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Abstract

One of the requirements for controlled nuclear fusion is the attainment of a 

high enough temperature so that nuclei can ovecome their mutual coulomb repul

sion and fuse, releasing a great deal of energy in the process. To reach the required 

temperatures energy must be fed into the plasma. One method is high frequency 

heating of the plasma using electomagnetic waves, where the incoming wave is 

used to excite some of the many naturally occurring modes present in the plasma, 

which then decay giving up their energy to the plasma.

This project deals with Alfven resonance absorption in a plasma for sup- 

plementry heating of a magnetically confined plasma by extending the paper 

’Alfven Resonance Absorption in a Magnetofluid’ by Diver and Laing. The paper 

is unusual in that it treats not only the Alfven resonance but also the magnetosonic 

resonances which are then taken to be separated in the plasma by a small distance 8 

so that the absorption coefficient is dependent on both of these singularities. In this 

original paper some incorrect modelling assumptions about the magnetosonic singu

larities were made and dealt only with case of small 0, where 0 is the angle 

between the x component of the incident wave vector and the magnetic field.

This thesis extends the work to finite 0 and rederives the subsequent* in the 

paper. This work required the calculation of Bessel functions in which both the 

argument and the order, which were non integer varied as a continuous function of 

0, this part of the project, the numerical simulation of the reflection formula, was a 

significant part of the whole project.



Chapter 1

1. Introduction

In recent years there has been considerable interest in the possibilty of con

trolled nuclear fusion, in particular in the deuterium, tritium reaction

1D 2+]T 3̂ 2He4+n+17.56 MeV,

since this requires the lowest temperature for the reaction to become self sustaining, 

For fusion to occur in the first place the reacting nuclei must have enough kinetic 

ener$y to overcome their mutual Coulomb repulsion and approach sufficiently 

closely for there to be a reasonable probability of fusion . For the D-T reaction 

cross-section to be a maximum we require the particles> thermal energies to be of 

the order lOkeV , this means for fusion we require to maintain a temperature of about 

108if  . The most promising method of achieving fusion is by magnetic confinement 

of the plasma ' this however has many problems .

In (1957) J. D. Lawson showed that in order to get the energy released to be 

greater than the energy supplied , «x>1014 cm~3s where n is the plasma density 

and x is the containment time for the plasma. A temperature greater than 107AT is 

also needed for fusion to be realised. At present JET has not achieved these 

requirements but is within an order of magnitude of these targets.

2. Containment

One of the major problems is in containing the plasma for long enough. There

have been many methods proposed to contain the plasma , but due to the nature of

the plasma the^ are a great many instabilities present in each of these methods .

One of the first methods of containment was to use a cylindrical device where the
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magnetic field increased towards the ends of the device and the particles were 

trapped by a magnetic mirror ( a sketch of the magnetic field in a mirror machine 

is shown in fig 1 ) .

figd)

The problems with this method were that all particles were not trapped but 

that there was a ’loss cone’ defined in velocity space where particles with these 

velocities were able to escape . This made the plasma velocities non-maxwellian 

after these particles had escaped . This caused enhanced electric field fluctuations 

causing more particles to be deflected into the loss cone which aggravated the situa

tion more . All this meant that the simple mirror machine was not a useful contain

ment device .

One solution to this problem is to join the ends of the cylinder to make a torus, 

this removes the need for magnetic mirrors as in the previous method . In fact this 

is the approach used by most workers in the field , the main torroidal containment 

devices are tokamaks and reverse field pinches . A torroidal device requires that 

the magnetic field have both toroidal and poloidal components with the poloidal 

component being provided by a current flowing in the pU ima and the torroidal by 

external coils . The torus is susceptable to a great many instabilities , but these can
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be stabilised in a tokamak better than in other configurations .

3. Heating

The other requirement for fusion is a very high temperature . It was at first 

thought that resistive heating of the plasma would supply the necessary energy to 

the plasma . This current is induced in the plasma by making it the secondary 

winding in a large transformer ( see fig. 2 )

iron core

primary
winding

plasma

(fig 2)

The resistance of the plasma varies with temperature as T~3/2 and with the 

current also being limited due to stability considerations the highest temperature that 

can be reached by ohmic heating is limited to 2-3 keV . So to reach the required 

higher temperatures needed for fusion some auxilliary heating system is required 

either neutral beam injection or radio-frequency heating .
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3.1. Neutral beam injection

Neutral beam injection is the injection of high power beams of neutral hydro

gen atoms , which can cross the containing field due to their neutrality and are then 

ionized and trapped within the target plasma , the energy of these atoms is then put 

into the plasma through collisional processes.

3.2. Radio-frequency heating

The alternative method of heating , that is radio-frequency heating can be split 

up into a further tno sections which use either low frequency electromagnetic fields 

or high frequency electomagnetic waves . The low frequency method depends on 

the timescale of the induced field variations within the plasma being comparable to 

or shorter than the appropriate collisional relaxation time of each of the particle 

species . This causes a significant departure from thermal equilibrium of each 

species which lets energy be transferred irreversibly to the plasma from both the 

oscillatory and non-oscillatory fields .

The other form of heating using high-frequency waves relies on launching an 

externally generated wave into the plasma , this wave excites one of the many 

natural plasma modes . This natural mode propagates through the plasma losing its 

energy to the plasma thereby raising the overall temperature of the plasma . The 

processes by which the wave loses energy may be by exciting another mode in the 

plasma , that is one which is more easily absorbed by the plasma , this is called 

mode conversion . Another process is one in which the wave loses energy by colli

sional processes or collisionless proccesses such as Landau damping or wave- 

particle interactions.

The main reasons for a lowering of the plasma tem p e r^  during confinement 

are radiation losses due to Bremsstrhlung and impurity radiation caused by 

material from the walls entering the plasma . The second of these cases is the most 

important , to minimize impurity concentrations , the plasma must be kept away



-  5 -

from the vessel wall . This is done by a limiter , which is an obstacle projecting 

into the plasma producing a plasma boundary away from the wall . An alternative 

is to use a divertor which takes the outer field lines into a chamber outside the 

main vessel , the plasma associated with these field lines is then pumped out of the 

divertor chamber .

4. Modelling of the plasma

There are a number of models to describe the behaviour of a plasma , the most 

accurate way is to describe the plasma using statistical mechanics . The behaviour 

of the plasma can be represented by a hierachy of equations determining the 

reduced distribution functions , this is called the BBGKY hierarchy . The problem 

with this system is that each reduced distribution function is defined in terms of 

a higher distribution function . To get any useful results we must close the system . 

The most useful one is the one particle distribution function and occasionally the 

two particle function . The equation describing the evolution of the one particle 

distibution function in time , space and velocity space is

K +V. K +L . K  = f i t
dt dr m d \ dt c 7

where /  -  f  (r,\,t) . The term on the right was introduced to close the system of 

equations . The left hand side of the equation can be seen to be the total rate of 

change of the distribution function and the right hand side is the change in the dis

tribution function due to collisions .

A simpler but still very accurate description of a plasma can be obtained by 

treating the plsama as a fluid , the equations describing the fluid model can be 

obtained by taking velocity moments of the kinetic equation above . We define the 

particle density to be

n(r,t) = j f  (r,\,t)dv  .
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So the average of any arbitary funtion (j)(r,v,0 is

To get the moment equations from the kinetic equation , we multiply by <j) and 

integrate over velocity. Taking (j)=m in the kinetic equation we get the equation of 

continuity

dn d ( . n
^ ■ + aT(nv) = 0 •

Lettinig <|> equal m \  , Vzmv2 we obtain a momentum equation and an energy equa

tion respectively.

3v , 3v 
dt V’ dr

= —r-p  +(VxB)x—  
5r Ho

where p and p are the density and scalar pressure respectively. Maxwell's equa

tions were used in deriving the above momentum equation. We must also describe 

the process of energy exchange in the plasma , one of the most obvious is to take 

the plasma to be adiabatic, this gives us the following expression from thermo

dynamics

■̂ -(p p-Y)+v -V(p p̂ V) = 0 # 
dt

We can get this equation from the energy equation

jj-<P P"7) = |p^(J-?v)-(E + vxB )

where { D / Dt } denotes the advective derivative, if we use the simple Ohm’s law

E+vxB = 0.

Since the plasma is subject to magnetic fields we must include Maxwells equations 

in describing the behaviour of the plasma .
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= Vx(vxB) , VB = 0
at

These equations form a closed system and so we can completely describe the plas

mas physical proccesses within the applicability of the m odel.



Chapter 2

1. Setting up the MHD equations

—£+pV*u=0 (1)

p-^7 =-vP +(VxB)x—  (2)Dt n„

E+uxB=0 (3)

^ -(P P " > 0 (4)

-|S.=Vx(uxB) (S)

VB=0 (6)

D Bwhere — =— +u-V denotes the advective derivative, and the dependent vari- 
Dt dt

ables are

u : fluid bulk velocity 

p : scalar pressure of the single fluid 

p: mass density 

B: magnetic induction 

E: electric field 

y=5/3, the adiabatic constant for a simple gas.
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The list (1) - (6) forms a closed system, and so provides a complete mathematical 

description of all the physical processes of the model.

Since we are taking the plasma to be adiabatic , we are fixing the entropy of 

the plasma . The plasma fluid is initially taken to be at rest with uniform entropy 

S q on all of the stream lines so it must remain constant when in motion . So for all 

later times S =S 0 on all the stream lines , hence throughout the whole plasma .

This is described more fully in (WITHAM G. B. (1974)) , equation (4) is also 

quoted in more recent publications (CAIRNS R. A. (1985)) , with equation (4) 

being derived as a general energy equation but neglecting thermal transport 

processes .

We are going to restricf attention to small amplitude waves, so all the physi

cal quantities can be written in the form /= /o + / i  where /  q is the equilibrium 

value of the variable, and / 1 is the perturbation, which is assumed small compared 

with the equilibrium value so that we have only to keep up to first order quantities.

The equilibrium is taken as one in which there is no streaming velocity, no 

external electric field and the adiabatic law for simple gases holds, so

u0=0 (7)

E0=0 (8)

p opo^^onstant (9)

Vp0=(VxB0) x ^  (10)
Mo

equation (10) is just elation (2) with u=0 and p and p set to their equilibrium 

values.Note that by saying that the plasma is adiabatic we cannot now take the den

sity Pq to be constant since this would contradict p q+B ̂ /2\Xq—constant

Setting

U=Uo+Uj-Ui
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E=E0+E !=E ̂

B=B0+B j 

P=Po+Pi

P=Po+Pi . 

d f  o
We are taking a static equilibrium, that is —r— is always equal to zero since /  0 is

ot

the equilibrium value of the variable. Linearising equations (l)-(6) we find the fol

lowing equations for the jtrjE ord&r <iuA.nttiie.s,

Equation (1) becomes

dt

eqation (2) becomes

Opt
+V-(poUl)=0 , (11)

3ui B0
Po~^~=-Vp  1+(VxB1)x-^+(V xB0)x—— , (12)

dt Mo Mo

equation (3) becomes

Ei+iqxBfpO 7 (13)

equation (4) becomes

diPo+PiXPo+Pi^
dt

this becomes to first order

diP oP i^+ P lP o1)
dt

and using equation (9) we get

+ u1-V ((p0+p iXpo+Pi)-7) ^  ,

+Ui-V(p opoY)

a p f \  -ydPi 
Po~ d T + po~dT
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9P l P o  dpi 
dt p0 dt '

equation (5) gives

9B,
-^ -= V x (UlxB0) (15)

equation (6) gives

V-BpO , (16)

We need one more relationship before we can proceed; we obtain this by first taking 

the gradient of equation (9) and rearranging to get

Vpo=-j^-Vp0 , (17)
yp o

We now combine these equations self consistently by first differentiating (12) 

with respect to time, this gives

02Ui dp i SBj B0 3B! i
v (7xB«,xt ^  ’

now substitute in equations (11),(13),(14),(15),(16) and (17) to get

02Ui 1
p0— r^VpypoV-Ui+Ui-V^oMVxtVxOuiXBo^Jx— +(VxB0)x[Vx(u1xB0)]—f l8 )  r 

dt2 Po Po

2. Homogeneous Plasma

First we will deal with the case of a uniform plasma ,that is a plasma with a 

constant density and a constant external magnetic field given by

B=l?o(cos0,sin0,O).
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Vow Courier transform equation (18) in all dimensions with

k=(kx ,0,kz) t

The secular determinant of the resulting system of equations gives the familiar 

dispersion relation ( VAN KAMPEN and FELDERHOF,(1967))

(co2-/:x2ca2cos20)(o)4-/: 2V2G)2+k2k 2c 2c 2 cos20)=O

2 - l l^a 1
PoPo

(19)

2 ypo 
cs =   1

Po

V2= c2+c2

The normal modes of this system are the roots of equation (18),

-—r= c 2cos20

co"
m

r  k 2
V4'

Vi y 2± Va-4  - 4 t  c 2c 2 c o s 20  
k 2

where the first root describes the shear alfven wave, and the other two are the fast 

and slow magnetosonic modes.

3. Inhomogeneous Plasma

A more realistic model is one in which the background state is not uniform in 

space. From now on, we will consider a plasma in which the equilibrium B q field is 

plane stratified in the z direction :

B0=Z?0(z)( cos0 , sin0 , 0 ) #
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The angle 0 is a constant, this is the simplest non-uniform field satisfying 

V-B0 = 0.

fig(3)

From this field we can determine the structure of the pressure and density 

functions.

Looking at equation (10) we see that

dp o dp o dp o
dx ’ 3y dz 

and equating the z-compts

0,0,-
1 d B i '

2Ho dz

9? o 3B o
+-t— = 0

dz dz

integrating with respect to z we finally get

B l
P°+ 2J T * 1’

where is just the integration constant, now integrate (9) with respect to z to get
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oPo^C*

The structure of the plasma now is determined by the magnetic field structure 

B0(z) and the two constants %i and %2*

So we can see that the velocity functions now become functions of position, in fact 

all spatial information is now contained in these velocity functions.

i.e

finally this gives

2, ' g ° (z)
M-oPo

C 2( z ) _
ca \ z ) ~  1/y

P 0

Ca2(z)=-
B$(z)

1/y

Ho

1

o=J.

1i-H 
* 

.

(20)

similarly for c / ( z )

cs2(z)=ui/y %1~£| i i l
2p0

1-1/y
(21)

The velocity functions now contain all the information about the spatial vari

ation of the plasma.

4. Uncoupling the equations

Since equation (18) is a vector equation,we first Fourier transform in time and 

x and then write out the three resulting component equations below.
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These equations were generated using REDUCE 3.3 to perform the simple but 

tedious algebraic manipulations,

The components of equation (18) can then be written as

[co2~kx 2(c 2+ cfv2)ux+[k2c 2\iv] uy +ikx [c 2+c£v2] uz =0 ,

[k2c^ \i\u x+[(02- k 2c 2\i2]uy -[ikx c 2\iv]uz '=0 ;

ikx [ c 2+ c 2v2]ux ~[ikx ca \iv]uy +ikx [c 2+c^v2]ux'

-[ikxc 2[iv]uy '+[(i)2- k 2c 2\i2]uz +[c?+c2]uz'+[c2+ c 2]uz"=0 )

where

' denotes dldz , c 2=yp (/Po > ca~^ o /(M-oPo)» ca ~ &Q ^(PoPo)> c 2 = ypo/po , = cos0

v = sin0.

By manipulating these equations using REDUCE we can reduce these com

ponent equations to the following ordinary differential equations

~  ~ S UZ )

Uy =  fu x J

fytyuz"+{fy±'k— )uz'+'yq uz = 0 , (22)
Q.

where f  , g , q , ^ , \ j / , ({) and X are given as follows

(02C2\XV

*  ~ a \ c s2+c?v2)-k?cs2c?p.2 

[co
g =i kx----------------     '
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q = (tiA- k 2V 2cd2+kx c 2c 2\i2  ̂ (23)

k = (02V 2- k 2cs2c 2[L2 ,

¥  = » 2~ k 2c 2\i2 j (24)

<t> = c 2[(2^)Gi*+k2(ti2( c 2( y - 2 ) -2 c 2)\i2+2kx c 2c 2\i*]

+k2c 2f {(sP‘- k } c 2\i2){c2v2+c2)

+ k 2c 2 '[co2V2v2- ^ 2c /( c fl2v2+ c /) | i2] ?

X = k 2[ k 2 c 2 C2[ l\c^ V 2+C2)-(£t2(CaV2+CsA+ 2 c 2 c / v 2)] .

2\  /
~2 (PcAz)

(2p0) '

This completes the setting up of the equations required to give a description of 

the problem.



Chapter 3

When the equilibrium magnetic field is constant, then Fourier transforming 

equation (23) in z gives

k 2 £ \|/-y  q = 0

i.e

V ( % ~ Q ) = 0

which is the expected dispersion relation equation (19) only in different notation.

We now go on to the full problem, with non-uniform B0 and oblique wavevec- 

tor ( kx&0 ), we must now solve equation (23) in its full complexity.

There are four possible singularities in equation (22),

5=0 : (S>2=kx2̂ - i l 2 (26)vz

\|/=0 : U)2=k2c 2\i2 (27)

q =0 : co2=1/2^2V'2±1/2/t:x2[74-4ca2cJV ] w > (28)

If we let ^ = 0  then none of these roots would exist since the plasma flow would be 

only one-dimensional; we can see this from the component equations (22) where 

g=0  if kx= 0, this forces ux and uy to be zero. However by choosing kx*0, the bulk 

velocity of the plasma is three dimensional , and it is the flow of plasma in direc

tions perpendicular to the inhomogeneity which causes these singular points to 

appear.

The root defined by (26) is the cusp singularity, well known in astrophysics 

literature, and is the dispersion relation for a strongly localised surface wave. \\f—0
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gives the usual shear alfven wave dispersion function, q =0 however does not give 

the usual fast and slow magnetosonic modes of MHD since they do not involve the 

whole wavevector, only the kx component.

When 0=0 , the root of q become

0)2 =  kx c a

or

a>2 = k 2c 2 ,

we can see there now exists a singularity of twice the expected order, one from 

\j/=0 and q =0.

At 0=1/27t however, only one singularity remains,

CO2 =  k2v2,

since neither the cusp nor the Alfven root exist at this angle.

1. Approximate modelling equations

In its present form equation (22) is very unlikely to have an analytic 

solution.So following the lead of past authors we concentrate on the behaviour of 

the equation near the Alfven resonance , but will extend previous treatments to 

cover the case of a finite 0 so that there are two singularities close to one another, 

the Alfven resonance and one from q= 0 corresponding to the fast magnetosonic 

mode of this model. We will assume these singularities are separated by a distance 

8. The simplest possible way to model such behaviour is to take the following 

form for \|/ and q :

<? = <?0Z , (29)

\|/ = y 0(z-8) (30)
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where

<7o =

W  =

0Z

5\|/
Oz

8/2

8/2

(31)

(32)

Note that X may be written in the form

X = -(a+ by)

where

a = 2&j2co2ca2c52v2 ) 

b = * > / + c 0V )  1

and so we incorporate this feature into our modelling, which will concentrate pri

marily on the effects of the singularities on the wave properties of the model. Thus, 

although the other coefficients in the equation may also depend on z, they are taken 

to be constants since they do not affect the intrinsic nature of the singularities.

Thus (22) becomes

\j/o5o(z -5)m "+(<J>0-(fl +b if/0(z -5))/z )u r+\j/0 q 0z (z -5  )u = 0, (33)

where we evaluate \j/0, (J)0 a, b at z=8/2. For reasons of convenience we now drop 

the subscript z on the velocity.

It is most convenient in the later solution of equation (33) if we rescale the 

ODE so that the singularities are situated at the origin and the point z=l. But we 

must treat the special case of 0 = 0 separately, since in this case, 8 = 0 and there is 

only one singularity.



2. Coincident roots : 0=0

Setting 8 = 0 in equation (33) yields the equation

Wokozu //+ ((}>o- ^ ¥ o )M '+WoQ qz 2 = 0

i.e

ZU +(-----   )u +-r—u =0
V<&> So

i.e

z u " + A qU' + C0z2u = 0 (34)

where

<j>0-&\|/0 

0 VoSo

and

S i
So

This equation is of standard form ( MURPHY (1960)) and has solution

u =z'M1-Ao)Z 1/p(Kzm ), (35)

where

and where Z 1/p is a Bessel function of order Up. We have to take care here , since 

when z<0 the argument of the Vessel function becomes imaginary, so we must 

analytically continue this function for negative values of z. Later on for theta equal 

to zero we will see that A q is approximately zero so equation (33) becomes
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u "+C o zu =0

this has Airy function solutions.We can see this in another way by noting that

so wi see that solutions of equation (30) are bessel functions of order a third which 

can be representsd in terms of Airy functions.

For z less than zero, u is imaginary due to the z1/2 factor in the formula so the 

wave is completely reflected for theta equal to zero. We will use this as a check 

later on when we do the case for a finite theta, that the reflection coefficient tends 

to unity as theta tends to zero.

3. Separated Roots :

Again for later convenience we will rescale the singularities in order that they 

occur at the origin and unity.Thus we make a change of independent variable,

rj=z /8, 5^0 ^

so that we may write equation (29) in the form

p(ri-l)w1Tn+(A'n+.5 )MT1+C,n2(ri-1)M = 0 (36)

where

A SoVo
(37)

b y 08-a
(38)

S^oVo

( 39)
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We now nomdimensionalise A,B and C so that the the parameters which now 

describe the problem are

e, p = c } !c l  v - # .  0  = ^8 ,  G =
GT B q dz

The non-dimensionalised forms and their derivation are shown in appendix A. 

Note that v now no longer stands for sin0.

4. Wave Matching

To constuct the form of the wave solution for the plasma, we are first going to 

find the solution in the region of the Alven resonance at rj=l, the solution around 

the fast q =0 resonance at rj=0 and the match them at some point between zero and 

delta to arrive at an overall description of the wave in the region of these two 

singularities. Such a process involves an element of analytic continuation which 

enables singular solutions to be connected in the complex plane, avoiding the trou

blesome points on the real line. In this way the wave absorption is encompassed in 

the overall process, and manifest itself in a loss of energy from the waves, which 

we will see when we plot the reflection coefficient for finite valu of 0.

5. Local Solutions

We will construct solutions in different regions by retaining the most signifi

cant terms in that region, and solving the modified version of (36) by referring to

(MURPHY (I960)).

5.1. solution local to origin : p=0

When rj is approximatly zero , equation (36) becomes

x\um -B u ^  + Cv^u =0, (40)

which has the solutions
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u0 = y]y2(1+B)Z ±(1+B)/3[2/3^C r|3/2] . (41)

5.2. solution local to 8 : p=l

Here we make the change of variable t=r[-l and use the local equation

= 0 ; (42)

which possesses solutions of the form

A Z±i/2(1_a_5)[Vc"Q#

i.e

«1=(T1-1 ),/4(1-A-fl)Z±V4(1.A_B)[Vcr (11-1)]. (43)

5.3. asymptotic solution :

For the overall picture in this analysis, we require the behaviour of u for large

rj. Taking the leading terms in each coefficient for large p, we have

T]wTrn+AMT1 + Cr|2M = 0, (44)

the solutions of which are

U„ = Z±a_A)/3[2/3Vc r|3/2]. (45)

In the above solutions Z can stand for any of the essel function pairs J v and 

J_v or / v and Yv or finally H$1} and / / v(2) ;we may also need to use modified 

Vessel functions if the arguments become imaginaiy. So we now have a complete 

set of solutions that we require in order to construct an approximate picture of the 

behaviour of waves in this model. Before we can interpret these solutions we have 

to calculate A,B and C in terms of the parameters given in (34)
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The equilibrium plasma is assumed to be capable of sustaining waves of the 

required frequency, in the presence of a non-uniform magnetic field that is con

sistent with V-B=0 , in such a way that these waves encounter two singularities 

separated by a finite distance 8 taken to be small in comparison with the gradient 

scale-lengths of the plasma.Not all of the parameters 0,8,v,p,a and G can be 

independent.

6. Determination of v and 8

The relationship between the parameters come from the definition of \jf,q .

From now on when using \j/ , q etc, we will use the non dimensionalised forms 

found in Appendix A

Since this model has been designed with tokamak />fosmas in mind,we will hen- 

ceforiA take the ratio p = c}lc% to be P ^ ^ a n d  so is a small quantity (typically 

less than 10%). So in the following analysis we will use p as an expansion parame

ter and approximate factors of the form (1+p) to one.

First step is to find an expression for delta. Returning to the modelling equa

tions (29) and (30)

\|/ = 1-vp2 (46)

q = l-v(l+p)+pv2|Li2. (47)

\|/ = \j/0 (z-5)

a = <?0Z ;

g
we can Taylor expand (46) and (47) around the point — and equate these expan

sions with the modelling equations (29) and (30)



evaluating these at the point z = V28 ,we can now see

5/2 = - J L J L
¥ 0L J Qo ^

Equation (48) gives us 8 , and the left hand side of equation (48) allows us to 

arrive at an expression for v .

However before we can proceed to calculate v we must first find expressions 

for dv/dz and 3(3/8z; these are are derived in appendix A.

In fact

i r i [1+2P]G ’

|0-=-[TN-2P]G.dz

y/ow writing equation (48) out explicitly

l-M-^ = 1—v(l+P)+PvW . (49)
v( l+2P)n2 2pV2v(l+P)+Pl< 1 -vn2)-(l+3P)

This equation allows us to find v from the resulting quadratic equation, which was 

done using REDUCE .

As 0 goes to zero only the Alfven resonance exists and since

\j/ = 1—VjH2 ,

when 0=0 then \\f = 0 , so

0 = 1-v ,

so we can see that when 0 = 0 then v = 1 , this fact allows us to select the correct 

root from the resulting quadratic equation (49). The full expression for v is
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[2P2+P(4-^)+l]+(P+i/2)(p-l)
V =

l , 2p(l-|i.2)(p+(3-7)/4) 
(P+>/2)(p-l)2

14

Vp(p+(3-y)/4)
(50)

The factor inside the square root is much less than one ( with P less than ten per

cent ) so we can Taylor expand the square root term truncating the series after the 

first term to give

(2p2+p(4-y)+l)+2(p+1/2)(p-l)
V =

1+ P(1-H2)(P -(3-y)/4)
(P+‘/2)(p-l)2

4p(p+(3-y)/4)

Multiplying through and cancelling the many common factors we get

1 l-^ q -M 2)
(1-P)

and finally using the approximation (1~P) ~ 1 , the final form of v is

v _ (1+M>2)
2p2

(51)

;his gives the behavior we expect, that is v — 1 when 0 — 0.

Thtr t  were two ways of finding 8 from equation (48) these were using q and 

q Q or using \|/ and \|f0 , both ways gave the same answer , but using \j/ was the sim

plest.

5 =  -2 J L
Vo 8/2

this becomes

5 =  - 2-
1-viri

- |( l+ 2 p  )G

substituting for v ,equation (51) we get



The coefficients A , B and C were then derived using the above formulas for 8 

and v these were

A (1~H2)(3+H2)
2\i2

B  (1+H2)(1-U2)
2 |i2 ’

(53)

(54)

C = -2 -(1 ^ g2 . (55)
(1+M-)

The REDUCE programs deriving these coefficients are in appendix B 

Note that o = kx8 where 8 has a p/G factor so we can write a  as

G (l+|i )

As you can see all the external parameters kx , p and G all appear only here 

and we can take these as the one parameter to be put in .

7. Discussion and extensions of solutions obtained so far

HenceforT/i we will assume that G>0 since this is the behaviour most 

relevant to tokamak plasmas since this is similar to propagation from the low field 

side .

Looking at the asymptotic formula equation (45) , then gives oscillatory 

solutions for T] < 0 ,  and evanescent solutions for Tj »  0 . This is clear since

C<0 so CV2= i\C \Vl}

so for T) < 0 the argument of the Vessel function is real. This means that we have 

an oscillitory solution for Tj<td3 which is what we were wanting , since this is the



side the incident wave would be launched from. We can see that Uq agrees with 

Woo for rj— . For rj>l we can see that u.q , and all become evanescent; 

which is again what we expect since the incident wave must be absorbed or 

reflected after encountering the two singularities; there is no oscillatory solutions 

for rj>0 .

We want to match the Uq and the solutions at a point midway between the 

two singularities to give an overall solution.To do this we must first find the correct 

form of Aessel function for Ui for rj»0 then analytically continue u0 and U\ into iM, 

region where they will be matched.

For tj<0 we will take the following convenient form for u0

Uq -  rj3//2 |p  i H ^ \ i KoH372) + D Kq1!372) ] for r| < 0

where

I =(l+B)/3, Ko = 2IC l%/3.

D 1 and D 2 are just constants and ///(1) and / / / 2) are Hankel functions which were 

chosen because they have plane waves as asymptotic solutions . Note this formula 

is only applicable for r|<0 since then ri3/2 = i Irj 13/2 and the argument of the 

Vessel function is real.

If however rpO then r[3/2 is real,so the argument of the essel function is ima

ginary and we need to analytically continue Uq to get a solution valid for tj>0 . The 

formulas for analytically continuing 5 essel functions were taken from 

(ABRAMOWITZ M. and STEGUN I. A.(1968)).

The form of this equation is
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For u i we have the general solution

“ l = Cn-irZrbjKiOV-l)] Ti-1>0 .

A gain because C is negative there is an imaginary term in the argument so the solu

tion has to be a modified Vessel function . The asymptotic solution requires 

evcanescent behaviour so we only require one solution for u x namely a modified 

Vessel function of the second kind . So we can write it as

u x = (rj—l)m ^(KjCn-1)), (71-1) > 0 (58)

where

m=V2[l-A -B ], Kj = \C \1/2 ,

Similarly for u x we have to analytically continue equation (56) to find a solution 

valid in the region rj-l<0 this is

«! = (!-!!)' T]-1<0 _ (59)

8. Full Reflection Coefficient

To calculate D 1 and D 2 we must now match u x and u0 at some common 

point . The point 5/2 was chosen since it favours neither singularity and this is 

where all the parameters and gradients were defined in the modelling . This 

corresponds to r\=V2 .

Setting 71=1/2 we must match both the functions and their gradients at this 

p o in t, i.e

Uq(V2) = UX(V:i)
diiQ dux

^  -r\-Vz Oil

To use (60) we must use the analytically continued versions of u0 and u x namely



- 3 0 -

equations (55) and (57) . Then solving the resulting set of simultaneous equations 

(60) for D ! and D 2 we may arrive at an expression for the reflection coefficient 

that is

The square of the reflection coefficienCobtained using REDUCE (appendix-C ) to 

do the algebra. The final formula for the reflection coefficient is an extremely large 

and un.wce.tdf equation giving little information easily on the behaviour of the func

tion as 0 varies . Below is given the correct but simplified forms of D j and D 2 .

D j = -2[<2%(e1 ilm-K m )(eiKl n/z +e [%,1Kl )

+Kx(e‘ {fn+m)nTdm -K m )(eild 7c/7 '+e m Ki ')

-<2Kx(e1 im+y2ynnlm'-K m')(einljtf, +<? M K t)] ^

where

x = 3/+2m

and the ' denotes the derivative with respect to the whole argument. The arguments 

were left out mainly to make these formulae more readable; the arguments for the 

modified Vessel functions of order 1 and m were Kq/2^2 and tq/2 respectively . In 

the above forms of D x and D 2 , Kq has been set equal to 2kj/3 .

9. Approximate reflection formula

Since the full formula for the reflection coefficient is so unwieldy we will 

now derive an approximate formula for the reflection coefficient suitable for small 

angles .



First a suitable approximation for the Vessel functions has to be decided on, so 

we begin by examining the argument of the Vessel functions . For the Vessel func

tions of order 1, the arguments are given by

= *o = \C 11/2 
X 2<2 ~ 3V2 1

and for order m

K1 I CI %
X  =

2 2

If we now limit 0 , so that we can use the following approximation for (cos0)2 

that is

112 = 1-02 ) 

then we can then take C to leading order as

C ~ -0 2g2, g = J

so the Vessel function arguments now become

e3 and 4 1 - e 3 .
3V2 G 2  G

To get some idea of the magnitude of these quantities we take 

kx~(0/ca where co is the wave frequency

Bo 1017
Ca — ~  -O 0  I—  )

M-0P0 ™

where n is the number density of the plasma. 1IG is effectively the gradient scale 

length so we may equate this with the tokamak minor diameter 2a . So IC I is 

given by



so the arguments for the Vessel functions become 03 and 803 , which for small 0 

are clear^ very small.

So clear^ a small argument expansion of the Vessel functions is appropriate in 

this case ;the expansions are (AMBRAMOWITZ and STEGUN (1968)):

z v
z _v  ̂2 ^ATv(r) = &T(v)(4 )  , / v(z) =
2 ' vv r(i+v)

The small argument expansions for A and B are to leading order in 0 are

A ~ -202 B ~ 02 

so the orders of the Vessel functions become

, _ (i+e2) _ i , _ (i+e2) _ i
2 2 m ~ —  ~ l

So again using REDUCE to make the above substitutions in the full for

mula for the reflection coefficient and arrive at the following approximate formula

IS I2 = ------------ , (59)
l+&06

where the b Q is a positive constant.

This approximate formula clearly gives the behaviour we expect of the reflec

tion coefficient, that is IR I2—>1 as 0—>0 .
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Chapter 4

1. Presentation of Results

Now that the full reflection coefficient has been derived, and has been checked 

that it gives the correct behaviour for small 0 (See appproximate reflection formula, 

equation (59)). We must now plot the reflection coefficient to see its behaviour' 

because of the complicated form of the equation.

The orders of the modified Vessel functions / , m are dependent only on 0 

through thed> dependence on A and B . The arguments of these Bessel functions are 

however dependent on IC I which not only depends on 0 but on kx , G and p . C 

is given as

1-U2
G . i V .

/fenceforth we will take

where P stands for the plasma parameters to be put into the model. P is a non 

dimensional parameter since P is non dimensional and kx and G both have dimen

sions of m_1. The simplest way to plot the reflection coefficient is by plotting the 

reflection coefficient I/? Î  as a function of 0 for different values of P ,* this gives a 

set of nested curves along which P is constant (see graph). On the graph the value 

of P increases in jumps of eight staring on the uppermost curve with P = 0.01 and 

finishing on the last curve with P = 56.01.

The modified dessel functions were calculated using the confluent hyper

geometric equation representation, in particular Kummer s function which
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converge^ quickly for the range of parameters used.

/ v( 0  = r(v+i) M(v+Vz , 2v+l , ,2z)

where v is the order, and

K v(z) = U z H v W
sin(V7t)

and Kummers function M (a ,b ,z) is

w , x. x i . az , (a )iz ia)nz nM {a,b,z) -  1+—■+ + • • • +-777— r+
b (b)22\ (b)nn\

where

(a)n = a (a+l)(a+2) • • • (a+ n-1) , (a)0= 1 ,

2. Disscussion of results

To simplify the following analysis we will take kx~co/ca ,where ca=B A/P-oPo- 

If we now define p0 in terms of the number density we arrive at the following 

expression for { P },

io -» .S £  ,

remembering that G -B 'IB . We will not let n vary so the behaviour of the plasma 

model is now dependent only on co , (3 and B Misted below are various wave heat

ing modes and their associated frequency ranges, 

mode frequency

Shear Alfven 1 < co < 2 MHz

Ion cyclotron 10 < co < 120 MHz
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Fast Alfven 10 < co < 120 MHz

Lower hybrid 0.5 < co < 2.5 Ghz

Electon cyclotron 15 < 0  < 300 GHz

Looking again to the graph and taking all the parameters fixed for the moment 

except for co , we can see that as 0  increases the reflection coefficient decreases 

hence the absorption coefficient increases. As can be seen from the above table 

there are a number of modes for the incoming wave to couple to, of which only a 

few are shown above except at very low frequencies where there are no modes and 

hence no absorption.

If we now fix all the parameters except for B ' we see that for large B ' , P is 

small hence the absorption coefficient is small, and for small B ' P is large, hence a 

large absorption coefficient. If B ' is large then the various plasma modes whose 

frequencies are dependent on the magnetic field, vary significantly across the 

plasma, so an incident wave of frequency 0  will only be able to be resonantly 

absorbed in a small region of the plasma leading to a small absorption coefficient. 

We can use a similar argument to prove that a small value of B ' would lead to c l 

better absorption coefficient. We can see this behaviour clearly reflected in the 

graph.

Finally confining our attention to (3, J3 can be related to the efficiency of a 

fusion plasma at producing ene«jy with a high P (large P) corresponding to a high 

efficiency and a low P (small P) corresponding to a low efficiency; again we can 

see this behavior/reflected in the graph.

So in summary the behaviour of the reflection coefficient behaves generally as 

we would expect as we vary the various plasma parameters and we can see that the 

inclusion of the second singulcv-ity does indeed lead to a significantly increased 

absorpti on for large angles of 0.
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3. Future Work

The next step in this work is to consider more complex magnetic fields; the 

next up would be to consider a plane stratified spatially rotating magnetic field. As 

can be easily guessed the mathematics of this problem would become much more 

involved with computer algebra being required to do the much of the algebra.
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appendix A

We non' dimensionalise the coefficients from equation (36) ; we do this by 

dividing the equation by co4ca2 .Equation (36) is

T|(Tl-l)Kw +(AT|+B)Mn+CT|2(T|-l)M = 0  , (36)

where

< M > ¥ o  6 ¥ 08 - a  8«0 2
"  i;0¥ o  ”  6 ^o¥ o So °  '

A 0To non-dimensionalise we divide equation (36) by co' c* ‘ we do this term by 

term so

,4 /, 2/„ 21 „ 2\«2.t  4- 2„ 2. .2

w4 co4

becomes after rearranging,

£ 2„ 2 r. 2 & 4C 4 C ^

CO C /  CO" CL
9 = 1 - ^ ( 1 + - % ) + — 7

this finally becomes

2 ,12q = l-v(l+p)+pVTi

where v and P are as defined in the main text.

Similar procedures are followed for the other coefficients which become,

%= l+p-vp|i21

y = 1-VH2 ,



X = -(a+ by) t a = 2vp(l-p.2) ; b = v(p2+l-mw2) ,

2 c 2 c ' 2 f
<t> =2-----[(2-THV (Y-2)-2^ h -fevipM- f+2 v ( l - V  )(f-|J- p)%— [v(l+p)(l2-n  f+vip,

Now require to calculate

So we begin with cfl2

(PpCa2)' 

2po
c 2=

2p0

Po’̂ p  +_1_
2poPoPo 2

r  2 r 2' r VLfl L.y La
2 * 2 * 2 r f r/̂T *̂ /7 b/J

H

PoPo

n 2 b 0 * o ' '

kPoPo , * 0 .

We will let B 0'/B 0=G , so

= G

The derivation for c^' follows the same lines
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Vow making use of the expression Po'KPoPoO/OPo) and P o^-B ^o '/po  we finally 

arrive at

2 '

■= (1-Y)G

Finally we calculate c?'

2 '

Po
^ o5 0'Po- 5 o2Po'

Po

2 G - Po_
Po

Differentiating p 0PoY=%2 and Po+^o/(2Po)=Xi and combining these we can write

= 1L 
Po P 7

5 0  we finally get

2 '

= G 2+i
This completes the non-dimensionalised forms for the coefficients #
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1. Further proofs

We now go on to prove the following two equations

Proofs

d v _  Kc 2'
dz ~ 0)2 °a

CO
- c 2G  2 a 2+i

= -j|j-[l+2p]G f 

using equation (A3). The next equation is proved similarly

9|3=

dz dz c 2

= (1-7)0-p - |( l+ 2 p )

= [yf2P]G.
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Appendix-B

The following REDUCE programs were used to calculate the full coefficients 

A,B and C ; that is without approximating cos0 .

In these programs most of the expressions are obvious , but some are not these 

are ; v is used instead of v and GG is used instead of G .

1. A-coefficient

phi:=-(GG*(2*Beta**3*MU**2*V**2 - Beta**2*GM*MU**2*V**2 +

Beta**2*GM*V - 4*Beta**2*MU**4*V**2 + 4*Beta**2*MU**2*V**2 +

4*Beta**2*MU**2*V - 3*Beta**2*V + Beta*GM*MU**4*V**2

Beta*GM*MU**2* V**2 - 2*Beta*GM*MU**2*V + Beta*GM*V + Beta*GM - 

2*Beta*MU**4*V**2 + 2*Beta*MU**2*V**2 + 6*Beta*MU**2*V - 4*Beta*V - 

2*Beta + MU**2*V - V))/Beta; 

b: =v* (beta~2+1 -rmT2); 

psi:=l-v*mu/'2;

df(v,z) :=v* (1+2*beta) *gg/beta;

dpsi:=df(phi,z);

xi:=1+beta-v*beta*mu"2;

acoef:=(phi-b*dpsi)/(xi*dpsi);

v:=( 1 - (1 -mu"2)/2)/muA2;

acoef; % Now let beta =0 ;

let beta=0;



acoef;

end;
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2. B-Coefficient

a:=v*beta* (1 -v*mif2);

b: =v* (beta"2+1 -muA2);

psi:=l-mif2*v;

xi:=l+beta-v*beta*mu"2;

dd:=beta* (1 -mif 2)/(gg* (1 - (1 -miT2)/2));

df(v,z):=v*(l+2*beta)*gg/beta;

df(beta,z):=- (gamma+2*beta) *gg;

dpsi:=df(psi,z);

bcoef:=(b*dpsi*dd-a)/(dd*xi*dpsi);

v:=( 1-(1-mif2)/2)/imr2;

ans;

let b"2=0;

ans;

end;
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3. C-coefficient

q:=1 -v* (1 +beta)+beta*v~2*miT2; 

df(v,z): =v* (1 +2*beta)*gg/beta; 

df(beta,z):=- (gm+2*beta)*gg; 

dq:=df(q,z);

xi:=1 +beta-v*beta*mu/'2;

dd:=beta* (1 -imf 2)/(gg* (1 - (1 -mu'2)/2));

ccoef:=dd*dq/(xi);

v:=( 1 - (1 -mu"2)/2)/mu"2;

let beta=0;

ccoef;

end;

4. Delta

%this calculates delta using p s i ;

psi:=l-v*mu/'2;

df(v,z):=v*(l+2*b)*GG/b;

df(b,z):=(gm+2*b)*gg;

dpsi:=df(phi,z);

dd:=-2*psi/dpsi;

end;
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Appendix C

1. Calculation of modulus d l depend kk(I),x; 

depend kk(m),x; 

depend ii(l),x; 

depend ii(m),x;

uO:K2/pi)*x~(3*l/2)*((d2-dl)*exp(i*a*(l-l))*kk(l)+pi*d2*exp(i*l*a)*ii(l));

ul:=(l-x)"m*(kk(m)-pi*exp(i*2*a*(m+l/2))*ii(m));

df(kk(l) ,x):=3 *kO*x/'( 1/2) *dk(l)/2;

df(ii(l) ,x) :=3 *kO*x~( 1/2) *di(l)/2;

df(kk(m),x):=kl*dk(m);

df(ii(m) ,x): =k 1 *di(m);

duO:=df(uO,x);

dul:=df(ul,x);

li:=solve ({u 1 =uO,duO=du 1}, {d 1 ,d2}); 

dl:=rhs first first li; 

factor ii(l),kk(l),ii(m),kk(m); 

factor di(l),di(m),dk(m),dk(l); 

cl:=(num dl)/(exp(i*a)*(l-x)"m);

3*l-(3*l-2*m)*x:=tau; 

fl:=sub(i=cc,cl); 

c 1 s:=sub(cc=-i,f 1);
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modcl:=cl*cls; 

operator f,fd;

let pr2*di(m)~2+dk(m)~2=fd(m); 

let pr2*ii(m)"2+kk(m)''2=ff(m); 

on div;

%now have to get rid of the cross terms ;

let 2*m*i*a+i*a=ss;

let 2*l*i*a-i*a=tt;

let e"(ss)=uu;

let e"(tt)=yy;

let yy~2+l=2*yy*cos(tt);

let mf2+l=2*uu*cos(ss);

off exp;

let 2*cos(tt)*kk(l)*ii(l)*pi+pr2*ii(l)A2+kk(l)"2=f(l);

model;

on exp;

off div;

let uu*yy=qq;

%this is to get rid of the l/uu,l/yy terms; 

parti:=coeffn(num modcl,qq,l); 

part2:=coeffn(num modcl,qq,0); 

off exp;

% substitute for wronskians; 

operator w;

let di(l)*kk(l)-dk(l)*ii(l)=-w(l)/pi;
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let di(m)*kk(m)-dk(m)*ii(m)=-w(m)/pi;

let w(l)=2/kl;

let w(m)=l/(2*sqrt(2)*k0);

let cos(ss)*uu+cos(tt)*yy-l=cos(m*pi)*cos(l*pi)-sin(m*pi)*sin(l*pi);

qwl:=partl;

qw2:=part2;

let x=l/2;

let cos(ss)=-sin(m*pi);

let cos(tt)=sin(l*pi);

let sin(ss)=cos(m*pi);

let sin(tt)=-cos(l*pi);

mcl:=qwl+qw2;

on factor;

on gcd;

mcl;

end;
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