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I  guess I ’m just an old mad scientist at bottom. Give me an underground 

laboratory, half a dozen atomsmashers, and a beautiful girl in a diaphanous 

veil waiting to be turned into a chimpanzee, and I  care not who writes the 

nation’s laws.

S.J.Perelman



A b str a c t

This thesis describes an experiment whose aim was to measure the angular 

differential cross-section d2a / dOpdE^ for the two-body photodisintegration of 

the deuteron D {^,p )n  at photon energies in the region of 140 MeV . The 

experiment was performed using the Glasgow tagged photon spectrometer 

which was installed at the Mainz Institu t fur Kernphysik to take advantage 

of the high quality d.c. electron beam provided by the racetrack microtron 

MAMI-A. The experimental work and subsequent data analysis took place in 

the period from March 1986 to December 1988.

The motivation for the project was provided by the recent renewal of the­

oretical interest in the deuteron photodisintegration reaction which has lead 

to  a call for new and more reliable data on the process. The significance of 

the reaction lies in its use as a test case for the application of modern models 

of the N  — N  interaction. Such models seek to describe the nuclear force 

in term s of the underlying hadronic dynamics of the nucleon-meson system 

as opposed to  the essentially phenomenological param eterisations which have 

been used previously. Photons, both real and virtual, provide the ideal tool 

for such studies since the electromagnetic interaction is the best understood 

of all the elementary processes.

The experiment was performed with a 0.45 g cm-2 liquid deuterium  target 

cell placed in a tagged photon beam with a total intensity of 107s -1 in the 

range — 133 — 158MeV . Protons were detected in a large solid angle 

(0.9 steradian) position sensitive plastic scintillator telescope which had an 

energy resolution of 5% and an angular resolution of 3°. M easurement of the 

proton energy and angle together with knowledge of photon energy overdefined



the reaction kinematics thus facilitating a very clean rejection of background 

events. Reliable normalisation was assisted by the tagging technique which 

determined the photon flux to ±  1%.

A complete Monte Carlo simulation of the experiment was developed in or­

der to evaluate the systematic corrections to the data. Included in the simula­

tion are effects due to the beam -target geometry, energy losses of the protons in 

the target, energy deposition in the detector, light production non-linearities 

and nuclear interactions of the protons in the CH scintillator medium, and also 

variations in the light collection efficiency throughout the scintillator blocks. 

The monte carlo simulation produces an efficiency correction factor specific to 

each data  point, as well as providing global normalisation factors to account 

for the tagging efficiency and the combination of beam and target geometries.

The data  is presented in the form of two angular distributions correspond­

ing to mean photon energies of 140 and 150 MeV . The total systematic error 

is estim ated to be not greater than 6 %. The results are found to be in good 

general agreement with other recent experiments but it is observed th a t none 

of the available theoretical calculations can give a fully satisfactory account 

of the data.
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1.1 In tr o d u c tio n

1.1 .1  E lectrom agn etic  In teraction s  
and th e  N u cleu s

The electromagnetic interaction has proved to be a versatile tool for the study 

of nuclear physics. It is the best understood of the elementary forces and it 

possesses a number of features which can be employed advantageously to in­

vestigate various aspects of nuclear structure and dynamics. In relation to 

the strong nuclear force electromagnetism represents only a weak disturbance 

of the nuclear system under study. The photon may therefore penetrate the 

whole volume of the nucleus. This is in contrast to the behaviour of strongly 

interacting probes which suffer absorption at the nuclear surface and are there­

fore less sensitive to the interior of the nuclear wave function. Furthermore 

the relative weakness of the electromagnetic force implies th a t calculations 

based upon perturbation expansions may be performed reliably. The second 

advantage is tha t information can be obtained from electromagnetic nuclear 

reaction data in a way which is largely independent of nuclear physics input. 

W hat is measured is essentially a map of the electromagnetic charge and cur­

rent densities in the system. This can subsequently be interpreted in terms of 

the motion of the nuclear constituents. If a hadronic probe were used it would 

be necessary to assume a particular model of the hadron-nucleus interaction 

in order to extract information on the structure of the nuclear target.

The absorption of real photons by nuclei yields information on various as­

pects of nuclear physics depending on the photon energy. At energies well 

below the pion threshhold the photoreaction cross-section is dominated by 

the giant dipole resonance. This is a collective mode of excitation of the nu­
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cleus which contains much of the observed total photoabsorption strength in 

complex nuclei. The concept of a finite, predictable total energy integrated 

photoabsorption strength has been of great value in the development of photo­

nuclear physics [3] [4] [5]. Sum rules, based only on very general considerations 

of quantum  mechanics can provide predictions of the total integrated cross sec­

tion to all final states while requiring only the relatively well known ground 

state wave function as input. One example is the Thomas-Reich-Kuhn sum 

rule for the total integrated electric dipole cross-section for a system of total 

charge Z .

r°° * „  . | 27r2e2N Z ,  , N Z ,  . Tr , i / xJ aEi{E1)dE1 — ——----—  (1 +  k,) = 60—— (1 +  k) [MeV mb] (1.1)

In a system whose potential V  contains only central terms the so-called en­

hancement factor k =  0. In this case, i.e. non-interacting nucleons in a central
N Z

potential, the sum rule obtains its classical value 60— — . In the presence of 

exchange terms or momentum dependent terms in the potential the enhance­

ment factor k has the form,

* =  (L2)

where D z is the electric dipole operator and x* ls the ground state of the 

system. Thus there exists a definite value for the strength of the total dipole 

response of a system of A nucleons and a calculable expression for the excess 

strength due to the presence of charged mesons etc. whose existence is implied 

by the use of a ‘realistic’ potential.

Above the giant resonance region collective excitation gives way to one- 

body and two-body absorption mechanisms. These yield structural infor­

m ation on few particle excitations and dynamical information on two-body
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correlations via ‘quasideuteron’ mechanisms. At still higher energies pion pho­

toproduction experiments shed light on pion and A-resonance propagation in 

nuclear m atter. In such experiments the penetrative nature of the photon is 

especially valuable. The exotic particle is created on or near mass shell in the 

interior of the nuclear volume without the strong surface absorption effects 

seen in complementary pion scattering experiments. In this sense the nucleus 

acts as a laboratory for the study of subnuclear phenomena.

Electron scattering from the nucleus may be described to a high degree of 

accuracy by the one-photon exchange approximation in which the M ott cross- 

section [6] for a point nucleus is multiplied by a form factor which describes 

the spatial extension of the charge and current distribution represented by 

the nucleus. The valuable feature of virtual photons is tha t the energy trans­

ferred by the photon, o j ,  and the momentum transferred, q , can be adjusted 

independently. By varying the momentum transfer for elastic scattering it is 

possible to map out the charge form-factor of the nucleus and thus its ground 

state charge density. Inelastic scattering at low excitation provides informa­

tion on analogous transition densities for bound state excitations. At higher 

energies the information on continuum transitions is complementary to th a t 

obtained with high energy real photons with the added advantage tha t q and 

o j  may be varied independently to map out a surface of nuclear electromag­

netic response. The q —  o j  relation of real photons does not in fact represent 

a lim itation upon their usefulness, since the large momentum mismatch in­

volved in the absorption of a real photon by a single nucleon results in the 

enhancement of the relative importance of two-body mechanisms, wherein lies 

much of the current interest in the study of nuclear dynamics.
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100 photon
l ine

50-
0*/.

♦ 1007,

Figure 1.1: relative contribution of exchange effects in the transverse inelas­
tic form factor for D(e,e') plotted as a function of q2 (momentum transfer 
squared) and E np (relative energy of n-p system) [7j.

Figure 1.2: Density contours of deuteron wave function calculated from the 
Paris potential (shown aligned along spin axis)
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An example [7] of how various aspects of the nuclear response may be

emphasised by suitable choice of kinematics is shown in figure 1.1 . The

relative contribution of exchange effects in the transverse inelastic form factor

for D(e, e') is plotted as a function of q2 (momentum transfer squared) and E np

(relative energy of the np system). Large corrections are seen in the threshhold
q̂region (Enp & 0) while in the quasielastic region (a; ~  — --------- ) the form-

ZJS/L nucleon

factor is due almost entirely to the one-body absorption process. Going toward 

the real photon line at higher E np exchange effects again enhance the form 

factor considerably, leading eventually to real A excitation.

1.1 .2  T he P la ce  o f th e  D eu teron  
in N u clear  P h ysics

The significance of the deuteron in nuclear physics approaches tha t of the 

hydrogen atom in atomic physics and it has been studied both theoretically 

and experimentally since the earliest days of the subject [1] [2]. Unlike the 

hydrogen atom, however, the deuteron has no discrete excited states and the 

interest lies not in spectroscopy but in the ground state properties. From the 

study of such static properties of the deuteron as the binding energy, magnetic 

dipole moment and electric quadrupole moment emerges a picture of a system 

bound by a complex spin, isospin and momentum dependent interaction. A 

calculation [11] of the deuteron probability density using a wave function 

derived from the Paris potential is shown in figure 1.2.

Radiative processes, particularly two body photodisintegration and i t ’s 

inverse, n-p capture, are the simplest reactions involving the deuteron. In 

these processes the interaction of the two-nucleon system and the well un­

derstood electromagnetic force is observed cleanly, uninfluenced by complex
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nuclear structure effects. The interpretation of such experiments is relatively 

unambiguous since it is free from the approximations required in a many-body 

system.

In a nucleons-only picture the deuteron is a two body system for which 

exact wave functions are obtained by solving the Schrodinger equation for a 

realistic N - N  potential. Such potentials are derived from N - N  scattering data 

and so reactions involving the deuteron test the consistency of the interaction 

model for bound and free nucleons. In such a model the most significant 

exchange current effects are included implicitly. In a model where meson ex­

change and the formation of nucleon resonances are included explicitly then 

the few-body nature of the deuteron system lends itself to a treatm ent where 

the amplitude is expanded in the leading order terms of the S-matrix expan­

sion.

1.1 .3  D eu tero n  P h o to d isin teg ra tio n

The structure of the deuteron lends itself to the investigation of particular 

aspects of the nuclear force. Electron scattering measurements [9] have shown 

th a t the r.m.s. charge radius of the deuteron is 2.095(6)fm T hat is to say, its 

mean density is significantly less than tha t of other light nuclei for example 

4He whose charge radius is 1.674(12)fm or 12C at 2.446(10)fm [10] This rather 

extended spatial structure taken together with the small binding energy (2.2 

MeV ) implies th a t the momentum space wave function must fall off rapidly 

with increasing nucleon momentum. However the absorption of a real photon 

by a nucleon involves a large mismatch between the momentum of the initial 

and final states and therefore requires the nucleon to have a large initial mo­
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m entum  in order to balance the reaction kinematics. For example, a D (^ ,p )n  

reaction induced by a lOOMeV photon resulting in the emission of a proton 

at 90 °requires an initial momentum of 330 MeV/c. This is very much greater 

than  the typical momenta available in the deuteron. Figure 1.3 shows the 

nucleon momentum distribution calculated using the Reid soft core potential 

[8]. The distribution falls to 20 % of its maximum value at 50 M eV/c, 2% 

at 100 M eV/c and 0.01 % at 300 M eV/c nucleon momentum. This lack of 

high momentum components in the wave function results in the suppression 

of one-body photoabsorption mechanisms relative to exchange mechanisms 

where both nucleons participate in the reaction and combine to provide the 

required momentum. Thus the deuteron is a particularly suitable system 

for the study of exchange effects. An illustration of the importance of ex­

change mechanisms is provided by figure 1.4 which shows a calculation of the 

to tal cross-section for deuteron photodisintegration as a function of energy. 

[12]. It is seen th a t the one-body (impulse approximation) calculation very 

significantly underestim ates the trend of the data at higher energies and the 

exchange contribution gains in importance with increasing energy. In addition 

to the non-resonant meson exchange terms (MEC) there is also a contribution 

from A excitation followed by decay to an np final state. The decay occurs 

by means of pion emission and reabsorption and so provides a mechanism for 

the sharing of the initial momentum between the two nucleons. This may 

also occur in the final state. The strength of the rescattering term  around 

300 MeV indicates tha t the virtual A excitation is an im portant final state 

interaction.

Explicit energy-integration of such theoretical cross-sections indicate an 

enhancement of the classical dipole sum rule value of approximately 0.5 .
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Figure 1.3: Deuteron momentum distribution for the Reid soft core potential.
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Figure 1.4: Total cross-section for deuteron photodisintegration [12]. 
dash dot line: Impulse approximation (IA) 
dotted line : I  A + Rescattering (RS)
dashed line : IA + R S  + Meson exchange currents (MEC) 
solid line : I  A + R S  + M EC + Nucleon isobar current (IC) 
data references as given in [12]
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This is in fair agreement with the enhancement factor obtained from the sum 

rule using a realistic potential and with the measured value of the energy 

integrated cross-section [13].

The deuteron also provides an ideal laboratory in which to study the very 

poorly known T V -A interaction. Although A formation effects in deuteron 

photodisintegration are most significant in the region of the resonance (E1 = 

200-300 MeV ) there are thought to be non-negligible effects below the pion 

threshold due to formation and decay of a virtual A in the intermediate state.

A great deal of theoretical effort has recently been expended on the study 

of the H (7 ,p) process at 0°, tha t is, for emission of the proton in the forward 

direction. In the simplest model of the reaction, i.e. a pure S-state deuteron 

and only E l transitions, this process is forbidden by angular momentum con­

servation. The existence of a finite forward cross-section is due partially to 

spin flip M l transitions from the 3Si state to the 1So but also to 3Di — >-3P 

transitions from the D-state component in the deuteron wave function which 

arises from the tensor part of the TV-TV interaction. As a result of the D- 

state  adm ixture the deuteron possesses an electric quadrupole moment QD. 

However non-relativistic potential models [14] [15] [16] [17] which correctly 

predict Qd yield too high a forward H (7 ,p) cross-section. In recent work [18] 

[19] the agreement has been improved by the inclusion in the charge density 

of spin dependent corrections of relativistic order which interfere with the 

D -state transition amplitude. In addition to these corrections to the normal 

non-relativistic one body charge density the effect of two body charge density 

operators arising from pair excitation processes have been considered by some 

authors [20], The inclusion of these terms appears to improve the agreement
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for pseudovector 7tN  coupling but has the opposite effect for pseudoscalar 

coupling. Such effects have now been introduced into calculations [21] [22] 

of the angular distribution resulting in modification of both the shape and 

m agnitude of the cross-section.

In conclusion, a great deal of valuable information about the nuclear force 

may be obtained from the study of the cross-section for deuteron photodisin­

tegration. However, as well as explicit differences in the nuclear physics input 

of the different theoretical treatm ents there are discrepencies due to the use 

of varying approximations and calculational techniques. Such questions are 

of general interest in the field of strong interaction dynamics and since the 

deuteron is the simplest nucleus it is an ideal system for the study of both the 

problems of the physics of the N - N  force and also those of a more ‘technical’ 

nature. Both of these effects give rise to 10-20 % differences in the prediction 

of the differential cross-section and so in order to be useful new data should 

have a to tal uncertainty of not more than 5-10 %.

1.2 T h e  N u c le a r  E le c tro m a g n etic  C u rren t

The purpose of this section is to discuss the theoretical techniques used to 

describe the interaction of photons with the nucleus. The photon interacts 

with all the charged constituents of the nuclear system including the mesons 

which are exchanged between the nucleons. Furthermore the full nuclear wave 

function contains not only neutrons and protons but also nucleon resonances. 

The total system of charges and currents seen by the photon therefore includes 

the contributions of mesons, nucleons and nucleon resonances. The nuclear 

wave function is of course constrained by the requirement tha t electric charge
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be conserved.

There are two approaches to the construction of the interaction m atrix 

element. The wave function may be projected onto the space of nucleons 

only in which case the meson exchange effects must be included in the nu- 

cleonic current. This allows the use of conventional nuclear wave functions 

but presents problems in the choice of the two-body current terms. Alterna­

tively the mesons may be included explicitly in the interaction, usually in a 

Feynmann diagram type calculation, but this leaves the problem of how to 

produce a consistent wave function. The problem of the description of the 

to tal nuclear current is central to the understanding of nuclear photoreactions 

and the very light nuclei, especially the deuteron, provide the ideal testing 

ground for theoretical ideas.

The interaction of the electromagnetic field with a structureless, charged 

particle of mass M, charge e and magnetic moment fi is well understood. 

However, the picture is modified considerably if the particles possess internal 

structure. This is demonstrated in high energy e-p scattering where the finite 

size of the proton is measurable and in hadron photo-and electroproduction 

experiments on the nucleon where the electromagnetic probe interacts explic­

itly with the meson field. The meson field mediates the strong force between 

nucleons and its interaction with the electromagnetic field results in the exis­

tence of photoabsorption mechanisms involving more than one nucleon.

In the deuteron the photon interacts with both the internal degrees of 

the bound system (meson exchange currents etc.) and the internal degrees 

of freedom of the nucleons themselves (eg. A-resonance formation). These 

effects are strongly interelated through N n  ^  A processes in the nucleus and
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in a QCD based quark-gluon picture may become totally blurred.

The power of the electromagnetic interaction as a probe of nuclear dynam­

ics lies in the extent to which information can be extracted from experimental 

data  in a way which is independent of nuclear models. This is exemplified 

in the existence of photoabsorption sum rules and current conservation rules 

which allow the calculation of observables in a way which implicitly includes 

the effects of the internal dynamics of the system.

1.2 .1  T he In teraction  H am ilton ian

The most versatile link between theoretical variables and experimental observ­

ables in nuclear physics is contained in the formalism for scattering reactions. 

The Scattering m atrix ( S-matrix ) is defined as

S fi = < /|S |t) =  Sfi -  i(2ir)i 64(pf  -  Pi)Tfi (1.3)

i.e. the m atrix element of S  the scattering operator between the initial and
• • • i 12final states of the system. Transition probabilities are given by \T/<\ where 

Tfi is the reaction matrix. Tfi includes the amplitudes for all processes by 

which the interaction part of the Hamiltonian, Hint, couples the initial state 

of the system to a particular final state. The S-matrix can be expanded in 

a series of terms of increasing order in H int, the details of which are given in 

many texts eg. [26] . However, for photoabsorption processes described by 

a purely electromagnetic interaction Hamiltonian then only the lowest order 

term  need be considered. The transition m atrix element for electromagnetic 

interactions takes the form

(1.4)
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where is the nuclear current density operator and is the photon 

operator.
Jix{x)  =  ( p ( x ) , j ( x ) )  

AA = ($(®)M(£)) = \ l ^ - €»e~tk's
V

In the case of real photons where there are no source charges nearby the gauge 

invariance principle (appendix B) allows one to choose $  =  0 in which case 

the transition m atrix element becomes

Tf i  =  { f \ - J  A (x)  • J ( x ) d ? x \ i )  ( 1 .6 )

Thus Hint factorises into a plane wave representing the photon and a cur­

rent Jfj, which contains the nuclear physics input to the problem. Although 

it has been conventional in nuclear physics to use the Schrodinger equation 

as a starting point for calculations there are advantages in the use of the 

Dirac equation for the development of the electromagnetic interaction Hamil­

tonian. The Dirac equation described the motion of a spin-^ particle and 

therefore the magnetic terms in the Hamiltonian arise naturally and do not 

have to be added ‘by hand’ as is the case with the nonrelativistic formalism. 

In addition to this, several modern calculations have shown tha t there exist 

relativistic effects which significantly modify the photodisintegration cross- 

section. These terms also appear naturally in the nonrelativistic reduction of 

the Dirac Hamiltonian.

The Dirac equation for a particle of charge e and mass M  can be w ritten

= (1-7)

where the Dirac Hamiltionian Hp  has the form

Hd =  ol • p +  (3M (1*8)
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and ifi(x) are plane wave solutions defined in appendix A. In the presence of 

electromagnetic interactions Hd is modified as follows.

d d
— ► iTi— — e$(x), —ih V  — ► —ih V  — -A (x )  (1.9)

where A  and $  are the vector and scalar e.m. potentials. This is the form 

for an ideal Dirac particle with a gyromagnetic ratio of 2. To accommodate 

nucleons, whose magnetic moments are altered by strong interaction effects 

the total magnetic moment jX is defined as

jl =  e[l +  k] =  |[/x„ +  fj,vr3\ (1.10)

where k  = ex, is the anomalous magnetic moment, ( kp = 1.79; Kn — —1.91) fis 

and fiv are defined as the isoscalar and isovector magnetic moments (fis =  0.88;

fj,v =  4.71) and r3 is the 3rd component of the isospin operator, similarly the

nucleonic charge is defined as

e =  |[1  +  r3] (1.11)

The full Hamiltionian for ‘Dirac’ nucleons in a electromagnetic field includes 

additional terms due to the existence of the anomalous magnetic moments.

A • A

Hd =  m  +  a  ■ {p -  eA) +  e $  -  o  • B  +  • E  (1.12)

where E  and B  are the electric and magnetic fields corresponding to A  and $ . 

It is convenient to work with a non-relativistic reduction of this Hamiltonian, 

which allows the (positive energy) nucleon wave functions to be represented

by two-component (Pauli) spinors. This is achieved by means of the Foldy-

Wouthuysen transform ation (Appendix A). The non-relativistic Hamiltonian 

has the form

H nr  = H0 A Hint (1*13)



Photonuclear Reactions 18

where

(1.14)

and

Him =  -  e

These term s represent an electric monopole interaction, an electric dipole

interaction, a spin-magnetic dipole term, a spin-orbit interaction and lastly

the Darwin-Foldy term  which gives rise to the so-called Zitterbewegung motion
2 M e 2

of a Dirac particle. This is an oscillatory motion with a frequency of —-—
n

which is superimposed on the average motion. Its origin lies in the interference 

of the positive and negative energy components in the particle’s wave function.

1.2 .2  T h e N u cleon ic  EM  C urrent

The nucleonic EM current operator may be defined as

UZ)  -  a- M  (1.16)
47/1 I  A<‘=0

Applying this to H n r  defined above yields the following results

and

(1.18)

where 8z{x — f) is the position projection operator onto the nucleon posi­

tion vector r. The corresponding momentum space operators are the fourier 

transform s of the configuration space expressions.
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therefore

P( k )  =  e e - * "  -  ?  ‘ ^  X  ?  * " * '  (L20)

and

•?(*) =  i T J e~i l r  ~  x *  c_i*'r" t1-21)M  2M  v '

1.2 .3  S ieg er t’s T heorem

The current derived above describes the interaction of the electromagnetic 

field with a single charged particle. However, as has been noted, the most 

im portant photoabsorption mechanisms above a few tens of MeV involve two 

body currents, these present a very much more complex theoretical problem. 

The use of explicit exchange currents greatly increases the theoretical uncer­

tainties in the calculation of the m atrix elements as there is at present no 

unambiguous prescription for their specification. It is possible, however, to 

calculate at least the electric transitions in a fashion which implicitly takes 

into account the presence of meson exchange currents. The principle is to 

express the nuclear current density in terms of the rather better known nu­

clear charge density by means of the charge-current continuity equation. The 

charge density is easier to calculate because the charged mesons whose motion 

contributes significantly to the current density have zero net charge on average 

and so do not directly affect the charge density. Nonetheless their presence 

is indirectly felt because the distribution of the protons’ charge is governed 

by motion in a potential which is constructed from a meson exchange theory. 

These ideas are embodied in Siegert’s theorem which states tha t the electric 

multipole transitions in the long wave limit including exchange current effects 

are determined by the one body charge density.
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The nuclear current density operator satisfies the following continuity 

equation,

V - J  + i[H,p\ =  0 (1.22)

which guarantees the gauge invariance of the theory. In the general case the 

charge and current densities may be written as follows,

*7 =  *7(1) +  *7( 2) +  • • • (1.23)

P =  £(i) +  P( 2) +  • • • (1*24)

where J(i) and represent the current and charge density operators for 

non-interacting particles and J(n)->P(n) are the modifications to those currents 

introduced by n-particle interaction effects. These modifications are due to 

the exchange of charged virtual mesons between the nucleons. In the non­

relativistic ‘static’ limit where the meson masses are neglected the charge 

density fluctuations introduced by charged meson exchange must cancel even 

on very short time scales and then the n-body charge densities may be 

set =  0 . If this approximation is accepted, the continuity equation separates 

as follows:

V - J (1) +  « [ r , />(1)] = 0  (1.25)

V • J(2) +  * [V, p(i)J =  0 (1-26)

since current continuity must be satisfied independently up to and inclusive 

of each order (n).

The com m utator in equation 1.26 does not vanish for exchange or momen­

tum  dependent terms in the potential. If V  is w ritten as V  =  V0 i +  Vexc (o.b.: 

one body) where [V0.b.,Pi] =  0 but [Vexc,pi\ ^  0 then equation 1.26 becomes
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Thus, the m atrix elements of the exchange current operators whose existence is 

implied by the use of a ‘realistic’ potential containing Vexc can be expressed in 

terms of the charge operator in a form which implicitly includes their effects

without the need for any knowledge of their explicit form. This result is 

presented formally in Appendix B which follows the treatm ent of Arenhovel 

[23]. A simpler illustration is given below, in the ‘long wave lim it’ where 

k^x  <C 1 over nuclear dimensions. In this approximation all multipoles other 

than  E l  may be neglected.

In the long wave limit the exchange current J(2) takes a simple form,

*̂ (2) ® (1.28)

where D  =  J2a=i eax a63(x — x a). The interaction Hamiltonian is now,

H i n t  = -  J A{x) ' ( - 7 ( 1 )  (®) +  J(2)(z)) dZX =  H 0.b. +  H e x c  (1.29)

In the long wave limit the two parts of the Hamiltonian have the form:

[ T , sx - D (1.30)

(1.31)

Taking these together, H(nt has the form:

(1.32)

This is known as the Siegert Dipole operator.

1.2 .4  T he M u ltip o le  E xpansion  o f th e  
T ransition  O perator

The use of Siegert’s theorem outlined above can be developed more formally 

in the conventional approach to photodisintegration calculations which use
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an expansion of the transition operator in electric and magnetic multipoles. 

The leading terms of the electric multipole operators can be expressed as 

Siegert operators. This section follows the work of Arenhovel [23] who has 

been largely responsible for the development of the formalism.

The general form of the m atrix element for a photonuclear reaction is, 

from equation 1.6 ,

( / |  -  I  A ■ Jdsx\i) =  ^ ( f \ T f a , J , \ ) \ i )  (1.33)

Where T(/c7, J ,  A) is a transition operator which may be expanded into electric 

and magnetic multipole terms as follows.

T ( k , J , \ )  = - V ^ J 2 i LV 2 l ^ [ T l ^ J , \ )  + \ T M s( k ^ J , \ ) ]  (1.34)
L

The explicit expressions for the T  operators defined in this section are 

given in appendix B. The electric multipole operator may be split into 

two parts.

=  r W f / c , ,  J , \ )  + j f ' ( * 7, J ,  A) (1.35)

where Xj is one order higher in (k1x) than T |i l. Thus in the long wave 

approximation ,i.e. k^x  <C 1 over nuclear dimensions, Ta gives the dominant 

contribution to the electric transitions. The term  may be transformed by 

partial integration and the use of the current conservation equation 1.22 as 

follows (appendix B).

r W ^ . y A J - T 'W ^ . p . A )  (1.36)

This expression is the exact statem ent of Siegert’s theorem expressing the 

transverse electric multipole moments in terms of the longitudinal charge mo­

ments. In the assumption th a t interaction effects do not introduce many-body
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charge density operators p{x) may be set equal to p(1)(x). This is Siegert’s 

hypothesis, discussed previously.

There now exists a choice of operators with which to perform calculations 

of electric multipole transitions. Since such calculations normally involve the 

use of an approximate exchange current consisting of a realistic potential plus

a 7r-exchange current it is instructive to separate the operator into a normal

part, Tj£j, not requiring any explicit knowledge of the exchange current J(2) 

and an exchange part, Tj£j, dependent on J(2). In terms of the transform ation 

performed above these operators have the following form in the two cases, 

w ith (l) and without (II) the use of Siegert’s theorem.

I W ith Siegert theorem:

11 =  T ’} L\ k „ p w ,X) + T l L\ k 1, 3 w ,X) (1.37)

T ^ w = T l L\ k „ J w ,X) (1-38)

II W ithout Siegert theorem:

=  T ^ ( k , J w , \ )  (1.39)

r , S [, ) = 2 i t | (feI, j ( 1) ,A )  t 1 -4 0 )

For the sum of normal and exchange contributions the two approaches are 

equivalent provided the exchange current J(2) is consistent with the two body 

interaction Vexc, tha t is provided equation 1.26 is satisfied. However where
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an approximate exchange current is used then the first approach (invoking 

Siegert) is preferable because the dominant part is consistent and j is less 

sensitive to short range inconsistencies in J(2) since it is of higher order in 

(A;7 a;) .

Figure 1.5 shows the result of such a calculation using both approaches 

[23]. The Reid soft core potential was used and multipoles up to L = 4 were 

included. It is seen tha t the Siegert operator T^0 accounts for nearly all 

of the exchange contribution, namely 98 % at 10 MeV and 87 % at 100 Me 

V . The small inconsistency in the total cross-section calculated by the two 

m ethods is due to the use of an approximate exchange current.

It has now become standard practice to include relativistic corrections 

to the charge density used in Siegert type calculations. The inclusion of the 

spin-orbit and Darwin-Foldy terms in the one-body charge density as shown in 

equation 1.24 was pioneered by the Florence group [19]. Other effects resulting 

from a non-vanishing two-body charge density have also been studied [20].

It is im portant to recall tha t it is still necessary to use explicit meson ex­

change and A excitation currents in the magnetic transition operators. The 

M l  transitions in particular rapidly gain in importance at energies approach­

ing the A resonance.

1.2 .5  E xp lic it M eson  E xchange E ffects

It is possible explicitly to include mesonic degrees of freedom in the interaction 

Hamiltonian in such a way tha t the coupling of the photon to exchanged
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Figure 1.5: Results of [23] for D('),p)n calculated with and without the use of 
Siegert’s operator theorem.
(a) Total cross section for photodisintegration.
dashed line: with Siegert operators, solid line: Siegert operators + MEC, 
dot-dash line: non-Siegert one body operators, dotted line: non-Siegert op­
erators + M EC
(b) Multipole decomposition of the photodisintegration cross-section.
solid line: Siegert operators, dot-dash line: non-Siegert one body operators.
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mesons can be treated directly. The full Hamiltonian may be w ritten as:

H  — H n  H- H 1 +  H it +  Hn -k +  H n ~/ +  +  H nwi (1*41)

where H n  +  = H0 and = H{nt in the notation previously used. It is

now necessary to expand the S-matrix to extract explicitly all the processes 

involving the absorption of one photon by the nuclear system. These pro­

cesses, which may involve the interaction of several mesons and nucleons are 

conveniently represented by momentum space graphs which have a one-to-one 

correspondence with the terms in the S-matrix expansion. This is described 

in many texts e.g. [25] [26]. The Feynmann diagrams representing the one 

and two-body photodisintegration processes are shown in figure 1.6 which is 

taken from [12] where such a calculation is described. In this calculation the 

pion photoproduction amplitudes (diagrams I I I  in figure 1.6) are modified to 

describe the emission of virtual pions which are subsequently absorbed on the 

second nucleon. The pion reabsorption amplitudes (figure 1.6 II) also include 

the excitation of virtual intermediate state A resonances. The rescattering 

amplitude is calculated by iteration of the one pion exchange process. The 

deuteron current (I.a) is a correction term  which is necessary to restore gauge 

invariance to the total amplitude (appendix B). This gauge violation is related 

to the ‘double counting’ of diagrams IV .a  and b  which are included implicitly 

in the initial and final state wave functions. The wave functions used in the 

calculation of [12] were derived from the Reid soft core potential. The more 

recent work [68] uses the Paris potential.



Photonuclear Reactions 27

Figure 1.6 : Amplitudes considered in the calculation of [12]
I: Structure of the photodisintegration amplitude, (a) effective deuteron cur­
rent (b) nucleon current (c) final state interactions (rescattering amplitude) 
(d) pion reabsorption amplitude (e) pion reabsorption and f.s.i.
I I  Composition of pion reabsorption amplitude.
I I I  Pion photoproduction amplitudes which are used to form  II .
IV  Rescattering amplitude (iteration of meson exchange terms)
V ,V I Two-loop N  — A rescattering
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2 .1  In tr o d u c tio n

The production of intense beams of photons has always presented a techni­

cal challenge to photonuclear experimentalists. The ideal photon beam for 

most experiments would be monoenergetic and would be intense enough to 

measure very small electromagnetic cross-sections in a reasonable length of 

time. In addition, the photon flux would be known accurately either by direct 

measurement or by inference from the method of photon production. Un­

fortunately, it has proved difficult to produce a beam which simultaneously 

possesses even two of these three virtues and the ideal of an intense, monoener­

getic, flux-normalised high energy photon source remains an unobtained goal. 

Nonetheless a variety of different techniques have been evolved to produce 

beams for particular types of experiment.

The three most widely used methods for producing a high energy photon 

beam are shown schematically in figure 2.1 together with a diagrammatic 

representation of the microscopic process involved.

The processes are:

• bremsstrahlung: e~ — > e~ +  7 fig 2.1 (a): High energy electrons incident 

on a thin target scatter in the coulomb field of the target nuclei and 

produce a spectrum  of photons peaked sharply in the forward direction.

• Positron Annihilation in Flight: e+ + e~ — > 7 +  7 fig 2.1 (b): A beam 

of high energy positrons incident on a thin target produce not only a 

bremsstrahlung spectrum  similar to tha t produced by electrons but also 

a spectrum  of annihilation photons, again sharply forward peaked.
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• Inverse Compton Scattering: e~ +  7 — >• e~ +  7* fig 2.1 (c): An in­

tense monochromatic beam of soft photons produced by a laser may be 

hardened by backscattering from a high energy electron beam.

Thus all three processes involve an electron-photon scattering process and 

the spectrum  of photons thus produced is continuous in energy. In the cases 

of positron annihilation and inverse Compton scattering the kinematics of two 

body scattering allow one to select a limited range of photon energies by col­

limating the outgoing photon flux. However, in the case of bremsstrahlung, 

which has been the method most often used in the past, this is not so be­

cause it is not possible to select the initial (virtual) photon energy. In fact, 

the brem sstrahlung photon spectrum has an approximate l / E  distribution 

extending up to the energy of the incident electron. Thus for a given end 

point energy E 0 the observed reaction yield has the form,

Y ( E 0) = [  o(k1)(j)(k1,E Q)dk1 (2.1)
Jo

This technique is unsuitable for the purposes of many photonuclear experi­

ments since the energy of the photon inducing a particular reaction cannot 

be identified. However for a reaction leading to an exclusive two body final 

state  such as D {^,p)n  the photon energy can be calculated if the proton angle 

and energy are known. Unfortunately one cannot reject background protons 

using this method. If the measurement is extended too far below the photon 

end point then protons produced by higher energy photons via more com­

plex reactions will mimic the signal yield. This is especially troublesome if 

the end point energy is somewhat higher than the pion production threshold 

in which case photoproduction recoil protons from the deuterium target itself 

will contribute to the background as well as the complex nuclei in the m aterial
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S W E E P I N G
M A G N E T

R A D I A T O R

R A D I A T O R

Figure 2.1: Processes used to produce high energy photon beams: (b) Brem­
sstrahlung, (b) Positron Annihilation, (c) Compton Scattering.
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surrounding it.

Another potentially serious problem lies in the determination of the pho­

ton flux in order to produce normalised cross-sections. With a bremsstrahlung 

beam one must not only measure the absolute photon intensity but also as­

sume a form for the the energy distribution of the photon spectrum  in order 

to calculate the number of photons in the energy region of interest. The 

difficulties of determining the efficiencies of photon beam monitors together 

with theoretical uncertainties in the bremsstrahlung distribution have led to 

large discrepencies throughout the existing body of photonuclear cross-section 

data. This is particularly evident in the case of deuteron photodisintegration 

data (figure 2.3). where the absolute magnitude of the cross-section is of par­

ticular importance because detailed theoretical calculations are available for 

comparison.

2.2  P r o d u c tio n  o f M o n o en erg e tic  H ig h  E n erg y  
P h o to n  B ea m s

This section describes the means which have been used to produce beams of 

either quasimonochromatic or identifiable high energy photons. In the first 

instance, one attem pts to produce a beam of photons with an intrinsically 

narrow energy distribution which then defines the photon energy resolution 

of the experiment. In the second instance are ‘tagging’ techniques which rely 

on the identification of the energy of the individual photons in a continuous 

distribution on an event by event basis. This latter class of systems has the 

advantage of automatically producing a beam of known intensity since the flux 

is determined by the number of photons identified by a tagging coincidence.



Photonuclear Experiments 33

2 .2 .1  P ositron  ann ih ilation  in F light

The annihilation in flight of a beam of high energy positrons produces a for­

ward peaked cone of energetic photons. The positron flux can be created in 

the shower produced in a thick, high Z  radiator by an electron beam. The 

positrons may be further accelerated, energy analysed, and directed to a low Z  

target which produces a high ratio of annihilation photons to bremsstrahlung 

photons. (Since the cross-sections for the two processes are proportional to Z  

and Z 2). There is a correspondence between the energy of the photons and 

their emission angle, and so the annihilation component of the beam may be 

monochromated by restricting the flux with a small off-axis collimator. The 

beam energy depends on the mean angle of the collimator and the energy res­

olution on its size. Two methods have been employed to subtract off the yield 

from the bremsstrahlung flux which accompanies the annihilation photons.

Firstly, the measurement may be repeated with an electron beam incident 

upon the annihilation target. The cancellation is not exact because the brem­

sstrahlung end point shapes are different for positrons and electrons due to 

differences in the screening corrections. This method has the additional dis­

advantage tha t the beam handling system must be changed between measure­

ments to accommodate particles of opposite charge. An alternative method 

is to make two measurements with radiators of different Z,  for example LiH 

and Cu. The photon spectrum from the Higher Z  radiator has a smaller 

relative annihilation component and so it may be subtracted from the low Z  

spectrum  ( with appropriate normalisation) to produce a residual annihilation 

peak. Such a system has been installed at the Saclay linac [31] and up to 107 

photons per second have been obtained at 50 MeV with 12% resolution. This
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has been achieved at a small mean collimator angle (1°) at the expense of a 

large bremsstrahlung subtraction. The configuration normally used employs 

a collimator at 4°which reduces the subtraction but limits the available flux 

to 5 x 103s_1.

2.2 .2  Inverse C om pton  S catterin g

High energy photons may be obtained from the 180°collision of a high energy 

electron beam with optical photons from a powerful laser. Tight collimation 

of the scattered gamma rays produces a beam of well defined energy. A system 

such as this exists at the ADONE storage ring [32] [33] at Frascati where a CW 

Argon laser (A =  488 nm) collides with the 1.5 GeV electron beam producing 

a 107s_1 photon beam of energies from 21 to 83 MeV with 9% resolution at 

80 MeV .

A significant advantage of this method is that the polarisation of the inci­

dent optical photons is preserved in the scattering process and a gamma ray 

beam of 95% polarisation can be produced.

2.2 .3  B rem sstrah lu n g  P h o to n  Tagging

A beam of electrons of energy E q passing through a thin foil produces a beam 

of bremsstrahlung radiation in the forward direction. The beam contains pho­

tons of all energies up to the original electron energy. If the residual energy, 

E e is measured then the photon energy E 1 is determined through the relation 

E 0 = E 1 Jr E e. The photon energy may be reconstructed on an event-by-event 

basis provided tha t the scattered electron is detected in coincidence with the 

products of the photon induced reaction. Thus photon tagging provides not
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Figure 2.2: The principle of bremsstrahlung tagging

a monoenergetic beam but a source of identifiable photons. The necessary 

equipment is shown systematically in figure 2.2. A large momentum accep­

tance magnetic spectrometer is used to analyse the scattered electrons and 

to sweep the undeviated main electron beam clear of the photon beam. The 

scattered electrons are detected in a segmented position sensitive focal plane 

detector and any coincidence with the detection of a reaction in the photo­

nuclear target is registered.

Knowledge of the photon energy is valuable although not essential for 

the present measurement D (^,p)n .  For this purpose the most significant ad­

vantage of the tagging technique is the automatic photon flux measurement
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accomplished by the electron detection process. The effective photon beam 

consists only of those photons for which a corresponding tagging electron has 

been identified in the focal plane array and therefore the absolute flux of the ef­

fective photon beam is given by the triggering rate of the focal plane detector. 

There are however two effects whose correction can introduce uncertainties 

into the absolute flux determination. The bremsstrahlung beam must be col­

limated to produce a beam spot of acceptable size at the target. The fact 

th a t some photons are eliminated from the beam means tha t some tagging 

electrons in the focal plane array no longer correspond to a photon capable 

of producing a reaction in the target. Other background processes may also 

produce electron hits in the tagging array for which no photon exists. The 

measure of these effects is known as the tagging efficiency, eT defined as the 

ratio of the tagged photon rate to the tagging detector rate. The other im­

portan t correction is due to the occurrence of accidental coincidences between 

tagging electrons and events induced by untagged photons. The accidental 

coincidence rate must be measured during the experiment and a correction 

made in later analysis. The accidental coincidence rate is dependent on the 

instantaneous electron rate and so the duty factor of the electron beam is 

im portant.

The tagging technique was first proposed by Weil and McDaniel in 1953 

[34] and first exploited in the early sixties by workers at the University of 

Illinois [35] in conjunction with a 25 MeV betatron. Resonance fluorescence 

measurements were made using three tagging detectors detecting electrons 

corresponding to 15 MeV photons with a resolution of 100 KeV. The 2 % duty 

factor of the betatron limited the useful flux to ~  2 x 104s -1 . In 1973 the 

system was transfered to a microtron with 50 % duty factor, thus increasing
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by a factor of 25 the flux available for acceptable real to random coincidence 

ratio.

In the early seventies tagged photons were utilised in high energy particle 

physics. An example of this is the system constructed for use with the 5 GeV, 

10 % duty factor NINA accelerator at Daresbury . Photoproduction cross- 

sections on hydrogen were measured over the region 200 MeV to 4 GeV with 

10 MeV resolution using a tagged flux of ~  2 x 104s -1 [36].

An alternative to transporting the beam from the accelerator to a sepa­

rate tagging spectrometer is to place a very thin bremsstrahlug radiator inside 

the accelerator and use the accelerator magnet system to analyse the brem­

sstrahlung scattered electrons. This allows the tagged photon beam to exist 

parasitically with the main electron beam. The use of a thin wire rather than 

a foil as the radiator prevents unacceptable disturbance of the beam since it 

intercepts only a very small fraction of the electrons. Such a scheme was im­

plemented at the Bonn 500 MeV synchrotron [37]. A 20 pm  diameter tungsten 

wire was used as the radiator and an array of 20 plastic scintillators detected 

the electrons corresponding to 179-347 MeV photons (assuming an incident 

electron energy of 400 MeV ) with a resolution of 1 MeV . A flux of ~  106s -1 

with 90% tagging efficiency was obtainable with a real to random coincidence 

ratio of 10%. This limitation was due to the 5% duty factor of the Bonn 

synchrotron.

2 .2 .4  O ther Tagging S ystem s

A similar tagging procedure may be applied to positron annihilation beams 

[31]. The technique involves the detection of the ‘soft’ wide angle photon cor­
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responding to a ‘hard ’ photon emitted close to the forward direction. The co­

incidence requirement discriminates between annihilation photons and brem- 

sstrahlung photons. Similar background suppression is possible with inverse 

Compton scattering sources if the recoil electron is detected. In these two 

cases the untagged beam is already quite highly monoenergetic, however the 

flux determ ination inherent in the tagging process is valuable for many exper­

iments.

2.2 .5  B rem sstrah lu n g  D ifference Techniques

The bremsstrahlung difference procedure involves measuring two yield curves 

with bremsstrahlung beams of slightly different energies and then subtracting 

the yield of the lower energy experiment from tha t obtained at the higher en­

ergy. The difference between the two measurements is due to the photons in 

the end point region of the higher energy beam whose effects are not cancelled 

by the subtraction. These photons constitute a nearly monochromatic equiv­

alent photon spectrum. Due to the shape of the bremsstrahlung spectrum  the 

difference spectrum  possesses a tail on the low energy side. It is, however, 

possible to optimise the cancellation of the low energy tail of the spectrum  by 

choosing a suitable relative normalisation constant.

The difference technique may be improved by exploiting the Z  dependence 

of the shape of the bremsstrahlung spectrum near the end point in order to 

produce a narrower less assymetric photon distribution. [30]. Away from the 

end point, corresponding to high scattered electron energies, the Z  dependence 

is weak, dependent only on screening and coulomb corrections. In the case of 

light targets the end point region the spectrum  has a stronger Z  dependence
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due to straggling effects. For high Z  targets the energy losses are small but the 

Z  dependence of the bremsstrahlung cross-section itself becomes im portant. 

The procedure is to use two radiators of different Z  but equivalent thicknesses 

in radiation lengths and subtract the yield of the higher Z  from tha t of the 

lower, beryllium and aluminium have been found to be a suitable pair of 

materials for this purpose.

The reliability of the difference method depends sensitively on assumptions 

concerning the shape of the bremsstrahlung spectrum in the end point region 

where the thoeretical uncertainties are largest. Significant effects are known 

to arise from atomic screening, electron-electron bremsstrahlung and electron 

straggling in the real, finite thickness radiator. In addition, the method is 

suited to only a small range of experiments. It cannot easily be applied to 

m ulti-arm  coincidence measurements and the subtracted excitation spectrum  

may suffer from large statistical uncertainties at energies below the end point.

However, although its successful use is critically dependent on the reliabil­

ity of theoretical photon spectra and experimental photon flux measurement 

techniques, bremsstrahlung has the advantage of being the most intense source 

of high energy photons available. For example, a 50 MeV , 10 pA  beam in­

cident on a high Z  radiator of thickness 0.01 radiation lengths will produce 

~  109 photons per second in the energy region 49-50 MeV .

2.3  A  R e v ie w  o f  P re v io u s  E x p er im en ts

A number of previous measurements have explored the energy range of the 

present experiment. The currently existing data is shown in figures 2.3 and 

2.4. The experimental techniques employed are summarised in table 2.1. In
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the main these have consisted of (q,p) experiments performed with brem­

sstrahlung beams. There are also a small number of recent experiments per­

formed with either monoenergetic photons [46], or equivalently monoenergetic 

neutrons in the case of the p (n ,D )q inverse reaction [47]. Two experiments 

outwith the energy range of the present measurement have been included in 

figures 2.3 and 2.4. These are the Mainz 0 °measurement [43] and the Bonn 

180 “measurement [44]. The 0 “data extends up to 120 MeV and the 180 “data 

starts at 180 MeV . The cross-section at these extreme angles is not a strong 

function of energy and so it is possible to reliably extrapolate the data to the 

150MeV region.

2.3 .1  M easu rem en ts w ith  B rem sstrah lu n g  B eam s

The principle of such an experiment is to detect protons emitted from the 

target at an angle $p and measure their energies Ep. Assuming tha t the pro­

ton was produced by a deuteron breakup reaction it is possible to calculate 

the incident photon energy E 1 corresponding to t?p and Ev. This permits the 

construction of photoproton angular distributions at constant E n. In order to 

transform  these measurements into absolute angular differential cross-sections 

it is necessary to know the total incident photon flux at energy E 1. The pro­

cedure usually adopted has been to measure the total incident flux integrated 

over all energies in the beam and then to assume that it is distributed accord­

ing to some theoretical form for the collimated bremsstrahlung spectrum.

The difficulty of performing an experiment of this type is reflected in the in­

consistency of the results obtained (see figure 2.3). The most serious problems 

usually lie in the areas of absolute cross-section normalisation and background
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suppression. The absolute photon flux is generally determined by means of a 

calibrated D.C. beam monitor, usually an ion chamber. This may be a ‘th in ’ 

transmission device with a low interaction efficiency [40] or alternatively a 

‘thick walled’ chamber with a pair converter several radiation lengths thick 

on the incoming side [38] [39] [44] [41] [42] [45]. In the former case the electro­

magnetic shower produced by the photon does not develop beyond the initial 

pair production process and so the the ionization produced in the chamber is 

the same for all photons of energies above a few MeV . The chamber is there­

fore sensitive to the total number of photons in the beam, and in the instance 

of a bremsstrahlung beam its response is dominated by the very numerous low 

energy photons. ( since cr6rem(jE’7) ~  E ~ x). A thick walled chamber produces a 

signal more in proportion to the gamma ray energy, since the convertor thick­

ness may be chosen such that electromagnetic shower develops to the point 

where the the number of pairs produced reflects the photon energy. The D.C. 

signal from a thick walled chamber is thus sensitive to the total intensity in 

the beam (i.e. E n • <Jtrem(£,7)) rather than the total photon flux. This has the 

advantage of making the signal more dependent on the higher energy photons 

in the beam.

Given an accurate determination of the beam intensity, it is necessary to 

assume a model photon spectrum in order to unfold the absolute cross-section 

differential in energy. The most commonly used formula has been the Schiff 

form [27] of the Bethe-Heitler Born approximation calculation for thin ta r­

get bremsstrahlung in the extreme relativistic lim it.[28] All the experiments 

considered have employed a collimated beam, and so the angular differential 

bremsstrahlung cross-section requires to be integrated over a finite range of 

photon angles. Since the angular distribution is energy dependent this trun ­
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cation of the photon distribution may introduce some systematic error into 

the effective spectrum. The Schiff calculation utilises an exponential atomic 

potential to simulate screening effects, this is known to be inadequate, es­

pecially towards the end point of the spectrum, (i.e. where the energy of 

the recoil electron is very small) More sophisticated calculations are available, 

however the theoretical uncertainties remain a serious source of systematic 

error in a D (^,p)  experiment, especially where photons within 10-15 MeV of 

the bremsstrahlung end point have been used.

In a single-arm (7 ,/?) bremstrahlung experiment it is not possible to dis­

tinguish protons produced by deuteron breakup from those emanating from 

photodisintegration processes in the target cell walls or the air or vacuum 

chamber windows surrounding the target. It is possible to correct for this 

effect by repeating the experiment with an empty target cell, however the 

background subtraction reduces the statistical accuracy of the experiment. 

The problem will be especially severe where a D2O or CD2 target has been 

used, since the greater part of the proton yield will be due to oxygen or carbon 

background which must be separately measured to permit a correction to be 

made. The foregoing considerations apply equally to a measurement made 

with a monochromatic beam, however in this case the kinematic constraints 

result in the signal photoprotons forming a peak in the energy spectrum  ( for 

a given i?p ) which greatly improves the signal-to-background ratio.

These backgrounds are all caused by interactions in materials other than 

the actual deuteron target. The experimentalist must design his apparatus 

in such a way as to minimise such effects, and then perform a ‘target em pty’ 

measurement to evaluate the corrections. ‘Target full’ background presents
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Reference experiment energy [MeV ] quoted errors

[38] U rbana’56 D {i,p )n 60 -  230 10% stat.; 10-25% total
[39] Caltech’56 D {l,p )n 105 -  400 8% sys.; 5% stat.
[40] Lebedev’58 D {hP )n 54 -  148 15% sys.; 10% stat.
[41] Bonn’67 D (^,pn) 100 -  420 5-10% sys.; 3% stat.
[42] Orsay’68 D {l,p )n 100 -  400 4% sys.; 2.5% stat.
[43] M ainz’76 0° 17(7, p)n 20 -  120 3% sys.; 6% stat.
[44] Bonn’83 180° D('i,p)n 180 -  730 6% sys.; 6% stat.
[45] Lund’77 ___ D { l ,p )n ___

D {l,p )n  
p{n,D)  7

74 -  241 10% sys.; 8% stat.
[46] INFN ’86 100 -  255 5% sys.; 3% stat.
[47] TRIU M F’86 E 1 = 92,137 5% sys.;5% stat

7 beam target beam monitor proton detector

(38] 165-300 MeV Brem D 2 liquid quantameter nucl. emulsion
(39] 300-500 MeV Brem D 2 gas quantameter A l/plastic tel
[40] 265 MeV Brem D 20  liquid thin ion.ch. Al/Argon tel
[41] 450 MeV Brem D 2 liquid quantameter C u/plastic tel
[42] Brem (various) D 2 liquid quantameter spectrometer
[43] 110-160 MeV Brem c d 2 compton spect. spectrometer
[44] 330-850 MeV Brem D 2 liquid quantameter spectrometer
[45] Brem (various) D 2 liquid quantam eter Al/plastic tel
[46] e+ annihilation D 2 liquid pair spect. N al/plastic tel
[47] — H 2 liquid p{n,p)n plastic te l/T O F

Table 2.1: Previous Measurements of Deuteron Photodisintegration
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a more complicated problem. Electrons from the target can be identified, 

usually by differential energy loss, and vetoed. In experiments where the end 

point energy is sufficiently high there will also be a proton background from 

pion photoproduction processes. For example, photons of several hundred 

MeV will produce recoil protons from D(^,p)n7T° and D{'i,p)pin~ reactions 

which are similar in energy to those produced by photons of ~  100 MeV via 

D ( h P ) n  reactions. Such effects are exacerbated in the energy range of the 

current experiment by the large pion production cross-section in the region 

of the A-resonance. However for a given end point energy and fixed proton 

angle and energy there exists a limiting photon energy above which two-body 

photodisintegration is the only possible process. The contribution from photo­

production recoils can therefore be eliminated by adjusting the the end point 

energy to correspond with the angle and energy acceptance of the proton 

detector. There remains, however, the possibility of secondary proton pro­

duction by pions in the detectors and the collimators. An alternative method 

of suppressing competing reactions is to detect the outgoing proton and neu­

tron in coincidence. This is the approach adopted in reference [41]. It has 

the disadvantages of requiring an accurate knowledge of the neutron detector 

efficiency and, of course, of reducing the counting rate.

The design of the target is also influenced by the need for accurate nor­

malisation and efficient background suppression. Most of the experiments 

considered here have used either deuterium liquid or gas cells as targets. Liq­

uid targets usually provide higher densities, and therefore higher counting 

rates, but are prone to boiling, which may reduce the mean density of the 

liquid by an amount which is significant but hard to quantify. The density of 

a gas target is easier to determine and low temperatures and high pressures
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have been used to maximise the target thickness, e.g. reference [39] where the 

cell was operated at 2000 p.s.i. and 77.4°K. Nevertheless, the ratio of target 

thickness to window thickness is generally poorer for a gas target as com­

pared to a liquid target. The countermeasure adopted in [39] was to employ 

a very long gas cell and collimate the proton detector in such a way tha t only 

protons originating from a restricted region in the middle of the cell can be 

detected. This eliminates background from the cell walls at the expense of a 

rather complicated acceptance calculation.

A variety of proton detection techniques have been used in the experi­

ments under review. These have included magnetic spectrometers [42] [43], 

nuclear emulsions [38], Nal scintillators and telescopes consisting of alternate 

absorbers and scintillators or proportional counters [40] [45] [41] [39].

If the detected proton energy is used to reconstruct the incident photon 

energy then the selected proton energy range determines the effective photon 

energy range. Any uncertainty in the proton detector response function re­

sults directly in a corresponding photon flux uncertainty. The experiments 

which used magnetic spectrometers have more than adequate energy resolu­

tion, though this may not be the case for those using absorber telescopes. 

These rely critically on range-energy data to define the lower and upper limits 

of an accepted energy interval in which protons are sufficiently energetic to 

pass through the first absorber and trigger a transmission detector but have 

insufficient energy to pass through a further absorber, thus failing to trigger an 

anticoincidence detector. The exact energy interval depends on the relative 

stopping power of the absorber and detector material, on straggling effects 

and on the detector thresholds.
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The spread of results observed in figure 2.3 places in doubt the reliability 

of all of the previous bremsstrahlung measurements. The results of individual 

experiments may also have been affected by other factors. For example the 

technical limitations of the Lund synchrotron forced the authors of [45] to use 

rather high end point energies ( > 375 MeV ) and therefore this experiment, 

whose results are systematically the highest in the sample, may have been 

more prone to contamination by recoil protons from photoproduction reac­

tions. On the other hand the Bonn measurement [41], whose cross-section 

data is the lowest in the sample, involved detecting neutrons and protons in 

coincidence and may have suffered from an ill determined neutron detector 

efficiency calibration.

2.3 .2  M easu rem en ts w ith  M on oen ergetic  P h o to n s

The conclusion drawn from the experience with bremsstrahlung measurements 

is th a t any significant increase in the accuracy of the experimental results 

would require major improvements in the techniques employed. Specific re­

quirements are more accurate overall normalisation and a monoenergetic beam 

to allow background rejection by means of the reaction kinematics. The re­

cent experimental work in which attem pts have been made to remedy these 

deficiencies is shown in figure 2.4 . Also shown for comparison in figure 2.4 are 

a selection of recent theoretical predictions of the photodisintegration cross- 

section.

A recent experiment at INFN Frascati [46] used a quasimonochromatic 

e+ annihilation beam. Rather than subtract off the positron bremsstrahlung 

contribution they chose to analyse it in the conventional manner. Therefore
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the photon  spectum  was ‘high energy enhanced’ ra ther than  monoenergetic. 

The advantage of this m ethod, however, was th a t it allowed comparisons to 

be m ade between brem sstrahlung tail measurements made at one positron 

energy and annihilation peak data taken at another. The beam  power was 

m easured w ith a quantam eter as before, bu t the combined annihilation plus 

brem sstrahlung photon spectrum  was simultaneously measured by means of 

a pair spectrom eter. The spectrum  was checked by means of a M onte Carlo 

calculation, as was the response of the N al/p lastic proton telescope. The 

possibility of accurate numerical simulations on m odern com puters represents 

ano ther advance upon the technology available to the earlier workers.

The use of a monoenergetic particle beam to study the p n capture reaction 

is equivalent to the use of a monochromatic photon beam  in a photodisin te­

gration experim ent in the assumption th a t the 7 D  —> pn reaction is related to 

the tim e reversed reaction pn —> D 7 through the principle of detailed balance. 

The procedure adopted in measurements at TRIUM F [47] has been to  use a 

neu tron  beam  and a liquid hydrogen target and to detect the recoil deuterons 

in a plastic scintillator telescope. Normalisation is achieved by sim ultaneously 

m easuring the elastic p{n ,p)n  reaction for which the cross-section is well es­

tablished.

The error bars shown on figure 2.4 are due to the statistical uncertainties 

only. The additional system atic uncertainty quoted for both  of the above 

experim ents is 5 %. The observed scatter of the d a ta  points in figure 2.4 

suggests th a t the errors may be underestim ated.
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2 .4  T h e  D e s ig n  o f a D ( 7 ,p )n  M ea su rem en t w ith  
T agged  P h o to n s

This section is a commentary on the design of the present experiment in the 

light of the physics objectives and the resources and facilities available.

The experimental work was conducted using the Glasgow tagged photon 

spectrometer [48] at the Institut fur Kernphysik, Johannes Gutenberg Univer- 

sitat, Mainz using the 180 MeV DC electron beam produced by the racetrack 

M icrotron MAMI-A [49] [50]. The present experiment is one of a series of 

(7 ,p) and (7 ,pn) measurements which have been performed on light nuclei 

using a large solid-angle plastic scintillator charged particle telescope and a 

complementary array of time-of-flight neutron spectrometers.

The physics interest in the deuteron photodisintegration process has been 

discussed in chapter 1. A significant amount of theoretical effort has been 

recently expended in the understanding of this process in the energy range 

around the pion threshold. There remain, however, significant discrepencies 

between the calculations of different groups.Furthermore the available modern 

data  in the region E 7 ~  150 MeV , although qualitatively supporting the 

general trend of the theory, is rather scattered in its angular distribution.

The energy region chosen for the present measurement was limited by the 

2:1 momentum acceptance of the tagging spectrometer. The normal electron 

beam energy supplied by MAMI-A is 183 MeV . Therefore a chosen recoil 

electron momentum range of 25 — 50 MeV/ c corresponds to a tagged photon 

range E 1 =  133 — 158 MeV .

In order to contribute significantly to the resolution of the uncertainty in
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the D (r),p )n  cross-section a total uncertainty of ~  5 %, including both sta­

tistical and systematic effects is required. The measured angular distribution 

must cover as wide an angular range as possible, with enough data points to 

map the angular variation in detail. The possibility of reliable extrapolation 

to 0° would be valuable to complement previous theoretical effort on the for­

ward cross-section. A wide angular range is also necessary if the data is to 

be parameterised in terms of orthogonal functions [51] for more quantitative 

comparison with calculations and other data, since such a param eterisation 

is only unique if the fit is weighted evenly over 0°- 180°. The eventual choice 

was 30°to 150°in the centre-of-mass system, the access to the extreme forward 

and backward angles being limited by detector geometry and the sharply rising 

electromagnetic background at small angles.

Having chosen an angle-energy range which is both feasible and desir­

able the next question is the required size of angle-energy increment. The 

present experiment involves the simultaneous measurement of a wide, contin­

uous range of angles and energies which may be subdivided according to choice 

in the later analysis. However it is necessary to specify the eventual size of 

angle-energy bin in order to estimate the luminosity necessary for the exper­

iment. Taking into account the rapidity of variation of the cross-section and 

the available beam-flux and detection solid angle it was decided to standardize 

on a nominal 10°, 10 MeV angle-energy bin.

In order to achieve the desired overall accuracy it was estimated th a t an 

uncertainty of not more than 3 % after subtractions for each angle-energy 

bin would be required. Given the available beam flux, this necessitates the 

use of a thick target with a high forground to background ratio. For this
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reason a liquid deuterium target with thin kapton windows was used. This 

is in contrast to targets of the high pressure gas type which have been used 

with untagged bremsstrahlung beams (refs) where very much higher photon 

fluxes are available. ( 1013 s-1 vs. 107 s_1). The small signal yield from such 

a target make it unsuitable for use with a tagged photon beam.

In order to determine the kinematics of the reaction it is necessary to mea­

sure only the proton energy Ep and emission angle dp. However, if the photon 

energy E 1 is also known, as is the case in a tagged photon measurement, then 

the kinematic conditions of the reaction are overdefined and it is possible to 

compare the proton energy calculated from E1 and 9p with the assumption 

of deuteron kinematics and the measured energy signal. This procedure (see 

chapter 5) produces a locus in phase space for the deuteron events, separate 

from the bulk of the background produced by target cell windows, untagged 

random  coincidences etc. The only inputs required are the relatively well 

known tagged photon energy and proton emission angle.

The problem of normalisation separates into two parts. In the first place, 

there is the question of run-to-run normalisation between measurements at 

different angles and energies in order to construct a consistent angular distri­

bution and excitation function. Secondly, there is the problem of the global,

absolute normalisation of the total data set in order to turn  the data into a
d2ct

double differential cross-section
dE1dVlp

W ith regard to the relative normalisation the design of the present exper­

iment possesses the considerable advantage tha t a wide range of angles and 

energies are measured simultaneously, eliminating the effects of beam flux or 

target density variation with time. The proton telescope covers an angular
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range of ~  70 °and so must be moved twice to measure the total angular 

distribution, however there are large angular overlaps between the different 

detector configurations used for each part of the angular distribution providing 

a consistency check between measurements taken at different times.

Reliable absolute normalisation is of particular importance in this experi­

ment since several theoretical treatm ents of the cross-section differ principally 

in magnitude, having similar angular variations, at least at angles other than 

those at the extreme forward and backward directions. The lack of consistency 

in normalisation is the major flaw of the previously existing data.

The advantage of photon tagging over other methods of producing monochro­

matic photon beams lies in the area of absolute beam flux determination. 

The recoil electrons corresponding to the tagged photons are counted on free- 

running scalers and this count rate defines the useful photon flux. There are 

of course corrections to be made for random coincidences of a tagging electron 

and an event trigger produced by an untagged photon, and also, as the beam 

rate increases, other corrections due to multi-electron coincidences with ‘real’ 

events. Prescriptions have been developed for the application of these cor­

rections but it is im portant tha t the corrections are reasonably small so th a t 

uncertainties in their treatm ent do not greatly affect the final results. In the 

case of the present experiment this puts a limitation on the maximum usable 

beam flux of about 107s_1.



C hapter 3

T he E xperim ental System

54



The Experimental System 55

3 .1  T h e  M ain z M icro tro n  M A M I

The schematic layout of a microtron is shown in figure 3.1. It consists of a 

dipole magnet between whose poles is situated an electron source and a radio­

frequency accelerating cavity. The electrons circulate in the magnetic field in 

circular orbits with a common tangent passing through the r.f. cavity. The 

radius of the orbit increases uniformly with each pass through the accelerating 

structure. A modification of this accelerating system is shown in figure 3.2. 

In this system a high duty cycle linear accelerating section is placed between 

two separate dipole magnets. Because of the shape of the electron trajectories 

such a device is known as a racetrack microtron. This design presents sev­

eral advantages in the area of beam handling and control. The return paths 

opposite the accelerating section are well separated and may be individually 

steered by means of transverse deflection coils. A separate deflection magnet 

may be used to facilitate beam extraction as shown in figure 3.2.

The MAMI project [49] [50] at the Mainz Institut fur Kernphysik has the 

eventual objective of producing a 100 pA, 100 % duty factor electron beam at 

840 MeV . The type of machine chosen is a racetrack microtron (RTM) with a 

continuous wave (C.W.), room tem perature r.f. accelerating structure. This 

design has several advantageous properties. The C.W. accelerating structure 

provides 100 % duty factor with no transient beam loading problems, and 

the technology required for the construction and operation of a room tem­

perature system is cheaper and better understood than for a superconducting 

accelerator.
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Figure 3.1: Schematic design of a microtron

M A G N E T  P O L E S

L I N A C

Figure 3.2: Schematic design of a racetrack microtron
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The basic design of an RTM is constrained by the following expression,

2.096AT =  u \B  (3,1)

where:

A T  — energy gain in linac

A =  vacuum r.f. wavelength

B  = magnetic field strength in tesla

v  — num ber of wavelengths by which orbit circumference

increases in one orbit.

A small A T  is required for the sake of r.f. power economy. However v \  is 

fixed by the relation v \  — dir where d, the return path spacing, should be of 

the order of ~  4 cm in order that the individual return paths may be steered 

independently by separate coils. Furthermore B  cannot be made arbitrarily 

small since the necessary pole face area would become uneconomically large.

It has been found that the energy increase practicably obtainable in an 

RTM is limited to factor ~  10. Thus an 840 MeV machine requires at least 

3 stages in cascade. Below — 2 MeV RTM operation is impractical due to 

variation in the electron velocity with increasing energy. Therefore preaccel­

eration to 2-3 MeV is necessary. The eventual solution chosen for the MAMI 

m icrotron is detailed in table 3.1. The system will eventually operate with a 

3.5 MeV Linac as injector. At present only the first two stages of the system 

have been installed, providing a beam of 180 MeV energy, and the preaccel­

eration is performed using a 2.1 MeV Van de Graaffaccelerator. Otherwise 

the machine parameters are as presented in the table. Figure 3.3 shows the 

present layout of the accelerator system.



The Experimental System

0

LINAC

MONITOR

E

180 MeV 
STAGE

BUNCHER

LINAC

^ 180 
MeV

VAN DE 
GRAAFF

EXTRACTION 
IK M A G N E T
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Stage 1 Stage 2 Stage 3

B as ic  P a ra m e te r s

Overall length M 3.8 9.5 20.2

Injection Energy [MeV J 3.5 14 180

Extraction Energy [MeV ] 14 180 840

Number of Orbits 20 51 88

M a g n e t S y stem

Field Strength [Tesla] 0.10 0.56 1.28

Pole Face Diameter H 1.5 2.5 5.0

Weight [t] 1 43 450

Table 3.1: Parameters of M AM I

O p eration  and perform ance

The m icrotron is controlled via a dedicated HP 1000 computer. The task 

of optimising the beam trajectory through the microtron system is achieved 

by means of an automatic iterative process using passive r.f. monitors and 

steering coils on the individual beam return paths. During beam setup the 

injector is operated in a pulsed mode and 12 ns long beam pulses are tracked 

through the accelerator system at a frequency of 10 kHz.

The final beam has a measured resolution of 30 KeV at 183 MeV with 

em ittance 0.09 7r mm mrad horizontally and 0.04 7r mm mrad vertically. In 

comparison with the best performance of a LINAC of similar energy this
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represents an improvement in energy resolution of a factor of 10 and a factor 

of 50-100 improvement in emittance. The duty cycle of the machine is of course 

100 %. This again compares very favourably with the best figure achievable 

w ith a conventional LINAC which is of the order of 1-2 %.

3 .2  T h e  T agged  P h o to n  S p ectro m eter

This section describes the tagging spectrometer installed by the Glasgow- 

Edinburgh-M ainz collaboration in the beam of the microtron MAMI-A at the 

Mainz Institu t fur Kernphysik [48]

The system is designed with the possibility of parasitic operation in mind. 

In a parasitic configuration a thin wire, intercepting only a small fraction of 

the electron beam, is used as a radiator. The almost entirely undisturbed 

electron beam is then transported downstream to another user. Thus the 

magnetic elements of the spectrometer through which the main beam passes 

m ust be treated as an integral part of the beamline. Under normal operating 

conditions the electron beam is less than 3 mm in diameter at the radiator 

and remains less than 9 mm at all points along the beamline. Even when 

not operated in parasitic mode this has the advantage that the beam may 

be transported  away from the experimental area in a controlled manner and 

dum ped sufficiently far away to avoid creating extra background.

3.2 .1  T he M agnet System

The magnet system divides functionally into two parts. One task is to collect 

and analyse the bremsstrahlung scattered electrons. The other function is 

to transport the undeviated beam away from the experimental area. In the
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present design this functional separation is reflected in the physical arrange­

m ent of the magnetic elements. The overall design specification of the magnet 

system was as follows.

• The Spectrometer

-  Large momentum acceptance ( pmax : pmin = 2:1 )

— Large angular acceptance for electrons within the momentum range 

analysed.

A n
-  Energy resolution (— ) ;$10~3

P

— The system should be sufficiently compact so that the target is not 

so far from the radiator that the beam spot is too large. (The 

beam spot size may be reduced by tighter collimation but only at 

the expense of a poorer tagging efficiency.)

• The Beam Handling System

— Large angular acceptance for electrons elastically scattered in the 

radiator.

-  Fixed output geometry independent of the magnet settings in the 

spectrometer.

The plan of the tagging system is shown in figure 3.4. The spectrometer 

system consists of 3 elements in a QDD configuration, labelled QS1,DS1 and 

DS2 in the figure. The magnetic fields in DS1 and DS2 are arranged so tha t 

the incident electrons of energy Eo pass through only DS1. DS2 analyses the 

scattered electrons in a 2:1 momentum range. Changing the spectrometer 

field settings alters the output trajectory of the main beam from DS1. The
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Figure 3.4: The tagged photon spectrometer



The Experimental System 63

four standard  range settings correspond to different main beam trajectories 

which vary by 18 on exit from DS1. A common output trajectory for the 

beam  is produced by the combined effect of DS3 and DS4. The standard 

range settings for a 180 MeV beam are shown in table 3.2.

Trajectory EX7max E-L /r m n k̂ 7  mxn ka "7 m ax

1 100 50 80 130

2 50 25 130 150

3 25 12.5 155 167.5

4 12.5 6.25 167.5 173.75

Table 3.2: Tagging spectrometer energy ranges for an incident electron beam 
energy of 180 MeV . All energies are in MeV .

3.2 .2  T he Focal P lane D etector Array

In order to observe the tagging electron-photon coincidence, a position sensi­

tive detector is required in the focal plane of the spectrometer which provides 

energy and timing information with a resolution comparable to th a t of the 

experimental apparatus with which it is to be used.

The requirements are:

• >  99 % efficiency for electrons passing through the focal plane to com­

plement the high acceptance for electrons traversing the spectrometer.

• Timing resolution of ~  1 ns.
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• Spatial resolution corresponding to AE  £ l  MeV .

• Background rejection via a coincidence requirement.

• Reliable operation and long lifetime at high counting rates. (The 

tagging electron rate is ^ lC P s '1)

The system chosen is an array of plastic scintillators shown schematically in 

figure 3.5. The focal plane is slightly curved, 1.33 m long, and the electrons 

pass through it at angles of between 35° and 41° with respect to the local 

norm al direction. Figure 3.6 shows the arrangement of the scintillators. There 

are 92 detectors, each 60 x IT x 2 mm3. Each strip overlaps the next by 0.5 mm 

more than  half width. A coincidence requirement between adjacent channels 

identifies an ionising particle and reduces the sensitivity of the system to 7 

and neutron background. The thickness of the scintillators is a compromise 

between light output on one hand and scattering effects and background sen­

sitivity on the other. The 2 mm thickness corresponds to a 1° mean angular 

divergence due to multiple scattering and a mean energy deposition of 300 

KeV for minimum ionising electrons, which is equivalent to 1.5 x 103 scintil­

lation photons for a typical plastic scintillator. Nuclear Enterprises’ Pilot U 

scintillator was used for optimum timing resolution and Hamamatsu R1450 

photomultipliers were chosen for their good lifetime and timing specification.

3 .2 .3  T he B rem sstrahlung R adiator

For a given photon beam flux the choice of an ideal radiator thickness is de­

pendent on the relative importance of various sources of background radiation 

under the particular conditions of the experiment. A radiator which is thin
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(in term s of radiation lengths) requires the use of a higher electron beam cur­

rent and thus the creation of more background from the beam stop. A thicker 

rad iator requires a lower current to produce the same photon flux but the elec­

tron beam  will suffer more small-angle multiple scattering in the radiator and 

thus degraded it will produce more background in the beamhandling system 

as it is transported away from the experimental area. Trials under normal 

experimental conditions at Mainz lead to the adoption of a 25 pm  aluminium 

foil (=  2.8 x 1CT3 radiation lengths) as the standard radiator.

It is convenient to have an automated system for removing and replacing 

the brem sstrahlung radiator, for interchanging different radiators and for in­

troducing crosswires and fluorescent screens when adjusting the beam trans­

port system. If a fine wire radiator is to be used instead of a foil (section 

2.1.5) then the automated movement must be accurately reproducible. The 

system used for the present experiment consists of wheel rotating about an 

axis parallel to the beam axis. The wheel has 16 equidistant mounting posi­

tions spaced about the circumference. These contain radiator foils of varying 

m aterials and thicknesses, an alignment cross-wire, a Zn S coated fluorescent 

screen and an empty position which allows unimpeded passage of the electron 

beam. The wheel is rotated by a stepper motor, stepping in 8000 increments 

per revolution, corresponding to lateral movements of ±0.15 mm on the beam 

axis.

3.2 .4  T he P h oton  B eam  Collim ator

The bremsstrahlung beam must be collimated in order to produce a beam 

spot of acceptable diameter at the target position. For the purposes of this
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experiment the beam diameter at the target was restricted to 4 cm. The 

beam, which diverges from what is effectively a point source on the radiator, 

is restricted to a cone of half angle 4.46 mrad by a tapered tungsten alloy colli­

m ator 15 cm deep (40 radiation lengths) . This process alone cannot produce 

an entirely ‘clean’ beam however, there remains a penumbra of scattered pho­

tons and photoproduced e+e pairs surrounding the main beam. A 0.4 tesla 

perm anent magnet placed directly in front of the collimator serves to sweep 

the charged particles out of the beam and then the beam is passed through a 

lead collimator of slightly larger diameter, sufficiently large to allow passage 

of the main beam while still intercepting the halo. The scattering produced 

by the second collimator is of negligible intensity. Tests with a thin plastic 

scintillator detector have shown that the boundary of the beam is defined to 

w ithin ±  1 mm after collimation.

It follows from the use of a collimator that the focal plane detector will 

register tagging electrons for which there is no corresponding photon in the 

beam. Since the beam normalisation is obtained by integrating the ladder 

signals it is necessary to introduce a correction factor to compensate for this 

tagging efficiency effect. The procedure by which the tagging efficiency is 

m easured will be described in the section on normalisation procedures.

3 .3  T h e  P ro to n  D etec to r  S y stem

3.3 .1  G eneral D esign

The present experiment is one of a series of (7 ,p) and (7 ,pn) measurements 

undertaken by the Glasgow-Mainz collaboration. In view of the available 

tagged photon fluxes and the magnitude of the photonuclear cross-sections to
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be investigated it was necessary to construct a large solid angle charged par­

ticle detection system. The design specification of the system was as follows:

• -  few MeV energy resolution for protons of energies 25 - 150 MeV .

• Angular resolution ~  5° or better.

• Solid angle in the range 0.5 - 1.0 sr.

• Timing resolution ~  2 ns.

dE  i• discrimination between protons, deuterons and electrons. ax

• Low background rates from neutral or low energy charged particles via 

a detection coincidence requirement between several detector elements.

The arrangem ent of detectors is shown in figure 3.7 . The system consists 

of 3 sets of plastic scintillators, two thin transmission elements (AE detectors) 

and a stopping detector (E detector)

Each bank of detectors consists of a series of parallel strips or blocks of 

scintillator. Position information along the length of the strip is obtained from 

the difference in arrival times of signals detected by the photomultipliers at 

either end. The combination of horizontal E segments and vertical AE strips 

fixes the point of incidence of particles upon the plane of the detector. This 

technique has been described previously in references [52] [53] [54] [55].

Detector AE 2 is placed close to the target and, when operated in coin­

cidence with AE i and E serves to collimate the flux of particles incident on 

the rear elements restricting its source to the region of the target since there 

is no line-of-sight through the three banks of scintillators from the photon
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AE
AE

Figure 3.7: Arrangement of the scintillator elements in the proton detection 
system.
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E H

LL1
<

1 a e 2

no. of elements 3 5 1

horizontal (mm) 1000 200 440

vertical (mm) 135 500 160

depth (mm) 110 3 1

to tal area (mm2) 1000 x 405 1000 x 500 440 x 160

Photomultiplier EMI9823KB 
130 mm 4>

EMI9954KB 
50 mm <j>

EMI9954KB 
50 mm <j>

Scintillator NE110 NE110 NE110

Table 3.3: Specification of the Proton Telescope

beam  collimators, beam path or dump. The shape and position of the AE 2 

element varies with the dimensions of the target and the aim of the particular 

experiment and so it will be discussed separately. The second bank of trans­

mission detectors (AE j) are used in conjunction with the E blocks for particle 

identification. These latter two detector subsystems are built into a common 

mechanical framework and are operated as a single unit. The thickness of 

the E detectors is sufficient to stop a -125 MeV proton entering the block at 

normal incidence. The specifications of the detector are summarised in table 

3.3 .

In scintillator blocks of this length light attenuation may be a significant 

problem. The scintillation material used, NE110, was chosen for i t ’s relatively 

long attenuation length (4 metres). The surfaces of the plastic blocks were
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polished to facilitate the transmission of light along the block by successive 

to tal internal reflections. The blocks were then loosely wrapped in aluminised 

mylar foil which reflected some of the transmitted light that would otherwise 

be lost. The photomultipliers used were 14 dynode, 130 mm diameter EMI 

9823KB tubes. These have a high gain, fast rise time and a spectral response 

well suited to the light output of NE110.

3.3 .2  D etec to r  Perform ance

In the absence of a low intensity variable energy proton test beam the per­

formance of the proton telescope must be inferred from suitable experimental 

photoreaction data. While such a method is not ideal for the extraction of 

general performance parameters, such as position and energy resolution, it has 

the advantage of placing the detector response in the context of the particular 

experimental conditions in which it must operate. For example, figure 3.8 

shows the pulse height signal measured in A E ( plotted against the stopping 

detector signal E for the reaction 12C(7 ,p). This figure shows clearly the abil­

ity of the detector to separate protons and deuterons by means of differential 

energy loss.

3.3 .3  P osition  R esponse

A 5 mm thick steel plate pierced with a regular pattern of 20 mm diameter 

holes was placed immediately in front of the plane of the AE i detectors. 

This mask was sufficiently thick to stop protons of 55 MeV and to degrade 

severely the energy of those of higher energy. Used in conjunction with a 

thick low-Z target the plate has the effect of producing a set of localised high
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energy proton sources at well determined positions. Figure 3.9 shows a time 

difference spectrum  for high energy protons for one E block and one mask 

position. The centroids of each peak are used to calibrate the time difference 

information in terms of position. The response of one E detector is shown in 

figure 3.10 . The time-to-position relationship is linear over the central 85% 

of the length of the detector. The response of the AE detectors was found to 

be linear over nearly the whole length, in particular over the central 40 cm of 

the detector which is backed by a stopping detector.

Allowing for the finite diameter of the holes in the steel mask, the position 

resolution of the detector was found to be 24 mm FWHM horizontally and 

41 mm FWHM vertically. At a target distance of 50 cm this represents an 

angular resolution of 2.7 °horizontally and 5.2 “vertically. These figures were 

determined using high energy protons issuing from the normal target position 

and so are relevant to normal experimental conditions. This is valuable since 

the spatial distribution and time structure of the light pulse created in the 

scintillator block by a proton cannot be reproduced by ‘artificial’ means, such 

as a radioactive source or LED light pulser.

3 .3 .4  E nergy R esponse

The light transm itted through a long scintillator suffers attenuation through 

absorption and incomplete reflection. Tests with similar devices [52] suggest 

th a t the light attenuation may be modelled as an exponential function of 

distance from the photomultiplier tube, except in the region very close to the 

tube face. Making this assumption the total light collected at the ends of a
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Figure 3.8: Particle identification by means of differential energy loss tn E and
AE lt
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scintillator of length d due to an event at position x has the form :

S i +  S 2 =  Ce~Xx +  Ce~x(d~x  ̂ (3-2)

However, if the geometric mean ^ S i S 2 of the two signals is used instead of 

the sum  then the position dependence cancels.

The effective attenuation length of the E blocks was measured to be 2.3 

m. This is rather shorter than the quoted attenuation length of 4 m for 

N E110 bulk material. The difference is attributable to the light transmission 

mechanisms operative in a long thin block. The bulk of the light reaching 

the photomultiplier tubes will have been reflected from the long faces of the 

block several times. Not only does this increase the effective path length in 

the scintillator and thus the absorption losses but it also allows light to be 

lost due to incomplete internal reflection. Close to the photomultiplier face 

however, the light output of the detector increases sharply as the light can now 

be directly collected by the photomultiplier which subtends a large solid angle. 

The nonlinearity of the position response towards the ends of the detector as 

seen in figure 3.10 may also be related to this effect since the characteristic 

time structure of the pulse is dependent on the light collection mechanism.

The response of the detector to high energy protons was determined via 

the D('7 ,p) reaction with tagged photons where the knowledge of the photon 

energy and proton emission angle fix the initial energy of the proton at the 

target. The energy losses suffered in the air and the A E detectors may be 

calculated to determine the energy actually absorbed in the stopping detector. 

Figure 3.11 shows the measured proton pulse height signal plotted against the 

calculated proton energy over a range of energies from 39 MeV to 97 MeV . 

The response is seen to be linear over this energy range.
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Ep (MeV ) FWHM (MeV )

46 2.1

60 2.8

71 3.1

Table 3.4: Energy resolution of the proton telescope: All energies in MeV .

The w idth of the proton locus in figure 3.11 is increased by variations in 

energy loss of protons originating in different parts of the D2 target and by the 

finite resolution of the measured proton angle and photon energy. When these 

contributions are assessed and unfolded the results of table 3.4 are obtained 

for the resolution of the system.

3 .4  T riggerin g  and D a ta  A cq u isition

The instrum entation of the detector system must fulfill two principal func­

tions. Firstly, it is necessary to make online decisions as to when the raw 

detector signals presented to the processing electronics constitute a useful 

event. In the present experiment the basic requirement is that a charged par­

ticle w ith the energy loss characteristics of a proton be detected in coincidence 

with an electron in the tagging detector. (In practice, a considerable latitude 

is allowed in the imposition of these conditions, to ensure that ail the poten­

tially valid events are recorded.) The second function of the electronics is to 

convert the analogue and timing signals from the detector system to digital 

information which can be stored on magnetic tape. In the present Mainz
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system  these operations are performed by CAMAC modules controlled by an 

HP 1000 computer. The arrangement is shown schematically in figure 3.12 .

a n a lo g u e
d a t a

a n a lo g u e  
ic t im in g  

d a t a

d ig i ta l  
d a t a  v ia  
OAMAO

DATA
^ACQUISITION

(HP1000)

DETECTOR
SYSTEM

TRIGGER
ELECTRONICS

DATA CONVERSION: ADC & TDC

Figure 3.12: Triggering and data acquisition

3.4 .1  F ocal P lan e D etector Electronics

The FPD  electronics consist of a large number of identical channels required 

to do one specific task which is to register the trajectory of fast electrons 

through the focal plane. Accurate pulse height information is not required 

from the signals presented to the electronics, only timing information. Thus 

the scintillators in the focal plane array are performing what is essentially a 

logic function. Their associated electronics need only process analogue pulses 

with a limited dynamic range though the circuitry must be fast enough to 

cope w ith data  rates of up to 106 per channel without appreciable dead time. 

It was thought to be inappropriate to instrument the focal plane with a large 

num ber of commercial modular NIM type units to perform this specialist task 

and it was decided to custom build the FPD electronics.
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The FPD  circuitry is mounted directly on the detector array itself to min­

imise the effects of dispersion in the connecting cables and preserve the rise- 

time of the analogue pulses. This measure, together with the small dynamic 

range of the signals, permits the use of fast leading edge type discriminators 

w ithout prejudicing the time resolution of the system. The logic outputs of the 

92 scintillator channels are fed in 91 adjacent pairs into overlap coincidence 

units w ith a coincidence width set to 8 ns. Up to this point ECL circuitry 

has been used and now the ECL logic is converted to NIM type and fed to 

CAMAC controlled pattern recognition units. The triggering rate in the lad­

der m ust be integrated throughout the experiment for the purposes of flux 

norm alisation. To this end the logic outputs are fanned in groups of 8 into 

prescalars which divide the rate by 24 and then the divided rates are fed into 

12 free running CAMAC scalers. At normal beam rates a further divide factor 

of 215 is used before integration.

3 .4 .2  P ro to n  D etector  Electronics

Figure 3.13 shows the instrumentation of the proton detector. Each scintillator 

element has two photomultipliers, the signals from which are fed to constant 

fraction discriminator units. A coincidence between the logic outputs from 

each pair is registered in a mean timing coincidence unit, which produces an 

outpu t whose timing is independent of the light propagation delays to either 

end of the scintillator. This is the signal which indicates that a detector 

element has fired. A three-fold coincidence of AE i, a AE 2 element and an 

E element identifies a charged particle emerging from the target. Most of 

the electrons incident on the detector can be rejected online by means of a 

lower level threshold set on the weighted analogue sum of the E and A E,
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signals. This is essentially a — discrimination between particle types. 

This part of the circuit produces a veto pulse which suppresses the previous 

coincidence output. The logic output pulse which is produced when all of 

the above conditions are satisfied is time correlated with the detector element 

whose pulses arrive at the three-fold coincidence gate latest. It is important 

to set the relative time delays on the E , AE i and AE 2 circuits such that 

one or other detector bank always makes the event timing. In the present 

experiment either the E detectors or the AE 2 detector may be chosen. The 

AE 2 detector is very close to the target and so it provides a timing signal 

which is independent of variations in particle flight times due to differences 

in energy or flight path. However, the intrinsic timing resolution properties 

of the E detectors are superior to that of the AE 2 detector because of their 

very much greater light output.

3 .4 .3  Trigger E lectronics

The basic task performed by the instrumentation of a tagged photon experi­

ment is to record coincident signals from the experimental detectors and the 

tagging detectors. The present system has been designed in such a way tha t 

the signal from different experimental systems can be interchangeably ‘plugged 

in to’ the m aster coincidence with the FPD . The detector system is required to 

produce a single signal for this purpose which is identified on figures 3.13 and

3.14 as the X-trigger. The X-trigger timing is taken as the reference time for 

the event, against which the arrival time of all the individual detector signals 

is measured.

The trigger circuit which makes the master coincidence is shown in figure
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3.14 . It is necessary to identify which FPD channels fire in coincidence with 

the X-trigger. This is achieved using 6 CAMAC pattern recognition units 

(PUs). These are essentially 16 channel gated flip-flops into which are fed the 

logic outputs of the 91 individual FPD channels. 1 The flip-flops are enabled 

by a pulse derived from the X-trigger( this is typically set to -  60 ns) whose 

w idth determines the online coincidence resolution of the experiment. This 

is significantly greater than the observed intrinsic resolution of the detectors, 

however the use of a relatively long coincidence gate permits sampling of the 

random  coincidence background as well as the true coincidences. The PU 

makes a fast coincidence between the gate pulse and the .OR. of the FPD 

inputs, the output pulse being time correlated with the earliest FPD signal. 

The .OR. of the PU coincidence outputs is used to start the data acquisition 

procedure by setting a flip-flop which disables the X-trigger input and by 

setting the CAMAC controller input register which provides the interrupt 

request for the HP 1000 computer.

3 .4 .4  D a ta  Conversion and Acquisition

D ata Conversion is based on LeCroy 2228A time-to-digital converters (TDCs) 

and Le Croy 2249A charge sensitive analogue-to-digital converters (ADCs). 

The TDCs are 8 channel units with a common start input. They have 12 bit 

resolution (2048 ch) and a conversion gain switchable between 50 or 100 ps 

per channel (nominal). The 11 bit (1024 ch) ADCs are 12 channel units with 

a common gate input and a sensitivity of 250 pA full scale.

Each photomultiplier output has an associated ADC, gated by a pulse de-

1The actual division of channels is 12,16,16,16,16,15
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rived from the X-trigger. The typical gate width in use with plastic scintillator 

detectors is 120 ns, comfortably longer than the scintillator decay time but 

not so long as to present difficulties with pulse pile up under normal running 

conditions. The constant fraction discriminator output from each photomul­

tiplier channel is used to stop a TDC started by the X-trigger thus giving the 

timing of th a t channel relative to the reference time for the event.

There are also 6 TDCs started by the X-trigger and stopped by the PU 

coincidence output signals described above. These give the timing of the 

detector signal with respect to the tagging signal. Thus each TDC is stopped 

by the .OR. of < 16 FPD channels. This arrangement was chosen for reasons 

of economy of circuitry and CAMAC rack space. There is also a TDC stopped 

by the .OR. of all 91 channels. This has proved to be convenient for online 

data monitoring and for the initial stages of offline analysis.

When the HP1000 receives an interrupt request the PUs, TDCs and ADCs 

are read sequentially via a serial line. When the data transfer is completed 

the CAMAC crate controller output register is reset which in turn enables the 

X-trigger input. The content of each ADC and TDC is stored as a 16 bit data 

word, the 4 most significant bits identify the channel and the 12 remaining 

bits store the channel contents. At this stage the data is compressed in the 

HP 1000 by the removal of all zero datawords before being stored as a complete 

‘event’ in one half of a swinging buffer (The two halves of the buffer are filled 

and transferred to the HP3000 alternately.) The HP3000 computer writes the 

incoming data  to magnetic tape and can also be used for on-line analysis and 

display.

The d a ta  rate was limited to ~  50 Hz throughout the experiment. At this
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rate  dead-tim e effects were found to be negligible. The effective limit on the 

data  ra te  was the rate of random coincidences between tagging electrons and 

X-triggers produced by untagged photons.

3 .5  F lu x  N o rm a lisa tio n

Absolute normalisation is particularly important in the present experiment. 

The use of the tagging technique permits the determination of the photon flux 

from the electron beam rate. There is a complication, namely the tagging 

efficiency effect discussed earlier. A system has been devised by which eT is 

measured at intervals and checked for constancy throughout the experiment. 

The tagging efficiency is measured by placing a photon detector in the beam 

and directly measuring the ratio of tagged photons to tagging electrons. Since 

the detector cannot be left in the beam during experiments and cannot operate 

at norm al experimental beam fluxes an ion chamber is placed in the shielded 

beam  dum p to monitor the photon flux continuously. The ion chamber is not 

calibrated as a quantam eter, rather the ratio of the ion chamber current to 

the ladder scaler rate is used to monitor changes in er.

3.5 .1  T agging Efficiency

The detector used for the tagging efficiency measurements is required to be 

effectively 100% efficient for photons in the tagged region. However it is not 

essential th a t the detector absorb the electromagnetic shower completely since 

pulse height resolution is not important for this purpose. It must also have 

a reasonably short decay time since it must absorb the whole bremsstrahlung 

distribution and not just the tagged photons. Even when the tagging rate has
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been reduced to 103 the total rate in the detector could be 106. The system 

chosen for the purpose was a 15 x 15 x 50 cm3 block of SCGl-C scintillating 

glass coupled to an EMI 9823KB photomultiplier. (This represents a thickness 

of 12 radiation lengths). SCGl-C is a cerium loaded barium glass compound 

which scintillates and also waveshifts it s Cerenkov radiation, improving its 

transmission. It produces approximately five times more light than a conven­

tional Pb glass Cerenkov detector. This reduces the phototube noise level to 

less than  the equivalent of 20 MeV allowing a threshold to be set such that 

the detector can be used as a 100% efficient monitor for the tagged photons. 

The m easured resolution of the detector was 29% FWHM at 100 MeV , which 

compares favourably with the figure of 50% obtained with a similar piece of 

Pb Glass. The rise time of the pulses in SCGl-C is 4 ns and the characteristic 

decay tim e 70 ns.

The tagging efficiency er is defined as the ratio of the tagged photon rate 

vs. the tagging electron rate, with a (small) correction for background in the 

ladder. The tagging monitor detector was placed in front of the collimator 

and da ta  recorded with and without a radiator in the beam. The input data 

are the 12 ladder scalers, the X trigger scaler and the livetime scalers for both 

radiator-in and radiator-out runs. The tagging efficiency (averaged over the 

whole ladder) is then defined as

InterruptsRad%n ________

^  =  E S  Ladder

The high to tal counting rate in the scintillating glass detector limits the 

tagging ra te  to -  103 during an efficiency measurement as opposed to ~  107 

during a typical experiment. Therefore beam independent room background, 

which is a negligible consideration during normal running, may become a
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serious effect. There is of course also a beam dependent background from the 

beam-line and beam-dump. Measuring with the radiator removed allows both 

effects to be taken into account. In practice the background correction is only 

of the order of 1%.

3.5 .2  Ion  C ham ber

The ion chamber is of the thick walled NBS type [56]. The unsealed chamber 

has a 6 cm aluminium converter on the front face and is operated at 1200 V. 

It is m ounted in a shielded beam dump 5 metres downstream of the target. 

The conversion efficiency of the thick input wall is sufficient to swamp the 

conversion due to the target contents and so target-full and target-empty 

runs may be directly compared. The high voltage plates are connected to an 

electrometer whose output is fed to a current digitiser and thence to a scaler. 

The sensitivity of the ion chamber is such that a 20 nA electron beam incident 

on a 25 pm  aluminium radiator results in a 3 nA current in the ion chamber. 

This is to be compared with a leakage current of < 0.5 pA obtained after 

several hours of operation.

3 .6  th e  L iquid  D eu teriu m  Target S y stem

The target system consists of a 50 cc cell filled from a refrigerator operated in 

a closed deuterium  gas system. The cell is enclosed in an evacuated chamber 

which includes a large kapton window to permit the passage of the the photon 

beam and the outgoing protons. The cell is mounted on a flange close to the 

cold head at the bottom  of the refrigerator. The refrigerator is coupled to the 

scattering chamber via a bellows section whose operation permits the cell to
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be raised and lowered into the beam.

3.6 .1  T h e S catterin g  Cham ber

The shape of the scattering chamber is determined by the need to maximise 

the deuterium  containment volume in the case of a leak in the cell while 

minimising the area of the chamber window. The chamber, which is of welded, 

cylindrical construction, was made from 5 mm aluminium with a 20 mm base 

plate. The top flange engages with the bellows/refrigerator system while the 

base plate rests on the broad flange of a pumping stand. The pumping stand 

incorporates a turbo pump and a rotary pump connected in series. A vacuum 

of ~  10~8 bar is required before the convective heating rate falls below that 

of the radiative heating at liquid hydrogen temperatures. This would take 

many hours to achieve using the pumps alone. The cold cell, however, acts as 

a cryogenic pum p and the system easily reaches the required pressure.

The chamber has a single ‘wrap-around’ window which is designed to per­

mit the passage of protons at all scattering angles on one side of the target 

and which also serves as the beam entrance and exit window. The window, 

which is approximately 500 cm2, is made from 120 pm kapton. The size of 

the window is such tha t three quarters of the circumference of the chamber 

is cut away, thus making it necessary to add additional supporting struts to 

the proton detector side of the chamber. The struts (shown in figure 3.15) 

were designed to be movable in order not to interfere with the proton flight 

paths corresponding to different detector orientations, (figure 3.20) They were 

fitted w ith springloaded studs at either end which fitted into indentations in 

the top and bottom  flanges of the chamber. Once the struts were installed
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the cham ber could be evacuated and then the additional compressional force 

locked them  into place.

3.6 .2  T h e D eu ter iu m  R efrigerator and Target Cell

The refrigerator, which is shown schematically in figure 3.16, is a two stage 

commercial device operated in conjunction with a 20 bar helium compressor. 

The prim ary stage of the device can attain 40°K with a cooling power of 

1 W . The second stage can cool the cold head to 10°K. The cold head is 

shielded by a dome shaped screen attached to the primary refrigerator. The 

gaseous deuterium  is piped to a chamber attached to the cold head flange 

where it condenses and drips into the target cell. The thermal coupling of 

the cell to the cold head is rather poor and the cell is cooled by the continual 

evaporation of the deuterium. When the cell is sufficiently cold the liquid 

begins to accumulate, the rate of filling or emptying being governed by the 

relative rates of evaporation and recondensation. The cold head is fitted 

with a tem perature monitor (a calibrated resistor; platinum for T  > 70°K, 

carbon for T  < 70°K) and a heating coil which are connected to a feedback 

controller. Oncethe cell is full the cold head must be stabilised at a temperature 

where a dynamic equilibrium is established between the evaporation rate and 

the condensation rate. To achieve this a reference temperature is set on the 

feedback controller which then alters the heating current according to the 

tem perature reading. In order to achieve finer control of the system both 

the amplification and time constant of the feedback loop are adjustable. In 

practice the nominal reference temperature used was 19.5 K (c.f. deuterium 

boiling point 20.4°K, and freezing point 14°K). The system was operated at 

the upper end of the usable temperature range in order to prevent the liquid
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freezing in the narrow filling pipe near the cold head. If this were to happen 

the cooling by evaporation would cease and the cell could explode. Although 

most of the cell was wrapped in superinsulating foil there was nontheless a 

large input of radiated heat from the surroundings which caused the liquid in 

the cell to boil quite vigourously. The boiling reduced the mean density of 

the target and therefore the count rate. A series of measurements which were 

made to determ ine the magnitude of this effect are described in Appendix D. 

The boiling correction was determined to be (7.5 ±1)% .

The target cell (figure 3.17) consisted of an elliptical aluminium frame, 

4 mm thick with major and minor axes 53 mm and 25 mm respectively. Kapton 

windows 70 /mn thick were glued onto the frame and elliptical plates bolted 

onto both  sides of the assembly while the epoxy was still soft. The profile of 

the cell windows at a series of overpressures from 1 to 1.5 bar was measured 

on a 1 cm grid using a clock gauge. The sections shown in figure 3.17 are for 

1.1 bar, the norm al operating pressure. The combination of a cell with curved 

windows and a photon beam with a nonuniform spatial distribution results in 

the effective target thickness being greater than that obtained by averaging 

the cell thickness over the beam spot. The correct beam-weighted average 

thickness was obtained by means of a Monte Carlo calculation described in 

chapter 4. The m agnitude of the correction for a target angle of 30 and a 

40 mm diam eter beamspot was 10%.

3.6 .3  D eu ter iu m  Gas Supply

The gas supply system is shown in figure 3.18. The high pressure deuterium 

reservoir was never opened directly to the rest of the system. The deuterium
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Figure 3.17: Liquid deuterium target cell
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was instead transferred in small quantities via a low pressure buffer tank 

The buffer tank  was used to maintain the pressure m the deuterium circuit 

at between 1 and 1.5 bar. The upper limit was determined by the strength 

of the cell windows and the lower limit was set to ensure that a leak in the 

system would not result in the ingress of atmospheric water vapour which 

would freeze in the coldest part of the system with dangerous consequences. 

When not in use the deuterium circuit could be pumped out, flushed with 

dry nitrogen and then stored filled with nitrogen at slight overpressure to 

prevent contam ination. The normal deuterium pumping line, the emergency 

overpressure release line and the scattering chamber pumping stand were all 

vented to atm osphere outside the outside buildings via long hoses in order to 

prevent a build up of deuterium in the experimental areas.

3.6.4 T h e A ctiv e  C ollim ator

The actual design of the detector represented as AE i in figure 3.7 was compli­

cated by the need to have an scattering chamber around the liquid deuterium 

target. Indeed the 20 cm radius overhang above the window prevents the use of 

a detector w ith vertical fishtail light guides as shown in figure 3.7. Horizontal 

lightguides of conventional design are unsuitable because they would protrude 

into the photon beam  when the detector system was placed at forward or back 

angles. The device eventually constructed was based on an MIT design [57] 

as shown in figure 3.19. Two 40 mm diameter cylindrical light guides attach 

tangentially at each end of a 1 X 440 x 160 mm rectangular sheet of scintilla­

tor. Light from the scintillators enters the lucite cylinders and spirals towards 

the photom ultiplier tubes. The detector was fixed onto the underside of the 

scattering chamber overhang in one of three positions covering the range of
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proton emission angles. The light collection efficiency of this configuration is 

rather low and the transmission in the long thin scintillator is poor. For this 

reason the detector was not used as part of the dE /dx  system. Nontheless, 

tests indicated th a t the system should be 100 % efficient for proton detection 

and so it could be used as a collimator, acting essentially as a logic element 

in the detector system. It was decided, however, to err on the side of caution 

and the detector trigger was wired to require an .OR. of the two phototube 

signals ra ther than  the more usual .AND..
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4.1 In tr o d u c t io n

This chapter describes a complete Monte Carlo simulation of the present 

D('y,p) experim ent which has been developed in order to evaluate the sys­

tematic corrections to the data. Included in the simulation are effects due 

to the beam -target geometry, the detector acceptance in the centre of mass 

frame, energy losses of the protons in the target, energy deposition in the 

detector, light production non-linearities, nuclear interactions of the protons 

in the CH scintillator medium, and also variations in the light collection effi­

ciency throughout the scintillator blocks. The Monte Carlo data is analysed 

and binned in the same fashion as the real experimental data and therefore the 

simulation provides an efficiency correction factor specific to each data point 

as well as providing global normalisation factors to account for the tagging 

efficiency and the combination of beam and target geometries.

4.2  T a g g in g  E fficien cy

This section of the code models the production of bremsstrahlung radiation 

arising from the passage of a relativistic electron beam of energy Eq through a 

thin (finite) foil w ith atomic and mass numbers Z  and A  respectively. Photons 

of energy and angle 0 (wrt the initial electron direction) are selected from 

approximate angle and energy distributions in order to calculate the fraction 

of the to tal flux falling within a specified collimation angle 0C. This fraction 

represents the tagging efficiency eT . Account must be taken of the multiple 

small-angle coulomb scattering of the electron beam as it passes through the 

radiator foil since this will tend to broaden the photon angular distribution.
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Similarly, provision is made for the inclusion of a finite beam divergence and 

it is also possible to introduce an angular offset between the beam axis and 

the nominal collimation axis. These latter two effects permit the assessment 

of the variation in er to be expected over a reasonable range of non-ideal 

experimental conditions.

Figures 4.1 and 4.2 show the results of the tagging efficiency calculation 

for a range of radiator thicknesses and photon energies. The tagging efficiency 

calculated for the experimental conditions, E0 =  183 MeV , En — 140 MeV , 

radiator 25 fj,m aluminium and collimation angle 4.5 mrad , is 65.9 % in good 

agreement w ith the measured values which range from 64.1 % to 65.7 %.

The model used for the bremsstrahlung process is that of Bethe and Heitler 

[28] which gives rise to a differential bremsstrahlung cross-section calculated 

in the first order Born approximation. Schiff [27] has analytically integrated 

this expression over outgoing electron angles using a screened atomic potential 

of the form,

V(r) = — t- 'l"  (4.1)
r

where a is given by
C h2 _ Ch j4 2 j

137 m e2Zs mcZz

and C is a dimensionless number of order 137 determined by comparison with a 

full numerical calculation of the Bethe-Heitler cross-section using the Thomas- 

Fermi potential. The Schiff expression therefore represents the distribution in 

energy and angle of radiation from relativistic electrons in very thin targets.

_ $_
It is convenient to work in terms of a reduced angle $ defined as $ — ^

where 0B = — . The probability of radiating at reduced angle t i s  given
E q
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by,

P ( i ? ) d i ?  oc
k

16#2(1 — k) (2 -  k)2
(tf2 +  l ) 4 (tf2 + 1)2

/  (2~ fe)2 4tf2(l -Jfc)
1 (t>2 +  l ) 2 (0» + 1)4 InM (4.3)

where
1

M
6p>k

+
C(tf2 +  1)2(1 -  k)

C = U1

! >  =  #  —

m

k = ^
Eo

This expression is not suitable for use near the bremsstrahlung end point 

(k = 1), i.e. where the outgoing electrons have kinetic energies of only a 

few times m e2 and the extreme relativistic conditions no longer apply. How­

ever for the present purpose one need consider k no larger than 0.85 and the 

plane wave Born approximation is adequate. Although the Schiff formula has 

been analytically integrated [58] it is more convenient to use a simpler ap­

proximate function PapproxW in the Monte Carlo process and then re-weight
P Mthe event by a factor W

f  approx

bremsstrahlung distribution is
P a

. The function used to approximate the

P ,approx (l +  tf2j=
(4.4)

and the re-weighting W is given by

W  =  [hM  -  1 ]  +  111 , * * [ 4  -  hM]
k k ( l + t f 2):

(4.5)

The tagging efficiency for a typical collimation angle (~ 5 mrad) is not 

a strong function of photon energy and in the regime under consideration
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(0.45 < k <  0.85 and 6k ~  0.05 per data bin) it is sufficiently accurate to take

as the photon energy distribution.

A gaussian approxim ation is used to model the multiple small-angle coulomb 

scattering undergone by the electrons as they pass through the target foil. In 

terms of the reduced angle d one may write

t being the depth, measured in radiation lengths, in the target at which the 

distribution is to be sampled. Thickness t (radiation lengths) is calculated 

from thickness d (gm /cm /cm ) using the following [60]

In order to obtain an absolute cross-section it is necessary to calculate the

the density (cm -2) of the target nuclei. However, in the present case it is not 

sufficient to m ultiply the average density by the total flux. This is because 

both the photon beam  intensity and the target density distribution are non- 

uniform in the plane perpendicular to the the beam direction. The luminosity 

L is therefore given by the more general expression:

P(EJdE^ oc ~^ (4.6)

P(0)d# = j 2-e x p  tm (4.7)

where the r.m .s. multiple scattering angle has the form [59]

(4.8)

(4.9)

4.3 E ffe c tiv e  T arget T h ickness

luminosity of the experiment, tha t is, the product of the total beam flux and
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where the beam  direction lies along the z axis, $  is the photon flux, p is the 

target thickness and the integral is performed over the projected area of the 

beam spot. This integral is performed most conveniently by a Monte Carlo 

calculation. The beam  profile is modelled as in the previous section and the 

shape of the target cell is given by interpolation within a mesh of measured 

co-ordinates as described in Chapter 3.

The point of intersection of the photon path with the x-y plane is calculated 

and the 2 co-ordinates Z\ and z2 corresponding to the points (re, y) on the 

surfaces representing the ‘front’ and ‘back’ cell windows are calculated by 

interpolation. The target thickness p(x,y ) is then given by the difference 

z<i — Z\. In order to provide an interaction position for the succeeding stages 

of the simulation a random  2 co-ordinate is chosen between the limits Z\ and 

Z2 , this m ust be weighted according to the target thickness at (rr, y). The total 

event weight is now the product of the photon weight (previous section) and 

the target thickness weight.

The effects of beam-weighting the target thickness are as follows. When 

the target is ro ta ted  to 30 deg with respect to the beam axis, the thickess 

along the beam  axis is 33.9 mm, the average thickness over the 40 mm diameter 

beam spot is 27.7 mm while the beam-weighted target thickness averaged over 

the same area is 30.7 mm.



Monte Carlo Simulation
104

4.4 D e te c to r  A c c e p ta n c e

f  n ■ ( f  -  fP)
Up =  . (4-ll)

The general definition of the solid angle subtended by an object at a point P 

whose position vector is rP is:

n - ( r ~ r P)
| r — rP \

where s is the surface ‘visible’ at P , r is the position vector of surface element 

ds = d2r and ft is the normal unit vector at ds.

If the average solid angle subtended by a detector with respect to an ex­

tended source distribution is to be calculated then the above expression must 

also be integrated over the source volume v. (where dv = d3rP)

f v  /» - i r ^ d s d v
fi«» = -------------  4.12

L dv

The simplest approach to this problem lies in a ‘hit or miss’ Monte Carlo 

integral. Placing the source at the origin, random unit vectors rj are gener­

ated isotropically and those events where the detector surface intersects the 

extension of the directed line 0 1  are deemed to be ‘hits’. The solid angle 0  

is then given by
hits / .  n\

n =  4tt-    (4.13)
S total

The extension to a distributed source is straightforward, points A are ran­

domly chosen within the source volume and vectors A l  are generated isotrop­

ically with respect to A.

This procedure results in a solid angle calculated in the laboratory frame. 

To evaluate the c.m.s. solid angle subtended by the detector surface it is 

necessary to regard the isotropic distribution as being produced in the centre 

of mass system and then perform a Lorentz transformation into the laboratory
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aframe. In order to do this it is necessary to consider the kinematics of 

particular reaction, in this case the Z}(7 ,p)n reaction.

The E vent G en era tor

The detector acceptance and efficiency calculations require a source of test 

particles produced w ith an isotropic distribution in the centre of mass system 

and with the angle-energy relationship of D{^,p) photoprotons.

The isotropic distribution of test trajectories is produced by randomly 

choosing cos 9 in the range — 1 —>■ 1 and 4> in the range 0 —> 2tt.

The velocity of the c.m.s. in the lab frame is /?', given by:

8' = -------  (4.14)
P k , + M D

If the proton has momentum pcm and direction 9cm in the c.m.s. then it’s 

laboratory scattering angle 9iab is given by:

Pcm sin 9cm
tan  9iab = T*P c m ^ O S  9cm + PiEcm 

The proton energy E cm is given by

s + m 2p - m 2n 
Ecm~  2

where y/s is the to tal c.m.s. energy, s is given by

s =  (k-f +  M b )2 ~~ k*

The proton energy in the lab frame is calculated as follows.

(4.15)

(4.16)
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for 90 <  Oiab < 180 deg

tt — & +  V D
~  — 2A--------mp (4-18)

where

A  = (kn cos Blab f  -  (kn +  M d )2 

B  = (k^ + M D)(m 2n - m 2p -  M l -  2k1M D) 

C = 4k 2m 2 cos2 diab +  (m 2n - m 2p - M 2D -  2k1M D) 

D  =  B 2 +  AC

D etec to r  and  Track G eom etry

This section describes the formalism used for defining the experimental ge­

ometry and for tracking particles through detector elements. It is used for 

both the detector acceptance calculation described above and for the detector 

efficiency calculation which follows.

Particle tracks are defined by the co-ordinates of their point of origin and 

by a unit vector which gives the direction of flight.

Cuboidal detector volumes (‘boxes’) are defined by the co-ordinates of their 

eight vertices. Initially their position is given with respect to an origin at the 

bottom left-hand front corner of the ‘box’. The box is moved to its correct 

laboratory position by means of a translation and subsequent rotation of its 

co-ordinate system.

The six planar faces of a box are defined by a vector normal to the plane 

and by one point contained within the plane. Depending on the orientation of 

the box with respect to the target each face is defined to be a particle input
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face or a particle output face, and the direction vector of the plane is given 

to be positive in the direction of particle travel. There will usually be only 

one input face, although there may be as many as three. The normal vector 

is constructed from the vector product of two vectors corresponding to the 

directions of the edges of the box. These edge vectors are in turn given by the 

difference between the position vectors of two vertices. It is also necessary to 

define the area of each plane which corresponds to the face of the detector.

The tracking routine first checks for a hit on an input face of the detector 

and, if one is found, then searches for an exit point on one of the the output 

faces. If a hit is found then the tracking routine sets a logical variable HIT to be 

.TRUE, and passes the particle entrance and exit co-ordinates (transformed 

back to the proper frame of the detector) to the detector signal simulation 

routine.

D efin itions

The following results are used in the tracking algorithm.

Parametric Equation of a Line

The line which passes through the point with position vector A  — (u5frjc) 

and which has the direction vector u =  (a ,/? ,7} 1S defined by the following

parametric equations.

x -  a __y -_b _  z - c . . (4.19)
a  “  P 1

where t is the param eter value corresponding to the point (x,y, z).
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Scalar Equation o f a P lane

The plane containing the point with position vector P  =  (/,m ,n) and for 

which the norm al direction is defined by the vector n =  {A5/t1, 1/}  is defined by 

the following equation.

Xx T- tiy -f v z  =  XI +  \im  +  i/n{= d) (4.20)

where d is a constant whose value identifies a particular member of a set of 

parallel planes.

Intersection o f a Line and Plane

The param eter value t a t which the a line and a plane intersect is given by, in 

the above notation:
n - P  — n ■ A , .

t = ------— ----- 4.21n • u

In the context of a particle track with a direction, one may ensure that the 

particle is heading towards the plane by checking that the scalar product n • u 

is positive definite.

4.5 D e te c to r  R e sp o n se  and Efficiency

The acceptance calculation described above determines whether the emitted 

particle hits the front face of the detector. However it does not automatically 

follow th a t the particle triggers the detector and produces a decipherable 

signal. The response of the detector to incident radiation depends on the 

detector geometry and composition as well as the particle type, energy and 

specific energy-loss characteristics. To understand fully the behaviour of the
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system in a particular set of experimental circumstances it is also necessary 

to recreate approxim ately the angle and energy distribution of the reaction 

yield which is to be measured.

The main features of the simulation are as follows.

• Track particle through detector system.

• Calculate energy loss in target cell and AE strip.

• W ithin each E block traversed, follow the track in small steps x  —> 

i +  Ax. At each step:

— Test for nuclear reaction induced by particle while traversing A x  

and calculate reaction Q value, recoil etc.

— Calculate Bethe-Bloch energy loss A E  while traversing Ax.

— Calculate scintillation light output A L  associated with A E .

— Correct for (position dependent) light collection efficiency for source 

at x.

— Increm ent signal collected in E element L L-f  A L

— Decrement residual particle energy E  —► E  — AE ( —Q)

— Transport particle to point x +  Ax.

— Test for exit from block.

• Test for hardw are trigger from each E block passed through.

• Calculate centroid of distribution of light produced in each block, re­

turn  average of centroids as x co-ordinate of event, (fold experimental 

resolutions into calculated x and y co-ordinates)
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• Sum signals and calibrate m terms of proton energy

Bethe-Bloch energy losses are calculated from range energy data which are 

interpolated from tables [61]. If the initial energy is E0 corresponding to a 

range R 0 then the energy A E  lost in A x  of material is given by,

A E  = E 0 — E (R  =  R 0 — Ax) (4.22)

Since the tabulated  function R[E) is monotonic it is readily inverted and 

interpolated to give E (R ).

The problem of the inelastic reactions undergone by protons in scintilla­

tion detectors has been studied previously by Measday and Richard-Serre [62]. 

This work incorporated tabulated cross-sections for the most probable inter­

actions of protons in carbon and this data was used as input to the present 

calculation. The results of [62] were not used directly because the present 

requirement is for a more complete detector response simulation applied to a 

specific experimental configuration.

The reactions considered were 12C (p ,^ )UC*, 12C(p,ot)X  and 12C(p,n)X .  

The energy corresponding to the reaction Q value was considered lost, as 

was the recoil of heavy residuals because of the nonlinearity in scintillation 

light output. This also severely degraded the light produced by outgoing a 

particles, the interaction lengths of the emitted 7 rays and neutrons is large 

compared to the size of the detector elements and so their further interaction 

was neglected. It was possible to compare the results of this calculation with 

that of [62] by ‘switching off’ the other effects in the calculation. By doing 

so it was possible to reproduce the Measday results. These stated that the 

fraction of protons whose signal is degraded by more than 10 MeV ranges from 

2% at 35 MeV to 11% at 104 MeV .
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For non-relativistic charged particles the production of scintillation light 

is not a linear function of energy deposition . The rate of light production 

along a particle track is given by the following semi-empirical relation. [63]

dL f -dr

Tr  =  I T c ?  <4-23)dr

Where C is given by 9.5 x K T3srcm2MeV - 1 fo r NE102 plastic scintillator 

which has the composition C H\ los.The stopping power may be parameterised 

as follows, [64]

~  ~  B r - ' l 2 (4.24)

where for protons B  =  17.91 MeV (gem -2)-1/2 and for a  particles, B  = 67.76 

MeV (g cm-2)-1/2.

Whence:
EL  2 C B 2 ,=  1 ---------— ln

E  E 1 +
2 C B 2\

defining E q as 2C B 2 and X  as E / E 0 this becomes

(4.25)

L  Infl +  x)
E  x v ;

where E q is 6.1 MeV (protons) or 87.1 MeV (a particles). Since the calculation 

follows the particle track in small steps the formula is used in differential form, 

i.e. A L  corresponding to A E  is given by

A L  = L(E  +  A E ) -  L(E) (4.27)

The above expression has not been cast in absolute units, however it may be 

taken as giving the light output relative to electrons of the same energy. The 

light output for electrons will be linear since the equivalent x  value will be 

very large.
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The efficiency with which the photomultiplier tubes collect the emitted 

light varies as a function of the position of the source within the block. A 

separate M onte Carlo code PHOTON [65] was used to calculate the light 

collection efficiency on a 1 cm3 lattice throughout the block. The program 

operates by tracking a large number of isotropically emitted photons through 

the block and calculating the fraction tha t reach the face of a photomultiplier 

tube at one or other end, allowing for absorption in the volume and reflection 

or transmission at the surfaces . The incremental signal produced at each 

step on the track was multiplied by the efficiency factor corresponding to the 

nearest lattice point. The light collection calculation is time consuming (~ 10 

minutes per lattice point) and so the lattice data was prepared in advance and 

read in from a separate file at run time.

In the actual experiment the hardware trigger thresholds on the E blocks 

were set at pulse heights equivalent to between 5 and 10 MeV electron en­

ergy. The M onte Carlo calculation automatically produces signals in terms 

of equivalent electron energy (MeVee) and the Monte Carlo trigger threshold 

was set at 7 MeVee. This reproduced the observed effective proton threshold 

of ~  28 MeV . (see Chapter 3).

4.6  R e s u lts

The detector simulation produces as output the x  and y co-ordinates of the 

event in the proton detector and the pulse heights recorded in each E block. 

This is the input required by the data analysis routines used with the real ex­

perimental da ta  (see Chapter 4) and so the Monte Carlo data analysis proceeds 

along identical lines using the same routines for angle and energy calibration,
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event selection and data  binning.

The efficiency calculation works by simulating a D ^ f p )  experiment where 

the model ‘cross-section’ has been assumed to be isotropic in the centre-of- 

mass system and where every photon produces a reaction. The detector effi­

ciency for a given angle-energy bin is then given by

47r Y
£ ~ K n $  (4*28)

where Y  is the event weight accepted by the hardware and software conditions, 

$ is the to tal event weight generated by the program and AH is the nominal 

solid angle subtended by the software defined 9 — <j) bin. If the detector is 

perfectly efficient and if the acceptance of the data bin is given by the nominal 

solid angle, then e =  1. This can be checked by switching off the detector 

response routines and using a point target. In practice the efficiencies e are 

usually < 1. Exceptionally, where a position calibration nonlinearity effect 

puts too many events into a data bin, the net efficiency could exceed unity.

The overall structure of the program is shown in figure 4.3. Events are gen­

erated with a weighing factor and the total event weight integrated throughout 

the experiment. At each subsequent stage in the event history, some events 

are accepted and the others rejected. The accepted events are totalled at each 

stage. 7 running totals, labelled Xhj , are maintained. These are defined as 

follows.

Si : Photon weight

E2 : Photon weight after collimator

S3 : Photon weight x target thickness p{x,y) (= event weight)
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Figure 4.3: Structure of the Monte Carlo Simulation
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£ 4  : Event weight

£5 : Geometrically accepted event weight 

£ 6 : Event weight after hardware trigger 

£ 7 : Event weight after software trigger

These totals are used to calculate global normalisation factors such as 

tagging efficiency and effective target thickness. They also provide average 

numbers for the efficiency at various stages of the calculation in addition to 

the histogram of finally accepted event weights which provides the efficiency 

corrections for each data bin. The quantities calculated are as follows

£ 2/S i :  Tagging efficiency er 

£ 3/ £ 2: Effective target thickness pef f  

£ s /£ 4: Total solid angle 

T,q/H,5: Hardware trigger efficiency 

£ t / £ 6: Software efficiency

In order to obtain a measure of the uncertainties of the calculated correc­

tion factors the running time of the program is divided into 10 parts and 10

values of each quantity are calculated. The mean and standard deviation of

each set of ten values are calculated and the estimated uncertainty returned 
o



C
O

U
N

TS
 

PE
R 

C
H

A
N

N
E

L
 

C
O

U
N

TS
 

PE
R 

C
H

A
N

N
E

L

Monte Carlo Simulation
116

1000

500

200 400 6000 800 1000

X -  COORDINATE ( m m  )

1500

1000

500

500400300200100

Y -  COORDINATE ( mm )

Figure 4.4: (a) Prediction of horizontal position response, (b) Prediction of 
vertical position response.
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P osition  R esp o n se  Predictions

The Monte Carlo code can be used to reproduce experimental spectra and 

this has proved useful in interpreting the data used to establish the x and 

y position calibrations for the proton detector. The physical edges of the 

detector elements can be used as reference points in determining the absolute 

scale of the x — y reconstruction but the interpretation of the apparent position 

of these landm arks requires a detailed model of the detector response.

Figure 4.4.(a) shows the reconstructed position spectrum in an E detector 

where only those events passing through the 1st,3rd and 5th AE strip have 

been selected. The heavy continuous line represents the Monte Carlo predic­

tion and the histogram  the experimental result. The event position is given by 

the difference in arrival times of the light signal at either end of the E block as 

described in section 3.3. A linear time-difference to position relationship was 

used to calibrate the detector. A similar linear position reconstruction rou­

tine provided a Monte Carlo position spectrum consistent with experiment 

to ± lcm  over the central ~  70cm of the block. At the extreme ends how­

ever the linear prediction fails. Figure 4.4 (a) was obtained by introducing 

a nonlinearity into the Monte Carlo position reconstruction to simulate the 

anomalous light collection behaviour which occurs close to the photomultiplier 

tubes. The section from 10 -  90cm remains linear but the 10cm at each end 

were smoothly telescoped into 6.5cm.

Figure 4.4 (b) shows a similar plot for a AE detector where only events 

triggering E blocks 1 and 3 have been selected. In this case the uncertainty in 

interpreting the experimental data lies in the efficiency of the corners of the 

E blocks for the detection of protons which pass through without stopping.
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The outside edges of the two peaks seen in figure 4.4 (b) are determined by 

the protons which clip the edges of the outer E blocks while still depositing 

enough energy to trigger the detector whereas the position of the inner edges 

is determined by those protons which pass through the middle block without 

causing it to trigger. Again the data and prediction are consistent to ilc m .

Pulse H eigh t R esp on se

Figure 4.5 shows the results of simulated D(i,p)  experiments at 55 MeV , 

80 MeV and 140 MeV photon energies. The scatter plot depicts the original 

proton energy calculated from photodisintegration kinematics plotted against 

the recorded pulse height signal quoted in MeVee. The response is linear at 

the energy of the present experiment (En = 140MeV ). However at 80 MeV the 

response to the lower energy protons is degraded as a result of the combined 

effect of energy losses outwith the E blocks and nonlinear light production 

within the scintillator. The proton yield from the 55 MeV experiment lies 

almost entirely below a threshhold of 7 MeVee .This corresponds to an initial 

energy of ~  30 MeV which is in agreement with experimental experience.[66]

Figure 4.6 is an effective proton pulse height spectrum obtained from 

,p) da ta  taken over a range of emission angles and photon energies by 

subtracting the (calibrated) energy measured in the detector from that cal­

culated from the photodisintegration kinematics. The main peak therefore 

appears at 0 MeV in the figure. The long low energy tail observed below the 

full energy peak is caused partially by edge effects in the E detectors and 

partially by the occurrence of inelastic nuclear reactions between the incident 

protons and the carbon nuclei in the detector material. The width of the
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peak is a product of the pulse height response of the detector, kinematic re­

construction errors due to finite position resolution, and energy losses of the 

protons in the liquid deuterium target and the AE strips.

A ccuracy o f th e  R esu lts

The errors inherent in the random sampling process are very small, since it is 

possible to average the results over a large number of Monte Carlo histories. 

The errors due to the approximations of the model are harder to quantify. 

The treatm ent of the purely geometric effects should be reliable since it was 

possible to perform  a detailed calculation. Furthermore the good agreement 

obtained for both  the pulse height and the position response of the detector 

gives cause for confidence in the model. The largest uncertainty must be due 

to the effects of inelastic nuclear interactions in the scintillator since these 

represent the largest single efficiency correction. An assessment of the various 

sources of system atic error, including those associated with the Monte Carlo 

calculation, is made in section 5.6.6
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5.1 D a ta  R e d u c tio n

The data stored during the experiment consisted of those events where a de­

tector signal coincided with signals from one or more focal plane detector 

(FPD) channels. The most basic requirement for the analysis of tagged pho­

ton data is th a t the photon energy be identifiable and so the first task in the 

data reduction process is to reject any event where multiple ladder hits makes 

the photon energy and the detector-FPD coincidence timing ambiguous. The 

data may then be partitioned into a prompt coincidence subset containing all 

the genuine tagging coincidences plus some random coincidences and an equiv­

alent random  background subset which will be used to provide an appropriate 

correction to the data. At this stage the raw experimental signals, which take 

the form of TDC and ADC information, must be calibrated in terms of the 

physical observables of the experiment, i.e. the energies and trajectories of the 

particles. It is then possible to reject a large part of those events which do not 

correspond to the products of a D(^,p)  reaction. The data is histogrammed in 

the form of angular distributions and then background corrections are made 

using the random  coincidence subset. Corrections for tagged background orig­

inating from the cell windows and the beam line are made using data taken 

with an empty target cell. Finally the angular distributions are normalised to 

produce angular differential cross-sections.
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5.1.1 M u ltip le  Ladder Coincidences

Rate E ffects

In order to determ ine unambiguously the energy of the photon which induced 

a particular reaction it is necessary to identify the ladder channel which reg­

istered a tagging electron. The timing of the coincidence between the tagging 

electron and the reaction trigger is registered in a TDC which is started by 

the X-trigger signal and stopped by the ladder signal. The identity of the 

channel is recorded in one of six pattern units. The effective range of the 

TDC is restricted by the width of the X-trigger coincidence pulse to ~  50 ns. 

A typical TDC spectrum  is shown in figure 5.1 . The 2 peaks in the middle 

of the range correspond to the arrival of protons and electrons produced by 

tagged photons. The electrons are all relativistic and arrive early forming a 

peak which is widened only by the range of flight paths and the intrinsic time 

resolution of the apparatus. For example, the flight time for electrons over 

~ 0.5 metres will be ~  1.5 ns. The flight time for protons will vary from 

7.2 ns to 3.1 ns for energies in the range 50 — 100 MeV . There is also a 

significant low energy ( i.e. long flight time) tail on the proton peak which is 

produced mainly by low energy background events involving heavier nuclei in 

the cell windows etc. In figure 5.1 the electron peak lies on the right because 

the TDC is stopped by the ladder. The peak at the left hand end is an artifact 

of the coincidence electronics. In addition to the peaks there is also a smooth 

background of random  coincidences underneath. Since the tagging electrons 

arrive randomly it is possible that more than one will be registered within a 

gate period. This has some undesirable consequences. Firstly it introduces 

an ambiguity into the determination of the photon energy and secondly it
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Figure 5.1: Sample of coincidence time spectrum. (Time of flight spectrum)
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complicates the subtraction of the random background in two ways. If the 

two or more channels tha t fire are served by one ladder TDC then only one 

electron arrival time can be recorded, corresponding to the first ladder ‘stop’ 

pulse to arrive and so the event cannot be ascribed to the ‘prompt’ region or 

to a random  region of the TDC range. Furthermore, it can be shown (Ap­

pendix E) th a t if there is a significant probability of more than one random 

electron arriving in a gate width then the timing distribution of randoms un­

der the prom pt peak has an exponential slope. Alternatively, one can select 

for analysis only those events where a single ladder channel fired within the 

gate time. This removes the energy and real/random ambiguities and has the 

added advantage th a t the random background is now flat (appendix E). The 

disadvantage is th a t some fraction of the tagged events will be discarded. For 

the purposes of an absolute cross-section this fraction must be evaluated and 

an appropriate correction made. The full details of the analysis of the fo­

cal plane detector (FPD) multiplicity spectrum are given in appendix E. The 

probability th a t a tagging electron is accompanied by one or more additional 

uncorrelated electrons is given in terms of the Poisson distribution by

oo
y P ( n , N T )  = l - P ( 0 , N T )  = l - e - Nr (5.1)
n — 1

where P ( n , Nr )  is the probability that n electrons register in a gate time t 

sec given th a t the mean rate is N  sec-1 . For example, in a typical case 

of a 60 ns gate width and a flux of 107 sec 1 the probability that at least 

one random  electron accompanies a true tagging electron is 0.45. If each 

FPD channel could be treated independently then the effective rate would be 

~ 105 sec-1 and the chance of a double hit would be negligible. However the 

smallest group of FPD channels which can be treated independently is the 

group fanned into a particular TDC. The effective electron beam rate in the
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case of the present experiment is therefore ~  1.6 x 106 sec"1 corresponding 

to a multiple hit probability of 9%.

Geometric Effects

The construction of the FPD, which is described in chapter 3, provides for a 

slightly greater than  50 % overlap of each scintillator strip with its neighbour. 

Therefore each channel (2 adjacent scintillators) overlaps the next one slightly 

and so a single electron passing through the focal plane can trigger 2 chan­

nels (i.e. 3 adjacent scintillators). A similar effect is produced by 6 electrons 

ejected from the detector strips which can cause double or even triple trigger­

ing in consecutive channels. These geometric effects must be corrected prior 

to correcting the statistical multiple firings. The approach taken has been 

to construct a ‘corrected’ pattern spectrum by reassigning all neighbouring

multiple hits as single hits. The error involved in this procedure is small.
2

For example, the fraction of genuinely random neighbouring doubles is — of
l/Z

the total random  double rate, which is itself 5 — 10 % of the total rate. By 

comparison, the observed geometric double rate, measured at very low beam 

intensities where random  coincidences are a negligible effect, is ~  10 % of the 

total rate.

The procedure adopted for the selection of single hit data was as follows. 

Events were accepted if there was exactly 1 ‘corrected’ FPD hit in the group 

of channels served by a single TDC. In this way six subsets of reduced data 

were obtained, each pertaining to one of the six focal plane TDCs. Thus, 

although a particular event may be selected for inclusion in any number of 

subsets from 0 to 6 no ambiguity remains concerning the photon energy or
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coincidence tim ing since each data subset is analysed independently. Problems 

of double counting do not arise because each event can only correspond to 0 

or 1 correlated tagging electrons and after an appropriate random coincidence 

correction only the tagged events are given weight.

5.1.2 P ro m p t and R andom  Events

No individual event can be said to have been caused by the absorption of a 

tagged photon. All th a t can be said with certainty is that a region of the 

TDC spectrum  can be defined which contains all the prompt events as well as 

a background of random  coincidences, and that the rest of the TDC spectrum 

contains only random  events. In order to correct final results for the presence 

of random background it is necessary to perform analysis in parallel on two 

data subsets. One must contain the whole prompt region and the other should 

contain only random  events. The event-by-event data analysis then proceeds 

identically in the two cases. The final step is to subtract the yield from the 

random background dataset from the yield derived from the prompt dataset. 

The weight given to events produced by untagged photons will cancel in the 

subtraction. To improve the statistical precision it is possible to use a random 

region which is longer (in TDC space) than the prompt region and then to 

perform the subtraction with an appropriate normalisation constant. The 

problem of norm alisation is greatly simplified if the background distribution 

under the prom pt peak is fiat. This is the case if only single hit data is 

selected, (appendix E) For the above procedure to be applicable it is necessary 

that the character of the events produced by untagged photons is independent 

of the timing of the randomly coincident electron.
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In the present analysis it has been found useful to combine the real/random 

data selection w ith the next stage of data reduction which involves the rejec­

tion of electron background. This is described below in section 5.3.2 .

5.2 C a lib r a tio n s

5.2.1 E n ergy  C alibration

The pulse height response of the detector system requires to be calibrated 

in terms of proton energy. This has been accomplished by reference to the 

fully determined two body kinematics of the D(^,p)n  reaction. Figure 3.11 

shows the correlation of the measured pulse height for deuteron photoprotons 

(after calibration) and the energy calculated from the known photon energy 

and proton emission angle. The calibration is assumed to have the linear form

E (MeV ) =  A x(MeV .ch- 1).Q(ch) + A0(MeV ) (5.2)

where A 0 and Ai  are calibration constants and Q is the pulse height signal 

derived from the geometric mean of the signals from the two ends of the 

detector Qa and Qb.

Q =  \jQa-Ql  (5 -3)

The offset constant Ao is necessary for two reasons. The light produced in 

the last part of the proton track is proportionally less than that produced 

when the proton has higher energy (as described in chapter 4). This has the 

effect of displacing the total integrated pulse height downwards, such that 

the extrapolated zero of energy occurs at a negative pulse height. The other 

effect is the energy lost by the protons in the AE detectors. This is different 

for each proton energy and trajectory. For the present purpose, however, a
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global correction was found to be adequate given the range of proton energies 

encountered at a given detector position. The total offsets used at forward, 

middle and backward angles were of the order of 20, 14 and 10 MeV

The three E detectors were calibrated individually and in cases where two 

blocks fired the results were summed to produce a final energy. In these cases 

the offset constant should only be added for the second of the blocks which the 

proton passes through. It is assumed that two triggerings only occur when 

the particle enters the middle block (block E 2) and passes through it into 

the upper or lower block, (blocks E 1,3) Therefore the calibration formula is 

modified to be

E {MeV ) =  A x{E 2).Q(E 2) + ^ ( E  1,3).Q(E 1,3) + A0{E 1, 3) (5.4)

5.2.2 P o sit io n  C alibration

The position calibrations were assumed to be linear and of the following form.

i(m m) =  C'1(m m .clr1).(ch) + C0(mm) (5.5)

The calibrations were calculated independently for each of the detector po­

sitions to allow for time variations in the TDCs and discriminators. In the 

horizontal direction there are also systematic variations at different proton 

detector angles. This is because higher energy protons penetrate to greater 

depths in the scintillator and therefore produce light with a different spatial 

distribution w ithin the block. When the proton enters the block at an angle 

deviating significantly from the normal direction then this effect will alter the 

apparent horizontal co-ordinate of the proton track. It would have been im 

Practical to repeat the full calibration measurement (described in chapter 3 )
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before each m easurement. The procedure adopted was to adjust the calibra­

tion constants until the observed position spectra from a series of sample files 

corresponded to the Monte Carlo predictions.(chapter 4)

In cases where two E blocks triggered a tolerance condition was set such 

that the difference in reconstructed x position in the two blocks was to be 

less than 10 cm. If this condition was met then the average of the two x 

positions was returned as the horizontal co-ordinate. If all three blocks or 

the top and bottom  blocks triggered then the event was probably caused by 

a random coincidence involving a cosmic ray and so was rejected. Events 

where more than  two AE strips fired or where two non-adjacent strips fired 

were also rejected. Where two neighbouring strips fired the average position 

was calculated. Once again a 10cm tolerance condition was imposed. The 

final correction for the small number of events rejected by these conditions 

was negligible because they consisted almost entirely of atomic background 

events where electrons scattering at large angles in the scintillators produced 

anomalous signals.

5.3 B a ck g ro u n d  R ejection

Prompt background processes may be divided into two classes. In the first 

place there is background resulting from photon interactions in the target 

cell windows, in the air along the photon beam path and in the collimators. 

Secondly, there will be atomic background emanating from the target itself. 

Background from sources other than the deuterium target itself can be cor­

rected by subtracting the yield obtained from an empty cell. In contrast, the 

target-full atomic contamination must by rejected in event-by-event analysis.
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Three methods have been used to separate protons and electrons. —  par-
dx

tide identification selects protons, both tagged and untagged. Time-of-flight

data can be used to select prompt protons as described below, and kinematic

reconstruction can be used to identify prompt protons issuing from D(yf,p)n

reactions. Severe cuts on the data must be made with caution. Although

there are clearly visible loci corresponding to D(^,p)  events in both the time-
dE

of-flight plot and the —  plot (figures 5.2,5.3) they will not contain 100 % 

of the events. If the proton underwent a nuclear reaction in the detector or 

passed through one corner of it without stopping then the combination of 

signals produced would remove the event from the D(i ,p)  loci. These events 

may have to be discarded eventually but it is important that it does not hap­

pen accidentally. The approach chosen was to apply a series of ‘safe’ cuts each 

of which would preserve all the foreground events while perhaps being indi­

vidually insufficient to remove all the background. In combination, however, 

they would have the effect of selecting only the D(i ,p)  events.

5.3.1 dE/ dx  E lectron  R ejection

Figure 5.3 shows the sum of the AE signals plotted against the sum of the 

E detector signals. The E  -  A E  cut already made in hardware is visible in the 

bottom left hand corner of the scatterplot. The analysis of other experiments 

performed at Mainz with similar apparatus has proceeded by performing tight 

cuts on the proton locus in similar plots where each of the 15 combinations 

of E and AE were selected separately to improve the definition of the proton 

locus.(see figure 3 .8) . In the present case, because of the importance of 

the absolute cross-section determination, it was decided not to cut tightly 

underneath the visible proton region in figure 5.3 . Protons whose pulse height
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signal is degraded will move out of the proton locus and into the electrons 

on this plot and conversely electrons which scatter through large angles will 

deposit more energy in the detector than would be normal and so could appear 

amongst the protons. The software E -  A E  cut finally chosen removed the 

dense region of low pulse height electrons visible in figure 5.3.

5.3.2 C om b in ed  T im e of Flight Cut and P rom pt/R andom  
C ut

As described above the prompt region of the master coincidence TDC spec­

trum contains two peaks, one corresponding to electrons and one to protons. 

The structure of the T.o.F. spectrum is revealed in figure 5.2 which represents 

a scatter plot of pulse height vs. time of flight. The electrons produce a wide 

range of pulse heights but essentially the same flight time. On the other hand, 

the protons display a definite correlation between pulse height and flight time.

It is also seen th a t the D ^ ,  p) protons have a flight time/pulse height relation­

ship different to th a t of the background. Figure 5.4 shows the first cut made 

on the data to remove the prompt electrons and the random ‘spike’ at the left 

hand end of the spectrum . The extent to which the electron background is 

eliminated by this cut is seen in figure 5.5 which may be compared to the raw 

data shown in figure 5.3. Examples of the prompt and random regions selected 

for analysis appear in figure 5.4. The sloping cuts were designed to preserve 

all the prom pt proton events while minimising the random background un­

derneath. They were obtained by performing a skew-transformation on the 

plane represented by figure 5.4 . The transformation has the form

ToF =  ToF -  a  x Pulse Height (5-6)
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Where a  is a constant which sets the slope of the cut. This procedure has the 

effect of producing a transformed time of flight spectrum upon which normal 

one-dimensional cuts may be made. Future references to prompt and random 

time regions refer to this transformed spectrum.

5.3.3 R eco n stru ctio n  of Photodisintegration  
K in em a tics

The basic physical information recovered for each event consists of the pulse 

height signal calibrated in terms of energy, the particle emission angle and 

the tagged photon energy. Events which correspond to deuteron photodis­

integrations induced by tagged photons have a definite relationship between 

the proton angle and energy. The calibrated proton energy should equal that 

calculated from the kinematic relations. Figure 5.6 shows the kinematic cor­

relation displayed as the difference between the calculated energy and the 

measured energy.

In principle the spectrum  shown after background subtraction in figure 5.6 

(b) could be integrated as it stands to produce the final reaction yield. Unfor­

tunately, however, the presence of the long tail of low energy events below the 

main peak adversely affects the statistical accuracy of the measurement be­

cause of the m agnitude of the background subtraction in that region. It may 

also be possible th a t there is a systematic error in the normalisation of the 

subtracted yield. Furthermore, the small fraction of the electron background 

which is not vetoed by the previous cuts becomes significant at the most for­

ward angles and contributes to the lower part of the tail. These sources of 

error can be avoided if one accepts the validity of the pulse height response 

model presented in chapter 4. For these reasons it was decided to apply
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cut at 10 MeV on figure 5.6 . The correction for the discarded events was 

then calculated from the Monte Carlo simulation. The magnitude of the cal­

culated correction is consistent with the integral of the observed pulse height 

tail however the statistical precision is rather poor.

5 .4  D a ta  B in n in g

Six reduced data sets were created from each original raw data file, each 

one containing events with one coincident tagging electron in the appropriate 

FPD  section. The selected events have an unambiguously tagged photon and 

a definite particle interaction in the proton detector with interpretable x  and y 

co-ordinates. Each data set contained both prompt region and random region 

data. There were data sets for both target-full and target-empty runs.

The final data reduction and angle-energy binning now proceeded together. 

Two passes were made through each data file. The first pass selected events in 

a narrow time window around the prompt peak and the second pass accepted a 

random  sample in a rather wider time region. The data was binned according 

to the proton emission angle, 9, in the centre of mass system, which was 

calculated from the observed laboratory angle and the known photon energy. 

The 9 limits were 0 ,1 0 ,2 0 ... 180°. The azimuthal limits ((f)) were dependent 

on the detector orientation and were set differently for each 9 bin at each 

detector orientation. The angular bins therefore formed rectangles in 9 ,  <f> 

space for which

d n ( 9 1, 9 2' J l ,(j)2) = W>2 -<M(C°S01 -COS02) (5.7)

The <f> limits were designed to cut out the top and bottom edges of the proton 

detector where the detection efficiency was uncertain. The 9 range was unre-
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stricted. It was, however, understood that the forward and backward edges 

of the detector would not generally correspond to the limits of an angle bin. 

The 6,<j> rectangle described above does not, in fact, correspond to a sharply 

defined region of the proton detector surface. The edges are ‘softened’ by the 

variation in the energy of the tagged photons. The finite angular resolution 

of the system will also lead to smearing effects between neighbouring angu­

lar bins. These effects were incorporated into the Monte Carlo acceptance 

calculation.

The energy binning is done automatically, since the six ladder sections 

each cover a ~  4 MeV range of photon energy. Two photon final energy bins 

were created by adding the subfiles in groups of three. Using the standard 

spectrom eter magnet currents and an electron beam energy of 183.5 MeV 

the energy bins were calculated to be [67] 133.0 — 145.8 MeV and 145.8 — 

158.3 MeV .

5 .5  B ack grou n d  S u b traction

At this point in the analysis there were 12 angular distribution histograms 

corresponding to each original data file, 6 for the prompt events and 6 for 

the equivalent random samples. In addition, there were corresponding sets of 

histograms for the target empty files. The background subtraction is done by 

adding and subtracting the histograms with appropriate normalisation con­

stants. If a histogram is labelled as H(p, f  , i , j )  depending on whether it is 

prom pt-p (random-r), full cell-/ (empty-e), TDC * (1-6) and file j  then the
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subtraction procedure can be summarised as follows.

  ̂ 3 ' o

X^ [H(Pi f i h j )  ~ a iH(r, — (3 X^ [-^(Pj e? *»/) ~ &iH{r, e, * ,/)]
3 i = 1  j '  i = 1

(5.8)

and similarly for TDCs 4-6. The a,- are given by the ratio of the lengths 

of the prom pt and random regions defined on the spectrum of TDC i. The 

constant j3 is defined as the ratio of the total target-full electron flux to the 

to ta l target-em pty flux.

It was necessary to adopt a different procedure in order to treat the back­

ward angle data. During the backward angle empty-target runs the tagging 

efficiency dropped by a factor of two. Inspection of the proton angular dis­

tributions also indicated that the the quality of the beam had been severely 

degraded and this data proved to be unusable. Some of the target-full data 

files were similarly affected. The remaining files were analysed in the standard 

fashion in order to produce kinematic correlation spectra similar to figure 5.6 

a. The background under the peak was assumed to have a linear slope and a 

background subtraction figure was calculated. The spectrum integration was 

cut off at lOMeV below the peak and the Monte Carlo correction for the 

reaction tail added as in the previous case.

5 .6  N o rm a lisa tio n

5.6 .1  T he Cross Section Formula

The yields obtained within angle-energy bins must be normalised with respect 

to solid angle, beam flux, target thickness and detector efficiency in order to 

produce the double differential cross-section ^  ^  yie^  correspond­
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ing to the datum  point o{Ei,6j) is defined as Yij then the cross-sections are 

defined as follows.

o{Et , t s) =  (5-9)<Pi€rAOjPjv
where

• <pi is the electron flux corresponding to photons in energy band i.

• eT is the tagging efficiency for photons in energy band i. (The photon 

flux is given by eTp )

• A Qj is the nominal solid angle of the 6(f)  bin j .

• Piv is the effective area-density of target nuclei.

• £{j is the Monte Carlo calculated detector efficiency and acceptance cor­

rection.

• CKi is the correction for events discarded because of multiple ladder fir­

ings.

5.6 .2  E lectron  F lux

The electron flux is recorded on 12 free-running scalers. 6 scalers integrate 

the flux corresponding to TDC sections 1-3 (i.e. E1 =  145.8 — 158.3MeV ) and 

similarly 6 scalers record the flux for TDCs 4-6 .{E^ — 133.0 — 145.8MeV ) 

The scaler input is divided down by a factor of 219 to prevent overflows so the 

flux is given by

ip = od219 scaler(n) (5.10)
n ~  1

Where cud is a correction for dead time in the scalers. The ladder pulses are 

initially 12 ns long but dispersion in the signal cables results in their becoming
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25 ns  long at the scalers. This is comparable with the intrinsic dead time of 

the scalers which are rated at 40 MHz. For a given dead time td the observed 

rate  k  and the true rate ty i  are related as follows

1 k
~  = -  = e~mTD (5.11)
old m

Using Td — 25 ns the above equation may be solved for m  with the following 

results.

a D = 1.02 (backward and middle angles , k ~  107 s_1) 

a D =  1.008 (forward angles , /c — 4 x 106 s-1)

5.6 .3  Tagging Efficiency

The tagging efficiency was measured at the beginning and the end of the 

experiment and also at the times when the proton detector was moved to 

a new position. The efficiency measurements (figure 5.7) averaged over the 

whole energy range are consistent with a mean value of (0.65 ±  .01) . The 

Monte Carlo prediction was 0.659 . The predicted values for the two energy 

bins were 0.653 and 0.671 for the 140 and 150 MeV bins respectively. The 

values used in normalising the cross-section were (0.64 ±  .01) and (0.66 ±  .01) 

respectively. Figure 5.7 also shows the file-by-file ratios of the ion chamber 

scaler to the ladder scalers. The ‘standard’ value changed from ~  32 to ~  182 

because the sensitivity range of the ion chamber electrometer was changed. 

The sudden change from ~  32 to -  16 remains unexplained however. These 

were the backward angle target-empty files which were discarded as described 

in the last section. The ion chamber/ladder ratio was otherwise constant to 

± 1% .
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5 .6 .4  Target D ensity

The density of target nuclei per unit area, p^, is given by the following formula

where is the Avogadro constant, M moi is the molar mass of deuterium, t 

is the effective target thickness, (see chapter 4) and p' is the effective density 

of the deuterium liquid, (see appendix D). Taking t  =  3.07cm and p' =  ■ 

(0.153 ±  0.005)p cm 3 then p^  =  (1.41 ±  0.05) X 1023cm-2.

5.6 .5  M ultip lic ity  Corrections

The analysis of the loss of events caused by multiple ladder hits is given in 

appendix E. Essentially, the probability that a tagged event is not affected 

by a random  coincidence is the probability that a time gate triggered by a 

true tagging electron contains 0 random electrons. If the random electron time 

distribution is described by a Poisson distribution then the required correction 

is

where N  is the mean electron rate incident upon a group of FPD channels 

served by a TDC and t  is the coincidence gate width. Taking the gate width 

as 58 ns the corrections are as follows.

(5.12)

[/>(0,JV7-))-1 =  eWr (5.13)

140MeV 150MeV mean rate
fwd angle 0.95 0.95 6.6 x 105
mid angle 0.90 0.91 1.6 x 106
bwd angle 0.90 0.91 1.6 x 106

5 .6 .6  S ystem atic  Errors

The systematic errors are estimated as follows.
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ta g g in g  efficiency The continuous relative tagging efficiency monitor was

constant to ±1% as were the periodic measurements of the absolute 

efficiency.

x- The horizontal calibration matched the model prediction to

within ~  1 cm in 100. i.e. there is an associated solid angle uncertainty 

of ±1%. Of course, the model itself could be inaccurate.

y -  ccxlcbfzdxon The vertical position calibration is uncertain at the level of 1 

part in 40. i.e. ±2.5%

d e te c to r  p o s itio n  An error of ±5 mm in the detector to target distance 

would result in a solid angle error of ±2%

ta r g e t  d en sity  The uncertainty in the determination of the target density 

was estimated to be ±3%. This refers to the offline measurements made 

after the experiment. In order for this data to be relevant it must be 

assumed that the conditions were sufficiently similar to those of the 

experiment.

d e te c to r  efficiency The most significant detector efficiency corrections are 

due to inelastic reactions undergone by the protons in the scintillator. 

The uncertainty in the corrections is estimated to be ±2%

If all these systematic uncertainties are added in quadrature then the over­

all estim ate of the systematic error is of the order of 5%.
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5 .7  C ross S ection s

The angular differential cross-sections are given in tables 5.1 and 5.2 and dis­

played in figure 5.8 . The values are quoted both with and without the Monte 

Carlo efficiency corrections. The calculated efficiency factors represent the 

fraction of D(^,p)  protons belonging to a particular angle-energy bin which 

satisfy the binning conditions. Events can be lost because the reconstructed 

proton angle or energy is wrong. On the other hand, the apparent efficiency 

can be increased if events are wrongly ascribed to the data bin. Generally, 

however, the net leakage of events from one bin to its neighbour will be small.

The angular distribution data comprises three overlapping sets of points 

corresponding to the forward, middle and backward angle proton detector 

positions. The three data sets are distinguished in figure 5.8 by the symbols 

used. The forward angle points are represented by circles, the middle angles 

by squares and the backward angle data by triangles. This convention is 

observed throughout the discussion of the results.

Most of the calculated efficiency factors lie between 0.85 and 0.95 but 

several of the points lying at the extremes of the angular range seen from 

each detector position require a very much larger correction. This is because 

the end of the physical detector system only covers a fraction of the solid 

angle subtended by the software defined 0 -  <j> angular bin. Conversely, the 

efficiency factor associated with the 135 point in the mid-position data  set 

is almost unity. In this case the loss of events due to nuclear interactions 

and external energy losses is cancelled by the excess events which are wrongly 

ascribed to this region of the detector as a result of the nonlinear position 

response towards the ends of the E blocks. The angular bins were chosen so
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as to avoid the edges of the detector as much as possible. Therefore the most 

im portant cause of detector inefficiency is nuclear inelastic scattering in the 

scintillator. This effect becomes more important at higher proton energies. 

This is in keeping with the general trend of the efficiency factors which become 

smaller towards more forward angles. The observation that the Monte Carlo 

predictions give a reasonably good account of the efficiency corrections even 

when they are very large gives cause for confidence in their application to the 

m ain body of data.

The errors quoted in the tables are mainly the raw statistical errors as­

sociated with the reaction yields after the subtractions have been performed. 

The exceptions are the backward angle data points which are quoted with an 

additional error of 3% associated with the background subtraction. Similarly, 

the mid-angle 135 °point has been ascribed an error of 3% related to the un­

certainty in the detector position response function towards the extreme end 

of the scintillator.

The calculated efficiency corrections are mean values calculated from a very 

large number of Monte Carlo histories. The variances associated with these 

estimates of the mean are very small. The estimated errors associated with 

the calculation are < 0.5%. However this only represents the errors involved 

in the sampling of the model distributions included in the calculation. The 

errors inherent in the use of the approximate model response functions may 

be ra ther larger than the sampling errors.
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Ocm{deg) cr(fj,b/sr)

25 0.957 ±  0.03
35 4.21 ±0.08
45 4.18 ±0.08
55 4.36 ±  0.08
65 4.38 ±0.08
75 4.31 ±0.08
85 4.18 ±0.08
95 4.18 ±0.08
105 0.325 ±  0.009

55 2.99 ±0.07
65 4.93 ±  0.09
75 4.39 ±  0.08
85 4.36 ±  0.08
95 3.87 ±0.08
105 3.48 ±0.08
115 3.48 ±0.08
125 3.52 ±0.08
135 2.96 ±0.12

105 3.65 ±0.15
115 3.62 ±0.15
125 3.51 ±0.17
135 3.11 ±0.15
145 2.92 ±0.15
155 0.777 ±0.051

efficiency ®corr(tib/sr)

0.299 3.20 ± 0.10
0.858 4.91 ± 0.09
0.880 4.76 ± 0.09
0.899 4.86 ± 0.09
0.876 5.00 ± 0.09
0.910 4.75 ± 0.09
0.929 4.51 ± 0.09
0.941 4.45 ± 0.09
0.121 2.67 ± 0.08

0.575 5.19 ± 0.01
0.952 5.18 ± 0.09
0.933 4.71 ± 0.09
0.932 4.68 ± 0.08
0.933 4.15 ± 0.08
0.934 3.72 ± 0.08
0.937 3.71 ± 0.09
0.946 3.73 ± 0.09
0.998 2.97 ± 0.12

0.871 4.18 ± 0.17
0.934 3.88 ± 0.16
0.947 3.71 ± 0.17
0.918 3.38 ± 0.16
0.880 3.32 ± 0.17
0.232 3.35 ± 0.22

Table 5.1: Angular differential cross section without Monte Carlo efficiency 
corrections (a) and including corrections (ocorr): E ,Y =  133 — 145MeV
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@cm[d/eg} cr(fj,b/sr)

25 0.860 ±  0.03
35 3.87 ±0.09
45 4.09 ±  0.09
55 4.28 ±  0.09
65 4.29 ± 0.09
75 4.08 ±0.10
85 4.11 ±0.09
95 4.17 ±0.09
105 0.378 ±  0.01

55 2.34 ±0.06
65 4.66 ±  0.09
75 4.39 ±0.08
85 4.22 ±0.08
95 3.96 ±  0.08
105 3.61 ±0.08
115 3.46 ±  0.08
125 3.32 ±0.09
135 2.96 ±0.13

105 3.57 ±0.18
115 3.70 ±0.18
125 3.61 ±0.20
135 3.08 ±0.18
145 2.85 ±0.19
155 0.918 ±0.091

efficiency &corr(lib/sr)

0.299 2.87 ± 0.12
0.858 4.62 ± 0.11
0.880 4.65 ± 0.10
0.899 4.76 ± 0.10
0.876 4.84 ± 0.01
0.910 4.47 ± 0.10
0.929 4.42 ± 0.10
0.941 4.42 ± 0.12
0.121 3.12 ± 0.09

0.575 4.07 ± 0.11
0.952 4.90 ± 0.09
0.933 4.71 ± 0.09
0.932 4.53 ± 0.09
0.933 4.23 ± 0.08
0.934 3.87 ± 0.08
0.937 3.70 ± 0.09
0.946 3.51 ± 0.09
0.998 2.97 ± 0.13

0.871 4.10 ± 0.20
0.934 3.97 ± 0.20
0.947 3.82 ± 0.21
0.918 3.35 ± 0.20
0.880 3.25 ± 0.21
0.232 3.95 ± 0.20

Table 5.2: Angular differential cross sections without Monte Carlo efficiency 
corrections (o) and including corrections (oC0rr): E 7 =  145 — 158MeV
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6 .1  F in a l C ross S ection s

The final cross-sections are given in table 6.1 . Only those data  points for 

which the calculated efficiency correction is less than 15 % have been re­

tained. Figure 6.1 shows the data plotted in comparison with the other recent 

measurements from INFN and TRIUMF. The three overlapping angular sub­

sets which make up the angular distribution are each shown in full. This 

means th a t there are two data points at most of the angles in figure 6.1 . It 

was decided to present the data in this form because the three measurements 

are individually normalised and the stated 5 % systematic error is applicable 

independently to each data set. There exists, therefore, a systematic uncer­

tainty not only in the absolute magnitude of the cross-section but also in its 

angular distribution. The three partial angular distributions are in agreement 

to within the errors quoted although the backward angle data appears to be 

systematically 6 % in excess of the middle angle data. The 35°point at 140 

MeV appears to be anomalously high. This may be due to contamination by 

the sharply forward peaked atomic background, although if this were the case 

it would affect the corresponding 150 MeV data point to a similar extent.

6 .2  C om p arison  w ith  R ecen t M ea su rem en ts

If the present result is qualitatively compared with previous work it is ob­

served th a t the peak around middle angles in the angular distribution is less 

pronounced than that in the other measurements. The present data is lower in 

the middle of the distribution and higher at forward and backward angles. In 

order to place these comments on a more quantitative basis the various data
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Ocm(deg) o(fj,b/sr) o(jj,b/sr)
133 -  145MeV 145 -  158MeV

35 4.91 ±  0.09 4.62 ±0.11
45 4.76 ±0.09 4.65 ±0.10
55 4.86 ±  0.09 4.76 ±0.10
65 5.00 ±  0.09 4.84 ±  0.01
75 4.75 ±0.10 4.47 ±0.10
85 4.51 ±0.09 4.42 ±0.10
95 4.45 ± 0.09 4.42 ±0.12

65 5.18 ±0.09 4.90 ±  0.09
75 4.71 ±0.09 4.71 ±  0.09
85 4.68 ± 0.08 4.53 ±  0.09
95 4.15 ±0.08 4.23 ±  0.08
105 3.72 ±0.08 3.87 ±0.08
115 3.71 ±0.09 3.70 ±  0.09
125 3.73 ±  0.09 3.51 ±  0.09
135 2.97 ±0.12 2.97 ±0.13

105 4.18 ±0.17 4.10 ±0.20
115 3.88 ±0.16 3.97 ±  0.20
125 3.71 ±0.17 3.82 ±0.21
135 3.38 ±0.16 3.35 ±  0.20
145 3.32 ±0.17 3.25 ±0.21

Table 6.1: Final cross-sections for En =  133 -  145MeV
E 1 = 145 -  158MeV
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Figure 6.1: Comparison of the results of the present experiment with other 
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sets were parameterised in terms of a series of Legendre polynomials P, (cos 9).

do *
—  =  2^AiPi(cos9)

i= 0

This parameterisation has the advantage that the total cross-section is given 

by

ot01 = 47tA q

The coefficients calculated from a least squares fit are given below. The an­

gular distributions included in the comparison at 140 MeV are those of INFN 

and TRIUM F. In addition to the angular distribution data, all three data 

sets include 0 °and 180 “points extrapolated respectively from the Mainz 1976 

and Bonn 1983 measurements (see table 2.1 for details). Figure 6.2 shows the 

present 140 MeV data plotted over the fit to the comparison data set.

coeff 140MeV 150MeV 140MeV 
this exp this exp comparison

A 0 4.20 ±0.02 4.10 ±0.02 4.20 ±  0.02
Ai 1.12 ±0.04 1.03 ±0.04 0.95 ±  0.03
A 2 -0.84 ±0.05 -0.82 ±0.05 -1 .42  ±0 .04
A 3 -0 .42 ±  0.05 -0.28 ±  0.05 -0 .36  ±  0.05
A 4 -0 .33 ±0.05 -0.23 ±0.05 -0 .08 ±  0.05

At 140 MeV the A 0 values, and therefore the inferred total cross-sections, 

are similar. The contributions to the angular distribution made by the other 

Legendre coefficients can be seen from figure 6.3 where the first four Legendre 

functions are plotted. The A\ coefficients are similar to within 20 %, These 

multiply the Pi(cos0) function which produces a slope from forward down 

to backward angles. The A 2 coefficients are negative and the value for the 

comparison data set is the greater by 70 %. This is primarily due to the 

more obvious peak in the middle angle region. The As values differ by 17 %
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and are again negative. This parameter governs the forward angle bias of the 

maximum value of the angular distribution.

Both the INFN and the TRIUMF experiments quote systematic uncertain­

ties of the order of 5 % which is the same as that estimated for the present 

measurement. However, from the information available it seems tha t the sys­

tem atic corrections in the TRIUMF experiment are significantly larger than 

those of the present one. For example the reaction tail in the deuteron detector 

was estimated to give rise to a 34 % efficiency correction and the corrections 

for the efficiency of the Cerenkov detectors were in some cases as large as 20 %. 

In comparison, the detector efficiency corrections applied in this experiment 

ranged from 14 to 5 %.

The INFN D{^,p) measurement lacked the kinematic overdetermination 

which proved to be very valuable for the suppression of background in the 

present experiment. This was because the bremsstrahlung photon contribu­

tion was not subtracted from the annihilation photon yield and therefore the 

experiment was not actually performed with a monoenergetic beam. The 

acceptance and efficiency corrections for the INFN detector system, which 

consisted of an array of small individually collimated telescopes, may also 

have been rather more complex than that for a large solid angle position sen­

sitive detector. Furthermore in both of the above mentioned experiments the 

m ethod of obtaining the absolute cross-section was more indirect than tha t 

used with a tagged photon system. For these reasons it may be tha t the 

5 % uncertainty claimed in the case of this measurement represents a more 

conservative estimate than the similar figure quoted in the other experiments.

However, even allowing for possible systematic discrepancies in the angular
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distributions, the total angular differential cross-section data set derived from 

recent experiments lies within a smoothly varying band of relative width ~  10 

%.

6 .3  C om p arison  w ith  R ecen t C a lcu la tio n s

The photodisintegration of the deuteron has attracted a great deal of renewed 

interest from theoretical workers in recent years and there are now several 

model predictions available with which to compare the present data. The 

latest versions of the calculations of several theory groups are presented in 

figure 6.4 in comparison with the results of this experiment. The total data 

set is displayed similarly in figure 6.5.

It is seen that none of the available calculations gives a fully satisfactory 

account of the differential cross-section. The predictions of Wilhelm, Leide- 

m ann and Arenhovel (WLA) [70] and Jaus and Woolcock (JW) [21] appear to 

be in closest agreement. Cambi, Mosconi and Ricci (CMR) report tha t their 

treatm ent of the N  -  N  interaction is only valid below the pion threshold and 

th a t their present calculation may not be reliable at 140 MeV. [69]

The potentials most frequently used in modern calculations are the Bonn 

[15] and Paris [24] models. Both potentials use the well established one pion 

exchange mechanism (OPE) for the long range part of the interaction, (i.e. 

> 1 . 5  fm). This gives a satisfactory account of the static properties of the 

deuteron, in particular the value of the electric quadrupole moment QD. In 

fact, although the two models predict different D-state probabilities for the 

deuteron wave function (Bonn - 4.25 % ; Paris 5.75 %) the value of QD is 

dependent on the value of the S/D ratio at large radial distances where the
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OPE is the dominant interaction.

The shorter range parts of the two potentials are rather different however. 

The Bonn approach is to approximate the two and three pion exchange inter­

actions in terms of 7r,p, o and u> mesons. For example, the exchange of two 

correlated pions in a relative S state or P state is parameterised as the ex­

change of a <t(0+,0) meson or p[I - , 1) meson. The Bonn model is not purely a 

one boson exchange potential however. Uncorrelated 2tt exchange is included 

explicitly and there is a 7 rp exchange mechanism in addition to the w exchange.

In contrast, the short range part of the Paris potential is constructed from 

dispersion relations taking into account explicitly all information on the 2n 

and part of the 37t exchange contribution. In either approach the medium and 

short range potential becomes momentum dependent. This nonlocal short 

range interaction is intimately connected with the excitation of virtual As 

in the nucleus. This may be where a large part of the discrepency between 

different calculations arises since there is no consensus of theoretical opinion 

as to the best way to treat the propagation of the A in the nucleus.

The most common approach to the photodisintegration problem is to per­

form the calculation in co-ordinate space using a multipole expansion of the 

electromagnetic transition operator. At the energies presently under consider­

ation it is sufficient to include only those multipoles up to I 4. The exchange 

effects in the electric multipoles are dealt with using the Siegert theorem by 

which the total current operators are expressed in terms of the better known 

charge density operators. This approach has been refined by several authors, 

in WLA [70], CMR [19] [20] [69] and JW [21]. It is now standard practice to 

include relativistic corrections to the one body charge density operators and
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to include a non vanishing two body contribution resulting from exchange 

effects. This last effect was found to improve the agreement with the 0°data 

when calculated with pseudovector 7rJV coupling and to have the opposite 

effect in pseudoscalar coupling (CMR). The exchange contributions to the 

magnetic transitions must be put in explicitly and at the moment the pion 

and A currents are included in the static approximation with varying levels of 

relativistic correction. Non relativistic wave functions are also used and there 

are frame dependent corrections to the amplitude which must be considered 

(JW ). The Paris potential has been used by all of the above authors.

An alternative approach has been pioneered by Laget [12] [68] who uses a 

momentum space expansion of amplitude into S-matrix diagrams represent­

ing the direct nucleon, meson exchange and nucleon rescattering processes. 

The calculation uses a low energy expansion of the nuclear electromagnetic 

currents which is Lorentz invariant to O The interaction is explicitly

gauge invariant in the latest version of the calculation and consistent wave 

functions derived from the Paris potential are used. All partial waves are im­

plicitly included in the interaction and the pion nucleon rescattering has been 

calculated for S, P and D waves in the final state.

A recent calculation by Ying, Henley and Miller (YHM) [71] largely fol­

lows the prescription of JY^ but substitutes the Bonn potential for the Paris 

potential. The motivation was to determine whether the smaller D-state con­

tribution contained in the Bonn-derived deuteron wave function would lead 

to a smaller forward angle cross-section in better agreement with experiment. 

No significant effect was found at 0 °but the angular distribution was greatly 

changed (figure 6.4). YHM found that by arbitrarily increasing the contribu­
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tion of M l transition by a factor 2 the agreement of the angular distribution 

at 140 MeV was very much improved. This sensitivity to the M l transition 

may be a reflection of the importance of the treatm ent of A excitations even 

at energies well below the resonance. The possibility arises that the photo­

disintegration reaction will provide a tool for the comparison of the different 

models of the short range N -N  interaction. It is to be regretted, however, 

th a t YHM did not repeat the calculation using the Paris potential in order to 

confirm tha t the choice of potential is indeed the source of the discrepency. On 

the other hand, JW suggest that the total short range 2tx exchange current 

contribution to the process will be small since the p exchange part (corre­

lated 27r exchange) is small. Nothing certain can be said, however, unless the 

different interactions are employed in directly comparable calculations util­

ising the same theoretical techniques. It would be particularly useful if the 

different treatments could be compared at various stages of completeness in 

order to identify the sources of the discrepencies. The non relativistic impulse 

approximation calculation will probably display a sensitivity to the choice 

of potential because of the different D-state probabilities. This has already 

been remarked upon in the case of deuteron electrodisintegration near thresh­

old [72]. The available relativistic impulse calculations are known to include 

varying dynamical and kinematical corrections such as, respectively, charge 

density terms and frame dependent effects. The next step would be to include 

meson exchange effects, perhaps subdividing this into the dominant one pion 

exchange current and then the multi-pion and heavier meson part. Finally the 

A resonance excitation and propagation should be included. This is where the 

largest theoretical uncertainties appear to lie. Unfortunately, this program of 

theoretical investigation may be unfeasable because consistent definitions of
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the various classes of current cannot be identified in such a way as to permit 

a direct comparison of the various models. Indeed it may be tha t different 

means of implementing the gauge invariance constraint legitimately result in 

different versions of the one body and MEC currents yielding different results. 

The most obvious example of this is the use of Siegert operators in the electric 

multipole transition matrix elements.

6 .4  C on clu sion s

The experiment has successfully achieved its stated aim, in tha t the angular 

differential cross section for the two body photodisintegration of the deuteron 

has been measured to an overall accuracy of ~  6 %.

The performance of the experimental apparatus has been generally in keep­

ing with its design specification. In particular, the use of the tagging technique 

has perm itted the photon beam intensity to be determined to within ±1 %. 

Naturally, in hindsight, there are improvements which could be made to the 

apparatus. The acceptance of the detector system would have been better 

defined if the area of the AE i detectors was sufficiently reduced so as to pro­

vide collimation for the E detectors behind. Such a physical restriction on the 

effective solid angle would provide a valuable check on the software defined 

detector acceptance.

The design of the target could also be profitably modified. The Max Planck 

Institu te  group at Mainz has successfully operated a liquid D2 target screened 

by an envelope of cold D2 g&s [73]. The gas provides additional cooling by 

convection and effectively prevents boiling in the liquid and thus eliminates 

one of the largest normalisation corrections in the present experiment.
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Figure 6.4: Comparison of the results of the present experiment with theoretical 
predictions for the process D(ri,p)n.
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The largest detector efficiency correction was due to the effects of the in­

elastic nuclear reactions undergone by the protons in the scintillator material. 

The Monte Carlo corrections for this effect were based on a rather old sur­

vey of 12C(^y,x) reaction data [62] and it may be that a compilation of more 

m odern cross-section measurements would be useful.

The deuteron photodisintegration process remains an im portant challenge 

for both  theorists and experimentalists. The present measurement represents 

a significant improvement in the status of the empirical knowledge of the re­

action within one rather narrow energy band. Reliable data remains rather 

sparse at most other energies, however, and there have been no measure­

ments of the 0 °and 180 “cross-sections performed with monochromatic photon 

beams. One of the most significant experimental developments to be expected 

in the near future will be the advent of intense polarised photon beams avail­

able at either laser backscattering or photon tagging facilities. This will allow 

access to a range of polarisation observables which will provide independent 

constraints which the theories must satisfy in addition to the angular differ­

ential cross-section.

The theoretical discrepencies at 140 MeV are rather larger than the exper­

imental inconsistancies. Work is urgently needed to establish the extent to 

which the differences between the theoretical predictions are due to genuinely 

different physics input and to what extent they can be blamed on the technical 

details of the calculations. If these uncertainties can be clarified there is then 

a real prospect that one may be able to use the deuteron photodisintegration 

reaction as a reliable benchmark against which to measure the validity of the 

increasingly sophisticated models of the N -N  interaction.



A ppendix  A  

T he Dirac Equation

D efin ition s

The Dirac equation, which is the equation of motion for a spin-- particle, can 

be written

i t — [c^  ' (— + /?rac2j 4>{x) (A .l)

where a  =  (cq, a 2? ^ 3) and P are 4 x 4  Hermitian matrices satisfying

{ai,a j ]+ = 2 S{j, [«»,/?]+ =  0, p 2 =  1 (A.2)

In the Dirac-Pauli representation a and ft are given by

* - ( ”, ? )  ia i )

Where the are the Pauli matrices. The Dirac equation possesses plane wave 

solutions of the form

= « » “ *• { 7 M } ( A -4 )

1̂ 2
where p =  (Ep,p) and Ep = + (m 2c4 + c2 |p|2) . u r(p) corresponds to  a par-

tid e  of momentum p and positive energy Ep and vr(p) to a particle of momen­

tum  - p  and negative energy - E p. The index r =  1,2 labels two independent
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solutions for each four-momentum p which can be chosen to represent the spin 

states of the particle. With the following definitions for the two-spinors

=  -  I 1 oXi =  X2 =  y 0 J , X2 = Xi =  y t  J (A.5)

the positive and negative energy solutions of the Dirac equation can be written

-  * ( b A * .  ) • >■» -  " ( Bfx f X; )  M

where

A = ( EP + mc'1\ 112 B_= ___£__  fA ?)
~ \  2mc! J ’ Ep + mc» 1 ' ’

(  \P\ \  •The behaviour of these solutions for non-relativistic velocities —  < 1  is
\ m c  )

readily seen. For the positive energy solutions ur, the upper two components 

are very large compared to the lower two, while for the negative energy so­

lutions vr it is the lower two components which dominate. In particular, the 

positive and negative energy solutions for a particle at rest are

M S )  =  (  x0r )  ■ M S )  =  (  x°, )  (A.8)

In teraction  w ith  the EM  Field

In the presence of an electromagnetic field the Dirac equation for a charged 

particle is modified by making the following substitutions

ifi—------ > ih —- — e$(a:), —ihV  > —i%V — ~A(x)  (A.9)
dt ot c

Equation A .l now takes the form

hfciL  +  c5 . (iftV) -  /3mc2J j>(x) = e ($  -  S  ■ A)  (A.10)
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This inhomogeneous form of the Dirac equation corresponds to the existence 

of an interaction Hamiltonian of the form

H in t  =  e  ( t f i+ t f -  tf)+ a tf )  • a )  ( A . 1 1 )

in four-vector notation Hint can be rewritten as where

=  (pc, J)  =  e (tf)+rtf>,tfj+atfj} (A.12)

and

A „ = ( < M )  (A .13)

The following definitions

7° =  /3 q1 =  (3 ol tf) =  ^ +7° (A.14)

allow this result to be written in an explicitly covariant form:

J? = eifantf) (A.15)

Thus the interaction Hamiltonian couples the charged current to the elec­

tromagnetic field. Using the Dirac equation it can be shown tha t the current

Jp is conserved, i.e.

—  -  V  • J  =  0  (A.16)
dt

Substituting in the explicit form for tf) defined above the following are obtained

= =  -  (A.17)
me m

Factors of ti and c have been retained for for the sake of clarity in this ap­

pendix. Thoroughout the rest of the thesis units such tha t h = c = 1 have

been used.
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A . l  T h e F oldy-W outhuy sen  T ran sform ation

The Foldy-Wouthuysen transformation is a procedure by which the large and 

small components of the Dirac spinor representing a particle may be decoupled 

by means of a unitary transformation. Thus the spinor for a positive energy 

particle will be a four-spinor whose lower two-spinor is identically zero. This 

is achieved by finding a representation of the Hamiltonian which is free of 

operators which couple the large and small components in the four-spinor. 

These are so-called ‘odd’ operators. Those which do not couple the large and 

small components are termed ‘even’. For free particles such a transformed 

Hamiltonian is obtainable in closed form. However, in the case of interacting 

particles it is not possible to eliminate all the odd operators in a finite series 

of transformations. Instead, a series of transformations may be performed, 

the result of which is to remove all odd operators to O , then O

where fie is the even and U0 the odd operators. The rest mass term  (3m is 

assumed to be dominant. The general prescription is to choose U in

t i l e  I c b l l i t  U i  lb  bU I C i l lU V C  d l l  U U U  u p U C i u m o  UO v—' 5 uaxv-xa ^

etc. For interactions with fields that are weak compared to me2 the result 

converges rapidly.

Writing the Hamiltonian as

H  =  (3m +  n e +  n 0 (A.18)

H' = eiVHe~iu (A.19)

to be
(A.20)

thus
(A.21)
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where T„ =  H  and T„ =  [iU,Tn-i\ for all Tn,n  > 1. Retaining terms to

O I —r ) we have 
,m l

h ' = /?m + ne + + A  [n„ n.] -  [n0> [n„ n, ■Ul (A.22)
2 m  L U J  " " C J  8 m 2  i - - « i  » . j j  3 m 2

f  — odd operators may be
\ m l /

removed by a similar transformation, where U is replaced by U':

The Hamiltonian is now even to O ( — ) . The O
m

U' = — p 
2m 2m [n0, n*

3m2
0: (A.23)

To order O
m2 ! the non-relativistic Hamiltonian H ^ r is given by

Hnr  — fim +  f i e +  - ~ ^ 2 1 ^ ° ’ ^ e ll (A.24)

In the case of the electromagnetic interactions of a particle with an anomalous 

magnetic moment the following replacements may be made

n 0 

n , =

I K ,
a • (p — eA) H (3a • E

2m

2m
(3a • B

(A.25)

where A  and $  are the vector and scalar e.m. potentials, E  and B  are the 

electric and magnetic fields and k  is the anomalous magnetic moment. Making 

these substitutions H ^ r  becomes

HNR = m + e$ + ^ ( p - e A ) 2- ( ^ 5 - B - “- ^ o - E x { p  + e A ) - ^ —^-V-E2/x — e 2/i — e,
2m 8 m 2

(A.26)

where fi — c -+■ /c is the total magnetic moment.
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Electrom agnetic Current 
C onservation

B . l  S ie g e r t’s T h eorem

The conventional approach to photodisintegration calculations uses an expan­

sion in electric and magnetic multipoles of the configuration space m atrix 

element. Siegert’s theorem may be used to express the leading order term  of 

each electric multipole transition operator in terms of the one-body charge 

density operator [23].

The general form of the matrix element for a photonuclear reaction is

(/| f  eA  ' . J(S)dsx\i) =  M { f \ T ( k „ J ,  A)|x> (B.l)
J  y C0^

Where T(£7, J , A) is a transition operator which may be expanded into electric 

and magnetic multipole terms as follows.

T { k „ J ,  A) = [rjf ( k , J , X )  + XT ^ s(k„ J,  A)] (B.2)
L

where

T l i ]( kn , J , X )  = I f  d 3 x { V  x [ M ^ Y l l x ^ x) ] }  • J { x )  (B.3)
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— J d X ^ J i { k 1x ) Y i L x { ^ x ) ^  ' J { x )  (B-4)

where the incoming photon momentum k1 has been assumed to be parallel

to the 2-axis. Ji(k^x) are spherical Bessel functions and Y lla(^z) are vector 

spherical harmonics.

The electric multipole operator may be split into two parts.

J ,  A) = T f  !(£,, J ,  A) +  i f '( f e , ,  J , A) (B.5)

where

r f 1 J ,  >) =  ^  - f) /  d3xV

m[I/]
■*6

J(x )  

(B.6)

(k^ ,J ,X)  =  —j— 1 [  dsxk~xjL(k~x)YLJ n x) - J i x )  (B.7)
ixjL(L + l ) J

In the long wave approximation ,i.e. knx <C 1 over nuclear dimensions, Ta 

gives the dominant contribution to the electric transitions since T& is one order 

higher in (k^x). The term T]L1 may be transformed by partial integration and 

the use of the current conservation equation 1.22 as follows.

TlL^{ki,J,X) —> T fffc-pp , A) (B.8)

where

T'}L]{k„p,  A) =
k~JL (L  +  1)

H , J  d3xp(x) (1 + x — j  j i ( k i x ) Y LX( n z)

(B.9)

This relation is the exact statement of Siegert’s theorem expressing the trans­

verse electric multipole moments in terms of the longitudinal charge moments. 

In the assumption that interaction effects do not introduce many-body charge 

density operators p(x) may be set equal to p ^[x ) .
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B .2  T h e  T -R -K  S u m  R ule

The Thomas-Reich-Kuhn sum rule for the energy integrated E l  photoabsorp­

tion cross-section provides an example of the power of the Siegert approach.

The interest in sum rules stems from the fact that in summing over all 

the final states reached by some excitation operator one can evaluate the sum 

by using closure in terms of a ground state expectation value of a suitable 

operator which allows a simple interpretation in terms of the gross properties 

of the system without detailed knowledge of the excitation spectrum.

The E l  interaction of a spatially constant electromagnetic field E  with a 

system of nucleons may be written as:
Z

1
7T= 1

eE  •

=  eE-

N  z ^ Z  * Z A
A X* 4 L  ^ L  +  4 L  Xl/

A  r = l  A  ! / = l  A  i r = l  A  v = l

A  7T=1 A  V=1

(B.10)

where 7r stands for protons, v  for neutrons and X  denotes the position of 

the centre of mass of the nucleus. The term eZ E  - X  corresponds to the 

interaction of the entire nucleus with the electric field and leads to nuclear 

Thomson scattering. All Z  protons and N  neutrons contribute to dipole 

absorption with effective charges ea:

a
A

e for 1 < a  < Z  (protons)

?.e for Z + 1 < a < A  (neutrons)
A
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The integrated cross-section may be written in terms of a sum over transition 

probabilities to all final states:

f°° I 2
/ <rE1(EJdET = 2 « ' £ \ { f \ H ’snl\i) (B .ll)

J o  f

Assuming polarisation with the electric vector in the z direction the m atrix 

element is

=  ^ ( f \  £  ■ m  (B.12)

which can be rewritten in the Siegert form

=  ^ “ {/l [h , S x ■ D\ |t) (B.13)

or, evaluating the commutator,

/Ott
(f\Hfn]\i) =  h  r  (E ,  -  E<) (f \D . \ i ) (B.14)

1

Where D = E«=i D a = 1eax aS3(x -  x a). We require the square of this 

quantity and can expand it as a double sum over the nucleons a.

A  A

£  E  |< /|tfS K > |2 =  E  E  (El -  El) ( f \Dpz \i) (B.15)
f  f  a = l 0 = 1

Using D aH \ f )  =  Da\ f )E f  and (i\HDa =  Ei{i\Da this is transformed to:

1 E  E  E  {<!'l -  < * P « I/X /I  |t')} (B.16)
2  f  <*=1/3=1

Using closure, the sum over final states may be performed.

- E E  {(*1 D^ \ i )  -  \DH»H \ l*'» (B.17)
^ a=l /9=1

The commutator [Daz,H] may be evaluated as follows,

{Daz, H ] = e a {za,T} + [Daz,V} (B.18).
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Using \z ,pz} =  i this becomes,

M

Expression B .l7 now becomes,

A  A

_ E E  ________________ . ,
/  a = l /3=1 *

[ ^ > ^ 1  ~  1e«T7 +  (B.19)

{{z1eaPazr-D^ ^.D aa.p/(?2,|*)} +  -(fc'j \[DZ, V] ,D Z] |j) (B.20)

The cross terms a (3 vanish and, again using [z,pz] = i the terms a  =  0 

yield,

* 2 e2
2M  C“ _  2M

„jV2 Z 2 
^  ^

e2 Z1V 
2M ~ A

(B.21)

The sum rule may now be written in the form:

2?r2e2 N Z  , % iVZr°o 27r e NZ NZ
j o <?Ei(Ei)dE1 = (! +  « ) =  60—— (1 -f k) [MeV mb] .(B.22)

where

is an integral measure of the exchange and momentum dependent parts of 

the nuclear force (which do not commute with Dz). Since the operator is 

proportional to r2Vexc, the long range pion-exchange terms provide the domi­

nant contribution to k . Caution is required when comparing this result with 

experiment since the measured cross-section is integrated over a finite range 

of energies and contains contributions from other multipoles. However, it is 

true tha t o is dominated at low energies by E l  transitions and, in the case of 

the deuteron, decreases rapidly with energy up to ~  150 MeV . Therefore it is 

instructive to compare the measured cross-section integrated up to the pion 

threshold f  *' <rexPiD2 with that calculated using the normal one-body charge
r m „

density and a realistic N - N  potential, I oth,D2- The comparison is shown 

below in units of the classical sum rule, ( 30 MeV m b).[13]
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p 7Tb jj- ptn
Y.TRK =  1-52 j  ̂ oth(E^)d.E1 =  1.43 J  o ^ E J d E ^  = 1.35 ±  0.1

B .3  G au ge Invariance

All observable electromagnetic quantities may be expressed in terms of the 

electric and magnetic fields E  and B.  It follows from Maxwell’s equations 

th a t there exist scalar and vector potentials $(x ,t )  and A(x, t )  (which are 

not observables). However fixing E  and B  does not determine the potentials 

uniquely, since for an arbitrary function f ( x , t ) the transformation

A — ► A — V  {  (B.24)
c ot

leaves the fields E  and B  unaltered. This transformation is known as a gauge 

transformation. Invariance under such transformations is a fundamental re­

quirement of any observable (e.g. a matrix element) expressed in terms of 

potentials. In four dimensional notation the gauge transformation can be 

w ritten as

A ^ x )  — ♦ A ^ W  + d ^ f ix )  (B.25)

It can be demonstrated e.g. [25] that the conservation of electric charge follows 

from this gauge invariance property of the theory.

For any process involving external photons, the m atrix element M is of the 

form

X =  (B.26)

If the photon is described by

A"(x) =  < [ ^ - 4 e ± i k x  (B.27)
V
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then the gauge transformation

A*(x)  — ► A“(x) +  d“f{x)  with f(x)  =  F(k)e± ik x  (B.28)

implies

s »e± ik x  [Ej. ±  e±»'fca: (B 29)

Invariance of M under this transformation requires

K...Mp,,... =  fcS'-JV... — * * ■ — 0 (B.30)

i.e. when any external photon polarization vector is replaced by the corre­

sponding four-momentum the amplitude must vanish. For example, in the 

case of the free nucleon current J ** =  (/?, J ) , given in momentum space by

J  = e ^  + ~ S x k  + ° ( ^ - )  (B.31)
M  2 M  \ m 3 J v '

and
k ‘

p = e [2A -  8] +  S.O. + O ( i j )  (B.32)
8 M 2

Then the gauge invariance condition (to this order of approximation) is

w p - k -  J  = 0 + o ( ~ \  (B.33)

this is satisfied since
ph _  p2 2p • k +  k :

(B.34)
2M 2M K J

and k2 = u>2 is already O ( For  a one-photon amplitude such as this,
\ m 2J

the gauge invariance condition k^ is equivalent to the current conservation 

condition



A ppendix  C

M onte Carlo Sam pling of 
N on-U niform  
Probability  D istributions

Let P ( x ) be a normalised probability distribution describing the occurrence 

of x  over the range x\ —> x 2. The number of occurrences, n of the value x  are 

given by

dn(x) — P{x)dx  (C-l)

where normalisation implies that

J  dn = J P ( x ) d x  =  1 (C.2)

Values of x  can be chosen according to the distribution P(x)  using a random  

num ber sequence if a variable transformation x —► j3(x) can be made such 

th a t P((3) is uniform in (3. It is convenient to chose /? such tha t

f X2 dP = 1 (C.3)
J Xl

The distributions of points in x and P are related by

dn dn dp . .
P ^ = l x  = d p l x  [C A )'
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integrating this expression one has

’*2 dn

dn
However the distribution in (3 is uniform, (i.e. —  constant ) and one may

dp

choose —  =  1 which implies 
dp

1  = 1  ^

and the required transformation is

fi(x') =  f  P(x)dx  (C-7)
J X1

For this method to be of use it is necessary to be able both to perform this

integral and to invert the function F(x) = P'(x).



A ppendix  D  

Liquid D euterium  Target 
D ensity  M easurem ents

The normal operating condition of the target is one of dynamic equilibrium. 

The deuterium cell absorbs heat radiation, causing it to boil, while at the 

same time deuterium gas continually condenses on the refrigerator cold head 

and falls into the cell. The effect of the continuous boiling of the liquid is to 

reduce the effective target density.

A series of measurements were undertaken to determine the effective den­

sity of the liquid by measuring the pressure drop in a closed gas system of 

known mass as a function of the volume of the condensate in the cell, for 

this purpose the system shown in figure 3.17 was modified to include a low 

pressure D 2 reservoir of large and known volume in place of the high pressure 

tank and separate small buffer.

The mass of liquid in the cell can be expressed as the product of the volume 

in the cell v and its effective density p' . At a given point in the filling process 

the mass of liquid condensed is equal to the total mass of deuterium m the
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system less the mass of gas remaining. This can be expressed as follows

PV  P f dvp P { v ) . { v c ~ v ) \p v = M mol n -
RT* - IR J fp T RTr

or equivalently

Rp'v
M,mol

= nR  — P(v
] { k + L

dvP vc 1 P(v)v
p  T  T o  I  T o

(D .l)

(D.2)

where n is the number of moles of deuterium in the system, V  is the total 

volume of the system, vc is the volume of the cell, Tr is tem perature of the 

reservoir , Tc is temperature of the cell, R  is the universal gas constant, M moi 

is the molar mass of deuterium and P(v) is the gas pressure in the system. 

The integral over the variable vp takes into account the small amount of pipe 

P  where the gas temperature lies between the Tr and Tc-

writing the contents of the bracket in D.2 as

E = {s + /,
dvp vc

p~T~ + l b

one may express the total contents n in terms of the empty target conditions

nR = P{ 0)E (D.3)

assuming that the temperature distribution in the pipework does not change 

as the cell fills. Differentiating D.2 one obtains

Rp'
M-mol

dP_
dv Tc J + P(v)

Tc

equation D.3 can be used to eliminate P(v)

Rp1
M-moi

dP r v 1
E ------

dv To- Tc
P{ 0)£

Rp'v 
M m o l

E -
Tc J

- l

(D.4)

(D.5)

Taking the value of the gradient at the half full position as the average, S



Deuterium Target Density 183

one obtains 

Rp'
= S

M m ol 

which simplifies to

Vc
277

+
c J

P(0)E - Rp'vc 
2 M

vc - l

M
E = 5

m ol
E -

2T,c-

m ol

2 P(0)E

2 Ttc J

(7

and simplifies further using D.2 with v =  ^

iV  
M ..mol

Vc
2 T,cj

+ P(»o/2)

(D.7)

(D.8)

(D.9)

The refrigerator and target cell were prepared in the same fashion as for

the Z?(7 ,p) experiment. Particular care was taken to ensure tha t the superin-

sulating foil was wrapped around the cell in the same manner. The filled

target was stabilised at the same pressure and temperature as used in normal

operation and then emptied and filled repeatedly by adjusting the cold head
dP

heater current slightly. The quantity —— was found to be essentially constant
dv

(figure D .l ). The filling and emptying cycles produced similar slopes but the 

filling data was more scattered and was displaced to lower pressures for the 

same apparent cell volume. This is consistent with a situation where liquid 

continually condenses in droplets on the cold head during filling. In this case 

the total volume of liquid in the system will fluctuate and will generally be 

greater than the volume seen in the cell. During the emptying phase no re­

condensation will occur.The vaporisation will take place smoothly and there 

will be no liquid in the system other than that remaining in the cell. Two 

‘target emptying’ cycles are shown in figure D .l .

The quantities observed in the measurement were the gas pressure in the 

system P  and the level x of the deuterium liquid in the cell. The liquid level 

was measured using a travelling microscope on a vertical movement.
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Figure D.l: Buffer gas pressure vs. cell content. (The circle and square 
sy m b o ls  correspond to separate measurements.)
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The cell content v had previously been calibrated in terms of x  by ob­

serving the level of a series of known amounts of water over a range of cell 

pressures bracketing the normal operating pressure of the system. It was as­

sumed that the cell windows became rigid at liquid deuterium tem peratures 

and so the shape of the cell remained constant as the cell filled and buffer pres­

sure dropped. However, even in the extreme assumption of normal elasticity 

the correction was calculated to be be ~  2%.

The volume of the total system relative to that of the buffer tank alone 

was determined by observing the pressure drop when the gate valve between 

the buffer and the gas rig was opened. The ratio of total volume to buffer 

volume was found to be 1.02. the volume of the buffer tank was measured 

after the deuterium measurements were taken by filling it with water.

Fitting a straight line to the data of figure D .l results in a gradient of 

(—2.82 ±  0.03) x 10~3 bar.cm-3 which is equivalent to (—2.87 ±  0.03) X 10~3 

atm os.cm -3. From equation D.9 the effective density is determined to be

p' =  (0.153 ±0.005)g.cm~3

where the following values have been used, V  =  (314 /), R  =  (8.314 J mol 

K "1), T r  =  291 K ,Tc =  22.5 K and M m o i = 4.02 g. Given tha t the nominal 

density of liquid deuterium is 0.162 g.cm"3 then the correction factor p'/ p is 

0.942 .



A ppendix  E 

M ultip licity  Corrections in the  
Focal P lane D etector

The six TDCs in which the coincidences between the proton detector and 

the focal plane detector (FPD) are registered are started by the X-trigger 

and stopped by the .OR. of a group of 16 focal plane detector channels. At 

the normally used beam rates there exists a non-negligible probability tha t 

more than one electron will register in the group of channels covered by a 

single TDC. This gives rise to a number of problems in the subsequent data 

analysis as described in chapter 5. The situation is simplified if the data set 

is reduced to those events where only one FPD channel has fired in any given 

TDC group. This removes events where the photon energy and coincidence 

timing information are ambiguous. Such a selection has the further advantage 

of producing a random coincidence background in the TDC spectrum  which 

is flat. The disadvantage is that some of the genuine tagged events will have 

been rejected and a correction must be made when the experimental yield is 

calculated.
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T im e S tructu re of the R andom  Background in a T D C

Consider a TDC gated for a period 0 —> r sec with stop-pulses incoming 

randomly at a mean rate N  sec_!. It is assumed that the random pulse 

stream  is described by a Poisson distribution P ( n , N r ) where

e~mm n
P[n,m)  =

n\

is the probability of n pulses arriving in a time period in which the mean 

number expected is m. The probability P(t')St  for a TDC to be stopped in 

the region t =  t' —> t' +  6t is the product of the probability tha t 1 pulse occurs 

in time 8t and the probability that no pulse has arrived in the preceding period 

0 -»■ t'.

P(t)6t  =  P(0 ,N t ) .P ( l ,N 6 t )  (E .l)

P(t)St = e~Nte~NStN6t  (E.2)

and in the limit 8t — ► 0,

P(t) = Ne~m  (E.3)

From the above it is seen that the random spectrum in the TDC slopes ex­

ponentially and tha t as the rate N  increases the slope becomes steeper. Fur­

thermore, as N increases, the probability for any one pulse to register in the 

TDC is reduced.

The probability P(t) may be expressed as follows

OO

p ( t )  = E  ^ ( 0  (E-4)
n — 1

where Pn(t) is the probability that the TDC stop is caused by the first of n 

pulses to arrive within the gate period r. P\(t) has the simple form,

P ^ S t  = P (0 ,N t ) .P ( l ,N6 t ) .P{0 ,N(T  -  t -  6t)) (E.5)
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Pi(t)6t =  e-Nte-N6tN 8 te -N^~ t- 6̂ (E.6)

Pi(t) = N e ~ Nr (E.7)

Therefore Pi for a fixed N r  is constant throughout the gate period and, again, 

as N r  is increased the probability that a given pulse registers in the TDC 

decreases.

C orrection  for M ultip le F P D  H it R ejection

One may identify two causes of multiple FPD firings.

The first is due to the geometry of the FPD. A FPD channel consists 

of two overlapping scintillators whose outputs are fed into a coincidence unit, 

however the three neighbouring scintillators which correspond to two adjacent 

channels have an area of common overlap and so it is possible for one electron 

to pass through three strips and thus trigger two neighbouring channels. In 

addition to this, 8 electrons may be produced and these can cause 3-fold or 

even 4-fold hits in adjacent channels.

The other source of double, triple...n-tuple hits lie in the probability of 

several separate electrons arriving in the gate period. This effect is rate de­

pendent as opposed to the geometric effects which are independent of the 

beam rate. This disappears at very low rates such as are used in taking 

tagging efficiency data.

At the beam rates used the probabilities of neighbouring n-tuples occur­

ring as a result of several random hits is negligible. The fraction of events 

which include a random double hit anywhere in the FPD is typically of the 

order of 20%. Half of these are neighbouring doubles, whereas the fraction of
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2random  doubles which occur in neighbouring channels is — (there are 92 FPD 

channels). In order to analyse the effects of genuine multiple electron hits it 

is first necessary to correct the multiplicity spectrum for geometric effects. 

This is done by reassigning all neighbouring multiple hits as singles. Since 

the sections of the FPD recorded in separate TDCs are analysed separately as 

independent experiments a genuine tagging electron which fired two channels 

straddling a TDC boundary would be counted twice. This double counting 

of neighbouring multiples is avoided by the use of the reassignment algorithm 

which consistently assigns the event to one channel and therefore one TDC.

The electrons arriving at the FPD may be divided into two classes with 

different time structures. The random electrons are described by a Poisson 

distribution, whereas the ‘true’ tagging electrons come (in principle) at the 

same time in the coincidence gate. The probability of an n-tuple event con­

sisting of 1 true electron and (n — 1) randoms is different from tha t for an 

event involving n random electrons. Furthermore the relative probablity of 

the two processes is rate dependent. The overall count rate of n-tuples is 

derived below.

Let the electron rate be N  and the width of the coincidence gate be r. The 

multiplicity of the event is n (n > 1 since at least one electron is required to 

trigger the system.)

Ct is the true coincidence rate due to a true X-trigger rate Xt

Cr is the true coincidence rate due to a random X-trigger rate X r

Each may be expressed as a sum of n-tuple rates.
oo 00

c, = £  c ' = X  c -W (E-8>'n = 1 n = 1
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The C and X  rates are related as follows,

Ct =  X t (E.9)

Cr = X r =  X r{l -  e~Nr) (E.10)53 P(n ,Nr)
. n = l

where P {n ,N r )  is the Poisson distribution defined previously.

The normalised probability of an n-tuple involving a real coincidence elec­

tron is

Pt(n) =  P(n -  1, N t) (tx > 1) (E .ll)

and th a t for a purely random n-tuple is given by

, . P (n ,N r )  Pin,  Nr)
~  E “=i P ( n , N r j  ~  ( T ^ e ^ j  ^   ̂  ̂ ^

The n-tuple rates are expressed in terms of the n-tuple probabilities as follows, 

Ct(n) = GtPt (n) Gr(n) = CrPr(n) (E.13)

whence:

G(n) = Ct (n) + Cr(n) (E.14)

< * ■ > - ( * ♦ * " )  < - >
It is now possible to calculate the correction factor for data selected on sin­

gle FPD hits. The count rate corresponding to the final data sample after 

background subtraction is proportional to Ct( 1) whereas the true count rate 

is proportional to Ct = EJJLi Ct{n). The correction factor is therefore

= ------£ ‘l i 9 ’NT)  = P(o, N t) (E.16)
E “ i Ct(n) Ct T(n — 1, Nr) 1

This is intiutively reasonable since P ( 0 ,N t) = e Nr which is the probabil­

ity th a t a time gate triggered by a true tagging electron contains 0 random

electrons.
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There is, in principle, one further correction which must be made before the 

above result can be compared to experiment. The experimental multiplicity 

spectrum  is determined from the bit pattern stored in a set of pattern units.

However the pattern unit channels can only be set once each per event. If

two electrons pass through the same FPD channel then the second one is not 

recorded in the bit pattern. Therefore the correction calculated above is a 

slight overestimate, since a second electron triggering the channel which has 

already fired will not cause the event to be rejected as a double hit. If 16 

channels are fed into the TDC and if the prompt peak in the time spectrum  

is situated at time To then the correction becomes

e ~ T 6 N t ( \ e ~ j  q N t  ( E . 1 7 )

which is equivalent to

e ( t f r - £ ( r - t „ ) )  ( E . 1 8 )

In the present case this effect is very small, being of similar magnitude to the 

random  neighbouring doubles correction which was neglected in the reassign­

ment algorithm. It should be included in the general analysis however since 

it would be more im portant in a more fully instrumented system with fewer 

channels sharing a TDC.

The quantity N t may be determined from the data by analysing the mul­

tiplicity spectrum  obtained from randomly triggered events . Such a sample 

should be distributed according to the Poisson formula. The random trigger 

is provided by the LED gain stabilisation system fitted to the proton detector. 

This requires tha t an artificial coincidence be made with the FPD in order 

th a t the LED pulses are recorded in the ADCs. To this end a synchronised 

pulse is fed into FPD channel 92, which has no scintillator. This provides the
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random  trigger with which to gate the TDCs for the present measurement. 

The Poisson distribution has the following property,

pJrL ±bJhl = j f i .  (E i9)
P(n ,Nr)  n + 1 [ ’

from which the quantity N r  may be calculated. In practice, only the ratio 

P (1, N t) / P (0, Nr)  can be determined from the data with sufficient statistical 

precision for the determination of the effective gate width. A series of data 

files with electron beam intensities of ~  4 x 106s -1 and ~  1 x 107s_1 were 

analysed and the result, determined independently from both sets of files, was 

r =  (58 ±  2)ns.
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