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SUMMARY

The work presented in this thesis describes a numerical (Finite
Element Method) analysis of sampling disturbance in clay soils during the
sampling operation.
Of all sampling methods, block sampling appears to disturb soils least but this
method is extremely tedious and is restricted to shallow depths. For this reason
thin walled sampling is the wusual choice for most practical purposes although
soils may be grossly distorted both during the sampling process itself and the
subsequent laboratory testing. The major objective of this study is to improve
existing finite element analyses of sampling disturbance of clays during sampling.
An investigation into the parameters having the greatest effects on sampling
disturbance has been carried out. These parameters include the effect of sampler
geometry, roughness of the sampling tube and soil stress history. Atotal stress
analysis using the Von Mises criterion was carried out as well as an effective
stress analysis using a critical state elastoplastic model.
From the analysis of the results it is shown that the rough thick walled tubes
cause the greatest downdrag on samples during penetration and in general
yielding of the soil initiates close to the sampler tip and propagates along both
sides of the sampling tube and into the soil below the sampler. Eventually, the
yield zone reaches the central part of the sample ahead of the sampling tube.
Maximum pore water pressures deviop close to the sampler tip which suggests
that during subsequent delays before testing water would migrate from the sides
to the central portion of the sample. The results of this investigation also show
that highly overconsolidated clays are more susceptible to disturbance than lightly
overconsolidated clays. Further work in this area is needed and it is suggested,
among other recommendations, that instrumented test on carefully controlled

sampling operations should be carried out in the future.
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NOTATION

Ma jor symbols used in the text are listed beiow.

defined as they first appear.

Cu

Cuge

De

DeP

H

Strain matrix

Undrained shear strength of the soil
Undrained shear strength of the slip elements
Sampler diameter

Elastic constitutive matrix

Elato-plastic constitutive matrix

Young's modulus

Void ratio

Yield function

Hardening parameter

(11’I2,l3) and (J1,Jp,J3) Stress invariants

J
K
Ko
Knc
K

K€

Jacobian matrix

Global stilfness matrix

Coefficient of earth pressure at rest

Coefficient of earth pressure at rest for normally

consolidated soil

Bulk modulus

Element stiffness matrix
Length of the sampling tube
Frictional constant

Shape function

Point load

Mean effective stress

others are
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PO Past maximum mean effective stress

Q Plastic potential

q Deviator stress

r Radius of the sampling tube

t Thickness of the sampling tube

ug Initial pore water pressure

uy Displacement vector

z Depth

o Adhesion factor for the slip elements
o) Effective stress

ot Total stress

0ij Stress tensor

01,092,013 Principal stresses

€, €8, ¢P Total, Elastic and Plastic strain vectors
€y ,» €q Volume and deviatoric strains

€ j Strain tensor

v Poisson's ratio

@ Angle of friction

Tf Shear stress on the failure plane

A Plasticity multiplier

A Slope of the normal consolidation line

K Slope of the swelling line



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

HVORSLEV (27) wrote in 1949 in his monumental thesis a set of
specifications for fixed— piston samplers with thin— walled tubes to take
"undisturbed" samples in soft clays. This early work is the most comprehensive
treatment of the subject of sampling disturbance and it has ever since formed the
basis for the design of samplers all over the world. His systematic analysis of the
sampling process included a critical examination of factors influencing the quality
of clay samples, such as transport, storage conditions, extrusion, trimming and
mounting in laboratory apparatus.

Of all sampling methods, block sampling appears to disturb soils least but this
method is extremely tedious and is restricted to shallow depths. For this reason
thin— walled sampling is the usual choice for most practical purposes although
soils may be grossly distorted both during the sampling process itself and the
subsequent laboratory sample preparation. In essence, thin walled sampling involves
pushing a thin tube into the soil and then freeing the sample from the parent
soil, Fig. 1.1

The mechanical disturbance of clays resulting from the sampling process is the
most obvious source of destruction of their original structure. This affects the soil
properties , particularly shear strength and compressibility. These soil disturbances

lead to an underestimation of soil strength and stiffness which is economically



undesirable.

Research carried out since Hvorslev's day has quantified some of the effects of
sampling disturbance. These studies have included both laboratory investigations as
well as numerical studies of the load— deflection and strength characteristics of
soils and these are discussed in detail in the following section.

In general, causes of soil disturbances are, stress changes prior and during
sampling, pore water pressure equalisation and dissipation , protracted periods of
storage, and extrusion of soil from the sampling tube. Examination of all these
factors is outside the scope of this thesis. The more limited objectives of this
study is to carry out a numerical (Finite Element Method) analysis of sampling
disturbance during the sampling process itself. In particular, to investigate the
stress and pore water pressure changes which occur in the sample. In this way,
the distortions suffered by samples and the degree of yielding undergone during

field sampling can be assessed.

1.2 LITERATURE REVIEW

In this section, the review of research studies pertaining to sampling
disturbances is confined to thin— walled tube sampling of cohesive soils.

Experimental as well as theoretical studies are presented.

1.2.1 Experimental Work

The literature review is most conveniently subdivided into studies relating to

disturbances which occur (i) before sampling, (ii) during sampling ,and (iii) after

sampling.



(i) Disturbance before sampling

SKEMPTON and SOWA (1964)

The effect of stress release caused by sampling on the strength of soil was
the subject of an experimental investigation by Skempton and Sowa (52).
Experiments were carried out to determine the undrained strength of a saturated
clay under conditions representing (i) the clay in the ground and (ii) samples
unaffected by any mechanical disturbances. Skempton and Sowa (52) consolidated
Weald clay from the slurry state under Kg conditions in a conventional triaxial
chamber. To simulate the undisturbed state of the sample ( termed an ideal
sample by Skempton and Sowa (52) ) one specimen was tested under undrained
conditions immediately after consolidation. Stress relief was simulated by reducing
the vertical total stress of another specimen under undrained conditions until the
vertical total stress became equal to the cell pressure (lateral total stress ). This
second sample was termed a perfect sample. The difference between the
undrained shear strengths of these two specimens was 2%. The clay used in the
experiment is only moderately sensitive to micro— structural effects. However a
clay more sensitive to such effects might show a rather large drop in strength

and further research is required on this point.

LADD and LAMBE (1963)

Ladd and Lambe (36) conducted experiments similar to those of Skempton
and Sowa (32) on Kawasaki clay and Boston Blue clay but also studied tube
samples. Their results showed that the undrained shear strengths of ideal samples
were about 12% higher than perfect samples.

Other investigators also carried out similar tests but using different soils to those

reported by Skempton and Sowa(52) ( Seed and Noorany(91), Noorany and



Smith(40), Okamura(47), Atkinson and Kubbal3) ). These reported that the
differences between the undrained shear strengths of ideal samples and perfect
samples ranged from 0 to 6%.

For practical purposes , the observed differences in undrained shear strengths due
to in—situ stress release do not appear to be significant. But Kirkpatrick and
Rennie (35), Alonso et alll) and Atkinson and Kubba (5) showed that the
undrained elastic moduli of perfect samples could be as much as 50% lower than
ideal samples.

In summary, it appears that normally consolidated clays do not suffer any
significant decrease of undrained shear strength due to stress release but the
undrained elastic modulus decreases by a substantial amount. For overconsolidated

soils, stress release does not appear to have any effect on the undrained shear

strength.

(ii) Disturbance during sampling

Soil remolding, migration of pore water, sampler geometry, friction between
soil and sampling tube, soil type, rate of penetration of sampler and the method
of advancing the sampler have all ben cited as pertinent factors in the mechanics

of sampling disturbance.

HVORSLEV (1949)

Hvorslev (27) stated that the principal causes of sampling disturbance during
sampling are:
1— Displacement of the soil by the sampler
2— Inside friction between the sample and the sampler or its liner
3— Pressure on top of the sampler

While a sampler is being forced into the soil, the pressure on top of the sample



and the inside wall friction tend to compress and distort the soil layers and to
increase the pressure on the area directly below the sampler. As the sampler
advances, a part of the soil underneath is displaced by the walls of the sampler
and pushed aside. During the first part of the drive , while the inside wall
friction and the top pressure still are small, some of the displaced soil ( calied
excess soil by Hvorslev(27)) may be forced into the sampler. It increases the
thickness (and causes convex distortions) of the soil layers in the upper part of
the sample. When the entrance of excess soil is relatively small, the distortions
have a fairly uniform curvature , Fig. 1.2.a, but when the entrance of excess soil
is so large that the thickness of the soil layers is increased by more than 30%,
the distortions assume a characteristic shape resembling that of flattened bulb,
Fig. 1.2.b . Entrance of excess soil increases with increasing amounts of displaced
soil or increasing wall thickness of the sampler, and also with increasing pressure
on top of the sampler. Inside wall friction also tends to increase the convex
curvature of the soil layers. The distortion is generally small in the central part
but increases sharply (and may be confined entirely to a zone of 'drag') close to
the sampler wall, Fig. 1.3.a . However, very large convex distortions, nearly
parabolic in shape, are in some cases produced by inside wall friction, Figure.
1.3.b . Inside wall friction also governs the pressure on and the disturbance of
the soil below the sampler, and it is the most important single source of
disturbance of the soil during the sampling operations.

Hvorslev(27) recognized that the geometry of the sampler is an important factor
in soil sampling. Indeed, during the sampling operation, the amount of soil
displaced which causes soil distortions depends greatly on the thickness of the
tube wall. Consequently, a thin— walled tube is gencrally used to minimize soil
disturbance. The shape of the cutting edge is also an important factor in soil
sampling. It should be sharp and never rounded or blunt, and the angle of taper

should be as small as practicable.



KALLSTENIUS (1958)

Kallstenius (29) investigated the effect of friction between the soil and the
walls of sample tubes in soft clays and in dense sand. Large variations of wall
frictional resistance were observed for soft clays and if sample penetraton was
interrupted for a few seconds, these frictional forces increased. Wall friction
developed in dense sand was about 40% of the coefficient of friction of the sand.
The conclusions drawn by Kallstenius in his research on mechanical disturbances
in clay samples taken with piston samplers are that sample quality is mainly
influenced by the sampler in the following ways:

a— Disturbance of soil ahead of the sampler caused by pushing the sampler down
to the sampling depth.

b— Disturbance of soil outside the sampler during pushing to accomodate the
displaced volume of the sampler wall.

¢— Disturbance of soil inside and outside the sampler caused by friction between

soil and sampler wall.

LANG (1971)

Lang (41) carried out a series of tests on a stiff clay using a thin— walled,
Open Drive Samper. The forces applied to the sampler, and displacements of the
sampler and the soil sample were measured . Undrained triaxial compression tests
were carried out on specimens cut from the tube samples. The two methods used
for estimating what proportions of the total applied force was transmitted from
the inside of the sample tube to the sample were based on measurements made
on the widthdrawal force and the intrusion force. The total force required to
push the sampler into the soil was measured directly while the part of this total
force which was transmitted from the inside of the tube to the sample was

estimated by two methods. The first method probably over— estimates the inside



force while the second probably under— estimates it. Using these two methods ,
the ratio of inside force to total force gave mean values of 0.48 to 0.28
respectively, for the peak values of these forces .

For both advance and withdrawal of the sampler , the average peak surface shear
stress on the area of the sampler in contact with the soil was calculated. Both
gave very similar results; the average wall friction in stiff clays was 64% of the
undrained shear strength of the soil. It was also noted that when two test
specimens were cut from the same tube sample, the strength of the lower

specimen was about 40% higher than that of the upper specimen.

SCHJETNE (1971)

Schjetne (50) carried out an experimental investigation on the pore pressure
changes in a soft clay during sampling. He inserted a small piezometer connected
to a vibrating— wire pore water pressure transducer into the piston of a
Norwegian Geotechnical Institute fixed piston sampler. The sampler used was 95
mm in diameter and 100 mm long. The area ratio and inside clearance as
defined in Fig. 1.4 were approximately 14% and 1.4% respectively. Two tests
were carried out during sampling; one on a plastic clay and one on a quick clay.
Schjetne measured pore pressures during each stage of the test. His results
revealed that the excess pore water pressures developed by pushing the sampler
into the clay were between 150 and 200 percent of the initial pore water pressure

When the sampler was removed, negative pore water pressures were developed
which were about 20% of the initial effective overburden pressure. After a few
hours, the negative pore water pressures dropped to zero.

From these results , it is apparent that the centre of the sample swelled and that
the pore water migrated from the distorted outer zone to the relatively

undisturbed central zone.



EDEN (1971)

Eden (19) compared the undrained shear strengths and preconsolidation
pressures of tube samples recovered by four different types of fixed piston
samplers from a highly sensitive Canadian clay (Lada clay) with those from block
samples. He found that the undrained shear strengths of tube samples were about

one half those of block samples.

LA ROCHELLE (1981)

La Rochelle et al (43) studied the behaviour of a sensitive clay during the
sampling operation. Their laboratory study on block samples showed that the
lateral strain produced by the change of volume resulting from the intrusion of a
thin— wail tube sampler was six times as large as the strain required to
destructure the clay. It was thus evident that these displacements should be
minimized and that reducing the area ratio by using thinner tubes was one way
to accomplish this aim. However there is a practical lower limit to the thickness
of tubes which may be used, but other possibilities exist. The area ratio, as
illustrated in Fig. 1.4, is increased by the existence of the inside clearance of the
tube. This has the disadvantage of allowing and even forcing a lateral expansion
of the sample within the tube, since that space is under suction due to the
tightness of the piston inside the tube. As a result, a large part of the change of
the volume will take place towards the inner side of the tube, so that the sample
will be squeezed in around the cutting edge as illustraed in Fig. 1.4 . As this
effect was thought to be one of the main causes of the disturbance during
sampling, it was decided to eliminate the inside clearance. No significant friction
was expected to develop between the tube and the sensitive clay which may be
considered to be self lubricating. It was also reasoned that if the angle of attack

of the cutting edge was small as suggested by Kallstenius (29,30)  the change of



volume would occur towards the outside of the tube and the influence of the
thickness of the tube would be minimized. However, the elimination of inside
clearance brings one difficulty; the fact that commercially available tubes are not
perfectly cylindrical.

La Rochelle (29) carried out a series of tests with a 54 mm piston tube sampler
with internal clearance and exactly similar samplers using tubes of 54, 75 and 100
mm diameter without internal clearances. These included mainly unconfined
compression and unconsolidated undrained compression tests. From the data
obtained in this study, the following conclusions were drawn. The specimens
located in the middle part of the tubes were of better quality than those at the
ends. The upper parts of the tubes were systematically disturbed either by the
action of the piston being pushed into the ground or by the suction applied
during the extrusion of the tube. Also, the lower parts were occasionally
disturbed, probably by the suction produced during the extraction of the tube.
Fig. 1.5 gives the results of unconfined compression tests made on eight
specimens from 75 mm tubes; the specimens are numbered 1 to 8 from top to
bottom. In order to take into account the increase of shear strength with depth
along the length of the tube, the ratio of the wundrained shear strength Cf
obtained by unconfined compression tests to the field vane strength C,, was used.
It is seen that the upper three specimens (number one to three) and possibly the
lower specimen (number eight), Fig. 1.5, are of lesser quality than the specimens
numbered four to seven. Tl‘1e lesser quality of the samples at the ends of the
tube may be associated with the effects of suction during and after sampling. It
can be avoided only by eliminating this suction, in other words eliminating the
internal clearance and by avoiding the ‘'piston effect’ during sampler withdrawal.
The 54 mm tubes without internal clearance ratio seem to give better results than
the 54 mm tube with inside clearances; the improvement in strength being 20%
or more and the moduli are higher by S0 to 100%. In most cases the 75 mm

and 100 mm tubes gave better results than the 54 mm tubes and sometimes there



was a marked improvement: of over 100% in the strengths and 150% in the
tangent moduli.

From this study, La Rochelle et al (29) concluded that the tubes should be
shaped according to the principles illustrated in Fig. 1.4 and that larger sizes are
preferable, 75 mm diameter beeing the acceptable minimum for routine
investigations. La Rochelle et al (29) added that in order to ensure that the
middle third of the sample is of good quality when the diameter is increased ,
the length of the sampling tube should also be increased, otherwise the upper and
the lower disturbed zones might cover the whole length of the sample.

Finally, it is worth nothing that La Rochelle studied only sensitive clays where
the friction between sampler and soil might be neglected. However, it is well
established ( Hvorslev (29) ) that the inside wall friction is the most important

single source of disturbance during the sampling process in less sensitive soils.

(iii) Disturbance after sampling

Disturbance after sampling relates to sample sealing, transportation, storage

and extrusion.

KALLSTENIUS (1971)

Kallstenius (31) pointed out that damage from deformation of samples,
shocks, heavy vibration and changes in water content after sampling are major
sources of disturbance. These effects may be time dependent. Kallstenius carried
out tests on a normal— sensitive clay and a quick clay. Samples were tested by
the fall—cone test at the site immediately after sampling and in the laboratory 24

hours later. The transport was very carefully organised to prevent strong vibratons
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or shocks. Laboratory testing yielded much lower strength values and, therefore,
the time effect was suspected to be the main reason for the strength reduction.
Such a time delay can be explained by water migration from the more disturbed
parts of the samples to the less disturbed parts. The influence was smaller where
the clay had dried slightly near the soil surface. The effects of shock loads were
investigated by dropping samples contained in plastic tubes from a height of 1 m
onto an asphalt floor. The peak acceleration of the samples was estimated to be
500 g . The reduction of the undrained shear strength which was measured by
the fall—cone test was found to increase with liquidity index, L1, of the soil. The
maximum reduction for the normal sensitive clays was 30%. Some samples of
quick clays showed no such decrease but it was assumed that they had already
been damaged during transport.

Samples of soft clay were also vibrated for about 10 minutes to simulate the
disturbance due to transport by train for about 500 Km. The frequency of
vibration was 50 Hz and the amplitude 0.025 mm — 0.050 mm. Both an increase

( max 26% ) and a reduction ( max 22% ) of the shear strength were observed.

SONE et al (1971)

Soil samples are subject to considerable disturbance when they are extruded
from sampling tubes. Sone et al (54) studied this aspect of sample disturbance on
alluvial samples extruded from thin— walled brass tubes. Wire strain gauges were
used to measure the axial and circumferential strain. Sone et al (34) drew the
following conclusions:

1— The extrusion pressures on these soil samples were several times larger than

their unconfined compressive strengths, which resulted in average compressive

11



strains of about 1%.

2— The largest strains took place in the lower parts of the sample tubes where
the extruding pressures were applied; the unconfined compressive strengths of the
lower samples were consequently, 10 to 20% smaller than those of the upper
samples.

3— The maximum strains measured during extrusion were approximately equal to

the failure strain in unconfined compression.

1.2.2 Numerical Studies

ALONSO et al (1981)

Alonso et al (1) described a numerical analysis of sampling disturbance by
means of an axisymmetric finite element algorithm. They used Zienckiewicz's (62)
viscoplastic ‘'flow' approach to solve a variety of extrusion, rolling and other
forming processes. In Alonso's work, the soil was modelled as a Drucker— Prager
solid; that is, a uni— phase material. Sample tube advancement was simulated by
displacing three surface nodes progressively downwards into the soil which was
modelled by means of fifty (50) nine— noded finite elements , Fig 1.6 . The
simulation of tube advancement (which, realistically must incorporate slip at the
soil interface ) and the discretization employed are too crude to permit
quantitative interpretation of the results of this study. Although Alonso et al (1)
suggest that the contours of mean pressure , Fig. 1.7 , derived from their
analysis may be interpreted as contours of equal excess pore water pressure , this
contention is difficult to justify in real soils subjected to gross distortions.
Moreover, the dissipation of pore water pressure during sampling and during the
delay before laboratory testing is carried out cannot be predicted by this algorithm

which does not differentiate between the solid and fluid phases. It should be

12



noted, however, that the authors of this study view their algorithm as a first step

to a more rigorous analysis of the problem.

KARIM (1984)

Karim (32) analysed the sampling operation by means of the finite element
method using the finite element mesh shown in Fig. 1.8 . He idealised the soil
as a Von Mises solid, and, also as a two— phase critical state material. Three
series of numerical tests were carried out using both large and small deformation
algorithms. In the first and second series, the sampler was assumed to be
perfectly smooth. In the third series, friction was specified on the inner surface
of the sampler equal to 0.42 Cu (Cu: undrained shear strength of the soil) and
0.94 Cu in order to simulate different tube roughnesses. Numerical tests were
carried out using samplers of various thicknesses.

The main results for smooth samplers, are that the samples are dragged down to
a certain extent with the sampler, Fig. 1.9, while the sample top surface remains
very nearly horizontal. Close to the tip, the displacements are slightly larger along
the wall than in the centre. In the case of rough samplers, Fig. 1.10, large
downward movements start to take place from the early stages of penetration.
Zones of failure within the sample occur initially close to the edge of the
sampler and propagate downwards. The most extensive soil failure occurs for the
thickest roughest tubes, Fig. 1.11 and 1.12. Maximum pore water pressures
develop close to the sampler tip and then water tends to migrate from to the
sides to the central portion of the sampler, Fig. 1.13 and 1.14 . Karim confirmed
Terzaghi's judgement that an area of ratio of less than 13% is necessary if
disturbance is to be kept within tolerable values. He recommended that slip
elements should be used for modelling frictional boundary conditions accurately at
the soil/sampler interface. He also advocated further parametric studies into the

effects of soil properties and tube geometry.



BALIGH (1984)

Baligh's strain path method(6) provides an integrated and systematic
framework for elucidating and predicting pile foundation behaviour, interpreting in
situ stresses , assessing sampling disturbance effects and, in general, approaching
‘deep geotechnical problems’.

Observations of soil deformation caused by the undrained penetration of rigid
objects in saturated clays led Baligh to hypothesize that, due to the severe
kinematic constraints that exist in ‘'deep' penetration problems, soil deformation
and strains are, by and large, independent of the shearing resistance of the soil.
This means that these problems are essentially strain— controlled and implies that
even if relatively simple soil properties (e.g isotropy) are utilized to estimate
deformation and strains caused by penetration, the errors introduced are likely to
be reasonably small.

The strain path method is a theoretical analysis of the flow of incompressible soil
based on the construction of streamlines from a combination of appropriate
sources and uniform flow. The procedure for the analysis of undrained clays is as
follows.

A steady state flow pattern which is compatible with the boundary conditions is
first chosen. For wundrained (incompressible) flow this may be conveniently
expressed in terms of a stream function, from which the velocities are determined
by differentiation. The ‘simple pile' shape shown in Fig. 1.15 has been used by

Baligh for pile analysis and is derived from a single source located in a uniform

flow . The stream function is ;

Vv VO I‘Z

v - - (1.1)
hr(r2 4 22y1/2 2
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vg : uniform vertical velocity.

r : radial coordinate in cylindrical system.
z : vertical coordinate in cylindrical system.
V : rate of volume emitted by point source.

where the radial and the vertical velocities are defined as :

U = (1.2)

V= - (1.3)

The strain rates can be determined from the velocities at every point and thus
the strain history of any material point can be determined. Fig. 1.16 shows the
strain histories of three material elements as the simple pile is driven past them.
The diagram shows the vertical strain plotted against the hoop strain and, for
comparison, the hatched area shows the range of strains encountred in triaxial
compression and extension tests and the pressumeter test. Clearly the soil adjacent
to a pile (or penetrometer) is subjected to very large strains.

Given stress boundary conditions in the wupstream direction it is possible to
integrate a stress— strain law along each streamline to give the stresses throughout
the soil. Finally, it is worth noting that the strain path method considers only
smoothly curved boundaries. Consequently, the effects of a cutting shoe on
sampling disturbance for example cannot be studied properly. An analysis of
sampling disturbance by means of the strain path method has been given by
Baligh (6,7), Fig 1.17 shows the vertical strain of an element located at the
centerline of the tube at various positions. It can be seen that (a) the soil is

subjected to considerable distortions and (b) the peak strain varies between 1%
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for the thin samplers and 4% for the thick samplers. These strains would result
in failure. Thus Baligh pointed out that the gross soil distortions due to sampler
penetration indicate the necessity of reevaluating standard sampling and laboratory
testing procedures utilized at present to estimate the in situ behaviour of soils.
Improvements in current tube sampling and laboratory testing practices can be
achieved by systematic investigations of the following factors; sampler geometry,

inside wall friction, water content and volume changes during and after sampling.

1.3 CONCLUSION

On_the Experimental Work

Clearly, the process of sampling results in significant irreversible changes in
soil properties. Of all the various ways in which a soil sample is disturbed before
testing, two links in the chain of disturbance — tubing and extrusion— appear to
be the most significant. Indeed, Hvorslev (27) stated that the inside wall friction
is the most important single source of disturbance of soil during sampling
operation. Nevertheless, tubing and extrusion have received scant attention
compared with investigations on the changes in soil strength due to stress release
despite the fact that losses in undrained strength due to stress release amount to
only about 10% or less. Part of the reason for this disparity of effort seems to

be due to the difficulties of monitoring and controlling the requisite tests.

On_Numerical Studies

16



a) Finite Element Method

So far very few numerical studies on the subject have been reported in the
literature. Alonso et al (1) described a numerical analysis of sampling disturbance
by means of a finite element algorithm. In Alonso's work, the soil was modelled
very simply as Drucker— Prager solid; that is , a uniphase material. This
algorithm is not adequate for soils since it does not differentiate between the solid
and fluid phases. However Alonso et al (1) view their algorithm as as a first step
to a more rigorous analysis of the problem.

Karim (32) analysed the same problem using a more sophisticated model in which
the soil was idealised as a critical state elastoplastic material. He believed that
further advances were necessary , i.e including slip elements at the soil/sampler
interface and that parametric studies on the effects of soil properties would be

useful.

b) Strain Path Method

A recently developed method which is attracting much attention is the Strain
Path Method pioneered by Baligh (1984). The Strain Path Method is particularly
applicable to problems of deeply buried structures where the pattern of
deformations can be described by steady state flow. It is a theoretical analysis of
the flow of incompressible soil based on the construction of streamlines from a
combination of appropriate sources and uniform flow. Baligh (6,7) used this
method to assess sampling disturbance effects. One of his important conclusions is
that during the sampling process, soils fail before entering the sampler.
Consequently, Baligh concluded that it is necessary to reevaluate standard sampling
and laboratory testing procedures used at present. He added that further

investigation is needed into several aspects of the problem.
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1.4 OBJECTIVES

The major objective of this thesis is to improve existing finite element
analyses of sampling disturbance in order to study the mechanical disturbance of
clays during sampling. Proper constitutive laws for soil are needed for this
purpose and, consequently, appropriate constitutive models for clays are examined
and their behaviour under various loading conditions investigated. The problem of
sampler wall friction is overcome by using the so called slip elements as discussed
in chapter 3. The results of a parametric study which includes the following
factors, diameter to thickness ratio of the sampler, geometry of the sampler tip,
wall—soil adhesion as well as soil properties and history are given in chapter 4.
This study aims to investigate the stress and pore water pressure changes which
occur during sampling as well as the progressive mechanism of failure and
displacement fields occuring in the soil mass. In this way, some quantitative
measures of the effects of sampling disturbance can be obtained which may be

relevant to field practice.
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Figure 1.2 Distortions by entrance of excess soil. (27)
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CHAPTER 2

SOIL MODELS

2.1 INTRODUCTION:

A materia) model (constitutive law) is a mathematical model that
describes the stress—strain behaviour of a material. Realistic constitutive
(stress—strain) laws are essential if reliable results are to be obtained using
numerical methods of analysis. In recent years considerable research effort has
been expended on the theoretical formulation of constitutive laws and the
measurement of material parameters. The former involves use of continuum
mechanics whereas the latter hinges on accurate measurement of the parameters
using sophisticated equipment.

The Von Mises model is often adequate for total stress- analysis of soils in
undrained conditions. However, for effective stress analysis, a more complex
model is necessary. In this thesis, use is made of the critical state model which
combines the Mohr— Coulomb criterion, dilatancy and soil stress history in a
coherent model of plasticity. The model yields pore water pressure changes
directly and can be used to predict changes in post—sampling strength and

stiffness.

2.2 FLOW THEORY OF PLASTICITY

2.2.1 Introduction

In general, materials suffer elastic as well as plastic deformations. The
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simplest (linear) constitutive law is the isotropic generalized Hooke's law
characterized by an unique relationship between stresses and strains. This
relationship is completely defined by two physical constants; the Poisson's ratio »

and the modulus of elasticity, E. The generalized form of Hooke's law is :

Oy 1-» v I 0 0 0 €y

Oy » 1-» v 0 0 0 €y

0 v v 1-» 0 0 0 €
- A (2.1)

TXy 0 0 0 0.5-» O 0 Yxy

Tyz 0 0 0 0 0.5-» O Yyz

T2x 0 0o o0 0O 0 0.5-» Yzx

4 | )

where A= E/ (1-2r)(1+») (2.2)

This law is valid for a very limited class of materials because many strains are
nonlinear and nonrecoverable at load levels of interest. This is particularly true
for soils. In consequence it is necessary to examine the more complicated theory
of elastoplasticity. At the outset for simplicity, this can be at best explained by
reference to the observed behaviour of metals.

A typical stress—strain curve for a metal under uniaxial tension is shown in
Figure 2.1. For applied stresses less than the initial yield stress oy, the
deformation is linearly elastic and, if the metal is unloaded, the strains caused on
loading are fully recovered on unloading. However, if the metal is loaded beyond
0Oy, plastic strains occur when the state of the metal might be represented by
point G. When the metal is unloaded it follows path GB and some (elastic) strain
is recovered. However, at B, the metal has suffered large irrecoverable plastic
strain. If the metal is reloaded from B the deformation is again linearly elastic

until yielding occurs at the stress level og- The stresses Oy and ag at which the
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behaviour of the metal becomes plastic are known as yield stresses and an effect
of plastic straining from Y to G is to raise the yield stress from oy to 0og; this
effect is known as strain hardening. If the metal is loaded beyond G it will
eventually fail at F where the stress is of.

It is worth noting that, firstly, yielding of metals is not influenced by mean
stress. Secondly, failure is not the same as yielding, and thirdly, because the
reloading paths do not follow the original loading path, the strains will be
dependent on the stress history. Elastoplastic behaviour is thus characterized by
history dependent deformation.

To completely describe the stress—strain relations for a simple elastoplastic
material model, three different statements are required.

= A condition for yielding : yield surface

— A flow rule for the material. This specifies the relative magnitudes of the
incremental plastic strains when the material is yielding, that is a relationship
between the directions of the principal plastic strain increments and the principal
stresses.

— A hardening law for the material. This is a relationship between the amount a
material hardens and the plastic strain the material undergoes or the work that is
done on the material when it is yielding.

The basic theory of elastoplasticity is reviewed in the sequel.

2.2.2 Yield Criterion / Function:

The yield criterion can be defined as the limit of elastic deformations,
expressed as a function of the stress level. For a one— dimensional state of stress,
the yield criterion can be easily defined in terms of the uniaxial compressive
stress or uniaxial tensile stress Oy However, under multiaxial states of stress, a

mathematical expression involving all the stress components is required.
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In general, the yield function may be expressed in the form:

flgR) = 0 | (23)

where:

is the stress tensor,

[S]

R is the hardening parameter,

And for uniaxial loading, this simplifies to:

o = oy(eP)= 0 (2.4)

where ¢ and oy are the uniaxial stress and the yield stress, respectively.

The form of these expressions must be based on experimental observations. The

hardening parameter R is usually a function of the plastic strains, that is:
R = R(«P) (2.5)
The yield function f=0 is represented, in principal stresses space, by a
surface called the yield surface (Figure 2.2). When f<O0 the behaviour of the

material is elastic but when f=0 the behaviour of the material is elasto— plastic

and the material is in a state of yield. f>0 is a physically inadmissible state of

stress.

2.2.3 Plastic Potential, Flow Rule

It is assumed that the flow of material at yield is governed by some
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function of current stresses called the plastic potential — by analogy with
Newtonian potential functions. The plastic potential Q assumes a similar form to
the yield function f and is expressed as:
Qo= 0 (2.6)
The normality principle states that the plastic strain increment tensor is
linearly related to the gradient of the plastic potential through the stress point,
ie,

9Q(g)
deP = dx —5z (2.7)

where d\ is a non— negative scalar called the plasticity multiplier

The plastic potential is said to be associated when the yield function
and the plastic potential are defined by the same expression (f=Q). In associated
flow, the material satisfies the normality condition with respect to the yield

surface, ie:

of
deP= dr =5 (2.8)

For geological materials, the equation of the plastic potential is often
different from that of yield surface; that means that the flow is non— associated.

However, for simplicity associated flow is often assumed in practice.

2.2.4 Decomposition Of Strain Measures

It is assumed for analytical purposes that strains can be linearly
decomposed, such that :
de = de€ + deP (2.9)
where the subscripts e and p denote elastic and plastic components

respectively.
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2,2.5 Hardening Behaviour:

Hardening is said to occur when the yield stress of a material
increases during elasto— plastic loading. Figure 2.3 depicts hardening, softening and
ideal (elastic— perfectly plastic) material behaviour in response to uniaxial loading.
Hardening can be related to the degree of plastic straining which the material has
suffered (or the amount of work dissipated during this straining) in changing the
state of the material. Hence, the terms “strain hardening" or “work hardening"
are often used to describe this phenomenon.

For multiaxial states of stress (Figure 2.4), hardening may involve an
expansion of the yield surface (isotropic hardening) or translation (kinematic
hardening) or a combination of both. Kinematic hardening is necessary to describe

such phenomena as the Bauschinger effect in cyclic loading.

2.2.6 Formulation of Stress— Strain Relations:

The aim of this section is to gather the threads together to obtain the
relation between stress and strain increments during elasto— plastic flow. The
objective is then to seek the form of D®P in the equation:

dg = DFfP de (2.10)
where dg and de are increments of the stress and total (elastic plus plastic) strain
tensors and D€P is the elasto— plastic constitutive matrix. Firstly, the additivity
postulate can be used to write:

de = de® + deP (2.11)
where ¢© and ¢P denote elastic and plastic components of strain, respectively.

Secondly, the stresses are related to the elastic components de® of the
strains through an elastic matrix D€, that is:

dg = DE de€ (2.12)



Substituting (2.11) in (2.12) leads to:

dg = D€ (de — deP)

Thirdly, the plastic strain increments are related to the flow rate, ie:

og

Fourthly, the yield function is given by:
f(eR) = 0

in which R=R(¢P) is the hardening parameter.

It is a fundamental assumption that during plastic yield the stress

remains on the yield surface. This 'consistency condition' implies that:
df(¢.R) = 0

Expanding this relation by the chain rule yields:

af  oRT

of T
dg + g~ —p 9P = 0

Substituting (2.12) and (2.14) into (2.11) leads to:

de = [D]1 dg + an 2L

Substituting (2.14) into (2.17) leads to:

T
of T af R aqQ
Defining a parameter H by:
T
2 N4 -
ag
and substituting in (2.19) gives:
oo . Of 3R 1T aq
oR ocP o0

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Multiplying equation (2.18) by (3f/9g)T D€ and replacing the matrix product

D® [De]™ ' by the identity matrix, leads to:

T T

of he 9Q

T
of e - of
3¢ D€ de 3c

(2.22)
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Eliminating g‘g dg by (2.20) and rearranging, gives:
L 3f T pe 2.23
A = -—A—- ——a——o_—- D d£ ( . )
. . af T . 3Q
in which A=H+ T D —87— (2.24)
Rearranging (2.22) leads to: -
9Q
= De - e
da D€ de d\ D 3¢ (2.25)

Substitution of (2.23) into (2.24) gives the required relation

between dg and de , ie equation (2.25).

The elasto-plastic constitutive matrix D®P is then:

T
DEP - pe --}\— pe 32 %_ pe (2.26)

For associated flow, the function Q is replaced by the yield function f.

2.3 THE VON MISES MODEL

43

The Von Mises yield criterion is one of the most widely used in metal

plasticity. It assumes that the strength of the material is independent of the first

invariant of the stress tensor, i.e. the mean pressure. Therefore, the yield

function for metals can be expressed in terms of the second and third invariants

of the deviatoric stress tensor as :

f(Jp, J3, K) = 0 (2.27)

where Jy and J3 are the second and third invariants of the deviatoric stress

tensor.



Jy = 1/2 Sij Sij (2.28)

J3 = 13 §jj Sjk Ski (2.29)

sij = oij — 1/3 okk &ij (2.30)
j j j

Von Mises (1913) suggested that yielding occurs when the second invariant of
the deviatoric stress tensor reaches a critical value . This criterion is expressed
mathematically as:

f=J, — K2 (2.31)
where K is a material constant to be determined from experiments. Fig. 2.5
shows the Von Mises yield surface in principal stresss space.
It is worth noting that this criterion is adequate for total stress analysis of soils in
undrained conditions . In terms of principal stresses , the Von Mises yield

function can be written as :

f=1/6 [ (01-02)2 + (0p-03)2 + (03-01)2] - K2 (2.32)
But the maximum value of shear stress Tmay e the yield condition is

where Cu is the undrained shear strength of soil. Thus, and assuming oy =03,

the Von Mises hardening parameter becomes

K=2Cu//3 (2.34)
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2.4 THE CRITICAL STATE MODEL

2.4.1 Introduction

The critical state theories assume that ''cohesive'' soils are elasto— plastic
materials which exhibit strain hardening ( or softening ) behaviour during yielding
until a failure (critical) state is attained, when unconstrained plastic flow occurs.
Three parameters, p, q, and V describe the state of the sample of soil during a

triaxial test. These parameters are used in the development of the critical state

models:

Mean effective stress

t t
p = 01 +2g3 _9 +320 3 u (2.35)

Deviator stress
q =01 - 03 = th -Ut3 (2.36)
Specific volume

V =1+e (2.37)

where e is the void ratio

Corresponding to the stress parameters p, q are parameters v (volumetric strain)
and ¢ (deviatoric strain)

€y = €] + 2e3 (2.38)

€g = 2 (&1 - €3)/3 (2.39)

A basic tenent of critical state theory is that if soils are continuously distorted

until they flow as a frictional fluid, they will come into a critical state

determined by the two equations

qg=Mp (2.40)
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V=r-X\Inp (2.41)

M, T, \ represent basic soil properties.
The first equation of the critical state determines the magnitude of the deviatoric
stress q needed to keep the soil flowing continuously as the product of a
frictional constant M with the effective pressure p, Fig. 2.6 . The second
equation states that the specific volume occupied by unit volume of flowing

particles will decrease as the effective pressure decreases.

2.4.2 Concept of Critical Void Ratio

When a loose soil sample is sheared, it passes through progressive
states of yielding before reaching a state of collapse. The yielding continues until
the material reaches a critical void ratio, after which the wvoid ratio remains
constant during subsequent deformation (Figure 2.7). That is, the material
reaches a state in which no volume change takes place during further shearing.
This state is called the critical state and the corresponding void ratio is called the
critical void ratio. When a dense soil sample is sheared to failure, it reaches a
peak shear stress as shown in Figure 2.7.a. Initially the material reduces in
volume, and then it dilates until the volumetric strain reaches a constant value
which corresponds to its critical value. A soil with a void ratio lower than the
critical value (dense soil) deforms in such a manner as to increase its volume,
whereas at a void ratio higher than the critical value (loose soil) the deformations

will decrease the volume.

2.4.3 Associated— Modified Cam Clay:

The constitutive laws on which this model is based are very simple and, as the
name suggests, involve an associated flow rule. The theory on which this model is

founded is summarized in the following. b}
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a/__Consolidation_behaviour:

The elasto— plastic model is partly based on observations of
consolidation and swelling behaviour . During consolidation, along AB (Figure

2.8), the void ratio of the material decreases according to the following equation:

e = e, — \In(p/p,) (2.42)
where X, the slope of the consolidation curve, a fundamental material
parameter.

P, is some reference stress on the consolidation curve.
If the material follows the path BC the soil swells as a consequence of reduction
in the effective mean stress, and the expression for void ratio becomes:

e = e, — « In(p/p,) (2.43)
where «, the slope of the rebound curve, is also a fundamental material
parameter,and p, is the past maximum mean effective stress (yield stress). Void
ratio changes along the swelling line are reversible, ie, elastic.

The two previous equations can be written in an incremental form:

de = — X\ dp/p (2.44)

de®= — « dp/p (2.45)
Recalling:

de = de® + deP
and noting that:

de

T Tve (2.46)

N - K dp

then de P = - e >

(2.47)
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Since p, takes the role of the hardening parameter the strain

hardening relationship is:

l+e
dpy = - == 4P Py (2.48)

b/_Yield function and plastic flow:

The form of the yield function for the associated modified Cam clay is
the ellipse shown in Figure 2.9 .
f= P2~ ppy + (/M)2 =10 (2.49)
where M is the slope of the Mohr— Coulomb line in p—q space.
For triaxial compression (0, = ¢,),

6 Sins_”

M= 3 - sing

(2.50)

Because the failure line lies below the ellipse for overconsolidated soils, this
implies softening behaviour in such soils. Of course, for associated flow, the
plastic potential and the yield function are identical, ie,

Q= f (2.51)
¢/ _Derivatives

Before calculating any derivatives involved in the constitutive equations
some parameters need to be defined for the case of axisymmetric problem. First,

the mean effective stress:

p= Ut'f'(;'a"'(fz (2.52)
and the deviatoric stress,
q={ 3 [(0-00)2 + (0,-09)2 + (0g-0,y2 + 6 7.,2] }  (2.53)

and the elastic constitutive matrix



1-» 14 ry 0
1-» p 0
E :
e - = .
[D ] (1+")(1—2l') SYM. 1- 0 (2.54)
1 - 2v
2

The following derivatives are substituted into the the elasto— plastic stiffness

matrix.

i 2.55)
gg - g_g__ (2.56)
2o [+ 4 4o
g; - -3—q [ 0z-p  Gp-p  Gg-p 27y g ]T (2.58)
z—’; = 2p- Py (2.59)
g_g -2 (2.60)
ag - _gi;_ (2.61)
gg - g_g (2.62)
ggo --p (2.63)
And from the flow rule we derive the following equations:
de P = d) g—g (2.64)
and degP = dx -3—3— (2.65)

The elasto-plastic constitutive matrix is hence:
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[p°] 2% 3 Tpey

o og
[DeP] = [De] - (2.66)
3f Troeq 2@ _ 3f _dp, _3Q
oa [p¢] o op, de,P Ip

2.4.4 In Situ Stresses

In this section, we are concerned with determining the insitu stress state
, i.e, the spatial distribution of effective vertical stress, ov, effective horizontal
stress,ch, pore water pressure, u0, and pO the isotropic preconsolidation pressure .
The parameter pg is only needed where Cam clay models are used. For Cam
clays it is important to try to establish the in situ stress state as accurately as
possible because the displacements predicted by the model are quite sensitive to
the intial conditions.
In an elastic analysis of soil ( and some times in an elastic— perfectly plastic soil
) it is quite common to set Ky as » / (1—vr) . This is consistent with the
condition of zero lateral strain inherent in one— dimensional elastic compression,
but unfortunately measured laboratory values of » are not consistent with the
usual values of K believed appropriate for the field. The elastic assumption
should not be wused for analysis wusing the critical state models, where
one— dimensional compression involves plastic yielding. One of the models of
determining the in situ stresses in Cam clay is Wroth's method. This method is
summarized as follows:
1— Calculate dv‘from the bulk density of the soil and the position of the water
table.
2— Calculate oyy ( maximum effective vertical stress ) from an oedometer test.
3— Use Jaky's relation ( K,. = 1—sind' ) to calculate K . and hence the
horizontal effective stress acting when the maximum vertical stress ( oy, ) was
present.
4— Calculate values of p and q corresponding to the maximum stresses found in

3. Substitute these values into the equation of Cam clay yield locus to calculate
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the values of pg.

5— Use the following formula to calculate the value of Kg from Kp¢ and OCR

(Overconsolidated Ratio). Hence the in situ horizontal effective stress :

——— (OCR - 1) (2.67)

Ko = OCR.Kpe = —3

( Elastic unloading)

Hence the in situ horizontal effective stress is
0h = Ko 0y (2.68)
A further empirical relation between Kg and OCR is due to

Parry (1982)

Ko =Kpe (OCR)®' (¢ in radians) (2.69)

This equation gives values of Kg similar to (2.67) and its manipulation is

more straightforward and consequently has been used in this study.

2.5 Conclusion

In general soil suffers elastic as well as plastic deformation during loading.
Consequently, for soils, it is necessary to use elastoplastic theory because
generally soils show plastic behaviour at low stress levels. The ingredients of
elastoplastic models are; elastic properties, condition for yielding (yield surface),
mechanism of yielding (flow rule) and finally the magnitude of plastic deformation
(hardening rule).
Soil is a two— phase medium, solid and fluid. Consequently, it is necessary to
distinguish between two categories of analysis: Total stress analysis and Effective
stress analysis. The Von Mises model is often adequate for total stress analysis in
undrained conditions whereas the Cam clay model is suitable for effective stress
analysis since it is driven from effective stress changes. The Cam clay is a model

behaviour which is ‘'simple' in the sense that the model is derived from a small



number of basic assumptions, yet the model manages to produce a useful
description of soil behaviour. What really sets the critical state model apart from
other attempts to formulate elasto— plastic models for soils is that it allows a

consistent treatment of both drained and undrained loading.
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CHAPTER 3

FINITE ELEMENT MODEL

3.1 INTRODUCTION :

In this chapter a short summary of the finite element method will be
given together with a description of the computer program used in this study
and the procedure wused to simulate sampling disturbances in clay soils. A
more complete treatment of the finite element method is given by many
authors, notably Zienkiewicz(61), Naylor énd Pande(45) and Owen and
Hinton(25,26), Slip elements are used to simulate the adhesion at the
sampler— soil interface during the process of pushing the sampler into the soil.
A review of this literature is given together with numerical example

illustrating the use and performance of these slip elements.

3.2 FINITE ELEMENT METHOD:

The basis of the finite element method is the subdivision of continua
into an assembly of discrete structures (finite elements) connected at their
nodes. This idealisation reduces the continuum from an infinite degree of
freedom system to a finite degree of freedom system, in terms of nodal
quantities. The successive stages constituing the finite element algorithm are

described in the following sections.
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3.2.1 Discretization:

The starting point of the analysis is the division of the system into finite
elements. Eight basic elements are illustrated in Fig 3.1. For geotechnical
work, the triangular and quadrilateral elements for plane strain or
axisymmetric analysis such as the so called 8- noded serendipity elements (
Fig 3.2 )are most commonly used. These elements have four corner nodes
and four midside nodes. There seems to be a consensus that these so— called
‘parabolic' elements which have one midside node offer the best results,
These elements are termed isoparametric: that is, the equations describing the
shape of their boundaries are the same as those describing the variation of
the nodal unknowns (e.g. displacements) across the element. However, recent
research (Sloan and Randolph(53) ) has shown that in axisymmetric analyses
the constraint of no volume change (which occurs in undrained situations)
leads to finite element meshes 'locking up' if low— order elements are used
These problems can be avoided by using higher order elements such as cubic
strain triangles. On the other hand, there are occasions where the use of a
lower— order element can be advantageous: for example, situations where the
mesh has irregular boundaries or contains several zones of soil of different
properties. Indiscriminate use of higher order elements in these circumstances
can lead to unnecessarily expensive analyses. Selection of the size and shape
of elements is a matter of experience and intuition.  Generally, elements
should be smaller where the displacement gradients are steepest, i.e where

there are rapid changes in stress and strain.

3.2.2 Shape Function:

The shape ( interpolation ) functions define the variation of quantities

across elements in terms of the nodal values. Let V stand for the value of
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the quantity at some point r, z then :

n

V= 2 Ni Vi (3.1)
i=1

where,
N; is the shape function for node i,
n is the number of nodes in the element, and

Vi is the value of the quantity at node i.

The shape functions for the 8— node Serendipity element are shown in Fig

3.2,

for_corner nodes:

Ni= § (1 + £&) (1 + ) (& + 9 —1) (3.2.a)

i= 1,357

for _midside nodes:

Ni= 3§21+ E8) (1~ g9+ 4 ni( + ) (1 — £7)  (3.2.b)

i= 2,46,8

where £ and »n are the intrinsic coordinates of any point within the element.

By definition, ¢ and 5 have values in the interval [—1,+1].
3.2.3 Coordinate Transformation:

Transformations from local (&,7) to global coordinates (x,y) are
necessary. These include expressions for the incremental area dA = dr.dz in
terms of df and dn, and the cartesian shape function derivatives, i.e ANj/or
and ON;/9z, given 9ON;j/a¢ and ON;/an .

By definition, the incremental area is:
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dA = | J | dt.dy (3.3)

where |J| is the determinant of the jacobian matrix J, and :

ar 9z
I
b - or 9z (3.4)
o o7

The partial derivatives dr/d¢ , etc... may be obtained from the shape function
derivatives with respect to £,73 and the nodal coordinates. Thus, by

differentiating equation (3.1) we obtain:

n
gg 121 g? . ry (3.5)

Explicit expressions for oON;j/o{ and ONj/d7 are readily obtained by
differentiating equations ( 3.2a ) and ( 3.2b ).

To obtain the cartesian shape function derivatives the following chain rule is

needed,
ON: ON:
s wm el —_1
dN; 3¢ dr + 32 dz (3.6)

Partial differentiation of (3.6) with respect to § and % in turn gives the

following relation :

ON; ar
—E >E
aN; = or (3.7)




Inversions gives explicit expressions for the cartesian derivatives, ie:

ON; oz oz ON;
—1 - 1
3r | _ 1 | 9y o o (3.8)
BN]- (A ar or ON;
0z 9 EH an

This expression (3.8) completes the transformations needed for axisymmetric

applications.

3.2.4 Strain— Displacement Relations:

The displacements may be expressed as :

u = (uwT (3.9)
where u and w are the displacements in the r and z directions,respetively.
The components of strain are :

e = (ernepenya)] (3.10)

where for small displacements, the strains are given as :

du

o
>
]

=

ow (3.11)

Ju ow
Yrz Y ar

For finite element applications it is necessary to relate strains to the
displacements at element nodes €. Using equation (3.1) to express u and w
in terms of nodal displacement gives :

e = B g€ (3.12)

The matrix B consists of a row of n submatrices B; which for axisymmetric
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problems take the form:

ON; 0
Jr
Ny 0
B = r (3.13)
0 ON;
dz
ON; ONj |
oz or

The need for the shape function cartesian derivatives is now apparent.

3.2.5 Stress— Strain Relations:

In general, the stress—strain relations can be expressed in the
incremental form:
dg = D de (3.14)
where g = (O’r,O'B,O'z,TrZ)T Jin which oy,04,0, are the normal stresses in
the r, 6 and z directions and 7., is the shear stress in the rz plane. D is
the constitutive matrix. Its components are constant for linear elastic
materials and takes the form of equation (2.54). For nonlinear materials, the
constitutive relations are stress dependent. The matrix D is symmetric for

associated flow.

3.2.6 Stiffness Equations:

The global stiffness matrix equation which relates nodal forces to

displacements is assembled from the individual element stiffness matrices.
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Element stiffness matrices:

A typical element is assumed to be in equilibrium under a set of nodal
forces F€ associated with displacements §%. Any external loadings are assumed
to be applied at the nodes.

The use of the principle of virtual work forms the basis for the derivation of
the relationship between nodal displacements and loads. A set of virtual
displacements o s applied to the nodes. Let the stress at a point in the
element be ¢ and the strain corresponding to the virtual displacements be €

Equating the work done externally at the nodes to that done internally gives:
T, fe = J &T. g av (3.15)

From equation (3.12), and noting the fact that (3.12) must hold true for any

arbitrary virtual displacement, then:

Fe = J BT ¢ av (3.16)

In geotechnical applications, equation (3.16) can be used to determine the
equivalent nodal forces corresponding to the initial stresses.

Since the loading is applied by small increments, the relations used have an
incremental form. By using the stress— strain equation (2.10), re—arranging and

replacing ¢ by (3.12) and susbtituting in (3.16) ; we obtain :

E® = J BT DB 5 dv + J BT g, dv (3.17)

And in this case § is the actual nodal displacement vector.

Another way to write (3.17) would be :

Fe = K® . ¢ + Egy (3.18)
where:
K€ = J BT D B dv is the element stiffness matrix and
Eyo = J BT g, dv element nodal forces due to initial

stresses.
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Assembly:

The global stiffness equations are obtained by superimposing the element
stiffness matrices, as a consequence of the compatibility and equilibrium
conditions at nodes common to adjacent elements. The global matrix K (and
load vector R where R = F — Fg,,) is thus assembled from element
matrices K€ giving the overall stiffness equation :

K.s=R (3.19)

which can be solved for § .

3.2.7 Solution Techniques for Nonlinear Problems:

The solution to nonlinear problems must proceed in an incremental
manner since the solution at any stage depends not only on the current

displacements of the structure but also on the previous loading history.

Tangential stiffness method:

In this method, the stiffness matrix K(8) is assembled at the beginning of
each increment of load. The load increments should, in theory, be
infinitesimally small. However, with finite increments, at the end of the
increment, equilibrium conditions will not be satisfied, and :

K& . 46— AR = W& #0 (3.20)
where ¥(8) is the residual load vector.
Iterations may be applied within load increments with the aim to make ¥(3)
tend to zero, and element stiffnesses are recomputed during each iteration of
each load increment. The technique is illustrated schematically in Fig 3.3 for

a one—dimensional problem. The use of this method in strain softening
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situations, where the tangent stiffness is negative, may lead to numerical

instability.

Initial stiffness method:

If the stiffness matrix is not updated and instead the original (elastic)
stiffness matrix is used, complete reduction of the stiffness matrix at each step
can be avoided. In this case, complete equation solution need only be
performed for the first iteration and subsequent approximations to the
nonlinear solution obtained, via the expression

K. 45 — AR = ¥(J$) (3.21)
Since the same stiffness matrix K is employed at each stage, the reduced
matrix can be stored and subsequent solutions merely necessitate the reduction
of the right hand side ¥(§) terms. This has the immediate advantage of
significantly reducing the computing cost per iteration but reduces the
convergence rate as can be seen in Fig 3.4. This method is said to be
unconditionally convergent and can be employed (with care) for strain
softening materials.
For the analysis of sampling disturbances in clays, the tangential stiffness

method was used.

3.3 MODELLING OF THE SAMPLING PROCESS

The modelling of the sampling process is done by means of the finite
element mesh shown in Fig. 3.19 . Only part of the domain is analysed due
to the axisymmetry about the Z—axis. The location of the sampling tube
section within the soil is indicated by the nodal points (ABCD). The line
(AE) is, by symmetry frictionless in the Z direction and fixed in the r

direction. Surface (EF) is fully fixed whereas the surface (FG) may be

67



assumed to be smooth or fixed. The sampling tube itself is given prescribed
vertically downwards displacements, Figure. 3.20 . The main advantages for
imposing displacement control on the sampling tube are :

— The incremental process is stabilised.

— The ill- conditioning problems arising from large differences between the
values of the Young's modulus of steel (tube) and soil is avoided.

Frictional behaviour at the sampler wall is simulated by inside and outside slip
elements (See section 3.4) which allow for localised slip. It should be noted
that the sampling tube is already installed in the soil before being advanced
and the soil is modelled variously as a Von Mises material as well as a

critical state elasto— plastic material.

3.4 SLIP ELEMENTS

3.4.1 Introduction

In many engineering problems, discontinuities such as joints, faults and
regional interfaces are embedded in continua. Since the finite element method
presumes continuity between adjacents elements, such discontinuities must be
introduced into the mesh by special slip elements which allow for slip at the
interface between two dissimilar media. The term slip defines the relative
motions between the two solid elements.

Slip elements can be used in a wide range of geotechnical problems. In Rock
Mechanics, Goodman et al (21) proposed the use of slip elements to simulate
rotations as well the sliding of rock masses, Fig.3.5 . In Soil Mechanics,
Desai et al (17) suggest the use of joint (interface) elements in soil— structure
interaction such as soil—foundation (deep/shallow) interfaces , Fig.3.6,

soil— retaining wall interfaces,.. ..etc.
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3.4.2 Literature Review

In the 1960's, Goodman et al (21) introduced the idea of representing
joints by simple, rectangular, two dimensional elements with eight degrees of
freedom, Fig.3.7.a . With this element, due to its zero thickness, adjacents
blocks of continuous elements can penetrate each other. Zienkiewicz et al
used a six noded paralinear (no midside nodes in the thickness direction) joint
element, Fig.3.7.b, assuming uniform strain in the thickness direction.
However, that though the thickness of the joint element may be very small,
sharp variations in the strains of adjacent continuum elements can take place
and a linear interpolation of strains may be preferable. Ghaboussi et al (20)
pointed out that numerical difficulties may arise from ill— conditioning of the
stiffness matrix due to very large off— diagonal terms and very small diagonal
terms which are generated by these elements in certain cases. They proposed
a new joint element that uses relative displacements as independent degrees of
freedom. The displacement degrees of freedom of one side of the slip surface
are transformed into the relative displacements between the two sides of the
slip surface. Ghaboussi et al (20) stated that this joint element avoids the
drawbacks of other elements. They presented exact explicit stiffness matrices
for the two dimensional case.

Inspired by their idea, Pande et al (48) developed and programmed an eight
(8) noded parabolic isoparametric interface element based on relative
displacements as an independent parameter, Fig.3.7.c. Numerical experiments
have, however, shown that on accurate modern machines the differences in
the results obtained from (a) conventional isoparametric parabolic (CIP)
elements and (b) isoparametric parabolic elements based on relative
displacements (RDIP) are insignificant even for extremely small aspect ratios

(thickness/length).

69



Ill- conditioning of the stiffness matrices was evaluated in terms of

‘conditioning number' K (48) which is defined as :

Largest eigenvalue of the stiffness matrix
K = (3.22)

Smallest eigenvalue of the stiffness matrix

The conditioning number K for the stiffness matrices obtained by CIP and
RDIP are not significantly different; the ratio being 1.4 : 1, indicating that
the relative displacement formulation improves the conditioning only very
slightly. Pande et al (48) pointed out that the ill— conditioning may occur if
very thin interface element are used.

Desai et al (15.17) introduced the idea of using a thin solid element , called
a thin—layer element, to simulate interfaces between the two dissimilar media.
The quality of simulation of the interface behaviour will depend on a number
of factors such as physical and geometrical properties of the surrounding
media, nonlinear material behaviour and the thickness of the thin—layer
element. If the thickness is too large in comparison with the length of
surrounding elements, Fig.3.8, then the thin—layer element will behave
essentially as a solid element. If it is too small, computational difficulties may
arise. The choice of thickness can, therefore, be an important question but
this can be resolved by performing parametric studies and Desai et al (17
carried out such a study into the effects of varying the thickness of the
interface element. Fig.3.9 shows a schematic diagram of a direct shear test
device in which the bottom half is in concrete and the top half contains soil.
A series of tests were performed with a concret/sand interface under normal
loads. Fig.3.10 shows typical test results for the sand ( with relative density

around 80% ) for two normal loads. The thickness, t, of the interface
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Table 3.1 Distribution of shear stress in

interface element at

integration points

on = 4.77 Kg/cm?
Integration points
t/B 1 2 3 4 Average
1.0 2.3939 3.6034 2.1203 3.8771 2.9987
0.1 2.7390 3.2602 2.7049 3.2940 2.9996
0.01 3.0022 2.9975 2.9975 ‘ 3.0022 2.9999
0.001 2.9967 3.0021 2.9964 3.0025 2.9994
0 = 9.55 Kg/cm?
Integration points
t/B 1 2 3 4 Average
1.0 3.7868 6.2084 3.239 6.7562 4.9976
0.1 4.4778 5.521 4.4093 5.5895 4.9994
0.01 5.0044 4.9950 4.9950 5.0044 4.9997
0.001 4.9914 5.0065 4.9905 5.0075 4.9990
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element was varied such that the ratio t/B was 0.001, 0.01, 0.1 and 1.0. The
computed results in terms of (relative) displacement, u,, and the ratio t/B for
applied shear stress r = 3.0 Kg/ecm?2 | o, = 4.77 Kg/cm2 , and 7 = 5.0
Kg/cm?  for 0np = 955 Kg/cm2 are plotted in Fig.3.11 . The computed
displacements show wide variations as the thickness is changed. However, the
results for t/B values in the range of 0.01 and 0.1 show satisfactory
agreement with the observed values of 0.032 c¢cm and 0.034 cm for the tests
with 4.77 Kg/cm2 and 9.55 Kg/cmz, respectively, Fig.3.10 . Note that for
higher and lower values of t/B than this range, the computed displacements
are significantly different from the measured values. Table 3.1 shows
computed values of shear stresses in the interface element. It can be seen
that the best correlation between computed and applied stresses of r = 3.0
Kg/cm2 and 5.0 Kg/cm2 is obtained for a t/B ratio in the range of 0.01 and
0.1 . Although the average values of the computed stresses are not
significantly different for a wide range of t/B values, more uniform stress
values are obtained /B ratios smaller than 0.1 . In conclusion, Desai et al
(17) stated that satisfactory

simulation of interface behaviour can be obtained for t/B ratios in the range
from 0.01 to 0.1

Griffiths (22) carried out similar numerical experiments. He analysed the
simple problem shown in Fig. 3.12 in which the column contains an inclined
interface of weak material, and an axial force (P) is increased until
irreversible slippage occurs. He carried out a finite element analysis using the
mesh shown in Fig. 3.13 on the effects of variations in interface thickness,
material properties and inclination. From the results shown in Fig. 3.14, it
can be concluded that for small aspect ratios (up to 1/100) slippage was
modelled quite accurately. This conclusion confirms Desai's findings that , for
a good simulation of of the interface between two dissimilar media, the

thickness of the slip element shall be such that the ratio of thickness to the
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length is in the range of 0.01 to 0.1

3.4.3 Numerical Example

Desai and Griffiths stated that an ordinary element of small aspect ratio
can be used as an interface element. As an illustration of the use and
performance of these slip elements, we consider the problem depicted in Fig.
3.15 . The compressible material is loaded by a uniform pressure P in a
rough walled rigid container. Plane strain conditions are assumed. We consider
three cases :

i) smooth walls
ii) fully bonded walls

iii) Rough walls, described by an adhesion factor

i)_smooth_walls

Since this is a linear elastic problem, Fig.3.16.a, there is no problem of
convergence and a single element mesh gives the correct results. After loading
the compressible material, the top surface displaces downwards uniformly to a

depth of 1.48E— 5 m which can be confirmed by elastic theory as follows :

LP (1L + ) - 2r)
i T- " 3.23)
L= 10m vy = 0.3 E = 1E+6 KN/m2 P=2

KN/m?2
Equation (3.23) gives § = 1.48E—5 m .

— The stress field is uniform everywhere.
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ii) Fully bonded walls

This is an elastic case but the stress state developed is complex
because of the boundary conditions, Fig. 3.16.b. . Refinement of the mesh
was necessary to obtain an accuracy of 1% in the displacement. The
computed displacement of the centre of the top surface was 1.05E—5 m. This
value is about 67% of the displacement obtained previously. Fig. 3,17 shows
the vertical stress contours whithin the compressible material. It can be seen
that the vertical stress varies in the material and falls to 30% of the surface
pressure at the bottom boundary. This is clearly different from the

smooth— walled case where the stress field was uniform.

iii) Rough Walls

The adhesion between wall and soil is assumed to be 10% of the

shear strength of the soil , i.e,

Cue = o Cu (3.24)
where « = Adhesion factor (taken equal to 0.1 for this example).
Cuge = Undrained shear strength of the slip elements.
Cu = Undrained shear strength of the soil.

The soil is assumed to be elastic— perfectly plastic and modelled by Von Mises
criterion.

From prior . studies and in confirmity with Desai (17) and Griffiths's (22)
findings, an aspect ratio of 1/30 for the slip elements was used, Fig. 3.16.c .
The computed displacement of the centre of the top surface was 1.06E—35 m.
Fig.3.18 shows the stress field through the body. Further refinement of the
mesh was required to obtain these results. The vertical stress falls to only
20% of the surface pressure at the lower boundary (which is lower than the

case of fully bonded walls) and the form of the stress fiel is different. In the
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case of fully bonded walls, the contours of constant stress tend to be flatter
near the vertical boundary than this case.
Based on the foregoing results, it can be seen that the solution for rough

walls lies between that obtained for the smooth and fully bonded walls.

3.4.4 Conclusion

In this section, an insight into the use and performance of slip
elements has been given. It appears that slip elements are a good tool of
modelling relative movements between two adjacent dissimilar media, provided
that appropriate parameters for these elements are chosen. From the literature
review and from the example studied herein, simple rectangular elements
included in the finite element mesh, of aspect ratio (thickness/length) varying
between 0.01 and 0.1 can quite accurately model the interface between two
dissimilar media. The undrained shear strength of the slip elements should be
a fraction of the undrained shear strength of the soil in order to simulate the
adhesive strength of the interface.

Finally, these slip elements are used in this study to model the friction

which develops during the process of sampler penetration into soils.

3.5 COMPUTER PROGRAM :

The finite element program used in this study is the CRISP (CRitical
State Program) program developed by research workers in the Cambridge
University Soil Mechanics Group. The CRISP program is based on continuum
mechanics, critical state soil mechanics and finite element techniques. It is a
robust program, reliable and widely used. Elastoplastic material models using

Von Mises, Tresca, Mohr— Coulomb, Drucker— Prager vyield criteria are



available and element sides can be given prescribed incremental values of
displacements , loads or excess pore water pressures. Loading can be applied
as nodal loads or pressure loads on element sides . The nonlinear solution
technique used in this program is the incremental (tangent stiffness) approach

with and options for updating nodal coordinates as deformation proceeds.

3.6 CONCLUSION

The main stages constituting the general finite element algorithm have

been described for the particular case of axisymmetry. This was followed by a
review of the literature on slip elements as well as an example illustrating
their use and performance. Slip elements are modelled by simple rectangular
finite elements of aspect ratio (thickness/length) varying between 0.01 and 0.1
In later work, slip elements of aspect ratio of 1/30 have been used to

model the friction occuring at the soil/sampler interface during sampling.
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Figure 3.5 Deformation of jointed rock masses
a) Initial state
b) Shearing along one joint set
c) Shearing along two sets
d) Sheazring and rotations
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CHAPTER 4

RESULTS

4.1 INTRODUCTION

The sensitivity of the numerical solutions obtained here to mesh size,
boundary conditions, increment size etc has been investigated by means of a
convergence study. Attention is then focussed on those parameters having the
greatest effect on sampling disturbance; namely, sampler geometry, ( diameter to
thickness ratio, D/t, angle of cutting shoe etc), roughness of the sampling tube,
and soil properties. A total stress analysis is carried out using the Von Mises
criterion, followed by a more realistic effective stress analysis using the critical

state elastoplastic model.

4.2 CONVERGENCE STUDY,

The aim of this part of the work is to obtain optimum values of mesh
geometry, element type, size of increment, etc. In this study, the soil was
modelled as a Von Mises elastoplastic material. The soil characteristics used are :

E = 100 N/mm2 Cu = 0.1 N/mm2 Cug = 0.05 N/mm2 » = 0.48

where Cu and Cug, are the undrained shear strengths of the soil and slip
elements, respectively. A high value of E was used in order to avoid numerical
difficulties associated with large deformations. Consequently, the results obtained
here are most relevant to highly overconsolidated soils. Secondly, the assumption
of elastic— perfectly plastic behaviour (the Von Mises model) is better suited to

stiff clays than to soft clays.
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Mesh geometry.

Fig. 4.3 depicts the load applied on the sampling tube versus the
corresponding vertical tube displacement for the 38—, 52—, 86— and 125—
element meshes shown in Fig. 4.1 and 4.2 . The number of elements in the
meshes was increased where concentration of stress was expected. In general
elements were added inside and below the sampling tube. Fig. 4.3 shows that
the mesh geometry has very little effect on the soil response in the linear part of
the curve. However, when the material behaviour becomes elastoplastic, the effect
of mesh geometry becoms significant. The curves show that meshes with fewer
elements offer stiffer responses to loading. The failure load decreases significantly
when the number of elements in the mesh increases until a stable plateau of the
load deflection curve was obtained. For instance, when the number of elements in
the mesh increases from 52 to 86 elements, the load decreases ( for a tube
displacement of 2mm )from about 17.5 KN to 13.5 KN, which represents a
variation of ab;)ut 30 %. When the number of elements increases again from 86
to 125 elements, the load decreases about 13.5 KN to about 13 KN,
Consequently, the 86 element mesh was adopted to model the problem of

sampling operation during the course of this study.

Types of elements.

Recent research ( Sloan and Randolph(53) ) has shown that in
axisymmetric analyses the constraint of no volume change ( which occurs in
undrained conditions ) leads to finite element meshes ‘locking up' if low order
elements ( such as linear strain triangles,LST, linear strain quadrilaterals, LSQ )
are used. Accordingly two runs were carried out in order to see the effect of
using high order elements ( cubic strain triangles, CuST ) on‘the load deflection

curves of the sampling tube. Twenty six CuST and fifty two CuST element
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meshes were used ( Fig. 4.4 ) and and the corresponding load deflection curves
for the sampling tube were recorded. Fig. 4.5 shows that the failure load
obtained for the 52 CuST elements and 86 LSQ elements differs by only 3%.
Consequently 86 LSQ elements was adopted since use of higher— order elements
can lead to unnecessarily expensive analyses. Moreover, some investigators (10)
have pointed out that there are occasions where the uses of lower— order
elements can be advantageous: for example, situations where the mesh has

irregular boundaries or contains several zones of soil with different properties.

Increment size. .

The CRISP program uses the incremental or tangential stiffness approach:
the total load acting is divided into a number of small increments and the
program applies each of these incremental loads in turn. During each increment,
the stiffness properties for the current stress levels are used in the calculations. If
only a few increments are used, this method produces a solution which tends to
drift away from the true or exact solution. This means a stiffer response results
for a strain hardening model. This approach is in contrast to that adopted in the
elastoplastic programs used in the analysis of mechanical engineering components
or steel structures ( Hinton and Owen (26), 1980 ). In these applications it is
usual to use a large size of increment and to correct for the error by performing
iterations within each increment wuntil convergence to the non— linear
load— displacement curve is obtained. Some claim to have applied the technique
with the critical state models with no particular difficulty (Zienckiewicz (1975),
Potts (1980) ), but others Naylor (1975), Britto (1984) stated that sometimes there
can be problem with convergence.

In the present study, the sampling tube was given a total prescribed vertical
displacement of 2 mm. This displacement was divided into 70, 100, 200 and 400

equal increments corresponding to size increments of 0.03, 0.02, 0.01



and 0.005 mm respectively, and the load— displacement curve was recorded for

each case. the soil characteristics are:

E = 100 N/mm?2 Cu = 0.1 N/mm?2 Cuge = 0.05 N/mm2 » = 0.48

where Cu and Cuge are the undrained shear strengths of the soil and the slip
elements, respectively.

Fig. 4.6 shows that up to 0.6 mm displacement of the sampling tube, the
incremental size has a little effect on the soil response. From there on, for the
case of 70 increments ( size increment = 0.03 mm ), the load— displacement
curve obtained was unstable and had to be smoothed. Consequently, smaller
increments of displacements ( 0.02mm, 0.0lmm and 0.005mm ) were used and

practically the same smooth load— displacement curve was obtained in each case.

Boundary conditions.

The distance from the sampling tube to the bottom and lateral boundaries
of the finite element mesh should be large enough to ensure that these
boundaries will not have any significant effect on the response of the soil when
subjected to the penetration of the sampling tube. To verify this, a finite element
mesh with two different boundary conditions ( (a) smooth and (b) rigid ) was
analysed. Results as shown in Fig. 4.8 indicate that with the ratios r/rg ( radius
of the soil from the centerline to the lateral boundary / radius of the sample )
and H/D (depth of the soil / length of the sample ) equal to 6 and 2,
respectively, the load— displacement curves for the sampling tube coincide.
Therefore, with these mesh dimensions, the boundary conditions do not have a

significant effect on the response of the soil during sampling.
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Updating nodal coordinates.

The nodal coordinates may be updated after each increment of the
analysis by adding to the coordinates the displacements undergone by the nodes
during the increment. The stiffness matrix of the continuum is then calculated
with respect to these new coordinates during the next analysis increment. The
intention of this process is that at the end of the analysis equilibrium will be
satisfied in the final ( deformed ) configuration. Britto (10) stated out that
although this approach would seem to be intuitively more appropriate when there
are significant deformations it should be noted that it does not constitue a
rigorous treatement of the large strain / displacement behaviour for which use of
strain and stress tensors appropriate to large deformations and strains are
required. Carter (12) examined the importance of non— linear geometric effects in
geotechnical analysis and found that ' the linear assumption ' of small strains and
small displacements is usually satisfactory in the solution of geotechnical problems.
He concluded that for most geotechnical analyses, non— linearity arising from
material behaviour is of more importance than non—linearity from geometrical
effects. He added that in most situations use of updated coordinates leads to a
stiffer load— deflection response near failure.

In the present study two runs were carried out using both updated and
non— updated coordinates and the load— displacement curves recorded. Fig.4.9
shows that up to a displacement of the sampling tube of 1.0 mm,

the the load— displacement curves coincide. After that, the use of updated
coordinates offers a stiffer response to loading. The option to wuse updated
coordinates has not been used in this study because this small error tends to

cancel out any errors in using only a finite number of finite elements.
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4.3 PARAMETRIC STUDY.

This section is divided into two parts. The first part is a record of the
results of total stress analysis and the second part concerns an effective stress
analysis. These analyses shed light on the stress and pore water water pressure

changes which occur during sampling as well as the progressive mechanism of

failure and distortions which occur in soil samples.

4.3.1 Total stress analysis.

The Von Mises model has often been used for total stress analysis under

undrained conditions and is adopted for this purpose here.
The material properties used for the clay are:

— Young's modulus: E = 100N/mm?2
— Poisson's ratio: » = 0.48

In undrained deformations, the deformation is assumed to take place so
quickly that the water does not have time to flow out of the pores, i.e the soil
behaves essentially as an incompressible material. The correct value of Poisson's
ratio » would therefore be 0.5. However, the use of this value in finite element
program causes numerical problems since the bulk modulus ( K= E / 3 ( 1—-2»
)) becomes infinite. In practice, this problem is circumvented by using a value of
Poisson's ratio close to 0.5. Therefore a value of » of 0.48 was used in this
section.
The undrained shear strength of the soil, Cu, is assumed to be equal to 0.1
N/mm2. The values of the material parameters for the slip elements are similar
to those of the surrounding soil except for the undrained shear strength which is

related to the undrained shear strength of the soil by the equation :

Cue = « Cu (4.1
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where

Cuge : undrained shear strength of the slip elements.
Cu  : undrained shear strength of the soil.

o @ adhesion factor, 0 ¢ o ¢ 1

The numerical tests.

Four series of numerical tests were run using the CRISP program. In the
first series (  TS1 ), the diameter to thickness ratio ( D/t ) of the sampler was
varied whereas the length of the sampler, the geometry of the cutting shoe ( i.e
flat edged sampler ) and the adhesion soil/sampler were kept constant. In the
second series ( TS2 ), the frictional behaviour at the sampler wall, simulated by
inside and outside slip elements, was varied while everything else remained
constant. In the third series ( TS3 ), the values of length to diameter of sample
( L/D ) was varied from 1 to 4 while all other parameters remaining constant. In
the fourth series ( TS4 ), only the value of the tip angle of the sampler was
varied in order to compare results between flat and sharp edged samplers. The
two values used were 90° ( flat edge ) and 20° ( sharp edge ). Smaller values
than 20° were not considered in order to avoid severe distortions of the finite
elements surrounding the tip of the sampler.

Although the primary concern was with events taking place within the sampling
tube, it is of interest to observe how these events relate to changes occuring
outside the sample and the mechanism of transier between the two regions. For
this reason the plots are shown for a section of the domain larger than the
sample, where failure zones, displacements, stresses and pore water pressure

variations are given. Plots are generally given at the elastic as well as the plastic

stages.



TEST SERIES TS1

Effect of D/t ( diameter to thickness of the sampling tube)

Fig. 4.10 shows the load— displacement curves for the sampling tube using
three different values of D/t : a thick tube (D/t=10) and thinner tubes (D/t=20
and 40). It should be noted that the diameter of the sampling tube has been
kept constant (D=100 mm) during this study whereas the thickness of the tube
was varied. The plots show that D/t has a very little effect on the soil response
in the linear part of the curves. However, when the soil yields, the effect of D/t
becoms significant. For instance, when the thickness of the tube decreases from
10 mm to 5 mm (D/t increases from 10 to 20), the load decreases (for a tube
displacement of 2 mm) from about 13 KN to 11.5 KN, which represents a
variation of about 13%. When the thickness decreases again from 5 mm to 2.5
mm (D/t increases from 20 to 40), the load decreases from 11.5 KN to about 10
KN, representing a variation of 15%. This is due to the fact that the load
necessary to push the sampler into the ground is increased if the bearing area at

the base of the sampler is increased.

Displacement field

Fig. 4.11 shows the displacement field in the region of the sampling tube
at the elastic state. The pattern of deformation shown represents the difference
between the initial and the final position of the sampling tube. In general it was
found that the displacement fields in the vicinity of the sampler are similar for
all values of D/t in the elastic state ( corresponding to a tube displacement of
0.1 mm ) and consequently, no significant effect of D/t is apparent. These plots
show that the top surface of the sample displaces dowwards by about 0.1 mm

remaining horizontal whereas for the soil outside the sampling tube, hardly any
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movement takes place. In the plastic stage, Fig. 4.12 and 4.13 , distortions occur
along the wall inside and outside the sampler. The top surface of the sample is
slightly inclined resulting from the fact that downward displacement along the wall

are slightly larger than those of the centerline. The greatest downwards

displacement occurs for the thickest tube ( D/t=10).

Growth of failure zones.

In Fig. 4.14 to 4.16 , the mechanism of growth of the zones of failure are
shown. The dots in the figures are are the corner nodes of elements forming the
mesh. Generally, the zones of failure initiate close to the edge of the sampler at
the outside slip elements and are dragged down with the tube. For D/t = 20 and
40, failure occurs in all outside slip elements at early stages of penetration of the
sampling tube ( d = 0.3 mm ) whereas for D/t = 10, the failure of all outside
slip elements occurs at a vertical displacement of the tube of 0.6 mm. Similarly,
zones of failure propagate into the inside slip elements and the soil directly below
the sampler. The rate of propagation of these zones of failure in the inside slip
elements is similar for all D/t values and is complete at d = 0.6 mm. However,
in the soil below the sampler, zones of failure reach the central part of the
sample at earlier stages of penetration of the tube for the case of D/t=10 than
for the cases D/t=20 and 40. This suggests that soil is disturbed even before
entering the sampling tube and, an increase of the area ratio Ar (defined as
(De2 — Di2)/Di2 where D is the diameter of the sampler and subscripts (i) and
(e) refer respectively to the internal and external diameters of the sampler) results
in further disturbance of the soil. For instance, for D/t= 20 and 40
corresponding to Ar = 9% and |0%, respectively, the growth of zones of failure
is similar, whereas for D/t=10 ( thickest tube ) with Ar = 36 %, the growth of

the zones of failure occurs at earlier stages of penetration of the sampling tube
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and affects larger areas than in the previous cases.

Vertical stress contours,

Fig. 4.17 to 4.19 show the vertical stress distribution in the elastic state
(displacement = 0.1 mm corresponding to load level of about 6 KN, Fig. 4.10
). The vertical stresses inside the tubes are practically constant accross the width
of the tube. The vertical stress increases smoothly along the axis of the tube,
reaching a maximum just below the tip of the tube. The maximum values of the
stresses on the centroidal axis are 0.09 N/mm2 for the thick tube (D/t=10) and
0.08 N/mm2 for the other tubes (D/t=20 and 40). The vertical stresses fall off
monotonically with distance below the tube. Outside the tube (excluding the soil
beneath the sampler) the rise in vertical stress is small.

In the ultimate state (corresponding to a load level of 12 KN for a tube
displacement of 2 mm), Fig. 4.20 to 4.22 show high vertical stress gradient
normal to the wall over a short distance (about 8 mm). Thereafter, the vertical
stresses inside the tubes are practically constant accross the width of the tube.
The vertical stresses increase along the axis of the tube reaching the maximum
just below the tip of the tube. The maximum values of the vertical stresses on
the centroidal axis is 0.4 N/mm2. Very substantial increases in vertical stress
occur just below the cutting shoe of the sampling tube and the area of the stress

concentration increases with increasing tube thickness. Outside the sample and the

soil beneath it, the rise in vertical stress is small.

Maximum _shear_stress contours,

Fig. 4.23 to 4.25 show the maximum shear stress contours
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(61 — 03 )12Cu at the elastic state. The plots show that D/t has no effect on
on the maximum shear stress at this stage. The value of (01— 03)/2Cu increases
along the axis reaching 0.3 at the bottom of the sample whereas its value is 1.0
in the narrow area (about 10 mm width) along the outer side of the sampler
indicating that this part of the soil has already reached the state of failure.
Outside the tube (excluding the volume of soil beneath the sampler) the
maximum shear stress decreases smoothly reducing to zero at about 130 mm away
from the sampler wall. However, Fig. 4.26 to 4.28 show that at the ultimate
state (corresponding to a load level of about 12 KN), most of the soil below the
sampler, the outer third of the sample and along the outer side of the wall over
a short distance (about 10 mm) has reached the state of failure. It should be
noted however, that zones of failure undeneath the sampler are larger for the
thickest tube (D/t=10). Consequently, disturbances of soil increase with increasing

tube thickness.

Mean effective stress_contours.

Fig. 4.32 to 4.34 show the mean effective stress contours at the ultimate
state (displacement d = 1.5 mm). The curves show high pore water pressure
gradients normal to the wall over a very short distance (about 5 mm) thereafter
the pore water pressures inside the tubes are practically constant across the width
of the tube. Pore water pressure increases smoothly along the axis of the tube,_
reaching a maximum just below the tip of the tube. This maximum appears to
occur at grater depths in thick walled tubes (D/t=10). For thin walled tubes
(D/t=40), the maximum occurs almost at the same level as the tip. There is a
substantial incfease in pore water pressure below the tube but these fall off
monotonically with distance below the tube. The maximum values of pore water

pressure on the centroidal axis is about 0.45 N/mm2 for the thickest tube
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(D/t=10) and 0.40 N/mm2 for thinner tubes (D/t = 20 and 40). It should be.
noted however that very substantial increases in in pore water pressure occur just
below the cutting shoe of the sampling tube, although these are fairly localised.
Outside the tube (excluding the volume of soil beneath the sampler) the rise in
pore water pressure is small. In a continuous sampling operation therefore, it
seems that a rise in pore water pressure of 0.4 N/mm2 can be expected in the
soil samples over most of the volume. The high pore water presure gradients at
the sample edges has significant consequences because of pore water migration
and consolidation during storage and the inevitable delays before testing can

commence.

TEST SERIES TS2 : ROUGHNESS OF THE SAMPLER.

In this second test series (TS2), the friction specified to the inner and
outer side of the sampler is varied by specification of an adhesion factor o
where :

Cuse = a Cu (4.2)

Cuge : undrained shear strength of the slip elements.
Cu : undrained shear strength of the soil.
o . adhesion factor, 0 ¢ o ¢ 1 .
All other parameters (diameter, thickness anc length of the sampling tube)

were kept constant as well as the angle of cutting edge of the sampler.

Load— displacement relationship.

Fig. 4.35 depicts the load displacement curve showing the effect of
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roughness of the sampling tube. Fig. 4.35 shows the results for four cases
smooth sampler, smooth at inner side and rough at outer side (Outside Slip
Elements, OSE), rough at inner side and smooth at outer side (Inside Slip
Elements, ISE), and, finally, rough sampler (slip elements at both sides ISE and
OSE).

Friction specified in all these cases is specified to be equal to 0.5 Cu (o = 0.5)
since our concern here is just to see the effect of using or not using slip
elements on the load— dislacement curve. It is worth noting that failure loads for

rough samplers are approximately twice those for smooth samplers.

Displacement field in_the vicinity of the sampler,

Fig. 4.11 shows the displacement field in the vicinity of the sampler at the
elastic state ( the load level is about 4 KN). Generally it was found that at this
stage hardly any distortion takes place and the effect of roughness of the sampler
on the soil response is not visible. In the ultimate state, Fig. 4.36 to 4.39 where
the load level was about 11 KN, it can be seen that when soil—sampling tube
interface is smooth, soil is dragged down very little and the displacement close to
the sampler wall is similar to that at the centerline. The top surface of the
sample remains horizontal. However, when the sampler wall is rough, the amount
of soil that is dragged down with the sampler is very dependent on the degree of
friction specified and the top surface of the sample is no longer horizontal. The
largest downward displacement of the sample occurs when the inner side of the
sampler wall is perfectly rough; that is « = 1.0 . But in this case (Cuge = Cu)
the top surface of the sample remains horizontal (the displacements at the
centerline and close to the sampler wall are similar and are nearly equal to the
displacement prescribed to the sampler (1.5 mm) ). However, with a = 0.5,
downward displacements are smaller than the previous case but the top surface is

no longer horizontal. This is due to the fact that downward displacements close
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to the sampler wall are larger than those at the centerline. Moreover, the
curvature of the top surface is more pronounced close to the sampler wall than
at the centerline . For the outer side of the tube, when a = 0.0 very little
downward displacement of the soil outside the sampler takes place, but in all
other cases (o = 0.5 and 1.0) soil in the vicinity of the sampler is displaced

downwards close to the sampler wall. Far from the sampling tube (about 130

mm), the soil does not move significantly.

Growth of zones of failure,

Fié. 4.40 to 4.45 show the growth of failure zones at various stages of
penetration of the sampling tube into soil. The propagation of failure zones
depends on the friction being specified at the soil—sampling tube interface. For a
perfectly smooth sampler, zones of failure propagate from the edge of the
sampling tube and develop ahead of the sampler. The rate of propagation is slow
and at a displacement of 1.5 mm, the zones of failure are localised just
underneath the sampler wall and do not reach the centerline. For the rough
sampler, six cases were studied depending on the degree of friction being
specified at either inner or outer side of the sampler. We distinguish between
the frictional constants for the inner and outer surfaces by the use of subscripts i
and o, respectively.

In the first case (oi = 0.5, oo = 0.0) zones of failure initiate at the inside slip
elements and the region close to the tip of the sampler and are generally dragged
down with the tube until all the slip elements fail as well as the soil ahead of
the sampler ( at a vertical displacement of the tube of 1.0 mm). Zones of failure
reach the central part of the sample at very early stages of penetration (d=0.3

mm). It is worth noting that in this case the soil outside the sampling tube

remais largely constant.
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In the second case (ci = 0.0 and oo = 0.5) the outside slip elements start to

fail first followed by the area underneath the sampling tube. At a tube
displacement of 1.5 mm, the area affected by the zones of failure is smaller than
the previous case even at d=1.0 mm. The zone of failure does not reach the
central part of the sample.

In the third case (¢i = oo = 0.5) where some friction is specified at both inner
and outer sides of the sampling tube, the rate of propagation of zones of failure
is similar to the first case (i = 0.5 and a0 = 0.0).

In the fourth case (i = oo = 1.0) which represents the perfectly rough
sampling tube, it can be seen that, at d=1.5mm, the zones of failure occupy the
largest area among all other cases. Failure occurs in whole region underneath the
sample and reaches the centerline into the sampler, and also the domain outside
the sampler. It is worth noting that in this case the inside slip elements do not
all fail during the process of pushing the sampling tube.

The fifth (i = 1.0 and oo = 0.5) and the sixth (o1 = 0.5 and a0 = 1.) cases
are similar to the previous case but the regions where failure occurs are smaller.
In conclusion, it is worth noting that the propagation of zones of failure depends
greatly on the friction developed at the sampler—soil interface. The largest zones
of failure occur for the roughe tubes. As might be expected, friction at the inner
side of the sampler largely governs failure in the sample and directly below the

sampler whereas friction at the outer side affects the soil outside the sampler.

Maximum shear_ stress contours.

Fig. 4.52 to 4.57 show the maximum shear stress contours at the ultimate
state (d=1.5 mm, F=12 KN). The value of (o1~ 03)/2Cu decreases across the
width of the tube from the sampler wall to the middle third of the sample,

reducing from 1.0 to 0.5 (in cases where oi or oo are greater than zero) and
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from 1.0 to 0.2 in all other cases (ai or ao ¢ 0.5). Similarly, the value of
(01— 03)/2Cu is equal to 1.0 in the soil directly below the sampler. This zone of
failure tends to extend to the bottom of the sample when o increses from 0.0 to
1.0 and, in general, zones of failure are larger in the sample amd the soil below
the sampler for the perfectly roughe tube. Outside the sampler (excluding the
volume of the soil beneath the sampler) it can be seen that zones of failure
initiate close to the edge of the sampler and extend to the area along the the
outer side of the sampling tube when o« is increased from 0.0 to 1.0. The
maximum shear stress contours decrease smoothly away from the sampling tube
reducing to 0.2 at 160 mm from the sampler for co = 0.0, 190 mm for

oo = 0.5 and, finally, 200 mm for co = 1.0

Mean_effective stress contours.

Fig. 4.58 to 4.63 depict the mean effective stress contours at the elastic
state ( d=0.1mm ). Pore water pressures inside the tube are practically constant
across the width of the tube. They increase smoothly along the axis reaching a
maximum of 0.1 N/mm2 at the bottom of the sample, except for two cases
(where no inside slip elements are used, i.e o = 0.0) where pore water pressures
are concentrated in a narrow area at the bottom Qf the sample reaching a
maximum of 0.08 N/mm2. Outside the sampler, the rise in pore water pressure is
small.

Fig. 4.64 to 4.69 show the mean effective stress contours at the ultimate state
(d=1.5mm). The curves show high pore water pressure gradients normal to the
wall over a short distance (about 5 mm) in the cases where oi = 0.5 . Inside
this zone, the pore water pressures inside the tube are practically constant across
the width of the tube. Pore water pressure increases along the axis of the tube

reaching the maximum at the bottom of the sample in rough tubes. However, for
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frictionless samplers, pore water pressures rise only at the bottom of the sample
at the same level as the cutting shoe. The maximum of the pore water pressures
on the centroidal axis is about 0.3 N/mm2 for the smooth tube and 0.5 N/mm2
for the roughe tube. It should be noted however that substantial increases in pore
water pressures occur just below the cutting shoe of the sampling tube reaching a

maximum value of —1.0 N/mm2. Outside the sample, no significant rise in pore

water pressure takes place.

TS83: THE LENGTH TO _DIAMETER RATIO (1/D) OF THE SAMPLING TUBE

Displacement field

Fig. 4.70 shows the displacement field in the vicinity of the sampling
tube at the ultimate state (d=1.Smm). It can be seen that the soil displacement
increases as the length of the tube increases . For instance, when the sampling
tube is pushed downwards by 1.5 mm, the soil sample is dragged down by
0.7 mm for the shortest tube (L=100mm = D), 0.8 mm for L =200 mm

(L/D = 2) and 1.45 mm for L = 400 mm (L/D = 4). The plots show also
high gradients of displacement normal to the wall over a very short distance.

These high gradients of displacement tend to decrease as L/D ratio increases.

Growth_of zones of failure.

Fig. 4.71 and 4.72 show the growth of zones of failure at various stages
of penetration of the sampling tube. Generally zones of failure initiate close to

the outside tip of the tube and are dragged down with the sampler. For the
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outside slip elements, the growth of zones of failure is similar for all L/D values

and is complete at a tube displacement of 0.2 mm. However, for the inside slip
elements, the zones of failure grow quite differently for different L/D values. For
instance, failure zone is complete at d = 0.2 mm for L/D =1, at d = 0.5 mm
for L/D = 2 and at d = 1.45 mm for L/D = 4. Consequently, disturbances in

the outer third of the sample increase as L/D ratio decreases.

Vertical stress contours.

Fig. 4.73 and 4.79 show the vertical stress distribution in the elastic state
(d= 0.1 mm corresponding to a load level of 6 KN). The vertical stresses inside
the tube are practically constant across the width of the tube. Vertical stresses
increase along the axis of the tube, reaching a maximum just below the tip of
the tube. The maximum values of the vertical stresses on the centroidal axis are
0.1 N/mm2 for L/D = 1 and 0.08 N/mm2 for L/D = 2 and 4. The vertical
stress fall off monotonically with distance below the tube. Outside the tube, the
rise in vertical stresses is small. In the ultimate state ( at d=1.5 mm and a load
level of 12 KN), Fig. 4.74 and 4.80 show high vertical stress gradients normal to
the wall over a short distance for L/D = 1 and 2 whereas these high gradients
of vertical stresses do not appear for L/D = 4. The maximum values of vertical
stresses along the axis of the tube are 0.2 N/mm2 for the §hortest tube (L/D=1),
0.4 N/mm2 for L/D = 2 and finally 0.5 N/mm2 for L/D =4. Again, outside the
sampler, the rise in vertical stress is small.

Mean effective stress contours.

Fig. 4.77 and 4.83 show the mean effective stress contours in the elastic
state. Pore water pressures are constant across the width of the tube and increase
along the centroidal axis reaching a maximum at the bottom of the sample. In

the ultimate state, Fig. 4.78 and 4.84 , the values of pore water pressure
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increase with increasing length of tube. For L/D = 1, the maximum pore water

pressure is 0.3 N/mm2 and for L/D = 4, the maximum pore water pressure is

0.5 N/mm2.

TS4: CUTTING SHOE ANGLE.

The effect of the cutting shoe angle is investigated in this section. The
values of the cutting shoe angle used are o = 90° (flat edge) and 20° (sharp
edge). Smaller values for o were not considered in order to avoid the severe
distortions that may arise in the finite elements surrounding the tip of the
sampler during loading, due to their very small aspect ratio (thickness /length).
The main results ( Fig. 4.85 to 4.92 ) show that the differences in soil behaviour
using flat and sharp edges are localised in the area surrounding the tip of the
sampler. They are summarised as follows:

— Zones of failure are larger for the flat edged sampler than sharp edged
samplers.

— The maximum value of vertical stress is 0.8 N/mm2 for the flat edged sampler
and 0.6 N/mm?2 for the sharp edged sampler.

— The maximum pore water pressure is 1.0 N/mm2 for the flat edged sampler
and 0.6 N/mm2 for the sharp edged sampler.

Consequently, it can be seen that a sharper cutting shoe angle reduces soil

disturbance.

Discussion of the results:

The parameters having the greatest effect on sampling disturbance of clay

samples during sampling operation have been investigated . It was found that an
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increase of effective vertical stress along the centroidal axis of the sample of 0.1
N/mm2 (1 Cu ) for the smooth sampler and 0.4 N/mm2 ( 4 Cu ) for the
perfectly rough sampler. The effective vertical stresses tend to increase from 4Cu
with a sampler length of 200 mm (L/D = 2, D = 100 mm ) to 5 Cu with a
sampler length of 400 mm ( L/D = 4 ). In the area just below the tip of the
sampler, there is a substantial increase in effective vertical stresses due to the
thickness and geometry of the cutting shoe showing clearly their effect on
sampling disturbance duriné the process of pushing the tube into the soil.

Soil disturbance, as described by the maximum shear stress decreases towards the
centre of the sample showing the effect of friction developed at the soil/sampler
interface. This friction results in severe shearing of the outer third of the sample.
The largest sheared zones are produced by the roughest tubes which verifies
Hvorslev's statement that " the inside wall friction is the most important single
source of disturbance during the sampling operation (27)n.

Analyses conducted on samplers with flat edged tubes and sharp edged tubes
indicated no significant effect of the cutting shoe on the stress or pore water
pressure changes at the centerline.

Pore water pressure increases with depth in the central part of the sample
reaching the value of 0.45 N/mm2 ( 4.5 Cu ) at the bottom of the rough
sampler and 0.4 N/mm2 ( 4 Cu ) for the smooth sampler. High pore water
pressure gradients develop close to the sampler wall over a short distance . Pore
water pressure tends to decrease from the sides to the central portion of the
sample. The high pore water pressures at the sainpler edges may have significant
consequences because of pore water migration and swelling during storage and
other delays before laboratory testing. The failure zones within the sample initiate
generally close to the edge and are gradually dragged down with the tube.
Friction simulation tests reveal a tendency for the failure zones to approach the
middle of the sample at early stages of penetration for rough tubes. Generally,the

results show that the highest degree of disturbance occurs with rough thick
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tubes.

4.3.2 Effective stress analysis

This section is concerned with the effect of the stress history of clay soils,
modelled as associated modified Cam clays, on sampling disturbance. In all cases,
the diameter to thickness ratio (D/t) of the sampling tube is assumed to be 20.
The fundamental parameters of the clay analysed in these examples are as
follows:

A= 02 k=005 »= 03 e= 10 M= 1.0 (for the soil)
M = 0.5 (for the slip elements)

The in situ stresses are:

Initial pore water pressure uy = —0.1 N/mm2

0, = 0 = 05 = 0.1 N/mm2

The stresses are constant throughout the domain surrounding the sampling tube.

Discussion of the results.

Two analyses of soils subjected to sampling were carried out using the
CRISP program. The sampling tube was pushed into two clays having different
overconsolidation ratios ( OCR = 1.5 and OCR = 10.0 ).
Until yielding occurs ( during the process of pushing the sampler into the clay

soil ) the soil history, as expected, has no effect on the soil response.
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Effective vertical stress contours.

Figs 4.93 and 4.99 show the effective vertical stress contours at the elastic
state. It can be seen that the effective vertical stress remains at 0.1 N/mm2 over
the volume of the sample but increases rapidly to 0.14 N/mm2 at the sampler tip

level. This increase of effective vertical stress falls off below the sampler .

Pore water pressure contours,

Figs 4.95 4.101 show the pore water pressure contours at the elastic state.
The pore water pressure increases smoothly along the centroidal axis of the
sampler reaching the value of —0.02 N/mm2 ( 0.2 ug ) at the same level as the
tip of the sampler. This value of pore water pressure appears to be constant
ahead of the sampler. Just below the tip of the sampler, a decrease of pore
water pressure takes place reaching the value of —0.2 N/mm2 ( 2 ug ). Outside

the sampler, the rise in pore water pressure is small.

Deviator_stress contours.

Figs 4.97 and 4.103 show that a deviator stress concentration of clay
occurs in the area just below the tip of the sampler where the deviator stress is
equal to the mean efective stress p (0.1 N/mm2). Elsewhere, the value of the
deviator stress is is 0.02 N/mm2 throughout the volume of the sample although it

increases to 0.05 N/mm2 in the soil ahead of the sampler.

Effect of soil history in the plastic_state.

In the plastic state, after extensive yielding of the soil takes place, the
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soil history has a significant effect on the soil response.

Effective stress contours,

Figs 4.94 and 4.100 show that the value of the effective vertical stress
( o, ) over the volume of the sample remains equal to 0.1 N/mm2 (the initial
effective  vertical stress ) for both lightly overconsolidated and highly
overconsolidated clay samples. Effective vertical stress increases rapidly at the
bottom of the sample reaching 0.14 N/mm2 for the lightly overconsolidated soil
but remaining reasonably constant ahead of the sampler whereas it reaches 0.5
N/mm2 for the highly overconsolidated sample but falls off with distance below
the sampler. The curves show high effective stress gradients along the outer side
of the sampling tube. The maximum value of effective vertical stress reached in
this zone is 0.19 N/mm2 for the lightly overconsolidated clay and 0.65 N/mm2

for the highly overconsolidated clay sample.

Pore water pressure contours,

Figs 4.96 and 4.102 show that for the lightly overconsolidated clay, the
pore water pressure increases along the centroidal axis of the sampler down to
the middle of the sample reaching the value of 0.1 N/mm2 ( up ) and then
remains constant in the lower half of the sample and for a distance of about D/2
below the sampler. However, for the overconsolidated clay sample, the pore water
increases smoothly along the axis of the sample reaching the maximum of 0.4
N/mm2 ( 4 ug ) almost at the same level as the tip of the sampler. The pore
water pressure falls off with distance below the sampler. A very large negative
pore water pressure develops locally just below the edge of the sampler reaching

the value of of —1.3 N/mm2 ( 13 ug ) for the overconsolidated clay sample.

These large negative pore water pressures are a result of severe shearing of the
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clay soil.

Deviator_stress contours.

Figs 4.98 and 4.104 depict the deviator stress contours of lightly
consolidated and overconsolidated clay soil at the plastic state. The deviator stress
q is 0.07 N/mm2 in the sample for the lightly overconsolidated clay whereas it is
0.1 N/mm2 for an overconsolidated clay. For the lightly overconsolidated soil, at
the bottom of the sample, the value of q is 0.08 N/mm2 . The deviator stress
increases to 0.3 N/mm2 remaining constant for a distance of about D/2 ahead of
the sampler for the overconsolidated soil. The maximum shear stress occurs on
the outer side of the sampler where q is 0.1 N/mm2 for the lightly

overconsolidated sample and 0.35 N/mm2 for the overconsolidated sample.

Growth _of zones of failure.

Figs 4.105 and 4.106 show that, in general, the zones of failure within
the sample initiate close to the sampler tip and propagate along both sides of the
sampling tube and into the soil below the sampler. The zones of failure reach
the central part of the sample at earlier stages of penetration of the tube ( d =
4.0 mm ) for lightly overconsolidated clay sample than for the highly
overconsolidated clay ( d = 10.0 mm ). This is due to the fact that the yield
stress of a highly overconsolidated soil is much higher than that of a lightly

overconsolidated soil with the same value of initial stress.

Total and effective stress paths

The effective and total stress paths of 3_ successive elements ( elements
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47,57 and 67, Figs 4.2 ) near the bottom of the sampler along the centroidal

axis are shown in Figs 4.107 to 4.112 in ( q — p ) space for the two cases of

lightly overconsolidated and highly overconsolidated clay samples. These plots show

that these 3 elements behave similarly and hence only the results for element 47

are discussed.

Highly overconsolidated clay sample.

Fig. 4.107 shows the effective and total stress paths followed by a highly
overconsolidated ( OCR = 10 ) clay sample during the sampling operation. The
total stress path shows that the deviator stress q increases during loading of the
sample reaching a maximum value of 0.35 N/mm2. The effective stress path is
vertical at the begining ( elastic behaviour ) until it intersects the yield surface.
The path then passes through successive states of yielding until reaching a peak (
q = 0.37 N/mm2 ) then continuous contraction of the yield surface ( softening )

occurs until the critical state line is attained.

Lightly overconsolidated clay sample.

Fig. 4.108 shows the effective and total stress paths followed by a lightly
overconsolidated clay sample ( OCR =1.5 ) during the sampling operation. The
total stress path shows that the deviator stress increases during loading until it
reaches a maximum value of about 0.08 N/mm2. The effective stress path is
vertical at the begining ( elastic state ) until it intersects the yield surface. The
path then passes through successive states of yielding before it attains the failure
state represented in Fig. 4.108 by the critical state line of slope M. The clay
hardens in this case. The hardening behaviour of lightly overconsolidated clay

i i i i surfaces up to
sample is characterised by continuous expansion of the yield )

collapse.
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Effect of disturbance on soil behaviour.

The effect of sampling disturbance of these samples on their subsequent
stress— strain behaviour and pore water pressure response to loading is investigated
in this section by analysing their behaviour in their original states and in their
disturbed states.

In this analysis, once the sampling simulation is finished, it is assumed that no
further disturbance occurs except that the insitu shear stresses are removed. The
samples theoretical response to conventional triaxial testing in compression ( by
means of a computer program listed in appendix ) is then determined. This
response is compared with that predicted for the sample in its original state. It
should be noted, Fig. 4.117, that an ideal unloading of the sample has been
considered in this section; that is the mean effective stress at the end of the
sampling operation is assumed to be the actual mean stress of the sample (
minimum disturbed state ) before the start of the triaxial test. However, in
practice, the mean stress decreases due to storage, transportation, etc before any

testing commences.

Highly overconsolidated clay sample.

Stress— strain_relationship.

Fig. 4.115 shows the stress—strain behaviour of a highly overconsolidated
clay sample at its original state ( OCR = 10 ) and after sampling. It can be
seen that the stiffness of the sample in its disturbed state is 2.5 times that of its
original state. This is due to the fact that during sampling the mean effective
stress increases as the sample is sheared and hence the subsequent stiffness of the

highly overconsolidated clay sample increases. This result does not accord with
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practical experience and the discrepency may be attribute to several causes
including the reduction in effective stress which normally occurs during the delay

between sampling and testing and the destruction of the fabric of real soils during

shearing.

Pore water. pressure response.

The pore water pressure predicted during undrained triaxial compression of

a disturbed sample also differs from that for the soil in its original state ( OCR

= 10 ), Fig. 4.116 . For instance, for the highly overconsolidated clay, the
pore pressure increases up to a peak ( u = 0.09 N/mm2 ) then decreases until
reaching a constant negative value ( u = —0.11 N/mm2 ), ie the values of the

pore water pressure coefficient at failure Ag are —0.3 ( u=—10.11 ) and 0.26 ( u
=0.09 ), respectively . A negative value of Af means that the tendency to dilate
is strong enough to reduce the pore pressure to a level below that at the start of
the compression test. However, after the sampling operation and testing of the
sample in the compression test, a rather different pore water pressure response is
obtained, Fig. 4.116 . The pore water pressure is now similar to that of a lightly
overconsolidated clay sample where the pore pressure increases continuously up to

a peak value and the pore pressure coefficient at failure Ag is 0.31.

Lightly overconsolidated clay sample.

Stress— strain_relationship,

Fig. 4.113 shows the stress— strain behaviour of the clay in its original

state ( OCR = 1.5 ) and after sampling. Fig. 4.113 shows that the deviator
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stress increases continuously up to failure reaching the value of 0.08 N/mm2

This means that the soil hardens. The plots show also a slight decrease in the

stiffness of the disturbed soil.

Pore_water pressure response.

Fig. 4.114 shows that the the pore water pressure increases continuously
during loading for both cases ( original and disturbed states ) . The difference
between the two cases is that the maximum value of the pore water pressure for
the original sample is 0.05 N/mm2 ( Af = 0.6 ) whereas it is only 0.03 N/mm2

( Af = 0.38 ) for the disturbed sample.

4.4 CONCLUSION

In this section, an investigation into the parameters having the greatest
effects on sampling disturbance of clays during the sampling operation has been
carried out. The numerical results are presented in two stages; first, a detailed
study of the convergence of the solution process was carried out. Secondly, a
parametric study which included the effects of sampler geometry ( Diameter to
thickness ratio (D/t), angle of cutting shoe, etc ), roughness of the sampling tube
and the soil history on the degree of disturbance was described . Observation of
the propagation of yielding in clay samples during the process of pushing the
sampler into soil has been helpful for the undcrstanding of failure mechanisms.
Contours of the stress components and stress invariants in the soil mass were also
plotted in elastic and plastic states. Soil disturbance, as described by the
maximum shear stress, decreases towards the centre of the sample. Friction
simulation tests by means of the so—called slip elements show that the highest
degree of disturbance occurs for the roughest tubes. This agrees well with

Hvorslev's statement that " The inside wall friction is the most single source of
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disturbance during the sampling operation " (27),

Pore water pressure increases with depth along the centroidal axis of the sampler
reaching an average of 4 Cu. The maximum pore water pressures develop close
to the tip and this suggests that during storage water would migrate from the
sides ( disturbed ) to the central portion of the sample ( relatively undisturbed ).
Negative pore water pressures occur in some soils as a result of severe shearing
of the soil during the sampling operation but the highest pore water pressures are
generated if thick rough sampling tubes are used.

Using the simple associated Cam clay model, it was found that highly
overconsolidated soils are particularly susceptible to the effects of sampling

disturbance although even lightly overconsolidated soils are not immune to disturbance.
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Fig. 4,16 Growth of failure zones at various stages of penetration , D/ t = 40
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Fig. 4,17
Vertical stress
contours in

elastic state
(d=0.1mm), D/t = 10

e 2m
Key:
1 0.01 N/mm2
2 0.02
3 0.03
4 0.04
5 0.05
6 0.06
s v 7 0.07
8 0.08
9 0.09
10 0.1
1 1
1\ / Fig. 4,18
Vertical stress
22— .
contours 1n
N . elatic state
—_— (@0.1mm ), D/t = 20
‘_\\
/ \
: Key:
1 0.01 N/mm2
2 0.02
3 0.03
4 0.04
5 0.05
6 0.06
7 0.07
8 0.08
9 0.09
10 0.1




PUNSOEUp—

137

Fig. 4,19
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Fig. 4.21
Vertical stress
— contours at
ultimate state
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Fige 423
(01=-03)/2Cu contours
in elastic state
(d=0,1mm), D/t = 10
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Fig. 4,27
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Fig. 4,28

(01-03)/2Cu contours
at ultimate state
(d=1.5mm), D/t = 40
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Fig. 4,29
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Fig., 4.31
Mean effective stress
contours in
elastic state
(d=0.1mm), D/t = 40

Key:
1 0.02 N/mm2
2 0.04
3 0.06
4 0.08
5 0.10

Fig. 4.32
Mean effective stress
contours at
ultimate state
(d=1.5mm), D/t = 10
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Fig., 4.33
Mean effective stress
contours at ultimate

state
(d=1.5mm), D/t = 20

Key:
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Figo 4'34

Mean effective stress

contours at ultimate
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(d=1.5mm), D/t = 40
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Fig. 4e46
(o1=03)/2Cu contours
in elastic state
(d=0.1mm), ai=0.0 a@0=0.C
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Fig. 4.47
(01=03)/2Cu contours
in elastic state

(d=0.1mm)
ai = 0,5 a0 = 0.0
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Fig. 4.48
(01-03)/2Cu contours
in elastic state

(d=0.1mm)

ol = 0.0 00 = 0.5
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Fig. 4.49
(01-03)/2Cy contours
in elastic state

(d=0.1mm)
ai =10 a0 =1.0

Key:

1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.6
7 0.7
8 0.8
9 0.9

10 1.0
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Fig., 4.50
(01=03)/2Cu contours
in elastic state

(d=0,1mm)

ol = 1.0 oo = 0.5
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Key:
1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
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' 7 0.7
8 0.8
9 0.9
10 1.0

Fig. 451

(o1-03)/2Cu contours
in elastic state
(d=0.1mm)

ai=0.5 a0 = 1.0

Key:

1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
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9 0.9
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Fig. 452
(01-03)/2Cu contours
at ultimate state

(d=1.5mm)
ai = 0,0 ao = 0.0
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Fig. 453
(01-03)/2Cu contours
at ultimate state

(d=1.5mm)
oi = 0.5 ao = 0.0

Key:

1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.6
7 0.7
8 0.8
9 0.9
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Fig. 4. 54
(01-03)/2Cu contours

at ultimate state
(d=1.5mm)
ai = 0,0 ao = 0.5

7§
o
<

QWO NOWUL S WN
HOOOOOOOOO
O VWO NOWUMLE WN

—

~

Fig. 4455
(01-03)/2Cu contours

at ultimate state
(d=1.5mm)
al = 1,0 oo = 1,0

Key:
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5 0.5
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7 0.7
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Fig. 4.58
Mean effective siress
contours in
elastic state
(d=0.1mm)
ai = 0,0 oo = 0.0
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Fig. 4.59

Mean effective stress
contours in elastic
state (d=0,1mm)

ai = 0,5 a0 = 0.0
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Fig. 4460
Mean effective stress
contours in elastic
state (d=0,1mm)
ai = 0.0 a0 = 0.5
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Fig. 4.61

Mean effective stress
contours in elastic
state (d=0.1mm)

ol = 1.0 ao = 1.0

Key:
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Fig. 4.62
——
Mean effective stress
T~ contours in elastic
T state (d=0.1mm)
S—— A ol = 0-5 ao = 1,0
—
r__——/
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6 Key:
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Fig. 4.63
: — Mean effective stress
—_ contours in elastic
—_ state (d=0,1mm)
S ai = 1,0 ao = 0.5
Key:
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Fig. 4464
Mean effeciive stress
contours at ultimate
state (d=1.5mm)
ai = 0.0 oo = 0.0

:
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| Key:
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Fige 4.65

Mean effective stress
contours at ultimate
state (d=1.5mm)

ol = 0.5 a0 = 0.0
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Fig, 4,66
Mean effective stress
contours at ultimate
state (d=1.5mm)
ai = 0,0 oo = 0.5

Key:
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Fig. 4.67

2— ] Mean effective stress

contours at ultimate
state (d=1.5mm)
ol = 1.0 a0 = 1,0

Key:

1 0.1 N/mm2
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Fig. 4.68
Mean effective stress
contours at ultimate
state (d=1.5mm)

5~—~\ ai = O.S a0 = 1.0

' Key:
1 0.1 N/mm2
2 0.2
3 0.3
s 4 0.4
5 0.5
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Fig., 4.69
— Mean effective stress
contours at ultimate
S

state (d=1.5mm)
C(i = 1.0 a0 = 0.5

Key:
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Fige 4.87
Vertical stress
contours in elastic
state (d=0.1mm)

Cutting shoe angle= 20O
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Fig. 4.88
Vertical stress
contours at ultimate
state (d=1.5mm)

Cutting shoe angle= 20°
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Fig. 4.89
(01-03)/2Cu contours
in elastic state
(d=0,1mm)
Cutting shoe angle= 20°
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Fig. 4.90
(o1-03)/2Cu contours
at ultimate state
(d=1.5mm)
Cutting shoe angle= 20°
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Fig. 4,91
Mean effective stress
contours in elastic
state (d=0.71mm)
Cutting shoe angle= 20°
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Fig. 4.92
Mean effective stress
contours at ultimate
state (d=1,5mm)
Cutting shoe angle= 20°
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Fig. 4.9%
Effective vertical
stress contours

CCR = 10
Elastic state
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Fig. 4.94
Effective wertical
stress contours

CR = 10

Plastic state
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Figa 4.95
Pore water pressure

contours , OCR = 10
Elastic state
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Fig. 4.96
Pore water pressure

contours , OCR = 10
Plastic state
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Fige 4.97
Deviator stress
contours , OCR = 10
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CHAPTER 5

GENERAL CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

The work presented in this thesis describes a numerical ( Finite Element

Method ) analysis of sampling disturbance in clay soils during the sampling
operation. A review of previous theoretical and experimental studies illustrated the
need for such an investigation since very few numerical studies have been
reported in the literature. From the results obtained in this study it is shown that
the factors having the greatest effects on sampling disturbance include sampler
geometry (Diameter to thickness ratio (D/t), angle of cutting shoe, etc. ),
roughness of the sampling tube and soil history. Simulation of friction at the
sampler/soil interface was made possible by the use of slip elements consisting of
ordinary rectangular eight noded elements with aspect ratios ( Length/thickness )
of approximately 1/30 and specification of an adhesion factor o to model the
reduced strength of the interface .
A total stress analysis under (undrained conditions using the Von Mises criterion
was carried out followed by an effective stress analysis using a  critical state
elastoplastic model. This chapter summarizes the most important conclusions which
have been discussed in the two previous chapters and gives some suggestions for
futur work.

5.1 Conclusions

a) Total stress analysis.

The results obtained in this section are most relevant to highly
overconsolidated soils and the conclusions may be briefly summarized as follows:

1— Rough thick— walled tubes cause the greatest downdrag on samples during
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penetration,

2— Significant shear develops between rough samplers and the surrounding soil
resulting in greatly increased penetration resistance and considerable disturbance to
the soil.

3— An increase in tube thickness results in increased disturbance to the soil, as
defined by the area of yielded soil.

4— In general, yielding of the soil initiates close to the sampler tip and
propagates along both sides of the sampling tube and into the soil below the
sampler. Eventually, the yield zone reaches the central part of the sample ahead
of the sampler tube.

5— The pore water pressure increases with depth along the centroidal axis of the
sampler reaching a maximum value for rough thick tubes of 4 Cu. The maximum
pore water pressures develop close to the tip and presumably water would migrate
from the sides to the central portion of the sample. Negative pore water
pressures may also develop locally as a result of severe shearing of the soil

during the sampling operation.

b) Effective stress analysis.

This section was concerned with the effect of stress history of clay soils on
sampling disturbance.
1— In the elastic state, the stress history has no effect on the soil response
during the sampling operation.
2— In the plastic state, the effect of stress history on soil response is significant.
For instance, the stress—strain behaviour and pore water pressure response are
quite different for a highly overconsolidated clay in its original state and after
sampling . Smaller differences in pore water pressure response and stress— strain

behaviour were observed for a lightly overconsolidated clay.
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5.2 Recommendations for future work.

Based on the findings of the present study, the following suggestions are
made for further investigation.
1— To study further the problem of sampling disturbance using results obtained
from instrumented tests on carefully controlled sampling operations.
2— To carry out further parametric studies for a wider range of soil properties
and stress histories ( perhaps using more sophisticated soil models ).
3— To undetake a more rigorous treatment of the problem by means of a large
deformation algorithm to trace the response throughout the sampling process.
4— To extend the scope of the study to incorporate the effects of subsequent

extrusion and storage on soil properties.
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PROGRAM CLAYS

Ahkhkkkhkhkhhhhhhhhhhkhkhkhhkhhkhhkhkhkhkhhrkhkrhkhhrhhkkkkk*
*

o

C

c * CLAYS

c * THIS PROGRAM SIMULATES SOIL BEHAVIOUR

c % UNDER DRAINED AND UNDRAINED CONDITIONS.

c * TEST CONDITIONS. IT GIVES THE EFFECTIVE

c % AND TOTAL STRESS VECTORS FOLLOWING

c * A STRAIN PATH.

c * MODEL: "ASSOCIATED MODIFIED CAM CLAY"

c * THE YIELD SURFACE IS ELLIPTIC AND

c = THE FLOW RULE IS ASSOCIATED.

C *

ChkhkhkhkhkkkhhkhkhhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkhkrkhkhkrkrkXAkAIXIXAXAXAR*hkkrrrkkrkkkxx

C

COMMON/PA/AX(4) ,BX(4),DX(4,4),DPX(4,4),DA(4),BD(4),DABD(4,4)
COMMON/PB/AMDA, CAPA, PS,EO0,ES, PHI,DEVP, DEDP, EE
COMMON/PC/ESTRS (4) ,STRES (4) ,STRAN (4) ,SS(4) ,SN(4)
COMMON/PD/PO,EM, PP,QQ, IYILD, NLOAD, ILOAD
COMMON/PE/IDRAN,NYILD(10),NLOOP, NPRINT

o

Ckk*x*% READ DATA**%%

C

READ (5, *) IDRAN
READ(5,*) NLOAD
READ(5,*) (STRES(I),I=1,4)
READ(5,*) (SN(I),I=1,4)
WRITE(6,112) SN

112 FORMAT(1P4E11.2)
READ(5, *) AMDA,CAPA,PS,EO0,PHI
READ (5, *) PO

C**x*x INITIALIZATION OF VARIABLES #**%%

DO 5 I=1,4
STRAN(I)=0.0
ESTRS (I)=STRES (I)

5 CONTINUE
EPSIV=0.0
EPSID=0.0
DEVP=0.0
DEDP=0.0
QQ0=0.0
PWP=0.0
EE=EO
PI23=2.0944
EPSH=0.01

TP=(STRES (1) +STRES (2)+STRES(3)) /3.0

P00=PO

NLOOP=10
NPRINT=NLOAD/NLOOP
WRITE (6,820)

WRITE (6,830)

IF (IDRAN.EQ.0) THEN
WRITE (6,840)

ELSE

WRITE (6,845)

ENDIF

WRITE(6,850) AMDA,CAPA,PS,E0,PHI
WRITE(6,860) PO
WRITE(6,870)
PHI=0.01745*PHI



Cx*xx LOOP OVER LOADS

, COMPUTING DEVIATORIC
C * AND MEAN STRESSES.

c
DO 810 IPRINT=1,NPRINT
DO 800 ILOOP=1,NLOOP
QA= (ESTRS (1) ~ESTRS (2) ) **2
OB=(ESTRS (2) ~ESTRS (3) ) **2
QC=(ESTRS (3) -ESTRS (1) ) **2
QOD=6.0*ESTRS (4) *ESTRS (4)
QE=0.5% (QA+QB+QC+QD)
QO=SORT (QE)
PP=(ESTRS (1) +ESTRS (2) +ESTRS (3)) /3.0
C
Cx** PRINCIPAI, STRESSES AND MOHR-COULOMB
CH** COEFFICIENT (M)
C

IF(SN(2).EQ.SN(3)) THETA=0.5236
IF(SN(2).EQ.SN(1)) THETA=-0.5236
STGMA1=PP-2.0%*QQ*SIN (THETA-PI23) /3.0
SIGMA2=PP-2.0*QQ*SIN(THETA) /3.0
SIGMA3=PP-2.0*QQ*SIN(THETA+PI23) /3.0
RATIO=(SN(2)=SN(3))/(SN(1)-SN(3))
EMO=6.0*SIN(PHI)/ (3+SIN(PHI))
EM1=6.0*SIN(PHI)/ (3-SIN(PHI))
EM=(1.0-RATIO)*EM1+RATIO*EMO

C SLOPE=(1.0+RATIO) /3.0
SLOPE=1.0/3.0
ES=3.0%PP* (1.0+EE)*(1.0-2.0%PS) /CAPA

Ck*x* ELASTIC CONSTITUTIVE MATRIX **

DO 10 I=1,4
DO 10 J=1,4

10  DX(I,J)=0.0
CA=ES/ ((1+PS)*(1.0-2.0%PS))
CB=1.0-PS
DX(1,1)=CB*CA
DX (1,2)=PS*CA
DX (1,3)=PS*CA
DX(2,1)=PS*CA
DX (2,2)=CB*CA
DX (2,3)=PS*CA
DX (3,1)=PS*CA
DX (3,2)=PS*CA
DX (3,3)=CB*CA
DX(4,4)=0.5*%ES/ (1.0+PS)

Cxxk* CHECK IF ELEMENT HAS YIELDED

IYILD=1
F=PP*PP-PP*P0+QQ*QQ/ (EM*EM)
POC=PP+QQ*QQ/ (PP*EM*EM)
EPS=EPSH*P0*P0
EPS=ABS (EPS)
IF(F.GT.EPS.OR.F.LT.-EPS) THEN
IYILD=0.0
DO 300 I=1,4
DO 300 J=1,4

300 DPX(I,J)=DX(I,J)

ELSE

EPST=ABS (P0O-POC) /PO
IF(EPSI.GE.0.01) IYILD=2
CALL DPMAT

ENDIF



NYILD(ILOOP)=IYILD

CH %% COMPUTE NEW STRAINS AND STRESSES *%%

DO 210 I=1,4
210 SS(I)=0.0
DO 220 I=1,4
DO 220 J=1,4
SS(I)=SS(I)+DPX(I,J)*SN(J)
220 CONTINUE
DO 240 K=1,4
STRAN (K) =STRAN (K) +SN (K)
ESTRS (K) =ESTRS (K) +SS (K)
240 CONTINUE

**% COMPUTE EFFECTIVE AND TOTAL STRESSES *#*%
*%% COMPUTE PORE WATER PRESSURE **=*

a0O0n

QAD=(SS(1)-SS(2)) **2
QBD=(SS(2)-SS(3)) **2
QCD=(SS(3)-SS (1)) **2
QDD=6.0%SS (4) *SS (4)

QED=0.5% (QAD+QBD+QCD+QDD)
QQODOT=SQRT (QED)
EPDOT=(SS(1)+SS(2)+SS(3))/3.0
IF(IDRAN.EQ.0) GOTO 760
TPDOT=EPDOT

DEVE=3.0*EPDOT* (1.0-2.0%PS) /ES
DEVEP=DEVE+DEVP
EPSIV=EPSIV+DEVEP
DEDE=2.0% (1.0+PS) *QQDOT/ (3.0*ES)
DEDEP=DEDE+DEDP
EPSID=EPSID+DEDEP
EDOT=-(1.0+EE) *DEVEP
EE=EE+EDOT

IF(EE.LT.0.0) THEN

WRITE (6,960)

STOP

ELSE

CONTINUE

ENDIF

GO TO 780

760 CONTINUE
TPDOT=SLOPE*QQDOT
IF(QQ0.GT.QQ) TPDOT=-TPDOT
DEVP=-3.0*EPDOT* (1.0-2.0*PS) /ES

780 CONTINUE
UDOT=TPDOT-EPDOT
PWP=PWP+UDOT
DO 790 I=1,3

790 STRES(I)=STRES(I)+SS(I)+UDOT
STRES (4)=STRES (4)+SS (4)
TP=TP+TPDOT
UDP=PWP/P00O
QDP=QQ/P00
QQ0=QQ
PO=PO+ (1.0+EE) *PO*DEVP/ (AMDA-CAPA)

800 CONTINUE
WRITE(6,920) STRAN(1),STRES(1),ESTRS(1),EE,TP
. ,PP,QQ, PO, UDP,EPSIV,EPSID
WRITE(6,930) STRAN(2),STRES(2),ESTRS(2)
WRITE(6.930) STRAN(3),STRES(3),ESTRS(3)
WRITE (6,940) STRAN(4),STRES(4),ESTRS(4),(NYILD(I),I=1,10),EM



810 CONTINUE

820 FORMAT (20X,36HELASTO-PLASTIC BEHAVIOUR OF CAM CLAY,///)
830 FORMAT (10X,33HN.C. CLAY - Q=ELLIPSE F=ELLIPSE, /)
840 FORMAT (10X, 19HUNDRAINED BEHAVIOUR, //)
845 FORMAT (10X,17HDRAINED BEHAVIOUR,//)
850 FORMAT (4X,7HLAMDA =,1PE10.2,5X,7HKAPPA =
. ,1P10.2,5X,9HPOISSON =,1PE10.2,
5X,6HVOID =, 1PE10.2,5X,5HPHI =,1PE10.2)
860 FORMAT (4X,21HPAST MAXIMUM STRESS =,1PE10.2)
870 FORMAT(//,1HO,'STRAIN  TOT.STRESS EFF.STRESS
. VOID TOT.P EFF.P 0 EFF.PO
Q/PO  U/PO  V-STRAIN D-STRAIN)
920 FORMAT(/,1P12E11.2)
930 FORMAT (1P3E11.2)
940 FORMAT (1P3E11.2,4X,10I1,4X,3HM =,1PE9.2)
950 FORMAT (7HSIGMAl=,1PE9.2,5X,7HSIGMA2=
,1PE9.2,FHSIGMA3=, 1PE9. 2)
960 FORMAT (36H*** NEGATIVE VALUE OF VOID RATIO *%*%)

STOP
END
SUBROUTINE DPMAT
C
C... —_ = e e em em e e e em em e em - - e e e em e em em em em em e ==
C * % THIS SUBROUTINE COMPUTES THE ELASTO-PLASTIC
C CONSTITUTIVE MATRIX
C
C.. - e em e em mm mv ae e em mm mm mm em em em em e em e e em e es  mm wm
COMMON/PA/AX(4) ,BX(4),DX(4,4),DPX(4,4),DA(4),BD(4),DABD(4,4)
COMMON/PB/AMDA, CAPA,PS,E0,ES,PHI,DEVP,DEDP, EE
COMMON/PC/ESTRS (4) ,STRES (4) ,STRAN (4) ,SS(4) ,SN(4)
COMMON/PD/PO,EM, PP,QQ, IYILD,NLOAD, ILOAD
COMMON/PE/IDRAN,NYILD(10) ,NLOOP,NPRINT
C
EM2=EM*EM
C
Cx*% +ev... DERIVATIVES ..... .
C
DP=1.0/3.0
IF(QQ.EQ.00) THEN
DQA=1.5
DQB=1.5
DQC=1.5
DQD=1.5
ELSE
DQA=1.5%* (ESTRS (1) -PP) /QQ
DQB=1.5* (ESTRS (2) =PP) /QQ
DQC=1.5%* (ESTRS (3) -PP) /QQ
DQD=3.0*ESTRS (4) /QQ
ENDIF
C
DPE=PO* (1.0+EE) / (AMDA-CAPA)
DQE=0.0
C

DFP=2.0*PP-P0

DFQ=2.0*QQ/EM2

DQP=DFP

DQQ=DFQ

DFPO=-PP

DFQ0=0.0

DQQP=DQQ/DQP
GAMA=DFPO*DPE*DQP+DFQ0*DQE*DQQ
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AX (1) =DP*DQP+DQA*DQQ
AX (2)=DP*DQP+DOB*DQQ
AX (3)=DP*DQP+DOC*DQQ
AX (4)= DQD*DQQ

BX (1)=AX (1)
BX(2)=AX(2)

BX (3)=AX(3)
BX(4)=AX(4)

**%%  ELASTO-PLASTIC CONSTITUTIVE MATRIX **x%*

DO 30 I=1,4

DA(I)=0.0

DO 20 K=1,4

DA (T)=DA(I)+DX(I,K)*AX(K)
CONTINUE

CONTINUE

DO 50 J=1,4

BD(J)=0.0

DO 40 K=1,4

BD (J)=BD(J)+BX (K) *DX (K, J)
CONTINUE

CONTINUE

DO 70 I=1,4

DO 60 J=1,4

DABD (I,J)=DA(I)*BD(J)
CONTINUE

CONTINUE

BDA=0.0

DO 80 I=1,4
BDA=BDA+BD (I) *AX (I)
CONTINUE

CONST=1.0/ (BDA-GAMA)

DO 100 I=1,4

DO 90 J=1,4
DPX(I,J)=DX(I,J)-CONST*DABD(I,J)
CONTINUE

CONTINUE

IF (IDRAN.EQ.0.0) RETURN
BDSN=0.0

DO 110 I=1,4
BDSN=BDSN+BD (I) *SN(I)
CONTINUE
DAMDA=BDSN#*CONST
DEVP=DAMDA*DQP
DEDP=DAMDA *DQQ

RETURN

END




