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ABSTRACT

The combination of logic programming methods and database systems
technology will result in knowledge bases of increased size and improved
efficiency: this topic has received a lot of attention [Zaniolo 1985,
Reiter 1978, Chang 1986, Minker 1978, Henschen 1984, Parker 1986,
Brodie 1986]. Our approach to integrating logic programming languages
(e.g. PROLOG) and database systems is to compile logic programming

languages into conventional relational algebra.

There are many technical problems which must be addressed and
solved when compiling logic programs into relational algebra. Mainly, we
are interested in the following problems: the finiteness (i.e. safety) of a
logic program's executions and the differences between logic programing

languages and database systems in data representation and typing systems.

Our approach to safety checking integrates the rule/goal graph of
[Ullman 1985] with the magic basis of a variable [Zaniolo 1986]. This
approach allows us, effectively, to check the safety of a logic program at
compile time, for those programs which are strongly safe. Otherwise, the
safety of the program with respect to a query must be checked at execution

time.

Relational database systems are well typed, whilst logic programming
languages are not. We overcome this difference by adding types to
PROLOG (i.e TPROLOG). TPROLOG allows the user to define enumerated
types, sub-types, structured types, and variant types.

Our approach to compiling typed logic programs into conventional



relational algebra expressions is to translate the logic program containing
complex clauses into an equivalent complex—free program, and then to
translate it into a form suitable for storage and manipulation by
conventional relational database systems. The normalization of logic
programs is achieved by removing complex arguments from facts and
rules and replacing them with simplified (i.e. normalized) facts and rules.
The normalized facts are stored in a conventional relational database
(i.e. extensional database), and the normalized rules are stored in a rule
base (i.e. intentional database). The translation of a complex—free program
into conventional relational algebra is based on [Reiter 1978, Chang 1986,

Henschen 1984, Bancilhon 1986].



Chapter 1: Introduction

§ 1-1 The Problem Definition

Logic programming languages enable us to implement knowledge base
systems by virtue of their ability to represent and reason with facts and
rules [Gallaire 1984]. Database systems provide the technology for storing,
managing, and processing very large collections of data efficiently
[Ullman 1981, Date 1981]. However, logic programming languages are
simpler to use for expressing queries than database system query languages
(e.g. relational algebra expressions) [Gallaire 1984, Brodie 1986, Parker 1986].
It would seem that the combination of logic programming methods and
database systems technology will result in knowledge bases of increased
size and improved efficiency. Our approach to integrating logic
programming languages (e.g. PROLOG) and database systems is to compile

logic programming languages into conventional relational algebra.

In order to integrate logic programs and database systems, there are
many technical problems which must be solved. The fundamental
differences between logic programming languages and database systems,
which may cause these problems, are discussed in [Brodie 1986,

Parker 1986]. Mainly, we are interested in the following problems:

1 -The finiteness (i.e. safety) of a logic program's execution.

2- The representation of data in logic programming languages and

database systems.



3- The weakness of typing systems in logic programming languages.

There are two approaches to tackling the safety problem: we can test the
safety of a query with respect to the database (facts and rules) at its time of
execution, or we can determine at compile time whether a set of rules
guarantees the safety of all queries. In general, both approaches are
necessary. Most of the existing approaches tackle the problem at execution

time [Ullman 1985, Zaniolo 1986, Tsur 19861].

Krishnamurthy [Krishnamurthy 1988] tackles the compile time
problem by introducing the notion of strongly safe datalog programs. A
program is strongly safe, if any query to the program is determined

(i.e. safe).

Our approach integrates the rule/goal graph of [Ullman 1985] with the
magic basis of a variable [Zaniolo 1986]. This approach allows us to
effectively check the safety of a logic program at compile time, for those
programs which are strongly safe. Otherwise, the safety of a program with
respect to a query must be checked at execution time. For example, the

PROLOG program in figure 1-2 is strongly safe because of the following:

1) Any query to the facts emp and person is safe.

2) In the rule whose rule head is glaswegian_infant, the body predicates
are strongly safe. Therefore, any query to the rule is safe. Similarly,

any query to the rule whose rule head is glaswegian_emp is safe.

However, the PROLOG program in figure 1-1, which is used to
calculate the factorial of number n, is not strongly safe. For example, the

query ?- factorial(-1, N). is unsafe.



factorial(0,1).
factorial(N,F) :- N1 is N -1, factorial(N1,F1), F is N*F1.

Figure 1-1. A PROLOG program to calculate the factorial.

person ( joe, cool,address( none, glasgow), 20).

person (max, fax,address(flat(2l, 18, windsor_street, g20),glasgow), 40).

person (joe, doe, address(house(31, kew_drive, g12), glasgow),3).

emp ( joe, cool, porter, none).

emp (max, fax, guard, [degreel(hs, 1968)]).

emp (fred, red, staff,
[degreel(hs, 1975), degree2(msc, ba, school(glasgow_university, glasgow), 1980),
degree2(phd, ba, school(glasgow_university, glasgow), 1983)]).

glaswegian_infant (LN, FN, Age) :-person(FN, LN,address(_, glasgow),Age),
Age < 4.

glaswegian_emp( Ln, Fn, Sch,Yr) :- emp(Fn, Ln, _, [_,_, degree2(_, _, Sch, Y1)]),
person(Fn, Ln,address(_, glasgow),_),
Yr > 1960,
Yr < 1990.

Figure 1-2. A PROLOG program

There exist at least two approaches for compiling logic programs into
relational database systems. The first approach assumes that logic
programs contain flat (i.e. simple) clauses only {Minker 1978, Jarke 1984,
Reiter 1978, Chang 1986]. The other tackles the more general problem of
compiling non-flat clauses into algebraic operations on a relational
database management system [Zaniolo 1985]. Zaniolo has done this by

introducing new relational algebraic operations called Extended Relational



Algebra operations (ERA), and allowing the database systems to store
complex facts (i.e. the arguments of facts need not be simple, but they may
be complex terms or lists). However, conventional relational database
systems can be used to store simple facts only. For example, the fact
factorial(0,1) from figure 1-1 is a simple fact. Therefore, we are able to store

it in a relational database. The following PROLOG program:

person ( joe, cool,address( none, glasgow), 20).

person (max, fax,address(flat(2l, 18, windsor_street, g20),glasgow), 40).

person (joe, doe, address(thome(31, kew_drive, g12), glasgow),3).

emp (max, fax, guard, [degreel(hs, 1968)]).

emp (fred, red, staff,
[degreel(hs, 1975), degree2(msc, ba, school(glasgow_university, glasgow), 1980),
degree2(phd, ba, school(glasgow_university, glasgow), 1983)]).

contains complex facts. Therefore, we cannot store them in a relational

database. In order to overcome this problem our approach is proposed.

Our approach compiles logic programs containing non-flat clauses into
equivalent flat logic programs, and those can be translated into a form
suitable for manipulation by conventional relational database systems.
This is achieved by removing complex arguments from facts and rules and
replacing them with simplified (i.e. normalized) facts and rules. The
normalized facts are stored in a conventional relational database
(i.e. extensional database), and the normalized rules are stored in a rule

base (i.e. intentional database).

In logic programs, queries are answered by using the built-in theorem
prover of the logic programming system. This is achieved without regard
to the type of the data. For example, the PROLOG program in figure 1-2 is

an untyped program. On the other hand, database query languages are



typed. We will remove this difference by extending PROLOG to become a
typed language which we will call TPROLOG.

§1-2 System Overview
Our system is outlined in figure 1-3. In this section we briefly describe

the major elements of the system. The detailed description of the system is

in chapter 6 and chapter 7.

TPROLOG Query
Program

S
Program Database
. Query
Compiler to RAEs
Compiler to RAEs
R

transformer to PROLOG 1

-

Query answer in
PROLOG form

Figure 1-3. The System Overview

Although there are a number of different input types permitted in the

system, only two types are described in figure 1-3: TPROLOG program and
query.



Briefly, TPROLOG is PROLOG plus a type system. For example, the
PROLOG program, in figure 1-2, needs to be extended to include some
type information to become a TPROLOG program. For further details refer
to Appendix A and chapter 3. Facts of the TPROLOG program are
normalized and compiled into relations, and then stored in the
extensional database (EDB). Rules in the TPROLOG program are
normalized and compiled into a view [Date 1981], and then stored in the
intentional database (IDB). Moreover, the IDB, the EDB, and type

information are in the database(DB).

Before a TPROLOG program is normalized and compiled into
relational algebra and then stored in the DB, it is tested. Every formula
(i.e. fact or rule) must be tested to determine if it is well-formed with
respect to safety and the type system. If the formula is well-formed, then it
is compiled and stored in the DB. Otherwise, it will not be compiled. More
specifically, facts are compiled after they are, simplified, type checked and
normalized (q.v. chapter 3 and chapter 5). Moreover, types are deduced for
rules and are safety—checked (q.v. chapter 3 and chapter 4), before they are

finally normalized and compiled into a view (q.v. chapter 5).

A query to the system is written in PROLOG. It is processed by the
system. The query process is explained in chapter 6 and chapter7. A
well-formed query is compiled into a set of relational algebraic
expressions. A result of such a query is represented in a PROLOG query

answering form.



Chapter 2: Logic Programming Languages and Relational

Database Systems

§ 2-1 Introduction

Database systems (DBSs) are concerned with how data should be stored
and retrieved from a DB. Logic programming Languages (LPLs)
(e.g. PROLOG) are concerned with how the data should be represented in a

natural way.

The typing systems, data representations, and the execution strategies
in LPLs and relational database systems (RDBSs), which we are interested
in, are addressed in § 1-1. In this chapter, we discuss problems with these
issues in LPLs and RDBSs. Moreover, we discuss with the need to extend

LPLs in order to integrate RDBSs and LPLs.
§ 2-2 Logic Programming Languages
§ 2-2-1 Type Checking

A programming language is statically typed, if all type errors of a
program can be detected at compile time (e.g. Pascal). In LPLs there is a
single domain (i.e. one sort logic) for each program. The domain is defined
as a Herbrand universe [LloYd 1984, Mycroft 1984]. A Herbrand universe
may be an infinite domain. Anomalous formulae (i.e. type errors) can be
formed in a logic program which have no basis in the real world. LPLs do
not provide static type checking. The absence of static type checking makes

LPLs unable to provide clean semantics for updating a collection of facts



while preserving integrity [Brodie 1986, Parker 1986].

A programming language is strongly typed, if it prevents a query from
being applied to value of an inappropriate type at run time. Queries in
logic programming languages are answered by using the built-in theorem
prover of the logic programming system [Kowalski 1979] without regard to

the type of the data. Hence, LPLs are not strongly typed.

§ 2-2-2 Data Storage and Representation

A logic program is defined by a finite set of first order formulae
[Lloyd 1984]. A first order formula, simply a formula, contains a set of
terms. A term is either a complex or simple [Zaniolo 1985]. Moreover a
formula is either a fact, a rule, or a query [Brodie 1986]. Although LPLs are
concerned with how data should be represented in a natural way, all

formulae in a logic program are represented independently of each other.

Finally, since answering systems in LPLs give a tuple at a time, the
interaction in LPLs with the secondary storage is inefficient
[Nussbaum 1989]. Moreover, LPLs do not accommodate multiple users

[Parker 1986].

§ 2-2-3 Execution Strategy

A top—down proof method works by resolving the denial of the goal
with the original assertions in order to produce an empty clause and
thereby prove the goal by refutation. Resolution is a top-down method
which uses the modus tollens inference rule [Kowalski 1979]. From the
modus tollens inference rule we observe that a top-down method can be

carried out even when the original assertions have not yet been asserted.



SL-resolution (linear resolution with selection computation rule
[Lloyd 1984]) is a resolution by refutation method. We assume the
computation rule is selection, from top to bottom (i.e. depth—first), of the
left most atom. One of the deficiencies of SL-resolution that it is not
guaranteed to terminate in the sense that it does not guarantee is that an
empty clause can be generated for a successful resolution or a non_empty
clause can be generated which is not unified with any formula

[Kowalski 1975].

§2-2-4 PROLOG

PROLOG is a declarative programming language based on first-order
Horn clauses [Frost 1986, Lloyd 1984, Kowalski 1979]. A PROLOG program

consists of a set of facts and rules [Clocksin 1984].

A fact in a PROLOG program is a ground atom. In general, PROLOG
allows a unit clause (i.e. a rule with no body predicates) to be defined
[Lloyd 1984] (e.g. person(X,Y):-., where X and Y are variables). A unit clause
allows the definition of infinite relations. From a database point of view,
facts in PROLOG may be considered as a set of relations in a relational
database, in spite of the fact that PROLOG allows infinite relations to be
defined. Thus, we may consider the subset of a PROLOG program, which

does not contain unit clauses, as a set of relations in a relational database.

PROLOG program rules may be thought of as expressions in a
quasi-tuple relational calculus. Each rule is written in the form q(t) :- ¥(1).,
which denotes that q contains the set of tuples t that satisfy the predicate V.

Note, that the tuples, t, are not necessarily flat.



Queries in PROLOG are answered by resolving them by refutation.
Thus, the strategy in PROLOG for computing the answer to a query is a

SL-resolution method.

§ 2-3 Relational Database Systems

§ 2-3-1 General

The relations in a relational database are finite relations (e.g. PRTV,
and INGRES [Todd 1976, Date 1981, Ullman 1981]). Relational database
query languages (e.g. ISBL, ASTR]D, SQL, Query-By-Example, and QUEL
[Todd 1976, Bell 1978, Date 1981, Ullman 1981]) are based on either

relational algebra, tuple relational calculus, or domain relational calculus.

Those relational database query languages (e.g. ISBL, ASTR]D, and SQL)
which are based on relational algebra are procedural languages. They allow
end-users to manipulate relations using relational algebraic operators
(i.e. join, select, project, etc.) in order to obtain the result they require. The
operators used in Relational Algebraic Expressions (RAEs) are applied only
to finite relations and the operands are either constants or variables

denoting relations of fixed arity.

Those relational database query languages (for example QUEL) which
are based on tuple relational calculus are declarative languages. They
allow end-users to specify exactly the properties they require without
having to specify how the data is to be obtained from the relations
available in the database. The tuple relational calculus is based on
first-order predicate logic, and expressions in tuple relational calculus are
of the form {t | ¥(t)) which denotes the set of tuples t that satisfy the

predicate V.

10



Those relational database query languages (e.g. Query-By-Example)
which are based on domain relational calculus are built from the same

operators as the tuple relational calculus.

It is important to note that expressions in tuple relational calculus may
be used to define an infinite relation such as {t | = R(t)}, which denotes all

possible tuples that are not in the relation R.
The following theorems from [Ullman 1981] relate tuple relational
calculus expressions, relational algebra expressions and domain relational

calculus expressions:

Theorem 1: If E is a relational algebra expression, then there is a safe

expression in tuple relational calculus equivalent to E.

Theorem 2 : For every safe tuple relational calculus expression there is

an equivalent safe domain relational calculus expression.

Theorem 3 : For every safe domain relational calculus expression, there

is an equivalent relational algebraic expression.
From the above theorems we conclude that: for every safe tuple
relational calculus expression there is an equivalent relational algebraic
expression.

§ 2-3-2 Type Checking

A DB definition (i.e. scheme) is used to represent the type of an entity

set in a relation [Ullman 1981]. Any processing of an entity set should be

11



done with respect to its scheme, while preserving integrity [Date 1981,
Ullman 1981, Gray 1984]. Therefore, relational database systems are
statically typed systems.

Conventional relational database systems do not allow the use of type
constructors to define attribute types. Moreover, an entity set is
represented by a relation whose relation schema consists of all the
attributes of the entity set. For each attribute there is a finite domain which
is defined by the data type of the attribute. Therefore, the cartesian product
of a relation's attribute types defines the schema of the relation. Thus,

RDBSs use many-sorted logic.

Since relations in RDBSs are based on many sorted logic [Gallaire 1984],
relational query languages are based on many sorted logic too. A language
based on many sorted logic offers a more precise definition of the
programs well as imposing some restrictions. These restrictions prevent a
query from being applied to value of an inappropriate type. Therefore,

relational database query languages are strongly typed.

§ 2-3-3 Data Storage and Representation

A domain is, simply, a set of values. A relation is a subset of the
cartesian product of domains. Since conventional relational database
systems do not allow type constructors to be included, domains contain
atomic values (i.e. constants) only. We say that a relation in a relational
database system is in first normal form (INF), if its domains contain

atomic values only.

Integrity constraints are those constraints which ensure that the data

12



manipulated into a database is accurate and consistent. Integrity

constraints are discussed in [Date 1981, Ullman 1981, Date 1984, Gray 1984].

A normalization procedure will be designed to translate any relation
containing structured entities into a set of equivalent relations containing
atomic entities only. Moreover, it is designed to prevent update anomalies

and data inconsistencies [Kent 1983].

Database systems are concerned with how data should be stored in,

viewed and updated in, and retrieved from a database.

§ 2-3—4 Execution Strategy

A bottom—up proof method works by resolving the original assertions
in order to produce new assertions and thereby prove the goal. Resolution
in a bottom-up method uses the modus ponens inference rule (from
formulas B and A « B we can derive A). From the modus ponens inference
rule we observe that bottom—up resolution cannot be carried out until all
original assertions are known. The strategies for evaluating queries in
relational database query languages are based on a bottom-up proof

method.
§ 24 Discussion

§ 2-2 and § 2-3 discuss type checking and representation of data, and
execution strategies for LPLs and RDBSs. In this section we discuss the

relationships between LPLs and database systems.

Logic programming languages allow a programmer to model

information more naturally than relational databases by using complex

13



facts and querying these facts using predicates containing complex
arguments. In conventional relational database management systems, we
are forced to normalize the relations and to use conventional relational
query languages. This ability to store and query the complex facts in logic
programming languages, makes them more powerful and flexible for
expressing information than conventional database systems

[Zaniolo 1985].

§ 2-3-1 showed that a safe expression in the tuple relational calculus is
equivalent to a RAE.Tuple relational calculus and PROLOG share the

following characteristics :

a- They are based on first-order predicate logic in the sense that they

are built up from first order predicate logic operators.

b- They are declarative languages. They allow end-users to specify
exactly the properties they require without having to specify how

the process should be done.

c- They may be used to define infinite relations (q.v.§2-3-1 and

§ 2-2-4).

Safety is defined as a property of a program which checks that each
variable in the program is evaluated within a finite domain. Therefore, if
we can prove at compile time that a program contains only variables

whose type is a finite set, then the program is safe.
A universe of LPLs domain may be infinite (q.v. § 2-2-1). However, a

universe of DBS domain is finite (q.v. § 2-3-2). Since a program with a

Herbrand universe as domain may have infinitely many interpretations,

14



then the program may be unsafe. Therefore, in order to check the safety of

a program we have to check whether its universe is finite or infinite.

§ 2-5 Summary

In § 24 we discussed the similarity between LPLs and tuple relational
calculus. Moreover, §2-3-1 showed the relationship between tuple
relational calculus and relational algebraic expressions. Therefore, if we
could define a similar notion of safety for PROLOG programs, then as a
consequence of Ullman's theorems [Ullman 1981], we could say that: If E is
a relational algebraic expression, then there is a safe rule in PROLOG

equivalent to E.

LPLs are untyped languages, while RDBSs are strongly typed systems.
In order to compile a logic program into a set of relational algebraic
expressions we have to add type information to the program. Therefore,
we have to extend a LPL to include a type system which makes it statically
and strongly typed. We propose TPROLOG as such an extension to
PROLOG.

Finally, LPLs allow structured terms in programs. Therefore, in order
to compile a logic program into conventional relational database we have

to normalize structured terms.

15



Chapter 3: PROLOG and Types

§ 3-1 Introduction

PROLOG is not a strongly typed language, and does not provide static
type checking (q.v. § 2-1-1). However, relational algebraic databases
provide static type checking. Moreover, its languages are strongly typed
(q.v. § 2-3-2). Therefore, in order to compile a PROLOG program into
RAEs we have to extend PROLOG to become a strongly typed language.
The language proposed here is called TPROLOG.

This chapter consists of five sections. § 3-2 reviews some of the related
work. § 3-3 describes the extension of PROLOG to become a typed language
(i.e. TPROLOG). § 3—4 compares TPROLOG with other typed PROLOGs,
while § 3-5 gives the advantages of using TPROLOG.

§ 3-2 Related Work

In this section we are, briefly, discussing the data type facilities in
TURBO PROLOG and Educe*. These two systems are described in more
detail in [Patrice 1987] and in [Bocca 1989].
§ 3-2-1 TURBO PROLOG

TURBO PROLOG is a PROLOG language implemented for the IBM PC

[Patrice 1987]. The main differences between PROLOG and TURBO
PROLQOG are as follows:
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1-TURBO PROLOG is a compiled language, while PROLOG is an

interpreted language.

2 - TURBO PROLOG is a strongly typed language, while PROLOG is
not. Therefore, TURBO PROLOG is more restricted than PROLOG

in searching solution space.

These differences make TURBO PROLOG faster than PROLOG.

A TURBO PROLOG program is divided into sections. Mainly, we are

interested in the following sections:

1 - Domain declaration (domains): in this section the type (i.e. domain)
of each argument name (i.e. attribute) in each clause in the program
is defined. The domain of an attribute is either a basic type
(i.e. integer, real, string, char, etc), a homogeneous list, or a domain
that consists of compound object declared by stating a functor and
the domain of all sub-arguments. For example, we may write a

domain section for the PROLOG program in figure 1-2 as follows:

domains
city, post_code, first_name, last_ name, job, post_grad : string
under_grad, grad_subject, school_name, school _city : string
year flat_no, house_no, age: integer
home :none ;
flat(flat_no, house_no, post_code);
house(house_no, post_code)
addresses : address(home, city)

grad_school : school(school_name, school city)

Note that since one of the degrec types is a heterogeneous list, we

cannot define its domain.
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2 - Predicate declaration (predicates): In this section, a predicate is
defined by its argument names (i.e. attributes). For example, in
order to rewrite the PROLOG program in figure 1-2 in TURBO
PROLOG we have to add the following:

predicates
person(first_name, last_name, addresses, age)
emp(first_name, last_name, degree)
glaswegian_infant(last_name, first_name, age)

glaswegian_emp(last_name, first_name, school, year)

3 - Clauses (clauses): This section contains facts and rules. For example,
the PROLOG program in figure 1-2 becomes as a component of
clauses section in TURBO PROLOG, when we rewrite it in TURBO
PROLOG.

§ 3-2-2 Educe*

Educe is a logic programming system based on the coupling and the
integrating of PROLOG and QUEL [Bocca 1986]. Moreover, in order to
compute a query answer Educe translates a query, which is written in
PROLOG, into QUEL. Since PROLOG is not strongly typed language, the
query in Educe is untyped.

Educe* is a logic programming system which follows up from Educe
[Bocca 1989]. One of the main differences between Educe and Educe* is that
PROLOG in Educe* is extended to include a typing system, whilst in Educe
PROLOG does not have any typing system. Moreover, PROLOG in Educe*,
unlike TURBO PROLOG, does not consist of separate sections. However,

different syntax is used in defining the extended PROLOG.
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In addition to basic types, which are defined systematically, there are
new types which may be defined by a programmer [Bocca 1989]. The new

types are as follows:

1 - enumerated types. For example, in order to write the program in
figure 1-2 in Educe* the following enumerated type have to be

written.

?— adt( city, [glasgow, london, edinburgh, manchester, birmingham, reading}).

?—adt( under_grad, [hs, primary]).

?— adt( post_grad, {msc ,phd, diplomal).

?— adt( subject, [ba, computer, engl, maths, engineering, biology, medicine]).

?—adt( school_name, [glasgow_university, edinburgh_university,
heriot_watt_university]).

?- adt( job, [guard, vp, staff, porter,]).

?-adt(post_code, {g1, g2, g3, g12, g20D.

2 — Fixed structure types. These are used to define the type of complex
term. For example, we may define the type of complex terms in the

program of figure 1-2 as follows:

?— adt(flat(integer, integer, string, post_codc)).
?— adt(house( integer, string, post_code)).
?— adt(degreel(under_grad, integer)).

?— adt(degrec2(post_grad, subject, school(school_name, city), integer)).

Type declarations in Educe* are syntactically similar to the type
definitions. Moreover, there are some built-in predicates used for type
checking. Note that no variant types are allowed. For example, we are
unable to write type definitions for complex terms whose functor is
address and for the heterogeneous list. In addition, since person, and emp

contain terms of variant types we cannot write type declaration for them.
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§ 3-3 TPROLOG

TPROLOG is a language which follows up from PROLOG. It is a
strongly typed language. Moreover, it is statically typed language. A
TPROLOG program consists of three sections: type definitions, facts type
declarations, and facts and rules. The syntax of TPROLOG is in Appendix
A. However, in this section, we are mainly interested in the typing system

of the TPROLOG.

This section is divided into three sub-sections: § 3-3-1 discusses the
type definitions. § 3-3-2 discusses the type checking, while §3-3-3

discusses deducing types for variables.

§ 3-3-1 Type Definition

A type is represented as a unary relation (i.e. enumerated type) or as a
type definition program [Sterling 1986]. A type definition program is a
PROLOG procedure P: the corresponding type is the set of terms which

satisfy P.

In the following, a type definition procedure name is used to refer both

to the type definition procedure and to the corresponding type.

Types are either basic types or non-basic types. Basic types (e.g. integer,
real, string) are pre-defined. Non-basic types are defined by the user as
type definition programs whose syntax is given in Appendix A. Non-basic
type are simple types and structured types. Note, no recursive type
definition are allowed. Simple types are enumerated types and sub-types.

They are defined as follows:
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a) Enumerated types are, semantically, the same as the enumerated
types in Educe*. However, they differ in the syntax. Here,
$f(fa,....a ). (where (Vi:1<i<n) a, is a ground term and f is a
type-name) is the syntax form of an enumerated type. For example,
city, under_grad, post_grad, subject, school-name, job, and post—ode in figure

3-1 are enumerated types of the program in figure 1-2

b) Sub-types which are sub-range types of the form $ t (< t1, intl, int2>),,
(where t1 is either basic type or simple type) defines t to be a
sub—type of t1 (t < t1), such that the elements of t are the sub-range

of the elements of t1 specified by int1 to int2, int1 < int2, as follows:

If t1 is basic type, then intl and int2 are interpreted as follows:

1) If t1 is string, then intl and int2 give the minimum and maximum
length of strings in t. For example, name and street in figure 3-1

are sub-types.

2) If t1 is numerical, then intl and int2 give the smallest and largest
number in t. For example, age, year, and house_no in figure 3-1 are
sub-types.

If t1 is a simple type, then intl and int2 are defined as follows:

1) If t1 is an enumerated type defined by $ti((a, .. ,a ))., then t is an

enumerated type defined by $t(fa, ,...a_ ). Note, we must

have 1 <intl <int2 <n.

2) If t1 is a sub-type defined by $t1(<t2, int3, int4>), where int3 and int4
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are defined as above, then t is the sub-type effectively defined by

$ t (<t2, int5, int6>)., where int5 = intl1+int3-1, and int6 = int2+int4-1.

Suppose, t1, t2, and t3 are sub-types, then they satisfy the following

properties:

1) If t1 ct2 and 2 ¢ t3, then t1 c 3.

2)if t1 =2, then t1 c t2 and 2 c t1.

$ name(<string, 1, 10>).

$ street( <string, 1,30>).

$ city({glasgow, london, edinburgh, manchester, birmingham, reading}).

$ under_grad([hs, primary]).

$ post_grad({msc ,phd, diploma)).

$ subject({ba, computer, engl, math, engineering, biology, medicine}).

$ school_name({glasgow_university, edinburgh_university, heriot_watt_university]}).

$ job({guard, vp, staff, porter,}).

$ post_code({G1, G2, G3, G12, G20}).

$ age(<integer, 0, 200>).

$ year(<integer, 1800, 2100>).

$ house_no(<integer, 1, 1000>).

$ f1(none).

$ f2 (degreel(degree_name: under_grad, degree_year: ycar)).

$ f3(degree2( degree_name: post_grad, degree_subject:subject, degree_school: {4,
degree_yecar:year)).

$ f4(school( name: school_name, school_city: city)).

$list1([{f2, 3}]).

$ addresses(address(house_address:home, city_address: city)).

$ flat_address(flat(flat_no: integer, building: house_no, street_namec: street,
code: post_code)).

$ house_address(house(building: house_no, street_name: street, code: post_code)).

$ qualification([f1, list1]).

$ home([f1, house_address, flat_address)).

Figure 3-1. Type definitions of the program in figure 1-2.
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A structure type is a type of complex ground terms (i.e. complex type), a

type of lists (i.e. list type), or a set of variant types (i.e. variant type).

a) A complex type is defined by a unary complex fact
$ t(t1(all: t11, ..., aln: tIn))., where t1 is an n-ary function symbol of
type t11 xt12x .. xtln—> t and t e {tl1,..,tIn}, and (Vi:1<i<n) tliis
a type name and ali is an attribute name’. If the function symbol t1
has degree zero, then the type is the function symbol itself
(i.e. t1 - t). For example, the complex type definitions f1, f2, f3, and f4

of the program in figure 1-2 are shown in figure 3-1.

b) A list type is defined by a unary fact $ t([{ t1, ..., tn}]). (Where t, t1, ..., tn
are type names and t ¢ (t1,...,tn}); the argument in the fact is a list
of type names: the corresponding type is a set of finite lists, where
each element (in a list) has one of the types in the list type as its

type. For example, list1 in figure-3-1 is a list type.

c ) A variant type is defined by a unary fact $t(t,..,t D)., where

t ,t are type names and te (t1,.., tn}. An element x is a

17
member of t if and only if it is a member of t, for someiini, .., n.
For example, the variant type definition qualification of the program

in figure 1-2 are shown in figure 3-1.

t  The definition excludes self-recursive types, but permits mutually recursive types. An

extension which restricts the program to backward references would overcome this.
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§ 3-3-2 Type Checking

The type checking of facts, rule body predicates, and goals are similar.

However, we have to consider the following differences.

a ) The facts must type check against only the fact declarations, whilst
body predicates and goals may type check against the fact
declarations or the deduced declarations (i.e. rule types). For
example, the facts in the program of figure 1-2 are typed checked

against the fact declarations in figure 3-2.

b ) Facts contain only ground terms, whilst goals and body predicates

may contain non-ground terms as well as ground terms.

c) The type checking of facts just checks the correctness of ground
terms, whilst that of goal and body predicates checks the consistency
between the body predicates or the sub-goals, as well as the

correctness of the ground terms.

% emp ( first_name: name, last_name: name,job_name: job, degree: qualification).

% person( first_name: name, last_name: name, home_address: addresses, person_age: age).

Figure 3-2. The fact declarations of a PROLOG program in figure 1-2.

Now, we consider the type checking of terms in an atom (i.e. a fact, a
body predicate, or a sub-goal) p(x,, ..., x,) which corresponds to the type
%play ity .., a, :t ). Each x, (1 <i<n) is either a ground term or a term

containing variables.
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a) If x; is a term containing variables, then the type of x; is t..

b) If x; is a ground term, then x; must be an element of t; (where t, is

either a single type, or an element in a variant type).

As an example of type checking, consider the following fact from
figure 1-2.

emp (joe, cool, porter, none).

This fact is well typed because:

joe € name,
cool € name,
porter € job,

none € f1 A ~(none € list1)

Consistency checking checks that a variable Vv, which appears in body
predicates or sub-goals, is compatible. The deduced types (q.v. § 3-3-3) of V
are {t1, ..., tk} where Vil<i<k the domain of ti is Ti. The consistency
checking assumes that there is a unique domain T € (T1, ..., Tk} where
T = glb({T1, ... ,Tk}). For example, the following PROLOG program is

inconsistency.

%pl(al: integer).
%p2(a2: string).
r(X) - p1(X), p2(X).

§ 3-3-3 Type Deduction

Type deductions deduce types for the rule head variables from the rule
body predicates. It is a consequence of the type checking and consistency

checking (q.v. § 3-3-2). Every variable in a rule head appears somewhere



in the body predicates.

In the following, we assume V and V' are variables with the same
names, where V occurs in a rule head and V' occurs some where in the

rule body predicates. The type of V is deduced as follows:

1) If V' occurs in exactly one body predicate, then the type of V is the
type of v'.

2) If V' occurs in more than one body predicates (i.e. V' types are
{t1,..,tk} where V i1<i<k the domain of ti is Ti), then the type

name of V is t where the domain of t is T, and T = glb((T1, ..., Tk})).

As an example, we give the deduced types for the following rule head

variables in the program of figure 1-2.

glaswegian_infant(LN: name, FN : name, Age :age).

glaswegian_emp(Ln: name, Fn: name, Sch : {4, Yr :Year).

Moreover, a term x in a rule head may be non-variable term (i.e. either
constant, complex term or list). A complex term or list may contain
variables. A new type name is generated by the system for x. It is defined as

follows:

1) If x is a complex term, then the corresponding type of x is defined in

the same way as the complex type is defined (q.v. § 3-3-1 (a)).

2) If x is a list, then the corresponding type of x is defined in the same

way as the list type is defined (q.v. § 3-3-1 (b)).

3) If x is a constant, then the corresponding type of x is defined in the
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same way as the enumerated type is defined (q.v. § 3-3-1 (a)).

Note that the type of terms, which are in the structured term

(i.e. complex term, or list), are deduced as shown above.

§ 34 Discussion

§ 3-2 discusses the typing systems in TURBO PROLOG and Educe*,
while § 3-3 discusses the typing systems in TPROLOG. In this section we
discuss the differences and the similarities between TURBO PROLOG,
Educe*, and TPROLOG.

TURBO PROLOG does not allow any new simple types to be defined
(i.e. enumerated type, and sub-range type), while Educe* and TPROLOG
do. However, Educe* allows only enumerated types to be defined, while

TPROLOG allows sub-range types to be defined too.

Educe* does not differentiate between type definitions (i.e. domains)
and type declarations (i.e. predicates), while TPROLOG and TURBO
PROLOG do. Moreover, Educe* type declarations are represented in the
same way as type definitions. In Educe* all facts, which have same
predicate name and arity, correspond to one type definition, while in
TURBO PROLOG and TPROLOG they correspond to one type declaration.
In both TPROLOG and TURBO PROLOG, type names in type declaration,
may correspond to variant types. Note, TURBO PROLOG allows variant
types for complex terms only. Moreover, lists in TURBO PROLOG are

homogeneous, while in TPROLOG they may be heterogeneous.

Finally, Educe* allows a programmer to define the type of variables in

the rule, while TURBO PROLOG allows a programmer to define the type
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of arguments of a rule in predicates. However, TPROLOG deduces the

types of rule variables.

§ 3-5 Summary

§ 3—4 compares different systems with TPROLOG. This comparison
extracts the following advantages of using TPROLOG.

1) It enables us to write a program in a less restrictive way and closer to
PROLOG.

2 ) It enables us to have a rich typing system.
3 ) It enables us to get the benefits of PROLOG flexibility in representing

information as well as the benefits of strongly typed programming

languages.
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Chapter 4: Safety

§ 4-1 Introduction

In chapter 2, we reviewed the execution strategies in LPLs and RDBSs,
and concluded that there is a need for checking the safety of the execution

of the queries. In this chapter, we discuss methods used for safety checking.

The outline of this chapter is as follows: § 4-2 discusses safety checking
at execution time, whilst § 4-3 discusses safety checking at compile time.
§ 4-4 compares our approach to safety checking with others, and §4-5

summaries the advantages of using our approach for safety checking.

§ 4-2 Safety Checking at Execution Time

§ 4-2-1 Safety for Non-Recursive PROLOG Programs

A notion of safety for non-recursive PROLOG programs is introduced
by Zaniolo [Zaniolo 1985, Zaniolo 1986], which is similar to the notion of
safety introduced by Ullman [Ullman 1981]. Zaniolo's approach is based on
the notion of a magic basis of a variable: a technique which uses the
notion of a proof procedure using connection graphs (PCG) from
[Kowalski 1975]. (A PCG is a graph, which represents all possible paths of
the resolution (e.g. top-down or bottom-up) of a set of first order predicate

clauses).

In the following, we refer to a graph which represents the structure of

the goal as a goal tree, and a graph which represents the structure of a rule
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head as a rule tree, where the address (i.e. root) of these trees is either a

rule head predicate name or a goal predicate name.

The magic basis of a variable in a query (or sub-goal) is a mapping
between variables in the goal tree (represented by a PCG) derived from the
query, and terms in the rule trees of the rules which unify with the goal.
For a given variable X in a goal tree, the magic basis of the variable X is
given by the union of P(X) and LP(X), where P and LP are defined as follows:
Let pl and p2 be atoms with the same address (i.e. pl and p2 have the same
predicate name), let X be a variable occurring in pl and t be a term

occurring in p2, where X and t are in a same parameter position.

a) If X and t are in a same position in their respective trees (i.e. they are
at a same level), then t is a partner of X and so te P(X). There are no

other elements in P(X).

b) If X and t are not at the same level, but X has at least one ancestor
which is partner of t (i.e. X is lower than t), and t is a variable, then t
is a lower partner of X and so te LP(X). There are no other elements

in LP(X).

For example, if we have the following trees:

goal tree rule trees
P P P
VN \ VN
X a S1 S2 d \Y%
AN VAN
b Y y4 w

then, d(Z,W) e P(X), S1 € P(X), S2 € LP(Y), and V € LP(Y).
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In general, the safety of a query depends on the safety of its variables,
where the safety of a variable of a query depends on whether the magic
basis of the variable is finite or not, and on the safety of the variables or

constants with which it is unified.

More precisely, the safety rules which govern rule/goals by using the

magic basis of a variable are as follows :

Rule 1) Every variable in a goal which unifies with a database relation

(i.e. only facts) is safe.

Rule 2) Every constant is safe.

Rule 3) If a variable X in a rule is safe, then all variables in P(X) or LP(X)

of a goal, which are unified with the rule, are safe.

Rule 4) If a variable X in a goal is safe, then all variables in P(X) or LP(X)

of a rule, which are unified with the goal, are safe.

Rule 5) If all variables in an arithmetic exp are safe then the variable V

in Vis exp is safe.

§ 4-2-2 Safety for Recursive Datalog Programs

The datalog programming language [Krishnamurthy 1988] is a logic
programming language based on first-order predicate logic. Although it is
similar to pure PROLOG (i.e. PROLOG as a first-order logic without any
built in predicates such as cut), it does not allow function symbols

(i.e. simple terms).
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A notion of safety for recursive datalog has been investigated by many
researchers [Ullman 1985, Tsur 1986, Ramakrishnan 1987,
Bancilhon 1985). Ullman's approach uses a rule/goal graph to check the
safety of the execution of a datalog query. The rule/goal graph is a
technique which also uses the notion of a PCG [Kowalski 1975]. The safety
conditions, which will be explained later, are applied after mapping the

query into node(s) in the rule/goal graph of the unified rule(s).

A rule/goal graph consists of nodes and arcs. Nodes represent all
possibilities of representing the variables in an atom as free (f) (i.e. those
variables which are substituted by the unified goal variables) or bound (b)
(i.e. those variables which are substituted by the unified goal constants),
while arcs represent the dependency relationship between the atoms in a
rule. Since logic programming languages do not differentiate between free
variables and bound variables in the sense above, every variable is
potentially both a free variable and a bound variable. Also, each variable of
the rule head will be called an input variable or an output variable as
explained below. If a rule head variable occurs only as an operand to an
arithmetic atom or comparison atom (with one exception), then that
variable is called an input variable. The exception is: if the rule head
variable is V and the atom is V is exp (for any expression exp), then V is not
an input variable. If a rule head variable is not an input variable then it is
an output variable (we note that the rule/goal graph is generated at
compile time, so an output variable may become an input variable at

execution time).

In the following, we refer to an atom which can be unified only with a

fact as a fact atom and otherwise we refer to it as a non—fact atom.
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The node associated with an atom in a rule body, which represents a
fact atom, is defined as follows : if F is an atom containing n variables,
then the node associated with Fis F'I"*, where (Vg:1 <g <n)x, =b;
all variables are bound. The nodes associated with a non-fact atom are

generated as follows :

@) In a non-recursive program the nodes are addressed by their
predicate symbol name. In a recursive program, for sake of
simplicity and non-ambiguity, the rule head is addressed by a new
name. When a rule head p is addressed by q then we refer to q as the
node name associated with p. For example, in the program of
figure 1-1 we may address the rule head with predicate symbol

factorial by rl.

b) The number of nodes associated with an atom is determined by the
number of variables in it. Thus, there are 2" nodes, where n is the

number of variables in that atom.

c) Nodes are defined as follows: every variable in an atom can be either
forb, thus if F is an atom containing n variables, then there are

2" nodes of the form F'*"*, where (vg:1<g<n) xg e (bf}.
Arcs are generated as follows:

a) For each body predicate F(Af, .., Ay) and rule head G(By, ..., By)
which contains output variables, where Aj, .., A, are simple
terms and Bj, ..., B, are simple terms, such that for some k,
where 1 <k <n, and some h,1 <h <m, B, is output variable,
and A, and B, are the same variable, there are arcs defined as

follows:
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1) If F(Ay, ..., Ay) is a non-fact atom, then the arcs are from

Fr %1t %1% o )Vt Y1 Wnt - Ym

and from each node of form

FE %0 %l Xn Y b Yh1f Vil = Ym

2)If F(Aq, ..., Ap) is a fact atom, then the arcs are from

FZ}.. Zp_1b %412, to r(G)yT“ Y1Vt - Ym

and from each node of the form

th"zk—lfzkﬂ'"zn to r(G)}/ +Yr1fYr1 ~Ym

where r(G) is the node name associated with G (since addressing
may have been carried out, as described above), and

(Vh: (1,.., k=1, k+1,..,n) z; = b,

(Vg: (1., k-1, k+1,..,m) xg € (bf), and

(V k{1, b1 k1, mD y, € (B

b ) If a body predicate F1(Ay, ..., A, occurs before (i.e. to the left of) a
body predicate F2(By,..., B,), where A;, ... ,A, and B4, ... ,B,, are
simple terms, such that for some k, where 1 <k <n, and some
h, where 1 <h <m, A, and B, are the same variables, then

there is an arc from each node of the form

It 510 %1% o po¥ b Yh1W Rt - Ym

and from each node of the form
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F1%t %t a1 %y oY 1Y i1 fYn1 ~Ym

where (V g:{1, ..., k-1, k+1..., n}) xg € b,
and (Vk:{1,...,h-1, h+1, .., m) Y, € {b,f.

¢ ) For each body predicate F(A;, ..., A,) and a rule head G(By, ..., B,
which contains input variables, where Ay, ..., A,, By, ..., B,, are
simple terms, such that for some k, where 1 <k <n, and some
h, where 1 <h<m,B, is an input variable, A; and B, are the

same variables, there is an arc form each node of the form

(G YRIW Rl ~Ym o e he1b K1 X

and from each node of the form

GV YR YRl Ym o P %kt K1 X

where r(G) is the node name associated with G (since renaming may
have been carried out, as described above),

(Vg: (1,.., k1, k+1...,n}) xg € /1, and

(Vk:{1,.., k1, h+1, ..., m) Y, € {b.f).

d ) Finally, arcs are also directed from a non-recursive rule head to a
body of another rule, or from a recursive rule head to its respective
body predicate, when the atom is unified with that rule. These arcs
are defined as follows: for each atom in a rule body of the form
F(Aq,..,A) and rule head F(By,..,B,), where A;, ... A, and
By, ..., B, are simple terms, there is an arc from each node of the

form
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r(F)XIW Xn tO Fxl Xy

where r(F) is the node name associated with F (since renaming may

have been carried out, as described above), and (V g: 1< ¢ <n)

xge {bf).

An example of the generated rule/goal graph is the adjacency

matrix of the generated rule/goal graph in figure 4-1 of the program

in figure 1-1. Note, the rule head is addressed by r1.
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Note, we adopt the following convention: given an atom P, unless we
state explicitly otherwise, we will use the notation node P to refer to all

superscripted nodes P in the graph.

In general, the safety of a query at execution time depends on whether
the query adopts a safe execution paths (i.e. the goal graph) in the rule/goal
graph of the rule(s) which are unified with it. Therefore, the goal graph is
a sub-graph of the program rule/goal graph which represents all possible
execution paths of the query. For example, the goal graph of the query
?— factorial(X, Y) is graph of the whole program in figure 1-1, whilst the goal

graph of the query ?-factorial(3, X) is as shown in figure 4-2.

bf bbb
bb
f

1T — -
*fbb\t bf
- f -

Figure 4-2. The goal graph of the query ?—factorial(3,X).

We define an execution path of node P to be a path whose source is a
node with in-degree 0 and target node P. A safe execution path of node P

is a path whose source node is a fact node.
Consequently, a safe execution path of a node is a path through nodes
which are classified as safe by the following rules: (We note that the rules

refer only to nodes and edges in the given path)

1) If N is a node of a rule head, and P is a safe node of a body atom of

that rule, and there is an arc from P to N, then N is safe.
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2 ) If P is a node of a rule body atom which is unified with a fact atom,

then P is safe.

3 ) If P' is a node of a rule head, P is a non-recursive body atom, and

there is an an arc from P' to P and P' is safe, then P is safe.

4 ) If P is an arithmetic expression atom node and all variables on the
right hand side of the associated predicate are represented as b, then

P is safe.

5)If P is a comparison atom node and all variables of the associated

atom are represented as b, then P is safe.

6 ) If P is a recursive body atom node, P1 is a safe atom, and there is an arc

from P1 to P, then P is safe.

For example, the adjacency matrix in figure 4-1 is the goal
?-factorial(X,Y) graph. It contains at least an wunsafe path
(i.e. factorialf - **f - 11"%. Therefore, the query is unsafe. However, the
goal ?—factorial(3,Y) is safe, because all paths in the goal graph of figure 4-2

are safe.
§ 4-3 Safety Checking of a PROLOG Program at Compile Time

In the last section we defined the notion of safety, by using the notion
of magic basis of a variable and by using the notion of rule/goal graph.
Both rule/goal graph and magic basis of a variable are used to define the
safety of a logic program at execution time: safety conditions are used to

check the safety of an atom in the rule/goal graph approach, while they are
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used to check the safety of a variable in the magic basis of a variable.
However, in practice, these approaches are equivalent for non-recursive

datalog programs.

In this section, we extend the safety checking procedure for
non-recursive PROLOG programs into a safety checking procedure for
recursive PROLOG programs by integrating the notion of the rule/goal
graph with the notion of the magic basis of a variable. Moreover, we apply

the procedure at compile time instead of at execution time.

For sake of simplicity, in the following, we represent a complex term as
b (bound), if each variable or complex term in it is represented as p and
we represent it as f (free), if each variable or complex term in it is

represented as f.

Our graph, like the rule/goal graph of Ullman, consists of arcs and
nodes. The generation of nodes for our graph is similar to the generation

of nodes for rule/goal graph with the following three exceptions.

First, the main difference is that fact body atoms and non-fact body

atoms are differentiated, whereas in our graph they are not.

Second, a fact is not represented in the rule/goal graph, while in our
graph it is represented by a special node. Note, nodes represent the
constants in an atom as ¢ (constant). The (special) node, which represents
a fact formula, is constructed in the following way: if F(ag, ... ,a,) is a fact
formula, then the (special) node associated with it is F*7*n (where
(Vg:l<g<n) x, is the term derived from ag by replacing all occurrences
of constants (in ag) by the term «¢). For example, if

Fay, ... ,ap 7, f1(a'y, . '), g, 1, - ,ap) is a fact formula with constants

40



az,..,ax_1,a'7, .. a'y,a5,1,...,3, , then the node associated with it is
o X Wy ), x I 4
Ft o X kB Y o X " where (vg:1 <g sm)yg = ¢, and

(Vh:{1,... k-1, k+1, ... ,n)) x}, =c.

Third, we incorporate information about the constants and function
symbols occurring in atoms into the associated node names. For example
if F(Ty,... , T,) is an atom (where T,,..,T, are terms and), then it is
represented by a set of nodes where each node is of the form F'1~'*n

where (Vg:1<g<n)

a)lf Tg is a constant, then x =c

or

b)If Tg is a variable, then xge {bf,

or

c)If Tg is a complex term, then X, is a term derived from Tgby
replacing all occurrences of non-complex terms in Tg by the terms

¢, b,orf.

The generation of arcs in our graph is similar to the generation of arcs
in the rule/goal graph. However, since the magic basis of a variable
defines the relationship between a goal or a sub-goal and the unified rule
head, the generation of arcs (in our graph) directed to an atom in a
(non-recursive) rule body from another rule head or a fact, or to a

(recursive) rule body form its rule head is extended as follows:

a) If F(Vq, ... Vk_1.D, Vi,1, .., Vy is an atom in a rule body and
F(Aq, ..,Ar.1.B, Ag,1. . Ay is a rule head or fact (where
(Vg:(l,.... k=1, k+1,...,n) Vo=A, Vg and A, are terms, D is a
variable, B is a complex term, and F, F' are the same predicate name),

then using the definition of Be r») from the magic basis of a variable
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(q.v. § 4-2-1) there are arcs defined as follows:

1) If F is a rule head , then there is an arc from each node of the

form
r(}'«")xl"’ X 1b X1 Xy to Fx; X P Xp, 1o Xy

and from each form
r(F')xl'" X of Bey1 Xp to FxlA..kaka”,.,xn

where r(F') is the node name associated with F' (since
renaming may have been carried out, as described in

§4-2-2),and (Vg: (1,... . k-1, k+1..., n}) xz € (bf).

2 ) If F' is a fact, then there is an arc from a fact node (i.e. special

node) of the form

F.ZI,... ,Zn to FxI,... ,Xn

where (Vg:1<g<n)
(zg=cA(xgisa ground term = x = C)

A (xgisnota ground term = x,, € {b.fiN.

b ) If F(Aq, ... ,Ap_1,f1(By, ..., B), Ag,q, .., A, is an atom in a rule body
and F'(Vq,..,Vk_1.D, Vi,1,...Vy is a rule head (where
(Vg:{1,..,k-1,k+1,...,n}) Ve=Ag, Vg and A, are terms, D is a
variable , By, ... ,B,, are terms, and F, F' are the same predicate
name), then using the definition of D e LP(By),..., D e LP(B,) from
the magic basis of a variable (q.v. § 4-2-1) there is an arc from each

node of the form

42



r(F.)xl... xk_P Xp 410 x,to Fxl xk—lﬂ (y 1 y?)l X1 Xy

and from each form

r(F')xI'" X 1f X1 X to }:"'1 X flW 3. 0 Y% 1 X py

where r(F') is the node name associated with F,
(Vg: (1,..,k-1, k+1,...,nD)

x, € {b,f}, and(Vi: 1 < i< m) ¥g € {b,c) and wy € {c.f}.

For example, the graph in figure 4-3 is generated by the above
definition to represent the following program. Note, le(X,Y) is unified

with a finite set of facts.

r1) order(nil).
r2) order(cons(X,nil)) :-.
r3) order{cons(X, cons(Y,Z))) :- le(X,Y), order(cons(Y,Z)).
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We may use the notion of safety given in § 4-2-2, to define the safety
of a query mapped into this graph. However, the rules in the definition of
§ 4-2-2 are for checking the safety of a program at execution time, whilst
we look for rules to check the safety of a program at compile time. There
are no general rules to check the safety of a program at compile time
(i.e. safety checking for horn clauses is undecidable [Zaniolo 1986]). As a
consequence, let us consider an extent to which the safety checking

algorithm given in § 4-2-2 can check the safety at compile time.

In order to do so, we define a set of rules (i.e. a PROLOG procedure
where the predicate name of each rule head in the set are the same) to be
either strongly safe or weakly safe with respect to their execution paths in
a graph. We say that a procedure is strongly safe if all its execution paths in
a graph satisfy the safety rules in § 4-2-2. Otherwise, it is weakly safe. For
example, the procedure order, which is represented by the graph in
figure 4-3, is weakly safe, because although are some execution paths are
safe, others are unsafe. For example, the execution of r2, r?_bc is safe.

However, another execution path for r2, 12/ is unsafe by rule 2.

If a procedure is strongly safe, then the procedure is abstractly safe in
the sense that its behaviour does not depend on the environment in
which it is executed. So, we can guarantee the run time safety of a strongly
safe procedure at compile time. However, if the procedure is weakly safe,
then it is only safe for some execution paths but not for all. Thus, we
cannot guarantee the run time safety of a weakly safe procedure at compile

time.

Thus, any strongly safe PROLOG procedure has an equivalent set of
RAEs. Therefore the PROLOG procedure may be compiled using one of
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techniques given in [Reiter 1978, Henschen 1984, Chang 1986]. A weakly
safe PROLOG procedure does not necessarily have an equivalent set of
RAEs. As a consequence, we may compile (i.e. translate syntactically) such
a procedure (using one of techniques described above), but the resulting

RAEs may only become meaningful at execution time (if at all).

§ 44 Discussion

§ 4-2 discusses the safety checking at execution time, while §4-3
discusses the safety checking at compile time In this section we compare

our approach for safety checking (q.v. § 4-3) with others (q.v. § 4-2).

In order to make a comparison with Ullman's approach, we must
assume that his approach is applied at compile time (instead of execution
time). The rule/goal graph (q.v. § 4-2-2) and our graph (q.v. §4-3) of the

example in figure 1-1 are given in figures 4-1 and figure 44 respectively.
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By analyzing the graphs in figure 4-1 and figure 44 and using the
node safety definition (q.v. § 4-2-2), we find the following limitations of

the rule/goal graph:

a ) Even though the factorial predicate is either unified with a rule or a
fact, the rule/goal graph is unable to distinguish these two
possibilities. As a consequence, there are no nodes with in-degree 0
and therefore there are no executions paths associated with the
nodes in the graph. Thus, we can conclude nothing about the

compile time behaviour of the factorial procedure.

b ) Consider the graph in figure 44 now: There is a both safe execution
path to r1?’ and an unsafe execution path to r1?% The unsafe
execution path is factorial®“— factorial! - M, 11%% Since *bff
unsafe by safe rule 4 (q.v. § 4-2-2), r1°? becomes unsafe by rule 1.

The safe path to r1? is factorial— factorialbb—> bbb 1188 Since

+bbb i safe by rule 4, the r1?’becomes safe by rule 1.

Ullman's approach would force us to conclude that the factorial
procedure is unsafe, whilst in our approach we would conclude that the
procedure is weakly safe. Therefore, our approach allows us, effectively, to
check the safety of a logic program at compile time, if it is strongly safe.
Moreover, we can also check the safety of a logic program at execution

time, if it is weakly safe.

In comparison, Ullman's approach [Ullman 1985], and Zaniolo's
approach [Zaniolo 1986] check the safety of logic programs at execution
time only. Moreover, Krishnamurthy's approach [Krishnamurthy 1988]
checks the safety of logic programs at compile time, but does not

distinguish between strong safety and weak safety.
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Finally, our approach handles the (pure) PROLOG language (including
arithmetic expressions), whereas Ullman's approach and
Krishnamurthy's approach exclude function symbols, and Zaniolo's

approach excludes recursive programs.
§ 4-5 Summary

§ 4-4 compares our approach (q.v.4-3) with others. This section

summarizes the advantages of our approach

1 ) The rule/goal graph has been extended to include the complex
terms of pure PROLOG programs, and to differentiate between rules

and facts.

2 ) The compile time safety checking procedure has become more

sophisticated in the following ways:

a ) If all execution paths of the procedure P are unsafe, then P is

unsafe and it should not be compiled.

b ) If all execution paths of the procedure P are safe, then P is

strongly safe and the compilation of it should be completed.

c ) If some execution paths of the procedure P are safe and the other
are not, then P is weakly safe and, although the syntactic
translation to relational algebraic expressions is done at compile
time, there will be more safety checking carried out at execution

time.
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Chapter 5: Normalizing TPROLOG programs

§ 5-1 Introduction

This chapter discusses our method of translating (i.e. normalizing) a
logic program containing non-flat clauses into an equivalent logic
program which contain flat clauses only. Since we adopt TPROLOG, we
translate a TPROLOG program into an equivalent TPROLOG program

which contain flat clauses only.

The chapter consists of five sections. §5-2 gives a method of
normalizing facts, whilst § 5-3 gives a method of normalizing rules. § 54

discusses goal normalization. § 5-5 compares our approach with others.
§ 5-2 Fact Base Normalization

In § 3-3 we extended the standard PROLOG language to include data
types (i.e. TPROLOG). This extension, from a data base point of view, may
be used as a data base schema [Atkinson 1987]. It should be used to prevent
an operation from being applied to a value of an inappropriate type: any
querying of the contents of a database should be done with respect to its
schema (i.e. querying a TPROLOG program is done with respect to the fact

declarations).

A relation in a relational database is a relation containing atomic
entities only. Normalization in RDBSs transforms a schema from INF to
higher normal form (i.e. 2NF, 3NF, etc) with respect to the functional

dependencies between attributes in the relation. LPLs may contain non
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atomic relations. In order to transform a logic program into RAEs, we
have to flatten all structured data. Hereafter, we call this transformation

normalization.

Our normalization is a procedure which flattens all structured data
(from relational point of view non-structured values) in a TPROLOG
program. In other words, normalization removes non-flat clauses and
replaces them by flat clauses. The replacement of structured data requires
the replacement of the structured data types as well. A structured data type
is either a list or complex term. Moreover, we may consider a type which
consists of a set of types (i.e. a variant type) as a structured data type as well.
§ 5-2-1 gives methods to normalize fact, whilst in § 5-2-2 discusses how

fact data declarations are normalized in a similar way.
§ 5-2-1 Normalizing Facts
A structured fact is a fact where at least one of its components is a

complex term, a list, or a term of variant type. In the following

sub—sections we discuss the normalization of these three cases.

§ 5-2-1-1 Normalizing Complex Terms

In this section we give a method which eliminates complex terms from
a non—flat fact. The method consists of introducing the existential

quantifier (3), and using skolemization which removes the quantification

[Bundy 1983].

Suppose, we have the following fact f containing one complex term:

f(xq, ., Xk 1 f1(xflq, ... ,xf]m) P Xkglr s X,)-
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Then, we remove the complex term f1(xf14, ... xf1,,) in f by replacing f by

the following two flat facts.

f(XI, weey xk-l’ C, Xk+1, cee gy Xn).
rfl(xfll, ,xflm, c).

where c is a new constant of skolem type. Note that the domain of skolem
type is defined systematically (i.e. every constant introduced by

skolemization is a member of this type).

Note, the above example contains one complex term; we can easily

generalize the method to several complex terms.
§ 5-2-1-2 Normalizing Lists

In TPROLOG, the differences between complex term and list (q.v. § 3-3)

are as follows:

a) Every term of complex term has a fixed arity (i.e. a fixed number of

sub-terms), whilst a term of a list type does not.

b) The type of each sub-term in a list has variant type, whilst each

sub—term in a complex term does not.

Consequently, the normalization of a fact
f(Xq, o Xp_qs (Ix4, .. JAx ) X, 10 0 X)), Where (Ix;, ..., Ix,] has type

list1[{t,, ..., tg)], is as follows:

1) f is transformed into

f(X], veey Xk*]’ liStl([lxl, vee g 1)("]), Xk+‘1, ey Xr”).
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2 ') The normalization of the fact in (1) above is done in the same way

as in § 5-2-1-1:
f(XI, veey Xk_1, C, Xk+1, ey Xm).

list1([lx;, ..., Ix ], ©

3 ) is transformed into n facts of the form
rlist1(Ix;, ©)., for each i =1, ..., n, and the type of lx; is one of variant

types {t;, ..., tgj.

4 ) The normalization of the resulted facts from (3) is done in the same

way as the normalization process in § 5-2-1-3 below.
§ 5-2-1-3 Normalizing Terms of Variant Types

Each term of variant data type belongs to exactly one type in the variant
type (q.v. § 3-3). The normalization of terms with variant type is done in

two steps as follows:

step 1- The generation of complex terms: if a term x belongs to a simple
type t in a variant data type, then x is transformed into a new
unary complex term . The unary complex term is defined with
respect to the type definition of t as follows: suppose that [t , .., t,]
is a variant type, te [(t;, .., t,), and t is a simple type, then the
new type for t is f(fli(t) where f is a new type name, {1 is a new
function symbol, and t:f. As a result of transforming t type
definition into f1(t), x is transformed into f1(x). For example, given
$ identification([social-no, full-name])., where full-name is a complex
term type (note, there is no need to transform full-name into a

complex term type) and, social-no is a simple type defined by
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$social-no(<integer,1, 10000>). The type name social-no in identification is
transformed into f(f1(social-no)). Moreover, x is transformed into a

unary complex term f1(x), which corresponds to the unary

complex term data type.

step 2- The normalization of the generated complex term is as shown

in §5-2-1-1.

An example of facts normalization is that for given facts in the

program of figure 1-2, the normalized form of them are in figure 5-1.
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person(joe, cool, c1, 20).
person(max, fax, c3, 40).
person(joe,doe, c5, 3).
raddress(c2, glasgow, c1).
raddress(c4, glasgow, c3).
raddress(c6,glasgow, c5).
rnone(c2).

rflat(21, 18, windsor_street, g20, c4).
rhouse(31, kew_drive, g12, c6).
emp(joe, cool, porter, c7).
emp(max, fax, guard, c8).
emp(fred, red, staff, ¢9).
rnone(c7).

rlistl(c11, c9).

rlist1(c12, ¢9).

rlist1(c13, ¢9).

rlist1(c14, c8).

rdegreel(hs, 1968, c14).
rdegreel(hs, 1975, c11).
rdegree2(msc, ba, c10, 1980, c12).
rdegree2(phd, ba, c15, 1983, c13).
rschool(glasgow_university, glasgow, c15).

rschool(glasgow_university, glasgow, c10).

Figure 5-1. The normalization of facts in figure 1-2

§ 5-2-2 Normalizing Fact Declarations

Any changes in facts requires changes in their declarations. Therefore,
fact declaration normalization is very similar to the normalization of their
respective facts. Since, in § 5-2-1, we have defined structured facts by three

categories, the structured fact declarations are defined by the same

categories.
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The normalization of structured fact declarations is defined as follows:

Suppose t is a structured data type in a fact declaration

a ) If t is a complex term data type, then the fact declaration is
normalized in the same way as its corresponding fact
(q.v. § 5-2-1-1). Note that, the replaced attribute name has type

skolem.

b)) If t is a list type, then the fact declaration is normalized as follows:

1) The list data type is transformed into a unary complex term type
(q.v. § 5-2-1-2) and the type of the function symbol (i.e. a list
name) is a variant type of the set of list types. For example, the
list type $list1([{f2, f3}])., in figure 3-1 is transformed into
list1([£2, £3]), where the type of list] is {2, £3}.

2 ) The normalization of the generated complex term type is

explained in § 5-2-1-2.

c ) If t is a variant type, then we may consider the fact declaration as
several fact declarations. However, from a relational data base point
of view several data declarations for one relation (i.e. fact base) is
prohibited. So, in order to normalize fact declarations, we have to
eliminate several data declarations and replace them by one fact
declaration. The elimination and the replacement of several fact
data declarations is similar to its respective fact normalization

(q.v. § 5-2-1-3). However, we have to consider the following:

1) A variant type consists of a list of types, whilst a term, which
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belongs the variant type, belongs to one element in the variant

type.

2) all variant types are replaced by one constant (i.e. type name). The
normalization process of the variant type is similar to the

normalization process in§ 5-2-1-2.

As an example, we normalize the fact declarations in figure 3-2 below:

% emp ( first_name: name, last_name: name,job_name: job, al: skolem).

% person( first_name: name, last_name: name, a3: skolem, person_age: age).

%rnone(al: skolem).

%rdegreel(degree_name: under_grad, degree_year: year, a4: skolem).

%rlistl(a4: skolem, al: skolem).

%rdegree2( degree_name: post_grad, degree_subject: subject, a2: skolem, year, a4: skolem).

%rschool( name: school_name, school_city: city, a2: skolem).

%raddress( al: skolem, city_address: city, a3: skolem).

%rflat(flat_no: integer, building: house_no, street_name: street, code: post_code,
al: skolem).

%rhouse(building: house_no, street_name: street, code: post_code, al: skolem).

Figure 5-2. The normalized form of a complex fact data type declaration.

§ 5-3 Normalizing Rules

This section discusses a method of normalizing PROLOG and
TPROLOG program rules. The method is similar to Ramakrishnan's
method of transforming Horn clauses form into canonical form
[Ramakrishnan 1987]. Ramakrishnan's method takes a set of Horn clauses

(i.e. a PROLOG program) and produces another set of clauses in which all
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their arguments are variables and all occurrences of a function symbol ( in
the Horn clauses) are replaced by a unique occurrence of an infinite
relation. Therefore, the canonical form for Horn clauses is a PROLOG
program which is free of non-variable terms. For example, the canonical

form of rules given in figure 1-2 is as follows:

glaswegian_infant (LN, FN, Age) :-person(FN, LN,A,Age),
raddress(_, B, A), b(B),
e(E),
Age < E.

glaswegian_emp( Ln, Fn, Sch,Yr) :- emp(Fn, Ln, _, C), h(_,_, D,C),
rdegree2(_, _, Sch, Yr, D),
person(Fn, Ln, A, ),
raddress(_, B, A), b(B),
Yr > 1960,

Yr < 1990.

h(_,_, D, O).

rdegree2(_, _, Sch, Yr, D).

raddress(_, B, A).

e(4).

b(glasgow).

Hsiang's approach [Hsiang 1985], is similar to Ramakrishnan's method.
However, the difference between those two approaches is that whilst
Ramakrishnan's method generates unit clauses and stores them as
relational facts, Hsiang's approach does not. Thus, the disadvantage of
Hsiang's approach is that the new predicates may be not be logical

consequences of the program.

Although our method is similar to the above two approaches in

general, there are some differences. The differences are as follows:
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a) Both approaches assume that all variables are of simple type, whilst

our approach considers structured types.

b) Ramakrishnan's method allows a new predicate to be stored as

infinite relation, whilst our approach allows finite relations only

(i.e. no unit clause is allowed).

¢) Ramakrishnan's method replaces every constant by a new finite

relation, whilst our approach does not replace constants.

This section divides into two sub-sections. The first sub-section
discusses a body predicate normalization and the second sub-section

discusses the rule head normalization.
§ 5-3-1 Normalizing Body Predicates

A body predicate is either an arithmetic predicate or a base predicate: a
predicate which may unify with a fact or a rule head. We assume that
operands in arithmetic predicates are of numerical type and we do not
consider them further. A term v in a base body predicate is either a

constant, a structured term (i.e. complex term or list), or a variable.
a) If v is a constant, then there is no need for further normalization.

b) If v is a structured term, then the normalization of the base body
predicate is similar to fact normalization (q.v. § 5-2-2). However,
instead of replacing v by a constant, it is replaced by a variable.
Moreover, the generated predicates are added to the body predicates.

So, if we have the following base body predicate.
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- p(xl, v, xk_l,fl(xfll, v Xflyy) Xk+1, - » Xpp)-
Then, we replace it by
:—p(xl, ey xk_I,V + Xka1s e Xn), TE1(xf17, ... xf1,,, V).

where V is a new variable and rfl1(xfl, ... ,xfl,, V) is a new body

predicate

Note that the above example contains one complex term, we can

easily generalize the method to several structured terms.
¢) If v is a variable of structured data type t, then

1) If t is a list data type or variant type, then a new unary complex
term is generated as shown in § 5-2-1-3. Similarly, v is replaced
by the unary complex term. After that, the body predicate is
normalized as shown in (b) above and a generated body predicate
is normalized as shown in (3) below. For example, for a given
body predicate emp(Fn, Ln, D), where D is a variable of list1([{f2, f3}])
(q.v. figure 3-1), D is replaced by a unary complex term list1(D),
where D is of variant type [f1, f2], and then emp(Fn, Ln, list1 (D)) is
replaced by emp(Fn, Ln, V), rlist1(D, V). Further normalization on

rlist1(D, V) is shown in (3) below.

2) If t is a complex term type fl(afy: tfy, ..., afp: tly) (q.v. chapter 3),
then we replace v by a new complex term f1(xfly, ... ,xf1,,) (where
(V 1<i<m) xfl; is a variable of type tf1;). The normalization of
the generated complex term are explained in (b). Note, the
replaced variable in normalizing processor is v. For example, the

body predicate emp(Fn, Ln,[_, _, degree2(_, , Sch, Yn))) in figure 1-2
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contains Sch variable of complex term type
f4(school(name : school_name, school_city : city), then Sch is replaced by

school(_, ) term and then the body predicate is normalized as

shown in figure 5-3.

3 ) If t is a variant type, then the normalization of v is similar to
§ 5-2-2 (c). However, there are two differences. Firstly, instead of
replacing the variant type by attribute name is replaced by v.
Secondly, all new predicates are disjointed together and added to
the body predicate. For example, rlist1(D, V) in (1) above is

replaced by rlist1(D, V), (rdegreel(_, _, D); rdegree2(_, _, _, _, D)).

As an example, the normalization of body predicate rules given in the

program of figure 1-2 is in figure 5-3.

:-person(FN, LN, V2, ), raddress(V3, glasgow, V2),
(rnone(V3); rflat(_,_, ,V3); rhouse(_,_,V3)).

- emp(Fn, Ln, _, V1),
rlist1(V2,V1), (rdegreel(_, _, V2);(rdegree2(_,_,V3,_,V2), rschool(_, , V3))),
rlist1(V4, V1), (rdegreel(_, _, V4); (rdegree2(_, V5, ,V4), rschool(_, _, V5)),
rlist1(V6, V1), rdegree2(_, _, Sch, Yr, V6), rschool(_, _, Sch), person(Fn, Ln, V7, ),
raddress(V8, glasgow, V7), (rnone(V8); rflat(_,_, ,V8); rhouse(_,_,V8)),
Yr > 1960, Yr < 1990.

Figure 5-3. the normalized rule body predicates of figure 1-2.

§ 5-3-2 Normalizing Rule Heads

§ 5-3-1 describes the normalization of the body predicates. This section

describes the normalization process of a rule head. Note, we assume that
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body predicates are normalized by the method in § 5-3-1.

A term v in a rule head is either a constant, a variable, a complex term,

or a list.

a) If v is a constant or a variable, then there is no need for further

normalization.

b) If v is a complex term, then the removal and replacement of v is

defined as follows: Given the following rule:

p(xl, o X e f1(xf17, ... xflyy) , Xk41, -, Xp) == P1s -or Pg-

Then, we replace the rule by

r(xI, s X g0 Vo, Xk41, o, Xp) = TfUXE17, o xflyy, V), P'1, o P

where V is a new variable, p';, ..., p'¢ are the normalized body
predicates pg, ..., pg and rf1(xf1q, ... ,xfl,;;, V) is a new body
predicate. Note, the new body predicate is valid, because it will be
asserted as a temporary fact at execution time. If

Py (1 <k <g)=rfl(xfly, ... xfly, V), then there is no need to

duplicate it.

c ) If v is a list, then v is represented either by a list of terms or as a head

and tail.

1) If v is a list consisting of n terms, then v is transformed into a
unary complex term instead of v (q.v.§5-2-1-2 (1)). The
transformed rule head is normalized in the same way as in (b)

above. Further normalization for the generated body predicate is
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needed (q.v. § 5-3-1 (b)).

2) If v consists of a head X and tail Y, then the rule is transformed
into two rules (q.v. (1) above). The normalization of the two
rules is similar to (1) above. Note, Y is variable of the list type
which needs further normalization as a body predicate

(g.v. § 5-3-1).

The following is an example of normalizing rules; if we have rules

given in a program of figure 1-2, then the normalization of it is as follows:

glaswegian_infant(LN, FN, Age):-person(FN, LN, V2, ),
address(V3, glasgow, V2),
(rnone(V3); rflat(_,_, ,V3); rhouse(_,_,V3)).

glaswegian_emp(Ln,Fn, Sch, Yr):-
emp(Fn, Ln, _, V1),
rlist1(V2,V1), (rdegreel(_, _, V2);(rdegree2(_,_,V3,_,V2), rschool(_, _, V3))),
rlist1(V4, V1), (rdegreel(_, _, V4); (rdegree2(_,_,V5,_/V4), rschool(_, _, V5)),
rlist1(V6, V1), rdegree2(_, _, Sch, Yr, V6), rschool(_, _, Sch), person(Fn, Ln, V7,),
raddress(V8, glasgow, V7), (rnone(V8); rflat(_,_,_V8); rhouse(_, ,V8)),
Yr > 1960, Yr < 1990.

Figure 5-4. The normalized form of rules in figure 1-2.

§ 5-4 Goal Normalization

A goal G is correctly answered (i.e. G is a theorem) on a program P, if it
is a logical consequence of P. Theorem proving for PROLOG is based on
SLD-refutation via depth-first and left-most computation rule.

Therefore, in order to answer a goal, the left-most sub-goal of the goal
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should be unified with either a fact or a rule head in the program, and the

so on for the rest of sub-goals.

Hence, in order to normalize a goal, we have to normalize it in the

same way as its unified atom (i.e. a fact or a rule head).
a ) If a sub goal is unified with a fact, then

1) Each a structured term in the sub-goal should be normalized in
the same way as in § 5-2. However, the only difference is that
instead of replacing a structured term by a constant, it is replaced

it by a new variable.
2 ) Each variable is normalized in the same way as in § 5-3-1 (¢).
b ) If a sub—goal is unified with a rule head, then

1 ) Each structured term is normalized in the same way as in
§ 5-3-2. However, the only differences are as follows: instead of
replacing the structured term by a variable it is replaced by a
constant, and instead of having body predicates they become

temporary facts in the program(if they are not already exist).

2 ) If a term is a variable which is unified with a structured term,
then the variable is replaced by the unified structured term. The

latter is normalized in the same way as in (1).
For example, if we have the following goal ?- glaswegian_emp(L, F, S, Y),

then it unifies with the rule glaswegian_emp in figure 1-2, and it is replaced

by the following:
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?- glaswegian_emp(L, F, S, Y), rschool(_, _, S).

§ 5-5 Discussion

It is interesting to compare our approach with others. The main
difference is that; while [Zaniolo 1985] introduces ERA to make database
systems applicable for logic programs, we normalize logic programs to
make them applicable to conventional relational database systems. We
solved the problem of allowing infinite relations to be generated in the
canonical form for Horn clauses [Ramakrishnan 1987] approach, by
asserting temporary facts at execution time. Since the canonical form for
Horn clauses replaces each constant by a new predicate, a huge amount of
facts and rules are generated which may not be used. Temporary facts, in
our approach, are generated when they are needed. Our approach allows
us to get the [Ramakrishnan 1987, Hsiang 1985] benefits and avoiding their

disadvantages.

Our data schema for PROLOG (i.e. TPROLOG) allows variant types,
whilst database systems do not. We can integrate database systems and
TPROLOG by assuming any argument of variant type is a complex
argument, and then we remove the complex argument and replace it by

skolem constant or variable as explained in § 5-2 and § 5-3.
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Chapter 6: System Architecture

§ 6-1 Introduction

§ 1-2 gives a general description of a system which is proposed.
§ 3-3 introduces TPROLOG, whilst chapter 4 discusses the safety checking
of TPROLOG. Chapter 5 describes the normalization method of
normalizing TPROLOG programs.

This chapter describes a design of a compiler which compiles a
TPROLOG program into relational algebra expressions. The compiler

consists of three translators which perform the following transformations:

1) The translation of a TPROLOG program into a standard PROLOG
program (i.e. C-PROLOG program). It is described in § 6-2.

2 ) The translation of a standard PROLOG program into a PROLOG
program which is free of complex arguments. Hereafter, it is
referred as a complex—free program. The translation process for
PROLOG programs and goals is explained in § 6-3. We have to note
that, in order to complete the translation, there is a need for type
checking (q.v. §3-3) and safety checking (q.v. chapter 4) of the

program and query.

3 ) The translation of a complex—free program into RAEs. This is

discussed in § 6-4.

The configuration of the system is shown in figure 6-1, and figure 6-2.
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§ 6-2 Translation of TPROLOG into PROLOG

§ 3-3 Introduces TPROLOG. It is, simply, an extension of a standard
PROLOG (e.g. C-PROLOG) which is a strongly typed language. Our aim is
to transform TPROLOG programs into complex—free PROLOG programs,
and then to use one of the existing approaches to transform complex—free
PROLOG programs to relational algebraic expressions. Therefore, in order
to transform a TPROLOG program into a complex—free PROLOG program
we use the following procedure: Parser, Type_checking, and
Deduce_rule_data_type in figure 6-1 and check the query data type, and check

the query syntax in figure 6-2.

§ 6-2-1 Parser

Parser : TPROLOG program —

-f.
Bool x set(rule) x set(fact) x set(fact—declaration) x set(data-type)

Parser is a procedure which translates a TPROLOG program into four
data sets written in a standard PROLOG programming language form. It
takes as input a TPROLOG program and checks its syntax with respect to
the TPROLOG EBNF (q.v. Appendix A). If it is syntactically valid, then the

parser translates it into four data sets.

The set(fact-declaration) and set(data-type) define the TPROLOG program
data types. The set(rule) and set(fact) contain the TPROLOG program rules

and facts respectively (i.e a PROLOG program).

t - is a function space constructor

X is product constructor
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Note that TPROLOG queries are identical to PROLOG queries. Therefore,

there is no need to translate it into PROLOG form.

§ 6-2-2 Type Checking

Type_checking : set(rule) x set(fact) x set(fact-declaration) x set(data-type)
— Bool
Type_checking : set(goals) x set(fact-declaration) x set(data-type)

— Bool

§ 6-2-1-1 checks the syntax of a TPROLOG program. PROLOG is not
strongly typed language, whilst TPROLOG is. Therefore, before a
TPROLOG program is translated, it should be type checked.

Type_checking in figure 6-1 and figure 6-2 is a procedure used to check
correctness of facts data type and the consistency of goals and body
predicates with respect to its type definitions. It is fully explained in

chapter 3.

§ 6-2-3 Deducing Data type forRules

Deduce_rule_data_declarations : set(rule) x set(data-declaration) x set(data-type)

— Bool x set(data—declaration)

The Deduce—rule_data_declaration is a procedure used to deduce the data
type of rule heads. It takes as an input the type information (i.e. the type
information of facts (q.v. § 6-2-1) and the deduced rule data type). Before
the rule head data type is deduced, the body predicates are typed and checked

.

for consistency.

70



§ 6-3 Translation of TPROLOG Programs into Complex-Free PROLOG

Programs

§ 6-2 describes the procedure which translates a TPROLOG program
into an equivalent PROLOG program. This section describes the first step

of compiling a PROLOG program into equivalent RAEs: normalization.

In chapter 2 we showed that a safe PROLOG program is equivalent to
RAEs. Therefore, before the compilation of a PROLOG program is carried
out, the PROLOG program is safety checked (q.v.chapter 4) and

normalized (q.v. chapter 5), in that order.

The description of the safety checking procedure is in § 6-3-1. § 6-3-2,
§ 6-3-3, and § 6-3—4 describe the normalization of a PROLOG program,

whilst § 6-3-5 describes the goal normalization.

§ 6-3-1 Safety Checking

§ 6-3-1-1 Safety Checking for Rules

Check_rules_safety : ( set(rule) x set(facts) — rule/goal graph)

— Bool x set(safe—path)

The Check_rules_safety, which check the safety of a PROLOG program, is
a decision procedure which takes as input a rule-set a and fact-set. The
procedure generates a graph which represents the execution route of the
rule-set (i.e. rule/goal graph), and then checks the safety of the rule-set graph
in the light of safety conditions. The result-of the decision is either the
rule-set is strongly safe or it is weakly safe (q.v. chapter 4). Note that, the

(weakly and strongly) safe paths represent all safe executions of the rules.
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§ 6-3-1-2 Safety Checking for Goals
Check_goals_safety :  set(goals) x set(safe-path) — Bool

Check_goals_safety is a decision procedure which takes a set of sub-goals
and safe execution paths as an input. The procedure checks the safety of each
sub-goal with respect to the safe execution paths. This is done by generating
a goal graph and mapping it into the safe execution paths. The result of the
decision depends on whether the goal graph is successfully unified with a

safe execution path or not.

§ 6-3-2 Normalizing Data Declarations

Normalize_data_declaration : set(data—declaration)x set(data-type)

— set(normalized—declaration)

Normalize_data_declaration is a procedure which takes the type
information of a PROLOG program (i.e. data_declaration_set and data_type
(q.v. § 6-2)). It is used to extract and replace structured type terms by simple
type terms. It outputs a new set of type information which is equivalent to
the original type information. The new set of type information contains a

simple type terms only.

§ 6-3-3 Normalizing Facts

Normalize_facts :
set(data—type) x set(facts) x set(normalized—declaration) x

set(facts—declaration) — Bool X set(norma}ized%act)

Normalize_facts is a procedure which extracts structured terms and
replaces them by new simple terms in the same way as their respective

types are normalized. It takes as an input the set of facts in the program,
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the type information about the facts, and the normalized form of the type
information. Before the facts are normalized, they are typed checked
(q.v.§6-2-2). If the ground terms in facts are correctly typed, the
normalize procedure is carried out. If a fact is ill typed, then it is rejected
and will not be normalized. The output of the normalize procedure is a
new set of facts which are equivalent to the original facts (q.v. § 5-2-1).

The new facts are complex—free facts.

§ 6-3—4 Normalizing Rules

Normalize_rules :  set(data—-type) x set(normalized—declaration) x set(rule)

— set(normalized-rule)

Normalize_rules is a procedure used to extract structured terms from rule
heads and their body predicates by replacing them by new simple terms. It
takes a PROLOG program rule and produces an equivalent new set of rules
which does not contain any structured terms. The procedure is carried out,
after the typing checking done on its body predicates and the rule head
types are deduced, and safety of the program are done. It produces a new

set of complex—free rules which are equivalent to the original rules.

§ 6-3-5 Normalizing Goals

Normalize_goals :
set(goal) x sct(data-type) x set(normalized—declaration) X

set(data—declaration) — set(normalized—query) X set(temporary—fact)

Normalize_goals is a procedure which extracts all complex terms from
goals and replaces them by new simple terms. It is carried out, after the
goals are correctly typed and safety checked. It takes as input a set of
PROLOG goals, the original type information, and the normalized form of

the type informations. It outputs a new-goals-sct which is a normalized
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form of the goals. The normalization process for goals is similar to the
normalization of the unified clause. The only difference is some

temporary facts may be added to the program.

§ 6-4 The Transformation of Complex-free PROLOG programs into
Relational Algebraic Expressions (RAEs)

§ 6-3 describes how a TPROLOG program is transformed into a
complex—free PROLOG program. This section shows how a relational
database can be constructed from a complex-free PROLOG program. The
translation of a complex—free PROLOG program is based on Reiter's,
Henschen's, Chang's and Bancilhon's approaches [Reiter 1978,
Hencschen 1984, Chang 1986, Bancilhon 1986]. The construction is done as

follows:

a) The fact base (i.e. normalized-facts and their type information) is
transformed into a base-table. Each base-table is represented in

storage by a distinct stored file.

b) The rules base (i.e. PROLOG complex—free rules and their type
information) is translated into a view. A view is a table which does
not exist in its own right, but instead it is derived from one or more

tables (i.e. view or base-table).
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Chapter 7: Implementation

§ 7-1 Introduction

Chapter 6 discusses the system architecture. This chapter discusses the

implementation of the system using C-PROLOG.

The system is divided into two separate parts. One for compiling a
TPROLOG program into RAEs ( figure 6-1) and the other for compiling a
TPROLOG query into a relational algebraic query languages (figure 6-2).

This chapter consists of three sections. §7-2 discusses the
implementation of the TPROLOG compiler, whilst § 7-3 discusses the
TPROLOG query compiler. § 74 gives the status of the implementation.

Note that, terminals in Appendix A are referred to in this chapter.

Moreover, they are written in italic form.

§ 7-2 The Compilation of TPROLOG Programs

§ 7-2-1 The Transformation of TPROLOG Programs into Complex—Free
PROLOG Programs

§ 6-2 and 6-3 describe the transformation of TPROLOG programs into

complex—free PROLOG programs. The transformation is done in two

steps; the transformation of a TPROLOG. program into a PROLOG

program, and then the transformation of a PROLOG program into a

complex—-free PROLOG program. This section describes the
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implementation of these two steps.

§ 7-2-1-1 The Transformation of TPROLOG Programs into PROLOG

Programs

The transformation of a TPROLOG program into a PROLOG program
consists of two procedures (q.v. § 6-2): the parser, and the deduction of

rule types.
§ 7-2-1-1-1 Parser
parser(P) = (Ok, rule-set, fact-set, facts—declaration—set, data—type-set)

where Ok is false if a TPROLOG program P is not syntactically valid,
otherwise Ok is true. If Ok is true, then P is translated into four data set

written in PROLOG form..
The output of the parser is as follows:

a) Each statement (q.v. Appendix A) of the form clause, where clause is
of the form structure :- expressions. (i.e.rule), is translated into an

equivalent unit clause called rule’ defined as follows:

rule(structure, expressions).

where structure is defined as follows:

predicate x list(term)
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where predicate is the rule head predicate name, list(term) are the

sub—terms in the rule head, and expressions is defined as follows:
list(¥ )x list( list(term))

where ¥ is either a body predicate symbol, an operator of the
arithmetic expression in the body of the rule, a logicop in the body of
the rule, or !/, and list(term) is list of terms associated with each V.
Moreover, rule' € rule-set. For example, the rules in the program of

figure 1-2 are translated into the rule-set shown in figure 7-1.

rule(glaswegian-infant, [LN, FN, Age], [person, < ],
[[FN, LN, address(_, ba, glasgow), Agel, [Age, 4]]).

rule(glaswegian—emp, [Ln, Fn, Sch, Yr], [emp, person, >, <],
[[Fn,Ln, _, [, _, degree2(_, _, Sch, YDI], [Fn, Ln, address(_, glaswegian), _|,
[Yr, 1960], [Yr, 1990]]).

Figure 7-1. the translated rules in figure 1-2.

b) A set of statement of the form clause, where each clause is of the form
structure. (i.e. facts), is translated into an equivalent unit clause called

fact’, and it is defined as follows:
relation( predicate, set(list(term)))

where predicate is a predicate symbol (i.e. fact name) and each
list(term) is a list of ground terms for each fact with the same
predicate symbol. Moreover, fact' € fact-sct. For example, the facts in

the program of figure 1-2 are translated as shown in figure 7-2.

77



relation(person, [[joe, cool, porter, address(none, glasgow), 20],

’

[max, fax, guard, address(flat(21, 18, windsor_street, £20), glasgow), 40]
[joe, doe, address(house(31, kew_drive, g12), glasgow), 3])).

relation(emp, [[joe, cool, porter, none], [max, fax, guard, [degree1(hs,1968)]],
[fred, red, staff, [degreel(hs, 1975),

degree2(msc, ba, school(glasgow_university, glasgow), 1980),

degree2(msc, ba, school(glasgow_university, glasgow), 1983)]1]).

Figure 7-2. The rewritten form of facts in figure 1-2.

c) Each statement of the form % facts—declaration., with respect to the set
of statement of form $ data-type., is translated into a set of unit
clauses. Such a unit clause, called fact-declaration’, is defined as

follows:
schem(predicate, list(term) , list(type), list(complex-type))

where pre;iicate is a fact predicate name or a function symbol in the
data-type (q.v. d), term is an attribute (i.e. con) in the fact-declaration
or data-type, and each term is associated with a type. If the data-type
of an attribute in a fact-declaration is of variant type, then the
predicate definition consists of more than one fact-declaration’ for the
fact-declaration. The list(complex-type) C list(type) is used when we
search for an attribute of complex type. Finally,
fact-declaration' € fact-declaration-set. For example, from the type
information in figure3-1 and figure 3-2 of the program in

figure 1-2, we get the set of facts shown in figure 7-3.
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schem(emp, [first_name, last_name, job_name, degreel, [name, name, job, f1], [f1]).
schem(emp; [first_name, last_name, job_name,degree], [name, name, job, f21, [£2]).
schem(emp, [first_name, last_name, job_name,degree], [name, name, job, £3], £3]).
schem(person, [first_name, last_name, home_address, person_age],

[name, name, addresses, agel, [addresses)).

figure 7-3. The translation of fact-declaration of the program in

figure 1-2.

d ) Each statement of the form § data-type. is translated into data-type’,

where data-type' € data-type-set, and data-type' is defined as follows:

1) If data-type is of the form type(<con, integer, integer>), then
data_type' is of the form type(X) :-con(X), between(X, integer, integer),
where X is a variable. Note, between is a built-in predicate used to

check the range of X. It is explained in § 3-3-1.

2 ) If data—type is of the form type({atom, ..., atom}), then data_type' is

of the form type(X) :- member(X, [atom, ..., atom]).

3 ) If data—type is of the form type(predicate), then data-type’ has the

same form as data-type.

4 ) If data-type is of the form type(ltype,, ..., type, ), then data_type' is
of the form type(X)‘ .- clement_in(X,Y), member(Y,[type,, ..., type D).

Note, element_in is a built_in predicate used to assume that X is of

typeY.

5 ) If data-type is of the form type(l{types. - type, 1), then data_type’
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is of the form type(X) :- each_clement(X,Z), element_in(Z,Y),
member(Y,[typeI, e typen]). Note, each_element is a built_in

predicate used to take an element Z from list X.

6 ) If data-type is of the form type(predicate(con: : type., ..., con : type )),
then data-type' is of the form

type(predicate(typez, typen)).

An example of translating set of § data-type in figure 3-1 into

data-type-set is shown in figure 7—4.

name(X):-string(X), between(X, 1, 10).

street(X):- string(X), between(X, 1, 30).

city(X) :- member(X, [glasgow, london, edinburgh, manchester, birmingham, reading]).

undergrad(X) :- member(X, [hs, primary]).

postgrad(X) :- member(X, [msc, phd, diploma]).

subject(X) :- member(X, [ba, computer, engl, math, engineering, biology, medicine]).

school_name(X):- member(X, [glasgow_university, edinburgh_university,
heriot_watt_university]).

job(X) :- member(X, [ porter, guard, vp, staff]).

post_code(X) :- member(X, [g1, g2, g3, g12, g20).

age(X) :- integer(X), between(X, 0, 200).

year(X):-integer(X), between(X, 1800, 2100).

house_no(X) :- integer(X), between(X, 1, 1000).

fl1(none).

f2(degreel(undergrad, year)).

f3(degree2(postgrad, subject, school, year)).

f4(school (school_name, city)).

addresses(address(home, city)).

list1(X) :- each_element(X, Z), element_in(Z, Y), member( Y, [f23]).

qualification(X) :- element_in (X,Y), member(Y, [f1, list1]).

Figure 7—4 The translation of the program in figure 3-1 into

data-type-set.
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For the sake of type checking, each term of the form predicate is
translated into schem(predicate,(],[], [1) , and each term of the form
predicate’(" con “:’ type {’," con "’ type} *)' is translated into
schem(predicate list(con) , list(type), list(complex—type)). Translated terms are
added to fact-declaration-set. For example, the translation of the § data-type

in figure 3-1 are translated as shown in figure 7-5.

schem(none, (], [1, [I).
schem(degreel,[degree_name, degree_year], [under_grad, year], []).
schem(degree2, [degree_name, degree_subject, degree_school, degree_year],
[post_grad, subject, f4, yearl, [f4]).
schem( school, [name, school_city], [school_name, cityl, []).
schem(address, [house_address, city_address], (f1, city], [f1]).
schem(address, [house_address, city_address], [house_address, city], [house_address]).
schem(address, [house_address, city_address], [flat_address, city], [flat_address]).
schem(flat, [flat_no, building, street_name, code], [integer, house_no, street, post_code],
.

schem(house, [building, street_name, code], [house_no, street, post_codel], []).

Figure 7—4 The translation of § data—type set in figure 3-1 into a

fact—declaration—set

§ 7-2-1-1-2 Deducing Rule Data Types

Deduce_rule_data_type(rule-set, data—declaration-set, data-type, ) =

( Ok,rule—data—declaration—sct)

Deduce_rules_data_type is a recursive procedure used to produce a

rule-declaration-set (i.e. type of variables in rule heads), where a
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rule—declaration € rule-declaration-set is syntactically equivalent to the syntax
of the fact-declaration-set (q.v. § 7-2-1-1-1 (c)) (note, an attribute name may
be var in a rule head). The procedure takes as an input data-declaration-set,

and a rule-set (q.v. § 7-2-1-1-1), where

data-declaration-set= fact—-declaration-set U rule-declaration—set

It checks the correctness and the consistency of the body predicates data
type with respect to its existing type information (i.e. data-declaration-set
and data-type). The output of the procedure is defined as follows: For each

R € rule-set, D c data—declaration-set , and T c data-type-set,

a ) If the procedure can deduce type for R head from D and T (i.e. OK is
true), then rule-declaration is generated and added to D. Note that, if a
variable in head of R has variant data-type, then there is more than

one rule-declaration for R.

b ) Otherwise, R is untyped (i.e. OK is false). As a result of this decision
we cannot compile R to a RAE. Therefore, there is no need for

further processing.

For example, from figure 7-3, figure 7-4, and figure 7-5 the deduced

rules data type of the program in figure 1-2 is shown in figure 7-6.

schem(glaswegian_emp, [Ln, Fn, Sch, Yr], [name, name, school, year], [school]).

schem(glaswegian_infant,[LN, FN, Agel, [name, name, age], []).

Figure 7-6. A rules data declaration of the program in figure 1-2.
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§ 7-2-2 The Transformation of PROLOG Programs into Complex—Free
PROLOG Programs

§ 7-2-1 showed that further processing should be done only on facts
and rules which have a type. Therefore, the transformation of a TPROLOG
program into a complex—free PROLOG program procedure assumes facts

and rules which are correctly typed.

§ 7-2-2-1 Normalizing Data Declarations

Normalize_data_declaration (data—declaration, data-type) =

( normalized—declaration).

Each normalized-declaration € normalized-declaration-set (q.v. § 6-3-2) is
produced by replacing each term (i.e. constant or variable) of a complex
data type in each data-declaration € data-declaration-set with a new term
(i.e. constant or variable) of skolem constant type. Moreover, a complex
type is introduced as normalized-declaration by adding the replaced term and
its type to it, and prefixing r to the function name (q.v. § 5-2). Note, the
data declaration of complex terms is introduced in §7-2-1-1-1. A

normalized-declaration is of the following form:
new_schem(predicate list(term) x list(type + skolem-type))

For example, the normalized form of data-declaration-set, which is

shown in figure 7-3, figure 7-5, and figure 7-6, is shown in figure 7-7.
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new-schem( emp, [first_name, last_name, job_name, al], [name, name, job, skolem])).
new-schem( person, [first_name, last_name, a3, person_agel, [name, name, skolem, age]).
new_schem(rnone, [al], [skolem]).
new_schem(rdegreel, [degree_name, degree_year, a4], [under_grad, year, skolem]).
new_schem(rdegree2,[degree_name, degree_subject, a2, degree_year, a4],
[post_grad, subject, skolem, year, skolem]).
new_schem(rschool,[name, school_city, a2], [school_name, city, skolem]).
new_schem(rlistl, [a4, al], [skolem, skolem]).
new_schem(raddress, [al, city_address, a3], [skolem, city, skolem]).
new_schem(rflat, [flat_no, building, street_name, code, al],
[integer, house_no, street, post_code, skolem]).
new_schem(rhouse, [building, street_name, code, al],
[house_no, street, post_code, skolem)]).
new_schem(glaswegian_emp, [Ln, Fn, Sch, Yr], [name, name, skolem, year]).

new_schem(glaswegian_infant, [LN, FN, Agel], [name, name, age)).

Figure 7-7. The normalization of data set in figure 7-3, figure 7-5. and
figure 7-6.

§ 7-2-2-2 Normalizing Fact Base
§ 7-2-2-2-1 Facts Type Checking
facts_type_checking(fact-set, facts—declaration—set, data-type-set) = Ok

The type of each fact in fact-set is checked with respect to its fact
declarations in facts-declaration-set and data-type-set (q.v. § 3-3-2). The
output of the type checking result is either typed (i.e. Ok is true) or
untyped (i.e. Ok is false). If Ok is false , then the fact cannot be stored in a
database. Therefore, there is no need for further processing. An example of
type checking is that relation emp and person in figure 7-2 are typed with

respect to data—declaration-set in figure 7-3 and figure 7-5 and data-type-set



in figure 7-4.

§ 7-2-2-2-2 Normalizing Facts

Normalize_fact (data-type, fact-set, fact—-declaration-set, normalized—declaration-set)=

( Ok, normalized—fact-set).

normalize_fact procedure checks the type of a ground term in the fact-set
(q.v. § 7-2-2-2-1) . If the ground terms data type is correct (i.e. Ok is true),
then the procedure outputs a normalized-facts-set (q.v.5-2-1). A
normalized-facts-set is a rewritten form of the fact-set (q.v. § 7-2-1). In
general, the procedure mirrors the facts-declaration normalization
(q.v. § 7-2-2-1). More precisely, the transformation from fact-set to

normalized—facts-set is done recursively as follows:

a) Each complex term in a fact' € facts-set is replaced by a new skolem

constant.

b) Each complex term is transformed into a new fact called
normalized—fact, where normalize—fact € normalized—facts-set, by appending

the complex term with the replaced skolem constant.

A normalize—fact € normalized—fact-set is of the following form:
new-relation(predicate, set(list(con)).

where predicate is either fact predicate name or a functor of complex term
in a fact, and con is is either a constant in a fact-set or a constant of skolem
type. For example, relation emp and person in figure 7-2 are typed with
respect to data-declaration-set in figure 7-3 and figure 7-5 and data-type-set

in figure 7-4. Therefore, the normalized form of facts emp and person is
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shown in figure 7-8 with respect to normalized—-data—declaration in

figure 7-7.

new-relation(person, [[joe, cool, c1, 20], [max, fax c3, 40}, [joe, doe, c5, 3]).
new-relation(emp, [[joe, cool, porter, c7], [max, fax, guard, c8], [fred, red, staff, c9]]).
new_relation(raddress, [[c2, glasgow, c1], [c4, glasgow, c3], [c6, glasgow, c8]]).
new_relation(rnone, [[¢2], [c7]]).

new_relation(rflat, [[21, 18, windsor_street, 20, c4]]).

new_relation(rhouse, [[31, kew_drive, g12, c6]]).

new_relation(rlist1, [ [c14, ¢8], [c11, ¢9], [c12, 9], [c13, c9]]).

new_relation(rdegreel, [[hs, 1968, c14], [hs, 1975, c11]]).

new_relation(rdegree2, [ [msc, ba, c10, 1980, c12], [phd, ba, c10, 1983, c13]]).

new_relation(rschool, [[glasgow_university, glasgow, c10]]).

Figure 7-8. The normalized form of facts in figure 7-2.

§ 7-2-2-3 Normalizing Rule Base

§ 7-2-2-3-1 Rules Safety Checking

Check_rules_safety ( rule/goal graph generator( rule-set)) =
(Ok, safe-path-set)

check_rules_safety procedure works in two steps.

step1 : Takes as an input rule-set and generates a graph which
represents the execution path of the rule-set (q.v.§ 4-3). Each node in

the graph is represented in the following form.

node( current_node,
list_of _nodes_directed_from_current_node,

list of nodes_directed_to_current_node)

86



step 2 : After the rule/goal graph of rule-set is generated, the procedure
checks the safety of the rule-set in the light of safety conditions
(q.v. § 4-2-2). The result of the decision may be defined as follows:
For each P ¢ rule-set (where P is a set of rules represented by a

graph using the rule/goal graph generator),

a) P is strongly safe (i.e. OK is false), if every execution path for P in
the rule/goal graph satisfies the safety conditions. In this case,

there is no need to store the graph.

b) Otherwise, we say P is weakly safe (i.e. Ok is true). In this case,
some execution paths for P satisfy the safety conditions, but not
all. The sub-graph of the P which satisfies the safety conditions
is called safe-path-set. Note, if there is no path is satisfied by the

safety conditions, then safe-path-set is empty.

For example, each execution path for each rule in figure 7-1 satisfies
the safety conditions: whole program is strongly safe and there is no need

to store the graph.

§ 7-2-2-3-2 Normalizing Rules

Normalize_rules(rules-set, data—declaration, normalized-declaration-set) =

normalized-rule-set

The procedure takes rule-set (q.v. § 7-2-1-1-1 (a)), data-declaration
(q.v. § 7-2-1-1-1 (c)), and normalized-declaration-set (q.v.§ 7-2-2-1) and
produces a new-rules-set. The new-rules—set is produced by extracting complex
terms from each rule in rules-set. The extraction is defined as follows: For

each R € rules-set
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a) Each complex term in R head is replaced by a variable of skolem
constant type. Each complex term is added to the body predicates of

R, after appending the complex term with replaced variable.

b) Each complex term in the body of R is replaced by a new variable of
skolem constant type. Each complex term is add to the body of R,
after appending the complex term with the replaced variable. Note,
if the complex term also exists in R head, then it is replaced by the
same variable. Moreover, the type of each variable of a complex

term data type is replaced by the skolem constant type.

A normalized-rule € normalized-rule-set is of the following form
new-rule( normalized—structure, normalized-statement)
where

normalized-structure = con X list(non-structured-term), and

normalized—statement = list( ¥ x list{ non-structured—term))

where ¥ is defined in §7-2-1-1-1. For example, rule-set in figure 7-1 are

translated into a set of new-rules as shown in Appendix B.

§ 7-2-3 The Transformation of Complex—free PROLOG Programs into
RAEs

§ 7-2-1 and § 7-2-2 described how a TPROLOG program is transformed

into a complex—free PROLOG program. A complex—free PROLOG program

consists of the following:
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1) Normalized-data—declaration—set (q.v. § 7-2-2-1).
2) Normalized—facts-set (q.v. § 7-2-2-2-2).
3) Normalized-rule-set (q.v. § 7-2-2-3-2).

This section shows how a relational database can be constructed from

the above components. In general, the construction is done as follows:

a ) Each normalized-fact € normalized—fact-set is transformed into a
base—table. Each base-table is represented in storage by a distinct

stored file.

b ) Each normalized-rule € normalized-rule-set is translated into a view. A
view is a table which does not exist in its own right, but instead it is

derived from one or more tables (i.e. view or base—table).

In the following sub-sections we discuss, in more detail, the

translation of complex—free PROLOG program into RAE.

§ 7-2-3-1 Storing Facts in Database

Normalized facts and their data declarations are transformed into a set
of RAE. Facts are stored in the data base by executing the set of RAEs. The
transformation of normalized facts and their declarations into a set of

RAEs is defined as follows:

a ) For each normalize-fact—-declaration € normalized-fact-declaration-set, an
empty base—table can be created (i.e. relational schem) using the
CREATE-TABLE operation. So that, each normalized-fact-declaration is

transformed as follows:
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CREATE-TABLE predicate (list (termx type))

where predicate is a fact name and term is an attribute name, and
type is a type of the corresponding attribute. Note, we assume that
user—define types (i.e. domain) are supported by the relational data
base management systems. For example, the normalized-data-set of
facts in figure 7-7 is transformed into a set of RAE shown in figure
7-9.

CREATE-TABLE emp( first_name : name, last_name : name, job_name : job, al : skolem)
CREATE-TABLE person( first_name : name, last_name : name, a3 : skolem,
person_age : age)
CREATE-TABLE rmone( al : skolem)
CREATE-TABLE rlistl (al : skolem, a4 : skolem)
CREATE-TABLE rdegreel( degree_name : under_grad, degree_year : year, a4 : skolem)
CREATE-TABLE rdegree2 ( degree_name : post_grad, degree_subject : subject, a2 : skolem,
degree_year : year, a4 : skolem)
CREATE-TABLE rschool ( name : school_name, school_city : city, a2 : skolem)
CREATE-TABLE raddress(al : skolem, city_address : city, a3 : skolem)
CREATE-TABLE rflat(flat_no : integer, building : house_no, street_name : street,
code : post_code, al : skolem)
CREATE-TABLE rhouse( building : house_no, street_name : street, code : post_code,

al : skolem)

Figure 7-9. The transformation of facts data declaration in

figure 7-7 into RAE.

b ) For each normalized-fact € normalized-fact-set, each list(con)

(q.v. § 7-2-2-2-2) is transformed as follows:

INSERT INTO predicate (list(term )) : list(con)
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where predicate is a fact name and list(term) is a list of attributes
name (q.v. § 7-2-2-1) corresponds a type of list(con) of arguments in
the fact. For example, the set of new_relation in figure 7-8 is

transformed into RAEs shown in figure 7-10.

INSERT INTO person (first_name, last_name, a3, person-age) : joe, cool, c1, 20;
INSERT INTO person (first_name, last_name, a3, person-age) : max, fax, c3, 40;
INSERT INTO person (first_name, last_name, a3, person-age) : joe, doe, c5, 3;
INSERT INTO raddress(al, city_address, a3) : c2, glasgow, c1;
INSERT INTO raddress(al, city_address, a3) : c4, glasgow, c3;
INSERT INTO raddress(al, city_address, a3) : c6, glasgow, c5;
INSERT INTO rhouse(building, street_name, code, al) : 31, kew_drive, g12, c6;
INSERT INTO rflat{flat-no, building, street_name, code, al) : 21, 18, windsor_street, g20,
c4;
INSERT INTO emp (first_name, last_name, job_name, al) : joe, cool, porter, c7;
INSERT INTO emp (first_name, last_name, job_name, al) : max, fax, guard, c8;
INSERT INTO emp (first_name, last_name, job_name, al) : fred, red, staff, c9;
INSERT INTO none (al) : ¢2;
INSERT INTO rnone (al) : ¢7;
INSERT INTO rlistl (a4, al) : c14, c8;
INSERT INTO rlistl (a4, al) : c11, ¢9;
INSERT INTO rlist1 (a4, al) : c12, ¢9;
INSERT INTO rlist1 (a4, al):c13, ¢9;
INSERT INTO rdegreel (degree_name, degree_year, a4) : hs, 1968, c14;
INSERT INTO rdegreel (degree_name, degree_year, a4) : hs, 1975, c11;
INSERT INTO rdegree2 (degree_name, degree_subject, a2, degree_year, a4) :
msc, ba, ¢10, 1980, c12;
INSERT INTO rdegree2 (degree_name, degree_subject, a2, degree_year, a4) :
phd, ba, c15, 1983, c13;
INSERT INTO rschool (name, school_city, a2) : glasgow_university, glasgow, c10;
INSERT INTO rschool (name, school_city, a2) : glz;éng_university, glasgow, c15;

Figure 7-10. The transformation of new_relation in figure 7-8 into a set of

RAEs.
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§ 7-2-3-2 Rules Transformation
A predicate definition, in a PROLOG program, is one of the following;:
1) A predicate definition consists of one non-recursive rule.

2 ) A predicate definition consists of more than one clause (i.e. rules

and facts). Note, it may contains recursive rules.

In the following sub-sections we discuss the transformation of each of
the above predicate definition into a view. The first sub-section discusses
the transformation of predicate consisting of one non-recursive rule, and
the other sub-section discusses the generalization of the transformation
procedure in § 7-2-3-2-1 to include a predicate definition consisting of
more than one clause.

§ 7-2-3-2-1 The Transformation of One Non-Recursive Rule Procedure

The transformation of a predicate definition consisting of one

non-recursive rule is done as follows:
Let R be a rule with
a ) rule head namerr,
b) body predicate names p., p,, .-, P, ,

¢ ) and variables V]’ ., Vn occurring in the rule head and in at least
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one body predicate,

and assume that, each base body predicate (i.e. base table or view)
P, (1 <i<m) 1is associated with its data declaration
D. e normalized-data-declaration, then the transformation of R into a

view is as follows:

step 1- The transformation of R body predicate into relational algebraic

operations is defined as follows:

a ) Since we may have two body predicates with a same predicate
name, the name of each body predicate is referred to by an alias.
For example, for a given body predicate names P, Py P,
(note p, and p; are two body predicates with predicate name), the

following expressions are produced:

is a
p,1s Sb1
p,1s asb2

The introduction of the new names is done for sake of clearity

and non-ambiguity.

b ) For each base body predicate containing one or more constants,
each constant is represented by the conjunction of arithmetic
expressions. Moreover, these expressions are used as conditions
in a SELECT operation. The SELECT operator on relation (i.e. base
body predicate) p,, selects tuples from p_, where each tuple

satisfies the arithmetic expressions. For example, given a
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relation pP,,,» and cl and c2 are constants appearing as gth and

kth arguments in p,, then p  is transformed into

SELECT P, WHERE P2, = cl A P, =c2

where a, and a are the kth and the gth attribute names,

respectively, in P, and c1 and c2 are constants.

c ) Each two base body predicates, which share variables, are joined
together by using =-join operation. For example, if a given
variable V appears in kth column of p; and gth column of P,

then p. and p; are transformed to follows:
HERE p.a, =p..
(pl, JOIN P; YW P2, =P, ag

where a_is the kth attribute name in p, and a, is the gth
attribute name in P; Each two of the resulting relations or base
body predicates (i.e. base body predicates which are not yet
joined), which share variables, are joined together by using =-join
operation too. For example, if two variables V,, and V, appear
in the kth and gth columns of p;, V, appears in the mth
column of Py V, appear in the nth column of P, Py Py and
p, are base body predicates, then they are transformed into RAE

as follows:

((p, JOIN p], WHERE p a = P, .am)
JOIN P, WHERE pi.ag = pz.an)

where a, and ag are attribute names in Py a, is an attribute

k
name in Py and a_is an attribute name in p_. The join of the
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resulted relations are carried out until there are no relation

sharing variables with an other.

d ) The resulted relations form (c) above, which do not share
variables, are combined by using the cartesian product operation.
For example, given o8 and P; base body predicates or new
relations without shared variables, then they are combined

using the cartesian product operation as follows:
P, TIMES pj

e ) Finally, each comparison predicate is transformed into a similar
arithmetic comparison operation which is used as a condition in
a SELECT operation on the resulting relation from (d) above. For
example, given a comparison body predicate X > Y, where X is jth
p; argument and Y is kth 2 argument, then we can transform

the comparison predicate as follows:
SELECT p WHERE pi.aj >pg.ak

where a; is the jth p. attribute name and a, is the kth P,
attribute name, p is a resulting relation from (d) above.
Moreover, if one of the operands is a constant, then the
comparison predicate is transformed into an arithmetic

comparison operation containing a constant as its operand.

'step 2- The rule head of R is translated as follows:

.a WHERE ¥

n

DEFINE VIEWr @, ..., a ) AS PROJECT Pg'alr s Py
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where ¥ is an expression built up form step 1, and (Vi:1<i<n) a,
is V. corresponding attribute names deduced from the body

predicates.

§ 7-2-3-2-2 The Transformation of a Procedure Consisting of More Than

One Clause
In this sub-section, we discuss the case when a predicate definition
consists of more than one clause. The transformation of a predicate

definition consisting of rules and facts is defined as follows: Let P be a

predicate definition consisting of clauses (i.e. facts and rules) CI’ e, Cn

with the same facts and rules name c.

Each fact Ci (1 €i<n)in Pis transformed into RAE as follows:

1) Ci fact name is replaced by a new fact name f. Moreover, the
corresponding fact name in normalized-data-declaration is replaced by
f.

2 ) The fact f data—declaration and its corresponding facts are
transformed into RAEs as shown in § 7-2-3-1. The latter is
executed.

Each rule Ci (1 £i<n)is arule with

a ) rule head name c,

b) and body predicate p.,, ..., P,

is transformed into RAE as follows:
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1) For each rule C, , the rule head name c is replaced by a new name
r..
1

2 ) The transformation of each rule with rule head name I, into RAE

is defined in § 7-2-3-2-1.

All tables generated from rule transformations and fact transformations,
above, are joined together by UNION operation, and then the predicate named c¢

is transformed into RAE as follows:

DEFINE VIEW ¢ AS UNION f, T, T,

where f is defined in the facts transformation above and Ty s Ty

are defined in rules transformation above.

For example, rules in Appendix B are translated as shown in

Appendix C, by using normalized—-data—declaration in figure 7-7.
§ 7-3 The Compilation of TPROLOG Goals

TPROLOG program goals are syntactically similar to C-PROLOG goals
(q-v. Appendix A). Therefore, there is no need to translate TPROLOG goals
into PROLOG form. However, since TPROLOG programs are extended to
include type information (q.v. § 3-3), TPROLOG goals should be typed
checked before they are compiled into RAE. Moreover, they should be

safety checked too. We use the following example throughout this section:
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?-glaswegian_infant(L, F, A),

glaswegian_emp(L,_, school(edinburgh_university, edinburgh), Y).

Figure 7-11 A goal in TPROLOG form.

§ 7-3—-1 The Transformation of TPROLOG Goals into Complex—Free
PROLOG Goals

The transformation of TPROLOG goals into complex—free PROLOG
goals consists of three procedures. They are: check_goal_data_type,
check_golas_safety, and normalize_goals. The execution of the last procedure

depends on the results of the first two procedures.

§ 7-3-1-1 Goals Data Type Checking

Check_goals_data_type ( data—declaration-set, data—type—set, goals) = Ok

Check_goals_data_type is a decision procedure. It decides, depending on
the data-declaration-set (q.v. § 7-2-1), whether the data of the goal is
correctly typed and consistent or not. The procedure takes as an input goals,
data-type-set, and data-declaration-set. The result of the decision is defined as
follows: suppose that D is a data-declaration-set, T is a data-type-set, and Q is

a goal, then

a ) Q is well-typed goal (i.e. Ok is true), if the type of all its terms are

deducible, and consistent with respect to D and T.

b ) Otherwise (i.e. Ok is false), Q is not well-typed and as a result of this

decision, it is not possible to get the answer for the goal.
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For example the goal in figure 7-11 is well-typed and consistent.

§ 7-3-1-2 Goals Safety Checking

Check_goals_safety (goals, safe-path-set) = Ok

Check_goals_safety is a decision procedure. It takes a set of sub—goals as
an input. The procedure checks the safety of each sub-goal with respect to
the safety of the unified procedures. The result of the decision is defined as

follows: Suppose that, Q is a sub-goal and S is a set of safe paths for Q, then

a ) Q is safe goal (i.e. Ok is true), if Q is unified with a strongly safe

predicate definition or if Q is mapped to the safe path.

b ) Otherwise, Q is unsafe and as a result of this decision there is no

need to try to find the answer of the sub—goal.

For example, the goal in figure 7-11 is safe because the unified rules, in

figure 7-1, are strongly safe.

§ 7-3-1-3 Normalizing Goals

Normalize_goals (goal, data-type-set, data—type-declaration-set, normalized—data-set)

=(normalized—query, temporary—facts—set)

Normalize_goals takes as an input goals, data-type-set, data—declaration-set,
énd normalized—declaration-set. It outputs a new-goals-set. A new-goals-set is the
normalized form of the goals. The transformation of the goals is defined as
follows: Suppose that, Q is a goal, D is a data-declaration-set, and D' is a

normalized-declaration—set, then
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a ) If Q contains a variable of a complex data-type, then Q is normalized
in the similar way to its data-declaration normalization
(q.v. § 7-2-2-1). However, instead of having a constant of skolem

type, we have the variable of a skolem type.

b ) If Q contains complex terms, then its normalization is similar to a
rule head normalization (q.v. § 7-2-2-3-2). However, the new
predicate, which replaces the complex terms, is added to the

program as a temporary fact.
For example, the normalized form of the goal in figure 7-11 is shown
in figure 7-12. Note, rschool(edinburgh_university, edinburgh) is asserted as a
temporary fact.
?- glaswegian_infant(L, F, A),
assert(rschool(edinburgh_university, edinburgh, c)),

glaswegian_emp(L, F, ¢, Y).

Figure 7-12. The normalization form of goals in figure 7-11.

§ 7-3-2 Transform Complex-Free Goals into RAE

§ 7-3-1 describes how TPROLOG goal are translated into complex—free

goals. The transformation procedure results in:
1) A set of temporary facts.

and

2 ) A set of normalized goals.
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This section shows how relational database expressions can be
constructed from the above components. The construction is done as

follows:

a ) All temporary facts are transformed into base-tables as shown in

§ 7-2-3-1.

b ) The normalized goal is transformed into RAE in the similar way to
the transformation of rule body predicates. However, a projection

operation is used to project the value of all variables in the goal.

For example, the normalized goal in figure 7-12 is transformed into

the following expression:

PROJECT
glaswegian_infant.last_name,
glaswegian_infant.first_name,
glaswegian_infant.person_age,
glaswegian_emp.degree_year,
WHERE ( SELECT(glaswegian_infant JOIN glaswegian_emp
WHERE glaswegian_infant.last_name = glaswegian_emp.last_name)
WHERE glaswegian_emp.a2 = ¢)
Since a query is originally written in PROLOG, the result of the query

should be in PROLOG form. For example, the result of the query above is

rewritten in PROLOG form as follows:

L = value(glaswegian_infant.last_name)

F = value(glaswegian_infant.first_name)

A =value(glaswegian_infant.person_age)

Y = value(glaswegian_emp.degree_year)
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§ 74 Status of the Implementation

§7-2 and § 7-3 give the plan of the whole system implementation.

However, we have not implemented the whole system.

We have implemented the TPROLOG parser which checks the syntax
of a TPROLOG program and then translates it into four data set
represented in PROLOG form (q.v. § 7-2-1-1-1). After that, the type
checker of rules and the typed deduction are implemented
(q.v. § 7-2-1-1-2). The fact base normalization has been implemented.
This includes the normalization of data—declaration-set (q.v. § 7-2-2-1), the
facts type checker, and the normalization of fact-set (q.v.§7-2-2-2).
Finally, we have implemented the rule/goal graph of the program, and

then the safety checker is implemented (q.v. § 7-2-2-3-1).

Rules in a TPROLOG program have not been implemented yet. The
compilation of the normalized TPROLOG program, which is based on
[ Reiter 1978, Henschen 1984, Bancilhon 1986, Chang 19986], has not been
implemented yet. Finally, the complete processing of TPROLOG goals,

which is described in § 7-3, needs to be implemented.
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Chapter 8: Conclusions and Future Work

§ 8-1 Conclusions

We may divide our work on compiling logic programs into
conventional RAEs into two parts: the pre-compilation and the

compilation.

The pre-compilation part is used to check the typing and the safety of a
logic program (i.e.a PROLOG program). It ensures the existence of an

equivalent RAE for the logic program.

The type system in PROLOG (i.e. TPROLOG) allows us to add type
information to PROLOG. It is used to check the correctness and the
consistency of the data with respect to the data type information.
Moreover, it allows us to get a rich typing system as well as the benefits of
PROLOG flexibility in the information representation. However, it does
not include recursive type definitions. It allows any term to be of a variant
type, whilst database systems do not. We include variant type by assuming
that any argument of variant type is a complex argument, and then it is

normalize it as shown in the usual way.

Checking the safety of rules by using magic basis [Zaniolo 1986] is
restricted to non-recursive PROLOG program rules, whilst the
combination of rule/goal graph [Ullman 1985] and magic basis enables us
to check the safety of a PROLOG program ‘containing a recursive rules.
Although our safety checking is a compile time checking, some safety

checking may done at execution time too. We check at compile time
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whether the program is strongly safe or weakly safe, whilst at execution
time we check whether a query is safe or not. All safety checking is done
with respect to a generated rule/goal graph which represents all possible
executions of a PROLOG program. The safety conditions discard any
unsafe part of the rule/goal graph. Therefore, it would be much faster and

economical to incorporate the safety checking into the generation of the

graph.

The compilation part compiles logic programs containing non-flat
clauses into input suitable for conventional relational database
management systems. This is achieved by removing complex arguments
from facts and rules and replacing them with simplified facts and rules.
The simplified facts are stored in a conventional relational database, and
the simplified rules are compiled into views and stored in a rule base.
Moreover, temporary facts, which are generated and used at at execution
time, are stored temporarily in a database. The removal of complex

arguments in this way has several advantages :

1) It enables conventional relational databases to be used for storing the

complex facts as ground clauses containing atomic clauses.

2) Standard relational algebraic operations can be used and need not be

extended.

3) It allows us to use both logic programming languages and database

query languages (e.g. SQL [Chang 1986]).

4) It allows us to use already existing methods of compiling flat clauses

into a relational database.

104



We have implemented a part of the system using C-PROLOG. We
have implemented TPROLOG which comprise of translator and the type
checker(where translator translates TPROLOG program into PROLOG,
and type checker checks the type of the TPROLOG program). Moreover, we
have implemented the rule/goal graph generator and the safety checker

for a TPROLOG program.
§ 8-2 Future Work
We have the following plan for future work.

1) Extending TPROLOG to include a recursive type definitions. § 3-3-1
allows us to define the type of finite range (i.e. enumerated types,
sub-type of the enumerated type or basic type, and structured types
which are constructed from finite types or basic types). The inclusion of
recursive type definitions would allow us to define in more infinite

types (e.g. natural-number).

2 ) Incorporate the safety conditions into the generation of the graph. A
rule/goal graph generator generates a graph of all execution paths of a
program, whilst the safety conditions discard unsafe paths. Therefore,
we may restricts the generation of the graph to generate only the
rule/goal graph containing the unsafe paths. Therefore, if there is no
graph generated for the program, then the program is strongly safe.

Otherwise it is weakly safe.
3 ) Complete the whole system and use it with of a real database. This

will allow us to experiment and determine more precisely the benefits

of combining LPLs and RDBSs.
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4 ) Embedding RAEs in PROLOG. Since not every rule in a PROLOG
program can be translated into RAEs. However, some body predicates
in a such rule is unified with a procedure which is translated into
RAEs. Therefore, we may need to extend PROLOG to include some
built-in predicates, such as those introduced by Chang [Chang 1986]

which can be used as a bridge to a relational system.

5 ) Using the RAEs optimization techniques and parallel procedures to
execute them. Our approach of translating a PROLOG program rule
into RAE is by transforming each base body predicate contains
constants into a SELECT operation, and transforming each pair of base
predicates into a =join operation and so on until no more relations may
be joined. After that, transforming the resulting relations from =join
operations to cartesian product operations. Finally, transforming any
comparison body predicate into SELECT operation on the top of the
resulted relation from the cartesian product operation. We can execute
the SELECT operation for each individual base body predicate in parallel.
= join operations for each pair of relations may be executed in parallel
too. Finally, cartesian product operations for each pair of relations may
be executed in parallel. We may impose some optimization techniques

which reorder the operations order to make queries more efficient.
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Appendix A: EBNF Specification of TPROLOG Syntax

program := statement { statement }

statement ::= clause

tr

| "% fact—declaration .
| '$' data-type "'
| '?" goal'
data-type ::= type '(' ('<' con ',integer ',' integer '>'
[ '{" atom {',' atom } '}'
| predicate < '(" con "' type {',' con "' type } ')’
[ C'{ type { ", type} '} | type { ', type }) T
)
type ::= con
clause ::= structure ( '.' | "-' statements ".")
goal ::= expressions
expressions::= { expression (', | ;') } < expression >

expression ::= structure | compute | 'f

structure ::= predicate < '(' term { ', term } ')’ >
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predicate ::= con

term ::= integer | var | list | structure | " { char } ™

1

compute ::= (var | integer )
('is' ( var | integer ) operator ( var | integer )

| logicop (var | integer )

)
operator == "+' =" | *' | /' | 'mod’
logicop i= '>' < '=' >
| '='<'<' >
I <
| '\='
listi= ['<term< {',) term } <'l' term >>>"]'

atom = integer | con

con :=lo { char}

integer ::= dig { dig }

var =:=cap {char } | '

char:=lo | cap | dig | '

dig =='0" | '1" | ......... 9’
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loz="a"| 'b'|

capu="A"| 'B' | ........... |z

fact-declaration ::= predicate '(' con "' type { ', con "' con } )’

Note:

Nonterminal = { statement, clause, structure, expression, data-type, goal,

Terminal =

Symbols

< >

{}
)

compute, term, integer, var, list, char, logicop, operator, type,

con, expressions, predicate, fact—-declaration, atom}

{"I, ':-1’ "l’ I;V, '%" l?‘, '!!, l(l’ I)l’ Itll, I+V’ V_Y, V*l, '/l, Vmodl’ |=”
l>l, v<v’ v\=|’ l[l’ c]l’t{v’ v}ll 1_1[ vev’ 'O‘, 111’ ...... ,|9|,|a|’ Ib', .... ,lZII

'A', 'B‘, .... , |Z|’ l:t’vlv, 'isl}

(zero or one time)
{zero or more time)

(only one time).
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Appendix B : The Normalization of Rules in Figure 7-1

new_rule(glaswegian_infant, [LN, FN, Agel,
[person, raddress, rnone, <],

[[FN, LN, V1, Agel, [V2, glasgow, V1], [V2], [Age, 4]D.

new_rule(glaswegian_infant, [LN, FN, Age],
[person, raddress, rflat, <],

[[FN, LN, V1, Agel], [V2, glasgow, V1], [_, _, _, V2], [Age, 4]]).

new_rule(glaswegian_infant, [LN, FN, Agel,
[person, raddress, rhouse, <],

[[FN, LN, V1, Agel, [V2, glasgow, V1], [_, _, V2]], [Age, 41]).

new_rule(glaswegi;an_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegreel, rlist1, rdegreel, rlistl, rdegree2, rschool, person, raddress, rnone, >, <],
([Fn, Ln,_, V1], [V2,V1], [, , V2],[V3,V1], [, _, V3], [V4,V1], [ _ Sch, Yr, V4],
[_, _, Sch], [Fn, Ln, V5, ], [V6, glasgow, V5], [V6], [Yr, 1960], [Yr, 19901]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegreel, rlist1, rdegreel, rlist1, rdegree2, rschool, person, raddress, rflat, >, <],
[[Fn, Ln,_, V1], [V2,V1], [, _, V2],[V3, V1], [ _ V3], [V4,V1 ], [ _ Sch, Yr, V4],
[ _ Sch], [Fn, Ln, V5, _], [V6, glasgow, V51, [_, _, _, Vél, [Yr, 1960], [Yr, 1990])).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist], rdegreel, rlist1, rdegreel, rlist1, rdegree2, rschool, person, raddress, rhouse, >,
<],

([Fn, Ln,_, V1], [V2, V1], [ _, V2], [V3, V1], [ _, V3], [V4, V1 ], [ _, Sch, Yr, V4],
[_, _ Schl, [Fn, Ln, V5, ], [V6, glasgow, V5], [, _, V6, [Yr, 1960], [Yr, 1990])).
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new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegreel, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person, raddress,
rmone, >, <],
[[Fn, Ln,_, V1], [V2, V1], [_, _, V2], [V3,V1}, [, _, V4, _V3], [, _, V4], [V5, V1],
[, _ Sch, Yr, V5], [, _, Sch}, [Fn, Ln, V6, _], [V7, glasgow, V6], [V7], [Yr, 1960], [Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlistl, rdegreel, rlistl, rdegree2, rschool, rlist1, rdegree2, rschool, person, raddress,
rflat, >, <],
[[Fn, Ln,_, V1], [V2, V1], [, _ V2],[V3, V1], [, _, V4, _V3], [, _, V4], [V5, V1],
[ _ Sch, Yr, V5], [, _, Sch], [Fn, Ln, V6, _]1, [V7, glasgow, V6], [_, _, _, V7], [Yr, 1960],
[Yr, 1990]D).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlistl, rdegreel, rlistl, rdegree2, rschool, rlistl, rdegree2, rschool, person, raddress,
rhouse, >, <],
[[Fn, Ln,_, V1], [V2,V1], [ _ V2],[V3, V1], [, _ V4, _V3], [, _ V4], [V5,V1],
[ _ Sch, Yr, V5], [, _, Schl, [Fn, Ln, V6, _], [V7, glasgow, V6], [_, _, V7], [Yr, 1960],
[Yr, 1990]1).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegree2, rschool, rlist1, rdegreel, rlist1, rdegree2, rschool, person, raddress,
rmone, >, <1,
[[Fn, Ln,_, V1], [V2, V1], [, _ _V3,_V2], [_ _ V3], [V4,V1], [_, _ V4], [V5, V1],
[, _ Sch, Yr, V5], [, _, Sch], [Fn, Ln, V6, _], [V7, glasgow, V6], [V7], [Yr, 1960], [Yr, 1990]}).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlistl, rdegree2, rschool, rlistl, rdegreel, rlist1, rdegree2, rschool, person, raddress,
rflat, >, <], [[Fn, Ln,_, V1], [V2, V1], [, _, V3, _ V2], [, _, V3], [V4, V1], [, _, V4],
V5, V1], [, _ Sch, Yr, V5], [, _, Sch], [Fn, Ln, V6, _1, [V7, glasgow, Vél, [, _, _, V7],
[Yr, 19601, [Yr, 1990]D.
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new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegree2, rschool, rlist1, rdegreel, rlist1, rdegree2, rschool, person, raddress,
rhouse, >, <],
{(Fn,Ln,_ V1], [V2,V1], [, _ V3, V2], [, _, V3], [V4,V1], [, _ V4], [V5, V1],
[_, _,Sch,Yr, V5], [, _,Sch], [Fn, Ln, Ve, _], [V7, glasgow, V6], [, _, V7], [Yr, 1960],
[Yr, 1990]]).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegree2, rschool, rlist1, rdegree2, rschool, rlistl, rdegree2, rschool, person,
raddress, rnone, >, <],
[[Fn, Ln,_, V1], [V2, V1], [, V3, V2], [, _, V3], [V4, V1], [ _ V5, V4], [ _ V5],
[vé, V1], [, _, Sch, Yr, V6], [, _, Schl, [Fn, Ln, V7, _], [V8, glasgow, V7], [V8], [Yr, 1960],
[Yr, 19901)).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegree2, rschool, rlist1, rdegree2, rschool, rlistl, rdegree2, rschool, person,
raddress, rflat, >, <],
([Fn, Ln,_, V1], [V2, V1], [ _ V3, _ V2], [ _ V3], [V4, V1], [ _ V5, _V4], [, _ V5],
[Vé6, V1], [ _ Sch,Yr, V6], [, _, Sch], [Fn, Ln, V7, _], [V8, glasgow, V71, [, _, _ V8],
[Yr, 1960], [Yr, 19901D).

new_rule(glaswegian_emp, [Ln, Fn, Sch, Yr],
[emp, rlist1, rdegree2, rschool, rlist1, rdegree2, rschool, rlist1, rdegree2, rschool, person,
raddress, rhouse, >, <},
([Fn, Ln,_, V1], [V2, V1], [ _V3,_ V2], [, _ V3], [V4, V1], [ _ V5, _V4], [_, _, V5],
[vé, V1], [, _, Sch, Yr, V6], [_, _, Schl, [Fn, Ln, V7, _], [V8, glasgow, V7], [_, _, V8],
[Yr, 19601, [Yr, 1990]]).
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Appendix C: The Transformation of Rules in Appendix B

person is as bl
raddress is as b2

mone isas b3

DEFINE VIEW rl (last_name, first_name, person_age)
AS PROJECT bl.last_name, b1.first_name, bl.person_age
WHERE SELECT((b1 JOIN b2 WHERE bl.a3= b2.a3)
JOIN b3 WHERE b1l.al = b3.al)
WHERE
b2.city_address = glasgow A
bl.person_age> 4

person isas bl
raddress is as b2

rflat isas b3

DEFINE VIEW r2 (last_name, first_name, person_age)
AS PROJECT bl.last_name, b1.first_name,bl.person_age
WHERE SELECT((b1 JOIN b2 WHERE bl.a3= b2.a3)
JOIN b3 WHERE bl.al = b3.al)
WHERE
b2.city_address = glasgow A
bl.person_age> 4
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person isas bl
raddress isas b2

rhouse isas b3

DEFINE VIEW 13 (last_name, first_name, person_age)
AS PROJECT bl.last_name, bl.first_name,bl.person_age
WHERE SELECT((b1 JOIN b2 WHERE bl.a3= b2.a3)
JOIN b3 WHERE bl.al = b3.al)
WHERE
b2.city_address = glasgow A
bl.person_age> 4

DEFINE VIEW glaswegian_infant AS UNION r1, r2, r3
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emp
rlistl
rdegreel
rlistl
rdegreel
rlistl
rdegree2
rschool
person
raddress

mone

is as
is as
is as
is as
is as
is as
is as
is as
is as
is as

is as

b10
b1l

DEFINE VIEW r4 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b7.a2, b7.degree_year
WHERE SELECT((((( (((((b1 JOIN b2 WHERE bl.al = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4 WHERE bl.al = b4.al)
JOIN b5 WHERE b4.a4 = b5.a4)
JOIN bé WHERE bl.al = bé.al)
JOIN b7 WHERE bé.a4 = b7.a4)
JOIN b8 WHERE bé6.a2 =b8.a2)
JOIN b9 WHERE bl.first_name = p9.first_name A
bl.last_name = b9.last_name)
JOIN (SELECT b10 WHERE
b10.city_address = glasgow)
WHERE b9.a3 = b10.a3)
JOIN b11 WHERE bl10.al = b1l.a1)

WHERE b7.degree_year > 1960 A

b7.degrec_year < 1990

121



emp
rlistl
rdegreel
rlistl
rdegreel
rlistl
rdegree2
rschool
person
raddress

rflat

is as
is as
is as
is as
is as
is as
is as
is as
is as
is as

is as

b10
bll

DEFINE VIEW r5 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b7.a2, b7.degree_year
WHERE SELECT({((( ({((((b1 JOIN b2 WHERE bl.al = b2.al)

JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4 WHERE bl.al = b4.al)
JOIN b5 WHERE b4.a4 =b5.a4)
JOIN b6 WHERE bl.al = bé.al)
JOIN b7 WHERE bé.a4 = b7.a4)
JOIN b8 WHERE bé.a2 =b8.a2)
JOIN b9 WHERE bl.first_name = p9.first_name A
bl.last_name = b9.last_name)
JOIN (SELECT b10 WHERE
b10.city_address = glasgow)
WHERE b9.a3 = b10.a3)
JOIN b1l WHERE b10.al = b1l.al)

WHERE b7.degree_year > 1960 A

b7.degree_year < 1990
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emp
rlistl
rdegreel
rlistl
rdegreel
rlistl
rdegree2
rschool
person
raddress

rhouse

is as
is as
is as
is as
is as
is as
is as
is as
is as
is as

is as

bl
b2

£ 3

DEFINE VIEW r6 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b7.a2, b7.degree_year
WHERE SELECT((((( (((((b1 JOIN b2 WHERE b1l.al = b2.a1)

JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4 WHERE bl.al = b4.al)
JOIN b5 WHERE b4.a4 = b5.a4)
JOIN b6 WHERE bl.al = b6.al)
JOIN b7 WHERE b6.a4 = b7.a4)
JOIN b8 WHERE bé.a2 =b8.a2)
JOIN b9 WHERE bl.first_name = p9.first_name A
bl.last_name = b9.last name)
JOIN (SELECT b10 WHERE
b10.city_address = glasgow)
WHERE b9.a3 = b10.a3)
JOIN b11 WHERE bl10.al = b11.al)

WHERE b7.degree_year > 1960 A

b7.degree_year < 1990
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emp
rlistl
rdegreel
rlistl
rdegree2
rschool
rlistl
rdegree2
rschool
person
raddress

mone

is as bl
isas b2
isas b3
isas b4
isas b5
is as bb
isas b7
is as b8
isas b9
is as bl10
is as bll
is as bl2

DEFINE VIEW r7 (last_name, first_name, a2, degree_year)
AS PROJECT b1l.last_name,bl.first_name, b8.a2, b8.degree_year

WHERE SELECT(((((((((((b1 JOIN b2 WHERE bl.al = b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4 WHERE bl.al = b4.al)
JOIN b5 WHERE b5.a4 = b5.a4)
JOIN b6 WHERE b52.a2 =b6.a2)
JOIN b7 WHERE bl.al = b7.al)
JOIN b8 WHERE b7.a4 = b8.a4 )
JOIN b9 WHERE b8.a2 =b9.a2)
JOIN b1C WHERE bl.first_name = b10.first_name A
bl.last_name = bl0.last_name)
JOIN (SELECT b11 WHERE
bll.city_address = glasgow)
WHERE b10.a3 =b11.a3)
JOIN b12e WHERE blls.al = bl2.al)
WHERE b8.degree_year > 1960
b8.degree_year < 1990

124



emp isas bl
rlistl isas b2
rdegreel isas b3
rlistl isas b4
rdegree2 isas b5
rschool is as b6
rlistl isas b7
rdegree2 isas b8
rschool isas b9
person is as bl0
raddress is as bll

rflat is as bl2

DEFINE VIEW 18 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year
" WHERE SELECT((((®1 JOIN b2 WHERE bl.al = b2.a1)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4 WHERE bl.al = b4.al)
JOIN b5 WHERE b5.a4 = b5.a4)
JOIN b6 WHERE b52.a2 =bé6.a2)
JOIN b7 WHERE bl.al = b7.al)
JOIN b8 WHERE b7.a4 = b8.a4 )
JOIN b9 WHERE b8.a2 =b9.a2)
JOIN bl0 WHERE bl.first_name = b10.first_name A
bl.last_name = bl0.last_name)
JOIN (SELECT b11 WHERE
b11.city_address = glasgow)
WHERE b10.a3 =b11.a3)
JOIN b12e WHERE blls.al = b12.a1)
WHERE b8.degree_year > 19604
b8.degree_year < 1990
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emp
rlistl
rdegreel
rlistl
rdegree2
rschool
rlistl
rdegree2
rschool
person
raddress

rhouse

is as bl
is as b2
isas b3
isas b4
isas b5
isas b6
is as b7
is as b8
isas b9
is as bl0
is as bll
is as bl2

DEFINE VIEW 19 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year

WHERE SELECT((((((((((b1 JOIN b2 WHERE bl.al = b2.a1)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4 WHERE bl.al = b4.al)
JOIN b5 WHERE b5.a4 = b5.a4)
JOIN b6 WHERE b52.a2 =b6.a2)
JOIN b7 WHERE bl.al = b7.al)
JOIN b8 WHERE b7.a4 = b8.a4.)
JOIN b9 WHERE b8.a2 =b9.a2)
JOIN b10 WHERE bl.first_name = b10.first_name A
bl.last_name = bl0.last_name)
JOIN (SELECT b11 WHERE
bll.city_address = glasgow)
WHERE b10.a3 =b11.a3)
JOIN b12e WHERE blls.al = bl2.al)
WHERE b8.degree_year > 1960A
b8.degree_year < 1990
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emp isas bl
rlistl isas b2

rdegree2 isas b3

<

rschool is as
rlistl isas b5
rdegreel isas b6
rlistl is as b7
rdegree2 isas b8
rschool isas b9
person is as b10
raddress is as bll

mone is as b12

DEFINE VIEW r10 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year
WHERE SELECT(((((((((((b1 JOIN b2 WHERE b1l.al = b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4l WHERE b3.a2 =b4.a2)
JOIN b5 WHERE bl.al = b5.a1)
JOIN b6 WHERE b5.a4 = b6.a4)
JOIN b7 WHERE bl.al = b7.al)
JOIN b8 WHERE b7.a4 = b8.a4)
JOIN b9 WHERE b8.a2 = b9.a2)
JOIN b10 WHERE bl .first_name = b10.first_name A
bl.last_name = b10.last_name)
JOIN (SELECT b11 WHERE
b11.city_address = glasgow)
WHERE b10.a3 = b11.a3)
JOIN b12 WHERE b11l.al = b12.al)
WHERE b8.degree_year > 19604
b8.degree_year < 1990
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emp is as bl
rlistl isas b2
rdegree2 isas b3

g

rschool is as
rlistl isas b5
rdegreel isas b6
rlistl is as b7
rdegree2 isas b8
rschool is as b9
person isas bl0
raddress is as bll

rflat is as bl2

DEFINE VIEW rl1 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b8.a2, b8.degree_year
WHERE SELECT(((((((({((b1 JOIN b2 WHERE bl.al = b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4l WHERE b3.a2 =b4.a2)
JOIN b5 WHERE b1.al = b5.al)
JOIN b6 WHERE b5.a4 = b6.a4)
JOIN b7 WHERE bl.al = b7.al)
JOIN b8 WHERE b7.a4 = b8.a4)
JOIN b9 WHERE b8.a2 = b9.a2)
JOIN bl0 WHERE bl.first_name = b10.first_name A
bl.last_name = bl0.last_name)
JOIN (SELECT b11 WHERE
b11.city_address = glasgow)
WHERE bl0.a3 = bl1.a3)
JOIN b12 WHERE bl1l.al = b12.a1)
WHERE b8.degree_year > 1960
b8.degree_year < 1990
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emp isas bl
rlistl isas b2

rdegree2 isas b3

rschool is as b4
rlistl is as b5
rdegreel is as b6

rlistl isas b7
rdegree2 is as b8
rschool is as b9
person isas bl0
raddress is as bll

rhouse is as bl2

DEFINE VIEW r12 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, b1.first_name, b8.a2, b8.degree_year
WHERE SELECT(((((((((((b1 JOIN b2 WHERE bl.al = b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4l WHERE b3.a2 =b4.a2)
JOIN b5 WHERE bl.al = b5.al)
JOIN b6 WHERE b5.a4 = b6.a4)
JOIN b7 WHERE bl.al = b7.al)
JOIN b8 WHERE b7.a4 = b8.a4)
JOIN b9 WHERE b8.a2 = b9.a2)
JOIN b10 WHERE bl.first_name = b10.first_name A
bl.last_name = bl0.last_name)
JOIN (SELECT b11 WHERE
bll.city_address = glasgow)
WHERE b10.a3 = b11.a3)
JOIN b12 WHERE bl1.al = b12.al)
WHERE b8.degree_year > 1960A
b8.degree_year < 1990
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emp isas bl
rlistl isas b2
rdegree2 isas b3
rschool isas b4
rlistl isas b5
rdegree2 isas b6
rschool is as b7
rlistl isas b8
rdegree2 isas b9
rschool is as bl10
person is as bll
raddress  is as bl2

mone is as bi13

DEFINE VIEW r13 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b9.a2, b9.degree_year
WHERE SELECT((((((((((((b1 JOIN b2 WHERE bl.al =b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4l WHERE b3.a2 =b4.a2)
JOIN b5 WHERE bl.al = b5.al)
JOIN b6 WHERE b5.a4 = b6.a4)
JOIN b7 WHERE b6.a2 = b7.a2)
JOIN b8 WHERE bl.al = b8.al)
JOIN b10 WHERE b9.a4 = b10.a4)
JOIN b10 WHERE b9.a2 = b10.a2)
JOIN b11 WHERE bl.first_name = b11.first_name A
bl.last_name = bl1l.last_name)
JOIN (SELECT b12 WHERE
b12.city_address = glasgow)
WHERE bl1.a3 =bl2.a3)
JOIN b13 WHERE bl2.al = b13.al)
WHERE b9.degree_year > 19604
b9.degree_year < 1990
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cmp is as bl
rlistl isas b2
rdegree2 isas b3

rschool is as b4

&

rlistl is as
rdegree2 isas b6
rschool isas b7
rlistl is as b8
rdegree2 isas b9
rschool is as b10
person is as bll
raddress is as bl2

rflat is as bl3

DEFINE VIEW r14 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl .first_name, b9.a2, b9.degree_year
WHERE SELECT((({((((((((b1 JOIN b2 WHERE b1l.al = b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4l WHERE b3.a2 =b4.a2)
JOIN b5 WHERE bl.al = b5.al)
JOIN b6 WHERE b5.a4 = b6.a4)
JOIN b7 WHERE bé.a2 = b7.a2)
JOIN b8 WHERE bl.al = b8.al)
JOIN b10 WHERE b9.a4 = b10.a4)
JOIN b10 WHERE b9.a2 = b10.a2)
JOIN bl1 WHERE bl.first_ name = b11.first_ name A
bl.last_ name = bll.last name)
JOIN (SELECT b12 WHERE
b12.city_address = glasgow)
WHERE b11.a3 = b12.a3)
JOIN b13 WHERE b12.al = b13.a1)
WHERE b9.degree_year > 1960A
b9.degree_year < 1990

131



emp is as bl
rlistl isas b2
rdegree2 isas b3
rschool isas b4
rlistl isas b5
rdegree2 isas b6
rschool is as b7
rlistl is as b8
rdegree2 isas b9
rschool is as bl0
person is as bll
raddress  is as bl2

rhouse is as bl3

DEFINE VIEW r15 (last_name, first_name, a2, degree_year)
AS PROJECT bl.last_name, bl.first_name, b9.a2, b9.degree_year
WHERE SELECT(((({((((((((b1 JOIN b2 WHERE bl.al = b2.al)
JOIN b3 WHERE b2.a4 = b3.a4)
JOIN b4l WHERE b3.a2 =b4.a2)
JOIN b5 WHERE b1.al = b5.al)
JOIN b6 WHERE b5.a4 = b6.a4)
JOIN b7 WHERE bé6.a2 = b7.a2)
JOIN b8 WHERE bl.al = b8.al)
JOIN b10 WHERE b9.a4 = b10.a4)
JOIN b10 WHERE b9.a2 = b10.a2)
JOIN b1l WHERE bl.first_name = b11.first_name A
bl.last_name = b1l.last_name)
JOIN (SELECT b12 WHERE
b12.city_address = glasgow)
WHERE b11.a3 = bl12.a3)
JOIN b13 WHERE b12.al = b13.a1)
WHERE b9.degree_year > 1960
b9.degree_year < 1990

DEFINE VIEW galswegian_emp AS UNION r4, 15, 16, r7, 18, 19, r10, r11, r12, r13, r14, r15
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