria 
zolo[4,3-a][1,4]-benzodiazepine) is a triazolo 
benzodiazepine derivative with sedative and hypnotic

- 5 -



FIGURE 1 .

The metabolic routes of diazepam.
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properties. In clinical comparison with nitrazepam

(5mg) and oxazepam (50mg) for the treatment of 

insomnia, triazolam (0.5mg) gave superior results in 

terms of effect and reduced side-effects (Dordain et 

al., 1981). It is eight times more potent than 

diazepam as a hypnotic. Triazolam's high potency is 

chemically related to the presence of an 
orthochlorophenyl group and the triazolo ring fused to 
the 1,2 position of the B ring, which is known to 
potentiate the hypnotic properties of a benzodiazepine
(Moffett, 1976). With excellent pharmacological
activity and low toxicity, triazolam compares 

favourably with existing benzodiazepines and is 

considered highly promising as a sleep inducing agent 

(MacLeod, 1981). Clinical evaluation of this new
hypnotic has indicated the compound is safe and

effective (Purpura, 1981).
The recommended therapeutic dose for humans is 
0.25-0.5mg (equivalent to 0.005-0.Olmg/kg) as an oral
hypnotic. (The therapeutic dose for greyhounds, on a 
weight basis was then calculated as 0.125-0.25mg).
The drug has a very short half-life of two to three 
hours making detection of the parent drug extremely 
difficult (Eberts, 1979; Greenblatt et al., 1981 and

1983; Smith et al.. 1983).
It is extensively metabolised in man and in the dog, 
mainly by hydroxylation (Figure 2). The major
metabolites are l-hydroxymethyltriazolam and

- 7 -



FIGURE 2 .
The metabolic routes of triazolam.
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4-hydroxytriazolam (Metzler et al.. 1977) and the 
1-hydroxymethyl metabolite is reported to have 50-100% 
of the pharmacological activity of the parent 
compound. These metabolites can be further converted 
to benzophenones.

In the urine of male beagle dogs, ten metabolites of 
triazolam were detected which were mostly conjugated 
(Eberts, 1977).

The absorption, distribution and excretion of triazolam 
in rats, dogs and monkeys is reported (Eberts, 1974; 
Kitagawa et al., 1979) as well as the pharmacological 
properties and therapeutic efficacy of triazolam in 
insomniatic patients (Pakes et al., 1981). There is 
also some temporal variation in pharmacokinetic and 
pharmacodynamic parameters (Smith et al., 1986).
The metabolites of triazolam must therefore be 
determined in any analytical procedure designed to 

detect drug misuse.
Flunitrazepam (Rohypnol®)
Flunitrazepam-(5-(2-fluorophenyl)-!,3-dihydro-1-methy1-7- 

nitro-2H-l,4-benzodiazepin-2-one) is used for

premedication and induction of anaesthesia 

(0 .0 1 5 -0 .03mg/kg) (Rizzi et al., 1975; George and 

Dundee, 1977; Richardson and Manford, 1979) and as a 

potent oral hypnotic (0.5-2mg) in humans, (l-2mg in 

greyhounds) (Nicholson and Stone, 1980).

The hypnotic effects of flunitrazepam predominate over 
the sedative, anxiolytic, muscle-relaxing and anti-

- 9 -



convulsant effects characteristic of benzodiazepines, 
due to the presence of the nitro-group and the fluorine 

atom which both increase hypnotic potency (Stovner et 

al.,1973). Thus, it is used as a night-time hypnotic 

and in anaesthesiology; due to the pronounced hypnotic 

effect it is not appropriate as a daytime sedative 
(Mattila and Larni, 1980).

However, it displays anti-convulsant properties in 

various animal species (Zbinden et al., 1967; Randall 
and Kappell, 1973).

Flunitrazepam is extensively metabolised by reduction 
of a nitro group to an aromatic amine group, followed 
by acetylation; by hydroxylation at the 3-position, 
followed by conjugation with glucuronic acid; and by 
desmethylation at the N-l position (Figure 3). 
Flunitrazepam in the dog is rapidly eliminated and 

exhibits a "first pass" metabolism effect following 

oral administration, whereby the N-desmethyl metabolite 

is the major detectable drug component in the blood. 
Neither the parent drug nor its N-desmethyl metabolite 
is detected in the urine, suggesting extensive and 
complete biotransformation (Kaplan et al., 1974).
The other main metabolite of flunitrazepam is 

7-aminoflunitrazepam, which shows anaesthetic activity 
in animal studies. No measurable amounts of this 
metabolite or the N-desmethyl metabolite could be found 

in the plasma of dog or man after one single 
therapeutic intravenous injection (Vree et al., 1977).

- 10 -



FIGURE 3.

The metabolic routes of flunitrazepam.
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The half-life of flunitrazepam has been reported as 

approximately 20 hours (Mattila and Larni, 1980) but as 

with diazepam, this is not reflected in a prolonged 

clinical effect. However, there is a report of 

biphasic elimination in the dog with a half-life of 15 

minutes in the alpha phase and 150 minutes in the beta 

phase (Vree et al., 1977).

The extensive biotransformation of flunitrazepam 

therefore makes detection of the parent drug difficult, 

so determination of any metabolites is significant.

- 12 -



2.1.2. Xylazine (Rompun®)

Xylazine ( 5.6 -dihydro -2- (2,6-xylidino) -4H- 1.3
thiazine) (Figure 4) is a widely used veterinary drug. 
The compound's sedative, analgesic and muscle relaxant

properties are due to its action on the autonomic and
the central nervous system (Clarke and Hall, 1969). 

Xylazine shares certain pharmacological properties with 
a number of structurally related drugs, for example 
phenothiazines (Gallenosa et al., 1981). Although it 
is intended as a veterinary drug, it's metabolism in 
racing greyhounds is not well documented.

A highly potent drug, it is used more extensively to 

sedate much larger animals. The pharmacokinetics of 
xylazine in the plasma of horses (Sams, 1979), cattle, 
sheep and dogs (Putter and Sagner, 1973), by both
intravenous and intramuscular routes is reported.
The peak level of drug concentration in the plasma is
reached after 12-14 minutes in all species studied 
following intramuscular injection. The half-life in
the alpha distribution phase is approximately 1.2
minutes (cattle) and 5.9 minutes (horses) 

(Garcia-Villar et al., 1981).
In dogs, the onset of sedative action is between ten
and fifteen minutes after injection and the period of

analgesia is said to be relatively short (15 to 30

minutes) (Newkirk and Mil es, 1974). The recommended

therapeutic single dose for greyhounds is 0.05 ml/kg.

Although xylazine is not intended for human use or



FIGURE 4 .

The structure of xylazine.
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abuse, cases of non-fatal poisonings (Carruthers et 

al., 1979; Gallanosa et al., 1981; Lewis and 

O'Calaghan, 1983;) and fatal poisonings (Poklis et al., 
1985) have been reported.

None of the literature addresses metabolic pathways of 
xylazine, but rather concentrates on the levels of 
parent drug present after administration. No parent 

xylazine is found in the plasma of cattle following 

therapeutic doses (recommended dose: 0.2mg/kg), a point 
which could be explained by the low dosage used for 

this xylazine sensitive species (Garcia-Villar et al.,

1981). The extensive metabolism of xylazine is 
supported further by the observed lack of unchanged 
xylazine in the urine of sheep (Putter and Sagner, 

1973). In the dog, recommended dosage is higher than 
in other species (l-3mg/kg i.v.), and unchanged 
xylazine is detected at least up to two hours after 

dosing (Garcia-Villar, 1981).
No literature is available concerning metabolic 

pathways in racing greyhounds.
Therefore, the determination of parent xylazine in 

biological fluids is feasible to detect the misuse of 

this drug in racing greyhounds.
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2.1.3. Mazindol (Sanorex®)

Mazindol (5-(p-chlorophenyl)-5-hydroxy-2,3-dihydro -5H- 

imidazo [2,1-a] isoindole) is used in the treatment of 
anorexia due to it's effect as a stimulant of the 

central nervous system (Sandoz Pharmaceuticals, 1980). 

However, it differs structurally and in mechanism of 

action from the phenethylamine drugs such as 

amphetamine. The pharmacology of mazindol has been 
studied extensively (Dugger et al. 1976). Metabolic 

studies in man, dog and rat have shown that the drug is 
considerably biotransformed into a number of 
metabolites (Dugger et al., 1979). The major 
metabolite in all three species was 5- (p-chlorophenyl) 
-2,5- dihydro -5- hydroxy -3H- imidazo [2,1-a] isoindol 

-3- one (Figure 5). Conjugation is the major pathway of 

excretion of mazindol metabolites via the urine in man 

and dog, but not the rat. Appreciable amounts of 

parent mazindol are excreted in the urine of man and 

dog, but again not in the rat. Both the rat and the 
dog excrete the drug faster than man (Dugger et al, 

1979) .
The action of mazindol on the central nervous system 
gives it potential as a pre-race stimulant for 

greyhounds and racehorses, and so it's use in racing 
animals is prohibited (International Association of 

Racing Analysts).
The metabolism of mazindol in horses has been studied 
recently (Timmings et al., 1985). This supports the
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FIGURE 5.
The metabolic routes of mazindol.

Cl
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(a) 5- (p-chlorophenyl)-5-hydroxy-2,3-dihydro-5H- 
imidazo(2, 1-a)isoindole.

(b) 5 - (p-chlorophenyl)-2,5-dihydro-5-hydroxy-3H- 
imidazo(2,1-a)isoindol-3-one.

(c) 2 - (p-ehlorobenzoyl)-N-2(aminoethyl)benzamide.

(d) 3- (p-chlorophenyl)-2-glycyl-3-hydroxy-l-iso- 
indolinone.
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findings that mazindol metabolites are present at much 

higher levels and are excreted much later than parent 

mazindol (Dugger et al.f 1976-1979). The major
metabolite is the same as in dog and man. Unchanged 

mazindol was detected up to 12 hours after

administration in the urine of all eight horses tested, 
although peak mazindol levels differed between horses. 
Plasma mazindol concentrations differed widely in terms 
of peak concentration and length of time after dosing 

that the parent drug could be detected.

The presence of parent mazindol is then adequate to 
prove misuse of the drug in the racehorse up to 12 

hours after administration.
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2.2 Analysis 

2.2.1 Benzodiazepines
Oven the past twenty years, analysis methods for drugs 
have been improving. A. reduction in analysis time, by 

eliminating derivatisation or evaporation steps has 
been of great importance, and the lowering of detection 
limits has been a priority due to the increased potency 
and therefore lower therapeutic doses of novel drugs.

The need for rapid, accurate drug separations has led 
to many attempts to reduce analysis time, for example, 
direct injection of serum and blood samples onto liquid 
chromatography columns (Wahlund, 1981; Szczerba et al. 

1986; Koenigbauer et al., 1987).
Several quantitative analytical procedures for 
determining benzodiazepines and their metabolites in 

biofluids have been developed. These include 

colorimetry (Frings and Cohen, 1971), spectrophotometry 
(Jatlow, 1972), radioimmunoassay (Dixon et al., 1975) 
and thin layer chromatography (Kaithsa and Tadrus, 

1978; Van der Merwe, 1978 ;); all of which lack 

specificity as analysis methods.
From a sensitivity point of view, immunochemical 

techniques generally employed as screening tests are 
able to identify the presence of benzodiazepines at 
nanogram levels but they do not discriminate between 
different commercial benzodiazepines; moreover, 

quantitative analysis is difficult because the response
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of different benzodiazepines and their metabolites 

towards the antigen-antibody reaction is different.

Among all the methods available, gas chromatographic 
(GC) determinations of benzodiazepines in plasma, urine 
and cerebrospinal fluid (Greenblatt, 1978-1981), have 

provided adequate sensitivity, specificity and 
resolution for clinical investigation particularly when 
combined with electron capture detection (ECD).

Gas chromatography with nitrogen-phosphorus detection 
(NPD) can be used alternatively, but the sensitivity is 
much less than with ECD (Dhar and Kutt, 1978).

The disadvantages of GC analysis are most obvious when 
considering the analysis of metabolites. Often this 
requires a time consuming extraction, followed by 
derivatisation into more volatile compounds before 
application to the gas chromatographic column (de Silva 

and Bekersky, 1974; Horton-McCurdy et al.. 1979; 
de-Gier and Hart, 1979; Higuchi et al., 1979; Masahura 
et al., 1982). Moreover, some benzodiazepines and 

their metabolites (for example. oxazepam and 
chlordiazepoxide) are highly thermolabile and so cannot 
be subjected to the high temperature needed for GC 

analysis.
High pressure liquid chromatography (HPLC) is 

potentially the most useful method to allow separation 
and simultaneous quantitation of the parent compound 
and it's metabolites. For forensic purposes, analysis 
of benzodiazepines usually involves detection at
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relatively high concentrations. Often, though, HPLC 

methods are inadequate for situations following 

therapeutic administration of the drugs (Bugge, 1976). 
Because of it's milder working conditions, HPLC is a 

more suitable technique for the analysis of thermally 

labile, high molecular weight, hydrophilic and 
hydrophobic compounds.

A further advantage of HPLC for the analysis of 

benzodiazepines is that compounds may be analysed 
without initial derivatisation (Scott and Bommer, 1970; 
Hulshoff et al., 1976; Chiarotti et al., 1986), 
although increased sensitivity of HPLC methods can be 

achieved by hydrolysis of the benzodiazepines into 
benzophenones (Violon et al., 1980-1982).
HPLC has not received the same attention as GC methods 

because of the poor specificity of single wavelength UV 

detection, and also due to the highly selective nature 
of the separations which are usually designed to 

separate only a few compounds (Hirayama and Kasuya, 

1983; Ferslew et al., 1989). While the selectivity of 
LC makes retention time on a system a good marker for 
identification, it also reduces the potential of the 

technique for broad spectrum screening purposes.
The difficulties of connecting HPLC to a mass 
spectrometer and the restrictions which LC-MS places on 
the chromatographic conditions make GC-MS a more 

favoured technique.
This problem has been addressed by the use of diode
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array detection (DAD) which improves the range and 
specificity of HPLC and makes it a reliable and 

informative technique for application in drug screening 
studies (Bogusz et al., 1985; Minder et al., 1987; Mura 
et al. 1987).

Diazepam

Diazepam and it's metabolites have been extensively 

analysed by gas chromatography, (Steyn and Hundt, 

1975). using electron-capture detection (Vessman, 1977; 
Lindley, 1979;) or by nitrogen sensitive detection 
(Horton McCurdy et al., 1979).

The disadvantages of GC when applied to metabolic 
studies have already been outlined.

HPLC methods can be sufficiently specific and sensitive 

when focused on one or a few benzodiazepines, and these 

methods are very suitable for use in drug monitoring or 
when the intoxicant is known, for example, diazepam and 

it's metabolites.
Most literature involving benzodiazepine analysis 

includes diazepam, since it is one of the oldest 

members of the benzodiazepine group of drugs.

Column
Reversed-phase HPLC systems have been reported 
extensively for diazepam analysis and it is included in 
benzodiazepine review articles (Hailey, 1974; Clifford 

and Franklin-Smyth, 1974; Chiarotti et al., 1986).
Most of these systems incorporate C18 columns of 
standard length. internal diameter and 5um packing 

mater ial.
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Overall, Sum packing material results in better 

selectivity and resolution for the determination of 

diazepam and its metabolites (Brodie et al., 1978). 

Disadvantages of the existing techniques using C18 

columns included background interference in the
oxazepam region from blood extracts (Kabra et al.,
1978); the need to modify the mobile phase to separate 
all the metabolites (Skellern et al., 1978); inadequate 
sensitivity for human urine extracts (200ng/ml) (Cotier 
et al., 1981); the analysis of derivatised 

benzophenones rather than underivatised benzodiazepines 

(Violon et al., 1980-1082); and the use of gradient 

HPLC which is not a readily available technique in all 
laboratories (Mura et al.,1987).

The use of C8 reverse-phase columns has also been

reported (Rao et al., 1982; Sohr and Buechel, 1982; 

Komiskey et al., 1985).
This approach allows less chance of retaining the drug 

(less non-polar interaction) but an easier elution step. 
However, the requirement for modified mobile phases and 
various detection wavelengths for the different
benzodiazepines is a major disadvantage when the assay 

is required as a screening method (Sohr and Buechel,
1982). Enhanced sensitivity is achieved using
radiolabelled samples and a reverse isotope dilution 

method, but radioactive samples are not always 

convenient to work with (Komiskey et al., 1985) .
The use of a phenyl-bonded HPLC column was reported
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(Wong, 1983), but using this, some benzodiazepines, 

including temazepam, did not chromatograph.

The determination of diazepam in its injectable form, 

with no information regarding metabolites, was 

described using a microparticulate hexyl bonded-phase 
column (Smith and Nuessle, 1982).

A number of liquid-solid systems consisting of mixtures 
of buffers using methyl silica as the stationary phase 

for the separation of a number of benzodiazepines and 
their metabolites was reported (Tjaden et al., 1980). 
In order to separate some of the metabolites, though, 
the flowrate had to be reduced to 2.9ul/second giving a 
very long retention time for diazepam.
Diazepam and it's metabolites have also been separated 

by normal-phase chromatography (Scott and Bommer, 1970; 
Gonnet and Rocca, 1976; Bugge, 1976), anion-exchange 
(Moore et al., 1977) and cation exchange resins 

(Twitchett et al., 1976), although these methods are 

not as widely applicable as reversed-phase systems.

Mobile phase
Mobile phases used in HPLC analysis of diazepam are 
invariably mixtures of methanol, acetonitrile and 
buffers (usually incorporating phosphate salts). While 
methano1;water mixtures act as good, selective eluents, 

salts are often added to improve the separation 

(Horvath and Melander. 1977). The addition of dibasic 
sodium or potassium salts is common (Peat and Kopjak, 
1979) However, there are disadvantages to salt
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addition. Eluents containing salts (especially 
phosphates), require column flushing after each use. 

This is a time consuming process and failure to carry 
it out can result in column blocking.

Further, column corrosion of the stainless steel tubing 

in the system is a possibility when salts are present. 

Eluents containing ion-pairing agents have also been 

investigated (Sohr and Buechel, 1982; Minder et al.,
1987) .

In these acidic mobile phases, the counter-ion forms an 

ion-pair or association complex with the ionic form of 

the analyte which is then retained by the reverse-phase 
column. These eluents show good potential in terms of 
sensitivity, but are more useful for the determination 
of strongly basic substances rather than 
benzodiazepines which are only weakly basic and are 

easily determined using a neutral mobile phase. These 

ion-pairing agents were not as efficient in improving 

peak shapes as was the addition of amines to the mobile 

phase (Minder et al., 1987).

Detection Wavelength and Limits
The most widely used single detection wavelength is 

2 5 4 n m . In some methods, 240nm is employed (Kabra et 

al., 1978; Rao et al., 1982) and also 229nm (Komiskey,
1985) All benzodiazepines absorb in the ultraviolet 

region (220-260nm). so their detection has rarely been

a problem.
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However:, detection limits have indeed been a problem, 

particularly in therapeutic analysis. Some HPLC 

systems have been shown to be sufficiently sensitive 

for the analysis of metabolites in urine, serum and 

saliva after single dose administration to humans 
(Tjaden et al., 1980), but widely differing detection 
limits have been reported.

HPLC assays particularly designed for small animal 

studies have been described but these normally require 
radiolabelled drugs (Komiskey et al., 1985), and do not 

refer to urine samples (Klockowski and Levy, 1987).
The most sensitive method so far reported allows the 
detection of 0.5ng of diazepam in post mortem blood 
(Wong, 1983), but more common detection levels are 
15-50 ng/ml (Kabra et al., 1978; Cotier et al., 1981; 

Ratnaraji et al., 1981; Smith and Nuessle, 1982). 
These limits are sufficient for diazepam and it's 

metabolites after single dose administration, but would 

not be adequate for the detection of more potent 
benzodiazepines which are present at much lower levels, 

for example, triazolam and flunitrazepam.
A recent alternative to ultraviolet detection is the 
use of electrochemical methods (Lloyd and Parry,
1988). However, these systems are often difficult to 

use because of the requirement for a deoxygenated 
eluent if a low background current is to be obtained 
(therefore giving satisfactory sensitivity). This 

problem can be overcome somewhat by maintaining the
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eluent reservoir under slow reflux while in use, but 

overall, this system is not as easy to use or as 

flexible as those incorporating single wavelength 
detectors.

Sample size

The problem of sample size has also been considered. In 
many cases, particularly with samples involving 
laboratory animals, sample size may often be limited. 
Most papers require the use of l-2ml of blood or plasma 
and l-10ml of urine. The microsample determination of 
diazepam is described (Lau et al., 1987) and this is 
definitely an improvement, in terms of sensitivity 

(0.25 ng for oxazepam, N-desmethyldiazepam and 

diazepam; 0.5 ng for temazepam), on other reported HPLC 
methods. Sample size, however, is unlikely to be a 

problem in this work.

Reduction in extraction time
The use of microbore HPLC for diazepam analysis shows 

similar sensitivity to that of conventional HPLC. An 

alternative approach to extraction was developed, 
involving the pretreatment of serum via ultrafiltration 
to remove serum proteins followed by injection of the 
ultrafiltrate onto a reversed-phase pre-column using 
water as the mobile phase. The components of interest 
are trapped at the head of the pre-column and 
subsequently back-flushed onto a microbore column using

- 27 -



a stronger analytical mobile phase (Koenigbauer et al.f 
1987) .

At trace levels, trace contaminants were noted - this 
was a major disadvantage of the packed pre-column which 

had a limited sample capacity due to its' small size. 
The sensitivity of the method, however, (4 ng/ml) 

compared well to other reported diazepam levels. (Kabra 
et al., 1978; 10 ng/ml in plasma: Brodie et al., 1978;
40 ng/ml in whole blood: Haver et al., 1986; 20 ng/ml
in serum).

Reverse-phase chromatography, then, is generally 
accepted as the most versatile technique for separation 

of most major benzodiazepines, and a typical analysis 

system for diazepam and it's metabolites would be based 

on a C18 column using methanol, acetonitrile and 
sodium/potassium phosphate or acetate buffer (pH acid) 

as an eluting solvent. The most common system for 
detection of the drugs uses single wavelength UV light 

at 254nm, although anywhere between 220 and 260nm can 

be employed.
Such a system was described which separated diazepam 
from it's three main metabolites within 12 minutes (Lau 

et al., 1987).

Tr iazolam
Triazolam is a relatively new sedative-hypnotic drug 
and its analysis is not as widely reported as that of

diazepam.
Radioimmunoassay and radio receptor assays lack
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specificity as far as the active metabolites are 

concerned (Ko et al., 1977), but a urinary screening 

method for alprazolam, triazolam and their metabolites 
was reported using EMIT (Fraser, 1987).

So far, gas chromatographic (GC) (Greenblatt et al., 

1981; Jochemsen and Breimer, 1981;), and liquid 

chromatographic methods (HPLC) (Adams, 1979; Theis and 
Bowman, 1983; Wong, 1984) allow only the detection of 
triazolam itself.

Due to it's extensive metabolism and short half-life, 
the detection of parent triazolam in biological fluids 
is unlikely, so these analysis methods are not viable 

for determination of triazolam after administration. 

However, the existence of unchanged triazolam in post 
mortem samples has recently been reported (Koves and 

Wells, 1986; Hama et al., 1987).
Capillary GC methods addressing this problem have been 
published (Coassolo et al., 1983) although application 

to urine samples was not described.
Only one HPLC method for the specific determination of 

triazolam and it's metabolites in human urine was found 
(Inoue and Suzuki, 1987). This method employed 
methanol-lOmM phosphate buffer, pH8 (65:35 v/v) as the 
mobile phase, a C18 HPLC column, ultraviolet detection 

at 220nm and a flowrate of lml/minute.
The method is a typical HPLC system and it is 
surprising that more analysis methods for triazolam are 
not available, although triazolam is included in
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reported HPLC analysis methods for screening 
benzodiazepines (Mura et al., 1987).

Flunitrazepam

Published analytical methods for the determination of 

flunitrazepam and its metabolites are somewhat limited. 
For urine samples, the available immunoassays for 
benzodiazepines are unable to discriminate between the 
different drugs owing to the cross reactivity of the 
antibodies used in this type of assay.

Gas chromatographic methods (de Silva and Bekersky, 
1974; Faber et al., 1977; Jochemsen and Breimer, 1982) 

usually involve extremely long extraction procedures 
and derivatisation of the sample prior to analysis. 
The detection limits are low (0.5-lng/ml) but 
measurable levels of neither parent flunitrazepam nor 
its metabolites were found after single therapeutic 
dose administration in the urine of man nor dog, since 
flunitrazepam is extensively metabolised in the body. 

Determination by column liquid chromatography with 
ultraviolet detection at 230nm, gave a detection limit 
of Ing/ml (Vree et al.,1977), and fluorimetric 

detection gave a similar detection limit of 0.5ng/ml 
using a 4ml sample (Sumirtapura et al., 1982).
A more recent publication, (Weijers-Everhard et al.,
1986), describes an HPLC system with fluorimetric 
detection for analysis of 7-aminoflunitrazepam since 

the N-desmethyl metabolite is not detected in the 
urine. The method is based on the formation of highly
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fluorescent acridine derivatives, so the advantage of 
HPLC as a direct analysis method involving no 
derivatisation, is lost. The method described,
consisted of a Hypersil ODS column (C18) (5um, 100mm x
4.6mm i.d.). The fluorimeter was equipped with a 25ul 
through-flow cell and the wavelengths were set at 396nm 
(excitation) and 445nm (emission). The mobile phase 
consisted of methanol-water (55:45) containing 0.05M 
acetic acid buffer (pH 4.7) and 0.05mM 
tetramethylammonium hydroxide.
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2 .2.2. Xylazine

Although not widely studied, an increasing amount of 
literature regarding the analysis of xylazine is

becoming available. Analytical methods reported for 

the determination of xylazine in biological fluids 

include spectrophotometry and thin-layer chromatography
(TLC) (Putter and Sagner, 1973), but these methods are 

slow and are not sufficiently sensitive or specific for 
therapeutic level analysis.
Gas chromatographic (GC) analysis has made use of
sulphur specific detection (Laitem et al., 1978) giving 
a detection limit of 90ng/ml as well as the more common 

nitrogen sensitive detectors (Rogstad and Yndestad, 

1981; Poklis et al., 1985) giving detection limits of 

lOng/ml and 20ng/ml of serum respectively.
The properties of xylazine on a variety of stationary 

phases for GC analysis were studied (Rogstad and

Yndestad, 1981).
Tailing, a common observation with underivatised 
amines, was the main problem. Overall, semi-polar 
phases gave the best separation although there was 

still some tailing of the peaks. Higher resolution 
obtained with the capillary columns made glass 
capillary GC a superior technique for the determination 
of low concentrations of xylazine and gave good 

separation from contaminants.
However, analysis with conventional packed columns was 

simpler and less time consuming, and therefore more
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suitable for routine analysis.

High-performance liquid chromatography (HPLC) analysis 

methods for xylazine are not widespread. Apparently 
these were only developed because the low volatility 

and ionic character of xylazine do not permit it's

direct quantitation by GC. This is true to some 
extent, but recent GC methods have solved this problem. 
The use of an ion-pairing agent (heptane sulphonic 

acid) in the mobile phase, a C18 column, single
wavelength detection at 225nm and a detection limit of
20ng/ml using a sample size of more than 0.5ml is 

described (Alvinerie and Toutain, 1981).
A more recent HPLC method for xylazine determination
(Akbari et al., 1988) makes use of a Bondapak C18 (30cm
x 2.9mm i.d.) column operated at ambient temperature.
The system is equipped with a fixed wavelength
absorbance detector (254nm) and the degassed mobile

-3phase, consisting of acetonitrile-10 M aqueous 
hydrochloric acid-methanol (60:30:5). is pumped through 

the column at a flow-rate of lml/minute.
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2.2.3. Mazindol

A relatively new drug in the sporting field in terms of 

abuse, mazindol is usually analysed using gas 

chromatography-mass spectrometry (GC-MS), (Timmings et 
al., 1985) or by radiolabelled methods (Dugger et al.,
1979). Serious difficulties in the analysis of 
mazindol were reported (Timmings et al., 1985). The 

standard compounds tended to breakdown during injection 

into the gas chromatograph and attempts to derivatise 

the primary amine group with trifluoroacetic anhydride 

(TFAA) were unsuccessful. GC with nitrogen-phosphorus 

detection gave a poor detection limit because of the 
urinary background remaining in the extracts, so the 

final approach was to incorporate a mass selective 
detector (MSD) operated in the selective ion monitoring 

(SIM) mode.
The mazindol extracts were analysed using a

interfaced with aHewlett-Packard 5890 GC

Hewlett-Packard MSD. The GC cond

Column: 30m x 0.2 5mm i.d.

Injector: Splitless (250°C;

Oven: 75°C for lmin; 15

a nd: 285°c; 28 5°C for

Transfer line: 2 8 5°C

The MSD was operated in SIM mod

effects.
There are no published HPLC n

mazindol.
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2.3 Extraction Methods.

Extraction and analysis of drugs from urine, whether 

for forensic purposes, doping control (greyhounds or 
racehorses), pre-employment screening or clinical 
analysis is an expanding area of commercial interest 
where rapid, reproducible extractions and analytical 
techniques are of great value.

The efficiency of extraction, a reduction in extraction 
and analysis time and operator independance have all 
been recent priorities in the research world (Harkey 
and Stolowitz, 1984).
The majority of extractions from biological fluids are 
carried out using solvent extraction techniques. These 
methods are long and tedious, often requiring three or 
four extractions, purification and evaporation 
procedures, (Figure 6). Despite the number of stages 
involved, high drug recoveries have been reported 
(Horning et al., 1974; de-Gier and Hart, 1979). Such 
procedures are usually sufficiently efficient to 
extract therapeutic levels of drugs and/or their 

metabolites.
Far less of the literature has concerned itself with 
solid-phase extractions, which, over the past decade, 
have emerged as a powerful tool for chemical isolation 
and purification. The use of solid-phase columns as an 
a 1ternative to liquid—liquid extraction, for the 
extraction of drugs in urine, has gained popularity

- 35 -



FIGURE 6 .
Extraction of Drugs from a Blood Sample.
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over recent years because of the reported excellent 

recoveries and ease of use (Good and Andrews, 1981; 
Stewart et al., 1984; Wilson, 1986). Further 

advantages include the simultaneous extraction of a 
number of samples, the prevention of emulsion formation 

as often occurs with solvent extraction, rapid sample 

preparation, removal of evaporation steps and potential 
automation.

There are basically two approaches to the solid-phase 
extraction of drugs:- one in which drugs are separated 
from the biological matrix by adsorption onto an inert 
material, such as diatomaceous earth, the other using 

bonded silica sorbents (Figure 7).
Columns packed with diatomaceous earth were first used 

in the mid-1970's for the extraction of drugs. 
Basically any existing liquid-liquid extraction 
procedure can be applied to this type of column 

extraction. The sample is simply applied to the column 

and eluted off with a suitable solvent.
Diatomaceous earth gives a similar extraction to the 
liquid-liquid method on which it is based. These 
columns tend to be less specific than bonded silica 
cartridges for the extraction of a range of drugs and 
have been used for drug screening purposes (Delbeke and 

Debackere, 1978). Recoveries from diatomaceous earth 
are, however, generally poorer than from the silica 

columns (Stewart et al., 1984). In addition, the 
procedures are fairly time consuming. requiring a
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figure 7 .

Sorbent Extraction C a r t r idqe

upper f r i t

sorbent

lower f r i t

luer t ip

WJn.\U/;r- ji

-  38 -



number of steps, and the lack of selectivity means that 

any interfering compounds co-extracted by liquid-liquid 
extraction may also be extracted by the diatomaceous 

earth (Breiter et al., 1976; Daenens et al.. 1980).

In some cases, the isolated drugs from diatomaceous 
earth extractions required further clean-up procedures 

prior to GC analysis, resulting in a 30% loss of 
extraction efficiency (Kaempe. 1983).

In the case of bonded silica sorbents, there are a 
number of different types of column packing materials 

commercially available for drug extraction. These 

sorbents can be divided into three classes (non-polar, 
polar and ion-exchange) according to the nature of the 

interactions between isolates and solvents. This study 
addresses the interactions of all three classes.
The majority of solid-phase methods for the extraction 
of drugs from body fluids, which have been reported, 
involve the use of columns packed with non-polar 

adsorbent materials.
These consist of silica onto which is bonded a long 
chain hydrocarbon, principally C8 or C18, producing an 
essentially non—polar adsorbent phase similar to that 

present in a reversed phase HPLC column.
Since most drugs have the potential for some non-polar 
interaction, a number of methods have been described 
for the extraction of individual drugs (Kabra et al., 

1983; Gault, 1985; Kabra and Nzekwe, 1985, Harrison et 
al., 1986; Stubbs et al., 1986; Fami et al., 1987;
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Carlucci, 1988) or groups of structurally related

drugs (Frethold and Sunshine, 1980; Ford et al., 1983; 

McDonald, 1985; Sample et al., 1986; Moore and Tebbett, 
1987;), using C8 or C18 bonded silica columns.

Polar sorbents are used much less frequently than 

non-polar sorbents. This is unusual, since their 
selectivity is much greater than the non-polar 

cartridges which extract anything with some degree of 

non-polar character from biological matrices. (Stewart 
et al., 1984; Lensmeyer et al., 1986).

Ion-exchange cartridges are potentially the most useful 
from a drug screening point of view. Their use, so 
far, is not as extensive as that of non-polar 
cartridges, although they have been used to extract 
various drugs including catecholamines (Wu and Gornet, 
1985) steroids (Axelson et al., 1981), and also 

xanthurenic acid (Ubbink et al., 1988).
Extraction efficiency comparisons between the various 

types of sorbents available have been carried out by 

several researchers.
The use of a granular support material as a column 
packing is compared with XAD-2 resin and conventional 

solvent extraction methods for various drugs, the 
diatomaceous earth material giving superior results in 

terms of drug recovery and solvent volumes required 

(Breiter et al., 1976).
Sep-Pak® C18 cartridges have been compared with 
Clin-Elut® (diatomaceous earth), XAD-2 resins and
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Bond-Elut® C18, silica and cyanopropyl (CN) columns 

for a cross-section of drugs of abuse. Overall, the 

C18 packing materials gave the best results regarding 

drug recovery and reproducibility of extraction. 
However, good extraction of the basic drugs was 

obtained from the XAD-2 resins, diatomaceous earth and 
cyanopropyl columns. XAD-2 gave good recoveries for 

amphoteric drugs and Clin-Elut was good for hydrophobic 
drugs (Stewart et al., 1984).

Conventional solvent extractions at pH 9.3 or pH 5.2 
into dichloromethane, were compared with XAD-2 resins, 
diatomaceous earth (Celite 560) and Bond-Elut C18 
cartridges. The Bond-Elut extractions proved to be far 

simpler and more efficient than the other extractions 

(Hyde, 1985).
Therefore, a solid-phase extraction approach to sample 

preparation would give new data for those drugs not yet 
extracted using bonded sorbents (for example, mazindol 

and xylazine) as well as providing more selective 
screening methods for groups of drugs liable to abuse 
(for example, benzodiazepines). The extractions are 

rapid, simple, cheap, allow simultaneous extraction of 

multiple samples and are easily automated.
For this reason the use of bonded silica sorbents was

studied.
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2.3.1. Sorbent Extraction.
Theory.

Sorbent extraction is a physical process that involves 

a liquid and a solid phase. The solid phase has a 
greater affinity for the drug to be isolated than for 

the matrix in which the isolate is present. In theory, 
very selective extractions resulting in highly purified 
and concentrated isolates can then be achieved by 
choosing sorbents with an attraction for the isolate 
but not for the sample components. The specific 
properties of a bonded cartridge are a result of the 
functional group covalently bonded to the silica 
substrate through reaction of the activated silica with 

organosilanes.

Synthesis.
Bonded silicas are formed by the reaction of 
organosilanes with activated silica. The product is a 

sorbent with the functional group of the organosilane 
attached to the silica substrate through a silyl ether 

linkage. The intention is to create a surface whose 
principal properties are due only to the functional 
group with minimum interactions from the silica

substrate.
Physical Properties.
Bonded silicas are rigid materials that do not shrink 
or swell in different solvents. This is a distinct 
advantage over polystyrene based resins since a wide 

range of solvents can be employed for washing and
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eluting the isolate. The bonded sorbents equilibrate 

rapidly to new solvent conditions. The particles of 

the sorbent are usually irregularly shaped to allow 

rapid solvent flow through the sorbent bed. This does 

have certain disadvantages in terms of extraction 
reproducibility, particularly from batch to batch of 
the same cartridges and certainly when cartridges are 
supplied by different manufacturers.
Chemical Stability.

The sorbents are stable within a pH range of 2-7.5. 

Above pH 7.5, the silica substrate is susceptible to 
dissolution in aqueous solutions and below pH 2, the 

silyl-ether linkage is labile. As a result, the 

functional groups bonded to the surface will begin to 
cleave, so altering the sorptive properties of the 
bed. In practical terms, though, it is possible to use 
the beds over the whole pH range since degradation is a 
finite process and sorbents are usually only exposed to 

solvents for a short length of time. 
Solvation/Conditioning.
For a sorbent to react reproducibly with an isolate, 

the sorbent must be solvated or "conditioned". This 
means, essentially, wetting the sorbent in order to 
create an environment suitable for isolate retention. 

Any solvent which will wet both the polar surface and 
the functional group can be used, most commonly 

methanol or acetonitrile is employed.
The conditioning solvent must be miscible with the
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matrix of the isolate and the sorbent bed must not be 
allowed to dry out.

Retention and Elution.

Retention of the isolate is a function of the degree of 

attraction of a chemical species for the sorbent.

Elution is brought about by introducing a solvent to 

which the isolate is more strongly attracted than it is 

to the sorbent. The eluent should elute the isolate 
from the bed in the smallest volume possible.
Capacity and Selectivity.

The capacity of a given sorbent is defined as the total 

mass of a strongly retained isolate that can be

retained by a given mass of the sorbent under optimum 
conditions. Capacities of silicas vary so it is 

necessary to consider capacity requirements of the 
isolate as well as any impurities likely to be
present. Larger columns may retain all the isolate but 

will then require larger volumes of eluent to remove it. 

Selectivity is the ability of the sorbent to
discriminate between the isolate and all other sample 

matrix components. The selectivity, is then a function 

of the chemical structure if the isolate, the 
properties of the sorbent and the composition of the 
sample matrix. Maximum selectivity is achieved when a 

sorbent is chosen that interacts through functional 
groups common only to the isolate and not the other 

components of the matrix.
Sorbent choice, then, is based on interaction between
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isolate and sorbent. in this study, the non-polar 

character, the polar character and the basic nature of 

the isolates are all considered in the development of 
solid-phase extraction methods.

a) Non-polar Interactions.

Compounds containing alkyl, aromatic, alicyclic or 
other functional groups with significant hydrocarbon 

structure will exhibit non-polar interactions. Most 
isolates, including most drugs, have some degree of 

non-polar character and so will be adsorbed onto
non-polar sorbents, for example, C8 or C18 cartridges. 
Non-polar extraction is useful when the isolates vary
widely in chemical structure. In general, non-polar 
sorbents are not very selective since most matrix 
components tend to have some degree of non-polar

character. Non-polar interactions can be very strong 

with non-polar isolates of high molecular weight, in 

which case, isolates are often difficult to remove. 
Buffers, or aqueous matrices of high ionic strength may 
promote isolate elution by reducing the sorbent 
functional groups' interactions with the isolate. The 
effect of this can be reduced by lowering the ionic 
strength of the sample through dilution and
equilibrating the sorbents with organic buffers only.

C18 (Octadecyl) Sorbents.
C18 is the most non-polar sorbent available. It is the 
most retentive of all sorbents for isolates being
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retained by non-polar interactions. Very non-polar 

compounds are difficult to remove from this sorbent. 

It is generally regarded as the least selective sorbent 

since it retains almost everything from aqueous 

matrices, but final extracts are often of poor quality. 

The potential for polar interactions between this 

sorbent and isolates is less significant with C18 than 
with any other sorbent because of the predominant 
effect of the hydrocarbon chain.
C8 (Octyl) Sorbents.

C8 is very similar in properties to C18, but not quite 
as retentive for non-polar isolates, due to it's 
shorter hydrocarbon chain. It is therefore useful for 
isolates which are too strongly retained on C18 

columns. The potential for polar interactions with 
this sorbent are somewhat higher than for C18, but it's 
polar interactions are not a significant feature of 

this sorbent.

b) Polar Interactions.
The most characteristic molecules isolated by this type 
of sorbent are those containing dipoles. This includes 

most groups containing hetero-atoms as well as 
functional groups with resonance properties, for 

example, aromatic rings. Polar interactions are very 
flexible because so many functional groups exhibiting 
polar interactions (dipole/dipole, induced dipole, 

pi-bonding etc.) exist. Polar interactions are very
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useful for highly selective separation of molecules 

having similar structures. They are the least widely 
used set of sorbents.

CN (Cyanopropyl) Sorbents.

A medium polarity sorbent with many uses, CN is ideal 

for applications in which extremely non-polar isolates 
would be irreversibly retained on non-polar sorbents 

such as C18 or C 8 . Conversely, CN can be used as a 

polar sorbent that is less retentive for very polar 
isolates that might be retained irreversibly on the 

more polar sorbents, such as silica or diol. The cyano 
group gives CN a unique selectivity, which can be 
moderated by intelligent use of solvents.

2OH (Diol) Sorbents.

Since diol cartridges are fairly polar, they are 

usually used for polar extractions from non-polar 
solvents. The diols resemble unbonded silica in their 
tendency for strong hydrogen bonding with isolates. 
They also have the ability to discriminate between 
compounds of close similarity, for example, structural 

isomers. In addition to their polar interactions, 
diols can also be used as non—polar sorbents because 
the hydrocarbon spacers on their functional groups 

provide enough non-polar character for retention of

non-polar isolates.
NH2 ( A m i n o o r o p y l) Sorbents.

in common with many of the ion-exchange sorbents. NH2 
is capable of exhibiting all possible interactions to
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some degree. NH2 is a very polar sorbent and a strong 
hydrogen bonder, so it can function as an

anion-exchanger. The pH of the NH2 sorbent is 9.8, so 
at any pH below 9.8, NH2 is positively charged.
Although NFI2 can be used for non-polar interactions,
it's extreme polarity makes its non-polar character 
less significant than its other properties.

c) Ion-exchange Interactions.
Cation exchange cartridges are mainly used to extract 
molecules containing functional groups capable of 
exhibiting a positive charge, that is, basic groups.
Isolates can be removed from cation-exchangers by 
neutralising the charge on the sorbent or neutralising 
the charge on the isolate. Also, the presence of a 
high ionic strength buffer will cause the high 
concentration of cations in the buffer to compete with 
the cationic isolate for the sorbent, so promoting 

elution of the isolate.
PRS (Sulfonvlpropyl) Sorbents.
A strong-cation exchange sorbent which is also very 
polar, PRS does not exhibit any appreciable degree of 
non-polar interactions. In non-polar solvents, PRS is 
capable of polar and hydrogen bonding interactions. 
The pKa of PRS is very low, and usually cationic 
isolates must be eluted by high ionic strength or by 

neutralising the charge on the cationic isolate.

- 48 -



sex (propylbenzenesulfonyl) Sorbents.

SCX is a very strong cation exchanger with a low pKa. 

The main difference between this and PRS is the much 

higher potential for non-polar interactions of the SCX
sorbent, due to the presence of the benzene ring on
it's surface.

This non-polar character should be considered when the 

cartridge is used for ion-exchange from aqueous solvent 

systems.
This dual nature is very useful for the isolation of 
molecules exhibiting cationic and non-polar character. 
After retention on the column, the sorbent can be
washed with non-polar and high ionic strength solvents 
without displacing the isolate. The isolate can then 
be removed with a solvent which disrupts both ionic and 

non-polar interactions simultaneously. such as

methanolic hydrochloric acid.
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2.3.2 Benzodiazepines.

Solvent Extraction

Typical solvent extraction procedures for 1,4 
benzodiazepines have been described. These are often 
extremely long methods: sometimes requiring several
solvent extractions and combining the various extracts 
(Steyn and Hundt, 1975; Shaw et al.f 1983; Stanworth, 
1984; Zilli and Nisi, 1986); often incorporating back 
extractions (Baselt et al., 1977; Pape and Ribick, 
1977; Dhar and Kutt, 1979; Horton-McCurdy et al., 1979; 
Klotz, 1981; Vasiliades and Sahawneh, 1982); invariably 
including sample evaporation (Baktir et al., 1985; 
Locniskar et al., 1985); and occasionally 
derivatisation (Brooks et al., 1977; Langas, 1977;
Vessman et al., 1977; Kaithsa and Tadrus, 1978).
Drug recoveries from solvent extractions are dependant 
on the number of extractions performed. The more 
extractions and back extractions that are carried out, 
the greater percentage of drug is extracted; 
conversely, each extra procedure allows an opportunity
for drug loss. Often, the release of metabolites from
their conjugated forms is necessary prior to 
extraction, particularly for benzodiazepine
metabolites. Conjugated glucuronides in urine have 
been isolated and determined by reverse-phase HPLC 
(Mascher et al.. 1984), but more commonly, drugs are 
released from their conjugated forms by some form of 
enzyme hydrolysis or digestion (Osselton, et al., 1977;

Osselton, 1979) .
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Solid-Phase Extraction

The advantages of solid-phase extraction using 

diatomaceous earth, over solvent extraction, for the

extraction of benzodiazepines, are numerous. A cheap, 

reliable extraction requiring no evaporation or 
concentration of the extract and the possibility of 
using the same sample aliquot for screening and 
quantitation are some of the positive aspects of 

solid-phase extraction (Samuels. 1977; Horton-McCurdy 
et al., 1981). Reviews of solid-phase techniques

outlining the best use of bonded sorbents have been 
published (Harkey and Stolowitz, 1984; Tippens, 1987). 

For the use of non-selective sorbents (for example, 

diatomaceous earth) no recovery data is usually given. 
This is because much of the literature concerning
non-selective solid-phase extraction is used for

qualitative assays only (drug screening procedures)
(Samuels. 1977). The use of diatomaceous earth 
(Extrelut®) as a quantitative procedure as well as a 
qualitative one requires considerable optimisation of 
the procedure for the drugs being extracted 

(Christensen, 1984).
The use of more selective octadecylsilane bonded

sorbents has been reported. Recovery of
benzodiazepines and their metabolites from human serum 
(Good and Andrews, 1981) was compared with recovery
from liquid-liquid extraction (Strojny et al., 1978).
In all cases, the bonded phase gave superior extraction
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recovery, for example, chlordiazepoxide - bonded phase: 
91±5.4%; solvent: 80±4%.

A rapid method for the isolation of twenty-two 

benzodiazepines from human samples using Sep-Pak C18 
cartridges has recently been reported (Suzuki et al., 
1988). This paper, unfortuneately, gives no recovery 

data, except to say that all drug recoveries were 
excellent from urine samples but somewhat lower for 
plasma samples. The recovery of medazepam, however, is 
given as 10 to 20% in plasma! Some deproteinization of 
the samples improved recoveries dramatically, but this 
involves an extra stage in an extraction intended to 

save time and money. No standard working
concentrations are given or detection levels for drug 

analysis.
No literature involving the polar or ion-exchange 
extraction of these drugs was available.

Diazepam
Solvent Extraction
The recovery of diazepam and its metabolites from 

various biological samples using solvent extraction has 
generally been good. Solvent extractions are usually 

carried out using ether as the extracting solvent.
Recoveries of 87.8 to 95.5% for diazepam from brain

tissue (Komiskey et al., 1985); 96±3% for diazepam,
94±4% for desmethyldiazepam from plasma (Brodie et

al., 1978); 82.6 to 107% from human serum (Lau et al.,
1987) and 89 to 96% from human and dog urine and plasma
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for diazepam and its metabolites (Vree et al., 1979), 
have been reported using ether extraction.

A recovery of 65 to 70% for drug and metabolites from 

post mortem blood (Wong, 1983) was attained using 

toluene as the extracting solvent, and slightly 

improved recoveries were obtained using
benzene-methylene chloride to extract the drugs from 
plasma and urine samples of humans and cats (human 
plasma: 60 to 89%; human urine: 81 to 93%; cat plasma:
74 to 85%; cat urine: 79 to 88%)(Cotler et al., 1981). 
Using chloroform only as an extracting solvent gave
95.2 to 102% recoveries for diazepam and its 
metabolites from human serum (MacKichen et al., 1979).

Solid-Phase Extraction
Specific solid-phase extraction methods, all using 
non-polar cartridges, for diazepam and it's metabolites 

from biological fluids have also been extensively 

reported (Good and Andrews, 1981; Rao et al., 1982; 
Sample et al., 1986). These procedures are often 
preferred to other extraction systems because of their 
reproducibility and simplicity. However, problems with 
the cleanliness of extracts which prevents direct 
injection onto HPLC or GC have been encountered. This 
was overcome using a combined bonded—phase 

liquid-liquid extraction (de Groot and

Grotenhuis-Mullenders, 1983).
From an efficiency point of view, drug loss is minimal
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since extraction involves a single step. The 

simultaneous detection and measurement of the parent 
compound and metabolites is essential for many 
benzodiazepines because of their extensive 

pharmacological biotransformation into several 

metabolites. Recoveries of more than 88% for diazepam 
and its metabolites (Rao et al., 1982) and over 90% 
for diazepam (Hyde, 1985) are common.

Tr iazolam.

Solvent Extraction
Various solvents have been used to extract parent 
triazolam and its metabolites from biological fluids. 

Using ether, low recoveries were obtained from human 

plasma: 59 to 76% for triazolam; 54 to 66% for
1-hydroxytriazolam (Coassolo et al., 1983).

Better results were achieved using methylene chloride 
as an extracting solvent: 91.4% and 92.6% respectively

for triazolam, from dog blood and plasma (Eberts, 1977). 

Solid-Phase Extraction
Triazolam is included in solid-phase benzodiazepine 

screening methods (Suzuki et al., 1988). An automated 
screening method for benzodiazepines in human urine and 
plasma using C2 bonded cartridges (therefore having a 
much shorter hydrocarbon chain than C18 or C8 
car tr idges and so having a smaller capacity for 
non-polar interactions) gave drug recoveries of 
97.9±2.2% for triazolam. The longer chain cartridges
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were tried and found to give tailing peaks in analysis 
(Mura et al., 1987).

Sep Pak® C18 cartridges were used to extract 

triazolam and its metabolites from human urine (Inoue 
and Suzuki, 1987). Their recoveries were pH dependant, 

but satisfactory results (over 90%) were obtained right 
across the pH range 5 to 11.

For post mortem blood samples, Amberlite resin was used 
to extract parent triazolam, giving a recovery of 
96-98% (Koves and Wells, 1986).

Flunitrazepam 

Solvent Extraction

Ether, again, is the preferred extracting solvent for 
flunitrazepam. Recoveries of 70% for
7-aminoflunitrazepam and 50% for
7-acetamidoflunitrazepam in human plasma have been 

reported (Sumirtapura et al., 1982).
A slightly better recovery for flunitrazepam (75.3% 
from body fluids) had been reported using hexane (Vree 
et al., 1977), but the best recoveries were those 
obtained using extraction into benzene (99.7±4.9% for 

flunitrazepam; 98.6±7.8% for desmethylflunitrazepam) 

from human serum.
Solid-Phase Extraction
Flunitrazepam is included in solid-phase benzodiazepine 
screening methods (Mura et al. , 1987; Suzuki et al.,

1988), the former quoting 102+2.8% extraction 

recovery for flunitrazepam.
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2.3.3 Xylazine.

Solvent Extraction

Xylazine has been extracted from biological fluids and 
tissues mainly by solvent extraction. A typical 
procedure would be as follows (Rogstad and Yndestad, 
1981):

Serum (2g) was alkalinized by concentrated ammonia and 
internal standard (diphenhydramine hydrochloride) was 

added. The aqueous phase was extracted with diethyl 
ether (2 x 4ml) and the combined ether phases were 
washed with water which was discarded. After 
extraction with 0.05 M sulphuric acid (2 x 2ml), the 

combined aqueous solutions were alkalinised and 

extracted twice with 3-ml portions of chloroform. The 

chloroform was dried off under a gentle stream of 
nitrogen, and the residue was dissolved in methanol 

(50ul) , of which 2ul were injected into the gas 

chromatograph.
Recovery using this method was reported as 100% from 
cattle serum samples and 93% from cattle meat samples. 
Extremely high recoveries were also obtained from white 
blood cells (97.7±3.5%), red blood cells (98.7±3%) 

and plasma (93.8±3.7%) of horses, using ether as an 
extracting solvent (Akbari. 1988). Chloroform alone 
was not as efficient, with recoveries of only 
7 6.4±3.4% reported from human plasma (Alvinerie and

Toutain, 1981).
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Solid-Phase Extraction

Xylazine has also been extracted using XAD-2 resin 
(Poklis et al.f 1985), but no recovery data is given. 

There is no record of bonded sorbent extraction for 
this drug.

2.3.4. Mazindol.

Solvent Extraction

The current extraction procedure for mazindol 

hydrolysis product from the urine of racehorses is
extremely long, involving overnight enzyme hydrolysis 
followed by heating the sample for four hours at 
110°C and solvent extraction into a trisolvent of

cyclohexane-dichloromethane-ethyl acetate (65:20:15) in 
10% isopropyl alcohol.
A somewhat simpler extraction procedure involving the 
extraction of urine (to pH14 using 6M sodium 
hydroxide), into dichloromethane-isopropanol (90:10)
has been described (Timmings et al., 1985). However, 

this method is also time-consuming and extract quality 

was reported as being extremely poor.

Solid-Phase extraction
To date, there are no solid-phase extraction procedures 

published for this particular drug.
However, a routine screening procedure involving 
solid-phases for the extraction of the urine of
racehorses is in current use at the Horseracing 
Forensic Laboratory, Newmarket, England (Figure 8).
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 ̂  ̂  ̂• Dcug Screening in the Urine of Racing
Greyhounds.

Solvent Extraction

From a greyhound drug screening point of view, the 

development of a faster, more efficient extraction
process is economically important. A single extraction 
for the recovery of acidic, basic and neutral drugs 

from greyhound dog urine was described by Hill et al., 
(1982), which is similar to that currently used as the
procedure at British greyhound racing stadiums.
For confirmatory testing, the acidic drugs are
extracted using a diatomaceous earth sorbent, while the 
basic drugs are extracted using a 1iguid-1iguid
extraction method:
Greyhound urine (20ml) was m'ade basic with
approximately 3. 5M ammonia solution (10ml). This was 

extracted with ethyl acetate (50ml) in a 100ml capacity 

separating funnel. After shaking, the agueous layer 
was discarded. The organic layer was extracted with 2M 

sulphuric acid (10ml). The acidic layer was
transferred to another separating funnel, made alkaline 
with approximately 3. 5M ammonia solution and extracted 

into ethyl acetate (50ml). The agueous layer was 
discarded and the organic layer was dried over 

anhydrous sodium sulphate.
The extract was then evaporated to dryness on a water 
bath and reconstituted in papaverine solution

(0.5mg/ml, 25ul). as an external standard.
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2.3.6. Basic Drug Screening in Post-Mortem Urine 
Samples.

Solvent Extraction

Basic drug screening methods for post-mortem are well 
documented and widely used. Almost all routine 
toxicology laboratories employ solvent extraction 
methods, because these tend to give sufficiently clean 
extracts for chromatographic analysis. Recently, 
though, solid-phase extractions are being seriously 
considered as an alternative, mainly because of their 
automation potential which is a massive bonus for 
clinical testing laboratories whose workload is ever 

increasing.
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3. EXPERIMENTAL

3.1. Methods of Analysis

3.1.1. Benzodiazepines - HPLC analysis 
Equipment and column

The chromatographic system was based on a Gilson 302 

pump incorporating a 5S piston head which was used to 
deliver solvent at a given flowrate. The eluent was 
monitored at 254 and 230 nm using a Pye Unicam PU4025 

variable wavelength ultra-violet detector incorporating 
an Analytical flowcell assembly, volume 8ul, pathlength 
10mm. Spectra were recorded on a Servoscribe chart 

recorder, operated at lcm/minute and lOmV full scale 

deflection.
The column was 25cm x 4.6mm internal diameter, 

pre-packed with Hypersil 5um ODS C18 (HPLC Technology) 
and fitted with a 20ul Rheodyne 7125 injection valve.

a) Diazepam and metabolites 
Preparation of standard solutions
Standard stock solutions of diazepam, oxazepam, 
desmethyldiazepam and temazepam were made up in 

methanol (Img/ml). These solutions were diluted with 

mobile phase in order to obtain standard solutions of 

10. 100 and 1000 ng/ml.
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Separation of d iazepam from its metabolites 

To separate diazepam from its metabolites, the

following mobile phase was prepared: methanol

deionised water - phosphate buffer(pH8) - acetonitrile 
(200:125:100:75) (Gill et al, 1986).

Retention times for diazepam and its metabolites using 
this HPLC system were determined.

b) Triazolam and 1-hydroxy triazolam 
Preparation of standard solutions

Triazolam and 1-hydroxy triazolam were dissolved in
methanol to give standard stock solutions (lmg/ml). 
The solutions were diluted with mobile phase in order 
to obtain standard solutions of 10, 100 and 1000 ng/ml. 
Separation of triazolam from its metabolite 
Two HPLC methods were developed for the separation of
triazolam from its 1-hydroxy metabolite:
i) Triazolam was separated from its main metabolite 

using the HPLC system described above.

ii) Triazolam was also separated from its metabolites 

using the following HPLC system:

Equipment and column
The chromatographic system consisted of a continuous 
flow Gilson 302 pump incorporating a 5S piston head 

which was used to deliver solvent at a rate of 

1 .5ml/min.
The eluent was monitored at 230 nm with a Pye Unicam
PU4025 variable wavelength ultra-violet detector.
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The column was 25cm x 4.6mm internal diameter 

pre-packed with Hypersil 5um octadecylsilane C18 

universal cartridge column (Capital HPLC Specialists) 

and fitted with a Rheodyne 7125 injection system 
incorporating a 20ul loop.
Elution solvent

The mobile phase used was that described by Gill et 

al.f 1986 with the phosphate buffer replaced by acetate 

buffer: ammonium acetate buffer (pH7) - deionised
water - acetonitrile - methanol (100:125:75:200 v/v). 
Using the above systems and stock solutions described, 
the retention times for triazolam and 1-hydroxy 
triazolam were determined.

c) Flunitrazepam and metabolites 
Preparation of standard solutions
Flunitrazepam and its metabolites were dissolved in 
methanol to give standard stock solutions (lmg/ml). 
The solutions were diluted with mobile phase in order 
to obtain standard solutions of 10, 100 and 1000 ng/ml. 

Separation of flunitrazepam from its metabolites 
Flunitrazepam was separated from its metabolites using 
the HPLC method described above (b(ii)) and retention 

times determined.
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^ — separation of nineteen common benzodiazepines 
Preparation of standard solutions

Nineteen benzodiazepines were dissolved in methanol at 
a concentration of 500 ng/ml.

Separation of nineteen benzodiazepines

The HPLC system described in (b(ii)) was then used for 

the separation of nineteen common benzodiazepines and 
retention times determined.

3.1.2. Xylazine - HPLC analysis 
Preparation of standard solutions

A xylazine standard stock solution was prepared 
containing lmg/ml in methanol. The solution was 

diluted with mobile phase in order to obtain standard 
solutions of 10, 100 and 1000 ng/ml.

Three HPLC systems were tried:
j) The HPLC system described above (b (ii)) was used 

to determine xylazine using a detection wavelength of 

220 nm.

ii) Equipment and column
The HPLC system consisted of a continuous flow Kratos 
Spectroflow 400 pump, which was used to deliver solvent 
at a rate of 2ml/min. The eluent was monitored at 225 
nm with a Pye Unicam PU4025 variable wavelength 
ultra-violet detector. The system was operated at room 

temperature (20°C).
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The column was 30cm x 4.0mm internal diameter

pre-packed with Hypersil lOum octadecylsilane C18 and
fitted with a Rheodyne 7125 injection system
incorporating a 20ul loop.
Elution solvent

The composition of the mobile phase was : 2% glacial

acetic acid in water-methanol-heptanesulphonic acid 
(55:45:0.2,v/v) (Alvinerie and Toutain, 1981).

iii) This system was a variation on a published method 

for bromazepam determination (Hirayama and Kasuya, 
1983) .

Equipment and column
The HPLC system consisted of a continuous flow Kratos 

Spectroflow 400 pump, which was used to deliver solvent 

at a rate of 2ml/min.
The eluent was monitored at 225 nm with a Pye Unicam

PU4025 variable wavelength ultra-violet detector. The 
system was operated at room temperature (20 C ) .
The column was 25cm x 4.6mm internal diameter 
pre-packed with Hypersil 5um octadecylsilane C18 and 
fitted with a Rheodyne 7125 injection system 

incorporating a 20ul loop.
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Elution solvent

To determine xylazine, the following mobile phase was 

prepared: lg of tetramethyl ammonium hydroxide

dissolved in deionised water (250ml)-acetonitrile-
methanol (250:150:10 v/v).

Using this system, the retention time for xylazine was 
determined.

3.1.3. Basic Drug Screening System
a) HPLC analysis

Preparation of drug standards
One hundred basic drugs were made up in methanol at 
concentrations of 1 and 5ug/ml.

Separation of basic drugs 
Equipment and column

HPLC analysis of 100 basic drugs commonly encountered 

in urinary drug screening was performed using a 

gradient pumping system (Varian) operated at 1.5 
ml/minute, incorporating a lOul Rheodyne injection 

valve.
The detector was a UV/visible diode array 
spectrophotometer (Hewlett Packard) with a 9000/300 
series data system. The eluent was monitored at 200nm 

and full spectra were recorded from 190 to 400nm for 
each peak. A spectral library was acquired under 
laboratory conditions for each compound examined.
The column was a Hibar Lichrospher 100 CH-8/II (25cm x

4.6mm) (Merck).
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Elution solvent

The initial mobile phase composition was 10%

acetonitrile in 0.05M pH3.2 potassium phosphate
buffer. This was increased to 50% over 15 minutes, and 
the final composition was maintained for 5 minutes. A 
re-equilibration time of 5 minutes was required between 
injections (total cycle time 25 minutes).

Using this system, the retention times for all 100 
drugs were determined.

b) GC analysis 
Equipment and column
Gas chromatography of basic drugs was performed using a 
Chrompack-Packard, Model 427 equipped with a
nitrogen-phosphorus detector (NPD) and a

flame-ionisation detector (FID).
The capillary column was a WCOT fused silica, 25m x 
0.32mm inside diameter, 0.45mm outside diameter, 0.41um 

CP Sil 5 CB (Chrompack).
Temperature programme
The injection port was held at 290°C, detector at 
290°C and the oven was programmed from 120 C to 
290°C at 8°C per minute. The initial time was 2 

minutes and final time 5 minutes.
The instrument was equipped with a split/splitless 

injector.
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Gas flowrates

Helium was used as the carrier gas. The flowrate was 

approximately 1.5 ml/minute through the column, 

achieved by maintaining a column head pressure of 100 
kPa. The column effluent was split 1:1 and helium make 

up gas was introduced to give a flow of lOml/minute of 
helium to each detector.
The other gas flowrates were:

NPD:- hydrogen and air:- 5 and 15ml/minute respectively. 
FID:- hydrogen and air:- 30 and 250ml/minute 
respectively.

The sample volume used was lul.

These analysis methods were currently in use in the 

laboratories where this work was carried out, and gas 

chromatography was used only as a qualitative technique.

3.1.4. Mazindol
a) HPLC analysis
Preparation of standard solutions
A mazindol standard stock solution was prepared 
containing lmg/ml in methanol. The solution was 

diluted with mobile phase in order to obtain standard 

solutions of 10, 100 and 1000 ng/ml.

Equipment and column_
The HPLC system consisted of a Perkin Elmer series 2 

pump which was used to deliver solvent at a rate of 1.5 
ml/minute. The eluent was monitored at 254 nm with a
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Perkin Elmer LC-15B ultraviolet fixed wavelength 
detector.

The column was a 30cm x 4.5mm internal diameter 5um 
Bondapak C18 (Waters), fitted with a Rheodyne injection 
system incorporating a 20ul loop.
Elution solvent

The determination of mazindol was carried out using 

various compositions of 0.005M pentane sulphonic acid- 
acetonitrile- 85% phosphoric acid.

Mobile phases in the ratio 90:10:5, 50:50:5, 60:40:5
and 75:25;5 were prepared and the optimum eluent 
evaluated.

Using the chosen system, the retention time of mazindol 
was determined.

b) GC-MS analysis 

Equipment and column
The GC-MS system used was a Hewlett Packard 5890 GC 

with a 5970 mass selective detector (MSD) and Chem

Station Data System.
The column was a DB-1 methyl silicone fused silica 
capillary (J + W) , 5m x 0.25mm internal diameter and

0.25 urn film thickness.
The GC was operated in splitless injection mode. 

Temperature programme
The oven was programmed from 50 to 280°C at
30°C/minute after 1 minute initial delay, and was

held at final temperature for 5 minutes.
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Gas flowrate

Helium carrier gas was used at a flowrate of 
lml/minute.

This mass spectrometry method was only used as a 

qualitative technique.
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3.2 Methods of Extraction

All initial work involved the extraction of drugs from 
the urine of racing greyhounds.

3|2-L  Extraction Methods exploiting Non-Polar Sorbent
Interactions.

1 . Benzodiazepines 

DIAZEPAM AND OXAZEPAM

Preparation of aqueous standard solutions

Diazepam was dissolved in deionised water to give a
solution of concentration 300ng/ml.

Oxazepam, the main urinary metabolite of diazepam, was 
dissolved in deionised water to give a standard 

solution (lOOng/ml).

Initial extraction procedure for oxazepam 

Conditioning of the columns
Bond Elut® C8 columns of 3ml capacity and 1ml 
capacity were conditioned with two column volumes of 

methanol followed by one column volume of 1% ammonium 

hydroxide (v/v) to ensure a basic environment.

Addition of sample
The sample solution (lml of lOOng/ml standard) was 
added to the column and drawn through under vacuum. 
The columns were then washed with deionised water (2 x 

0 .1ml) to displace any remaining methanol.
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Elution of the drugs

The drugs were eluted from the column with!

a) methanol - l%ammonium hydroxide - acetonitrile 
(2:2:1),

b) methanol-acetonitrile (1:1) or,

c) methanol-acetonitrile (3:1) (3 x 0.5ml) (K.C. Van
Horne et a l ., 1985).

Analysis of the sample

The extract was evaporated to dryness under a stream of 
nitrogen at 40°C. The residue was dissolved in
mobile phase (0.1ml) prior to HPLC analysis.

Extraction efficiency of the columns

a) The effect of pH of the sample 

Preparation of the working solution
A solution of labelled diazepam (approximately 10000 
counts per minute) was made up by diluting 1ml of the 

supplied tritiated standard with 1 litre of deionised 

water.
Tritiated diazepam solution (0.1ml) was added to
standard diazepam solution (300ng/ml)(lml) to give a 

working solution (WS).
Buffering of the working solution
Aliquots of this solution (0.5ml) were buffered with
0.05M sodium bicarbonate buffer (pH9) (0.5ml) to pH
4.15, 7.63 with sulphuric acid and 10.25 with sodium

hydroxide.
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Conditioning of the extraction columns

The C8 solid-phase cartridges (3ml capacity) were
conditioned with methanol (2 x 3ml).
Addition of sample

The standard solution was passed through the column 
under vacuum and collected.

Liguid scintillation counting

The liquid scintillation counter used was a Tricarb 

Packard. The counter was preset to count for one

minute. For region A, the lower limit was set at 0.0 
keV and the upper limit at 18.6 keV. For region B, the 
lower limit was 2.0 keV and the upper limit, 18.6 keV. 
Scintillant (Ecoscint®, suitable for use with aqueous
solutions) (4ml), was added to the extract and the
concentration of radiolabelled drug determined in each 
sample by liquid scintillation counting.

Elution of the sample
The drugs on the column were eluted with
methanol-acetonitrile (3:1), scintillant was added 

(4ml) and the percentage recoveries determined.

b) The effect of elution solvents 

Oxazepam standards on HPLC
Prazeparo (2.4ug/ml in methanol) was added to the
oxazepam standards prepared in 3.1.1.(a) (10, 100 and

1000 ng/ml concentrations) and the samples were
injected onto the HPLC. From the series of ratios 
produced. at chart ranges 0.01, 0.02 and 0.04
absorbance units full scale, the linearity of response
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of oxazepam to HPLC was determined so that percentage 
recoveries of oxazepam after extraction could be 
calculated.

Extraction of standard solutions 

Conditioning of the extraction columns

The C8 solid-phase cartridges (3ml capacity) were 
conditioned with methanol (2 x 3ml).
Addition of sample

The standard solution was passed through the column
under vacuum.

Elution solvents

For the elution step, the following combinations of 
solvents were tried:

1. Methanol-10% ammonium hydroxide-acetonitrile (3:1:1) 

At this point, the sample was buffered to pH 10.25 with 
0.05M sodium dihydrogen phosphate / sodium hydroxide

(0.5ml) prior to extraction.
2. Methanol-acetonitrile-chloroform (2:1:1)
3. Methanol-acetonitrile-chloroform (2:1:3)

4. Chloroform 

Analysis of drug
Analysis of the extracts was carried out using the HPLC 

system previously described and the percentage of 

oxazepam recovered was determined.
Oxazepam in greyhound urine samples
Blank greyhound urine was obtained by placing the 
greyhound in a metabolic cage and collecting the urine

produced over a period of 24 hours.
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Spiked urine samples in the range 10 to 1000 ng/ml were 

prepared by adding aliquots of a standard solution of 

oxazepam (lmg/ml) in methanol to blank urine (20 ml). 
The samples were then mixed on a vortex mixer.

Recovery of oxazepam from greyhound urine samples 
Extraction procedure

Conditioning of the extraction columns
Bond Elut® columns, of 3 ml capacity, containing C8 
packing material were positioned in a 10 column 

capacity Vac Elut® system. Pressure was adjusted to 
10-*15 mm Hg and then each column was conditioned by 

washing with methanol (2 x 3ml), followed by phosphate 

buffer (pH 10.25) (1 x 0.5ml).

Addition of sample
Before the column could dry completely, the spiked 
urine sample (2.5 ml) + buffer (pH 10.25) (0.5ml), was
applied to the column and drawn through.

Elution of the drug
The adsorbed drug was eluted from the column with 

chloroform (3 x 0.5ml).

Analysis of the drug
The combined eluent was evaporated to dryness under a 
stream of nitrogen at 50°C and the residue was 

re-dissolved in the mobile phase (0.25ml) and prazepam 
standard (0.25ml) (2.4 ug/ml) as an external standard.
Twenty microlitre (ul) samples were then injected onto

HPLC.
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The percentage of oxazepam recovered from greyhound 
urine was then determined.

Collection of greyhound samples

Four racing greyhounds were each administered diazepam 
(a single oral dose, 5mg). Urine samples were freely 
collected at timed intervals from the greyhounds. The 
samples were collected after 1, 2, 3, 4, 5, 6, 7, 24,
25, 26, 28, 30, 48 and 72 hours.

The samples were stored at -20°C before use.

Each greyhound was dosed three times, allowing 
sufficient time between dosings for all the drug to 
have been excreted from the system.

The release of oxazepam from its conjugated state. 
Oxazepam was released from its conjugated environment 
in the urine using enzyme hydrolysis.

Enzyme hydrolysis
Helix Pomatia Juice-B-glucuronidase releases both 

glucuronide and sulphates from their conjugated states. 

The optimum pH environment for this enzyme is pH5 

(Axelson et al., 1981).
B - glucuronidase (25 ul) and 0.1M sodium acetate buffer 

(pH5; 0.5ml) were added to the urine (2.5 ml). The
sample was then incubated at 60 C for two hours.
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Extraction of greyhound samples

The extraction procedure outlined above was performed 
using untreated urine samples and enzyme treated 
samples.

TRIAZOLAM AND 1-HYDROXY TRIAZOLAM

Triazolam and 1-hydroxy triazolam standards on HPLC 

Prazepam (2.4ug/ml in methanol) was added to the 
triazolam and metabolite standards prepared in
3.1.1.(b) (10, 100 and 1000 ng/ml concentrations) and
the samples were injected onto the HPLC analysis system
(i). From the series of ratios produced, at chart 
ranges 0.01, 0.02 and 0.04 absorbance units full scale,
the linearity of response to HPLC was determined so 

that percentage recoveries after extraction could be 

calculated.
Triazolam in greyhound urine samples
Triazolam and 1-hydroxytriazolam standards were made up 

in greyhound urine at 50, 100 and 500 ng/ml
concentrations. These were extracted using a 
modification of the procedure developed for oxazepam.
A wash step was incorporated prior to elution (1 x 
0.5ml deionised water). The percentage recovery of the 

drugs from greyhound urine was determined.
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Collection of greyhound samples (0.25 mg administration) 

Four greyhounds were each administered 1 x 0.25mg 
triazolam tablet. Urine samples were freely collected 
at timed intervals from the greyhounds. The samples 
were collected after 1, 2 f 3 f 4 f 5, 6. 7, 24, 25, 26, 
28, 30, 48 and 72 hours.

The samples were stored at -20°C before use.

Each greyhound was dosed three times, allowing 

sufficient time between dosings for all the drug to 
have been excreted from the system.

Extraction of greyhound samples
Extraction was carried out as previously outlined and 

analysis was using HPLC.
The effect of increased capacity cartridges 
Conditioning of the extraction columns
Bond Elut® columns, of 6 ml capacity, containing C18 

packing material were positioned in a 10 column 

capacity Vac Elut® system. Pressure was adjusted to 
10->15 mm Hg and then each column was conditioned 
with two column volumes of methanol and one of water. 

Addition of sample
Urine (3ml) was diluted with buffer pHIO (0.5ml) and 

applied to the column. The column was washed with 

deionised water (2 x 0.5ml).

Elution of the drug
The adsorbed drug was then eluted with chloroform (3 x 

0.5ml).
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Analysis of the drug
The eluent Mas evaporated to dryness and reconstituted 

in mobile phase (0.1ml) and prazepam standard (0.1ml) 
prior to HPLC injection and the percentage recovery of 
the drug Mas determined.

Collection of greyhound samples (0.5 mg administration) 
The greyhounds Mere each administered 1 x 0.5mg 
triazolam tablet. Urine samples Mere freely collected 
at timed intervals from the greyhounds. The samples 
were collected after 1. 2. 3, 4. 5, 6. 7. 24, 25, 26,
2®. 30. 48 and 72 hours.
The samples were stored at -20°C before use.
Each greyhound was dosed three times. allowing 
sufficient time between dosings for all the drug to 
have been excreted from the system.

Extraction of greyhound samples
Greyhound urine samples taken one and two hours after 
oral administration of 1 x 0.5mg triazolam tablet only 
were extracted using this procedure. Some of the 
samples were enzyme hydrolysed (see oxazepam procedure) 
prior to extraction.
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2. Xylazine

Xylazine standards on HPLC

The xylazine standards prepared in 3.1.2. (10, 100 and

1000 ng/ml concentrations) were injected onto the 

HPLC. From the peak areas produced, at chart ranges 
0.01, 0.02 and 0.04 absorbance units full scale, the
linearity of response to HPLC was determined so that 
percentage recoveries after extraction could be 
calculated.

Xylazine in greyhound urine samples
Spiked urine samples were made up at 100, 500 and 1000
ng/ml concentrations.

Recovery of xylazine from greyhound urine samples 

Extraction procedure
Conditioning of the extraction columns
Columns were conditioned with two column volumes of 
methanol, one column volume of deionised water followed 

by one column volume of phosphate buffer (pH 10.25). 

Addition of sample
Spiked urine (3ml), to pH 10.25 with buffer (0.5ml), 

was applied to the column and drawn through under 

vacuum.
The column was washed with deionised water (2 x 0.5ml) 

and the column was allowed to dry for 3 or 4 minutes. 

Elution of the drug
The drug was eluted with chloroform (3 x 0.5ml).

- 80 -



Analysis of the drug

The extract was blown to dryness and reconstituted in 
methanol (0.5ml) before analysis by HPLC.

Twenty microlitre (ul) samples were then injected onto 
HPLC and the percentage recovery of xylazine determined.

The effect of increased capacity cartridges 
Bond Elut® columns, of 6 ml capacity, containing C18 

packing material were positioned in a 10 column 
capacity Vac Elut® system. Pressure was adjusted to

10->15 mm Hg and then each column was conditioned 
with two column volumes of methanol and one of water. 
Addition of sample
Urine (3ml) was diluted with buffer pHIO (0.5ml) and
applied to the column. The column was washed with

deionised water (2 x 0.5ml).

Elution of the drug
The adsorbed drug was then eluted with chloroform (3 x

0. 5ml) .
Analysis of the drug
The extract was blown to dryness and reconstituted in

methanol (0.5ml) before analysis by HPLC.
Twenty microlitre (ul) samples were then injected onto 
HPLC and the percentage recovery of xylazine determined.
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Changes in extraction procedure

A methanol wash was incorporated into the system.
Acetone was used as an alternative eluent.

Direct injection of the extract in chloroform onto HPLC 
was attempted.

Collection of greyhound samples

Four greyhounds were injected with 2% xylazine solution 
(Rompun) (0.05ml/kg). The average greyhound weighs 36 
kg.

Urine samples were collected after 1, 2, 3. 4, 5, 6, 7, 
24, 26, 28 and 30 hours.
Extraction of greyhound samples 
Conditioning of the extraction columns

Bond Elut® columns, of 3 ml capacity, containing C8 

packing material were positioned in a 10 column 

capacity Vac Elut® system. Pressure was adjusted to 

10->15 mm Hg and then each column was conditioned by 

washing with methanol (2 x 3ml), followed by phosphate 

buffer (pH 10.25) (1 x 0.5ml).

Addition of sample
Before the column could dry completely, the urine 
sample (2.5 ml), buffer (pH 10.25) (0.5ml), and lOOul
of a 15ug/ml methanolic solution of diazepam was 

applied to the column and drawn through.

Elution of the drug
The adsorbed drug was eluted from the column with 

chloroform (3 x 0.5ml).
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Analysis of the drug

The combined eluent was evaporated to dryness under a 
stream of nitrogen at 50°C and the residue was 

re-dissolved in the mobile phase (0.5ml).

Twenty microlitre (ul) samples were then injected onto 

HPLC.
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---- - ̂  • Extraction Methods exploiting Polar Sorbent
Interactions.

1. Benzodiazepines 

TRIAZOLAM AND METABOLITES

Triazolam and 1-hydroxy triazolam standards on HPLC 

Prazepam (2.4ug/ml in methanol) was added to the 
triazolam and metabolite standards prepared in
3.1.1.(b) (10, 100 and 1000 ng/ml concentrations) and
the samples were injected onto the HPLC analysis system

(ii). From the series of ratios produced, at chart 
ranges 0.01, 0.02 and 0.04 absorbance units full scale,

the linearity of response to HPLC was determined so 
that percentage recoveries after extraction could be 

calculated.

Evaluation of polar sorbents 
Conditioning of the extraction columns
Bond-Elut® columns containing cyanopropyl (CN) , 
aminopropyl (NH2) or diol (20H) packing material 
(lOOmg) with a capacity of 1ml were positioned in a 

Vac-Elut® system. Vacuum pressure was adjusted to 15 
mm Hg and each column was conditioned with methanol (2 

x 1ml) followed by deionised water (pH7, 1 x 1ml). 

Addition of sample
Without allowing the column to dry out, the urine 
sample spiked with triazolam (500 ng/ml)(lml) + 

deionised water (pH7, 1ml), was added to the column.
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The urine was drawn through and the column was dried 
under vacuum for 3 minutes.

The cartridge was washed with deionised water (pH7f 2 x 
0.25ml).

Elution of the drug

The drug was then eluted with methanol, to pH4 with 

hydrochloric acid or to pHIO with ammonium hydroxide (2 
x 0.25ml) (See Appendix A 2 .6.).
Analysis of the drug

The eluent was then directly analysed by HPLC and the 

percentage recovery of the drug determined.

Triazolam and its metabolites in greyhound urine samples 

The 4-hydroxy metabolite of triazolam had been received 
for use as a drug standard.
Spiked urine samples in the range 10-1000 ng/ml were 
prepared by adding aliquots of a standard solution of 
the triazolam and its metabolites in methanol (lmg/ml) 

to blank greyhound and human urine, and stored at 

-20°C until required for extraction.

Extraction of greyhound samples
Spiked urine samples and authentic greyhound urine 

samples (taken following the administration of 1 x 

0. 5mg triazolam tablet) were extracted according to the 
following procedure. Some of the samples were enzyme 
hydrolysed (see oxazepam procedure) and some were not.
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Conditioning of extraction columns

Bond Elut® columns, of lml capacity, containing CN 

packing material were positioned in a 10 column 

capacity Vac Elut® system. Pressure was adjusted to 

10-»15 mm Hg and then each column was conditioned by 
washing with methanol (2 x lml), followed by deionised 
water (pH 7) (l x lml).

Addition of sample

Before the column could dry completely, the urine 

sample (lml), buffer (pH 7) (lml), and lOOul of a 

15ug/ml methanolic solution of diazepam was applied to 
the column and drawn through.

The urine was drawn through and the column was dried 

under vacuum for 3 minutes.
The cartridge was washed with deionised water (pH7, 2 x

0.25ml).

Elution of the drug
The drug was then eluted with methanol, to pH4 with 

hydrochloric acid (2 x 0.25ml).

Analysis of the drug
Twenty microlitre (ul) samples were then injected onto 
the HPLC and the percentage recoveries of triazolam and 

its metabolites were determined.

Triazolam and its metabolites in human— urine— samp1es—  
Four healthy female volunteers (average age: 26;
average weight: 67 kg) were each administered a single

tablet (1 x 0.2 5mg) of triazolam. The subjects
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abstained from alcohol and nicotine twenty-four hours 

before and after administration. Urine samples were 

collected 2, 3, 4, 5 and 12 hours after administration 
and were stored at -20°C until required for 
extraction.

The samples were extracted according the extraction 
procedure above.

FLUNITRAZEPAM

Flunitrazepam and its metabolites on HPLC 

The standard solutions prepared in 3.1.1.(c) (10, 100
and 1000 ng/ml concentrations) were injected onto the 
HPLC analysis system (3.1.1.b(ii)). From the peak 
areas produced, at chart ranges 0.01, 0.02 and 0.04

absorbance units full scale, the linearity of response 

to HPLC was determined so that percentage recoveries 

after extraction could be calculated.

Flunitrazepam and its metabolites in greyhound urine 

samples
Spiked greyhound urine samples were made up by adding 
aliquots of flunitrazepam (lmg/ml) and its metabolites 
desmethylflunitrazepam (lmg/ml) and

7-aminoflunitrazepam (lmg/ml) in methanol, to blank 
greyhound urine. Extractions were carried out at 0.5 

ug/ml level and the percentage recovery determined as 

for triazolam and its metabolites.
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Collection of greyhound samples

Four racing greyhounds were dosed with 1 x 2mg tablet 

of flunitrazepam and urine samples were collected 1, 2 f 

3 » 4, 5 f 6, 7, 24, 26, 28, and 30 hours after
administration and stored at -20°C until required for 
extraction.

Extraction of greyhound samples
The urine samples were extracted according to the 
procedure described above.

BENZODIAZEPINE SCREENING PROCEDURE 

HPLC analysis of benzodiazepines
All nineteen benzodiazepines were injected onto the 

HPLC system described in 3.1.1.b(ii) so that percentage 
recoveries of the drugs could be determined after 

extraction.
Extraction of standard benzodiazepines
Nineteen benzodiazepines (0.5 ug/ml standards) were 
subsequently extracted using the procedure described 
above and the percentage recovery of each was 

determined.
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2. Xylazine

The HPLC system previously described for the 
determination of xylazine was used.

Xylazine in greyhound urine samples

Urine samples in the range 10-1000 ng/ml were prepared 
by adding aliquots of a standard solution of xylazine 

in methanol (lmg/ml) to blank greyhound urine.
Collection of actual samples

Four greyhounds were injected with 2% xylazine solution 
(Rompun) (0.05ml/kg). The average greyhound weighs 36 

kg. Urine samples were collected after 1, 2, 3, 4, 5.
6, 7, 24, 26, 28 and 30 hours.
The samples were stored at -20 °C before extraction. 

Each greyhound was dosed three times allowing 

sufficient time between dosings for total excretion to 

have occurred.
Recovery of xylazine from greyhound urine samples 
Extraction procedure
Conditioning of the extraction columns
Bond Elut® columns, of lml capacity, containing CN 

packing material were positioned in a 10 column 
capacity Vac Elut® system. Pressure was adjusted to

10-»15 mm Hg and then each column was conditioned by
washing with methanol (2 x lml), followed by deionised

water (pH 7) (1 x lml).

Addition of sample
Before the column could dry completely, the urine 

sample (lml), buffer (pH 7) (lml), and lOOul of a
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15ug/ml methanolic solution of diazepam was applied to 
the column and drawn through.

The urine was drawn through and the column was dried 
under vacuum for 3 minutes.

The cartridge was washed with deionised water (pH7f 2 
x 0.25ml).

Elution of the drug
Methanol (50ml) was added to 36% w/w hydrochloric acid 

(3ml) to give methanolic hydrochloric acid. The drug 
was then eluted with methanolic hydrochloric acid - 
acetonitrile (50 : 50 v/v, 2 x 0.25ml).

Analysis of the drug
Twenty microlitre (ul) samples were then injected onto 
the HPLC and the percentage recovery of xylazine was 

determined.
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3-2.3. Extraction Methods exploiting Ion-exchange
Sorbent Interactions.

1. Basic Drugs 

HPLC analysis

The drug standards were analysed by HPLC (3.1.3.(a)) 

and from the peak areas obtained, the percentage 
recoveries of the drugs after extraction were 
calculated.
GC analysis

The GC analysis method was used for quantitative 
analysis only.

Cation-exchange extraction
Thirty basic drugs at 1 and 5ug/ml concentrations were 

made up in methanol and extracted using the following 

cation exchange extraction procedure:
Conditioning of extraction columns
Bond Elut® strong cation exchange (SCX) columns (lml 

capacity). These contained 40um silica particles with 
an alkyl bonded benzenesulphonylpropyl moiety. The 
cartridges were conditioned under vacuum on a 
Vac-Elut® manifold with methanol (2ml), water (lml) 

and 7mM phosphoric acid (pH3.4)(0.5ml).

Addition of sample
Urine (lml) and 7mM phosphoric acid (0.5ml) were mixed 
thoroughly and applied to the column. The column was 
ale dried for approximately 30 seconds, and then 

washed with 7mM phosphoric acid (lml), 0.IN acetic
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acid (0.5ml) and methanol (lml).
Elution of the drug

The column was again air dried and ammoniacal methanol 

(l%)(lml) was passed through the column and collected. 

An aliquot of the residue (20ul) was removed for
analysis.

Analysis of the drug

The remainder was evaporated to dryness under nitrogen
at 45°Cf and reconstituted in 50ul of solvent. lOul

of which were analysed by HPLC so that the percentage
recoveries of each drug could be determined.

Method Validation

Human post-mortem urine samples

Twenty-four post-mortem urine samples were extracted 
by conventional solvent extraction methods (Foerster 
and Mason, 1974; Anderson and Stafford, 1983) in 
parallel with the solid-phase extraction procedure 
described and the following non-selective method: 
Liquid/Solid extraction on diatomaceous earth 
Absorption extraction columns were prepared in 10ml 
pipettes by closing the bottom with a plug of glass 

wool, and filling the pipette with a diatomaceous 
earth material (Chem Elut®, Analytichem
International, Harbor City, California) to a level 

l-2cm below the top.
Urine samples (5ml) were diluted with 0. 2M borate 

buffer (pH9;3ml), then applied to the columns and
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allowed to absorb for 2-3 minutes. Solvent (n-butyl 
chloride) was applied and allowed to flow through 

until the required volume had been collected (12ml). 

The eluting solvent was evaporated to dryness, 
reconstituted in mobile phase and analysed.

Basic drugs in greyhound urine samples
The cation-exchange procedure was carried out on 

spiked greyhound urine samples containing twenty-five 
basic drugs, in order to determine percentage 
recoveries.

Method Validation 
Greyhound urine samples

Thirty urine samples from greyhound racing tracks in 
the UK, received between December 1988 and January 

1989 were extracted using solid-phase extraction in 

parallel with the existing liquid/liquid method.

a) Solid-phase extraction
Strong cation exchange (SCX) cartridges of lOOmg/lml 

capacity (Analytichem, Harbor City. California). 

Conditioning of the extraction columns
The columns were conditioned under vacuum on a 
Vac-Elut® manifold with methanol (2 x lml), 

deionised water (1 x lml) and 7mM phosphoric acid 

(pH3.4. 1 x 0.5ml).
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Addition of sample

Greyhound urine (lml), adjusted to pH3.4 with 

phosphoric acid, was applied to the cartridge and drawn 
through. The column was air dried for 3 minutes, then 

washed with 7mM phosphoric acid (1 x lml), 0.1N acetic 
acid (0.5ml) and methanol (1 x lml).
Elution of the drug

The column was again air dried, then basic methanol 

(pHIO with ammonium hydroxide, 2 x 0.5ml) was passed 
through the column and collected.
Analysis of the drug

The eluent was evaporated to dryness and reconstituted 
in papaverine solution (0.5mg/ml, 25ul) for GC analysis.

b) Liguid/1iguid extraction
Greyhound urine (20ml) was made basic with 
approximately 3. 5M ammonia solution (10ml). This was 

extracted with ethyl acetate (50ml) in a 100ml capacity 
separating funnel. After shaking, the aqueous layer 
was discarded. The organic layer was extracted with 2M 

sulphuric acid (10ml). The acidic layer was 

transferred to another separating funnel, made alkaline 

with approximately 3. 5M ammonia solution and extracted 

into ethyl acetate (50ml). The aqueous layer was
discarded and the organic layer was dried over

anhydrous sodium sulphate. The extract was then
evaporated to dryness on a water bath and reconstituted 
in papaverine solution (0.5mg/ml, 25ul), as an external

standard, for GC analysis.
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2. Mazindol 

Mazindol on HPLC

The standard solutions prepared in 3.1.4. (10, 100 and
1000 ng/ml concentrations) were injected onto the HPLC 
analysis system (3.1.4.a). From the peak areas

produced, at chart range 0.02 absorbance units full 
scale, the linearity of response to HPLC was determined 
so that percentage recoveries after extraction could be 
calculated.
GC-MS analysis

GC-MS analysis was used as a qualitative procedure only.

Mazindol in racehorse urine samples
Horse urine samples were prepared by adding microlitre 
aliquots of a standard solution of the drug (lmg/ml) in 
methanol to urine (lml). Solutions containing 100 ng 

to 10 ug/ml of drug were prepared in this manner, mixed 
by vortexing and kept at 4°C until required for 

analysis.

Extraction of racehorse samples
Three racehorses were each given an oral dose of 50mg 

of mazindol, and urine samples were taken at timed 

intervals of 0-1, 1-2, 2-4, 4-6, 6-8, 28 and 52 hours

after administration.
This was repeated following an oral dose of 5mg of 

maz indol.
The spiked and authentic samples were extracted as
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previously described, with slight modifications. The 

larger capacity SCX columns were used (3ml) and 10ml of 

sample, buffered to pH3.5 with 7mM phosphoric acid 

(5ml) was applied to the column.

For HPLC analysis, the sample was directly injected 
into the system, and the percentage recovery determined 
from the spiked samples, but for GC-MSD analysis, the 
extract was evaporated to dryness and reconstituted in 

chloroform (25ul) prior to injection.
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4. RESULTS AND DISCUSSION

4.1. Methods of Analysis

4.1.1. Benzodiazepines - HPLC analysis 
a) Diazepam and metabolites

Benzodiazepines are a widely available group of 
sedatives and so are potential drugs of abuse in 

greyhound racing. Their extraction from urine and 
subsequent quantitative analysis by HPLC is desirable. 
Diazepam and its metabolites were separated using the 
chromatographic system described (3.1.1.(a)). The 

eluent was first monitored at 254nm using a Pye Unicam 
PU4025 variable wavelength ultra-violet detector, but 
230nm was found to give much greater sensitivity.
The column used was a r ever se-phase C18, and the 
eluent consisted of methanol-deionised water-sodium 

phosphate buffer (pH8)-acetonitrile (200:125:100:75). 
The optimum flowrate for separation was 1.5 ml/minute. 
Diazepam and its metabolites were separated within 13 

minutes (Table 1) and generally peak shapes were good 

(Figure 9).
Because oxazepam is the major metabolite of diazepam 
in greyhound urine, it was more intensely examined 

than the other metabolites.
Prazepam (2.4ug/ml in methanol) was used as an 
external standard for all diazepam related HPLC work.
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TABLE 1.

RETENTION TIMES FOR DIAZEPAM AND ITS METABOLITES USING HPLC

Drug Retention Time
Oxazepam: 7.5 minutes
Temazepam: 9.3 minutes
N-desmethyldiazepam: 10.4 minutes
Diazepam: 12.2 minutes

Column: Hypersil 5um C18 25cm x 4.6mm i.d.
Mobile phase: Methanol-deionised water- sodium phosphate buffer
(pH8)-acetonitrile (200:125:100:75)
Detection wavelength: 230nm
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FIGURE 9.

Separation of diazepam from its major metabolite 
using HPLC.

Column: Hypersil 5um ODS C18 (25cm x 4.6mm i.d.)
Mobile phase: Methanol-deionised water-sodium
phosphate buffer (pH8)-acetonitrile
(200:125:100;75 v/v)
Detection wavelength: 2 30 nm Range: x0.02

Concentration of standard solutions: 100 ng/ml

D*= diazepam 
0= oxazepam 
T= temazepam 
DMD= desmethyldiazepam

DMD

---------
12 10

Time (minutes)
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Oxazepam standards on HPLC

A. series of ratios, oxazepam standard peak area 

divided by prazepam standard peak area, were 

calculated, varying both the oxazepam concentration 
and the range of the chart recorder.

The response of aqueous oxazepam standards to the HPLC 

conditions previously described was linear for three 
different ranges over the concentration range 
0-1000ng/ml oxazepam (Table 2).

Straight line graphs were produced relating the ratio 
to oxazepam concentration from which oxazepam 

concentrations were calculated, with a coefficient of 
variation of 4.60% at 0.02 absorbance units full scale 

(AUFS).
Standard solutions of 50ng/ml were easily detected 
which was adequate for the purposes of this work.
The range xO.02 was the optimum setting for signal to 

noise ratio.
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TABLE 2.

RELATIONSHIP BETWEEN OXAZEPAM CONCENTRATION AND PEAK AREA
USING HPLC ANALYSIS

Ratine (AUFS) Peak Area Relationship 
y=800x
y=769.2x ± 4.6% over three days 
y=llll.lx

xO.Ol 
xO. 02 
xO .04

y = concentration of oxazepam standard (ng/ml) 
x = area of oxazepam peak 

area of prazepam peak

Column: Hypersil 5um C18 25cm x 4.6mm i.d.
Mobile phase: Methanol-deionised water- sodium phosphate buffer
(pH8)-acetonitrile (200:125:100:75)
Detection wavelength: 230nm

• j 'k- X  •' ’ X H X
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h}— T^riazolam and 1-hvdroxv triazolam

Two HPLC methods were developed for the separation of 
triazolam from its 1-hydroxy metabolite: 

i) Triazolam was separated from its main metabolite 

using the HPLC system described. The column used was 
a reverse-phase C18, and the eluent consisted of 

methanol-deionised water-sodium phosphate buffer 
(pH8)-acetonitrile (200:125:100:75).

The optimum flowrate for separation was 1.5 ml/minute. 
Using this system, triazolam was separated from its 

main metabolite and peak shapes were good for both 
drugs (Figure 10a).

Triazolam standards on HPLC

The retention times were determined (Table 3) and the 

linearity of response was determined over the 

concentration range 0-500 ng/ml and over three chart 

ranges for both triazolam and its metabolite (Table 4). 
Standard solutions of 50ng/ml were easily detected. 

Prazepam was used as the external standard in 

benzodiazepine determinations.
Modification of mobile phase for use with LC-MS 
The presence of a phosphate buffer in the HPLC system 

described above caused problems with column blocking. 
Also, the detection limit of 50ng/ml for triazolam and 
its main metabolite was inadeguate for the purposes of 
this work. A more sensitive analysis method was

required.
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FIGURE 10.

Separation of triazolam from 1-hydroxy triazolam 
using HPLC.

a) Column:C18
Mobile phase: Methanol-deionised water-sodium phosphate 
buffer(pH8)-acetonitrile (200:125:100;75)

triazolam
IrOH

Mobile phase: Methanol-deionised water-ammonium 
acetate buffer(pH7)-acetonitrile (200:125:100:75)

triazolam

1-OH

2 e46810
Time (minutes)

Concentration of standard solutions: 500 ng/ml 
Detection wavelength: 230nm 
Range: x0.02



TABLE 3.

RETENTION TIMES FOR TRIAZOLAM AND ITS METABOLITE USING HPLC

Drug Retention Time
Triazolam 6.6 minutes
1-hydroxy triazolam 4.8 minutes

Column: Hypersil Sum C18 25cm x 4.6mm i.d.
Mobile phase: Methanol-deionised water- sodium phosphate buffer
(pH8)-acetonitrile (200:125:100:75)
Detection wavelength: 230nm
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TABLE 4

RELATIONSHIP BETWEEN TRIAZOLAM AND 1-HYDROXY TRIAZOLAM 
CONCENTRATION AND PEAK AREA USING HPLC ANALYSIS

Range (AUFS) Triazolam 1-hvdroxv triazolam

Peak Area Relationship 
xO.Ol y = 937x y = 734.2x
xO .02 y = 1803x ± 5.4% y = 1303 ± 0 . 5 %
xO.04 y = 1703x y = 1392x

y = concentration of drug standard (ng/ml) 
x = area of drug peak

area of prazepam peak

Column: Hypersil 5um C18 25cm x 4.6mm i.d.
Mobile phase: Methanol-deionised water- sodium phosphate buffer
(pH8)-acetonitrile (200:125:100:75)
Detection wavelength: 230nm
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The possibility of LC-MS was considered. The HPLC 
system described above was not compatible with LC-MS 

because of the presence of phosphate buffer, so an 
alternative mobile phase was developed (ii).

In the modified mobile phase the phosphate buffer was 

replaced with ammonium acetate buffer. The 

composition of the modified mobile phase was: ammonium 
acetate buffer (pH7) - deionised water - acetonitrile
- methanol (100:125:75:200 v/v).

Using the above system and stock solutions described, 

the retention times for triazolam and 1-hydroxy 
triazolam were determined and found to be similar to 
those obtained using the original mobile phase (Table 

5) .
Further, the acetate buffer system produced peak 

shapes which were as good as those produced by the 
phosphate system (Figure 10b) and it also provided 
greater sensitivity. The developed HPLC method gave a 

detection limit of lOng/ml for triazolam and its two 

metabolites.
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TABLE 5.

RETENTION TIMES FOR TRIAZOLAM AND ITS METABOLITE USING HPLC

Drug Retention Time
Triazolam 7.2 minutes
1-hydroxy triazolam 5.4 minutes

Column: Hypersil 5um C18 Universal cartridge (25cm x 4.6mm i.d.) 
Mobile Phase: Ammonium acetate buffer (pH7)-deionised
water-acetonitrile-methanol (100:125:75:200 v/v)
Detection wavelength: 230nm
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c) Flunitrazepam and metabolites

The system described above is LC-MS compatible and 

because of its greater sensitivity, it was 

subsequently investigated for the separation of 

flunitrazepam from its metabolites.

Flunitrazepam was separated from its metabolites using 
this system. Peak shapes were good particularly for 
the metabolites (Figure 11).

d) Separation of nineteen common benzodiazepines 

The possibility of interference in these assays from 

other related compounds was considered. Nineteen 
benzodiazepines were separated using the HPLC system 

described above to see whether any other common 

benzodiazepines were co-eluting with diazepam and its 

metabolites, triazolam and its metabolites or 
flunitrazepam and its metabolites.

Day to day reproducibility of the analysis method was 

evaluated by constructing calibration curves for all 
drugs on three different days (Table 6).

Overall reproducibility was good, with the coefficient 
of variation ranging between 1.2% for lormetazepam and 

13% for nitrazepam.
All the compounds were separated within 30 minutes 
although not all were chromatographically resolved 

from one another. The retention times are given 

(Table 7).
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FIGURE 11.
Separation of flunitrazepam from its metabolites 
using HPLC.

Column: Cl8
Mobile phase: Methanol-deionised water-ammonium 
acetate buffer (pH7)-acetonitrile (200:125:100:75) 
Detection wavelength: 230nm 
Range: x0.02

Concentration, of standard solutions: 500 ng/ml

F= flunitrazepam
DMF= desmethylflunitrazepam
7AF= 7-aminoflunitrazepam

7AP

DMF

j_________ «  i______i   ■
8 6 4 2 0

Time (minutes)
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TABLE 6.

REPRODUCIBILITY OF HPLC ANALYSIS PROCEDURE FOR BENZODIAZEPINES

Drug Average Peak Area (mrgj.) COV (%)

Alprazolam 113.2 4.7
Clobazam 196 7.1
Clonazepam 60 4.2
Desmethyldiazepam 154 2.3
Diazepam 125.8 7.1
Flunitrazepam 94.5 4.2
Desmethylflunitrazepam 72 7.7
7-aminoflunitrazepam 172 6.5
Flurazepam 20 3.2
Lorazepam 242.7 4.8
Lormetazepam 50 1.2
Loprazolam 36 2.4
Midazolam 60 3.1
Nitrazepam 39.3 12.8
Oxazepam 190 3.0
Temazepam 220 4.4
Triazolam 289.4 8.9
1-hydroxytriazolam 159 1.9
4-hydroxytriazolam 165 9.0

Drug concentrations: 500ng/ml
Column: Hypersil 5um C18 Universal cartridge (25cm x 4.6mm i.d.) 
Mobile Phase: Ammonium acetate buffer (pH7)-deionised
water-acetonitrile-methanol (100:125:75:200 v/v)
Detection wavelength: 230nm
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TABLE 7.

RETENTION TIMES OF BENZODIAZEPINES ANALYSED BY HPLC

Drug Retention Time (minutes)

Alprazolam 7.7
Clobazam 7.2
Clonazepam 5.2
Desmethyldiazepam 9.9
Diazepam 12.8
Flunitrazepam 5.6
Desmethylflunitrazepam 4.5
7-aminoflunitrazepam 2.5
Flurazepam 27.3
Lorazepam 6.3
Lormetazepam 9.2
Loprazolam 8.1
Midazolam 12.5
Nitrazepam 5.2
Oxazepam 6.7
Temazepam 8.5
Triazolam 7.2
1-hydroxytriazolam 5.4
4-hydroxytriazolam 5.8

Column: Hypersil 5um C18 Universal cartridge (25cm x 4.6mm i.d.) 
Mobile Phase: Ammonium acetate buffer (pH7)-deionised
water-acetonitrile-methanol (100:125:75:200 v/v)
Detection wavelength: 230nm
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Clobazam had the same retention time as triazolam. 

Flunitrazepam was eluted between the metabolites of 

triazolam. The developed system adequately separates 

triazolam and its metabolites from all commonly 

occurring benzodiazepines except clobazam and 
flunitrazepam. It also separates all the metabolites 

of diazepam and flunitrazepam from possible 
interfering benzodiazepines.
The system was designed to be LC-MS compatible (no 
phosphate buffers are involved) so that, if necessary 

interfering peaks could be positively identified using 
this technique. LC-MS analysis was not carried out in 

this work.

The detection limit for most of the benzodiazepines 

was 50 ng/ml at 0.02 AUFS although for 
7-aminoflunitrazepam, clobazam, desmethyldiazepam, 
lorazepam, oxazepam, temazepam, triazolam, 1-OH 

triazolam and 4-OH triazolam, the limit was lower (10 

ng/ml). Loprazolam and flurazepam were not detected 

below lOOng/ml.

4.1.2. Xylazine
Xylazine, a veterinary sedative, is potentially a drug 
of abuse in racing greyhound situations due to its 

high potency. A reproducible and sensitive analysis 
system was required for its determination and 

quantitation in greyhound urine.
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The HPLC system described above (C18 column; 

methanol-deionised water-ammonium acetate buffer 

(pHB)-acetonitrile (200:125:100:75) did not allow good 
chromatography of xylazine. The peak shapes were too 

broad and the retention time was long.

The published method for xylazine HPLC analysis (C18 

column; 2% glacial acetic acid in water - methanol - 
heptanesulphonic acid (55:45:0.2fv/v); detection 

wavelength 225nm) (Alvinerie and Toutain, 1981) gave 
very broad peak shapes and so an alternative method 
was developed.

Xylazine is similar in structure to bromazepam so a 

published HPLC method for bromazepam was modified to 

separate xylazine. The system (C18 column; mobile 

phase: lg tetramethyl ammonium hydroxide dissolved in

deionised water (250ml) - acetonitrile - methanol
(250:150:10,v/v); flowrate 2ml/minute; detection 

wavelength 225nm) was a modification of an existing 
method used for bromazepam (Hirayama and Kasuya, 
1983). The peak shapes were excellent and the 

detection limit for xylazine was lOng/ml.
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Xylazine standards on HPLC

The linear relationship was calculated between peak 

area ratio and the concentration of xylazine in urine 
between 10 and 1000 ng/ml. Standard curves 
constructed on three different days showed good 

reproducibility over the concentration range used, 

with a coefficient of variation of 5.95% at 0.02 

absorbance units full scale (AUFS) over three days 

(Table 8) from which xylazine concentrations in 

extracted samples could be calculated.
The detection limit was 10 ng/ml and the retention 
time for xylazine was determined (Table 8).

- 114 -



TABLE 8.

RELATIONSHIP BETWEEN XYLAZINE CONCENTRATION AND PEAK AREA
USING HPLC ANALYSIS

Drug concentration (ug/ml) Average Peak Area (mmi.)

0.05 4.9
0.1 10.2
0.5 45.7
1.0 89.9

Range Peak Area Relationship 
xO.Ol y=151.5x
xO.02 y=95.3x ± 5.95%
xO.04 y=31.25x

x = concentration of drug (ug/ml) 
y = area of drug peak

RETENTION TIME FOR XYLAZINE USING HPLC : 6.5 minutes

Column: Hypersil Sum C18, 25cm x 4.6mm i.d.
Mobile phase: lg tetramethyl ammonium hydroxide dissolved in 250 ml 
deionised water-acetonitrile-methanol (250:150:10,v/v)
Detection wavelength: 225nm
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4.1.3. Basic Drug Screening System 
HPLC analysis

The screening of urine for the presence of basic drugs 

is commonly encountered in pre-employment screening, 

post-mortem analysis and drug testing in sport. The 

development of an HPLC system for a wide range of 

basic drugs to aid specific drug identification was 
desirable.

HPLC analysis of 100 basic drugs commonly encountered 
in urinary drug screening was performed using a C8 
column, and a gradient pumping system operated at 1.5 

ml/minute. The eluent was monitored at 200nm and full 

spectra were recorded from 190 to 400nm for each 

peak. The initial mobile phase composition was 10% 
acetonitrile in 0.05M pH3.2 potassium phosphate buffer 
increasing to 50% over 15 minutes, and the final 

composition was maintained for 5 minutes. A 

re-equilibration time of 5 minutes was required 
between injections (total cycle time 25 minutes) 

(Logan, 1988).
One hundred basic compounds were analysed using this 

system and the retention times are given (Table 9). 

The absorbance maxima or points of inflexion were also 

noted to allow comparison of these values with 

published data (Clarke, 1986).
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TABLE 9 .
RETENTION TIMES OF COMPOUNDS ANALYSED BY HPLC/DAD SPECTROSCOPY

Drug Retention Time 
(minutes)

Alprazolam 16.1 Metaclopramide 9.9
Amitriptyline 17.2 Methadone 18.2
Amoxapine 14.6 Methamphetamine 7.5
Amphetamine 6.75 Methaqualone 16.6
Atropine 8.5 Methylecgonine 10.6
Benzocaine 14.1 Methylphenidate 10.2
Benzoylecgonine 7.9 Methyprylon 6.0
Benztropine 15.3 Metoprolol 9.8
Bupivacaine 13.3 Morphine 3.2
Butorphanol 12.1 Nalorphine 15.0
Caffeine 6.7 Naloxone 5.9
Chlordiazepoxide 13.5 Nordiazepam 16.4
Chloroprocaine 8.9 Normeperidine 11.0
Chlorpheniramine 12.3 Norpropoxyphenel 8.5
Chlorpromazine 22.0 Nortriptyline 16.6
Clonazepam 16.1 Oxazepam 14.9
Cocaine 11.6 Oxycodone 6.9
Codeine 6.2 Oxymorphone 3.7
Cyproheptadine 16.7 Papaverine 10.0
Desipramine 15.9 Pentazocine 13.1
Dextromethorphan 13.9 Phencyclidine 14.2
Diazepam 18.6 Phenelzine 5.2
Dihydrocodeine 5.7 Phenmetrazine 7.1
Diphenhydramine 14.9 Phentermine 7.7
Doxepin 15.4 PPA 5.0
Ephedrine 5.6 Procaine 6.6
Ethchlorvynol 13.9 Promazine 15.9
Homocaine 14.5 Promethazine 15.8
Ethylmorphine 7.9 Propoxyphene 17.2
Fentanyl 15.0 Propanolol 13.4
Flurazepam 14.2 Protryptiline 16.2
Glutethimide 11.5 Quinine 9.6
Haloperidol 16.3 Strychnine 8.6
Hexobarbital 14.1 Temazepam 18.4
Hydrocodone 7.4 Tetracaine 14.5
Hydromorphone 4.3 Theobromine 5.1
Imipr amine 16.3 Theophylline 4.5
Ketamine 8.5 Thioridazine 19.6
Lidocaine 8.6 Triazolam 18.5
Lorazepam 15.1 Trifluroperazine 19.0
Loxapine 15.4 Trimipramine 17.5
LSD-25 12.1 Tripelennamine 12.5
Mazindol 12.5
Meperidine 11.5
Mesoridazine 14.5
PPA = phenylpropanolamine
Column: Hibar Lichrospher 100 CH-8/II (25cm x 4.6mm)
Mobile Phase: 10% Acetonitrile in 0.05M pH3.2 potassium phosphate 
buffer increasing to 50% over 15 minutes. Final composition 
maintained for 5 minutes.
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This comparison was not always possible as some

compounds display bathochromic or hypochromic shift 
depending on the pH and solution conditions under 

which measurement is made. While not all compounds 

listed were completely resolved, in most cases peak 
identities were initially assigned on the basis of
retention time and confirmed by an examination of the 
UV spectra.

The reproducibility of retention times was measured 

for 10 repeat runs over a period of three weeks.

This was found to be good with a mean variation of 

± 6 seconds. The reproducibility of retention times

in HPLC is recognised as being poorer than in GC 

(Smith et al., 1987) and reproducibility of methods 
between laboratories is even less reliable.

The use of alkyl aryl ketones and other markers to 

calculate retention indices for HPLC has been shown to

have some merit (Smith et al., 1988), but generally
individual laboratories prepare their own data bases 
of retention times and UV spectral library under local 

conditions.
Peak shapes were generally good due to the use of 

gradient elution. A chromatogram of 11 drugs 

extracted from an aqueous drug standard is shown 

(Figure 12).
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fig ure 12.

BASIC DRUG STANDARD (1Oug/ml)-HPLC/DAD

MORPHINE

CODEINE
AMPHETAMINE

METHAMPHETAMINE

QUININE

MEPERIDINECOCAINE

PCP

PROMAZINE

jMJETHADONE
DIAZEPAM

End of plot. Tine - 0.01 to 19.99 ninutes Chart speed - 1.00 cn/nin
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UV spectroscopy does not give as specific structural 

information for individual compound identification as 
does nuclear magnetic resonance (NMR), infra-red (IR) 

or mass spectroscopy (MS). This lack of specificity 

does, however, have the advantage that compounds 

belonging to the same class very often display similar 
UV absorbance patterns. For example, figure 13 shows 
the UV spectra of three opiates; dihydrocodeine, 
hydrocodone amd hydromorphone, three phenothiazines; 

promazine, promethazine and trifluroperazine, and 

three benzodiazepines; alprazolam, triazolam and 
diazepam.

Each group of compounds is well resolved
chromatographically (Table 9) and is sufficiently

different spectroscopically to allow discrimination on 
that basis alone, however each group displays

absorbances in characteristic regions, so compounds 

which have not been characterised on the HPLC system 

can be tentatively assigned to a compound class in 

order to assist with further analytical determinations. 

The sensitivity of this HPLC method is comparable to 

those quoted for other HPLC/UV detection methods. The 

sensitivity of the diode array detector is also 

similar to that of other UV detectors. The advantage 

of diode array detection is to allow the operator to 
examine, post-run, a spectrochromatogram and select 
the wavelength providing optimum signal to noise ratio 

for any peak of interest.
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4.1.4. Mazindol 

HPLC analysis

Mazindol, a stimulant, is potentially a widely abused 

drug in horse racing. Since no reversed-phase HPLC 

methods for the analysis of mazindol have been 

previously reported, a guantitative analysis procedure 
was required to determine mazindol in racehorse urine. 
Since mazindol has a pKa value of 8.6 (Clarke, 1986), 

it would be poorly retained in a revese-phase system 
at pH 7 or 8 since there would be some degree of 

ionisation at such a pH. The possibility of ion-pair 
HPLC was then considered.
For basic drugs, an acidic eluent is usually chosen 

and the most widely used ion-pairing agents are the 
sodium salts of alkylsulfonic acids. The mobile phase 
permits ion-pair chromatography by adjusting the pH so 

that the sample is present in its ionic form (pH4).

The first system described (3.1.4.(a) C18 column;

0.005M pentane sulphonic acid-acetonitrile-85% 
phosphoric acid 90:10:5,v/v); detection wavelength 
254nm) gave a very long retention time for mazindol. 
The next two systems, which used an increased amount 

of acetonitrile relative to the ion-pairing agent, 
gave a very short retention time for the drug,- 

mazindol was eluted too closely to the solvent front.
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The optimum mobile phase suitable for the separation

of mazindol was 0.005M pentane sulphonic acid

acetonitrile - 85% phosphoric acid (75:25:5,v/v) on a 

reversed phase HPLC system (C18 column) and the 

detection wavelength was 254nm (Table 10a). Peak 
shapes were generally good.
Mazindol standards on HPLC

The linear relationship was found between peak area 

ratio and the concentration of mazindol in urine 
between 10 and 1000 ng/ml. Standard curves

constructed on three different days showed good 
reproducibility over the concentration range used, 

with a coefficient of variation of 5.40% at 0.02 
absorbance units full scale (AUFS) over three days 

(Table 10b) from which mazindol concentrations in

extracted samples could be calculated.

The detection limit was 25 ng/ml.
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TABLE 10.

10a) .
RETENTION TIME OF MAZINDOL USING VARIOUS ELUENT COMPOSITIONS 

Mobile phase composition Retention time of mazindol
PSA: ACN: HPO*

90 : 10 : 5 30.2 minutes

50 : 50 : 5 1.8 minutes

60 : 40 : 5 3.7 minutes

75 : 25 : 5 12 minutes

10b).
RELATIONSHIP BETWEEN MAZINDOL CONCENTRATION AND PEAK AREA

USING HPLC ANALYSIS

Range x0.02 AUFS

10-1000ng/ml y = 68.97x ± 5.4% over three days

Column: 5um Bondapaic C18, 30cm x 4.5mm i.d.
Detection wavelength: 254nm
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4.2. Methods of Extraction

4.2.1. Extraction Methods exploiting Non-polar Sorbent
Interactions

1. Benzodiazepines

Non-polar interactions are those that occur between 

the carbon-hydrogen bonds of the sorbent functional 
groups and the carbon-hydrogen bonds of the isolate. 
These forces are commonly known as "Van der Waals" or 

"dispersion" forces. Since most organic molecules 

show some degree of non-polar character (including 
benzodiazepines), non-polar interactions can be used 
to retain the drug on the sorbent.

Unbonded silica does not exhibit non-polar 
interactions.

Benzodiazepines have a substantial degree of non-polar 

character, so non-polar interactions between them and 

a non-polar sorbent was an appropriate starting point 

for their extraction from biological fluids. The 
non-polar sections of the drug (C-H bonds in 

particular) are attracted to the non-polar side chain 

of the bonded sorbent and this interaction is broken 
by a non-polar solvent for which the isolate has a 

stronger affinity (Van Horne et al., 1985) (Figure 14).
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FIGURE 14.

Primary interactions of a non-polar sorbent.
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DIAZEPAM AND OXAZEPAM 

Initial extraction procedure

The initial extraction procedure for aqueous standards 

of oxazepam made use of non-polar C8 cartridges (3ml 

capacity). Retention of non-polar isolates is 
facilitated by polar solvents, so methanol was used to 
condition the sorbents. A basic buffer was then passed 

through the sorbent to ensure that any basic drugs 

subsequently passed through the column would remain in 
unionised form during adsorption onto the sorbent bed. 

The inclusion of a wash step gave very clean extracts. 
A maximum recovery of 62.4% was achieved.

Even a solvent as polar as methanol, then, has 

sufficient non-polar character to disrupt the non-polar 
interactions between the isolate and the sorbent. In 

an attempt to improve on this recovery, the column 

eluent was altered to methanol-acetonitrile (1:1), a 
step which reduced the efficiency of extraction to 

46.3%.
The use of more methanol than acetonitrile (3:1) gave a 

similar extraction efficiency (Table 11) showing that 
addition of acetonitrile results in a loss of 

efficiency.
The question of whether retention or elution of the 

drug was at fault was addressed using labelled diazepam.
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TABLE 11.

MAXIMUM EXTRACTION EFFICIENCY OF OXAZEPAM FROM AQUEOUS SOLUTIONS
USING C8 CARTRIDGES

Eluent Percentage
Recovery

Methanol-1% ammonium hydroxide-acetonitrile (2:2:1) 62.4%
Methanol-acetonitrile (1:1) 46.3%
Methanol-acetonitrile (3:1) 46.1%
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An aqueous standard solution of tritiated diazepam was 
passed through the sorbent and the effluent was 
collected.

The retention capacity of the cartridge was assessed by 

measuring the amount of radioactivity remaining in the 

aqueous sample of tritiated diazepam after being passed 
through the bonded sorbent. From the results in Table 
12, the amount of diazepam not retained on the column 
was on average 6%. The retention capacity of the 
column was 94% (Table 12a).

a) The effect of pH of the sample

The standard solution was buffered to various pH values 
prior to extraction and the results in table 12a show 
that the retention capacity was not affected at all by 

pH.

Table 12b shows that with the use of methanol 
acetonitrile (3:1) as the eluent, the extraction 

efficiency was greatest when the sample was buffered, 

prior to extraction, to a basic pH.
This is not an unexpected conclusion since 

benzodiazepines are basic drugs and would be in 

unionised form in basic conditions, so making them more 

soluble in organic solvents and less soluble in ionic 

or aqueous solutions.
Also, unionised forms of drugs are retained longer than 

ionised drugs on reversed-phase HPLC systems, 

suggesting that an unionised form would aid retention.
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TABLE 12.

DETERMINATION OF DIAZEPAM RETENTION USING 
LIQUID SCINTILLATION COUNTING

12. a)

pH Counts per minute (CPM) Percentage
drug unretained

Reference standard
. ws + 0.5ml water) 12781

4.15 911 7.17.
4.15 256 2.07.

7.63 674 5.27.
7.63 905 7.17.

10.25 786 6.17.
10.25 657 5.17.

Unbuffered 632 4.97.
Unbuffered 956 7.57.

12.b)
pH Counts per minute (CPM) Percentage

drug eluted

4.15 3752 29.47.

7.63 6491 50.87.

10.25 8934 69.97.

WS = working solution = Diazepam aqueous standard solution 
(300ng/ml) (1ml) + 0.1ml of tritiated diazepam (1ml) made up 
to 11 with deionised water.
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From these results, the problem lay in the inadequate 
elution of the drug from the sorbent, and not in 

inadequate retention. Various elution solvents were 
therefore evaluated.

b) The effect of elution solvents

Four elution solvents of different polarities were 
prepared and used to elute oxazepam from the columns. 

The recoveries obtained in order of decreasing polarity 
of the eluents are given (Table 13).

With the exception of the first eluent which was 

alkaline, the samples were buffered to pH 10.25 with

0.05. sodium dihydrogen phosphate/sodium hydroxide 

(0.5ml) prior to extraction, because the results in 

table 12b show that buffering of the sample to an 

alkaline pH prior to extraction potentially increases 
the efficiency.

1. Methanol-10% ammonium hydroxide-acetonitrile (3:1:1). 

This elution solvent gave an extremely low recovery of 

approximately 14%. Since basic conditions aid 

retention, this eluent composition was probably too 

basic to allow elution.
2. Methanol-acetonitrile-chloroform (2:1:1)

The introduction of a more non-polar elution solvent 

(chloroform), and ensuring that the drug was in a basic 

environment prior to extraction, improved the 

extraction efficiency (66%).
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TABLE 13.

RECOVERIES OF OXAZEPAM USING C8 CARTRIDGES WITH 
ELUTION SOLVENTS OF DECREASING POLARITY

Methanol-10% ammonium hydroxide-acetonitrile (3:1:1) Recovery (%)
Reference (100 ng/ml oxazepam) 100
Average of two determinations:
C8 cartridges: 1: 19.9

2: 16.3
3: 12.1
4: 12.5
5: 9.0

14.0±4.2%

Methanol-acetonitrile-chloroform (2:1:1)
Reference (100 ng/ml) 100
C8 cartridges: 1: 60.55

2: 84.60
3: 57.51
4: 66.45
5: 63.35

66♦5±10.7%

Methanol-acetonitrile-chloroform (2:1:3)
Reference (100 ng/ml)
C8 cartridges: 1:

2 :
3:
4:
5:

Chloroform 
Reference (lOOng/ml) 
C8 cartridges: 1:

2:
3:
4:
5:
6:

84.7±7.4%

100
63.7 
76.9
60.3
68.8
90.4

72,1±12%

100
81.7
94.1
87.7
84.6
87.6
72.2
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3. Methano 1-acetonitrile-chloroform (2:1:3)
A further increase in chloroform concentration improved 
the extraction efficiency, to 72%

4. Finally, since the introduction of a very non-polar 

solvent increased the extraction efficiency, 100% 

chloroform was used as the eluting solvent, 

consequently increasing the extraction efficiency to 
84%.

These results suggest that oxazepam is held onto the 
sorbent very strongly by non-polar interactions 
requiring a very non-polar eluent for successful 
elution.

Oxazepam, the main metabolite of diazepam in greyhound 

urine, was quantified using this extraction procedure 
rather than the parent diazepam, because diazepam is 

extensively metabolised in animal species (Schwartz et 

al., 1965).

Oxazepam in greyhound urine samples 
Recovery of oxazepam from greyhound urine samples 

The percentage oxazepam recovery from spiked urine 

samples, using the outlined procedure, was determined 

by comparison of peak areas obtained after injection of 

an extract of a urine sample spiked with a known 

concentration of drug, with that produced by the same 
concentration of the drug in methanol.
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Each measurement was taken as the average of two 
determinations.

The positive identification of oxazepam was based on 

elution time, absorbance maxima (230 nm) and comparison 
with standards.

The extraction of oxazepam from spiked samples using C8 
columns was good (Table 14).

An acceptable efficiency of 84% was achieved and the 

chromatograms produced were fairly clean, so the method 

was applied to actual samples received from 
administration of diazepam to racing greyhounds. 
Temazepam and N-desmethyldiazepam were detected up to 
four hours after dosing, but only in very small 

quantities. Diazepam was not detected.

Chromatograms, in general, were very clean with no 

endogenous substances interfering with oxazepam 

identification (Figure 15).

The effect of enzyme hydrolysis
Oxazepam is considerably conjugated, mainly as oxazepam 

glucuronide when excreted in the urine (Tjaden et al.,

1980) .
Enzyme hydrolysis of the samples was carried out using 

the enzyme B-glucuronidase at pH5 (Axelson et al.,

1981) in order to release oxazepam from its conjugated 
state and so allow the measurement of an increased 

amount of free oxazepam in the urine.
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TABLE 14.

EXTRACTION EFFICIENCY FROM C8 CARTRIDGES FOR URINE SAMPLES
SPIKED WITH OXAZEPAM 

Spiked sample (50 ng/ml) Peak Area (mmi.) Percentage

Reference 85

Recovery

100
Reference 100 100
Reference 90 100

C8 columns: 1: 77 83.9
2: 76 82.9
3: 80 87.2
4: 77 83.9
5: 80 87.2
6: 78 85.1
7: 75 81.8
8: 70 76.3

83.5±4.2%
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FIGURE 15.

Oxazepam extracted from greyhound urine - 
3 hours after a single oral dose of diazepam 
using C8 columns and HPLC analysis.
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The results in table 15 show that enzyme hydrolysis of 

urine markedly increases the amount of free oxazepam 
available for extraction.

Extraction of greyhound samples 
Quantitation of oxazepam

Four greyhounds were each given a single oral dose of 
5mg of diazepam and urine samples were collected at 
timed intervals following administration.

The quantitation of oxazepam from greyhound urine 
samples was carried out using the ratio of oxazepam 

peak areas to prazepam standard peak areas. (Prazepam

concentration was constant at 2.4 ug/ml). Total

oxazepam concentrations were calculated by taking into 
account the 84% column extraction efficiency and the 
total urine volume collected at given time intervals. 

The results are given in table 16.

Not all the greyhounds produced urine at the required 
time intervals, although hourly collections were 
attempted.
For all four greyhounds, the peak excretion time of 

oxazepam was between two and three hours after 
administration. Two of the greyhounds showed peak 

excretion values after 3 hours, one peaked after 2 

hours and one greyhound did not give a sample after 3
hours at all. This greyhound's peak excretion time was

taken as 2 hours.



TABLE 15.

COMPARISON OF ENZYME HYDROLYSED AND UNTREATED URINE SAMPLES 
CONTAINING OXAZEPAM AND EXTRACTED USING C8 CARTRIDGES

Untreated Extracts 
Sample Retention Time (minutes) Peak Area (mmi-)

Blank

02 hours: 1: 
2:

04 hours: 1: 
2:

7.5
7.6

112
100

06 hours: 1: 
2:

Treated Extracts 
Blank

02 hours: 1: 
2:

04 hours: 1: 
2:

7.50; 9.20; 10.2 
7.65; 9.40; 10.5

7.40; --- ; 10.2
7.50; 9.20; 10.3

994; 54; 85 
1008; 78; 58

1539; — ; 24 
1520; 63; 70

06 hours: 1: 
2:

7.80
7.90

1193
611

24 hours: 1: 
2:

7.80
7.60

800
532

Retention times: Oxazepam
Temazepam
N-desmethyldiazepam

7.5 minutes 
9.3 minutes 
10.4 minutes
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TABLE 16.
TOTAL OXAZEPAM CONCENTRATIONS DETECTED IN URINE OF 

RACING GREYHOUNDS

Time after Dosing Greyhound Total Urine Total Oxazepam *
(hours) Number Collected Present

(mis) (u r )

01 1 31 NONE
2 42 NONE
3 50 NONE

02 1 34 54.58 -» 64.97
2 34 54.38 -* 64.74
3 14 58.63 69.79
4 25 56.50 67.20

03 1 68 80.36 -* 95.69
2 68 78.58 -» 93.55
3 20 43.90 51.33

04 1 43 23.91 28.46
2 45 24.89 -* 29.63
3 158 31.00 -» 36.91
4 123 27.9 ■ 29.70

05.25 1 36 11.88 -» 14.14
2 36 11.71 -* 13.94
4 109 9.80 -* 10.12

06 1 28 3.64 -» 4.34
2 28 3.84 -♦ 4.57
3 25 3.87 -♦ 4.50
4 20 3.21 -> 4.31

25 1 36 3.34 -* 3.98
2 36 3.95 -» 4.71
3 14 2.23 2.65
4 50 1.90 -» 2.01

26 1 20 1.03 -» 1.23
2 20 1.23 -* 1.47
3 25 0.09 -» 1.23

28 1 20 0.44 -* 0.52
2 22 0.51 -> 0.61
3 35 0.43 -* 0.51

30 1 25 0.34 -> 0.40
2 25 0.37 -* 0.44

* Range covering four greyhounds
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Overall, the results between greyhounds were very 

consistent (Table 16) and trends were similar, for 

example, no oxazepam was detected later than 30 hours 

in any of the greyhounds or in the one hour 
collection.

Peak oxazepam concentrations (mean values 1.38-1.4 
ug/ml) were attained, three hours after dosing 
(Figure 15), and average oxazepam levels of 0.02 ±
12.8% ug/ml were still detected 30 hours after dosing 
(Figure 16).

Conclusion

The detection of oxazepam up to 30 hours after the 

administration of a single dose of diazepam 
demonstrates that the use of this analytical 

procedure is feasible because most samples from 
racing greyhounds are taken before and after racing. 

Generally, pre-race samples are taken approximately 

1.5 hours before the race is due to start. The 
greyhounds are then allowed no contact with their 

owners. Any greyhound seen to improve or deteriorate 
markedly on previous performances is then sampled as 
soon as possible after the race, and the following 
morning. Therefore, a greyhound which has been given 

sufficient diazepam to produce an effect on 
performance, would give a positive sample post-race 

even if the pre-race sample (taken within one hour of 

doping) was negative.
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Average excretion of oxazepam from greyhound urine.
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TRIAZOLAM AND 1-HYDROXY TRIAZOLAM

Recovery of triazolam and 1-hydroxy triazolam from 

greyhound urine samples

Aliquots of standard solutions of triazolam and its 
main metabolite (lmg/ml in methanol) were added to 

blank greyhound urine to produce spiked samples of 100 

and 500ng/ml concentrations. These were extracted 

according to the extraction procedure developed for 

the extraction of oxazepam previously described.
The recoveries of triazolam and 1-hydroxy triazolam 

from greyhound urine samples were determined by 
comparing the peak areas obtained after injection of 
an extract from the spiked urine sample of known 

concentration, with that produced by the same 
concentration of each drug in methanol. Each 
measurement was taken as the average of two 

determinations.
The extraction efficiency for triazolam, using C8 

(3ml) cartridges, was reasonable (80%) at low 
concentrations. However, the metabolite was poorly 

extracted (Table 17).
Reproducible results were difficult to obtain due to 

the wide variation in solvent flowrate through the 
cartridges. Further investigation showed that the 

actual packing level in the cartridges was 

inconsistent throughout the batch of columns being 

used.
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TABLE 17.

EXTRACTION EFFICIENCY FOR URINE SAMPLES SPIKED WITH 
TRIAZOLAM AND ITS METABOLITE USING C8 CARTRIDGES

Prazepam concentration was constant at 2.Aug/ml

Triazolam Standard Injection (0.01 AUFS) y = 937x

1-hydroxytriazolam Injection y = 734.2x

Triazolam Spiked Samples

Triazolam 
0.01 AUFS

Triazolam Concentration Amount on Column Triazolam/Prazepam
(ng/ml) (ng) Ratio

550 1375 3.07
550 1375 3.12

110 275 0.47
110 275 0.51

1-hvdroxvtriazolam Concentration
(ng/ml)

500 1250 1.33
500 1250 1.37

100 250 0.29
100 250 0.31

Sample Calculation
Triazolam concentration = 550 ng/ml 
Therefore, in 2.5ml added to column, = 1375 ng.

Extracts are reconstituted to 0.5 ml, so 100% extraction is
equivalent to 1375 x 2 = 2750 ng/ml concentration.

Area ratio x 937 (see above) = 2900,
so, % recovery = 2900/2750 x 100 

= 105.4%

Similarly, triazolam, 110 ng/ml, 80.1% recovery,
1—hydroxytriazolam, 500 ng/ml, 39.6% recovery,
1—hydroxytriazolam, 100 ng.ml, 44.1% recovery.
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This variation was more marked between different 
suppliers of the columns.

Reproducible results could only be obtained by 

ensuring that all the columns used for extraction were 

from the same supplier, and where possible from the 
same batch of manufacture (Table 18).

At higher concentration levels (1 and 5ug/ml), the 

extractions were much less efficient, probably due to 
overloading of the column. However, this problem 
would not be encountered, due to the low levels of 
drug employed.

Extraction of greyhound samples (0.25 mg

administration)
The greyhounds were each given a single oral dose of 
0.25mg of triazolam and urine samples were collected 

at timed intervals following administration.

Triazolam is extensively biotransformed and its 

metabolites are conjugated in urine (Kitigawa et al., 

1979). Enzyme hydrolysis of the samples was carried 

out to release the metabolites from their conjugated 
states according to the previous procedure used for 

oxazepam urine samples. Neither triazolam nor its 
main metabolite was detected from these greyhound 

samples.
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TABLE 18.

IMPROVED EXTRACTION EFFICIENCY FOR URINE SAMPLES SPIKED WITH 
TRIAZOLAM AND ITS METABOLITE WITH C8 CARTRIDGES,

USING THE SAME BATCH OF CARTRIDGES FROM THE SAME SUPPLIER

Triazolam Spiked Samples 

Triazolam
Triazolam Concentration Amount on Column Triazolam/Prazepam 

(ng/ml) (ng) Ratio

x 0.04 y = 1703.6x
550 1375 2.89
550 1375 3.00

x 0.02 y = 1803x
110 275 0.77
110 275 0.78

x 0.01 y = 937x
55 137.5 0.75
55 137.5 0.74

1-hydroxytriazolam Concentration
(ng/ml)

x 0.04 y = 1392.9x
500 1250 4.38
500 1250 4.37

x 0.02 y = 1302.8x
100 250 0.89
100 250 0.88

x 0.01 y = 734.2x
50 125 0.85
50 125 0.86

Sample Calculation

Ratio (2.945) x 1703.2 (see above) = 5015.9
The extracts are reconstituted in 200 ul, so 5015.9/5 gives 
concentration /ml = 1003.2

1003.2/1375 x 100 = 72.9%

Mean Extraction Efficiencies

Triazolam : 550 ng/ml, recovery : 12.9%
110 ng/ml, recovery : 99.0%
55 ng/ml, recovery : 95.4%

1-hydroxytriazolam : 500 ng/ml, recovery : 97.6%
100 ng/ml, recovery : 92.7%
55 ng/ml, recovery : 99.8%
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However, the analysis did reveal the presence of a 

substance in the extract which did not correspond to 

either triazolam or 1-hydroxy triazolam under the 

chromatographic conditions previously discussed (C18 

column; methanol-deionised water-phosphate buffer 

(pH8)-acetonitrile (200:125:100:75,v/v); detection 
wavelength 230nm).

The peak had a retention time of six minutes and was 
observed in all samples except the blank urine, an 

observation suggesting that it was a possible 

metabolite of triazolam. However, six minutes 
corresponded neither to triazolam (retention time 6.6 

minutes) nor to its major metabolite 1-hydroxy 
triazolam (retention time 4.8 minutes).

The elution of a substance prior to the parent drug 
suggests the substance is a metabolite (i.e. more 

water soluble, therefore a faster elution). However, 
reference to the literature for both humans and dogs 
shows 1-hydroxytriazolam to be the major metabolite. 

Indeed, up to 37% of a dose administered to dogs was 

excreted as the 1-hydroxy metabolite, and 13% as the 

4-hydroxy metabolite (Eberts, 1977).

In order to increase the amount of this substance 
extracted, columns with a larger capacity for 

non-polar interactions were used.
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The effect of increased capacity cartridges

C18 columns (6ml capacity) were conditioned with two

column volumes of methanol and one of water.

Urine (3ml) was diluted with buffer pHIO (0.5ml) and

applied to the column. The column was washed with

deionised water (2 x 0.5ml).

The adsorbed drug was then eluted with chloroform (3 x 
0.5ml) and the eluent was evaporated to dryness and

reconstituted in mobile phase (0.1ml) and prazepam 

standard (0.1ml) prior to HPLC injection.

The extraction efficiency using this method was found 
to be excellent for both triazolam and its 1-hydroxy 
metabolite (Table 19). The extract quality seemed to 
be a function of initial sample quality, but in most 
cases, extracts were found to be fairly clean. The
larger capacity columns were subsequently used for 

triazolam extraction because more urine could be 
extracted and hence, a larger amount of isolate 

obtained.

Extraction of greyhound samples (0.5 mg administration) 
The greyhounds were each administered 1 x 0.5mg 

triazolam tablet. Urine samples were freely 

collected at timed intervals from the greyhounds.
Since the maximum amount of the unidentified substance 
was required, only the one and two hour urine samples 

were extracted.

- 147 -



TABLE 19.
EXTRACTION EFFICIENCY FOR TRIAZOLAM AND 1-HYDROXY TRIAZOLAM 

FROM GREYHOUND URINE USING Cl8 CARTRIDGES

Triazolam (lOOng/ml): 92 ± 2.4% (n=4)
(500ng/ml): 100 ± 3.1% (n=4)

1-hydroxytriazolam (lOOng/ml): 94 ± 6.2% (n=4)
(500ng/ml): 96 ± 3.3% (n-4)
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These samples were chosen because triazolam is 
absorbed into the body very quickly, so the highest 

amounts of drug related substances are likely to be 
excreted within the first couple of hours.

Some of the samples were enzyme hydrolysed according 
to the procedure previously described for oxazepam 
hydrolysis. Using C18 cartridges, these samples were 
extracted along with the untreated samples (Table 20). 
The unknown peak was still present, and enzyme 

treatment increased the amount of isolate extracted.

Conclusion

The efficiency of non-polar sorbents for the 

extraction of triazolam and its metabolites from 
greyhound urine was good. When columns from the same 

supplier and same batch were used, reproducibility of 

extraction was excellent. Triazolam and its 

metabolites adsorbed well onto extremely non-polar 

sorbents and were eluted using an extremely non-polar 

solvent (chloroform).
However, a more selective extraction procedure which 

could exploit some of the polar nature of the drugs as 

well as the non-polar character may result in a more 

selective extraction of triazolam related compounds.
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TABLE 20

COMPARISON OF ENZYME HYDROLYSED AND UNTREATED URINE SAMPLES 
CONTAINING TRIAZOLAM AND EXTRACTED USING C8 CARTRIDGES

Untreated Extracts
Sample Retention Time (mins.) Peak Area (mmi.)

Blank --- ---
01 hours 6.0 35
02 hours 6.0 45
03 hours 6.0 26

Treated Extracts

Blank , --- ---
01 hours 5.8 370

5.8 350
02 hours 6.0 988

6.0 1002
03 hours 5.9 520

5.9 524
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Also, it was possible that the HPLC system described 

was not sufficiently sensitive to determine any 

triazolam or metabolites which had been simultaneously 

extracted from the urine as well as the unidentified 

substance. The possibility of LC-MS analysis to aid 
identification of the unknown peak was considered.

The development of an LC-MS compatible HPLC system 
would then have two advantages over the system 
incorporating a phosphate buffer:-

a) the identification of the unknown peak

b) the abolition of phosphate buffers, which were 
causing column blocking and resulting in inadequate 

sensitivity for triazolam and 1-hydroxy triazolam 

analysis.
The use of polar sorbents for triazolam extraction was 
studied and an HPLC system which provided a facility 
for interfacing with mass-spectrometry as well as 

increased sensitivity was developed.
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2. Xylazine

Xylazine in greyhound urine samples

Recovery of xylazine from greyhound urine samples

The extraction procedure previously described
(3.1.2. (2)), was used to extract xylazine from spiked
greyhound urine samples

C8 columns (3ml capacity) were conditioned with
methanol, deionised water and phosphate buffer (pH 
10.25) prior to the addition of spiked urine buffered 
to pH 10.25. The column was washed, dried and the 
drug eluted with chloroform prior to analysis by 
HPLC. The recovery of xylazine was calculated from 

these samples by comparing the peak area obtained 

after analysis of an extract from a spiked urine 
sample of known concentration, with that produced by 

the same concentration of drug in methanol. Each 

measurement was taken as the average of two

determinations.
The positive identification of xylazine was based on 

comparison with standards, absorbance maxima (225 nm) 

and retention time.
Initially, a low extraction recovery was obtained 

(Table 21), however, the efficiency increased with
decreasing concentration, suggesting overloading of 

the column.
Larger C18 columns were then used to determine whether 
an increase in non-polar interaction capacity would

increase extraction efficiency.
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TABLE 21.

GREYHOUND URINE SAMPLES (SPIKED WITH XYLAZINE) EXTRACTED
USING C8 CARTRIDGES

Concentration (ng/ml) Peak Area (mmi.) Percentage recovery

x 0.04 AUFS 
1000 
1000 
1000

500
500
500

X 0.02 AUFS 
100 
100 
100

Sample Calculation

lOOOng/ml sample is equivalent to 3ug on column (3ml urine sample 
extracted). Reconstituted in 0.5 ml, then 100% efficiency should 
equal 3ug/0.5ml = 6ug/ml.

(37.5 + 32 + 35)/31.25/6 (at x 0.04, y = 31.25x), x 100 = 28.4% 

Similarly for the other concentrations.

37.5
32.5 
35.0

40.0
32.0
36.1

35.2
35.0
35.0

28.4

61.1

70.6
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The effect of increased capacity cartridges

The mean xylazine recoveries were low using larger 

columns with a higher capacity for non-polar 
interactions (C18;6ml) (Table 22). This was probably 

due to strong retention of xylazine on the sorbent 
through non-polar interactions causing difficulties 
with elution of the drug.

Larger capacity columns require larger volumes of 

solvent to elute the drugs, consequently requiring an 
evaporation step. This means that one of the 

advantages of solid-phase extraction:- the increase in 
speed of extraction, is lost by the time-consuming 
need for evaporation.

Changes in extraction procedure
The xylazine extracts were reasonably clean using this 

procedure, and the water wash did not remove any of 
the drug suggesting that xylazine is strongly bonded 

to the sorbent by non-polar interactions.
To improve the cleanliness of the extract further, a 
methanol wash was incorporated into the extraction 

procedure.
This resulted in approximately 30% of the drug being 

eluted with the methanol, therefore this was not 

included in subsequent extractions.
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TABLE 22.

MEAN EXTRACTIONS FOR XYLAZINE FROM GREYHOUND URINE
USING C18 COLUMNS

Xylazine concentration (ng/ml) 

5000 

1000 
500

% Recovery 

11.4 

21.7 

17.9
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Since xylazine is very soluble in acetone, this was 
evaluated as an alternative eluent to chloroform. 

However, acetone did not remove xylazine from the 

sorbent. This inability to break non-polar 
interactions was probably due to its very polar 
nature.

Elution, then, is not a function of isolate solubility 
in an eluent, but is dependant on interaction cleavage 
between sorbent and isolate.

Direct injection of the eluent (chloroform), onto the 

HPLC analysis system, was attempted in an effort to 
remove the evaporation step and shorten the time prior 

to analysis. The chloroform took approximately 5 
minutes to be totally eluted from the HPLC column 

resulting in an extremely wide solvent front and hence 

poor chromatography. The evaporation of the extract 

followed by reconstitution in methanol were retained 

in the procedure.
The C8 columns gave better all round cleanliness of 
extracts and extraction efficiency, so the method was 

not modified.
Repeated extractions gave somewhat varied results, the 

assay giving only 80.3 ± 14% reproducibility at

lOOng/ml concentration over a period of three days. 

Assuming 80% efficiency, actual samples taken from the 
greyhounds were extracted and analysed.
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Extraction of greyhound samples 
Quantitation

The greyhounds were each given an intramuscular 

injection of xylazine (0.05ml/kg) and urine samples 
were collected at timed intervals following
administration.

The quantitation of parent xylazine from greyhound 
urine samples was carried out using the previously

calculated peak area ratios (Table 8). Parent

xylazine concentrations were calculated (Table 23).
Each greyhound was dosed three times allowing 
sufficient time between dosings for all related 

compounds to have been excreted from the animal.
For all greyhounds, the peak excretion time was 

between 2 and 3 hours. No parent xylazine was

detected in any of the dogs more than eight hours 

after administration.

Greyhound 1.
Between the second and third dosings (a period of four 

weeks), greyhound number one lost weight (37kg to 

32.4kg). There was no apparent reason for this.
The first two administrations gave similar results 

regarding excretion pattern. The total values (taking 
into account the amount of urine produced) show a high 

xylazine level after two hours, a marked drop after 

three and a peak excretion level after four.
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TABLE 23.

AMOUNT OF XYLAZINE EXCRETED DETERMINED BY 
C8 EXTRACTION PROCEDURES AND HPLC ANALYSIS

Xylazine excreted (ug/ml)
Time after dosing 
(hours) 1 2 3 4

2 0.05-0.07
0.03-0.03
0.41-0.51

0.19-0.24
0.02-0.03
0.20-0.25

0.10-0.12
0.26-0.33
0.21-0.26

0.41-0.51
0.19-0.24
0.13-0.17

3 0.05-0.06
0.02-0.03
0.42-0.53

0.12-0.14
0.05-0.07
0.15-0.18

0.15-0.18
0.09-0.12
0.18-0.22

0.19-0.24
0.19-0.24
0.18-0.22

4 0.12-0.15
0.02-0.03
0.16-0.20

0.12-0.15
0.06-0.07
0.13-0.17

0.06-0.08
0.03-0.03
0.12-0.14

0.14-0.18
0.21-0.26
0.30-0.38

5 0.13-0.16
0.03-0.04
0.14-0.18

0.05-0.06
0.03-0.04
0.08-0.10

0.02-0.03
0.02-0.36
0.12-0.15

0.04-0.05
0.10-0.12
0.27-0.34

6 0.03-0.04

0.04-0.05

0.03-0.04
0.01-0.01
0.04-0.05

0.03-0.03
0.01-0.02
0.06-0.07

0.02-0.03
0.08-0.10
0.26-0.32

7 0.02-0.02 -------- -------- 0.02-0.02
0.07-0.09
0.1-0.130.02-0.03 

zine excretedTotal xyla: (ug)

2 16.5-20.8
12.0-14.7
104-130

5.85-7.3 
1.6-2.0 
5.6-7.0

14.3-17.8 
81.6-102
25.4-31.7

6.0-7.5 
1.9-2.4 
10.6-13.3

3 3.8-4.8 
0.7-0.8
50.8-63.5

11.0-13.7 
5.7-7.2 
12.3-15.3

33.5-42.2
22.1-27.7
9.6-12.0

2.0-2.5 
4.7-5.8
9.1-11.4

4 34.6-43.2 
9.5-11.9
23.7-29.6

9.8-12.3 
3.5-4.4 
6.4-7.9

5.2-6.5
10.5-13.1
6.35-7.9

30.7-38.5 
6.6-8.3
15.7-19.6

5 25.4-31.7
1.4-1.7
5.5-6.9

6.0-7.5 
3.9-4.9 
2.5-3.2

2.9-3.7 
6.3-7.9 
6.1-7.6

19.0-23.7 
2.9-3.6 
30-37.5

6 3.3-4.1

2.04-2.5

1.0-1.3 
0.4-0.4 
0.8-1.1

1.9-2.3
2.1-2.7
5.2-6.5

10.8-13.5 
2.5-3.1 
29.2-36.5

7 2 4-2.9 6.1-7.6

0.2-0.32
---- ---- 0.7-0.9 

1.0-1.3
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However, the third administration, which involved a 

much lower dose of xylazine, gave higher excretion 
values, peaking after two hours.

The total amount of xylazine excreted within 7 hours 

of dosing for this dog was not consistent: 
Administration 1: 0.39-»0.49 ug/ml excreted in 7hrs. 
Administration 2: 0.1->0.13 ug.ml excreted in 7 hrs. 
Administration 3: 1.17-+1.49 ug/ml excreted in 7 hrs. 
This corresponded to 0.05%, 0.02% and 0.14% of the

dose being excreted within 7 hours.
Greyhound 2 .

In all dosings for this greyhound, the peak excretion 

time was 3 hours.

The total amount of xylazine excreted within 7 hours 
of administration was also consistent, although the

second administrat ion gave somewhat lower values:

Administration 1: 0.52->0.65 ug/ml excreted in 7 hrs.

Administration 2: 0.17->0. 21 ug/ml excreted in 7 hrs.

Administration 3: 0 . 6l->0 .77 ug/ml excreted in 7 hrs.

This corresponded to 0.03%, 0.01% and 0 .02% of

dose respectively being excreted in the fir st 7 hour
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Greyhound 3.

The peak excretion time for this greyhound (the only 

female) was three hours in the first administration, 
and two hours in the other two. The total excretion 

amounts are fairly consistent and compare well with 
results from other greyhounds:
Administration 1: 0.35-^0.44 ug/ml excreted in 7hrs.
Administration 2: 0.41-»0.51 ug/ml excreted in 7 hrs.

Administration 3: 0.61-^0.77 ug/ml excreted in 7 hrs.
This corresponded to 0.04%, 0.092% and 0.04% of the

dose respectively being excreted in the first 7 hours. 
Greyhound 4.

The results for greyhound. 4 were the least consistent, 
although one of the total excretion values within 7 

hours (administration 1) compares well with results 

from other dogs.

Overall excretion values :

Administration 1: 0. 67->0.86 ug/ml excreted in 7 hrs.

Administration 2: 0.83->1.04 ug/ml excreted in 7 hrs.

Administration 3: 1. 24->l. 55 ug/ml excreted in 7 hrs.

This corresponded to 0.05% 0.01% and 0 .06% of the

dose respectively being excreted in the first 7 hours.

Greyhound 4 was the heaviest greyhound and so received 
the highest dose of xylazine. Its excretion values 

being higher than the other greyhounds is not entirely 

unexpected.
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Overall, the percentage of the total dose exceted 

within 7 hours is reasonably consistent between dogs 

and between dosings, but there is a wide variation in 

the actual amount excreted.

The mean excretion values, within 7 hours is

0.67±6 0.4% ug/ml.

Inconsistency of results 

a) Medium

Greyhound urine is a very difficult medium to work 

with because of the inconsistency of the nature of the 

sample and the high salt content. The large 

differences in the amount of urine excreted by the 

greyhounds at given time intervals affects the 

efficiency of extraction because of the salt content 

level. This can be compensated for somewhat by 

dilution of the sample with water or buffer (see next 

section).

To a certain extent, greyhound metabolism can be 

regulated, for example, by controlling the diet and 

exercise routine.

Consistency within a greyhound, if not between dogs 

would certainly be expected.

- 161 -



b) Extraction columns

While extracting two sets of samples, it was noted 

that the packing material in the columns was not even 

between cartridges. These were columns supplied by 

the same manufacturer and a comparison with the 
products of other companies showed there to be major 
differences in amount of packing material present. 
Closer investigation showed that solvent flow through 
the columns under vacuum differed considerably within 
the same batch of columns, as well as between columns 

from different suppliers. This was also observed 

during the extractions of triazolam.

Furthermore, since it was not feasible to use a 
cartridge more than once (possibility of inadequate 

elution and hence carry-over) several batches had to 
be used in these extractions. This helps to explain 
some of the inconsistencies in both extraction 

recovery and greyhound administration.

As with triazolam, it was found that only columns from 

the same manufacturer should be used, preferably from 

the same batch, for related extractions.
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Conclusion

The efficiency of non-polar sorbents for the

extraction of xylazine from greyhound urine was good 

although not very reproducible. Xylazine was

strongly adsorbed onto extremely non-polar sorbents 
and could not be eluted using an extremely non-polar 
solvent (chloroform).
The less polar C8 columns allowed good xylazine 

extractions at low concentrations (lOOng/ml) but again 

extraction procedures were not very reproducible.

A more selective extraction procedure which could 

exploit some of the polar nature of xylazine as well 
as its non-polar character may result in a more 
selective extraction for xylazine.

The use of columns from the same batch and the same 

supplier may also result in more reproducible data.

A study of polar sorbents for xylazine extraction was 

then conducted.
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4.2.2. Extraction Methods exploiting Polar Sorbent 
Interactions

1. Benzodiazepines

Polar interactions are exhibited by many different 
sorbents and functional groups on isolates. Polar 

interactions include hydrogen bonding, dipole/dipole, 
induced dipole/dipole, pi-pi and other interactions in 

which the distribution of electrons between individual 
atoms in the functional groups is unequal, causing 
positive and negative polarity. This property allows 

an isolate molecule bearing a polar functional group 

to interact with a polar group on the sorbent. Groups 
that exhibit this type of interaction include aromatic 
rings and groups containing hetero-atoms such as 

oxygen, nitrogen, sulphur and phosphorus.

Xylazine and triazolam both contain nitrogen atoms 
which could be used to interact selectively with the 

polar group on the sorbent (Figure 17). Retention of 

these drugs on the sorbent is also through the 

non-polar interaction of the side-chain of the sorbent 

with the non-polar character of the drug.
Because of the polar nature of the silica substrate 

(and especially of unbonded silanol groups), polar 

interactions are characteristic of all bonded silicas. 

(Van Horne et al., 1985).
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FIGURE 17.

Primary interactions of a polar sorbent.

-Si- CH2-CH2-CH2-CN cyanopropyl

silica bead

Si- CHoCHoCHo0CHoCH-CHo 2 2 2 2 1 | 2
OH OH

diol

-Si- CH2-CH2-CH2-NH2 aminopropyl
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Evaluation of polar sorbents

All three common polar sorbents were studied. 
Cyanopropyl (CN), aminopropyl (NH2) or diol (20H) 

cartridges (lml;100mg)f were conditioned with methanol 

and deionised water. Blank greyhound and human urine 
samples, spiked with triazolam (500 ng/ml)(lml) +

deionised water (pH7, 1ml), were added to the columns

and washed with deionised water.

The drug was eluted with methanol, to plI4 with
hydrochloric acid or to pHIO with ammonium hydroxide 
(Appendix A 1 .6.).
The eluent was directly analysed by HPLC and the 

percentage recovery of the drug determined by 
comparison of peak areas obtained with peak areas 

produced by standard solutions of triazolam in

methanol.
The efficiency of extraction of the three sorbents is 

shown in table 24. The diol cartridges were the least 

efficient regardless of eluent (maximum 25%), and both 
cyanopropyl and aminopropyl sorbents showed higher 

efficiencies of extraction using an acidic eluent 

(97-100%) rather than a basic eluent (55-72%). 

Cyanopropyl columns gave the highest extraction 
recoveries (100%), so these were chosen for subsequent 

extractions.
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TABLE 24.

PERCENTAGE RECOVERIES OF TRIAZOLAM (luR/ml) FROM 
SPIKED GREYHOUND AND HUMAN URINE USING POLAR SORBENTS.

Column Greyhound Urine Human Urine

Cyanopropyl: Acidic eluent 100 ± 2.3% 100 ± 2.1%
Basic eluent 65 ± 1 . 5 %  72 ± 2.07.

Aminopropyl: Acidic eluent 98 ± 0.5% 97 ± 2.0%
Basic eluent 55 ± 5.2% 62 ± 6.3%

Diol: Acidic eluent 16 ± 3.07.
Basic eluent 18 ± 5.07.

22 ± 3.1% 
25 ± 4.2%



Functional group interaction
These results can be explained by considering the 

functional group interactions of the drug with the 
sorbents (Tippens, 1987).

At pH7f the silanol groups on the surface of the solid 

phase cartridge which are not bonded to the side-chain 
are negatively charged.

At the same pH, basic drugs, will be positively 
charged.

The drug is retained on the column, due to non-polar 

interactions between the hydrocarbon side chain and 
the hydrocarbon character of the drug, the ionic 
interaction between the charged sections and the 

dipole moment present between the nitrogen groups in 
the drug and the polar groups on the surface of the 
sorbent.

The non-polar interactions are primary interactions 

and the polar interactions secondary. The 
ion-exchange interactions are the weakest form of 

interaction in these particular sorbents.

In order to disrupt the retention, that is, to elute 
the drug, it is necessary to neutralise either the 

charge on the drug by passing a strongly basic 

methanolic solution through the sorbent, or to 

neutralise the charge on the silanol groups by passing 
an acidic methanolic solution through the sorbent.
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Methanol has sufficient non-polar character to disrupt 

the non-polar interactions present, since these are 

not as strong as on completely non-polar sorbents 
(previous section).
Interactions

In the case of the diol (Figure 17), the ionic 

interactions are so strong, occurring along the 
side-chain as well as at the silanol groups, that the 

pH4 eluent is not sufficiently strong to break the 

side-chain interaction. At a higher pH, for example 

pH14, the NH^+ ionisation would be suppressed. 

However, the use of high pH values is not recommended 
with these cartridges.

The advantages that the aminopropyl and cyanopropyl 
cartridges have over the diol columns can be explained 
by noting that the functional group interaction does 

not occur directly. The main retention is caused by 

the non-polar interactions of the side-chain with the 

non-polar character of the drug. The dipole moment of 
the charged cyano group at the end of the side-chain 

attracts the unequally shared electrons in the drug, 
for example, lone pairs of electrons or dipole moments 

(C=N; C=0 etc.) so aiding specific retention.
Specific retention is also aided by ionic interaction 

between the silanol groups and the charged nitrogen 

atoms in the drug.
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Deactivation of silanol groups

End-capping of the sorbents is a process which 

deactivates some of the silanol groups on the surface 

of the sorbent. Cyanopropyl cartridges are not 
subjected to this process during synthesis but 

aminopropyl columns are (Van Horne et al., 1985).

The CN cartridges are un-endcapped, and therefore have 
more silanol groups available for retention while the 
NH2 cartridges are endcapped which explains the 
slightly higher recovery from the CN cartridges.
Elution solvents

Finally, the elution using the acidic methanol medium 

was found to be more efficient than basic methanol 

(Table 24).

This can be explained by considering the suppression 

of ionisation within the cartridge. The acidic 

elution which suppresses the ionisation of the silanol 
groups is more even, because of the similar pKa value 
of each silanol group. Therefore, this eluent is more 
efficient than the basic eluent which attempts to 

suppress ionisation of nitrogen molecules in the drug 
which have widely differing pKa values.
The extraction procedure employing polar sorbents is 

particularly pH dependant. The pH simply being 

•basic1 or ‘acidic1 is not sufficiently accurate.
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The pH is critical because, in order for the maximum 

interaction between sorbent and isolate to occur, the
pH must be sufficiently high so as to ionise the
sorbent, and sufficiently low so as to ionise the
weakly basic benzodiazepines. The pH of the eluting
solvent is also critical since it must be sufficiently
acidic to neutralise the charge on the silanol groups 
all over the sorbent.

TRIAZOLAM AND ITS METABOLITES
Triazolam and its metabolites in greyhound urine 
samples

Triazolam and its metabolites were determined from 

spiked greyhound urine samples using CN columns 

conditioned with methanol and deionised water. The 
urine sample, buffer (pH 7), and diazepam were applied 

to the column and drawn through, dried and washed with 
deionised water. (Diazepam was incorporated as an 
internal standard (1.5ug/ml). All previous use of a 
standard had been an external use to ensure HPLC 

reproducibility of injection).
The drug was eluted with methanol, to pH4 with 

hydrochloric acid.
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The percentage recovery of triazolam and its 

metabolites were determined from spiked greyhound 

urine samples, using this procedure, by comparing the 

peak area obtained after injection *of an extract from 

a spiked urine sample of known concentration, with 
that produced by the same concentration of drug in 
methanol. Each measurement was taken as the average 
of two determinations (Table 25(a)).

The recovery of 4-hydroxy triazolam was particularly 

poor. The wash solution was collected and analysed 

from the 4-hydroxy triazolam: 21.3% of the drug

standard was found to elute with the deionised water 

during washing. The polar deionised water probably 

causes disruption of the polar interactions present, 
suggesting that the 4-hydroxy metabolite is more 

strongly held by polar interactions than either the 

parent triazolam or its 1-hydroxy metabolite.
The wash stage was discarded and the eluent was 
altered to methanolic hydrochloric acid

(pH4)-acetonitrile (50:50 v/v). This being a less 

polar eluent, it would, theoretically, help to break 

any non-polar bonding present between the sorbent and 

the isolate.
The result of these changes was such that the 

extraction efficiency was greatly improved for the 
4-hydroxytr iazolam. However, no real change occurred 

in the extraction efficiencies for the other drugs 

(Table 25(b)).
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TABLE 25.

25(a).
EXTRACTION EFFICIENCY FOR TRIAZOLAM AND 1-HYDROXY TRIAZOLAM FROM 

GREYHOUND URINE USING CN CARTRIDGES

1-hydroxytriazolam (lug/ml): 74.4%
(0.5ug/ml): 77.6%

4-hydroxytriazolam (lug/ml): 41.1%
(0.5ug/ml): 32.1%

25(b).
MODIFIED EXTRACTION PROCEDURE FOR 4-HYDROXY TRIAZOLAM 

Triazolam (lug/ml): 100%

Triazolam (lug/ml):
(0.5ug/ml):

100%
101%

(0.5ug/ml): 100%
1-hydroxytriazolam (lug/ml): 73.2%

(0.5ug/ml): 78.9%

4-hydroxytriazolam (lug/ml): 101.1%
(0.5ug/ml): 91.4%
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Polar sorbent extraction of greyhound samples followed 

by HPLC analysis incorporating an acetate buffer 

A more sensitive, LC-MS compatible HPLC system 

incorporating an acetate buffer was developed for the 

analysis of triazolam and its metabolites.

The same urine samples collected from the greyhounds 
following the administration of 1 x 0.5mg tablet of
triazolam were extracted using cyanopropyl columns and 

analysed by HPLC using this system.
The unidentified peak previously observed in the 
non-polar extracts was not present in these extracts. 
The peak was not a system peak, since it was not
present in the blank urine from the same dogs. 

Therefore, as the unidentified peak was not present in 
the HPLC system incorporating an acetate buffer, 

identification of the unknown by LC-MS was not 

possible.
The only difference in the extraction of the urine

samples between non-polar and polar columns was that 

the non-polar extracts had been analysed using a
mobile phase containing a phosphate buffer whereas the 

polar extracts were analysed using a mobile phase 

containing an ammonium acetate buffer.
Therefore, the substance causing the peak was being 
produced either during the extraction, hydrolysis or 

analysis of the urine sample.
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Polar sorbent extraction of greyhound samples followed

by HPLC analysis incorporating a phosphate buffer 

To try to determine the origin of this peak, the urine 

samples were extracted with polar (CN) cartridges and 

analysed on HPLC using a phosphate buffer.

In the three and four hour samples, this unidentified 

peak was again observed, therefore both the extraction 

and the hydrolysis of the samples did not affect 

triazolam or its metabolites. The presence of the 

unknown peak occurred only when a phosphate buffer was 

incorporated into the HPLC system. A possible 

explanation for this, is that during the analysis, the 

triazolam metabolites were converted to a substance 

with a shorter retention time on the system 

incorporating a phosphate buffer, possibly a 

d r u g :phosphate complex.

To avoid this problem, greyhound samples were analysed 

using polar columns and an HPLC system incorporating 

acetate buffer as previously described.

Extraction of greyhound urine samples

Cyanopropyl columns were employed in the extraction of 

urine samples collected from the greyhounds following 

the administration of 1 x 0.5mg tablet of triazolam. 

Each dog was dosed twice, allowing sufficient time 

between dosings for all the drug to have been 

excreted.
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The results obtained from greyhound dosing show a wide 
variation between dogs (Table 26).

1-hydroxy and 4-hydroxy metabolites were detected in 
some of the dogs (Figure 18), but not all.

Parent triazolam was detected in the urine of one of 
the greyhounds up to eight hours after dosing, but in 

the other two, triazolam was only detected up to two 

hours post-administration. Therefore, mean values, 

for the latter portion of the graph (Figure 19) are 
based on results from one greyhound only.

There was a wide variation between dogs, but each dog 
showed a consistent response to dosings. The linear 

plot of triazolam and its metabolite concentration (uM 

x 10-4) versus time post-administration (Figure 19), 

suggests a rapid conversion of triazolam into 1-OH and 
4-OH triazolam on administration, and the continuous 
conversion throughout the excretion phase for 1-OH. 

1-OH triazolam is excreted more quickly than 
triazolam. This is to be expected since it is more 

water soluble, and its concentration appears to be 

dependant on triazolam concentration.
However, this is not true of 4-OH triazolam. A rapid 
conversion into 4-OH triazolam on administration gives 

a maximum concentration time of 2 hours and its 
elimination is complete before that of triazolam and 
1-hydroxy triazolam, suggesting that it is not 

continuously formed in the body.
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TABLE 26.

AMOUNT OF TRIAZOLAM AND ITS METABOLITES DETERMINED IN 
GREYHOUND URINE USING CN CARTRIDGES

Hours after
administration Triazolam (ug/ml)

1 2  3 4 5 6
1 0.023 0.023 0.073 0.05 0.057 0.071 1.4
2 0.027 0.231 0.047 0.041 0.045 0.42 1.1
3 0.026 0.025 0.74
4 0.026 0.023 0.68
5 0.027 0.021 0.67
6 0.016 0.018 0.47
7 0.011 0.013 0.34
8 0.01 0.01 0.28

Mean
(uM x 10-4)

1-OH Triazolam (ug/ml)

1 0.06 0.035 0.067
2 0.05 0.012 0.034 0.065
3 0.04 0.04 0.035 0.063 0.042
4 0.03 0.026 0.007 0.051 0.027
5 0.01 oo 0.02
6 0.01 0.018
7 0.016

female greyhound was on heat at the time of

1.5
1.1
1.2
0.8
0.65
0.53
0.45

one set of urine samples was obtained from this greyhound. 

4-OH Triazolam (ug/ml)

1 0.026 0.08 0.081 .1-7
2 0.04 0.013 0.18 0.092 2.4
3 0.037 0.03 o o 0.06 1.2
4 0.026 0.036 0.03 oo 0.92
5 0.023 0.043 0.03 0.02 0.81
6 0.019 0.013 0.02 0.01 0.43
7 0.003 0.006 0.01 0.00 0.18

Triazolam was only detected in the urine of two of t
greyhounds.

HPLC system: C18 column; mobile phase methanol-ammonium acetate
buffer (pH8)-deionised water- acetonitrile (200:100:125:75, v/v);
detection wavelength 230nm.
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FIGURE 18.

Triazolam and metabolites extracted from greyhound 
urine - 3 hours after a single oral dose of triazolam 
- using CN columns and HPLC analysis.
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This also suggests that it is more water soluble and 

hence more polar than the other metabolite or parent 

triazolam since it is excreted quickly.

This agrees with the earlier observation that the 

4-hydroxy metabolite was removed from the bonded 
sorbent by washing to a greater extent than either the 

1-hydroxy metabolite or parent triazolam.

The fact that 4-OH triazolam was not detected at all 
in the urine of one of the greyhounds may suggest very 
rapid elimination of this metabolite.

Pharmacokinetics

Figure 20 shows a semi-logarithmic plot of the 

concentrations of triazolam and its metabolites 

(ug/ml) versus time after administration. 

Pharmacokinetic parameters are difficult to measure 
when a drug is as extensively metabolised as 

triazolam.
Parameters for the parent drug and its metabolites 
were calculated using mean values (Appendix 2) (Table 

27), and were compared with literature values for 

beagle dogs (dose 0.5mg/kg) (Eberts, 1977).
In the greyhound, triazolam is absorbed at a faster 

rate than it is eliminated, as would be expected. The 
elimination rates of both metabolites are much faster 
than for the parent drug, and are similar to the 

elimination rates in beagles.
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TABLE 27.
PHARMACOKINETIC PARAMETERS FOR TRIAZOLAM AND

ITS METABOLITES IN THE URINE OF RACING GREYHOUNDS

Co = Apparent value for urine concentration at zero time.

To. 5 = Time taken for the concentration of drug in urine to
decline to half its original value.

Vd = Volume of distribution = dose/Co.

kei = Rate of elimination = 0.693/ To.5.
Clu = Clearance rate = Vd x kei.

AUC = Area under curve = Co/kei.

kab = Rate of absorption = residual line slope x 2.303

To.sab = Half-life of absorption = 0.693/kab.

Fraction of oral dose absorbed, F (bioavailability)
F = ((Co/kGi) - (Co/kab>)/AUC.

Triazolam

Greyhounds (n=3) 
(dose ■= 500 u r)

Domestic Dogs 
(dose = 5000 ug)

Co (ug/ml) 
T0.5(hrs) 
Vd (litres) 
kei(hrs-l) 
Clu (1/hr) 
AUC

0.06
3.3
8.3 
0.21
1.7 
0.208
2.07 
0.34 
88

0.131±65 
0.85

kab(hrs-l) 
To.sab(hrs) 
F (7.)

not given 
0.82 

not given 
0.29 

not given 
not given 
not given

1-OH Triazolam 4-OH Triazolam Metabolites (lit.)

kei 0.350
T0 .sel 2.0

0.462
1.5

0.398
1.74
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Overall, greyhounds excrete the parent drug much more 

slowly than beagles, although this may be accounted 

for to an extent by the dose difference.
This suggests that the metabolism of triazolam in 

racing greyhounds, is different to that in beagles. 
Comparison with the literature is difficult, since 
there are no available studies which use racing 
greyhounds as subjects, and metabolic pathways for 

triazolam excretion vary widely between animal species 
(Kitigawa et al., 1979). Greyhound metabolism is 
likely to differ from that of domestic dogs due to the 

very low fat content of greyhounds.

Triazolam and its metabolites were not detected in 

urine 12 hours after administration.

Triazolam and its metabolites in human urine samples 

Four healthy female volunteers (average age: 26;

average weight: 67 kg) were each administered a single 

tablet (1 x 0.25mg) of triazolam. The subjects 

abstained from alcohol and nicotine twenty-four hours 

before and after administration. Urine samples were 
collected at timed intervals after administration and 

were stored at -20°C until required for extraction.
The samples were extracted using polar columns 

according the extraction procedure above.
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Extraction of human urine samples

The extracts were sufficiently clean for direct 

injection onto the HPLC system and the peaks observed 

in the chromatograms corresponded to the retention 
times of 1 and 4-hydroxy triazolam standards, the main 
metabolites of triazolam (Figure 21).

The overall profiles (Table 28; Figure 22) between 

volunteers are in good agreement. Triazolam and 1-OH 

triazolam levels peaked after 2 hours then declined 
exponentially over the next 10 hours. 4-OH triazolam 

concentration increased up to five hours and none was 
detected after twelve hours, but there was 

insufficient data for any meaningful pharmacokinetic 
parameters to be calculated for this metabolite from 

this data.

Pharmacokinetics
Figure 23 shows a semi-logarithmic plot of triazolam 
and 1-OH triazolam concentrations (ug/ml) versus time 
after administration (mean values). Pharmacokinetic 
parameters for parent triazolam were calculated (Table
29) and compared to published data (Smith et al.. 

1986).
Smith's data was obtained from male subjects (average 

weight 77kg) following a dose of 500ug of triazolam. 
This study involved females (average weight 68kg) who 

were each administered 250ug triazolam.
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FIGURE 21.

Triazolam and metabolites extracted from human urine - 
3 hours after a single oral dose of triazolam - 
using CN columns and HPLC analysis.
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TABLE 28.

AMOUNT OF TRIAZOLAM AND ITS METABOLITES DETERMINED IN 
HUMAN URINE USING CN CARTRIDGES

Hours after Mean
administration Triazolam (ug/ml) (uM x 10-4)

1 2 3 4
2 0.02 0.045 0.0272 0.035 0.98
3 0.013 0.025 0.0237 0.0272 0.65
4 0.013 0.012 0.01 0.02 0.34
5 0.013 0.008 0.0084 0.01 0.27
12 0.00 0.00 0.00 0.00 0.00

1-OH Triazolam (ug/ml)

2 0.062 0.082 0.051 0.047 1.7
3 0.041 0.034 0.032 0.08 1.3
4 0.041 0.032 0.023 0.07 1.2
5 0.022 0.031 0.022 0.025 0.698
12 0.012 0.34

4-OH Triazolam (ug/ml)

2 0.026 0.021 0.02 0.6
3 0.0325 0.032 0.03 0.9
4 0.04 asleep 0.040 1.2
5 0.06 asleep 0.039 1.5
12 0.00 0.00 0.00 0.00
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TABLE 29.

PHARMACOKINETIC PARAMETERS FOR TRTAZOLAM AND ITS METABOLITES IN

Triazolam

HUMAN URINE

Calculated data 
(dose=250 u r )

Published data 
(dose=500 u r )
(Smith et al.. 1986)

Co (ng/ml)
To # 5(hrs)
Vd (litres/kg) 
ke^(hrs-l)
Clu (ml/min/kg) 
AUC
kab(hrs-l)
Tq 5ab(mins)
F (%)

38
2.3
0.094
0.30
2.0
0.13
0.693
60
62

3.99±1.47 
2.94
1.31±0.39 
0.24
5.56±1.88 
not given 
not given 
13.28±6.9 
not given

1—OH Triazolam Metabolites (Pakes et al.. 1981)

kel 0.124 0.18
T0.5el 5.6 3.9
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Taking this into consideration, the calculated values 
compare very well with the literature. The half-life 

and elimination rate constant give similar values to 

published data, but the clearance rate is somewhat 
higher in males.

A comparison of elimination half-life and rate 

constant for the metabolites of triazolam with 
published data (Pakes et al., 1981) showed very

similar trends, although the dose administered in the 
work by Pakes was 0.88mg of triazolam.

Further corroboration of these results comes from 

comparing the results with other published data
(Wendt, 1985). The bioavailability and half-life in 
the beta phase for human subjects reported by Wendt, 

were 60% and 1.7 to 3 hours respectively. The
corresponding calculated values were 62% and 2.3 

hours respectively.
4-OH triazolam was excreted much more quickly than 

triazolam or 1-hydroxy triazolam, suggesting that, as 

in the greyhound, 4-OH concentration is not dependant 

on triazolam concentration.
Again, 1-OH triazolam concentration seems to be 

dependant on the amount of parent drug present.
The results were reproducible and the extraction 
method efficient enough to determine extremely low 

drug levels.
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FLUNITRAZEPAM

Flunitrazepam in greyhound urine samples 

Spiked greyhound urine samples were made up by adding 
aliquots of flunitrazepam (lmg/ml) and its metabolites 

in methanol, to blank greyhound urine. Extractions 

were carried out according to the procedure outlined 
(CN columns; no wash stage; acidic methanol pH4

eluent) at 0.5 ug/ml level and the percentage

recoveries for flunitrazepam and its metabolites were
determined, by comparing the peak area obtained after 
injection of an extract from a spiked urine sample of 
known concentration, with that produced by the same 
concentration of drug in methanol. Each measurement 
was taken as the average of two determinations (Table

30) .
The recoveries at 0.5ug/ml concentration were 

extremely good and the extracts were sufficiently 

clean for direct injection onto the HPLC system. 

Extraction of greyhound samples
Four greyhounds were each administered a single oral 

dose of flunitrazepam (2mg). Urine samples were

freely collected at timed intervals following

administration.
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TABLE 30.

EXTRACTION EFFICIENCY FOR FLUNITRAZEPAM AND ITS METABOLITES FROM 
GREYHOUND URINE USING CN CARTRIDGES

Drug Percentage recoveries

Flunitrazepam 99.8 ± 0.5%

Desmethylflunitrazepam 97.9 ± 3.6%

7-aminoflunitrazepam 96.3 ± 1.1%
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The samples were extracted according to the procedure 

described and analysed by HPLC using the 

chromatographic system described above (C18 column; 
methanol-deionised water-ammonium acetate buffer 

(pH8)-acetonitrile (200:125:100:75)) as the mobile 
phase.

No parent flunitrazepam or any related compounds were 
detected.

Various literature reports agree with these findings: 
Following oral administration (2ml/kg), a higher level 
than in this administration, measurable levels of the 

parent drug in the plasma were low and erratic (Kaplan 

et al., 1974). Also, no measurable levels of the 

parent drug or its metabolites were seen in the urine

after this administration, indicating extensive and
complete biotransformation and possible alternative 

routes of excretion (Kaplan et al., 1974; Vree et al.,
1977), even though the HPLC methods described in these
publications detected flunitrazepam concentrations as 

low as lng/ml.
Desmethylflunitrazepam is not a urinary metabolite Of 

flunitrazepam, so this would not be expected to appear 

in the urine.
No further work was carried out on this drug, although 

the extraction method is efficient.
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BENZODIAZEPINE SCREENING PROCEDURE 

Extraction of standard benzodiazepines
Nineteen benzodiazepines (0.5 ug/ml standards) were 
subsequently extracted using the procedure described 

above and the percentage recovery of each was 
determined.

The recoveries for all these drugs from the urine of 

racing greyhounds, was determined by comparison with 
peak areas obtained from standard solutions of the 
drugs in methanol, with the peak areas obtained from 
an extract of a known concentration of the drug in 
urine (Table 31). Generally, the recoveries were 

excellent (over 90%) with the exception of loprazolam 
(75.8%). The nitrogen groups in loprazolam (Figure 
24) are prevented from interacting with the charged 
silanol groups on the surface of the sorbent to some 
extent by the physical presence of a large 
heterocyclic group. This may account for the poor 

recovery due to inefficient retention of the drug on 

the sorbent. The other benzodiazepines studied do not 

possess this physical disadvantage and so are well 

retained and eluted.
The coefficient of variation of the extraction method 
over three days is also given. The extraction 

procedure was reproducible for all the drugs.
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TABLE 31.

PERCENTAGE RECOVERIES OF BENZODIAZEPINES (0.5ug/ml) 
USING CYANOPROPYL COLUMNS AND ACIDIC ELUENT

PruR Recovery

Alprazolam 101 ± 4.97,
Clobazam 96.1 ± 7.27,
Clonazepam 94.5 ± 9.97,
Desmethy Idi azepam 105.8 ± 2.67,
Diazepam 99.8 * 1.87,
Flunitrazepam 99.8 ± 0.57,
Desmethylflunitrazepam 97.9 ± 3.67,
7-aminoflunitrazepam 96.3 ± 1.17,
Flurazepam 96.2 ± 4.17,
Lorazepam 92.7 ± 5.47,
Lormetazepam 93 . 5 + 3 .67,
Loprazolam 75.8 ± 0.87,
Midazolam 100.8 ± 2.77,
Nitrazepam 97.8 ± 3.27,
Oxazepam 100 ± 2.27,
Temazepam 91.2 ± 9.47,
Triazolam 100 * 2.37,
1-hydroxytriazolam 97.6 ± 3.47,
4-hydroxytriazolam 104.4 ± 10.67*
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FIGURE 24.

The structure of lcprazolam.
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Conclusion

The results show that this extraction is feasible as a 

screening technique for benzodiazepines. The 
increased selectivity of polar sorbents makes this 

procedure preferable to non-polar extraction. 
However, removal of the wash stage reduced the 
cleanliness of the extracts, although they were still 
adequately clean for direct injection into the HPLC 

system.
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2. Xylazine

Xylazine in greyhound urine samples

Urine samples in the range 10-1000 ng/ml were prepared 
by adding aliquots of a standard solution of xylazine 
in methanol (lmg/ml) to blank greyhound urine.

These were extracted according to the procedure 

outlined above with the addition of a wash stage: CN
columns were conditioned with methanol and deionised 

water. The urine sample, buffered to pH 7 and diazepam 
standard was drawn through, and the columns were washed 
and dried. The drug was eluted with methanolic 
hydrochloric acid - acetonitrile (50 : 50 v/v).

The percentage xylazine recovery was determined from 

spiked greyhound urine samples, by comparing the peak 

area obtained after injection of an extract from a 

spiked urine sample of known concentration, with that 
produced by the same concentration of drug in 

methanol. Each measurement was taken as the average of 
two determinations.
The positive identification of xylazine was based on 

comparison with standards, absorbance maxima (225 nm) 

and retention time.
The extracts were clean and the recoveries from spiked 

urine samples were high (Table 32). No interference 

from endogenous compounds was noted.
The assay was consistent over three days (Table 32).
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TABLE 32.

EXTRACTION EFFICIENCY FOR XYLAZINE FROM GREYHOUND URINE USING
CN CARTRIDGES

Concentration of xylazine Recovery
10 ng/ml 97.6%

100 ng.ml 99.8%

1000 ng/ml 98.4%

Consistency of assay over three days: 90.34 ± 4.6%
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Extraction of actual samples

The extraction of the urine samples previously 

determined using non-polar cartridges, proved to be 

much more consistent using cyanopropyl bonded sorbents 
(Figure 25).

The peak excretion times (2 to 3 hours) was the same 

as previously determined, but far greater correlation 
between administrations and greyhounds was achieved 
with CN columns.

Average excretion values (Table 33) are consistent. 
Three of the four greyhounds showed a peak excretion 
time of 2 hours and very similar excretion patterns. 
The fourth greyhound showed a peak excretion after 3 
hours and a somewhat erratic excretion pattern. This 
occurred in all three dosing trials for that 

particular greyhound.
Unfortunately, samples could not be obtained from the 
greyhounds before 2 hours since they were sedated. 

This observation differs from that reported (Newkirk 

and Miles, 1974).
Using the average excretion values between the dogs, 

an excretion curve for unchanged xylazine was produced 

(Figure 26). From the excretion curve, an average 
peak excretion value of 0.29 ug/ml parent xylazine 

would be expected two hours after dosing.
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FIGURE 25.

Xylazine extracted from greyhound urine - 
2 hours after a single intramuscular dose - 
using CN columns and HPLC analysis.
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TABLE 33.

AMOUNT OF XYLAZINE EXCRETED DETERMINED BY CN EXTRACTION PROCEDURES

Greyhound Number 
after dosinft 
(hours) 1 

2

AND HPLC ANALYSIS 

Xylazine excreted (u r /irI)

2
0.217

3
0.309
0.462

4
0.216
0.175

0.370
0.309

3 0.211 0.259 0.222 0.515
0.203 0.183 0.126 0.247

4 0.206 0.197 0.120 0.451
0.123 0.075 0.120 0.152

5 0.102 0.091 0.04 0.185
0.204 0.077 --- 0.149

6 0.077 ___ ____ 0.209
0.0987 0.019 --- 0.483

7 0.05 ____ ____ 0.181
0.185 --- --- 0.101

Total xylazine excreted (Ufi)

2 6.08 96.4 99.4 3.7
--- 56.4 44.7 24.7

3 17.5 64.8 6.67 12.36
22.4 9.8 15.1 12.8

4 9.89 74.9 50.4 14.4
7.4 4.36 18.0 7.89

5 3.59 27.3 1.87 5.56
28.5 3.97 --- 16.73

6 1.54 ____ --- 6.7
4.74 1.73 --- 54.1

7 0.607 ____ --- 1.81
1.67 --- --- 1.01

are mean values from three consecutive day extractions
precision of extraction was 90 . 34%±4.6%.
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A total of 2.7% of the parent dose was excreted within 
eight hours and no xylazine was detected after this 
time. This is a far greater percentage of the dose 

excreted than observed using the non-polar extraction 

columns and supports the fact that the polar 

extraction method is much more efficient and robust 

than the non-polar extraction procedure.
A further comparison with the non-polar extractions 

showed this method to be more reproducible. Care was 
taken to use, where possible, the same batches of CN 

columns, and urine samples were diluted further with 

buffer in this extraction procedure so reducing the 
effect of salt content of the urine.

Pharmacokinetics
Figure 27 shows the semi-logarithmic plot of average 
xylazine concentrations in urine versus time after 

intramuscular dosage to the greyhounds.

The levels of drug peaked at 2 hours, then declined 

exponentially over the next 5 hours.

These data are well fitted by a one compartment open 

model with a rapid absorption phase followed by 

elimination. Table 34 shows that kinetic parameters 
calculated from the results, when compared with the 
published data for domestic dogs following a slightly 
higher intramuscular dose are similar (Garcia Villar 

et a l ., 1981).
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TABLE 34.
PHARMACOKINETIC PARAMETERS FOR XYLAZINE. IN THE URINE 

OF RACING GREYHOUNDS

Dose=36000 ug

Co (ug/ml) 
T0 .5(hrs)
Vd (litres) 
kei(hrs-l) 
Clu (1/hr) 
AUC
kab(hrs-l) 
To.sab(hrs) 
1 (%)

Greyhounds 
(n=4)
0. A3 
0.68 

84 
0.217 

18 
1.98
1.019
3.20 
78

Domestic Dors 
(n=4)
0.432 
0.06 

not given 
1.2 

not given 
not given 

12.06 
0.60 

73.9±17.89

Using 12.7 minutes as Tmax (Garcia-Villar et al., 1981): 
To.5 = 0.118 hours 
kab = 5.83 hours-1
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The apparent initial drug concentration in urine (Co) 

was calculated as 0.43 ug/ml. The published value for 

plasma concentration was 0.432 ug/ml. This suggests 
that the amount of xylazine available in plasma and 
urine at time zero is similar. Bioavailability of the 
drug was also consistent with published data (Table 
34) .

With the exception of these values, the other 
parameters are somewhat different for greyhounds than 
for domestic animals. Xylazine is absorbed and 

excreted from plasma in the domestic dog much more 

rapidly than in the urine of the racing greyhound.
In the greyhound, all parent xylazine is excreted 

within 7 hours whereas in the domestic dog, all parent 

xylazine has been excreted from the plasma within the 

first 2 hours.
Since the greyhounds in this study were sedated up to 

2 hours after dosing, a maximum absorption time (Tmax) 
was not calculated and the absorbance rate constant 
(kab) had to be calculated using assumed residual 
values. However, using 12.7 minutes as Tmax 

(Garcia-Villar et al., 1981), a much faster rate of 

absorption and half-life of absorption (T 0.5abs) were 

calculated.

- 207 -



Since there are no reported studies of xylazine

metabolism in the racing greyhound, comparison of data 
is difficult, but greyhounds would appear to eliminate 

a single dose much more slowly than domestic dogs. 

Greyhound absorption of xylazine is probably as quick 

as in domestic dogs, but the period of analgesia

apparent after a single therapeutic dose is much 

longer than has been reported (Newkirk and Miles, 
1974).

Conclusion

The detection of parent xylazine up to eight hours
after the intramuscular injection of a single

therapeutic dose shows that this analytical procedure 
is suitable for the detection of the misuse of this
drug in greyhound racing. Since any greyhound seen to 
deteriorate markedly on previous performances is 

sampled immediately post race, parent xylazine from an 

effective dose would be detected.
The method described, demonstrates quantitative
recovery of the drug using the cyanopropyl columns. It 

is rapid (up to ten samples can be extracted

simultaneously) and has minimal sample volume and

solvent requirements.
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The success of polar bonded sorbent extraction led 
quite naturally to considering the possibilities of 

exploiting the nitrogen groups within basic drugs as a 
means of retaining the drugs on sorbents. An 

extraction sorbent where the primary interaction is 
ionic rather than non-polar would further increase 
selectivity.

A dual interaction where both non-polar and ionic 
interactions are of major importance tyould then allow 

washing with organic solvents (for example, methanol, 
since the drug would be held to the sorbent through 
ionic interaction) and also, ionic and aqueous 

solvents (for example, acids since the drug would be 
held to the sorbent through non-polar interactions) so 
increasing vastly the cleanliness of the extract 

without reducing extraction efficiency. Strong cation 

exchange sorbents would appear to bridge this gap 

between selectivity and cleanliness, so ion-exchange 
interactions for a range of basic drugs were studied.

- 209 -



4.2.3. Extraction Methods exploiting Ion-exchange
Sorbent Interactions

1. Basic Drugs

Cationic ion exchange interactions occur between an 
isolate molecule carrying an ionic charge (in this 

case, a positive charge) and a sorbent carrying an 
opposite charge (negative)(Figure 28). In order for 
effective retention of the isolate to occur, the 
matrix must be at a pH where both the isolate and the 
sorbent are charged. Also, the matrix must not 
contain high concentrations of strongly competing 
ionic species of the same charge as the isolate (Van 
Horne, 1985).

Thirty basic drugs at 1 and 5ug/ml concentrations were 
made up in methanol and extracted using SCX columns 
conditioned with methanol, water and 7mM phosphoric 

acid (pH3.4). Urine and 7mM phosphoric acid were 
applied to the column. The column was air dried, 

washed with 7mM phosphoric acid, 0.1N acetic acid and 

methanol. Ammoniacal methanol (1%) was passed through 

the column and collected.
An aliquot of the residue (20ul) was removed for 

analysis by HPLC with diode array detection so that 
the percentage recoveries of each drug could be 

determined by comparison with standard drug peak areas.
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FIGURE 28.

Primary interactions of cation exchange sorbent.
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The eluent was monitored at 200nm and full spectra 

were recorded from 190 to 400nm for each peak. The 
column was a Hibar Lichrospher 100 CH-8/II (25cm x 
4.6mm).

The initial mobile phase composition was 10% 

acetonitrile in 0.05M pH3.2 potassium phosphate 
buffer. This was increased to 50% over 15 minutes, 

and the final composition was maintained for 5 

minutes. A re-equilibration time of 5 minutes was
required between injections (total cycle time 25
minutes).

Recoveries of standard drugs

The absolute drug recoveries obtained both by direct 
analysis of the eluent from the sorbent (1ml of 1% 

ammoniacal methanol), and also after a concentration 
(evaporation and reconstitution) step for the basic 
compounds were determined (Table 35). The linearity
of the extraction method was determined for the range 

1 to 5 ug/ml, and the correlation is also given.
Direct analysis of the eluent gave very good 
recoveries for all compounds except caffeine, 
theophylline and theobromine, for which the recovery 

was between 72 and 86%. Theophylline and theobromine 

have strong acid functions (pKacl), and will not be 
fully protonated at the pH of extraction, (pH3), and 

so will not be completely retained on the ion

exchanger.
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TABLE 35.
RECOVERY DATA BEFORE AND AFTER EVAPORATION FOR BASIC DRUGS USING

CATION EXCHANGE EXTRACTION.

Direct Analysis After Evaporation
Compound Recovery COV Recovery COV

Amphetamine 99.3 15 34.5 19
Benzoylecgonine 94.2 8 92.5 8.4
Caffeine 72.1 18.6 73.2 14
Cocaine 100 12 61.9 4.4
Codeine 100 2 99.4 1
Cyclizine 100 0.4 95.1 1.6
Dextromethorphan 97.2 5 94.1 3.2
Diazepam 93.7 3.2 78 5.5
Dihydrocodeine 95.7 6.3 96.1 4.2
Diphenhydramine 100 1.4 98.7 2.3
Ephedrine 100 4.3 96.2 4.0
Hydrocodone 99.8 2.4 98.7 3.7
Mazindol 100 3.9 94 1.4
Mesoridazine 92.1 2.9 87.1 4.1
Methadone 100 4.2 86.1 3.0
Methamphetamine 100 2.0 47.9 15
Metoprolol 94 2.0 93.3 3.2
Morphine 93.1 8.6 96.1 5.1
Nordiazepam 98.4 4.3 95 6.4
Norpropoxyphene 95.2 1.5 94.3 3.7
Oxazepam 96.4 9.0 92.1 7.8
Papaverine 100 1.0 100 1.0
Phencyclidine 85 10 80.6 4.7
PPA 97.8 2.6 95.2 1.0
Propoxyphene 90.8 6.5 97.9 1.4
Temazepam 94.5 2.3 87 6.7
Theobromine 76.5 1.1 59.8 13
Theophylline 81.6 3.5 63.5 11
Thioridazine 86.4 3.4 75.2 2.3

PPA = phenylpropanolamine 

COV = coefficient of variation
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Caffeine has an extremely high pKa value (pKa 14) and 
so will be strongly ionised at the pH of extraction. 

Therefore, it is retained very strongly on the sorbent 

and will not be completely removed at the pH of the 
eluting solvent (pHIO).

Their recovery, however, while being significantly 

less than that obtained for the remainder of the 

compounds, is equal to what might be expected for a 
good 1iquid/1iquid extraction procedure and so was 
quite acceptable for a screening method.

These high recoveries, impractical with a 
1iquid/1iquid partition extraction, are possible due 
to the use of this absorption/elution approach to 
extraction which is ideally binary in nature: the
analytes are either all absorbed or all eluted, 
depending on the polarity of the surrounding medium.

The technique also has the advantage over liquid phase 

ion-paired extraction in that the immobilisation of 

the drug-ligand ion-pair on a solid support allows the 
removal of extraneous sample material by washing the 

support with an ionic solvent (phosphoric acid, acetic 

acid) to remove ionic material while the drugs are 

retained by non-polar interactions with the 
benzenesulphony1propyl moiety. A subsequent wash with 
a relatively non-polar solvent (methanol) removes less 
polar material while the drugs are retained by 

ion-paired interactions.
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This washing results in the production of a clean 

extract. The final eluent (1% ammoniacal methanol) 

disrupts both the ion-pair and the non-polar 
interactions and allows elution of all the drugs in a 

relatively small volume. A chromatogram of 11 basic 

drugs extracted from a spiked post-mortem urine sample 
(5ug/ml, 1ml sample) is shown (Figure 29).

Having demonstrated that the recoveries using cation 
exchange extraction were essentially complete, the 

effect of evaporating the solvent and reconstituting 

the residue was investigated in order to maximise the 
sensitvity of the method.

Evaporation and reconstitution
Extracts were reconstituted in 50ul, and lOul was 
analysed, therefore a concentration factor of 20 was 

expected.

When the residues were reconstituted in acetonitrile, 

the apparent recoveries were low: between 5 and 12%

for each of the compounds analysed.
This appeared to be a matrix effect due to the 
insolubility of the coextracted residue in 

acetonitrile.
Reconstitution in mobile phase (10% acetonitrile in 
0.05M p H3.2 potassium phosphate buffer) improved 

recoveries considerably for all compounds (Table 35; 

Figure 30).
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FIGURE 29.

SPIKED POST-MORTEM URINE SAMPLE (5ug/ml)
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PCP

PROMAZINE
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Extracted using cation exchange columns

End of plot. Tine - 0.01 to 19.98 minutes Chart speed - 1.00 cm/nin
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FIGURE 30.

Comparison of ACN and MP reconstitution of a post
mortem urine sample extracted with SCX columns.
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The importance of the reconstitution solvent is an 
important consideration in any analytical procedure 

where an evaporation/reconstitution step is involved. 
Recovery of volatile drugs

Notably poor recoveries were obtained for amphetamine 

and methamphetaminef two compounds whose volatility is 

known to cause sample loss during evaporation. This 
was corrected by adding a small amount (4-5 drops) of 
0.IN hydrochloric acid to the ammoniacal methanol 
before evaporation.

This increased recovery of the compounds to 94% and 

92% respectively, but it was noted that the presence 

of the acid could cause the hydrolysis of some cocaine 
to benzoylecgonine and methylecgonine if cocaine was 

present in the extracted samples.

Amphoteric compounds
Of particular note in these results, was the high 
recoveries of benzoylecgonine and morphine, two 

amphoteric compounds which tend to be difficult to 
extract by liquid/liquid extraction methods (Horning 

et al., 1974) .
Liquid/liquid extraction requires the conversion of 
the drug to an uncharged/neutral form and its 

preferential partition into an organic liquid.

- 218 -



The amphoteric nature of morphine and benzoylecgonine 

however, results in the formation of charged species 

at any pH other than their isoelectric points, thus 

making them water soluble/organic insoluble and poorly 

extracted requiring recourse to salting out procedures 
or ion paired extractions.

The use of a bonded ion-exchange solid-phase 

simplifies assays for these compounds considerably and 
allows them to be extracted efficiently as part of a 
general drug screen (Figure 31). The use of a 

diatomaceous earth procedure did not allow these 
compounds to be extracted (Figure 32).

Method Validation
Human post-mortem urine samples
Twenty-four post-mortem urine samples were extracted 
by conventional solvent extraction methods (basic drug 

extraction into chloroform)(Foerster and Mason, 1974; 

Anderson and Stafford, 1983), in parallel with the 

cation exchange solid-phase extraction procedure 

previously described and a non-selective diatomaceous 

earth extraction:
Urine samples were diluted with 0.2M borate buffer 
(pH9;3ml), and applied to absorption extraction 

columns containing diatomaceous earth material. 

Solvent (n-butyl chloride) was applied and allowed to 

flow through until the required volume had been 

collected.
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FIGURE 31.

Comparison of DE and SCX extraction of BZE from urine

Diatomaceous earth Cation exchange
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FIGURE 32.

Extracted standards of cocaine, BZE and ME in urine 
using diatomaceous earth.

CAFFEINE

COCAINE

cn

End of plot. Tine » 0.01 to 19.99 ninutes Chart speed - 1.00 cn/nin
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The eluting solvent was evaporated to dryness, 
reconstituted in mobile phase and analysed.
Results

The results of the comparison are given in table 36. 

Solid-phase extraction/DAD HPLC method was able to 
confirm the presence of basic drugs indicated from 

routine gas chromatography-mass spectrometry routinely 
in use in all cases.

Generally, the SCX extractions were much more 

efficient than either the diatomaceous earth or the 

solvent extractions (Figure 33).
Diatomaceous earth, however, had the advantage of 

being extremely clean compared to the bonded sorbent 

extract (Figure 34) although the cation exchange 
extracts were sufficiently clean for direct injection 
onto either HPLC or GC-MS.
Also, for the analysis of caffeine and its metabolites 

(Figure 35), the diatomaceous earth was more efficient 

than SCX, again probably due to the difficulty of 

protonating theophylline and theobromine at pH3 and 

the difficulty in eluting caffeine itself from the 

bonded sorbent at pHlO.
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FIGURE 33.

Comparison of DE and SCX Extractions: Efficiency of
drug extractions from post-mortem urine samples.
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FIGURE 34.
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FIGURE 35.

Comparison of DE and SCX sorbents: Efficiency of
caffeine extraction from post-mortem samples.
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In addition, the cation exchange method detected 

temazepam and phenylpropanolamine in post-mortem 
samples which had appeared negative by the 

liquid/liquid extraction/GC method and the 
diatomaceous earth/HPLC DAD method.

Overall, the cation exchange method was the quickest, 

most efficient and most robust of the procedures. 
Extracts were sufficiently clean for direct injection 
onto HPLC-DAD or GC-MS depending on the original 
nature of the sample.

Potential for automation

In the extraction system described, the analyte is in 
a basic medium prior to analysis. This is fine for 
sequential separate analysis, but for automation, the 
sample eluent must be compatible with the mobile phase 

used in the HPLC system (in this case, pH 3.2).

Exper imental

Non-polar C18 columns (1ml capacity) were conditioned 

with one column volume of methanol and one of 

deionised water. The eluent from the cation exchange 
extraction (ammoniacal methanol, 1ml) was passed 

through the sorbent. The column was washed with 
deionised water (0.5ml) and the adsorbed drugs were 

directly eluted onto the HPLC/DAD system using mobile 

phase (acetonitrile-0.05M potassium phosphate buffer, 

pH3.2)(Figure 36).
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FIGURE 36.

Post-mortem sample- extracted by SCX followed by Cl8 
sorbent extraction in an automation attempt.

SCX + Cl 8 SCX DE

•BZEBZE

7 COCAINECOCAINECOCAINE

ETHYL-BZE> ETHYL-BZEETHYL-BZE
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This had the effect of cleaning the extract further, 

but, of the basic drugs studied, morphine and 

benzoylecgonine did not re-extract well. This was 
probably due to their amphoteric nature and their 
insolubility in the mobile phase at pH3.2.

Basic drugs in greyhound urine samples

The cation-exchange procedure described was carried 

out on spiked greyhound urine samples containing 

twenty-five basic drugs at lug/ml concentration, in 

order to determine the percentage recoveries.

The eluent from the extraction was not directly 
injected onto HPLC, but was evaporated to dryness and 
reconstituted in papaverine solution (0.5mg/ml, 25ul)

for GC analysis.
The recoveries were above 95% (Table 37) in all cases 

except caffeine, theophylline and theobromine. The 

same reasons given previously apply again.

Method Validation 
Greyhound urine samples
For many years, the extraction of basic drugs from the 
urine of racing greyhounds has been carried out using 
conventional thin-layer chromatography-based pre-race 

screening procedures (Clarke, 1986).
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TABLE 37.

DRUG RECOVERIES FROM SPIKED GREYHOUND URINE

DruR Recovery

1. Codeine 100 ± 2.0%
2. Dihydrocodeine 95.7 ± 6.3%
3. Hydrocodone 98.7 ± 3.7%
4. Morphine 94.1 ± 2.6%
5. Methadone 100 ± 3.2%
6. Mazindol 100 ± 3.9%
7. Promazine 97.5 ± 5.3%
8. Cocaine 98.1 ± 2.0%
9. Quinine 100 ± 2.3%
10.Meperidine 95.2 ± 0.5%
11 .Diazepam 95.5 ± 2.1%
12.Temazepam 98.5 ± 3.4%
13.N-Desmethyldiazepam 97.4 ± 6.2%
14.Oxazepam 95.4 ± 2.9%
15.Thioridazine 92.6 ± 8.4%
16.Ephedrine 100 ± 8.6%
17.Metoprolol 97.1 ± 3.0%
1 8 .Caffeine 70.1 ± 8.6%
1 9 .Theophylline 82.6 ± 4.2%
20.Theobromine 76.5 ± 1.9%
21.Propoxyphene 95.8 ± 4.5%
22.Norpropoxyphene 95.2 ± 1.5%
23.Cyclizine 95.1 ± 1.6%
24.Papaverine 100 ± 1.0%
25.Diphenhydramine 98.7 ± 2.3%
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For the purpose of testing the feasibility of using 

solid-phase extraction for basic drug screening in 

greyhound racing, thirty urine samples from greyhound 

racing tracks in the UK, received between December 
1988 and January 1989 were extracted using cation 
exchange solid-phase extraction in parallel with the 
existing liquid/liquid method:

Greyhound urine (pH basic with 3. 5M ammonia solution) 

was extracted with ethyl acetate. The aqueous layer 

was discarded and the organic layer was extracted with 

2M sulphuric acid. The acidic layer was made alkaline 
with 3. 5M ammonia solution and extracted into ethyl 

acetate. The aqueous layer was discarded and the 
organic layer dried over anhydrous sodium sulphate.

The extract was evaporated to dryness and 

reconstituted in papaverine solution (0.5mg/ml, 25ul), 

as an external standard, for analysis by gas 

chromatography (GC).

Of the thirty samples analysed, three were found to be 
positive. The drugs detected: quinine, cyclizine and

procaine, were extracted by both methods, analysed by 
GC and were confirmed by gas chromatography-mass 

spectrometry (GC-MS).
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Figure 37(a) shows the GC trace of the sample positive 

for cyclizine by solvent extraction (SE)f and figure 

37(b) shows the same sample using solid-phase 
extraction (SPE).

The solid-phase extract was much cleaner then the 
solvent extract, and the cation exchange extraction 
the more efficient of the two techniques.

The two procedures can be compared and summarised as 
shown in the following table:

Comparison (see Appendix 3)
(per 10 extractions)

SPE SE

Sample volume required 10ml 200ml

Solvent cost 8 pence £4.72

Extraction time 10 minutes 2 hours

Automation Potential Yes No

Glassware requirement Minimal Extensive
Extract quality Good Acceptable

As explained earlier, this solid-phase extraction method 
exploits the basic nature of the drug, hence it's 

usefulness as a screening technique. The basic 
character of the drug is exposed by the protonation of 
the nitrogen groups in the molecule in acid conditions.
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FIGURE 37.

a) Cvclizine extracted from the urine of 
r a c i n g  greyhounds using solvent extractron 
and GC analysis.
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b) Cyclizine extracted from the urine ofracing greyhounds using soiid-phase extraction and GC analysis.
GC-FID

1,2,4,5:metabolites of cyclizine 
3:cyclizine 6:papaverine
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2. Mazindol

Mazindol in racehorse urine samples

Horse urine samples were prepared by adding microlitre 

aliquots of a standard solution of the drug (lmg/ml) in 

methanol to urine (lml). Solutions containing 100 ng to 
10 ug/ml of drug were prepared in this manner, mixed by 
vortexing and kept at 4°C until required for analysis.

The spiked samples were extracted as previously 
described, with slight modifications. The larger 
capacity SCX columns were used (3ml) and 10ml of sample, 
buffered to pH3.5 with 7mM phosphoric acid (5ml) was 
applied to the column.

For HPLC analysis, the sample was directly injected into 

the system, and the percentage recovery . determined from 

the spiked samples, but for GC-MSD analysis, the extract 

was evaporated to dryness and reconstituted in 

chloroform (25ul) prior to injection.

Recovery of mazindol from spiked urine using the 

outlined extraction procedure and HPLC analysis was 

found to be 99.4 ± 7.7% for urine between 0.1 and 10

ug/ml (Table 38) .
This is a simple and rapid technique which allows 100% 
recovery of low levels of drug from urine. The extract 
is sufficiently clean so as to allow its direct 
injection onto an HPLC or GC-MS (Figures 38, 39

respectively).
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TABLE 38.
RECOVERY OF MAZINDOL FROM RACEHORSE URINE USING SCX COLUMNS

Concentration (ng/ml) Recovery (%)
100 98.1
200 103.6
500 96.8

1000 93.0
5000 106.0

10000 98.8
99.4
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FIGURE 38.

Mazindol extracted from the urine of racehorses- 
4-6 hours after a single dose- using cation exchange 
columns and HPLC analysis.
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Mazindol extracted from the urine of racehorses- 
4-6 hours after a single oral dose-using cation exchange columns .and GC-MS analysis.
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The advantages of this method are particularly apparent 
in the analysis of mazindol, where very little of the

parent drug is present in the biological fluid.

Extraction of racehorse samples

Three racehorses were each given an oral dose of 50mg of 

mazindol, and urine samples were taken at timed
intervals after administration.

This was repeated following an oral dose of 5mg of
mazindol.

Mazindol was readily identified in the urine of 
racehorses having received an oral dose of 50mg (Table 
39; Figure 40).

These 50mg administration results show good agreement 
with those reported (Timmings et al., 1985) regarding 
the excretion pattern of parent mazindol in the horse. 

The peak excretion time of between 4 and 6 hours is in 
agreement, but mazindol levels quantified by this method 

were somewhat higher than those reported.
This can be accounted for by comparing the percentage 

recoveries of the two methods (Timmings: 50%).

No parent mazindol was detected after 28 hours.
Analysis of 5mg dosings gave negative results on both

HPLC and GC-MS.
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TABLE 39.

MAZINDOL LEVELS IN HORSE URINE AFTER 50MG ADMINISTRATION

Hours After Administration Mazindol Concentration*
(ng/ml)

43.85 
164.40 
216.81 
313.20 
180.72 
negative 
negative

* Average of three determinations

0->l
1-»2 
2 M  
4~>6 
6-»8 
28 
52
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Average mazindol excretion from racehorse urine.
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Pharmacokinetics

Figure 41 shows a semi-logarithmic plot of mazindol 
concentration versus time after administration. No 

literature regarding mazindol pharmacokinetic parameters 

for the racehorse was available, but overall calculated 
data (Table 40) suggest that mazindol is fairly slowly 

eliminated from the horse (elimination half-life: 3
hours).

Mazindol was detected 12 hours after a single oral dose 
in the urine of racehorses (Timmings et al., 1985) but 

no parameters were calculated in that report.
The rate of absorption is slow and the bioavailability 

of 51% suggests incomplete absorption in the racehorse, 

differing from dog and man, where absorption is 

prolonged, but complete (Dugger et al., 1977). The 

elimination rate in racehorses is slow and this is also 

the case for both dog and man.
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TABLE 40.

PHARMACOKINETIC PARAMETERS FOR MAZINDOL IN THE URINE OF RACEHORSES 

Co = 1.0 ug/ml 

To.5 = hours

Vd = dose/Co = 50000/1.0 = 50 litres 

Ylqi = 0.231/hour.

Clu = 11.55 litres/hour.

AUC = 4.33

kab = 0.469/hours

To.sab = 1.48 hours.

F (bioavailability) = 0.51 (51%).
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Conclusion

Using cation exchange extraction, the identification of 

parent mazindol in the racehorse is possible 12 hours 
after administration.

A level of 800pg of mazindol using this method was 
detected which should be sufficient to detect the drug 

following administration of an effective dose.
There is some debate as to the effective dose required 
to excite a horse.

Even with doses of lOOmg, given intravenously, 

veterinarians' have observed only a slight increase in 
irritability and respiratory rate and no change in pulse 

rate (Veterinarians Reports, Illinois Racing Board, 

Elgin, Illinois). It is therefore unlikely that a dose 
as low as 5mg would improve the racing performance of a 

horse.
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5. CONCLUSIONS

Analysis

Benzodiazepines are normally determined, by HPLC. 
using reversed-phase columns and incorporating 
phosphate buffers in the mobile phases.

In this study, an HPLC system which separated nineteen 
benzodiazepines was developed, although not all were 

chromatographically resolved from each other. The 
system did not incorporate phosphate buffers, so 

removing the possibility of column blocking and 

subsequently removing the time-consuming process of 
column flushing and washing.

Further, the system was LC-MS compatible so that, if 

necessary, the positive identification of any 
interfering peaks could be carried out.

The system was sufficiently sensitive for the 
determination of diazepam and its metabolites, 

triazolam and its metabolites, and flunitrazepam and 

its metabolites in biological fluids at therapeutic 

levels.
Of particular note in this study, was the use of HPLC 

determination using diode array detection. The system 

was able to identify all samples analysed without 

recourse to further identification procedures. The 

analysis system was fully automated and allowed 

determination of at least one hundred basic drugs.
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Reversed-phase HPLC systems for the determination of 

the basic drugs xylazine and mazindol in biological 
fluids, are not reported in the literature.

In this study, such systems were successfully 
developed.

Several methods were tried, and it was ultimately 

shown that suitable chromatography could be achieved 

for these drugs. The methods were sufficiently 

sensitive to determine the amount of drug in urine 

after a single administration of a therapeutic dose to 
greyhounds and racehorses respectively.

Extraction

Basic drugs are usually extracted from biological 

fluids using liquid/liquid or non-selective 
solid-phase extraction. In this study, the extraction 

of basic drugs from urine was explored using bonded 
sorbents, and the drugs were successfully isolated. 

Sorbents exhibiting non-polar, polar and ion-exchange 
interactions were studied, and it was ultimately shown 

that the extraction of basic drugs from biological 

fluids could be achieved successfully and efficiently 

using any of the three types of cartridges.
Non-polar sorbents were shown to be highly efficient 

for the extraction of substances with a high degree of 
non-polar character, from urine. They were used 
successfully to extract oxazepam and xylazine from the 

urine of racing greyhounds.
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Polar sorbents were successfully used for the more 
selective, highly efficient extraction of nineteen 

benzodiazepines and xylazine from human and greyhound 
ur ine.

Finally, ion-exchange sorbents were used to extract a 

wide range of basic drugs from racehorse urine, human 

post-mortem urine and greyhound urine.
Of particular note, using ion-exchangers, was the 

successful extraction of the amphoteric drugs, 
benzoylecgonine and morphine.

These two compounds are particularly difficult to 
extract using liquid/liquid extraction or 

non-selective solid-phase extraction.
The success of this technique showed that ion-exchange 
sorbents were particularly suitable for basic drug 
screening procedures especially when combined with 

determination with HPLC/DAD detection.

Authentic samples
The bonded sorbent methods were applied to authentic 
urine samples, and were shown to be suitable for the 

extraction of therapeutic levels of oxazepam, 
triazolam and its metabolites, and xylazine from 

greyhound urine; mazindol from racehorse urine; and a 

wide range of basic drugs from human post-mortem 

urine.
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Detection after administration

Oxazepam was detected in the urine of racing 

greyhounds thirty hours after the administration of a 

single oral dose of diazepam; unchanged mazindol was 
detected twelve hours post-administration of a single 
therapeutic dose; and triazolam and its metabolites 
and unchanged xylazine were detected eight hours after 
dosing. The presence of drugs and their metabolites 

in the urine of greyhounds or racehorses administered 
with these drugs shows that the use or misuse of these 
drugs at therapeutic levels would be detected and 
confirmed in a racing situation.

Pharmacokinetic parameters
The metabolic routes of many drugs in racing 

greyhounds are not widely reported, therefore 

pharmacokinetic parameters for racing greyhounds are 

not widely available.

Preliminary pharmacokinetic studies carried out using 
the extraction and analysis procedures developed, 

showed that greyhound metabolism is markedly different 
from the metabolism of domestic dogs. These 
procedures can be subsequently applied to many basic 

drugs to allow the study of metabolism in racing 

greyhounds.
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Financial requirements

Liquid/1iquid extraction is a time-consuming, tedious 
procedure, often requiring several extraction stages, 

evaporation and derivatisation steps prior to 
analys is.

The solid-phase extraction procedures developed are 
quicker, more efficient, cheaper and easier to perform 

than conventional solvent extraction.

Several samples can be simultaneously extracted and 
the glassware, sample and solvent requirements are 
considerably less than with liquid/liquid extraction.
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APPENDIX 1.

Technical Details
1.1. Drugs

Alprazolam (Xanax®), triazolam (Halcion®),
1-hydroxy triazolam and 4-hydroxytriazolam were gifts 
from Upjohn Ltd., Crawley, Sussex.

Clobazam (Frisium®) was a gift from Albert Products, 
a division of Hoescht UK Ltd., Hounslow, Middlesex.

Clonazepam (Rivotril®), diazepam (Valium®),
desmethyldiazepam, flunitrazepam (Rohypnol®),
7-aminoflunitrazepam, desmethyIflunitrazepam,
midazolam (Hypnovel®) and nitrazepam (Mogadon®) 
were gifts from Roche Products Ltd., Welwyn Garden 
City, Hertfordshire.

Tritiated diazepam was purchased from Amersham 
International, Amersham, Hertfordshire.

Lorazepam (Ativan®), lormetazepam, oxazepam
(Serenid®) and temazepam (Normison®) were donated 
by Wyeth Laboratories, Maidenhead, Berkshire.

Loprazolam (Dormonoct®) was donated by Roussel 
Laboratories Ltd., Wembley, Middlesex.
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Prazepam (Centrax®) was purchased from William R. 
Warner & Co., Eastleigh, Hampshire.

Xylazine (Rompun®) was a gift from Bayer UK Ltd., 
Bury St. Edmunds, Suffolk.

Mazindol (Sanorex®) was purchased from Sandoz 
Pharmaceuticals Ltd., New Jersey, U.S.A.

Codeine and methadone hydrochloride were purchased 
from The Sigma Chemical Company, Missouri, U.S.A.

Morphine sulphate was purchased from Merck, Sharp and 
Dohme, Pennsylvania, U.S.A.

Robitussin A-C, containing codeine (2mg/ml), was 
purchased from A.H.Robins, Virginia, U.S.A.

Paregoric (Parepectolin), containing opium
(0.38mg/ml), was purchased from W.H.Rorer, 

Pennsylvania, U.S.A.

Methajade, containing methadone (0.3mg/ml) was 
purchased from Merck, Sharp and Dohme, Pennsylvania, 

U.S.A.
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1.2. Solvents

All the solvents used were of HPLC grade and were 

purchased from Rathburn Chemicals, Walkerburn, 

Scotland and BDH Chemicals, Poole, Dorset.
1.3. Chemicals

Disodium hydrogen orthophosphate dihydrate (Sorensons 

salt), sodium acetate, sodium hydrogen carbonate and 
ammonium acetate were purchased from BDH Chemicals, 
Poole, Dorset.

Disodium tetraborate and pentane sulphonic acid were 
purchased from The Sigma Chemical Company, Missouri, 
U.S.A.

Ecoscint® (biodegradable liquid scintillant) was 
purchased from National Diagnostics, Edinburgh.

Tetramethyl ammonium hydroxide pentahydrate (TMAH) 
and B-glucuronidase (Helix Pomatia Juice) were 

purchased from The Sigma Chemical Company, Poole, 

Dorset.
1.4. Extraction Equipment
The Vac-Elut® manifold was purchased from Crawford 
Scientific (Analytichem International), Strathaven, 

Lanarkshire.
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The extraction columns were donated by and purchased 

from various suppliers:- Bond-Elut® cartridges from 

Crawford Scientific (Analytichem International), 

Strathaven, Lanarkshire; Spe-ed® cartridges from 

Laboratory Impex Ltd. (Applied Separations Inc.), 
Teddington, Middlesex; S P E ™  cartridges from 
J.T.Baker UK, Hayes, Middlesex.
1.5. Buffers

a) HPLC phosphate buffer (pH8): 1.7g/l Sorensons salt.

b) Phosphate buffer (pH10.25): (a) + sodium hydroxide 
to the required pH.

c) O.IM sodium acetate buffer (pH5): 13.6g/l sodium 
acetate adjusted to pH5 with acetic acid.

d) 0.01M ammonium acetate (pH7): 0.77g/l ammonium 
acetate.

e) 7mM phosphoric acid: 1 drop of 85% phosphoric acid 

in deionised water (10ml).
f) 0.2M borate buffer (pH9): 7.6g disodium 
tetraborate in deionised water (100ml)

1.6. Eluents
a) Methanolic hydrochloric acid: Methanol (50ml) was 
added to 36% w/w hydrochloric acid (3ml).
b) Methanolic ammonium hydroxide: Methanol (99ml) was 

added to concentrated ammonium hydroxide (1ml).
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APPENDIX 2.

Calculation of Pharmacokinetic Parameters (Clark and 
Smith, 1986; Bourne et al.. 1986).

Units

Co = Apparent value for urine concentration ug/ml
at zero time. This is calculated by 
extrapolation of the semi-logarithmic plot of 
drug concentration .v. time to time zero.

t0.5 = Tiroe taken for the concentration of hours
drug in urine to decline to half its original 
value. This is calculated from the same graph 
and is equal to Co/2.

Vd = Volume of distribution = dose/Co. litres
kei = Rate of elimination = 0.693/ To.5. hours-1

Clu = Clearance rate = Vd x kei- 1/hr

AUC = Area under curve = Co/kei.

kab = Rate of absorption = residual line hours-1
slope x 2.303

T0.5ab = Half-life of absorption hours
= 0.693/ka b .
Fraction of oral dose absorbed, F, %
(bioavailability)
F = ((Co/kel) - (Co/kab))/AUC.
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APPENDIX 3 .

Cost of chemicals and solvents for the financial 
comparison of solvent extraction with solid-phase
extraction.

Solvent Cost Cost/10 extns

Ethyl acetate 
Sulphuric acid 
Ammonium hydroxide

£7.90/2.5 litres 
£5.20/2.5 litres 
£3.50/2.5 litres

85% phosphoric acid £56.50/0.5 litre
IN acetic acid
Methanol
Acetonitrile

£20.50/carton of 6 
£6.50/2.5 litres 
£14.20/2.Slitres

£3.16
0.2p
2p
0.06p 
1.8p 
6. 5p
1. 5p

Chemicals
Anhydrous Na^SO. £7.70/500g £1.542  4

Total Cost per 10 extractions (polar extractionsH:
Solvent extraction: £3.16 + 2p + 0.2p £1.54 * £4.72
Solid-phase extraction : 6.5p + 0.06p 4 l.®p + l.5p - lop

Total Cost per 10 extractions tion-exchange extractionsP: 
Solid-phase extraction : 6.5p + <0>.<0»6p + l.Bp » @p
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