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Abstract

This thesis examines various applications of particle physics to topics in 

cosmology and astrophysics, with particular attention paid to the possible roles of 

scalar fields. The work can be broken down into four distinct, though related, 

pieces. The first of these pieces comprises both chapters two and three while the 

remainder, each one chapter long, are chapters four, five and six. The first two 

topics are cosmology based, examining the dynamics of cosmological solutions to 

various particle theories with consideration of compactification and inflation 

respectively. The remaining two are astrophysical in nature, with particular attention 

paid to compact stellar objects such as neutron stars and boson stars.

Chapter one provides an overview of the relevant parts of particle physics, 

cosmology and astrophysics in a non-technical manner, to introduce the ideas 

present throughout the rest of the thesis, and contains notes on the conventions used 

within it.

In chapters two and three, we investigate various cosmological solutions in ten 

dimensional supergravity, viewed as a low energy limit of the heterotic string theory. 

We use the three form field H to split up the nine spatial dimensions into three 

3-spaces, and examine the influence of the scalar dilaton field. Both analytic and 

numerical means are used to examine two specific models, and the nature of 

approach to an initial cosmological singularity is examined. In one case, the future 

behaviour is governed by the existence of an unusual type of attractor, which 

precludes the possibility of compactification, while in the other, where the H field 

arises solely on one 3-space, sensible compactification scenarios can be obtained. 

The model is then enhanced by considering a simple mechanism for particle 

production using scalar field couplings to other (fermion) fields to provide viscous 

forces. The effect of this particle production on both the previous scenarios is 

examined.



In chapter four, models exhibiting power law inflation are considered and an 

exact solution specified. Once more, viscous forces from the inflaton's couplings are 

included and are found, primarily by numerical techniques, to improve the efficiency 

of the inflation. The basic ideas are then implemented in a specific particle theory in 

which the scalar field has a potential of the desired type, and it is illustrated how an 

inflationary model may be constructed from these ideas which is consistent with 

constraints from observations.

Chapter five considers the effect which higher dimensional theories may have 

on the structure of neutron stars. In particular, we examine the simplest 

Kaluza-Klein theory in which the size of the extra dimension behaves as a scalar 

field. The equations of stellar structure are derived and then solved numerically, with 

particular attention given to the function of total mass against the central density and 

to the description of matter in a five dimensional theory. Only some descriptions of 

matter are allowed, and they can lead to exterior solutions differing from the 

conventional Schwarzchild one. Finally, a sample model for dynamical gravitational 

collapse in these theories is examined, and surprisingly it is found that it can be 

solved analytically. Unfortunately, difficulties in attaching an exterior solution 

outside the collapsing matter conceal the full nature of this solution.

Chapter six examines the possibility of stellar objects comprised of both bosons 

and fermions, thus generalising the separate notions of neutron stars and boson 

stars. Again, the basic equations are derived, and numerical simulation is once more 

necessary to obtain solutions to them. Attention is given to the units used and the 

mass function is again of primary interest. A rudimentary stability analysis based on 

the binding energy of the stars is carried out, and an examination made of the results 

of varying the mass of the bosonic constituents. Briefly, the effect of an explicit 

interaction term between the bosons and fermions in the Lagrangian is considered.

Chapter seven provides some conclusions and details areas in which future 

work may be fruitful.
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Chapter 1

Introduction

"Nothing ever begins.

There is no first moment; no single word or place from which this or any other story springs.

The threads can always be traced back to some earlier tale, and to tales that preceded that; though as 

the narrator's voice recedes the connections will seem to grow more tenuous, for each age will want 

the tale told as if it were of its own making."

Weaveworld 

Clive Barker

(ii Cosmology in the Eighties
One of the most impressive achievements of theoretical physics during the last 

century is in its description of the behaviour of the universe as a whole, a subject 

which has come to be known as cosmology. This came about with the recognition 

by Einstein that his theory of general relativity, basing gravitational interactions upon 

the concept of curvature of space and time, could be applied to the universe as a 

whole. In fact, as has been much documented, he only missed a marvellous 

opportunity to predict that the universe was expanding because at the time the 

philosophy that the universe must be unchanging was so rock solid that instead he 

resorted to a modification of his basic equations. Since then, these original ideas 

have been developed into what is commonly known as the 'hot big bang' model, and 

the extensive predictions of this model are so much in agreement with observations 

that the theory has no serious competitors.

The foundations of general relativity are set in the idea that it is the curvature of 

spacetime itself which causes the phenomenon we recognise as the gravitational
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force, and that it is the presence of matter which creates this curvature. This relation 

is concisely expressed by what are known as the Einstein equations, which equate a 

purely geometrical term governing the curvature of space-time to a quantity, the 

energy-momentum tensor, describing the distribution of matter. This is sometimes 

summed up by saying "Space tells matter how to move; matter tells space how to 

curve".

The big bang model is founded on two important observations of the universe 

as we see it today, its homogeneity and isotropy. Homogeneity means that the matter 

in the universe is smoothly distributed; while it is certainly true that on a galactic 

scale we see clumps of galaxies in some places and large voids in others, if we look 

on a bigger scale the amount of matter in a given large volume varies very little from 

place to place. Hence homogeneity is a very good approximation on a large scale. 

Isotropy can be summed up by saying that the universe appears the same whichever 

way we look, again true on large scales. In combination, these imply that there are 

no preferred locations in the universe; at a given time it does not matter where you 

are, the universe will look essentially the same. This is the basic assumption of the 

big bang model.

Given these constraints, it can be shown that the universe must be described by 

what is known as a Friedmann-Robertson-Walker cosmology. The important 

quantity is the scale factor, which describes the distance between points in 

space-time. If, as time passes, the scale factor increases, then the universe can be 

said to be expanding. The actual form of the scale factor is determined from 

Einstein's equations, given some assumptions about the properties of matter present 

in the universe, and the solutions found indeed indicate that the universe must be 

expanding or contracting. This agrees with the interpretation of red shift 

observations first made by Hubble indicating that stars are moving away from us at a 

speed proportional to their distance, suggesting that we live in an expanding 

universe.
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While this result in itself is a success, much more can be said when we include 

some detailed information about the types of matter in the universe. It can be shown 

that if we look back in the history of the universe, there must have been a time when 

it was very small, and that at this time it was much hotter. At such high 

temperatures, atoms and nuclei could not exist as there would be enough thermal 

energy to separate the protons, neutrons and electrons. At this time radiation will 

dominate the universe, governing its expansion. As the universe cools down, nuclei 

will begin to form, primarily those of low atomic number such as hydrogen and 

helium. Later still, the radiation will have cooled down sufficiently that it no longer 

interacts with the matter, allowing atoms to form, and will continue to disperse on its 

own (the temperature at which this occurs is known as the decoupling temperature). 

From then on, as today, matter will dominate the universe and determine its 

evolution.

These processes, which depend only on very well known physics, lead to 

startlingly accurate verifications of the big bang theory. From a knowledge of what 

proportion of protons and neutrons exist when nuclei form, it is possible to predict 

the relative abundances of hydrogen and helium, the lightest stable atoms and the 

most predominant products of the early universe. Essentially all the neutrons 

combine with protons to form helium; the remaining protons are left to form 

hydrogen. The hot big bang model predicts a relative abundance of about 73% to 

27% in favour of hydrogen. This agrees almost exactly with observations, and 

indeed the discrepancy is well explained by the hydrogen to helium fusion processes 

which have occurred in stars during the lifetime of the universe. More detailed 

calculations can also tell us about the small quantities of more complicated atoms 

such as lithium formed.

The second important observation was of the decoupled radiation. As the 

universe expands, the energy of this radiation is diluted and consequently its 

temperature drops from the decoupling temperature. This radiation was accidentally
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observed by Penzias and Wilson, who detected unexpected microwave radiation at a 

temperature of about three Kelvin while conducting antenna experiments. It turned 

out that this 'microwave background' was exactly as the big bang model predicted, 

and this fact alone was enough to win acceptance of the big bang model over rivals 

such as the steady state universe.

It was shown by Hawking and Penrose in the late sixties and early seventies 

that at the beginning of the universe it is inevitable that all the matter was 

concentrated at one point, known as a singularity, and that near the singularity one 

could expect temperatures to rise arbitrarily high. To study processes going on 

nearer to the big bang than those discussed above, we have to look at higher energies 

than those of the events considered above, which corresponds to looking at more 

fundamental interactions. This is where the role of particle physics in cosmology 

becomes evident, to try and investigate what might have gone on in the very early 

eras of the universe and perhaps to see whether the initial singularity might be 

avoided.

(ii') Particle Physics in the Eighties
At the basis of particle physics in recent times have been the attempts to 

formulate a consistent theory of the fundamental forces in the universe. There are 

four such forces, namely electromagnetism, the weak nuclear force, the strong 

nuclear force and the gravitational interaction. For the most part, particle theory has 

concentrated on the first three of these; it is only in very recent years that there have 

been any grounds, other than aesthetic ones, for supposing that gravity can be drawn 

into a common framework with the rest. (This ignores current speculation 

concerning the existence of a 'fifth force' related to gravity. Experiments have as yet 

failed to provide any clear confirmation of the existence of such a force.)

The first major breakthrough came in nineteen thirty when the theory of 

quantum electrodynamics was formulated. This introduced the idea that the
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fundamental description of particles was to be made through fields, and this theory 

successfully incorporates quantum mechanics in an intrinsically relativistic manner. 

The agreement of this theory with experiment is startling; for example the magnetic 

moment of the electron can be correctly predicted to some eight significant figures. 

An important element of this theory is what has come to be known as a gauge 

invariance, a mechanism whereby the interaction can be viewed as being caused by 

the action of a particular symmetry group, in this case called U (l), and this theory 

sets the pattern for the description of the two nuclear forces. The notion of symmetry 

is now the most important tool in the description of fundamental interactions.

By the seventies, the gauge description of matter was well known and was used 

to provide a theory of the strong, weak and electromagnetic interactions; each 

interaction caused by a particular local symmetry group, here SU(3), SU(2) and 

U (l) respectively. A theory which combined these interactions could be formed 

simply by considering products of these gauge groups; first Weinberg and Salam 

developed the electroweak theory, vindicated by the recent discovery of the W and Z 

particles at CERN, around SU(2)xU(l), then the full 'standard model' was 

constructed using SU(3)xSU(2)xU(l). The standard model describes all current 

experimental data satisfactorily, and the reasons to go beyond it are based mostly on 

aesthetics rather than any experimental motivation.

One of the major drawbacks of the standard model is the huge number of free 

parameters present, which can only be determined by experiment (these include 

masses of the fundamental particles, mixing angles etc.). Also the idea of just 

sticking the groups together does not seem to be completely satisfactory. The natural 

idea is to look for a bigger symmetry group, around which to form what became 

known as a Grand Unified Theory, or GUT. If this group is chosen so as to include 

the standard model group as a subgroup, then the theory will contain the standard 

model, perhaps as a low energy limit if appropriate symmetry breakings are 

included, and will usually have fewer free parameters as there will be extra relations
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between the standard model parameters. The simplest such group is SU(5), which 

like all GUTs includes extra interactions beyond the standard model, including the 

prediction of proton decay with a lifetime greater than 1030 years. Experimental tests 

of this may rule out the SU(5) model, but larger gauge groups generally predict 

longer lifetimes and are not ruled out by these measurements.

The unfortunate feature about GUTs is that almost any sufficiently large gauge 

group contains the standard model group, and we have no guidelines concerning 

which to choose. Also these theories suffer from what is known as the hierarchy 

problem; the theories must have two mass scales, one at about 1015 GeV where the 

symmetry of the GUT group breaks (perhaps in several stages) to that of the 

standard model group, and one at about 102 GeV where the electroweak interaction 

separates into the weak force and electromagnetism. The problem is that having two 

such widely separated scales is unnatural, for one would expect quantum effects at 

high energies to destroy the low energy effects. Fine tuning of parameters must be 

introduced to avoid this.

A method for avoiding the hierarchy problem was proposed in the form of 

supersymmetric theories; in these theories bosons (particles of integer spin) and 

fermions (particles of half integer spin) appear on an equal footing. While at the 

energies we see today supersymmetry does not hold (e.g. there is no observed 

bosonic partner of the electron), the symmetry can be restored at fairly low energies. 

Then any interactions at higher energies will exactly cancel out, the fermion part 

being the negative of the bosonic contribution. Hence the electroweak scale will be 

protected from any high energy corrections and the hierarchy problem overcome.

All of the above theories were constructed without any regard for how the 

gravitational interaction might be included; gravity is very different from the other 

three forces and resists being drawn into the gauge framework. In the seventies there 

was renewed interest in an old idea of Kaluza and Klein, which was to add on extra

15



dimensions to the four dimensions of space and time we are familiar with from 

everyday experience. It turns out that gauge symmetries can be obtained from 

symmetries of the extra dimensions rather than being put in by hand using an 

arbitrary choice of gauge group. For example, by adding a circular extra dimension 

the equations of general relativity coupled to electromagnetism can be obtained; the 

symmetry of the circle is exactly that of the U (l) gauge group. Larger and more 

complicated extra dimensions can give the entire standard model. The fact that we do 

not see these dimensions can be explained by them being of a very small size, like a 

hosepipe which appears to be a one dimensional string from large distances but close 

up can be seen to be a two dimensional object. Thus these higher dimensional 

theories can incorporate gravity into a gauge theory (or rather, vice versa). This is 

illustrated in figure 1.1.

Figure 1.1 The hosepipe on the left, as viewed from large distances, looks like a line, but when

magnified it can be seen to be two-dimensional. Modem theories suggest that if there are extra 

dimensions, they will be of a very small size (10-33 cm) and will be unobservable in experiments 

that can be carried out just now.
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When people tried to make supersymmetry into a local symmetry, it was found 

that to make the theory consistent there was no option but to include gravity, and 

these theories were known as supergravity theories. It turns out that supergravity 

theories can be formulated particularly neatly if there are extra hidden dimensions, 

providing a link with Kaluza-Klein theories, but no way existed of picking out a 

preferred number of dimensions. Supergravity theories exist in all dimensions up to 

eleven, which is the highest number of dimensions in which supersymmetry can be 

consistently realised.

The next stage of development was the invention of superstring theories. Here 

the major conceptual step is to view the fundamental constituents of matter not to be 

particles at all, but to be extended one-dimensional objects. The particles we see, 

such as quarks, photons, electrons and so on, correspond to different excitations of 

the string, in the form of waves propagating round them. Strings can be open, with 

free ends, or closed into a loop by joining both ends together. Some versions of the 

theory have both types, but versions which only have closed strings are generally 

favoured. Interactions are provided by strings intersecting with each other, breaking 

up and reforming in new configurations.

The advantage of string theories is twofold; they are only consistent provided 

they have one of only two possible gauge groups, and they must be formulated in 

ten dimensions (that is, with six extra hidden dimensions). Hence the string theory 

allows us to pin down these two aspects which were unspecified in GUTs and in 

supergravity theories, a fact which inspired confidence that a consistent theory 

unifying all fundamental interactions might be attainable. More will be said about 

superstrings in chapter two. It should be pointed out that since the work in chapter 

two was carried out superstring theory has seen several developments which free it 

from some of the dimensionality and gauge group constraints, though these recent 

constructions seem somewhat arbitrary. There also exist theories based on higher 

dimensional objects, dubbed supermembranes, of which various versions exist, but
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all of these lack the simple structure of the superstring theories.

Figure 1.2 provides a diagrammatic summary of the relationships between these 

theories, reading from the bottom up. Several comments are in order. The Theory of 

Everything is the current terminology for an ultimate description of matter, and the 

nature of such a theory is unknown. The route to it may be through superstrings, 

which are most promising current candidate for such an accolade but are a long way 

from being accepted as such by the physics community, or the route may be via 

some entirely different and as yet unknown theory which may be completely 

different from any theory we current have. The status of quantum gravity in the

Non-abelian
Kaluza-Klein

Weak
Interaction

Electro-Weak

Strong
Interaction

Superstrings

Abelian Kaluza-Klein

Quantum Gravity ?

Maxwell’s Equations

The Standard Model

Newtonian Gravity

Supergravity

Supersymmetry
GUTS

Quantum
Electrodynamics

General
Relativity

THEORY OF EVERYTHING

Figure 1.2 Relations between some of the popular particle theories of the eighties.
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diagram is unclear; currently there is no theory which combines gravity with 

quantum effects and it is not known what such a theory may be like. It is possible 

that supergravity or superstrings may contain a quantum theory of gravity (certainly 

if superstrings are the theory of everything), but this is not known as present. 

Abelian Kaluza-Klein refers to the simple model of Kaluza which combines gravity 

with electromagnetism. Non-abelian Kaluza-Klein is the generalisation of this to 

contain more complicated symmetries such as the standard model. The highest levels 

of this diagram that can be said to be well understood are the standard model on one 

hand and general relativity on the other.

(iii) Cosmology and Particle Physics : Why?
Over the last ten years or so there has been a very fruitful interaction between 

particle theory and cosmology. It is worth examining here why these two topics have 

found so much common ground, and considering the motivations on either side of 

the cosmology and particle theory divide. This thesis is for the most part concerned 

with how particle theory can be absorbed into cosmology; in that sense it can be said 

to be a thesis on cosmology rather than on particle theory, though as we shall see the 

two subjects are becoming more and more indistinguishable. Hence we shall 

concentrate in this section on the cosmologist's side of things, and merely conclude 

with a few paragraphs on what particle theorists can expect to get out of cosmology.

Imagine tracing the history of the universe back towards the inevitable 

singularity of the big bang. The size of the universe reduces; the energy density 

within it increases and hence the corresponding temperature rises without limit. As 

the energy increases, we are forced to take into account interactions at shorter and 

shorter distances. The thermal energy will become enough to dissociate atoms into 

nuclei and electrons, then enough to separate the nuclear constituents themselves. A 

little higher and the hadrons themselves will be split into their constituent quarks. We
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are now one millionth of a second from the big bang. Then, as the energy goes 

higher still, ...

All of the above is based on very well known physics, at energies well within 

the reach of current particle accelerators. But as the energies get higher, we enter a 

realm where we need a more complete knowledge of the fundamental particle 

theories than can as yet be obtained from these experiments. Various symmetries will 

be restored at high energies; electromagnetism and the weak force will combine into 

the unbroken electroweak interaction, then perhaps supersymmetry and GUT 

symmetries will be restored. As we reach 1019 GeV, we approach a region where 

quantum effects associated with gravity can be expected to become important. Here 

we know almost nothing of what might go on; extra dimensions may become 

visible, superstring effects may dominate, some form of quantum gravity may 

prevent us actually reaching the singularity itself. It is only with a better 

understanding of the underlying fundamental interactions that we can gain 

knowledge about these fantastically early eras of the universe.

Of course, when we study these eras, we have more in mind than gaining an 

overview of these early processes. While the standard cosmology can explain a huge 

number of features of the universe as a whole, there remain several problems which 

cannot be resolved without going into the details of yet earlier behaviour. Below we 

outline a few of these and some proposed solutions. These problems form the 

background for much of the work in this thesis.

Unexplained by the standard cosmology is why, when we look at the universe 

today, it consists almost entirely of matter rather than an even mix of matter and 

anti-matter, since low energy interactions conserve total baryon number. We need 

some mechanism which will create matter preferentially to anti-matter, a process 

known as baryogenesis. Here particle physics can provide prospective answers. The 

most favoured scheme is to use one of the GUT symmetry breakings mentioned 

above at high energies. These can violate baryon number; it is proposed that at this
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point a small excess of baryons over antibaryons is created, perhaps only one part in 

a thousand million. As the universe cools, the baryons and antibaryons will 

efficiently annihilate giving photons, and so this small original excess will be 

amplified up to the baryon domination we see today.

Recently, an alternative scheme for baryogenesis has been proposed, using just 

the electroweak theory. While at a classical level this conserves baryon number, 

when we quantise the theory we find there is an anomaly which leads to a baryon 

non-conserving current. Over the electroweak phase transition this can lead to the 

generation of a baryon asymmetry, though the details of such a model have yet to be 

fully worked out to see if it is viable. In some cosmological scenarios this method 

can be favourable because it occurs at much lower energies than the GUT scenarios.

Another unsolved problem is that of how galaxies, galaxy clusters and other 

large scale structures came to form. What is needed, at an early stage in the universe, 

is that the energy density be slightly greater (around one part in ten thousand) in 

some places than in others. The greater gravitational attraction of these regions will 

draw matter in to form clumps that will evolve into galaxies. We wish to consider 

possible sources of these original density perturbations.

One candidate for such a role is the theory based on the esoterically named 

cosmic strings. When gauge symmetries are broken, the phase transition does not 

necessarily occur completely smoothly, because different regions are not in direct 

contact and so there is no information about how the symmetries are broken. It is 

possible for flaws to occur in the gauge fields when the symmetry breaking occurs; 

this is exactly analogous to cracks forming in ice crystals as they solidify because the 

lattices in different regions are not aligned, or domain formation in a ferromagnet as 

it is cooled down sufficiently for the spins to align. These flaws show up as three 

types, monopoles, cosmic strings and domain walls, and the particular type we 

would expect to find can be predicted from the nature of the phase transition. The 

masses of these objects are extremely high, related to the energy at which the
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sym m etry breaking occurs. M onopoles are pointlike, cosmic strings 

one-dimensional and domain walls two dimensional, and of the three cosmic strings 

are the most favoured. Indeed, there are strong constraints against theories 

containing phase transitions which would produce monopoles or domain walls, 

since in either case the production rate is so large that they completely disagree with 

observations of the universe's energy density. It is perhaps possible for a very late 

phase transition to produce acceptable entities of these types.

Cosmic strings turn out in some theories to be of just the appropriate mass to 

create density perturbations about which galaxies may form, suggesting a possible 

mechanism, and many studies have been made over the last few years of how 

cosmic string networks evolve, how matter accretes onto them and so on. A 

knowledge of which phase transitions might occur in the early universe would be 

needed to check the viability of such a theory, though there are many ways of testing 

this scenario as cosmic strings should affect pulsar timings, have characteristic 

gravitational wave spectra and may even be observable directly, e.g. through 

gravitational lensing.

Cosmic strings are not the only candidate for the density perturbations; dark 

matter is also a possible candidate. There is a critical density for matter in the 

universe; if the real density is above it the universe will later recontract back to a 

singularity in the future, below it and it will expand forever. Many theorists believe 

that the universe should be at or extremely near this density (particularly those who 

favour inflationary models - see later), but visible matter appears only to be about a 

tenth of this and indeed it can be shown that baryonic matter (protons and neutrons) 

cannot give more than about twenty percent of the critical density. Hence it is 

conjectured that there may be a large amount of unseen matter to raise us to the 

critical density; this has become known as dark matter. Particle theory provides 

many candidates for this, for example neutrinos may have a small mass, and there 

are so many neutrinos in the universe that even a mass of perhaps 20 eV would be
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enough to explain the discrepancy. Other candidates are axions, or weakly 

interacting massive particles. The various types of dark matter can help to form 

density perturbations about which galaxies might form, but again a better knowledge 

of the particle theory is needed to provide input.

Perhaps the most fruitful area of interaction between cosmology and particle 

physics is that of inflation. Inflation is a mechanism, described below, which is 

much used to circumvent several problems with the standard cosmology. Most 

predominant of these are the horizon and flatness problems, first emphasised in 

detail by Guth.

The standard cosmology postulates homogeneity and isotropy, but the horizon 

problem is concerned with why this should be so. Look up in the sky at two points 

separated by, say, sixty degrees (in fact we can use a much smaller number). From 

each we can observe the microwave background radiation at its characteristic 

temperature of around three Kelvin, which indeed is roughly constant across the 

sky. But if we trace back the histories of the two points we are looking at, we find 

that light has not yet had time to get from one to another; that is, the two regions 

have never been in causal contact with each other. Hence there is no way that they 

have had an opportunity to reach thermal equilibrium, and therefore no reason why 

they should be at the same temperature. In fact, Guth showed that there is a huge 

( ~1083) number of disconnected regions and no good explanation for their thermal 

equilibrium.

The second problem is the flatness problem. We know from direct observations 

that the universe has a density between about a tenth and ten times the critical 

density. However, the critical density is an unstable point; a universe above it will 

rapidly recollapse while in a universe below it the expansion is fast and the density 

rapidly falls to well below the critical density. In order for the universe to be so close 

to it today, it must originally have been phenomenally close (Guth estimates one part 

in 1055). So again we have an extreme fine tuning problem.
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The inflationary universe was suggested by Guth as a resolution of these two 

problems. In this scenario, the universe undergoes early in its history a period of 

very rapid expansion, usually taken to be exponential. During this phase, small areas 

which have been in thermal contact are expanded by huge amounts, their volume 

increasing by a factor of around 1090. One such small area would now constitute the 

entire visible universe. Such an expansion thus solves the horizon problem. Also it 

is a natural consequence of this rapid expansion that the universe becomes very flat 

due to its huge size. Hence inflation can in principle solve the two problems 

described above.

That is all very well in principle, but we need a mechanism via which such an 

expansion could actually occur. This is provided by phase transitions in particle 

theories; during these a huge amount of energy is released which drives the rapid 

expansion. Many people have worked to try and produce realistic scenarios, with 

differing amounts of success; there are in fact many constraints on inflationary 

processes which must be obeyed. Some of these topics will be pursued in chapter 

four.

Inflation can also be useful in other circumstances. For example, it was stated 

earlier that theories in which monopoles are produced usually feature an unacceptable 

overproduction. In such cases, inflation can play the role of diluting this excess 

monopole density because of the huge expansion, and so provided the monopole 

production precedes inflation the monopole problem in some GUTs can be avoided. 

It can also be shown that because of quantum effects inflation will produce density 

perturbations, thus raising the hope that inflation can also explain galaxy formation. 

In general though one has to be careful because the density perturbations are several 

orders of magnitude too large, and often fine tuning is required to bring them down 

to acceptable levels.

Finally, it is worth considering how cosmology is affected by such theories as 

Kaluza-Klein, supergravity and superstrings. While those that have gone before only
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affect the particle interactions, these theories, by trying to draw gravity into the 

general framework, actually modify the structure of the gravitational interaction. This 

occurs in two ways. Firstly, these theories usually have extra hidden dimensions, 

and cosmologically the effect of these can be important through their modification of 

the Einstein equations. Secondly, in the case of superstrings the actual gravitational 

Lagrangian is modified by higher order terms which change the equations of motion 

even classically. In fact, these higher order terms can be useful in aiding the 

construction of inflationary models. Cosmology can provide an opportunity for 

studying the validity of these modifications to the Einstein equations.

Having said all that about the use of particle physics to cosmological ends, it is 

worth making a few comments about what particle physics can gain from this 

interplay. In many situations, cosmology can provide very useful constraints on the 

construction of particle theories, because it allows access to events at energies well in 

excess of those which can be attained in current or forseable particle accelerators. 

Any particle theory with cosmological predictions at odds with observation can of 

course be ruled out.

An example of a useful constraint from cosmology is the setting of an upper 

limit on the number of neutrino flavours. The number of flavours affects the process 

of nucleosynthesis and it seems that unless there are five or less flavours 

observations cannot be explained. Since it is assumed that the number of neutrinos is 

the same as the number of families of quarks, this prediction tells us that there is a 

limit to the number of generations of particles allowed in a gauge theory. Cosmology 

can also provide upper limits on the masses of neutrinos, a limit which turns out to 

be of around the same order as that obtainable either by terrestrial or astrophysical 

experiments.

Cosmology can also provide restrictions on symmetry breakings. As mentioned 

above, certain symmetry breakings will produce vacuum defects such as domain 

walls. Since heavy domain walls certainly do not exist, any GUT phase transition
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which would produce them is disallowed. Monopoles are a more serious obstacle; it 

can be shown via group theoretical methods that any series of breakings from a GUT 

group down to the standard model must at some stage produce monopoles. Hence 

for GUTs to be acceptable some mechanism, such as inflation, must dilute their huge 

overproduction.

Higher dimensional theories can also be constrained by cosmology. In general, 

in the early moments all dimensions in such a theory are of similar size; it is only 

later that a differentiation in size between them will occur. However neat a higher 

dimensional theory may be, if it cannot explain satisfactorily why its evolution leads 

to some large and some small dimensions then it must be rejected. At this time it is 

fair to say that in most cases the early dynamics of these models are so complicated 

that it is not known how these processes, particularly concerning the splitting in size, 

might occur.

To conclude this section, it is fashionable amongst authors to show a schematic 

diagram of the evolution of the universe showing the timings and energy scales. 

Figure 1.3 illustrates how the universe might have evolved given some of the ideas 

mentioned in this chapter, and should be read from the bottom up. (This diagram 

owes a lot to a similar one in [1].) In a few years several of these possibilities may 

have been confirmed or eliminated. On the other hand, the diagram may look 

completely different. Many of the features within it would have been absent ten years 

ago.
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EVENT

1-1 ■ o

NOW
Solar system forms 
Galaxy forms

Atoms form 
Radiation decouples

Nuclei form

Quarks condense to hadrons

Electroweak symmetry breaks 
Supersymmetry breaks ?

Baryogenesis (after inflation ?) 
GUT symmetries break ?

Inflation ?
Cosmic string formation ? 
Monopole production ?

Planck era - quantum gravity 
Extra dimensions visible ? 
Superstring effects ?
Physics essentially unknown

To the big bang

The history of the universe, as favoured in 1989.
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(iv) Astrophysics and Neutron Stars
Having concluded our review of contemporary cosmology, it is time to turn to 

consideration of the other subject mentioned in the thesis title, astrophysics. 

Astrophysics is physics on a scale only slightly less grand than cosmology; it is the 

study of the various objects which reside within the universe. There are a whole 

range of objects observed which astrophysicists strive to understand. There is a wide 

variety of stars, from conventional hydrogen burning stars like our own sun, to the 

rapid evolutionary life of the red giant star, to the white dwarf remains at the end of 

stellar evolution. Then the theory of relativity provides us with more unusual 

configurations, expected to be found when stars collapse at the end of their 

evolutionary cycle, such as neutron stars and black holes, the birth of which may be 

heralded by novae or supemovae. At the extreme distances seen by modem 

telescopes, small objects called quasars radiate huge amounts of energy and remain a 

mystery. The study of all these objects falls into the realm of astrophysics.

All these objects have been observed by astronomers, with the possible 

exception of black holes for which the evidence remains circumstantial though 

convincing. For the most part, these stellar objects are well understood, with a solid 

knowledge of the evolution of stars being well known certainly up to the time when 

they have no more fuel to bum. When they reach this stage, they are effectively at 

the end of their lifetime as stars, and are expected to collapse to form one of the 

dense objects named above. The particular object formed depends for the most part 

on the mass of the star, though there is some dependence on the mechanism of 

collapse itself which is hard to determine. In this thesis we are predominantly 

interested in the collapsed objects thus formed, for it is they which have high 

densities and for which the notions of relativity are required for a proper treatment, 

while stars can be fairly well described using entirely Newtonian physics. Hence 

here a brief review of stellar collapse and the dense objects formed is provided; for 

more details the book by Shapiro and Teukolsky [2] is an excellent reference.
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A star's lifetime comes to an end when it has no fuel left to bum. In its early 

years a star will be fusing hydrogen to form helium while near the end of its 

evolution it may become sufficiently dense that it can fuse these elements together to 

form yet heavier ones, such as carbon, oxygen, and ultimately even iron. However, 

iron represents the limit to how far this process can go - either breaking it into pieces 

or fusing anything with it requires an input of energy, so the star cannot use these 

processes to keep burning. At the end of its life, a star may be made from a central 

core of iron, surrounded by shells of successively lighter materials at radii where the 

density is too little to allow them to fuse, giving an overall structure somewhat like 

an onion. It has no fuel left, and its evolution takes a drastic turn.

A collection of atoms on their own will always tend to collapse gravitationally 

towards some common centre; in the case of a star this collapse is prevented by 

thermal pressure created by the burning of fuel. When the fuel runs out, this 

pressure is no longer present and so the star must collapse inwards to form a new 

object. White dwarfs and neutron stars are characterised by their very small size, 

because the only thing which keeps them from complete collapse is the pressure of 

degenerate electrons in the former case and of degenerate neutrons in the latter. In the 

case of a black hole, the original star was so massive that even these forces cannot 

prevent collapse, and the matter collapses completely to a singular point. The actual 

process of collapse is not of direct relevance here, only that collapse to one of these 

objects seems inevitable. Some models of collapse do exist, and it is even possible to 

construct models of stars which undergo supernova explosions at the end of their 

lifetime such as that observed in 1987 in the Magellanic Clouds. Unfortunately, the 

details of collapse can be very awkward and it may be hard to estimate how much 

matter collapses inwards to form the new object and how much is ejected by 

explosion mechanisms or thrown off by the rapid rotation induced as the matter 

collapses inward.

Here we shall focus our attention on neutron stars, which can be formed in the
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collapse of objects of mass over perhaps five times the mass of our sun. Because of 

the uncertainties in the amount of matter thrown off, it is not well known which of 

these masses will lead to neutron stars and which to black holes. However, it is 

known that neutron stars can be formed because astronomical observations can 

actually detect them. In 1967, a group at Cambridge discovered a source of regular 

pulses of radio waves, with a period of around a second. Such sources were later 

given the name pulsars. Several explanations were proposed, but the only one 

accepted today is that pulsars are in fact rotating neutron stars, with the pulses 

generated by particles escaping along the axis of a strong magnetic field associated 

with the star. This explanation for the phenomenon arises because the pulses are 

rapid and remarkably evenly spaced, hence they must originate from a very small 

dense source. Further evidence is provided by the observation of a pulsar in the 

remnants of the 1987 supernova, where a neutron star would be expected to have 

formed.

Here we are mostly interested in the theoretical aspects of neutron star structure. 

These objects are dense enough to require general relativity to be taken into account, 

and this was first done by Oppenheimer and Volkoff in 1939. Because of the 

exclusion principle, neutrons have a long mean free path and are well described as a 

perfect fluid. In their model they used an equation of state for this fluid proposed by 

Chandrasekhar which describes non-interacting fermions in thermal equilibrium. 

What they discovered was that the class of neutron stars is parametrised only by the 

central density of the star, and further that there was a maximum mass (about 0.7 

times the mass of the sun) for which stable neutron stars exist. This important 

observation remains a feature of more up to date models, though the maximum mass 

which can be obtained is higher.

The only real difference between this model and ones considered today is that 

much more complicated equations of state for the matter are used; these include many 

features over a whole range of densities, such as nucleon interactions, and the
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neutron stars feature shells of different types of matter, but the details of these shall 

not interest us. These models are required over the Oppenheimer-Volkoff version 

because they allow a higher maximum mass, which is necessary as neutron stars of 

more than the sun's mass have been seen. A maximum mass of between 1.5 and 3 

times the sun's mass is common in the wide range of models that exist now.

The aim in chapter five is to examine how the existence of an extra dimension, 

as advocated by several popular particle theories, might affect the structure of 

neutron stars. In our studies, we will restrict ourselves to looking at the 

Oppenheimer-Volkoff case, while always remembering that an accurate treatment 

would require a more sophisticated equation of state. The reasons for this are 

twofold. Firstly, this is done for simplicity to prevent any effects that we see being 

tangled up amongst those of a complicated equation of state, but more importantly it 

is done for reasons of consistency. The extra features we add - the effect of an extra 

dimension in chapter five and of adding an interacting boson field in chapter six - are 

introduced without consideration of any complex interactions which they might be 

involved in, and given this there is no good reason for taking such interactions into 

account in the neutron terms. Hence we will use the Chandrasekhar equation of state 

which corresponds to non-interacting neutrons, in the assumption that interesting 

effects here will generalise to a more realistic equation of state. This then forms the 

basis for our investigations.

(v) Scalar Fields and Boson Stars
Here we consider some rather more unusual stellar objects which might exist in 

our universe. These have a markedly different status from those which were 

discussed in section (iv) in that as yet they have not been observed by astronomers. 

Their position is instead that they are predicted as possible consequences of current 

particle theories, and they are examined on that basis. The best motivation for their 

study is in the possibility that the dark matter in the universe, if it does indeed exist,
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may reside in heavy unconventional stellar objects rather than in the form of, for 

instance, free neutrinos or axions. Hence here we consider the possibilities for stars 

made from bosons rather than conventional fermionic stars such as neutron stars.

We shall primarily be interested here in what have come to be known as boson 

stars. Given the intense usage of scalar fields in cosmology, it is an interesting 

question to consider whether or not stars can be made from bosons in equilibrium 

with gravity; these are the bosonic analogue of neutron stars. It turns out that such 

objects can exist, with the gravitational attraction balanced by pressure forces which 

can be viewed as having their origin in Heisenberg's uncertainty principle. 

However, the treatment is slightly different to that of neutrons; for fermions the 

perfect fluid approximation is good and gives accurate results, but for bosons this 

approximation breaks down. Fortunately, in the case of the scalar field the treatment 

using the field itself is quite simple. It was shown that the class of possible stars is 

parametrised purely by the central value of the bosonic field, just as the class of 

neutron stars is purely determined by their central density. Overall, the results from 

the two cases are remarkably similar, with the boson stars also featuring a maximum 

stable mass which depends only on the mass of the scalar particle and on the strength 

of its coupling. One major difference though is that the boson field vanishes only 

asymptotically, though it does so exponentially quickly. A neutron star in contrast 

has a definite edge.

Original studies of boson stars concentrated on the simple case where the 

bosons do not interact with each other. It turned out that the stable configurations in 

this case are very light, which led to some waning in the interest in these objects. 

However, it was later shown that if the scalar field is self interacting, such as a 

Higgs particle in the standard model, then the interaction term is very important even 

if the dimensionless coupling is very small. This leads to configurations which have 

a higher maximum mass, allowing them to be at least of comparable size to fermionic 

stars.
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There are other objects which can be made from scalar fields, in which we have 

no direct interest here; these have come to be referred to as Q-balls and 

non-topological solitons. These too are localised bosonic objects, but their existence 

derives from extra couplings which compete to localise the energy density, 

essentially by introducing surface and volume terms in the effective potential, and 

may require additional bosonic or fermionic fields. Gravity is not important in their 

construction. We shall therefore restrict ourselves to the simple couplings and take 

gravity fully into account.

(Vi) Scalar Fields in Cosmology and Astrophysics
This section describes more specifically the work which is detailed in this 

thesis. As the thesis consists of several separate sections which in principle stand 

alone, detailed introductions are instead supplied at the start of the relevant chapters. 

The aim of this section is instead to provide an overview of the thesis and to discuss 

some common themes which appear therein, primarily the pervasive influence of 

scalar fields and their consequences in both cosmological and astrophysical contexts.

In recent years, scalar fields provided by particle theories have been leapt upon 

by cosmologists as a source of cures for all manner of cosmological ills. While it is 

fair to say that a large part of this is based upon the fact that the scalar field is by far 

the easiest such object to handle, it is also true that scalar fields have many special 

properties which justify the enthusiasm with which they are used. Realms of physics 

in which scalar fields play an essential part include inflation, where it is observed 

that the scalar field can conveniently provide a temporary cosmological constant, and 

cosmic strings, where flaws in the scalar field vacuum create massive string loops 

onto which matter may accrete to form galaxies. In a more peripheral role, scalar 

fields are also studied in other cosmological settings, where they often appear in the 

guise of extra dimensions such as those found in Kaluza-Klein theories and 

superstrings. Much examination is also made of the consequences of less visually
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obvious fields, such as the light axion introduced to solve a difficult particle 

theoretical problem known as the strong CP problem, which in a role as dark matter 

may also help solve the mystery of galaxy formation. Even the possibility of stellar 

objects constructed from scalar fields, known as boson stars and non-topological 

solitons, has received much attention in the last few years.

Despite this attention, it must be remembered that as yet no scalar field has been 

observed in nature . This is not to say however that there are not vast numbers of 

candidates for them, and almost all physicists would believe in the existence of at 

least one. The most famous possibility is the Higgs boson, which may soon be 

observed at LEP and which is essential in the construction of the standard model and 

gives the origin of mass in the universe via symmetry breaking. Generalisations of 

the standard model to GUTs usually require further Higgs bosons for symmetry 

breakings at higher masses - these are popular for construction of inflationary 

models. Other candidates are the axion, mentioned above, and there also exist 

fundamental scalars in supergravity models. Finally, compact extra dimensions in 

higher dimensional theories are often formally equivalent to scalar fields. One of the 

main aims of particle cosmology is to provide evidence of the existence or 

non-existence of various scalar fields, providing a much needed alternative to the 

accelerator program which is unlikely to reach much higher energies than are 

available now.

This thesis is concerned primarily with investigating various effects of scalar 

fields, both in cosmology and astrophysics. The individual topics considered are for 

the most part unrelated, but various connections can be weaved between the 

constituent parts. Chapters two to four are concerned with cosmology. Chapters two 

and three follow the theme of cosmological solutions in a higher dimensional theory, 

based around a specific theory related to the low-energy limit of the superstring. 

Here the scalar field arises as a fundamental object; it is already present in the 

Lagrangian of the theory, and is known as the dilaton. Its effect on the equations of
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motion in the model is noted; it damps chaotic motion on the way to the singularity 

and also affects the behaviour of the spacetime as it expands towards large sizes. In 

chapter four a completely different theme is chosen - an examination is made of a 

class of solutions giving a type of inflation known as power law inflation. In the 

most general case considered, the origin of the scalar field is not specified; it is 

merely assumed that it has a particular type of potential, one commonly found in 

many theories. Later on in this chapter a specific model is considered, where the 

scalar field corresponds to the size of an extra dimension, and it is shown in this 

context how to construct an inflationary model based on the ideas contained in this 

chapter.

A common idea to these three chapters is a consideration of an extra 

consequence of having a dynamical scalar field present in the theory; that the 

variation of the field will in general produce particles via its couplings to other fields 

in the theory. In each instance the effect of this is examined. The treatment in each of 

these chapters is slightly different, but in each case the particle production leads to 

terms resembling a viscosity term, as they tend to damp the motion of the scalar. 

This can have a major influence on the behaviour of the system as a whole, and also 

can provide some indication of how the model universes that we consider might 

evolve towards the one we observe today.

Chapters five and six move off on a different tack, by considering the influence 

of scalar fields on astrophysical objects. Chapter five looks at how the existence of 

fundamental scalar fields might affect the structure of astrophysical objects; the 

motivation here is in the idea that extra dimensions give formally the same equations 

of motion as we obtain by adding real scalar fields to conventional relativity. In the 

presence of compact astrophysical objects such as neutron stars, general relativistic 

effects become significant and so one might hope that the existence of extra 

dimensions would betray itself. Neutron stars are studied as a possible source of 

information about the extra dimensions. The analysis also holds for fundamental real
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scalar fields, but in this case it is the extra dimensional interpretation that is 

potentially of the most interest.

Chapter six follows a similar line, only here the scalar field, now massive and 

self-interacting, is used to make up some of the substance of the star, rather than the 

picture of the star being affected by the different geometry caused by the extra 

dimension. The scalar field may now be complex or real; in the complex case the 

equilibria feature only one independent scalar field component. This is following the 

idea of boson stars, massive stellar objects constructed from bosonic particles, 

which has been given much attention recently. (It is also possible to construct a class 

of stellar objects known as non-topological solitons, but these are not considered 

here.) Here we consider the combination of both bosons and fermions in a stellar 

object, whereas previously only one or other was taken into account. The scalar field 

in this instance is imagined to be a fundamental scalar field of some characteristic 

mass; particle theory provides several candidates such as the heavy Higgs particle or 

the light axion which might fulfil this role. These combined Bose-Fermi stars 

generalise the concepts of both neutron stars and purely bosonic stars.

(vii) Some Notes on Conventions
Conventions used in this thesis follow those of Misner, Thome and Wheeler 

[3]. In particular, the signature of the metric is chosen as ( -  + + + ) ,  i.e. with the 

timelike direction given the negative sign ( in extra dimensions add more plus signs). 

Unless stated otherwise in the text, natural units are used throughout with the speed 

of light, Planck's reduced constant and the gravitational constant all set to one. When 

required, these will be denoted by c, fl and G respectively.

The metric will be referred to as g^v , with the scale factors denoted a or r. 

Scalar fields are normally indicated by Greek letters; in particular <j) and ^ are often 

used. Normally an overdot will mean a time derivative and, unless another meaning 

is obvious from the context, a dash will refer to a spatial derivative with the precise
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variable of differentiation specified in the text. If a particular symbol is used 

frequently within a chapter, it is defined once and its meaning assumed thereafter; 

meanings do not carry between chapters except between chapters two and three 

which are the only chapters which follow on directly rather than being self 

contained.

Many of the equations in this thesis were derived or checked using the computer 

algebra program REDUCE [4], which proved invaluable in the manipulation of 

complex expressions.
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Chapter 2

Cosmology of the Dilaton and H field 
from Superstring Theory

(i) Introduction : Cosmology and the Superstring
Superstring theory [5] (see also chapter one, section ( ii) ) has been proposed 

as a candidate for the much vaunted 'theory of everything' which has been one of the 

prime goals of particle theorists this century, and particularly over the past twenty 

years; that is, it provides a framework in which the four fundamental forces of nature 

may be unified. While it has been known for some considerable time how to unify 

the strong, weak and electromagnetic forces into a single theory, known as the 

'standard model' [6], superstring theory is the first realistic attempt to also include 

gravity in its picture, and so for the first time many theorists are optimistic that the 

theory may be the ultimate description of matter. It is however true that superstring 

theory has a long way to go before it can be accepted as such a description, for there 

are many problems in relating the superstring theory of high energies with the 

universe we see around us today.

Interest was centred on superstrings following the important paper of Green and 

Schwarz [7] in which they showed that the superstring theory is plagued with 

anomalies associated with the gauge symmetry group, unless the symmetry group 

was one of only two very large groups, those known as SO(32) or E8xEg. Hence 

for the first time there was actually a motivation for a particular choice of gauge 

group. Furthermore, the theory only worked if the number of space-time dimensions 

was ten, so again the superstring allows us to pin down the type of theory allowed. 

It was the existence of these two restrictions which led to the huge rush of theorists 

into the study of superstring theory around 1985.
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[ Note - It should be pointed out that since the work detailed in this and the 

following chapter was carried out, methods have been discovered by which string 

theories in dimensions other than ten can be constructed, and in particular there are 

some constructions in four dimensions [8]. These theories do however lose a lot of 

the elegance of the original superstring theories, and seem to have less 

phenomenological possibilities. It is fair to say however that the existence of 

superstring theories in a wide variety of dimensions, and with many possible gauge 

groups, removes a lot of the motivation for believing that one day superstring theory 

might provide the 'theory of everything'; how do you choose from the wide range 

of possible string theories? The neatest theories still remain the original ones of 

Green and Schwarz.]

Given that the ten dimensional superstring is worth studying, there are many 

different areas which people have looked at over the past few years. The physics of 

the string theory itself has received much examination; to determine what kind of 

particles might appear as modes of the string, to analyse the cross sections of 

string-string interactions, to examine the symmetries of the string theory, to attempt 

to classify the types of string theory - the list is endless. Here we are interested 

instead in trying to see how the superstring might explain the universe around us 

today, a field known loosely as superstring phenomenology.

Clearly there is a lot of explaining to do. The most obvious drawback is that the 

string theory is ten dimensional, whereas we see only four dimensions. A solution to 

this problem is provided by the original Kaluza-Klein work on higher dimensional 

theories; what we do is postulate that the extra six dimensions are curled up to be 

very small, so that they are unobservable to us. The standard analogy here is that of 

a hosepipe; seen from a large distance it looks just like a one-dimensional line, but 

.close up we see that at each point of the original line is in fact a small circle, and that 

the hosepipe is in reality two dimensional. This curling up procedure is known as 

’compactification’. Mostly, attention has been focussed on what the physical
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situation is after compactification, imagining a fairly static situation where the extra 

dimensions have already curled up in some way. Hence our universe already appears 

four dimensional. There is another advantage of compactification. The string theory 

features the colossal symmetry groups mentioned above, which have to be broken 

down towards that of the standard model if they are to explain everyday particle 

physics. Depending on the form of the internal space, the compactification itself will 

actually break some of the gauge symmetry due to non-trivial gauge configurations 

on the internal space, a process known as flux-breaking. One example of such a 

space is a Calabi-Yau space [9], which was much favoured in the early studies. In 

principle, complete knowledge of the compactification gives details of the low 

energy effective theory, and some authors have displayed specific models though 

never anything compelling.

In this and the following chapter we are interested in another aspect of the 

compactification problem, that of how it might actually have occurred. This is the 

point at which cosmology begins to interact with the superstring theory. Naturally, 

we are not going to be so ambitious as to try and analyse a compactification to some 

complex internal space as mentioned above; we are merely going to examine ways in 

which three of the spatial dimensions might become large while the other six remain 

small (around the Planck length). The picture we have therefore is one of evolution 

as the universe grows larger.

At early times, round about the Planck era, we expea that all the ten dimensions 

are on an equal footing and here the dynamics of the universe are essentially 

'stringy1. The processes occurring at this stage are almost completely unknown. The 

universe continues to expand and falls to energies below the Planck scale; at this 

stage we are entering the realm where we can begin to comprehend what the string 

theory means in terms of an effective low energy field theory. The relevant field 

theory has been shown [10] to be an N=1 Supergravity theory in ten dimensions, 

much studied in recent years. Hence we are interested in seeing if there are
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cosmological solutions in this theory, with additional restrictions from superstring 

consistency requirements, which lead to appropriate behaviour for compactification. 

We will also study various other solutions with regard to a particular model, the 

construction of which will be outlined in the next section. To outline this work, the 

remainder of this chapter is devoted to approximate analytic techniques having 

constructed a specific model. Chapter three then details the numerical approach to 

exact solutions of the relevant equations. Chapter three will also consider extensions 

to the basic scenario such as production of particles caused by time variation of the 

scalar field in the theory.

(ip The 3-Spaces Model
In this section we construct a specific model within the context of which we 

shall discuss superstring cosmology. We take the bosonic Lagrangian, derived as a 

classical low energy effective field theory from the superstring, as being the basic 

quantity; it has been shown [10] that the low energy limit of superstring theory is the 

ten-dimensional supergravity theory as originally discussed in [11]. While 

cosmologists often concentrate purely on the scalar fields in a particular theory, and 

use them for purposes such as inflation, cosmic string formation and so on, we wish 

to be somewhat more general by considering the entire bosonic sector of the theory. 

This consists of three fields. There is the graviton which provides the gravitational 

interactions via the standard Lagrangian term, given by the scalar curvature. There is 

also a scalar field, usually referred to as the dilaton, which we shall refer to 

throughout as <j>, and finally there is a three index antisymmetric tensor field, denoted

H , which can also be written as a three form. When we are using the form
M-VP

notation we shall refer to it simply as H. The Lagrangian which we require is given 

by
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where e is the determinant of the vielbein ( equivalently V-g , where g is the 

determinant of the metric).

Here we are specifically neglecting extra effects coming from the superstring, 

such as additional R2 terms in the Lagrangian, or actual 'stringy' effects. Such 

effects should only be important above or near the Planck scale, where we have no 

real knowledge of the processes which might occur. It is therefore natural that our 

attention is focussed on an era where the energies are somewhat less than this, where 

we can expect our Lagrangian to be valid. We also treat the Lagrangian as a classical 

field theory, since again quantum effects should be important mainly at Planck 

energies and above.

The following section is based on a construction by Henriques and Moorhouse 

[12], on whose paper the majority of this chapter is based. Further details can be 

found there. The basic idea now is that we use the H field to split the nine spatial 

dimensions into three spaces, each of dimension three, which we shall refer to 

throughout as 3-spaces.We achieve this by making the ansatz that H is given by

h  = h ^ t)  q 1 + h2(t) n2 + h3(t) n3 (2 .2 )

where is the volume form on the i -th 3-space (and therefore necessarily a three 

form). It can be shown that this ansatz allows the equations of motion for H to be 

satisfied, and, provided the 3-spaces are of suitably simple topology (examples 

include 3-tori and 3-spheres), an additional integrability condition arising from the 

superstring is also satisfied [12].

This type of ansatz is in fact well known from earlier studies of compactification 

in supergravity theories; it is a generalisation of the Freund-Rubin mechanism [13] 

of compactification in eleven dimensional supergravity. That theory features a four 

form field, called F, and the Freund-Rubin ansatz is that this is proportional to the 

volume form on four of the eleven dimensions, in an analogous way to equation

(2.2) above. Our ansatz is similar, though now in the ten dimensional theory with a
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three form field, but it is more general in that the H field takes values on each of the 

3-spaces, not just a particular one which we are trying to force to large sizes.

In traditional Kaluza-Klein fashion [14], we factorise the metric into separate 

scale factors on each of the three 3-spaces. Normally in Kaluza-Klein there is a 

simple two-way split into a metric on the four external dimensions we see today and 

a metric on the remaining internal dimensions, but again here we are slightly more 

general in splitting up the metric into a scale factor on each of the three 3-spaces. Our 

treatment also differs slightly in that we keep the time constant separate and introduce 

comoving coordinates so that the metric can be written as

ds2 = - dt2 + r 2 (t) ^  gy dxk dx1
k,l=l

+ T2 ^  X  gW ^  dyl + T3 X  8kl ^  dzl (2 -3)
k,l=l k,l=l

where the ri are the scale factors associated with each of the 3-spaces and the g^ are 

the metrics on them satisfying Einstein's equations. As mentioned above, not all 

choices of the metric will satisfy the integrability condition.

To guarantee that the equation of motion for the H field is satisfied, the h^t) in 

equation (2 .2) must satisfy the relation

h .(t) = r.-3 (t)h . (2.4)

where the h{ are constants. Hence there is a characteristic value of h{ associated with 

each 3-space, which is conserved for all time, though of course we see from 

equation (2.4) that the actual size of the H field will reduce as the scale factor 

increases. The original value is an initial condition that would emerge from the 

Planck era.

We are now in a position, having coped with the ansatz on H, to write down
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the equations of motion for the rest of the system, which will determine the 

dynamics. The equations will be for the three scale factors ri? which will appear 

symmetrically, and for the dilaton field <j). These are obtained from the generalised 

Einstein equations, which are of course derivable via the variational principle from 

the Lagrangian (2.1), and from the equation of motion for the scalar field. In fact, 

we shall use the energy conservation equation to derive the equation for (j) in a 

simpler, though equivalent, way. We shall not go into the details of the derivation 

here; these can be found in [12]. The equations for the system are found to be

Equation (2.5) comes from the spatial Einstein equations, equation (2.6) from 

energy conservation and equation (2.7) from the time-time component of the Einstein 

equations (also from the Bianchi identities). These equations actually overspecify the 

system, since energy conservation is automatically guaranteed by the Einstein 

equations alone, so we have one redundancy. Notice that by substituting equation 

(2 .5) into equation (2 .7) we would obtain a first order equation, viewed as an 

expression for (j), explicitly given by

(2 .6)

2

(2.7)

(2 .8)
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and so we could discard equation (2.6) as being unnecessary. However, to preserve 

the symmetry between the q and <}) we prefer to retain equation (2 .6), which is 

second order in <j). If we do this, then we must impose equation (2.8) as an initial 

condition, but after that it is guaranteed that it is satisfied at all times by the other 

equations of motion.

Hence the four equations given by equations (2.5) and (2.6), coupled with the 

initial condition equation (2 .8), give the dynamics of our model, and so we can now 

turn towards looking for solutions which are of cosmological relevance. The 

equations are coupled non-linear ordinary differential equations of second order in 

each of the four fundamental variables, so there are eight initial conditions required 

to completely specify the system. Having done this, we can examine which solutions 

exist. We will use two techniques to do this. Numerical work will be used to provide 

exact solutions, and the details of this will be given in chapter three. The remainder 

of this chapter will be concerned with approximate analytic methods that can be 

used, and which shall be seen to provide very useful intuition for analysis of the 

numerical work.

(in) Chaos Damped bv the Dilaton
We now consider approximate solutions to the equations of motion as described 

in the previous section. In a region where the potential terms are negligible (the 

potential terms are those in the equations of motion which feature h j) we can solve 

the equations of motion by

r. = a . t Pi ; e* = a,t* (2.9)1 1  4

where â  and pi are constants, and where the p- must satisfy the additional constraint 

equations that

3 ( p 1 + p2 + p3 ) = l ; 3 ( p 2 + p22 + P3 ) + 2 p 2 = 1 (2.10)
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Notice that the second of these two constraints places an upper bound on the 

modulus of the pi , and that the fact that there are two constraints on the four 

quantities implies that there are only two degrees of freedom for the p j . It is the pd 

that we will be primarily interested in; the ai just correspond to a rescaling of the 

approximate solution.

Solutions of this type are very familiar from early studies of anisotropic 

cosmologies, initially by Kasner [15], and indeed we shall refer to a particular 

solution, with some specific values for the pi , as a Kasner mode. In his studies, he 

used a metric (for normal four dimensional space) with a separate scale factor 

associated with each of the three spatial dimensions, and found that there was a 

solution identical to the first part of equation (2.9). (He, of course, had no scalar 

field.) There exist two constraint equations, analogous to equation (2.10); namely 

that the sum of the pj should be one and the sum of their squares should also be one. 

This leaves one degree of freedom and we find, amongst other things, that the 

constraints force one of the pi to be negative.

This scenario was revived in the late sixties by Misner [16,17] for his 

construction of the so-called Mixmaster model. He used the Kasner solutions as 

given above, and showed that, moving backwards in time towards an initial 

singularity, the spatial geometry would perturb the solution from one mode having 

Kasner indices pi to another with indices pi ? where the pf are related in a specific 

way to the pA. The idea at the time was that when one of the is negative, light can 

circumnavigate the universe in the i-th direction. The switching between modes 

would allow light to traverse the universe in each successive direction, and hence 

solve the horizon problem ( see introduction and [18]). This was one of the earliest 

attempts to solve this problem, but unfortunately it was later shown that the details of 

the switching between modes would not allow this scenario to work [19]. Currently, 

inflationary models are the standard way of solving the horizon problem. It should 

be pointed out that this work is still of relevance in terms of the very complicated
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initial singularity it leads to, with switching of modes happening ever faster so that 

there is always an infinite number of switchings before any given time; this 

behaviour becomes chaotic [17,20]. It has been shown [19,21] that this type of 

singularity is very generic of anisotropic and inhomogeneous space-times, and the 

most general type of cosmological singularity may be to have Mixmaster behaviour 

at each point.

We find that our model can be analysed in exactly the same way as the 

Mixmaster model, and that very similar qualitative features arise. Here, we find that 

the potential terms (which we neglected in constructing the Kasner solutions), have 

the effect of perturbing us from one Kasner mode to another; in the Mixmaster model 

this role was played by spatial geometry terms. It is possible to find explicitly the 

iteration which gives us the new Kasner mode from the old one as we move towards 

the singularity.

In general, the potential terms may not remain negligible as we approach the 

singularity, because of their time dependence. Below we will consider the condition 

which allows a potential term to grow large; for now we assume that one of them 

does. We reorder the pt so that it is the first potential term that is important while the 

rest are negligible. A careful choice of variables (details can be found in [12]) allows 

us to write the problem as a free particle moving towards a potential barrier. It will 

be reflected from this barrier, which corresponds to the transformation into the new 

mode. Solving this barrier problem leads to the iteration

Pi= 1 + (pr 1)Y (2 .11a)

Pi = ( Pi - ( 1 - 3 Pi + P4 ) /  4 ) Y i = 2,3 (2 .11b)

p4 = -  j + ( P4 + \ ) y (2 .11c)

where
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Y = 4 / ( 7 - 9 p 1 + 3 p 4 ) (2.1 Id)

This bouncing' from one Kasner mode to another will continue indefinitely towards 

the singularity, provided that there is always a potential term which becomes large as 

we approach the singularity. We have to reorder the p{ so that it is the first potential 

term that becomes large before reapplying the iteration. The spatial terms all go as 

t'2, so we are looking for potential terms which grow faster than this. The condition 

for the i-th potential term to become large at small t can be seen from the equations of 

motion to be

3 Pi - p4 > 1 fo ri = 1,2 or 3 (2.12)

There are many possible Kasner modes such that this condition is not satisfied 

by any of the p ;; if the solution falls into one of these modes the potential terms will 

remain completely unimportant as we near the singularity and we will remain in the 

same mode all the way back. We therefore conjecture that the solution will bounce 

from one Kasner mode to another, and after a finite number of bounces it will fall 

into a stable mode and remain there. We note that in the absence of the dilaton field 

the situation is exactly as in the Mixmaster model; this is equivalent to setting p4 = 0 

in the iteration, and in particular in equation (2.12). Then the condition for instability 

is always satisfied by one of the pf , so one potential term will always become large 

and we will get chaotic behaviour near the singularity. Hence it is the presence of the 

dilaton which is moderating the chaotic behaviour in the approach to the singularity.

To confirm our conjecture, a computer program was written to carry out the 

iteration and reordering. First of all a routine was designed to choose Kasner modes 

at random satisfying the constraints of equation (2.10). It is observed first of all that 

of this random selection, around about 40% are already stable under the criteria of 

equation (2.12). In a computer run simulating the behaviour of 50,000 initial Kasner 

modes, all were found to reach a stable mode after a finite number of bounces,
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usually less than five. The highest number of bounces observed was 55 before 

reaching a stable state. Empirically, we conclude from this that the chaotic 

behaviour, of a type reminiscent of the Mixmaster model, is indeed damped out by 

the presence of the dilaton, and that only a finite number of oscillations will result 

during the entry to the singularity from a starting Kasner mode.

The analysis of the iteration by computer produces another important piece of 

information. First of all, we note that the iteration as shown has a single fixed point; 

that is, there is one mode which, under the iteration, would be mapped back to itself. 

This is given by the values

Pi P2 P3 "9" 5 P4 = - J  (2-13)

This point is actually on the border line between stability and instability since it has 

3pi - p4 = 1 for all i. Incidentally, it also has the smallest possible value of p4. It is 

not clear from the arguments above whether or not this point is stable, but we note 

that even if it is iterated we finish in the same mode since it is a fixed point, so the 

stability question does not arise. Despite this, all the modes which are near to the 

fixed point are unstable, because if we decrease one of the pi below 1/9, we have to 

increase another to stay consistent with equation (2.10). The same happens if we try 

to make p4 nearer to zero.

What the computer simulations indicate therefore is that the fixed point is 

unstable, and so if the initial Kasner mode is 'near' to it (with respect to some 

metric), the mode will tend to drift away from it towards the stable region. If we start 

very close to the fixed point it takes a very large number of bounces to get to the 

stable region, and we can arrange for an arbitrarily high number of bounces by 

starting sufficiently close. This situation is represented in the schematic drawing 

below, figure (2.1). Here modes are represented by points in a plane, which is finite 

in size since the modulus of the p4 is bounded. That it is a plane is justified by the
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fact that there are only two degrees of freedom; however, we do not have an explicit 

representation in terms of two independent coordinates which is in principle 

possible. Hence it should be remembered that the illustration is purely a schematic 

interpretation of the effect of the iteration.

Fixed Point

Stable Region

Figure 2.1 As we approach the singularity, the solution 'bounces' away from the fixed point, 

illustrated by a star, towards the large stable region.
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(iv) Solutions Forward in Time
Having demonstrated that the bouncing terminates as we move towards the 

singularity, we now turn our attention towards the behaviour as we move forwards 

in time. Again we want to devote attention here to an analytic approach, with 

numerical work detailed in the next chapter, so once more we concentrate on the 

iteration as given by equations (2.11).

It can be shown that the iteration has a very special property, which is that if we 

act it twice on a given mode, without reordering, we return to the original mode; that 

is, denoting the iteration by I we have

What must be remembered is the extra complication which is introduced by having to 

rearrange p 1? p2 and p3 each time so that it is pj which is associated with the 

unstable mode; the situation we have is therefore more involved than just the iteration 

itself, which is why computer simulation is a necessary tool. However, we can 

extract one vital piece of information from equation (2.14); the iteration is its own 

inverse,

Now we have a different supplementary condition which gives the ordering of the pi 

before we iterate; it is determined by having the mode after the iteration satisfying 

the condition for instability 3pA - p4 > 1. This condition ensures that we do get the 

inverse behaviour as we go forwards in time. It is not particularly surprising that the 

iteration is its own inverse when we consider the moving particle interpretation of the 

bouncing, because in this picture (details in [12] ) the particle is moving 

perpendicular to the barrier. Hence the inverse is just obtained by reversing the 

particle path, which gives exactly the same situation as we had originally and hence

 ̂ (PpP2’P3’P4.) — (PpP2’P3’p4.) (2.14)

I  ( p j > P 2 ’? 3 » p 4  )   ̂ ( P p p 2 ’P 3 ’P 4  )  ( P i » P 2 ’P 3 ’P 4 ) (2.15)
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the same iteration formulae. We emphasise that it is the supplementary stability 

condition and necessary reordering which give rise to the results we observe.

We are now in a position to once again use computer simulation, this time to 

investigate what happens as we move forwards in time. The first observation we 

make, which is certainly not immediately obvious, is that under the iteration (i.e. 

backwards in time) all points in the stable region are images of points outside it. As 

we move forwards in time any point in the stable region will be mapped out of it; 

there are no modes which are stable as we move forwards in time and so in this 

direction Kasner oscillations will continue indefinitely. The other possibility, that 

there could have been modes stable in both directions, does not occur.

Given the lack of stable modes, we find that all modes are drawn towards the 

'fixed point' mode given by equation (2.13), which is what we might expect from 

the analysis of behaviour towards the singularity. Hence the solution is behaving as 

though the fixed point is an attractor. We must emphasise that there is an important 

difference between this situation and the usual theory of attractors [22]. In the 

normal case, repeated application of an iteration takes a solution towards a point or 

set of points (e.g. a limit cycle). Here we have the added complication that there is 

the extra stage of reordering of the pi ; hence the situation is more complex, and there 

is no obvious way to analyse the attractor further. We are therefore forced to treat the 

observation by computer that it is an attractor as an empirical fact. Figure (2.2) 

illustrates this behaviour, essentially the inverse of figure (2.1).

The physical significance of this attractor is that, provided our approximations 

remain valid, the solutions to the original differential equations at late times should 

tend to the fixed point Kasner mode, giving



Fixed Point

Stable Region

Figure 2.2 Moving forwards in time, all modes are drawn to the fixed point

The validity of our approximations will be considered in the next chapter, where 

numerical work will be utilised to investigate the accuracy of the results that we have 

obtained here. Discussion of what these results mean will also be reserved until the 

next chapter, where the tie up between these analytic methods and the exact 

numerical solutions will be exhibited.
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Chapter 3

Numerical Solutions to Superstring Cosmology, 
and the Effect of Particle Production

(i) The Need for Numerical Simulation
In this chapter we continue the theme of chapter two, but shift the emphasis 

from approximate analytic techniques to using numerical simulation as a means of 

obtaining solutions to the field equations given by equations (2.5) and (2.6), with an 

initial condition constraint supplied by equation (2.8) as described in the previous 

chapter. Numerical solution has the advantage that we are able to deal with the 

complete equations, and we no longer have a need to neglect potential terms in some 

circumstances. These results are therefore intended to complement the analytic ones 

described in the previous chapter, and we shall see that the analytic results give us an 

ideal framework within which to explain the full numerical results.

The main reason for wishing to see numerical results is that it will indicate how 

good the approximations which were made to obtain the analytic solutions are. 

Amongst other things, we want to see whether the Kasner structure of the solutions 

and the bouncing from one mode to another is a genuine effect or just an artifact of 

the approximations that we made. We shall find out that the picture of modes 

bouncing from one to another is indeed a good one, and in the numerical simulations 

we shall be able to clearly identify the progression of Kasner modes. The exact 

results also cast light on the actual bouncing itself, about which little information can 

be extracted via the iteration picture as described in chapter two. Numerical 

simulation also allows us to test the variation of the solutions under a wide range of 

differing initial conditions.

A description of the numerical techniques used is given in appendix one, where
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the setting up of a sample program based on a problem from a later chapter is given. 

Numerical simulation is a common theme throughout this thesis; here the equations 

are somewhat more complex than those discussed in, for instance, chapter four, but 

the method of solution remains the same in all cases, with use being made of library 

routines on the physics department mainframe IBM. These routines feature stringent 

internal accuracy requirements.

In this chapter, section (ii) will describe the setting up of the problem and a 

discussion of which initial conditions should be investigated, concluding with an 

investigation of behaviour as we move backwards in time towards an initial 

singularity. Section (iii) then continues with an examination of the types of solution 

as we move forwards in time; this is the main theme of this chapter which is 

concerned primarily with examining cosmologically relevant solutions to the 

equations of motion. Here the nature of the 'fixed point' as described in chapter two, 

section (iv) is elucidated and the long term behaviour categorised. Section (iv) 

continues in the same theme examining a slightly different model, where the H field 

only takes values on one 3-space.

The remainder of the section is concerned with extending the basic model by 

considering the effects induced by introducing a simple model of particle creation. 

Section (v) sets up the basic motivations and formalism for this, and then sections 

(vi) and (vii) examine how it affects the solutions found earlier. Ultimately, section 

(viii) concludes the chapter with a summary of the results obtained in chapters two 

and three, with some conclusions based on the contents of these chapters.

(ii) Towards the Singularity
For convenience, it is useful to make a redefinition of the scalar field before 

embarking on the numerical work. This is done to bring out more clearly the 

analogies between the structure of the equations for the ^  and the dilaton. By making 

the substitution £, = e*, we can write the equations of motion (2.5) and (2.6) in the
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form

i=  1,2*3 (3.1)

(3.2)

with the constraint equation (2.8) becoming

(3.3)

When the equations are written in this way the analogy between and ^ which leads 

to the Kasner mode structure can clearly be seen. Notice however that when the right 

hand side of equation (3.3) is no longer assumed to be zero this term prevents an 

exact Kasner relationship from holding.

This last point is important when we come to consider which initial conditions 

are sensible to supply to the integration; equation (3.3) tells us that we cannot start in 

an exact Kasner mode. However, in regions where the potential term is small, i.e. 

well away from a bounce point, a slight perturbation out of a Kasner mode will 

satisfy equation (3.3) and be a valid initial condition. Hence for now our initial 

condition philosophy will be to choose a random Kasner mode and perturb it slightly 

to satisfy the initial condition equation (precisely, we shall perturb the initial value of 

the derivative of £ to do this). It should also be pointed out that equation (3.3) 

provides a useful cross check on the simulation; we can check during or after the 

simulation to see if it is still satisfied, since we only impose it initially and the 

equations of motion themselves should preserve it.

The simulations demonstrate that the initial condition philosophy is reasonable,
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and further that the picture provided by the analytic methods of chapter two is a very 

good one. We see Kasner behaviour (best exhibited in log-log graphs where power 

law solutions appear as straight lines) which does indeed satisfy the constraints of 

equations (2 .10) on the power law exponents, and also the bouncing from one 

Kasner mode to another can clearly be seen. It is observed that the bouncing from 

one mode to another is a very sudden event (this is best seen in the simulations 

forward in time - see next section), which is a good indication that the assumption 

that the potential terms are usually unimportant is correct. The initial condition 

philosophy is also justified by the simulations, because in tests where wildly 

non-Kasner initial conditions are supplied, though still in accordance with the initial 

condition constraint equation (3.3), the system either falls rapidly back into Kasner 

behaviour or in other cases proves unstable, with singularities rapidly forming which 

suggests that the initial conditions are inappropriate.

Figure (3.1) shows a sample simulation of the approach to the singularity. In 

this case the hi? one associated with each 3-space as described by equation (2.4), are 

each set to one third. These values are not of any particular significance, as shall be 

discussed in the next section. Here the system executes one Kasner bounce before 

entering the singularity, at which two 3-spaces tend to zero size and one to infinite 

size while the 9-volume decreases smoothly to zero. The scales of the graph are in 

natural units. That the singularity is not at zero on the time axis is merely due to the 

choice of initial time in the simulation; because the equations do not depend on time 

explicitly we can always add a constant to the value of time, and so the origin of the 

time coordinate should be shifted to coincide with the singularity.

The simulations also confirm the conjecture of chapter two, section (iii) that the 

presence of the dilaton will bring the Kasner oscillations to an end after a finite 

number of bounces; that is, the dilaton effectively damps out the chaotic behaviour 

near the singularity. Such an effect is also present in conventional relativity; there 

Belinsky and Khalatnikov [23] observed that a scalar field could end the Kasner
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Figure 3.1 This graph shows the approach to the singularity, with the three hj set 

equal to one third. The lines marked 1,2 and 3 are the sizes of the three 3-spaces, 

and the line marked 4 is the value of the ^ field ( ^ = e^ where <j) is the dilaton field).

The scales are in natural units.
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oscillations, though in their case the spatial geometry caused the bouncing between 

modes whereas in our case it is the potential of the H field which performs this 

function. In the absence of a scalar field, it has been shown by several authors 

[24,25] that chaotic behaviour only exists when the number of spatial dimensions is 

less than ten, and Barrow and Stein-Schabes [26] have observed that in 

Kaluza-Klein models with extra dimensions incorporated as a direct product chaos 

does not occur.

(lii) Forwards in Time : The 'Fixed Point' Solution
We now move to a consideration of solutions forward in time, with a view to 

examining the cosmological relevance of the types of behaviour that we find. The 

groundwork for this has been described in chapter two, section (iv) by means of 

examining the iteration forwards in time, where it was demonstrated by computer 

trials that any initial mode is drawn towards the 'fixed point' at pA = 1/9, p4 = -2/3. 

As before, we use numerical simulation to test the validity of this picture 

(summarised in figure (2 .2) )  and also to study the bounce mechanism itself.

Here it is worth giving further consideration to the matter of the initial 

conditions, in the light of the apparently large number of free parameters which have 

to be set. These can be listed as

(a) hj , h2 , h3 These give the values of the H field on the 3-spaces

(b) Pl ,p 2 , p 3 , p4 The Kasner indices chosen for the initial conditions.

In fact we have far fewer degrees of freedom than it appears, partly because the 

equations have several scaling invariances and partly because it turns out that the 

long term behaviour of the solutions is for a large part independent of the precise 

choice of initial conditions. In particular, the initial choice of Kasner mode has no

and determine the strength of the potential.

(c) a3 , a2 , a3 , a4

(d) t

The initial size of the 3-spaces and the dilaton field. 

The initial value of the time parameter.
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qualitative effect on the short term behaviour or on the approach to the singularity, 

and no effect whatsoever on the long term behaviour. This was demonstrated by 

running batches of simulations with different random initial Kasner modes; in the 

short term the solutions are similar and in the long term become identical, due to the 

presence of the 'fixed point' as an attractor. The initial choice of the time variable 

also does not matter, as the equations do not depend explicitly on time, and so it can 

always be rescaled if necessary.

The number of initial conditions required is further reduced by observing that 

equations (3.1) to (3.3) are invariant under a rescaling of the form

c .3
ri ^ e i ri ’ > h ^ - T - h .  ( 3 .4 )

4

where the cA and c4 are constants. This means that we can explore the space of all 

possible solutions by fixing either all of the ^ or all of the h{ and varying the other; 

we can then rescale the solutions as required. The strategy which turns out to be 

most fruitful is to fix the hi (we choose the value one third, as quoted in section (ii) 

on the approach to the singularity) and merely vary the scaling of the initial 

conditions. Because of the non-linearity of the equations, this is potentially a 

non-trivial thing to do, but as we shall see the presence of the 'fixed point' attractor 

simplifies considerably the situations which we must consider.

Given these values for the h. , we find that the long term behaviour of the 

solutions is exactly that predicted by the 'fixed point' picture obtained via the 

iteration. This occurs regardless of the magnitude of the initial conditions, 

determined by the ^  . This again justifies the analytic work, and we are easily able to 

see the progression from one Kasner mode to another. Figure (3.2) illustrates what 

happens as we move forward in time a little; we can see that the system executes 

several bounces and also that it is heading towards a configuration where each of the 

three 3-spaces is expanding with the same power law, that of the fixed point
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Figure 3.2 This graph shows the short term behaviour as we move away from the 

singularity (i.e. forwards in time). The system can be seen to execute several 

bounces. The sizes of the 3-spaces remain about the same, while the % field falls 

rapidly off to zero. Again the hj are set equal to one third.
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solution. The ^ field drops off rapidly towards zero; its power law heads towards 

minus two thirds.

Further investigation yields some more information; if all the are equal then 

not only do each of the r. tend towards the same power law, but also they tend 

towards the same magnitude as well, as seen in figure (3.3). This figure shows the 

development over a longer timescale than figure (3.2), and also the axes in figure

(3.3) have been chosen to be logarithmic. The advantage of this is that Kasner 

modes appear as straight lines in such a graph, and we can now see clearly how the 

solution stays in one Kasner mode for a while, and then is very suddenly perturbed 

into another. Again here we see that we tend towards a power law of one ninth, and 

also we can see that despite the differing initial sizes of the scale factors they tend 

towards each other. This represents a natural damping of anisotropy within the 

model which is inherent within the bouncing mechanism.

We can now take advantage of the scaling laws of equation (3.4) to say that all 

solutions, even with different h-, are of this form with the scale factors multiplied by 

different fixed constants, because we can rescale each of the to one third and by a 

simultaneous rescaling of the q according to equation (3.4) we will obtain the same 

solutions. Figure (3.4) shows this in action; one of the hf is given a different value 

but we just obtain the same asymptotic solutions with the associated scale factor 

multiplied by a constant, so that it tends to a fixed multiple of the others. These 

results rule out the possibility that there will be a dynamical separation in the sizes of 

the 3-spaces occurring in a model where the H field takes values on each of the 

spaces, unless perhaps if additional features such as curvature or particle production 

are taken into account. We refer to this set of solutions as the fixed point solution; 

this is taken to include the whole class with any rescalings that might be required.

It is observed that the 'fixed point’ solution is very nearly an exact solution of 

the full equations of motion including potential terms, and is in fact the only Kasner 

mode with the correct power law properties to do this. It cannot however be an exact
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Figure 3.3 This graph illustrates the long term behaviour, with each of the 

equalling one third. The graph is of log r- against log t. On this graph, therefore, 

Kasner modes appear as straight lines. Here we can clearly see a succession of 

bounces, all of which occur sharply. The solutions all tend to the 'fixed point’ 

Kasner mode (gradient one-ninth on this graph), and in addition they all tend to the 

same size even though they have differing original magnitudes. The £, field is omitted 

tram this plot for clarity; it 'decreases rapidly in the ’fixed point’ configuration.
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Figure 3.4 This graph again shows the long term behaviour on logarithmic scales. 

Here the have been set to be different; we have = 1 and h2 = h3 = 0.1. Again 

we see the 'fixed point' behaviour at large times. One of the spaces now finishes 

larger than the others by a fixed multiple (recalling these are log scales); this is 

completely explained by the scaling laws in the light of the behaviour seen when the

hf are set equal and the t{ varied.
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solution because there are no coefficients a{ which consistently satisfy both the 

equations of motion and also the additional initial condition constraint equation (3 .3). 

The long term solution appears from simulations to be the 'fixed point' solution with 

a small oscillatory perturbation superimposed upon it; clearly this combination can 

give an exact solution. It is clear from these results that while they exhibit an 

interesting Kasner structure, we shall have to look elsewhere if we are to obtain 

solutions corresponding to compactification. In the next section we shall consider a 

slightly amended model where the H field arises only on one 3-space.

(iv) The H Field on One 3-Space
In this section we consider a model where the H field arises on only one 

3-space. This corresponds in our formalism to setting h2 and h3 equal to zero. 

Formally then, the remaining 6-space is being regarded as two 3-spaces but the case 

where it forms a unitary 6-space is subsumed. This can be viewed as rather natural 

in the sense that the H field is arising spontaneously on its minimum possible 

number of dimensions, it being a 3-form. Theories resembling this have been 

investigated by Freund and others [13,271. These indeed give the same formal 

equation of motion for H as we have, bu t , besides the absence of a varying dilaton 

field in the theory of Stein-Schabes and Gleiser [27], without considering the extra 

restriction imposed by the superstiing integrability condition, as discussed in [12]. 

We find solutions which have different overall properties to those in the references 

mentioned above.

In this model we find solutions which are the most promising that we have as 

regards compactification; the H field is seen to drive one space to large sizes while 

the other two spaces remain of the Planck scale, exactly as one would require from a 

sensible compactification. The reason why we can now find solutions different to 

those of the previous section is that the scaling laws described by equation (3.4) no 

longer hold and we do not have the freedom to rescale the initial conditions. The
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iteration as described in chapter two also breaks down in the case where there are 

vanishing .

A computer simulation of this model is shown in figure (3.5). As in the 'fixed 

point case we find that the solutions are fairly independent of the initial conditions 

which we impose, but in this case we find that the lack of an attractor means that 

there is no precise long term solution. The first 3-space expands in power law 

fashion with a power law exponent of around one half, and as initial conditions are 

varied it can shift between extremes of about 0.45 and 0.55 as power law behaviour. 

The other spaces also have power law behaviour, but with much smaller exponents, 

and they stay around the Planck scale relative to the first 3-space. They may be 

increasing or decreasing slowly; in figure (3.5) each of the second two 3-spaces is 

decreasing slowly in size.

It should be pointed out that although this mechanism gives a good separation in 

size between the 3-spaces, we do not have a rapid enough increase in the size of the 

first space to provide power law inflation, which requires as a minimum that the 

scale factor increases faster than t, so that the space itself expands faster than the 

horizons within it. This failure is a fairly generic feature of Kasner-like models, 

because of the presence of the constraint that the sum of the power laws equals one 

(with some normalisation, perhaps), such as in equation (2.10). It is also worth 

noting that the contribution of H to the right hand side of Einstein's equations 

diminishes with r ^ 6 (where Tj is the radius of the expanding space); that is, it 

diminishes as t 'n with n around 3. Thus any residual cosmological term from the H 

fades rapidly away once H has performed the function of differentiating the three 

3-spaces.

In conclusion, this model provides a possible way of producing a differentiation 

in the sizes of the 3-spaces in the early universe, with one 3-space growing to 

macroscopic sizes and the other two remaining at around the Planck scale. However, 

it is fair to say that this model remains far too simplistic to make any particular claims
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Figure 3.5 Again on log-log axes, this graph is a simulation of the situation where 

the H field sits on one 3-space; i.e. hj = 1 and h2 = h3 = 0. Here we see solutions 

corresponding to compactification type behaviour, with the first space growing large 

and the others remaining near the Planck scale. Roughly speaking, Tj ~ t1/2, 

independently of the initial conditions.
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about the mechanism or to draw any observational predictions from. It also 

precludes the possibility of inflation while these terms are the only dominant ones 

around; for more generality a consideration of other degrees of freedom in the theory 

should be embarked upon. In the following sections, we make some short steps 

along this road by considering the possible effects of particle production induced by 

the variation of the inflaton. We shall consider some simple model versions of 

particle production and investigate their effects both on the 'fixed point' solution of 

section (iii) and the 'compactification' solution of this section.

(V) Particle Production via the Dilaton
It is clear that the bosonic Lagrangian cannot be an accurate description of the 

universe for all times; later on, other processes must come into play which bring us 

into the traditional four dimensional Friedmann universe. We shall consider here one 

possible mechanism which might bring us closer to this scenario, by taking into 

account the production of particles by the time variation of the dilaton field. Within 

the context of the full field theory, we expect there to be many couplings of the 

dilaton to the other fields, including the fermionic ones, in the full theory. The 

variation of the scalar will provide interactions and we can expect that these would 

produce fermionic particles (we do not need to consider bosons, as they are taken 

into account already by our field theory approach). Representing the ferrmons by 

field theory is very difficult, but fortunately the fluid description of fermions is very 

good when there are large numbers, so we can represent the production of particles 

by the flow of energy into a perfect fluid. Considerations of this type have been 

made by, amongst others, Albrecht, Steinhardt, Turner and Wilczek [28] in the 

context of particle production at the end of inflation as the inflation-causing scalar 

field oscillates about the minimum of its potential. Particle production also features 

prominently in chapter four of this thesis, though the work there is not directly 

related to that of this and the previous chapter.
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The full supergravity Lagrangian of the theory we consider has many 

scalar-fermion couplings, to particles of both spin 1/2 and spin 3/2 ; however, to 

actually calculate the decay rate (which would in principle give the exact form of the 

particle production equations) would be extremely difficult and time consuming. An 

alternative view, that the calculation should be done within the context of the 

underlying string theory itself, would also be a prohibitively difficult proposal. 

However, following [28], we note that the rate of production should depend only on 

§ and its rate of change, so we can consider general forms of the decay rate. The aim 

here is to see if the effect of particle production does not depend sensitively on the 

exact form of the particle production terms. This is analogous to the notion in 

inflation studies that the phenomenon of inflation should occur for a wide range of 

generic potentials rather than require some specific fine-tuned potential - the cosmic 

no hair conjecture. We specify that the energy of the particle production should go 

into a ten dimensional relativistic perfect fluid, with energy density p and pressure p 

obeying an equation of state p = p/9. The important quantity shall be the rate of 

energy flow from the scalar field into the particle fluid, which we shall denote 

throughout by A .

As discussed above, we are interested in trying out various generic forms for 

A . Perhaps the most natural choice for this is that A  should be proportional to the 

square of the time derivative of (j). This is because the overall scale of (j) should be 

unimportant, and the square appears because we expect the particle production to be 

independent of the sign of the variation of (j). This choice, which can be written

A  = a ^2 <3-5)

where a  is some constant, is that which was made in reference [28]. We have also 

considered more general forms of A , for example

A  = a  <j>2 f ( 4>) (3'6)
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where a  is again a constant and f is some function of <j>. Several choices of f were 

investigated, but it is found that <}> always remains close to one and so for most 

obvious choices (exponentials, logarithms, polynomials etc.) this generalisation 

seems to have little effect. A further variation is to try different powers of the 

derivative, for instance

A =  (X(j)4 (3.7)

This results in a lengthening of the time scale of the effect of particle production, but 

does not seem to affect the final outcome. In any of these cases amending a  changes 

the magnitude of the energy density p but again the qualitative behaviour stays 

unchanged. Hence, in what follows, we shall report on the effect of particle 

production using equation (3.5) with a  set equal to one.

We apply the particle production scenario to both the 'fixed point' and 

'compactification' solutions that we obtained in sections (iii) and (iv). To do this we 

have to extend the equations, not only so that they contain the energy transfer term 

given by A but also by adding the energy-momentum terms appropriate to the fluid 

which must now be consistently absorbed into our scenario. The equations are 

altered from equations (3.1) and (3.2) to give

=^2( i ^ 4 X ^ ) - i rip 'i=̂ 3 <3-8>
. i 1 I .  _• 1 •
j J i J j

$  j J j r j

that is, there is an extra contribution to the right hand side of the ri equations from 

the pressure terms (here reexpressed using the equation of state), and there is an 

extra contribution to the (j) equation as energy is removed from it into the radiation
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fluid. To these we add the continuity equation expressing energy conservation for 

the radiation fluid which is

This completes the set of equations which are now soluble for p, q, and (j). We 

imagine the particle production mechanism as being 'switched on' at one Planck 

time; before this we have no understanding of what might be occurring and so we do 

not wish to extrapolate the particle production into this region. The simulations are 

then started at one Planck time in a perturbed Kasner mode, as before in accordance 

with the initial condition equation. We set the initial fluid energy density to be zero. 

This puts us in a position where we can examine how particle production affects our 

earlier scenarios. For simulation, the derivative of £ on the denominator of the last 

term of equation (3.9) is cancelled with one in A to avoid a removable singularity 

when the derivative of ^ equals zero.

(vi) Particle Production and the Fixed Point
We have observed in section (iii) that when the H field is present on all three 

3-spaces there is a solution which is unique up to a rescaling of the scale factors - the 

'fixed point' solution. When we incorporate the particle production mechanism of 

the previous section into this scenario, we find that it alters the Kasner structure of 

the system in the following way. The production of particles is found to completely 

damp out the variation in the ^ field after a while so that it settles down to a constant 

value of order one, rather than the 'fixed point' behaviour which has ^ ~ t ' 2//3. This 

is very much as one would expect from the idea that energy is removed from the 

scalar field into the radiation fluid, and shows that the other possibility - that the 

attractor might have been strong enough to defeat the particle production effects and 

retain a varying £ field - does not occur.

(3.10)
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Because the (j) field is damped out, the 'fixed point' solution is no longer a 

stable solution of the system. What we find instead is that again the Ti tend to equal 

sizes, but this time with r{ ~ t 1/3. There is an original burst of particle production, 

but this is then diluted by the expansion of the space and so we find that p ~ 0 except 

at very early times. Figure (3.6) illustrates a sample simulation of this model, where 

once more log axes clearly show the power law behaviour of the r^ It can be seen 

that after a while ^ assumes a constant value, here around 0 .7, while p remains near 

zero (this graph shows (p+1) to enable it to be shown on the log axes). In fact on 

these scales we cannot see any particle production at all, but on smaller scales the 

initial production is visible and is rapidly diluted away by the expansion of the space, 

just as in conventional cosmologies. We again observe several oscillations of the 

before reaching the asymptotic state.

We can gain some understanding of this situation by noticing that we can find 

an exact analytic solution to the full equations under the assumptions that

r . —» r ,  § - > c ,  p -> 0  (3.11)

where r is some function and c is a constant. Then we can find a unique power law 

solution which is

r  = A t 1/3 (3-12)

where A is a constant which is uniquely determined from the value of the constant c, 

the long term value of the ^ field. The predictions of this solution are in excellent 

agreement with the numerical results, which suggests that the solution of equation 

(3.12) is an attractor for the system, though we have no proof of this. Certainly it 

indicates that the limits given by equation (3.11) hold, at least asymptotically.

These results are however not favourable in terms of gaining a sensible 

compactification solution; the hope that particle production might freeze one of the
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Figure 3.6 This graph shows how particle production affects the 'fixed point' 

solution, here with all the hi set equal to one third. The solution is perturbed out of 

the old 'fixed point' solution into a mode where r; ~ t1/3, after executing some 

bounces. In the region after t = 103 the £, field stabilises to a constant value and we 

can get an approximate analytic solution. The line marked 5 is equal to p +1 (to 

enable it to appear on log scales). Hence p ~ 0 throughout the simulation.
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3-spaces in an expanding mode does not appear to be realised. We are very much in 

the same situation as section (iii), where, since the particle production via the dilaton 

affects each 3-space in the same way, each 3-space expands at the same rate and we 

have no differentiation in size between them.

(vii) Particles and the Compactification Solution
We now move on to investigating the addition of particle production to the 

compactification scenario of section (iv). Here we find that particle production has a 

more drastic effect than it has on the 'fixed point' scenario; the effect of adding 

particle production is to induce a second singularity where the 3-space containing the 

H field shoots off to infinity while the other two tend rapidly to zero. Figure (3.7) 

indicates how this occurs, where we can see rl becoming large and the others small. 

Again ^ is effectively damped out by the particle production, and once more p has 

very small values except near the two singularities. This graph also indicates the 

proper volume of the universe at each point in time (actually, it is the cube root 

which is plotted). We see that the volume increases smoothly to a maximum and then 

decreases back towards zero, which it attains at the singularity. This behaviour 

indicates that we are indeed dealing with a true singularity, and that it is not an 

artifact of the numerical methods used.

The actual lifetime of the universe is determined by the value of a  in equation 

(3 .5), which determines the strength of coupling between the dilaton and the matter 

fields. By selecting a very small value of a , we can extend the lifetime of the 

universe with a corresponding drop in the radiation energy density; this also allows a 

larger differentiation in the sizes of the 3-spaces.

We can in fact specify the behaviour close to the second singularity more

precisely; it is given by
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Figure 3.7 This graph shows how particle production affects the situation with the 

H field on one 3-space. We encounter a singularity with rl going infinite and the 

others tending towards zero. Once more the energy density (line 5) remains near 

zero, except near the singularity. Line 6 shows rjr2r3 (i.e. the cube root of the total 

volume), showing that the volume increases and then decreases smoothly as we

enter the singularity.
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where tj is the time of the second singularity. Hence the second singularity is also of 

Kasner type, it appears that the effect of particle production becomes negligible on 

the approach to the second singularity. Such a situation has cropped up several times 

in investigations of extra dimensional cosmology [29]. If some quantifiable effect 

could be found which cut off figure (3.7) immediately before the singularity (e.g. 

some unknown quantum gravity effect), then this would certainly lead to a large 

separation between the sizes of the external and internal 3-spaces, and in addition it 

would also provide an extremely rapid inflationary phase in the external space. 

(Inflation of this type, given the name pole-law inflation, has received some 

consideration recently [30]). However, at this stage no authors have been able to 

come up with satisfactory arguments, even of a hand-waving type, as to how the cut 

off near the singularity might be realised. A more likely scenario is that long before 

the singularity is reached the approximations of our model would break down, 

perhaps because of increased fermion density with associated interactions and back 

reactions, leading to different phase in the evolution of the universe, in such a way 

that the problem of the singularity is never realised in a practical cosmology.

(viii-) Summary of Chapters Two and Three
Finally, we summarise the work described in chapters two and three and 

catalogue the various types of behaviour found in the models examined. Within the 

context of a model where the H field is used to split the nine spatial dimensions of 

superstring into three three-dimensional spaces, we have examined two specific 

models. Firstly, a model in which the H field takes values on each of the 3-spaces is 

investigated and then a model where the H field arises solely on one 3-space, its 

minimum possible number of dimensions.

In the first of these cases, it can be shown by approximate analytic means that 

there exists an unusual type of attractor governing the iteration which takes us from 

one Kasner mode to another, arising from a slight generalisation to the conventional
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theory of attractors in that the various parameters, here the pi? must be rearranged 

between each application of the iteration. By numerical methods, it can be shown 

that this attractor is indeed realised when we consider the complete set of equations, 

and that because of this the long term behaviour in this instance is essentially unique 

up to rescaling independent of the values the H field may take. The behaviour is 

such that each 3-space has power law behaviour with exponent one ninth, which is 

certainly not useful when we come to consider compactification. We refer to these 

solutions as the 'fixed point' solution, a notation intended to cover the entire class 

including rescalings. This model therefore will not lead to the desired separation in 

sizes between the 3-spaces unless further effects are taken into account, for example 

the influence of fermions.

The second model, with the H field on one 3-space, gives a more satisfactory 

compactification scenario. The first space, on which the H field has arisen, is driven 

to large sizes with behaviour as t n where n ~ 1/2, while the other two remain 

comparable to the Planck scale. This also has the benefit that the residual 

contribution to the cosmological constant from H falls off as t "6n, and so will be 

unobservable at present times. Hence it appears that this mechanism can provide a 

mechanism for the differentiation in sizes between external and internal dimensions 

as the universe evolves, though the model is far too simplistic to take into account 

the true nature of compactification. There one would be interested in the specific 

nature of the internal space (for instance it may have a very complicated topology) 

which gives much of the structure of the effective field theory in four dimensions 

that we see today. Again we would also wish to consider a more general theory, 

with fermionic and gauge degrees of freedom, before coming to any definite

conclusions as regards this model.

In the second half of chapter three, we went on to consider a generalisation of 

the model in which some provision is made for fermions, by assuming that they can 

be represented by a radiation fluid. Sample couplings were then introduced between
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this and the dilaton field to see what effects might arise; the true couplings are in 

principle derivable from the underlying theory but are very difficult to calculate, so 

we prefer instead to use various generic forms of the coupling. These couplings will 

lead to the production of fermionic particles from the scalar field, and the effect of 

this on our two scenarios was investigated.

In the 'fixed point1 case, little qualitative change is made; the scalar field is now 

damped out and the 3-spaces increase with a slightly different power law, but the 

rate of increase of the three remains the same, which again is unfavourable for 

compactification. Hence particle production appears unable to freeze a single 3-space 

in an expanding mode. The effect on the compactification solution is somewhat more 

drastic, in that it induces a second Kasner singularity where one 3-space tends to 

large sizes while the other two become small. This could be favourable if some effect 

could terminate this behaviour near to the singularity, since it would give rise to a 

large differentiation in the sizes of the three spaces, but it seems unlikely that 

anything can be said concerning possible mechanisms which might do this. Instead, 

it is simpler to consider that the assumptions of the model break down well before 

the singularity, perhaps due to inadequate treatment of fermions etc. If the 

scalar-fermion coupling is small, a large differentiation can still be obtained, as in 

section (iv) without particle production, well away from the singularity so with a 

small amount of particle production this scenario could still be effective for 

compactification solutions.
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Chapter 4

Power Law Inflation 
with Exponential Potentials

(T) Introduction : Why Power Law Inflation?
Since the pioneering work of Guth [18] in 1981, followed up and improved by 

Albrecht and Steinhardt [31] and Linde [32], and since then by many authors [33], 

inflation is now regarded as the standard solution to such long-standing 

cosmological problems as the horizon and flatness problems [18]. It is also used as a 

solution to the related question of why the universe should appear so homogeneous 

and isotropic, and also that of excessive monopole production in a huge range of 

grand unified theories [34]. While much effort has gone into the examination of 

ways of implementing inflation within the context of modem particle theories, these 

models have in general remained somewhat unsatisfactory because unnatural fine 

tuning of parameters in the underlying particle theory is required to ensure that the 

induced inflation satisfies several cosmological constraints and also provides a 

satisfactory amount of inflationary expansion.

The standard method for implementing inflation is via a scalar field, often called 

the inflaton and which we shall refer to throughout as <j>, moving in some appropriate 

background potential which is in principle determined from some underlying particle 

theory. A potential much used in early studies is the Coleman-Weinberg potential 

[35], which arises in symmetry breaking scenarios in, amongst others, grand unified 

theories, and this was the context in which many of the earlier inflationary models 

were constructed. In these constructions, the scalar field rapidly comes to dominate 

the energy-density of the universe, and this energy then drives a rapid expansion in 

the universal scale-factor. In the original inflationary scenarios this expansion would
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be exponential, mimicking de Sitter space. This is because when the scalar field 

moves very slowly, so that the potential is almost constant and the variation of the 

scalar negligible, V(<j>) appears in the field equations exactly as a 'cosmological 

constant* term and de Sitter space, giving exponential expansion, is a good 

approximate solution. Unfortunately, fine-tuning is required to create a potential 

sufficiently flat to allow this slow scalar field motion. The expansion is later halted 

by the scalar field falling into the minimum of its potential, after which the scalar 

terms become negligible in the field equations and we move into the conventional 

Friedmann-Robertson-Walker universe.

Though exponential inflation is the simplest to arrange, there is no known 

potential arising from particle theories which exhibits the necessary fine-tuning to 

lead to a satisfactory inflationary model of this type [36], This has led to the 

examination of a wider class of inflationary theories, with the realisation that any 

rapid expansion of the scale factor, not necessarily exponential, can solve the 

cosmological problems mentioned above. These models are known as generalised 

inflationary models [37]. To cause inflation, the key property is that the universe 

itself must expand faster than the horizons within it, which of course travel at the 

speed of light. This means that regions which appear causally separated now may 

have been in causal contact in the pre-inflationary universe, and so had the 

opportunity to become thermalised. This can explain the homogeneity of the universe 

as observed today. (Of course, there is no breach of causality in this expansion; it is 

space itself which is expanding faster than the speed of light, not anything moving 

within it.)

In this chapter a special case of these generalised inflationary models will be 

considered - that of power law inflation. In power law inflation, the scale factor a(t) 

of the universe obeys the relation

a ( t ) ~ t p (4.1)
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where p is some constant which will be determinable from the field equations. Since 

the horizon volume increases as t 3 , and the proper volume as a 3 (t), clearly p must 

be greater than one for inflation to occur. Ideally p should be significantly greater 

than one to satisfy various cosmological constraints, a point which shall be 

discussed in section (iv) with regard to the construction of a specific model. As p 

becomes large, the inflation begins to become indistinguishable from conventional 

exponential expansion.

In this chapter, both analytic and numerical methods will be used in an 

examination of power law solutions in various situations. First the simple case of an 

exponential potential for the scalar field will be examined; this is not meant to be a 

realistic model, but rather is treated as an example where exact analytic solutions can 

be found. This will supply useful intuition for more realistic cases which are 

considered later, where potentials arising from particle theories are investigated. 

These are approximately exponential at some values of <j), and numerical work shows 

behaviour close to that which is expected on the basis of the analytic solutions. 

Numerical simulation is necessary to find the true solutions in these cases, especially 

where the potentials differ significantly from the exponential form.

In power law models, the scalar field does not move extremely slowly during 

the inflation as in exponential inflation, and so the effect of the variation of the scalar 

field must be taken into account. This variation will lead to the production of 

particles. Perhaps surprisingly, this leads to an enhancement in the efficiency of the 

inflation by increasing the value of the power law exponent p in equation (4.1) 

above. This behaviour is examined numerically with the simple exponential potential 

and then implemented in a more realistic setting using a potential motivated by 

particle physics. The various constraints present are examined in some detail and the 

construction of a specific inflationary model of this type is outlined.
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(ii) An Exact Solution and the Need for Numerics
It is well known [38,39] that power law solutions of the form of equation (4.1) 

can be found when the energy density of the universe is completely dominated by a 

scalar field <J) having an exponential potential of the type

where V0 and X are constants which ultimately should be determined from some 

underlying theory of the scalar field interactions. X turns out to be a very important 

parameter, and as notation throughout this chapter X will be taken to mean the 

coefficient in the exponential potential. If transpires that the types of solutions 

obtained depend on the value of X. Potentials of this type are common in higher 

dimensional theories such as Kaluza-Klein and also supergravity /  superstring 

models after dimensional reduction has been applied [38,40,41].

To obtain analytic solutions we take space-time to be spatially flat 

Robertson-Walker with metric given in isotropic coordinates by

It is also possible to consider spaces of non-zero curvature, but here we will only 

consider the simplest case since the main aim is to work towards the construction of 

a more realistic theory. The Einstein equations and the equation of motion for the 

scalar field (also obtainable via energy conservation) then give

V = V0 exp ( -  X <|>) (4.2)

ds2 = - dt2 + a2( t ) ( dx2 + dy2 + dz2 ) (4.3)

<j>2 + ^-V0 exp ( -  X, (j)) (4.4)

<j>+3 ( f  )^>-^V0exp(-X(t) ) = 0 (4.5)

Power law solutions of these equations have been given previously by several



authors, but a more general exact solution than has appeared before is given by

It is clear from equation (4.7) that this solution only exists when X2 < 6. If X2 > 6 

then other techniques are needed; here numerical simulation will be used to examine 

what happens in this situation. The solution above generalises the solutions first 

offered in Barrow [39] and then Burd and Barrow [42]. Their solutions have the 

unsatisfactory feature that they only exist when X and V0 are related by a specific 

equation, which is unlikely to be realised in any naturally arising problem where they 

come directly from an underlying theory. In fact, as we shall see later, there are 

strong constraints on V0 which will prevent it from being related to A, in the required 

way. The solution above also demonstrates that the constants t0 and <j)c0 in 

Yokoyama and Maeda [43] are not integration constants as they claim but are in fact 

uniquely determined by the equations of motion of the system. The only true 

integration constant in this solution is a^

It is of course clear that the solution given in equations (4.6) and (4.7) is not a 

general solution to the equations of motion, since the solution has only one constant 

of integration while a general solution would be expected to have at least three. Since 

the system is non-linear, it is therefore not immediately clear that this solution will 

have any physical relevance, because the initial conditions for the inflationary era 

will probably not obey the equations (4.6) and (4.7). In such non-linear systems, it 

is usual for the initial conditions to dictate the types of allowable solutions. 

However, in this case, it has been shown by Halliwell [38] that the equations of 

motion can be reduced to a plane autonomous form by a transformation to conformal

p o
where p = -4- 

X
(4.6)

(4.7)

/
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time in the metric. A plane autonomous system, in this context, is one where the 

equations can be written with the second derivatives of a  and (j> with respect to some 

choice of time variable depending only on the first derivatives of a  and and not 

the values of a  and ({) themselves. When this happens, the system can be analysed 

using phase portraits and Halliwell was able to show that power law solutions are 

attractors for all initial conditions in a flat universe when X2 < 6. He did not, 

however, give an explicit form of the solution as given above.

The knowledge that the power law solution is an attractor means that the above 

solution should be relevant as a long term solution; regardless of the initial 

conditions one would expect the solution to asymptotically approach (4.6) and (4.7) 

for sufficiently late times, provided A, is in the required range. It has been confirmed 

by numerical simulation, using the same techniques as described below, that this is 

exactly what happens, with the transition into the power law mode occurring very 

rapidly. Notice that the power law exponent of the long term solution is independent 

of the value of V0, though the magnitude of V0 does decide how quickly we reach 

the attractor solution. Figure (4.1) shows a sample simulation with X2 = 2.

While this analysis is clear cut for X2 < 6, we have not yet discovered anything 

about the case where X is not in this range, because the exact solution as given above 

no longer exists. This case is in fact of particular interest, because, as we shall see 

later, the potentials which arise in more realistic theories tend to have values of X2 in 

excess of six. As well as the exact solution failing here, the phase plane analysis of 

the system gives no definite result either, so we need to use other techniques to find 

out what types of solution we can have. Here we will use numerical simulation with 

a range of possible initial conditions to study this case. Appendix 1 gives more 

details about the numerical techniques; this problem is employed as an example of 

the numerical integration methods used throughout this thesis.

The results of the simulation show that the behaviour of the system is 

completely different when X2 > 6. Instead of arriving in an asymptotic power law
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Figure 4.1 This graph, with X2 = 2, demonstrates by use of a logarithmic time axis 

that solutions do indeed follow the exact solution given by equations (4.6) and (4.7). 

The line marked 1 gives a , the log of the scale factor, while that marked 2 gives <j>. 

The gradient can be used to obtain the power law exponent of the inflation.

In addition, this graph also indicates the speed with which the attractor acts.
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solution of the type (4.6), where the power law exponent p varies with X, we find 

that we have exactly the same asymptotic solution for any X with X2 > 6 . This can be 

described by the equations

where this time both ^  and <|)0 are integration constants. Again the value of V0 does 

not affect the long term behaviour of the scale factor. The relevance of this solution 

is that it is the unique exact solution to the equations of motion when the potential 

term is neglected completely. It turns out that when we have a large X, which 

corresponds to a steep potential, the rapid fall of the potential does indeed lead to the 

potential energy becoming negligible and so we find solutions which asymptotically 

approach equations (4.8) and (4.9). Figure (4.2) illustrates this with X2 = 8 .

This notion can be made more precise by examining how the potential and 

kinetic energies are related in the exact solution for low X. The calculation shows that 

for the solution of (4.6) and (4.7), the ratio of potential to kinetic energy is constant 

in time and is given by

potential energy _ 6 - X2 (4 10)
kinetic energy y 2

Because this ratio is constant, the potential terms are never completely negligible in 

the case X2 < 6 , which explains why the solution in the absence of the potential 

terms is not relevant in this case. We can however see the trend that as X2 

approaches six the ration starts to become very small until at X2 = 6 it is equal to 

zero. For large Xy although (4.10) of course no longer applies, it is easy to see that it 

is possible for the potential terms to become completely unimportant.

1/3 (4.8)

(4.9)
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Figure 4.2 This graph (lines marked as in figure 4.1), with X2 = 8 , shows the type 

of solution obtained when the exact solution no longer exists. Again we get power 

law behaviour, and from the gradient, we see that the solution behaves as if X2 = 6 .

This is true for any value of X2 > 6 .
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The effect of scalar fields with these exponential potentials is also of interest in 

the case of anisotropic cosmologies. We shall not however study this extension here 

as the theme of this chapter is instead to study the effect of viscous forces - see the 

next section. A phase plane analysis of such models along the same lines as 

Halliwell [38] is given in [42], and this analysis shows many of the general features 

that we have seen in the isotropic case.

(in') Viscous Forces and the Enhancement of Inflation
In exponential inflationary models, it is a common assumption that the time 

variation of the scalar field can be neglected during the inflation. In general, the 

potentials required for such inflation are very flat, to ensure that the inflation lasts 

sufficiently long, and the scalar field does indeed roll down them very slowly. As 

has been emphasised by Yokoyama and Maeda [43], this approximation is no longer 

such a good one when we have an exponential potential, since then the scalar field 

can fall with an appreciable speed. This means that we have to consider the possible 

consequences of a time-varying scalar field for the equations of motion of the 

system.

Recalling that the scalar field is originating in some particle theory, possibly 

higher dimensional, there will be many couplings of the scalar field to other fields in 

the theory. When the scalar field varies, these couplings will lead to the production 

of particles, a process which will transfer kinetic energy away from the scalar field to 

supply the energy necessary for the creation of these particles. This will damp the 

motion of the scalar field; we shall therefore refer to these as viscous forces. Hence 

the equations of motion must be modified to include a viscous term. We assume that 

the particles produced can be represented by a radiation fluid; this can describe 

photons and also relativistic fermions, which is reasonable at the high temperatures 

of the early universe. An extra equation of motion, describing the time evolution of 

the radiation fluid, must also be included in the system. These particle production



scenarios are familiar from studies of particle production at the end of conventional 

inflation ([28,44] and chapter 3 of this thesis), where the scalar field oscillates about 

the global minimum of its potential and exactly the same mechanism comes into play.

For now, we shall introduce a viscosity term Cv on phenomenological grounds. 

Later on we shall discuss what form it should take; clearly it is in principle 

determinable from a knowledge of the underlying particle theory, but in practice the 

best we can hope for is a reasonable approximation. By applying Einstein's 

equations and the continuity equations for the system expressing energy 

conservation, the enhanced equations of motion taking viscosity into account are 

given by the system

Here a(t) = In a(t) , and prad is the energy density of the radiation fluid. These 

equations are equivalent to those given in [43]. Compared with (4.4) and (4.5), we 

see that the <j) field equation has picked up an extra term which looks like a viscous 

damping and the equation for the scale factor has an extra contribution because of the 

energy density of the radiation. There is a new equation for the energy density, 

which shows that it is diluted by an expansion of the space, but that energy is fed 

into it from the varying scalar field. These equations do not at this stage rely on a 

particular choice for the potential V, but in practice the choice of Cv will depend on 

the precise form of the potential. Hence these equations will also be relevant later 

when we consider potentials which are not exactly exponential.

We need a form for the viscosity coefficient Cv . Yokoyama and Maeda point

(4.11)

(4.12)

. 2
(4.13)

P r a d = - 4 a Prad +  C v (l)
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out that a physically reasonable assumption is that it should be proportional to the 

effective mass of the inflaton, which is the root of the potential's second derivative; 

that is

where f is a phenomenologically introduced constant. They also perform a 

perturbation calculation which backs up the choice of this form.

As a precursor to examining power law inflation caused by a potential arising 

from a particle theory, we examine how viscosity affects inflation with the 

exponential case. This situation was analysed, again by phase plane analysis, by 

Yokoyama and Maeda [43]; however, once again the analysis is only valid in the 

region X2 < 6 (X having the same meaning as previously, given by equation (4.2)). 

When we have an exponential potential, the viscosity coefficient takes on the 

particularly simple form

A transformation of time variable as before gives a plane autonomous system, and it 

can be shown that not only do power law solutions remain as attractors, but in 

addition the viscosity gives an enhancement of the power law exponent, p in 

equation (4.1). Hence power law inflation is rendered more viable by the 

introduction of viscosity.

As in the previous section, we are really going to be interested in the case which 

arises in most physical theories, that of X2 > 6 . Again we resort to numerical 

simulation to investigate this; this method has the advantage also that it is easily 

generalised to potentials which are not of an exponential form, whereas in such cases 

the phase plane technique will not be applicable and so we will not be able to obtain

(4.14)

Cv = f X j V (4.15)
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any information in this way. It also allows a clearer elucidation of the fate of the 

radiation energy density.

Firstly, the simulation is used to confirm the analytic work of Yokoyama and 

Maeda. It is seen that the enhancement of the exponent in the power law inflation 

does occur, and by using a wide variety of initial conditions it is confirmed that these 

solutions are attractors with the power law behaviour always apparent at large times. 

The larger the value of f in equation (4.15), the greater the enhancement of the power 

law. Further, it is observed that the radiation energy density is always quickly 

redshifted towards zero by the rapid inflationary expansion of the space. This means 

that the scalar energy density remains the dominant contribution to the equations of 

motion, as is required to gain inflationary solutions. This behaviour of the radiation 

energy density also occurs for X2 > 6 .

When we examine the case of large X by numerical simulation, we find that the 

solutions are very similar in type to those for X2 < 6 . We continue to have power law 

solutions as attractors and there is still an enhancement in the power law exponent 

which becomes greater as f  is increased. Since the natural power law without 

viscosity in these cases is smaller, a larger value of f is required in order to give a 

satisfactory amount of inflation. There is one major difference in these solutions now 

that we have viscosity included; whereas before there was exactly the same attractor 

solution, given by equations (4.8) and (4.9), whatever value of X2 greater than six 

we had, now the larger values of X give smaller power law exponents in a manner 

reminiscent of the small X case. Table 4.1 below gives some sample values of the 

power law exponent p when X2 and f  are varied.
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0 1 2 5 10

2 1.00 1.57 2.84 5.26 9.38

6 0.33 1.01 1.49 2.90 5.30

8 0.33 0.90 1.31 2.35 4.48

12 0.33 0.77 1.08 2.05 3.69

Table 4.1 Power law exponent varying with X 2 and f

The first column of this table, which is the viscous-free case, is easily explained 

by means of the solutions of section (ii). The other columns show how the 

enhancement increases as the value of f goes up, and gives a guide to what value of f 

might be required in order to obtain a satisfactory amount of inflation. Notice that for 

large X the viscosity must be quite large. The size of the power law exponent which 

is required by cosmological constraints is discussed later in this chapter. Figure (4.3) 

shows a simulation with X2 = 8 and f = 5; this can be compared with the simulation 

illustrated in figure (4.2), in which there is no viscous damping.

A few comments are useful to conclude this section. The first is to emphasise 

that viscosity is not just an ad hoc addition designed only to make the inflation more 

efficient; it is a definite physical effect which must be taken into account in 

construction of these models. Secondly, it may at first sight seem strange that 

viscosity does improve the efficiency of the inflation in this way. However, it is 

important to realise that it is the potential energy and not the kinetic energy of the 

scalar that is driving the inflation; hence, by slowing the fall of the inflaton down the 

potential the viscosity is actually helping the inflation. Finally, it is worth noting that 

the purely exponential potential is unsatisfactory as a complete model of inflation; in 

this model the inflation is eternal as there is no minimum of the potential for the
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Figure 4.3 This graph demonstrates the effect of adding viscosity to the situation of 

figure 4.2. Once more X2 = 8 , but we have now introduced viscosity with a 

coefficient f  = 5. This can be seen to enhance the power law obtained, with the 

exponent now over 2.5 rather than 0.33. Notice that a  is now given by the top line. 

The line marked 3 gives the energy density, which drops rapidly towards zero.
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scalar field to fall into. A more realistic model would have a potential which has a 

minimum into which the scalar field would finally fall, bringing the inflationary era 

to an end. Further, this potential should be at V[(j)] = 0 so that the scalar field today 

gives a vanishing contribution to the cosmological constant. The next section will 

extend this work to consider just such a potential and how to use it in an inflationary 

scenario.

(iv) Towards a Realistic Power Law Inflation Model
In this section, we demonstrate how the ideas of the preceding sections can be 

incorporated into the construction of a more realistic power law model. This model is 

based around a potential which comes from an underlying particle theory and which 

satisfies the criteria mentioned at the end of the previous section. Here we will 

consider the various cosmological constraints on power law inflation in order to see 

whether or not a successful model can be arranged, and we shall also see how the 

presence of the attractor solutions, as described above, means that we do not have to 

worry about the particular form of the initial conditions supplied to the scenario. The 

construction here is not meant to be interpreted as a complete inflationary scenario; 

rather, it is an outline of how one might go about implementing such a model and 

also shows how the introduction of viscosity substantially improves the viability of 

these models.

The theory which we consider here is what is called the Salam-Sezgin model 

[45]. This model consists of an N=2 supergravity theory (that is, there are two 

supersymmetry charges) formulated in six space-time dimensions, and then 

compactified on a two-sphere in order to give a four dimensional theory. While this 

is certainly not a complete theory giving a correct particle spectrum in the four 

dimensional reduced theory, it is a useful theory to study because of its simplicity as 

compared to the more complicated supergravity theories such as the ten dimensional 

theory obtainable as a low energy effective field theory to the superstring. Further,
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much of the behaviour in this theory can be expected to be rather generic of these 

sorts of higher dimensional theories, since the forms of the potentials are very 

similar in all these theories [46], and because of this its cosmological behaviour has 

received considerable attention in recent years [41,47].

We follow in part here an original calculation of the potential in this theory by 

Halliwell [47]. Given a particular ansatz for compactification, where the Maxwell 

field takes on a magnetic monopole configuration over the extra dimensional 

two-sphere, he showed that the system is equivalent to two scalar fields moving 

under an effective potential in a standard Friedmann cosmology. The details of this 

can be found in [47]; a rough description of what happens is the following. The 

higher dimensional theory is given two scale factors, one associated with the external 

space and one with the internal two sphere, and in addition has a single fundamental 

scalar field. When we go to the dimensionally reduced theory, we have to 

conformally rescale the external and internal metrics to ensure constancy of the 

gravitational 'constant', and it is also convenient to make other redefinitions. The 

final upshot is that the three variables of the six dimensional theory given above 

become the scale factor of the four dimensional theory and two scalar fields moving 

under an effective potential determined via these transformations. The important 

feature for our considerations is that the effective potential has exponential regions 

which might allow the scenarios of the previous sections to be implemented.

( Note - There are small differences between the forms of the potential we have 

and those given by Halliwell. This is because a different normalisation of the scalar 

fields has been used - the scalar fields in both of Halliwell's papers [38,47] are 

equivalent to ours divided by V6 . This accounts for differences in the potentials and 

brings the equations of motion into the same form .)

We call the scalar fields in the theory £ and <j), and continue to refer to the scale 

factor as a with the definition a  = ln(a) for convenience.The.equations of motion are 

just equations (4.11) to (4.13), with an extra equation similar to (4.11) for the £ field
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and with extra £ field terms in (4.12) and (4.13) mimicking the <|> terms. The 

potential in which the scalar fields move is given by

V = (4.16)

which can also be rewritten as

V = ^ e ' / l 5 (e " /5 * - l ) 2lo (4.17)

It is clear that there are two separate exponential potentials here; the ^ field has a 

purely exponential potential of the form of the previous section, while the (j) part of 

the potential behaves like an exponential potential for sufficiently negative values of 

(J). We now examine ways of implementing power law inflationary scenarios using 

this potential.

First, we give brief consideration to the £, field, though in fact ultimately we 

shall find that it is the <j> field which is better adapted to our purposes. The form of 

the £ part of the potential, a single term multiplying V[<J>], is a general consequence 

of the scale invariance of the classical theory [46]. This is is a feature of many 

theories of this type [46], and means that the potential does not have a global 

minimum in the ^ direction; essentially we have the same situation as discussed at the 

end of section (iii). This makes the construction of an inflationary scenario harder as 

we need a means of bringing the inflation to an end. Halliwell [47] has considered a 

model where the § field induces inflation which is brought to an end by the <{> field 

falling into its global minimum at (j) = 0 , at which point the entire potential vanishes. 

This is making use of the observation that the power law behaviour does not depend 

on V0 in equation (4.2). In his model without viscosity, this does not actually allow 

a working inflationary scenario to occur, since the £ potential has A,2 = 2 which leads 

to a power law exponent of exactly 1. However, we can see from the results of
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section (iii) that viscosity can improve this into a viable scenario; indeed we see from 

table 4.1 that not much viscosity is required to do this. In practice, however, it is 

probably impossible to obtain a sensible working scenario. This is because it is hard 

to see how it can be arranged for the <j) field to fall into the minimum and end the 

inflation only after sufficient inflation has occurred but before any cosmological 

constraints are violated (excessive inflation can run into problems with overly large 

density perturbations), unless an extreme fine tuning of initial values was imposed. 

This possibility for inflation will not be considered any further here and we shall 

avoid scenarios which depend on sensitive use of both scalar fields because we will 

always expect these fine tuning difficulties.

For the rest of this chapter we consider an inflationary scenario using the (j) field 

to provide the necessary energy density. It has been emphasised by Gibbons and 

Townsend [46] that the scale invariance of the classical theory, which leads to the 

form of (4.16) as described above, will not survive into the quantised theory, and 

they claim that in the full quantum theory there is likely to be a minimum in the ^ 

direction while the form of the the <j) potential should remain unaffected. We 

therefore consider a situation where the ^ field falls into this minimum early in its 

evolution; the £ field then drops out of the equations and we are left just with the <|> 

field moving in a potential given by

V = V0 ( e y ? 'l’- 2 e ; 5 't' + l )  (4.18)

Figure (4.4) illustrates the general shape of this potential, with V0 set at one. In 

practice, the actual value of V0 depends on the height of the minimum in the ^ 

direction, which is unknown, but in practice that this is not as important as one 

might think since the earlier analysis has shown that the magnitude of V0 does not 

alter the power law exponent during inflation. There are however constraints on V0 

from cosmological observations; in particular the requirement that density
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Figure 4.4 This figure shows the shape of the potential in equation (4.18) in the (j) 

direction, for negative (j) it is effectively exponential, but it features a global minimum 

where the potential energy is zero. The coefficient of the potential has been set to one

for this diagram.
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fluctuations caused by inflation should be small implies that V0 should roughly be in 

the range from 10~13 to 10‘15 in Planck units [48]. (This constraint is weakened if 

we only require that these perturbations be unobservably small, rather than of an 

appropriate size for some specific role such as galaxy formation. In this case we only 

have an upper bound for V0 . )  In fact, we shall require a small V0 later since we do 

not wish to consider energies in excess of the Planck energy. Some fine tuning of 

model parameters may be needed in order to get V0 into a desirable range. For 

numerical work, we will find it convenient to absorb V0 into the potentials.

Here we consider a different possibility for inflation from that considered by 

Halliwell in [47] by taking advantage of the (j) potential as given by equation (4.18), 

which is very well adapted for the construction of an inflationary scenario. We will 

start by allowing the <j) field to take on a negative value (the motivation for this is 

considered later); when <j) «  0 the potential is exponential to a very good 

approximation, with an exponent X = V8. As we have seen, this would normally not 

allow sufficient power law expansion, but the introduction of viscous effects will 

enhance the power law exponent with the possibility of a satisfactory amount of 

inflation. This potential has a global minimum at (j) = 0, at which point the potential 

also vanishes, and we can expect that the scalar field should fall into this minimum to 

bring the inflation to an end.

We now numerically examine the dynamics of this model. The relevant 

equations are still (4.11) to (4.13), where we now use (4.18) as the expression for 

the potential. The appropriate form for Cv comes from putting this potential into 

equation (4.14), and gives the expression

(4.19)

where f  is the same phenomenologically introduced constant as before. This again 

has the appropriate form for an exponential potential with X = V8 when <j) «  0 , so



we can expect the work of section (iii) to be applicable here.

We now have the complete set of equations for the system, but before we can 

proceed we have to supply initial conditions for the variables in the equations; that is, 

for a , prad and both (j) and its first derivative. The hope is that by making a sensible 

physical choice of these we will find a working inflationary scenario; this hope is 

well justified since in section (iii) we showed that inflationary solutions are attractors 

and hence the initial conditions should not be of major importance.

We first note that the initial value of a  is irrelevant, and so nothing is lost by 

setting it initially to zero. The solutions are unaffected by adding a constant to a , 

since they only involve a 's  derivative, so we can always normalise it if required. 

Adding a constant to a  corresponds to multiplying the scale factor by an arbitrary 

constant. What is relevant to our scenario is not a , but rather the amount of inflation 

obtained, Z, given by the ratio of the final to the initial scale factor

Z  =  r 7 T = « P (  “ f i n a l - “ i ni da l )  ( 4 '2 0 >initial

to which we shall give more consideration to later. The simulations also demonstrate 

that the initial value of the radiation energy density, prad , does not matter; during the 

inflation, despite constantly being fed energy from the scalar field variation, the 

expansion of the space is so rapid that the radiation'density is red-shifted towards 

zero, just as in conventional inflation. Its affect on the dynamics is therefore 

negligible during the inflationary phase, and we can safely set its initial value to zero. 

Similarly, because the inflationary mode is an attractor, whichever initial value the 

derivative of <j> is given we rapidly reach the power law inflation phase, so once more 

we are free to set its initial value to zero.

Hence the only initial value we need worry about is that of the (j) field itself. 

This clearly is going to be a very important quantity, since the position on the 

potential, illustrated in figure (4.4), where the scalar field starts will determine how
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far it has to fall to reach the potential minimum, and hence how much inflation will 

occur. To resolve the horizon and flatness problems, an inflation factor Z of at least 

e70 is required [18], so we must have a sufficiently negative initial value of <j> to 

allow this. Such an initial condition is allowed, and indeed expected, in the chaotic 

inflation scenario of Linde [49]. In this picture, we postulate that as the universe 

cools down from Planck energies, we can expect that thermal and quantum 

fluctuations will cause different regions of the universe to have a whole spectrum of 

different values of (j) with varying energies up to the Planck energy. In this context, 

this means that we can expect to find values for the scalar field anywhere in the 

potential such that its potential energy does not exceed the Planck energy, and so it is 

the value of V0 which determines the actual range of § allowed. Note that V0 is in 

Planck energies. We will find that when V0 is small, we can have a <j> value 

sufficiently negative to allow adequate inflation to occur (this is again taking 

advantage of the power law exponent not depending on V0). This is not a serious 

constraint in the sense that, as remarked earlier, there are already cosmological 

constraints forcing V0 to be very small.

There is now one remaining quantity to be determined - the value of the 

viscosity coefficient f in equation (4.19). This can in principle be determined from 

the underlying theory via the coupling of the scalar to other fields, but in practice this 

is prohibitively difficult. The choice of f is important since, as is seen from table 

(4.1), its value decides how much the power law exponent is enhanced by during the 

inflation. Here we give some consideration to what value of the power law exponent 

might be required.

The power law exponent affects the type of density perturbations which are 

generated by the inflation. This spectrum is given by



where p is the density, k the wave number and p the power law exponent. For large 

p, this spectrum becomes indistinguishable from the scale invariant Harrison - 

Zel'dovich spectrum obtained in conventional inflation, which has no dependence on 

the wave number and agrees well with actual observations. However, as p becomes 

smaller the unconventional spectrum may be in violation with observations. Notice 

that this objection is only valid if we are trying to use these perturbations to form 

galaxies. If we are using some other mechanism to form galaxies, such as cosmic 

strings for instance, then we would only require that the inflationary density 

perturbations are unobservably small, and there would be no constraint from their 

actual spectrum. It is worth noting that while just now there is no working scenario 

with both inflation and cosmic strings, due to problems with the reheating 

temperature being insufficiently high to allow a post-inflationary cosmic string 

producing phase transition [50], recent work [51] indicates that they may not be 

completely incompatible as has been suggested in the last couple of years.

Another effect relating to the power law exponent is that of the maximum reheat 

temperature after inflation [37]; that is, the temperature to which the final oscillations 

of the scalar can raise the matter in the universe. When p = 2, a maximum reheat 

temperature of 108 GeV is allowed which contradicts or is only marginally in 

agreement with baryogenesis models (the maximum reheat follows from purely 

energetic arguments, and so cannot be circumvented in a particular model). At p = 

2.5 , the maximum reheat of around 1011 GeV is sufficiently high that this should 

pose no problems. It is also possible to get round this constraint if baryogenesis is 

provided by a process happening at much lower energies than standard GUT 

models; such an example is provided by anomalous electro-weak baryon production 

[52], which occurs at around the electroweak phase transition at 100 GeV. If such a 

model is viable (at this time no working model has been demonstrated satisfactorily), 

then clearly the reheating constraint can also be avoided.

To be on the safe side, we shall assume conventional baryogenesis and require
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a power law exponent of around 2.5 or more. The analysis of exponential potentials 

in section (iii) with X2 = 8 , as seen in table (4.1), indicates that such a power law can 

be obtained with a viscosity coefficient of around five or more. While it is hard to be 

definite, a first order perturbation calculation [43] shows that f  is related to the 

number of scalar decay modes, and that in the supergravity model where the number 

of such modes is high, a value of f  around five is not an unreasonable estimate.

We now have accumulated all the information necessary to arrange for our 

inflationary scenario. Numerical simulation is used to find out what happens given 

the initial conditions as specified above with values of f around five. It is discovered 

that by setting the original value of (j) at about -20 a sufficiently large amount of 

inflation occurs, and as (j) is made more negative the inflation factor Z increases. 

Figure (4.5) shows a sample simulation which outlines the main features of the 

solutions. This simulation is carried out with f equalling six, which gives a power 

law exponent of around three.

The evolution can be seen to be characterised by three different stages in the 

evolution of the universe. At first, the initial conditions supplied are not in a power 

law configuration, in general. The first stage of the evolution then is the transition 

into the power law state from these initial conditions, with the actual duration of this 

stage depending on how far from the power law state they are. It is reassuring, given 

our complete ignorance of which values the fields may have when they emerge from 

the Planck regime, that the power law state is found to be an attractor for all initial 

conditions.

The second stage is the power law expansion itself. In figure (4.5) the time axis 

is logarithmic, so when we plot a  the power law solution appears as a straight line 

(and further, we can establish the power law exponent from the gradient of this line 

to show agreement with the work of section (iii)). During this phase the scalar field 

is falling down an effectively exponential potential under the action of viscous 

forces, but it is observed that the energy density of the particles produced by these
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Figure 4.5 This shows a sample numerical simulation using the potential in figure 

4.4. The <|> field starts with a negative value and falls towards the potential minimum 

at (j) = 0. The top line is the log of the scale factor. Here the viscosity coefficient has 

been set at six, giving a power law exponent of around three. From equation (4.20) 

we can see that the inflation factor exceeds e70, giving a satisfactory amount of 

inflation. The three phases in the evolution - approaching the power law solution, 

power law inflation, exit from inflation - can be clearly seen.
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forces falls because of the rapid expansion of the space, and so they do not affect the 

dynamics. The duration of this inflationary phase is entirely determined by the initial 

position of (j) in the potential, since it is the distance through which it must fall that 

determines the amount of inflation.

When it approaches the minimum we reach the third stage in the evolution; we 

no longer have an approximately exponential potential and the power law evolution 

comes to an end. The scalar field will then be in a situation exactly as that found in 

conventional inflation models; it will oscillate about the minimum, still under the 

influence of viscosity (in conventional inflation, it is only here that the viscosity is 

important), and will reheat the universe back up to higher temperatures. Here, as 

discussed earlier, the maximum reheating temperature, which depends on the power 

law exponent, is easily high enough to allow conventional baryogenesis models to 

take place, though in general never sufficiently high to allow the reformation of 

post-inflation cosmic strings. This last point is a failure common to all types of 

inflation at the moment, even with fine tuned potentials. Finally, when reheating is 

complete, we expect the scalar field terms to drop out of the equations of motion to 

play no further cosmological role, leaving us in a conventional Friedmann universe.

fv) Summary
The work described in this chapter can be summarised as follows. In section (i) 

the motivation for the study of exponential potentials is outlined and power law 

inflation is described. Section (ii) gives an exact solution exhibiting power law 

behaviour when we have the simple case of an exponential potential, and it is in 

addition demonstrated that the solution types depend on the range of values of the 

parameter X in the potential - the solutions for X2 > 6 being of a different type to 

those with small X. The solution given by equations (4.6) and (4.7), while only 

valid when X2 < 6 , is more general than those which have previously appeared in the 

literature. In section (iii) the importance of the viscosity effects arising from particle
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production are considered, and by numerical techniques are shown to enhance the 

power law exponent during inflation; this includes the cases X2 > 6 where analytic 

work by earlier authors is not valid. This is an important point because we find that 

in cases where the potential arises from an underlying particle theory X tends to lie in 

this range. The variation of the power law exponent at various values of X is 

examined as the amount of viscosity is varied.

Finally, in section (iv) an outline is made of how to construct an inflationary 

model consistent with cosmological observations in cases where a particle theory 

leads to a potential of approximately exponential type. Here numerical simulation is 

the only practical technique due to the complicated forms of the full potentials. A 

new method is demonstrated of gaining inflation from the potential derived in the 

Salam-Sezgin model given by equation (4.18), and it is demonstrated that viscosity 

makes the model more viable; in the absence of viscosity the power law exponent 

would not be great enough to induce inflation. Because we have shown that the 

power law solution is an attractor, inflation occurs for a wide range of initial 

conditions. In this sense inflation is rather generic in these kinds of theory. For some 

ranges of these initial conditions we may obtain unsatisfactory models due to such 

things as density perturbations, but we have shown that an appropriate choice of 

initial conditions can avoid this. The amount of inflation obtained is determined by 

the initial position of (j) in the potential, and if (j) is sufficiently negative adequate 

inflation occurs to solve the horizon and flatness problems. Suitable initial conditions 

would be expected, along with a range of others in different regions of the 

pre-inflationary universe, in the chaotic inflation scenario, so one of these original 

regions could today constitute the observable universe. The considerations of the 

model building are more general than the specific case of the Salam-Sezgin model 

which we consider here; it should be possible to construct an inflationary model 

following these outlines in many of the particle theories which give rise to 

approximately exponential potentials.
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Chapter 5

Extra Dimensions. Neutron Stars 
and Gravitational Collapse

(T) Introduction : Neutron Stars and Extra Dimensions
In the last ten years there has been a proliferation of particle theories which rely 

on the existence of extra hidden spatial dimensions for a consistent formulation, such 

as supergravity theories and superstrings. All these theories have as a distant 

ancestor an idea of Kaluza that by incorporating an extra dimension into general 

relativity the equations of general relativity coupled to Maxwell's equations of 

electromagnetism can be obtained [53]. This was the first hint that interactions could 

be viewed as being caused by the geometry of extra dimensions.

Of course, we do not observe these extra dimensions around us today, but this 

potential worry is alleviated by the realisation that the extra dimensions must be very 

small, of the order of the Planck scale. This renders them unobservable at the 

energies obtainable in experiments which can currently be carried out; an accelerator 

circumnavigating the galaxy would be required to reach energies which might reveal 

these dimensions, clearly not a practical arrangement! This introduces the question of 

how one might go about testing the existence of these dimensions. As we have 

already seen in earlier chapters, one way of testing the predictions of such theories is 

by cosmological observations; at very early times we would expect all the 

dimensions to be of comparable size and then the effect of the extra dimensions 

might perhaps become important. The process of compactification, where all but 

three of the spatial dimensions remain small, may also provide a characteristic 

signature of higher dimensional theories.

Unfortunately, we are not yet in a position where such observations can tell us
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much about these theories; also the theoretical standing is such that we do not have a 

clear idea of what one would look for as evidence. Because the earliest eras of the 

universe are not directly observable, we must rely on relic evidence such as the 

microwave background, the abundances of light elements, the gravitational wave 

spectrum from the big bang and other such things to tell us of the processes that 

went on when extra dimensions were important. What would be more useful would 

be to find events which are directly observable and which might tell us something 

about extra dimensions. With this in mind, we turn to a consideration of 

astrophysical objects.

For the sake of simplicity, we shall from here on consider the simplest extra 

dimensional theory - the original one of Kaluza and Klein [53] of which a brief 

review is given below. The results can be expected to generalise to extra dimensional 

theories beyond this one, though the details of how to deal with a more complicated 

internal space such as those expected in superstring theories are not clear. We shall 

capitalise on the well known fact that in the spherically symmetric case this theory 

becomes formally equivalent to conventional four dimensional general relativity 

coupled to a real scalar field.

In the simplest Kaluza-Klein theory, with one extra dimension and known as 

abelian Kaluza-Klein because its internal space has an abelian symmetry group U(l), 

one can show that the five dimensional metric can be split up into a four dimensional 

metric satisfying the four dimensional Einstein equations, a 4-vector which can be 

identified with the vector potential of electromagnetism, and a scalar field obeying 

the Klein-Gordon equation. This split is performed as follows, where ymn is the 

metric of the five-dimensional theory and g ^  is that of the four dimensional 

subspace on which the four dimensional Einstein equations will hold. (Throughout, 

Greek indices will be used on the four dimensional manifold and Latin ones 

otherwise.) To do this we must assume that the metric does not depend on the 

coordinate of the extra dimension, on which more shall be said shortly. We get
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y55
(5.1)

(5.2)

(5.3)

Since the metrics are symmetric, g^5 and g5v give the same 4-vector and they 

correspond to , the electromagnetic potential. g55 is often rewritten via the 

relation

(5.4)

where a  now behaves as a scalar. In order to ensure that the gravitational constant 

truly is constant, we have to make an additional conformal transformation of the 

effective four dimensional metric, by defining

§i iv_  ® S(j.v ( _  S(iv) (5.5)

If there is more than one extra dimension the internal metric, here given just by g55, 

must also be conformally transformed.

It was mentioned above that for this construction to work the five dimensional
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metric must not depend on x5, which at first seems an unnatural requirement. It was 

first noticed by Klein that this becomes natural if the extra dimension is taken to be a 

very small circle at each point, giving a hypercylindrical spacetime. In fact, because 

the coupling of electromagnetism is related to the size of the extra dimension, the 

theory requires that the extra dimension should be small. This then justifies the use 

of the splitting given by equations (5.1) to (5.5), which is viewed as giving an 

effective theory valid when we are at energies sufficiently low that we cannot excite 

higher dimensional modes.

We are now in a position to consider solving the equations of the higher 

dimensional space-time. In keeping with studies of objects such as black holes in 

conventional relativity, we must impose some symmetry requirements on the 

problem to make it tractable. The notion of spherical symmetry will be applied, 

which leads to the Schwarzchild geometry in relativity. Under this assumption, the 

metric can be cast in diagonal form, so the electromagnetic contributions, which 

come from the g^5 component, all vanish. It can be shown that when the five 

dimensional Einstein equations are applied to this metric, the equations are formally 

exactly equivalent to a real massless scalar field minimally coupled to gravity; that is, 

they match the equations coming from the Lagrangian

(5-6)

We shall for convenience use the scalar field formalism when we derive the basic 

equations, while always remembering that the main motivation resides in the higher 

dimensional case. The relations above allow us to determine the five-dimensional 

solutions from those of four dimensions plus a scalar.

Studies by most authors into higher dimensional solutions have concentrated on 

the notion of the black hole solutions in Kaluza-Klein theories, including those with 

the electromagnetic potential non-vanishing. The first attempt to categorise such
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solutions in the abelian case was made by Chodos and Detweiler [54], who found a 

three parameter class of solutions, where the parameters can be viewed as being 

mass, electric charge and scalar charge, and investigated their causal structure. This 

class was extended by Gibbons and Wiltshire [55] to a fourth parameter, a magnetic 

charge, which saturates the set of static, spherically symmetric, asymptotically flat 

black hole solutions. A more comprehensive approach based on sigma model 

techniques was carried out by Breitenlohner, Maison and Gibbons [56], which also 

gives consideration to the generalisation of existence and uniqueness theorems from 

general relativity. Belinsky and Ruffini [57] found a class of axisymmetric solutions 

with rotation, but it remains unclear how to construct the most general solution of 

this type. Notice that not all these solutions correspond to what one normally 

considers to be a black hole; some have singular event horizons or wormhole like 

topology. Another variant on these solutions is the 'Kaluza-Klein monopole' 

configurations of Sorkin [58] and Gross and Perry [59] which exist due to the 

possibility of inequivalent topologies in the asymptotic boundary conditions.

While these solutions offer a lot of insight into the spacetime structure of higher 

dimensional spacetimes (in particular these solutions can have a global structure 

differing vastly from the Schwarzchild or Reissner-Nordstrom solutions, especially 

with respect to their singularities), they have yet to prove useful in allowing one to 

investigate the astrophysical consequences of Kaluza-Klein theories. This is mainly 

attributable to the extreme difficulty in observing black holes and obtaining details 

about their structure. Hence here we wish instead to investigate the effect on more 

easily observed objects, neutron stars, which in their manifestation as pulsars have 

been observed for over twenty years by astronomers, and about which far more 

information is known. An excellent review of the status of the theory and 

observation of neutron stars is provided by Shapiro and Teukolsky [2], and the 

study of pulsars has gained a new impetus from the recent observation of a pulsar as 

a remnant of the supernova SN 1987a in the Magellanic clouds. Neutron stars are
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well adapted to our purposes since they are of sufficient density that their description 

must be made through the notions of general relativity; this means that we may hope 

that the alterations made to relativity by the incorporation of the extra dimension 

might be important.

In order to set up a model of neutron star structure, the most important choice 

that must be made is that of the equation of state. This determines the properties of 

the matter from which the star is made. Many different equations of state have been 

employed, applicable over differing density ranges, and an extremely detailed 

treatment may also allow for interactions between particles [2]. Here we shall evade 

such complexities, and consider the very first neutron star model, as devised by 

Oppenheimer and Volkoff [60] in 1939.

Their treatment revolves around an equation of state first derived by 

Chandrasekhar [61], which describes non-interacting fermions in thermal 

equilibrium. While this does not include interactions, it turns out that the results 

which can be obtained from it are very representative of those of more complicated 

equations of state. The equilibrium configurations are parametrised purely by the 

central density of the star. Of particular interest amongst the properties is that there is 

a maximum total mass at which stable neutron stars can exist, with extremely high 

central densities leading to more compact objects of lower total mass. This 

phenomenon, present in all equations of state, can be treated as the best theoretical 

evidence that black holes should exist in the universe, as presumably they are the 

only equilibrium configuration available to the higher mass objects. It turns out that 

the maximum mass in the Oppenheimer-Volkoff case is too small, at about 

seven-tenths the solar mass, to explain several neutron stars which are known to 

have masses of around one and a half times the sun's mass. (The masses of neutron 

stars in binary systems are fairly easy to measure.) More complicated equations of 

state are seen to have maximum masses sufficiently high to allow such stars. 

(Incidentally, the requirement of causality alone guarantees a maximum neutron star
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mass independent of the details of the equation of state at extreme densities [62].) 

While this certainly rules out Oppenheimer-Volkoff as the complete theory, it is still 

very useful for study because of its inate simplicity, and we shall use it in the 

assumption that any interesting properties will generalise to more complicated 

equations of state. This is also done for reasons of consistency; since we are 

neglecting any explicit interaction terms involving the scalar field (or extra 

dimension) it makes sense to also ignore such terms among the fermions alone. It 

also has the advantage that any extra features we introduce will not be concealed by 

an already complex theory. We shall pay particular attention to the way we describe 

the fluid in the five dimensional theory.

In addition to the maximum mass question, we shall also be interested in the 

nature of the spacetimes which exist as exterior solutions to the neutron stars. When 

we describe the neutron fluid in an essentially five-dimensional manner, we find that 

we are forced into having the extra dimension varying in size, which corresponds to 

a scalar charge which is not allowed in the black hole solutions. This leads to an 

exterior metric which differs from the conventional Schwarzchild one, though it 

approaches it at large distances from the star.

Section (v) in this chapter considers a slightly different aspect to this problem - 

that of gravitational collapse itself. Such a problem can only be solved analytically 

under many simplifying assumptions even in general relativity, but again this turns 

out to include many of the features found numerically in more complicated models. 

The general relativistic model is generalised to the Kaluza-Klein case where, 

surprisingly, it can still be solved exactly. As we shall see, however, there are 

problems with the exterior solution due to the lack of a Birkhoffs theorem in 

Kaluza-Klein theories. The model treated is that of a sphere of pressureless dust, 

with no forces to keep the particles apart even at close distances, which collapses 

uniformly to a point while retaining an imposed spherical symmetry. The general 

metric pertaining to this problem can be found, a procedure much simplified by the
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use of a convenient coordinate system.

(ii) The Equations of Stellar Structure
Here we derive the equations of stellar structure, from which our analysis shall 

be made. We assume from the outset that we are looking for equilibrium states; that 

is, there is no time dependence in the metric. We also restrict ourselves to the case of 

a static, spherically symmetric star, which allows us to cast the metric into a diagonal 

form. We shall use the scalar field formalism here for convenience, denoting the 

scalar field by (j). Under our assumption of staticity <j) will depend only on the radial 

coordinate r. <j) roughly corresponds to the exponential of the size of the extra 

dimension, as can be seen by equation (5.4). The metric can be written as

We have contributions to the energy-momentum tensor from both the neutrons, 

represented by a perfect fluid, and from the scalar field. We shall leave consideration 

of the equation of state for the fluid until later. For the fluid, we have energy 

momentum tensor

where in each case the superscript preceding the T indicates which contribution to the 

energy-momentum tensor is being considered, and where is the fluid 4-velocity 

vector.

There aie several equations that these quantities must obey; they must satisfy the

ds2 = -B(r) dt2 + A(r) d r2+ r 2( d e2 + sin20 d y 2 ) (5.7)

"T|; = ( p  + p ) U >tUv + p5 li (5.8)

while for the scalar field we have

(5.9)
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Einstein equations, the continuity equations expressing energy conservation in the 

system, and the equation of motion of the scalar field. These equations are not all 

independent, since the Einstein equations automatically guarantee energy 

conservation, but the equation of energy conservation turns out to be a simpler one. 

We shall begin by deriving it.

Energy conservation is expressed by the equation

Tv;|J = 0 (5.10)

where the semi-colon indicates a covariant derivative. In the metric given by equation 

(5.7), the total energy-momentum tensor from equations (5.8) and (5.9) can be 

written as

t : = ” t : + y =

“ -P 0 0 0 ~ ” -1 0 0 0

0 p 0 0
+ *’2

0 1 0 0

0 0 p 0 2A 0 0 -1 0

_  0 0 0 p __ _ 0 0 0 -1 _

(5.11)

Applying equation (5.10) to this tensor, using the metric of equation (5.7), we can 

obtain the energy conservation equation

which reduces to the well known Oppenheimer-Volkoff equation in the case of a 

non-varying scalar field.

The equation of motion for a massless scalar field in curved spacetime is given 

by the expression
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v < t > = - i ^ ( v ^ g  gHVav <t>) = o 
f i

(5.13)

Here <j) depends only on r, and we can use the metric to write this as

| ( r7 f * ' )  = 0 (5.14)

which ultimately gives the equation of motion as

♦ " = £ ( 4 - f +x )  (5.i5)

Substituting this into equation (5.12) we find that all the scalar terms drop out, and 

the energy conservation equation just becomes the standard Oppenheimer-Volkoff 

equation

P' = -jCP + P)^ (5-16)

This is easily recognised as a consequence of the fact that the scalar field equation of 

motion itself is sufficient to guarantee its energy conservation.

This leaves us to derive the Einstein equations. These are of course given by

R nv - j  g^v R  = 87C t Hv (5 -1?)

where we have set G = 1. By taking the trace, we can rewrite this as

Rnv = gHP tJ - 4 % ĝ v Tp (5.18)

where the first term has also been slightly rewritten for convenience. This gives the 

Einstein equations where T^v is given by equation (5.11). The Ricci tensor
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components for the metric are well known ( e.g. see [63], page 178); the only 

non-vanishing components are , Rt t , Rqq and R ^ .  From rotational invariance, 

the two angular terms give the same equation, leaving a set of three independent 

equations which are

1 A B I B '  . U B ' f  A' o _ v 2

(5.19)

4 AB 2 B 4 B Ar

i . + Ajr 2 (521)
A 2 A 2A B  H v>

While these three are independent of each other, they are not independent of the 

energy conservation law of equation (5.16); this gives us the option of ignoring one 

of these four equations. It is fruitful to make some manipulations first.

Our aim is to write this as a first order system in A, B, p and This can be 

done because we can use the redundancy in the above equations to eliminate the B 

terms. First we concentrate on A and B. By taking the combination

(5.19) | (5.20) ( (5.21) (5 22)
2 A 2 A r 2

and rearranging we can obtain the equation

2

A =8tc A2r p - ~ j - +  4ti Ar<(>'2+ — (5.23)

Similar manipulations lead to an equation for B which is

B = 8tcA B rp  + 4rcBr<j>’2+ AJL _JL (5.24)

117



We discard the remaining relation which it is possible to obtain from the three 

Einstein equations in favour of the Oppenheimer-Volkoff equation.

We can see from equation (5.14) that it can immediately be integrated to obtain a 

solution for (j) in terms of an arbitrary constant, and this expression could be placed 

in equations (5.23) and (5.24). However, instead of doing this, we wish here to 

generalise the model to include a source term which we shall call S for the scalar 

field, which may be a function of position. The reasons for doing this and the 

specific choice of the source term shall be discussed later; for now we shall just treat 

this as an enhancement to the model. This alteration does not alter the form of 

equations (5.23) and (5.24), which remain completely general. They do however 

affect the scalar equation of motion which becomes second order in <j) (though 

effectively only first order in <J>’ as <J) does not appear explicitly in the equations), and 

also the energy conservation law which now includes a scalar source term.

The scalar equation of motion becomes

V $  = - L  d p l - F i  d ” dv $ )  = S (5.25)
F g

from which the generalised equation of motion is

<t>" = A S + <()’ ( -  y  - j  + 4n  A r ( p - p ) )  (5.26)

while, from equation (5.12), we see that the energy conservation equation can be 

written, substituting in equation (5.24) for B , as a first order equation for p which is

p' = - j  (p  + p ) ( 8tc A r p + 4 r c r  <j)’2+ y  - y )  S (5.27)

This gives us the complete set of equations, which are equations (5.23), (5.24),

(5.26) and (5.27).
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There are two things worth pointing out about this set of equations. First of all, 

(j) does not appear explicitly, so the system is really completely first order in the 

variables A, B, p and § , with p determined from p via an equation of state. The 

second important thing is that, although the equations are very non-linear and 

coupled in a complex manner, they are actually linear in B, so that we are always 

free to scale B up or down as desired by a multiplicative constant, exactly as if the 

equations were linear. This will be important when we consider what the appropriate 

choice of boundary conditions is.

Having our basic equations, we must now supply an equation of state to relate 

pressure to density. As described in the introduction, we shall take the 

Chandrasekhar equation of state as used in the original Oppenheimer-Volkoff model. 

This equation of state is given in parametric form with parameter t, and for a given t 

we have the expressions

when expressed in natural units with mn the neutron mass. Because the equation of 

state is in this parametric form, it is convenient to change the variable of integration 

to t by employing the chain rule. Hence in our integrations we replace equation 

(5.27) with

p = K ( sinh t - 1) (5.28)

p = j K  ( sinh t - 8 s in h y  + 3 t) (5.29)

where K is a constant given by

(5.30)

t =
K(cosh t -4  c o sh y +3)

3 [-y(p+p)(87tA rp+47tr<j>2+ Y  -y)-<t>'s] (5.31)
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where p and p are understood to be given by equations (5.28) and (5.29) as 

functions of t.

The only remaining matter is the choice of the source term S. This is included 

because we are interested in the five-dimensional viewpoint when it comes to the 

physics of these equations. The form of the source term is determined by the choice 

of fluid description in the five-dimensional theory, since this tells us how matter 

affects the extra dimension. It was shown in [14] (which also provides a very good 

survey of the relationship between the four and five dimensional interpretations) that 

the requirement that the fluid appears perfect in four dimensions does not lead to a 

unique five-dimensional fluid description, and hence our choice of S is not unique. 

Three possible values of S are 871 ( p - p ) /  3 , 87tp /  3 and zero; these correspond to 

a straight generalisation of the four dimensional fluid description to five dimensions 

using equation (5.8), a slight modification to this with an anomalous pressure in the 

fifth dimension and a standard four dimensional fluid description respectively [14]. 

Following [14], we shall concentrate on these as a representative sample of 

possibilities. Setting S equal to zero is appropriate when we are taking the scalar 

field interpretation and corresponds to no coupling between the scalar and the matter. 

The other two options are of greater interest to us here as they correspond to a 

genuinely five-dimensional fluid description, where the matter affects the geometry 

of the extra dimension. Because of the special nature of the extra dimension, the 

anomalous fifth dimensional pressure in the second of these expressions is not 

necessarily a reason for discounting this fluid description [14].

The final thing we must do is consider the boundary conditions which are 

appropriate for our model. In particular we are interested in solutions which are 

non-singular at the origin, and it turns out that this is quite a powerful restriction on 

the possible solutions, with the entire solution space spanned by varying the central 

density of the star exactly as in Oppenheimer and Volkoff. By expanding each of the 

quantities in a Taylor series at the origin, we obtain restrictions from each of the
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equations of motion. Some of these are obvious from the requirement of spherical 

symmetry alone, which demands the vanishing of derivatives at the origin, but they 

come out naturally from the equations. We find that near the origin we must have

(5.32)

B = b 0 + 47tb0 ( p 0 + p0 ) r 2 + ... (5.33)

(5.34)

(5.35)

where each of p0, p0 and s0 are given by the value of t at the origin. By starting the 

integration sufficiently close to the origin we can ensure that only the constant term 

in each case need be considered. Hence we see that b0 and to ate the only parameters 

that we can choose freely at the origin. However, b0 is not free, since ultimately B 

should be rescaled so as to tend to one at infinity for asymptotic flatness (the 

equations are such that A always tends asymptotically to one). Fortunately, the 

linearity of B in the equations means that this can always be done after the solutions 

are generated by simulation out from the centre, and furthermore it guarantees that 

the value of b0 does not affect the solutions. Hence the only parameter of importance 

is the central density, which is given via t0.

One thing to notice is that <j>' vanishes at the origin, and by examining equation

(5.26) we see that if the source term vanishes then <J>" will be zero and so <j> will 

always remain zero, giving § equals a constant as the unique solution; in this case the 

scalar terms drop out and we will just get the original Oppenheimer-Volkoff 

solution. This tells us that when we have no explicit source term the derivative of the 

scalar is forced  by the boundary condition at the centre of the star to vanish 

everywhere, and so the scalar will have a constant value and have no effect on the

121



equations of motion. We shall use the S = 0 results to reproduce those of 

Oppenheimer and Volkoff. Otherwise, we shall concentrate our interest on the 

choices

S = M p or S = M ( p . p )  (5.36)

which correspond to an intrinsically five dimensional fluid description. In these 

cases the source term for 0 ( the first term in equation (5.26) ) will induce a 

non-trivial solution for (j), as can also be seen from the expansion of equation (5.34). 

Hence we can expect to see new effects arising from the extra dimension which will 

now have a spatial variation in size.

('iii') Solutions and the Question of Maximum Mass
Here we consider the method of solution of the above equations and the 

possible consequences. As in earlier chapters, numerical integration will be 

employed to solve the equations. We integrate from the centre of the star outwards, 

with due regard to the boundary conditions. We can use the expansions of equations

(5.32) to (5.35) to choose our boundary conditions at the centre so as to ensure a 

non-singular solution. We cannot start the integration exactly on r equals zero 

because some of the terms in the equations are singular there (though the solutions 

remain regular), so we begin at a point very close to the origin. We can see from our 

expansions that by making r sufficiently small we can neglect all but the zeroth term 

in the series; that is, we choose A to be one at the origin, <j>' to be zero and leave B 

and t free to be chosen as we like.

We must also ensure that asymptotic boundary conditions are satisfied, as we 

wish our solutions to be asymptotically flat. The equations themselves will 

automatically force A to go to one asymptotically, but B may finish at any value. We 

can then rescale the B solution because the equations are linear in B, which has the
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effect of fixing the value of B at the origin. Hence, as stated above, the central 

density of the star, given via t at the origin, is the only quantity that we are free to 

choose. The same normalisation argument applies to (|), for the equations are also 

linear in it. Hence its overall scale is decided by its value chosen as a boundary 

condition at infinity, which can be predicted from observations of coupling constants 

in the usual Kaluza-Klein manner.

One thing that we have to take great care over is the exterior solution to the star. 

As in conventional neutron star studies, we shall find that the star has a finite radius; 

that is, at some distance from the origin the value of t will become zero. In addition, 

it will do this with a non-vanishing derivative. At this point, to complete our 

solution, we must attach smoothly an exterior vacuum solution. If this cannot be 

done, then our solution is not valid. When S is not zero, the edge of the star will 

have some value of <j>' associated with it, and so the exterior solution must also 

feature a varying scalar field from continuity requirements.

This raises the question of what our external solution might be. In the standard 

case, B irkhoffs theorem [64] tells us that the exterior metric must be the 

Schwarzchild one (true even if the internal matter is not static), and it can be shown 

that this metric can indeed be joined on to that of the interior region. Note that this 

joining need not preserve the continuity of all the derivatives of the metric, only 

those required to keep the curvature invariants finite, as we seek regular solutions. 

The curvature invariants include terms with the second derivative of B but only up to 

the first derivative of A. Hence it is these which must be finite. The function t is 

matched onto a constant t = 0 exterior solution; we do not require continuity of the 

derivative of t in this case.

In our case with the scalar field, Birkhoffs theorem no longer holds. However, 

for the static case it can be generalised to the scalar field case merely by recognising 

that it is possible to find the most general asymptotically flat solution to Einstein's 

equations coupled to a scalar - this then must represent the exterior metric. This
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solution was first found by Janis, Newman and Winicour [65], and can be written

(5.38)

where

r 2 = I ( 2 R + r 0( n + l ) )  “ (2R -r0( n - l ) ) (5.39)

p. = (1 + 16n a 2 )2 (5.40)

This solution has two free parameters, here denoted a  and r0. The unusual radial 

coordinate R is an implicit function of r, and equation (5.40), defining p., corrects a 

well known error in [65] (see for example [14]), with k  in [65] equalling 871 in our 

notation. The parameter r0 is equal to 2m where m is the mass as determined by an 

asymptotic observer. Hence once we have attached this solution to our interior 

solution we use this parameter to tell us what the mass is.

Normally in the studies of black holes we find that a  must be set to zero, 

otherwise the event horizon becomes singular; hence the statement that scalar charge 

must vanish [56,66] (the addition of gauge fields can resurrect the scalar charge 

[56 ]) for black holes. Here we see that because the neutron star prevents 

singularities arising a scalar charge can exist in this case; we do not have to worry 

about the central singularity as it is inside the star. This raises interesting questions 

as to whether gravitational collapse of such an object can proceed unless some way 

of radiating all the scalar charge is found; it may be speculated that the presence of
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the scalar charge can halt the process of collapse [67]. We shall not deal with such 

issues here though it is a topic which certainly merits further examination. Some 

remarks on this are made in the conclusions in section (iv).

Our procedure is now clear. We start integrating from the centre of the star 

using the expansions of the variables there, using the numerical methods as 

described in previous chapters and in appendix one. After some finite distance we 

will reach the star boundary. At this point the program will actually crash, because it 

looks for solutions with more continuity properties than we require; for instance it 

will try and continue t into negative values because of its non-zero derivative, and 

this is not possible. We then take the final set of values for A, B and <j)' at the star 

boundary, noting the radius at which it occurs, and match them onto the exterior 

solution using our less restrictive continuity requirements, which will give us a value 

for the asymptotically observable mass. We then vary the central value of the density 

to examine the whole parameter space. For our purposes we do not need to carry out 

the normalisation of B.

The attachment of the external solution proceeds as follows, once we have these 

values. We first find the parameter a  which gives us the magnitude of the scalar 

field. We note that for Janis et al's solution we have the relation

£ = - £ ♦ '  (5-41) 

Hence at the boundary we can use equation (5.23) with vanishing p to obtain

i  =-4jcr<|>'--^ (1-A) (5.42)
u  r q)

from which we can immediately obtain a . We can then find the value of \i via 

equation (5.40). At the boundary, we also have
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R (5.43)

which can be obtained by direct differentiation of Janis et al's expression for <j) with 

some manipulation. Rearranging equation (5.39) by dividing through by R2 leaves a 

right hand side depending only on things we know, in particular the ratio on the left 

hand side of equation (5.43), and allows us to determine r2 /  R2 at the boundary. 

Hence because we have r from the simulations we can find the corresponding value 

of the radial coordinate R of Janis et al. Finally then, equation (5.43) can be used to 

determine the mass which just equals r0 /  2. We also have a cross check that the 

matching has been carried out correctly because we can find the value of A at the 

boundary as predicted from these matching parameters and confirm that it matches 

the value of A provided by the simulation up to the boundary.

When determining the mass in the case of S = 0, the situation is the 

considerably more simple one of Oppenheimer and Volkoff where the exterior 

solution is just the Schwarzchild one (with a constant scalar field). In this case, the 

standard Schwarzchild expression

can be applied at the boundary to give the mass directly.

The last remaining question is one of units. Following Oppenheimer and 

Volkoff we note that having fixed G and c to be one, we still have one scale to be 

fixed. This can be done by fixing K in equations (5.28) and (5.29) to equal 1/471; 

this corresponds to giving fl some numerical value, the overall scale depending on 

the mass of the fermions used. For neutrons, this fixes our unit of length to be 

1.36 * 104 m and the unit of mass to be 1.83 * 1031 kg. This allows us to convert 

our numerical values into lengths and masses.

Finally, we are in a position to gain results. As a first check, simulations were

(5.44)
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carried out with the source term set to zero and found indeed to reproduce the results 

of Oppenheimer and Volkoff. This situation was also used to check the performance 

of the numerical routine. As pointed out earlier, we cannot start exactly on r = 0 

because some terms in the equations are singular there. The integrations were started 

at r = 10'6 where it was assumed that only the zeroth order terms in the expansions

(5.32) to (5.35) had to be taken into account. It is confirmed by varying this starting 

position that the results are independent of this approximation. At the edge of the 

star, the program terminates when t approaches zero, and it is tested how small t 

must be to allow the mass to be determined accurately; that is, how close to the edge 

of the star we must integrate. When t drops to a few hundredths, it is seen that the 

mass does not depend on the exact position of this cut off - this is no surprise as the 

edge of the star is encountered suddenly and the value of A, which determines the 

mass, cannot change rapidly due to continuity alone over these very short distances. 

With this confirmation that the simulations are providing accurate results, we can 

proceed to the case of a non-zero source term.

The simulations were carried out over a range of values of tO for the two 

choices of equation of state, using an initial integration point and a t cutoff as 

described above. The values of the functions A and <j)' at the edge of the star are 

noted along with the radius at the edge, and the formulae above are used to match on 

an exterior solution and determine the mass.

A sample matching is given here for the case of tO = 1 with a source term 

S = 87t (p - p) /  3. The star radius is found to be 0.6070, and the values of A and <j)' 

at the edge are 1.007050 and -3.807952 * 10*3. Equation (5.42) gives 

a  = - 0.33101, from which p. and r0/  R are found. Using (5.39) we find that the 

R value corresponding to the edge of the star is 0.6028, which allows the mass to be 

found as 0.0021 in the units of the equations, which translates to 0.02 solar masses. 

Other matchings are carried out in the same way.

The results for the mass and radii are shown in figures (5.1) and (5.2), for each
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Figures 5.1 and 5.2 These graphs show the relations between mass against central 

density and radius against central density respectively, for each of the three choices 

of source term S. The masses are given as fractions of a solar mass and the radii are 

in kilometres. The results for S = 0 reproduce those of Oppenheimer and Volkoff. 

The results for S = 87tp /  3 closely mimic the Oppenheimer-Volkoff results, while 

those for S = 8tc ( p - p ) /  3 are very different.
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of the source terms. The S = 0 case is provided to give the Oppenheimer-Volkoff 

results for comparison. We see immediately from the mass curve for the source term 

S = 87t (p - p) /  3 that the inclusion of the extra dimension has had a drastic effect on 

the neutron star structures, with a vast lowering of the maximum mass. This feature 

alone is enough to rule out the possibility that the source term is allowed, as this 

trend can be expected to be carried through to more complicated equations of state, 

which can only just explain experimental observations as it is. Recalling that this 

choice of S corresponds to the natural generalisation of the fluid description of matter 

to five dimensions, we can see that this is going to pose some problems for the 

description of matter in Kaluza-Klein theories. It has already been noted [14] that 

this fluid description may cause difficulties even in our own solar system by being 

inconsistent with the precession of Mercury's perihelion, though there is a very 

small chance that electromagnetic effects may salvage this. It seems unlikely that they 

could do so in our case.

The mass curve for the source term S = 87tp /  3 is found to be very similar to 

that in the Oppenheimer-Volkoff case; there is a small reduction in the masses from 

the standard case, but of no more than a few percent and most prominent near the 

maximum mass. Thus we conclude from this that this choice of source term, again 

intrinsically five-dimensional, appears experimentally viable, though the trend of 

slightly decreasing the maximum mass is not promising. It seems from these studies 

however that the reduction is sufficiently small that if carried through to a more 

complicated equation of state it is unlikely to encounter difficulties with the 

maximum mass criterion.

The radii in this latter case also closely match those of the Oppenheimer-Volkoff 

case, though it should be emphasised that the exterior geometry of the star in this 

case is different to the Schwarzchild case due to the forced existence of the scalar 

charge. The radii with the other fluid description are generally much smaller leading 

to more compact objects. However, it should be remembered that neutron stars are
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Figure 5.3 This graph shows a sample simulation where the source term is chosen 

as S = 8rcp /  3 and a central density given by tO = 5 is given. The lines marked 1 to 5 

give A, B, (j), t and <j> respectively. The integration takes us up to the star boundary 

where t becomes zero. At this point § is non-zero, demonstrating the need for an 

unusual exterior solution. <j> does not vary much during this integration. This graph 

does not include a normalisation of Band (j) which would scale them to match the

asymptotic boundary conditions.
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not stable below a mass of around a tenth of a solar mass since the gravitational 

energy no longer favours neutrons over electrons and protons, and instead white 

dwarfs will form. With this fluid description the masses are all so low that perhaps 

no neutron stars exist. In any event, this fluid description is clearly ruled out by 

these results.

Figure (5.3) shows a sample numerical simulation of one of the above 

situations. This illustration shows the results with a source term of 87ip /  3 and a 

central density given by tO = 5.

(Tv) Conclusions I
What conclusions can be drawn from this work? The results of the study are for 

the most part negative - for instance one might have hoped that the extra dimension 

would lead to the possibility of higher maximum masses with some appropriate fluid 

description, but regrettably this is not so. What has been achieved is a demonstration 

of the pros and cons of the description of matter in a five dimensional theory, 

highlighted by the differing features obtained from the three sample equations of 

state. Each of the three choices leads to a rather different situation, and so we 

consider the status of each of the three below in turn.

1) S = 0

In this case we find that the scalar field is forced to vanish everywhere by the 

presence of the star, in order to preserve non-singularity at the origin. This is not a 

particularly deep result; it really amounts to no more than the lack of source for the 

scalar preventing it from having a spatial variation and the staticity assumption 

preventing wave motion. This certainly gives consistent results for neutron stars, as 

it exactly reproduces the results one obtains in conventional relativity. We use this 

limit to ensure the correct operation of the computer program. As a fluid description 

this is somewhat unsatisfactory from the five dimensional point of view, wherein we
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would definitely expect the fifth dimension, in its role as a scalar, to play some part 

in the geometry.

2) S = 871 ( p - p ) /  3

This source term is that obtained when we make a straight generalisation of the 

normal description of a perfect fluid into the Kaluza-Klein context, i.e. by adopting a 

five dimensional version of equation (5.8). This is the obvious choice to make when 

considering fluids in a Kaluza-Klein theory, so it is somewhat alarming to find that 

the results which are obtained are in blatant contradiction with experiment, 

sufficiently so to rule out this equation of state. In this case we find that the effect of 

the source term is very large and results in a substantial drop in the neutron star 

masses associated with a particular central density. Given that even in conventional 

theories the maximum attainable mass is only barely high enough to explain the 

observation of masses of binary pulsars, such a drop makes the predictions of this 

version of the theory untenable.

3) S = 8rcp /  3

This source term is also associated with an intrinsically five-dimensional 

description of the particle fluid. Here a slight modification is made to the description 

in five dimensions, but this still leads to a perfect fluid in the four dimensional 

reduced theory. It is the results with this source which are potentially the most 

interesting. They lead to a mass curve very similar to the Oppenheimer-Volkoff case, 

with at most a 4% drop in the mass for a given tO, indicating that the source term is 

in general small. This slight alteration is sufficiently small that it does not rule out 

this fluid description, so this appears to be an allowable five dimensional fluid 

description. It is fair to say however that these results for the mass curve are not of 

great interest, firstly because of their closeness to the conventional scenario and 

secondly because the mass change is downwards while most models are already
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struggling to reach high enough mass ranges.

The interest in this equation of state is mostly centred on the geometry that it 

induces. As we have seen, the presence of the star in this case induces a spatial 

variation of the extra dimension, which corresponds to a scalar charge. This leads to 

the observation that the exterior metric outside the star will not be the standard 

Schwarzchild one, but instead will be its generalisation to the Einstein plus scalar 

equations - the Janis, Newman and Winicour solution. We have demonstrated that 

this solution can be matched onto the neutron star at the boundary. At large distances 

from the star this metric is indistinguishable from the Schwarzchild one, but very 

close to the star there may be observable effects connected to the variation in size of 

the extra dimension.

The importance of this solution also extends to consideration of the question of 

what the endpoint of gravitational collapse of these objects might be. Astrophysical 

folklore dictates that black holes may not have scalar charge [66], because of the 

problem of singular event horizons. One can postulate, for example, adding material 

onto one of our neutron stars until it exceeds the maximum mass; it is then unstable 

against collapse to a black hole. However, it then must find some way of radiating 

its scalar charge if it is to collapse completely, a process which appears difficult since 

the presence of the scalar charge is intimately connected to the star via the boundary 

condition at the centre required by the postulate of non-singularity. This situation 

should be contrasted with that covered by Price's theorem [68] which deals with the 

pure scalar case and tells us that the scalar charge will be radiated away during 

collapse. There such a process can occur as the scalar charge is a free parameter in 

the solution and there exist configurations without scalar charge. Here, however, the 

existence of the scalar charge is induced by the five dimensional matter coupling, and 

there exist no static equilibrium solutions with vanishing scalar charge . While there 

remains the possibility that this feature is absent in a dynamical solution, it appears 

that the prerequisite that matter is present forces a scalar charge and hence it cannot
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be freely radiated away. There does however remain the possibility of other 

equilibrium configurations which we have not discovered, perhaps attributable to the 

strange nature of the exterior solution in which gravity can act repulsively at close 

distances [67]. To get a clearer idea of what might be occurring here we need a 

model of the collapse process itself. Some first steps towards this are given in the 

following section, though much further work would be required to get a complete 

picture of the collapse process even in the spherically symmetric case.

(V) The Metric of Dynamical Collapse
In this section we pursue a variant on the theme of studying the effect of extra 

dimensions in astrophysics, by examining a different astrophysical process - that of 

gravitational collapse. The history of studies of gravitational collapse goes all the 

way back to an original paper by Oppenheimer and Snyder [69], and indeed it is 

their treatment that we shall roughly follow. In their studies, they made several 

assumptions in order that the problem became analytically tractable. We imagine a 

spherically symmetric ball of pressureless dust, so that there are no forces to keep it 

from collapse. It is assumed to start from rest with a homogeneous density 

distribution, and the collapse proceeds, preserving spherical symmetry, from this 

initial configuration. This allows an analytic solution to be found in their case, and as 

we shall see the same approximations allow similar progress to be made in the 

Kaluza-Klein version. Modem treatments of this problem generally involve 

advanced numerical techniques, wherein the problem of non-symmetrical collapse 

can be considered [70], but the simple analytic model does provide some feeling for 

what occurs.

Here we w ill follow the exposition of W einberg [63] on the 

Oppenheimer-Snyder model. Our treatment will this time be based on the 

Kaluza-Klein metric itself, i.e. an explicitly five-dimensional treatment, rather than 

using the scalar field analogy. We shall follow the same assumptions concerning the
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nature of the collapsing materials as described in the preceding paragraph.

It is convenient to use what are known as comoving coordinates for this 

problem. What this entails is imagining the coordinate mesh to be fixed in the particle 

dust and falling in with it, so that a particular dust particle will retain the same spatial 

coordinates as it collapses along its geodesic. This will of course lead to a singularity 

when the dust particles meet at a central point, but it is easy to see that this is a real 

rather than a coordinate singularity by considering the behaviour of the density in the 

approach to this point. In such coordinates, with % e [0 ,2n] as the coordinate of the 

circular extra dimension, the general time-varying spherically symmetric metric can 

be written as

ds2 = - d t2 + U( r, t ) dr2 + V( r, t ) (d62 + sin2 0 d y 2 ) + S2 ( r, t ) d*2 (5.45)

We wish to derive the Einstein equations from this using the energy-momentum 

tensor for a pressureless dust.

There are now five inequivalent non-trivial Einstein equations, coming from 

, Rtt , Rqq , Rxx and Rrt. The energy momentum tensor for the dust is given by

T v = p U llUv = d i a g ( - p >0 , 0 , 0 , 0 )  (5.46)

as, because of our choice of comoving coordinates, the fluid velocity with respect to 

these coordinates is entirely in the timelike direction. Standard calculations then lead 

to the following set of Einstein equations, where a dot signifies a time derivative and 

a dash a derivative with respect to r. The equations, in the same order as the 

components given above, are

u  v \  j /  u V ^ u v  j /  s \ u s . M - 8
2 - ” V 2V 2UV 2V ’ 4U " S 2US 2S 3 P  ̂ ^
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These constitute a complete set of equations to be solved.

Following Weinberg [63], we observe that if p is a function of time alone (our 

homogeneity assumption), then we can find separable solutions to these equations. 

Accordingly, we write U, V and S as

U ( r , t )  = cc2 ( t ) f ( r ) ,  V ( r , t ) = p 2 ( t ) g ( r ) ,  S( r , t )  = y ( t ) h ( r )  (5.52)

Substituting this into the Rrt equation, given by equation (5.51), we discover that a , 

P and y must be multiples of each other, and by renormalising f, g and h we can 

arrange that a  = p = y . We are then free to redefine the radial coordinate such that 

g ( r ) = r2, which corresponds physically to letting the radius at a given time be 

determined by the surface area at that distance, exactly as in Schwarzchild 

coordinates. Hence we can write the metric as

ds2 = - d t 2+ct2( t )  ( f ( r ) d r 2 + r 2 ( d e 2 + sin29 dV2) + h2 ( r  )d * 2 )  (5.53)

We now substitute equation (5.52) into the other Einstein equations. For the 

R^., Rqq and RJ£X equations respectively we get the equations



= - l l  1 h f  h"
r f2 2 h f2 fh

(5.54)

i -  + X _ X _  + i
r 2 f r 2 2 rf2 rfh

(5.55)

JL I h ' f ' o  h' 
hf  2 hf2 hfr (5.56)

Here we see the benefits of the separable solution. Each left hand side is a function 

of time only, and each right hand side of space only. In addition, the time dependent 

parts of each equation are the same. Hence we conclude that the left hand side and 

each of the right hand sides must be equal to a fixed constant. For notational 

convenience later on, we denote this constant by -3 k .

We concentrate first on solving the spatial part. From the first and third of these 

equations we obtain the simple relation

which on substitution into the middle relation gives a first order differential equation 

for f, namely

.2 (5.58)

This has the general solution

f = ( £ + ( l - k r 2 ) )
-  1

(5.59)

giving, from equation (5.57)
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h = c ( £ + ( l - k r 2 ) ) 2 (5.60)

where C and D are arbitrary constants of integration. Note that if k is positive (we 

shall see later that it is) the spatial geometry is a closed 3-sphere in which case the 

range of r is restricted to [ 0 ,1  /  Vk ), with the singularity at r = 1 /  Vk a coordinate 

singularity only (exactly as if one used a radial coordinate on the Earth's surface with 

origin at the north pole; there would be an apparent singularity at the south pole 

where the radial lines m eet). In fact, the dust will only extend out to some value of r 

less than this, which gives the edge of the dust, and our solution is only valid within 

this radius. An exterior solution in the absence of dust should be smoothly joined at 

this point.

We now have the complete spatial metric, and can turn to considering the time 

components. Here we have two relationships. From the left hand sides of equations

(5.54) to (5.56), we have the relationship

which, through k, links us to the spatial part. We also still have the Rtt Einstein 

equation, which on substituting the separated ansatz gives

For convenience, it is easier to use the energy conservation equation given by

(5.61)

(5.62)

(5.63)

which can be expressed as a total derivative
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f  ( p v s y u  ) = | L  ( p a 4 ) = 0  (5.64)

By normalising the radial term we can arrange that a 0 , the initial value of a, is 

equal to one. Then integration of this equation gives us

P = P0 a '4 (5.65)

where p0 is the initial value of the density.

We now solve for a  by eliminating its second derivative from equations (5.61) 

and (5.62). This gives

a = - k  + ^ n  p0 - l -  (5.66)
^ a

By imposing the initial condition that the fluid is at rest, i.e. the first derivative of a  

is zero when a  is one, we find that k, as used in the spatial metric, is given by

k = | - 7 t p 0 (5.67)

giving equation (5.66) the form

a 2 = k - k a 2 (5 68)
a 2

This equation is separable, and can immediately be integrated. Setting the initial time 

equal to zero when a  equals one fixes the integration constant giving the expression 

for a  as

a = V 1-kt2 (5.69)
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This completes the derivation of the metric. It is the most general separable 

solution to the Einstein equations under the assumptions that we made initially, and 

written in full is

ds2= -d t2+ ( l -k t2) [
Y + U - k r 2)

+r2(d e2+sin20d\|r2) + c ( £ + ( l - k r 2))d x 2}

with k = y  it pn , p ( t )  = -----  and C, D and pn constants (5.70)
d ( i u \Ld-kry

It may well be necessary to choose D = 0 to avoid a singularity at r = 0, but this is 

not clear as r = 0 should not be a special point; while it is the centre of the spatial 

3-sphere, we have imposed that the dust be homogeneous. An evaluation of the 

curvature invariants may be needed to sort out its role. The other thing to notice is 

that the collapse ends after a finite coordinate time which is given by

While this metric is strongly indicative of the behaviour seen in Kaluza-Klein 

gravitational collapse, a full treatment would require the attachment of an exterior 

solution to this metric at the edge of the collapsing sphere, in the same way as the 

Schwarzchild geometry is smoothly joined to the collapsing star in conventional 

general relativity.

(Vi) Conclusions II
We have demonstrated an analytic solution of the simplest problem of collapse 

in a Kaluza-Klein theory - that of a homogeneous pressureless dust. On the face of 

it, the results found here closely mimic the standard general relativistic collapse 

which gives rise to a Friedmann collapse. Here we have an extra term of type D /  r

(5.71)
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appearing in the metric which may be of importance in the matching to an exterior 

solution, but more work is needed to elucidate its role.

There are several points which deserve pursuit in this model. Of primary 

importance is the discovery of an exterior solution. This procedure is however 

complicated by the lack of a Birkhoff s theorem in the scalar field case. As we saw 

in section (iii), in the static case we can find the most general solution to the field 

equations which must then represent the exterior to the static neutron star. In the 

dynamical case we have here the situation is different, because we are no longer in 

possession of such a general solution. We also have considerable extra difficulties 

over the standard case, because there Birkhoff s theorem dictates that the exterior 

metric will be static even though the interior is dynamic. This is understood as a 

manifestation of the fact that there are no monopole gravitational waves. Here we 

have no such theorem as we can have monopole scalar waves, and can expect that 

the exterior metric may be dynamical as well. Despite these reservations, the 

matching problem does not superficially seem impossibly difficult as the methods 

used here for the interior may well extend to the exterior region as well.

Another complication which exists is the question of how this solution might 

appear to the four dimensional observer. As stated at the beginning of the chapter in 

equation (5.5), we have to make a conformal transformation dependent on the extra 

dimensional metric in order to ensure the constancy of G in the effective theory. We 

can see from equation (5.70) that this transformation is time dependent, so in four 

dimensions the collapse probably does not appear to have the simple behaviour 

indicated by equation (5.71). This too merits further study.

As a final point, this model would have to be extended to include pressure terms 

and an examination of different fluid descriptions in five dimensions to uncover its 

full richness. Such a task would probably involve the use of advanced numerical 

techniques to handle the complicated set of partial differential equations which would 

describe such a system. A better understanding of this analytic model would be
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useful in deciding whether such a study would offer any worthwhile rewards.
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Chapter 6 

Combined Bose-Fermi Stars

(i) Introduction : Bose-Fermi Stars?
The past decade or so has seen a huge influx of ideas from particle physics to 

cosmology, with the primary interest in the use of scalar fields for such purposes as 

inflation and cosmic string formation; in addition there is the light axion field 

introduced as a solution to the strong CP problem. Other theoretically suggested 

bosons may also have a role, such as the dilaton from superstring theory 

(presumably having acquired some mass), and we can expect many possibilities to 

be introduced in the future. Given this wide usage, there has been a revived interest 

in the possibility of stellar objects which may be made from these bosonic fields 

rather than the conventional fermions of neutron stars and white dwarfs. Such 

gravitational equilibrium configurations have been dubbed 'boson stars', and can be 

viewed as being held from collapse by a pressure arising from the uncertainty 

principle, while their fermionic counterparts exist due to a pressure arising from the 

exclusion principle.

The study of boson stars goes back to the work of Ruffini and Bonazzola [71] 

in nineteen sixty-nine, but it is only recently that this work has been followed up, 

presumably due to the increased interest in the physics of scalar fields. Ruffini and 

Bonazzola considered the simplest possibility - that of a non-interacting massive 

scalar field - and concluded that the masses of such boson stars would be extremely 

small relative to their fermionic counterparts. Later work [72] has introduced a self 

interaction of the scalar field ( of X§A type ) which allows the existence of much 

larger masses. The stability of such objects has also been examined [73,74] with 

results similar to that of the neutron star case.
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It is also possible to construct various other types of object from scalar fields, 

by the inclusion of gravity in non-topological solitons [75] and in Q-balls [76]. 

These constructs generally rely on at least two distinct boson fields, and their 

existence is in part owed to a trade-off between the interaction terms of these fields, 

which serves to localise the matter fields. In this chapter, however, we are very 

much following the original line of work where gravity is taken as the basic 

interaction.

In the literature mentioned above, only the case of purely bosonic stars has been 

examined in detail. Given that many of these objects are of primordial origin, being 

formed from an original gas of both bosons and fermions, we would expect that any 

stars that form could be made from a mixture of bosons and fermions, and certainly 

that if any bosonic stars form that they would later suffer some form of 

contamination by fermions. Such objects then are the topic of consideration in this 

chapter; we wish to investigate the possible structures that can be formed from the 

combination of a scalar field and a fermion one, which here shall be taken for the 

sake of a definite illustration to be a neutron field. We shall begin by outlining the 

basic structure of a boson star in section (ii), and then examine how to introduce a 

fermionic contamination into it in section (iii). Simple heuristic arguments due to 

Thirring [77] show that boson stars without self-interactions should have masses 

behaving as mplanck2 /  mB while fermion stars have masses like mplanck3 /  mF2, but 

this situation for bosons is complicated by the introduction of a quartic self-coupling 

and the consideration of objects made from both bosons and fermions is naturally 

even more complicated.

The boson field, denoted <J>, that we consider may be either a complex scalar 

field (which leads to a conserved current and hence a conserved charge Q ) which in 

the equilibrium configuration has only one independent component, or it may be a 

real scalar field as in the formalism of Breit et al [78]. For simplicity we shall 

consider this latter case, for which we have a range of candidates such as axions, the
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dilaton from superstring theories or the Higgs fields in some unified theories. This 

leads to interest in various different ranges of mass; the axion is generally expected 

to be very light while the Higgs boson would be expected to be considerably more 

massive. As we shall see, it is only for very light boson masses that the 

contributions from bosons and fermions are of similar magnitude.

Since there is still no candidate scalar field about which anything definite is 

known, the mass of the boson and the strength of its self-interaction must be 

considered free parameters for which we must explore the possible equilibrium 

configurations. For the fermions, in contrast, we are well aware of properties of the 

neutron such as its mass, so we do not have to worry about the possibility of a 

varying fermion mass. It should be remembered though that the use of the neutron is 

purely illustrative.

One other point that should be noted at this stage is that we do not consider any 

explicit coupling between the bosonic and fermionic fields, for example such as an 

coG5<j> coupling term where co is the Dirac field. We shall comment more on this later. 

There will however be an interaction induced through the coupling to the 

gravitational field. The neutrons will be treated as non-interacting as in the 

pioneering studies of Oppenheimer and Volkoff [60]; they will be described as a 

perfect fluid by making use of the Chandrasekhar equation of state as described 

extensively in chapter five. This is well known [71] to be a very good approximation 

because as all the states in the neutron star up to a certain energy are occupied the 

exclusion principle dictates that the neutrons cannot scatter and hence the mean free 

path is very large. Modem treatments of neutron stars require more complicated 

equations of state which take interactions into account, and these are needed to 

design models which can satisfy phenomenological observations. However, the 

Oppenheimer-Volkoff model gives a very good indication of the behaviour of 

neutron stars with regard to properties such as the maximum mass and stability 

criteria, and since our treatment of the scalar field is somewhat basic it would be
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inconsistent to consider the fermions with great accuracy. Our results are therefore to 

be taken as an indicator of the structure of Bose-Fermi stars rather than an accurate 

description.

(ii) How to Make a Boson Star
In this section we outline the construction of a boson star, following roughly 

the methods used in [73,78]. Given that we have taken the scalar field to be massive 

and self-interacting, but with no other interactions other than gravity, our starting 

point is the Lagrangian

L  = - j  - y m 2 <|)2 - j  X (j)4 (6 .1)

Here m is of course the boson mass and X is the dimensionless self-coupling of the 

scalar. From the Lagrangian we can derive the energy-momentum tensor for the 

scalar field which is given by

V = a M< K $ 4 g ^ V( g P° 3p ^ + mV+y>.<l>4 ) (6.2)

The field (j) can be expanded in terms of creation and annihilation operators in the 

usual manner, giving

<Kr>t) = £ ( - ^ < j . n ( r ) e ' i “" t + - ^ L  4i  ( O e * 0’” 1)  (6.3)
V  7200;

Here (j) = <J>* as is appropriate for the real scalar field. We restrict ourselves to this 

case but a simple generalisation leads to the complex version appropriate to charged 

scalars with a conserved charge Q. The creation and annihilation operators obey the 

commutation relation
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when the scalar is normalised as discussed below. Semi-classically, the components 

of T^v must be interpreted as expectation values between states of NB bosons, given

We are interested in the ground state of the boson stars, which will be obtained when 

<j) is a nodeless function; this minimises the contribution of <|) to the energy 

momentum tensor. We shall denote this (j)0, given by the lowest term in the 

expansion of equation (6.3). It has been demonstrated that higher node solutions are 

unstable [79]. We shall also restrict ourselves to the case of spherical symmetry, 

with the metric written in Schwarzchild form as

To ensure the canonical commutation relations of equation (6.4), we must normalise 

the scalar field as in Breit et al [78] according to

by < NB I :T^V: I Nfi > where the colons indicate normal ordering. This is 

equivalent to using a classical <J)C2 field defined by

<t)c2 = < NB I <t>2 I Ng > (6.5)

ds2 = - B ( r ) dt2+ A(r) dr2 + r 2 d0 2 + r 2 sin20 d\jz2 (6.6)

(6.7)
o

Under our assumption that all the bosons are in the state <J>0 we can use equations 

(6.3) and (6.5) to write



giving our normalisation condition in terms of <|)c as

00 _

* c d r  = i ; ( N B + y )  <6 -9 )
0 0

This scalar field will then provide the matter from which the boson star is 

constructed.

(lip Adding Fermions
In this section we consider the addition of fermions into our scheme. The 

fermions shall be treated classically, as a degenerate relativistic Fermi gas. As 

described in the introduction, this was the technique adopted in the neutron star 

studies of Oppenheimer and Volkoff. A quantum mechanical justification has 

appeared in Ruffini and Bonazzola [71] where they demonstrate using a field theory 

method that the perfect fluid approximation is essentially exact for such large 

numbers of fermions as we shall encounter. The equation of state, first given by 

Chandrasekhar, is in parametric form with parameter t giving the pressure and 

energy density via

p = K ( sinh t - 1 ) (6.10)

p = ^ - ( sinht  - 8 s in h y  + 3 t ) (6.11)
J ^

where

4 5
K _ m n c (6.12)

32 n ft3

with mn giving the fermion mass, here taken to be that of the neutron. For just now, 

we leave c and ft in place pending a discussion on units in the next section. The
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parameter t is defined by

t = 41°s(i§F+ ( 1 + (-<F)2) 2) (6-13)

where p0 is the maximum value of the linear momentum in the Fermi distribution. 

The particle density n in the distribution is equal to

n = - ^ P 02 (6.14)
3 n T1

The equation of motion for the fermions will be obtained from the equation of 

hydrostatic equilibrium, a consequence of energy-conservation.

('iv') Equations of Structure, and the Question of Units
The Einstein equations are, as usual, given by

R îv - j  g^v R = 8tc G (  T^v ( <J)C) + T^v ( p , p ) )  (6.15)

where we utilise the spherically symmetric metric given by equation (6.6). T^v ( (J)c ) 

is defined by equations (6.2) and (6.5), and T ( p, p ) is given by the usual perfect 

fluid expression

(P»P)  = ( P " ^ P )  Uv + g^v p (6.16)

with U„ the fluid 4-velocity. The full set of equations are the Einstein equations 

coupled to the scalar equation of motion and to the equation of hydrostatic 

equilibrium. These can be obtained via energy conservation and are

f = - I ( p + p ) f  (6.17)
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and

V(j> = m2 (j) + A, (() (6.18)

where V is the covariant D'Alembertian associated with the metric given by equation 

(6 .6). (In fact, as in chapter five, these equations are a consequence of the Einstein 

equations, giving us a redundancy allowing us to drop two of the Einstein equations 

on the grounds that equations (6.17) and (6.18) are simpler to work with.)

It is convenient to make several rescalings of our variables before writing the 

equations. We now set c = fl = 1, but we will retain the gravitational constant G for 

the time being, pending our discussion on units. The most important redefinition is 

that of our radial variable; we make the change to

x = m r (6.19)

where m is the mass of the boson. In combination with our other redefinitions, this 

will have the effect of removing m from an explicit appearance in the equations. The 

other redefinitions we wish to make are

i  m A _  47t G p _ 4n  G p
a=/47CG<|>C ; £1 = ; A = — —— ^ ; P =  —  ; P = ------ —  (6<2°)m 47t Gm m m

Note that the redefined scalar field is now denoted a . Using dashes to signify 

derivatives with respect to x as defined in equation (6.19), the complete set of 

equations for the system can be written as

A '  =  x A 2 ( 2 p  + ( ^ + l ) o 2+ A a 4 + s l  ) - A  ( A - 1 )  (6.21)

2 - 2 
B = x A B ( 2 p  + ( A  - 1 ) 0 2- A g 4 +CL_ ) + | . ( A - l )  (6.22)
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a (6.23)

(6.24)

In the limit where there are no fermions these equations match those in [72], and in 

the limit where there are no bosons they match those of [60]. We shall employ the 

chain rule to rewrite this last equation as

where now t is the variable of integration and throughout the redefined pressure and 

density are to be obtained via equations (6.10), (6.11) and (6.20).

The quantity of primary interest to us is that of the total mass of the Bose-Fermi 

configurations. Because in these solutions the scalar field disappears exponentially 

once we are sufficiently far out [78], this mass can be obtained in the usual way 

from the radial metric component; the mass as measured by an asymptotic observer 

is given via

with the total mass given by M ( °o ). The mass can be found by integrating out 

sufficiently far that the fermion and scalar terms are negligible and rearranging 

equation (6.26) as

This differs from the situation in chapter five, where we needed an exterior geometry 

which was not Schwarzchild, because the mass and coupling terms serve to localise

(6.26)

(6.27)
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the scalar field.

The other quantities of interest are the total numbers of particles present. These 

are of interest because of the question of stability; if the total mass of the constituents 

in free assembly is less than the mass in the stellar configuration then the star will be 

unstable [80]. Hence we are interested in the free fermion and boson masses given 

by (NFmn) and (NBm) respectively. By applying equation (6.9) (dropping the 1/2 as 

negligible compared to NB) we find that

where nr, = G"1/2 is the Planck mass. The total number of fermions can be found

Notice that in the last expression the number of fermions depends on the boson mass 

m as well as the neutron mass; this is merely because the integration variable x 

depends on m.

We now digress on the question of what our units are. Having fixed fl and c to 

be one, we still have one arbitrary scale to fix. We introduce a quantity a  into the 

equation of state (6.10) so that it reads

p = a ( s i n h t - t )  (6.31)

(6.28)
o

which can be rewritten in terms of a  as

(6.29)
o

p

from equations (6.10) to (6.14), and is

N F =  J  47ir2 / A n d r = j ^ ( ^ )  J  sinh3 j  / A  x2 dx (6.30)
o o
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that is, we have from equations (6.13) and (6.20) that

a  =
8 j t m2 mp2

(6.32)

where we have rewritten G as mp'2. A particular choice of a  fixes the overall scale 

as appropriate; we can see from equation (6.29) that giving a particular value to a  is 

equivalent to selecting a value for m once we have chosen our fermion mass as that 

of the neutron. As an example, suppose that we choose a  equal to one. Recalling 

that mn ~ 10'19 nip, this leads to a value for m ~ 10~38 mp ; that is, around 10'17 MeV 

(this value can of course be made precise.) We can examine different values of the 

boson mass by varying our choice of a  in the above relations.

(V) Boundary Conditions and Numerical Tests
We now must consider the boundary conditions appropriate to our model and 

discuss their implementation. For most of the variables the situation is exactly that of 

chapter five, but, as we shall see, the problem posed for a  is an eigenvalue problem 

which complicates the scenario. Our requirement is that our solutions be 

non-singular (in particular at the centre), have finite mass, and are such that a  has no 

nodes. We examine the appropriate boundary conditions for each variable in turn.

A Non-singularity at the origin requires that A(0) should be one. Asymptotic 

flatness requires that A(«>) equals one, but this is automatically 

guaranteed by the equations.

B There is no restriction on B at the origin, but asymptotic flatness requires 

that B(°o) equals one. Fortunately, the equations are linear in B, so the 

solution can always be rescaled up or down as necessary. Q 2 must be 

rescaled at the same time, so the normalisation of B is required to 

determine Q.
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g  Non-singularity (or just spherical symmetry and continuity) requires that 

g  be zero at the origin. Again, the equations guarantee that it falls to zero 

asymptotically when g  obeys its constraints as listed below, 

t t (0) = 10 gives the central fermion density via equation (6.11), and is a 

free parameter. The equations guarantee that at some finite radius t will 

become zero. We shall discuss later how we deal with this. 

g  g (0 ) =  g 0 gives the central boson density, and is a free parameter. The 

finite mass constraint requires that g ( ° o) is zero, and we have stipulated 

that G should be nodeless to gain the lowest energy configuration.

It is this last constraint that makes this an eigenvalue problem; we wish to 

determine the value of Q. which gives g  the desired form. We shall discuss how to 

do this.

The method used for the determination of the eigenvalue is what is known as a 

'shooting method' [81]. What this involves is choosing a value for Q.2 and 

integrating outwards from the origin with appropriate boundary conditions, paying 

attention to the behaviour of g . The desired behaviour is that it tends asymptotically 

to zero with its derivative also tending asymptotically to zero. This is a separatrix 

between two generic types of behaviour; either g  becomes zero at some finite 

distance or g  becomes positive before g  reaches zero. These behaviours are 

illustrated in figure (6.1). The first case tells us that Q is too large, and the second 

case tells us that £2 is too small. Hence we can use an iterative procedure to 

determine the eigenvalue to arbitrary accuracy by sandwiching it between these two 

types of behaviour.
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a

desired solution

a ' becomes positive

a  becomes negative

Figure 6.1 This demonstrates the eigenvalue search method. The bold line indicates the nodeless 

solution we require. If o  becomes negative as in the bottom line then Q  is too large, whereas if o ' 

becomes positive while o  is still greater than zero then Q  is too small.

There is one further problem with this scenario for determining the eigenvalue, 

which is that this relies on our being able to integrate out to infinity, while in practice 

we can only go out to a finite distance. What we do to circumvent this is to arrange 

for the node of o  to be within a small range about some radius, and consider moving 

the position of the node outwards by shifting this range. Because at sufficiently large 

distances a  drops exponentially, once the node is far enough out we should get 

answers mimicking those for the node at infinity. It turns out that moving the node 

out corresponds to specifying the eigenvalue with greater and greater accuracy; once 

we are near the correct eigenvalue very small changes in Q  move the node about 

drastically and it becomes difficult to get the node into the correct range.

Numerical tests are performed to examine the accuracy which is required to 

determine the eigenvalue properly. For the sake of simplicity we examine the case
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where there are only bosons present, by setting t0 = 0. We choose A = 10 and o 0 = 

0.07 as sample values, and perform the integrations requiring that the node be at 

various different radii. The masses associated with these configurations are obtained 

by applying equation (6.27) at the node . This is equivalent to setting a  equal to zero 

at all radii outside the node, and this procedure will tend towards the correct answer 

as the node is moved outwards. Moving the node corresponds to altering the test 

value of Q; increasing it brings the node in and decreasing it moves the node out.

Figures (6.2) and (6.3) demonstrate the results obtained. Figure (6.2) 

demonstrates how moving the node alters the mass. At small radii the answers 

obtained are completely incorrect, so our procedure has seriously affected the 

behaviour of a  as a function of r. As the node moves out to about r = 25, we see that 

our results stabilise with the same mass obtained for all node positions beyond this. 

These results tell us how far the node must be pushed out before the results become 

independent of the node position. Physically, this corresponds to having the node far 

enough out that replacing the small exponential tail of a  with zero makes a negligible 

change to the mass associated with a.

While these results show us how to move the node for these particular 

parameters, the concept of radius is not very useful as the radius to which the node 

must be moved will be different for differing values of A, a 0, and t0. Moving the 

node out much further than the necessary amount is very wasteful of computer time 

and may require more accuracy in Q than the computer can attain. A more useful 

concept, indicated in figure (6.3), is that of the number of significant figures to 

which Q. must be determined (to get the node in a small range about a certain radius) 

before the results become accurate. Here we make use of the feature that increasing 

the radius of the node requires greater accuracy for the eigenvalue. When £22 is given 

to only two or three significant figures the results are inaccurate; we see that we need 

at least five or six significant figures to get an accurate evaluation of the mass. Such 

a figure Temains the accuracy requirement regardless of the parameter values, so we
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Figures 6.2 and 6.3 These graphs indicate how the mass obtained depends on the 

position of the node and on the accuracy to which Q2 must be determined. The 

figures clearly show the size that the radius and accuracy must be before we reach a 

region in which the results can be believed.
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can use it as a criterion for whether or not we have attained a sufficient radius. For 

the figures in the following section on results, an accuracy of around eight 

significant figures for Q2 is the norm. This is well within the capability of a double 

precision numerical routine.

Another point which requires testing involves the behaviour of t. At some finite 

radius t reaches the value zero, which would be the radius of a pure neutron star. 

Because t ' is not zero at this point, the computer program will crash (exactly the 

same as the situation described in more detail in chapter five); however we require a 

method of continuing the integration to determine the behaviour of a  and the 

eigenvalue. What we must do is attach a solution where t is exactly zero onto this 

interior solution; we do this by arranging for a cut-off for t below which the program 

will substitute the value zero whenever t occurs. It is tested that once this cut-off is 

sufficiently small the solutions become independent of the cut-off, demonstrating 

that the part of the t function we have removed is negligible. A cut-off of one 

thousandth is used for the numerical results, though actually a much larger value will 

still give completely satisfactory results, c  and a  are continuous across the surface 

of the fermion core. Figure (6.4) demonstrates this change.
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difference from 
exact solution 
caused by cut-off

cut-off

exterior
solutioncomputer solution

Figure 6.4 The fermion cut-off. The program tries to follow t(r) through t = 0 and will crash. The 

correct solution is obtained by attaching the exact computer solution to a t = 0 exterior solution. To 

facilitate this, a cut-off is introduced at which t is truncated to zero - the bold line. The difference 

from the exact solution, given by the small enclosed area, can be made arbitrarily small by lowering 

the cut-off.

(Vi) Numerical Results
We now can discuss the range of equilibrium configurations. First of all, 

several limits were tested; the bosonless limit reproduces the results in [60] and 

without fermions the results reproduce those in [71] without scalar self-coupling and 

[72] when such a coupling is introduced. With this reassurance, we can go on to 

examine the richer situation where both bosons and fermions are present.

The starting point for our investigation is to examine a case where the relative 

strengths of the terms associated with the bosons and the fermions are about equal. 

We choose our value of a  to be l/47t, which has the added advantage of allowing a 

direct numerical comparison with Oppenheimer and Volkoff who also made this 

choice, though in their case of pure neutrons this was only a choice of scale. It is 

sensible to first decide which boson mass this corresponds to. From the calculation
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outlined at the end of section (iv), we find that the boson mass m = 5.11 * 10'17 

MeV.

It is worth stressing just how light these bosons are. Previous studies of boson 

stars have capitalised on the fact that the boson mass drops completely out of the 

calculation and appears only as an overall scale, but this breaks down when fermions 

are introduced. We see from this that for the fermions and bosons to have a roughly 

equal influence the boson mass must be very light indeed - lighter than any currently 

conjectured field. We shall consider the case of more reasonable boson masses 

shortly, but it is worth finding the detailed results in this case first.

We choose A, as obtained from the self-coupling X via equation (6.20), to be 

10. This is taken as a sample value; the work of Colpi et al [72] indicates that the 

qualitative behaviour is unaltered by A though it does alter the magnitude of the 

masses obtained. We shall assume the results obtained from this A are representative 

of the whole parameter range of A.

We should briefly comment on what the values for the mass we obtain mean. 

By setting c and fl equal to one, and by choosing G = 1 and hence nip = 1, we are 

measuring things in natural units. However, we are using the new radial coordinate 

defined by equation (6.19), so when we use equation (6.27) to get the mass we must 

use

M(s t a r ) =mp ( ^ = m p2 ^  (6 3 3 )

where M(star), m and mp are in grams and M is the dimensionless mass obtained 

from equation (6.27). In the purely bosonic case, all the boson mass terms disappear 

from the equations, so the results are independent of m. There the boson mass only 

gives the overall scale of the star. Here our situation is complicated by the presence 

of the fermions, so we must be careful about our scales. In our initial simulations, 

where a  = 1 /  47t and hence m = 5.11 * 10'17 MeV, a value of 1 for the mass M
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corresponds to 5.20 * 1033 grams, which is 2.62 solar masses. Hence one solar 

mass corresponds to M = 0.38. Changing a  changes the overall mass scale.

As a sample result, figure (6.5) shows a simulation with t0 = 3 and g 0 = 0.3, 

plotting the five variables. It is arranged for the node of o  to be in the last fifth of the 

graph; we can see that this behaviour is very similar to if the node had been at 

infinity. The graph also shows how t falls to zero at a finite radius. The mass is 

determined to be 0.695, which is 1.8 solar masses, slightly higher than masses 

possible in advanced neutron star models. It should be emphasised though that this 

is an arbitrary choice of bosonic mass and self-coupling, so such a figure has no 

direct relevance to experiment.

Figure (6.6) shows a surface plot of the total mass as a function of t0 and g0 as 

seen from two different perspectives (to aid visualisation). The ranges of the 

parameters are 0 < t0 < 10 and 0 < g0 < 1, and the highest mass value is 0.915 

(corresponding to around three solar masses) which is associated with a purely 

bosonic configuration with o 0 = 0.2. In a similar manner to the pure neutron or 

boson case, the total mass tends to an asymptotic value as the central densities are 

increased. The c 0 = 0 edge of the surface gives the Oppenheimer-Volkoff results and 

the t0 = 0 edge gives the bosonic results of [72]. Arbitrarily small masses can be 

obtained in the comer where the central densities are each zero.

Equations (6.29) and (6.30) allow us to calculate the mass of a free assembly 

consisting of the same number of bosons and fermions as our star, and hence the 

binding energy of our configurations, which is just given by

BE = M(oo) - ( NBm+  Np m n ) (6.34)

Positive values of the binding energy would correspond to configurations unstable 

against collective perturbations [80]. The boson and fermion numbers are computed 

by taking the differential versions of equations (6.29) and (6.30) and supplying NB 

and NF as additional integration variables. Because of the way that £2 and B appear
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Figure 6.5 This is a sample simulation for t0 = 3 and c 0 = 0.3, with the eigenvalue 

search completed such that the node of a  falls in the last fifth of the graph, here at 

17.4. The lines marked 1 and 2 are A and B, while the fermion component falls 

quickly to zero at a radius of 1.58, at which point a t = 0 exterior solution is 

attached. The other lines are a  (positive) and cr (negative), both multiplied by ten 

for clarity. B has not been normalised so that B(oo) = l; this is not required for

finding the mass.
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Figure 6.6 The mass surface as a function of to and a 0, as viewed from two 

different angles. The results without bosons and without fermions can be seen along 

the appropriate edges. We have 0 < tg < 10 and 0 < a 0 < 1 as our parameter ranges, 

and the highest value of the mass is 0.915 in the units of our equations.
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in equation (6.29), we do not need to perform the B normalisation here either, since 

such a normalisation is compensated by that of Cl.

Figures (6.7) and (6.8) demonstrate some results based on this. These graphs 

take the form of cross sections of BE(tQ, g 0) across a line of constant tQ or constant 

Gq. Figure (6.7) shows the variation of the binding energy with g 0 at fixed values of 

tQ. For t0 equal to one or three we see that the configurations have negative binding 

energy for low bosonic central densities and become unstable when g 0 is higher. 

The arrows on the diagrams mark the points where the mass curve reaches its 

maximum for the corresponding value of t^  for example, when t0 equals one the 

maximum mass is given by a 0 slightly greater than 0.2. When t0 equals ten we see 

that the purely fermionic configuration is unstable; this result is well known from 

neutron star studies where instability is introduced at the maximum of the mass curve 

as a function of t0. We see though that as g 0 is increased there is a region where the 

binding energy is negative before we once more reach an unstable region. Notice that 

the transition to positive binding energies occurs well after the maximum mass in 

each case. This indicates that the binding energy test may not be particularly accurate 

as to where the instability occurs; it has been shown using a dynamical analysis [74] 

(which improves the results of [73] ) that in the purely bosonic case it is at the 

maximum of the mass curve that the instability sets in, exactly mimicking the 

fermionic case. It is noted in [74] that for bosons the transition to positive binding 

energy occurs well after the onset of the dynamical instability. When interpreting 

these results, it is important to remember that while a configuration of positive 

binding energy is definitely unstable (at least to a collective dispersion to infinity, 

though not necessarily particle by particle [80]), one with negative binding energy is 

not necessarily stable as there may be other negative binding energy configurations 

which are favoured.

Figure (6.8) gives the corresponding picture for fixed a 0. In each case here the 

maximum mass occurs at t0 = 0; i.e. the purely bosonic case maximises the mass.
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Figures 6.7 and 6.8 These graphs give the binding energies of configurations as the 

central densities vary. In each case A = 10 and a  = 1/471. The top figure shows the 

binding energy for several fixed values of to as a 0 is varied; the horizontal line 

indicates where the binding energy is zero and the arrows indicate the value of G0 at 

which the maximum of the mass curve lies for a given tQ. The other graph shows the 

same for fixed g0 and varying t0, where in each case the maximum mass is at t0 = 0.
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For a 0 equalling 0.2 we get results essentially the same as in the fixed t0 case. 

However, as we go to g 0 equals 0.4 all the configurations have negative binding 

energy and when we reach 0.5 it is the configurations with low central density which 

are unstable and those with a higher central density which have a negative binding 

energy. At even higher g 0 (e.g. g 0 equals 0.8, omitted from figure (6.8) for clarity) 

none of the configurations we investigated were stable.

Figure (6.9) demonstrates the region of the t0 - a 0 plane where the binding 

energy is negative. Along the axes we get the results for the cases where we have 

only neutrons or only bosons. We can see here the results of the preceding figures; 

for example along a 0 = 5 we see that the binding energy starts positive and becomes 

negative, and along the t0 = 10 line we see that it starts positive, goes negative for a 

while and then becomes positive again.

10

8

6

4

BE < 0
2

0

0.2 0.4 0.6 0.8 10

Figure 6.9 The region in the tQ - Oq plane where the binding energy is negative is shaded in 

this figure, based on the results of figures (6.7) and (6.8) which can be seen along the appropriate 

vertical or horizontal line. It should be emphasised that this is only a rough drawing based on the 

results in figures (6.7) and (6.8).

166



The region of negative binding energy extends further upwards off the graph as far 

as we could test, e.g. the configuration with t0 = 20 and a 0 = 0.4 has negative 

binding energy. Once the central density gets this high, we can expect the fluid 

approximation to break down anyway, but it seems highly unlikely given the 

behaviour in the pure boson or fermion case that any of the configurations with high 

central densities are dynamically stable.

While the study of the binding energy gives some indication of the stability of 

these objects, it is far from being a complete guide to the details of the onset of an 

instability or its the characteristic frequency. As we noted above, it also can hide the 

full details; for instance a configuration of negative binding energy may still be 

unstable to collapse to a configuration with an even more negative binding energy, or 

one with positive energy may be stable against some types of small perturbations 

because of local minimum effects. The study of the onset of the dynamical instability 

of such configurations is of much interest for comparison with our results, though 

we shall not attempt this here. It would require an extension of the method developed 

by Chandrasekhar [82] beyond that made to purely bosonic stars by Jetzer [73], 

Gleiser [73] and Gleiser and Watkins [74].

We will now take some steps towards discovering the effects of varying the 

boson mass; from the formalism above we see is done by varying a . From equation 

(6.32), we see that the boson mass goes as 1 /  Va, so by dividing a  by some factor 

we increase the boson mass. The effect of this can be seen to simply reduce the size 

of the fermionic terms relative to the bosonic ones, because from equation (6.31) the 

pressure and density terms are proportional to a . From equation (6.20) we see that 

several of our parameters depend on the mass of the boson. As a  does not depend 

on m a given central density g 0 is the same regardless of m, and we can see from 

equation (6.25) that the redefinitions cancel so that the central value of t gives the 

same pressure and energy density whatever value m takes. However, this is not true
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for X', if we change m then we must also alter A if we wish to be considering the 

same scalar coupling X. From equation (6.33) we see that the overall scale will of 

course change.

First we examine how the total mass varies with a  while keeping A constant 

and equal to ten. To enable easy comparison, we stick to the case where the central 

densities are given by t0 = 3 and a 0 = 0.3. We find that as a  decreases (hence 

increasing the boson mass), the bosons become more and more predominant, and 

the mass becomes closer and closer to that which we would expect of a purely 

bosonic star. As a  increases, we tend to a value for the dimensionless mass M of 

0.881, which is exactly the value obtained in the purely bosonic case with this value 

of A. We can see however from equation (6.33) that the total mass in these cases is 

considerably lighter since M(star) ~ 1 /  m.

With these results in place, we can consider altering m but keeping the scalar 

self-coupling X fixed. This amounts to rescaling A in our equations as according to 

equation (6.20). We concentrate on the same values for the central densities. We can 

see that if we multiply the mass of the boson by some factor C, then we must divide 

A by C2. Hence the value for A drops as we increase m. Having noted this, the 

results are exactly as one would expect from the analysis at constant A; once m is 

sufficiently large the star is again completely boson dominated and we tend towards 

the result for a pure boson star, this time with A = 0. Here m sufficiently large 

means only one hundred times larger than our original case, that is around 5*10'15 

MeV, which is still tiny in comparison with the neutron mass.

These results appear in figures (6.10) and (6.11), as plots against m in units of 

10*15 MeV. The first figure concentrates on the masses of the stars formed. One line 

gives the variation of the numerically determined mass m; this tends rapidly towards 

the value 0.631 which is that for a purely bosonic star with these central densities 

and A = 0. The other line gives the actual mass in units of the solar mass; from these 

logarithmic scales we see that the mass drops as 1/m, exactly as we expect of a
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Figures 6.10 and 6.11 These figures demonstrate the behaviour of various features 

as we increase the boson mass at fixed central densities and self-coupling. Note that 

the plots have different axes for the two lines, and that several axes are logarithmic, 

m is in units of 10'15 MeV. The top figure shows the numerically determined mass 

M and the actual stellar mass in units of the solar mass. The lower figure shows the 

percentage of mass residing in the bosons when in free assembly (M(B) = mNB and 

M(ass) is the total mass in free assembly), and the total number of fermions.
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purely bosonic star. The second figure gives information on the types of particles 

present in these configurations; the first line shows that the percentage of mass 

present as bosons tends towards 100% while the second line shows that the absolute 

number of fermions drops as 1/m. Notice that the fraction of mass is determined 

from the free assembly; the concept of bosonic mass in the stellar configuration is 

not well defined. These results show that for these central densities increasing the 

constituent boson mass results in complete bosonic domination and results 

mimicking those for boson stars. This does not as yet however provide information 

of the nature of the range of configurations that exist when the boson mass in larger 

than in our previous investigations.

To this purpose, we now examine the whole mass surface for the case where 

the bosonic mass is greater than that considered in the results of figure (6.6). This 

situation differs from the first value of the boson mass that we considered because 

there are now two characteristic mass scales for the stars. The choice of a  = 1/4tc 

was made originally because then the purely bosonic stars and the purely fermionic 

stars had comparable masses, but with the choice of a  = 1 /  (471 * 106), 

corresponding via equation (6.32) to a boson mass one thousand times greater than 

before, this is no longer true. Because our scales have changed with the new choice 

of a , the dimensionless mass M for a neutron star is now of the order of a few 

hundred, though of course the actual mass is the same. However, the dimensionless 

mass of a boson star is still around one half, because the dimensionless mass of 

boson stars is independent of m [71], with the actual mass of boson stars going as 

1/m. We shall shortly see the effects of the disparate characteristic masses.

We consider then the case of a  = 1 /  (47t * 106); we also choose A = 0. The 

reason for this latter choice is that for comparison with earlier results we wish to 

keep the self coupling X constant, which requires from equation (6.20) that A is one 

million times smaller than its previous value of ten. The work in [72] shows that this 

will behave very much as in the A = 0 case, so for simplicity this is the one that we
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shall consider. We again examine the variation of the mass with the central densities. 

It should be noted that a slight modification to the numerical technique is made here, 

because in many configurations the fermion radius is large and it is impossible to 

attain the accuracy required to position the scalar field node outside this. To 

counteract this, the node is positioned inside the fermions and near the node a cut-off 

is introduced where the scalar field and its derivative are set to zero, allowing the 

integration to continue out to the vacuum where the mass can be determined. This 

approximation is really exactly equivalent to determining the mass at the node as we 

did previously, and again tends to the correct result as the node is moved sufficiently 

far out and the cut-off lowered sufficiently far. Because the fermion terms are 

multiplied by a , which is very small, the scalar cut-off must be at very small values 

to ensure that these terms are negligible.

The results that we find are that there are two distinct types of configuration 

present as the central densities are varied - boson dominated configurations and 

fermion dominated configurations. The transition between these two extremes is 

very sudden, and the two types have the characteristic mass of a boson star and a 

neutron star respectively. The fermion radius is of a standard size (that is, 

comparable to that of a purely fermionic star) in a fermion dominated configuration 

but considerably smaller in a boson dominated configuration because there are very 

few fermions present in these cases. As with the mass variation, the transition to 

large radii is very sudden.

Some results are shown in figures (6.12) and (6.13). These are in the form of a 

variation of t0 with o 0 held constant at 0.3. A and a  are as stated above. As 

background information, the maximum mass attained by purely fermionic

configurations is about 272 at t0 = 3, while the mass of a purely bosonic

configuration at a 0 = 0.3 and A = 0 is 0.631.

These figures show a very sharp transition, which occurs at t0 = 3.92, between

two generic behaviours. The first figure shows the mass on logarithmic scales while
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Figures 6.12 and 6.13 These show the possible equilibrium configurations with c 0 

equalling 0.3, in the case of a boson mass of 5 * 10'14 MeV with A = 0. The top 

figure shows the dimensionless mass M of the configurations while the lower one 

shows the percentage of the mass residing in the fermions in the free assembly. The 

transition from boson dominated to fermion dominated configurations is very sharp.
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the second shows the percentage composition of these objects. As above, the 

percentage composition refers to the percentage of mass residing in the fermions 

when in free assembly. In fact the boson number is about the same for all these 

configurations; it is the fermion number which changes drastically. At low tg, we see 

that the percentage of fermions is extremely near zero and the stellar mass is the 

0.631 that we would expect of a purely bosonic star. After the transition the 

composition is almost completely fermions and the masses are of characteristic 

fermion magnitude. In fact, the maximum mass is very close to that of the pure 

neutron case; while none of the configurations examined actually exceeded the mass 

of the t0 = 3 fermionic configuration, values very close to this were found. Results 

similar to this were obtained for other fixed values of G0. Figure (6.14) shows 

roughly the regions of boson and fermion domination discovered in our simulations 

(once more a rough drawing).
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Figure 6.14 The regions of bosonic and fermionic domination of the configurations as tg and o Q 

are varied.

Examination of the binding energies gives very similar results to before; for constant 

g0 the binding energy remains positive some way beyond the maximum of the mass 

curve. Again a dynamical analysis will give more stringent stability constraints.
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(vii) Contrasts. Conclusions and Afterthoughts
Here we conclude the work of this chapter with some discussion of the results 

that we have obtained, their meaning and the relation to other work. We begin by 

contrasting our basic assumptions with those of other work which has been carried 

out recently in related fields. We then provide a summary of our results with some 

discussion of their meaning. Finally, we mention ways in which these investigations 

can be extended and also consider the corrections to our formalism that an explicit 

interaction term between the bosons and fermions would entail, including a 

demonstration that for the range of boson masses we have considered such an 

interaction should be negligible.

First we examine the relation between our work and that arising from the 

incorporation of gravity into non-topological solitons and Q-balls. In [75], Friedberg 

et al studied scalar soliton stars consisting of a complex scalar field c|> and a real 

scalar field % interacting gravitationally, and possibly having other interactions. The 

complex scalar field <j> has a time dependence e~1£0t, resulting in co playing the same 

role as the boson quantum frequency co in our work. In the special example studied 

numerically (% = 0) the scalar soliton star has a huge mass of order mp4/m3 where m 

is the mass of the (j) boson. (The non-soliton based work of Colpi et al [72] with a 

different self-interaction of the complex scalar field <j) gave a star mass of the order of 

mp2/m). Lee and Pang [83] studied fermion soliton stars with a fermion field \j/ 

replacing the complex scalar field (j) of the scalar soliton stars; the fermions interact 

with a neutral scalar field c  of Higgs type. No explicit time dependence appears in 

the problem, and there is no quantisation of the scalar field a ; thus there is no 

analogue of the quantum frequency co which appears in our equations as an 

eigenvalue. In the fermion soliton stars again a huge mass of mp4/m 3 is found, 

where m is now the mass of the a  boson.

Recently Lynn [76] has initiated consideration of stars, dubbed Q-stars, where 

emphasis is placed on the non-gravitational interactions of the scalar field being of a
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more usual particle physics magnitude (other work tending to require small 

couplings). His constructions correspond to incorporating gravity into Q-balls. With 

a complex scalar field having a quantum frequency co and zero or one real scalar field 

he finds star masses of the order of mp3/m2 where m is a mass scale appropriate to 

the scalar fields.

The main features of the above work are the existence of non-trivial couplings, 

usually with the aim of providing surface and volume terms to localise the fields. 

Our case differs from this in that gravity is the main interaction when it comes to 

localising the scalar field; though we do use a scalar self-coupling X we also have 

configurations when X equals zero. We have shown that in our model, once we have 

chosen a bosonic mass and self-coupling (having assumed the fermions to be 

neutrons, though this is not essential), the possible equilibrium configurations are 

parametrised by the central densities of the scalar and the fluid representing the 

fermions, and have examined a range of possibilities. We summarise these below.

Initially it was shown that for the bosonic and fermionic configurations to be of 

comparable size the boson mass has to be very light (we require the Compton 

wavelength of the bosons to be of similar size to the neutron star). The possible 

configurations were examined, and a surface plot of their masses was given in figure 

(6.6). It can be seen that for this boson mass there are some configurations, notably 

purely bosonic ones, which are heavier than the maximum mass obtainable using 

just fermions. While lately much interest has been generated in the masses and 

rotation speeds in pulsar models due to observations of the remnant of the 1987 

supernova, it must be emphasised that this result is based on an arbitrary choice of 

boson mass and couplings, hence has no direct relevance to observation. A 

rudimentary stability test using the binding energy of these objects was invoked; a 

positive binding energy indicates that a configuration is unstable though 

unfortunately the converse is not true. Hence many of the configurations with 

negative binding energy may also be unstable. A proper dynamical analysis of the

175



instability would be required to examine this point adequately.

Having catalogued these configurations, progress was then made in the 

direction of examining the consequences of a larger boson mass. At fixed central 

densities, it was shown that as the boson mass increases the configurations become 

more and more boson dominated, and behave as boson stars. A choice was then 

made of a boson mass at which the boson and fermion contributions to the equations 

are of disparate size for a study of the complete mass surface. This leads to a 

situation where the characteristic mass for fermion stars is around one thousand 

times greater than that for bosonic stars. It was discovered that as the central 

densities are varied there are two generic behaviours for the configurations; they are 

either boson or fermion dominated. The transition between these, shown in figure 

(6.14), is very sudden. The boson and fermion dominated configurations have 

masses and radii appropriate to their type, so the fermion dominated configurations 

are generically around a thousand times heavier than their bosonic counterparts. 

Presumably a star made from roughly equal bosonic and fermionic contributions 

would have to find an equilibrium position with central densities on the transition 

line. In the case of higher boson mass, no configurations were found with a higher 

total mass than the most massive neutron star, though in general the difference can 

be very small.

To elucidate further what these results might mean, it would be well advised to 

have a particular boson mass (and, to some extent, self-coupling) in mind. The 

candidate particle that interests us most is undoubtedly the axion, because as we have 

seen it is the very light boson masses which give rise to the most interesting 

configurations. Until an observation of the axion is made, we obviously do not 

know its exact mass, but it is possible that it is within a few orders of magnitude of 

the two sample values of m we have examined here. It seems likely that the trend to 

having boson and fermion dominated configurations will continue to higher boson 

masses, so this may well be the relevant scenario for the possible equilibria. As we
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shall see in our discussion on explicit interaction terms, our results are however 

unlikely to extrapolate up to masses such as those conjectured for the Higgs boson.

Our stability analysis certainly leaves much to be desired, though to confront the 

dynamical instability calculations would be to face up to an extremely complicated set 

of equations. To extend Chandrasekhar's variational principle to these configurations 

is a goal which may be well worth pursuing as in the purely bosonic case such an 

analysis certainly is required to give the full picture; clearly it will be needed here 

too. One can also ask what might happen if we took an equilibrium configuration 

containing near to the maximum allowed number of fermions (or, of course, bosons) 

and insisted on adding more and more fermions to it. It appears that there would be 

no equilibrium configuration available and hence collapse must proceed, even though 

the configuration may not be on the maximum of the mass surface (that is, it may 

have less mass than some purely bosonic configurations). Further thought is no 

doubt needed to determine what happens in such a situation - perhaps otherwise 

negligible interaction terms may become important and would mediate fermion to 

boson reactions to attain a stable equilibrium with different particle numbers. Our 

treatment is not sufficiently sophisticated to allow us to consider such possibilities.

Beyond these topics, future work would be much aided by having a specific 

case for examination. In the absence of this, a larger catalogue of results might 

discover other interesting phenomena. An example would be to consider boson 

masses smaller than those we first examined. Some exploration has indicated that in 

this case too that at fixed central densities the configurations become more and more 

bosonically dominated, with the fermion contribution tending to have a very small 

radius and hence little overall effect. We have not investigated this case in full, as 

there are no current candidates for scalar fields as light as this. One could also hope 

to extend the work to larger boson masses, though this would appear to necessarily 

entail taking an explicit boson-fermion interaction into account.

As a final rider, the number of free parameters available has meant that we have
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had to pay little attention to varying X. While the work of Colpi et al [72] indicates 

that no qualitative change occurs as A is altered, there does remain the possibility that 

this is no longer true for our case. Also Lynn [76] has emphasised that in all these 

studies the value of X tends to be rather small. Extending this work to more sensible 

values of the self-coupling would also be very interesting.

To conclude, we now consider briefly the effects of an explicit coupling term 

between the bosons and the fermions, an analysis which will justify its neglect for 

the ranges of boson mass that we consider. We take the action for the scalar field as 

being

S = J d 4x / 5  (  j m 2 <!>2+ i a M<t>aM(t> + i A . $ 4 + - ^  vV* y5 \|/9n<t>) (6-35)

where the last term couples the fermion field \|/ to the scalar with strength given by 

the coupling constant g. As far as the scalar field equation is concerned we can go 

over to an effective action formalism modifying the Lagrangian which will acquire 

extra terms, such as

L j = X1 (j)2 + X2 ())3 + X3 <|)4 (6.36)

where the X{ depend on the type and magnitude of the interaction and on the fermion 

configuration. The first and last of these terms will correspond to a mass and 

coupling renormalisation, which will vary with the radius as the fermion condensate 

is spatially varying. Outside the fermion core these terms will vanish and the mass 

and charge will regain their vacuum values.

For the fermions we are considering an ideal cold star, so without the Yukawa 

interaction we have at each point in space a momentum distribution in which all 

states are filled up to the Fermi surface momentum p0(x) and all states outside the
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Fermi surface are empty. In the presence of an interaction this picture will be 

modified with the Bose quanta inducing transitions such that the fermions can jump 

outside the surface leaving holes. Provided the interaction is small an equilibrium 

should be established in which the cold star Fermi distribution is modified by 

hole-particle pairs. For the frequency of Bose quanta considered here these pairs will 

occur near the Fermi surface, and will result in a modification of the equation of state 

for the fermions and hence a modification of the Chandrasekhar parametrisation of p 

and p.

We now estimate the size of the interaction term in relation to our other 

quantities. Following Ruffini and Bonazzola [71], we define a current

The first component, J°, is just the number density of the fermion field, which we 

will denote %, with a general relativistic correction provided by the metric [71]; that 

is

The interaction term appears in the equations as a scalar term multiplying an 

expectation value of the current with the y5 reinserted. We can therefore use J° to 

provide an estimate of the expectation term, as y5 will not affect the magnitude. From 

equation (6.38) we get the estimate that

J^= \jf (6.37)

(6.38)

J 0 ~<YY°Y5 \j/ > ~  0 ( m^  sinh3 ) (6.39)

We must correct this result due to the fact that only fermions near the Fermi surface 

are able to interact, namely those in a shell of thickness O(co) where co is the Bose 

quanta, while the Fermi sphere has radius p0 which we can find from equation



(6.13). Hence we must multiply equation (6.39) by a correction factor to account for 

the fraction of fermions able to interact. The extra term which appears in the 

equations of motion (for example equation (6.21)) is then of the form

1 dA 
xA  dx

+ 4 n g (  sinh2 j - ) Si -2L
4

(6.40)

The quantities in the last term are in general of order one except for the final m /  mN 

fraction, so it is this ratio which determines the importance of the interaction. In the 

case where the boson mass is small by many orders of magnitude relative to that of 

the fermion, as for instance when we consider the axion, it can be seen from 

equation (6.40) that the interaction term will have a negligible effect on the equations 

of motion. When the masses of the constituent particles become of similar 

magnitude, our approximation will break down and a full treatment requiring the 

interaction term to be given full consideration will be required. The physical picture 

is that only at large boson masses are the Bose quanta sufficiently large that a 

significant proportion of the Fermi sphere is able to interact. This then justifies our 

neglect of explicit interactions of this type in our studies.
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Chapter 7 

Conclusions and Future Work

"And this story, having no beginning, will have no end."

Weaveworld 

Clive Barker

(I) Conclusions
Given that each chapter has its own conclusions, this section exists merely to 

provide a final overview of the work carried out in this thesis. More details are 

available in the appropriate conclusions section of chapters three to six.

Chapters two and three considered various cosmological solutions in ten 

dimensional supergravity within the context of a specific model. A variety of topics 

were considered, beginning with an investigation of the behaviour on the approach 

to the singularity backwards in time. It was found by means of an analytic argument 

involving bouncing between Kasner modes that the presence of a fundamental scalar 

field, known as the dilaton, moderated what would have been a chaotic approach to 

the singularity. This was confirmed by numerical means. Solutions forwards in time 

were found to be governed by an unusual type of attractor which precludes the 

possibility of a compactification scenario in the basic model. However, a 

modification to this model where the three form field H distinguishes three spatial 

dimensions from the rest does allow compactification solutions.

The basic models were enhanced by the introduction of a sample particle 

production mechanism, where the energy of scalar field oscillations is transformed 

into a relativistic fluid representing fermions. The behaviour of the system for 

several generic forms of the particle production term, which appears in the equations
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as a viscous force, was investigated, though a substantial improvement on the basic 

scenarios was not obtained.

Chapter four considered the dynamics of inflation induced by scalar field 

potentials of an exponential type, leading to a class of inflation models known as 

power law inflation models. A more general solution than has previously appeared 

was found for the simplest case, and then it was demonstrated that when particle 

production effects are taken into account, again leading to viscous forces, the basic 

scenario is improved. These ideas were adapted for use in a more realistic model 

based on a supergravity theory, which has a scalar field potential well suited for the 

construction of an inflationary scenario. It was shown how the viscosity 

considerably eases the construction of a model within this context, and the outline is 

sufficiently general to demonstrate how such a model can be designed in other 

fundamental theories.

Chapter five examined the role that an extra dimension of Kaluza-Klein type 

may play in the physics of neutron stars and in the process of dynamical gravitational 

collapse. In the spherically symmetric case the extra dimension appears in the 

equations as a scalar field, and this feature was used to advantage in setting up the 

system of equations which describe a neutron star in Kaluza-Klein theories. 

Attention is centred on the description of the neutron fluid from which the star is 

formed; if we wish to describe this fluid in an intrinsically five-dimensional manner 

we gain a source term for the scalar field which results in a non-trivial solution of the 

scalar equation of motion, corresponding to the star carrying a scalar charge. It was 

shown that in this case we must consider an exterior geometry differing from the 

usual Schwarzchild one, using instead its generalisation to the coupled Einstein plus 

scalar solution as found by Janis et al. It was shown that such an exterior solution 

can be consistently attached at the boundary of the numerical solution for the interior 

of the star, and that we can use this to find the mass of the star. The effect of the 

extra dimension was shown to depend on the type of fluid description, but the
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results clearly rule out the possibility that the fluid can be described by a straight 

generalisation of the four dimensional description.

The dynamical collapse problem in the context of Kaluza-Klein theories was 

also examined, under a set of simplifying assumptions. The most general separable 

solution to these equations was found in analytic form, and appears very similar to 

the corresponding solution in conventional general relativity, though enhanced with 

the addition of an extra term. The role of this term is concealed by the difficulties in 

attaching an exterior solution to the collapse metric, the situation being complicated 

by the breakdown of Birkhoff s theorem.

Finally, chapter six considered the possibility of stars made from a combination 

of bosonic and fermionic constituents. The basic equations for boson stars were 

reproduced and it was shown how to introduce fermions into the scheme. The 

solution of the system is an eigenvalue problem due to the existence of boundary 

conditions both at the centre of the star and at infinity. This was solved numerically 

by an iterative shooting method. The solutions for a given boson mass and 

self-coupling are parametrised by the central densities of the bosonic and fermionic 

parts, and the masses of the family of equilibrium solutions were found for a given 

(rather small) boson mass where the bosonic and fermionic terms were of roughly 

equal importance. A rudimentary stability test involving the binding energies of these 

objects was carried out as a preliminary guide to stability. The effect of an increase in 

the boson mass was then examined, and finally a brief analysis of the possible 

effects of an explicit interaction term in the Lagrangian was given.
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(ii) Future Work
This final section suggests areas in which the work detailed in this thesis may 

be extended, and outlines some developments which may prove fruitful. Some of 

these topics are already under consideration at the time of writing. We consider each 

separate topic in turn.

The work in chapters two and three has no obvious continuation; the main 

drawback of the model is that in its current form it is too simplistic, but any attempt 

to extend the model would inevitably result in a system so complicated as to be 

intractable. A full treatment would entail including the fermionic contributions in a 

more fundamental manner than resorting to the fluid approximation, and the 

employment of accurate perturbation calculations to determine the coupling. 

Unfortunately, the treatment of the geometric sector of the theory is far too basic for 

the pursuit of the above goals to be fruitful, and in any case given the difficulties in 

obtaining a satisfactory low energy theory such as the standard model from the 

superstring it seems prudent to await further developments in the theory before 

attempting detailed cosmological modelling based upon it.

In contrast, the power law inflation scenario of chapter four offers many 

avenues along which investigation can be pursued. The implementation of these 

ideas in other theories featuring exponential potentials is well worth study; for 

instance, in higher dimensional Yang-Mills theories exponential potentials commonly 

arise and this may be the only way of implementing inflation in the cosmology of 

these theories. Within a particular theory, further investigations can be made of how, 

for instance, the departures from exact exponential potentials affect density 

perturbations. The transition to the conventional Friedmann universe can be studied 

in more depth with more emphasis placed on the final matter distribution and the 

dynamics of reheating. By enhancing the treatment to a full semi-classical analysis 

the effect of quantum fluctuations can also be investigated; for example, it may be 

possible to implement a reproducing inflationary model such as has been suggested
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by Linde. Because the geometry of the power law inflation is not the de Sitter one, it 

is a non-trivial point of investigation. In principle, the exact form of the viscosity 

term within a given theory can be calculated, though in practice this may involve 

very complicated perturbation calculations.

In chapter five, we saw how the fluid description effects the structure of a 

neutron star, which gives constraints on the types of fluid description that we may 

use. Interest here centres on the consequences for gravitational collapse, as a 

five-dimensional fluid description seems to lead inevitably to a scalar charge which 

cannot be radiated freely as its existence is intrinsically tied up with the presence of 

the neutron fluid. For this purpose, a continuation of the study of the dynamical 

collapse solution would be very useful. An exterior solution must be found onto 

which the interior metric can be smoothly joined; this should elucidate the possible 

effects of the extra D/r term present in the metric above those that we find in 

conventional relativistic studies.

It is also important to consider how the collapse might look to the observer in 

four dimensions; this involves a conformal transformation of the metric involving the 

extra dimensional metric term. Because in this case g55 is both time and space 

dependent, this leads to a very complicated looking solution of the Einstein 

equations. Perhaps the use of subtle coordinate transformations can clarify the 

structure of this metric; its global structure is also of interest.

Another aim is to enhance the collapse model to include pressure terms and 

consider different fluid descriptions. This should help clarify the role of the scalar 

charge, but is likely to lead to a very complicated set of partial differential equations 

which are unlikely to be separable. Hence very sophisticated numerical techniques 

may be required to enable one to tackle this problem.

Chapter six also leaves many channels open for future investigation, partly 

because the work is still in progress at the time of writing. It is possible to tabulate 

more results concerning the equilibrium configurations, but this would be very time
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consuming because there are so many free parameters to be chosen, namely the 

central densities of both bosons and fermions and the boson mass and self-coupling. 

Computing the eigenvalues to the required accuracy needs a substantial amount of 

computer time and also needs good initial estimates. Because of the large number of 

parameters chapter six has mostly assumed that altering the self-coupling will have 

no qualitative effect; this is bome out in the studies of purely bosonic stars. It may be 

best to stick to the qualitative picture until a specific scalar field is envisaged. The 

most promising candidate would be an axion. If a good estimate of its mass, and 

perhaps even its self-coupling, could be obtained then the cataloguing of the possible 

equilibrium configurations would be much simpler.

The stability of the configurations is definitely worthy of future study, as the 

simplistic binding energy test provided in chapter six tells us nothing of the onset of 

dynamical instability. Generalising the methods already used in the study of bosonic 

stars will lead to complicated perturbation equations, but the intuition provided by 

the purely bosonic or purely fermionic cases should prove useful.

Finally, it is also possible to enhance the study by taking into account an explicit 

boson-fermion coupling. The rough estimate provided in chapter six shows that this 

is probably not important until we consider boson masses comparable to the fermion 

mass, so for example if we were considering a Higgs particle interactions could be 

very important and in this mass range our results are presumably not valid. If the 

axion has a reasonably substantial mass then interactions will also be important in 

that case. To deal with such a situation it will probably be necessary to abandon the 

use of the perfect fluid approximation and return to a fundamental quantum 

mechanical treatment of the fermions, as carried out by Ruffini and Bonazzola. This 

again may lead to a very difficult numerical problem.
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Appendix 1______On Numerical Integration

(D Numerical Integration : Why and How
This appendix outlines the techniques of numerical simulation which were used 

to provide results detailed in chapters three, four and five of this thesis. The 

numerical work there was to provide solutions of coupled non-linear ordinary 

differential equations given particular initial conditions; that is, we wish to solve an 

initial value problem. Numerical simulation is required because it is only in the very 

simplest of these cases that an analytic solution can be found, though sometimes 

other techniques such as phase plane analysis (see references given in chapter four, 

section (ii) ) can be used provided the system is plane autonomous. Solutions to 

non-linear equations are of course very different to the linear case in that the 

solutions cannot be scaled to satisfy the initial conditions given, so the solutions 

obtained can have a completely different form as the initial conditions are varied. It is 

therefore important to examine what happens for a wide range of initial conditions.

For numerical simulation, the system is first written as a first order system; in 

all our cases this is trivially done by defining first derivatives as new variables, 

though this is not possible in some pathological cases. If all the coefficients are 

sufficiently differentiable, as they always are in the cases that we consider, then 

general theorems guarantee that if we provide initial conditions for each of the 

variables then solutions do exist. There is however no guarantee that the solutions 

will exist throughout an interval of arbitrary size; in general there is the possibility 

that the solutions will go singular at some point. Here normally the computer 

simulation will terminate. It is important to distinguish actual physical singularities of 

this type which may arise, e.g. in general relativity, from artifacts of the numerical 

method. Such a situation arises in chapter three.

The actual simulations are done using library routines on an IBM 4361 

mainframe computer housed in the physics department. The main routine, which
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actually performs the integration, is provided by NAG (Numerical Algorithms 

Group) and is denoted by the name D02CBF. The algorithm which this routine uses 

is the variable-order, variable-step Adams method [81], which is a more accurate 

method than the standard Runge-Kutta Merson algorithm. It provides internal 

accuracy checks and works to a user-supplied accuracy level. Should the specified 

accuracy be unobtainable, the routine terminates with an appropriate error message. 

The routine can be intercepted to provide intermediate values of the quantities during 

the integration; this information is used to produce graphs of the solution by use of a 

library plotting routine (SIMPLEPLOT).

The rest of this appendix illustrates how a particular problem is set up for 

numerical integration via these routines. The problem chosen here is from chapter 4 - 

the simplest case of power law inflation induced by an exponential potential without 

viscosity. It is shown how the problem is set up for integration and then the 

appropriate program is given with details of its structure. This is the simplest such 

problem to appear in this thesis, but other cases such as in chapter 3 are simple 

rewritings of the method with extra variables and more complicated differential 

equations.

(ii~) Setting Up the Problem
We consider here how to set up a numerical integration of a system of equations 

taken from chapter 4; that given by equations (4.4) and (4.5) which describe the 

behaviour of the universe’s scale factor, a, and a scalar field, (j), when the scalar field 

has a potential of exponential form. The equations, as written in chapter 4, have the 

form

= ^ 2 + j V 0 exp(-X(j)) 

<j>+3 ( f  )  - A, v 0 exP ( -  A, <!> ) = °

(Al . l )

(A 1.2)
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For numerical simulation, these equations have to be written as a first order system. 

This is done by introducing a new variable equal to the derivative of (|). For 

convenience, we also change the scale factor variable to a  = ln(a). This gives

£ + T v o e*p(-*'4>) (A1.3)

♦ = § (A1.4)

^ + 3 a £ - A , V 0 exp ( -  X (j)) = 0 (A1.5)

Two things remain to bring this into the appropriate form. Firstly, the square root of 

equation (A1.3) must be taken, to give an equation for a  itself. Clearly there are two 

options, positive and negative, for the sign of the square root. We choose the 

positive one, as we are interested only in solutions with a  increasing. Since the right 

hand side of equation (A1.3) never vanishes, we do not have to worry about the 

derivative of a  changing sign; the universe remains expanding. Secondly, we must 

get rid of the derivative of a  in the second term in equation (A1.5). This is simply 

done by substituting in equation (A 1.3). Hence the final system, which is completely 

equivalent to the original equations, is

(A1.6)

<!> = £ (A 1.7)

^ ^  VQ exp ( - \ § )  - 3 ^  + y V 0 exp(-A.<|>)U *  1 (A1.8)

This gives the derivatives of a ,  (|) and in terms of a ,  § and £, alone, which is 

exactly the form required to carry out a numerical simulation.



(lii) The Program Itself
At the end of this appendix is a printout of the actual program, called PLINFL 

(for Power Law INFLation), which does the integration, complete with job control 

parameters and comments. The rest of this appendix is a description of the program, 

which follows the flow chart shown below.

NO

YES

PLOT GRAPH

END OF PROGRAM

INTEGRATION OVER ?

SET INITIAL CONDITIONS

SET UP GRAPH ROUTINE

GIVE VALUES TO 
PARAMETERS

SET UP VARIABLES 
AND COMMON BLOCKS

INTEGRATE FORWARD ONE TIMESTEP 
( USES 'FUNCTION' SUBROUTINE )

STORE VALUES OF VARIABLES 
AT GIVEN TIME 

( USES 'OUTPUT' SUBROUTINE )

Figure A 1.1 Flowchart for the program PLINFL
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For the most part, the program PLINFL is a setting up of the various variables 

required for the call to the NAG routine which actually carries out all the work. At 

the start all variable types are declared and a common block set up for transfer of 

variables to subroutines. All variables are set to be double precision to ensure high 

accuracy; the NAG routine called is also a double precision routine. Then the various 

parameters in the equations are set, here X and V0. The endpoints of the integration 

are specified; it is to be from time X, where the initial conditions are supplied, up to 

time XEND.

The values of the three variables to be integrated are stored in the array Y(N), 

with a , <j> and ^ written as Y(l), Y(2) and Y(3) respectively. Their initial values are 

set (here all zero), the fail registers and accuracy requirements for the NAG routine 

are set and the NAG routine D02CBF is called with all the relevant variables. The 

routine finds the values of the derivatives, as given by equations (A1.6) to (A1.8), 

from the user-supplied routine FUNCTION. The formulae for F (l), F(2) and F(3) 

specify the derivative for Y (l), Y(2) and Y(3) respectively. Every so often, the 

user-supplied subroutine OUTPUT intercepts the NAG routine and stores the values 

that a , (j) and ^ have attained. When the simulation has reached its endpoint as given 

by XEND, the NAG routine finishes and warns if any errors have resulted (drastic 

errors such as loss of accuracy will terminate the program in mid run). Finally, the 

intermediate values which have been stored by OUTPUT during the simulation are 

converted to single precision numbers and are sent to a library plotting routine 

(SIMPLEPLOT) to produce a graphical solution, which can be sent either to screen 

or one of a variety of printers. The graphs used as figures throughout this thesis are 

produced by the QMS LaserWriter.
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FILE: PLINFL FORTRAN A GLASGOW HEP CMS/SP V 4 . 1 9

//TH35PLIN JOB TH35,LIDOLE,CLASS-R,TIME-( 0 , 5 9 ) ,MSGCLASS=T 
/ /  EXEC FVCLG, LINES—10000,
/ /  REGION.G-1000K 
//C .SYSIN DD *
C

Program to  g e n e r a te  num erical s o l u t i o n s  to  th e  e q u a t i o n s  
r e s u l t i n g  from c o u p l in g  a s c a l a r  f i e l d  w ith  an e x p o n e n t i a l  
p o t e n t i a l  to  E i n s t e i n  g r a v i t y  u s in g  NAG r o u t i n e s .
The program ta k e s  s p e c i f i e d  i n i t i a l  c o n d i t i o n s  and u s e s  the  
d i f f e r e n t i a l  e q u a t i o n s  to  produce a num erica l s o l u t i o n .
The i n i t i a l  c o n d i t i o n s  sh ou ld  be s p e c i f i e d  w i t h i n  th e  program.

S et  th e  common b lo ck  fo r  v a r i a b l e s  used  in th e  s u b r o u t i n e s .

IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/PARAM/LAMBDA, V0. TMSTEP. ANS, CO

I n i t i a l i s e  v a r i a b l e s  needed fo r  th e  NAG r o u t i n e s .

DOUBLE PRECISION LAMBDA,V0,TMSTEP 
INTEGER N,IFAIL,IRELAB, CO, SEED. LOOP 
DOUBLE PRECISION X.XEND.TOL,Y(3),W(3,1 8 ) ,S 1 , S 2 , S 3  
EXTERNAL FCN,OUTPUT
DOUBLE PRECISION T ,F (3 ) ,X S O L ,A N S (0 :3 ,1500)
INTEGER NX,NY 
REAL AX( 1 5 0 0 ) ,AY(4500)
CHARACTER BANNER*73 
CHARACTER FLAG*57 
CO-0

Any f r e e  p aram eters  sh o u ld  be s e t  here  (remember to  d e f i n e  the  
v a r i a b l e  type  in each  subprogram i f  more a r e  a d d ed ) .

LAMBDA-DSQRT( 2 . D0)
V0-1.D0

The i n i t i a l  and f i n a l  t im e s  sh o u ld  be s e t  h e r e .T h e  i n i t i a l  time  
sh ou ld  be s e t  in th e  v a r i a b l e  X (—ta u )  , and th e  f i n a l  t im e in 
XEND.
The t i m e s t e p  v a r i a b l e  TMSTEP s h o u ld  a l s o  be s e t  f o r  th e  o u tp u t .

X—1 . D0 
XEND-1.D6
TMSTEP—(XEND-X)/10 0 0 . D0 
LOOP—INT( (XEND-X)/TMSTEP+1.0 0 )

S et  th e  i n i t i a l  c o n d i t i o n  v a r i a b l e s  here  
Y (1 ) —alp ha  ; Y (2 ) -p h i  ; Y ( 3 ) - x i

Y (1 )—0.D 0  
Y (2 )—0.D 0  
Y (3 )—0.D 0  
S1—Y (1 )
S2«Y(2)
S3—Y(3)

C all  to  th e  NAG r o u t in e  D02CBE
The t o l e r a n c e s  and f a i l  r e g i s t e r s  must be s e t  h e r e .

TOL-.0 0 0 0 0 0 0 1D0 
IFAIL-0 
IRELAB-1
CALL D02CBF (X,XEND,3 . Y,TOL,IRELAB,FCN,OUTPUT,W,IFAIL)

The ou tp u t  r o u t in e  t o  c a l l  th e  S im p le p l o t  program s h o u ld  be 
in s e r t e d  here  ; i t  p l o t s  th e  v a l u e s  o f  th e  ANS arra y

S e t  up th e  s i m p le p l o t  a x e s  u s in g  c a l l  t o  JBAXES

DO 4100 J - 1 . LOOP
AX(J)-SNG L(AN S(0,J))

4100 CONTINUE 
DO 4300 1-1 ,3

DO 4200  J - 1 , LOOP
AY(( 1 - 1 ) *LOOP+J)—SNGL(ANS(I, J ) )

PLI00010
PLI00020
PLI00030
PLI00040
PLI00050
PLI00060
PLI00070
PLI00080
PLI00090
PLI00100
PLI00110
PLI00120
PLI00130
PLI00140
PLI00150
PLI00160
PLI00170
PLI00180
PLI00190
PLI00200
PLI00210
PLI00220
PLI00230
PLI00240
PLI00250
PLI00260
PLI00270
PLI00280
PLI00290
PLI00300
PLI00310
PLI00320
PLI00330
PLI00340
PLI00350
PLI00360
PLI00370
PLI00380
PLI00390
PLI00400
PLI00410
PLI00420
PLI00430
PLI00440
PLI00450
PLI00460
PLI00470
PLI00480
PLI00490
PLI00500
PLI00510
PLI00520
PLI00530
PLI00540
PLI00550
PLI00560
PLI00570
PLI00580
PLI00590
PLI00600
P LI00610
PLI00620
PLI00630
PLI00640
PLI00650
PLI00660
PLI00670
PLI00680
PLI00690
PLI00700
PLI00710
PLI00720
PLI00730
PLI00740
PLI00750
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FILE: PLINFL FORTRAN A GLASGOW HEP CMS/SP V 4 . 1 9

4200 CONTINUE
4300 CONTINUE 

NX— LOOP

- Make t h i s  v a lu e  and th e  one below to  3 to  a l s o  p l o t  xi (—phi d o t )

NY-2*LOOP
CALL JBAXES(AX,NX,20., 'TIME*. 4 , AY,NY,2 0 . ,  ' ALPHA(T), P H I ( T ) ’ ,1 5 )  

C all j o i n  p o in t  r o u t i n e .

T his  i s  th e  o t h e r  v a lu e  to  make th ree  ( s e e  a b o v e ) .

DO 4500 1 - 1 , 2  
CALL BREAK 
DO 4400 J - 1 , LOOP

CALL JOIN P T (A X (J ) , AY(( I—1)*LOOP+J))
4400 CONTINUE

CALL NUMB PT(AX(LOOP),AY(I*LOOP), 3 , 1 )
4500 CONTINUE

BANNER ( 1 : 2 3 )  -  'PLINFL 1 JUNE 1988 
WRITE (BANNER(24:33),5 3 0 0 )  S1 
BANNER ( 3 4 : 3 5 )  -  * ’
WRITE (BANNER(36:45).5 3 0 0 )  S2 
BANNER ( 4 6 : 4 7 )  -  ’ '
WRITE (BANNER( 4 8 : 5 7 ) , 5 3 0 0 )  S3 
BANNER ( 5 8 : 7 3 )  -  ’

5100 FORMAT ( 15)
5200 FORMAT ( D 9 .3 )
5300 FORMAT ( D 1 0 .4 )

FLAG(1:9)— ’ Lam* *2 -  ’
WRITE(FLAG(9:1 8 ) , 5 3 0 0 )  LAMBDA**2 
FLAG(19:31) - '  V SUB 0 -  ’
WRITE(FLAG(32:41) , 5 3 0 0 )  V0 
FLA G(42:57)«’
CALL TITLE ( 1 . 2 , BANNER,7 3 )
CALL TITLE(2,2,FLAG ,57)
CALL END PLTr\

5000 STOP 
END

FUNCTION SUBROUTINE 
T his  s u b r o u t in e  s p e c i f i e s  th e  f u n c t io n s  to  be used  when th e  
f i r s t  o rd er  sy s te m  i s  n u m e r ic a l ly  i n t e g r a t e d .
The a rra y  F ( I )  sh o u ld  c o n t a i n  the  I th d e r i v a t i v e  f u n c t i o n  .

SUBROUTINE FCN (T .Y .F )
IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/PARAM/LAMBDA, V 0, TMSTEP, ANS. CO
DOUBLE PRECISION T . F ( 3 ) , Y ( 3 ) . LAMBDA,VO,TMSTEP,ANS(0: 3 .1 5 0 0 )  
INTEGER CO
F ( 1 )-DSQRT( ( Y( 3 ) * * 2 ) / 6 . D0+( 1 . D 0 /3 . D0) • V0*EXP(-LAMBDA*Y( 2 ) ) )  
F ( 2 ) - Y (3 )
F( 3 ) —LAMBDA*V0*EXP(—LAMBDA*Y(2) )—3*Y (3) * 

k  D SQ RT((Y(3)**2)/6.D0+(1.D0/3.D0)*V0*EXP(-LAM BDA*Y(2)) )
RETURN 
END

OUTPUT SUBROUTINE 
T h is  s u b r o u t in e  c o l l e c t s  th e  o u tp u t  v a l u e s  o f  th e  v a r i a b l e s  at  
t ime T—XSOL . On e x i t  , XSOL sh o u ld  be s e t  a t  th e  v a lu e  f o r  the  
next r e q u ir e d  o u tp u t  v a l u e s .

SUBROUTINE OUTPUT (XSOL.Y)
IMPLICIT DOUBLE PRECISION (A-H.O-Z)
COMMON/PARAM/LAMBDA, V 0 . TMSTEP. ANS, CO
DOUBLE PRECISION TMSTEP,ANS(0:3,1500) ,Y (3 )  , LAMBDA,V0,XSOL
INTEGER CO
CO-CO+1
ANS( 0 , CO)—XSOL 
DO 1000 1 - 1 , 3  

ANS(I.CO)—Y ( I )
1000 CONTINUE

XSOL—XSOL+TMSTEP

PLI00760  
PLI00770  
PLI00780  
PLI00790  

.PLI00800  
PLI00810  
PLI00820  
PLI00830  
PLI00840  
PLI00850  
PLI00860 
PLI00870  
PLI00880  
PLI00890  
PLI00900  
PLI00910  
PLI00920  
PLI00930  
PLI00940  
PLI00950  
PLI00960  
PLI00970  
PLI00980  
PLI00990  
PLI01000  
PLI01010  
PLI01020  
PLI01030  
PLI01040  
PLI01050  
PLI01060  
PLI01070  
PLI01080  
PLI01090  
PLI01100 
PLI01110 
PLI01120 
PLI01130 
PLI01140  
PLI01150  
PLI01160  
PLI01170 
PLI01180 
PLI01190 
PLI01200  
PLI01210  
PLI01220  
PLI01230  
PLI01240  
PLI01250  
PLI01260  
PLI01270  
PLI01280  
PLI01290  
PLI01300  
PLI01310  
PLI01320  
PLI01330  
PLI01340  
PLI01350  
PLI01360  
PLI01370  
PLI01380  
PLI01390  
PLI01400  
PLI01410 
PLI01420  
PLI01430  
PLI01440  
PLI01450  
PLI01460  
PLI01470  
PLI01480  
PLI01490  
PLI01500
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FILE: PLINFL FORTRAN A GLASGOW HEP CMS/SP V 4 .1 9

RETURN PLI01510
END PLI01520

/ .  PLI01530
//L.SYSLIB DD DSN-SYS1.NAGLIB.DISP-SHR PLI01540
//L .SYSIN DD * PLI01550

INCLUDE SYSLIB(SIMPTNX) PLI01560
//G.FT06F001 DD SYSOUT-T PLI01570
/ / G .  FT08F001 DD SYSOUT-P,DCB-(RECFM-FBA. LRECL-133.BLKSIZE-1330) PLI01580
//G.SYSIN DD * PLI01590
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