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ABSTRACT

Deta i le d  pe t ro g ra p h ic  and g e o c h e m ic a l  in ves t ig a t io ns  of  the Gi rvan  

s a n d s t o n e s - g r e y  w a c k e s  i n d ic a te  a g r e a t  ra n g e  in p e t r o g r a p h y  and 

g e o c h e m i s t r y .  In te r m s  of  p e t r o g r a p h y ,  th e  d o m i n a n t l y  ba s i c  and  

u l t r a b a s i c - ,  l a v a - b e a r i n g  (o ph io l i t i c )  g r e y w a c k e s  at the base  o f  the  

G i r v a n  se q u e n c e  ( U p p e r  L l a n v i r n - L l a n d e i l o )  are rep laced  u p w a rd s  in 

the Ca ra doc -A sh gi l l  by sands tones ch a ra c te r i z e d  by acid rock f ragments

w h i c h  in c lu de  la v a s  and  de t r i tus  p r o b a b l y  d e r iv e d  f rom h igh  leve l 

p l u t o n i c  in t r u s i o n s .  D u r i n g  the S i l u r i a n ,  h o w e v e r ,  the c o n t r i b u t i o n s  

f rom the mafic and ul t ramaf ic  source  have  ceased comple te ly,  acid rock 

f r agment s  had becom e  scarce  and mos t  o f  the contr ibut ions to the basin 

was  qu a r t z - r ic h  recyc l ed  orogenic  de t r i tus .

Th e  grea t  h e t e r o g e n e i t i e s  in the  g r e y w a c k e  c o m p o s i t i o n  and the 

sys tema t ic  changes  in pe trography  as su m m a r i z e d  above ,  are in concer t

wi th  the ch em is t ry .o f  212 smples were  chemi ca l ly  and modul ly  ana lysed 

for  all ma jor  and 12 trace e lements  The  grey w ackes  of  all ages show

very  large chemic a l  varia t ions  both in the i r  m a jo r  and trace e l ements  

b u t  they e xhi b i t  p ro g re s s iv e  c h a n g e s  w i th  y o u n g i n g  age. Par t ic u la r ly  

Si, the incompatible  elements,  Rb,  Ba and some REE increase to their  

h i g h e s t  va lues  in pass i ng  from U p p e r  L la n v i rn  th rough to Llandovery .

In cont ras t ,  the com pa t i b le  e lements  such as Mg,  Ni, Co and Cr are 

enr ic he d  in the lower  sequence  and de c rea se  systemat ica l ly  upwards.

In te rms  o f  p r o v e n a n c e  areas  and te c t on i c  se t t ings ,  desp i te  some 

d is ag re em en ts  be tw een  the var ious m odels  proposed ,  it is conc lude d  that 

e x c e p t  for  the S i l u r i an  rocks  w h i c h  w ere  d o m in a n t ly  d e r iv e d  from 

recyc le d  sediments ,  the Ordovic ian  rocks  were  der ived from a magmat ic  

arc and de pos i t ed  in a forearc or  b ack a rc  reg ion  The  chemis t r y  also



c o n f i r m s  a m agm a t i c  de r iva t io n  o f  the gr eyw ackes  and de pos i t i on  in a 

forearc or  backarc  region

C h e m i c a l  r e - i n v e s t i g a t i o n s  o f  the S o u t h e r n  U p la n d s  g r e y w a c k e s  

sh o w  that  these  were  also depo s i t ed  in a prox imal  arc basins.  Despi te  

s o m e  d i f f e r e n c e s  in c o m p o s i t i o n  b e t w e e n  th e  t w o  a r e a s ,  a 

p a l e o g e o g r a p h i c a l  l i nkage  of  Gi rva n  to S ou the rn  Up lands  is su g g es t ed  

and  the p re v io u s l y  th ou g h t  backarc  or  a l l o c h th o n o u s  se t t ings  for  the 

So ut he rn  Uplands  is not  supported by the data  presented  here.



D e c l a r a t i o n

The  mater ial  p r es en t ed  here in  is the resul t  o f  i n d e p e n d e n t  research  

by the au tho r  und e r t ake n  from N ov e m b e r  1982 to Janua ry  1989 at the 

D e p a r t m e n t  o f  G e o l o g y ,  U n iv e r s i t y  o f  G l a s g o w .  A n y  p u b l i s h e d  or  

u n p u b l i s h e d  r e s u l t s  o f  o t h e r  w o r k e r s  h a v e  b e e n  g i v e n  ful l  

a c k n o w l e d g e m e n t  in the text .
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CHAPTER ONE INTRODUCTION

1.1 Geological setting

Th e  Midland Valley of  Scot land lies be twe en  two major  fractures: the 

H ig hl and  Boundary  and Southern Up land  Faul ts  (Fig 1.1). It is bounde d  

to the N by a series of  me ta mo rp hi c  ba sem en ts ,  the most  sou ther ly  of

which  is the Dalradian Block. Dalradian sed im en ts  are now known to be

c e r t a i n l y  of  late Pr e -C a m b r ia n  age  (R o g e r s  et al. in press) but  they 

w e r e  fo lded ,  m e t a m o r p h o s e d  and  u pl i f te d  d u r i n g  late C a m b r ia n  and 

Ord o v ic ia n  times.  This basement  was  in t ruded  by grani t ic  p lu tons  at c

470 M a  and between 420 and 390 Ma. The latter phase of  plutonic activity 

w'as accom pani ed  by ex trusive andes i t ic  l avas which  are now pre served  

in som e places such as the L o m e  Plateau.

To the  south o f  the M id land  Val l ey  l ies a folded and th rus t ed

se q u e n c e  of  Ordovic ian  and S i lur ian  turb id i tes  and assoc ia ted sed iments  

b e lo n g in g  to the Southern Uplands .  Th ese  rocks have  been a t t ributed to 

an a c c r e t i o n a r y  pr i sm  ( M c K e r r o w  et a l . 1977 ; L e g g e t t  et al 1983 )

p r o d u c e d  dur ing the NW subduct ion  o f  ocean ic  crust .  The  s t ra t ig raphy  

and  s t ruc ture  of  this region is h igh ly  s u g g e s t i v e  o f  an ac c re t i o n ar y

pr ism origin with a major  source for the sed iments  ex is t ing to the NW.

Oth e r  workers  have pointed out tha t vo lcan ic  det r i tus and some of  the 

g re y w a c k e s  are of  arc type af fini t ies  and appe a r  to have been derived

f r om  the south .  In a n o r m a l  a c c r e t i o n a r y  p r i s m  f r a m e w o r k  th i s

prov ide s  some problems since oceanic  c rust  is thought  to have existed to 

the south as suggested above and as a conse quenc e  o f  this Stone et al. 

(1987) .  have  sugges ted  that  the So ut her n  Upl and s  is a back-arc basin,  

with a main arc to the south.
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Rocks of  the Southern  Uplands  were int ruded by a series of  granites 

be tween 410 and 390 Ma. As with the Dalradian block,  only in places are 

D evonia n  an des i t i c  l avas  preserved .

Lower  Pa leozoic  rocks are not abundant  in the M id land  Valley,  but 

o u t c r o p s  are seen  a lo ng  the n o r t h e r n  edge  (T h e  H ig h l a n d  B or de r  

Complex)  and along the southern edge in a series of  Si lur ian inliers and 

the compara t ive ly  large outcrop of Ordovic ian  and S i lur ian  rocks in the 

G i rva n  region.  The  rest  o f  the M idl and  Valley is c o v e re d  by Upper  

Pa leozoic  rocks  part icular ly those o f  the Ca rboni fe rous .

1.2 Previous work

1.2.1 Introduction

C on sid erab le  work  has been done  on the rocks  in the region of  

Girvan  and this has  been discussed by Wil l iams  (1962);  therefore only a 

b r i e f  su m m ary  is needed  here.  The  p io ne e r  work  o f  La p w o r th  (1882)  

and Peach  and  Horne  (1899)  on the s t ra t ig ra ph ic  s u c c e s s io n  of  the 

G i rv an  dist r ic t  e ssen t ia l ly  es t ab l i shed  the s ucces s i on  and de m on s t r a te d  

that it was coeval  with a sequence of  black shales in the south at Moffat 

and with t u rb id i t e s  in the no r thern  be l t  o f  the  S o u t h e r n  Uplands .  

Hende rson  (1935)  described some o f  the se d im ent a ry  s t ruc tures  in the 

Ardwe l l  f lags w hic h  he a t t r ibuted  to s lu m pin g  th e re by  ind ica t ing  the 

genera l  tectonic reg ime under  which  the sed iments  at Gi rvan  were laid 

d o w n .  K u e n e n  ( 1953)  a t t e m p t e d  to d e t e r m i n e  the  d e p o s i t i o n a l  

en v i ro n m en ts  of  the dist r ict  showing  that  they were  de pos i t s  of  mass 

f lows and turb id i ty  currents .  This early work was  fo l lowed by a major

step forward by the researches of  Wi l l iams  (1959,  1962).  He discussed

the s t ruc ture ,  s t r a t i g ra p h y ,  p a l a e o g e o g r a p h y  and  p a l e o n t o l o g y  of  the
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Barr  and Lower  Ardmi l lan  Series show ing  that the whole sequence  was 

de pos i te d  in fau l t - bou nded  basins,  the earl ies t  o f  which formed in the 

SE and la te r  one s  in the NW. He a lso d e m o n s t r a t e d  what  o th e r  

p a l a e o n t o l o g i s t s  had seen for some t ime tha t the faunas  had Nor th

Am er i ca n  aff ini t ies.  The  1962 paper  was a ma jor  cont r ibu t ion  about  the 

a rea  as it es tab l i s hed  the s t ra t igraphic  re la t io ns  and more  impo r tan t ly

indica ted  -mys te r ious ly  at that t ime- that  the fauna (brachiopods)  had a 

m o r e  A m e r i c a n  a f f i n i t y  th an  A n g l o - W e l c s h  Or B a l t ic  as put .

H u b e r t ( 1 9 6 9 )  su bs equen t ly  publ i shed  so m e  work  on the se d i m e n to lo g y

and pa leo env i ro nm en t  o f  the area.

In the late 19 60 ’s , the de v e lo p m e n t  of  the co n ce p t  o f  sea f loor  

s p r e a d i n g  p r o v i d e d  a n e w  f r a m e w o r k  w i t h i n  w h ic h  th e  G i r v a n  

sed im en ta ry  sequence  could  be reviewed.  Af t e r  Wi lson (1966)  envisaged  

a p r o to -A t l a n t i c  ocean  separa t ing  L a u r a s ia  f rom a so uth ern  E u ro p e a n  

co n t in e n t ,  the  fauna l  p rovi nces  of  W i l l ia m s  and o th er s  b e c a m e  more  

understandable .  As a result ,  the first p la te- tec ton ic  model  was  proposed  

by Dew'ey (1969)  in an at tempt to expla in  the Bri t ish C a ledonides  in 

te rms  of  des t ruc t ive  ocean  plate ma rg ins .  S u b s e q u e n t  work (e.g Fi t ton 

and H ug hes ,  1970; D e w e y , 1971, P h i l l ip s  et al . , 1976; W r i g h t , 1977; 

L on gm an  et al. 1979; L o n g m a n ,1980; Yardley et al. 1982; Bluck, 1983, 1984 

1985,  etc),  e m p h a s i s e d  the d e v e lo p m e n t  o f  var ious  m o d e ls  for the 

C a l e d o n i d e s .

These  new plate tectonic models  of  the Caledonides  drew heavi ly on 

the e v id en ce  in the G i rva n -B a l l a n t r ae  areas.  The  se qu ence  at Gi rvan  

o v e r l i e s  the B a l l an t r ae  complex  which  is a s t ruc tur a l l y  d i s m e m b e r e d  

ophio l i te  (e.g Church and Gayer,  1973; Dewey,  1974). This  complex  has 

basa l t s  wi th a che m is t r y  re se m bl i ng  m i d - o c e a n ic  r idge  basa l t s ,  i s land
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arc and ocean  island basa lt s  (Wi lkinson  and Cann,  1974; Je l inek et al . . 

1980; Thir lwal and Bluck,  1984). The ophioli te is c 490-480  Ma and has 

been  interpreted as a seamou nt  (Barret t  et al. 1982) or a margina l  basin 

arc sequence  (Bluck et al. 1984). It was obducted at c 480 Ma to form the 

b a s e m e n t  o f  the Gi rvan  L la n v im -A s h g i l l  sequence.  It is the refo re  c lear 

th a t  s i n c e  the  c h a l l e n g i n g  wor k  o f  D e w e y  ( 1 9 6 9 , 1 9 7 1 )  w o r k e r s  

a t t e m p t e d  to v iew the G i r v a n  s uccess io n  as a fu n d a m e n t a l  l ink in 

ascer ta in ing  the tectonic evolut ion of  t’f r  Midland Valley and the rest of  

the southe rn  Caledonid es  o f  Scot land.  In this respec t  Bluck  (1984-85)

has  inte rpre ted the sequence  at Gi rvan  as a proximal  forearc basin and

this bas in  forms  the topic of  the present  research.

1.2.2 The general stratigraphy

The domi nant ly  c last ic  sequence  in Gi rvan  rests u n c o n fo rm a b ly  on 

the  B a l l a n t r a e  C om p le x  and  inc ludes  rocks  tha t range  in age from

O r d o v i c i a n  (LI a n v i r n - A s h g i l l ;  I n g h a m  1 9 7 8 )  up  to  S i l u r i a n  

( L l a n d o v e r y ,  C o c k s  et a l . 1971) .  The  O r d o v i c i a n  r o c k s  are

u n c o n f o r m a b l y  o v e r l a i n  by S i lu r ia n  c o n g l o m e r a t e s ,  s a n d s t o n e s  and

l i m es to ne s .  The  descr ip t ion  of  the s t ra t ig raphic  seq uen ce  in Gi rvan  is 

g iv en  be low.

1.2.2.1 Ordovician rocks

T he  Ordovic ian  rocks  o f  the Gi rvan  sequence  cons is t  b roadly  of  a 

th ick  ser ies  of  var ious c o n gl om era te s ,  sands ton e  turb id i tes ,  g r ey w ack es  

and sh a l low  water  reefal  l imes tones

The  Upper Ordovic ian sequence was laid down in a series of  basins 

tha t  had  co n te m p o r a n e o u s  faul t s on the i r  nor thern  ma rg in s  (W i l l iams ,
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1962,  see Fig 1.2). Each basin is charac te rized  by an assymet rical  facies 

d i s t r ib u t io n  with thick c on gl om era te s  o ccu r r i ng  ad j acen t  to faults and 

f in ing  so u th e a s t w a rd s  into sands tone  tu rb id i tes  and shales.

T h e  c o n g l o m e r a t e s  h a v e  a ra n g e  o f  t e x t u r e s  and  s t r u c t u r e s

su g g e s t i n g  d ep os i t i on  in a range of  w a te r  depths.  So me  are massive,  

u n s o r t e d  and la te ra l ly  pe rs i s ten t  whi le  o t he r s  are very  wel l  sor ted ,  

f i n e ly  la y e r e d  w i th  c la s t s  o f  v a r i o u s  s h a p e s  and s izes  and well  

segrega ted  into beds.  This led Bluck (1983)  and Ince (1984)  to conclude 

th a t  the  c o n g l o m e r a t e  s e q u e n c e s  w e re  d e p o s i t e d  in f a n -d e l t a s  and

s u b m a r i n e  fans.

Most  c las t s  are fairly well rounded  in the c on g lo m era te s  and range 

up to 3m in d i am e te r .  A l t ho ugh  the re  are s o m e  v a r i a t io ns  in the 

c o n g l o m e r a t e  c o m p o s i t i o n ,  the K i r k la n d  c o n g l o m e r a t e s  conta in  mainly  

b a s i c  and u l t r a b a s i c  c la s t s  wi th  m i n o r  g r a n i t ic ,  p o r p h y r i t i c  and

m e t a m o r p h i c  rock  f ra g m en t s  (B luck ,  1983).  The  Benan  and Ki lrany  

c ong lom era te s  have  a predomin anc e  o f  grani tes  in the  coarser  size and 

b a s i c  and u l t r a b a s i c  f r a g m e n t s  in the  f i n e r  s ize.  T h e  g r a n i t e -  

g r a n o d i o r i t e  c l a s t s  are h o r n b l e n d e - b e a r i n g  a n d  are a c c o m p a n ie d  by

r h y o l i t e ,  a n d e s i t e - b a s a l t  p o rp h y r ie s  and g a b b r o s  w h ic h  su g g es t s  the

u n ro o f in g  o f  a m a jo r  igneous  complex.  The  source  of  these sed iments  

p r o b a b l y  in c lu d e d  the Ba l lan t rae  c o m p le x ,  h o w e v e r ,  the pr es enc e  o f  

some clasts which are dissimilar  to those now exposed  at Bal lantrae may 

h a v e  b e e n  a s s o c i a t e d  wi th  p h a s e s  o f  g r a n i t i c  i n t r u s i o n ( s ) .  Thi s

sugg es t io n  is suppor ted  by the age o f  these grani t ic  clasts which  range 

f rom 590 to 450 MA.  (Longman et al. 1982),  and are therefore both 

y ou ng e r  and o lder  than rocks of  the Ballantrae  complex .
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The large size of  the grani te  c las t s  and assoc ia ted  boulders  which

o c c u r  t h ro u g h o u t  the c o n g l o m e r a t e s  wi th  an agg rega te  t h i c k n e s s  of  

> 5 k m  sugges t  that the source ba thol i th  (s) lay immedia tely to the NW. 

B lu ck  (1983)  e n v i s a g e d  a s o u r c e - b a s i n  re l a t io ns h ip  whe re  co n t i n u o u s  

u p l i f t  a c c o m p a n i e d  g ra n i t e  i n t r u s i o n  and  a f la n k in g ,  c o e v a l  and  

g e n e t i c a l l y  re la ted  bas in  u n d e r w e n t  c o m p l e m e n t a r y  subs id ence .  It is

c l e a r  the re fo re  tha t  the source  a rea  of  the Bal lan t r ae  c o m p le x  and 

b a s e m e n t  was i n t ruded  by s u c c e s s i v e l y  y o u n g e r  gran i te s  which  may 

have  raised the topography cont in uo us ly  to provide new depos i ts  in the 

n e a r b y  bas in .  T h e  h i gh  leve l  , h o r n b l e n d e - b e a r i n g  g r a n i t e s  w ere

rap id ly  e roded  to supply  c la s t s  w i th  co o l in g  ages  not  s ig n i f ic an t ly

d if fe rent  from the ages of  the sed imen ts  in which they occur.  From the 

a b o v e  c o n s i d e r a t i o n s  and by a n a l o g y  wi th  o t h e r  for ea rc  b a s i n s

descr ibed;  (e.g. Dick inson  and S e e l y , 1979;)  it was conc luded  that  in its 

s t ru c tu re  and fill ,  the basin r e s e m b le s  mor e  typ ica l ly  found  p ro x im a l  

fo r e a r c  se t t i ngs .

The  al te rna tive view of  Yard ley  et al (1982)  which  requi res  gran i te

c l as t s  metres in d ia m et e r  in b o u l d e r -b e a r in g  co ng lo me ra tes  > 5km  thick 

to have  t rave lled 200 -2 50 km  from A b erdeens hi re  and to accumula t e  in 

an inc ide nt a l ly  su b s id in g  bas in  at G i r v a n  is re jec ted  b ec au se  c la s t s

w o u l d  have  to t r ave l  t h r o u g h  a m a r g i n a l  b a s in  w h ic h  d i v i d e d  

A be rd eensh i r e  from Girvan  (Bluck  et al. 1980; Van Breeman and Bluck 

1981; Curry et al. 1982). In any case the granite clasts in the Ordovician 

co n g lo m era te s  of  Gi rvan  are no t  the same as those found in the NE 

Gra mp ia ns .  The  Girvan  clasts  conta in  hornbl ende  with biot i te  and have  

l o w e r  ^ S r / ^ S r  rat ios (Van B r e e m a n  and Bluck 1981) whe reas  the 

G r a m p i a n  gran i tes  ( 4 7 0 -4 5 0 M a )  ha ve  tw o  micas  instead.  Bluck  (1983)

s u g g e s t e d  a p r o x im a l  forearc  o r ig in  for  the Gi rvan  se q u e n c e  ( see
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subsec tion  1.2.2.3 be low)

1.2.2.2 Silurian rocks

The s u cces s i o n  t h r o u g h o u t  is not  wel l  e x p o s e d  but  s u b s ta n t i a l

thicknesses of  the Llando ver y  rocks occur  at Girvan (Cocks  and Toghi l l  

1973) Lesmahagow,  H agsh aw  hills and North Esk in the Pent land  Hills 

(Bluck  1983). It cons is t s  o f  grey mar ine  sediments  wi th turb idi tes ,  rare 

acidic ash bands

L la n d o v e ry  c o n g l o m e r a t e s  are r ich in acidic i g n e o u s  c la s t s  and 

inc lu de  grani te,  ac id ic to bas ic  lavas,  gab bros  and do le r i t es .  In the

Girvan  dist r ict  there is a c lear  indica t ion  of  a m e ta qua r t z i t e  ba sement  

with acidic rocks exposed  to the N W  but this basement  did not  yield any 

o f  the famil ia r m e ta m or ph ic  rocks  of  the Dalradian S u p e rg ro u p  (Bluck 

1983).  The igneous  c o n g lo m e ra t e s  have  mainly  igneous  e l as t ic s  which  

in c l ude  m ic r o p e r th i t i c  g r an i te ,  g r an i te ,  g r ano di o r i te ,  d io r i t e ,  rhyol i te ,

porphyry ,  andesi te  and spi l i tes in addi t ion to some me taq ua r t z i te ,  quar tz 

and greywacke  clasts.  The  quar tz i te  cong lomera tes  are qu i te  var iable  in 

te rms  o f  thei r  c o m p o s i t io n  but  cons is t  mainly  of  abou t  60% igneous 

rocks and 10% of  cherts  and greywackes .  The greywacke  conglom era te s  

conta in about 70% greywacke  clasts but also have up to 25% cher ts  and 

up to 50% fine grained igneous rocks with minor  amounts  o f  quartzi tes.

Based on extens ive field observat ions  and data review,  Bluck (1983) 

no t ed  that the S i lur ia n  c o n g lo m e r a te s  o f  Gi rvan  h a v e  a NW  source 

w h i c h  c o n s i s t e d  o f  a c i d i c - i n t e r m e d i a t e  rocks ,  m e t a q u a r t z i t e s  and 

c o n g l o m e r a t e s .  A l o n g  s t r ike ,  c o n g l o m e r a t e s  with s i m i l a r  c o m p o s i t i o n  

had a dispersal  from the SE. On the basis o f  this ev idence  he conc luded 

that upper  crustal  layers of  s imi la r  compos i t ion  ex is ted  in the Midland  

V al ley  and b e n e a th  the S o u th e rn  U p la nd s  in S i l u r ia n  t im es .  This
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conclus ion  is suppor ted  by the da ta  on xenol i ths  pro duced  by Upton e j  

al.  1983 who suggested  a s imilari ty in crustal  com p o s i t i o n  be tween  the 

Midland  Valley  and Southern  Uplands.  Ol iver  and Legget t .  (1980)  have 

d i s p u t e d  th i s  e v i d e n c e  s u g g e s t i n g  that  th e  S o u t h e r n  U p la n d s  is 

un d e r l a in  by m e t a m o r p h o s e d  greyw ackes  b e lo n g in g  to the accre t ionary 

p r i s m .

1.2.2.3 Tectonic  evolution

There  has been  a wide variety of  inte rpre ta t ions  o f  the geotectonics 

o f  Sc o t l a n d  du r in g  the O rd ovi c i an  t imes . T h e  ea r l i e s t  p late  tec tonic  

model  to explain  the Brit ish Caledonides was publ i shed  by Dewey (1969) 

(Fig 1.3 A) which was later modified by Bird and Dewey (1971,  1974). The 

main  proposa ls  o f  these early models  was that  the Scot t i sh  Caledonides 

lay on a cont inenta l  edge  to the north of  the so ca l led Iapetus Ocean.  

Dewey sugges te d  a nor thward  dipping  su bduc t io n  zo ne  occur red  to the 

nor th  of  the Southern  Uplands with the Mi dland  Val ley  as a thickening  

sed imentary  we dge  on Dalradian terranes (see fig 1.1). He also bel ieved 

the B a l l a n t r a e  c o m p l e x  to have been  f o r m e d  in a m a r g i n a l - b a s i n  

i s l and-arc  e n v i r o n m e n t  and sugges ted  that the gran i t ic  de tr i tus  in the 

Low er  Ordov ic ian  sed iments  was of  Highland origin.

Fit ton and Hughes  (1970)  also produced  a tec ton ic  model  involving 

i s land arc d e v e l o p m e n t  along the marg ins  o f  the Iape tus  ocean.  This 

was for the Lake  District  on the southern side of  the ocean  but  involved 

a souther ly  d ipp ing  subduction zone si tuated at Mo ffa t  in the Southern  

U p l a n d s .

Church and G aye r  (1973) dealt with the Bal lan t rae  comple x  ophioli te 

but  came  to co n c lu s io n s  s imi la r  to those  o f  D e w e y  with nor thw ard
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d i p p i n g  su b d u c t i o n ,  but  su g g e s t e d  tha t  the add i t io na l  e f fect  o f  the 

s o u th e r ly  Lake  Dis tr ic t  su b d u c t i o n  w o u ld  p lace  the  ev en tu a l  Iape tus  

suture through the Solway Firth (see Fig 1.3 B).

Je an s  (1973)  and Gunn (1973)  su b se q u en t l y  p r ov id ed  a depar tu re  

f rom the  genera l ly  proposed  mod el  to account  for  the work of  Powell  

( 19 7 1 ) .  Pow el l  used va r ious  g e o p h y s i c a l  m e t h o d s  to inv es t i ga t e  the 

b a s e m e n t  to the Southern  Up lands  and  conc lude d  that  it was under la in 

by a L ew is i an  type  basement.  This  cas t  doubt  the Dewey type model  

w h ic h  im p l i e d  a pa leo -o ceani c  f l oo r  to the S o u th e rn  Uplands .  The  

e ssence  of  bo th  Jeans'  and Gunn' s models  is s it ing the Iapetus ocean in 

the Midl and  Val ley and having  subduct ion  to the nor th at the Highland 

Boundary Faul t  and to the south at Gi rvan/Bal lant rae  (see Fig 1.3 C) This 

m o d e l ,  h o w e v e r ,  could  not  ex p la in  the  fauna l  p r o v in c e  e v id en ce  of  

W i l l iam s  (1962) .  More recent  structural  and o ther  ev idence  (Bluck,  1983, 

1984,  1985; L ongm an et al. 1979; Longm an  ,1981) does not support  this 

p ro p o s e d  model .

Mi t che l l  and Mc Ke rrow  (1975)  c o m p a re d  the pa t te rn  found in the 

Scot t i sh  Caledonides  to the modern  si tuat ion in the Burma orogen and as 

such  p r o p o s e d  the concept  o f  ob l i q u e  ra ther  than paral le l  su bduct ion  

and ocean  closure  ( see F ig .1.3 D)

L a m b e r t  and M c K e r r o w  ( 1 9 7 6 )  d e v e l o p e d  this  o b l i q u e  c lo su re ,  

m ig ra t io n  o f  subduct ion  zones as far north as the Hi gh land  Bounda ry  

F aul t  and  s u b duc t io n  of  a sp read in g  r idge  to enh a n c e  m e ta m o rp h i s m  

and m ag m a  genera tion (see Fig 1.3 E)
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Bamford  et al. (1976,  1977,  1979) used var ious  geophys ica l  parameters

on a longi tudina l  prof i le  through Bri ta in  (LISPB)  to fur ther  def ine  the 

ba seme nt  under cen tral  and southern  Scot land.  The ir  work  sho wed that 

the M id la nd  Val ley  is f l oored  by a fairly typical  c o n t i n e n ta l  c rust  

sec t ion  but that the Southern Uplands basement  is s o m e w h a t  anomalous.  

M o s le y  (1977) used  the be t te r  ev ide nce  from the L IS P B  prof i le  and 

Powel l ' s  (1971)  geophys ica l  in terpre tat ion  to imply the absence  of  large 

o c e a n i c  r e m n a n t s  u n d e r  S c o t l a n d .  He s u g g e s t e d  m a r g i n a l  b a s i n  

de ve lo pm ent  and c losure  to give  the ophiol i te  sl ivers at Ba l lan t rae  and 

the Highland Bounda ry  Fault  with the eventua l  ocean suture along  the 

S ol w ay Firth (Fig 1.3 F). M c K e r r o w  et al. (1977)  i n v e s t i g a t e d  the

s t r a t i g raphy  of  the S outhe rn  Up la nds  and conc lud ed  that  it m atched  

tha t  o f  an a c c re t i o n a ry  pr i sm as r ecorded  from m o d e r n  c o n t in ent a l  

marg ins .  This prov id ed  a subs tan tia l  re f inement  of  the su bdu ct ion  zone 

si te sugges ting its early posi t ion  nea r  the Southern Uplands .

Mi tche l l  and M c K e r r o w  (1975)  also used the a n a lo g ie s  with the 

Burm a Orogen and the Himalayas  to propose  an arc and marg ina l  basin 

s i tu a t ion  but wi th ear ly so ut heas te r ly  su bdu ct ion  b e hi nd  the  arc and 

la te r nor thweste r ly subduct ion  (Fig 1.3 G).  The next  re f in em en ts  to the 

C a ledonide  p la te - tec ton ic  mode ls  were  those o f  L ongm an et al. (1979);  

van Breeman and Bluck (1981);  Yard ley et al. (1982); Legget t  A (1980);  

Legget t  et al. (1983);  Bluck (1983,  1984, 1985). Bluck ( 1 9 8 4 ,1 98 5)  re-read 

the ev idence  and pro duc ed  addi t iona l  da ta  to suggest  tha t the tectonic 

e lements  in Scot land were  not realated to each other (i.e. did not  form a 

c o nt in uo us  des t ruc t i ve  ma rg in) .  He noted  that each tec ton ic  unit  was

fault  bounded  and had been accre ted to the Caledonides as terranes.  he 

also recognized  at l east  seven te r ranes in the Caledoni des  o f  Scot land.
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And so the con cep t  o f  t er rane  tec ton ics,  f i rst  e s ta b l i s he d  for  western 

Nor th  Amer ica  was  appl ied to the Caledonides.

Legget t  (1980),  Leeder  (1982),  Yardley et al. (1982)  (Fig 1.3 H), and to 

some extent  Legget t  et al. (1982-83) be l ieved that the Midland  Valley was 

a forearc region  d iv id ing  the Sou thern  H ig hl ands  (arc ba seme nt )  from 

the  S o u th e rn  U p la n d s  ( t r e n c h - a c c r e t i o n a r y  p r i s m )  in O r d o v ic i a n  and 

Si lur ian t imes (Fig 1.1). It was f lanked by the Southern Highlands to the 

NW  and a rising upper  trench slope break ( C o c k b u m la n d )  to the SE.

The  al ternative v iew is that of  Longman et al. (1979) ;  Van  Breeman 

and Bluck (1981); Bluck (1983,  1984, 1985) (Fig 1.3 I) who envisage the

M id la n d  Val ley as an a rc -in te r -a rc ter rane  du r in g  the Ordov ic ia n  and 

S i lur ian  t imes (Fig 1.1) with the arc f lanked to the N by a marginal  

basin in which rocks of  the Highland Bord er  Co m ple x  formed (Bluck 

a l . 1984) and to the S in the Llanvi m- Ashgi l l  sequ ence  at Gi rvan,  by a

p ro x im a l  forearc  in whic h  bould er s  of  g r an i t ic  and v o lc an ic  detr i tus

a c c u m u l a t e d .

B luck  (1983)  a rg u e d  tha t the  p r e s e n c e  o f  a p r o x i m a l  forearc

sequence  in the southwes te rn  margin o f  the Midland  Val ley demands  an 

arc to the immedia te  N of  it in the Midland Valley and a forearc to the 

south of  it in the posi t ion of  the Southern  Uplands.  He  sugges ted that a 

t r e n c h  s e q u e n c e  and  coe va l  p r o x i m a l  fo r e a r c  b a s i n  s e q u e n c e  lie 

ad j ace nt  to each o th e r  in southern  S co t la nd  and a c o m p le te  forearc

bas in  is miss ing .  The  Southern  Up la nds  ac c re t io na ry  pr i sm is thought  

to have  been thrust  over  this basin as well  as the cont inenta l  crust  of  

the Midland Valley.  To a large extent  the tectonic set t ing of  the Midland 

V a l le y  in g ene ra l  and  the G i r van  a rea  in p a r t i c u l a r  is o f  some
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imp or tance  in deciding which of  the mode ls  have  any validity.

1.3 Use of petrography an d  geochem istry in forearc b a s  i ns

The  comp os i t i on  o f  sands tones  and greyw ackes  is strongly contro l led 

by the source  areas,  the  dispersal  pa ths  l inking  source to basin and the 

s e d im e n ta ry  proces se s  wi th in  the  de po s i t io na l  bas ins  all o f  which  are 

g o v e r n e d  by p la te  te c to n i c s .  S ince  the  ear ly  p ro p o sa l s  o f  K ryn in e  

( 1 9 1 1 - 1 9 4 8 )  and s u b s e q u e n t l y  P e t t i j o h n  (1 9 4 3 - 1 9 5 7 ) ,  there has  be en  

s u b s ta n t ia l  c o n t r ib u t io n  to s e d im e n ta ry  p e t r o g r a p h y .  D ic k in so n  (1970 ,  

1974),  Dick inson  and Sucz ek  (1979) ,  D ic k i nson  et  al . (1983) ,  Ingersol l

(1983)  and others have  im pro ved  our  abi l i ty to deduce  the prove nance  

a r eas  and tec ton ic  se t t ings  f rom m oda l  ana ly se s  of  some f r a m e w o rk  

m o d e s .

D ic k in so n  and S uczek  (1979)  and D ic k in so n  et al . (1983)  noted that

the av e rag e  c o m p o s i t i o n s  o f  sa n d s to n e  su i tes  de r iv ed  f rom d i f f e r en t

sources  and control led by plate tectonics  tend to plot  within three major  

tec ton i c  f ie lds  on the Q FL  and Q m F L t  d iag rams.  These  f ields which  

r e p r e s e n t  the cont ine nta l  b locks ,  recyc l ed  o ro g e n s  and m ag m a t i c  arcs 

are d iscussed  in more  detai l  in Chapter  4 Ref inemen ts  of  these tec tonic  

f i e l d s  were  p r e s e n t e d  by In g e rs o l l  and  S u c z e k  (1 9 7 9 )  b a s e d  on 

Q p L v m L s m  and L m L v L s  f r a m e w o r k s  and D o r se y  (1988)  b ased  on 

L s L m l L m 2  f r ameworks  (see chapter  four  for more  detai l  and Table  4.1 

for  defin i t ion  of  terms.

D u r i n g  the  las t  d e c a d e ,  there has  a l so  been  so m e  in te r es t  in 

app ly i ng  whole rock chemis t ry  to solve tec ton ic  problems.  For  instance,  

S chwa b (1974),  Maynard  et a l . (1982),  Bhatia (1983),  Roser  and Korsch
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(1986) and van de Kamp and Leake (1985)  have a ttempted to charac ter ize

the  g e o c h e m is t r y  o f  so m e  sa n d s t o n e s  f rom kn o w n  p r o v e n a n c e  areas  

and  tec ton i c  se t t ings .  B ased  on ex te ns iv e  m a jo r  and t race  e le m e n t  

d e t e r m i n a t i o n s ,  M a y n a r d  et al . (1982) d i st inguished  sands from forearc 

ba s in s  and  pass i ve  m a rg in s  f rom sands der ived  f rom o th e r  tec ton ic

se t t i n g s .  B ha t ia  (1983 )  and R o s e r  and Ko rs ch  ( 1 9 8 6 )  u se d  some  

d i s c r i m i n a t i n g  fac tors  to br oa dl y  g ro up  sands  f rom v a r io u s  te c to n i c  

se t t ings.  T hese  tec tonic  f ields and o ther  detai ls  are wel l  d i sc us sed  in 

c h a p t e r  five.

1.4 Aims of the work

1 ° -  Us ing  the G i rv an  seq uen ce  as an e xa m pl e  to e x a m in e  the 

petrographic and geochemical  vertical variabilities as a clue to

evolution within the arc and its environs

2 ° -  Assess  whether the Gi rvan sequence is a forearc basin 

3 ° -  c h a r a c t e r iz e  the  p e t r o g r a p h ic a l  and  g e o c h e m i c a l  a s p e c ts  o f  

sandstones in the arc-related environments 

4 ° -  Show how both chemis t r y  and pe t rogra phy  may be integra ted

into assessing the nature of  tectonic setting of  sandstones in the

arc-related environments

5 ° -  Compare  Girvan with Southern  Uplands

6 ° -  Invest iga te  the tec tonic s ign if icance  at Gi rvan  on the evolu t ion  

of  the Caledonides
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Fig 1.3 Ske tc hes  o f  p la te - tec ton ic  models  for  the Sco t t i sh  para tec ton ic

z o n e s

Kev to Figure 1.3

C o n t i n e n t a l  c ru s t  

Oceanic  c rust  

Arc  b a s e m e n t  

Vo lc an ic  arc 

S e d i m e n t s  

O p h i o l i t e s

BC = Ballantrae Complex

HBF = Highland Boundary Fault

LD = Lake District

MV = Midland Valley

SU = Southern Uplands

SUF = Southern Uplands Fault



17

Dewey (1969
■'9

A

C h u r c h  + G a y e r  ( 1 9 7 3 )

B CMV

J e a n s  ( 1 9 7 3 )  G u n n  ( 1 9 / 3

c
B C  SU

M i t c h e l l  -  M c K e r r o w  ( 1 9 7 5 )

G i r v a n  S U F S o l w a y

L a m b e r t  + M c K e r r o w  ( 1  9 7 6

S o l w a y



18

Fig 1 .3
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CHAPTER TWO SAMPLING PATTERN AND ANALYTICAL  

METHODS

2.1 I n t r o d u c t i o n

The ultimate goal of the present study is to reconstruct the 

original sandstone compositions in order to deduce the source 

terranes and interpret these compositions in terms of tectonic 

models. Therefore, diagenetic and metamorphic influences must be 

removed wherever possible because as pointed out by Dickinson et al. 

(1969) point counting and compositional reconstruction of deeply 

buried sandstones is rather difficult. For instance in the Great Valley 

sequence (USA) it is found that deep burial has resulted in 

albitization o f plagioclase and chloritization o f biotite. Post 

depositional p rocesses (e.g  crushing o f lith ic grains and 

phylosilicates, alteration of characteristic heavy minerals and 

feldspars, ca lc ite  replacem ent and cem entation) are also  

complicating factors.

Bearing in mind any possible contamination, large samples were 

initially trimmed to remove weathered surfaces using a hydraulic 

press. The samples were then crushed into small pieces depending 

on the number o f the required test specim ens which were 

subsequently used to make thin and microprobe sections, chemical 

and heavy mineral analyses.

2.2 S a m p l in g  patt ern

Sampling involved collection of fresh unweathered specimens
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from various localities in the Girvan area. Sample locations are 

shown in Figure

2.1 and 2.1 at the end of thesis with the list of sample location, 

formation and age being given in Table 2.1. Two geologic sections 

through the Girvan area are also shown in Figure 2.2. Particular 

care was taken to ensure that the samples were clean. Samples were

collected as widely as possible but at each locality at least two samples

were collected near to each other so that any small scale variations

in composition would be seen and could be accounted for during

interpretations. Samples were collected wherever practicable from 

m assive sandstones and greywackes lacking v isib le  calcite

rep lacem en t.

Fairly uniform stratigraphic and geographic distribution of sites

was achieved by sampling along river valleys, coastal sections and

areas of fairly extensive exposure (see Figure 2.1,2.1,2.3). Sandstones 

with a range of grain sizes were sampled and large specimens (± 1

kg) were collected so that both the chemistry and point counting of

the same samples could be achieved.

2.3 A n a ly t i ca l  me th ods

2.3 .1  P e tro g ra p h ic  methods

Thin sections have been analyzed for composition, proportions of 

matrix and grain size distributions. For the grain size investigation,

the microscope had a calibarated eye-piece micrometer. Grain size

was estimated from measurements of the largest axis of the grains in

thin sections and the maximum visible grain diameter of 0.01 mm

was defined as matrix (Dott, 1964).
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Table 2.1 showing sample formation, location and age. See Figure 2.1 ,2.1 

for the exact location of the samples on the geological map.

S a m p le s  Fo rm ati on  

n u m b e r

L o c a t i o n A g e

S i l u r i a n

SWP(9) Scan Grit 

H A /Q (4) Quartz Conglo­

merate

[167 953] Black Neuk 

[179 962] The Haven

L landovery

L landovery

HA/COW (3) Craigskelly [178 961] The Haven L landovery

I iPB£I SgflUfiDCfi

AL*(7) Shalloch Fm [168-949] to [168-952] L. A shgill

Ardmillan Lodge-W oodlands Point

W P(3) Shalloch Fm [168 952] Woodlands Point L. Ashgill

SCM(4) Shalloch Fm [177 955] Shalloch Mill L. A shgill

W G(14) Whitehouse 

Group

[159 943] to 168-949] 

Ardwell Bay to Ardmillan 

Lodge

U. Caradoc-L. 

A s h g il l

Middle sequence

PW H(22) W hitehouse  

Group

[249 970] to [237 973] 

Penwhapple Burn

C aradoc- 

L .A sh g ill

PW H(7) Cascade Grits [252 969] Penwhapple Burn Caradoc

TM (16) Ardwell Group [235 943] Tormitchell Quarry Caradoc 

& Cascade Grits

A F /K (2 7 ) Ardwell Flags [NX149 933] to [NX158 942] Caradoc

Kenndy’s Pass to Ardwell Bay
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Table 2.1: Continued

L ow er se q u e n c e

IK -K P(9) In fra k ilra n y  [146 928] S of Kennedy's

G reyw ackes P ass

K /K (5) Kilrany

C onglom erate

A LD (3) Benan

Conglom erate

TR/GW (12) Changue Fm

TR/GW (16) Darley Fm

A L (6) Craigmalloch Fm

TRB(21) Changue Fm

KC(6) K irkland

Conglom erate

T A P (17) Changue Fm

BC(7) C raigm alloch

[NX149 933]

At shore 

Kennedy's pass

[203 899]

Road, B734 over R. Stinchar

[290 939] to 295 923]

Water of Gregg

[295 923] to [299-912] 

Water of Gregg

[288 942] to [280-940] 

Water of Gregg

[285 918] to [273 905] 

Traboyack Bum

[245 926] Bum N of 

Kirkland farm

[332 947] to [334-937] 

Forestiry track above 

Balloch Bum  

Water of Craig

[L la n d e ilo -

Caradoc?]

[L la n d e ilo -  

L. Caradoc?]

L lan d eilo

U. Llanvirn

U. Llanvirn

U. Llanvirn

U. Llanvirn

U Llanvirn

U Llanvirn

U Llanvirn
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PEN W H A PPL E

G ir v a n  EORESHORE
SNrIk>£h F orm olu

W hitehouse G roup
lower

C o sc o d e  G rill

S t i n C h a r  v a l l e y
B olclo tch ie  M udstone

A I  D O N S

S T I N C H A R  V A l lN W

A l D O N S

5 en a n  C o n g lo m e ra te

S u p e r >le> M u<Jstone/.>

A uchensoul lim e s to n e

R o lb n lro e  V olconit G ro u p
K irk land  C o n g lo m e ra te

F lg 2..2 Section through the Girvan d i s t r ic t  (After  W il l iam s,  1 9 6 2 )  with 
stage boundaries from Ingham ( 1 9 7 8 )  .
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Throughout the present study , modal analyses were made using a 

polarizing microscope with a Swift automatic point counter unit

attached to its stage. Because of the relatively large number of 

samples point counted (200 samples), the number of counts per slide

was limited to 500 with the results being presented in appendix one. 

The standard deviations for 500 counts at 95% confidence are about 

±4.5%, ±4%, ±3% and ±2% for volume percentages of 50%, 28%, 12% 

and 5% respectively (Van Der PLas and Tobi, 1965).

The accuracy of the results depends largely on the number of 

minerals to be counted, grain size of the mineral constituents and 

the degree of alteration and sorting of the minerals . In this study it 

is believed to be less than 10%. The point distance choosen 

throughout the whole study was slightly greater than the largest 

grain fraction found (Van der Plas, 1959).

Cobaltonitrate staining techniques were used to ease the 

identification of untwinned plagioclase and K-feldspar. In this 

method, uncovered thin sections are etched by placing their faces 

down in HF fumes for 10 .seconds or 30 seconds when weaker acids 

are used. Then the slides are quickly immersed in saturated sodium 

cobaltonitrate solution for 15 seconds. The K-feldspar stains light

yellow. After that the slides are rinsed briefly under running tap 

water to remove excess reagent. Then the sections are dipped quickly 

in and out of barium chloride solution, rinsed briefly in running tap

water and then distilled water and covered with rhodizonate reagent 

from a dropping bottle. Plagioclase becomes pink in colour and the 

slides are then left to dry, rinsed and covered in the conventional 

w ay.
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2.3 .2  Heavy m ineral separation  technique

This method consists of two main steps namely: crushing and 

heavy liquid separation, the 50-200# fraction is taken and washed 

under running tap water in a 200 ml beaker to remove the unwanted 

light particles. After drying in an oven at 80-100°C, the powders are 

then separated using bromoform liquid (specific g ra v ity = 2 .89 ). The 

heavy fraction is then washed in acetone, properly labelled and 

stored in vials ready for investigation.

Representative fractions were subsequently examined under a 

binocular m icroscope for mineral identification and surface 

examinations. Those minerals intended for microprobe analysis, 

were hand picked and mounted on microprobe slides (4.7 x 2.1 cm) 

using thin drops of epoxy resin. The grain mounts were then

uncovered using self adhesive silicon carbide paper discs (400 and 

600 grits) and polished by machine (6p. and lp. diamond paste

respectively) and coated with carbon ready for analysis.

2 .3 .3  X -ray flu orescen ce

The principles and practice of X-ray fluorescence are well 

documented (e.g Norich and Chappell, 1967; Jenkins and De Vries, 

1967) and the application to the determination of major and trace

elements in geological samples have been discussed (Leake et al. 

1969; Harvey et al. 1973). This technique has been used in the 

present work to quantify the major and trace element contents in

the samples.

2 .3 .3 .1  P r in c ip les

On bombarding a sample with a source of X-rays, the atoms



2 6

present in the sample will scatter some and absorb the remaining 

photons. Photons absorbed by an atom in the sample will give rise to 

characteristic X-ray emission of that element. The characteristic X- 

ray photons produced by this X-ray bombardement of an element is 

known as X-ray fluorescence. The intensity of the charateristic 

fluorescent radiation for a given intensity of source X-rays is not 

completely linear in relation to the element concentration due to 

various absorbance effects by the sample matrix. These effects 

which depend essentially on the thickness on the substance, its 

density and its absorption coefficient are corrected for and the 

concentration of elements can be estimated.

The detection of an element in X-ray fluorescence emerges from 

the application of Braggs equation (n=2d sin0). For a given value of 

the angle, 0 may be predicted if a crystal having a known atomic 

spacing (d) is used. Since the X-ray radiation for every element has 

known fixed wavelengths then the value of 0 can be calculated for 

any given element. Thus, the fluorescent radiation emitted by a rock 

sample may be investigated to find whether an element is present 

and if so in what concentration.

The detection limits of X-ray fluorescence for major and some 

trace elements are given below:
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Table 2.2 Detection limits of XRF

Major elements

d etection accu racy

lim its(w t% )

Trace elements

detection

(w t% )lim its(ppm )

Si02 0.086 0.46 Cr 1.9

Ti02 0.018 0.11 Ni 4.8

a 12°3 0.087 0.36 Co 3.2

Fe2°3 0.045 0 .10 Ga 2.4

MnO 0.012 0.008 Sr 1.5

MgO 0.165 0.13 Zr 2.7

CaO 0.006 0.17 Rb 1.7

Na20 0.155 0.26 Zn 1.8

k2o 0.002 0.09 Cu 4.4

P2O5 0.018 0.02 Pb 11.6

2 .3 .3 .2  M ethodology

Chem ical analyses in conjunction with petrography are 

important means of examining compositional variation in rock 

samples . Therefore 212 samples were subjected to XRF analysis for 

both major and trace elements.

The first step consists of reducing the size of the samples into 

small, typically 0.8 x 0.5 cm chips and then crushing down to 100# 

and 250# respectively. The former size is suitable major element 

analyses and the latter for the trace elements. The methods of 

analyses are those described by Leake et al. 1969 and Harvey et al.
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1973 for trace and major elements repectively.

2.3.4 Wet chem is try

Conventional wet chemical analysis is necessary to determine the 

H 2O and CO2 values which are not suitable for XRF methods. They 

were determined simultaneously using the method of Riley (1958)

2.3 .5  M ic r o p r o b e  a n a ly s i s

In this method individual mineral analyses were possible using a 

Cambridge Instrument Microscan 5 machine. This uses X-ray 

radiation generated by an electron beam striking a finely polished 

and carbon coated thin probe sections (90|i thick). Each element 

produces a characeristic X-ray energy spectrum which is measured 

by a solid state detector for a counting time of 100 second. The total 

spectrum is processed by on-line Data General Corporation Nova 2 

microcomputer using a program written by Colin M. Farrow and 

which produces the analysis in weight % oxides.
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CHAPTER THREE CHARACTERISTICS OF FOREARC AREAS

3.1 Introduction

T h e purpose o f this chapter is to briefly outline the 

characteristics o f forearc regions and examine the d iv ersity  of 

petrologic composition of sandstone now being laid down within the 

recent forearc areas. By comparison with this information it is 

possible to locate more precisely the setting of the Girvan sequence 

and understand the way in which the sedimentary pile there has 

evolved .

The classification of plate tectonic regimes have been extensively 

discussed by Dickinson (1974), Dickinson and Seely (1979) and 

others. These are shown in Figures 3.1(A-C) and 3.2-3 which show 

two major divisions namely: passive and active settings each of 

which can be further subdivided into different parts (see Fig 3.1-3).

3.2 General characteristics

It has already been pointed out that during Ordovician and 

Silurian times Scotland is considered to have been part of a 

destructive margin of the Laurentian continent, so this chapter 

emphasis the tectonic elements which characterize zones o f plate 

c o n v erg en ce .

3.2.1 Plate convergence

Convergence, where the surface of one plate is continental and 

the other is oceanic, is maintained by subduction of the oceanic plate
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beneath the continental plate; the oceanic lithosphere is consumed 

deep in the mantle below the continental margin. This type of 

convergence is often referred to as "A ndean-type’’ ( s e e  Figure 3.1 (A & 

C). Where convergence takes place betw een two ocean ic plates and an intra- 

ocean ic island arc subduction zone develops and is som etim es referred to as  

"intra-oceanic convergence" (se e  Figure 3.1 A & B). Due to the developm ent 

of this type of plate convergen ce in M arianas, it is usually referred to as  

"M arianas-type" (Uyeda 1981). C onvergence between two 

continental plates leads to orogenic mountain belts and is some times 

called "Himalayan" or Continental collision.

3.2.2 Sedimentation in plate convergence.

The rock records in regions o f plate convergence are 

characterized by (i) a great deal of volcanic eruption and high 

volumes of pyroclastic rocks and (ii) island arc magmas which are 

dominantly mafic, most commonly basalt to andesite. In the case of 

magmas which are mafic to highly silicic such as that of the 

"Andean-type", there is some tendency for magmas derived from 

deeper levels and higher temperature to be rich in K 20 and Si02. In 

this case lavas further away from the subduction zone may be richer 

in K 20 and Si02.

Sedimentation along convergent margins is poorly understood as 

it reflects complex interaction between tectonics and depositional 

processes (Dickinson and Seely 1979; Underwood et al. 1980). Usually 

sedimentation takes place seaward of the trench, in the trench axis, 

on the inner trench-slope and in the forearc basin (see Figures 3.1- 

3). These depositional environments are continuously modified as 

the accretionary prism grows. Provenance and dispersal of
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sediments in these environments are very complicated. Terrigenous 

detritus may be derived directly from a nearby arc terrane, can be either 

transported for long d ista n ces along the trench axis or carried into the 

trench on the subducting oceanic plate.

Models of convergent plate margins commonly assume that much 

of the arc and forearc in particular, is underlain by oceanic crust 

(Dewey and Bird 1970; Mitchell and Reading 1971). A major reason 

for this assumption is that the initial crustal fracture which leads to 

trench formation occurs within the oceanic crust.

3.2.3 Intra-oceanic convergence

Early in their history, intra-oceanic convergences produce 

quartz-free and mafic volcanics components that constitute the 

basement sequence of volcanic or accretionary terranes. In these 

basal sequences pillow basalts are abundant but pyroclastics are 

rare Today’s active arcs are predominantly situated on the west side 

of the Pacific from the Aleutian in the north to the Kermadec-Tonga 

Kermadec arc in the south. Most arcs are intra oceanic (e.g  

Marianas, Tonga, Solomons, New Hebrides etc), some are separated 

from sialic continents by narrow semi-ocean basins (Japan, Kuril, 

Banda etc), some pass laterally into Cordillerran-type fold belt 

(Aleutian), some are built against continental crust (Sumatra, Java). 

It is clear therefore that there are transitional types between intra- 

oceanic arcs and Andean-type continental margin in which the 

volcanic belt is an integral part of the continental land mass (see 

Figure 3.1 B for small details).

3 .2 .4  Andean-type convergence
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This type o f convergence generates complex rock assemblages 

and is more likely to be preserved in the continental rock record 

(Figure 3.1 C). The sedimentary environments present and the

tectonic regimes which accompany an o cea n ic -co n tin en ta l c o n v e r g e n c e  

differs from an intra-oceanic arc convergence setting in many 

respects. The interaction with the continental block may involve two 

different models: (i) an arc offshore with a marginal sea between 

the arc and the continent and (ii) the true Andean-type with the arc 

being located on the continent itself. The latter has both forearc and 

backarc regions on the continent and only a strip of marine forearc 

between the trench and the onshore forearc basin. In Andean-type 

convergence, the trench may lie close to the shore as does the Peru- 

Chile trench of the coast of South America or somewhat further 

offshore, as the Aleutian trench off Alaska. The accretionary prism 

and forearc basins become a part of the continental block 

converging with the oceanic plate. The arc is in land, the magmas 

rising through thick continental crust to form a continental 

volcanic mountain chain.

Volcaniclastic (mafic to highly silicic ) sediments o f Andean-type 

convergences are very variable in terms of rock type and 

petrographic composition (Miyashiro 1975). The zone along the west 

coast of South America is often considered the classical continental 

arc of this type and it displays all structure and tectonic elements 

(subduction zone, arc massif, forearc basin and volcanic arc) that 

indeed characterize Andean-type convergence (Seely 1979).

3.3 Arcs
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3.3.1 Structures of arcs

Broadly there are systematic variations in the structural zones in 

passing across the strike of island arcs. They normally include a 

trench, a forearc, an arc, backarc basin and an inter-arc or

marginal oceanic basin (see Figures 3.2-3).

The trench, which is typically 50-100 km wide and may be up to 

11 km deep (e.g Marianas), is the site o f the deep-sea pelagic

sedimentation. It is mixed in some places with turbidites and slumped 

material derived from the arc side of the trench and perhaps mixed 

with detritus derived from the seaward side. The turbidites usually

include plenty of volcaniclastic material derived from the arc itself 

and sometim es shallow -shelf carbonate material and slumped

sediments are included.

The forearc basin region (50-400 km wide) may be one of

subsidence between two positive areas, the arc region being elevated

by magmatic activity and the accretionary prism being thrust up.

The sediments in this region contain volcan iclastic material,

turbidites, subaqueous ash flow and welded tuffs (e.g Fiske and 

Matsuda 1964; Bond 1973; Howells et al. 1979).

The arc region itself (50-100 km wide) is the site of extensive

high level volcanics and deeper-seated magmatic intrusions. Sands 

related to this region are particularly rich in volcaniclastic

com ponents typ ica lly  o f andesitic and other interm ediate 

composition. Sediments of the arc contain eroded older extrusives,

fragments o f older continental terranes and occasionally even 

metamorphosed rock fragments. In terms of rock types, volcanic
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arcs are characterized by a high proportion of pyroclastic rocks (83- 

93 volume percent) interbedded with thick deposits of greywackes 

and mudstones and by overprinting of the sedimentary signatures 

by high temperature low pressure metamorphism (Garcia 1978).

The backarc region (15-30 km thickness), which is often a 

marginal sea between the arc and a continent, is a subsidiary 

spreading region of oceanic plate whose motions may force 

migration of the arc complex and subduction zone in the direction of 

the advancing lithosphere on the far side of the subduction zone. 

The sediments in this region are normally pelagic sediments and 

tubidites ,both of which are rich in volcaniclastic components 

derived from the arc.

The marginal basins (Interarc basins) lie behind island arc 

systems and are underlain by oceanic crust and situated between the 

main magmatic arc and the corresponding continental margin (e.g  

Japan Basin) or another island arc-trench system (e.g. Philippine 

Basin). This type of basins is thought to have formed by extensional 

rifting (Karig 1970) or spreading of the ocean floor (Packham and 

Falvey (1971). Re-investigation of paleomagnetic data led Windley

(1984) to conclude that the latter process is most likely.

3.3.2 Sedimentation in arcs

The relation of sedimentary basins and sedimentation to plate 

tectonics was explored in a ground breaking paper by Bird and 

Dewey (1970) and Dickinson together with his co-workers (e.g  

Dickinson 1970, 1971, 1974; Dickinson and Seely 1979; Dickinson et al.
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1979; Dickinson and Valloni 1980, Maynard 1984 and many others). 

Within the plate tectonic framework, sediments are deposited in the 

trench-subduction complex and hence the trench should contain 

pelagic oceanic sediments and thrusted slices of ophiolites o ff  

scraped into the continent-edge of the subduction zone. However, 

most trenches especially those in the intra-oceanic arcs o f the 

western and north Pacific contain less than 300m pelagic sediments 

and hardly any terrigenous sediments. Scholl et al (1977) concluded

that deep-sea sediments that have been subducted and that off 

scraping of terrigenous deposits into a trench are only possible 

where thick (greater than 500-1000m) sequence is swept against 

island arc.

The trench-slope break (Fig 3.2) marks the inner edge of the

subduction complex which was formed by tectonic accretion and 

which comprises a thrust stack of off-scraped sediments from the 

trench and it emerges as Barbados island in the lesser Antilles

(Westbrook 1982). In this particular instance there is an abundant 

sediment supply. In contrast Lundberg (1983) emphasized that intra- 

oceanic arcs like the Marianas and Costa Rica lack thick clastic

deposits and melange complexes because of low terrigenous sediment 

input and thus they lack high grade exotic components such as blue 

schists and eclogites.

Forearc basins lying between the trench slope break and the arc 

often contain flat lying undeformed sediments that may reach 5km 

in thickness. These sediments may reflect the progressive shoaling 

as the basin fills up with turbidites and shallowing marine sediments 

and fluviatile-deltaic shoreline complexes (Dickinson 1982). Some of



3 6

the forearcs that are already fairly well characterized were defined 

as submarine (Central Aleutian, Marians, Tonga Kermadec) and some 

are partly submarine and partly sub-aerial (Japan and Costa Rica). 

The sediments deposited in forearcs are mostly derived from the 

adjacent arc volcanoes (volcaniclastics) by erosion o f uplifted 

basement of metamorphic-plutonic rocks as is the case of the Sunda 

arc of Sumatra (Moore et al. 1982) or recycled orogenic material such 

as pre-existing sedimentary basins.

3.3.3 Arc-trench

Modern arc-trench gaps widen with time as a result of the 

prograde accretion of subducted material above and behind the 

trench and by the retograde migration o f the volcanic arc away 

from the trench (Dickinson 1973). Karig and Sharman (1975) and 

Dickinson (1975) discussed in some length the nature of the tectono- 

stratigraphic contact between the subduction complex and the 

undeformed sediments of the forearc basin. As the accretionary 

prism builds upward and outward, the forearc basin sediments onlap 

the tectonically stable flank of the subduction complex near the 

trench slope break. Periodic re-activation of thrusts within this area 

causes deformation of the base of the onlapping sediments so that 

the contact between the subduction complex and the forearc basin 

sedim ents have both depositional and tectonic charateristics 

(Dickinson 1975).

Forearc basins of modern arc-trench systems tend to evolve from 

steep-sloped, narrow zones with little sediment accumulation to 

wider and shallow er basins within which great sedimentary 

thicknesses accumulate (Karig and Sharman 1975). As the forearc 

basin widens, most sediments that were derived from the arc are
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deposited within the arc trench gap with only little sediment 

reaching the trench and eventually the forearc basin may be filled 

to near sea-level and arc-derived sediments again may be deposited 

primarily within the trench or within the trench-slope basin 

(Moore and Karig, 1976). This latter situation is likely to occur within 

margin of arc-trench systems with higher rates o f sediment supply 

than in island-arc systems with low rates of sediment supply.

3.4 Forearcs

3.4.1 Different types of forearc basins

Distinction between the various and often complex types of 

forearc basins depend primarily on the structural evolution of the 

subduction complex and the history of accompanying sedimentation.

Based on the nature of the substratum beneath the basin, Dickinson 

and Seely (1979) recognized five types: (1) arc massif, (2) residual, 

(3) accretionary (4) constructed and (5) composite basins (see Figure

3.4 A-C)). Arc massif basins are characterized by block faulting and 

marine or non-marine arc or backarc derived sediments. The 

accretionary basins are commonly structured by compressional 

folds and listric thrust faults are filled with marine sediments

derived from uplifted subduction complex or arc terranes. The 

resid u a l and constructed  basins are structurally  and

stratigraphically  transitional betw een the arc m assif and 

accretionary types. Residual basins also include abyssal sequence of 

abyssal-plain sediments. Both the arc massif and the structural high 

are belts of uplifted areas and hence prvide potential source material 

for basins within them or proximal to them (Dickinson and Seely

19 79 ).
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3.4.2 Forearc evolution

The quantity of sediment delivered to the forearc regions is a 

prime factor governing forearc evolution. An initial residual 

forearc basin may later become a composite of sedimentary forearc 

basins. Also large scale lateral accretions can occur only if there are 

large quatities o f trench fill, abyssal plain and slope sediments. 

Sedimentation, metamorphism, and volcanism are always linked in 

fore arc regions and arc trench systems (Dickinson 1979).

The position of the axis of magmatism in respect to the trench 

governs the extent of forearc regions. Slow retrograde migration of 

the magmatic axis away from the forearc is common and occurs at a 

rate of roughly lkm/Ma (Dickinson (1973). Where the crust is thick 

in the arc massif, there is usually a potential for isostatic uplift 

which is ultimately followed by erosion. Sediments derived from the 

plutonic roots of the arc massif may there fore join volcanic debris 

which is being deposited in the forearc basins. Thus the amount of 

the uplift is likely to increase with time. Accordingly, the ratio of 

plutonic to volcanic detritus is likely to increase upward in the 

stratigraphic section within the forearc basin. The petrological 

character of the volcanogenic materials produced along an arc tend 

to evolve from relatively mafic rock types early in the history of the 

arc through to more felsic rock types during later stages of igneous 

activity (Dickinson, 1979). Dickinson (1970) related the evolution of 

magmatic composition to the provenance of volcanic and plutonic 

detritus in sandstones derived from erosion of arc terranes.

Dickinson and Suczek (1979) classified all provenances and



3 9

derivatives o f sandstone suites into three main super groups:

continental, magmatic and recycled. Those sandstones and 

greywackes derived from the continental block were attributed to 

shields, platforms and faulted basement blocks. The source of the 

magmatic arc material is likely to be within the active arc orogens of 

island arcs or active continental margins. The recycled orogenic 

material on the other hand is derived mainly from uplifted stratal

sequences in subduction zones, along collision orogens or within

foreland fold-thrust belts.

The authors further divided each super group into several 

smaller categories and indicated the nature o f common kinds o f  

transitional sandstone suites. For instance they divided arc-derived 

suites into those eroded from: (1) undissected arcs in which the 

continuous volcan ic  cover is  present and where largely  

volcaniclastic debris are shed from volcanogenic highlands along 

active island arcs. In addition there are some continental margins 

where arc volcanic chains have undergone only limited erosion. The 

sites of deposition include trenches and forearc basins on the frontal

side o f the arc. The characteristic mineral constituents o f  

undissected arcs are abundant plagioclase feldspar and volcanic 

lithic fragments. (2) Dissected arcs in which the material is derived 

from more mature magmatic arcs especially those along the 

continental margins. Detritus derived from mixed plutonic and 

volcanic origin shed into both forearc and backarc basins. In these 

types of sediments, the sandstone compositions are more complex but 

generally contain less lithic rock fragments than volcaniclastic 

debris. Both feldspars are commonly present in significant
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proportions and non-volcanic lithic fragments predominate in 

varying degrees. The third provenance is transitional arcs with the 

material being a mixture of both recycled orogens and magmatic 

arcs.

Potter (1978), Valloni and Maynard (1979) made studies of selected 

modem sand samples and their results confirm those of Dickinson 

and Suczek as discussed above.

3.4.3 Petrographical characteristics

Sand from orogenic settings is consistently less quartzose than 

from non-orogenic settings and also varies markedly in detail. The 

sand off coastal transform orogens is more quartzose, contains fewer 

lithic fragments and has a lower ratio of plagioclase to K-feldpsar 

than sand of continental-margin arc orogens (Dickinson and Valloni 

1980). The sand surrounding island arcs within ocean basins is even 

less quartzose, contains more lithic fragments and has still more 

plagioclase in relation to K-feldspar. Volcanic rock fragments are 

the dominant lithic fragments in both arc-related sand suites 

whether deposited off continental margins or island arcs. The 

proportion of poly crystalline to monocrystalline quartz grains tend 

to be higher in all orogenic suites than for the rifted margin 

settings (Dickinson and Valloni 1980). Sand derived from the intra­

plate oceanic sources on the other hand generally lacks quartz but 

contains plagioclase as the only feldspar and volcanic rock 

fragments as the only lithic grains except for carbonate clasts.

From detailed studies of mean framework (the proportions of 

detrital grains which make up the framework of the sandstone, 

because the character and amount o f interstial cement and matrix
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are both largely a function of diagenesis, and of no significance in

provenance studies. ) modes of sandstones from circum-Pacific 

suites, Dickinson (1982) suggested that sandstone compositions, 

provenance and tectonic settings can be brought out by the use of 

primary parameters (QFL, QmFLt) and supplementary parameters

(QmPK, QpLvLs) plots which are partial modes of mineral grains and 

polycrystalline lithic fragments respectively (see Table 4.1 for the 

definition of the mentioned abbreviations).

In California, both the Franciscan suites (subduction complex) 

and Great Valley Sequence suites (forearc basin) are characterized 

by turbidites with similar distributions of mean framework modes 

mentioned above. However, the subduction complex sediments are

slightly more feldspathic and less lithic compared to those deposited 

in forearcs but both have comparable quartzose grains. Lithic-rich 

sediments in both terranes where present are inferred to have been

derived from relatively undissected segments o f magmatic arcs, 

whereas the lithic-poor sediments are inferred to have been derived 

from fairly dissected magmatic arcs. These results are interpreted to 

mean that the sources of the subduction complex sediments lay

preferentially in more dissected segments of the magmatic arc than 

did sources for turbidites of the adjacent forearc basin (Dickinson 

1982).

The framework modes QFL and QmFLt of rocks from the

subduction complex in Alaska have been studied in detail by

Dickinson (1982). The authors showed that data from the abyssal- 

plain turbidites, for several Cook Inlet suites, and for most of the
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Pacific NW suites, fall within the field for the Alaskan subduction 

complex except three framework modes. These are (1) more 

quartzose and less feldspathic rocks from slope basins and this trend 

probably reflect re-working of sediments partly derived from arc 

terranes and partly from uplifted subduction complex; (2) less lithic 

and more quartzo-feldspathic rocks within the Cook Inlet forearc

basin which probably reflect derivation mainly from adissected 

batholiths where the amount of volcanic cover in the arc terrane

was temporarily or locally minor; and (3) quartz-poor rock in Ataka 

basin of Aleutian terrane which reflect exclusive derivation from 

the volcanic island arc of the Aleutian ridge. Also based on the 

framework modes QFL and QmFLt, both the Shimanto (subduction) 

and Median Zone (forearc) of the SW Japan fall within the fields of

Alaska subduction complex, and within the combined Franciscan and 

Great Valley suites in California. In both places the subduction 

complexes apparently contain slightly more feldspathic and less 

lithic rocks than the coeval strata of forearc basins so that they lay 

wholly within the arc trench gap during the time span of their 

deposition (Dickinson 1982).

From the framework modes ,QmPk means for all suites from the 

Circum-Pacific subduction complexes fall between 33% and 50% 

monocrystalline quartz (Qm). Mean ratios o f total feldspar to quartz 

are uniformly between 1:1 and 2:1 and the mean values of suites 

from slope basins and other types of forearc basins lie mostly within 

the same field but with more quartzose compositions which extend 

toward 67% Qm, representing a quartz to total feldspar ratio of 2:1.

The composition o f these more quartzose rocks probably reflect
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extensive sedimentary re-working of arc-derived detritus within the 

forearc region. A few suites of quartz-poor volcaniclastic rocks from 

analogous forearc basins in New Zealand and Aleutian plot within 

33%Qm.

From the QpLvLs framework modes of the California, Pacific NW 

and Alaskan suites, more than a half of the lithic fragments are of 

igneous origin (Lv) and that the rest are believed to represent a 

mixture o f volcanic and m etavolcanic grains, with varying 

proportions of lithic fragments having non igneous origin (Qp and 

Ls) (Dickinson 1982). When represented on a QpLvLs triangular 

diagram, it was found by the same authors that the median mixture 

of added non igneous grains contains cherty detritus (Qp) and 

argillite to slaty detritus (Ls) in the proportion of 1:2 in all suites. 

The wide distribution of the data shows, however,that neither the 

proportions nor the amount o f the non-igneous admixture are 

constant. The general interpretation given by the authors is that 

sandstones exposed within forearc regions of the Circum-Pacific 

orogenic belt have similar com positions everywhere (Dickinson  

1982). Dickinson and Suczek (1979) observed that variations in 

detrital modes mainly reflect varying degrees of dissection of the 

volcano-plutonic complex from the bulk of the arc massif.

The most typical rocks of the Circum-Pacific greywacke suites 

have feldspatholithic and framework components with intermediate 

quartz contents. Compositional variations mostly mark variations in 

the proportions of lithic fragments, where total feldspar to quartz 

ratios are most commonly semi-constant with values between 1:1 and 

2:1. Plagioclase is always dominant over K-feldspar and the volcanic
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rock fragments as the most abundant lithics (Dickinson 1982).

By combining their own data of 80 modern deep sea sand and 

other data from the literature, Valloni and Maynard (1981) noted that 

the amount and type of lithic fragments and the type of feldspar are 

particularly important discriminating factors. They also assigned 

sands to five plate tectonic categories each of which has a distinct 

average petrologic composition. These are summarized in Table 3.1:

Table .3.1: QFL modes of some tectonic elements

Tectonic setting Q F L

Basin associated with passive continental margin 62 26 12

Basin associated with active continental margin

a) Subduction 16 53 31

b) Strike-slip 34 39 27

c) Backarc 20 29 51

d) Forearc 8 17 75

Yerinc and Maynard (1984) assembled a set of samples from the 

Peru-Chile trench and adjacent areas. They divided the area into 

three main regions: (1) the framework components for the Peru-

Chile trench have a mean falling close to that reported by Maynard 

et al. (1982) for sands from the forearc region of continental margin 

arcs. (2) The Strait of Megellan sands are also similiar and (3)

Central-America trench samples have a distribution more typical of  

the forearc of island arcs. In all three cases, the sum of feldspar and

lith ic fragments greatly predominate over quartz which is
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consistent with other active tectonic settings. The results of analyses 

from the three regions d iscu ssed  above are sum m arized below  in Table 3 .2  

which clearly show s that feldspars are alm ost exclusively p lagioclase and the 

lithic fragments are mostly volcanic.

Table 3.2: Summary of some framework data of the Peru-Chile trench 

and adjacent areas.

A rea No of 
sam ple

Q F L C/Q P /F L v/L Q F R

1 46 18 44 38 0.16 0.97 0.82 16 26 58

2 7 3 21 76 - 1.0 0.99 3 7 90

3 6 22 45 33 0.29 0.97 0.75 19 24 57

1= Peru-Chile trench: The average framework composition is similar 

to the ocean side of the continental margin volcanic arc

2= Central America trench: Has a composition typical of sands from 

the forearcs of island arcs

3= Strait of Megellan: Has a composition which seems to reflect the 

transition from the forearc to backarc side of the continental- 

margin arc

From the studies of the grain populations o f the Great Valley 

Sequence, Dickinson and Rich (1972) inferred that the source rocks 

were mainly cogenetic suites of volcanic, hypabyssal and plutonic 

igneous rocks with which were associated in adjoining metamorphic 

terranes of low grade metasedimentary and metavolcanic rocks. 

They also recognized five petrofacies and discussed the petrographic 

characteristics o f each petrofacies with reference to a series of
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figures showing various aspects of the composition of sandstones 

using the framework QFL. In the lower sequence, there is a 

combination of low Q and high L, high P/F, high V/L and low mica. 

They deduced that there is an upward trend from the most lithic 

rocks in the base to least lithic rocks at the top of the section in 

passing from the Stony Creek feldspatholithic sandstones to Rumsey 

litho feldspathic sandstone.

Rocks in Nias island (Indonesia) consist of two main units: trench 

deposits (tecto-melange) and trench slope deposits (Moore 1979).

Modal analyses from the two settings revealed that the sediments are

particularly rich in quartz and sedimentary/metasedimentary lithic 

fragments and both cluster on the QFL diagram. The trench deposits 

(tecto melange) consist of small amounts of Qp cemented together by

phyllosilicate minerals and have framework modes Lv, Lm and Ls of

37, 17 and 46 respectively. In contrast, the trench slope deposits 

contain abundant K-feldspar, polycrystalline quartz, glauconite and 

carbonate grains and cement. The average framework modes 

Lv21Lm53Ls26. It is clear therefore that sediments from melange 

have very high P/F, high Lm and low Ls and Lv but those from the

slope basin have low P/F, Lm and Lv and high Ls and glauconite.

Sediments derived from the Himalaya which average Q57F28L14

are well documented and are micaceous, highly quartzose and the

lith ic types are dominated by metamorphic rock fragments, 

(Lm87Lv4Ls29) (Ingesoll and Suczek 1979). Other petrological studies 

of Himalayan sediments all confirm their enrichment in quartz and 

metamorphic rock fragments (e.g Raju 1967; Thompson 1974; Mallik 

1976&1978),



4 7

Sedimentation in the Sunda forearc region varies both spatially 

and temporally. Transport of Himalayan detritus along the trench 

axis dominates in the north but hemi-pelagic sediments become

more important components in the trench wedge to the south. Off

south Sumatra, quartzose turbidites derived from the Himalayas are

deposited in the trench whereas volcanic rich turbidites derived 

from Sumatra are deposited in the forearc basin. Off Java, hemi- 

pelagic sediments dominate both in the trench and on the lower 

trench slope.

From the petrography of Plio-Pleistocene sandstone, eastern 

Taiwan, Dorsey (1988) noticed that the changes in relative 

abundance of sedimentary and metasedimentary lithic fragments 

through time can be used to interpret an unroofing sequence from 

the collision fold and thrust belt where during earliest stages of arc-

continent co llision , sandstones are rich in sedimentary lithic 

fragments (Ls) which are shed from the accretionary wedge. From 

early Pliocene to early Pleistocene time, sandstones became 

progressively depleted in sedimentary lithic fragm ents and

enriched in both low (Lml) and medium (Lm2) grade metamorphic

ones. The progressive decrease through time in the sedimentary 

lithic fragments but increase of Lml and Lm2 respectively provide 

an evidence for uplift and unroofing for accretionary prism wedge 

(Dorsey 1988).

The continental margin orogenic belts have a long complicated 

history of igneous activity. Broadly, the igneous products are of two 

types; volcanic and plutonic. Many of the volcanic rocks formed in

the arc zone are eroded and the underlying granitic rocks in the arc

core are therefore exposed and subsequently progressively eroded.
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In western North and South America both magmatic types are found. 

The intrusive and extrusive arc rocks are predominantly mantle- 

derived and represent new additions to the continental crust which 

is correspondingly growing at a rate close to 0..5 km3 yr -1 (Brown

1982).

From the existing data produced for present-day forearc regions, 

it is clear that there are some important factors governing the

composition o f sediments laid there:

1. The nature of the forearc setting. Intra-oceanic forearcs (e.g 

Tonga-Kermadec, Marianas, Aleutians, etc) tend to have high lithics, 

high volcanics dominated by mafic most commonly basalt to andesite 

but low in detritus derived from the basement. The sediments are

dominatly marine and usually include pelagites and hemi-pelagites. 

In contrast, continental forearcs (e.g Andean type, Java etc) can be 

rich in non-marine sediments, variable lith ics (volcanics to 

granophyre), v o lca n ic la s tic s , turb id ites, sh a llow in g  marine 

sedim ents. F lu v ia tile -d e lta ic  shoreline com p lexes are also  

characteristics of this type of forearcs.

2. The evolutionary trend in either of these arcs greatly control the

nature o f the sedimentary record there. Mature arcs are 

characterized by progression from tholeiitic to calc-alkali and alkali 

series from oceanic to continental side. Also there is a thick subarc 

crust (30-35 km) and usually lie close to the continental margins (e.g 

Japan). In contrast, immature arcs lack thick clastic deposits and 

high grade exotic components and are charaterized by thin subarc 

crust (15-25 km) (e.g. Marianas, Tonga Kermadec arcs). Tholeiitic 

basalts are typical of this type of arc.
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3. There are similarities between the petrography of trench and 

forearc regions. For instance the Great Valley forearc region has 

similar QFL and QpLvLs to the Alaskan arc trench system Dickinson 

(1982). However, where the trench is fed by a river system which 

deposits sediments along its axis, then there can be significant 

differences in the type of sediment found in the trench and forearc 

basins as is the case of sand of Sumatra

3.4.4 Geochemical characteristics

The First stages of island arcs with crustal thicknesses less than 

20 km are characterized by tholeiitic series possessing low  

abundances of incompatible elements (e.g K, Rb, Ba, U, REE) (Perfit 

et al 1980). More evolved stages of volcanism are characterized by 

calc-alkali series with higher abundances of incompatible elements 

for a given S i02  value and with more fractionated REE patterns 

(Coulon and Thorpe 1981). In less mature island arcs (e.g. Indonesia 

and Kuril islands), the most characteristic variation is an increase in 

the content of alkali elements towards the continent in island arc 

tholeiites and calc-alkaline suites (i.e. for rocks with a similar S i02  

content there is an increase in K20 and Na20 + K20). In mature island 

arcs such as Japan, however, there is a progression from tholeiitic to 

calc-alkali and alkali series from the oceanic to continental side 

(LeBas 1982).

There is also a close correlation between the three chemical 

series and the degree of tectonic activity of different types of arcs. 

The youngest(i.e. least mature) have the deepest earthquakes and 

highest rates of uplift of plate convergence, with typically tholeiitic
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basalt series In more mature arcs, the calc-alkali series is typical, 

the alkali series is present but not important and the tholeiitic 

volcanics are uncommon. It should be noted that in arcs with the 

slowest rate of plate convergence and shallowest earthquakes, alkali 

volcanics are common.

In the true Andean type convergence, the arc is located on the 

continent and it has both forearc and backarc regions, so detritus 

derived from mixed plutonic and volcanic origin is shed into both 

forearc and back basins

Sediments in these basins cannot be distinguished from each 

other on the basis of petrography and bulck composition.
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Key to Figures 3.1-2

Figure3.1: Spatial relations of the various plate tectonic elements 

(after Dickinson and Seely, 1979). A= a general view showing the 

key tectonic elements discussed in the text ab ove; B = tecton ics, 

volcaniclastic deposits and sedimetary environments o f intra- 

oceanic island arcs; C=Andean-type continental arcs ;

Figure 3.2: Schematic diagram of continental- margin arc-trench

system (after Windley 1984) showing the main arc tectonic 

elements (magmatic arc, trench basin, forearc basin, backarc 

basin, foreland basin and subduction complex)

Figure 3.3: Shematic diagram of intra-oceanic arc (after Windley 

1984) showing the key tectonic elements mentioned above in 

addition to the presence of intra-oceanic basin.

Figure 3.4: Various types of forearc basins after Dickinson and Seely

(1979). Note that unlike in figure A, the oceanic crustal element 

was not trapped beneath forearc in figure B and hence the basin 

rests only on arc massif and subduction complex. In figure C the 

residual basin evolves into a composite basin due to accretion. 

l = Intra-massif basin 

2=Residual basin 

3=Accretionary basin 

4=Constructed basin 

5=Composite basin
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CHAPTER FOUR PETROGRAPHY

4.1 INTRODUCTION

Sedimentary petrography, defined as the systematic description 

of both composition and texture of sediments, has been used to 

greatly expand our understanding of the geological evolution of 

sedimentary basins (e.g Dickinson and Seely 1979; Dickinson et al.

1983). Sandstones and greywackes in particular were extensively  

investigated in this respect in an attempt to deduce their 

provenance areas, tectonic settings and economic potentials.

The major impetus to sandstone classification comes from the 

early proposals of Krynine from 1911 to 1948 and Pettijohn from 

1943 to 1957. During this early period, both authors recognized the 

importance of mineralogy as a clue to source-rock compositions and 

source area tectonism but they placed different emphasis on the 

role o f texture. The most important concept used was the

composition triangles for representing modal analyses and defining 

fields of importance within these triangles.

Krynine (1948) produced a sandstone composition triangle which 

considered only detrital fractions and divided the rocks into classes 

based on the three component system; Quartz (+ chert), feldspar (+ 

kaolin) and phyllosilicates (mica + chlorite). However, a different 

emphasis was given by Pettijohn to the classification of the rock

fragments -mica + chlorite + clay and matrix complex- that Krynine

has treated as only a mineralogical component. Pettijohn (1954)
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recognized a four component system in which the matrix was a

separate com ponent. Folk (1 9 5 4 -1 9 5 6 ) refined  Krynine's 

classification by introducing grain size end members with all 

gradations between gravel, sand, silt, and mud as well as the

abundance of clay components as an index of a "textural maturity".

Williams et al. (1954) used textural criteria; the degree of 

sorting and detrital matrix to divide all sandstones into suites: 

wackes and arenites.

Using these concepts Dott (1964) produced a widely accepted

classification of terrigenous sandstones.

4.2 San dsto ne com pos i t i ons  and plate  te cton ics .

Sandstone com positions are strongly influenced by the 

character of the sedimentary provenance, the nature of the 

sedimentary processes within the depositional basin and the kind of 

dispersal paths which link provenance to basin (Suttner, 1974). The 

key relation between provenance and basin is usually governed by 

plate tectonics which ultim ately control the distribution of

different types of sandstones. Important papers by Dickinson and

Suczek (1979), Ingersoll and Suczek (1979), Dickinson and Valloni

(1980), Valloni and Mezzadri (1985), Dorsey (1988) and others have 

contributed substantially to our ability to predict the tectonic 

settings of a source terrane from framework compositional modes. 

Data from modern marine and terrestrial sands taken from known

tectonic settings provide standards against which to evaluate the

effects of tectonic settings on sandstone composition. By direct
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analogy with such modern sands and by inference for older

sandstone suites, broad categories of sandstone can be correlated 

with specific types of source terranes and basins associated with 

diverse plate tectonic regimes. However there is a number of

limitations to this approach such as temporal changes in tectonic 

settings (e.g  Mark, 1984), compositional variations related to

depositional environment and climate (e.g. Suttner, 1974; Mark,

1984), large scale lateral transport of sand from regions tectonically 

unrelated to the basin of deposition (e.g. Velbel, 1985) and later

substantial secondary alterations (e.g . Dickinson 1969, 1970;

Ingersoll 1978b).

Criteria for distinguishing components and problems in 

rem oving d ia g en etic  a lterations to reconstruct original 

com positions are further complicating factors and have been 

discussed by many authors among others Dickinson (1970), Graham 

et al. (1976), Ingersoll (1978b), Suczek and Ingersoll (1985).

However, despite the above mentioned complications and the fact 

that the amount of interstitial cement and matrix is largely a 

function of diagenesis, recent workers (e.g. Crook, 1974; Schwab, 

1975, Dickinson and Suczek, 1979; Lash, 1987; Dorsey, 1988, Saccani, 

1988) have been able to document the relationships between the 

mineralogy of sandstone provenance types and the tectonic setting 

of sedimentary basins and recognize lithic fragment detrital modes

in sands and sandstones which are derived from uplifted zones of

continental collision or suture belts (Dickinson and Suczek, 1979; 

Suczek and Ingersoll, 1985). Crook (1974) and Schwab (1975) have 

shown that quartz-rich rocks (>65%) are associated typically with

passive continental margins, that quartz-poor rocks (<15%) are
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mostly of volcanogenic derivation from island arcs and that rocks of 

intermediate quartz (65-15%) are associated mainly with active 

continental margins or other orogenic belts. Graham et al (1976) 

also discussed how sandstones derived from magmatic arcs are 

usually distinguishable from suture belt-derived sandstone based on 

lithic populations.

Dickinson and Suczek (1979), Dickinson et al. (1983) showed that 

the mean composition of sandstone suites derived from different 

kind of provenance terranes controlled by plate tectonics tend to lie 

within three main fields on QFL and QmFLt diagrams (see Fig 4.1-2 

for representation and Table 4.1 for definition of terms). The three 

categories of provenance terranes are(l) continental blocks for 

which sediment sources are on shields and platforms or in faulted 

basement blocks;(2) magmatic arcs for which the sources are 

within active arc orogens of island arc or active continental 

margins; and(3) recycled orogens for which the sources are 

deformed and uplifted stratal sequences in subduction zones, along 

collision orogens or within foreland fold-thrust belts. The authors 

also defined the tectonic settings from sandstone compositions using 

QmPK and QpLvLs triangles (see Fig 4.3-4) which were further 

developed by Dickinson (1982). In the meantime , Ingersoll and 

Suczek (1979) introduced QpLvmLsm and LmLvLs triangles (see Fig 

4.5-6) as important plots for more detailed distinction between 

different tectonic settings. Dorsey (1988) also attempted to introduce 

LsLmlLm2 based on the degree of metamorphism experienced by 

the different metamorphic lithic fragments but this diagram needs 

more refinement and is still of little use in sedimentary petrology.
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The results of the above mentioned investigations form the 

basis for comparison with the results obtained in the present 

research. In this thesis an attempt is made to deduce the provenance 

source(s) of the rocks of the Girvan sequence and investigate its 

tectonic evolution. In addition a brief comparison is made between 

the petrographic and geochemical charateristics of the sandstones 

in Girvan with those in the Southern Uplands. In the sections that 

follow, the petrography of the sequence studied is first discussed, 

then the data obtained are compared to the published results from 

other tectonic regimes in other areas. The vertical variability is 

then investigated and related to tectonic evolution of the source 

area and finally general conclusions are attempted.

Table 4.1 Definition of petrographic framework modes 

Q=Qm + Qp Q = total quartzose grains

Qm = monocrystalline quartz grains

Qp= polycrystalline quartz grains

F = P + K F = total feldspar grains

P = plagioclase feldspar grains

K = potassium feldspar grains

Lt = L + Qp Lt = total aphanitic lithic grains

L = total unstable lithic grains

L = Lm + Lv + Ls Lm = metamorphic lithic grains

Lv = volcanic lithic grains

Ls = sedimentary lithic grains
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Table 4.1: Continued

L = Lvm + Lsm Lvm = volcanic and metavolcanic

lithic grains 

Lsm = sedimentary and meta- 

sedimentary lithic grains

4 .3  P e trography

D etailed  petrographic investigations o f  sandstones and 

greywackes o f Upper Llanvim through to Llandovery from the 

Girvan area were undertaken. As a petrographic and geochemical 

frameworks, the samples of Ordovician age will be referred to as 

lower, middle and upper sequence to denote Upper Llanvirn to 

Llandeilo; Caradoc; and Upper Caradoc to Lower Ashgill respectively.

4.3 .1  M inera logy

4.3 .1 .1  Lower  sequen ce

These rocks, Upper Llanvirn-Llandeilo, were collected mainly 

from the Kirkland and Benan conglomerates, and the Changue, 

Craigmulloch and Darley formations (see Figure 2.1 ,2.1 and Table

2.1  for the exact location of the samples and plates 1-6 for 

photomicrographs showing some rock fragments and minerals). 

Broadly, the rocks consist mainly of lithic greywackes rich in basic 

rock fragments but with significant proportions of angular quartz. 

The rock fragments, which range in size from 0.5 to 2 mm, are made 

up essentially  o f often angular sp ilitic volcanics, tuffaceous 

material, basic and ultrabasic fragments, cherts of various types, 

granitoides and abundant plagioclase feldspars. Epidote, perthitic K-
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feldspar and radiolarian cherts are common m inerals but 

serpentinite and brown spinel arc found only as a trace or arc absent.

Sandstones-grey wackes interstratified with the Kirkland  

Conglomerate, contain angular quartz (0.10 to 0.35 mm), microcline, 

m icrographic rock fragm ents and fine-grained  tu ffaceou s  

components with some chlorite and serpentinite set in a matrix of 

carbonate cement.

The greywackes from Benan Conglom erate have the 

mineralogical composition described above but the rock fragments 

tend to be larger in size

Those from Changue Formation contain abundant rock 

fragments (1.5 mm average diameter) which are dominantly o f lava 

type. Chlorite including the deep green variety was also seen as a 

common mineral in these rocks together with brown spinel. In the 

Changue Formation greywackes at Traboyack Bum, feldspar, which 

is highly altered to white mica and sericite, is particularly abundant 

and forms up to 15% of the rock constituents. The common rock 

fragments are lava cherts and porphyritic granitoids. Opaque 

minerals are often present together with chlorite and carbonate but 

epidote has not been seen.

At Balloch Burn, the mineralogy is quite similar to those 

already described but at Water o f Gregg, microgranite, rhyolite and 

granophyre fragments are present and small crystals o f garnet are 

also occasionally present.
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The rocks from Kilrany conglom erate and InfraKilrany 

greywackes, are transitional to the middle sequence (Llandeilo- 

Lower Caradoc) and are particularly epidote-rich and contain 

strongly chloritized lavas.

From the above descriptions, it is clear that there are substantial 

variations in petrography. These variations are related both to 

formations and probably also to some changes in the source areas, 

diagenesis and secondary alterations.

4 .3 .1 .2  M iddle sequence

The middle sequence rocks have been studied from Ardwell 

Flags, Cascade Grits and Whitehouse Group (see Figure 2.1 ,2.1 and 

Table 2.1 for the exact location of the samples and also plates 7-13 

for photomicrographs showing some rock fragments and minerals 

). The rocks contain medium (0.6 mm average grain size) angular 

fragments and chips of quartz, albitic plagioclase and other various 

rock fragment types but with minor amounts of epidote. Those from 

Ardwell Flags, Cascade Grits and Whitehouse Group are poorly sorted 

angular fragments o f usually strained quartz (0.8 to 1.0 mm in 

diameter) and turbidite feldspar. Serpentinites, sp ilite  lavas, 

tuffaceous material and metaquartzites have also been noted in 

almost all formations.

4.3.1.3 Upper sequence

Two main formations have been sampled; W hitehouse and 

Shalloch. Those sandstones collected from the Whitehouse Group

consist o f quartz, often partly sericitized plagioclase and rock
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fragments set in a matrix of carbonates.The rock fragments found 

contain mainly siltstone, metaquartzite and cherts. Those from the 

Shalloch Formation contain in addition to the components just cited 

abundant biotite, some muscovite, chlorite and zoisite inclusions in 

quartz. Accessory small grains o f garnet and rounded zircons are 

also occasionally present (see plates 14-18 for photomicrographs

showing some rock fragments and minerals from this sequence).

4 . 3 .1 . 4  S i lu r ia n  ( L l a n d o v e r y )

The Silurian rocks have been collected from Craigskelly

Formation and quartz conglomerates at the Haven and Scan grit.at 

Black Neuk. Sandstones from Craigskelly at the Haven contain 

plentiful subangular quartz (0.65 to 0.80 mm), microcline, perthite 

and rock fragments which are composed mainly o f granitic 

material. Detrital zircon, zoisite inclusion in quartz and traces o f  

tourmaline are also sometimes present. In the greywackes from the 

Quartz and Scart Grit Conglomerates at both the Haven and Black 

Neuk, quartz is subangular-angular. Feldspar is also present but 

rocks fragments which are dominantly o f sedimentary and

metasedimentary types are scarce. Zoisite inclusions in quartz are 

also occasionally present (see plates 19-21 for photomicrographs

showing some

4.3 .2  Descript ion  o f  the fr am ew or k  mo des

The more abundant frameworks modes are described below and 

include quartz, feldspar and rocks fragments. A brief summary of 

the matrix minerals is also given.

Q u a r t z

In the lower and middle sequence, quartz (0.2 to 1.2mm in
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diameter) occurs as angular chips or rarely as veins or aggregates

with many quartz grains displaying undulose extinction and 

sutured crystal interfaces. The veins o f quartz are believed to

represent secondary re-mobilization of silica.

In the upper sequence and Silurian rocks, quartz which is 

present as both mono and polycrystalline, is clearly more abundant, 

(0.4-0.8 mm in diameter), almost unstrained and contains zoisite

in c lu sio n s.

F e ld s p a r

Both plagioclase and K-feldspar are present in the whole 

sequence. Plagioclase which is albite-rich in both the rock

fragments and matrix (but generally more calcic in the former 

compared to the latter (Fig 4.7 and appendix one)) is by far the most 

common mineral. The K-feldspar shows optical variations from

orthoclase to microcline but the main features is the abundance of 

microperthite which is occasionally  developed into perthite. 

Granophyric intergrowths of K-feldspar and quartz are also present

in several sections particularly in those rocks from Lower Ashgill 

and Llandovery. This texture indicates rapid cooling at low water 

pressures from near eutectic compositions and hence are typical of 

high level intrusions (Ahmed-Said, 1988). It is therefore concluded 

that the granitic material present in the sandstones was derived

from high level plutonic intrusions. Mineral alterations and

weathering are ubiquitous throughout the whole sequence but the 

main effects are sericitization and/or saussuratization o f  the 

plagiocalse components producing white micas mainly in the form 

of sericite.
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L i t h i c  f r a g m e n t s .

These are composed of igneous, metamorphic and sedimentary 

types. In the Llanvim-Llandeilo rocks (lower sequence), the igneous 

fragments are by far the most abundant of all and include mainly 

basaltic, spilitic and other lava fragments together with porphyritic 

fragments. The spilites rock fragments (1.2 mm average diameter) 

are composed mainly of sodic plagioclase laths set in a ground mass 

of interstial chlorite. The andesite fragments seen (0.7 to 1.0 mm) 

have both porphyritic and non-pophyritic texture and usually 

contain small microlites and phenocryst of plagioclase. Serpentinite 

(0.5 to 1.0 mm ) often appears as fibrous pale-green fragments.

The plutonic suites which are more abundant in the upper 

sequence are dominated by granitic fragments that contain graphic 

and granophyric-myrmekitic intergrowths. The granites (0.50 to 2.0 

mm ) are almost invariably composed of similar proportions of 

quartz, plagioclase and K-feldspar. The granophyres, which are of 

similar size to the granite clasts, show the intimate quartz-K- 

feldspar intergrowths in a graphic texture (see plates 11 &15).

The m etam orphic fragments (0.25 to 0.90 mm ) are dominantly 

metaquartzite with only minor amounts o f mica schist and slate 

clasts. The sedimentary fragments (0.80 to l.2  mm ), are represented 

in decreasing abundance by crypto-crystalline silica, radiolaria, 

jasper, silt and mudstone. In the Whitehouse Group of the Upper 

Caradoc-Lower Ashgill and the Silurian rocks, carbonates are 

additionally present.
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M a t r i x

The matrix constituents, which usually range from 15 to 20% of 

the whole rocks, contain very small unstable fragments and 

mineral constituents particularly feldspar, mica schist, chlorite and 

quartz. In the lower sequence, where there are many unstable

volcanic rock fragments and there is also an increase in the matrix. 

The opposite is true for the upper sequence where there are more 

mature sediments, less matrix and more cement .In the Silurian 

rocks, calcareous cement in the matrix is more common and has

probably replaced the small detrital grains of the matrix. This is 

consistent with previous findings where the amount of matrix in

greywacke sandstones was lower at the time of deposition but 

increased during diagenesis and the matrix may be absent from the 

greywackes because it has been replaced by calcite (Cummins 1962).

4 . 4 . Im p l ic a t io n s  of  sa ndsto ne  and g r e y w a c k e  c o m p o s i t i o n s

fo r  th e  p r o v en a n c e  areas  and te c to n ic  s e t t in g s  of  the  

G i r v a n  s e q u e n c e .

The results o f framework modal analyses o f the Girvan

greywackes are given in Appendix one, summarized in Table 4.2 and 

plotted in ternary diagrams in Figures 4.8-36.

Below, the overall provenance areas and tectonic setting trends

based on all data are first briefly discussed then the results are 

interpreted individually in geochronological order based on the 

framework mode triangles QFL, QmFLt, QmPK, QpLvmLsm, and

LmLvLs respectively. The vertical variability of certain framework
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modes are illustrated and discussed and finally conclusions are 

reached .

Table 4.2 Results of framework modal analyses and some calculated 

ratios.

1. seq. m. seq. u. seq. Sil.

values given in percentages

X a X a X a X a

Q 45.41 11.6 60.58 15 64 12.6 77.27 4.3

L 23.33 11.5 14.42 9.9 20 .6 10.5 9.55 3

F 29.66 10 25 11.4 15.13 9.4 13.72 2.8

Qm 33.4 10 47 16.1 60.8 14.6 6 6 7.1

Lt 35.23 15 28 12.8 24.46 8 .6 20.27 6.3

QP 39.87 16.8 54.7 18 49.03 19.4 75.85 9

Lv 56.81 16.6 37.2 18.9 39.28 16.7 15.85 9.8

Ls 3.3 3.6 8.1 6 11.67 10.6 8.28 4.8

Qm 50.07 13.4 64.85 18 70.07 12.3 83.78 10.8

P 42.15 16.8 26.7 17.7 23.89 11.4 12.14 11.29

K 7.35 6.4 8.65 5.5 6.03 4.6 4.07 2

values given as ratios in fractions of one

P /F 0.83 0.15 0.71 0.15 0.78 0.14 0.67 0.17

L v/L 0.94 0.06 0.79 0.13 0.78 0.16 0.63 0.18

Qp/Q 0.43 0 .12 0.45 0.07 0.40 0.11 0.47 0.03

Key to Table 4.2

Q + F + L = 100 
Qm + F + Lt = 100 
Qp + Lv + Ls = 100 
Qm + P + K = 100
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4 .4 .1  G e n era l  p r o v e n a n c e  areas  and te c t o n ic  s e t t in g s

of  the G irvan  gre yw ack es .

All framework mode analyses are shown together in Figures 

4.8-13. The provenance areas and tectonic setting fields of 

Dickinson and Suczek (1979), Ingersoll and Suczek (1979) Dickinson 

et al. (1983) are also shown in each diagram for easy comparison 

with the published results.

Figure 4.8 shows that the samples fall within two main fields on 

the QFL diagram namely: recycled orogens and magmatic arcs with 

very few samples falling within the continental block field. The 

QmFLt diagram (Fig. 4.9) is clearly more selective and indicates that 

almost all the lower sequence rocks fall within the magmatic arc 

fields (transitional and dissected) with some samples -as would be 

expected-falling within the mixed field but also within the recycled 

orogens and to much lesser extent the continental block. The 

Caradoc rocks of middle sequence also cover the above mentioned 

range but extend further to mostly fall within the mixed field but 

within the recycled orogen field as well. The Upper Caradoc-Lower 

Ashgill of upper sequence samples clearly do not plot within the 

magmatic field but plot within both mixed and recycled orogens 

only. The Silurian rocks plot almost exclusively in the quartz-rich 

recycled orogens field. Again, Fig 4.9 suggests only minor 

contributions -if any-from the continental block to the district. It is 

therefore very interesting to note that the contribution to the
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Girvan area is continuous and progressive from almost pure 

magmatic arc material during Upper Llanvim-Llandeilo through to 

almost pure recycled quartzoses during Llandovery times.

The poor nature of the Girvan sequence In Ls but somewhat 

enrichment in Lv and Qp components respectively made the 

provenance fields of Dickinson and Suczek (1979) much less 

applicable; although it is very interesting to note that none of the 

samples plot within the collision orogen sources thus excluding this

possible source for the Girvan rocks (Fig 4.10).

Figures 4 .11-2  are clearly a further support to the 

interpretations given above but Fig 4.13 is less reliable for reasons

discussed below in subsection 4.4.2.

4 .4 .2  E volution  of the provenance areas and tectonic

settings of the Girvan rocks.

QFL diagrams

The QFL diagrams show substantial and systematic changes in 

passing from Upper Llanvirn to Llandovery times. The most 

important o f these changes is the progressive and continuous 

enrichment in the total quartz, but impoverishment in the total

feldspar and to much lesser extent in total lithics.

Figure 4.14 shows that the lower sequence samples fall almost 

equally between recycled orogens and active magmatic arc 

provenances suggesting roughly similar contributions from these 

sources. Only one sample falls within the basement uplift field

which suggests that the basement was stable during these times; 

consistent with previous findings (e.g. Bluck 1983-85) where
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contributions from the basement were scarce or absent. It should 

also be noted that there was no contribution-or if  any only 

insignificantly- from the continental block.

During Caradoc more recycled orogenic material was introduced 

to the area compared to that derived from active magmatic arcs (Fig 

4.15). During these times and up to Llandovery there was still no 

noticeable contributions from the continental block.

During Lower Ashgill and Llandovery times, unroofing of the 

magmatic arc has ceased and only more quartz-rich material 

derived from recycled orogens was still being introduced to the 

basin (Figs 4.16-17). This therefore indicates that uplifting and 

erosion of the magmatic arc has stopped before the end of the Lower 

A sh gill.

QmFLt diagram s

The progressive changes described above are more enhanced 

on the QmFLt. The magmatic arc material was clearly unroofed 

mainly from transitional and dissected arcs during Upper Llanvim- 

Llandeilo times but there was less and less contribution from the 

transitional and then dissected arcs during the Caradoc and Lower 

Ashgill times respectively (Figs 4.18-19). Figures 4.20-21 suggest 

that almost pure quartz grains were recycled into the Girvan basin 

during Lower Ashgill and Llandovery times, a suggestion in 

excellent agreement with deduction from the geochemistry (see  

chapter five).
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QmPK d iagram s

In terms of QmPK (Figures 4.22-5) all the samples lie on the QmP 

leg of the diagram indicating relative impoverishment in K of the 

rocks at all times. There seems to be no clear explanation for the 

poor nature in K-feldspar of the sediments but the presence of some 

white mica and sericite suggests that K-feldspar was unstable and 

was secondarily converted into these mineral during diagenesis. 

Definite proof is lacking as no transitional phases from feldspar to 

white mica and sericite have been observed.

Dickinson and Suczek (1979) showed that sandstones derived 

from different provenance areas due to different tectonic settings 

plot on distinct areas on QmPK diagrams. The two field of active 

magmatic arc and that of continental block and recycled orogens 

are shown on all QmPK diagrams presented (see Figure 4.3). It is 

clear that the conclusions reached earlier regarding the evolution 

in composition o f the sediments are strongly confirmed. The source 

of the sediments became less arc-like through time and in Silurian 

times was replaced by material which was derived almost 

exclusively from recycled quartz-rich provenance. At the same time

the ratio o f plutonic/volcanic material increased with decreasing 

age.

Korsch (1985) noted that when sandstones do not plot within the 

magmatic arc of Dickinson and Suczek (1979) but fall in the Qm

apex, it is an indication of deeper levels o f erosion in the

continental blocks. If this deduction is true, then it can be inferred 

that the original quartz-rich material which was subsequently 

included within the recycled orogens was derived from the
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continental block (i.e. extraneous). However, with the present views 

that the Caledonides grew by accretion of displaced terranes, then it 

is possible that sources or basins may move laterally into different 

provenance areas.

Q pLvLs diagram s

The QpLvLs are even more selective and all indicate that the 

Girvan greywackes, which are poor in terms of sedimentary lithics, 

was not derived from collision orogen sources but contribution 

from the magmatic arc and recycled orogens were very significant 

( Figs 4.26-9).

From Upper Llanvim through to Llandovery times, there was a 

progressive and continuous enrichment in Qp relative to Lv but 

contributions from sedimentary lithics do not show any significant 

changes through time. Dickinson et al. (1982) argued that Qp and Ls 

are more resistant to diagenetic reactions than the volcanic lithic 

fragments (Lv) which contain unstable components including 

igneous minerals and even glass. This explanation does not hold for 

the Girvan greywackes for the rocks are poor in Ls not Lv. The only 

tenable explanation is that less and less volcanic material was 

available but more and more recycled quartz-rich material was 

being introduced to the area. This is in excellent agreement with 

conclusions reached from the QFL, QmFLt and the geochemistry (see 

chapter five).

It should also be noted that Figures 4.26-29 show that there was 

no contribution-or only very little if any-, during Upper Llanvim- 

Llandeilo times from the subduction complex. The melange now
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seen in the Ballantrae Complex was thought by Hamilton et al. 

(1984) to be part of a more extensive (possibly subduction related) 

Cambrian unit. The petrography discussed here does not support the 

views that this was a widespread unit in the provenance area at 

least.

Q pLvm Lsm  diagram s

These diagrams (Figs 30-33) are far more selective and show 

that the majority o f the lower sequence samples fall within the 

mixed magmatic arcs and rifted continental margins with many 

samples falling within the magmatic arcs and forearc areas. This 

therefore indicates substantial contributions from magmatic arc, 

forearc and rifted continental margin materials to the Girvan. 

During Lower Caradoc times there was still contribution from mixed 

magmatic arcs and rifted continental margins but by Caradoc- 

Ashgill through to Llandovery times, a large number of samples do 

not plot within any of the fields previously studied from known 

tectonic settings. These samples possibly represent recycled  

particularly quartz-rich material.

There are few lower sequence samples which plot in the Lvm- 

rich comer of the triangle thus plotting outside the field o f  

magmatic arcs, forearcs and mixed magmatic arcs and continental 

margins. Plio-Pleistocene sandstones from eastern Taiwan which 

were deposited in forearc basins adjacent to the Luzon volcanic arc 

(Chi et al. 1981) were found to plot within this area ( see also Dorsey, 

1988) which suggests by inference that Lv-rich samples from 

Girvan were derived from a magmatic arc and then deposited in an
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adjacent forearc basin, a conclusion supported by the large size and 

angular shape of the rocks fragments.

Lm LvLs diagram

These diagrams are much less reliable compared to those 

already described on account that the samples are poor in Lm and Ls 

and often, due to the low degree o f metamorphism of the 

metamorphic rock fragm ents present, d istinction  between  

sedimentary and metasedimentary lithics is almost impossible and 

therefore all samples are shown together on one diagram only 

(F ig4.13). However the available evidence suggests a mixed 

magmatic arc, continental margins and forearc sources, although 

some samples do not plot in any of the published fields probably due 

to the quartz-rich nature of the recycled sediments.

4.5  V ertica l v a r ia b ility  of som e fram ew ork  m odes  

and rock fragm ents

This aim was achieved through detailed studies o f nine 

parameters. The parameters investigated were in part those 

suggested by Ingersoll (1978) and include P/F, Lv/L, Qp/Q, QFL% Q, 

QFL% F, QFL% L, QmPK K, QmPK% P, QmPK% Qm. Once the petrofacies 

had been established, means and standard deviations are calculated, 

presented and shown diagrammatically in Figures 4.34-36.

The P/F ratio which was found to be the most important 

discriminating parameter in the Great Valley sequence, is clearly 

not an important discriminating parameter in the Girvan area; 

although there is a general tendency for the P/F ratio to decrease 

with time but only if the standard deviations are not considered. The 

Lv/L ratio is clearly the most important discriminating parameter.
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The Lv/L of both the middle and upper sequence rocks overlap over 

a large part with each other as well as with the lower sequence and 

Silurian but these latter two do not overlap with each other.(Fig 

4.34). The Qp/Q parameter is not very significant because the four 

sequences overlap with each other although it is very interesting to 

note that the Silurian rocks have a relatively homogeneous Qp/Q 

(very small standard deviation) possibly suggesting a very similar 

source for these quartz-rich rocks.

In terms of QFL% Q, F, L parameters, Figure 4.35 shows that there 

is a progressive enrichment in the total quartz but impoverishment 

in total F and lithics. Again, the Silurian rocks do not overlap with 

the Low Ordovician sequence which suggests a significantly 

different source areas for the former compared to the latter.

The QmPK% diagrams (Figs 4.36) show that the four petrofacies 

cannot be discriminated in terms of QmPK% K but the Silurian rocks 

can easily be differentiated from those of Upper Llanvim-Llandeilo 

by being poor in P and richer in Qm.

In summary therefore, the lower sequence combines low Q, Qm 

and K but to much lesser extent F and L , medium P and Qp/Q and 

high P/F and Lv/L. This is consistent with the mineralogy where 

the lower sequence greywackes are often poor in quartz and acidic 

fragments but rich in volcanic lavas, spilites, basalts and andesites. 

These trends again confirm the possibility of a magmatic arc origin 

for these rocks. The Silurian rocks on the other hand combine high 

Q and Qm, medium Qp/Q, P/F, Lv/L and low K, F, L and P. This is also
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consistent with the mineralogy for these rocks are particularly 

rich in quartz. Both the middle and upper sequence rocks span the 

range between the lower sequence and Silurian rocks suggesting a 

range of composition between those of the Upper Llanvim - 

Llandeilo and Llandovery source areas.

4.6 D iscussion and conclu sions

In the previous sections, it has been shown that there was 

progressive and continuous changes in the composition o f the 

Girvan sandstones and greywackes during Ordovician and Silurian 

tim es.

Williams (1962) and Ingham (1978) showed that the Ballantrae 

ophiolites provided the floor and partly the source of the Ordovician 

conglomerates and turbidites. These early findings are confirmed 

by the present results in that the lower sequence rocks are rich in 

basic and ultrabasic rock fragments and plot within two source 

areas namely; magmatic arcs and recycled orogens. It is probable 

that at least some o f these recycled orogen material were partly 

derived from the obducted Ballantrae Complex. However, the present 

results show that the substantial contribution came from 

dominantly dissected and to a lesser extent transitional magmatic 

arcs. Again this is in excellent agreement with previous findings 

reached from conglomerate studies.(e.g Longman et al. 1979; 

Longman, 1980; Longman et al. 1982; Bluck 1983). The composition of 

these conglomerates shows that there is a range of types. Apart 

from the basic and ultrabasic rock clasts, assumed to have been
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derived from the Ballantrae Complex, there are fine grained acidic

to intermediate clasts along with granites. These granitic clasts 

have Rb/Sr age determinations which range in age from 593 ± 28 

Ma to 451 ± 8 Ma and have chemical affinities of plutonic arc 

granites (Longman, 1980), Longman et al.(1979L  B lu ck ,(1983)

suggested they were deposited in a proximal forearc settings and 

represent material derived from a fairly dissected plutonic arc. It 

can therefore be concluded that both the conglomerate clasts 

previously studied and the composition o f the sandstones and 

greywackes presently studied indicate original contributions from 

transitional and dissected magmatic arc regimes and that they were 

deposited in a forearc or backarc basin. However the large size of 

the conglomerate clasts (over one metre) and the angular shape of 

the sandstone and greywacke rock fragments suggest very near 

source areas which therefore confirm the possibility of deposition

in a proximal forearc basin.

The description given above for the lower sequence is also

tenable for the middle sequence but not for the upper sequence 

rocks. The rocks from the latter sequence tend to be richer in acidic 

fragments and quartzitic material and plot mostly within the 

recycled orogen fields. These trends can be either the result of 

evolution in the com position of the magmatic arc or else  

introduction o f particularly quartz-rich recycled orogenic material 

from different source(s) or both.

The evolution in the composition of the magmatic arc material 

with time cannot be fully ruled out and indeed the progressive 

evolution in the composition of rocks from basic and ultrabasic-
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and lava-rich greywackes through to acidic-rich sandstones(i.e 

increasing plutonic/volcanic ratio with time, (Fig 4.3) suggest a 

regular evolution in the composition of the source areas which are 

probably the magmatic arc regions. The geochemistry also strongly 

support this conclusion (see chapter five). However, if  this

explanation is the only possibility then many of the samples would 

be relatively quartz-poor and still plot within at least one magmatic 

field on Dickinson and Suczek (1979); Ingersoll and Suczek (1979) or 

Dickinson et al. (1983) diagrams. Indeed Figures 4.8-13 suggest that 

most of the middle sequence rocks were probably derived from a 

more evolved magmatic arc but the upper sequence rocks must have 

included "extraneous material" as do the Silurian rocks. This

therefore indicates that the uplifting and unroofing o f the

magmatic arc had ceased by Lower Ashgill times. These changes in 

the provenance sources are shown diagrammatically in Figure 4.3 7.

The case o f the Silurian rocks is more complex since they are 

particularly quartz-rich so that they plot entirely within the

recycled orogen (recycled quartzoses) field but do not plot in any 

well defined tectonic field. This significant change in the

composition of the Silurian rocks is expected because there is an

Unconformity at the base of the Silurian suggesting that a new

tectonict regime may have been established. The source area of

these Silurian rocks is still problematic but can be inferred from 

the com position o f the conglomerates which were intensively

investigated (e.g Rolfe, 1961; McGiven, 1967; Cocks and Toghill, 1973;

Ingham, 1978). Most conglomerates were derived from a source area 

south of the contemporary Wenlock trench to the Solway and
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possibly beyond (Bluck, 1983). Bluck (1984) showed that the rocks

that gave the composition of the conglomerates do not exist in the 

Southern Uplands and derivation from older conglomerates of the 

type characterizing the present Southern Uplands is improbable. 

Bluck (1983) therefore suggested that an igneous basement

underlies the Southern Uplands block and that this basement was 

the source of the Silurian conglomerates in the southern Midland 

Valley.

In tectonic terms the Silurian rocks do not plot in any field

such as magmatic arc and forearc areas or continental block. The 

figures studied earlier also exclude the possibility of subduction

complex source or a rising Ordovician trench-slope break. Bluck 

(1983) noted that the Silurian conglomerates which have a source 

in acidic-intermediate igneous rocks, metaquartzite rocks and 

conglomerates with a N, NW or W derivation, share this type of 

provenance with the Llandovery and Wenlock conglom erates 

which have dispersed the from S or SE. He therefore concluded that 

the upper crustal layers of the Midland Valley extended beneath the 

Southern Uplands in Silurian times. This therefore, according to 

Bluck (1985), indicated a deposition in an inter-arc basin. However, 

on the basis of the petrography presented here there is no support 

for an inter-arc setting.
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Key to Figure 4.1-36

Figures 4.1-2: QFL and QmFLt diagrams (after Dickinson et al. 1983) to 

decipher the provenance.

Figures 4.3-4: QmPK and QpLvLs diagrams (after Dickinson and 

Suczek, 1979) to decipher the provenance areas and tectonic 

settin gs

Figure 4.5-6: QpLvmLsm and LmLvLs diagrams (after Ingersoll 

and Suczek, 1979) to decipher the provenance areas and 

tectonic settings.

Figure 4.7: C a 0 -N a 2 0 -K 2 0  diagrams showing the composition of 

plagioclase and K-feldspar from the upper and lower sequences. 

The composition of these two minerals from the matrix is also 

shown (all determined by microprobe analysis).

Figures 4.8-13: QFL, QmFLt, QpLvLs, QmPK, QpLvmLsm and LmLvLs 

diagrams respectively of all the studied samples to decipher the 

provenance areas and tectonic settings of the Girvan area.

Figures 4.14-7: QFL diagrams of the four sequences from the Girvan 

area to decipher the evolution of the sequences with time.

Figures 4.18-21: QmFLt diagrams of the four sequences from the 

Girvan area to deduce the provenance sources and tectonic 

evolution with time.
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Figures 4.22-25: QmPK diagrams of the four sequences of the 

Girvan area to deduce the provenance sources and tectonic 

evolution with time.

Figures 4.26-9: QpLvLs diagrams of the four sequences of the Girvan 

area to deduce the provenance sources and tectonic evolution 

with time.

Figures 4.30-3: QpLvmLsm diagrams of the four sequences of the 

Girvan area to deduce the provenance sources and tectonic 

evolution with time.

Figures 4.34-6: Means and standard deviations o f nine parameters 

(P/F, Lv/L, Qp/Q; QFL% Q, F, and L; QmPK% K, P and Qm) for the 

four sequences of the Girvan area (bars=la).

Figure 4.37: Possible changes in the arc-source from Upper

Llanvirn to Llandovery.

1 - Dominantly basic and ultrabasic rocks and lavas with only 

minor amounts of plutonic components.

2- Dominantly acidic rock fragments and lavas with

decreasing amounts of basic and ultrabasic components.

3 - Comparable proportions of acidic rock fragments and recycled 

Orogen materials.
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4 - Almost pure recycled orogen quartz-rich material with 

insignificant amounts of acidic rocks.
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Fig 4.37
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Plate 1: Photomicrograph from the lower sequence greywackes

(Changue Formation) showing some rock fragments and minerals. 

PL=plagioclase, Qm=monocrystalline quartz, M G=magnetite, B=basic 

rock fragment [crossed Nicols]. Bar=0.5 mm

P la te  2: P h otom icrograp h  from the lo w e r  seq u en ce

greywackes(Craigm alloch Formation) GP=granophyre, B=basic rock 

fragment [natural light]. Bar=0.5mm

Plate 3: Photomicrograph from the lower sequence greywackes

(C raigm alloch  Form ation) showing a granitic rock fragment 

[crossed Nicols). Bar=0.25 mm
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Plate 4: Photomicrograph from the lower sequence greywackes

(D arley Formation) showing spherulitic rhyolite (RY) [crossed

Nicols]. Bar=0.25 mm

Plate 5: Photomicrograph from the lower sequence greywackes

(Kirkland Formation) showing large roch fragments of serpentinite 

(SP) [crossed Nicols]. Bar=0.25 mm

Plates 6&6*: Photomicrograh from the lower sequence greywackes 

(changue Formation) showing an euhedral crystal o f rutile (RU, in 

P6*) and garnet (GT in P6) ] P6=natural light and P6* crossed 

Nicols]. Bar=0.6 mm for P6* and 0.25 mm for P6
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Plate 7: Photomicrograph from the lower sequence greywackes 

(InfraK ilrany Form ation) show ing some rock fragm ents and 

minerals. B=basic rock fragments, BS=basalt, QF=K-feldspar [natural 

light]. Bar=0.5 mm

Plate 8: Photomicrograph from the lower sequence greywackes 

(Infrakilrany Form ation) show ing a dolerite rock fragm ent

[natural light]. Bar=0.25 mm

Plate 9: Photomicrograph from the middle sequence greywackes 

(Cascade Grits) showing some minerals. PL=albitic p lagioclase, 

KF=K-feldspar, Qm=monocrystalline quartz. Not the abundance of 

quartz [crossed Nicols]. Bar=0.5 mm
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Plate 10: Photomicrographfrom the middle sequence greywackes

(W hiteliouse Group ) showing some rock fragments and minerals. 

PL=plagioclase, KF=K-feldspar, MQ=metaquartzite [crossed Nicols]. 

Bar=0.5 mm

Plate 11: Photomicrograph from the lower sequence greywackes 

(InfraKilrany Formation) showing euhedral crystal o f  rutile (RU) 

and a granophyre rock fragment (GP) [crossed Nicols]. Bar=0.25 mm

Plate 12: Photomicrograph for the lower sequence greywackes

(Kilrany Formation) showing cherts [crossed Nicols]. Bar=0.25 mm
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Plate 13: Photomicrograph from the lower sequence greywackes

(Cascade Grits) showing zoisite inclusions (Z) in quartz (Q) [crossed

Nicols]. Bar=0.25 mm

Plate 14: Photomicrograph from the upper sequence greywackes

(Shalloch Formation) showing some rock fragments and minerals. 

Qm= monocrystalline quartz, CH=chert fragment [crossed Nicols]. 

Bar= 0.5 mm

Plate 15: Photomicrograph from the upper sequence greywackes 

(Shalloch Formation ) showing a granophyre rock fragment (GP) 

[crossed Nicols]. Bar=0.25 mm
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Plate 16: Photomicrograph from the upper sequence greywackes

(Shalloch Formation) showing cherts [crossed Nicols]. Bar=0.25 mm

Plate 17: Photomicrograph from the upper sequence greywackes 

(Shalloch Formation) showing a detrital grain o f chlorite (DC) 

[crossed Nicols]. Bar^0.25 mm

♦

Plate 18: Photomicrograph from the upper sequence greywackes 

(W hitehouse Group) showing bended m ica (M) [natural light]. 

Bar=0.25m m
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Plate 19: Photomicrograph from the Silurian rocks (Craigskelly

Formation) showing some minerals. M C=m icrocline, Qm=mono- 

crystalline quartz, PL=plagiolcase, KF=K-feldspar. Note the absence 

o f basic rock fragments and minerals [crossed Nicols]. Bar=0.5 mm

Plate 20: Photomicrograph from the Silurian rocks at Woodlands 

Point showing polycrystalline quartz (Qp) and K -feldspar (KF) 

[crossed Nicols]. Ban=0.25 mm

Plate 21: Photomicrograph from the Silurian rocks at Woodland 

Point showing a crystal of microperthite (MP) [crossed  N ico ls]. 

Bar=0.25mm
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CHAPTER FIVE GEOCHEMISTRY

5.1 INTRODUCTION

There has been a good deal of interest during the last 18 years in 

interpreting the origin o f sandstones and greywackes from their 

petrographic characters, and in particular using the nature and 

abundance o f the detrital grains to establish petrofacies o f the

sedim ents. The identification of plutonic and volcanic, metamorphic

or sedim entary source terranes is clearly a m ost significant 

constraint in plate tectonic reconstructions. However, during the

last decade much effort has been expended in interpreting the

relationships between whole rock chemistry o f sedim ents, their 

provenance areas and hence the plate tectonic environment of 

formation. This interest partly stems from the earlier ideas o f  

Dickinson (1970) and his coworkers (e.g Dickinson and Seely, 1979, 

Dickinson and Suczek, 1979, Ingersol and Suczek, 1979, Dickinson et al. 

1982) who presented evidence to show that petrography is related to 

source areas which in their turn are controlled by tectonic settings

(see chapter four).

H owever, the application o f these early proposals to older

sedimentary suites are most significant but can be hindered by

many disadvantages particularly if  the sediments were affected by

diagenetic alterations, medium- to high-grade metamorphism and/or 

secondary alteration. Whilst these influnces can make some changes 

to the original chemistry (e.g Bhatia, 1983; Roser and Korsch, 1986, 

van de Kamp and Leake, 1985; Argast and Donnelly, 1987) they are
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not thought to be so radical that all the original signatures are 

providing suitably resistant elements are studied.

W hile the chem ical com position o f a rock suite could be 

indicative of its provenance, there is only very little published work 

(e.g Schwab, 1974; Bhatia, 1983; van de Kamp and Leake, 1985, Roser 

and Korsch, 1986) on the chemical com positions o f sedimentary 

suites from known provenance areas and w ell defined tectonic 

settings .

An important group o f studies (e.g Bhatia, 1983; Roser and 

Korsch, 1986) used some variant o f discriminant analyses to group 

characteristic sediment com positions into broadly defined tectonic  

or sediementary environments. Isotopes, rare earths and major and 

trace elements are also often o f great importance as discriminating 

criteria. For instance, it has long been suggested that various 

sandstone types can be distinguished on the basis of the SiC>2 content 

and K2 0 /N a 20  ratio (Middleton ,1960; Crook, 1974; Schwab, 1975). 

Pettijohn (1963) showed that the K contents o f sandstones increase 

with decreasing grain size and that greywackes have lower SiC>2 , 

higher AI2O 3 , magnesium and excess Na20  over K2O than do most 

sandstones. Maynard et al. (1982) carried out major and trace 

elem ents determinations on modern deep sea turbidite sands and 

suggested that sands from forearc basins and the passive margins 

are distinct but that sands from other settings cannot be separated 

on the basis o f bulk composition. Bhatia (1983) noted that the oceanic 

island arc sandstones dom inantly derived from ca lc-a lk a line  

andesites have higher abundance of T i02, A1203, Na20,and Fe203 and
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lower abundance o f S i0 2  and K 20 compared to all sandstones. The

continental island arc sandstones, dominantly derived from felsic  

volcanic rocks, have higher S i02 , K 20, and the K 20/N a20 ratio (=0.60) 

and lower Fetot + MgO than the oceanic island arc sandstones. The

active continental margin sandstones are dominantly derived from 

the uplifted basement and reflect the com position o f the upper 

continental crust in their higher S i0 2  and K 20  contents and 

K 2 0 /N a 2 0  = 1. The passive margin type sandstones could not be

charaterized due to their large chemical variations but sometimes 

overlap w ith those o f  the continental m argins. They are 

significantly enriched in S i02  and depleted in A1203, T i02, N a20, and 

CaO and have a K 20/N a20 r a t io  1. Although Roser and Korsch (1985) 

have criticized these criteria, Van De Kamp and Leake (1985) found

that their results on the northern Pacific margin to be generally but

not invariably compatible with those of Bhatia (1983).

5.2 O b j ec t iv e s  o f  the s tu dy

From the Girvan district 222 sam ples o f  greywackes and 

sandstones from 19 localities 196 samples from Ordovician and 16 

from Silurian rocks, have been analyzed for the all major and 12 

trace elem ents using x-ray fluorescence technique as decribed by 

Harvey et al. (1973) and Leake et al. (1969) respectively. The main 

aims were to determine if  there are any vertical changes in the 

chemistry o f  the rocks and relate them where possib le to the 

evolution in the magmatic arc as deduced from the petrography, 

establish the general chemistry o f the Girvan sequence relate the 

rock geochem istry to petrography and look for elem ents which 

show co-variance so that a better idea of arc evolution is possible. In 

the section below, the vertical variability o f certain elements is first
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established, followed by the general geochemistry of the Girvan 

sequence. Next the chemisrty is used as a guide to the evolution of

the source areas and the tectonic settings of the source area are

investigated and finally some conclusions are attempted.

5 . 3  V e r t i c a l  v a r i a b i l i t y

The major and trace elem ents contents o f the rocks from the

Girvan sequence are given in appendix two, statistically summarized 

below in Table 5.1 and diagramatically shown in Figures 5.1-12.

Table 5.1 Summary statistics o f the major and trace elements in the

Girvan sequence

1. 2. 3. 4.

X a X a X a X a

Major elements (wt%)

Si02 71.04 6.93 61.51 8.89 60.29 8.12 60.79 7.43

Ti02 0.79 0.12 0.76 0.17 1.01 0.37 0.93 0.28

A1203 9.06 2.50 9.72 1.65 11.49 2.07 11.82 1.14

Fetot 4.91 1.63 5.14 1.47 7.12 1.70 7.46 1.80

MgO 2.24 1.30 2.46 0.93 3.85 1.51 5.49 1.88

MnO 0.08 0.02 0.18 0.15 0.14 0.14 0.20 0.63

CaO 2.60 1.92 8.32 5.97 5.50 4.62 3.63 3.50

Na20 1.81 1.04 2.25 0.64 2.70 0.72 2.91 0.45

K20 1.01 0.28 0.86 0.45 0.93 0.35 1.32 0.39

P205 0.11 0.02 0.08 0.06 0.11 0.03 0.15 0.19

cn td
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Table 5.1: Continued

1. 2. 3. 4.

X a X a X a X a

Trace elements (ppm)

Rb 35 10 21 11 20 11 31 13

Ba 242 82 190 116 183 73 233 104

Sr 145 68 249 144 143 50 107 33

Zr 274 71 151 74 140 76 144 27

Ga 11 3 10 2 14 8 12 2

Cb 11 8 11 5 22 17 24 8

Ni 22 12 27 19 64 45 173 94

Cr 87 38 99 44 179 118 439 219

Cu 12 7 9 6 26 9 15 10

Zn 57 32 48 15 58 14 64 11

Pb 6 3 5 4 6 3 5 2

La 21 7 14 5 20 29 16 10

Ce 43 15 28 14 32 32 27 25

Y 26 10 26 7 30 25 26 3

Th 5 2 2 1 5 25 2 2

key to Tab le  5.1

1= (Llandovery) = average of 16 samples

2= (Upper Caradoc-Lower Ashgill) = average of 22 samples

3= (Caradoc) = average o f 72 samples

4= (Upper Llanvim-Llandeilo) = average of 102 samples.

x = average and a  = standard deviations.

As Table 5.1 and Figures 5.1-12 show, There are progressive and 

continuous chemical changes in passing from the Upper Llanvim
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through to Llandovery. The Llandovery samples tend to be poorer in 

MgO, Fetot, Cr, Ni and to a lesser extent N a20 and CaO but are 

somewhat richer in S i02  and Zr compared to the Upper Llanvirn 

rocks. K 20, Ba, Sr and Rb are rather inconclusive due to their large 

standard deviations. Rocks from the middle and upper sequences 

frequently span the range between the lower sequence and Silurian 

rocks. This is consistent with the petrography where the basic lithic

fragm ents decrease system atically in passing from the Upper 

Llanvirn to Llandovery but the quartz contents generally increase 

with time especially in the Silurian.

5.4  G e n e r a l  g e o c h e m is try  o f  th e  G i r v a n  s e q u e n c e

Fetot (as F e203) exhibits a good positive correlation with MgO 

throughout the whole sequence (Fig 5.13) which indicates that these

elements are probably held in the mafic and utramafic components 

(i.e  in the ferromagnesian minerals such as chlorite, amphibole,

pyroxene), although some Fe is certainly com ing in pyrite,

magnetite and ilmenite, minerals that are sometimes present in the 

Girvan sequence.

Both Cr and Ni show excellent positive correlation between each 

other(Fig 5.14) and both elements correlate well with Fetot + MgO

(Figs 5.15-16) which suggests that these elements and probably also 

Co are held in amphibole, pyroxene and chlorite.

There is no obvious correlation between Na20  and CaO (Fig 5.17)

as if  plagioclase is not the only control over Ca and probably also Sr 

(Fig 5.18). Although this is partly due the fact that plagioclase is o f 

albite-rich nature, it is probably because much o f Ca and Sr are 

probably com ing in carbonate m inerals, epidote and K-feldspar;



1 2 4

minerals that are frequently present in the sequence.

A I2O 3 exhibits the usual positive correlation with Ga (Fig 5.19) as 

is favoured by their similar ionic radii and charges. Sample AK1 is so 

abnormally high in Ga that an analytical error is very likely.

Both Rb and Ba exhibit very good positive correlations with K 20  

(F igs 5 .20-21) which indicates that both elem ents are com ing  

essentia lly  in K-feldspars and m icas (where present). La and 

probably also Ce and Th (only the diagram of Ba versus La is shown 

in Figure 5.22) are therefore also held in K-feldspar, biotite and 

muscovite. Sample Af 26 is exceptionally high in La and sample TB21 

in Ba that an analytical error is probable.

Senior and Leake (1978) noted that the parameter N iggli al-alk 

provides a measure o f Al in the original sediments contained in the 

clay minerals and micas rather than Al added in feldspar because al- 

alk in albite and K-feldspar is zero while detrital anorthite-rich 

plagioclase is absent from the Girvan sequence (see F ig .4 .7). 

Therefore, Figures 5.23-28 suggest that at least some K, Rb, Ba, La and 

Th and to lesser extent Sr were dominantly added in clay minerals, 

where as,the lack o f either a positive or negative correlation o f sr 

and al-alk show that sr was neither. It is very likely that some Ba and 

Sr were added in detrital feldspar, probably K-feldspar, because 

Figures 5.17-18 exclude Sr to have been added in plagioclase feldspar. 

The good positive correlation of Niggli al-alk and Niggli ti (Fig 5.29) 

indicates that Ti was predom inantly originally added in clay  

minerals and micas but with some caused by minor detrital ilmenite, 

rutile and magnetite dominantly added in clay minerals nor totally
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exluded from them.

Zr also seems to have been partly added in clay fractions (Fig 

5 .3 0 ) , a lthough it was probably also added in detrital 

zircons,especially for the high zr values.

None o f the strongly compatible elements Mg, Cr, Ni and probably 

also Co were added in the clay fractions (Figs 5.31-33) but were 

substantially held in the mafic and ultramafic rock fragments and 

this suggestion is supported by the good positive correlation of

Niggli mg with Co, Cr, and Ni (Figs 5.34-36).

5 .5  M a j o r  an d  t r a c e  e l e m e n t s  as a g u i d e  to m a g m a t i c

ev o l u t i o n

The results o f the major and trace elements are summarized in 

Table 5.1 and portrayed in terms o f Harker type diagrams in Figures

5.37-49. In these digrams, the wt% of the principale oxides of each 

analysed rock sample are plotted against the wt% S i02 ; the

assumption being that silica  percentage represents the stage o f  

magmatic evolution that has been reached. However, the "constant

sum effects" should be taken into considerations before reading any 

petrogenetic significance into these diagrams (Chayes, 1964). The 

constant sum effects result from the fact that the major oxides taken 

together make up almost 100% of the rock analysis and since the wt% 

S i0 2  is by far the most abundant constituent o f most rock types, at

least some negative correlations with S i0 2  are therefore expected

among the other oxides irrespective o f petrogenetic considerations. 

These effects are not clearly noticeable in Figures 5.37-43 because of 

the great chemical variations o f the rocks although the steep slope

of Fetot + MgO may be due partly to these effects. Definite proof is
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lacking, however.

There are great chemical variations among the three sequences 

(i.e lower, middle and upper), although it is very interesting to note 

that the variations are continuous, progressive and show very 

similar trends. S i02  increases with decreasing A1203, CaO, MgO, Fetot, 

Fetot + MgO but increases with increasing K 20 and to a lesser extent 

N a20 Figs 5.37-43). These trends coupled with the large range in Si02  

contents among the Ordovician rocks (S i02  ranges from as low as 38 

wt% up to 75 wt%) indicate that the Ordovician rocks must have been 

derived from a dominantly magmatic source that ranged from pure 

basic and ultrabasic rocks (i.e less differentiated) through to pure 

acidic rocks (i.e most differentiated). The chemical data are equally 

consistent with one fractionating magma series or a number of  

totally unrelated magmatic rocks varing from basic or ultrabasic to 

acidic. The available geochronology of the clasts supports the second 

alternative. However, the rocks from the lower sequence, although 

they span the range stated above, they tend to cluster between 60 

and 70 wt % S i02  and are particularly rich in K 20 and poor in CaO 

indicating that they included both basic and acidic components.

Both the middle and upper sequences vary within large limits in 

term s o f  their major elem ents and generally no sign ificant 

differences could be found between the two set o f rocks.

The ev idence presented above therefore indicates that the 

Ordovician rocks were probably dominantly derived from the same 

magmatic source and the continuous and progressive chemical and 

m ineralogica l changes described above and in chapter four
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respectively are related to the evolution in the com position o f the 

magma, although, as deduced from the mineralogy, some recycled 

sedim entary and m etasedim entary m aterial m ight have been 

incorporated especially during Lower Ashgill.
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Among the Silurian rocks studied, many o f the conclusions 

remain equivocal because of the small sample size analysed in this 

study (16 samples). However, the available analyses show that MgO, 

Fetot, Fetot + MgO, A1203, CaO and to a much lesser extent N a20  

decrease with increasing silica. The case o f K 20 is much more 

complex and rather equivocal. The majority of the samples reveal a 

weak but positive correlation with S i0 2  while few other are 

particularly Si02-rich but K 20- and also Na20-poor that they plot 

separately from the remaining samples (Fig 5.38, 5.42). If all the 

Silurian rocks have originated from acidic igneous rocks only, then 

S i0 2  should exhibits a good positive correlation with both K 20 and to 

some extent Na20 but this is not the case in the studied area. The only 

tenable explanation therefore is that the Silurian rocks must have 

incorporated some quartz-rich sedim entary and m etasedim entary  

material. This is in excellent agreement with petrographic evidence 

where the rocks contain in addition to granitic fragments, abundant 

quartz and quartzite fragments. Previous findings by Bluck (1983) 

that pre-existing sedimentary conglomerates have contributed to the 

Silurian conglomerates is clearly a further support to the present 

c o n c lu s io n .

The trace elements generally mirror their major equivalents in 

that Rb, Ba, and to some extent Zr increase with increasing S i02  (Figs 

5.44-46) whereas Cr, Ni, and to some exetent Sr increase with 

decreasing silica  in passing from Upper Llanvirn through to 

Llandovery (Figs 5.47-49) thus confirming the conclusions reached 

from the major elements.

5 .6  C o m p a r i s o n  o f  the  c h e m i s t r y  o f  the  G irv a n  s e q u e n c e



1 3 0

w ith  p u b lis h e d  te c to n ic  s e t t in g s  d ed u c e d  fro m  the  

chem istry

5.6 .1  M ajor e lem en t geoch em istry

Literature analyses o f sandstones and argillites/sha les from 

ancient sedimentary sequences o f inferred tectonic setting have 

been used by Roser and Korsch (1986) to establish a tectonic 

classification based on the S i02  contents and K 20/N a20 ratios o f rock 

samples, these authors, who suggested that individual data should be 

used rather than averages so that trends can be highlighted, defined 

three main tectonic fields namely: Oceanic Island Arc, A ctive

Continental Margin and Passive continental Margins. These three 

parameters will hereafter be referred to as ARC, ACM and PM 

respectively following Bhatia (1983). These three tectonic fields are 

precisely reported in Figure 5.50 in which the data from the Girvan 

sequence are also plotted to descipher their provenance areas and 

tectonic setting.

As Figure 5.50 shows, most o f the Girvan rock samples fall within

the ARC field with relatively fewer samples falling within the ACM

field. This therefore indicates that the substantial contribution from 

the magmatic arc material was possibly accompanied by little

contributions from the continental block. However, only 2 /16th o f  

the Silurian rocks fall within the ARC field which strongly support 

previous conclusions that these rocks were derived from magmatic 

origins but with substantial contributions from sedimentary sources. 

Petrographic results also excellently agree with this conclusion. 

Four of the Silurian samples fall well within the PM field which 

might suggests that the recycled quartz-rich materials were derived
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from passive margins, although this suggestion does not seem to be 

shared by the petrography (see chapter four) and Figures 5.53-57  

(see below).

Roser and Korsch (1986) showed that the forearc basin sediments 

of Baldwin Formation sediments of the Baldwin Formation Austaralia 

(Chappell, 1968), and the Vyak and Cape current greywackes fall 

within the arc field, Alaska (Connelley, 1978) which were deposited 

in a trench adjacent to an active volcanic arc. Within the ACM field, 

fall the Franciscan Complex, California (Bailey et al. 1964; Taliaferro 

1943) and Kodiak Formation, Alaska (Connelley, 1978) which were 

incorporated into an accretionary w edge, and the Santa Ynez 

M ountains, California (Van De Kamp et al. 1976) which were 

d eposited  in a com plicated continental margin where both

subduction and strike-slip  processes were active. Hence, this

category includes complex active margins which were deposited in a 

variety o f basin settings including trench, forearc, interarc and

backarc. Therefore, in terms of ARC field, it can be inferred that 

most o f the Girvan sequence was deposited in a forearc basin. The 

depositional environment of the rocks plotting inside the ACM field 

are very difficult to delimit because various sources could lead to the 

same plotting. For instance, data of Valloni and Maynard (1981) for 

modern marine sediments which plot within the ACM field have 

been discussed by Roser and Korsch (1986) who found that these 

rocks could have been deposited in backarc basin or leading edge

settings. This therefore indicates that the diagrams proposed by

Roser and Korsch (1986) are indeed useful but only broadly in 

distinguishing the source areas and tectonic settings but cannot be
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used as guides to more detailed interpretations.

The Girvan data are also represented on a C a0-N a20-K 20 ternary 

diagram in Figure 5.51 to further deduce the contributing  

constituents from chemical analyses. Also plotted are the average of

andesite (A), dacite (D), granodiorite (G*) and granite (G) after le 

Maitre (1976) and the two fields representing rocks derived mainly 

from oceanic island arc and continental island arc after Bhatia 

(1983). As illustarted in Figure 5.51, the Girvan samples fall almost

equally within the two fields outlined with many samples falling  

outside the two fields. However, this diagram is clearly much less 

reliable than that proposed by Roser and Korsch (1986) on account 

that the defined fields were based on a relatively few samples, the 

effect o f carbonate present in the matrix has not been taken into 

account and albitization o f p lagioclase could have also been 

enhanced. However, it is very interesting to note that most o f the 

samples plot near the andesite, dacite and granodiorite composition  

of Le Maitre (1976), in agreement with the mineralogy where the 

Ordovician rocks are composed mainly o f basic and intermediate

rock fragments but also with some acidic material. Some o f the 

middle and upper sequence and Silurian rocks plot in the CaO apex

due the abundance o f carbonate in the matrix mainly as calcite and 

dolom ite.

The substantial contribution of andesitic and basaltic material to 

the Ordovician rocks o f the Girvan sequence is also highlighted by 

the K 20-N a20 scatter diagram (Fig 5.52) in which the fields of basalts, 

andesites, granites and subalkaline tholeiites after Condie and 

Snansieng (1971) are also reported. However, as shown in chapter
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four, granitic rock fragments are present especially in the upper 

sequence, but the data when plotted on the K 20-N a20 diagram do not 

show this. This trend is probably caused by the fact that some K may 

have migrated due to its highly mobile nature or more probably is 

caused by the mixing o f various amounts o f volcanic, basic and 

ultrabasic, granitic and sedimentary components.

Bhatia (1983) showed that there is a progressive decrease in Fetot 

+ MgO, T i02, and A1203/Si02 and increase in K 20/N a20 and A1203/(Ca0 

+ N a20) in sandstones from oceanic island arc to continental island 

arc to active continental to passive margins. Fe and Ti are most 

useful because o f their low mobility and low residence times in sea­

water (Holland, 1978). Although Mg has a high residence time in 

sea-water, it w ill remain unchanged in the continental-margin type 

sandstones deposited by turbidites during burial because o f the low  

permeability o f these rocks (Blatt et al. 19801. The ratio A 1203/S i02  

gives an indication o f the quartz enrichment in sandstones. The 

ratio K 2 0 /N a 2 0  is a measure o f the K-feldspar and mica versus 

plagioclase content in the rock, and the A 1203/(C a0+N a20) parameter 

in the ratio of the least mobile to the most mobile elements

The average o f  the above m entioned five parameters are 

compared with those for the Girvan sequence in Table 5.2 and 

compared in Figures 5.53-57. In these diagrams, the T i02 , A1203/Si02, 

K 20/N a20 and A1203/(Ca0+Na20) are plotted versus Fetot + MgO and 

the tectonic settings o f Bhatia (1983) are also shown for comparison.

As is clear from Table 5.2, the Ordovician rocks show a wide range 

of T i02 , Fetot+MgO, A 1203/Si02, K 20/N a20  and A 1203/(C a0+N a20)
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values but they suggest contributions from both the continental and 

possibly oceanic arcs. However, the A 1203/S i02 ratios tend to be 

lower in the Girvan sequence so that they coincide with the upper 

limits of those from the continental arcs. This is expected because as 

shown in chapter four many o f the Ordovician rocks include in 

addition to the dominantly continental and oceanic arc-derived rock 

fragments some recycled quartz-rich material which was probably 

derived from active continental margins. These trends are not 

highlighted by the somewhat different major element contents o f  

the Girvan sequence with those o f Bhatia (1983)(see Tables 5.3-4) 

probably because of the few samples given by Bhatia and the large 

standard deviations exhibited by the analysed samples due to the 

large geochem ical heterogeneity o f the rocks.

Inspection of Figures 5.53-57 show that only very few samples, if 

any, fall within the fields o f passive margins and continental 

margin suggesting only very little or no contribution from these 

two sources to the Girvan sequence at all times; in agreement with 

the conclusions reached from the petrography discussed in chapter 

four. However as is clear from the Figures, the tectonic fields o f 

Bhatia (1983) are rather small due to the selective nature o f the 

rocks he used and the small sample size and there fore these fields 

cannot be used reliably to decipher the source areas and tectonic 

settings o f particularly heterogeneous rocks such as those o f Girvan. 

However, as suggested by Van De Kamp and Leake (1985), the general 

trends should be used rather that the absolute values or fields. 

Despite the possible complicating factors such as contributions from 

som e quartz-rich recycled material to alm ost all the Girvan 

sequence, (i.e not all the material was derived from only one source)



1 3 5

at any age as deduced from chapter four and supported by the 

relatively low A 1203/S i02 ratio, many samples do fall within two 

fields o f Bhatia (1983); the oceanic and continental island arcs 

confirming these two possible sources. It should be noted, however, 

that the Silurian samples are not shown in Figure 5.55 because some 

samples have abnormally high K 20/N a20  ratios, obscuring the real 

trends of the Ordovician rocks (see Figure 5.56).
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Table 5.3 Average chem ical com position o f  sandstone from 

various tectonic setting(after Bhatia, 1983) given on the basis of 

volatile free basis.

oceanic island c o n t in e n ta l active contin passive m

arc island arc ental margin

X a X CT X a X a

Si02 58.83 1.6 70.69 2.6 73.86 4.0 81.95 6.2

Ti02 1.06 0.2 0.64 0.1 0.46 0.1 0.49 0.2

AI203 17.11 1.7 14.04 1.1 12.89 2.1 8.41 2.2

Fe203 1.95 0.5 1.43 0.5 1.30 0.5 1.32 1.6

FeO 5.52 2.1 3.05 0.4 1.58 0.9 1.76 1.2

MnO 0.15 - 0.1 - 0.1 - 0.05 •

MgO 3.65 0.7 1.97 0.5 1.23 0.5 1.39 0.8

CaO 5.83 1.3 2.68 0.9 2.48 1.0 1.89 2.3

Na20 4.10 0.8 3.12 0.4 2.77 0.7 1.07 0.6

K20 1.60 0.6 1.89 0.5 2.90 0.5 1.71 0.6

P205 0.26 0.1 0.16 0.1 0.09 - 0.12 -

Total 100.00 100.00 100.00 100.00

Fe203+Mg0

11.73 6.79

A1203/Si02

0.29 0.20

K20/Na20

0.39 0.61

A1203/(Ca0+Na20)

1.72 2.42

4.63

0.18

0.99

2.56

2.89

0.10

1.60

4.15



1 3 7

Table 5.4 Average chemical composition o f sandstones from the 

studied area recalculated to 100% on a volatile-free basis.

1. 2. 3. 4.

X a X o X CT X a

Si02 75.85 6.93 67.43 8.89 64.73 8.12 64.37 7.43

Ti02 0.84 0.76 1.08 0.98

A1203 9.67 2.50 10.65 1.65 12.34 2.07 12.50 1.14

Fetot 5.24 1.63 5.63 1.47 7.12 1.7 7.9 1.80

MnO 0.08 0.02 0.20 0.15 0.15 0.14 0.2 0.63

MgO 2.40 1.30 2.70 0.93 4.14 1.51 5.80 1.88

CaO 2.78 1.92 9.12 5.97 5.90 4.62 3.63 3.50

Na20 1.94 1.02 2.46 0.64 2.90 0.72 3.07 0.45

K20 1.08 0.28 0.94 0.45 1.0 0.35 1.40 0.39

P205 0.12 0.02 0.09 0.06 0.12 0.03 0.15 0.19

Total 100.00 100.00 100.00 100.00

1 = average o f 16 Llandovery samples

2 = average of 22 upper sequence samples

3 = average o f 72 middle sequence samples

4 = average of 102 lower sequence samples

5 .6 .2  T race  e lem en t geoch em istry

The trace elem ents could be very important indicators o f the 

source areas and tectonic settings o f sedimentary suites but have 

been little used for this purpose Only three papers (Condie and
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Snansieng , 1971; Bhatia and Taylor, 1981; Van De Kamp and Leake, 

1985) could be found and all deal only briefly with the source areas 

or tectonic setting.

Early workers (e .g  Prinz, 1967) showed that the major 

proportions of Cr present in basaltic magmas are incorporated in 

early crystallized ferromagnesian minerals because of its strongly 

compatible nature. Shiraki (1966) argued that the ratio o f mafic to 

granitic rocks in provenance sources is important in controlling the 

Cr contents in clastic sediments. Golberg and Arrahenius (1958) 

noticed a decrease in the contents o f Cr in deep sea samples with 

increasing distance from the Hawain islands and suggested that an 

excess o f Cr over 100 ppm in the pelagic sediments indicate 

substantial contribution from basaltic pyroclastics. A frequency 

distribution of Cr in basalts is given below in Table 5.5. the average 

Cr, Ni and Co of the Girvan sequence are also given for comparison.

Table 5.5: Frequency distribution o f published contents in Cr of 

basalts. The values of Cr, Ni and Co from the studied area are also 

given for comparison

C r(ppm ) N i(ppm  C o(ppm )

P u b lish e d  r e s u l t s

Basalts from mid oceanic 300

ridge and ocean floor 

Basalts from oceanic islands 250

Basalts from continents 200

cn td
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Table 5.5: Continued

G irvan  a r e a

L la n d o v ery 87 22 11

upper sequence 99 27 11

middle sequence 179 64 22

lower sequence 439 173 24

- unpublished

In general terms, higher means o f these three elem ents are 

found in the lower sequence and decrease in passing from this 

through to the Silurian. The average o f Cr in the lower sequence 

rocks is clearly greater that 300 ppm suggesting sign ificant

contributions from basaltic rocks equivalent to those derived from

oceanic ridge, ocean floor and oceanic islands. The high Cr values in 

the Girvan sequence is probably related to significant contributions 

from the Ballantrae complex. The tendency of Cr and Ni and to some 

extent Co to decrease towards the Silurian suggests incorporation of  

more intermediate, acidic and possibly sedimentary components with 

time. This result is in excellent agreement with conclusions reached 

from Harker-type diagrams (see Figs 5.37-49) and from Figures 5.51- 

52 of C a0-N a20-K 20 and K 20 versus Na20 respectively.

H ow ever, as can be deduced from the petrography and

geochem istry, most of the rocks from both the lower and middle

sequences were derived from basaltic and andesitic rocks, the values 

of Cr, Ni and Co are suggested as indicators of proximity to arc. These 

elem ents are preferred to the more compatible elem ents as the
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latters are easily affected by many geological processes su ch  a s  

diagenesis and oxidation.

The dominantly andesitic and basaltic components forming much 

of the Ordovician rocks are clearly not confirmed by the Sr versus 

Ba diagram (Fig 5.58). This trend is caused almost certainly by the 

clear depletion of the sequence in Sr rather than in Ba because the 

average Ba and Sr in andesites for instance are 270 ppm and 385 ppm 

respectively compared to 233 ppm Ba and 107 ppm Sr in the lower 

sequence for instance. These low Sr contents probably reflect the

abundance o f Sr-poor calcite cement formed during diagenesis and

mixing o f various rock fragment types

5.7 D iscu ssion  and co n c lu sio n s

The detailed geochemical investigations resulted in a number o f  

interesting deductions as regards both the vertical variability o f the 

elements and tectonic settings o f the Girvan sequence.

The vertical variability o f the chemical elements is particularly 

intriguing because o f the somewhat system atic and continuous 

changes that taken place. In passing from the Llanvirn through to

the Llandovery rocks, those com patible elem ents which are

commonly enriched in mafic and ultramafic rocks, such as Mg, Fe, Cr 

and Ni and to some extent Ca and Co have a general tendency to 

decrease whereas the more incom patible elem ents, such as Zr 

generally increase. The elements K, Ba and Rb should also increase 

but the available data are rather inconclusive due to the large 

standard deviation. These elem ents did not increase probably
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because they are relatively mobile under oxidizing and weathering 

conditions and diagenetic processes compared to the compatible 

elements Mg, Fe, Cr and Ni and hence cannot be so informative about 

the original sedimentary processes.

The systematic decrease of the mafic elements with age agrees 

excellently with the petrography where the mafic and ultramafic 

rock fragments progressively decrease in the upper sequence and 

Silurian rocks. In chapter four it has been argued these systematic

changes have probably resulted from the evo lu tion  in the 

com position o f the magmatic arc material (i.e  from the least 

differentiated to the most differentiated ) with age and this 

argument can be examined further based on geochemical evidence.

If the decrease in the mafic minerals and hence the elements Mg,

Fe, Cr, Ni etc is the result of the normal compositional variations of a

crystallizing magma (i.e from basic to acidic) then, these elements 

should correlate negatively with the differentiation index (S i0 2 )  

whereas the incompatible elements (K, Rb, Ba etc) should correlate

positively. Indeed Harker-type diagrams as discussed in subsection 

5.4 show that it is the case, thus confirming deductions reached from 

the petrography that much of the vertical chemical variation is due

to changes in the com position o f the magmatic arc material.

However, as Figures 5 .37-49 show thereis great chemical variation 

among samples from the whole sequence which probably suggest 

that not all the material-forming the rocks was derived from the

magmatic arc. This suggestion coupled with the large variation in 

the S i0 2  content in the lower sequence rocks (i.e the most mafic-

bearing rocks) su ggests  contributions from  other sources
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particularly sedimentary or metasedimentary sources as highlighted 

by the presence of quartzite rock fragments and quartz grains.

The Silurian rocks do indeed plot in the quartz-rich end of 

Harker-type diagrams but usually overlap with the Ordovician rocks 

and exhibit similar trends. This suggests that either the magmatic 

portions o f these rocks were derived from the same magmatic source 

(ie the same magma series) or they were derived from a range of  

unrelated m agmatic with variable basic to acid com position  

G eochem ical evidence alone cannot answer this question but as 

discussed in chapter four, Longman et al. (1979) showed that granitic 

clasts from the Silurian conglomerates are different in age from 

those from the Ordovician thus favouring the second possibility.

As regards the use of geochemistry as a guide to provenance 

areas and tectonic settings it has been shown that most of the rock- 

form ing constituents were dom inantly derived from basic to 

intermediate igneous rocks with possible contributions from both 

granitic and sedimentary/metasedimentary sources The T i0 2  and 

Fetot+MgO contents and K 20/N a20, and A 1203/(C a0+N a20) parameters 

o f the Girvan area also agree well with those proposed by Bhatia 

(1983) as represenative o f rocks derived from oceanic and 

continental arcs. The tectonic fields have also been applied to the 

Girvan area and found to be generally consistent, though because 

this early work was based on a relatively small sample size, with 

relatively homogeneous samples compared to those from Girvan, 

the proposed fields were found to be small and not completely  

representative.
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Key to Figures 5.1-60

Figures 5.1-12: Vertical variability o f MgO, Fetot, N a20, CaO, K 20, 

Si02, Cr, Ni, Sr, Ba, Rb and Zr respectively.

Figures 5.13-22: Scatter diagrams of:

Figure 5.13 Fetot vs MgO 

Figure 5.14 Cr vs Ni 

Figure 5.15 Fetot+MgO vs Cr 

Figure 5.16 Fetot+MgO vs Ni 

Figure 5.17 CaO vs Na20  

Figure 5.18 CaO vs Sr 

Figure 5.19 A1203 vs Ga 

Figure 5.20 K 20 vs Rb 

Figure 5.21 K 20 vs Ba 

Figure 5.22 Ba vs La

Figures 5.23-33: Scatter diagrams o f Niggli al-alk vs Niggli k, Rb,

Ba, La, Th, Sr, Niggli ti, Zr, Niggli mg, Cr and Ni respectively.

Figures 5.34-36: Scatter diagrams o f Niggli mg vs Co, Cr and Ni

r e sp e c t iv e ly .

Figures 5.37-49: Harker-type diagrams of (i.e S i02  vs ) A1203, Na20,

CaO, MgO, Fetot, K 20, Fetot+MgO, Rb, Ba, Zr, Cr, Ni and Sr respectively.
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Figure 5.50: S i02  vs K 20/N a20 to decipher the provenance areas and 

tectonic settings (ARC = Oceanic Island Arc, ACM =

Continental Island Arc, PM = Passive Margins)

Figure 5.51: C a0-N a20-K 20 ternary diagram to decipher the

provenance areas (Gr = Granites, G* = granodiorites, D = Dacites,

A = Andesites)

Figure 5.52: N a20 vs K 20 to decipher the provenance areas.

Figures 5.53-57: Scatter diagrams of Fetot+MgO vs T i02,

A 1203/S i02 , K 20/N a20 , A 1203/(C a0+N a20) respectively, they 

are used to decipher the provenance areas and tectonic settings 

(A= Oceanic Island Arc, B = Continenatl Island Arc,

C = A ctive Continental Margin, D = Passive Margins). The 

dotted fields are those proposed and are based on the results 

obtained in the present work.

Figure 5.58: Scatter diagram of Ba vs Sr to decipher the provenance 

areas.

Figure 5.59: Vertical variability o f some major and trace elements in 

the Ordovician rocks of the Girvan area.
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CHAPTER SIX COMPARISON BETWEEN GIRVAN AND SOUTHERN  

U P L A N D S

6 . 1 - I n t r o d u c t i o n

The Southern Uplands of Scotland lies immediately to the south of 

the Midland Valley and is bounded on its north margin by the

Southern Uplands Fault (hereafter referred to as SUF) and on its 

south by the Solway line. The Girvan area, which forms the main 

objective o f the present research, is located immediately to the north 

west of the Southern Uplands and on the northern side of the SUF. As 

discussed previously (see chapter one and also below), the SUF is 

thought to be a terrane boundary dividing the accretionary prism of 

the Southern Uplands from the proximal forearc basin of the Girvan 

district (Bluck 1985). Whilst the dispersal patterns in the Girvan area

are fairly clearly from the NW, dispersal in the Southern Uplands is 

far less clear. Evidence given in Kelling et al. (1987), Stone et al. 

(1987) and others show a wide variety of paleoflows in the Southern 

Uplands region. Uncertainties such as post depositional structural 

rotations, and deflections o f turbidite flows in the trench (Leggett 

1987) add greatly to the problem of determining dispersal. However, 

most authors accept that some, if not the bulk o f the sediments there 

is either directly or indirectly dispersed from the NW the NW  

provenance o f some o f the Southern Uplands sediments is accepted.

However, some limitations, due mainly to the fact that all the data

o f Southern Uplands have to rely entirely on the published work,
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can complicate some of the interpretations particularly because o f  

the number o f minerals point counted and the reliability of the 

counting processes performed by different authors in petrography 

and differing analytical methods for the various elem ents and/or 

differing precisions and accuracies particularly for the trace 

elements in geochemistry. Further complications also arise from the 

fact that sampling by different authors can differ considerably but 

in all the investigations carried out below, it is assumed that the 

above m entioned com plications do not substantially affect the 

conclusions reached.

In the sections below, a comprehensive summary to the various 

tectonic interpretations proposed for the Southern Uplands is first 

discussed followed by the differences in petrography, geochemistry 

and vertical variability and finally a d iscussion  is held and 

inferences are drawn

6 .2 -T ecto n ic  se tt in g s  o f Southern  U p land s.

The Southern Uplands, which consist broadly o f greywacke and 

shale with thin slivers o f basic igneous rocks associated with black 

shales, is d ivided stratigraphically into three units nam ely: 

Southern, Central and Northern belts (Peach and Horne 1899; 

Leggett et al. 1979b; Morris 1983). The Southern Belt is composed of 

Wenlock greywackes and shales some o f which contain graptolites 

(Warren 1964; Kemp 1984). The Central Belt consists o f greywackes 

overlying a condensed Moffat Shale succession of Mid-Ordovician to 

Llandovery shales, ashes and cherts. In the Northern Belt, which is 

o f Ordovician age, mafic volcanics, bedded cherts and in some places, 

graptolitic shales are interbedded with and underlie the greywackes.



1 9 2

The concept o f an accretionary prism model developed  

progressively. Comparison of Burma with Scotland lead Mitchell and 

McKerrow (1975) to suggest that the greywacke sequence in the 

Southern Uplands was like Burma where trench and oceanic

sediments are being underthrust by subduction processes. With later 

development o f modern analogues from the Pacific (Seely et al. 1974; 

Karig and Sharman 1975), the model was applied with more emphasis 

by Mckerrow et al. (1977) and subsequently Leggett et al.(1979 (a,b), 

1982) (see Figure 6.1). The region is truncated by a number of strike 

faults which are thought to be rotated reverse faults (e.g. Fyfe and 

Weir 1976, McKerrow et al. 1977, Weir 1979, Cook and Weir 1979) and 

Some of these reverse faults can be used to divide the Southern

Uplands into 'tracts' or 'blocks', ten o f which are recognized by

Leggett et al. (1979) and six by Walton (1983). Some of these tracts are 

graphically summarized in Figure 6.2 (after Bluck 1985). Whatever 

the divisions, McKerrow et al. (1977) noted that the sediments within 

each block young to the NW but the blocks get younger to the SE.

The accretionary prism model o f  McKerrow et al. (1977) is 

supported by: (i) the association o f turbidites and black shales,(ii) 

the opposite directions o f younging o f the over all succession

compared with that within each block (ii) the fact that the direction 

o f the blocks younging coincides with the direction o f progressive 

younging in the base of the Ordovician greywacke pile. Leggett et al. 

(1979), Eales (1979), Leggett (1980), Leggett et al. (1982,83), Kemp £ i  

al- (1985) and others have also produced evidence to support the 

concept o f  an accretionary prism. Additional support for the 

accretionary prism comes from the evidence for burial and tectonic
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m odifications to earlier slices o f the accretionary prism. Silurian

greywackes contain clasts of greywacke which had undergone 

p r e h n ite -p u m p e lly  ite  grade m etam orp h ism  and S ilu r ia n  

conglomerates contain fragments of cleaved black shale. These are 

inferred to have come from an earlier (Ordovician) accretionary

prism (Bluck 1985), thus suggesting that older slices o f the prism 

were being re-worked into younger parts such as is happening in 

present day regimes of this kind.

Moseley (1977-1978) was one of the first to express doubts about 

the model; he believed that the Iapetus Ocean had closed by the end 

o f the Ordovician and thus like many others subsequently, had

difficu lty in accepting Silurian subduction o f ocean floor. More 

recently, Anderson and Oliver (1986) Hutton and Murphy (1987)

noted that the Northern Belt and the combined Central and Southern 

belts are two separate tectonostratigraphic terranes which were 

juxtaposed in the late Silurian-early Devonian. Hutton and Murphy 

(1987) cited evidence to show that in the central inliers o f Ireland, 

the derivation o f Llandovery sediments was from both north and 

south of the remnant Iapetus; by contrast, the Wenlock sediments 

were derived from an arc to the north and propagated across the 

suture. These authors believe that this arc has subsequently been cut 

out by strike-slip along the line of the Orlock Bridge fault at the end 

o f the Silurian and that there is no evidence for subduction of 

oceanic crust after the Late Ordovician.

Evidence from some sequences which contain southerly derived 

tubidites with fresh andesitic detritus (which suggest an arc situated
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to the south o f the Southern Uplands) and northerly derived 

turbidites which are quartz-rich, led Stone et al. (1987) to suggest a 

back-arc setting for the Southern Uplands with a mature continental 

landmass to the north and a rifted continental fragment containing 

an active volcanic arc to the south. They also thought that the 

Hawick Group and the Wenlock sequences of the Southern Belt may 

have been deposited in a southward-migrating foreland basin ahead 

o f the rising thrust stack. Morris (1987) recognized a distal 

continental source region to the NW of the Northern Belt in the 

Longford-Down m assif and a proximal arc source to the south, 

concluding that, the Northern Belt sediments were developed in a 

back-arc setting which closed at the end o f the Ordovician (see 

Figure 6.4)

More recently Kelling et al.(T987) produced new sedim entological 

and biostratigraphical data from the Rhinns o f  G alloway and 

adjacent areas to show that a series o f submarine fans developed 

from the northwestern margin of an assymetrical basin during the 

Late Ordovician and Early Silurian while pelagic facies were 

accumulating further to the SE. They conclude that during the Late 

Ordovician an active continental margin arc was juxtaposed against 

the Southern Uplands forearc trench; SE propagating fans were 

formed in a relatively narrow trench at the same time as a coarse 

volcanilithic sediment apron migrated northeastward as the arc was 

displaced relative to the trench. By Llandovery time, the forearc 

trench region was dominated by a variety o f fan systems which were 

all derived from the NW. It is therefore clear that while these 

authors generally opt for a forearc/trench setting throughout the 

developm ent o f  the Southern Uplands accretionary history; they
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added an arc to seaward during the Late Ordovician (see fig 6.3).

H owever, whatever the tectonic interpretation given to the

Southern Uplands terranes, the main aim of this chapter is not

affected and comparisons between Southern Uplands and Girvan can 

still be made and are given below. However, since some of the

sedim ent (at least) is derived from the south, then a source is

available to the Southern Uplands which is not seen in Girvan

(where all the sediment comes from the NW)

6 .3 -O b je c tiv e  of study

Data have already been given to support the view that the Girvan 

sequence is part of a proximal forearc basin. On the other hand,

there is less consensus over the tectonic regime in which the

Southern Uplands formed as discussed above.

The main objectives of this chapter are therefore to assess:

1- If the Southern Uplands and Girvan area shared a similar or the 

sam e provenance

2- To establish if  both regions showed a similar vertical change in 

petrography and geochemistry and could therefore belong to the

same basin or dispersal systems, or otherwise be supplied with 

sediment from a provenance which underwent a similar kind of  

ev o lu tio n ..

3- To evaluate recent views (e.g. Elder 1988) that the SUF is a major

fracture with 1500km of lateral displacement, and the Southern 

Uplands had a provenance which was unlike that of the Girvan .
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6 .4 - P e t r o g r a p h ic  d i f f e r e n c e s

There is no general published petrographic vertical variability 

of the Southern Uplands greywackes and sandstones; although both 

Floyd (1982) and Bluck (1985) have presented a rough correlation 

between different formations previously studied. Figures 6.2 and 6.5 

show that it is possible to correlate petrographically sim ilar  

greywackes over a wide geographical area. However, the detailed 

biostratigraphy is as yet poorly known, and there is still much

structural complexity which is unresolved. It may be that future

work may be able to demonstrate diachronism in the section, as has

been done for one formation by Kelling et al. (1987).

The vertical time evolution o f the Ordovician rocks have been 

studied by Kelling (1962), Kelling and Holroyd (1978), Floyd (1982) 

and Hepworth et al. (1982). Those o f the Silurian rocks have also 

been extensively investigated by a number of authors among others 

Walton (1955), Warren (1963), Cook and Weir (1980), Kemp (1984), 

Hutton and Murphy (1987). The petrographic "descriptions and 

vertical variability o f the Ordovician suites can be best studied by 

summarizing one of the most up to date papers; that o f Floyd (1982) 

on W est N ithsdale especia lly  as this work does not d iffer

substantially from the work presented by Hepworth et al. (1982) on 

Bail Hill-Abington area.

In West Nithsdale, Floyd (1982) recognized five formations based 

on lithological and petrographical criteria obtained from detailed  

studies o f greywackes. The description o f the formations is given  

below in order of younging age and are portrayed in Figure 6.5 for



1 9 7

easy matching with other formations. The petrographies of the

different formations are also compared with each other in table 6.1.

1 -M arch b u rn  F orm ation  [L la n d e ilo ]

This formation (1300m thick) consists mainly o f greywackes, 

laminated siltstones and grey shales with only minor amounts of 

conglomerate, chert and volcanic rocks. The lower parts o f the 

succession are com posed o f fine-grained greyw ackes, laminated 

siltstones and shales with calcareous nodules. The beds become 

coarser-grained  and con g lom erates with sm all cob b les o f  

greywackes and mudstone. This clastic sequence gives way upwards 

to a chert and volcanic sequence beginning with pale grey bedded

cherts , followed by red chert with thin spilite lava flow s and 

volcaniclastic rocks and ending with red cherts, sandstones and 

mudstone, Asecond, thinner, volcanic sequence o f sp ilitic  lavas, 

agglomerates and associated red cherty sandstones and mudstones 

follows and is best seen in Park Bum just E of Over Caim farm. These 

are succeeded in turn by medium-to coarse-grained greywackes 

containing prom inent fragm ents o f  red chert. An unrepeated 

succession with two volcanic horizons is supported by the presence

in the intervening greywackes o f many fresh pyroxene fragments.

2 -A fton  F orm ation  [C aradoc]

This formation, which is about 2000 m thick, is distinguished 

from the previous one by its much higher quartz content, paucity of 

ferromagnesian minerals and absence o f any chert interbedded with 

greyw ackes. Instead, it is com posed ch iefly  o f  thinly-bedded  

greywackes interbedded with laminated siltstone and grey shale, and 

is characterized by the rarity o f conglomerates and even coarse-
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grained greywackes. The greywackes are composed mainly of

spilites, quartzites and mica schist rock fragments.

3 - B l a c k c r a i g  F o r m a t i o n  ( 1 5 0 0  m ) [ C a r a d o c ]

The lower parts o f the succession consists mainly of massive, 

m edium  to coarse-grained greyw ackes contain ing occasion al

patches o f small pebbles. This unit is succeeded by coarse-grained 

greywackes and boulder conglomerates. The boulders contain acidic 

rock fragments with gabbros, spilites and dolerites.

4 -S c a r  F o r m a t io n  ( 1 0 0 0 - 2 0 0 0  m ) [ U p p e r  C a r a d o c ]

The dominant lithology is medium- to coarse-grained greywacke

in m assive units, often enclosing pebbly patches com posed of  

fragments o f dark shale and white quartz. The rock fragments are 

dominated by hornblendites, andesites and rhyolites.

5- S h in n e l  F o rm a t io n  [ U p p e r  C a r a d o c - L o w e r  A s h g i l l ]

This formation (>300 m thick) is composed of fine- to medium- 

grained, thiny bedded greywackes, laminated siltstones and grey 

shales. The greywackes, which usually display prolific sm all-scale  

ripple cross- stratification, are interbedded with m assive boulder 

conglom erates. The boulders contain sp ilite  and gabbro clasts, 

greywackes and acidic igneous rocks.
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Table 6.1: Summary of the petrography of the greywackes in West 

Nithsdale (after Floyd 1982)

Form ation  Lithic fragments Detrital fragments

S h in n e l  granodiorite, granophyre, 

rhyolite, felsite, spilite, 

quartzite, shale.

quartz (57%), feldspar, 

zircon, apatite.

S car hornblende, andesite,

rhyolite, spilite  

glaucophane schist, 

garnet schist, shale.

quartz(20%), feldspar, 

clinopyroxene, hornb­

lende, garnet, epidote, 

glaucophane, spinel.

B la ck cra ig  granodiorite, granophyre, 

diorite, gabbro, dolerite, 

spilite, greywacke.

quartz(33%), feldspar, 

clinopyroxene, epidote, 

h o r n b le n d e .

A fto n  spilite, quartzite,

garnet schist, biotite, 

sch ist .

quartz(48%), feldspar, 

garnet, zircon.

M arch burnM icrogran ite , rhyolite, quartz(15%), feldspar,

felsite, andesite, gabbro, apatite, clinopyroxene,

spilite, serpentinite, hornblende, spinel,

c h e r t .
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Floyd (1982) also formally compared the vertical variability of 

West Nithsdale with other parts o f Southern Uplands o f roughly 

similar ages. This comparison is given in table 6.2. below:

If,

* Basic-clast Division and Acid clast Division

* * Upper Barren Division, Meta-clast Division and Lower Barren

Division

*** Conglomeratic Division and Flaggy Division

Then:

Table 6.2 : Correlation between West Nithsdale and other Southern 

Uplands areas along strike (after Floyd 1982)

R h inn s o f G allow ay NW W igton sh ire

(K elling 1961) (Welsh 1964) and 

SW Ayrshire

W est N ith sd a le

(Floyd 1982)

Portayew Rocks 

Portpatrick Group* 

Galdenoch Group

Kirkcolm Group** 

Coreswall Group***

* Basic-clast and 

and Lower Barren

Boreland Rocks 

Glenwhan Rocks 

Cairnerzean Rocks

U pper
Lochryan

L ow er

Glen App Formation 

(Walton 1961) 

Traboyack Division  

(Williams 1962)

Shinnel Formation 

Scar Formation 

Blackcraig Form ation

Afton Formation 

M arch burn .F orm atio

Upper Barren, Meta-clastAcid clast Division * *

conglomeratic Division and Flaggy Division
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Kelling et al. (1987 p 801) demonstrate that a petrographically

distinctive greywacke suite (with a Portpatric type petrography) 

gets younger in the sequence when traced to the NE. And that despite 

substantial lateral changes in thickness of the greywackes the 

petrography is generally uniform. This therefore increases the 

degree o f confidence in the O rdovician vertical variability o f  

Southern Uplands based on Floyd's investigation.

The Silurian rocks o f the Southern Uplands are compositionally 

le ss  variable than their O rdovician equivalents and can be 

summarized from the work of Warren (1963) on the Wenlock Rocks, 

Roxburghshire and Cook and Weir (1980) on Cairnsmore of Fleet,

Gollaway. The work of Hutton and Murphy (1987) on similar rocks

from Ireland was mostly concerned with Silurian tectonic evolution

rather than stratigraphy and hence has not been considered.

Warren (1963) noted the Silurian greywackes consist o f quartz, 

plagioclase and K-feldspars, m uscovite, biotite, chlorite, opaques 

(m agnetite, ilm enite, pyrite), garnet, zircon, tourmaline, apatite, 

rutile and secondary carbonate (ca lcite , dolom ite, ankerite). The 

rock fragments present are given below in table 6.3. It should be 

noted however, that acidic igneous rock fragments are the most 

dominant components in the coarse-grained greywackes. Cook and 

Weir(1980) showed the Silurian rocks o f Cairnsmore of Fleet to be to 

composed of turbidites of dominantly acidic igneous rocks with only 

witth rare lithic greywackes. Thick sequences o f interbedded and 

ungraded arenites and argillites are also typical o f these .rocks.
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Table 6.3: rocks fragm ents present in the W enlock Rocks,

Roxburghshire (after Warren 1963)

& £ d i m e n t a r . Y

chert, shale and siltstone, greywacke, arkose, limestone. 

m e t a m o r p h i c

vein quartz, quartzite, chlorite and mica-schist, chloritite.

I g n e o u s

granite(or granodiorite), granophyre, quartz keratophyre, spilite, 

rhyolite, quartz porphyry, keratophyre, andesite.

From the work of Warren (1963) and Walton (1955) (abundance 

o f acid lavas) and Cook and Weir (1980) (abundance o f granitic 

rocks) it became clear that more differentiated magmatic material 

was introduced to Southern Uplands through Silurian times.

Inspection o f table 6.1 shows that the low quartz contents in the 

Marchburn Form ation (15%) rise sign ificantly  in the Afton  

Formation (48%) and Blackcraig Formation (33%) before tending to 

decline in the Scar Formation (20%). Quartz then rises sharply to 

57% in the Shinnel Formation which should be compared to 15% in 

the Marchburn Formation. This therefore suggests that, in general 

terms, although quartz tends to fluctuate in the Scar Formation, it 

generally rises with younging age during the Ordovician times. The 

case of the Silurian rocks is more complex and only very few point 

counts are available from the Wenlock Rocks (Warren, 1963) which 

show that the quartz contents range from 8.9% to 31.9% suggesting 

diminution o f quartz in passing from Ordovician to Silurian rocks, 

but probably this trend is caused by the small sample size studied by 

Warren (1963) and hence are thought unreliable.
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Basic rock fragments are also present in some of the Ordovician 

rocks (e.g. Marchburn and Blackcraig formations) but the Shinnel 

Formations and Silurian rocks are poor in basic rock fragments and 

the opposite is true for the acidic rock fragments which therefore 

indicates that there is an increase in the degree o f acidity in passing 

from Ordovician to Silurian times.

The other important aspect o f the Southern Uplands is the 

presence o f metamorphic rock fragments. These are represented by 

grains o f  quartzite, quartz-, chlorite-m ica-schists, garnet, staurolite 

and glaucophane schists (Kelling 1962, Warren 1963, Holroyd 1978, 

Floyd 1982). This therefore suggests contributions from low to 

medium regionally metamorphosed terranes. However, the presence 

o f  blue-schist fragments suggests a provenance in high pressure- 

low  temperature metamorphic rocks such as those now present at 

Ballantrae (Bluck 1985). Sanders and Morris (1978) and Yardley et al.

(1982) have postulated a regional b lue-schist facies development 

over parts o f the Dalradian outcrop. However, Bluck (1983, 1984,

1985) and Watson (1984) both thought the Dalradian rocks to be a 

very unlikely source because they believe the Highland Border 

Complex was situated between the Dalradian and Southern Uplands 

outcrops during Ordovician times especially as the rocks Highland 

Border Complex are themselves free o f  blue-schist-detritus Bluck 

(1985) suggested a new source which he believed to have been 

located in the Midland Valley of Scotland at least during Ordovician 

and Silurian times.

Comparison of chapter four with the previous summary clearly
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suggests that there are some sim ilarities and differences in the 

petrography and vertical variability between Girvan and the 

Southern Uplands. (1) Both terranes share many lithic fragments 

and detrital minerals. These include mafic and ultramafic, dolerite, 

andesite , granod iorite , rh yo lite , granite, granophyre, chert, 

quartzite, quartz, feldspar, epidote, spinel, zircon, apatite, and ± 

garnet. (2) They do not share glaucophane and b lue-sch ist  

fragments. (3) Both show a vertical change in com position from

Ordovician to Silurian: (a) Mafic and ultramafic clasts are common in 

the lower sequence in both areas; (b) Acidic clasts get more common 

upward in the sequence; (c) quartz becomes more common upward.

(4) The vertical increase in granitic rock fragments recorded in the

Silurian of the Southern Uplands is not seen in the Girvan district

but this may be due to the fact that only the Llandovery rocks have 

been studied. A comparison between the two areas is made more

difficult by the fact that some of the greywackes in the Southern

Uplands come from the south.

The QFL diagram as illustrated in Figure 6.6 shows that the

Ordovician and Silurian rocks from the two areas plot distinctly from 

each other indicating different sources. Much o f the Ordovician 

rocks o f the Southern Uplands were derived from undissected

magmatic arc compared to a fairly dissected and mixed magmatic arc 

for similar rocks from Girvan; although it is very interesting to note 

that some data do overlap with each other.

From the above points the following inferences are drawn:

1-Both regions shared a fairly similar type o f source terrane
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which had mafic and ultramafic (probably ophiolitic) component; a 

volcanic-plutonic component (probably an arc) and a basement 

co m p o n en t.

The ophiolitic component could have come from the widespread c 

480 Ma obducted ophiolite sheets which typified  the southern 

Laurentian margin from the Appalachais to Norway (Dunning and 

Krogh 1985). In this case the position o f the Southern Uplands 

relative to its source could be anywhere along the Laurentian 

m a rg in .

The presence o f arc detritus offers no less a constraint to the 

relative positions o f the Girvan and Southern uplands sequences. 

Arc-type detritus typifies the greywackes o f Ireland (Sanders and 

Morris 1978) and Lower Paleozoic rocks in Central Newfoundland and 

Gasp have arc type rocks or have a provenance in arcs (Hiscott et al.

1986). Either the sequence at Girvan or the Southern Uplands could 

therefore acquire arc detritus from the width o f this orogen.

The distribution of basement detritus is equally uncertain. 

Detritus from the basement which is probably not o f Dalradian 

Origin in the Southern Uplands (K elley and Bluck 1989), and 

basement detritus appears in greywackes from Ireland (Sanders and 

Morris 1978) and from Central Newfoundland (Colman-Sadd and 

Swindon 1984). In all the places listed above, the basement detritus is 

mixed with arc and ophiolitic sediment as at Girvan and within the 

Southern Uplands.

2-Both regions generally evolved in the same way. From basic
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rocks dominated by low quartz to acid rocks dominated to high quartz 

g rey w a ck es .

3 -H ow ever, there are su ffic ie n t numbers o f  im portant 

differences to suggest that both regions may not have shared exactly 

the same source. These include the the blue- and glaucophane- 

schists being absent from the Girvan sequence, the greywackes o f  

rather were derived from the north whereas those o f Southern 

Uplands were derived from a source to the south.

6 .5 -G e o c h e m ic a l  d if f e r e n c e s

Much of the work carried out on Southern Uplands dealt mainly 

with the petrography of the rocks and only very few workers (e.g. 

Alsayegh 1971, Floyd 1975, Haughton 1988) paid special attention to 

the importance of the geochemistry in solving tectonic problems. As 

discussed above, from the work o f Alsayegh 1971, Floyd 1982 and 

Bluck 1985, it is now clear that lateral changes in Southern Uplands 

are insignificant and therefore a geochemical study from one or two 

areas would clarify the geochemical trends within Southern Uplands 

including the geochemical vertical variability in passing from the 

Ordovician to Silurian times.

The most intensive geochemical (major and trace elements only) 

investigation undertaken on Southern Uplands was that o f Alsayegh  

(1971). A total of 303 samples o f greywackes and sandstones were 

collected from the Lower Paleozoic with most o f the sampling from 

the Upper Ordovician rocks in the Rhinns o f Galloway. The rest o f 

the sampling was from four traverses running roughly parallel to 

the Rhinns o f Galloway, perpendicular to the strike o f the area and

5-15 km apart from each other. Sample locations, their petrography
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and whole rock geochemistry as well as the exact location of the 

traverses are not discussed here but can be found in Alsayegh 

(1971). In the sections below, an attempt is made to investigate the 

geochemistry o f the Southern Uplands rocks as a guide to the 

provenance areas and tectonic settings because this kind o f work 

has not been done due to the late appearance o f some methods 

(Bhatia 1983, Van de Kamp and Leake 1985, Roser and Korsch 1986). 

The geochemical vertical variability is also considered.

6 .5 .1 -M a jo r  and trace e lem en ts d ifferen ces

Comparison of Figure 6.7 to 6.11 with their equivalents in Figures 

5.50 and 5.53-57 in Chapter 5 show that the lowest and highest S i02  

contents are found in rocks from Girvan compared to their age 

e q u iv a len ts  in Southern U plands thus r e fle c t in g  greater  

heterogeneity in terms o f their silica contents. Southern Uplands 

greyw ackes also generally have higher -but narrower range- 

A 1203/Si02 ratios and this trend is expected because o f their general 

tendency to be lower in silica but richer in alumina compared to 

those from Girvan. Further, Girvan greywackes have much lower 

A 1203/(C a0+ N a20) ratios than those from the Southern, Uplands 

which reflects a smaller range in composition in terms o f alumina- 

rich components, The similar range o f Fetot+MgO suggests that both 

suites are rich in basic and ultrabasic components, particularly the 

Ordovician rocks compared to the Silurian greywackes in both areas. 

It is also to be noted that both the Ordovician and Silurian rocks of 

the Southern Uplands have very high K 20 /N a20  ratios compared to 

Girvan. This trend in probably related to the abundance o f  

metamorphic rock fragments which are dom inantly b iotite- and
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muscovite-rich fragments (Alsayegh 1971, Floyd 1982).

It is unfortunate that the most important mafic elements (e.g. Cr, 

Ni, Co) have not been determined by Alsayegh (1971) but the 

available data as can be seen from table 6.4, show that there are some 

differences between Girvan and Southern Uplands greywackes o f 

similar ages. Caradoc rocks of Girvan are lower in K, Rb, Ba, and to a 

lesser extent Zr and Sr but they tend to be richer in Ca compared to 

their equivalents in the Southern Uplands. Those rocks deposited 

during the Ashgill at Girvan are also poorer in K, Fe, Mg, Rb, Ba, Ga 

and to a lesser extent La, Ce and Y and again they are richer in Ca 

relative to those deposited in Southern Uplands. During the 

Llandovery, the Girvan rocks remain poorer in K, Rb, Mg, and also

Ca but become richer in S i02  compared to those of Southern Uplands. 

W hile Ca is thought to be related to calcite-rich cements, the

enrichment of the Southern Uplands greywackes in K, Rb, Ba, La, Ce 

etc is clearly related to the presence o f metamorphic rock 

fragments. The remaining elem ents are inconclusive because they

are statistically insignificant.(i.e. very large standard deviations).

6 . 6 - D i f f e r e n c e s  in tecton ic  se ttin g s  b a s e d  on g eo c h e m ica l

e v i d e n c e

This step has not been previously investigated and therefore the

data of Alsayegh (1971) have been used to reconstruct the tectonic 

settings o f Southern Uplands sedim ents based on whole rock

geochem istry. Comparison o f these tectonic fields with those o f  

Girvan is then discussed. For this purpose, Southern Uplands data

have been reported on the plots suggested by Bhatia (1983) and 

Roser and Korsch (1986) (Figures 6.7-11) which have already been
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explained in Chapter 5. It should be mentioned that 75 Southern 

Uplands Wenlock greywackes (from Alsayegh 1971) are also included 

in the plots.

From Figure 6.7 it is clear that almost all of the data fall between 

active continental margin (ACM) and passive margin (PM) with only 

12 Silurian and one Ordovician greywacke falling in the oceanic 

island arc field (ARC). This trend is also highlighted by the Bhatia's 

diagram of K 20/N a20  versus Fetot+MgO (see Figure 6.10) where, 

contrary to the other plots, all data plot outside the fields o f ARC and 

CA. These trends can be caused in two ways; either the tectonic fields 

proposed by Roser and Korsch (1986) on the K 20/N a20  versus S i02  

diagram cannot be compared to Bhatia's diagrams or else the diagram 

is realistic but the trends exhibited are caused by the presence of 

some K-rich components in the Southern Uplands greywackes. The 

first possibility is extremely unlikely because as shown in Chapter 5 

both, Bhatia (1983) and Roser and Korsch (1986) tectonic fields 

agree with each other and there is no explanation why these fields 

agree in one area but not in others. Further, even on the K 20/N a20  

versus Fetot+MgO diagram of Bhatia's (1983), the data plot outside the 

ARC field which therefore still suggests good agreements between 

the two proposals. The only tenable explanation therefore, is that 

Southern Uplands greywackes are composed almost entirely o f  

material derived from a magmatic arc.

Figure 6.12 shows that there is a positive correlation between 

T i0 2  and K 20 which indicates that much of K is held in biotite and 

probably also muscovite where present rather than dominantly held 

in K-feldspar. This indicates that the particularly high K 20 /N a20  of  

the Southern Uplands greywackes (almost twice higher than those
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from Girvan) is due to the abundance o f metamorphic rock 

fragments which are dominantly m ica-schists (Alsayegh 1971, Floyd 

1982). If 30-40% of K is subtracted from the total K assuming it is 

coming in metamorphic biotite and muscovite, then much of the data 

would fall between ARC and ACM. It can therefore be concluded that 

the magmatic arc material introduced to Southern Uplands during 

Ordovician and Silurian times was accompanied by ACM material in 

both times. The contribution from ACM does not seem to be supported 

by any of Bhatia's diagrams because none or only insignificantly  

few points do plot inside the ACM, PM or CA fields. This is expected 

because addition o f  metamorphic rock fragments particularly as 

mica-schists does not influence heavily the A1203, S i02 , CaO and Na20  

compared to K20.

It has been shown in Chapter 5 that even Bhatia's tectonic Fields 

are not too realistic because of the small sample size used and their 

rela tive h om ogen eity . H ow ever, desp ite  the just m entioned  

complications, it is very interesting to note that a large number of

samples do indeed fall within the ARC field o f Bhatia (1983) which

suggests substantial contributions from magmatic arc material in 

both Ordovician and Silurian times. More importantly, a much larger 

number of samples do fall inside the the forearc Field of van de Kamp 

and Leake (1985) derived from the greywackes o f the Mesozoic of the 

Great Valley Sequence which supports the growing consensus that

Southern Uplands rocks were deposited in forearc accretionary  

prism rather than in backarc regions.

There is no published geochemical guides to identify accretionary 

prisms based on whole rock geochemistry evidence but from the

summary given exceptionally higher K 20/Na20 ratios are probably 

the most diagnostic evidence can be deduced from Southern Uplands
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Table 6.4: Geochemical comparison between Girvan and Southern 

U plands.(values given betwen parentheses are actual wt% before 

recalculation to 100% on volatile-free basis)

GIRVAN

l.L la n d 2 L.Ashg 3. Carad 4 Llai

X CT X a X a X a

Si02 75.85 6.93 67.43 8.89 64.73 8.12 64.37 7.43

Ti02 0.84 0.12 0.76 0.17 1.08 0.37 0.98 0.28

A1203 9.67 2.50 10.65 1.65 12.34 2.07 12.50 1.14

Fetot 5.24 1.63 5.63 1.47 7.12 1.7 7.9 1.80

MnO 0.08 0.02 0.20 0.15 0.15 0.14 0.2 0.63

MgO 2.40 1.30 2.70 0.93 4.14 1.51 5.80 1.88

CaO 2.78 1.92 9.12 5.97 5.90 4.62 3.63 3.50

Na20 1.94 1.02 2.46 0.64 2.90 0.72 3.07 0.45

K20 1.08 0.28 0.94 0.45 1.0 0.35 1.40 0.39

P205 0.12 0.02 0.09 0.06 0.12 0.03 0.15 0.19

Total 100 100 100 100

SOUTHERN UPLANDS

5 Carad 6 Ashg 7 Llandov

X a X a X a

Si02 64.09 (60.3) 4.6 59.04 (54.29) 2.43 60.62: (55.22) 2.93

Ti02 1.17 (1.1) 0.2 1.00 (0.92) 0.13 0.77 (0.70) 0.12

A1203 13.92: (13.1) 1.8 13.61 (12.52) 1.09 11.69' (10.65) 1.54

Fetot 8.28 (7.79) 1.21 8.46 (7.78) 1.02 6.02 (5.48) 0.9

MnO 0.03 (0.03) 0.02 0.03 (0.03) 2.02 0.02 (0.02) 0.02

MgO 5.44 (5.12) 1.5 8.38 (7.71) 0.01 5.36 (4.88) 0.86

CaO 2.23 (2.1) 1.3 4.63 (4.26) 1.65 11.30 (10.29) 2.86

Na20 2.55 (2.4) 0.5 2.53 (2.33) 0.51 1.96 (1.79) 0.5

K20 2.12 (2.0) 0.6 2.15 (1.98) 0.58 2.10 (1.91) 0.41

P205 0.17 (0.16) 0.03 0.17 (0.04) 0.04 0.16 (0.15) 0.03

Total 100 100 100

cn td
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Table 6.4: Continued

GIRVAN

1 Llandov 2 L Ashg. 3 Carad o- 4 Llv-Lland
X a X a X a X a

Rb 35 10 21 11 20 11 31 13
Ba 242 82 190 116 183 73 233 104

Sr 145 68 249 144 143 50 107 33
Zr 274 71 151 74 140 76 144 27
Ga 11 3 10 2 14 8 12 2
La 21 7 14 5 20 29 16 10
Ce 43 15 28 14 32 32 27 25
Y 26 10 26 7 30 25 26 3

SOUTHERN UPLANDS

5 Carad 6 Ashg 7 Llandov

X a X a X a

Rb 63 19 50 14 75 17

Ba 645 270 659 237 257 74

Sr 316 240 370 149 131 45

Zr 278 94 190 52 248 65

Ga 17 2 17 2 14 2

La 33 10 21 6 24 3

Ce 66 20 44 10 56 8

Y 24 4 18 3 24 3

1 = average of 16 Llandovery samples (Girvan)

2 = average of 22 Lower Ashgill samples (Girvan)

3 = average of 72 Caradoc samples (Girvan)

4 = average o f 102 Lower Llanvim-Llandeilo samples (Girvan)

5 = average o f 111 Caradoc samples from Alsayegh (1971) (Southern 

U plands)

6 = average of 31 Ashgill samples " " " (Southern

U plands)

7 = average of 53 Llandovery samples " " (Southern

U plands)

x = average and c  = standard deviations.
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It became clear therefore, that from the discussion given above

and table 6.5 given below that the major differences as regards the 

tectonic settings of Southern Uplands and Girvan reside in the 

tectonic fields derived from the diagrams of K 20/N a20  versus S i02  of 

Roser and Korsch (1986) and K 20/N a20  versus Fetot+MgO of Bhatia

(1983). Southern Uplands data plot mainly between ACM and PM 

while those from Girvan plot between ARC and ACM and these 

d iffe r e n c e s  are attributed to con trib u tion s m ain ly  from

metamorphic rock fragments to the former, on the K 20 /N a20  versus

Fetot+MgO, practically none of Southern Uplands data plot inside any 

of the four fields while many samples of Girvan plot inside the ARC 

and CA and these trends are also caused by the relative differences

in their K 20 /N a20  ratios.

Table 6.5: Comparison of Bhatia's parameters of Girvan with those of  

Southern Uplands

1 2 3 4

X o X a X a X a

Fetot+MgO 10.18 2.95 11.62 3.13 10.4 1.4 13.5 2.7

Ti02 0.95 0.32 0.94 0.3 0.7 0.12 1.0 0.2

A 1203/Si02 0.18 0.04 0.19 0.03 0.2 0.0 0.2 0.0

K 20/N a20 0.37 0.15 0.41 0.14 1.1 0.3 4.3 0.7

A 1203/

(Ca0+Na20) 1.6 0.70 1.92 0.76 1.0 0.4 3.0 1.1
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Key to Table 6.5

1 = average of 16 Llandovery samples (Girvan)

2 = average o f 94 Caradoc-Ashgill samples(Girvan)

3 = average o f 53 Llandovery samples (from Alseygh 1971) [Southen

U plands]

4 = average o f 142 Caradoc-Ashgill samples (from Alsayegh 1971)

[Southen Uplands] 

x = mean values and o = standard deviations

6 . 7 - D i f f e r e n c e s  in the  c h e m ic a l  v e r t i c a l  v a r i a b i l i t y

Inspection of the table given above as 6.4 and Figures 6.15-16

show that both Girvan and Southern Uplands greywackes exhibit

similar trends in Al, Fe, Mg and Na but not Si and Ca. The Ordovician 

greywackes o f the Southern Uplands tend to be richer in Si Than 

the Silurian rocks compared to Girvan where Si increases 

system atically whereas Ca tends to rise in Ashgill then decline in

Llandovery. The tendency of Fe and Mg to increase in the Southern 

Uplands Silurian rocks suggests possible contribution from mafic-

rich sources; In contrast to those at Girvan where much of the

contributions were from quartz-rich sources. The ratio K 20/N a20

decreases significantly in Southern Uplands in passing from Caradoc 

to L lan d overy  w hich in d ica tes  d im in ish in g  m etam orphic

contributions. The ratio remains practically unchanged in Girvan

probably because unroofing and erosion o f  metamorphic terranes 

were insignificant at all ages.

The trace elements as can be seen from Figure 6.16 and table 6.4 

also show some similarities and differences. While Rb, Ce, La, Ga, and

Y and to a lesser extent Zr generally show both similar trends and
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concentrations, Sr and Ba differ substantially in both areas. Both Sr 

and Ba are lower and tend to decrease with younging age in 

Southern Uplands than in Girvan.

6 .8 -D isc u s s io n  and c o n c lu s io n s

From the investigations carried out above, it became clear that a 

number o f differences and silm ilarities exist between Girvan and 

Southern Uplands in petrography, geochem istry, tectonic settings 

and vertical variability.

There is a similarity between the sedim ents in the Southern 

Uplands and the Girvan area. Both are dominated by volcanic lithic 

fragments, both have detritus from plutonic acid sources, and both 

have metamorphic basement clasts. When represented on a QFL 

diagram, both terranesindicate deriviation from an arc terrane. In 

terms of trends through time, both show a change to a greater 

abundance of acid rock fragments and quartz in younger rocks.

Geochem ically, the rocks from both terranes plot mostly within 

the field o f greywackes with some falling the field o f lithic arenites 

of Pettijohn et al. (1972) (see Figures 6.13-14). However, four Silurian 

rocks from Girvan which are particularly Si-rich plot distinctly  

from the rest o f the samples suggesting greater heterogeneity in 

terms of their silica contents. However, one o f the major chemical 

differences between Girvan and Southern Uplands is exhibited by 

the elements, CaO, Rb, Ba, Ce, Sr and the K 20/N a20 ratios. While the 

enrichment in Ca and hence Sr is attributed to the abundance of 

secondary carbonates in the matrix o f the greyw ackes from 

Southern Uplands, the high K 20/N a20 ratios and hence Rb, Ba and Ce
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are attributed to the presence and abundance o f metamorphic rock 

fr a g m e n ts .

There are also notable differences between rocks from the same 

regions. The Southern Uplands greywackes are particularly rich in 

m etam orphic rock fragments compared to their equivalents at 

Girvan. In addition, blue-and glaucophane schists are present in the 

former but totally absent from the latter. Further, when represented 

on the QFL triangular diagrams, the Southern Uplands rocks fall well 

within the field o f Undissected magmatic arc compared to a fairly 

dissected, transitional and mixed magmatic arc material at Girvan.

As regard the tectonic settings as deduced from the geochemistry, 

all the conclusions remain rather equivocal because the same data 

plot within different fields when using different plots. On the 

K 2 0 /N a 2 0  versus S i0 2  the Southern Uplands greywackes plot 

dominantly in the ACM field with the remaining samples falling 

whithin the ARC and PM fields. This contrasts with those from 

Girvan which plot mostly within the ARC field with only few samples 

plotting in the ACM field. However, on the T i0 2 , A 1203/S i02 and 

A 1203/(C a0+N a20) versus Fetot+MgO all data from both terranes fall 

within and around the ARC fields but not in the ACM, CA and PM. 

Although these can be regarded as d ifferences and sim ilarities 

between Girvan and Southern Uplands, the question whether they 

w ere both deposited  in sim ilar tec to n ic  se ttin gs rem ains 

unanswered. However, it seem s very likely  that more material 

derived from ACM contributed to Southern Uplands than to Girvan.

The main differences in the vertical variabilities between the 

two terranes are the enrichement in S i0 2  o f the Silurian rocks
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compared to the Ordovician at Girvan but similar values or slightly 

lower in the Silurian rocks o f Southern Uplands. This disagrees with 

deductions reached from the petrography where quartz is higher in 

the Silurian rocks compared to the Ordovician rocks in both Girvan 

and the Southern Uplands. In the latter the statistically significant 

differences between the Ordovician and Silurian greywackes reside 

in their Ca and Sr contents with the Ordovician greywackes being 

poorer in Ca and unexpectedly richer in Sr and Ba compared to the 

Silurian rocks which is not shared by the Girvan greywackes. The 

remaining elements generally show similar trends.

From the above discussion, the follow ing conclusions can be 

draw n:

1. Both the Southern Uplands and the Girvan sequence probably 

shared a provenance in an arc regime which was dissected to expose 

source batholiths and basement.

2. This arc-like source extended laterally at least as far as the width 

o f the Southern Uplands-Longford Down belt of turbidites- a width of 

some 300 km.

3. For the Southern Uplands at least, this arc-like source changed 

in time to become more acidic.

4 . If it is accepted that the Girvan sequence was deposited in a 

proximal forearc, and the Southern Uplands is a trench then on the 

basis of the data available it seems probable that they were not part 

o f the same dispersal system. There may be many reasons for this:

(a) That a southerly source has been active in the Southern 

Uplands and yielded a substantial volume o f  debris N. In this case, 

both basins did not share a similar dispersal and therefore could not 

had a similar source (Fig 6.17A).



2 1 8

(b) That between the forearc basin and the trench there may 

have been an extensive outerarc rise which may have contributed 

sediments to the trench. These components like blue-schist may 

have been produced in this way (Fig 6.17B).

(c) That there was substantial axial flow  into the trench. 

Paleoflow data produced by many workers is summarized by Kelling 

et al. (1987) who indicates that much of the sediment in the Southern 

Uplands may have an 'axial' dispersal. However, unlike the axial 

system seen in, for example, the Sunda trench (Moore et al. (1982) 

where the sediment which is dispersed axially is quite distinctive 

from the sediment dispersed laterally, both axial and lateral sources 

are the same in the Southern Uplands. This might indicate an 

ultimate source in arc followed by lateral transportation along the 

trench axis. In this case the composition o f the accretionary prism 

(Southern Uplands) sedim ent w ill be determined by a larger 

provenance than for the forearc at Girvan.

(d) If the above possibilities are discounted, then there may be a 

case to be made for the SUF to have a substantial displacement 

bringing together basins with different provenance areas (Fig 6.17C)

D eciding between the four possib ilities is very d ifficu lt on 

account that indeed more deta iled  fie ld , petrographic and 

geochem ical studies are still needed particularly on the Southern 

Uplands area. However, in view of the large similarities between the 

two areas as discussed above and the fact that Southern Uplands, like 

Girvan, was probably deposited in a proximity to arc make the view  

o f 1500 km lateral displacement (Elder 1988) very improbable. It 

therefore seems likely that the possibility (a) is the most acceptable 

ofthe four, although the possibilities (b) and (c) cannot be totally 

ruled out



2 1 9

Key to Figures 6.1-17

Figure 6.1: Paleogeography of Southern Uplands during Caradoc and 

Wenlock times(after McKerrow et al. 1977).

Figure 6.2: Diagramatic view of the Southern Uplands accretionary 

prism and trench complex during Ordovician times (after Bluck 

1985). CG=Coreswall Group; KG=Kirkcolm Group; PG=Portpatrick 

Group; PR=Portayew Rocks; TB=Traboyack Division; LR=Loch 

Ryan Rocks; C=Cairnerzean Rocks; GW =Glenwhean Rocks; 

BR=Boreland Rocks; MF=Marchburn Formation; AF=Afton  

Formation; BC=Blackcraig Formation; SF=Scar Formation; 

SHF=Shinnel Formation; CF=Crawfordjohn Formation;

AF=Abington Formation; EF=Elvan Formation, GF=Glencapple 

Formation; HBFZ=Highland Boundary Fault zone; SUF=Southem  

Uplands Fault; SL=Solway Line.

Figure 6.3:Paleography o f SW Southern Upland during Ordovician 

and Silurian times after McKerrow et al. (1987)[forearc theory]. 

AFL=Afton Lobe (Blackcraig Formation); BB=Ballygrot Block; 

CL=Corsewall Group Lobe ; CnL=Carsphaim Lobe ; FF=Finnalaghta 

Formation; GG=Gowna Group; GaG=Galdenoch Group; LF=Lakhan 

Formation; ML=Marchbum Formation Lobe ; PG=Portpatrick 

Group; PL=Portslogan Lobe (Kirkcolm Group); PR=Potayew  

Rocks; ScF=Scar Formation; ShF=Shinnel Formation; ABb=Ardwell 

Bay beds; AM =Alticry Member; CM=Chippermore Member; 

ChM=Chair Member; CFM=Caimie Finnart Member;

DM=Duniehinnie Member; DPM=Daw Point Member;

DrM=Drumblair Member; FBF=Float Bay member; GF=Garheugh 

Formation; GPF=Grennan Point Formation; KF=Kilfillan
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Formation; MHF=Money Head Formation; PLF=Port Logan 

Formation; SBb=Stirking Bight beds. (Numbers 1,2,3 etc=earlier 

accreted tectono-stratigraphic tracts)

Figure 6.4: Paleogeography of the Northern Belt o f the Southern 

Uplands during late Ordovician and early Silurian times (after 

Morris 1987)[backarc theory].

Figure 6.5: Time stratigraphical diagram showing proposed

stratigraphic correlation o f the greywackes within W est 

Nithsdale and part of the Central Belt (After Floyd 1982).

Figure 6.6: QFL diagrams of Southern Uplands greywackes (after 

Morris 1987). The field o f the Girvan greywackes is also for 

co m p a riso n

Figure 6.7: S i02  vs K 20/Na20 of S. Uplands to decipher the

provenance areas and tectonic settings (ARC = Oceanic Island 

Arc, ACM = Continental Island Arc, PM = Passive Margins)

Figures 6.8-11: Scatter diagrams of S. Uplands o f Fetot+MgO vs T i02, 

A 1203/Si02, K 20/N a20, A1203/(Ca0+Na20) respectively. They are 

used to decipher the provenance areas and tectonic settings 

(ARC= Oceanic Island Arc, CA = Continental Island Arc, ACM = 

Active Continental Margin, PM = Passive Margins). Dotted fields 

outline composition of forearc greywackes from the M ezozoic 

Great Valley Sequence, California (From Van de Kamp and Leake 

1985).

Figure 6.12: Scatter diagram of Ti versus K 20.

Figure 6.13-14: Scatter diagrams of log N a20/K 20 versus log

S i02 /A 1203 . The fields o f greywacke, lithic arenites, arkose, 

subarkose and sublithic arenites o f both Girvan and Southern 

Uplands after Pettijohn et al. (1972) are also shown.
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Figure 6.15-16: G eochem ical comparison between Girvan and

Southern Uplands (6.15 for major and 6.16 for trace)

Figure 6.17: Possible relationships between Girvan and Southern 

Uplands during Ordovician and Silurian times. G=Girvan; 

S.U=Southem Uplands; SUF=Southem Uplands Fault,

S.T=Southem terranes as the likely source for the Southern 

Uplands greywackes.
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CHAPTER SEVEN THE SIGNIFICANCE OF THE PETROGRAPHY  

AND GEOCHEMISTRY AT GIRVAN ON THE EVOLUTION OF THE 

CALEDONIDES

7.1  In tro d u c tio n

Since the early work of Dewey (1969, 1971), there has been

significant changes in the understanding o f  the evolution o f the 

Caledonides of Scotland. One o f  the main thrusts in Caledonian 

research was to interpret the relationships between the three 

tectono-stratigraphic units; Dalradian, Midland Valley and Southern 

Uplands blocks which are separated from each other by the Southern 

Uplands and Highland Boundary faults (Fig 7.1). The Midland Valley is 

flanked to the north by the Dalradian sequence o f Precambrian 

sedim entary and relatively minor volcanic rocks. Anderton (1985) 

suggested that the sedim entological evolution of the Dalradian block 

reflects the lithospheric stretching which gave rise subsequently to 

the Cambrian Iapetus Ocean. To the south, is the Southern Uplands 

block which itself comprises a number o f fault-bounded segments or 

tracts of Llandeilo to Wenlock age. Below, the various tectonic models 

proposed to explain the evolution o f the Scottish Caledonides are first 

discussed and then the im plications o f the present data on the 

previous models are presented.

The main aim of this chapter is therefore to interpret the results of 

petrography and geochemistry at Girvan in terms of the evolution of 

the Caledonides.
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7 .2 -V ariou s m odels for the C aledonian  ev o lu tio n .

The development o f plate-tectonic concepts in the late 1960's in 

conjunction with W ilson’s (1966) suggestion of a proto-Atlantic ocean 

led to many interpretations o f the British Caledonides through plate- 

tectonic processes. Those tectonic models proposed for the Girvan area 

are detailed in chapter one whereas those suggested for the Southern 

Uplands are discussed in chapter six. In this section, the overall 

evolution of the whole Southern Scotland is considered in terms of 

Caledonian evolution rather than considering each part separately. 

D espite many tectonic m odels being proposed for the Scottish  

Caledonides all o f  which are rather controversial, they can be 

summarized in three main models namely: ( l)-L eg g ett et al. and

Yardley et al.: (2)-Bluck and (3)-Stone et al. models.

Leggett (1980), Yardley et al.(19821 and Leggett et al. (1982, 1983) 

believed that the Midland Valley was a forearc region dividing the 

Southern H ighlands (arc basement) from the Southern Uplands 

(trench-accretionary prism) in Ordovician and Silurian tim es (Fig 

7.2). It was flanked by the Southern Highlands to the NW and a rising 

upper trench slope break (Cockbumland) to the SE.

An alternative model proposed mainly by Bluck (1983, 1984, 1985) 

and shared by Longman et al.(19791: Van Breeman and Bluck (1981), 

envisaged the Midland Valley as an arc-inter-arc terrane during the 

Ordovician and Silurian times (Fig 7.3) with the arc to have been 

flanked to N by a marginal basin in which rocks o f the Highland 

Border Complex formed (Bluck. 1984). To the S in the Llanvim-Ashgill 

sequence at Girvan, a proximal forearc is preserved in which boulders
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of granitic and volcanic detritus accumulated. The author argued that

the presence o f a proximal forearc sequence in the southwestern 

margin o f the Midland Valley demands an Ordovician arc to the

immediate N of it (in the Midland Valley) and a forearc to the south of

it (in the position of the Southern Uplands). He suggested that a 

trench sequence and coeval proximal forearc basin sequences lie 

adjacent to each other in southern Scotland and hence a complete 

forearc basin is missing. The Southern Uplands accretionary prism is 

thought to have been thrust over the continental crust of the Midland 

Valley and may also have been thrust over the missing forearc basin.

The most up to date tectonic model is that o f Stone et al. (1987) His 

work in the Southern Uplands suggests a backarc and foreland thrust 

duplex model for the Southern Upland terranes. The arguments given 

and which are partly or wholly shared by Welsh (1964), Morris (1979) 

being that: (a) the contrasting nature and direction of the greywacke 

provenance from SE (oceanward in a forearc setting) o f mature

quartzoses and fresh andesitic detritus and (b) an extensive syn-

tecton ic  dyke swarm in which m antle-derived lamprophyres are 

prominent (Fig 7.4).On the basis o f these data, an arc source south of  

the present Southern Uplands is suggested. The Southern Uplands are 

considered to be a backarc basin, and a subduction zone is thought to 

exist to the south beyond the arc.

7.3 Tectonic  evaluation of  the Girvan sequence

Deciding between the three main m odels discussed above depends

largely on the interpretation o f the Llanvirn-A shgill sequence at

Girvan; the stratigraphy o f which can be found in Williams (1962),

Ingham (1978) and Ince (1984).
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7 .3 .1 -P r e v io u s  id ea s

Yardley et al. (1982) considered the whole of the Midland Valley, 

including Girvan, to have been a forearc basin throughout Ordovician

and Silurian times. The arc, in this view, was founded on the Dalradian 

metamorphic basement. Its remnants are now to be seen in the older 

gabbros and the c 47  0 M a granites of the NE Dalradian outcrops 

Geochem ical considerations (Leake 1989), have indeed shown that 

basic intrusions into the Dalradian elsewhere have a chemistry which 

matches that of arc rocks.

The Girvan sequence in this view is simply seen as an exposure of 

a much more extensive forearc basin which covered most o f the 

Midland Valley.

In the alternative view of Stone et al. (1987) the Girvan area is

thought to be part o f the backarc basin (Fig. 7.4). It is positioned on 

the cratonic side o f the basin, being subjected to faulting presumably 

as the crust was extended.

Bluck (1985) envisaged the Girvan sequence forming in a proximal

forearc basin in which uplift of the arc produced contemporous faults 

which allowed an arc to rise in the N and basin to sink in the S. The 

Midland Valley was seen as the site o f the arc; and the Girvan

sequence as the site of the proximal forearc. The rocks which were 

deposited  in fan-deltas and associated environm ents d ispersing  

sedim ent from N contain granitic clasts o f sim ilar age to the 

sedimentary rocks in which they were deposited. The presence o f 

andesite, rhyolite and quartz porphyry clasts in the conglomerate and
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associated sandstones and greywackes,field and structural constraints 

led Bluck to suggest a proximal forearc region for Girvan. On this 

evidence the contemporary arc m assif should be to the north, and 

since some of the clasts are greater than 2 m in diameter then it 

should be fairly proximal. This led Bluck to conclude that the arc was 

located in the Midland Valley.

Yardley et al. (1982) considered the whole o f the Midland Valley 

including Girvan to have been a forearc basin throughout the 

Ordovician and Silurian times. The arc, in this view, is situated in the 

Dalradian block to the N. Erosion of this arc was thought to supply the 

Girvan area as well as elsewhere. The paucity o f  metamorphic detritus, 

and the fact that during Ordovician times the Dalradian block suffered 

its maximum uplift, does not lend much support for this theory.

7 .3 .2  Present  results

The sequence o f rocks at Girvan comprises coarse conglomerates 

banked-up  aga in st con tem p oran eou sly  a c tiv e  fa u lts . T hese  

conglom erates were deposited in fan-deltas which interfingered, on 

their basin side, with turbidites. The conglomerates are dispersed from 

the N and NW, and contain an abundance o f igneous clasts.

D etailed  petrographic and geochem ical studies o f the Girvan 

greyw ackes as discussed in chapters four and five  respectively  

suggest that the material deposited was derived from basic , ultrabasic 

and volcanic rocks through to the most differentiated acidic rocks 

during the Ordovician tim es. By A shgill and Llandovery tim es, 

contributions from basic, ultrabasic and som e o f  the volcanic
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com ponents have becom e less sign ificant but more quartz-rich  

recycled material was more and more introduced to the area. On the

basis o f evidence presented elsewhere and in chapters four, five and 

six, the following points can be made

1. The conglomerates at Girvan have clasts ranging up to 3 m in 

diameter and were deposited in fan-deltas (Bluck 1983; Ince 1984). For 

reasons of coarse grain-size, environment of deposition (fan deltas are 

proximal type sediments) and structural control they are thought to be 

proximal deposits. Since the turbidites collected for this thesis can be 

traced laterally into these conglom erates, the turbidites are also

considered to be proximal.

2. The com p ositions o f the conglom erates and in terfingering

turbidites are dominated by igneous detritus. This includes mafic and 

ultramafic clasts with a probable origin in the Ballantrae complex; 

acid-intermediate effusive rocks; granites, with cooling ages which

show they were intruded at the time of sedimentation (Longman et al. 

1979); and abundance o f granophyric debris which suggests high 

level plutonism. Petrographically, the sandstones plot in the fields of  

transitional through dissected to mixed arc, and the chemistry also 

defines them as arc-type rocks.

From the evidence of composition it is clear that these rocks source 

in arc terrane. Combining the reasoning here with 1 above , then the 

arc was situated immediately to the NW.

3-By early Silurian times, this arc may have become insignificant 

or even stopped, and the basement or mature sedimentary basins, 

probably not associated with it, dominated the record.
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4-By comparison, and despite its variability, the Southern Uplands 

has the petrography and chemistry of a forearc or backarc deposit.

5-Despite a general similarity in the evolutionary history of the 

Southern Uplands and the Girvan area, there are sufficient difference 

to suggest that both areas did not share a common history.

It should be mentioned that despite some difficulties mainly related 

to disagreements between the various tectonic fields proposed based 

on the geochem istry, geochem ical re-investigation  o f  Southern 

Uplands rocks clearly suggest proximal to an arc environment.

7.4 Implication of  the present  data on the avai lable  models

The data and direct inferences made from them in 7.2-3 together 

with the data presented in chapters four, five and six have a

substantial bearing on the plate tectonic setting o f  Southern Scotland.

The models of Leggett et al. (1982) and Yardley et al. ( 19821 which 

require an arc within the Dalradian block and a forearc basin in the 

Midland Valley to the immediate south, are not supported by the

evidence supported here. Consideration o f grain size etc lead to the 

conclusion that the arc source was w ith in  the Midland Valley, and not

beyond it.

It follows, however, that if  there was indeed an arc in the Dalradian 

block, then two arcs existed along the Laurentian margin.
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The models o f Stone et al. (1987) requiring an arc to the south of

Southern Uplands is again contradicted by the evidence presented 

here. It is the main conclusion of this thesis that the area now to the

N. o f Southern Uplands was arc-forearc region, and an accretionary

prism would be anticipated to have existed to the south. Once again, if 

the idea of Stone et al. (1987) lead to the conclusion that there is an arc 

to the south , there is a 'double arc' problem in the Caledonides.

However, Kelly and Bluck (1989) point out that the detritus which is 

dispersed from the south is older than the age o f the sediment and may 

therefore belong to an inert arc massif.

The Southern Uplands ploted data show that they also belong to a 

forearc setting, and in a general sense share a volcanic and 

m etam orphic basem ent provenance with the Girvan sequence. 

However, in detail there are sufficient differences to suggest that both 

could not have shared the source area.

The concept that the Caledonides comprises a series o f terranes 

each with an individual history and each with a history distinct from 

each other may provide a solution to the multi-arc problem as well as 

the problem of provenance of the Southern Uplands sediments.
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Key to Figures 7.1-4

Figure 7.1: Geological sketch map of N. Scotland showing the three 

major tectono-stratigraphic units.

Figure 7.2: Tectonic model of the Scottish Caledonides after Leggett et 

al. (1982-83) and Yardley et al.(1982).

Figure 7.3: Tectonic model o f the Scottish Caledonides after Bluck 

(1985)

Figure 7.4: Tectonic model of the Scottish Caledonides after Stone el al 

(1987).
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Legget et al. (1982,83) and Yardley et al. (1982) Fig 7.2

Bluck (1985)
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CHAPTER EIGHT SUMMARY AND CONCLUSIONS

Detailed studies o f the Girvan area greywackes show that these 

rocks exhibit great petrographic and chemical variations and show 

system atic changes in passing from Upper Llanvirn through to 

Llandovery age

Petrographic studies o f greywackes in the Girvan area show  

them to have formed in a forearc setting. The lower part of the 

sequence (Llanvirn and Llandeilo) is dominated by basic and 

ultrabasic (gabbro, spilite, serpentinite, dolerite) rock fragments 

with various minor proportions o f  rhyolite, granite-granodiorite 

(usually hornblende-bearing) fragments. The petrography indicates 

the uplifting and unroofing of a major igneous complex. Apart from 

the mafic and ultramafic rock fragments and minerals, which are 

thought to have derived from the obducted Ballantrae complex, there 

are intermediate and acidic rock fragments as well as granites and 

granophyres. Granitic clasts from the coarser parts o f the sequence 

have yielded Rb/Sr ages of between 593 ± 28 Ma and 451 ± 8 Ma 

(Longman et al. 1979) and have petrographic and chemical affinities 

o f high level intrusions. Based on conglomerate clast studies, Bluck 

(1983) also noted that some o f the clasts are m ineralogically  

dissimilar to those now exposed at Ballantrae and as a consequence 

he linked these rocks to other phases o f granitic intrusions of ages 

o f between 590 Ma and 450 Ma. It is therefore likely that the source 

as this time comprised an obducted ophiolite upon which was 

founded an igneous complex. This complex comprised acidic rocks 

and associated plutons, some o f which may have been sufficiently  

high level to be granophyric.
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The mineralogy of the Llanvirn-Llandeilo greywackes as given 

above continues into the Caradoc rocks, but the succeeding Lower 

Ashgill sandstones and greywackes tend to be richer in acidic rock 

fragm ents, quartz (which may be o f sedimentary origin) and 

probably also some sedimentary quartz-rich material.

The progressive changes in the com position of the greywackes 

with younging age is attributed mainly to the evolution in the 

composition of the magmatic arc which was founded on an obducted 

op h io lite . The abnormally quartz-rich nature o f  the A shgill 

greyw ackes suggests addition o f recycled sedim entary material 

during this time and this recycled orogen, quartz-rich material is 

particularly enhanced during Llandovery. Basic and ultrabasic rock 

fragments are totally absent in these Llandovery rocks and even the 

acidic components became scarce with the rocks being composed  

almost entirely of recycled orogenic material.

The reason for this change to a recycled orogen type source are 

uncertain. Possibilities are that a pause in arc activity has permitted 

drainage to reach back into the craton and tap source o f quartz-rich 

sediment or has allowed erosion to expose the root zones o f the arc. 

There is also the possibility that a new source was emplaced by 

structural events, but this possibility cannot be tested by the data 

presented here.

Detailed geochemical studies also showed important features both 

as regards the vertical variability, provenance areas and tectonic 

settings. In passing from the Upper Llanvirn to Llandovery, those 

com patible elements which are comm only enriched in mafic and
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ultramafic rocks (e.g Mg, Fe, Cr, Ni, Co) tend to decrease with

younging age whereas those incompatible elements (e.g, K, Rb, Zr) 

and Si generally increase thus strongly supporting conclusions 

reached from the petrography. As deduced from Harker-type 

diagrams, these chemical changes are related to a normal evolution 

in the magmatic arc but also to some addition o f sedimentary and 

little metasedimentary components particularly during Llandovery.

The tectonic setting of the Girvan sequence can be deduced again 

from both the petrography and geochem istry. The petrography

shows that the Ordovician greywackes-forming material was derived 

from transitional through dissected to mixed magmatic arc regimes

and by Llandovery, almost pure recycled  orogenic quartz-rich 

material was introduced to the area. Detailed modal analyses of the 

rocks suggest forearc deposition settings for the Girvan area 

greywackes which therefore excludes interarc settings as suggested 

by Bluck (1983) and includes forearc settings as suggested by Leggett 

et al. (1982, 83) and Yardley et al. (1982)

Despite disagreements between different tectonic fields proposed 

by different authors particularly those suggested by Bhatia (1983) 

and Roser and Korsch (1986), the chemistry shows that there is a 

general agreement in that the Ordovician rocks were derived from a 

magmatic arc and probably deposited in forearc settings. It is also 

found that the Llandovery rocks included some silica-rich sediments 

and hence supporting the petrography.

The relationships between Girvan and Southern Uplands as 

discussed in chapters six and seven show that there are a number of
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sim ilarities and differences as regards petrography, geochemistry  

and vertical variability. The Southern Uplands greywackes are 

particularly rich in the total metamorphic rock fragments compared

to their equivalents at Girvan. Glaucophane-schists are also present 

in the former but are totally absent from the latter. On the QFL 

diagram, although the rocks from the two areas sometimes overlap

with each other, the Southern Uplands greywacke-forming material 

was probably derived from an undissected magmatic arc compared to

a fairly dissected magmatic arc material for the Girvan rocks.

Geochemically, the Southern Uplands rocks are also richer in Ca, Rb, 

Ba, Ce Sr and K 20 /N a20  ratio than those from Girvan but the

enrichment in these elements are attributed to the abundance o f

carbonate for Ca and Sr and metamorphic rock fragments for the

remaining elem ents. Although the petrography suggests that the

quartz content increases with younging age in both areas,the 

chemistry shows that this is true only for the Girvan rocks. Also the 

Llandovery rocks of Southern Uplands are richer in Ca compared to

the Ordovician greywackes which is not shared by the rocks at

Girvan. However, Both petrographic and geochemical evidence show  

that both areas were deposited in proximity to arc.

This implies that: (1) The proximal forearc at Girvan belongs to a

different provenance area than the accretionary prism region o f

the Southern Uplands with (a) That a southerly source has been

active in the Southern Uplands and yielded a substantial volume of

debris N. In this case, both basins did not share a similar dispersal

and therefore could not had a similar source and (b) That between 

the forearc basin and the trench there may have been an extensive 

outerarc rise which may have contributed sediments to the trench.
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These components like blue-schist may have been produced in this 

way. (2) The Southern Uplands Fault has a substantial displacement 

bringing together basins with different provenance areas and 

tectonic settings.
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A p p e n d ix  one:  Resul t s  o f  po in t  coun t in g

S i l u r i a n

SI S2 S3 S4 S5 S6 S7 S8 S9 HQ1

Q 71 71 77 73 70 74 78 78 76 74

L 10 13 10 1 1 14 8 6 6 10 13

F 19 16 13 16 16 18 16 16 14 13

Qm 56 65 65 65 62 68 65 65 63 61

L t 25 19 22 19 22 14 19 19 23 26

u p p e r  s e q u e n c e

HQ2 HQ3 HQ4 HC1 HC2 HC3 AL*1 AL*2 AL

Q 75 76 78 80 83 84 80 68 78

L 12 10 10 9 8 6 10 10 15

F 13 14 12 11 9 10 10 22 7

Qm 60 70 65 5 2 78 78 78 62 71

Lt 27 16 23 3 7 13 12 12 16 22

A L * 4 A L * 5 A L * 6 WG1 WG2 WG3 WG4 WG5 WG6 W<

Q 80 79 78 4 7 61 56 52 53 61 67

L 8 12 15 4 7 34 27 26 2 2 12 21

F 12 9 7 6 5 17 22 25 27 12

Qm 73 74 74 7 4 77 46 48 41 4 2 54

L t 15 17 19 2 0 18 37 30 3 4 31 34

m i d d l e  s e q u e n c e

WG8 PW 1 P W 2 PW 3 P W 4 P W 5 P W 6 PW

Q 69 83 85 57 61 61 4 6 67

L 22 6 5 5 3 8 5 12

F 9 11 10 38 36 31 4 9 21

Qm 60 7 8 72 31 31 38 4 0 53

L t 31 11 18 31 33 31 11 36
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PW8 PW9 PW10 PW11

Q 65 67 69 68

L 10 2 10 12

F 25 31 21 20

Qm 42 59 59 65

Lt 33 10 20 15

P W 1 8  P W 19 P W 2 0  PW21

Q 78 80 7 4 7 9

L 6 5 9 6
F 16 15 17 15

Qm 72 70 61 68

L t 12 15 2 2 17

TM5 T M 6  T M 7 TM8

Q 70 62 62 70

L 7 18 27 13

F 23 2 0 11 17

Qm 4 2 4 6 41 22

L t 35 3 4 48 61

AF1 AF2 AF3 AF4

Q 37 4 3 29 62

L 1 1 14 14 17

F 52 43 57 21

Qm 30 35 27 4 9

L t 18 22 16 30

PW  13 P W  14 PW  15 PW 16 PV

68 58 7 4 76 79

15 21 6 5 4

17 21 20 19 17
63 56 69 66 65

20 23 11 15 18

P W 2 3 TM1 TM2 TM3 TM4

79 80 71 76 43

10 12 7 10 33

11 8 22 14 2 4

62 66 53 57 22

27 26 25 29 54

T M 1 0  TM11 TM 12 TM13 T M 1 4

64 67 73 7 4 68

12 14 6 9 16

2 4 19 21 17 16

4 6 52 61 60 38

30 29 18 23 4 6

AF6 AF7 AF8 AF9 A F 1 0

32 59 51 35 32

33 18 23 33 15

35 23 2 6 32 53

2 4 43 30 23 28

41 3 4 4 4 45 19

P W  12

68
9

23

63

14

P W 2 2

76

8

16

70

14

T M 9

73

8

19

62

19

AF5

30

4 7

23

15

62
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AF1 1 A F 1 2 AF13 A F 1 4 AF15 AF16 A F 1 7

lower

s e q u e n c e

KP

Q 51 36 61 39 29 36 51 43
L 15 30 27 25 36 50 38 43
F 34 34 12 36 35 14 11 14

Qm 4 4 29 46 28 27 28 38 27

L t 22 37 42 36 38 58 51 59

K P 2 K P 3 K P 4 K P 5 K P 6 ADI AD2 AD3 KC1 KC2

Q 45 60 48 5 0 37 55 32 43 5 0 65
L 42 21 30 2 5 4 2 20 34 21 18 15

F 13 19 22 2 5 21 25 34 36 32 2 0

Qm 26 34 38 31 21 4 4 20 36 38 4 9
L t 61 4 7 4 0 4 4 58 2 4 4 6 28 30 31

KC3 BC1 BC2 TB1 TB2 TB3 TR1 TR2 TR3 T R 4

Q 58 39 33 51 53 50 42 4 4 4 5 51

L 11 45 33 15 14 12 21 18 2 2 26

F 31 16 34 3 4 33 38 37 38 33 23

Qm 4 4 20 2 0 3 4 36 45 38 41 3 7 36

L t 25 64 4 6 32 31 17 25 21 30 41

TR5 T R 6  TR 7 T R 8  T R 9  TRI O TR11 T R 1 2  T R 1 3  T R 1 4

Q 32 33 4 4 32 61 62 52 4 9 55 52

L 32 34 2 0 2 6 12 10 11 16 12 10

F 36 33 36 4 2 27 28 37 35 33 38

Qm 27 26 37 23 48 56 45 43 4 2 48

L t 37 41 27 35 25 16 18 22 25 14
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TR15 TR16 TR17 TR18

Q 4 4 33 63 42

L 39 38 21 35

F 17 29 16 23

Qm 20 17 2 7 22

L t 63 5 4 57 55

TA3 TA4 TA5 TA6

Q 52 4 9 53 43

L 20 13 10 17

F 28 38 37 4 0

Qm 4 0 4 2 4 8 34

L t 32 2 0 15 26

A L 2  AL 3  A L 4  AL5

Q 38 32 2 8 17

L 4 2 4 9 2 4 4 4

F 20 19 4 8 39

Qm 15 25 2 7 16

L t 65 5 6 25 45

TR2 0 TR21 T R 2 2 TA1 TA2

50 60 62 56 45

24 14 18 1 1 8

26 26 2 0 33 47

26 48 36 51 40

48 2 6 4 4 16 13

TA8 TA9 TA 1 0 T A U AL1

39 4 6 4 2 50 32

18 14 2 7 2 0 29

43 4 0 31 30 39

33 38 2 0 28 32

2 4 22 4 9 4 2 29

KK1 K K 2  K K 3 K K 4  KK5

4 7  55  4 2  3 4  43

16 17 31 2 0  20

37 28  2 7  4 6  37

23 39  4 0  2 7  39

4 0  33 33  2 7  41

T R 1 9

63

16

21

50

29

TA7

54

21

25

43

32

A L6

37

15

48

21

31
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A p p e n d i x  one : Cont inued

S i l u r i a n

SW1 SW2 SW3 SW4

Qp 77 68 73 72

L v 16 20 17 10

Ls 7 12 10 18

Qm 82 90 87 84

P 10 6 9 10

K 8 4 4 6

HQ1 HQ2 HQ3 HQ1

Qp 82 79 72 54

L v 14 15 20 45

L s 4 6 8 1

Qm 7 4 83 80 52

P 23 14 18 4 6

K 3 3 2 2

A L * 5 A L * 6 A L * 7 WG1

Qp 36 63 84 36

L v 38 25 16 4 9

L s 26 12 0 15

Qm 56 68 5 0 68

P 4 2 2 4 45 28

K 2 8 5 4

WG8 WG9 WG10 WG11

Qp 20 5 0 25 86

L v 4 0 50 75 14

L s 4 0 0 0 0

Qm 85 75 50 80

P 10 23 43 11

K 5 2 7 9

SW6 SW7 HC1 HC2 HC3

76 75 9 0 88 84

15 20 7 6 5

9 5 3 6 11

84 9 4 88 96 91

9 4 9 2 3

7 2 3 2 6

u p p e r  s e q u e n c e

A L *  1 A L * 2 A L * 3 A L *

4 4 37 39 4 9

39 41 45 34

17 2 2 16 17

63 5 9 72 77

34 4 0 28 20

3 1 0 3

WG3 WG4 WG5 WG6 WG7

53 18 30 55 33

4 0 64 67 45 34

7 18 3 0 33

60 89 87 82 88

2 4 8 9 9 12

16 3 4 9 0

WG13 WG1 4 W P1 W P 2 W P 3

62 85 73 75 48

19 10 22 20 34

19 5 5 5 18

4 8 61 7 9 81 55

33 25 15 16 35

19 14 6 3 10

SW5

72

12

16

88
7

5

WG2

31

4 9

20
65

32

3

WG12

56

29

15

82

10
8
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SCI SC2 SC3 SC4 m i d d l e s e q u e n c e

25 26 27 28 AF1 AF2 AF3 AF4

Qp 58 52 50 25 38 15 3 4 28

L v 40 4 4 4 7 70 40 80 62 55

Ls 2 4 3 5 22 5 4 17

Qm 67 80 73 62 45 32 70 38

P 29 15 19 30 52 67 8 52

K 4 5 8 8 3 1 22 10

AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF 12 AF13 AF1 4

Qp 31 4 6 45 30 27 38 28 27 36 31

L v 58 5 4 55 4 8 66 62 72 73 6 4 69

L s 11 0 0 2 2 7 0 0 0 0 0

Qm 41 65 5 4 4 2 34 56 32 4 6 80 43

P 55 22 2 4 51 64 27 61 4 6 2 0 32

K 4 13 22 7 2 17 7 8 0 25

AF15 TM1 TM2 TM3 T M 4 TM5 TM6 TM 7 TM8 TM9

Qp 33 72 67 7 4 67 70 75 5 0 55 47

L v 55 16 22 16 25 21 17 3 4 2 7 31

Ls 12 12 1 1 10 8 9 8 16 18 22

Qm 4 4 63 60 7 0 81 80 87 73 65 79

P 49 27 26 16 10 12 8 17 2 6 14

K 7 10 14 14 9 8 5 10 9 7

T M 1 0  TM11 T M 12  T M 13  T M 1 4  TM15  P W 1 P W 2  P W 3  P W 4

Qp 60 4 0 60 5 9 63 67 78 83 78 58

L v 25 50 30 32 27 15 16 12 19 33

Ls 15 10 10 9 10 18 6 5 3 9

Qm 67 78 66 73 77 71 4 4 4 7 55 45

P 25 14 4 4 15 17 19 4 6 38 32 43

K 8 8 0 12 6 10 10 15 13 12
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P W 5  P W 6  P W 7  PW 8 P W 9  P W 1 0  PW11  P W 1 2  P W 1 3  P W 1 4

Qp 72 4 0 68 67 65 69 75 65 76 67

L v 20 55 29 27 31 28 19 26 16 30

Ls 8 5 3 6 4 3 6 9 8 3

Qm 41 78 86 90 89 86 80 81 82 79

P 45 18 8 6 8 12 12 12 12 13

K 14 4 6 4 3 2 8 7 6 8

l o w e r  s e q u e n c e

P W  15 P W  16 P W  17 KP1 K P 2 K P 3 K P 4 KP5

Qp 64 7 0 63 4 2 27 3 4 5 6 50

L v 30 25 31 56 71 5 8 38 48

L s 6 5 6 2 2 8 6 2

Qm 82 86 85 55 66 6 0 63 60

P 12 8 10 4 0 26 33 30 35

K 6 6 5 5 8 7 7 5

K P 6 K P 7 ADI AD2 AD 3 KC1 KC2 KC3 KC4 KC5

Qp 45 28 50 52 47 43 23 38 4 0 62

L v 4 7 6 6 41 43 50 55 77 6 0 58 35

Ls 8 6 9 5 3 2 0 2 2 3

Qm 55 4 9 64 37 50 19 21 2 0 43 61

P 37 41 36 63 50 81 79 80 4 0 30

K 8 10 0 0 0 0 0 0 17 9

KC6 BC1 BC2 BC3 BC4 BC5 TB1 TB2 TB3 TB4

Qp 52 5 2 65 32 33 28 35 18 35 33

L v 4 6 4 8 30 57 54 57 56 82 65 67

L s 2 0 5 11 13 15 9 0 0 0

Qm 54 7 2 59 55 4 6 37 12 2 0 5 4 42

P 4 0 2 4 38 4 0 48 60 84 73 43 58

K 6 4 3 5 6 3 4 7 3 0



2 5 6

TB5 TR1 TR2 TR3 T R 4 TR5 TR6 TR7 TR8 TR9

Qp 50 22 35 18 24 31 50 43 32 53

L v 50 76 59 75 68 65 50 57 68 41

Ls 0 2 6 7 8 4 0 0 0 6

Qm 48 50 53 4 4 4 4 35 64 55 55 53

P 52 4 9 4 7 56 54 61 18 45 45 14

K 0 1 0 0 2 4 18 0 0 6

T RI O TR11 T R 1 2  TR13 T R 1 4  T R 1 5  T R 16 T R 17  T R 18  TR19

Qp 83 55 60 39 4 0 73 4 6 4 8 5 6 43

L v 17 4 5 4 0 61 58 27 50 52 41 57

L s 0 0 0 0 2 0 4 0 3 0

Qm 68 56 56 55 50 63 50 70 4 9 64

P 19 2 4 23 27 30 25 40 25 51 20

K 13 2 0 21 18 20 12 10 5 0 16

T R 2 0 TA1 TA2 TA3 TA4 TA5 TA6 TA7 TA8 TA9

Qp 68 4 9 68 4 2 38 45 38 59 45 51

L v 28 51 32 53 60 51 58 35 55 47

L s 4 0 0 5 2 4 4 6 0 2

Qm 62 52 54 47 56 4 6 53 48 45 52

P 36 48 46 43 25 45 35 4 0 43 41

K 2 0 0 10 19 9 12 12 12 7

AL 1 AL2 AL3 AL4 AL5 A L 6 KK1 KK2 KK3 KK4 k k5

Q p 5 1 2 6 1 0 28 4 0 2 5 6 1 3 2 3 23

Lv 9 2 8 8 9 4 8 4 6 1 5 5 7 1 9 4 87 7 5 7 0

Ls 3 0 0 6 1 1 5 4 0 0 2 2

Qm 4 4 5 6 3 6 1 1 5 9 5 9 4 1 7 0 58 5 0 5 0

P 4 3 2 6 6 0 8 2 37 2 2 4 7 1 8 27 4 2 0

K 1 3 1 8 4 7 4 1 9 1 2 1 2 1 5 8 8



25  7

A p p e n d i x  one (C on t in ued) :  Resu l t s  o f  p lag io c la se  and K -f e ld s p a r  

analyses

lo w e r s e q u e n c e ( r ock

TB1 TB2 TB3

S i0 2 63 .92 66.47 6 6 .3 7

A1203 20.85 20.57 19.57

CaO 0.12 0.41 0 .8 2

N a 2 0 10.20 10.64 11.07

K 20 1.38 0 .47 0 .3 0

T o t a l 96 .47 9 8. 56 9 8. 13

N u m b e r  of  ions per  un it  formi

Si 11.62 11.79 11 .84

A1 4 .4 7 4 .30 4 .11

N a 3.59 3.65 3 .83

K 0.3 2 0 .10 0 .0 6

E n d m e m b e r p r o p o r t i o n s

A n 2 4 7

A b 86 92 91

O r 12 6 2

f r a g m e n t s )

TB4 TB5 TB6 TB7

65.08 62 .3 4 65 .82 6 3 .9 0

20.40 18.89 19.42 18.49

0 .67 0 .36 0 .48 0

10.26 10.59 11.33 5 .0 7

0 .63 0 .25 0.21 8 .90

9 7. 04 92.4 3 97 .2 6 9 6 . 3 6

la (on the basis  o f 32 ox ygens )

11.73 11.56 11.83 11.95

4 .33 4 .13 4.11 4 .0 7

3 .58 3.81 3 .95 1 .84

0 .1 4 0 .0 6 0 .05 2 .1 2

6 3 4 0

89 95 9 4 36

5 2 2 6 4



2 5 8

TB8 TB9 TB10 TB11 T B 12 TB13 TB14

S i0 2 66.93 64 .6 4 64 .0 6 60.23 62 .47 62 .23 63 .6 8

A1203 19.37 18.56 18.20 23.21 17.84 17.53 2 0 .2 2

CaO 0 0 0.29 0 0 0 0.11

N a 2 0 9.79 7 .16 2 .68 7.77 1.14 0 .5 4 10.47

K20 2 .59 5 .27 12.58 3 .14 15.08 16.52 1.37

T o t a l 9 8 . 68 95 .6 3 9 7. 52 64.60 96 .53 96 .8 2 9 5. 85

N u m b e r  o f  ions per  uni t  fo rmul a  (on the basi s o f  32 ox yg ens )

Si 11 .94 11.96 11.99 11.22 11.92 11.95 11.59

A1 4.07 4 .0 5 4.01 5 .10 4.01 3 . 97 4 . 3 4

Ca 0 0 0 0.05 0 0 0 .0 2

N a 3.38 2 . 5 7 0 .97 2.79 0 .42 0 .2 0 3 .69

K 0 .5 9 1.24 3 .00 0 .74 3 .67 4 .0 5 0 .3 2

E n d m e m b e r p r o p o r t i o n s

A n 0 0 0 3 0 0 1

A b 79 58 18 69 7 3 88

Or 21 4 2 82 28 93 97 11

KP 1 K P 2 KP 3 KP4 K P 5 K P 6 K P 7

S i0 2 62.73 65 .05 64.43 61.98 63 .9 2 6 5 . 8 7 66 .7 2

A1203 2 2. 77 16.36 20.61 22.26 18.30 12.29 19.15

CaO 2.45 0 1.36 1.55 0 .2 4 0 .35 0 .1 8

N a 2 0 9 .2 4 4 .3 7 10.91 9.48 0 .5 4 10.61 9 .4 0

K 20 0 .67 4 .7 7 0 .08 1.27 16.39 1.11 2 .45

T o t a l 9 7 .8 6 92 .5 5 97 .3 9 9 6. 54 9 9 . 3 9 97 .2 3 9 8 .2 0

N u m b e r  o f  ions per uni t  fo rmula (on the bas i s  o f 32 o x yg ens )

Si 11.32 11.95 11.62 11.31 8 .18 11.89 11.98

A1 4 . 7 4 3 . 97 4 .38 4 .79 2 .7 6 4 . 1 0 4 .0 5

Ca 0.47 0 0 .26 0.30 0 .03 0 .0 6 0 .03

N a 3.23 1.55 3.81 3.35 0 .13 3.71 3 .27

K 0.15 2 .2 9 0 .02 0 .29 2 .6 7 0 .2 5 0 .5 6

E n d m e m b e r p r o p o r t i o n s

A n 20 0 11 13 1 3 2

A b 75 31 88 77 3 88 78

Or 5 69 1 10 9 6 9 2 0



2 5 9

TR1 TR2 TR3 TR4 TR5 TR6 TR7

S i 0 2 63 .8 7 63.07 63.10 64.47 6 5 .5 7 65 .1 9 65.41

A1203 18.13 17.49 18.31 17.87 20 .2 9 20.42 19.08

CaO 0 0.13 0 0 1.14 1.34 0 .67

N a 2 0 2 .1 4 0 .42 0 .9 2 0 .85 10.80 11.0 10.58

K 20 12.96 16.02 15.47 15.77 0 .1 2 0 0.92

T o t a l 9 7 .1 0 97 .13 97 .8 0 98.96 9 7 . 9 2 97.95 9 6. 06

N u m b e r  o f  ions  per  unit fo rmula (on the bas i s  o f 32 oxygens)

Si 8 .24 12.02 11.87 12.01 11.73 11.67 11.83

A1 2 .75 3 .93 4 .0 6 3 .92 4 .2 8 4 .31 4 .0 7

Ca 0 0.0 2 0 0 0 .2 2 0 .25 0 .13

N a 0.53 0 .15 0.33 0 .30 3 .7 4 3 .82 3.71

K 2.13 3 .89 3.71 3 .65 0 .0 2 0 0.21

E n d m e m b e r p r o p o r t i o n s

A n 0 1 0 0 9 11 5

A b 14 2 6 5 9 0 89 87

O r 86 97 9 4 95 1 0 8

l o w e r s e q u e n c e  (m a t r ix ) .

TB1 TB2 TB3 TB4 TB5 KP1 K P 2

S i 0 2 63 .9 8 67. 58 6 6.6 8 66.75 65.93 6 7 .8 0 64 .85

A1203 19.21 19.47 19.91 19.38 18.63 19.72 20.43

CaO 0 .5 6 0 .1 0 0 .5 4 0 0 .1 6 0 0.93

N a 2 0 12.98 11.52 11.63 11.33 11.3 4 11.95 10.47

K 2 0 0. 3 2 0 0 .1 9 0 0 .13 0 0

T o t a l 97 .0 5 9 8 .6 7 98 .9 5 9 7. 46 9 6 . 1 9 9 9 .4 7 96 .6 8

N u m b e r  o f  ions per uni t  fo rm ula (on the ba s i s  o f 32 oxygens)

Si 11 .66 11.95 11.81 11.94 11.98 11.88 11.59

A1 4. 13 4 .0 6 4 .1 6 4 .08 3 .9 9 4 .1 2 4 .3 0

Ca 0. 0 2 0 .1 0 0 .1 0 0 0.0 3 0 0 .1 7

N a 4 . 5 9 3.95 3 .99 3.93 3 .9 9 4 .0 6 3 .72

K 0 .0 7 0 0 0 .0 4 0 0. 03 0 0

E n d m e m b e r p r o p o r t i o n s

A n 4 1 4 0 1 0 8

A b 9 4 9 9 96 100 9 8 100 92

O r 2 0 0 0 1 0 0



2 6 0

KP3 KP 4 KP5 TR1 TR2 TR3 TR 4

S i0 2 66 .02 66.63 66 .79 66.48 6 5. 94 65.32 66.75

A1203 19.73 19.46 19.13 19.67 19.99 18.92 19.49

CaO 0 .56 0 .16 0 .24 0 .45 0.81 0 .32 0 .30

N a 2 0 11.23 11.10 11.26 11.41 11.67 10.96 11.87

K20 0 .0 9 0 .10 0 .16 0 0 .10 0 .0 9 0

T o t a l 97 .63 97.45 97.58 98.01 98.51 95.61 98.41

N u m b e r  o f  ions per unit  fo rmula (on the basis  o f 32 oxygens)

Si 11 .82 11.93 11.94 11.86 11.74 11.91 11.88

A1 4 .1 6 4 .10 4 .03 4 .1 4 4 .1 9 4 .0 6 4 . 0 9

Ca 0 .1 0 0 .03 0 .04 0 .08 0 .15 0 .0 6 0 .05

N a 3 .9 0 3 .85 3 .90 3 .94 4 .03 3 .87 4 .0 7

K 0.02 0 .02 0 .03 0 0.02 0 . 02 0

E n d m e m b e r p r o p o r t i o n s

A n 5 1 2 4 6 3 2

A b 9 4 98 97 96 93 96 98

O r 1 1 1 0 1 1 0

u p p e r s e q u e n c e  ( rock f r a g m e n t s )

WG1 WG2 WG3 WG4 WG5 WG6 WG7

S i 0 2 6 8 .7 0 64.78 65.71 6 6. 10 64.9 0 6 4. 18 6 4 .3 0

A1203 19.50 21.29 21 .1 4 20 .2 9 21 .8 9 21.91 2 1 .2 9

CaO 1.33 1.57 1.84 0 .9 0 3.31 2 .4 0 2 .57

N a 2 0 10.08 9 .92 10.11 10.55 10.09 9 .65 10.14

K 2 0 0.22 0 .12 0 .22 0 .23 0 .1 2 0 0

T o t a l 99 .83 97.68 99 .0 2 98 .0 7 100.31 9 8 . 1 4 9 8 . 3 0

N u m b e r  o f  ions per unit  fo rmu la (on the basis  o f 32 ox yg ens )

Si 11.79 11.58 11.63 11.77 11.4 11 .46 11.48

A1 4.01 4 . 48 4.41 4 .2 6 4 . 53 4.61 4 .4 8

Ca 0. 25 0 .3 0 0 .35 0 .1 7 0 . 62 0 .4 6 0 .4 9

N a 3.41 3 .44 3 .47 3 .6 4 3 .43 3 .3 4 3.51

K 0 . 0 4 0 .02 0 .05 0 .05 0 .0 2 0 0

E n d m e m b e r p ro p o r t i o n s

A n 11 14 15 8 15 13 12

A b 87 85 83 9 0 84 87 88

O r 2 1 2 2 1 0 0
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WG8 A L *  1 A L * 2 A L * 3 A L * 4 SCI SCI
Si 0 2 63.0 63 .33 64.01 65.83 64.99 6 4 .7 6 63.18

A1203 22.29 21 .7 6 22.33 21.79 22.18 2 2 . 2 9 2 2 .8 2

CaO 3.41 3 3.35 2 .76 3.20 3 .1 9 3 .82

N a 2 0 9.71 9 .4 0 9 .47 10.27 9 .68 9 .8 9 9 .58

K 20 0.12 0 .2 4 0.31 0 0 0 .2 7 0 .26

T o t a l 98 .62 97 .7 3 99 .3 7 100.65 100.05 100.4 9 9 .6 6

N u m b e r  of  ions pe r  unit  fo rmu la  (on the basis  o f  32 o x yg ens )

Si 11.26 11.39 11.33 11.48 11.40 11.36 11.20

A1 4.70 4 .61 4 .6 6 4 .48 4 . 58 4 .61 4 .7 7

Ca 0.65 0 .5 7 0 .63 0.51 0 .60 0 . 6 0 0 .7 2

N a 3.36 3 .27 3 .25 3.47 3 .92 3 . 3 6 3 . 29

K 0.02 0 .05 0 .0 7 0 0 0 . 0 6 0 .0 6

E n d m e m b e r p r o p o r t i o n s

A n 16 15 16 13 15 24 28

A b 83 84 82 87 85 7 4 7 0

O r 1 1 2 0 0 2 2

u p p e r s e q u e n c e ( m a t r ix )

SC3 WG1 WG2 WG3 WG4 WG5

S i0 2 63.33 66. 6 67.3 67 .79 6 7 . 4 7 68. 63

A1203 2 1. 76 19.21 19.49 19.47 14 .29 19.61

CaO 3.14 0 0 0 0 . 2 4 0

N a 2 0 9.36 8 .94 11.79 11.66 1 1.6 2 11.52

K 20 0.27 0 0 0.08 0 0

T o t a l 9 7 .8 6 9 4 .7 5 98 .58 99. 0 9 8 . 6 2 9 9 . 7 6

N u m b e r  of  ions per  unit  fo rm ula (on the basis  o f 32 o x y g e n s )

Si 11.39 11.89 11.93 11.96 11.95 11.97

A1 4.61 4 .0 4 4 .0 7 4 .05 4 .0 3 4 .0 3

Ca 0.60 0 0 0 0 . 0 4 0

N a 3 .26 4 .1 6 4 .05 3 .99 3 .9 9 3 .8 9

K 0.06 0 0 0.01 0 0

E n d m e m b e r p r o p o r t i o n s

A n 25 0 0 0 1 0

A b 73 100 100 99 9 9 100

O r 2 0 0 1 0 0



2 6 2

WG6 AL1 AL2 AL3 A L 4 SCI SC2

S i0 2 66.46 6 5 .7 7 65.94 66.88 66.61 67.88 67.75

A1203 19.27 2 0 .1 4 20.24 19.19 2 0 .2 6 19.56 19.37

CaO 0 1.30 1.21 1.20 0 .5 0 0.13 0.13

N a 2 0 11.47 10.26 10.91 11.12 11.41 11.09 11.71

K20

T o t a l

0

9 7 . 20

0 .09 0 0 0 98 .66 9 8.9 6

N u m b e r  of  ions per unit  fo rmula (on the bas is  o f 32 oxygens)

Si 11.94 11.78 11.75 11.90 11.77 11.95 11.95

A1 4 .08 4 . 25 4 .25 4 .02 4 . 2 2 4 .08 4 .02

Ca 0 0.25 0 .23 0.23 0 .0 9 0 .02 0 .02

N a 3 .99 3 .56 3 .77 3.83 3.91 3 .78 4 .0

K 0 0 .0 2 0 0 0 0 0

E n d m e m b e r p r o p o r t i o n s

A n 0 6 6 6 2 1 1

A b 100 93 94 94 98 99 99

O r 0 1 0 0 0 0 0

SC3 SC4 WP1 W P 2 W P 3 W P 4 W P5

S i 0 2 66 .1 4 64. 05 65.95 65.55 6 7 .0 9 66.4 66 .63

A1203 19.06 21 .43 19.05 19.08 19.80 19.77 19.59

CaO 0.1 2 2 .33 0 0.10 0 .25 0 .40 0 .22

N a 2 0 11.15 10.59 11.75 12.01 11.40 11.29 11.38

K 2 0 0. 12 0 .18 0 0.11 0 0 0

T o t a l 9 6 .5 9 98 .5 8 96.75 96.85 9 8 . 5 4 9 7 .8 6 97.82

N u m b e r  o f  ions per unit  formula (on the bas i s  o f 32 oxy gens)

Si 11.95 11.45 11.92 11.87 11.89 11.86 11.89

A1 4 .0 6 4 .5 2 4 .0 6 4 .07 4 .1 3 4 .1 6 4 .12

Ca 0 .0 2 0 .44 0 0.0 0 .0 5 0 .0 7 0 .0 4

N a 3 .90 3 .67 4.11 4 .22 3.91 3.91 3 .98

K 0 .02 0 .0 4

E n d m e m b e r p r o p o r t i o n s

A n 1 18 0 0 1 2 1

A b 99 81 100 99 9 9 98 99

O r 0 1 0 1 0 0 0



2 6 3

key to appendix one

S i l u r i a n  

S = S ca r t  Gri t

H Q = Q u a r t z  Co n g lo m era te

C o n g l o m e r a t e

H C = C r a i g s h l e y

l o w e r  s c q u c n c  

T A = C h a n g u e  F o r m a t i o n  

KK = K i l r a n y

T R  = C h a n g u e  F o r m a t i o n (  1 -1 6) 

T R = D a r l e y  F o r m a t i o n (  1 7 - 2 2 )  

T B = C h a n g u e  F o r m a t i o n

u p p e r  s e q u e n c e  

F o r m  at  io n

AL=Cra igmulock

W G = W h i t e h o u s e  G ro u p  

S C = S h a l l o c h  F o r m a t i o n  

A L * = S h a l l o c h  F o r m a t i o n

B C = C r a i g m u l o c k  F o rm a t io n  

K P  = InfraKi lrany  G r eyw acke s  

A D = B e n a n  C o n g l o m e r a t e

KC=Kirkland

C o n g l o m e r a t e  

W P = S h a l l o c h  F o r m a t i o n

m i d d l e  s e q u e n c e

A F = A r d w e l l  Flag

T M = A rd w e l l  Group  and Casca de  Gri ts

P W =  Cascade  Grits (1-9) and W hi te hous e  Gro u p  (10-23)

No te  that  the f r am ew ork  m o d e s  are pr es en t ed  as fol lows:

Q + F  + L =  100 

Qm  + F  + L =  100 

Qp + Lv + Ls = 100 

Qm + P + K = 100

Def in i t i on  o f  these te rms  and  o thers  is g iv en  in table 4.1



2 6 4

A p p e n d i x  two:  Resul ts  o f  che m ic a l  an a lyses .

l o w e r s e q u e n c e  

TA1 TA2 TA3 TA4 TA5 TA6 TA7

M a j o r

Si 0 2

e lemen ts

67 .6 3

; (wt%)  

67 .74 68 .2 4 67 .57 55 .1 5 62.85 60.80

T i0 2 0 .83 0.80 0.83 0 .79 0 .9 4 0 .82 1.06

A1203 12.05 11.78 12.18 12.35 15.74 12.56 12.61

F e t o t 6 . 20 5 .94 6 .06 5 .43 8.51 6 .06 7.23

M n O 0 .0 7 0 .08 0 .08 0 .08 0 .1 9 0 .90 0 .95

M gO 3. 92 4 .08 3.85 3 .54 4 .11 4 .19 4 .93

CaO 0 .7 8 0 .80 0 .45 1.06 0 .5 6 2 .14 2 .22

N a 2 0 3. 47 3 .14 3 .37 3 .37 3 .21 3 .12 3 .08

K 2 0 1.37 1.49 1.61 1.45 1.78 1.49 1.51

P 2 0 5 0 .1 0 0.11 0 .10 0.11 0 . 1 6 0 .12 0 .12

H 2 0 3. 07 3.01 3 .02 2.91 2 .91 3.2 3.1

C02 0 .7 2 2.53 1.2 2 .52 2 .5 2 2 .67 2 .62

T o t a l 100 .2 101.68 100.99 101.18 101.1 100.07 101.2:

T r a c e  e l e m e n t s ( p p m )

Z r 169 163 180 163 166 151 20 9

Y 26 26 28 28 3 4 28 31

S r 90 91 93 103 5 0 114 117

R b 37 35 39 37 98 42 4 4

T h 5 6 2 6 8 5 4

Ga 12 12 12 13 18 12 14

Ni 122 150 107 134 110 132 172

Co 13 15 11 13 2 2 17 2 0

C r 3 7 4 4 7 7 37 9 31 7 179 302 6 4 0

Ce 35 34 35 32 4 8 34 37

B a 2 5 7 2 9 6 32 4 190 170 190 212

L a 17 22 22 19 2 7 17 22



2 6 5

M a j o r

TA8

elem en ts

TA9

; (wt%)

TA10 TA11 TA12 TA13 TA14

S i0 2 66 .4 4 72.57 61.73 66 .82 67.13 66.92 68.15

Ti0 2 0 .8 4 0 .58 1.03 0 .85 0 .80 0 .83 0.81

A1203 12.18 10.93 14.77 11.61 11.86 12.36 12.20

F e t o t 6 .26 4 .79 7.11 6 .24 5 .96 6 .17 6 .58

M n O 0.08 0 .07 0 .07 0.11 0 .95 0 .09 0 .07

MgO 4.22 2.93 4 .57 4 .0 0 4.01 3 .92 3 .88

CaO 0.81 0 .38 0 .39 1.32 1.06 1.00 0 . 29

N a 2 0 3.32 3 .09 3.51 3 .08 3 .25 3.41 3 .29

K 20 1.63 1.50 2.11 1.38 1.56 1.33 1.54

P 2 0 5 0.11 0 .08 0 .1 4 0.11 0 .10 0 .1 2 0.11

H 20 2.9 2.01 2 .75 2 .55 2.01 2.1 2.3

CQ2 2.6 0.91 0 .97 0 .99 0 .92 0 .85 0 .96

T o t a l 101 .39 9 9. 84 9 9. 15 9 9 .0 6 99.61 99.1 100.1

T r a c e

Z r

e l e m e n t s ( p p m )  

172 122 189 171 165 170 158

Y 29 24 33 27 27 26 25

S r 93 83 111 87 9 6 99 88

R b 40 32 56 31 37 31 39

T h 3 4 9 4 5 4 5

Ga 12 10 15 12 11 13 13

Ni 139 102 154 118 141 129 129

Co 17 11 19 16 16 15 12

C r 4 0 7 325 281 4 1 2 3 9 0 2 9 0 4 0 7

Ce 35 26 4 6 3 4 30 32 34

B a 32 4 387 338 2 5 4 3 0 0 243 2 8 6

L a 19 16 26 21 22 18 2 4



2 6 6

TA15 T A 16 T A 17 KK1 KK2 KK3 KK4

M a j o r e le m e n ts (w t% )

Si0 2 62 .29 6 4. 79 65.65 58.39 54.18 5 8 .4 7 5 5 .3 4

Ti0 2 0 .93 0 .95 0 .85 1.59 1.39 1.58 1.45

A1203 13.24 12.00 13.11 13.13 14.89 13.22 13.74

F e t o t 7 .53 7 .02 6.51 10.22 13.03 10.82 13.16

M n O 0 .0 9 0 . 08 0 .08 0.13 0 .12 0 .1 2 0 .1 0

MgO 5.40 6 .33 4 .4 0 5 .36 5 .20 5.61 5 .63

CaO 0.99 4 .0 7 0 .4 6 4 .0 4 3.06 4 .01 3 .39

N a 2 0 2.83 3 .12 3 .25 3 .36 3.33 3.31 2 .93

K 2 0 1.91 1.51 1.56 0 . 84 1.01 0 .9 7 0 .95

P 2 0 5 0.15 1.51 0 .1 2 0 .14 0.13 0 . 1 4 0 .1 4

H 20 2.35 2 .65 2.5 3 .28 2.3 3 .2 3.25

C02 2.2 1.15 2 .5 4 0 .39 0.41 0 .6 0 .3 6

T o t a l 99 .91 100.61 101 100.88 100.96 102.01 10 0.44

T r a c e

Z r

e l e m e n t s ( p p m )  

156 193 168 119 134 133 112

Y 28 32 26 33 35 31 31

S r 104 93 92 165 146 164 156

R b 5 0 4 2 41 18 19 22 11

T h 3 2 2 3 1 4 0

Ga 14 14 13 14 19 15 15

Ni 140 135 121 70 66 74 59

Co 21 16 19 21 30 30 27

C r 2 6 6 4 7 4 27 9 2 0 0 213 2 1 9 2 0 8

Ce 34 41 38 15 23 26 20

Ba 306 186 320 138 148 163 161

L a 16 25 23 11 10 16 16



2 6 7

KK5 TR1 TR2 TR3 T R 4 TR5 TR6

M a j o r e le m e n ts ; (wt%)

S i 0 2 57 .1 7 65.70 63.57 65 .4 7 63 .6 8 62.48 64. 29

T i0 2 1.51 0.85 0 .90 0 .82 0 .8 9 0 .85 0 .76

A1203 13.48 11.37 11.68 10.66 13.27 11.68 11.27

F e t o t 10 .50 6.63 6.48 6 .60 7.11 7 .06 5 .90

M n O 0 . 1 4 0 .08 0.07 0 .1 0 0 .0 9 0 .12 0 .09

M gO 5.38 5 .39 4 .22 5.51 5 .0 0 6 .15 3 .46

CaO 3.83 1.20 2 .97 1.56 0 .3 6 1.65 4.11

N a 2 0 3.01 2 .82 3 .20 2 .48 3 .1 9 2 .93 2.13

K 2 0 0 .9 6 1.70 1.51 1.40 1.84 1.76 1.54

P 2 0 5 0.13 0 .12 0 .13 0 .08 0 .13 0.11 0 .10

H 2 0 3.15 2 .87 3.01 3 .07 2 .7 3.11 4 . 2 2

CQ2 0.4 5 0 . 59 2 .70 2 .83 0 .71 2 .97 1.45

T o t a l 99 .71 9 9. 32 100.44 100.58 9 8 . 9 7 100.87 9 9 .3 2

T r a c e

Z r

e l e m e n t s ( p p m )  

133 163 148 143 166 155 153

Y 31 25 25 23 2 4 27 27

S r 164 87 106 72 100 91 77

R b 22 36 44 29 4 6 4 0 38

T h 4 5 5 3 4 3 3

G a 15 11 12 9 12 10 8

N i 7 4 181 132 157 123 22 5 151

Co 30 14 14 23 21 2 4 18

C r 2 1 9 7 5 6 311 64 8 291 591 5 0 4

Ce 2 6 31 29 15 2 2 2 4 31

B a 163 2 8 4 338 261 3 0 4 281 141

L a 16 21 18 8 13 15 21



2 6 8

TR7 TR8 TR9 TRIO T R 1 1 T R 12 T R 1 3

M a jo r e lements ; (w t% )

S i0 2 66 .29 59.45 68.50 68.45 64.80 66.45 66.42

Ti02 0 .72 0 .77 0 .69 0 .85 0.85 0 .8 6 0 .96

A1203 11.21 11.62 11.68 11.60 11.12 12.04 12.06

F e t o t 6 .29 6.61 5 .32 5 .90 6 .34 6 . 59 6 .68

M n O 0.10 0 .09 0 .08 0 .0 7 0.11 0 .0 7 0 .1 0

MgO 5.19 5 .86 4 .13 3 .85 5 .67 4 .4 5 4 . 4 7

CaO 1.05 3 .96 1.46 1.09 1.71 1.10 0 . 65

N a 2 0 2.99 2 .79 3 .40 3 .25 3.05 2 .9 8 3 .07

K 20 1.76 1.74 1.87 1.50 1.52 1.80 1.65

P 2 0 5 0.10 0 .12 0 .09 0.11 0.11 0 .13 0.11

H 2 0 2.89 3 .40 2.11 2.8 2 .70 2 .7 4 2 .63

OQ2 0.58 3.03 0 . 87 0 .73 0 .88 0 .6 8 0 . 7 4

T o t a l 99 .1 7 9 9 .4 4 100.2 100.2 9 8 .8 6 9 9 . 8 9 9 9 . 5 4

T r a c e  e l e m e n t s ( p p m )

Z r 135 128 140 164 160 169 184

Y 22 2 6 26 23 23 23 23

S r 85 103 97 95 83 9 7 9 7

R b 37 4 0 39 38 32 4 4 39

T h 1 0 5 4 4 6 6

Ga 11 10 9 11 9 10 13

Ni 213 2 6 4 115 9 7 182 86 118

Co 21 23 12 12 19 16 12

C r 49 2 4 4 6 253 291 6 3 0 2 0 2 4 3 3

Ce 36 31 33 2 9 18 32 33

B a 322 3 0 9 38 0 261 2 6 8 3 1 9 3 1 4

L a 15 16 15 16 15 18 19



2 6 9

M a j o r

T R 1 4

elemen ts

T R 1 5

; (w t% )

T R 16 TR17 T R 1 8 T R 1 9 T R 2 0

Si0 2 6 4 .2 6 6 7 .8 0 65.09 65.11 64.89 67 .33 65.25

T i0 2 0 .75 0 .7 7 0 .82 0.81 0 .7 9 0 .6 9 0 .78

A1203 11.50 11.47 11.91 12.15 12.67 11.33 12.06

F e t o t 5 .70 5 .7 7 6 .80 6.56 6 .66 5 .43 6 .09

M n O 0.09 0 .08 0 .09 0 .08 0 .0 7 0 .0 6 0 . 07

MgO 4.18 4 .9 8 5 .23 5 .16 5 .55 4 .4 7 4 . 73

CaO 3.75 0.71 0 .93 1.05 0 .4 2 1.82 1.69

N a 2 0 2.41 3 .12 2 .96 2 .85 3.21 3 .3 0 3 .3 4

K 2 0 1.38 1 .84 1 .74 1.77 1.80 1.68 1.88

P 2 0 5 0 .1 0 0 .1 0 0 .1 2 0 .12 0 .1 2 0 .0 9 0 .1 0

H20 3.12 2 .1 0 2.8 2.93 2 .7 4 2 .78 2 .98

CQ2 2.7 0 .6 0.63 0 .69 0 .68 0 . 7 4 0 .73

T o t a l 9 9 . 9 4 9 9 . 3 4 9 9 .2 9 99 .28 9 9 . 6 0 9 9 . 6 9 9 9 .7

T r a c e

Z r

e l e m e n t s ( p p m )  

139 149 148 156 135 150 178

Y 2 4 2 4 23 24 25 2 4 2 2

S r 76 89 84 97 89 103 117

R b 34 4 0 42 38 4 2 3 4 3 7

T h 2 1 2 5 3 5 4

Ga 11 9 13 10 12 11 10

Ni 158 161 174 149 146 154 9 6

Co 19 13 17 15 18 16 13

C r 4 2 9 5 0 2 4 3 5 4 1 2 23 5 3 8 6 2 5 4

Ce 23 2 7 23 26 2 5 15 2 7

B a 157 3 3 7 285 337 3 0 2 3 3 9 2 9 6

L a 19 12 8 19 13 12 18



2 7 0

M a j o r

TR21

elements

TR2 2

5 ( W t % )

TR23 T R 2 4 TR25 TR 26 T R 2 7

Si 0 2 65 .84 67.85 67.58 66 .6 2 67.17 58 .3 4 63.41

T i0 2 0 .79 0 .77 0 .80 0 .79 0 .8 4 0.81 1.07

A1203 11.80 11.18 11.40 11.68 11.07 11.29 11.62

F e t o t 6 .09 6 .44 6 .22 6 .37 6 .39 6 .72 6 .76

M n O 0.10 0 .07 0 .08 0 .08 0 .09 0 .09 0 .11

MgO 4.17 5.21 4 .9 9 5 .0 7 5 .28 5 .63 4 .5 0

CaO 2.14 0 .66 0 .88 0 .9 9 0 .97 5 .25 2 .1 6

N a 2 0 3.06 2 .83 2 .7 9 2 .9 9 2 .90 2 .70 2 .51

K 2 0 1.42 1.60 1.69 1.77 1.48 1.66 1.49

P 2 0 5 0.10 0 .10 0.1 0.11 0.111 0.11 0 .1 2

H 2 0 2 .86 2 .02 2 .13 2 .01 2 .82 3.1 3 .5

OQ2 0.98 0 .64 0 .88 0 .95 0.61 1.88 2 .6

T o t a l 99 .35 99.37 9 9 .5 5 99 .4 3 99.73 9 7. 58 99 .8 3

T r a c e

Z r

e l e m e n t s ( p p m )  

145 146 147 141 153 149 2 4 0

Y 24 2 4 23 21 21 24 3 0

S r 97 84 9 4 81 79 107 103

R b 36 41 41 34 36 39 4 2

T h 4 3 3 4 3 3 4

Ga 10 9 10 10 12 12 10

Ni 147 195 140 192 139 2 7 6 112

Co 18 13 16 2 0 17 23 2 0

C r 42 2 4 7 6 381 7 0 2 4 2 2 6 8 0 3 6 3

Ce 32 2 6 31 2 4 21 27 4 2

B a 222 295 331 291 24 8 2 8 0 2 1 5

L a 20 12 21 19 17 20 25



271

M a j o r

TR2 8

e le m en ts

TB1

; ( w t% )

TB2 TB3 TB4 TB5 TB6

S i0 2 7 0 .2 4 65 .5 8 66 .14 67.76 62.71 6 3 . 2 6 62.3 9

Ti0 2 0 . 60 0 . 73 0 .76 0 .75 0 .95 0 .8 0 0.85

A1203 10.92 11.54 11.15 11.77 13.93 11.55 13.43

F e t o t 4 .8 2 5 .9 9 5 .37 5 .67 7.11 6.21 7 .14

M n O 0. 08 0 .1 0 0.11 0 .10 0 .0 8 0 . 0 9 0.11

Mg O 3 .94 4 .0 7 4 . 3 9 4 .45 4 .51 4 . 9 2 4 .95

CaO 1.26 2 .1 9 2 .1 4 0 .86 0 .8 2 3 . 18 1.19

N a 2 0 3.23 2 . 95 3.23 2 .87 2 .6 8 3 .17 3 .28

K 20 1.45 1.32 1.05 1.45 1.91 1 .30 1.67

P 2 0 5 0 .0 9 0 .1 0 0.15 0.11 0 .1 4 0 .11 0 .13

H 20 2.13 2 . 65 2 .37 2 .45 2 .75 2 .63 2 .56

00 2 0.55 2 .1 4 2 .34 2 .25 1 .90 2 .13 2 .35

T o t a l 99 .31 9 9 .6 3 9 9. 20 100.49 9 9 .4 9 9 9 . 3 7 100.05

T r a c e

Z r

e l e m e n t s ( p p m )  

118 143 134 143 169 145 151

Y 27 2 8 27 23 2 7 2 2 2 6

S r 99 9 4 81 75 68 9 7 86

R b 29 32 28 31 55 32 4 7

T h 3 3 0 3 3 3 3

Ga 12 13 9 11 14 11 13

Ni 101 193 97 118 158 22 3 155

Co 9 2 0 12 15 16 15 2 2

C r 2 7 4 5 9 8 192 2 8 4 2 7 9 5 7 7 2 4 4

Ce 25 2 5 22 31 3 4 2 0 31

B a 305 2 7 7 158 25 8 188 2 5 5 2 0 7

L a 16 21 13 14 23 2 2 18



2 7 2

TB7 TB8 TB9 TB10 TB11 T B 12 TB 13

M a j o r e le m ent s ; (wt%)

Si 0 2 63 .83 67.28 65.32 5 0 .0 0 66 .9 9 65.88 4 6 .8 6

T i0 2 0 .8 0 0 .72 0 .84 1.57 0 .8 2 0.81 1.64

A1203 11.52 11.16 11.67 14.14 12.01 12.01 12.96

F e t o t 5 .5 2 6 .12 6 .67 10.83 6 .14 5.93 10.46

M n O 0 .0 8 0.21 0 .10 0 .15 0 .08 0 .09 0 .1 4

M g O 2 .8 7 3 .20 4 .45 6 .12 4 .6 2 4 .52 8.95

CaO 2.81 1.71 1.55 5 . 89 0 .9 4 1.70 6.43

N a 2 0 2 .4 2 2 .77 3.13 4 .3 9 3 .45 3 .02 2 .54

K 2 0 1.66 1.32 1.11 1.15 1.09 1.49 1.12

P 2 0 5 0 . 1 0 0 .10 0.11 0 .2 2 0.11 0.11 0 .17

H 2 0 5.8 2 .50 2 . 30 2 . 45 2 .4 0 2 .47 5 .63

0 0 2 2 .7 6 2 .88 2 .47 2 .7 0 2 .15 2 .6 0 2 . 87

T o t a l 1 00 .1 7 9 9. 97 9 9 .7 2 9 9 . 6 0 100.8 100.77 9 9 . 7 7

T  r a c e  

Z r

e l e m e n t s ( p p m )  

145 137 162 141 160 155 120

Y 25 27 26 26 25 26 2 4

S r 78 81 88 2 4 7 7 6 93 168

R b 4 2 35 32 23 2 9 23 2 4

T h 4 2 3 0 3 1 0

G a 11 10 11 15 12 12 13

Ni 156 2 4 4 121 189 153 117 231

Co 13 23 18 36 18 13 34

C r 6 2 4 842 30 4 25 5 4 0 8 2 8 0 4 8 9

Ce 29 14 29 19 2 6 37 19

B a 9 6 2 5 2 179 2 2 7 167 3 1 6 155

L a 18 18 15 12 12 25 15



2 7 3

TB14 TB15 TB16 TB17 TB 18 TB19 TB20

M a j o r e lemen ts ; ( w t% )

S i0 2 4 7.3 8 66 .35 5 2. 66 63 .62 65.89 6 5 .3 8 68.35

T i02 1.75 0 .5 8 1.39 0 .68 0 .79 0 .8 4 0 . 65

A1203 13.49 11.21 12.84 11.41 11.52 11.69 10.98

F e t o t 10.58 4 .9 0 9 .5 9 6 .29 6 .22 6 . 72 5 .41

M n O 0 .1 6 0 .0 7 0 .12 0 .12 0.11 0.11 0 .1 0

MgO 9 .26 3 .55 7 . 26 4 .57 4 .4 2 4 . 6 6 3.71

CaO 6.62 2 .5 8 4 .3 6 2 .58 1.44 1 .54 1.87

N a 2 0 3.77 3 .2 9 3 .8 4 2 . 62 3 .10 3 .23 2 .8 4

K 20 0. 76 1.14 0 .9 8 1.30 1.48 1.14 1.42

P 2 0 5 0.17 0 .0 9 0 .1 4 0.11 0.11 0 .1 2 0 .0 9

H20 4.5 4 .71 4 .1 2 3 .98 2 .6 9 2 .65 2 . 55

0 0 2 1.97 1.85 1.94 2 .08 2.51 2 .4 0 2 .2 8

T o t a l 100.41 1 00 .32 9 9 . 2 4 9 9 .3 6 100.28 100.41 10 0.2

T r a c e  e l e m e n t s ( p p m )

Z r 121 143 116 97 145 162 141

Y 24 23 24 28 2 0 26 23

S r 136 75 133 129 92 88 91

R b 16 31 22 2 4 36 32 13

T h 0 3 0 3 4 3 0

G a 15 11 13 11 11 11 9

Ni 29 5 118 2 7 7 2 3 0 106 121 112

Co 28 15 29 32 17 18 11

C r 60 0 2 8 4 695 653 2 6 2 3 0 4 3 2 4

Ce 12 31 16 11 31 29 18

B a 157 2 5 8 192 189 30 8 179 3 0 4

L a 6 14 11 5 18 15 9



2 7 4

TB21 AL1 AL2 AL3 A L 4 AL5 AL6

M a j o r e l e m e n t s (wt%)

S i0 2 46 .9 5 47.41 49 .4 7 52 .9 7 5 1 . 1 4 55 .7 7 54.24

T i 0 2 1.17 1.30 1.79 1.32 1 .14 1.43 1.30

A1203 10.11 10.34 12.62 11.12 10.89 11.63 11.71

F e t o t 8 .65 7 .95 9.81 9 .3 6 8 .30 9 .15 9 .28

M n O 0 .1 7 0 .15 0 .18 0 .1 4 0 .1 4 0 .15 0 .1 4

M gO 10.65 6 .44 8 .02 11.74 8 .43 6 .83 10.30

CaO 10.72 11.67 9 .03 4 .5 0 7 .8 7 6 .72 4 .47

N a 2 0 2 .2 4 2 .97 2 .44 2 .58 2 . 6 4 3 .30 2 .7 4

K 2 0 2 .2 9 0 .80 0 .69 0 .77 0 .8 0 0 .9 7 0 .89

P 2 0 5 1.10 0 .13 0.13 0 .15 0 .1 4 0 .1 4 0 .1 4

H 2 0 2 .5 7 4.5 1.99 2 .0 3 .88 2.1 2 .83

0 0 2 2.51 6 .25 2 .28 2.5 4 . 2 6 2 .9 3 .26

T o t a l 9 9 . 13 99.91 98.45 99 .1 5 9 9 .6 3 101 101.3

T r a c e

Z r

e l e m e n t s ( p p m )  

183 112 116 120 110 125 120

Y 31 25 27 28 2 6 26 2 6

S r 138 123 137 135 130 156 145

R b 75 13 13 15 15 15 17

T h 12 0 1 2 1 0 0

G a 16 10 12 12 11 13 14

N i 3 6 4 291 293 3 6 4 3 3 9 26 8 32 8

Co 57 27 36 31 3 4 34 30

C r 3 8 9 819 1070 6 7 2 6 5 7 5 6 7 4 7 8

Ce 2 6 4 18 10 13 16 14 11

B a 9 6 5 136 144 135 1 3 4 138 143

L a 103 17 5 10 6 10 13



2 7 5

BCl BC2 BC3 BC4 BC5 BC6 BC7

M a j o r e le m ent s ; (w t% )

S i 0 2 48 .2 3 66 .75 5 4 .3 8 5 2.7 8 52 .40 52 .2 3 39.15

T i0 2 1.04 0 .7 9 1.29 1.22 1.10 1.43 1.03

A1203 9. 89 11.69 11.79 11.31 9 .42 11.26 8 .66

F e t o t 9 . 09 6 .22 9 .43 9 . 07 7 .05 9 .4 8 7.01

M n O 0.13 0 .08 0 .1 5 0 .1 4 0 .13 0 . 15 0 .23

M gO 10.27 4 . 9 4 10.08 9 .4 7 5 .82 8 .18 5 .75

CaO 7.83 0 .9 9 4 . 7 4 6 .22 10.99 6 .65 19.47

N a 2 0 1.25 3 .16 2 .9 4 2 .7 0 2 .36 2 .7 9 2 .12

K 2 0 0 .5 6 1.79 0 .7 2 0 .8 4 1.05 0 .7 4 0 .59

P 2 0 5 0.11 0 .1 0 0 .1 4 0 .15 0 .0 9 0 . 1 4 0 .12

H 2 0 2.15 2 .05 3 .15 4 .05 2 .7 3 .95 2 .65

0 0 2 9.15 1.93 1.80 1.99 7 .08 2 .1 0 13.03

T o t a l 99 .7 100.49 100.61 100.3 9 100.1 9 9 9 . 4 6 99.81

T r a c e  e l e m e n t s ( p p m )

Z r 94 106 120 119 140 130 9 6

Y 20 2 6 30 2 6 23 2 9 2 0

S r 72 31 144 139 136 167 123

R b 16 11 14 18 25 14 13

T h 5 0 0 0 3 0 1

G a 11 10 11 11 10 15 8

Ni 5 7 0 2 7 2 3 8 4 4 0 2 2 2 4 3 6 0 2 0 9

Co 43 25 2 9 3 4 23 31 21

C r 7 6 0 9 5 7 6 1 6 8 7 4 7 4 6 7 3 6 4 7 3

Ce 9 13 13 12 15 19 12

B a 110 119 156 153 201 122 135

L a 2 11 9 9 11 10 13



2 7 6

KP1 K P2 KP3

M a j o r element. ' ' ; (w t% )

S i0 2 5 5 . 0 6 5 6. 47 57 .4 4

T i0 2 1.12 1.05 1.14

A1203 11.98 11.67 12.68

F e t o t 8 .88 8 .44 9 .60

M n O 0.13 0 .1 2 0 .10

MgO 5 .3 6 5 .36 5 .85

CaO 5 .7 0 5 .47 2 .87

N a 2 0 2 .3 2 2 .28 2 .44

K 20 1.15 1.26 1.19

P 2 0 5 1.21 0 .1 6 0 .13

H 2 0 3.21 2 .90 4 .02

CQ2 3 .3 0 3 .85 2 .10

T o t a l 99 .4 3 99 .0 4 99 .5 7

T r a c e e l e m e n t s ( p p m )

Z r 117 24 5 121

Y 40 23 28

S r 108 9 4 91

R b 2 4 37 25

T h 4 4 5

G a 15 10 16

Ni 62 2 6 62

Co 28 11 24

C r 178 87 175

Ce 27 3 4 18

B a 170 3 2 9 258

L a 12 15 9

K P 4 KP 5 K P 6 KP 7

62.48 60 .0 2 60.13 57.83

0 .99 1.37 1.38 1.15

11.55 12.29 12.93 13.15

8.57 9 .6 2 10.82 9 .90

0.11 0 . 0 9 0.11 0 .09

5.23 6 .02 6 .07 6 .00

2.51 3 .08 2 .9 0 2 .7 4

2 .56 2 .4 2 2 .2 9 2 . 72

1.04 0 . 9 9 1.23 1.01

0 .12 0 .1 4 0 .1 4 0 .1 4

2 .45 2 . 15 1.05 2 .18

3 .26 2 .8 0 1.7 3.6

100 .87  1 00 .9 9  100 .75  100.51

110 127 120 120

27 33 2 7 31

109 145 136 141

22 21 28 25

2 2 0 4

14 16 15 16

58 6 9 71 70

2 4 2 6 25 23

141 196 2 1 6 172

21 30 17 2 4

187 166 186 149

9 13 13 10



2 7 7

M a j o r

KP8

element?

K P 9

; (wt%)

ADI AD2 AD3 KC1 KC2

S i 0 2 59 .58 56.41 60 .8 7 55 .6 0 60.63 4 2 . 0 9 38 .6 6

T i 0 2 1.10 1.35 1.08 1.18 1.05 1.30 1.32

A1203 12.16 12.06 11.37 11.45 10.52 11.36 9 .78

F e t o t 8 .96 9 .96 7 .96 8 .99 8.71 10.75 8 .89

M n O 0 .1 0 0 .09 0 .1 0 0.11 0 .11 0 .1 6 0.21

M g O 5.88 5 .5 0 6 .87 4 .9 7 6 .7 4 8 .93 8 .10

G O 2.96 3 .92 2 .6 9 6 .85 4 .1 7 10.33 15.39

N a 2 0 2 .45 2.53 3.01 3 .45 3 .06 2 .5 9 2.31

K 2 0 0 .9 2 0.72, 0 .65 0 .8 4 0 .9 0 0 .8 5 0 .58

P 2 0 5 0 .1 4 0 .13 0 .0 9 0 .13 0.11 0 .13 0 .12

H 2 0 2.27 2.8 3.6 3.8 3 .15 3 .75 3 .35

0 0 2 3.05 3 .95 0 .75 1.65 0 .95 7 .3 5 9 .15

T o t a l 99 .5 7 99 .4 2 9 9 . 0 4 9 9 .0 2 100.1 9 9 . 5 9 9 7 . 8 6

T r a c e

Z r

e l e m e n t s ( p p m )  

113 119 110 114 113 150 172

Y 28 28 26 31 26 21 23

S r 108 104 31 158 124 170 184

R b 16 15 17 20 2 2 23 14

T h 0 2 2 1 4 1 2

G a 13 15 13 12 11 15 10

Ni 5 4 60 117 130 2 1 8 38 2 2 9 7

Co 2 4 23 20 21 23 4 8 32

C r 159 168 25 4 4 1 3 4 3 8 91 3 1093

Ce 16 21 20 2 4 2 0 10 11

B a 144 150 135 160 186 135 119

L a 10 13 10 12 12 5 13



2 7 8

M i d d l e

s e q u e n c e

KC3 KC4 KC5 KC6 AF1 AF2

M a j o r e le m en ts ; ( w t% )

Si 0 2 37 .6 5 61 .2 7 5 9. 83 62.79 5 5 . 6 0 46 .8 5

Ti0 2 1.36 0 .8 7 0 .77 0 .70 1.12 1.20

A1203 9 .8 9 10.06 9 .4 7 9 .80 15.56 10.86

F e t o t 8 .98 7 .23 6 .50 6 .30 9 .4 4 7 .12

M n O 0.28 0 .08 0 .11 0 .12 0 .13 0 .13

MgO 9.05 6 .47 6 .2 6 5 .69 5 .9 2 4 .2 9

CaO 16.37 4 .1 0 5.81 3 .37 2 .93 14.12

N a 2 0 1.98 2 .22 2 .20 2 .18 3 .53 3 .25

K 2 0 0.61 1.25 1.12 1.61 1.45 0 .6 0

P 2 0 5 0 .1 4 0.11 0 .0 9 0 .10 0.11 0 .15

H 2 0 3.15 3 .78 3 .95 3 .70 2 .2 6 2 .2

CQ2 9.75 2 .05 2 .95 2 .85 2 .9 5 10.2

T o t a l 99 .21 9 9 .4 9 9 9 .0 0 99.21 101 .55 100.97

T r a c e e l e m e n t s ( p p m )

Z r 171 134 117 120 120 108

Y 25 2 2 23 26 29 2 9

S r 169 105 89 90 180 140

R b 13 32 27 41 33 12

T h 0 0 2 1 0.0 2 .0

G a 12 10 7 8 16 10

Ni 27 2 2 4 7 22 2 261 58 4 7

Co 34 21 11 10 2 4 21

C r 866 58 3 4 5 9 55 8 162 166

Ce 23 2 2 16 19 21 17

B a 129 2 4 4 2 1 6 26 3 2 4 2 137

L a 15 19 18 27 14 14



2 7 9

M a j o r

AF3

e l e m e n t s

AF4

; (wt%)

AF5 AF6 AF7 AF8 AF9

S i 0 2 51 .0 3 62 .40 60.06 6 1. 62 4 3 .5 5 53 .7 2 58.27

T i0 2 0 .7 5 1.07 1.17 1.07 0 .73 1.75 1.33

A1203 11.81 13.76 12.96 12.42 9 .4 7 14.02 12.83

F e t o t 5 . 1 4 6 . 94 8.57 7 .52 4 . 8 4 9.31 7.91

M n O 0.11 0 .95 0 .09 0 . 07 0 .1 2 0 .0 9 0 .08

Mg O 2 .6 5 3 .52 5 .32 4 .2 6 2 .4 9 5 . 40 4 .45

CaO 12.57 3 .49 3 .54 5 . 00 19.60 5 .30 4 .55

N a 2 0 3. 3 0 3.73 3 .39 3 .10 3 .1 9 2 . 9 8 3 .37

K 2 0 1.05 1.22 1.01 0 .9 4 0.51 1.58 1.29

P 2 0 5 0 . 1 6 0 . 09 0.11 0.11 0 .2 6 0 . 1 4 0 .13

H 2 0 2 .3 5 0.31 1.9 1.77 2 .31 2.3 2 .12

0 0 2 10.1 3 .08 2 .48 3 .05 12.3 3 .01 3 .17

T o t a l 101 100.56 100.6 101.1 9 9 . 1 7 9 9 .6 99 .58

T r a c e

Z r

e l e m e n t s ( p p m )  

9 9  92 115 87 87 155 120

Y 31 30 30 2 4 28 38 31

S r 157 142 155 131 2 7 9 192 153

R b 23 21 18 16 14 17 16

T h 1.0 0.0 4 .0 0 .0 0 .0 0 .0 0 .0

G a 8 15 14 15 9 16 13

Ni 2 9 3 4 51 37 2 7 5 4 43

Co 11 10 19 16 9 18 22

C r 9 6 122 143 113 93 20 5 172

Ce 32 34 19 14 28 25 27

B a 164 2 2 4 212 136 112 2 1 6 21 2

L a 25 18 13 17 5 14 16



2 8 0

AF10 AF11 AF12

M a j o r e le m e n ts . ( w t % )

S i0 2 53 .88 55.63 58.11

T i0 2 1.62 1.67 1.13

A1203 12.74 13.78 15.02

F e t o t 7.91 10 .36 8 .37

M n O 0 .1 6 0 .13 0 . 12

M gO 5.15 5 .87 4 .7 7

CaO 7.85 3 . 99 3 .42

N a 2 0 3.23 3 .52 4 .0 7

K 2 0 0.63 0 .9 7 1.26

P 2 0 5 .0.13 0 . 1 4 0 . 12

H 2 0 2.11 1.27 1.99

CQ2 4. 4 2.3 2 .05

T o t a l 100 .56 9 9. 63 100.43

T r a c e e l e m e n t s ( p p m )

Z r 126 127 117

Y 31 36 2 9

S r 159 189 21 2

R b 20 13 2 4

T h 2.0 0 .0 2 .0

G a 15 19 16

Ni 97 5 6 4 9

Co 28 2 6 21

C r 21 0 2 2 6 154

Ce 29 28 19

B a 149 137 28 2

L a 13 28 17

AF13 A F1 4 AF15 A F 16

59.03 58.85 4 1 . 6 4 51.21

1.13 1.35 1.30 1.16

13.26 12.00 9 . 97 11.84

7 .92 7 .8 9 7.01 8 .40

0 .09 0 .1 0 0 .18 0.11

4 . 90 4 .33 4 .2 0 5 .0 7

5.01 6 .53 18.58 9 .48

3.57 2 .7 2 2 .6 4 3 .39

1.27 1.11 0 .6 4 0 .81

0 .12 0 .11 0 .1 2 0 .13

1.75 2 .18 2 .3 9 2.3

3.0 3 .77 10.66 5 .5 5

100.99  1 0 0 .9 4  9 9 .3 3  99 .4 5

108 113 95 9 5

30 29 30 2 9

173 145 140 141

16 15 11 13

0.0 2 .0 0 .0 0 .0

14 12 11 13

51 4 8 37 55

22 23 17 2 6

153 159 159 191

21 22 24 16

2 5 4 145 163 168

16 22 23 12



2 81

A F 17 AF18 AF19 AF20 AF21 AF 22 AF23

M a j o r e le m e n t s ; (wt %)

S i 0 2 60 .0 2 60 .3 9 59.00 56.92 6 7 . 5 0 55 .65 59 .74

T i0 2 1.43 0 .89 1.57 1.18 0 .8 0 1.68 1.29

A1203 13.85 15.44 13.95 14.54 12.23 13.77 13.84

F e t o t 7 .8 2 7 .43 8.43 8 .70 6 .1 6 9 .23 8.15

M n O 0 .1 0 0 .09 0.11 0 .12 0 .0 8 0 .13 0.11

M g O 4.51 5 .12 4 . 8 4 4 .8 4 2 .8 4 5 .17 5 .26

CaO 3 .6 0 2 .10 3 .04 4 .1 2 2 .9 8 5 .57 2 .92

N a 2 0 3 .68 3 .47 3.78 3 .72 3 .2 0 3 .37 3 .36

K 2 0 0 .6 6 1.99 1.06 1.08 1.43 0 .95 1.39

P 2 0 5 0.13 0 .11 0.13 0 .12 0 .0 8 0 .15 0 .12

H 2 0 2 .3 4 2 .05 2 .32 2.01 2 .1 8 2 .2 1.85

0 0 2 1.29 0 .25 0 .88 2.21 0 .2 5 3 .0 3 .05

T o t a l 99 .4 3 99 .33 99.11 99 .5 6 9 9 . 7 3 100 .87 101.0

T r a c e  

Z r

e l e m e n t s ( p p m )  

111 105 136 120 83 135 123

Y 30 23 31 31 2 6 33 33

S r 155 2 2 4 180 192 129 2 0 4 170

R b 13 20 16 2 4 21 16 17

T h 1.0 0 .0 2 .0 1.0 3 .0 0 .0 0.0

G a 15 16 15 15 13 15 14

Ni 48 38 50 60 32 53 52

Co 15 14 30 23 11 24 19

C r 169 111 197 169 9 6 2 0 2 159

Ce 31 16 23 23 2 7 32 27

B a 159 38 8 180 2 5 6 2 2 2 2 6 2 2 8 0

L a 18 10 16 14 11 18 18



2 8 2

M a j o r

AF24

element s

AF2 5 

; (w t% )

AF2 6 AF27 TM1 TM2 TM3

S i0 2 62.31 54 .3 2 58.31 54 .9 0 57.93 5 7. 62 5 7 . 7 4

T i02 0 .98 1.77 1.23 1.17 1.43 1.32 1.15

A1203 12.31 12.50 14.38 16.43 10.90 10.63 10.57

F e t o t 9 .88 8 .72 10.3 2 8 .74 7 .33 7 .47 9 .2 7

M n O 0.12 0 .13 0 .1 0 0 .12 0 . 12 0 .13 0 .11

MgO 3.38 5 . 76 5 .23 5 .86 4 .6 6 3 .89 4 . 7 4

CaO 5.93 7 .15 3 .4 4 2 .43 5 .13 6 . 42 6 .0 6

N a 2 0 3.11 2 .83 3 .6 0 4 .1 0 2 .2 6 2 . 26 2 .4 7

K 20 0 .86 0 .9 6 1 .70 1.44 0 .4 7 0 .4 7 0 . 4 6

P 2 0 5 0. 12 0 .1 6 0 . 13 0 . 16 0 .0 7 0 . 0 7 0 .0 8

H 20 1.7 2.1 1.83 2.0 1.95 2 .3 7 2 .4 7

0 0 2 3.0 2 .98 3 .0 2 2 .20 6 .23 7 .12 7 .4 6

T o t a l 100.99 100.5 101.6 101.1 9 9 .9 9 9 .6 1 00 .4

T r a c e

Z r

e l e m e n t s ( p p m )  

9 2  135 116 117 91 89 89

Y 29 3 4 31 33 2 4 24 2 2

S r 157 175 193 188 154 158 157

R b 13 14 18 17 7 11 11

T h 0.0 0 .0 11 1.0 0 .0 0 .0 0 .0

G a 12 14 81 16 15 13 13

N i 42 5 9 32 56 105 109 9 8

Co 18 2 2 153 34 36 2 0 18

C r 120 2 0 4 2 2 168 3 2 2 3 6 0 3 0 2

Ce 23 2 0 26 3 32 14 6 17

B a 160 198 13 2 5 0 104 82 7 9

L a 17 13 116 17 8 11 3



2 8 3

M a j o r

T M 4

e l e m e n t s

TM5

; (w t% )

TM6 TM7 TM 8 TM9 TM10

S i0 2 5 7 .4 2 55.25 51.43 57.81 6 1 . 0 9 5 6. 28 59.69

T i 0 2 1.58 1.50 1.65 1.17 1.21 1.55 1.08

A1203 10.96 10.20 10.99 11.09 11 .86 11.91 12.40

F e t o t 9 .2 7 7 .27 8 .25 7.61 7 . 9 0 9 .0 0 7 .59

M n O 0.11 0 .1 4 0 .1 4 0 .12 0 .0 8 0 .1 2 0 .09

M gO 6.28 4 . 02 5 .4 4 4 .46 6 . 13 6 .32 4 .95

CaO 4 . 0 6 7 .8 0 8 .35 6.11 2 . 4 7 3 .3 6 3 .49

N a 2 0 2 .0 7 2 .07 2 .08 2 . 34 3 . 1 5 2 .6 8 2 .98

K 2 0 0 .4 7 0 .43 0 . 57 0 .50 0 . 4 4 0 .4 6 0 .55

P 2 0 5 0 .0 8 0 .07 0 .1 2 0 .08 0 . 0 7 0 .0 8 0 .07

H 2 0 1.97 2 . 19 2 .15 2.05 1.9 1.95 1.75

0 0 2 6. 23 8.39 8.25 7.25 6 .21 6 .2 2 6 .07

T o t a l 100.5 99.3 9 9 .4 2 100.5 10 2.5 9 9 .9 100.9

T r a c e  e l e m e n t s ( p p m )

Z r 88 91 99 90 9 2 118 9 4

Y 21 2 4 27 22 2 3 2 2 2 0

S r 134 181 25 6 27 4 1 2 0 113 136

R b 11 10 15 11 6 6 13

T h 3. 0 3.0 1.0 0.0 1.0 1.0 0 .0

G a 15 12 13 13 15 15 13

Ni 2 3 2 9 9 192 97 7 4 175 137

Co 29 19 23 23 2 8 35 19

C r 641 361 2 7 7 308 2 0 9 551 34 5

Ce 5 15 9 11 10 12 9

B a 107 84 127 93 11 7 119 100

L a 6 9 11 9 5 4 10



2 8 4

TM11 TM 12 TM13 T M 1 4 TM15 TM 16 PW1

M a j o r e lemen ts ; (w t% )

S i 0 2 58.1 4 4 8 .9 7 57 .4 6 56.91 42 .5 3 5 7. 57 6 0 . 6 4

T i 0 2 1.09 0.91 1.53 1.41 1.37 1.19 1 .12

A1203 11.76 10.94 11.13 11.40 8.77 10.32 12.43

F e t o t 7 . 84 7.63 8 .87 8 .26 6 .39 5 .62 8 .55

M n O 0 .1 0 0 .10 0 .11 0.11 0 .1 6 0 .13 0 .0 9

M gO 5. 04 3.81 5 .57 5 .04 3 . 8 2 2 .38 4 .4 3

G O 4.33 10.41 4 .2 9 5 .39 17.35 7.31 2 .6 6

N a 2 0 2.81 2.51 2.41 2 . 49 2.01 2 .08 3 .4 0

K 2 0 0.55 0 . 59 0.51 0 .50 0 . 43 0.51 1.25

P 2 0 5 0.08 0 .08 0 .0 8 0 .10 0 .1 0 0 .0 9 0 .1 0

H 2 0 2.7 2 .2 2 . 37 1.89 2 .2 1.85 2 . 7 9

0 0 2 6.54 8.2 7 .23 6 .17 7 . 98 7 . 10 1.68

T o t a l 100.9 96.3 101.5 99 . 6 93.1 96.1 9 9 . 1 4

T r a c e

Z r

e l e m e n t s ( p p m )  

9 2  81 88 87 109 83 10 2

Y 22 23 23 20 25 20 23

S r 186 175 120 150 18 4 152 11 4

R b 15 11 9 8 10 8 14

T h 3 1 3 1 1 4 1

G a 14 13 15 14 14 13 16

Ni 151 137 117 180 183 92 3 7

Co 21 2 6 29 35 2 9 22 21

C r 38 9 26 3 32 6 4 5 4 4 1 5 26 3 12 6

Ce 9 16 15 12 11 17 2 6

B a 100 97 103 106 123 70 192

L a 3 6 5 8 7 12 2 0



2 8 5

P W 2 PW 3 P W 4 PW5 P W 6 P W 7 P W 8

M a j o r e le m en ts ; ( w t% )

S i 0 2 59 .7 8 58 .03 60.41 60.42 66 .0 5 66 .8 2 75 .4 7

T i0 2 1.33 1.30 1.27 1.03 0 .63 1.18 0 .4 9

A1203 12.12 13.72 12.91 13.67 12.76 11.16 8 .43

F e t o t 10.32 8 .27 7 .93 7.28 5.41 7 . 1 6 4 .53

M n O 0 .1 0 0 .07 0 . 0 8 0 .06 0 . 07 0 . 0 5 0 .0 6

MgO 4 .5 9 6 .04 5 . 3 0 4 .87 3 .7 4 4 . 1 3 2 . 1 0

CaO 2.13 2 .28 2 . 4 8 2 .82 2 .1 7 1.16 1.56

N a 2 0 3 .2 4 3.31 3 .3 6 3.65 3 .6 6 2 .5 5 2 .1 6

K 2 0 0. 92 1.17 0 . 95 1.31 1 .44 0 .9 6 0 . 5 8

P 2 0 5 0. 09 0 .13 0 .1 0 0.11 0 .0 8 0 .0 7 0 . 0 4

H 2 0 2.6 2 . 24 1 .89 2.3 1.8 1.9 1.75

0 0 2 1.88 2.1 3 .6 1.92 2 . 75 3 .8 3 .7 9

T o t a l 99.1 9 8 .6 100 .28 9 9 .4 4 1 00 .5 6 1 0 0 .9 4 100.9

T r a c e

Z r

e l e m e n t s ( p p m )  

108 125 113 112 9 6 102 100

Y 27 31 28 25 28 2 2 19

S r 117 121 119 98 98 8 4 140

R b 12 17 15 17 2 0 11 14

T h 2 2 3 0 1 2 2

Ga 18 18 18 18 15 14 9

Ni 4 4 57 4 4 59 4 7 77 21

Co 21 27 30 24 25 13 2 2

C r 126 160 175 147 145 91 149

Ce 38 20 31 28 23 21 17

B a 170 2 2 7 211 243 2 5 0 165 162

L a 20 22 18 19 13 10 5



2 8 6

PW9 PW10 PW11 P W 12 PW13 PW14 PW15

M a j o r e le m e n ts (w t% )

S i0 2 74 .6 7 56.68 49 .1 8 43 .4 5 6 7. 58 68 .90 69.75

T i 0 2 051 1.11 0 .42 0 .38 0 .7 4 0 .82 0 .93

A1203 7 .6 0 11.24 7 .06 6 .0 4 9 .61 9 .59 9 .78

F e t o t 3 . 99 7 .37 3 .36 2 .9 2 4 .6 6 5 .22 5 . 94

M n O 0. 0 7 0 .12 0 .7 9 0 .5 9 0 .2 6 0 .1 9 0 .1 4

M gO 1.69 2 .84 1.51 1.17 1.87 1.77 1.90

CaO 4 .3 7 8.38 18.62 2 3 .2 6 5 . 5 4 4.41 2 . 87

N a 2 0 1.72 1.98 1.60 1.39 1 .77 1.99 1.99

K 2 0 0 .48 1.04 0 .62 0 .4 9 1 .12 1.08 1.00

P 2 0 5 0.0 5 0 .07 0 .12 0 . 09 0 . 1 2 0 .13 0 .15

H 2 0 1.85 1.79 2 .37 2 . 47 2 .8 5 2.01 1.95

CQ2 3.6 3 .56 1.36 16.6 3 .4 3 .35 3.5

T o t a l 100 .6 96 . 2 99 .18 98 .8 5 9 9 . 5 2 9 9 .4 6 9 9 .9

T r a c e  e l e m e n t s ( p p m )

Z r 91 193 66 68 2 3 9 278 3 4 0

Y 18 37 28 2 6 19 27 2 9

S r 9 4 2 2 6 157 2 0 6 9 9 102 79

R b 13 26 18 12 3 4 0 36

T h 3 5 1 1 3 7 5

G a 9 14 10 8 8 11 12

Ni 22 41 18 21 2 0 47 5 0

Co 11 20 5 12 41 16 16

C r 65 138 62 4 2 14 96 106

Ce 18 4 4 32 2 6 9 7 4 9 52

B a 130 318 132 111 2 3 7 2 5 6 2 1 8

L a 8 22 11 10 4 7 24 2 0



2 8 7

P W 16 P W 1 7 PW  18 PW  19 P W 2 0 PW21 P W 2 2

M a j o r e le m ent s ; (w t% )

S i 0 2 7 2 .5 0 67.65 6 4 .5 4 68.15 72. 40 7 3 .2 7 7 0 .1 5

T i0 2 0 .7 6 0 .82 0 .8 9 0 .7 9 0 .9 4 0 .8 4 1.05

A1203 9.31 10.80 10.59 10.50 10.30 9 .32 10.57

F e t o t 5 .2 9 5 .97 5 .83 5 .78 5.61 5 .38 5 .9 6

M n O 0 .1 2 0 .16 0 .2 6 0 .14 0 .0 8 0 .1 0 0 .13

MgO 2.07 2 .15 2 .0 6 2 .16 1.95 1 .82 1.95

CaO 3. 24 3 .34 4 . 7 4 3 .27 1 .34 2 . 1 4 2 .4 9

N a 2 0 1.74 2.25 2 .08 2 .0 4 2 .15 2 .0 0 1.93

K 2 0 0. 98 1.17 1.21 1.11 1 .04 1.01 1 .12

P 2 0 5 0.11 0 .16 0 . 18 0 .1 4 0 .1 6 0 .13 0 . 2 4

H 2 0 1.05 1.93 2.8 2.01 1.15 1.27 1.15

CQ2 2 .95 3.4 3 .85 3.2 3 .05 2 .8 9 3 .95

T o t a l 10 0 .12 99.8 9 9 .0 3 9 9 .2 9 100 .22 100 .1 7 10 0 .6 9

T r a c e  

Z r

e l e m e n t s ( p p m )  

2 1 9  2 4 9 268 225 3 3 9 2 8 6 3 7 4

Y 26 30 32 29 31 26 4 4

S r 81 95 107 92 7 9 75 91

R b 36 4 4 4 4 4 0 37 37 4 0

T h 5 6 9 7 7 7 8

Ga 13 13 14 13 14 12 14

Ni 45 4 4 43 4 6 43 41 4 2

G) 18 12 18 19 17 16 2 0

C r 105 86 91 83 100 9 4 103

Ce 45 53 58 55 66 4 6 7 2

B a 2 3 4 263 2 6 6 2 5 7 2 3 2 2 3 0 2 6 4

L a 21 27 29 27 32 2 4 33



2 8 8

PW 23 P W 2 4 P W 2 5 PW 2 6 P W 2 7 P W 2 8 P W 2 9

M a jo r e le m en ts ; (w t% )

S i0 2 68 .59 6 8. 47 73.80 71.06 71.43 7 5 .8 8 71.23

Ti02 0 .8 4 0 .7 2 0 .8 4 0 .90 0.91 0 .7 6 0 .8 4

A1203 10.05 8 .75 9 .66 10.11 9 .12 8 .18 10.62

F e t o t 5 .57 4 .4 2 5 .7 4 6 .74 4 .8 6 4 .8 2 5 .66

M n O 0. 1 6 0 .23 0 .08 0 .10 0 .1 4 0 .0 9 0.11

MgO 1.95 1.67 2 . 04 2.11 1.88 1 .80 2 .00

CaO 4.08 6 .33 1.54 1.47 3 .53 1 .60 1.91

N a 2 0 1.96 1.88 1.87 1.91 1.88 1 .60 1.91

K20 1.11 0 . 9 6 1.01 1.08 1.04 0 .9 0 1.29

P 2 0 5 0.1 2 0 .1 2 0 . 12 0 .1 4 0 .1 2 0 . 1 0 0 .13

H20 1.99 2 .05 1.35 1.8 1.89 1.85 2 .95

OQ2 3 .10 3 .65 2 .75 2 .25 3 .97 3 .6 1.8

T o t a l 9 9 .5 2 99.3 100.8 99 .67 100 .77 1 01 .1 8 9 9 .4 6

T r a c e

Z r

e l e m e n t s ( p p m )  

24 8  2 3 8 263 28 6 2 6 8 2 0 7 2 4 8

Y 27 25 26 26 2 4 21 2 4

S r 97 104 72 77 85 73 89

R b 41 3 4 36 38 35 31 4 6

T h 5 7 7 6 4 3 5

G a 13 11 13 13 12 10 15

Ni 4 4 33 46 52 37 37 4 8

Co 18 13 17 20 15 15 15

C r 91 87 108 107 117 109 101

Ce 47 4 4 4 6 47 36 4 2 5 6

B a 3 1 4 2 2 8 231 24 6 2 3 7 2 0 5 2 5 4

L a 23 21 22 19 2 0 23 28



2 8 9

u p p e r  s e q u e n c e

M a j o r

WG1

elements

WG2

; (w t% )

WG3 WG4 WG5 WG6 WG7

S i0 2 4 0 .3 7 6 6.0 6 64 .57 48.71 6 2 .8 4 49 .0 8 46.25

T i0 2 0 .73 0 .83 0 .85 0 .4 4 0 .5 2 0 .4 4 0.71

A1203 8.59 10.79 11.45 9 .6 6 10.43 9 .53 11.97

F e t o t 4 .5 8 5 .72 5 .76 3 .3 4 3 .5 6 4 .08 6 .66

M n O 0.57 0 .16 0 .19 0 .1 9 0 .0 7 0.11 0 .57

MgO 1.78 2 .23 2 .30 1.44 1.47 1.47 2 .48

CaO 21 .6 7 4 .4 2 4 .33 16.98 8 .75 16.67 13.52

N a 2 0 1.89 2 .03 2 .05 2.51 2 .7 9 2 .2 7 3 .37

K 2 0 0.5 7 1.13 1.27 0 .9 0 0 .6 2 1.01 0 .60

P 2 0 5 0 .07 0 .13 0 .15 0 .03 0 .0 4 0 .0 4 0 .0 6

H 2 0 1.35 1.45 1.43 1.32 1.45 1.12 1.37

OQ2 13.36 6 .48 6.45 13.57 6.5 13 .69 12.4

T o t a l 9 5 . 53 100.63 100.8 9 9 .0 9 9 9 . 0 4 9 9.5 9 9 .9 6

T r a c e

Z r

e l e m e n t s ( p p m )  

116  27 7 251 144 17 4 141 91

Y 34 27 32 2 6 23 22 29

S r 32 9 140 141 6 0 0 6 4 6 5 9 5 2 8 0

R b 16 43 46 23 18 25 2 0

T h 2 5 6 1 1 2 0

G a 11 11 12 9 10 10 13

Ni 18 4 2 48 21 13 13 31

Co 15 13 11 14 7 4 12

C r 56 9 4 92 61 103 5 4 88

Ce 43 4 4 64 33 25 52 23

B a 94 231 253 341 146 5 0 5 105

L a 12 21 25 12 9 18 16



2 9 0

M a jo r

WG8

e lements

WG9 

; ( w t% )

WG10 SCI SC2 SC3 SC4

Si0 2 72.30 61 .1 4 7 2 .3 0 62.64 63.38 61.81 68.71

Ti02 0 .85 0.21 0 .85 0 .82 0.53 0 .5 2 0 .6 9

A1203 10.09 5 .75 10.09 11.50 7.46 9 .4 0 8.81

F e t o t 5.92 1.44 5 .9 2 6 .63 3 .54 5 .7 7 6 .16

M n O 0.08 0 .2 0 0 .08 0.13 0.21 0 .11 0.11

MgO 2.70 0 .75 2 .7 0 3 .27 1.82 2 .8 0 2 .6 2

CaO 2.06 15.38 2 .0 6 5.13 10.99 8 .33 4 . 4 9

N a 2 0 2.40 1.47 2 .41 2.41 1.38 1.92 1 .29

K 20 0.22 0 .3 2 0 .2 2 0 .97 0.98 0 .81 1.08

P 2 0 5 0.04 0 .03 0 .0 4 0 .0 6 0 .04 0 . 0 9 0 .0 6

H20 0.98 1.57 0 .9 8 1.88 1.59 1 .62 1.8

CQ2 3.75 11.5 3 .75 3 .66 7.93 7 .0 5 3 . 2 6

T o t a l 101.39 9 9 .7 6 1 01 .39 99.1 99 .85 1 00 .2 3 9 9 . 0 8

T r a c e  e l e m e n t s ( p p m )

Z r 129 68 129 2 2 0 93 91 143

Y 21 14 121 28 2 4 32 2 6

S r 101 3 3 6 101 341 23 6 169 176

R b 9 9 9 22 19 19 23

T h 3 0 3 4 0 2 5

Ga 11 5 11 13 7 8 12

Ni 13 3 13 39 15 31 2 7

Co 11 0 11 19 4 16 12

C r 68 4 3 68 152 92 109 9 4

Ce 18 16 18 36 2 4 16 23

Ba 4 0 166 4 0 2 8 7 283 165 3 1 8

L a 16 10 16 18 14 11 10



291

A L *  1 A L * 2 A L * 3 A L * 4 A L * 5 A L * 6 A L * 7

M a j o r e le m e n ts (w t% )

S i0 2 5 9 .6 0 62 .2 0 69.01 56.18 73 .2 4 67 .9 0 68.54

T i0 2 0 .95 1.27 0 .62 0 .73 0 .4 8 0 .6 4 0 .89

A1203 12.25 10.75 9 .16 7.81 8.11 10.90 11.47

F e t o t 6 .87 7 .38 4 .85 4 .38 4 .21 6 .3 4 6.31

M n O 0.11 0 .1 4 0 .08 0.21 0 .08 0 .0 9 0 .06

M g O 4 .2 8 3 .7 4 2 . 54 2.01 2 .5 0 3 .25 4 .52

CaO 4 .4 6 5 .33 4 .5 4 13.59 3 .67 2 .6 0 0.53

N a 2 0 2.98 1.90 2 .33 1.52 3 .67 2 .5 4 3 .02

K 2 0 1.65 0 . 7 0 0 .46 0 .70 1.89 0 .4 5 1.58

P 2 0 5 0.13 0 .07 0 .05 0 .05 0 . 3 5 0 .0 5 0 .10

H 2 0 2.5 2 .9 9 2.8 3.8 0 .9 1.8 0 .85

0 0 2 2.55 3 .26 3.4 8.15 1.2 2 .7 1.25

T o t a l 98 .33 99.73 99 .8 4 99.13 100.3 9 9 . 2 6 99 .12

T  r a c e  

Z r

e l e m e n t s ( p p m )  

177  2 5 9 114 93 80 109 93

Y 32 33 22 24 19 21 26

S r 117 2 1 7 247 20 0 161 2 1 9 2 1 7

R b 43 19 14 16 11 14 12

T h 4 4 2 2 1 0 2

G a 11 11 8 7 7 13 8

Ni 98 39 27 22 16 27 2 0

Co 20 19 14 14 9 12 14

C r 2 4 7 169 109 107 7 4 97 87

Ce 36 39 17 24 13 17 6

B a 311 143 104 171 55 126 81

L a 2 6 2 0 12 16 9 8 6



2 9 2

S i l u r i a n

M a jo r

WP1

e l e m e n t s  (w t% )

SI S2 S3 S4 S5

S i0 2 56.58 7 3.2 2 76.69 70 .6 6 6 7 .9 6 6 8 . 3 4

T i0 2 0 .85 0 .95 0 .73 0 .79 0.81 0 .8 6

A1203 8.01 9 .8 4 7 .39 9 .09 10.87 10.6 6

F e t o t 3 .67 5 . 30 4 .2 4 4 .57 5 .48 5 .4 0

M n O 0. 50 0 . 08 0 .07 0 .07 0 .0 8 0 .0 7

Mg O 1.65 2 . 50 1.50 1.42 1.59 1.61

CaO 13.59 1.21 2 .05 1.96 1 .44 1.53

N a 2 0 1.47 2 .28 2 . 24 1.80 2 .08 2 .4 6

K 20 0.9 6 1.00 0 . 66 1.01 1.38 1 .40

P 2 0 5 0.13 0 .1 4 0 .09 0 .12 0 .13 0 .1 3

H 2 0 2.15 1.15 1.6 1.85 1.45 1.65

CQ2 9.15 3 .07 3.8 4 .0 5 4 .2 5 . 1 4

T o t a l 99 .7 100.74 101.06 9 7 .3 9 9 7 . 4 7 9 9 .2 5

T r a c e

Z r

e l e m e n t s ( p p m )

35 0 37 7 2 1 4 2 7 4 2 4 3 2 6 0

Y 48 25 16 25 25 25

S r 111 70 60 195 2 7 9 131

R b 33 38 25 3 4 51 5 0

T h 4 7 5 5 8 2

Ga 9 12 8 10 14 12

Ni 27 27 20 24 22 2 4

Co 3 8 14 12 10 10

C r 127 99 85 76 77 88

Ce 34 55 41 5 0 62 5 4

B a 21 5 2 2 7 155 189 2 8 9 4 2 6

L a 20 31 21 25 2 9 21



2 9 3

S6 S7 S8 S9 HQ1 HQ2 HQ3

M a jo r e le m e n ts . (w t% )

S i0 2 67 .3 9 7 1. 18 61.47 58 .9 9 83.12 8 3. 42 79 .12

Ti02 0 . 97 0 . 88 1.20 1.35 0.71 0 .47 0 .6 4

A1203 11.57 10.09 11.88 10.42 4 . 38 3 .75 7.31

F e t o t 5 .52 5 . 00 8.01 6 .12 1.50 2 . 0 0 3.61

M n O 0.0 8 0 . 0 7 0 .07 0 .08 0 .07 0 . 0 7 0 .06

MgO 1.54 1.65 4 .5 2 3 .10 1.03 1.28 0 .95

CaO 1.25 1.32 3 .55 8.69 2 . 22 2 .3 7 1.21

N a 2 0 2.85 2 .37 2 .66 2 . 50 0 . 07 0 .0 9 0.41

K 20 1.37 1.18 0 .83 0 . 80 0 .63 0 . 4 6 1.01

P 2 0 5 0 .1 8 0 .1 2 0 . 09 0 . 0 9 0 .08 0 .0 8 0 .12

H 20 2.1 1.24 1.59 1.95 2 .65 2 . 5 0 2 .4 4

CQ2 4. 25 4 .3 8 4 .6 4 4 .93 4 . 15 4 . 7 0 3 .68

T o t a l 99 .0 7 9 9 .4 8 100.52 9 9 .0 2 100.61 9 9 . 1 7 100.56

T r a c e

Z r

e l e m e n t s ( p p m )  

39 5  3 3 0 215 2 7 5 2 8 8 2 2 5 5 3 1 2

Y 31 25 30 57 13 22 2 0

S r 139 9 8 115 185 2 9 0 164 168

R b 50 4 4 27 37 25 13 38

T h 9 3 5 4 7 0 6

Ga 14 12 15 20 5 9 8

Ni 26 22 28 22 0 9 6

Co 13 9 11 1 0 30 7

C r 107 85 140 135 18 38 53

Ce 67 5 7 36 40 35 9 51

B a 2 7 4 3 7 2 220 2 2 0 158 120 2 0 2

L a 33 31 16 9 18 16 2 4



2 9 4

HQ4 HC1 HC2 HC3

M a j o r e le m en ts ; (w t% )

S i0 2 71.78 70.71 64 .2 4 6 8 .3 6

Ti02 0 .7 4 0.71 0 .89 0 .7 9

A1203 7.11 8 .15 10.99 11.56

F e t o t 4 .2 6 4 .5 9 6 .80 6.21

M n O 0 .1 0 0 .1 4 0 .10 0 .0 5

M gO 1.43 2 .68 5 .15 4 .0 2

CaO 4.5 3 3.93 2 .72 1.56

N a 2 0 0.07 1.59 2 .7 6 2 .7 4

K 2 0 1.02 1.09 1.09 1.32

P 2 0 5 0.13 0 .10 0 .10 0 .1 4

H 2 0 2 .9 4 3.6 3 .15 2 .35

0 0 2 4 .9 2 1.35 1.65 0 .9 5

T o t a l 9 9 . 03 9 8 .6 4 9 9 . 6 4 100.0

T r a c e  e l e m e n t s ( p p m )

Z r 36 5 110 243 2 3 9

Y 2 4 41 18 2 7

S r 165 9 9 59 114

R b 39 2 6 31 4 2

T h 9 4 5 6

G a 10 14 9 14

N i 12 57 25 3 6

Co 0 31 15 18

C r 4 4 161 102 95

Ce 55 2 7 21 41

B a 2 4 0 173 2 8 9 323

L a 25 11 11 19



2 9 5

A p p e n d i x  two: c o n t i n u e d  (Niggl i n u m b e r s )

TA1 TA2 TA3 TA4 TA5 TA6 TA7

s i 298 .15 303 .1 5 3 0 6 .6 6 307.57 206.91 2 5 6 .7 9 2 2 9 .0 2

t i 2 .75 2 .69 2.81 2 .70 2 .65 2 .52 3 .00

a 1 31.31 3 1. 07 3 2 .2 6 33.13 34. 80 30 .2 4 27 .9 9

f m 46 .3 2 4 7 . 2 2 46 .2 8 42 .6 2 47.01 4 4 . 1 5 4 8 .1 7

m g 0 .56 0 .58 0 .5 6 0 .56 0 .4 9 0 .5 8 0 .5 7

c 3 .68 3 .8 4 2 .1 7 5 .17 2 .25 9 .3 7 8 .96

k 0.21 0 .2 4 0 .2 4 0 .22 0 .2 7 0 . 2 4 0 .2 4

a l  k 18.68 17.88 19.30 19.08 15.94 1 6. 24 14.88

TA8 TA9 TA10 TA12 TA13 T A M T A \ 5

s i 2 8 5 .0 9 3 8 6 . 5 7 2 3 7 .1 2 2 9 3 .3 2 2 9 5 .3 0 291 .0 1 3 0 4 . 1 4

t i 2.71 2 .3 2 2 .98 2.81 2 .65 2 .71 2 .7 2

a 1 30 .8 0 34.31 3 3 .4 4 3 0 .0 4 30.75 3 1 .6 8 3 2 .0 9

f  m 47 .2 0 4 2 . 4 6 4 6 . 7 2 46 .78 4 6 . 0 2 4 5 . 6 0 47.91

m g 0 .57 0 .55 0 .5 6 0 .56 0 . 57 0 .5 6 0 .5 4

c 3 .72 2 .17 1.61 6.21 5 .00 4 . 6 6 1.39

k 0 .24 0 .2 4 0 .2 8 0 .23 0 .2 4 0 . 2 0 0 .2 4

a l k 18.27 2 1 .0 6 18.24 16.97 18.24 18.07 18.62

TA15 TA16 TA17 KK1 KK2 KK3 K K 4

si 2 3 4 .7 0 3 1 1 . 1 4 2 7 5 . 5 9 185.13 161.82 2 4 0 . 8 5 165.34

t i 2 .64 3 .43 2 .68 3 .79 3 .12 4 . 8 9 3 . 26

a l 2 9 . 40 3 3 .9 6 32.43 24.53 26.21 3 2 . 0 9 2 4 . 1 9

f  m 5 1. 67 2 5 . 9 4 4 8 . 0 9 49.71 52 .4 3 3 4 . 4 4 5 4 . 6 6

m g 0 .59 0 .0 2 0 .5 7 0.51 0 .4 4 1 .00 0 .4 6

c 4 .0 2 0 . 9 4 2 .0 7 13.73 9 .7 9 17.70 10.85

k 0.31 0 .2 4 0 . 2 4 0 .14 0 .1 7 0 . 1 6 0 .18

a l k 14.93 19.15 17.40 12.03 11.57 15.77 10.30



2 9 6

KK5 TR1 TR2 TR3 T R 4 TR5 TR6

s i 181 .50 264 .63 251 .2 9 26 7. 99 2 5 1 . 9 5 230.61 271 .3 8

t i 3.61 2 .57 2.68 2 .52 2 .65 2 .36 2.41

a 1 25 .2 2 26 .9 9 27.21 25.72 3 0 .9 4 25.41 2 8.0 4

f m 5 0 . 5 4 52.45 4 4 .1 4 53 .9 4 50 .6 5 5 3 .4 4 40.51

m g 0 .5 0 0 .62 0 .56 0 .62 0 . 58 0 .63 0 .5 4

c 13.03 5 .18 12.58 6 .84 1.53 6 .53 18.59

k 0 .1 7 0 .28 0 .24 0 .27 0 .2 8 0 .28 0 .32

a l k 11.21 15.38 16.07 13.50 16.88 14.63 12.86

TR7 TR8 TR9 TRIO TR1 1 T R 1 2 TR13

s i 2 7 3 . 6 8 20 7 .7 7 296 .5 9 3 0 7 .0 9 2 5 3 . 7 8 2 7 8 . 0 28 2 .3 8

t i 2 . 2 4 2 .02 2 .25 2 .87 2 .5 0 2 .71 3 .07

a 1 27 .2 8 23.93 29.80 30 .67 2 5 . 6 7 2 9 . 6 9 30.22

f m 5 1 .4 8 47.91 43.98 4 5 .6 6 5 1 .7 8 4 8 . 4 9 4 9 .6 9

m g 0 . 6 2 0 .64 0.61 0 .56 0 . 6 4 0 .5 7 0 .57

c 4 . 6 4 14.83 6 .77 5 .24 7 .18 4 .9 3 2 .96

k 0 .2 8 0 .29 0 .27 0 .23 0 .2 5 0 .2 8 0 .2 6

a l k 16 .60 13.33 19.44 18.43 15.38 16.89 17.13

T R 1 4 TR15 TR16 T R 17 T R 1 8 T R 1 9 T R 20

s i 2 6 1 . 9 5 288 .7 2 261 .3 3 2 6 2 .4 9 2 5 4 . 8 6 2 8 4 .7 3 2 6 1 .1 2

t i 2 .3 0 2 .47 2 .48 2 .46 2 .33 2 .1 9 2 .35

a 1 27 .6 3 2 8. 79 28 .18 28 .8 7 2 9 .3 3 2 8 . 2 4 2 8 .4 4

f m 4 2 . 8 8 5 0. 10 51 .8 4 50.91 5 2 . 1 7 4 5 .4 5 4 6 .5 5

m g 0 .5 9 0 .63 0 .6 0 0.61 0 .6 2 0 .6 2 0.61

c 16 .38 3 .24 4 .0 0 4 .5 4 1 .77 8 .25 7 .25

k 0 .2 7 0 .28 0 .28 0 .2 9 0 .2 7 0 .2 5 0 .27

a l k 13.11 17.88 15.98 15.69 16.73 18.06 17.76



2 9 7

TR21 TR22 TR23 T R 2 4 TR2 5 TR 26 T R 27

s i 275 .28 286 .63 2 8 6 . 8 2 273.91 279.91 198.41 260.51

t i 2.48 2.45 2 .55 2 .4 4 2 .63 2 .07 3.31

a l 29 .08 27.83 28.51 28 .3 0 27 .1 9 22.63 2 8 .1 4

f m 45.15 53.28 5 1. 43 50 .7 8 52.83 4 5 . 7 4 48 .4 5

m g 0 .58 0 .62 0 .61 0.61 0 .62 0 .62 0 .5 7

c 9 .59 2 .99 4 .0 0 4 .3 6 4 .33 19.13 9.51

k 0.23 0 .27 0 . 2 8 0 .28 0 .25 0 .2 9 0 . 28

a l k 16.19 15.90 16.06 16.56 15.65 12.50 13.90

TR28 TB1 TB2 TB3 TB4 TB5 TB6

si 329 .12 279 .9 8 2 8 4 . 4 8 3 0 1 .6 3 2 5 1 .0 7 2 4 2 . 1 6 2 3 8 . 2 6

t i 2.11 2 .34 2 .4 6 2.51 2 .8 6 2 .30 2 .4 4

a 1 30 .16 2 9. 04 2 8 . 2 6 30 .8 8 32.87 2 6 .0 6 3 0. 23

f  m 44.51 45 .1 4 4 5 . 5 2 4 8 . 5 2 48 .3 3 4 5 . 9 6 4 8 . 6 9

m g 0 .62 0 .57 0 .6 2 0 .61 0 .5 6 0 .61 0 .5 8

c 6.33 10.02 9 .8 6 4 .1 0 3 .52 13.04 4 .8 7

k 0.23 0 .23 0 .1 8 0 .2 5 0 . 32 0.21 0 .25

a l k 19.01 15.81 16.35 16.50 15.28 14.94 16.21

TB7 TB8 TB9 TB10 TB11 TB12 TB13

s i 295 .01 315 .6 9 2 7 2 .9 3 13 5.50 2 8 3 .4 8 2 7 4 . 2 2 12 0.42

t i 2 .78 2 .54 2 . 6 4 3 .20 2 .61 2 .5 4 3 .1 7

a l 31 .38 30.86 2 8 . 7 4 2 2 . 5 7 29 .9 5 2 9 .6 6 19.66

f  m 38.97 43 .9 9 4 8 . 6 8 46 .81 4 8 . 6 9 4 6 . 6 2 5 4 . 5 0

m g 0.51 0.51 0 .5 7 0 .53 0 .6 0 0 .6 0 0 .63

c 13.92 8.60 6 .9 4 17.10 4 .2 6 7 .58 17.70

k 0.25 0 .24 0 .1 9 0 .25 0 .4 0 0 .15 0 .1 6

a l k 15.74 16.55 15 .64 13.52 17.10 16.14 8 .1 6



2 9 8

TB14 TB15 TB16 TB17 TB18 TB19 TB20

s i 115.71 2 9 7 . 9 9 152.09 260.71 2 7 9 .7 9 2 6 7 .9 5 314.48

ti 3.21 1.96 3.02 2 .10 2 .52 2 .5 9 2 .25

a 1 19.42 29 .6 7 21.8 6 27.5 6 28.83 2 8 .2 4 29.77

f m 5 3.1 5 4 0 . 3 2 52.09 47.31 4 7 .8 5 4 9 . 1 9 44 .17

m g 0 .63 0 .5 9 0 .60 0 .59 0 .58 0 . 5 8 0 .58

c 17 .32 12.42 13.49 11.33 6 .55 6 .7 6 9 .22

k 0 .12 0 .1 9 0 .14 0 .25 0 .2 4 0 .1 9 0 .25

a l k 10.11 17.59 12.56 13.81 16.77 15.81 16.84

TB21 AL1 AL2 AL3 A L 4 AL5 AL6

s i 108 .03 150 .10 126.03 166.24 139.23 159.63 145.61

t i 2 .02 3 .1 0 3.43 3 .12 2 .33 3 .0 8 2 .62

a l 13.71 19.29 18.95 20 .57 17.47 19.62 18.53

f m 5 1 .5 0 3 0 .3 9 49.2 6 54.91 51.21 4 8 . 8 4 5 9 .8 6

m g 0.71 1.00 0 .62 1.00 0 .67 0 .6 0 0 .69

c 2 6 . 43 3 9 .5 9 24.65 15.13 22 .9 6 20.61 12.86

k 0. 4 0 0 . 15 0 .16 0 .16 0 . 1 7 0 .1 6 0 .18

a l k 8 .36 10.73 7 .15 9 . 39 8 .36 10.93 8 .66

BC1 BC2 BC3 BC4 BC5 BC6 BC7

si 1 27 .1 4 2 7 5 . 8 4 145.18 141.0 4 152.93 144 .03 92 .68

t i 2 .0 6 2 .4 6 2 .59 2 .45 2.41 2 . 9 7 1.83

a 1 15 .37 2 8 .4 7 18.55 17.81 16.20 18.30 12.08

f m 5 8 .3 8 4 9 . 7 7 59.05 55.95 4 0 .8 0 5 3 .2 9 32 .77

m g 0 . 6 9 0.61 0 .68 0 . 67 0 .62 0 . 63 0 .6 2

c 2 2 . 1 2 4 .3 8 13.56 17.81 34 .3 7 19.65 4 9 .3 9

k 0.23 0 . 2 7 0 .1 4 0 . 17 0.23 0 . 15 0 .15

a l k 4 . 1 4 17.38 8 .84 8.43 8.63 8 .76 5 .76



2 9 9

KP1 KP 2 KP3 K P 4 KP 5 K P 6 KP7

s i 2 2 8 .1 0 187.65 193.95 2 3 2 . 3 9 2 0 1 .8 7 194.46 190.48

t i 3 .49 2 .62 2 .89 2 .77 3 .47 3 .36 2 .85

a 1 29 .25 22 .85 25.23 25 .3 2 2 4 .3 6 24 .6 4 25.53

f m 33 .09 47 .65 53.83 52 .9 8 54 .5 2 5 5 .5 9 53.99

m g 1.00 0 .5 6 0 .55 0 . 55 0 . 55 0 .53 0 .55

c 25 .3 0 19.48 10.38 10.00 11.10 10.05 9 .67

k 0.25 0 .27 0 . 24 0.21 0.21 0 .2 6 0 . 20

a l k 12.36 10.02 10.55 11.70 10.02 9 .7 2 10.81

K P 8 K P 9 ADI AD2 AD3 KC1 KC2

si 2 06 .8 3 188.58 20 8 .8 5 1 72 .9 9 1 96 .80 9 9 .7 0 88.62

t i 2 .87 3 .39 2 .79 2 .7 6 2 .5 6 2 .3 2 2 .28

a l 2 4 .8 8 23. 76 2 2. 99 2 1 . 0 0 2 0 .1 2 15.86 13.21

f m 53.8 3 5 2 .4 6 55 .68 4 4 . 0 9 5 3 .8 8 5 0 .6 9 43.01

m g 0 .57 0 .52 0.63 0 .5 2 0.61 0 . 6 2 0 .6 4

c 11.01 14.04 9 .89 2 2 . 8 4 14.50 2 6 . 2 2 3 7.8 0

k 0 .2 0 0 .16 0 .12 0 .1 4 0 . 1 6 0 .1 8 0 .1 4

a l k 10.28 9 .7 4 11.44 12.07 11.49 7 .23 5 .98

m i d d l e sequen

KC3 KC4 KC5 KC6 AF1 AF2

s i 81 .98 21 6. 08 2 0 7 .2 0 2 4 3 . 8 6 1 70 .6 4 127.26

t i 2 .23 2.31 2.01 2 .0 4 2 .5 9 2 .45

a 1 12 .69 20.91 19.33 22 .4 3 2 8 . 1 4 17.38

f m 4 4 .0 9 5 3.1 9 49 .2 5 5 1 .3 5 4 8 .8 8 31 .92

m g 0 .67 0 .6 4 0 .66 0 . 6 4 0 . 55 0 .5 4

c 3 8 .2 0 15.49 2 1 .5 6 14.02 9 . 6 4 4 1 .1 0

k 0.1 7 0 .27 0 .25 0 .33 0.21 0.11

a l k 5 .03 10.40 9 .86 12.20 13.34 9 .6 0



3 0 0

AF3 A F4 AF5 AF6 AF7 AF8 AF9

s i 158 .89 2 3 3 . 6 0 201 .9 5 217.81 116.59 163 .32 200 .1 6

t i 1.76 3.01 2 .96 2 .84 1.47 4 .0 0 3 . 4 4

a l 21 .67 3 0 .3 6 25 .68 25.87 14.94 2 5 .1 2 25 .97

f m 2 4 .3 4 3 9 .1 9 4 8. 35 42.4 5 19.69 4 5 . 7 7 43. 23

m g 0.51 0 .5 0 0 .55 0.53 0 .50 0 .53 0 .53

c 4 1 . 9 4 14.00 12.75 18.94 56 .2 2 17.27 16.75

k 0.17 0 . 18 0 .1 6 0 .17 0 .10 0 .2 6 0 .2 0

a l k 12.05 16.45 13.22 12.74 9 .15 11.85 14.05

AF10 AF11 AF1 2 AF13 A F 14 A F1 5 A F16

s i 160 .14 168.72 189 .44 192.17 197.45 1 03. 36 147 .09

t i 3 .62 3 .81 2 . 77 2 .77 3.41 2 .43 2.51

a 1 2 2 .3 2 24 .6 3 2 8 .8 6 2 5 .4 4 23 .7 3 14.58 2 0 . 0 4

f m 4 2 .1 8 50 .1 8 43.71 43.18 4 1 .5 7 2 8 .6 3 3 9. 86

m g 0 .5 4 0 .53 0 .53 0 .55 0 .52 0 . 5 4 0 .5 4

c 25 .0 12 .97 11.95 17.48 23.48 4 9 . 4 2 2 9. 18

k 0.11 0 .15 0 . 17 0 .19 0.21 0 .1 4 0 .1 4

a l k 10.50 12.23 15.48 13.91 11.22 7 .3 7 10.92

AF17 A F1 8 AF 19 AF20 AF21 A F 2 2 AF2 3

s i 2 0 9 .7 5 2 0 6 .7 8 2 0 0 . 8 4 183.38 2 8 9 . 9 0 170 .6 6 2 0 3 .1 8

t i 3 .76 2 .2 9 4 .0 2 2 .86 2 .58 3 .8 7 3 .3 0

a 1 28 .53 31 .1 6 27 .9 9 27.61 30 .9 6 2 4 . 8 9 2 7 . 7 4

f  m 4 4 .0 6 4 5 . 2 7 46 .1 5 44.33 3 8 .0 9 4 4 . 9 3 4 7 .5 2

m g 0 .53 0 .5 8 0 .53 0 .52 0 .48 0 .5 3 0 .5 6

c 13.48 7 .7 0 11.09 14.22 13.71 18.30 10.64

k 0.11 0 .2 7 0 .1 6 0 .16 0 .23 0 . 1 6 0 .21

a l k 13 .94 15.87 14.78 13.84 17.24 11.88 14.09



3 0 1

AF24 AF25 AF26 AF27 TM1 TM2 TM3

s i 225.71 157.89 187.54 163.0 271.25 268.85 256.91

t i 2.67 3.87 2.98 2.61 5.04 4.63 3.85

a 1 26.28 21.41 27.26 28.75 30.08 29.23 27.72

f m 37.79 46.56 46.17 48.99 32.52 27.05 31.43

m g 0.48 0.54 0.54 0.53 1.0 1.0 1.0

c 23.02 22.27 11.85 7.73 25.74 32.10 28.89

k 0.15 0.18 0.24 0.19 0.12 0.12 0.11

a l k 12.91 9.75 14.71 14.53 11.66 11.62 11.96

TM4 TM5 TM6 TM7 TM8 TM9 TM10

si 194.96 196.53 160.12 206.14 217.78 189.48 218.48

ti 4.03 4.01 3.86 3.14 3.24 3.92 2.97

a 1 21.93 21.38 20.16 23.31 24.92 23.63 26.69

f m 55.47 40.77 44.57 44.12 53.76 54.51 47.81

m g 0.57 0.52 0.57 0.54 0.61 0.58 0.56

c 14.77 29.73 27.85 23.34 9.43 12.12 13.66

k 0.13 0.12 0.15 0.12 0.08 0.10 0.11

a l k 7.83 8.11 7.41 9.23 11.89 9.74 11.83

TM11 TM12 TM13 TM14 TM15 TM16 PW1

si 207.22 153.84 199.55 196.55 116.57 239.54 222.08

ti 2.92 2.15 4.0 3.66 2.82 3.72 3.08

a 1 24.70 20.25 22.78 23.20 14.17 25.31 26.83

f m 47.80 35.88 52.01 47.41 28.78 32.36 47.74

m g 0.56 0.50 0.55 0.55 0.54 0.46 0.51

c 16.54 35.04 15.96 19.95 50.96 32.59 10.44

k 0.11 0.13 0.12 0.12 0.12 0.14 0.19

a l k 10.96 8.83 9.24 9.44 6.09 9.74 14.99



3 0 2

PW2 PW3 PW4 PW5 PW6 PW7 PW8

s i 215.34 195.32 215.78 214.34 275.70 297.66 482.46

t i 3.60 3.29 3.41 2.75 1.98 3.95 2.36

a 1 25.73 27.22 27.18 28.58 31.39 29.30 31.76

f m 52.62 51.25 49.53 45.18 40.26 51.42 41.80

m g 0.47 0.59 0.57 0.57 0.58 0.53 0.48

c 8.22 8.22 9.49 10.72 9.71 5.54 10.69

k 0.16 0.19 0.16 0.19 0.21 0.20 0.15

a 1 k 13.43 13.31 13.80 15.52 18.65 13.74 15.75

PW9 PW10 PW11 PW 12 PW13 PW14 PW15

s i 448.29 202.68 159.48 127.48 332.51 352.22 372.83

ti 2.30 2.99 1.02 0.84 2.74 3.15 3.74

a 1 26.89 23.69 13.49 10.44 27.87 28.89 30.81

f m 33.15 34.97 15.50 11.56 30.97 33.57 39.03

m g 0.46 0.43 0.47 0.44 0.44 0.40 0.39

c 28.11 32.11 64.70 73.12 29.21 24.16 16.44

k 0.16 0.26 0.20 0.19 0.29 0.26 0.25

a lk 11.85 9.24 6.31 4.87 11.96 13.38 13.72

PW16 PW17 PW18 PW 19 PW20 PW21 PW22

s i 395.38 328.90 299.27 341.66 416.52 427.72 371.67

t i 3.12 3.0 3.10 2.98 4.07 3.69 4.18

a 1 29.92 30.95 28.94 31.02 34.92 32.06 33.00

f m 38.54 37.42 34.58 37.95 41.01 39.47 39.16

m g 0.44 0.42 0.41 0.43 0.41 0.40 0.39

c 18.93 17.40 23.55 17.57 8.26 13.39 14.14

k 0.27 0.25 0.28 0.26 0.24 0.25 0.28

a lk 12.61 14.23 12.93 13.47 15.81 15.08 13.70



3 0 3

PW23 PW24 PW25 PW26 PW27 PW28 PW29

s i 342.93 339.13 430.06 388.50 394.58 506.86 415.11

ti 3.16 2.68 3.68 3.70 3.78 3.82 3.68

a 1 29.61 25.54 33.18 32.58 29.69 32.20 36.47

fm 35.49 28.80 42.89 44.92 35.68 42.15 42.19

m g 0.41 0.43 0.41 0.38 0.43 0.43 0.41

c 21.86 33.59 9.62 8.61 20.89 11.45 5.74

k 0.27 0.25 0.26 0.27 0.27 0.27 0.31

a lk 13.04 12.06 14.32 13.89 13.73 14.20 15.59

upper  sequence

WG1 WG2 WG3 WG4 WG5 WG6 WG7

s i 110.37 308.52 294.20 154.37 267.48 155.39 136.43

ti 1.50 2.92 2.91 1.05 1.66 1.05 1.58

al 13.84 29.70 30.75 18.04 26.16 17.78 20.81

f m 16.68 35.63 35.37 14.77 20.73 16.66 25.69

m g 0.43 0.44 0.44 0.46 0.45 0.42 0.42

c 63.48 22.12 21.14 57.66 39.91 56.55 42.73

k 0.17 0.27 0.29 0.19 0.13 0.23 0.10

a lk 6.0 12.56 12.75 9.53 13.20 9.01 10.77

WG8 WG9 WG10 SCI SC2 SC3 SC4

si 378.53 257.98 378.34 249.64 269.57 243.74 335.44

ti 3.35 0.67 3.35 2.46 1.70 1.54 2.53

a 1 31.13 14.30 31.12 27.01 18.70 21.85 25.35

f m 44.39 9.29 44.37 39.31 22.87 33.58 41.69

m g 0.47 0.51 0.47 0.49 0.50 0.49 0.46

c 11.56 69.54 11.55 21.91 50.08 35.20 23.49

k 0.06 0.13 0.06 0.21 0.32 0.22 0.36

a l k 12.92 6.87 12.96 11.78 8.35 9.38 9.47



3 0 4

AL 1 AL2 AL3 AL4 AL5 AL6 AL7

s i 216.82 244.28 340.78 205.21 359.55 314.73 301.29

ti 2.60 3.75 2.30 2.01 1.77 2.23 2.94

a 1 26.26 24.88 26.66 16.81 23.46 29.78 29.72

fm 42.01 43.70 36.72 22.98 33.84 44.57 50.49

m g 0.55 0.50 0.51 0.48 0.54 0.50 0.59

c 17.38 22.43 24.02 53.19 19.31 12.91 2.50

k 0.27 0.20 0.11 0.23 0.25 0.10 0.26

a lk 14.34 8.99 12.60 7.01 23.39 12.74 17.30

S i l u r i a n

WP1 SI S2 S3 S4 S5

s i 213 414.64 526.32 458.77 391.93 386.91

ti 2.41 4.05 3.77 3.86 3.51 3.66

al 17.79 32.84 29.89 34.78 36.95 35.57

f m 19.67 43.69 37.24 36.07 37.45 36.59

m g 0.47 0.48 0.41 0.38 0.36 0.37

c 54.87 7.34 15.08 13.64 8.90 9.28

k 0.30 0.22 0.16 0.27 0.30 0.27

a l k 7.68 16.13 17.79 15.51 16.71 18.56

S6 S7 S8 S9 HQ1 HQ2 HQ3

si 369.37 427.94 230.41 213.64 1026.97 9.76.48 734.02

t i 4 3.98 3.38 3.68 6.60 4.14 4.47

al 37.37 35.75 26.24 22.24 31.89 25.87 39.97

f m 35.35 37.41 47.85 33.41 32.91 39.95 38.34

m g 0.36 0.40 0.53 0.50 0.58 0.56 0.34

c 7.34 8.50 14.26 33.72 29.39 29.73 12.03

k 0.24 0.25 0.17 0.17 0.86 0.77 0.62

a lk 7.34 8.50 14.26 33.72 29.39 29.73 9.66



3 0 5

HQ4 HC1 HC2 HC3

s i 475.37 378.14 251.38 301.84

t i 3.69 2.86 2.62 2.62

a 1 27.75 25.69 25.34 30.08

f m 35.35 39.83 50.06 47.09

m g 0.40 0.54 0.60 0.56

c 32.15 22.52 11.40 7.38

k 0.91 0.31 0.21 0.24

a lk 4.76 11.96 13.19 15.45

key to appendix two

Ordov ic ian
Silur ian lower sequence
_S=Scart Grit TA=Changue Formation
HQ=Quartz Conglomerate KK=Kilrany conglomerate

HC=Craigskelly

Q r  d .Q .Y .ic i .a ii
upper  sequence

WG=Whitehouse Group 
SC=Shal loch Formation 
AL*=Shal loch Formation 
WP=Shalloch Formation

TR=Changue Format ion(  1 -16) 
TR=Darley Formation(  17-28) 
TB=Changue Formation 
AL=Craigmulock Formation 

BC=Craigmulock Formation 
KP=InfraKilrany .Greywackes 

AD=Benan Conglomerate 
KC=Kirkland Conglomera te

O r d o v i c i a n
middle sequence 
AF=Ardwell Flags
TM=Ardwell Group and Cascade Grits
PW=Cascade Grits (1-9) and Whitehouse Group (10-27)
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