

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

UNIVERSITY OF GLASGOW

THE DESIGN AND IMPLEMENTATION

OF

A PROTOTYPE GEOGRAPHIC INFORM ATION SYSTEM

USING A NO VEL A RCH ITECTURE

BASED ON PS-ALG O L

BY

ABDULHAKIMA. ABDALLAH
B. Sc. (Civil Eng.),

P.G.Diploma (Photogrammetry & Remote Sensing)

VOLUME I

©A Thesis Submitted for the Degree of
Doctor of Philosophy (Ph. D.)
of the Faculty of Science
at the University of Glasgow,
Depajjtment of Geography
& Topographic Science
March 1990

ProQuest Number: 11003390

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11003390

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

T O

MY MOTHER & FATHER

& TO MY FIANCEE LAI CHING WONG

•1

ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to his supervisor, Professor G. Petrie,

for suggesting this research topic, for his continuous advice and supervision and for

supplying most of the materials to carry out the survey of the GIS systems. Without all of

this help, this research work would have never come to its present form.

The perseverance and the continuous help of the author's other supervisor, Dr. R. Cooper

who also supplied most of the documentation about the PS-algol language is gratefully

acknowledged. That he gave so much of his time over the period when he was carrying out

his own research and writing up his own Ph. D. made his assistance even more highly

appreciated.

The author also wishes to extend his gratitude to Professor M. Atkinson, head of the

Department of Computing Science, for granting the use of the equipment and facilities

available in the Department without restriction and making them very accessible.

Thanks and gratitude are also due to Professor I. B. Thompson (Head of the Department of

Geography & Topographic Science) and to the Topographic Science Staff Members,

especially Mr. B.D.F. Methley, Mr. D.A. Tait and Mr. J.W. Shearer, for their help

throughout the research period.

Sincere thanks are also due to my fellow research colleagues in the Department of

Geography and Topographic Science, in particular Mr. Z. Li and Mr. A. Azizi, for their

assistance, comradeship and support.

The author also wishes to acknowledge the help received from the staff and graduate

students of the Department of Computing Science who were always ready to help;

particularly Dr. Francis Wai, Dr. Paul Philbrow, Mr. Mark Dunlop and Mr. Djamel

Abderrahmane.

Finally, the author wishes to thank and extend his sincere gratitude to his sponsor, the

Hariri Foundation, over the last five years. It was the Foundation's generosity which

enabled me to follow an English language course, then the post graduate Diploma course in

Photogrammetry and Remote Sensing and finally this research work carried out for the

Ph.D. degree. Thanks are due especially to the Foundation's representative, Miss Mona

Knio, for her continuous concern and encouragement

ABSTRACT

This thesis is concerned with the design and implementation of a novel architecture for a

geographic information system based on the use of a new database language called PS-

algol, in conjunction with a hybrid database structure.

The main aspects discussed within the context of this thesis are:-

i) the definition of a database;

ii) the components and functions of a database management system;

iii) the features of PS-algol;

iv) the new system architecture;

v) the use of operational management system;

vi) data entry as carried out by the system;

vii) the facility for the cartographic representation of features;

viii) data retrieval and its potential use; and

ix) the generation of hard-copy output

The thesis also includes a review of existing geographical information systems against

which the novelty of the new approach can be judged.

Table of Contents

Table of Contents

VOLUME I
page

A C K N O W L E D G E M E N T S .. i

A B S T R A C T .. iii

C O N T E N T S .. iv

CHAPTER 1 : INTRODUCTION

1.1 In troduction .. 1
1.2 GIS - User Requirements.. 2
1.3 GIS Data Requirements.. 3
1.4 Hardware for GIS.. 4
1.5 Software for GIS... 6
1.6 GIS Data Structures.. 9
1.7 GIS Software Production.. 10

1.7.1 Language Requirements.. 11
1.7.2 Data Base Requirements...13

1.8 Sum m ary...14

CHAPTER 2 : DATABASES AND DATABASE STRUCTURES

2.1 In troduction ... 17
2.2 Data Base D efinition.. 17

2.2.1 Data Base Architecture... 17
2.3 Basic Data Structures...20

2.3.1 Definitions of Terms.. 21
2.3.2 Simple L ists.. 21
2.3.3 Ordered Sequential Files..22
2.3.4 Indexed F iles...23

2.4 The Classical Database Structures..25
2.4.1 Hierarchical Data Structure..25
2.4.2 Network Data Structure..26
2.4.3 Relational Data Structure... 27

2.5 Database Management System.. 29
2.5.1 DBMS Functions.. 29
2.5.2 DBMS Software Components..31

2.6 Query Languages..33
2.7 Vector Data Bases...35

2.7.1 Point Entity ..35

- iv -

Table of Contents

2.7.2 Line E ntity .. 36
2.7.3 Area E ntity ..36

2.8 D iscussion ..37

CHAPTER 3 : STATE-OF-THE-ART IN GIS

3.1 In troduction ...38
3.2 Digital M apping... 38
3.3 Automated Mapping/Facilities Management (AM/FM) Systems 41
3.4 Land Information Systems (LIS)..42
3.5 Geographic Information Systems (GIS)...43

3.5.1 Sum m ary.. 44
3.6 Hierarchical Systems... 45

3.6.1 Intergraph IGDS/DMRS... 45
3.6.1.1 Overall IGDS/DMRS System Design..............................45
3.6.1.2 DMRS Overview & Components....................................46
3.6.1.3 DMRS Database Organization...48
3.6.1.4 IG D S... 50
3.6.1.5 IGDS/DMRS System Overview & Interaction..................50
3.6.1.6 The Interface Concept Using the Disk Data Scanner..........53
3.6.1.7 Creation of a Land Database Using the IGDS/DMRS

System ...54
3.6.1.8 FRAM M E.. 58

3.6.2 Synercom Inform ap... 59
3.6.2.1 Overview of Informap..60
3.6.2.2 Informap Data Base Organization....................................63
3.6.2.3 O dyssey ..65
3.6.2.4 Environmental Mapping Information System (EMIS) 68

3.7 Network Based Systems.. 70
3.7.1 S trings...70

3.8 Relational System s.. 72
3.8.1 SysScan DNM S..72

3.8.1.1 DNMS Input/Output..73
3.8.1.2 DNMS Data Structure.. 74
3.8.1.3 System Architecture.. 74

3.8.2 ESRI ARC/INFO... 74
3.8.2.1 The Software Tools..76
3.8.2.2 The GIS M odel... 77
3.8.2.3 ARC/INFO Approach..78

3.9 Object Oriented Systems..79
3.9.1 SysScan G IN IS...80

3.9.1.1 GINIS- Overall System.. 80
3.9.1.2 System Architecture...81
3.9.1.3 GINIS Data Structure... 82

- V -

Table o f Contents

3.9.2 Wild System 9 .. 86
3.9.2.1 System 9 Components.. 86
3.9.2.2 Data Base Management System..................................... 89
3.9.2.3 Topology & Data Sharing..89
3.9.2.4 System 9 Data Base... 90
3.9.2.5 P ro jec ts ... 90
3.9.2.6 P artitio n s.. 90
3.9.2.7 Features & Feature Classes..91
3.9.2.8 Simple and Complex Features... 91
3.9.2.9 A ttribu tes ... 92
3.9.2.10 Geometric Prim itives... 93
3.9.2.11 Them es..94
3.9.2.12 Sum m ary...94

3.10 D iscussion .. 94
3.11 C onclusion ... 98

CHAPTER 4 : PS-ALGOL, THE LANGUAGE

4.1 In troduction ..99
4.2 Language Design and Aspects.. 99
4.3 Applying the Language Design Principles

to a Data Base Language... 102
4.3.1 The Idea of Persistence... 102
4.3.2 The Data Objects & the Principle of Completeness.................. 103
4.3.3 The Conceptual Store.. 105
4.3.4 B ind ing ... 106
4.3.5 The Persistent Store & Store Interface....................................107

4.3.5.1 The Persistence Store..108
4.3.5.2 The Persistence Store Interface.. 108

4.4 Language Syntax...109
4.4.1 Identifiers & Object Declarations.. 109
4.4.2 Compound Data Objects.. 110

4.4.2.1 V ectors.. 110
4.4.2.2 S tructu res... 112
4.4.2.3 Im ages..112
4.4.2.4 Assignment and Equality of Pointers............................... 113

4.4.3 P rocedures... 113
4.4.4 Data Persistency... 114

4.4.4.1 T ab les...114
4.4.4.2 Data Base Procedures... 115
4.4.4.3 Data Base Conventions... 116

4.5 Graphics in PS-algol... 116
4.5.1 P ic tu res.. 117

- vi -

Table o f Contents

4.5.2 P ixe ls ...119
4.5.3 Im ages... 119

4.6 Management of Data in PS-algol.. 120
4.7 C onclusion ... 121

CHAPTER 5 : SYSTEM ARCHITECTURE

5.1 In troduction ... 122
5.2 General Considerations in Data Structuring......................................122
5.3 Data Structure for the Project... 123

5.3.1 Hierarchical Data Structure Used for Feature Coding.................124
5.3.1.1 Feature Coding System.. 125

5.3.2 Relational Data Structure Used for Data Entities...................... 127
5.3.2.1 Data Structure for Point Entities.......................................128
5.3.2.2 Data Structure for Line Entities.......................................129
5.3.2.3 Data Structure for Area Entities.......................................129
5.3.2.4 Data Structure for Text Entities.......................................130

5.4 Overall System Configuration... 131
5.5 Individual Data Bases Within the Prototype GIS.............................. 132

5.5.1 The Main Data Base (MDB)..133
5.5.2 'Symbols' Data Base...133

5.5.2.1 Areal Symbols.. 135
5.5.2.2 Point Sym bols...138

5.5.3 'global' Data Base... 138
5.5.3.1 'typem enu '..138
5.5.3.2 'angm enu '... 139
5.5.3.3 'scalm enu '.. 139
5.5.3.4 'ha tchspace '... 140
5.5.3.5 'defau lt.m enu '... 140
5.5.3.6 'linem enu '...141

5.5.4 'Code 2' Data Base.. 142
5.5.5 '% $M odules'.. 144

5.6 Sum m ary... 145

CHAPTER 6 : OPERATIONAL MANAGEMENT SYSTEM

6.1 In troduction ..146
6.2 Operational Management System (OMS).. 146
6.3 OMS Com ponents...146
6.4 OMS D escription.. 148
6.5 Global Procedures.. 149

6.5.1 Global Procedures Description.. 150
6.6 Sum m ary..155

- v i i -

Table o f Contents

CHAPTER 7 : DATA ENTRY AND CODE TRANSFER MODULE

7.1 In troduction ...156
7.2 Data Form ats...156
7.3 Digitization and Data Structuring... 157
7.4 'trans-code' M odule...160

7.4.1 The Configuration & Data Entry Operation.....................163
7.4.2 The Code Transfer Operation... 166

7.4.2.1 Option 'Zoom In '... 166
7.4.2.2 Option 'Zoom O ut'..166
7.4.2.3 Option 'S tart'... 166
7.4.2.4 Operational Aspects of Configuration

& Data Entry..167
7.5 Procedures Used in this Module..174
7.6 Sum m ary...180

CHAPTER 8 : CARTOGRAPHIC REPRESENTATION MODULE

8.1 In troduction ...181
8.2 Cartographic Representation of Features.. 181

8.2.1 General Procedures.. 183
8.2.2 Polygon Representation...186

8.2.2.1 Hatching Polygons... 193
8.2.2.2 Filling Polygons... 198

8.2.3 Line Representation... 201
8.2.4 Point Representation..207

8.3 S cro lling ...210
8.4 Quit & Storage of Cartographic Symbols.. 212
8.5 Sum m ary...213

CHAPTER 9 : DATA RETRIEVAL MODULE

9.1 In troduction ...214
9.2 Module A rchitecture..215
9.3 Screen Layout... 216
9.4 Database Opening & Map Selection...220
9.5 Z oom ing..221
9.6 Menu H andling... 221
9.7 Query Processing & Information Retrieval.......................................222

9.7.1 Retrieval by Type... 223
9.7.2 Retrieval by Layer..225
9.7.3 Retrieval by Entity... 226
9.7.4 Retrieval by a Combined Selection from

Table o f Contents

the Type and Layer Menus...230
9.7.5 Retrieval by a Combined Selection from

the Type and Entity Menus.. 231
9.8 Displaying the Results...232
9.9 Saving the Results... 232
9.10 Sum m ary.. 233

CHAPTER 10 : HARD-COPY DATA OUTPUT

10.1 In troduction ...234
10.2 Module O rganization...234
10.3 Screen Layout...235
10.4 Selection of Map Images.. 235
10.5 Display to Screen... 235
10.6 Retrieval of Map Images.. 236
10.7 Selection of Output Devices... 236
10.8 File G eneration.. 236

10.8.1 Output to a Raster-based Laser Printers...................................237
10.8.2 Output to a Vector-based Plotter..239
10.8.3 PS-algol Picture Data Structures.. 239
10.8.4 Use of Ghost...242
10.8.5 The Plotting Program.. 243

10.9 Sum m ary...243

CHAPTER 11 : CONCLUSION & RECOMMENDATIONS

PART I: Conclusion

11.1 In troduction ... 245
11.2 Learning the Language.. 245
11.3 Properties of the Language...246
11.4 Modelling the Real World.. 248
11.5 Data Storage & Retrieval in PS-algol...248
11.6 M odular Programming.. 249
11.7 Speed of Processing... 249
11.8 The Prototype GIS... 250

PART II: Recommendations

11.9 In troduction ... 251
11.10 General Recommendations..251
11.11 Modules Recommendations...251

11.11.1 Data Entry .. 252
11.11.2 Cartographic Representation... 252

- ix -

Table of Contents

11.11.3 Data Retrieval...252
11.11.4 Data O utput...252
11.11.5 Applications M odule... 253

11.12 Sum m ary... 253
11.13 E pilogue.. 254

B I B L I O G R A P H Y ..256

VOLUME H

APPENDIX A: THE FEATURE CODING SYSTEM

A. 1 Introduction
A.2 The Feature Coding System
A.3 Special Codes for Feature Attributes

A.3.1 Unspecified
A.3.2 Other
A.3.3 Abandoned

A.4 The Feature Coding System Listing

APPENDIX B: CREATION OF THE DIFFERENT DATABASES

APPENDIX C: GLOBAL PROCEDURES

APPENDIX D: DATA ENTRY MODULE

APPENDIX E: CARTOGRAPHIC REPRESENTATION MODULE

APPENDIX F: DATA RETRIEVAL MODULE

APPENDIX G: HARD-COPY DATA OUTPUT MODULE

APPENDIX H: OPERATIONAL MANAGEMENT SYSTEM PROGRAM

CHAPTER 1

Chapter 1: Introduction

CHAPTER 1 : INTRODUCTION

1.1 Introduction

The use of computer systems for the storage, analysis, and display of spatially related

natural resources data is now widespread in industry, academia, and government. These

systems, commonly called Geographic Information Systems (GIS), are valuable for

addressing many planning or resource management concerns which are related to

geographical locations and distribution.

However, automation in the form of geographic information systems is a relatively new

and important concept of analyzing and graphically communicating knowledge about the

world. They have introduced an important attempt to construct a more rational means of

dealing with the real world and some of its problems.

The entire history of GIS covers only about twenty years. Changes in the field have been

numerous and advancement has been very rapid during this period. One of the most

obvious reasons for the development of GISs is the transition from the manual production

and use of maps to the use of digitally produced maps instead, i.e. the developments in the

science of digital mapping have been an important stimulant. These are the result of

developments in computer hardware technology, which have been the subject of major

technological advances. The machines themselves have progressed from the early batch-

oriented configurations, to on-line time sharing systems, to systems in which

minicomputers were intelligent peripherals connected to a large central computer, to the

present day systems in which minicomputers, graphics workstations and even

microcomputers are stand-alone central processors for complete GISs [Dangermond,

1986]. These advances in hardware have been paralleled by corresponding advances in

software, including developments in operating systems, programming languages, database

structures and management systems, etc. Software production has been enhanced by

improved implementation techniques covering both better programming languages and

improved software development environments.

These advances in computer technology (both hardware and software) have affected

dramatically the way in which geographic data handling can be carried out. Furthermore,

Chapter 1: Introduction

the history of using computers for mapping and spatial analysis shows that there have been

corresponding advances in automated data capture and in data analysis and presentation

accompanying the developments in computer science. For example, in the field of

surveying and mapping, field survey data is often acquired using electronic total stations

which exhibit a high degree of automation in measurement and in recording data in digital

form. Modem photogrammetric instruments also feature many devices such as correlators,

integral computers, electronic scales, etc., all of which contribute to a speed-up in the rate

at which data can be captured and input to digital mapping systems and geographic

information systems. Thus the implementation, development and use of these systems is a

response to innovations both in the field of computing science and in the area of surveying

and mapping.

The introduction which follows describes in outline only the goals of a GIS, the hardware

used, and the software required. The technology required to produce such software is

described: first there will be a presentation of the minimum hardware required; then the

different software modules which are necessary to carry out the different tasks required by

a GIS, and the language requirements will be outlined and discussed. It should be noted

here, however, that improved program development technologies will lead to the faster

development of more easily and better maintained software for GISs.

1.2 G IS - U ser R eq u irem e n ts

Geographic Information Systems have been given different names according to each

person's point of view or according to the application required of the system. Some of

these names or terms are geo-base information system, natural resource information

system , geo-data system , land information system, spatial information system and so

on. A general definition given by Burrough [1986] states that a GIS is "a powerful set of

tools for collecting, storing, retrieving at will, transforming, and displaying spatial data

from the real world". On the other hand, Parker [1988] defines a GIS as "...an information

technology which stores, analyzes, and displays both spatial and non-spatial data".

It is very clear from the above definitions that, the tasks required of the system (whatever

the name is) are to capture spatial data in a specific form compatible with the computer

environment; to manipulate these data in a particular way; and then to display the results.

These are, in very general terms, the tasks that should be undertaken in what is called a

- 2 -

Chapter 1: Introduction

geographic information system.

These tasks can be further distinguished into more detailed and well defined requirements,

the details of which will be discussed later in this Chapter.

1.3 G IS D a ta R e q u ire m e n ts

Having discussed briefly the user requirements, the data requirements should be mentioned

as well.

The data may come from many sources. Existing maps, photogrammetrically-derived

coordinate data, field survey data and remotely-sensed image data may be used to provide

the topographic or geographic base for the GIS. Other data sources are the population,

agricultural and other censuses which are the basis of many GISs concerned principally

with the analysis of socio-economic data. Alternatively or additionally, data concerned with

geology, soil, vegetation, forestry, agriculture and land use, etc. may be included if the

GIS is concerned with environmental management and planning. Yet again, the data

sources may be land or property registers if the GIS is mainly concerned with land

holdings or a cadastral system.

From these examples, it can be seen that a GIS may be required to handle either graphic

data such as map or image data, or non-graphic data in the form of textual, tabular or

numerical information or any combination of the two. Thus data structures have to be

devised and implemented with this in mind.

A further concern must be with data manipulation, transformation and maintenance, which

is a very demanding task in the case of business applications and is even more difficult

when complex data has to be handled such as that used in topographically or geographically

based information systems.

Data manipulation, transformation and maintenance in GISs involve a number of tools

which are of great importance. Among these manipulation, transformation and

maintainance capabilities are:

- the ability of the GIS to add and delete or update the data (which includes both the

- 3 -

Chapter 1; Introduction

different types of entities - points, lines, or areas - and the feature attributes, such as

cartographic representation, text, text font, etc. attached to the data);

the availability of procedures that are capable of carrying out the shifting, moving and

rotating of data objects;

- data transformation so that the data fits into a given scale;

the facility to enlarge and reduce areas of interest;

the ability to allow polygon overlay and merging; and

finally, the ability of the system to report the results of the trend during a session, either

in the form of a number, a text-based prompt, a table, etc. or as graphical output in the

form of a map, graph, diagram, etc.

These are, in brief, some of the capabilities that can be found in a GIS. Depending on the

needs of a particular organization, other modules may be implemented and coupled into the

system, such as projection transformation, clipping, edge matching, and so on.

It is obvious from the above description, that any particular geographic information system

environment should be able to maintain its data to a high level of accuracy, authenticity and

currency, in order to get the most out of the system capabilities. Furthermore the system

capabilities listed above should be available and be capable of being handled by the user

with a certain ease in a computer environment.

From the definitions of the term GIS given before, the components of a GIS would be as in

Fig. 1.1 [after Burrough, 1986].

SOFTWARE
MODULES

COMPUTER
HARDWARE

ORGANIZATIONAL CONTEXT

GIS

Fig. 1.1 GIS components

1.4 Hardware fo r GIS

Although the actual hardware is likely to vary from one GIS to another, the components

will usually include:

Chapter 1: Introduction

A powerful processor with a significant quantity of memory, to be able to carry out the

considerable number of calculations needed by the system;

- Storage devices which will usually be required to hold large amounts of programs and

data. In the case of large amounts of data, these units will be chosen according to their

access speed;

- A digitizer, or some sort of data capture instrument, be it a manual point and line-

following digitizer, a semi-, or a fully- automatic line-following digitizer; or on the

other hand, a raster scanner,

- Output devices are at the end of the chain of computer hardware where they serve as the

computer's means of delivering the results of the processing to the users. These devices

range from line printers for report generation, to the more sophisticated colour plotters

for graphical output, and from text-based monochrome screens to high-resolution

graphics colour monitors.

All or a combination of these devices can be put in use in a GIS. Thus a typical hardware

configuration for a GIS would look like in Fig 1.2.

Land Survey Photogrammetry

1"

t

Digitizer

Plotter Graphics Display Terminal Printer

Fig. 1.2 Hardware for GIS

Chapter 1: Introduction

1.5 S o ftw a re f o r G IS

With regard to the software involved with GISs, the trend has moved from isolated

programs performing single functions, to suites of programs, at first working

independently of the others, but later integrated and using shared databases. Present

systems incorporate programs which are usable in an interactive, time-sharing mode, and

are fully inter-working.

The software tools that should be available in a GIS consist of five basic technical modules.

These modules are:

a- Data input and verification;

b- Data storage and database management;

c- Data transformation;

d- Query input, and

e- Data output

The relationship between these five software modules is shown below in Fig. 1.3.

(c)

T r a n s f o r m a t i o n

Fig. 1.3 Software for GIS

a) Data input, Fig. 1.4, covers all aspects of transforming data captured in the form of

existing maps, field observations and digital data acquired via imaging sensors (including

aerial photography, and satellite imagery) into a compatible digital form. A wide range of

data is available for this purpose, including coordinate data from digitizers, lists of data in

text files, raster image data from scanners, etc. The verification of the data is an important

issue as is the maintenance of the quality and integrity of the input data.

Chapter 1: Introduction

Source

I m a g i n g S e n c - o i D a t ar i c r i d (_) i > : - r r i v a t u) i y . .

Interactive
Terminal

ScannersDigitizers Text Files Magnetic Media

D A T A I N P U T

Fig. 1.4 Data input for GIS

b) The Data storage and database management system, shown diagrammatically in Fig.

1.5, reside in and form the core of any GIS, because they are concerned with the way in

which the structuring and organizing of the data about the position and the attributes of the

geographical elements is carried out. When linked, these form the topology of the real

world model.
Geographic Data Base
Position

Topology

Attributes

Query Input Data OutputData Input

Data Transformation

I ’AT A BASE MANAGEMENT SYSTEM

Fig. 1.5 Data storage and handling in GIS

The data storage module must be concerned both with the way in which data must be

handled in the computer and how they are perceived by the users of the system. The matter

of how quickly and efficiently the information may be retrieved from this module will also

be of concern both to the system designer and to the user of the GIS.

The Data Base Management System, as the term suggests, organizes and manages the data

stored in the database of the GIS.

--- Chapter 1; Introduction

c) Data transformation embraces two classes of operation, namely the utilization and

analysis and the maintenance of the data. Utilization and analysis is concerned with three

sets of activities. These are: i) removal of errors; ii) geometric transformation of the data;

and iii) the analysis of data. Data maintenance, on the other hand, is concerned with the

integrity of the sequence of activities which has taken place during the utilization and

analysis stage, that is to define the logical beginning and end of these activities, whether

they should be committed as permanent changes over the data, or these changes should be

neglected. As illustrated in Fig. 1.6, data to be subject to the utilization and analysis

operation come from the database. After they have been handled by the set of activities

mentioned above, they can either be sent back to the store (shown as a thick continuous

line) or they can be displayed on some type of output device (shown as a dashed line).

Some transformations are needed to remove errors from the data or to bring them up to date

or to match them to other data sets. Other transformations must be able to operate on both

the spatial and non-spatial types of the data, either separately or in combination. Many of

these transformations, such as those associated with scale-changing, fitting data to a new

position, logical retrieval of data and the calculation of areas and perimeters, are of such a

general nature that one should expect to find them in a GIS in one form or another. Finally

a large array of analysis methods that can be applied to the data in order to achieve answers

to the questions asked of the GIS is also required.

TRANSFORMATION

JSL'.
Mai nte nance

DBMS

Data Output

Utilization & Anal gsis

\ s _

/T \

i

i

Fig. 1.6 Operations on GIS data

d) Query input represents the means with which a user can interface the database.

Database access to the end user is provided (usually) by a variety of interfaces (called query

languages), which vary from the handling point of view from the simple data maintenance

screens; query-by-example screens; interactive English-like languages; through 'build it

yourself screens and reports; to programs written in some host languages such as

FORTRAN and others.

Chapter 1; Introduction

e) The last module, data output and presentation, shown diagrammatically in Fig. 1.7, is

concerned with the ways in which the data are displayed and the results of analyses are

reported to users. Data may be presented as maps, tables and Figures in a variety of ways,

ranging from an ephemeral image on a Cathode Ray Tube (CRT) through hard-copy

output drawn on a printer or plotter to information recorded on magnetic media in digital

form.

DISPLAY & REPORTING
Processed Data

Graphics Display Terminal Printer Tape

MAPS

Resulta

TABLES

Fig. 1.7 Output means for GIS

FIGURES

From what has been discussed above, one can conclude that the software for GIS is

necessarily complex and its production should be assisted by appropriate system

development technologies.

1.6 G IS D a ta S tru c tu re s

The data structures required for a GIS are unlike many other kinds of data structure handled

routinely by modem information systems since they are complicated by the fact that they

must include information about position, possible topological connections, and the

attributes of the objects recorded or stored in the system. Moreover, maps were created to

be viewed by human eyes and to be understood by human brains, and cannot be directly

perceived by computers. Therefore, another approach has to be adopted to be able to use

computers for the analysis and display of data in map form.

There are two natural organizations for spatial data representation in a computer

environment, namely raster format and vector format. Both of these formats could serve the

- 9 -

---Chapter 1; Introduction

purpose of handling spatial data. For example, using vector format, all geographic data are

reduced to the three basic entities, namely points, lines and areas. On the other hand, the

form of the objects could be represented by a set of points on a grid, in what is commonly

known as a raster format. Fig. 1.8.

a

Fig. 1.8 Raster (left) and vector formats

The simplest raster data structure consists of an array of grid cells, also known as pixels

(from the words picture elements). Each grid cell is referenced by a row and column

number, together with a number representing the type or value of the attribute being

mapped. In raster structures, points are represented by single grid cells; lines are

represented by a chain of grid cells strung out in a given direction; and areas are represented

by an agglomeration of neighbouring cells.

A raster representation assumes that the geographical space can be treated as though it were

a flat Cartesian surface, whereupon each pixel or grid cell is then by implication associated

with a square parcel of land. The resolution, or scale of the raster data is then the relation

between the cell size in the database and the size of the cell on the ground.

On the other hand, the vector representation of an object is an attempt to represent the

objects as exactly as possible using individual points and lines. The coordinate space is

assumed to be continuous, not quantized as with the raster space, allowing all positions,

lengths and dimensions to be defined very accurately. Furthermore, vector methods allow

complex data to be stored in a minimum of space. Generally speaking, there is no one

preferred method for the vector data structure employed in GISs.

1.7 G IS S o f tw a re P ro d u c tio n

The production of GIS software usually requires two software development aspects:

i- a high level programming language sufficient to specify all of the facilities of the

modules described in the previous sections; and

11

- 10-

Chapter 1: Introduction

ii- database facilities to handle the storage and retrieval of large amounts of complex data.

1.7.1 Language Requirem ents

In this section, the first aspect is dealt with, whereas the second aspect is dealt with in the

next section (1.7.2).

The facilities which are specifically useful for GISs include:

the ability to model complex objects;

the ability to represent graphical objects as data values; and

the ability to handle directly the hardware described in Section 1.4.

The first facility suggests a programming language which goes beyond languages such as

BASIC or PASCAL and provides sophisticated data modelling constructs. Few languages

provide direct constructs for representing graphical objects, so implementors are forced to

build their own representations on top of more general mechanisms. This leads to different

representations being used for each model and reduces the possibility of inter-working

between models. The use of a language which provides specific graphical constructs would

create a more coherent implementation system.

Direct access to special purpose hardware is another desirable feature. The discontinuities

which arise when tackling each part of the implementation task in a different language are

potentially costly, both in terms of development and maintenance time. Thus, for example,

using the high-level components in PASCAL, and the low-level components in C, requires

the additional tasks of keeping the individual components compatible and of becoming

skilled in two different languages. One aspect of being able to use special purpose

hardware in a GIS is the ability to drive a high resolution graphics screen directly. This

would permit the user-interface to be programmed in the same way as the rest of the

program.

Nowadays, hundreds of high level languages exist and they can be distinguished by the

types of application for which they are designed which strongly influence the structure of a

particular language. The basic design of a programming language, in which a programmer

- 11-

___ Chapter 1; Introduction

would look like an end user, has been the objective of intensive research and development

for many years. So, choosing a language for a particular application plays a major role in

the success or failure of that application. However, there are some criteria that should be

taken into consideration by language designers to end up with successful results. These

criteria, [Atkinson et al. 1984], can be summarized as follows :

a- programs should be easy to read and understand;

b- the language should be easy to learn and remember, and

c- the language should be succinct.

These criteria are of great importance in setting out a framework within which the language

can be designed. However, for a user to choose a language to work with, there are some

other criteria besides the design requirements which have to be satisfied, for example:

a- the availability of support in the working environment in which the programming

procedure is to take place;

b- the suitability of the language to the subject in question;

c- the generality of use of the language; and

d- standardization of the language.

However, for a new language to be worthy to be included in the de facto list of available

and proven languages such as BASIC, COBOL, FORTRAN, PASCAL, and C, it must

supply both support software at a stable and suitable level, and of course, high

performance in terms of the speed of execution of code [Macro & Buxton 1987].

On the other hand, it might be considered as a good practice as well, if the data and

program structures available in a language be investigated in order to assess how well they

fit with the structure of the problems likely to be encountered in the subject area in

question. Nevertheless, in addition to what has been mentioned earlier, the specific

facilities provided by a particular language may make the adoption and use of this language

favourable as compared with others. The facilities which may be sought after can be

considered to operate at two levels, the first being the availability of an adequate set of

facilities for the specification of subroutines, procedures, functions into subprogram

sections (a feature which is available in most modem languages but with considerable

differences in their approach). The second is the support of a modular approach, which

-12-

Chapter 1: Introduction

gives advantages in terms of separate compilation and long term maintenance.

1.7.2 Data Base Requirements

The other main issue, which is of great concern to most agencies dealing with GISs, is the

storage unit that should hold the maps which will inevitably be one of the main forms of

output from the GIS. Different agencies make use of various types of databases.

Nonetheless, it is essential to comprehend that, in digital mapping applications, the

database is the most critical component of the total system. Thus its structure has to meet

the internal demands of the data collecting organization. Furthermore, the varied

requirements of users in terms of digital map display and production is an element of high

concern. The database design depends in fact on the degree of sophistication and interaction

needed with the stored digital data. However, the essence of the digital topographic

database is to provide an information base from which a variety of other non-graphic

information as well as graphic products may be produced on demand. Furthermore, the

increased use of computer-based technology is paving the way for the sharing of common

information, via a standardized mechanism which is acceptable to all users. As well, the

design of a digital topographic database depends on the user's needs and the operations

associated with the stored data. So, in order to be able to produce a graphic map from

digital data, the following information must be available :

a- a feature coding system to be able to identify individual elements to be included on the

map;

b- positional coordinates for all features;

c- attributes associated with each feature, describing the feature's apparent properties;

and

d- graphic information as to how the feature should be represented in terms of symbol

design and dimension, line width, colour, etc.

Often associated with the feature coding system is a structure of overlays. Each overlay will

comprise a specific class of feature (e.g. Agriculture, Buildings, Roads, etc...).

Nowadays, the issue is not only that of storing the necessary data but rather of providing

the capability to manipulate these data and make best use of them, by obtaining as much

information as possible from the stored data.

- 1 3 -

___ Chapter 1; Introduction

The data required is thus extremely complex, whereas the data organization provided by

current database management systems is often extremely simple. Most current GISs make

use of relational databases, in which all data are forced into the form of tables. Emergent

database techniques such as Semantic Data Modelling, and Object Oriented Database

Systems provide a more complex and flexible data structure mechanism, but these have not

as yet been implemented with sufficient efficiency and reliability to become commonly

available or popular.

The choice is therefore between the use of proven and optimized database systems, which

have the drawback of forcing the implementor to maintain three widely differing views of

the data. For example, using relations, one will end up with three views:

the program's data structure;

relations; and

the real world.

which are very different [Atkinson et al. 1989]. Therefore, all the time, the software creator

has to maintain complex mapping between these views. This greatly complicates the

production of the GIS software, its maintenance or modification and the actual operational

use of the system.

A further drawback of the present implementation of information systems using separate

language and database management systems is that this requires the maintenance of an

interface between these two conflicting views of the data [Atkinson et al. 1978]. The so-

called "impedance-mismatch" can give rise to problems in making a consistent view of the

software.

The answer to this problem is to use a language which incorporates both full programming

facilities and database facilities as well. These languages are called Database Programming

Languages [Atkinson and Buneman 1987] and are a continuing area of research. This

thesis demonstrates the use of such a language, PS-algol, to produce a prototype GIS.

1.8 S u m m a ry

It is a common rule that the use of a better technology will lead to better results. GISs are

-14-

Chapter 1: Introduction

no exception. Better technologies in this field are concerned with the facilities provided by

the programming languages to produce better software. If this can be achieved, the direct

consequence is faster development, smoother programs and more easily maintained

software.

The aim of the work reported in this thesis is to demonstrate that a language which

combines the facilities appropriate for GIS products as described in Section 1.7 with the

database facilities as described in Section 1.7.2 provides a suitable implementation

technology for the development of easily built and well maintained geographic information

systems. So the suitability of the language is tested against three main criteria:-

i- the ability to structure the data in a simple, easy to understand, and comprehensive

manner,

ii- the graphics handling ability; and

iii- the speed of the process.

The results of this work tested against these criteria are discussed in the conclusion of the

thesis.

On the other hand, a direct comparison between already available systems and the work

carried out and reported in this thesis could be somewhat unfair, since these existing

production GIS systems tend to use industrial quality software whose implementation may

have taken anything between a dozen and a thousand man-years. Whereas, in the case of

the present project, the work has been carried out using a prototype language (which has

involved only twenty man-years of effort in comparison with other software), while the

actual GIS system itself is only a prototype (involving 3 man-years of effort) and is still in

need of further development and refinement. Thus it can only be viewed as being research

quality software.

This thesis is devised as follows; Chapter 2 is a review of database systems, their types and

components. It covers the definition of the term DBMS and its role and functions and the

suitability of each of them to a GIS application. Chapter 3 gives an overview of current

GIS developments together with a review of some existing well-known GIS systems

which are representative of these developments. Chapter 4, on the other hand, is an

introduction to PS-algol, the database language used in the present project to develop a

-1 5 -

Chapter 1; Introduction

prototype GIS. The actual data structure applied in the project is described in Chapter 5,

together with a general view of the complete system layout. Chapter 6 describes the

Operational Management System of the system and the global procedures used. Then

Chapter 7 through to Chapter 10 present a detailed description of the different modules

employed in the system, namely: Data Entry and Data Code Transformation, Cartographic

Data Representation, Data Retrieval, and finally the Hard Copy Data Output module. In the

end, Chapter 11 is the conclusion and gives recommendations for further work.

CHAPTER 2

Chapter 2; Data Bases & Data Base Structures

CHAPTER 2: DATABASES AND DATABASE STRUCTURES

2.1 I n tr o d u c tio n

Geographic information systems have considerably higher requirements in terms of data

volume and complex spatial data handling than many of the normal applications

encountered in other types of information systems. Because of this, it is particularly

important for geographic information systems to have efficient data storage formats and

associated optimal algorithms for data manipulation and retrieval.

As discussed previously in Section 1.7, spatial data has two natural organisations, namely

vector format and raster format. In this thesis, only vector data is handled, and so what

follows is an overview of related topics for the data handling and processing of vector data

within a database environment. First a database definition is given, and then the different

types of basic file types are presented. Next, data structures are discussed and there will be

some discussion of Data Base Management Systems (DBMS) and Query Languages.

In this chapter, the use of databases in normal (non-graphic) applications will be presented

first, then the differences in terms of the specific GIS requirements of databases will be

presented later.

2.2 D a ta B a se D efin itio n

A Data Base (DB) is a shared collection of interrelated data designed to meet the varied

information needs of an organization. A database has two major properties: it is integrated

and it is shared. It is integrated so that previously distinct data files have been logically and

coherently organised to eliminate (or reduce) redundancy and to facilitate data access. It is

shared so that potentially all qualified users in an organization have access to the same data,

for use in a variety of activities.

2.2.1 D a ta B a se A rc h ite c tu re

Database architecture is divided into three levels [Date, 1981(a)]: internal, conceptual and

external. The internal level is the one closest to physical storage, that means, it is the one

- 1 7 -

Chapter 2; Data Bases & Data Base Structures

concerned with the way in which dataareactually stored; the external level, on the other

hand, is the one closest to the users, and is concerned with the way in which the dataare

viewed by individual users; and finally the conceptual level is a 'level of indirection'

between the other two.

If the external level is concerned with individual user views, the conceptual level may be

thought of as defining the views of the entire group of users. An external view can thus be

thought of as the content of the database as it is seen by some particular user. So, different

users running different applications on the database will have different external views. Each

particular external view is defined by an external schema. This is also true for both

conceptual view and conceptual schema. If the conceptual view can be thought of as being

the representation of the entire information content of the database, the conceptual schema

is therefore its definition. Finally, the internal view will be defined by a corresponding

internal schema. The declaration of the internal schema is carried out using a Data

Definition Language (DDL) [Olle, 1978]. Fig. 2.1 represents the database system

architecture and its linkages between the different schemas.
U sers

<V>

B2 B3A2A1

E xterna l
S c h e m a B

E xternal
S c h e m a A

External Vitw BExternal View A

E x te rn a l/C o n cep tu a l
m app ing B

E x te rn a l/C o n c ep tu a l
m a p p in g A

A
C o n c e p tu a l
S c h e m a

('nni eptual View U a n n c s e m t - n t

C o n c ep tu a l/In te rn a l
m a p p in g

S torage
S tructure
Definition
(Internal
Schem a)

Stored Database (Internal V iev)

Fig. 2.1 Data Base System Architecture

- 18 -

Chapter 2; Data Bases & Data Base Structures

a- Conceptual Schema

The conceptual schema defines a global model of the database. The underlying data model

may be hierarchical, network, or relational. Ideally, the data model should make no

reference as to how the data model is implemented (in terms of inverted lists, multiple

linked lists, and so on) or how the data are physically stored or accessed.

b- External Schemas

External schemas are derived from the conceptual schema. They define subsets, or views,

of the real data. Many external schemas are defined for a single conceptual schema, e.g.

external schemas A and B in Fig. 2.1

Normally, the data model used to define external schemas is the same as that used in the

conceptual schema (e.g. both might be relational). However, some DBMS products allow

the conceptual schema to be defined with one data model and the external schemas defined

using a different data model.

c- Internal Schema

The internal schema (or storage schema) for a database defines the storage files that contain

the actual data records for the database. Normally, there is one storage file for each

conceptual file or relation described in the conceptual schema. Also, the internal schema

defines the details of the data structures and mechanisms that are used by the DBMS to

locate records and to establish associations between records.

However, data representation in the database depends on the application in hand, and must

be specified by writing the storage structure definition. In addition, the associated mapping

between the internal schema and the conceptual schema should also be specified.

d- Conceptual/Internal Mapping

The conceptual/internal mapping defines the correspondence between the conceptual view

and the stored database and it represents the activities taking place which are handled

- 1 9 -

Chapter 2: D ata Bases & Data Base Structures

routinely by what is known as the Data Base Storage System or DBSS which will be

described later in Section 2.5.2.

e- External/Conceptual Mapping

The external/conceptual mapping defines the correspondence between a particular external

view and the conceptual view. It also represents those activities taking place between the

two views which in turn are handled by the so-called Data Base Control System or DBCS

which will also be discussed later in Section 2.5.2.

2.3 B a s ic D a ta S tru c tu res

Before presenting in detail the ways in which data can be stored in a computer, the ways in

which data can be prepared for storage and access must be explained in general. Speed of

accessing and the linking and cross referencing of data represent the main aims for any data

storage system. There are several ways of achieving this, some of which are more efficient

than others.

It is common to all database structures that the data to be entered to the database are written

in the form of records. Records are of the form of one-dimensional arrays of fixed length,

divided into a number of equal partitions, known as fields. Records are said to be ideal if

all the items in the database have equal number of attributes (fields). But when the attributes

are of variable length (such as names), fixed length records are inconvenient and instead

variable length records may be used.

The basic way of holding data in computers consists of a file. According to the way of

accessing the data in these files, they can be divided into the following groups:

a- Simple lists;

b- Ordered sequential files; and

c- Indexed files.

Fig. 2.2 shows an area made up of two contiguous polygons T and 'II', each of which is

bounded by a series of nodes 1, 2,, 6, and connecting segments a, b, ..., g, which

represent, say, two different parcels of land. The aim is to represent these parcels within

-20-

Chapter 2; Data Bases & Data Base Structures

the different groups (a) to (c) mentioned above.
5

1

Fig. 2.2 Map representation of two polygons

2.3.1 Definitions of Terms

It is worthwhile here to define the notions of 'node' and 'segment'. A 'node' is of type

'point' but in addition, nodes represent the intersections between two lines or more. In Fig.

2.2 above, points '3' and '4' represent two nodes. Thus all nodes are point features, but

not all points are nodes - since they may be defining an individual (point) on the ground,

whereas the term node is invariably used in connection with areas and lines.

A segment, on the other hand, is formed by that part of a line joining two points. So, in

Fig. 2.2, 'a' to 'g' represent segments joining the different points shown in the diagram.

Each segment is defined by a connected series (or string) of points whose coordinates have

been defined.

A line therefore, can then be defined as a collection of segments (each consisting of a

connected series of points) and nodes. Generally speaking, each line starts and ends with a

node and there will be a node at each intersection or junction with another line.

If the end points of a series of connected segments join up or coincide, forming a closed

perimeter, this produces a 'polygon' which encloses an area. In Fig. 2.2, the line formed

by segments 'a'; 'b'; 'c' and 'd ' would be regarded as defining such a perimeter, thus

forming polygon 'I'. Similarly for polygon 'II' which is composed of segments 'c'; 'e';

'f ; and 'g'.

2.3.2 Simple Lists

These represent the simplest way of storing items. As each new item is added to the list, it

-21 -

Chapter 2: Data Bases & Data Base Structures

is simply placed at the end of the file, which gets longer with the increase in the number of

newly entered items (see Fig. 2.3). It is very easy to add data to this type of data holder,

but retrieving these data is quite slow and inefficient due to the sequential search procedure

involved with its use. It is thus very clear that a structured data model is needed to speed up

the process of data retrieval.

a x1y1, , x2y2
b x2y2 ,... . . . , x3y3
c x3y3 ,... . . . , x4y4
d x 4 y 4 ,... . . . , x1y1

c x4y4 ,... ... , x3y3

e x3y3 ,... . . . , x5y5

f x5y5 ,... ... , x6y6

9 x6y6 ,... ... , x4y4

a, b, c and d rep resen t se g m en ts in CLASS I

and c, e , f and g rep resen t se g m en ts in CLASS II

Fig. 2.3 Simple list

2.3.3 Ordered Sequential Files

This type of data holder is similar to a dictionary, in which data (in the case of a dictionary,

words) are ordered/structured alphabetically. In this type of structure, the addition of a new

item to a certain 'class' of data means that extra room must be reserved or created within

that class for it to be inserted, but the advantage drawn from such structures is the speed

with which any individual stored item can be reached. Inherent in the use of Ordered

Sequential Files is the use of the Quick Search method, otherwise known as 'Binary

Search' method [Horowitz & Sahni 1982], which enables a faster search for a particular

item (see Fig. 2.4). In this method, the search begins by examining the record in the middle

of the file rather than that at either end of the file. Assuming that the file being searched is

ordered by an increasing order of keys (a key is a single attribute with values that are

unique within a relation), thus, based on the results of the comparison with the middle key,

one of the following cases will result. First, the record being searched for is the middle

one. Second, this record is in the lower part of the file and third, it is in the upper part of

the file. Consequently, after each comparison operation, either the search terminates

successfully or the size of the file remaining to be searched diminishes by half of the

original size.

-22-

Chapter 2; Data Bases & Dam Base Structures

CLASS

CLASS II

x1y1, x2y2
x2y2 ,....... , x3y3
x3y3 x4y4
x4y4, x1y1<

L
x4y4, x3y3
x3y3 , x5y5

x5y5 x6y6
x6y6 x4y4<1

S p j c . t - j fo r la te r

d a ta in s e r t io n

Fig 2.4 Ordered sequential file

2.3.4 Indexed Files

In an indexed file, the records are stored in physical sequence according to their keys. The

file management system, or access method, builds an index, separate from the data records,

which contains the key values together with pointers to the data records themselves. This

index permits individual records to be accessed at random without accessing other records.

There are two ways in which the original data can be accessed with indexed files. The first

is called direct files in which data items in the files themselves provide the main order of

the file. Whereas in the second, called inverted files, the locations of items in the main file

are specified according to topic, which is given in a second file.

In direct files (Fig. 2.5) the record for each item contains sufficient information for the

search to jump over unnecessary items. Each item contains not only the series name and

other information but also a number indicating the storage location of series names

beginning with the key. Then the search for a particular record is made by constructing a

simple index file that lists the correspondence between the first letter of the series name and

its storage location. The search then proceeds by a sequential search of the index, followed

by a sequential search of the appropriate data block.

- 2 3 -

Chapter 2: Data Bases & Data Base Structures

Direct Files

Index

Hem Key Record No. File hem

A 1 a
2 b
3 c
4 d

B (na+1) 5 c
6 e

7 f
8 9

Fig 2.5 Direct files

The use of an inverted file index requires first that it be constructed by performing an initial

sequential search on the data for each topic. The results are then assembled in the inverted

file or index, which provides the key for further data access, see Fig. 2.6.

Inverted Files

Soil Attributes

Number S pH De Dr T E

1 | 4 deep good
2 II 5 shallow good

sandy
clay

no
yes

S = series, De = depth, Dr = Drainage, T = Texture, E= erosion.

Index (inverted file)

Profile
Topic (sequential numbers in original file)

Deep 1
Shallow 2
Good drainage 1 2
Poor drainage
Sandy 1
Clay 2
Eroded 2

Fig. 2.6 An inverted file with its index file

- 2 4 -

Chapter 2; Data Bases & Data Base Structures

Generally speaking, indexed files permit rapid access to the individual items held in a

database, but on the other hand, more effort is required to keep them updated. When an

alteration has been made to items in the original files, the addition or deletion of a record in

a direct file means that both the file and its index must be modified.

When a new record is written to a file accessed by an inverted file index, the new record

does not have to be placed at a special position within the file; it can be simply added at the

end of the file, but the index must be updated. Nevertheless, another disadvantage of

indexed files is that very often data can be only accessed through the key contained in the

index files; so other information can be only retrieved using sequential search methods

which makes it unpopular for geographic databases.

2.4 T h e C la s s ic a l D a ta b a se S tru c tu re s

Knowing that a database consists of data held in many files, an organization (which is

called a structure) should be available which allows extraction of these data from files. In

what follows, three main types of database structures are described.

To simplify the presentation, the same map 'M' shown in Fig. 2.2 is used to explain these

structures. Map 'M' consists of two polygons T and 'IT, made up of several segments,

some of which are shared by both polygons.

2.4.1 Hierarchical Data Structure

The hierarchical approach represents a parent-child or a one-to-many relationship. It

assumes that each part of the hierarchy can be reached using a key that fully describes the

data structure, and it assumes that there is a good correlation between the key attributes and

the associated attributes that the item may possess.

Hierarchies are usually implemented using a tree type data structure and extensive use of

pointers. The tree data structure has the property that each element of the structure, except

the root, has only one path coming in, but there may be zero or many paths coming out of

it. Fig. 2.7, gives a diagrammatic representation of the tree structure and its terminology.

- 2 5 -

Chapter 2; Data Bases & Data Base Structures

Root Node

sub tree

First S e t
of D egree 3

Level Zero

Level O ne

Level Two

Level Four

Level T hree

Fig. 2.7 The representation of the tree structure and its terminology

This approach has the advantage that it is easy to understand and it is easy to update and

expand. However, data access via the keys is easy for the key attribute, but on the other

hand, is very difficult for the associated attributes. This hierarchical data structure can be

very limiting in the case of environmental data, where the flexibility of issuing queries

based on the use of many associated attributes is a dominant requirement. Furthermore,

index files existing with hierarchical systems have to be maintained all the way through,

which so often leads to certain values being repeated many times, the result of which is a

rise in data redundancy. The hierarchical approach to represent map M is illustrated as in

Fig. 2.8. The redundancy can easily be seen with four records of nodes 3 and 4, and two

records of each of the other nodes 1, 2, 5 and 6.

2.4.2 Network Data Structure

The network approach, unlike the hierarchical one, is not restricted to the paths up and

Map

Polygons

Line
I II

n n n n n n n nb d Z Segments

1 2 2 3 3 4 4 1 3 4 3 5 5 6 6 4 Nodes

Fig. 2.8 Hierarchical representation of map M

- 2 6 -

Chapter 2; Data Bases & Data Base Structures

down the taxonomic pathways, but also makes use of pointers to link any two items in the

database irrespective of their actual position (physical adjacency on the disk). It has proved

to be a very useful approach when the relations or linkages can be specified beforehand.

Furthermore, network systems avoid data redundancy and make good use of all available

data. But on the other hand, the database is enlarged by the overhead of the pointers, which

in complex systems can become quite a substantial part of the database. This means that

whenever the updating or maintenance of the database is being carried out, it will involve

manipulating the pointer structures as well. A network data structure is illustrated by Fig.

2.9.

Map

Polygons Network
Linkages

Line
Segments

Nodes

Fig. 2.9 Representation of map M by network model

From this it will be seen that the data redundancy in the line segments (e.g. line c) and

nodes (1 to 6) which occurred in the hierarchical model of Map M (see Fig. 2.8) is

eliminated.

2.4.3 Relational Data Structure

The relational approach does not store any pointers and makes no use of any hierarchy. It

stores data in records (also known as tuples), in which a certain number of attribute values

are grouped together in two-dimensional tables called relations. Each relation is usually a

separate file. The pointer structures in the network approach and the keys in a hierarchical

model are replaced by data redundancy in the form of identification codes that are used as

unique keys to identify the records in each file. The great advantage of the relational data

structure is that its structure is very flexible and can meet the demands of all queries that can

be formulated using the rules of Boolean logic and the associated mathematical operations.

These allow different kinds of data to be searched, combined and compared. Also, the

addition or deletion of data is very easy, because it is just a matter of adding or deleting a

tuple. Furthermore, the simplicity of the model has led many researchers to develop highly

- 2 7 -

Chapter 2: Data Bases & Data Base Structures

efficient techniques for manipulating relations. On the other hand, some aspects of the

r e l a t i o n a l data structures can be regarded as disadvantageous. For example, the searching

procedures are often laborious, because many of the operations involve sequential searches

through the files to find the right data to satisfy the specified relation. The relational

approach is illustrated in fig . 2.10.
relation Map

M n

relation Polysgm
I a b c d

n -c e f 8
relation Segments

I a 1 2

I b 2 3

I c 3 4

I d 4 1

n e 3 5

I n i f 5 6

h 1 s 6 4

n
i

c 4 3

Fig. 2.10 Mgfational representation of map M

The first relation in the relational representation of map M in Fig. 2.10 is the ’Map'

relation. Besides the identifier of the map *M\ it contains two keys referring to the other

relation "Polygon" representing the two polygons present in the map.

The second relation 'Polygon” contains two tuples for the two polygons T .and IF, each

of which has four fields containing the segments forming that particular polygon. For

example (see- fig . 2,7’t, polygon T contains segments ’a', 'b \ 'c' a n d *d\

'The third relation ’Segments" is a relation .accessed by the polygon identifier, in this case,

either T or TT. This relation contains, the segment identifier, and the two endpoints of the

■ 2B ■

Chapter 2; Data Bases & Data Base Structures

segment, e.g. segment 'a' lies between the two points T and '2'. Thus the tuple of the

first segment 'a' would contain first the key which identifies the polygon T, then the key

which identifies the segment 'a', and finally the two points forming the endpoints of the

segment. This can go further and make another relation, say the 'Point' relation in which

each point is represented by a tuple containing its 'X' and 'Y' coordinates.

2.5 D a ta b a se M a n a g e m e n t S ystem

A DataBase Management System (DBMS) is a generalized software system that manages

the database, providing facilities for the organization, access, and control of the data. The

generalized term suggests that the DBMS is independent of individual applications and

therefore can be employed by any user requiring access to the data contained in the

database. The following section, Section 2.5.1, outlines the functions a user may expect to

find within a DBMS whatever its data model is.

2.5.1 DBMS Functions

Codd [1982] has stated that eight major functions should be provided for the

implementation of a comprehensive DBMS. These are:

a- Data Storage. Retrieval, and Update. These functions should allow data to be entered,

found and changed in a simple manner by many users. Different users may be

provided with different views of the same data thus allowing them to store, retrieve,

and update their data easily and efficiently.

b- Data Dictionary/Directory (PD/Di. This is defined, [McFadden & Hoffer, 1988], as

the repository of all information about an organization's data. The DBMS should also

maintain a user-accessible data dictionary/directory to make clear the different data

structures used in the DBMS.

c- Transaction Integrity. A transaction is a sequence of steps that constitute some well-

defined activity. In processing a transaction, changes to the database should only be

made if the transaction is processed successfully in its entirety. In this case, the

changes are said to be committed. If, on the other hand, the transaction fails at any

- 2 9 -

Chapter 2; Data Bases & Data Base Structures

point, then it is said to be aborted, and none of the changes should be made to the

database.

To maintain transaction integrity, the DBMS must provide facilities for the user or

application programmers to define transaction boundaries, that is, the logical

beginning and end of transactions. The DBMS should then commit changes for

successful transactions and reject changes for aborted ones.

d- Recovery Services. The DBMS must be able to restore the database (or return it to a

known condition) in the event of some system failure. Sources of system failure

include power failure, disk head crashes, operator error and program errors.

Typically, the whole database will be stored periodically to create a stable state which

can be returned to when one of these conditions occurs.

e- Concurrency Control. Since a database is shared by multiple users, two or more users

may attempt to access the same data simultaneously. If two users attempt to update the

same data record concurrently, erroneous results may occur, since the transactions

may interfere with each other. Safeguards must be built into the DBMS to prevent or

overcome such interference.

f- Security Mechanisms. Data must be protected against accidental or intentional access,

misuse or destruction. The DBMS provides mechanisms for controlling access to data

and for defining what actions may be taken by each user.

g- Data..CQmmUMCatiQn Interface. Users often access a database by means of remote
terminals in a telecommunications network. In spatial databases this means that the

DBMS must have the ability to read data from different sources, or in different

formats. Moreover, the data itself may be distributed amongst a number of machines,

thus requiring the ability to find and transmit data around the network in a rapid

manner.

h- Integrity Services. The DBMS must provide facilities that assist users in maintaining

the integrity of their data and protect it from reaching an inconsistent state. A variety of

edit checks and integrity constraints can be designed into the DBMS and its software

interfaces. These checks are normally administered through the data

dictionary/directory.

- 3 0 -

Chapter 2; Data Bases & Data Base Structures

Most contemporary database management systems provide all the functions named here, at

least to some degree (although most do not yet provide a comprehensive set of integrity

services). However, DBMS products differ in the manner in which the functions are

performed. With some user-friendly products, the functions are performed more or less

automatically by the DBMS, with little or no user involvement. With other products, the

DBMS provides some facilities or interfaces, but the user must take major responsibility for

defining the functions either directly or through application programs.

2.5.2 DBMS Software Components

The major software components of an operational DBMS environment are as shown in Fig.

2.11. This figure shows how a DBMS interfaces with other software components such as

user programs and the access methods.

Main Memory

D ictionary/D irectory (DD/D)
 - ^ .

y* External Schema

Data Base Control
System (DBCS)

Compiled Schemas

Data Base Storage
System (DBSS)

DDL

Access Methods

Fig. 2.11 DBMS interfaces with software components

The DBMS software, generally speaking, has two major operating components: a database

control system and a database storage system. The Data Base Control System (DBCS) is a

module that interfaces with user programs. It accepts calls for data which are written using

-3 1 -

Chapter 2; Data Bases & Data Base Structures

a special 'language' known as the Data Manipulation Language or DML which will be

discussed in Section 2.6. Such calls include READ and WRITE commands. The DBCS

examines the external and conceptual schemas to determine what conceptual records are

required to satisfy the request. The DBCS then places a call to the database storage system

to fill the request

The Data Base Storage System (DBSS) manipulates the underlying storage files which

were defined in an earlier stage using a descriptive 'language' called the Data Definition

Language or DDL. It establishes and maintains the lists and indexes that are defined in the

internal schema. If indexed files are used, the DBSS does not manage the physical input

and output of data. It passes requests on to the appropriate access methods, which read data

into and out of the system buffers. The requests delivered to this module are analyzed by

matching the parameters of the request with a stored version of the database (called a

schema) and a definition of the part of the database applicable to the program request (called

a sub-schema).

In preparation for processing a database, all the software components shown in Fig. 2.11

are loaded into the main memory of the computer. Precompiled versions of all the software

modules - user programs, DBCS, DBSS, and access methods - are stored on a system

disk. Compiled versions of the three schemas - conceptual; external; and internal - are

stored in a disk library. When a program is to be run, all these components are loaded into

the main memory. They are linked together by an operating system module so that they can

communicate with each other. System buffers are created by the operating system at this

time.

These in general are the functions which any DBMS should offer whatever the data model

is. However, the underlying structures which represent explicitly the real world differ

according to the suitability of a particular database model to deal with the question in hand.

With regard to the three types of database structures discussed earlier in this chapter,

DBMSs are designed to match these types of databases. For example, the leading database

management systems based on the hierarchical data model and still in use today is IBM's

Information Management System (IMS) [IBM, 1978]. Furthermore, in network data

modelling, the CODASYL (Conference of DAta SYstem Languages) approach represents a

very good example of a network DBMS [CODASYL, 1971 & Olle, 1978]. Finally, Oracle

is a typical DBMS which implements the relational data model [Oracle Corporation, 1986].

- 3 2 -

Chapter 2: Data Bases & Data Base Structures

2.6 Q u ery L a n g u a g es

The users' interrogation of the database is done by a 'language' commonly known as a

'Query Language'. The various operations which can be undertaken by the end-user using

this language can be grouped in four phases:-

i) retrieval of data from the database;

ii) the generation of statistics (e.g. on the quantity of data retrieved compared with the

amount of data stored);

iii) the extraction of data from the database (which is concerned with how the retrieved

data is to be displayed, analysed or printed); and

iv) the updating of data - this allows the end-user to perform manipulations upon the

selected records and to return them to the system.

It should be noted here that retrieval (involving phases (i) to (iii)) is the main concern of

query languages. Phase (iv) is properly the concern of the Data Manipulation Language,

although these functions are combined in query languages like SQL.

Some query languages (such as SQL) also provide for the definition or description of the

database objects by specifying schemas, sub-schemas, files (or relations), records and data

items (attributes) [Date, 1981(a)], although these are usually thought to be the

characteristics of a Data Definition Language (DDL) already described earlier in this

chapter.

Providing a query language with a set of functions for updating and data definition as well

as retrieval, creates an interface to the database which is well integrated. A query language

can thus be defined as: "A system designed to support an interactive dialogue for the

retrieval, display and, sometimes, update of records using variable criteria" [Gittins, 1986].

Query languages permit an interactive programmer to write record retrievals using

expressions that specify which records are required, so that the programmer or user does

not have to go through the process of record-by-record retrieval [McFadden & Hoffer,

1988]. Such query languages are helpful in that they can rapidly produce the result of a

simple end user question, check on the contents of a database after a series of data

maintenance program executions or provide a user with a prototype of the kind of report

that could be produced by the report program.

- 3 3 -

Chapter 2: Data Bases & Data Base Structures

Due to the fact that there are different types of database models (hierarchical; network and

relational), by implication, query languages differ in correspondence with these different

database models.

The Standard Query Language SQL represents a good example of a query language that has

been widely accepted and used in relational database management system products. SQL

allows data definition and data manipulation to be carried out through a list of commands

with which the user can define tables, indexes and views (for data definition using DDL)

and interrogate the databases using another list of commands (issued by the data

manipulation language DML).

Table 2.1 illustrates some of these SQL commands with their functions. Table 2.2 presents

some of those commands used by DL/I in the IMS hierarchical DBMS system and Table

2.3 illustrates some of COBOL DML commands.

Table 2.1 SQL Commands
SELECT: Lists the columns to be projected into the table that will be the result of the

command;
FROM: Identifies the tables from which output columns will be projected and that

possibly will be joined;
WHERE: Includes the conditions for tuple/row selection within a single table or

between tables implicitly joined.

(Oracle Corporation, 1985)

GET UNIQUE (GU)
GET NEXT (GN)
GET NEXT WITHIN PARENT
(GNP)
GET HOLD
(GHU, GHN, GHNP)
REPLACE (REPL)
DELETE (DLET)
INSERT (ISRT)
(Source: Date, 1981, 297)

Table 2.2. Summary of DL/I Operations

Direct retrieval of a segment
Sequential retrieval
Sequential retrieval under current parent

As above, but allow subsequent DLET/REPL

Replace existing segment
Delete existing segment
Add new segment

- 3 4 -

Chapter 2: Data Bases & Data Base Structures

Table 2.3. Typical COBOL DML Commands
FIND
GET
OBTAIN
STORE

MODIFY
CONNECT
DISCONNECT

RECONNECT

ERASE

COMMIT

ROLLBACK

KEEP

(CODASYL, 1971)

2.7 V ec to r D a ta B a ses

As mentioned briefly in Section 1.6, the vector representation of data could be seen as a

method of representing objects with maximum fidelity. It makes use of coordinate space

allowing all positions, lengths, and dimensions to be defined precisely (within the

restrictions imposed by the length of a computer word on the exact representation of a

coordinate and the limitation of the basic step size of all vector display devices). However,

all features can be reduced to the three main components (entities) of vector representation

namely points, lines and areas.

2.7.1 Point Entity

Point entities represent all those geographic features that have only one pair of coordinates

(X & Y). Together with their coordinates, point entities should have in their records

descriptive factors (attributes) about what they are. For instance, a point can be represented

by a symbol unrelated to any other information about features of other similar or different

Locates record in database
Transfers record to working storage
Combines FIND and GET
Puts a new record into the database and links it to all sets in which it
is an automatic member
Changes data values in an existing record
Links an existing member record into a set occurrence
Removes (unlinks) an existing member record from its current set
occurrence
A combination of DISCONNECT and CONNECT to unlink a
record from its current set and link it to a new set occurrence
Deletes record from the database, DISCONNECTS it from all set
occurrences in which it participates, and deletes other records for
which this is an owner in set
Makes permanent all database updates made since the last COMMIT
command executed.
Aborts all updates since last COMMIT and restores database to its
status at the time of the last COMMIT
Places concurrent access controls on database records

- 3 5 -

Chapter 2; Data. Bases & Data Base Structures

types. In this case, a point record should hold information about that symbol, including its

display size, and orientation. Whereas if the point is a location at which text should be

displayed, the record should contain the text, the font and the size to be used in display,

together with the orientation, and the justification.

2.7.2 Line Entity

Features built up by a series of straight line segments use this type of data representation.

The simplest form of line is a straight line which only requires two pairs of coordinates

(one pair at each end of the segment). Besides the coordinates, a line record should as well

contain details about how the line should be displayed (solid, dashed, etc...), and when

networking is preferred, the line record should hold a pointer field to the nodes which

define the ends of the line.

2.7.3 Area Entity

The areas enclosed by polygons can be represented in various ways in a vector database.

Because most kinds of thematic mapping used in geographic information systems have to

do with polygons, the way in which these entities can be represented and manipulated has

received considerable attention.

The aim of a polygon data structure is to be able to describe the topological properties of

areas (that is their shapes, neighbours, and hierarchy) in such a way that the associated

properties (i.e. the attributes) of these basic spatial building blocks can be displayed and

manipulated as thematic map data. Before describing the ways in which a polygon data

structure can be constructed, the requirements of polygon networks that are imposed by

geographical data will be stated.

First, each component on a map will have a unique shape, perimeter, and area. There is no

single standard or basic areal unit as is the case in raster systems. Second, geographic

analyses require that the data structures be able to record the neighbours of each polygon in

the same way that networking in utility applications requires connectivity. Third, polygons

on thematic maps are not all at the same level (islands occur in lakes that are themselves on

large islands, and so on, see Fig. 2.12).

- 3 6 -

Chapter 2; Data Bases & Data Base Structures

Island

Fig. 2.12 The provision of islands & lakes

Islands and neighbours can only be properly handled by incorporating explicit topological

relationships into the data structure. The topological structure can be built up in one of two

ways; by creating the topological links during data input, or by using software to create the

topology after the data has been input.

2.8 D is c u s s io n

As has been seen previously, handling data in vector format imposes several difficulties,

the most important of which being the creation and maintenance of the structures that

should hold the data in the database, together with different modules such as Data Entry,

Cartographic Representation, Data Retrieval, and Data Output needed by the GIS system.

There are also some other procedures that should be taken into consideration when GISs

are being designed. These include the provision of map overlaying and merging; area

calculation; search for polygon neighbourhood; point in polygon search; islands enclosure;

and cartographic symbol representation. These all form important procedures within the

GIS software environment, that should be present whether it be based on vector data or

raster data.

The lack of flexibility in the classical data models and their deficiencies when undertaking

complex applications, have led to rise in demand for a better programming environment

where more facilities are provided. Two possible improvements present themselves. The

first would be the use of an Object Oriented System, where the topological relationships

between the geometrical elements of several objects or the construction of a single object

-3 7 -

... Chapter 2; Data Bases & Data Base Structures

can be described explicitly. For example, a line can be a borderline of a building and of,

say, two parcels. The object data geometry is stored independently of its cartographic

representation. Then it can be mapped very easily with different graphics codes without the

object data having to be edited.

The second option is the use of a database programming language which incorporates

programming language facilities together with database management facilities. PS-algol is

an example of such a language and has been put to the test in this thesis, which tries to

explore the power that it possesses in order to be able to solve some of the problems

outlined above. This language is described in Chapter 4. The results of this research will be

discussed in detail in Chapters 5, 6, 7, 8, 9 and 10.

In the next chapter, Chapter 3, a survey has been carried out covering some of the data

structures proposed or used by other people working in the GIS field to handle vector data

for different GIS applications. Most of these are being implemented and marketed

commercially by various companies active in this area.

CHAPTER 3

Chapter 3: State-of-the-Art In GIS

CHAPTER 3: STATE OF THE ART IN GIS

3.1 Introduction

A short introduction explaining the basic concepts and some of the requirements of a

geographic information system (GIS) has already been given in Chapter 1. This was

followed in Chapter 2 by a discussion of databases, database structures and database

management systems which are the basic building blocks on which a GIS can be built. In

this chapter, some further discussion of the different types of information system utilizing

spatial information will be given and will be followed by a review of the various

approaches which have been implemented to date, including the description and discussion

of representative systems which are currently available on the market.

3.2 D ig ita l M a p p in g

A first point which must be made is that there is a very large field of activity called digital

mapping or automated cartography which is principally concerned with the computer-based

production of maps. This activity takes place within the surveying and mapping industry

and is the modem form of the classical area of map production concerned with the

compilation and production of topographic maps, air and sea navigation charts and small

scale maps and atlases. The reasons for the industry's widespread adoption of digital

mapping techniques are numerous, but the principal ones can be summarized as follows

[Petrie, 1990]:-

i) Speeding up the process of map production is necessary to cope with the increased

flow of data from field survey and photogrammetric sources and to shorten the period

between the initial data collection and the availability of the resulting map in digital or

hard-copy form;

ii) Reducing (or even eliminating) the tedious cartographic work involved with map

compilation and production such as draughting, scribing, mask-cutting, lettering and

symbol generation and placement, which requires highly skilled personnel who are

often difficult to find;

iii) Ensuring that existing maps are kept current and up-to-date both in terms of their basic

topographic information and of the specialist thematic information (e.g. that required

-3 9 -

Chapter 3; State-of-the-Art In GIS

by the public utilities) which is drawn, overlaid or annotated on them is a major

objective both for map producing agencies and users; and

iv) Reducing the cost of map, plan and chart production is another highly desirable

requirement both for map producers and users, though it is one which has been quite

hard to achieve due to the large capital costs of purchasing, installing, operating and

maintaining high-accuracy, high-quality computer-based mapping equipment on the

one hand and the costs of training and employing the specialist personnel needed to

operate and maintain this equipment on the other hand.

In the field of digital mapping carried out at large scales for engineering projects, land

registration and cadastral purposes, etc., the current degree of automation is extremely

high. Data comes directly from field survey and photogrammetric instruments in digital

form, is processed in a fairly simple computers and the final data is delivered in the form of

large-format, vector-based maps in monochrome hard-copy form or their digital equivalent

(or both).

A large number of systems such as Eclipse/Panterra, Moss, ProSurveyor, Wild Geomap,

etc., are available as off-the-shelf systems or packages which are much used by land and

engineering survey companies, civil engineering consultants and contractors, local

government estates and roads departments, etc. Other similar packages have been produced

for in-house use by survey companies such as Longdin & Browning, Mason Land

Surveys, etc.

In this sector, another major activity is the digitizing of existing large-scale maps,

principally the O.S. 1:1,250 and 1:2,500 scale series, which is carried out both by the

Ordnance Survey itself in-house and by a number of approved contractors. This utilizes

software packages such as Laser-Scan's LITES system, Map Data, etc., which basically

are interactive digitizing/editing packages which convert the cartographic data on the maps

into digital form for use by public utilities, local government organizations, etc., often

within a GIS system. However, as can be seen from the above descriptions, the systems

used for this process of data acquisition, data processing and map production, etc. can in

no way be called information systems or GISs since they do not possess the DBMS, query

language, data structures, analysis tools and other features that are characteristic of a GIS.

At the other end of the cartographic spectrum is the area of automated cartography

- 4 0 -

Chapter 3; State-of-the-Art In GIS

concerned with map and chart production and atlas production at small-scales, and

characterized by the need to produce large volumes of multi-coloured maps using offset

lithographic techniques. The data is almost always derived from larger-scale maps and

other sources and so the digitizing of existing cartographic material is a major

preoccupation of this sector. The basic cartographic operations of generalization and

compilation followed by scribing, masking and photo-lettering have not proven to be easy

to convert to digital operations. Also the requirement to generate final output as colour

separations on film, including the need for tint screens and patterns with variable densities

and orientations means that access to very accurate and expensive raster-based film plotters

such as those made by Scitex, Intergraph/Optronics, Linotron, etc., is an absolute

necessity. Also the need for high quality colour plots and proofs leads to the requirement

for colour electrostatic plotters or thermal wax-transfer colour plotters, which again are

very expensive to install and operate in an economic manner.

As can be seen from the above discussion, the areas of digital mapping and automated

cartography are the subject of intensive activity and development at the present time.

However, the matter of databases and database management systems, while important for

larger national mapping agencies, are matters which do not have a high profile at the

moment. Most of the national mapping agencies in the U.K. - e.g. the Ordnance Survey;

the Mapping and Charting Establishment, R.E.; the R.A.F.'s AIDU aeronautical chart

production organization; etc. - utilize theSharebase relational database system mounted on

Britton-Lee database engines for the management of their structured databases. These

special-purpose, hardware-based database systems are reputed to have a throughput three

to five times greater than a comparable purely software-based RDBMS.

3.3 A u to m a te d M a p p in g /F a c ilitie s M a n a g e m e n t (A M IF M) S y s te m s

These systems are those employed by the various public utilities such as water, electricity,

gas, telephone and sewage authorities which have large networks of pipelines or cables

which are, in geographic terms, widespread and are also very complicated in terms of their

structure. Their exact location and function need to be known for planning, operational and

maintenance purposes. Much of this data needs to be recorded and displayed on maps and

kept up-to-date for management purposes. Thus the public utilities have always been large

customers for plans and maps. However, they also require their maps to be revised

continually, both in terms of the basic topographic information which they contain and in

-4 1 -

Chapter 3; State-of-the-Art In GIS

respect of their specialist information drawn, overlaid or annotated on them. The promise

of being able to achieve this desired currency of information by adopting computer-based

mapping techniques has therefore been a considerable factor for causing these large,

technically-aware and capital intensive industries to become interested in the automated

mapping (AM) component of an information system [Petrie 1990].

The other component of these public utility information systems is the facilities

management (FM) aspect. All of these organizations share the common feature of wishing

to manage their large networks of pipes or cables and the associated facilities such as

generating centres; distribution, storage and control centres; sub-stations; etc. The former

group (i.e. the networks) will have a mainly graphical representation whether it be the

locational reference base provided by a map background or the diagrammatic representation

of the networks themselves. Associated with this may be a smaller non-graphical element

which gives details of dimensions, characteristics, etc., of the individual network

components which will often comprise information in the form of analphanumeric or

numeric tables. In the second group of facilities (i.e. the main generating, distribution and

storage centres), the emphasis will be reversed. The graphic element may well be small and

largely diagrammatic in nature, showing plant layout rather than cartographic information,

while the non-graphic element in the form of textual and numeric information may be quite

large.

Thus an AM/FM system is quite definitely a spatially-based information system which can

handle both locational/graphical information and non-graphic information. Since many of

these public utilities cover large areas of a country with complex distribution networks

designed to serve large numbers of customers, these organizations have been early entrants

into this field of spatial-based information systems. Indeed many of the systems available

on the market are essentially AM/FM systems designed specifically for and targeted at the

public utility sector, such is its size and importance.

3.4 L a n d In fo rm a tio n S ys tem s (L IS)

The concept of a land information system is essentially similar to that of the preceding type,

the AM/FM type, in that it is designed to handle both spatially-located graphic data which is

mainly derived from cartographic sources and a great variety of associated non-graphic

data. However there are also several different features. The emphasis in an LIS is on

- 4 2 -

Chapter 3; State-of-the-Art In GIS

various aspects associated with land - land ownership, land registration, land valuation,

land use, etc. Also it is largely based on areas and areal-based features rather than the lines

and linear-based features of an AM/FM system. As will immediately be obvious, these

quite different characteristics of the two systems mean that a spatially-based information

system which is optimized for public utility applications, i.e. an AM/FM system, is most

unlikely to be well suited for use as a land information system (LIS).

Once again, given the large number of organizations which are concerned with this field -

e.g. cadastral and land registration offices, estate survey offices, property agencies, etc. -

this is an area which is large enough to have encouraged the development of specialized

LIS systems which are optimized for use in these areas. Those countries where national

cadastral or land registration systems have long been established are especially large

markets for this type of system.

3.5 G e o g ra p h ic In fo rm a tio n S ys te m (G IS)

The term GIS is not a very easy one to define. At the one level, there is a tendency to use it

(not always correctly) as a generic term which encompasses all spatially-based information

systems, no matter what their particular orientation is or the specific field or application for

which they were designed. On the other hand, here in the U.K., the term is often used,

whether consciously or not, as an information system which is designed principally for use

with socio-economic data, especially census data such as population data, employment

data, agricultural data, etc., which has been collected on an areal basis. Often the

cartographic aspects, especially those concerned with positional accuracy, and the

incorporation currency and completeness of small topographic features, etc., have a

secondary importance as compared with their status in a digital mapping, AM/FM, or LIS

systems and the resulting maps are essentially of the polygon or area-based thematic type.

By contrast, this second type of GIS is usually very well equipped or endowed with a rich

selection of tools for the analysis of spatial data which are of great use and interest to

geographers, planners, social scientists,etc. Once again, it must be said that there are quite

a large number of systems which are designed specifically to address the needs of this

particular group of users. Obviously it would be possible to go on to discuss further the

semantics and the underlying philosophy of the term GIS but in the context of this present

project, this would not be particularly useful or productive.

- 4 3 -

Chapter 3: State-of-the-Art In GIS

3.5.1 Summary

From what has been described and discussed above, it is clear that, essentially, all of these

AM/FM, LIS and GIS systems are built on database management systems (DBMS).

However, unlike traditional database management systems and procedures, the spatial

attributes of the features incorporated in the database represent primary acquisitional data

and there is a very heavy emphasis on the final results being presented in graphical, mainly

cartographic form. Thus, the system can be viewed as a marriage between automated

mapping and database management technologies, with the ability to search for records

based on spatial location [Eastman, 1987].

In essence, the AM/FM, LIS and GIS systems are structured collections of spatially-located

digital data (the database) which is controlled by a database management system (DBMS)

and is usually envisaged or implemented as a query answering system. The emphasis will

be on geographically referenced data which can be displayed graphically, i.e. in map form.

Currently such systems are being purchased and implemented by government planning

agencies, public utilities, and cadastral or land registration services on a very large scale. If

the basic locational data collected by surveyors, photogrammetrists and cartographers or the

specialist thematic data collected by engineers, land registrars, social scientists, etc. is to be

used in such information systems, then it will have to be arranged or structured in a manner

which suits the purpose of the particular AM/FM, LIS or GIS system with which it is

associated [Petrie, 1990].

From the point of view of the overall system architecture, sometimes not too much

difference can be seen between an AM/FM, an LIS and a GIS system. Often the differences

arise mainly when the applications of the systems are envisaged and the appropriate tools

and services have to be provided. However, in accordance with the classification and

descriptions of the different approaches to building, structuring and managing databases

used by computer scientists which have been outlined in Chapter 2, the following sections

will review some of the systems available in the market within each of the main types of

database systems described there - namely, the hierarchical, network and relational

approaches. In addition, there will be a review of two systems (System 9 and GINIS)

which employ an object oriented database system.

- 4 4 -

Chapter 3; State-of-the-Art In GIS

3.6 H ie ra r c h ic a l S y s te m s

These systems were the first type to be implemented in the early 1970s when the first
spatially based information systems were introduced. In spite of the fact that other types of

DBMS have become popular since then, the hierarchically-based systems are still in
widespread use and are still being sold in large numbers.

3.6.1 Intergraph IGDS/DMRS

Intergraph is a leading American company in the field of mapping and CAD systems.

Originally called M & S Computing, Inc., the company first applied interactive computer

graphics to mapping disciplines in 1973 with a digital mapping package. Since then, the
company has continued to supply hardware and software tools to the mapping community.
Later in the 1970s, it developed a suite of programs to handle the analyses of the data given

by digital mapping. This was one of the very first packages which would nowadays be

identified as being a land or geographic information system. Because of Intergraph's

importance in the digital mapping, AM/FM, and LIS market place, an attempt will be made

in this thesis to cover one of the company's main products in some detail.

3.6.1.1 Overall IGDS/DMRS System Design

On the system design side, Intergraph has, from the outset, used two main packages which

even today, after many developments, still form the core of several of Intergraph's

offerings in the GIS/LIS area and in the closely related area of AM/FM.

These two basic modules or systems, [M & S Computing, Inc., 1979], are:-

i) Data Management & Retrieval System (DMRS); and
ii) Interactive Graphics Design System (IGDS).

Their overall relationship and the interface between them is shown in Fig. 3.1.

As the name suggests, DMRS is essentially a database management system which handles

the non-graphic elements of the system. In the case of a public utility, these would

comprise the numeric and text-based information on ducts, cables and pipes, sub-stations,
etc. Thus DMRS recognizes and controls the large amount of inventory data, facilities data,

- 4 5 -

Chapter 3; State-of-the-Art In GIS

land use data, or general attribute data that complements the graphic drawings, diagrams,
maps or charts which are handled and produced by IGDS.

♦MASTER DATA BASE
CONTAINING ACC
NONGRAPHIC DATA

♦ MASTER GRAPHICS FICE
CONTAINING ACC GRAPHICS
IN ONE FICE

♦ WORKING GRAPHICS FICE
CONTAINING GRAPHICS FOR
ONE AREA ANN A SUB -SET
OF ATTRIBUTE DATA FOR
TIIAT AREA

Fig. 3.1 IGDS/DMRS overall concept and interface

The IGDS part of the system includes both a Master Graphics File containing all the

graphics relevant to a single project or area and a Working Graphics File which contains

both the graphics elements for the specific area being worked on, together with the relevant
attribute data for that area. Data verification and editing features for both graphic and non­

graphic data as well as protection against failure and the ability to recover information have

been incorporated into these basic software modules or systems as they have been

developed further.

3.6.1.2 DMRS Overview & Components

The Data Management & Retrieval System overview is illustrated in Fig. 3.2.

- 4 6 -

Chapter 3: State-of-the-Art In GTS

ti«i
me

t U I A U M U I I W l A l l A S tOtkfHlf I l<M
I Ai«kMii£<.(»*-u rt

IlklH blMVtCE
fUTA

I IIAJ lU A i k
CIUUIMl)

110!. INTERFACE llWMINV
camMU

i r i w u *(iaia
i lA JI I I l* A f l t k i

U U K I A l t l l

tIAIttA/tfl irOAl£

I n*‘ (io>iAi
U U ll A f K I Al iLt cikojub

l l k T l f r t k

A SAIt£ At A-
M sam£ At « '
c *ah# At t "

Fig. 3.2 DMRS overview and components

The major features of the DMRS system and its interfaces with the database are

summarized below:-
a) Definition and structuring of a database, including the Data Description Language

(DDL) compiler,

b) Database creation and maintenance, including the following commands:-

LOAD (whole or in part)

DUMP (whole or in part)

INSERT

CHANGE

DELETE

c) Selection of data universe fFIND^:

-4 7 -

Chapter 3: State-of-the-Art In GIS

d) Translators, including the following:-
Existing user files to database;

Database entries to user files;

IGDS selected data to database;

Database entries to IGDS graphic files.

e) Inquiry for browsing and impromptu questions;

f) Report generator for versatile reporting including
Report requests from interactive graphic user,

g) User update requests:

h) Sort:
i) Linkages to IGDS;

j) Analyze utility, this includes the following:

Integrity checking;

Statistics;
Structure maps

The diagram also includes the following items:-

A and A' HOL Interface

B and B' User programs

C and C' User files

In addition, the following features are included in the system:-

* Graphic polygon processing for land use management;

* Processing of multiple databases;
* Optimization of database storage;

* Security of the database and each attribute;

* Activity log; and
* Input data verification and editing.

3.6.1.3 DMRS Database Organization [M & S Computing, Inc., 1978]

Each DMRS database is stored as a single file containing information about the file

structure, the definition of codes and the definition of attribute security as well as the actual

data. The data is stored in an optimized form. Database storage is allocated by bits such that

- 4 8 -

Chapter 3; State-of-the-Art In GIS

a single word of database storage may contain multiple data elements. This optimization
occurs in a manner which is totally transparent to the user.

YCSK

CHICAGO

Fig. 3.3 DMRS database - logical organization

The data structure is organized hierarchically as illustrated in Fig. 3.3. It has no
complicated indexing scheme, although all data elements are searchable (using a key).
DMRS uses the so-called Disk Data Scanner to search the database and retrieve selected

data elements at disk hardware speed. The speed and structure which are made possible by

the hardware Disk Data Scanner also provide the interactive graphic response associated

with IGDS.

DMRS supports multiple attribute files with each file containing the attributes associated
with specific graphic elements which are being maintained in the IGDS graphic files. Each

DMRS attribute file may contain a unique user-defined schema and typically maintains the

attribute data associated with a related group of graphic elements. In this way, large
amounts of attribute data can be supported in a manner that allows different classifications

of the data to be maintained in different databases. This allows the user to maintain

relatively small DMRS files, to maintain very fast retrieval response times and to support an
almost unlimited amount of attribute data.

- 4 9 -

Chapter 3; State-of-the-Art In GIS

3.6.1.4 IGDS

IGDS is a complete, turnkey, interactive graphics system composed of an integrated
configuration of hardware and software which is custom-tailored to meet the mapping and
drafting requirements of municipal and utility organizations. However, in the context of the

present discussion, its links to and its integration with the DMRS system will be

emphasized, since it is the combination of the two which gives the GIS/LIS or AM/FM
capability.

The graphics operations and applications supported by the IGDS system can be
summarized as follows:-

* Interactive graphics: Input, display, plotting, access, modification;
* Data validation checking

* Engineering design;

* Polygon storage;

* Polygon retrieval;
* Report Generator (graphic statistical results also available);

* Survey data input;
* Stereoplotter input system;
* Terrain data system;

* Cross section/profile system; and
* Survey system.

3.6.1.5 IGDS/DMRS System Overview & Interaction

IGDS and DMRS work together to provide an interactive graphics-oriented management

information system capable of supplying information on land ownership and land use and

the location and distribution of networks operated by the public utilities. In addition, it

provides the tools required to carry out facilities management and land use analysis to

provide informative answers to ad-hoc queries and to provide specialized management

reports.

The IGDS/DMRS features include:
* the definition of complex attribute files linked to graphic entities:

* the facility to issue queries based on combinations of attributes and/or graphic criteria;

- 5 0 -

Chapter 3; State-of-the-Art In GIS

* the generation of simple or complex reports which may vary from tabular lists to
multi-summary reports;

* the provision of reports and bills of material:

* the use of multiple databases:
* the ability to carry out polygon overlay processing for calculating resultant and

remainder polygons based on attribute selection criteria; and
* the ability to integrate existing data files into the system.

These features are especially useful for applications requiring large amounts of attribute
data associated with the graphic database, as is the case with the utility services.

In systems with applications involving both IGDS and DMRS, the two databases must
appear as a single coordinated production tool. A real-time link approach, shown in Fig.
3.4, is adopted as the central conceptual design for a standard IGDS/DMRS user.

IGDS Gil A f IIIC
H i t DMHS ATTIIIUIITE

K1I.EI-INK IIET WEEN
Gil A filled ANI) ATTUHtUTES

/
/

HOUSE ATTH1DUTE DATA EQII HOUSE
AT 110 MAIN STREET

ADD IIESS « | | 0 MAIN S T H E E T
O C C III'A N C Y » VACANT
S T R U C T U R E * llltIC K

I tO O MS - S
OWNER = JO N E S

1 T O ll.E T » YES
TYI'E - SINGI.E EAMII.Y

VAI.IIE - $10,000
1‘Oflll.ATION = 0
EIG.

Fig. 3.4 The real-time link between IGDS and DMRS

As already mentioned, the DMRS attribute file generally contains non-graphic attribute data
related to the graphic elements maintained in an IGDS graphic file. In most cases, there will

- 51 -

Chapter 3: State-of-the-Art In GIS

be more attribute data in the DMRS database for each graphic element than is desired
graphically at one time. For this reason, a bucket of data which is a subset of DMRS
attributes is defined and held by IGDS, (see Fig. 3.5). This bucket consists of a copy of a
set of attributes physically attached to the graphic description of the elements within the
IGDS database. This attribute bucket occupies the first part of the variable length

'associated element' field of an element's description. This field can be up to 75 words in

length and can contain any combination of bucket data and associated element data.

I G D S
GRAPHICS-BUCKETS

CITY LIMITS
LINES NAME

HYDROGRAPHY
LINES

STREET
NAME

NAME

NAME

PARCEL
BOUNDARIES (

>

V
ADDRESS
PARCEL ID
PARACENTROID

SHAPES

CURB
SIDEWALKS

CONTROL
MONUMENTS

DMRS
SCHEMA

A1 CITY NAMES
A2 SOURCE CODE

A1 HYDROGRAPHY NAME
A2 SOURCE CODE

A1 STREET NAME

A1 ADORESS
A2 PARCEL ID
A3 PARACENTROID
A4 SOURCE CODE

^ E 5 ^ AI SOURCE CODE

EG A1 SOURCE CODE

STATE
PLANE
G R I D

Fig. 3.5 The buckets held by the IGDS and the linkages with DMRS

To create a set of IGDS/DMRS supporting databases, the linkage between an IGDS graphic

- 5 2 -

Chapter 3; State-of-the-Art In GIS

element and its DMRS related attributes must be established by the IGDS operator using the
concept of the bucket mentioned above.

When a graphic element is added to an IGDS design file, the operator must assign to it an

attribute value or an entity name if it is to have a corresponding entry in the DMRS

database. Note that initially, the element exists only in the IGDS design file and the
corresponding attribute or 'entity' must be added to the DMRS database later on by a post­
processing analysis assigned to the IGDS graphics element. This data is added to the
element's bucket if one already exists, or a bucket is automatically generated if one does not
exist. When the system generates a bucket, an identification number unique to the working
design file is automatically assigned to it.

The bucket data is physically attached to the graphic data to form a single record within the

IGDS database. This merging of the graphic and attribute data into a single record allows

an instantaneous response to bucket queries and updates by taking advantage of the
inherent serial operations of an interactive operator. In an interactive graphic environment, a
graphic or attribute query or modification must be preceded by an identification procedure

to define the graphic subject of the operator's requests. In IGDS, this identification

sequence locates the graphic record in question, highlights the element to the operator, and
maintains a copy of the record in memory to provide an instantaneous response to the

operator's next activity.

The definition of buckets and their interaction with DMRS are controlled by the IGDS user.

When the user assigns an attribute to a specific graphic element, IGDS automatically creates
a bucket for that element, assigns a unique IGDS/DMRS linkage identification number, and

adds the attribute data to the bucket. Subsequent attributes added to the element are merely

added to the already existing bucket. Fig. 3.5 illustrates the linkage between an IGDS
graphics element with its bucket and its corresponding set of attribute data in DMRS.

3.6.1.6 The Interface Concept Using the Disk Data Scanner

As mentioned previously, IGDS uses a proprietary hardware device called the Disk Data

Scanner to selectively extract data from a disk file at the data transfer rate of the disk. This

technique of hardware data extraction allows IGDS to select an individual line segment
from a file of over 15,000 line segments in 700 milliseconds. This combination of

- 5 3 -

Chapter 3: State-of-the-Art In GIS

hardware and software allows the IGDS to support up to eight graphic workstations in an
interactive environment.

DMRS, like IGDS, also derives its speed of response by optimizing the use of the Disk

Data Scanner. The Scanner eliminates the software indexing complexities normally required

to support a database management system by making every attribute of every element in the

database directly retrievable by hardware. Each DMRS component used to build the

database, update the database, and generate reports from the database has been designed to

handle a large volume of data as fast as possible. Database operations typically require

complex multiple queries involving combinations of attributes of various elements within

the database. Each retrieval operation produces a list of elements, and the final result of a
typical query requires that a resultant list be generated by a series of Boolean operations on
intermediate retrieval lists.

3.6.1.7 Creation of a Land Database Using the IGDS/DMRS System

A diagram showing the series of steps involved in the creation or generation of a

cartographic ally-oriented land database for use with the IGDS/DMRS system is given in

Fig. 3.6. As shown in the boxes at the top right hand comer of the diagram, data may be
input from aerial survey data acquired through photogrammetric operations carried out in
stereo-plotting machines. This may be in the form of a traditional line map (or its digital

equivalent) or an orthophotograph. Alternatively, as shown on the left side of the diagram,

data may originate from existing maps, e.g. land use, land evaluation, land register or tax

maps; topographic maps; etc. In both cases, the graphics data is entered into the IGDS

database.

The necessity to fit data from all these different map sources which may be at different
scales; may have different orientations; may be based on different (e.g. local, regional or

national) coordinate systems; may have undergone undesired dimensional changes; etc., is

recognized by the provision of what Intergraph terms an 'Elastic Body' transformation. In

normal surveying and mapping terminology, essentially this is a polynomial transformation
utilizing least squares techniques to handle redundant data. By using a series of suitably

located control points, each set of input data is made to fit a common coordinate reference
system. This is represented on the diagram by the boxes in the middle of Fig. 3.6.

- 5 4 -

Chapter 3; State-of-the-Art In GIS

SURVEY —L55<5W!3‘"
SURVEY
CONTROL

“| POINT
CCORfif

PLACE CONTROL
MONUMENTS
GRID

PU BLIC WORKS

ASSESSOR1
3 LOCK MAP

“ tADO MAP/
BLOCK
CONTROL PTS)

/ IG E - DMRS A

I CONTROL I SOURCE
1 POINTS I CODE \

IGDS
ALIGN TO CTL

"LS'M'T" D IG IT IZ E CR
y / ~~r CONSTRUCT

LOTS. PARCELS
D IG ! ADDR

G t f n f e J IGDS

ALIGN TO CONTROL
OIGZ LAND EASE
MAP CONTROL

ixCiRIAL
PHOTO

l i n e r s y m b o l
MAP

ANNOTATED

I>j D3

i_iv_ L rtrzJL _.J

i « « « ,
I STSREQPLCTTER. i
I ALIGN TO CTL 1
I DIGS LAND |

N—UP

L u W ! DJ-!?* ,5
/ PARCEL /

PLOTS DATA
MAP/BLOCK I SOURCE \

\ C2MT70L ' CODE \)

UPDATES;
APPROVED
PLOTS AND
SURVEYS '

LAND
CONTROL

T O
DATA
SOURCE

MASTER

! o i ELASTIC BODY
Ok LEAST SQUARES

CHECK ACCY
I ^ EXACT FT

------- _ i BY MAP

| FUNDAMENTAL DATA 3ASE 1
/ TLUS BHRs A

/EXACT LAND / LAND DATA / \
PARCELS PARCEL DATAj 1

\CC:rTRCL PTS \SCURCE CODE W

r

k

IGDS
MAX .TA IN
DATA BASE
PRODUCE PLOTS
ADD OVERLAYS

OR
LAYOUT MAPS ON
EXACT LAND i (D IG ITIZE
OR
PRECISELY CONSTRUCT 3LCCZS
FROM DIMENSIONS
i INTERACTIVE F IT
OR
LAYOUT EVERYTHING ON
ANNOTATED ORTHOPHOTO
6 D IG IT IS E

LAND
DATA BASS
PLOTS

Fig. 3.6 Generation of land database

Finally, the boxes at the bottom of the diagram show the final ’fundamental database’, to
which updates and revisions can be made from new survey material and from which

overlays, plots, etc., can be generated both for checking purposes and for use by the

various classes of users.

-5 5 -

Chapter 3: State-of-the-Art In GIS

Fig. 3.7 IGDS/DMRS system overview seen from the applications point of view

- 5 6 -

Chapter 3: State-of-the-Art In GIS

Fig. 3.7 attempts to illustrate the major inter-relations of all the different sources and
products which are commonly encountered in public works projects; utility (telephone,
light, gas, water) applications; land parcel and land use mapping associated with cadastral,
valuation and taxation registers and operations; and planning and development projects. In

this context, the primary objective of the system is to create and maintain a common land

base (the land database) in cartographic form for use by multiple agencies (Fig. 3.8). This
will reduce the effort incurred by each department in an organization in maintaining its own

land background in map form, as well as improving the accuracy and timeliness of the

derived maps.

AC<;iu»:tirIkATA
KH VIIIOMM »:NT A1.
com l o n i ta

STIIUfci
a t t i i iii tre e
| 1A |'A

C dll^rlllU .T IO tl
a i ru in i r i k:
MAI A

iiotic
a r r i t i i i t r r k :
I I A T A

l)M to.

DMA CNACtC
CONTOURS

KIDS M
a r u t t r r
llliillWAY
UMA U IIO
UCTWOItK

■ClDS
n D K ll lA I ' l lI C

IIASE MAI

uTll-ITY
MMTIIIIIUrlOM
MKTWOIIK

► KIIkIKiUJI u o ic iu ia
C.UAIIIIO
DATA

I-AND USE
GHAI1 IIC
ITII.YtiOMS/.O il U 111

DATAIIATA
KIDS

Allt UUA1.ITYATTunurrfc:
DATA

I I I .A I. AND
im i: d a t a

MYDUOI.OOY
DATA

IIT II4T Y
U1VMITORY AND
ATTHIItUTk:
DATA

c u n t
CONSTRAINT
DATA

Fig. 3.8 IGDS/DMRS operation showing common database (geographic base map)

together with the specialized databases required by each sub-Department or agency

The second objective of the IGDS/DMRS combination is to support inter-agency
coordination of work by sharing information on the location of the facilities which are
being deployed and used by several utilities. This is intended to reduce the incidence of

damage to facilities, especially in underground or excavation operations.

The third objective is to support the mapping and facilities data management tasks required

by each sub-department or agency. Reduced costs and improved service can result from

creating and maintaining an integrated graphic and non-graphic database of the type
represented by the IGDS/DMRS combination. If it is properly implemented and used, it

-5 7 -

Chapter 3: State-of-the-Art In GIS

should be well suited to the engineering, design, operation, maintenance, analysis, and

reporting functions which have to be carried out within each agency.

The fourth objective is to support the other drafting activities required by each sub­

department or agency.

The overall approach of the Intergraph IGDS/DMRS combination is therefore as follows: to

create and maintain a shared land base; to allow each sub-department or agency access to it

to create their own individual overlay database; and to require each agency to post the

location of completed facilities into the shared database. Individual agencies also have

additional applications which are supported by the overall system if required.

3.6.1.8 FRAMME

The latest development in this area from Intergraph is the superimposition of an additional

layer of software called FRAMME (Facilities Rule-Based and Application Model

Management Environment) which sits between the IGDS/DMRS combination and the

various applications - e.g. mapping, engineering and accounting - which are required by

public utilities. (Fig. 3.9). This has been designed and implemented originally for the

Southern Bell Telephone Company in the U.S.A. and is now being implemented as the

basis of British Telecom's national AM/FM facility which will eventually cover the whole

of the U.K.

FRAMME

IGDS/OMRS/Networking

Fig. 3.9 The FRAMME software superimposed on the IGDS/DMRS system

-5 8 -

Chanter 3: State-of-the-Art In GIS

The superimposed FRAMME software supplies the FM (Facility Management) component

of the BT system. It is a so-called rules-based 4GL (4th Generation Language) which

contains the standard rules and specifications for the company's records, including its own

drawing symbologies, feature definitions, design menus, etc. A data dictionary

accommodates this rule base, ensuring that: data entry, access and processing procedures

are controlled and verified; proper relationships are established between facilities; and the

data are structured to give the highest degree of flexibility in using the stored data.

FRAMME also includes a feature definition language which defines the specific features to

be accommodated in the system. For example, a pole can be represented graphically by a

simple circle, while its associated non-graphic description would include its height, class,

material and any other attributes pertaining to it [Parker, 1990]. The knowledge base of

FRAMME provides a model that includes:

i) the location of each item of plant;

ii) the relationship between one item of plant and another, and

iii) related information about each item of plant.

Each item (or feature) in the model has both a graphics and non-graphics representation

which is handled as a logical unit of information, in this case, a logical unit of plant (LUP).

The graphics items, maps, plans and diagrams etc., are stored in the IGDS part of the

database. The non-graphics attributes of these items, e.g. the connectivity of plant, are

stored in the DMRS database. Data can be stored or modified in the facilities model

according to the definition contained in the data dictionary. The model analysis and the

collection of attribute information is performed through database tracing. The final output

from the FRAMME can be in the form of either a graphics (map or diagram) or a text-based

report.

3.6.2 Synercom Informap

Synercom is a well known and established American company in the field of digital

mapping. Synercom's earliest digital mapping system was called Informap and, in its initial

form, employed a hierarchical database system. This was sold widely to public utilities,

municipal/local government agencies and planning bodies, especially in the United States

from the mid-1970s onwards. During the early 1980s, Synercom's Informap product was

adopted by Wild Heerbrugg, the well known Swiss survey and photogrammetric

- 5 9 -

Chapter 3; State-of-the-Art In GIS

instrument manufacturer and system supplier, and developed to produce the Wildmap

system based on the principle of continuous digital mapping. The principal user of the

Wildmap version in the U.K. is BKS Surveys in Northern Ireland. Experience with this

system is given by Byrne and Neil (1983) and Byrne (1986). However, within the U.K.,

the Informap system has been widely sold to public utilities by DEC and Laser-Scan who

act as agents for Synercom and provide the necessary hardware and software support. The

largest customer is British Gas, but the system is also used for network management by

Wessex Water and Bristol Water.

Since the Informap package was not well provided with analytical tools or routines, a

product entitled the Environmental Mapping Information System (EMIS) was produced

which linked the Informap system with the Odyssey geographic analysis software

produced by Harvard University. In the following sections, a review of Synercom's

Informap will be presented, then a description of the EMIS software will also be given.

3.6.2.1 Overview of Informap

The overall arrangement of the original Informap system, its component modules are

shown in Fig. 3.10. The software components of the system include [Wild, 1980(a) and

Wild, 1980(b)]:-

i) CAP/IN- Cartographic and Photogrammetric software. It controls the connection of

analogue photogrammetric plotters to the computer system and records and organizes

the data measured by these stereo-plotting machines.

ii) MAP/IN- Mapping Interactive Graphics Digitizing System. This is a real time,

interactive graphics computer system that facilitates the entry of geographic and

associated tabular data in the form of maps, aerial photographs, and records.

ii) INFORM- Information System for Mapping and Records Management. A database

management and report generation system designed specifically for geographically

organized graphic and related attribute data. INFORM organizes all of the individual

maps and associated records input through CAP/IN and MAP/IN into a 'Continuous

Digital Map' to permit retrieval of maps and information by polygonal area, street

address, or other geographic identifier.

- 6 0 -

C h a p t e r 3 ; S t a t e - o f - t h e - A i t I n G I S

Fig. 3 .10 O verv iew o f Inform ap and its com ponen ts

- 6 1 -

 -- Chapter 3: State-of-the-Art In GIS

iii) COGO/I- Interactive Coordinate Geometry System. An optional interactive coordinate

geometry system which supports geometric and trigonometric constructions and

adjustments in support of high precision data input to the Information and Mapping

System.

iv) RSX-11M- Digital Equipment Corporation's multi-programming real-time operating

system for the earlier 16-bit PDP11 series of mini-computers provides a real-time

response through dynamic allocation of system resources. User application programs

and other database management systems can run under RSX-11M and can be readily

interfaced to the INFORM database through files. While RSX-11M was used on the

PDP11/70 mini-computers on which Informap was run originally in the late 1970s and

early 1980s, the system has since been adapted to use DEC's 32-bit VAX, Micro

VAX and VAXstation machines which use the VMS operating system.

The hardware arrangement used in the Wildmap version of Informap is shown in Fig.

3.11(a) and (b) below.

CAP/IN:
cartographic and photogrammetric
software

Organization of data flow

Photogrammetric work station

menu

alpha-
numerical
terminal

stereoplotter

function
keys

P R I2

If
AVIOTAB TA

CAP/IN
software

1
allocation of
line types,
symbols,
annotations
from tables

Computer

MAP/IN
software

two-dimensional
transformation
into table
coordinates

working

magnetic-

^sfsraasj

Fig. 3.11 (a) CAP/IN -> MAP/IN in Wildmap

- 62 -

Chapter 3: State-of-the-Art In GTS

Data acquisition

photogrammetric
workstation 1

1

► Data processing

inter-computer communication

further photogrammetric
workstations,
maximum number depending on
overall configuration and type of
operation required

PDP 11/70 computer
with operating console

a -n CRT J
hard-copy
umt

card
reader

other
peripherals

disk
controller

r m

graphic workstation 1

Data output

magnetic-
tape
controller

further graphic workstations
maximum number depends on number of
photogrammetric workstations connected

magnetic tape 1

magnetic tape 2

magnetic tape 3

magnetic tape 4

line printer

digital plotting table 1

further digital plotting tables

Fig. 3.11(b) The hardware arrangement as used by Wildmap

3.6.2.2 Informap Data Base Organization

Informap's database structure was again, like most information systems designed in the

1970s, hierarchical, with multiple entry keys and is shown graphically by Fig. 3.12.

Since most user requests are geographic in nature, location is the first level of organization.

This is accomplished by partitioning the entire area served into a grid of regularly-shaped

elemental areas called facets. All the data required to describe the facilities and the

geographic features contained within the boundaries of each facet are stored separately

within the database. This permits direct access retrieval of data by a wide variety of

graphics keys such as:-

i) Location;

ii) Map Name (where map name indicates location);

iii) Area Name (city, district, region, etc.);

iv) Street Address;

v) Street Intersection;

vi) Known Landmark.

-6 3 -

Chapter 3: State-of-the-Art In GIS

first geographical
organization location
level subdivided into

regular face tte s

second
organization
level

third
organization
level

data types
grouping of
similar
information

4
graphic data item s

n on -grap h ic
data item s

ABCDE1234item s

ABCDE 123A5
nam es
num bers
texts

A B C D E 234

*
128

t y p e s of
e t t e n n g

128
g h t lin e s a n d

c irc u la r c u rv e s symbols

'm odes'
for graphical
representation

graphic allocation
of non-graphic da ta item s
(secondary an n o ta tio n)

Fig. 3.12 The data structure of Informap

Within each facet, data is further organized into groups of like data called data types. Each

data type represents a certain kind or class of graphics or facilities elements such as cables,

conduits, water mains, base map features annotation, etc. Each data type can be viewed as

a layer such as a property layer, a water mains layer and a gas mains layer. There is no

inherent limit to the number of map information layers that Informap can create and hold,

although no more than 128 can be accessed at any one time. The layers that are active at any

- 64 -

Chapter 3; State-of-the-Art In GIS

particular time are defined in a schema. Thus within a municipality, the fire department

might define a schema for the specific layers that it needs, the police department would

define another schema, and so on. Thus this second hierarchical level permits the Informap

database manager to directly access a particular kind of data held in a layer within a facet

without having to search through unrelated data.

Each data type may be further divided into a series of data items. A data item describes a

particular property or attribute of a data type, such as its location, size, operating condition,

date installed, or work order number. Each data type or layer can have as many as 64

attributes. The same set of data items are used to describe each element (e.g. each cable,

each terminal, etc.), for a particular data type.

A further level of the database organization is that, as in the Intergraph IGDS/DMRS

systems, each data type in Informap is subdivided into graphic and non-graphic data items.

Graphic data items contain the information that is essential to describe each element of the

data type graphically, such as its location, coordinates, symbol, line type, etc. For display,

these graphic data items or attributes can be depicted in any one of 128 line types, 128

symbol types or 128 types of lettering, each of which can appear in any of 8 colours. Non­

graphic data items describe attributes such as names, numbers and text. The form and

format of these non-graphic data items are user defined by a variable database schema.

Informap provides the ability to display these data items graphically as secondary

annotation if required.

The graphic portion of each data type is separated from the corresponding non-graphic

portion, and a direct link is provided so that INFORM may examine all data items for a data

type only when necessary.

3.6.2.3 Odyssey

Odyssey is not itself a stand-alone GIS system, but a geographical analysis package written

in Fortran and developed over a period of several years by researchers at Harvard

University's Laboratory for Computer Graphics and Spatial Analysis. Its importance here

is that it has been combined with the previously described Informap to produce the EMIS

system which will be described in the next Section. The package comprises several

modules, each of which performs different analytical functions. Each of these functions can

- 6 5 -

Chapter 3: State-of-the-Art In GTS

be run separately by issuing commands on a terminal.

The package is an integrated software system for geographic analysis. The Odyssey series

of program modules can prepare, edit, manipulate and display geographically based areal

data. The resulting data of the analysis can be reported in the form of two-dimensional

shaded maps showing thematic attributes in black and white or colour and the map can be

scaled, shifted, rotated or sectioned and the map elements can be arranged in any way in the

display space. On the other hand, the three-dimensional module displays the spatial

distribution of a quantitative attribute as a set of raised polygonal prisms, with hidden lines

removed. The same symbolisms used in two-dimensional maps may be used for shading

prism tops and sides.

Furthermore, Odyssey contains a module that performs common modifications to an

Odyssey cartographic file. A map may be generalized, transformed into any one of ten

common projections, rescaled, registered to another coverage using linear transformations,

split into subsets, or aggregated with other coverages. Attribute files may be split or

aggregated appropriately as required. Geographic overlay is the most advanced analytic

capability of Odyssey. It implements the polygon overlay of two or more cartographic files

of a region creating a new file of the resulting boundary network with complete

identification of the boundary intersections and new polygons, and the recording of the

parent polygons. Congruent features are coalesced and insignificant areas eliminated using

a user-specified tolerance parameter. Attributes can be allocated in proportion to the area of

each polygon (either as density or raw count values), or a user may specify a separate

factor on which to base the estimations of attributes.

The modules and their functions, according to Gatrell and Charlton (1987), are listed in

brief in the table below (Table3.1), while the relationships between these modules are

shown in Fig. 3.13 [Anon, 1985]:

- 6 6 -

Chapter 3: State-of-the-Art Tn GTS

Q Input f il« »

Cartographic Data

^ ou tpu t f i le *

Croaa-Refercnce Filea

Input
paper napHCKER r-

d ig i t i s e

. w e r lfy ■
DATA ENTRY

e rro r
re p o rts

r a - e d l t

HANIPULATION

GEOGRAPHIC
ANALYSIS

MAP DISPLAY

ta x t '
e d i to r :

cr

Values

CISC
• d lto r

HOMER
e d i t

d isp lay

T

ra p o rts

v e r if ie d
chain f i l e

lin o po in t , , ,
o r f l l a o r f l l a 0r 1 U tlo «

PROTEUSCHAIR
polygon (aggraga tlon)aggregation

a a la c tlo n
e o d lf lc a tlo o

l i s t in g
▼aluaa

Q chain f l l a

overlay
chain f I le a

p r ln a ry .
CR

CR
CALYPSO

CALYPSO

CYCLOPS

WHIRLPOOL

re -ag g reg a ted veluea
fo r d isp lay w ith

owarlay f l l a

p lo t t e r o r
d is p la y ou tpu t

PRISM

POLYPS

Fig. 3.13 Odyssey system overview

- 6 7 -

Chapter 3: State-of-the-Art In GIS

Table 3.1: ODYSSEY MODULES & FUNCTIONS

Name

HOMER

CYCLONE

CALYPSO

Description

Digitizing and editing of cartographic data;

Analysis of errors in chain files;

Analysis of zonal data (values files); cross-aggregation;

Automatic creation of structured chain files from ordinary line

files;

Construction of polygons from a chain file;

Cartographic data manipulation;

Polygon overlay, point in polygon searching, etc.;

Two-dimensional mapping using polygon and attribute

(’values') files;

Three-dimensional mapping of polygon (zonal) data.

PENELOPE

CYCLOPS

PROTEUS

WHIRLPOOL

POLYPS

PRISM

It is very clear from the diagram (Fig. 3.13) and what has been written about Odyssey, that

this package deals with simple data files as such rather than with the data provided by an

organized database. Thus the various functions which are achieved by using a DBMS in

other systems are missing in Odyssey. This means that the introduction of data is an

operation which has to be continuously implemented afresh since the data is not held in a

single managed database but in a series of unconnected and unrelated files. Thus, the user

is asked to issue the commands as to which module and which data set needs to be called at

a certain stage. Needless to say, this rather restricts its use, though in fact, since it was a

very early attempt to provide a geographically based analysis package, it has a very wide

range of users, especially in North America. In the U.K., various universities (Durham,

Lancaster, Glasgow, etc.) have installed the system which has also been used by the ESRC

Data Archive at the University of Essex.

3.6.2.4 Environmental Mapping Information System (EMIS)

As mentioned previously, EMIS is an integration of Synercom's Informap mapping

information management software with Harvard University's Odyssey geographic analysis

software. Fig. 3.15 illustrates the Informap D/Odyssey integration [Synercom, 1984].

-6 8 -

Chapter 3: State-of-the-Art In GIS

O dyssey
analysis
Program s

graphic work station

Digitizer

Photogrammetry

Integrator

>.
■5 2

1 1 Program m er's Library of

"8 o
I ”

U ser S ubroutines

cc ®
® B e
^ Q O) ®
o) 2 « ^
c n! 5

§ ; l ® £
f £ 82 w co

INFORMAP II

1 ■

i :: :: i

VAX
S tandard VAXA/MS
O perating System

Fig. 3.14 Informap II/ODYSSEY integration in EMIS

Besides developing the EMIS concept, Synercom seems also to be developing Informap II

further in the direction of becoming a relational-based GIS/LIS, complete with a query

language and complex reporting features. The basic system described in Section 3.6.2 is

now termed Infomapper. Building on this, a second level, Infomanager adds advanced map

maintenance and enhanced data management procedures to the basic facilities of

Infomapper. Finally, the Infoquest module provides the relational database management

system (RDBMS) complete with the query language and report facilities.

- 6 9 -

Chapter 3: State-of-the-Art In GTS

3.7 N e tw o rk B a s e d S y s te m s

Geographic or Land Information Systems based on the network data model are very few in

number and only a single system has been included here as an example.

3.7.1 Strings

Strings is a relatively simple polygon-based GIS developed by GeoBased Systems, Inc.

which is written in Fortran [Coe & Quigley, 1986]. The Strings system is designed to

simulate the cartographic process during map encoding and, at the same time, use a

network database management system needed to carry out map analyses. The system has

the cartographic features of a CAD/CAM drafting system as well as the file structure and

software design needed for area calculation, overlaying, networking and other analytical

features which help support the answering of queries to assist in decision making.

The structure of Strings is made up of four basic files, the first being the centroid file, the

elements of which represent polygon seeds and contain pointers to the next file, which is

the file containing line and point features. Each polygon record is assigned its 'start line

record number', being the line to the west of the seed point given during the polygon build

process. The start line number record in the centroid file points to the correct 'line record

number' in the line file. The second file is the line file, where each line record is assigned

with a top and bottom 'exit line number' based on the 'line exit angle', which is calculated

and stored in the third file, the intersection file. Intersections are created automatically

wherever a line begins and ends. These are then stored in the intersection file. The fourth

file is not mentioned in the article by Coe and Quigley, but presumably it is the file where

data are kept about the different maps to be stored in the database. Table 3.2 shows the

links between the three files discussed above and Fig. 3.15 shows diagrammatically the

terms used to define a polygon.

LINES INTERSECTIONS
Record# Record#

Top Exit Line 1st Line Record #
Bottom Exit Line <-- Exit Angle of 1st Line

Top Intersection 2nd Line Record #
Bottom Intersection Exit Angle of 2nd Line

Table 3.2 The three files forming the structure of Strings

CENTROIDS

Record#

Start Line Record #

(if polygon)

- 7 0 -

Chapter 3: State-of-the-Art In GTS

Bottom Exit Line

Bottom Node
S tart Line

• S eed Point

Top Node

Top Exit Line

Fig. 3.15 Polygons are specified by a user-entered point (seed) and

defined by a chaining process

A polygon is then defined by following the exit lines through the line file until the

beginning intersection number is reached, thus closing off the polygon. Polygons are then

specified by a user-entered point and defined by a chaining process.

Due to this hierarchy in the structure of the database, problems can be found at different

stages of the process. Problems can rise should errors be made, for example, during area

calculation. Area calculation is done by a separate program but when the data are entered

into the same data file of the database, the occurrence of an error during the run of this

program can cause the loss of the previously entered centroids. When this happens, the

time spent (to re-enter and edit the centroids) could be quite considerable. Finally, an

inherent property of network models is the limitations imposed when updating since this

will cost time in re-arranging pointers from and to different files. When complex models

are in question, as in spatial models, the resulting pointers are a considerable overhead.

Due to the inter-dependency of data, the more complex the data, the more planning time is

needed on a practice file to search out all options.

From the above description, it can be seen that the orientation of Strings is towards data

which is related to geographical areas rather than to the networks of points and lines which

are the main concern of the Intergraph IGDS/DMRS system and Informap systems oriented

towards the needs of public utilities. Thus the maps generated by Strings are most likely to

be of the area/polygon-based thematic type.

-7 1 -

Chapter 3; State-of-the-Art In GIS

3.8 R e la tio n a l S y s te m s

In parallel with the developments in database management systems in general, a variety of

geographically-based information systems have been developed recendy which are based

on the relational model of DBMS.

3.8.1 SysScan DNMS

SysScan is considered to be one of the leading European companies in the field of digital

mapping and geographically-based information systems. It was formed by a combination

of interests, but principally Kongsberg Vapenfabbrik (Norway) and MBB (West

Germany). Recently the MBB interest has been replaced and the company's operations are

nowadays centred on Kongsberg (Norway) and Bracknell (U.K.).

The company's mapping-related products are numerous and very widely used. SysScan's

earlier systems were intended purely for digital mapping applications. These were

developed further into what might be termed a mapping information system which includes

databases and a database management system.

As the name implies, the Distribution Network Management System (DNMS), is oriented

towards the public utility sector of the market place, i.e. it can be viewed as being an

AM/FM system. The overall system architecture of DNMS is given in Fig. 3.16 [SysScan,

1988].

The input and output functions are shown in the boxes located at the top of the diagram

respectively. The central core of DNMS is shown in Fig. 3.16 comprising three elements:-

i) the integrated relational database;

ii) the application language; and

iii) the application functions.

- 7 2 -

Chapter 3: State-of-the-Art In GIS

Manual I 1 Alphanumeric 1
Digitizing 1 Scanning 1 Input 1 Other CAD Systems

Integrated Relational Database

Application Language

Application Functions

DNMS

Workstation

1

Schematics
Maps Documents Reports

t Basemaps with network
• Individual utility maps
§ Composite utility maps

• Network schematics
t Integrated documents
• Network connections

• Planning/optimization
t Bill of material
t Faults/maintenance

Fig. 3.16 The DNMS system architecture

3.8.1.1 DNMS InputlOutput

DNMS is designed to cover a range of functional requirements. In terms of data input

these are:-

i) the manual digitizing of existing maps:

ii) the automated raster digitizing of existing maps;

iii) the input of non-graphic information: and

iv) the transfer of data from other CAD systems.

These are represented in the boxes located along the top of Fig. 3.16.

On the output side, DNMS provides facilities for the plotting of maps and other documents

using a variety of printers and plotters. These are represented by the row of boxes at the

bottom of Fig. 3.16.

- 7 3 -

Chapter 3: State-of-the-Art In GIS

3.8.1.2 DNMS Data Structure

The data structure in DNMS includes several data types which are designed to provide a

complete description of a utility network. These include:-

a) positional coordinates for all the network elements;

b) related non-graphic data: and

c) data describing the network logic.

DNMS manages this information with the structure and degree of detail required by the

user.

3.8.1.3 System Architecture

DNMS gives the user access to an Application Control Language (ACL) which is a tool for

the individual tailoring of the package to suit the needs of the user. With ACL, the user can

implement and fully integrate additional application functions within the standard product.

This enables applications to be developed exclusively to suit an organization's own method

of operation within the standard framework of network applications which will apply to

utilities such as electricity, water, gas, etc.

Furthermore, the database content is accessible by means of a query language. The result of

such queries can be presented in user-defined reports, facilitated by a report generator.

DNMS can also communicate with or be linked to other systems that perform other

functions on the same data.

Obviously DNMS is a relatively integrated system based on the relational data model which

has been produced wholly in-house by SysScan. In this respect, it differs from many of the

other relational-based GIS/LIS systems which are based on existing well-known non­

graphic RDBMSs on top of which the graphics part of the overall system is constructed and

to which it is linked via a suitable interface.

3.8.2 ESRI ARC/INFO

The ARC/INFO system is a very well-known GIS package which has been produced by

the Environmental Systems Research Institute (ESRI) of Redlands, California. In numeric

terms, it probably has the largest and most widespread base of installations though in terms

- 7 4 -

Chapter 3; State-of-the-Art In GTS

of value, probably Intergraph is the market leader in the AM/FM and GIS/LIS field. ESRI
is essentially a software house and systems integrator and supplier, buying in computing

platforms, peripherals, etc., and porting and integrating its software to run on these

different hardware items. Thus in this respect, it differs substantially from other suppliers

such as Intergraph, SysScan, Wild, etc., which are also involved in the manufacture of

certain hardware items - e.g. InterPro and InterAct workstations, InterMap Analytic stereo-

plotters, Anatech and Optronics raster scanners and plotters, etc., (in the case of
Intergraph); Vera workstations and Kartoscan scanners (in the case of SysScan); and

Aviolyt and S9-AP analytical stereo-plotters and Aviotab flatbed plotters (in the case of
Wild). Furthermore, unlike Intergraph's systems which can only run on either Intergraph
or DEC hardware, or Wild's which can only be implemented on DEC or Sun computers,

the ARC/INFO system has been implemented on a very wide range of machines. These

include mainframes (e.g. IBM 3090); multi-user mini-computers (DEC, Prime, and Data

General); graphics workstations (e.g. Sun, Apollo, Hewlett Packard, IBM 6150); and

microcomputers (IBM PC/AT and PS/2 and clones).

Historically, the ARC/INFO system has used the Henco INFO relational software for the

management of its spatial attribute data. However, while the new release of Version 4.0

continues to support the INFO product, it also allows the user to integrate other Relational
Data Base Management Systems such as Oracle, RDB, Ingres and DBase II to create the

overall system. A new interface tool, the Relation Data Base Interface (RDBI), provides a

capability to explicitly integrate any of these RDBMSs directly with the ARC part of the
system which handles the graphics side of the GIS, (see Fig. 3.17). However, it happens

that, at present, the microcomputer version (PC ARC/INFO) is only available with INFO.
APPLICATIONS

ARC GIS
TOOLS

RDBI

SQL

DBIIINFO ORACLE

Fig. 3.17 ARC interface tool

- 7 5 -

Chapter 3; State-of-the-Art In GIS

3.8.2.1 The Software Tools

In ARC/INFO, the software and associated hardware are used for five basic GIS functions,
these are [Dangermond, 1986]

* Data Entry;

* Data Analysis;
* Data Manipulation;

* Database Query; and

* Data Display and Report Generation.

These five GIS functions are supported by a large number of the kind of ’software tools',
Table. 3.3 illustrates these tools. ARC/INFO is a geographic information system which can

be used for a wide variety of applications. It includes over 300 software procedures for
handling all commonly encountered problems with geographic data. These procedural
subroutines are used to build the tools shown in Table. 3.3 below.

Data Entry

Key Entry
Digitizing
Scanning
Automated Data Capture
Interface to Existing
D atabases

Analysis

Map Overlay/Intersect
N earness Analysis
Diffusion
Network Analysis
Enclosure
Measurement
Attribute Analysis
Interpolation

Manipulation

Transformation
Map Merge
Projection
CLIP/Window
Update
Generalize
Aggregate

Query
Spatial
Attribute

Display/Report
Tabular List
Map Display
Chart Display

Table. 3.3 ARC/INFO Tools

- 7 6 -

Chapter 3: State-of-the-Art In GIS

3.8.2.2 The GIS Model

ARC/INFO is using a topological and relational DBMS model. Those features which are to
be depicted cartographically are first defined as points, lines, polygons together with their
attributes. More complex groupings of features, such as a group of islands or chains of

arcs, are indexed with additional relationships within the database. The system organizes all
of the feature attributes in related attribute tables which are managed by the RDBMS. The

software tools mentioned above are used to enter, update, analyze, manipulate, extract,

symbolize, display and report the information contained in the database. Users can create
graphics by relating graphic symbols and shading to point, line, and polygon features. Text
is related with text fonts in a similar manner. This allows the user the flexibility to associate

the symbology of choice with cartographic features, based on one or any combination of
attributes in the database.

A generalized picture showing the relationships of these software tools is presented in Fig.

3.18.

OATA

GISTABLES

Fig. 3.18 General overview of ARC/INFO

3.8.2.3 ARC/INFO Approach

As a general remark, one can say that ESRI seems to emphasize the generation of polygon-
based thematic maps with the ARC/INFO package. Thus most of its users appear to be

- 77 -

Chapter 3; State-of-the-Art In GIS

interested in mapping distributions, occurrences and intensities of a particular feature from

socio-economic data sets on an areal basis. Typical applications appear to be the generation
of thematic maps based on census or other comprehensive statistical data on areas such as

wards, districts, counties, provinces, states, regions, etc., as required by municipal,

regional and national government organizations concerned with administrative and
planning. These authorities are able to exploit the rich selection of analytical tools such as

map overlay, nearest neighbour analysis and queries based on the use of SQL to provide
information on the association of different features contained in individual tables.

The main product sold by ESRI (ARC/INFO) is composed of two rightly integrated
software components which are: ARC, which is used to manage the cartographic data, and
INFO, used for managing the tabular, numeric and textual data describing the attributes of

the cartographic features. As shown in Fig. 3.19, these two components are linked together
and are also linked individually to the software tools outlined in Section 3.8.2.1. Both the

cartographic and attribute data are stored in a series of related tables. The features present in

each of the two components are linked together using "feature identifiers" which provide a
common index between the two data types. The user can invoke either ARC or INFO

procedures while working on the database.

C~tools)

ARC INFO

Fig. 3.19

For query purposes, ARC can be considered as sitting on top of INFO and providing a

topological pathway to the relationally structured database. All spatial objects (points, lines,
polygons) are stored in a series of tables in ARC. The ARC files contain coordinate and

topological data, whereas their attributes are implemented in feature tables managed by the

INFO component. Thus INFO is used to query, manipulate and generate reports on the

non-graphic data stored in the feature attribute tables.

Turning to individual features of the package, an interactive graphics editor ARCEDIT is

provided. This has two functions: it interactively edits the spatial database, and it places text

and symbols in the appropriate positions on high quality graphics displays. ARCPLOT is
used to compose maps on graphic displays for output on plotters. All additional

-7 8 -

Chapter 3: State-of-the-Art In GIS

information such as legends, borders and titles can be added to the displays and the result
then sent to the plotter. The MAP LIBRARIAN module aids the tracking and control of
many different data sets.

As mentioned above, ARC/INFO supports a full polygon, link and node topological data

model. The vector spatial data are stored in a relational database as are the feature attribute

data. The COGO (coordinate geometry) program supports direct land-survey data input and
ADS (ARC digitizing system) supports digitizer input from cartographic sources. The

creation of the topological data model is fully automatic on input. A unique reference
number links a feature's spatial data with its descriptive data.

The network software performs analyses on networks modelled using ARC/INFO. Two of

the major functions are routing and allocation. Routing determines optimum paths for
movement of resources through a network; allocation finds the nearest centre (minimum
travel cost) for each link in a network to best serve the network. These two functions can

be used on networks such as city streets, waterways and telephone lines for operations

such as vehicle routing, optimum facilities siting and time-distance flow analysis.

However, as already discussed previously in Section 3.8.2.1, this represents only one

individual example of the very wide range of software tools available with ARC/INFO.

3.9 O b je c t O r ie n te d S y s te m s

Again, in accordance with the developments in the DBMS field in general, a parallel effort

to develop GIS/LIS systems using the object-oriented approach has also been taking place

over the last few years. As will be seen, the object-oriented approach involves storing the
functionality of the objects together with the objects themselves at the same level, although
the objects inherit some of the characteristics of the classes to which they belong. At the

same time, it is quite possible for an object-oriented database system to utilize some of the
more traditional types of data structures at a lower level within the system. Thus, for

example, some of the classes of attribute data may be organized in a hierarchical manner or

in relations within the overall object-oriented approach.

- 7 9 -

Chapter 3: State-of-the-Art In GIS

3.9.1 SysScan G IN IS

As already mentioned in Section 3.8.1, SysScan offers numerous products in the mapping
information systems field. At the core of many of these systems resides the software

package known as GINIS, an acronym formed from the title Graphic Interactive
Information System [SysScan, 1986].

3.9.1.1 GINIS- Overall System

GINIS is a program system which is designed to carry out the structuring and manipulation

of cartographic data. The functions and data structure of the GINIS system enable both

graphic and non-graphic data to be handled efficiently within a mapping environment. All

relevant map information, such as points, lines, curves, areas, symbols, text, objects,

logical layers and associated non-graphic data can be input, maintained, processed and

output using the GINIS system. Fig. 3.20 gives an overview of the GINIS system.

As will be seen, the central core of GINIS is the so-called Mapman module which gives

direct access to the two databases - the one holding the graphic/cartographic data; the other,
the non-graphic (attribute/text/numeric) data. Along the top of the diagram are a series of
boxes representing the various input modules handling survey, cartographic and

photogrammetric data as well as data in SIF (Standard Interchange Format) from other

systems. All of these give data into Mapman. At bottom left of Fig. 3.20, connections to

and from an external database management system (DBMS) such as DEC's relational
database management system (RDB) are shown. In the lower central part of the diagram,
the output driver programs to produce hard-copy plots on Kongsberg, Versatec and
Calcomp (CC) plotters are shown. Finally, along the right hand side of the diagram,

various GINIS options for manipulating cartographic data are shown.

From this description and the figure, it can be seen that the main orientation of GINIS is

towards mapping applications either in the surveying and mapping industry or in the public
utilities sector. There are a minimum of analysis tools. However, with the use of two

databases - the one for graphic data and the other for non-graphic data - together with a

database management system and links between them, GINIS would, by most counts, be
considered a land or mapping information system rather than a simple digital mapping

system.

- 8 0 -

Chapter 3; State-of-the-Art In GTS

G R A PH IC
DATA

N ON
G R A PH IC
DATA

M A P C O N

D S T IN
D S T O U T

K ERN
LO A D

PR O T R A

D S T S Q U A R E

LAND
SU RV EY IN G

S T E R E O
T R A C K

FLA G A R EA

G E N Z T X T

L D P L T

GINIS OPTION

EX M A N

C A D IG

D S T JO IN

S IF

RDB
O R

D B M S

D RIV ER
K O N G S B E R G

G IN PLO

IN T E R A C T IV E
D IG ITIZIN G

DRIVER
C C 9 0 7

A S S O C . DATA

D A T A T R IE V E

G IN IS

D RIVER
V E R S A T E C

C C 9 O 0

C C 8 1

H P

G IN A C C

MAPMAN

Fig. 3.20 GINIS system overview

3.9.1.2 System Architecture

As discussed above, GINIS provides a wide range of interactive and batch processing

modules for entering, structuring, editing, processing, manipulating and retrieving both
graphic and non-graphic data. Fig. 3.21 illustrates the system architecture and the links

between the GINIS system and these databases and libraries.

-8 1 -

Chapter 3; State-of-the-Art In GIS

3.9.1.3 GINIS Data Structure

The GINIS-Graphic Data Structure (GDS) is based on a hierarchical model as illustrated in
Fig. 3.23, [Radwan, Kure & Al-Harthi, 1988]. However, the system can also be described

as object oriented, whereby all objects and all information assigned to them (either as

spatial or functional descriptors) are treated as individual units or objects.

G R A P H IC
D A T A B A S E

N O N -G R A P H IC
D A T A B A S E

<=>
LIB R A R IE S W IT H
U S E R D E F M E D

• S Y M B O L S

• T E X T F O N T S

G IN IS

A

V

< = >

S Y S T E M F IL E S

• M E S S A G E S

• M E N U S

• H E L P D E S C R IP T IO N

• C O L O U R D E F IN IT IO N

• T R A N SF O R M A T IO N

Fig. 3.21 GINIS system architecture

Fig. 3.22 and Fig. 3.23 below show the organization of the 'information structure'. Data

items are organized into three different classes namely:

a) topopraphic entities in a logical hierarchy with:-

- 8 2 -

■Chapter 3; State-of-the-Art In GIS

i- the first being the theme/class data set, represented by 'C;
ii- second is the object data set, represented by ’O'; and finally

iii- the graphical primitives (nodes/arcs) represented by 'G' and lying at the
lowest level of the hierarchy;

A1C Rc
CLASS

A2C

A 10

OBJECT
A 20

GRAPH IC PR IM ITIV ES
FOR OBJECTS

A1G

T4

A1R
G R APH IC PR IM ITIV ES
FOR RELA TIO N S

A2R

PO IN T ER S BETW EEN GR A PH IC ELEM E N TS A N D OB JECTS

P O IN T ER S BETW EEN R ELA TIO N S AND OBJECTS

Fig. 3.22 The GDS data structure

b) attributes also divided into two classes:-
i- spatial attributes represented by 'A I1; and

ii- non-spatial attributes represented by ’A2’;

c) relationships or associations, which are divided into four classes:-

i- topological;

ii- proximity:

iii- functional: and
iv- phenomenological.

These data elements are stored in separate units or blocks:-
i) logical blocks for the data classes of type C;

ii) geometric blocks for type G;

iii) object blocks for type O;
iv) non-graphical descriptors 'A2' assigned with associate-data blocks: and

-8 3 -

Chapter 3: State-of-the-Art In GTS

v) finally the relationships are assigned with relation-blocks.

Fig. 3.23 shows the diagrammatic representation of the main two blocks, the Logical and
Geometric blocks.

7
 r ~ t

r —1—— 1__ r—JL— I
w .l . r » .T > I R o ad ' I I I

i
J— i

P rttd td O f T t c u j

Logical Blocks

Ie I L D U U Corresponding

Geometric Blocks

H I III

Fig. 3.23 Logical and Geometric Blocks

The upper part of the diagram shows the logical blocks for the classes represented by the

boxes marked 'Ci' in Fig. 3.22. This includes a quite simple hierarchical classification of
the topographic features contained in the map. The lower part of the diagram shows the
corresponding geometric blocks which relate to the graphics primitives marked Gl...Gn in

Fig. 3.22. The logical blocks are linked to each other through up, down and side pointers,

thus providing a logical meaning to the other data blocks to which they are connected

within the network structure. This would allow not only objects, but also the spatial and

functional descriptors, together with relationships to be hierarchically structured.

If data items, and the blocks describing them, are linked to more than one data block on a

higher hierarchical level, then they have various logical significances although they have
only been stored once. This provides the possibility of handling common portions of
layered data sets in a non-redundant manner while the geometrical consistency supports

cross-layer spatial analysis queries.

The above does not take care of queries related to non-topological relationships. This

- 84 -

Chapter 3: State-of-the-Art In GTS

problem was solved by having the geographic entities, their logical classes, their spatial and
functional properties and their interrelationships presented in terms of objects.

r p i r

Fig. 3.24

This is illustrated in Fig. 3.24 above, where the points Ci and Cj represent the class
vertices for the class data sets Ci and Ci respectively; the reference points al, a2,
represent the object vertices for objects Ojl, Oj2, ... of the types O or G and the arcs

(links) represent the various types of relationships established between these elements.

When two objects are linked by more than one relationship, e.g. the proximity and

functional relationships RP16 and RF16 between the objects Ojl, Oj6, the links between

the two vertices will be represented by a multi-graph [Bouille, 1978]. Further, some of the

links will refer to 'virtual' objects that do not exist in reality. These are V-links, as opposed

to the R-links that are associated with real objects.

These relation-graphic primitives can be structured in a similar way to the real graphic

elements, i.e. further grouped, classified and hierarchically organized in a 'relation-
hierarchy', comparable to the 'object-hierarchy' described earlier. These structural elements

will be stored in the GINIS Graphic Data Structure (GDS) in blocks of the geometric block

type mentioned before. These blocks (called relation-blocks) have links to associate data
blocks which carry additional information of the A2R type for 'information carrier links'.
These information items include a relation identifier, the access to objects participating in it,

its role and its significance, etc. Furthermore, the various graphical and non-graphical
manipulation functions of the GINIS system (access, extract, display, modify, delete, etc.)
can be applied to these 'relationships' in a similar manner to the 'real' graphical elements.

- 8 5 -

Chapter 3: State-of-the-Art In GIS

In summary, it can be seen that the SysScan GINIS system is a powerful mapping
information system with an emphasis on map production and the map-related requirements

of public utility organizations. It appears to use an object-oriented approach, but with an

underlying hierarchical structure implemented in terms of the classes and objects and also in
terms of the logical blocks for data classes and the geometric blocks used for the graphical
primitives.

3.9.2 Wild System 9

System 9 is a fairly new geographical information system which was originally developed

by Wild Heerbrugg, the Swiss surveying and photogrammetric systems suppliers. Quite
recently, the main rights to the system have been sold to the computer systems
manufacturer and supplier, Prime, which has always been prominent in the fields of
computer graphics and CAD/CAM, through its ownership of the U.K.-based Medusa

CAD/CAM and modelling products and of the Computervision company in the USA,
su p p lie r

which is probably the biggest specialist systemsAin the computer graphics field after

Intergraph.

System 9 organizes geographically-related information into a topologically structured,
object-oriented, relational database system. With System 9, three-dimensional geographic

databases can be built up from an existing base map sheet, photogrammetric data, and
survey data. Also, it can generate a number of graphical products on either high-resolution

monitors or plotters, to produce a variety of outputs such as utility maps, contour maps and

profiles [Charlwood et al., 1987].

The system is available only on the family of Sun 3 graphics work stations running under

the Unix operating system and utilizing the Sun window management station. A variety of
work stations is available for digitizing (S9-D), editing (S9-E), for data capture using
photogrammetric instruments (S9-AP), etc. Each work station can have its own project

database but if several work stations are linked together by an Ethernet, the database can be

distributed over many machines.

3.9.2.1 System 9 Components

An overall view of the system is provided by Fig. 3.25.

- 8 6 -

Chapter 3: State-of-the-Art In GTS

Polygon
overlay

Network
an a lysis

Slope
mapping

Inter-
visibility

Report
writerSORA Profiling

ANALYSIS

C o m m an d
input
S y s te m

KERNEL TOOLBOX Archiving

S y s te m in sta lla tion
and a d a p ta tio n to
u se r n e e d s

A lpha num
D isplay

handlingD a ta b a se
m a n a g e m e n t

P ro jec t defin ition

P artition hand ling

D isplay fu n c tio n s

COGO

D evice in fo rm ation

Create
ta sk

Digitising
tab le , d a ta
c ap tu re

AVIOurT
RAP comp.p ack ag e

G eo d a taGEOMAP AT ad capture

ASCII P h o to g ram m etric
w o rk s ta tio n
m a n a g e m e n t

IN/OUT

M odel N o n -to p a
da ta
c ao tu re

O rthoph . ■ A er.tnang
d a ta I d a ta
c a o tu re ■ cao tu re

DTM d a u
c a p tu re

Fig. 3.25 System 9 overall view

Beside the Kernel toolbox which is central to all System 9 operations, there are numerous
software modules grouped around it. The modules shown at the foot of this figure are

related to the management of the input from field survey and photogrammetric data capture

operations. The data interchange modules (DIM) shown in Fig. 3.25 are designed

specifically to allow rapid transfer of files of data between existing digital mapping

systems, such as Wild's existing RAP (photogrammetric-based), Geomap (field survey-

based), and Wildmap systems and those CADD-based systems which utilize the SIF

(Standard Interface Format) for data exchange. At the top of Fig. 3.25, a number of

analysis programs are shown; these act as modules for standard tasks such as polygon

overlay, network analysis, slope mapping, etc. Finally, at the right hand side of the figure,
the Geo modules for the capture and editing of data held on existing maps are shown.

System 9 supports a full topological data model of polygons, links and nodes. The non­
graphic elements of the model and all attribute data are stored using the EMPRESS

relational database management system. Thus like ARC/INFO, the RDBMS used for the

storage and handling of the attribute data is an existing commercial product. However, the

software design differs from other GIS packages in being 'object oriented'. The software is

- 8 7 -

Chapter 3: State-of-the-Art In GTS

divided into modules not solely by operation but also by object, which comprises the data

structure plus the procedures required to operate on it (Fig. 3.25).

Within System 9, several organizational groups of information are recognized: projects,

partitions, feature classes, features and themes. Fig. 3.26 shows the hierarchical

organization of data in System 9. A project is the highest level of data organization,

representing the entire database for a geographical area. It comprises two components - the

spatial/attribute database, and the database definition which specifies the project structure

such as feature classes and themes.

Project
The database definition
and data store.

Partition
A copied working subset
of a Project.

Feature Classes
Collections of
Features

complex

service zonessimple " I?
^ valves’\ ^ ’bujfctlngs"

Features
& Attributes

complex

simple
building

main rvice zone

Fig. 3.26 The hierarchical organization of Data in System 9

The database is created and updated by means of partitions, working subsets of a project

which are extracted according to the type of work to be done. When editing is complete, the

Chapter 3; State-of-the-Art In GIS

partition is merged back into the project database to effect the update. A partition definition

describes spatial extent, contents and their representation. The merit of the partition

structure is that it makes it safe for different sections within an organization to work on data

from the same common project.

At the levels below partitions are the feature classes and features. Individual drains or

sewers are considered as simple features. A logical group of simple features such as a

drainage area is a complex feature. A complex feature can contain any number of other

complex features. All complex features of a particular type comprise a complex feature

class. Complex features can have attributes associated with them in the same way as simple

features. At the level below the features are their attributes. The attributes of each of the

complex features apply to all the simple features which it references, hence obviating

duplication. Below the attributes are the geometrical primitives which comprise all the basic

building blocks from which all the geometrical features can be constructed.

Finally the theme definition determines how features such as colour, symbols, line types,

etc., are to be displayed. Since many theme definitions are permitted, any data set can be

displayed differently to suit different users and requirements.

3.9.2.2 Data Base Management System

System 9 uses the EMPRESS database management system which structures information

using relational database methods. At the highest level, the DBMS provides project

databases - the master stores for all geographic data. Each project database can contain

many partition databases which can be accessed and modified through an application. The

database management system supports the structure of projects and partitions, as well as

the simple query language through which operators can interrogate the databases.

3.9.2.3 Topology & Data Sharing

Nodes play a central role in System 9, since they are the only geometric primitives which

have coordinate information directly associated with them. Lines are not defined in terms of

geographic coordinates, but by pointers to their topological nodes. And surfaces are

defined by pointers to the lines surrounding the surface. Note that these pointers are created

- 8 9 -

Chapter 3; State-of-the-Art In GIS

and maintained automatically by System 9. With this approach redundancy is cut to a

minimum. Also editing and updating becomes an easier matter. As a result, information

common to more than one element should not be duplicated in the database. Such

replication of data can lead to huge problems of database maintenance, since it requires the

consistent and simultaneous revision of many instances of the same element, when in

reality only a single element is changed- e.g. a valve is shifted; a road is widened, etc.

The topological consistency of the System 9 database is maintained by automatically

structuring the node-line-surface relationships at the time of data capture. System 9

incorporates extensive checking procedures to ensure that the correct topological relations

are established from the start: for example, lines will be checked for continuity, and

surfaces will be checked for closure. Entities which fail to satisfy such checks will be

flagged as being in error. This procedure differentiates System 9 from many other systems

in which topological checking is carried out as a separate operation following data input

3.9.2.4 System 9 Data Base

As mentioned briefly in the introduction given above in Section 3.9.1.1, the GIS

implemented by System 9 can be reached through geographic databases known as Projects

and Partitions. What follows is a more detailed description and discussion of the Project

and Partition databases and of the feature classes contained within them [Simon, 1987].

3.9.2.5 Projects

A Project database can be divided into two logical components; a project definition

component and a data store. The project definition consists of entities known as feature

classes, attributes, and themes which describe the characteristics and structure of the

project. The data store component contains all the information relating to the size, type,

position, and attribute values of all the geographic features.

3.9.2.6 Partitions

A partition database is the access mechanism to System 9 both for the data capture

workstations and for the user to carry out work on a specific area. For a defined area, the

feature classes, feature attributes, themes, and geographic data are all carried over into a

- 9 0 -

Chapter 3; State-of-the-Art In GIS

partition database by a checkout process which automatically extracts all the necessary

information from the project database. Through the various data capture applications, the

user is able to define and modify geographic data, and provide all the necessary attributes

for every feature in the partition. Once data capture is complete, the partition is checked into

the project; this function automatically merges partition data with existing project data while

performing topological checking to ensure data integrity. Besides their role during data

capture, partitions are employed extensively during analysis. The great merit of the partition

structure is that it makes it safe for different sections to work on data from the same

common project.

3.9.2.7 Features & Feature Classes

It will be seen that feature classes impose a structure on the geographic data through an

association of features and their component primitives. Thus a project is defined through a

list of complex feature classes, surfaces, lines, and nodes. Each feature class represents a

category of features which may be entered in a project, and can have a series of attributes

associated with it.

3.9.2.8 Simple and Complex Features

Groupings of related objects which may be established on the basis of location, spatial

relationships or common attributes, in System 9 are identified as complex features. They

are defined as features which contain other features. This distinguishes them from simple

features - which then are not allowed to contain other features. All complex features of a

particular type, comprise a complex feature class. Similarly, all simple features of a

particular type, are said to comprise a simple feature class. However,the definition of a

complex feature is not restricted to include only simple features as constituent components.

It is possible as well to define complex features which comprise other complex features.

Fig. 3.27 illustrates the composition of complex features and their classes and attributes in

System 9.

- 9 1 -

Chapter 3; State-of-the-Art In GTS

Complex
Feature Class
A collection of
Complex Features

A working subset
of the database

< "service zones'

Complex Feature
An individual instance of
a Complex Feature Class,
comprising a set of
Features

Complex Feature
Attributes
Non-spatial information
associated with the
Complex Feature

a service zone

Simple Features

a valve a main \

a building

Fig. 3.27 The composition of complex features in System 9

3.9.2.9 Attributes

The attributes represent the desired characteristics of features (text or numeric data).

Attribute values are stored, and may be displayed or output, along with their associated

feature. Through attributes, a very detailed characterization of individual features is

possible.

- 9 2 -

Chapter 3: State-of-the-Art In GIS

3.9.2.10 Geometric Primitives

All geometric features in the System 9 data structure are built up from geometric primitives,

referred to as nodes, lines, surfaces and spaghetti. A node is stored as a set of X, Y, and

optionally Z coordinates in a three-dimensional database. A line primitive is a geometric

element defined by two end-nodes, allowing is true path to be described of one or more line

segments which together form a closed polygon. The fourth geometric primitive, spaghetti,

exists to enable System 9 to model features where no topological structure is required.

System 9 holds these geometric primitives as recognizable geographic phenomena or

objects belonging to generic groups of objects which then can be identified and named in

the real world. Fig. 3.28 illustrates the concept of features and feature classes in System 9.

Categories such as "roads", "pipes" and so on are known as "feature classes", and the

individual instances of geographic objects as "features". All features within a particular

class will have the same topological structure, and the same set of attributes.

A working subset
of the database

Feature Classes
Collections of
Features

Features
Individual instances of
a Feature Class,
comprising at least
one Geometric Primitive

Attributes
Non-spatial
information associated
with a feature

Geometric
Primitives
Topological types

valves
mams

valve a mam

"buildings

building

surface

Fig. 3.28 The representation of features in System 9

Chapter 3: State-of-the-Art In GIS

3.9.2.11 Themes

The definition of a theme specifies which feature classes are to be presented and how they

are to be represented. A theme definition determines the appearance of graphical reports,

including complete specifications of colour, texture, line patterns, and fonts. The theme

definitions give the user a high degree of control over the visual content of graphical reports

and allows him to display the same data in different manners, by applying different themes

to the same information.

3.9.2.12 Summary

In summary, it can be said that, in many ways, System 9 represents the current state-of-

the-art in the GIS field with many interesting concepts, structures, and features, especially

the manipulations offered by the object-oriented approach. Within this approach, it has a

complex structure, in that it also utilizes a hierarchical organization of the database classes

running through different levels from projects, partitions, features classes, features,

attributes down to themes. At the same time, it utilizes a relational approach to the storage

of both graphic and non-graphic data in the form of tables, a proprietary RDBMS

(Empress) to manage these data and a query language with which the database can be

interrogated. Its modernity is in fact reflected by the fact that it has only recently reached the

market place and so it has, as yet, a very small penetration, although this is also the result

of the recent sale of the major interest in the system to Prime and the consequent loss of

momentum in marketing and sales.

3.10 D is c u s s io n

Table 3.4 presents a brief summary of basic information about some of the systems

available in the North American market and formed part of a survey carried out in April

1989 by H. Parker (1989). It will be seen that quite a number of GIS/LIS products

available in Europe, e.g. the SysScan products, ICL Planes system, etc., are missing from

the Table. Also the well-known Canadian CARIS system from USL is not included in the

Table. However, in view of its currency, it still contains many points of interest. Parker

reported in this survey that most of the current GIS systems using external DBMSs were

based on the relational approach. The reason for this is of course fairly obvious in that quite

- 9 4 -

Chapter 3; State-of-the-Art In GIS

a number of the customers for GIS/LIS systems have already implemented commonly

available RDBMS systems such as RDB, Informix, Oracle, Ingres, and others which are

built to manage simple non-graphic data in the form of text and numerical tables. Thus

when such organizations decide to purchase a GIS or LIS, these organizations may wish to

buy a product which utilizes their existing RDBMS as its base.

As already seen, this is the approach being taken by ESRI with its ARC+RDBMS product.

Also a similar approach is being implemented by Laser-Scan in the U.K. with its newly

introduced Metropolis (LIS) and Environmental GIS (EGIS) products which basically are

developments of its existing digital mapping products (e.g. LITES) together with the SQL

query language interfaced to an existing RDBMS. In addition, a number of analysis tools

are used to carry out the required analytical functions which may be required by the

customer. While some suppliers such as ESRI and Laser-Scan actually use the RDBMS

such as INFO, Oracle, RDB, Ingres, etc. to handle the non-graphic elements of the GIS,

others simply provide an interface which allows data transfer between the GIS and the

RDBMS. While these are favourable aspects of this particular approach, taking into

consideration the very special requirements of a geographic information system, it will be

apparent that the use of these commercially based RDBMS systems also has some

drawbacks, since these systems were simply not designed to handle databases with the

complexity and volume of geographic data.

The survey of GIS software by H. Parker mentioned above covered over 62 systems

reported to be truly GISs or related systems. Table 3.5 summarizes the percentages of

systems that perform some of the more important analytical GIS functions. Each class of

functions listed may have one or more subfunctions within it. Each subfunction usually

translates to a specific system command.

-9 5 -

Chapter 3: State-of-the-Art In GIS

System Computing System First Number Data DBMS

Name Environement Type Installed of Users Structure(s) Interfaces

ARC/INFO DEC, PRIME

DG, IBM, etc.

GIS 1981 nr Vector Info, Oracle

Ingres

Deltamap HP9000, SUN

APOLLO, etc.

GIS 1986 100+ Vector/Raster

TIN

Oracle, Ingres

Informix

ERDAS PCs, SUN, VAX GIS,IP 1979 900+ Raster Info

GeoVision VAX, ULTRIX,

SUN, EBM-RT/AIX

GIS, FM 1976 47 Raster, Vector

Quadtree

Oracle

- 'GeoPro' PCs, Macintosh AM 1988 2 Vector SQL & DBF

- WOW PCs GIS 1985 1200+ Vector nr

GFIS IBM S/370 GIS 1977 180+ Vector IMS/DLI,

SQL/DB2

GDS VAX, Ultrix GIS, AM 1980 800+ Object(vec) Oracle, etc.

IGDS/DMRS VAX CAD,CAE

FM, GIS

1973 1371 Vector,Raster Informix

Infocam VAX GIS nr 23 Raster,Quad. Oracle

Informap VAX GIS 1975 nr Vector SQL-based

Laser-Scan VAX GIS 1985 150 Vector, Raster RDB

MicroStation GIS Intergraph/Unix GIS 1989 11 Vector, Raster Oraclejngres

Informix

PC ARC/INFO PCs/PS-2/DOS GIS 1987 nr Vector Info

SICAD

Informix

Siemens/Unix GIS 1978 250 Raster, Vector

Quad.

DB2,

etc.

SPANS PCs/DOS/OS2 GIS 1985 400 Raster, Vector

Quad.

nr

Strings PCs/DOS GIS/FM 1979 150 Vector Ingres,Sybase,

Britton Lee

System 9 SUN/UNIX GIS/IP 1987 25 Vector Empress

TIGRIS Intergraph

Source [Parker, 1989]

GIS 1988 16 Vector, Raster na

Table 3.4 A survey of GIS systems

- 9 6 -

Chapter 3: State-of-the-Art In GIS

Table 3.5 Percentage of systems capable of specific GIS analytical functions

Class of Function No. of Subfunctions % of Systems1

Distance Measurement 3 74 - 94%

Buffering 5 78 - 90%

Map Algebra 5 36 - 78%

Boolean Operations 2 80 - 82%

COGO Computations 1 40%

Network Tracing 1 44%

Remote Sensing Image Analysis 1 26%

Terrain Analysis 8 26 - 60%

Polygon Operations 6 18 - 82%

* A range is shown in cases where the number of subfunctions within a function class exceeded one,

because not all systems perform the same combination of subfunctions. Source: [Parker, 1989]

From this, it can be seen that there is a great diversity in the range of analysis functions

which are provided in a GIS. This presumably stems from the fact that each system is

aimed at a specific sector of the market and only attempts to meet the specific functional

requirements of that sector. If this observation is correct, then it has very important

consequences for the customers and potential users of a specific system.

It will also be seen that currently, the relational approach is favoured by most system

suppliers because of its relative simplicity and suitability for the purposes of carrying out

spatial data analysis. As D. J. Peuquet (1987) has mentioned, "Developments in this field

were driven by a need for efficiency in a practical, implementational context. The rational

basis behind the initial development of the relational database concept was to provide a

unified and consistent model for structuring the data with minimal redundancy". Hence, at

the present time, the relational database model has been developed and used extensively and

has become the most common and most successful approach developed within the field of

geographic information systems.

But several shortcomings which are inherent with this approach have been discovered in it.

The most obvious one, is that the actual system implementations have often proved in

practice to be too slow for databases of large sizes and complex data types. Another is the

limitations inherent in such a system when it is used with models with regular ,

-9 7 -

homogeneous structures.

Chapter 3: State-of-the-Art In GIS

3.11 C o n c lu s io n

This chapter has reviewed the current situation in the closely related GIS/LIS and AM/FM

fields, taking particular examples from each of the main approaches to a DBMS to illustrate

the practical implementation of each particular approach. Obviously there are a great variety

of systems available but all have their advantages and disadvantages. Since the field is

growing rapidly and the disadvantages and difficulties of existing systems are becoming

apparent, this means that there is still plenty of opportunity for the development of fresh

approaches and new ideas, which is a spur and great encouragement to undertake further

research and development in this area. However, it is by no means easy to make advances

since, as will have become apparent from the review conducted above, in fact, the

requirements which must be satisfied by the DBMS are, by any standards, enormous. This

results from the need to manage widely dispersed data, together with the wish to

accommodate many highly complex data types. In particular, the requirements in these

areas have increased dramatically over the last few years.

It is enough to know that, in implementing a GIS/LIS or AM/FM system, the programmer

(or, in fact, the team of programmers) have to tackle several systems at one time, namely

the data structure of the main data, their graphic attributes, their interlink and relations, and

finally, the user views of the data. In addition to these, there is also the matter of the use

and integration of query languages like SQL which are commonly used to access the

databases. It would be far easier for the implementor of a geographic information system to

tackle a single complex problem rather than three or more. However, a possible way of

solving the difficulties is the use of a database language, in which the programmer does not

need to worry about many of these problems, since they are taken care of by the features of

the language itself. This allows the programmer to concentrate on the major issues which

have to be implemented and solved by the GIS.

For this reason, the author has investigated the use of a database language, and in particular

PS-algol, for the implementation of a GIS in the search for a better, and more relaxed

design environment.

- 9 8 -

CHAPTER 4

Chapter 4: PS-algol. The Language

CHAPTER 4: PS-ALGOL, THE LANGUAGE

4.1 Introduction

PS-algol is the result of considerable effort spent in the design and implementation of a

database programming language. Although PS-algol is still an experimental language, it has

already shown a very good ability to compete with well known languages in terms of what

it offers programmers, both on the basis of its simplicity (in learning and in applying it) and

its power (in handling data).

PS-algol has been developed jointly at the Universities of Glasgow and S t Andrews by the

Persistent Programming Research Group (PPRG) headed by Prof. M. Atkinson in the

Department of Computing Science at the University of Glasgow, and by Professor R.

Morrison at the Department of Computational Science at the University of St. Andrews

[Atkinson & Morrison, 1986 and Atkinson, Morrison and Pratten, 1986].

This language is still, as mentioned earlier, experimental and subject to development in

various ways before one can judge its full capabilities. On the other hand, its use in this

project can in no way be claimed to have exploited the full power of the facilities which are

already available in the language.

What follows is an overview of the language, with a general look at the aims behind the

introduction of a new language. This is followed by a description of its various facilities

including some not usually found in other languages.

4.2 L a n g u a g e D esig n a n d A sp e c ts

The aims of the designer of a programming language are to provide facilities which make it

easier for programmers to write and maintain programs. Some properties aimed at by

designers a re :

* the language should be sufficiently powerful to express the programmer's intentions;

* the language should be easy to learn, remember and utilize;

* the language should not introduce arbitrary distinctions between similar concepts;

- 9 9 -

Chapter 4: PS-algol. The Language

* the syntax of the language should make programs easy to read and understand; and

* the language should give assistance in detecting errors as soon as possible after they

occur.

To achieve these goals, the following essential principles should be adopted [Atkinson et

al, 1984]:

a- The principle of data type completeness;

b- The principle of abstraction; and

c- The principle of correspondence.

a- The principle of data type completeness states that all data types must have the same

"civil rights" and that the rules for using the data types must be complete, with no

gaps. This does not mean that all operators in the language need to be defined on all

data types but rather that general rules should have no exceptions. This principle is

important in making the language powerful and in making it easy to learn, understand

and remember. The avoidance of special cases leads to a simpler yet more powerful

language. To illustrate this point, one can note for instance, that a Pascal programmer

must remember that procedures may not be passed as parameters to other procedures.

Thus Pascal is both weaker and more complex than a language for which this is not

so.

b- Abstraction is the process of extracting the general structure to allow some details to be

ignored. This principle is invoked by identifying the semantically meaningful syntactic

categories and providing abstractions over them. For example, a given operation is

represented by a particular series of instructions. If the series can be wrapped up into

some kind of subprogram, subsequent usage of the operation can then refer to the

sub-program and ignore the series of instructions contained within it. Languages

which support the ability to abstract composite objects rather than be confined to using

primitive constructs greatly shorten programs and make them more comprehensible.

c- The principle of correspondence states that the rules for introducing and using names

should be the same everywhere in a program. Often this refers to the rules for

declaring names in program blocks, and those for naming the parameters of

procedures. But it may be applied equally to the rules for introducing the names of

- 100 -

Chapter 4: PS-algol. The Language

fields in records, or any other names, such as the names of modules. A language with

a consistent naming scheme will enhance program readability.

Thus the language should be made as compact as possible by removing arbitrary

distinctions as long as it does not remove real distinctions in the process.

Some examples of arbitrary distinctions which only confuse the programmer are:

different methods of manipulating long-term and short-term data values;

restricting apparently general purpose operations to particular values of the data; and

requiring the use of an entirely different language for some sections of the program.

[Cooper, 1989]

One example of aiding error detection is by giving the language a type system which is

enforced at all times. All data values are categorized into types, such as integer; real; string

or character, and their usage is restricted to those operations appropriate to their type.

Failure to keep to these restrictions results in errors which are reported to the programmer

to assist debugging.

These can either be reported when the program is compiled or when the data value is used

at run-time. The former is called static type checking and results in the much earlier

detection of error. The latter is called dynamic type checking and results in a much freer

style of programming. Thus there is a tension between these two desirable properties. A

mixture of the two may well be best [Morrison et al., 1985].

To organize a language design, it appears to be best to decide first which objects the

language will operate on. This can be further divided into identifying the atomic objects,

and then the constructor mechanisms which allow composite objects to be built from them.

Next, one identifies the operations which may be applied to the objects, identifies the

supported abstractions, introduces a store to hold the objects and finally packages these

concepts in a simple syntax.

As with any design project, designing languages involves laborious work and many

iteration. One important concern, in this case, is to improve the parismony of concepts. If

two concepts in the language look similar, the designer must investigate whether there is a

more primitive concept that will serve both roles or whether the distinction between them is

- 1 0 1 -

Chapter 4: PS-aleoL The Language

of sufficient importance to be retained.

Thus, in general, programming language design tries to create languages which improve

software production. The design of database programming languages has the more specific

aim of creating languages which are appropriate for data-intensive operations and allow

efficient software to be written with this in mind.

4.3 Applying the Language Design Principles to a Data Base Language

A number of characteristics or features of the design of a language which is aimed

specifically at database applications will also be discussed below.

4.3.1 The Idea of Persistence

The term persistence is used to describe that specific property of a particular data value that

determines how long it will be kept. It is an orthogonal property of data, in that, in

principle, any data item may exist for an arbitrary length of time. For these purposes,

existence is equated with being potentially accessible by a programmer, or by the user

through some program operation. The data associated with different procedure activation

already has variable persistence; since the innermost activation are most transient, while

these used in the global scope of the program are those which are most persistent. The data

held in files and databases have been stored there in order that they may have a longer

persistence. The property of persistence can therefore be thought of as a continuous

variable describing one aspect of that data.

Traditional programming languages have provided facilities for the manipulation of data

whose lifetime does not extend beyond the activation of the program. On the other hand, if

data is assumed to survive a program activation, then some file I/O or database management

system interface is needed. This results in a view in which data can either be classed as

short term data and would be manipulated by the programming language facilities or the

data would be long term data, in which case, it would be manipulated by the file system or

the database management system. Values of different persistence are usually treated

differently. For example, they may be named differently (as in the case of files), or objects

of different types may have different facilities (e.g. procedures cannot be stored in Pascal).

Furthermore, the mapping between the two types of data is usually done in part by the file

- 1 0 2 -

Chapter 4: PS-algol. The Language

system or the DBMS and in part by explicit user transaction code which has to be written

and included in each program.

A consequence of this view of the data is the need for a considerable amount of program

code concerned with transferring data to and from files or the DBMS. This leads to much

space and time taken up by the code required to perform translations between the program's

form of data and the form used for the long term storage medium. For example, graphs

modelled in a programming language need to be explicitly flattened and rebuilt in order to

write them out to or to read them back in from the file store.

Thus what is needed is to make the quality of persistence orthogonal to type and naming. A

language which applies this rule is called a persistent language.

4.3.2 The Data Objects & the Principle of Completeness

First, the objects which are to be manipulated need to be identified. Until recently, the

candidate objects have been: sets, rings, networks and relations. However, the newer data

models also imply new candidate objects. But still the principle of Data Type Completeness

(DTC) dictated that the rules governing their manipulation should be consistent. The

examination of existing languages which follows will show that this principle has not been

applied universally. Some data types have been allowed to have only persistent instances,

others (those that already existed in a "parent" language) have been allowed only transient

instances. It is intended to show that adherence to the principle of data type completeness

should lead to better database programming languages.

The failure to adhere to this principle has a high cost For example, large parts of programs

are concerned with making the transition between the two data works (persistent and non-

persistent), where the programmer has to organize a translation, which takes a considerable

amount of code and CPU time. It can have an even higher cost; a typical programming task

requires that the programmer understand a topic in the real world, and constructs a model

of it in a program. Understanding the problem and modelling it in a program is hard

enough. Adding the requirement that the data stored between different sessions has to be in

a different form, and the programmer's intellectual difficulties are much increased. Not

only that, the programmer also has to implement and manipulate the mapping from the

stored model to the program model. Thus, instead of having to visualize only one mapping,

- 1 0 3 -

Chapter 4: PS-aleoL The Language

the programmer has to manage three, making his task three times more difficult [Atkinson

et al., 1984].

Apart from incurring these large learning and program design costs, failure to adhere to the

principle of completeness also has very severe maintenance costs. It is easy for different

programmers to visualize different relationships between two data models. Consequently

someone undertaking maintenance may easily misunderstand and introduce severe errors

into the software, errors which may manifest themselves much later in the form of corrupt

persistent data.

To some extent, the present interest in integrity constraints [Date, 1981(a)] and their

centralization [Nijssen, 1980] is an attempt to treat the symptoms of this defect rather than

the cause. Such an approach will never cover all conceptual errors, since it is not feasible to

recognize all potential errors, and devise rules which prevent operations which may cause

such errors without preventing legitimate operations. Even where this is possible,

enforcing such a complete set of rules would not be a feasible engineering task.

A yet more fundamental objection to not adhering to the principle of data type completeness

can be identified . When someone builds a database, it can be viewed as a model of the real

world. Similarly, when a useful program runs, it can be thought of as manipulating a real

world model. What is likely to be useful for one modelling activity is likely to be useful for

the other. It would have been expected that proven modelling techniques in the

programming languages (here called data type declarations and abstract data types! would

be useful in the database. Similarly, improved concepts in modelling developed for

databases would be useful if incorporated in programming languages. So the PPRG felt

that there was a sound philosophical basis and good engineering reasons for trying to bring

together, or at least reconcile, the developments in these two areas.

It is clearly wasteful if different code has to be written and maintained to achieve the same

effects - in the one case on persistent data, and, in the other, on transient data. It is believed

that the language should be so defined that a procedure contained in it may be written

without knowing whether it will be supplied with persistent or transient data as the actual

values of its parameters. This is called persistence independent programming and it is

believed all satisfactory languages will need to support persistence independence.

- 104-

Chapter 4: PS-algol. The Language

4.3.3 The Conceptual Store

Many languages make the concept of a store in which to hold representations of the

manipulated objects explicit. For example, Fortran introduces such a store in common

blocks and as variables. The Algols have a store associated with the nested activation of

scopes. Pascal and Algol68 have added another store, the HEAP, which, in the one case, is

explicitly relinquished and, in the other, is conventionally recovered by garbage collection.

(Actually this is not strictly a property of the language definition).

It is not essential that the language should have the notion of a store (and by implication that

of representation). The applicative languages avoid the whole concept of a store. Notionally

they have only values, the results of expressions. This approach seems inappropriate for

database applications. It does not seem helpful to visualize recording the change to one

person's salary as the creation of a copy of the whole payroll, making a new record for that

person in passing. (It is important to note, however, that this was the model of persistent

storage which applied when data processing depended on magnetic tapes). The practical

implementation of an applicative language must detect and avoid the copying of massive

structures. However, this is not simple. Both interpretations of the phrase data sharing are

required; many users should be able to access and see changes made to a given item of

data, updating it within constraints, and many data items should be able to refer to a single

instance of a data item, so that updates to it are reflected in all those contexts.

What is sought for the provision of persistence is an adequate abstraction for the composite

store of main memory and backing store devices (predominantly discs). One existing

abstraction is that of virtual memory. This abstraction covers the properties of size and

speed, but not that of longevity. The introduction of mapped files [Organick, 1972] has

extended this abstraction into that of persistence, by linking it with a persistent naming

scheme (the filing system). This extension is limited to a time scale where the program does

not change to the extent of changing its data structure definition.

Databases may have other notions of store, since different people looking at its contents

will see them differently, and will have different entitlements to operate on different parts of

the store. Most programming languages have denied responsibility for the concurrency and

protection of data, leaving it to the operating system which controls the data with less

precision. But programming languages are now approaching this issue, both in the

- 10 5 -

Chapter 4: PS-aleoL The Language

integration of the program development environment and in the provision of tools for the

assembly of modules into systems, as well as in the modular concept itself [Jones and

Liskove, 1978].

Thus, the provision of persistence is regarded as orthogonal to all other properties of data.

For this, the Principle of Independence has been defined as being: "The persistence of a

data is independent of how the program manipulates that data object". Which means, all

code should be written so that it will work with the same interpretation independent of the

persistence of the data on which it operates. This reduces the number of conceptual

mappings from three to one. Having this, an extension to the Principle of Data Type

Completeness would be :" All data objects should be allowed the full range of persistence".

4.3.4 Binding

In traditional programming languages, operating systems and file systems have a number

of binding mechanisms which are often not easy to comprehend or to use. A binding

mechanism has four components by which it can be categorized, which are :

i- what does the name bind to ?

ii- when is the binding performed ?

iii- what scoping is involved ?

iv- when is the type checking performed ?

Each of these questions is discussed below.

i- Names of variables bind to locations whose value may change without altering the

binding. Constant names bind to values.

ii- The binding of both variables and constants is usually performed when the location is

created. That is, it is carried out at run time unless the location or value is manifest (a

literal), in which case, binding may be performed at compile time. Manifest constants

can be seen in Pascal (for example) and manifest locations are the variables in Fortran.

In block structured languages, it is usual for variables to bind to locations created at

run time. Constants whose values are created dynamically can be seen in S-algol.

- 106-

Chapter 4: PS-aleoL The Language

iii- Names may be scoped statically in their compile time environment or dynamically by

the run time system.

iv- Dynamic type checking occurs when the run time system executes code to ensure that

the data is of the correct type. This typically occurs in "read" statements and in

projections out of a union.

There are potentially 16 different methods of binding commonly in use in modem computer

systems based on the four binding choices given before. The most static form of binding

occurs where only manifest constants are allowed with static type checking. The most

dynamic form allows variables with non- manifest values, dynamic scoping and dynamic

type checking [Atkinson, Morrison and Pratten, 1986].

The term Flexible Incremental Binding (TIB] has been introduced to describe the mixture

of bindings, which are expected to obey the Principle of Correspondence. In fact, most

languages have more than one binding mechanism.

Dynamic binding does have costs. Programs which depend on it may contain errors which

could have been detected in a static binding system. This is obviously not acceptable in

some situations. Programs may also run more slowly because of the checks required at run

time. Many programs require to have run time checking, even in languages with static

binding. For example, array indices need to be checked. The lack of this kind of checking

is a common defect in implementations of the Pascal and C languages.

On the other hand, dynamic binding does have one clear advantage, that is it gives data

independence. With static systems, the data is bound to the program at compile time.

Therefore any changes made to the data require the programs using that data to be

recompiled. This is not the case with systems using dynamic binding.

4.3.5 The Persistent Store & Store Interface

Obviously the actual store provided for persistent data and the interface provided to access

this store are matters of considerable importance in the present discussion on the desirable

characteristics of a database programming language [Morrison et al., 1985].

- 107-

Chapter 4; PS-algol. The Language

4.3.5.1 The Persistent Store

PS-algol's persistent store consists entirely of legal PS-algol data objects. The store is

partitioned into individual databases to allow concurrency control and protection when

sharing persistent data. Each database has a root data structure. This is a complex object

which contains pointers that allow access to the other data objects in the database. These

data objects may themselves be complex and point to further objects. The interface to the

persistent store need only provide a method of accessing the root data structure of a

database since any object in the database may now be retrieved by following pointer chains.

Since the pointer data type may point to any structure class and any data type can be a field

of a structure, there is no restriction on the data types that can be held in a database.

4.3.5.2 The Persistent Store Interface

The interface to the PS-algol persistent store is implemented by two procedures. The first

is:

let open.database = proc(string database.name,password,mode -> pntr)

This procedure attempts to open the database with the name 'database.name' in the mode

("read" or "write") given by 'mode'. Passwords are associated with each database to

provide some security when sharing databases. The result of this procedure is a pointer to

the root data structure of the database or, if unsuccessful, a pointer to an "error.record". An

"error.record" is a data structure containing information describing why the open command

failed.

This is sufficient to provide access to any object in the persistent store. Automatic transfer

of data from the long term persistent store is performed by the persistent object

management system when the data is accessed. The access of the data in the persistent store

is performed in exactly the same manner as in the main store, the object manager knowing

the difference so as to leave the transfer transparent to the user.

It is often desirable to ensure that updates to persistent data occur in total or not at all. A

mechanism that implements atomic transactions is therefore provided by the second

procedure:

let commit = proc(-> p n tr)

When the first database is opened, a transaction is started. Ordinarily data objects are

- 108-

Chapter 4: PS-algol. The Language

copied from the persistent store when they are first used and changes to them are made

locally. If any of these data objects have been changed, a "commit" command will copy

them back into their databases. Any newly created objects reachable from these changed

objects will also be copied into the persistent store. They have space allocated for them in

the database of the object pointing at them. If data objects from databases that were not

opened in write mode have been changed, a "commit" command will fail. This ensures that

the persistent store is always in a consistent state.

If for any reason, a "commit" command should fail, then its effects will be removed before

any other use is made of the databases being updating. In this way, PS-algol provides a

secure transaction mechanism on its persistent store.

If the "commit" command fails, the pointer which is returned is a pointer to an

"error.record" and nil otherwise. The error record contains information about why the

"commit" failed so that the program can do something sensible which may be to try to

execute the "commit" command again or to give the user an error message.

4.4 Language Syntax

The syntax of PS-algol is specified by a set of rules or productions. Each production

specifies the manner in which a particular syntactic category (e.g. a clause) can be formed.

The syntax of PS-algol can be described in about sixty productions which can be referred

to in the "PS-algol Reference Manual" [PPRR 12, 1987] and in "An Introduction to PS-

algol Programming" [PPRR 31, 1986].

4.4.1 Identifiers and Object Declarations

In PS-algol, an identifier may be given to a data object, a procedure parameter, a structure

field and a structure class. Data objects are declared by a 'let' statement

Before an identifier can be used in PS-algol, it must be declared. The action of declaring an

identifier associates it with a location of a certain type which can hold values that the

identifier may take. In PS-algol, the programmer may specify whether the value is constant

or variable. A constant may be manipulated in exactly the same manner as a variable except

- 1 0 9 -

Chapter 4: PS-algol. The Language

that it may not be updated. When introducing an identifier, the programmer must indicate

the identifier, the type of the data object, whether it is variable or constant and its initial

value. For example, a variable can be declared as follows:

let a := 5

where a is an integer with the initial value assigned to it being 5.

On the other hand, constants are declared as follows:

let b = 10

in this case, b is an integer of constant value equal to 10. Constant values cannot be

updated but can be manipulated in exactly the same manner as variables.

The difference in the declaration procedure of variables and constants is clear, since the first

employs the operator ":=" and the other "=" respectively.

4.4.2 Compound Data Objects

PS-algol allows the programmer to group together data objects into larger compound

objects. There are three such object types in PS-algol: Vectors. Structures and Images.

Images are collections of pixels. Vectors, structures and images have full 'civil rights' the

same as any other data object in PS-algol.

All compound data objects in PS-algol have pointer semantics. That is, when a compound

data object is created, a pointer to the locations that make up the object is also created The

object is always referred to by the pointer which may be passed around and tested for

equality. The location containing the pointer and the constituent parts of the compound data

objects may be independently constant or variable.

To comply with the principle of data type completeness, all objects, be they integers,

strings, graphical objects, procedures, vectors, and structures, are all declared with the

statement 'let'.

4.4.2.1 Vectors

A vector provides a method of grouping together objects of the same type. Since PS-algol

does not allow undefined values, all the initial values of the elements of the vector must be

- 1 1 0 -

Chapter 4; PS-algol. The Language

defined beforehand. These elements could be of any type recognized by PS-algol. For

example:

let this.vector := @1 of int [1,2,3,4]

This statement introduces the variable 'this.vector' as a vector of four integers (*int) with

values 1,2,3 and 4 respectively. This method is used to initialize vectors of different

values. Another method is used when initial values are of no importance since they are to

be changed anyway, for example:

let x := vector 1::10 of 1

This declares a variable vector 'x' of ten integers with initial values equal to '1'.

Vectors can be of any type, not only vectors of strings and integers, but also vectors of

procedures (principle of data type completeness). There can also be vectors of vectors, thus

permitting arbitrary multi-dimensional arrays to be declared. For example:

le tp = vector l::n,l::m of 0.0

This means that 'p' is a two-dimensional array of 'n' elements, and each element is a vector

of reals w ith ’m' elements.

Furthermore, since the size of a vector is not part of its type, multi-dimensional vectors

which are not necessarily rectangular can also be created. For example, the Pascal triangle,

shown below,

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

can be represented in PS-algol as :

let triangular.array = @1 of *cint[@ 1 of cint[l],

@1 of cint[l,l],

@1 of cint[l,2,l],

@1 of cint[l,3,3,l],

@1 of cint[l,4 ,6 ,4 ,l]]

the type *cint used in the example shows that each element in the vector triangular.array is

itself a vector of elements of type cint.

- i l l -

Chapter 4; PS-aleoL The Language

Furthermore, there are two functions (Iwb & upb) attributed for use with vectors to

interrogate for the bounds of a certain vector. For example, if the vector Y is declared as

follows:

le tx = @1 of [1,5,7,-1,8]

then the interrogation of the upper bound of vector Y will be, upb(x) results in '8', and

the lower bound, lwb(x) results in T .

4.4.2.2 Structures

Objects of different types can be grouped together into a structure. To ensure strong typing

in the language, the structure class and the fields have to be given names (which have to be

unique in the block). The fields may be constant or variable. Before a structure can be

created, the nature of its structure class must be declared. For example:

structure building(cint postal.number, cstring street.name; cbool abandoned)

declares a structure class 'building', with three fields of type "cint", "cstring", and "cbool"

respectively. The order in the structure is significant. The following expression will be of

type pntr (pointer).

building(Yl, "Lilybank Gardens", false)

Two binary operators, (is & isnt), are attributed with structures. These operators are used

to check whether or not a pointer is of a certain class. If the pointer is of the same class, is

gives the result true and isnt gives false. For example:

K is building

Two structure classes, which may be in separate programs, are considered the same if they

have the same class name, field names and types in a one-to-one correspondence.

4.4.2.3 Images

An image is a rectangular grid of pixels. Images may be created and manipulated using the

raster operations provided in the language. Images are first class data objects and may be

assigned, passed as parameters or returned as results. The raster operations are performed

by considering the image as bitmaps and altering each bit in the destination image according

to the source bit and the operation. The limit operation allows the user to set up windows

in images.

Image expressions are discussed in more detail in sub-section 4.5.

- 1 1 2 -

Chapter 4: PS-algol. The Language

4.4.2.4 Assignment and Equality of Pointers

Equality is defined on all data objects in PS-algol. In the case of compound objects;

equality means the equality of the pointer. That is, for two vectors or structures to be equal,

they must be the same incarnation of the same object. It follows that assignment of a

compound data object means copying the pointer only.

4.4.3 Procedures

Procedures in PS-algol constitute the abstractions over expressions, if they return a value,

and clauses of type "void" if they do not. In accordance with the principle of

correspondence, any method of introducing a name in a declaration has an equivalent form

as a parameter.

Thus, in declarations of data objects, giving a name an initial value is equivalent to

assigning the actual parameter value to the formal parameter. Since this is the only type of

declaration for data objects in the language, it is also the only parameter passing mode and

is commonly known as 'call by value’.

Like declarations, the formal parameters representing data objects must have a name, a type

and an indication of whether they are variable or constant. A procedure which returns a

value must also specify its return type.

Structure classes and associated fields may also be passed as parameters to complete the

principle of correspondence. For type checking, the argument and result types of the

procedures and the field types of structure classes must be given in full when they are

passed as parameters. Whereas the constancy of a formal parameter of a procedure (which

is itself a formal parameter) is immaterial, it is not so with structure fields, and to avoid the

possibility of altering a constant, the constancy attribute of the fields must be the same in

this case. There must be a one-to-one correspondence between the actual and formal

parameters and their type.

In PS-algol, all identifiers must be declared before they can be used and an identifier comes

into scope immediately after its declaration. This is awkward when recursive procedure

definitions are involved. Thus, the following procedure declaration :

- 1 13 -

Chapter 4; PS-algol. The Language

let fac := proc(int n -> int); if n=0 then 1 else n*fac{n-\)

is not a recursive definition and is only legal if 'fac' has already been declared in an outer

scope. To get recursion, the following is being used;

let fac := proc(int n -> int); nullproc

fac := proc(int n -> int); if n=0 then 1 else n*fac(n-1)

4.4.4 Data Persistency

As has been discussed before, data persistence is the length of time that the data exists. In

PS-algol, any data item is allowed the full range of persistence. It is necessary for the

programmer, however, to identify which data is to persist and the specific database in

which it should persist This section describes the mechanisms for the storage and retrieval

of persistent data.

These mechanisms are available via a set of standard procedures which are described later

in the section. The actual transfer of data is automatic, data being brought into the

program's active heap when the program attempts to access it. Furthermore, the data may

still be accessible, being migrated back at times which are left to the discretion of the

implementor or on the instance of the programmer.

The procedures are divided into two groups, - (i) the group concerned with identifying the

relationship between data and databases, and the implementation of transactions, and (ii)

the group concerned with providing a new data structure or tables.

4.4.4.1 Tables

Tables are a system supported data structure in PS-algol. They are commonly used and are

needed for building databases (in fact, the root object of a database is a table), but they may

also be used for transient structures. A table stores an updatable mapping from keys to

values. The keys may be integers or strings, and the values are pointers to instances of any

structures. The implementor will probably have used B-trees or some adaptive hashing

technique such as hashed trees to implement these maps. For example, the expression:

let the.map = tableO

creates a table and assigns 'the.map' as a pointer to it.

- 1 1 4 -

Chapter 4: PS-algol. The Language

There are two procedures (s.enter and i.enter) used to modify the entries in a table given

as the parameters table. A table may contain entries whose keys are integers or entries

whose keys are strings, where a key of one type never matches a key of the other. A new

association is recorded in the table between the key and the value. This supersedes any

previous association for that key which was held in the table. If the value is nil, the effect

is to remove any existing entry for the given key from the table. For example:

Lenter(l, this.database, my.table) for integer keys, and

s.enter("the.key", other.database, your.table) for string keys.

There are another two procedures (i.lookup and s.lookup) to return the value associated

with the given key from the given table. If there is no entry for that key, the result is nil.

For example:

let a.table = i.lookup(1, this.database) for integer keys, and

let a.table = s.lookup('theJceyn, other.database) for string keys.

4.4.4.2 Data Base Procedures

All data which persists longer than a program execution is held in some database, any given

item being in only one database. Pointers may refer to items in other databases. A database

is identified by a database name which will often have the same syntactic form as that used

for identifiers. A database may be created by:

let create.database = proc(string database.name, password -> pntr)

'password' being a string which must be quoted correctly to gain access.

A check is made that no other existing database has the same name as the one to be created.

If this is successful, a database and a pointer are created and opened for writing, a table is

inserted in the database and a pointer to it returned . If the 'create' is unsuccessful, then an

error-record will be returned. A database may be opened by :

let open.database = proc(string database.name, password,mode -> pntr)

As before, 'password' is a string which must be quoted to gain access in the mode

requested while 'mode' must have one of the values "read" or "write". A database may be

opened by many users for reading or by one user for writing.

A check is made that the database is compatible with any others which are open, whether

the user has quoted the password correctly and whether other programs which are using

this database are in a mode incompatible with that requested. Any other databases that may

- 1 15 -

Chapter 4; PS-algol. The Language

be referenced by objects in that database are recursively opened in read mode so that every

object encountered will refer to an object in an open database. If any of these checks or the

recursive open operation fails, then an exception will be raised, otherwise the result is a

table.

Whatever the mode in which the database was opened, the programmer may now access

data in that database, and change the data so accessed. However, no changes are recorded

unless and until the program executes a call for 'commit'

let commit = proc(-> pntr)

This procedure commits the changes made so far to all the databases opened by the

program. Either all or none of the changes will be recorded, so the programmer can use this

as a device for ensuring that the databases are consistent. It is only after a 'commit'

command that the changes made to the data can be observed by any other programs. Note

that only the changes prior to the last 'commit' of a program, if any, are recorded in the

databases. It is an error to perform 'commit' when any database containing changed objects

is not open for writing. In this case, an error-record will be returned. If the 'commit' is

successful, the result is the nil pointer.

4.4.4.3 Data Base Conventions

The value returned by the commands 'open.database' or 'create.database' is a pointer to a

table, conventionally called the root table. Data will be preserved for as long as it is

reachable from some entry in a root table via the transitive closure of all references.

4.5 G ra p h ic s in P S -a lg o l

The PS-algol graphics facilities provide an integrated method of manipulating both line

drawings and images. Vector-based line drawings have the type "picture" and raster-based

bitmaps, the type "image" [Morrison et al 1986].

The picture drawing facilities of PS-algol are a particular implementation of the Outline

system which in turn took many ideas from GPL/1 [Smith, 1971]. These allow the user to

produce line drawings in an infinite two-dimensional real space. The relationships between

different parts of a picture are defined by mathematical transformations, therefore "pictures"

are usually built up from a number of sub- pictures. "Pictures" may be mapped on to an

- 1 1 6 -

_________________________ - Chapter 4: PS-algol. The Language

image thus providing flexibility in the way that line drawings may be manipulated.

An image is a rectangular grid of pixels of some 'intensity' or 'colour'. Images may be

manipulated by raster operations provided by the language. These correspond to those

generally available on systems with bitmap displays.

4.5.1 Pictures

In PS-algol, the picture description is represented by the 'picture' data type. The simplest

picture is a point. For example :

letpcu>i/ = [0 .1 ,2 .0]

represents the point with x-coordinate 0.1 and y-coordinate 2.0 in two-dimensional space.

All the operations provided on pictures return a picture as their result, so arbitrarily

complex pictures may be described and operated on [Morrison et al., 1985].

Points in pictures are implicitly ordered. The binary operators on pictures operate between

the last point of the first picture and the first point of the second picture. In the resulting

picture, the first point is the first point of the first picture and the last point is the last point

of the second picture.

There are two binary operators on pictures, namely join 'A' and combine '&'. The effect of

the 'join' operator is to produce a picture that is made up of its two operands with a line

from the last point of the first operand to the first point of the second operand. 'Combine'

operates in a similar way without adding the joining line. For example:

let PIC1 = [1,2] A [3,4]

This will create a picture PIC1 of a line joining the two points (1,2) and (3,4), Fig. 4.1.

Yn

Fig. 4.1 The picture PIC1

If PIC2 is another picture for a line, as shown in Fig. 4.2, then

let PIC2 = [5,4] A [6,5]

- 117-

Chapter 4; PS-algol. The Language

Fig. 4.2 The picture PIC2

Going on from these individual lines represented by PIC1 and PIC2, then using combine

will make a new picture PIC with both lines being components of the picture shown in

Fig. 4.3.

let PIC = PIC1 & PIC2

---------------------------- V
Fig. 4.3 The picture PIC

In addition to the binary operators, pictures may also be transformed by shifting, rotating

and scaling. For example, a shift (or translation) is implemented as follows:

shift p by x.shift,y.shift

will produce a new picture by adding x.shift to every x-coordinate and y.shift to every y-

coordinate in the picture p . Furthermore a rotation is implemented by the statement

rotate p by no.of degrees

which will produce a new picture by rotating the picture p clockwise about the origin by

the specified no.of.degrees. Finally scaling can be carried out using the statement

scale p by x.scaling,y.scaling

which will produce a new picture by multiplying the x and y-coordinates of every point in

the picture p by x.scaling and y.scaling respectively.

Text can be included in pictures using the text statement. This takes a string of characters

and a base line and constructs the picture of those characters along the base line.

let p = text "hello !" from 1.1 to 2,1

The characters will always be drawn from the first to last point of the base line. As a

- 1 1 8 -

Chapter 4: PS-algol. The Language

consequence, text can be inverted by ending the base line on the left of its starting position.

In order to view a picture, it is necessary to map it onto an output device. The PS-algol

standard function 'draw' is provided to map pictures onto images. For example, the

statement

draw(an.image/z.p/c,0,3,0,3)

will draw the section of the picture a.pic bounded by the box specified by the points (0.0,

0.0) and (3.0, 3.0) on the image an.image.

4.5.2 Pixels

The pixel is a basic data type in PS-algol and is used to construct images [Morrison et al.,

1985]. Two pixel literals are predefined in the language. These are on and off. These are

said to have depth one, since they are only one pixel plane deep. Thus :

let a = on

creates a pixel a with a depth of 1. Pixels may be concatenated in order to create pixels

with a depth greater than one, for example

let b = on & off & off & on

which creates a pixel b with a depth of 4. The expression on the right hand side of the

above declaration is called a pixel sequence or simply a pixel.

4.5.3 Images

Pixels are used to construct images. Images are initialized with a pixel expression and have

the same depth as that expression. Images also have x and y dimensions, for example

let c = image 5 by 10 of on

creates an image c with 5 pixels in the x direction and 10 in the y direction, all initially on.

The origin of all images is in the lower left comer, which has the address 0,0. In this case,

the depth is 1. Full 3-dimensional images may also be created, for example

let d = image 64 by 32 of on & off & on & on

creates an image which has depth 4.

In order to introduce the concept of images and the operations carried out on them, the

discussion will be restricted to images with a depth of 1. Images are first class data objects

and may be assigned, passed as parameters or returned as results. For example

let b := a

- 1 1 9 -

Chapter 4; PS-algol. The Language

will assign the image a to the new one b. In order to map the operations usual on

bitmapped screens, the assignment does not make a new copy of a but merely copies the

pointer to i t Thus the image acts like a vector or pointer on assignment

PS-algol supports eight imaging operations. These are : ro r, rand , xor, copy, nand,

nor, not, and xnor. Thus, for example,

xor b onto a

performs a raster operation of b onto a using xor. Notice that a is altered 'in situ'. Both

images have origin (0,0) and automatic clipping is performed at the extremities of the

destination image.

It is often desirable to set up windows in images. The PS-algol limit operation allows this.

Thus the expression let c = lim it a to 1 by 5 at 3,2

sets c to be that part of a which starts at 3,2 and has size of 1 by 5. c has an origin of 0,0

in itself and is therefore a window on a. Rastering sections of images onto sections of

other images can be performed by expressions such as :

xor limit a to 1 by 4 at 6,5 onto

limit a to 3 by 4 at 9,10

Automatic clipping of the edge of the limited region is performed. If the starting point of the

limited region is omitted, then 0,0 is used for the purpose, and if the size of the region is

omitted, then it is taken as the maximum possible; that is from the starting point to the

edges of the host image. Limited regions of limited regions may also be defined.

The standard identifier screen is bound to an image representing the output screen.

Performing a raster operation onto the image screen alters what may be seen by the user,

e.g. xor a onto lim it screen to 4 by 5 at 4,7

will write the raster image a onto the defined section of the screen. This will be visible to

the user. The standard identifier cursor is bound to an image representing the cursor. This

allows the cursor to be manipulated in the same manner as any other image in the system.

4.6 M a n a g em en t o f D a ta in P S -a lg o l

The main point in PS-algol is that it is of little concern to the programmer how the data is

actually stored. The use of the 'commit' command causes all data reachable from a

database root to be stored. Commit is implemented so that the transaction is guaranteed to

- 1 2 0 -

Chapter 4: PS-algoL The Language

be atomic, that is either all the specified updating to the data will be completed successfully

or no change will occur.

Data in PS-algol is retrieved only as it is used. If an object is retrieved with complex

components, these components will only be retrieved if they are already used. For

example, during data retrieval, if the user selected to retrieve a combination of data so that

data retrieved should be of type 'areas' AND of layer 'building', then although, the search

will be carried out over all area types and building layers, only items satisfying both

conditions will be retrieved.

Furthermore, the backing store needs to be purged of all 'garbage' of old now unreachable

objects when it gets filled up.

4.7 C o n c lu s io n

By adhering to the principles of data type completeness, abstraction and correspondence,

together with furnishing the language with storage facilities, an immediate outcome is that

the PS-algol language has greatly facilitated programmers' tasks in many aspects. The

persistent store has simplified data storage immensely and first-class procedures provided a

method for making functional abstractions. Also, the ability to manipulate procedures in the

same way as other objects within the language is a consequence of the principle of the data

type completeness. The persistent store is used to maintain a procedures library

systematically, thus developing a method for modular programming in a large application.

The graphics facilities of PS-algol not only allow graphical data to be stored in a database

with the same ease as text and numbers, but also provide a set of operations with which

user interfaces can be constructed.

The pointer type of the language permits the construction of object structures of arbitrary

complexity, which makes PS-algol a flexible tool for modelling objects.

Based on these facilities, the language seems appealing to develop systems to handle large

amounts of complex geographical data.

- 1 2 1 -

CHAPTER 5

Chapter 5: System Architecture

CHAPTER 5: SYSTEM ARCHITECTURE

5.1 I n tr o d u c tio n

A GIS may be seen as the end-product of the process of creating a model of geo-related

information from the real world. The topography, the natural resources and environmental

conditions existing in an area and also its administrative and technical infra-structure, may

be described by the model in a formal way that can be implemented by database designers.

The resulting database feeds application programs which provide ways for decision makers

to understand the relationships among geo-related phenomena. However, there is a great

diversity of data views that must be made available to the various kinds of user. This makes

it necessary to break down the model of the real world into primitive units for long-term

storage. These can then be handled easily and checked for consistency and serve as

building blocks for short-term applications.

5.2 G e n e ra l C o n s id era tio n s in D a ta S tru c tu r in g

There are three levels for topographic modelling which have to be considered when data is

introduced to the computer. The first level is the real world model. The second level

consists of the internal mapping and structuring of the data within the system which

manages the data (i.e. the data model for the database management system). Finally there is

the physical file structure which exists in a particular computer environment.

The initial modelling phase requires a conceptual understanding of the various processes

involved in utilizing the data, since redundancy has to be avoided between different user

perceptions of real world phenomena when identifying and structuring the data elements.

This structuring includes aspects such as the arrangement of elements; analysis of linkages

between elements; analysis of the aggregation of elements into various classes; deciding

how attribute information can be assigned to the elements; and finally deciding how

functional associations (non-graphical relationships) can be established between elements.

The use of a topological model for the conceptual modelling of topography is now very

common. A particular advantage is that in describing topographic features by sets of

primitive topological elements (points, lines, and polygons) and storing these without any

- 1 2 2 -

Chapter 5: System Architecture

redundancy, the spatial relationships of connectivity and adjacency between elements are

expressed explicitly and are included as data items in the data structure.

In principle, the topological relationships, be they horizontal (on a layer level) or vertical

(cross referencing between layers), are probably a minimum requirement for the expansion

of the simple model. The inclusion of some additional relationships will depend upon a full

analysis of the user requirements in a particular context or application, and as a

consequence of this, may lead to the inclusion of more relationships in the data structure.

This database management system will become more complex and the computer overheads

(storage and response time) will increase, particularly in the case of interactive user queries.

It should be noted here that, in some systems, the provision of a DBMS is not a strict

requirement since some designers are able to establish their own database management

systems which allow them to map the conceptual model and its data structure directly into

the physical file level.

Data models provide the abstraction, the perception, and the description of the real world

topography in a computer environment. The fidelity achieved in representing this

abstraction will reflect the success of this representation. So this abstraction of reality

should only incorporate those elements considered to be relevant for the user applications,

and should utilize the best possible way of presenting these elements for use in the analysis

to follow.

However, using PS-algol, the GIS system designer will only need to concentrate on the

modelling between the real world and the internal data structure. This modelling should

take into consideration the relationship between the different types and elements of the data.

Since PS-algol is a database language, the GIS designer is already offered a "DBMS"

which takes care of most of the DBMS functions as stated by Codd [1982] and mentioned

earlier in Section 2.5.1 . Thus the programmer can concentrate on the high level functions

of his own application.

5.3 D a ta S tru c tu re f o r th e P ro jec t

In this thesis, the author has tried to create a data model which represents the real world as

closely as possible. So, at the top of the hierarchy of the system is the directory where all

information about the data, such as country name, package used for digitization, maximum

- 123 -

Chapter 5; System Architecture

and minimum coordinate values and map scale, are kept. Next comes the data structure

used to describe the model which in fact is composed of two main data structures, one

hierarchical and the other relational. Fig. 5.1 illustrates the directory and the two data

structures.

Directory

Map Name Xmax Xmin YminYmax Scale Pntr Pntr Pntr Pntr

counter code

Points

POINT

SEGMENT

Areas
Feature Code Classification System

(Hierarchical Structure) LINES

relations POINTS
* XI Y1

1
2
3
4

SEGMENTS AND LINES

* X1 Y1 Xn Yn

1
2
3
4

Data System (Relational S tru ctu re)

Fig. 5.1 Suggested data structure

5.3.1 Hierarchical Data Structure Used for Feature Coding

As has been discussed previously in Section 2.4.1, hierarchical data structures can be

extremely simple and efficient if the limitations imposed in accessing and updating data are

at their minimum. Furthermore, in hierarchical data structures, pointers are kept in a

predefined manner so that they do not represent any complexity in the building of the

structure.

A given application can be represented well in such a way if the data are only accessible

- 124-

Chapter 5; System Architecture

through well known and defined keys, and if the data are not updatable, in the sense that

very few updates are required. In this case, the obvious choice to represent these data is

with a hierarchical data structure.

Within the rules stated above, the coding system associated with the feature classification

proposed for this project is thus qualified to be a candidate for using such a data structure,

because:

- all the data attributes should only be accessed through their key identifiers (their code

numbers);

- the need to update the feature classification system is very unlikely to be frequent, and, if

this does happen, this will not result in any complications to the prototype system

because of the stand-alone characteristic of the classification system; and

- data redundancy is nil because of non-dependency of the data in the different layers of

the system.

5.3.1.1 Feature Coding System

To avoid lengthy records by including all the attributes of all feature classes, an explicit

coding system for classifying features has been established. The organization of this

classification is that every feature belongs to an overall class and to a specific category

within that same class. Then the feature itself may consist of a set of attributes. This

concept is illustrated by the diagram in Fig. 5.2, in which the classification is seen to

resemble a tree structure. For this reason, a separate hierarchical database was established

to contain the feature classification. It is then linked to the main relational data structure via

a key in each tuple. A full description and listing of the classification coding system can be

found in Appendix A.
Tables of

LEVEL

LEVEL

LEVEL III

LEVEL IV

Fig. 5.2 Diagrammatic representation of the feature coding system

CLASSES

CATEGORIES

FEATURES

ATTRIBUTES

- 1 2 5 -

Chapter 5: System Architecture

The next obvious step would be to provide this data structure and to store it in the database

for later use. It will be seen that use is made of a hierarchical data structure for the

following reasons:

" the nature of the classification system;

k the pre-determined pathways through the classification;

k the static-like status of the classification system except in a few cases where the

classification system has to be updated.

Each element at all levels of the classification has been assigned within a table identified by

a name and containing an identifier, a code and a pointer to the sub-level table which

follows in the classification hierarchy. The idea is illustrated in Fig. 5.3. It will be noted

however that Level IV does not contain any pointer since there is no further level to point

to.

LEVEL I LEVEL II LEVEL III LEVEL IV

at tr ibutes

Ident i f ier

table

code

; pointer-;•

table

c l a s s e s

i den t i f i er

code

iden t i f i er

code

cat egor i es

table

i den t i f i er

code

f eatures

table

Fig. 5.3 The hierarchy of the feature coding system

Codes are associated with specific features through a coding procedure, which allows the

user to choose codes by scanning through the database using a hierarchy of menus. From

these he can then select the most convenient class, category, feature, and attribute to suit the

phenomenon or subject in question. The next stage is to assign this code within the main

data structure which will contain the rest of the details about each feature. The discussion of

this will occur later on in this chapter.

The reason behind employing a separate configuration for the data classification and then

linking it to the main data structure is the benefit gained in reducing the number of fields

- 1 2 6 -

Chapter 5: System Architecture

required in the relational data structure. It also avoids data redundancy, and since the

hierarchical data structure used is "static", the retrieval of codes and their attributes is quite

fast.

5.3.2 Relational Data Structure Used for Data Entities

The following advantages can be drawn from using a relational data structure :

* avoidance of any hierarchy within the structure;

* avoidance of use of pointers which place a large overhead on the system;

* simplicity in building new tuples for new items;

* the ability to access any field within any existing tuple;

* the strength of applying boolean logic for data retrieval;

* flexibility in issuing queries.

[Deuker, 1985 and Van Roessel & Fomight, 1985]

On the other hand, the disadvantages that one can experience from the use of a relational

data structure include the need for sequential searches of the different tuples, and the

existence of redundant data to serve as keys instead of the use of pointers. However, the

searching operations can be improved upon in environmental data structures by employing

segmentation of the data, by using indexes, and building different relations to hold different

types of data.

As discussed earlier, topographic phenomena as represented in map form can be reduced to

the three basic or primitive elements (entities) of points, lines, and areas. According to this

taxonomy, relations holding information about the elements of one type should be held

separately. This does not imply in any way that elements should not be linked, or have no

cross-referencing with other types, since these can be implemented through key fields to

indexes which play the role of a mediator between the three types. In fact, there is a fourth

type, which is a special relation which holds text data, required for attributes, names, etc.

As has been discussed in Chapter 4, pictures and images can be included and assigned in

the same way as any other data object. Because of this, picture fields were assigned in all

relations (points, lines, and polygons), so that, whenever there is a requirement to retrieve

any feature or group of features, there is no need to issue the command to re-draw or to call

- 127-

Chapter 5: System Architecture

up other storage descriptions to retrieve the pictures. With this facility being an integral

feature of PS-algol, pictures are stored alongside the rest of the data, and can be retrieved

and manipulated like any other field in the record.

Another facility, which is supported by PS-algol and which has been used in constructing

the data structures of the different entities, is the possibility of assigning vectors to fields.

For example, after having found the neighbours of a particular polygon, these can be stored

in a vector held in one field of a record under the data structure for polygons.

However, the translation of these structures into physical files is carried out automatically

by the PS-algol language. Obviously this has great advantages in allowing the work

undertaken in the present project to be concentrated on developing the application software

rather being occupied with the physical allocation of the different data in different files.

As has been mentioned before, there are four types of data entities (points, lines, areas and

text) with which all map features will be associated and to which attributes can be attached.

Since there are different attributes for each type, both in terms of their numbers and their

types, four different data structures have been devised to suit these different entities.

5.3.2.1 Data Structure for Point Entities

For point entities, the record contains the following fields shown in Fig. 5.4:

counter code nodes process dimension name comment shape link

integer integer integers boolean real string string picture pointer

Fig. 5.4 'point' data structure

These comprise the following:-

* counter (of type integer);

K identification code (of type integer);

k vector of Keys to Nodes (of type integers) - these will be the value of a code of

another entity;

k signal for processing (of type boolean), whether or not it has been enhanced;

* a dimension (of type real) for instance depth, radius or some other size not represented

- 128 -

Chapter 5: System Architecture

on the map;

k name (of type string);

k comment (of type string);

k picture (of type picture);

k a pointer to a nil table for future expansion of the system (of type pntr).

5.3.22 Data Structure for Line Entities

The records for line entities given in Fig. 5.5, are different and thus :

counter code segment process name comment dimension 1

integer integer integers boolean string string real

dimension2 shape (0) shape(£) link

real picture picture pointer

Fig. 5.5 line' data structure

* counter (of type integer);

* identification code (of type integer);

* vector of Keys to Segments Table (of type integers);

* signal for processing (of type boolean);

* name (of type string);

* comment (of type string);

* first dimension (of type real);

* second dimension (of type real);

(the two dimensions might correspond to length and width for instance)

* shape of original data (of type pic);

* enhanced cartographic shape (of type pic);

* a pointer to a nil table for future expansion of the system (of type pntr).

5.3.2.3 Data Structure for Area Entities

Area entities are more explicitly described in their structures than the previous entities and

- 1 2 9 -

Chapter 5: System Architecture

they contain the following fields, shown in Fig. 5.6 :

counter code segment process name comment centroid postcode

integer integer integers boolean string string reals string

islands neighbours dimension 1 dimension2 shape (0) shape(E) link

integers integers real real picture picture pointer

Fig. 5.6 'polygon' data structure

* counter (of type integer);

* identification code (of type integer);

* vector of Keys to Segments Table (of type integers);

* signal for processing (of type boolean);

* name (of type string);

* comment (of type string);

* centroid X coordinate (of type real);

* centroid Y coordinate (of type real);

* shape of the original data (of type pic);

* area of the polygon (of type real);

* length of the perimeter of the polygon (of type real);

* post code (of type string);

* number of islands (of type integer);

* vector of islands (of type integer);

* number of neighbours (of type integer);

* vector of neighbours (of type integer);

* enhanced cartographic shape (of type pic);

* a pointer to a nil table for future expansion of the system (of type pntr).

5.3.2.4 Data Structure for Text Entities

Finally text entities have the following attributes which are given in Fig. 5.7 :

- 1 3 0 -

Chapter 5: System Architecture

code nodes justification tex t font

integer integers integer string string

Fig. 5.7 'text' data structure

* a code to identify to which layer the text belongs (of type integer);

* a code to identify text justification (of type integer);

* X coordinate (of type real);

* Y coordinate (of type real);

* the text (of type string);

* the font to be used (of type string).

5.4 O v e ra ll S ys tem C o n fig u ra tio n

The advantages drawn from the use of pre-determined pathways in the hierarchical data

structure devised for the feature codes or attributes coupled with those drawn from the use

of a relational data structure to deal with the entities will, when combined, boost the system

response in both directions, i.e. in data retrieval and in query processing. This type of

combination is known as a hybrid, in which the aim is to exploit the benefits of both

approaches.

In constructing this system, different databases were built in order to facilitate dividing the

main program into modules and to speed up the processing of these different modules. The

displays of the different menus for the different operations are also stored in one of these

databases.

The overall system is divided into four main modules, the first being termed Data Entry; the

second, Cartographic Representation; the third, Data Retrieval; and the fourth, Data Output.

These modules are saved as compiled procedures in a database called "%$Modules" and

they are passed to the main program through a "structure". The detailed discussion of all

these modules is given in Chapters 7 through to 11.

Fig. 5.8 illustrates the layout and the interaction of the different modules and databases

used in the system, together with the PS-algol DBMS.

- 131 -

Chapter 5: System Architecture

OPERATIONAL
MANAGEMENT
SYSTEM

User Interface

DATA INPUT DATA
RETRIEVAL

CARTOGRAPHIC
REPRESENTATION

DATA
OUTPUTCODE TRANS.

MD6 Code2 Symbols global %$Modules

PS-algol DBMS

Stored database (Internal view)

Fig. 5.8 System architecture

5.5 Ind iv idua l D ata Bases Within The Proto type GIS

(i) The main database is the one that holds the different data structures and is called

"MDB", MDB has at its highest rank a table called 'Maps' that contains the names of the

different maps. Each map has a pointer associated with it. This points to another table that

contains the main details about a particular map, such as the name of the map; the package

used in digitizing (or the source of the data); the map serial number, the scale; the direction

of north; the grid size; the minimum and the maximum coordinate values and finally

pointers to the data structures of the four sets of entities.

(ii) There is another database holding the different symbols to be used for cartographic

display, called "Symbols". These are held in "picture" type..

(iii) Furthermore, yet another database called "global", holds almost all the menus to be

displayed during the operation of the program. These menus are saved as images in a table

called "Images" within "global". Furthermore, "global" keeps track of the numbers of

- 132-

Chapter 5: System Architecture

items entered into the system using four counters.

(iv) Finally, the database that holds the feature coding system is called "Code2" (as

mentioned above), linked to each item in the different data structures via keys. A more

detailed description of the programs that create these databases is given below.

5.5.1 The Mean Data Base (MDB)

This database, MDB, is created at the start of the main program (see Appendix H). The

program first checks whether the database already exists or not. If the database does exist,

then the program opens it; otherwise the program creates i t

The hierarchy of the database contents is then declared. The structure 'maps’ which will

hold the details of the different maps is declared first The maps entered into the system are

stored in a directory table called 'Maps'. This directory structure points to four sub­

structures, which contain the different types of features. The structures needed to hold the

different types of data (points, lines, areas and text) are then declared and named as: P-

holder; L-holder; A-holder and T-holder respectively. This is illustrated by the

representation in Fig. 5.9.

5.5.2 'Symbols' Data Base

As the name implies, the 'Symbols' database is used to store the different shapes of

symbols which are used in area filling and in displaying point features.

Symbols stored in this database are of two types; Areal and Point. Areal symbols, in this

particular case taken from Ordnance Survey maps, include eleven symbols to represent

different types of vegetation, e.g. bracken, conifer, coppice, deciduous, heath, marsh,

orchard, reeds, rough-grass, saltings and scrub. It would be equally easy to implement a

family of areal symbols dealing with different types of building, e.g. public building,

industrial building, residential building, etc.

- 133-

Chapter 5: System Architecture

MDB

Mapsl

maPs Map Name Package ------ Pntr Pntr Pntr Pntr

P-holder

L-holder

P-holder

T-holder

Points

POINT

Lines

SEGMENT

Areas

LINES

T exts

Data S ystem , Relational Structure

relations POINTS
* X1 Y1

1
2
3
4

SEGMENTS AND LINES

« X1 Y1 Xn Yn

1
2
3
4

Maps2

Fig. 5.9 Schematical representation of the MDB

Point symbols, on the other hand, comprise regular geometrical shapes or figures such as

circles, squares, triangles, etc. which are used to represent cartographically dimensionless

features such as triangulation marks, manholes and so on. Fig. 5.10 shows the combined

display menu of these symbols .

These symbols are created by two different programs, one for each type, because of the

different natures of the symbols themselves and the different ways by which they are

generated.

- 134-

Chapter 5; System Architecture

Areal Symbols

Point Sym bols

Fig. 5.10 The Symbol menu

5.5.2.1 Areal Symbols

The approach adopted to obtain the shape of these symbols was by digitizing them off an

existing map [Yoeli, 1982]. The symbols' coordinate values were then made absolute. Fig.

5.11 shows the symbol for 'orchard with reference to a coordinate system of origin 'O'.

The aim then is to shift this coordinate origin to the minimum Y-value and averaged X-

value of the symbol. This is done through a transformation procedure run over the

coordinates of all the symbols [Harrington 1987]. The transformation procedure was

written in Quick Basic on an IBM-compatible micro-computer in the Department of

Geography and Topographic Science. Then all the coordinate values were transferred to the

Unix environment of the graphics work station ready to be manipulated and stored in the

database. Symbols' data comes in the form of eleven separate files, one file for each

symbol. Then the program 'agrsym.S' was written to create the database 'Symbols' (the

listing of the program can be found in Appendix B).

S Y M B O L S

cw TXT

<? 1 o
_ v L J _ A

ST
As.

® 4 A

A # ■

® O □

® IB O

- 1 35 -

Chapter 5: System Architecture

AY

AX

Fig. 5.11 Axis Shifting of the origin of a symbol

The program 'agrsym.S' makes use of two procedures written for the main program.

These procedures are; 'message.proc' and 'stringtoint'. Next, the program creates the

database 'Symbols' using the statement 'create.database' and declares a structure 'agrsym'

to hold the areal symbols. Then the program starts reading symbols by first requesting the

name of the file where the data of a particular symbol resides. Once this has been

successfully read, a message to proceed with another symbol is displayed and so on until

all the areal symbols have been consumed. Fig. 5.12 shows the flowchart of program

'agrsym.S'.

- 136-

Chapter 5: System Architecture

(s t a r t ~)

NO
‘to .continue

YES

TRUE

FALSE

read a line

Read Data

stringtoint

stringtoint

D rav Symbol

m essage .proc

m essage.proc

Enter Filename

Declare structure

to .continue = true

Create 'Symbols'

Enter to Structure

OPEN DB
‘utilities'

Fig. 5.12 Program 'agrsym.S' flowchart

- 137 -

Chapter 5; System Architecture

5.5.2.2 Point Symbols

Unlike areal symbols, point symbols are created from mathematical formulae. For this

reason, the procedure 'polygon' was borrowed from the main program to do the job, since

this procedure is able to draw all the geometrical shapes needed. Furthermore, since the

database 'Symbols' has already been created in program 'agrsym.S', program

'geosym.S' only opens it, but declares another structure 'geosym' to hold these symbols.

The procedure is formed mainly of numerous calls to procedure ’polygon1 to draw the

different shapes of each of the symbols.

There are twelve different geometrical shapes, all of which are created by the same

procedure in twelve different calls. Then they are stored in the database. Fig. 5.10 shows

all the symbols as displayed in menu form.

5.5.3 'global Data Base

'global' database is created by a program called 'Menus'. This program makes use of

several procedures intended for the Cartographic Representation module in the main

program. These procedures are; sorting; linepara; lineint; perpenline; Lparaline; Rpctraline;

drawline; dashing; hatchpoly; doblseg; dobline; ddline; thkline and borderline. A detailed

description of each of these procedures will be presented in Chapter 8. Furthermore, two

more procedures, 'rec' and 'Rec', which are general graphics procedures taken from the

Operational Management System, have been used extensively and will be described in

Chapter 6. This database is created by the OMS (see Appendix H).

'Menus' creates the menus to be used in the main program and stores them in a table called

'Images' in 'global'. The menus involved are: ’ty p e m e n u ’a n g m e n u 'scalmenu

'defaultmenu'; 'linemenu'; and 'Symbols Menu'.

5.5.3.1 'typemenu'

The 'typemenu' procedure creates the menu which allows the user to choose a type for the

line to hatch a certain polygon. This is done by using three procedures, namely:

'drawline'; 'dashing' and 'Rec'. The key identifier to access this menu in the database is

'Hlinetype'. Fig. 5.13 shows the display resulting from this procedure.

- 1 3 8 -

Chapter 5: System Architecture

LINE TYPE

Fig. 5.13 Line Types

5.5.3.2 'angmenu'

The procedure 'angmenu' makes use of two global procedures in the main program 'rec'

and 'Rec'. Fig. 5.14 shows the shape of the menu.

o

<>

0

Fig. 5.14 The display of 'angmenu'

The aim of this procedure is to allow the user to choose a suitable angle for polygon

hatching. The angle can vary from 0° to 360° and is changed by selecting the arrowed

buttons. The large arrow buttons on the left increase and decrease the angle by 15°. The

smaller buttons change the angle by 5°. The key to this menu in the database is 'Hangle'.

5.5.3.3 'scalmenu'

This procedure displays a dialogue box as shown in Fig. 5.15. The middle box displays

the symbol to be scaled. This box displays the symbol at the scale at which it was stored in

the database. The upper box shows the effect of scaling. Scaling is carried out by selecting

the arrows to increase or decrease the scale by 20%. The upper and lower arrows increase

- 139-

Chapter 5; System Architecture

and decrease the scale of the symbol in the Y-direction. The left and the right arrows

decrease and increase the scale in the X-direction.

<>

o

d o-n e

Fig. 5.15 The Scaling menu

The key to this menu is 'Scaling'.

5.5.3.4 'hatchspace'

This procedure uses three other procedures 'Rec'; 'drawline' and 'hatchpoly'. The menu

produced allows the user to choose a suitable spacing between the lines used for hatching

certain types of polygon. Fig. 5.16 shows the display of this procedure, and the key to this

menu is 'Hspacing'.

SPACI NG

Fig. 5.16 Options for line spacing

5.5.3.5 'default.menu'

'default.menu' uses three procedures which are 'Rec'; 'rec' and 'hatchpoly'.

'default.menu' shows the default settings of the polygon hatching factors for the type of

the line; the spacing between lines and the gradient at which these lines should be drawn.

- 140-

 ------- Chapter 5; System Architecture

The user can then choose these settings or alternatively change any (or all) of them. Fig.

5.17 shows the menu as it is displayed on the screen. The key identifier to this menu in

database 'global' is 'Hdefault'.

D E F A U L T MENU

type

s lope

space

Accepted Change

Fig. 5.17 The default menu

5.5.3.6 'linemenu'

Lines drawn on a map display or plot convey different meanings to the user by the way in

which they are presented. Procedure 'linemenu' allows the user to choose one of several

cartographic representations for lines. Fig. 5.18 shows the types of line made available by

invoking this procedure. The procedure itself calls some eight other procedures to draw

these types of line. These procedures are: 'Rec'; 'drawline'; 'doblseg'; 'dashing';

'thkline'; 'ddline'; 'borderline' and 'railine'.

LIN I TYPI

Fig. 5.18 The menu of Lines

The key to this menu in the database is 'LineMenu'.

- 141 -

Chapter 5: System Architecture

5.5.4 'Code2'Data Base

The feature coding system adopted in this project is derived from the "National Standards

For The Exchange Of Digital Topographic Data" published by the Canadian Council on

Surveying and Mapping in 1984. The listing of this feature coding system is in Appendix

A. The program that loads this system into the database ’Code2’ is called 'incode'. It

starts by creating the database and declaring the four levels (tables) of the classification (see

Section 5.3.2.1) together with the structures needed to hold the data. Only one procedure is

needed to be called from this program. This translates the digital numbers read as characters

from the file containing the feature coding system into integers (these integers are the keys

to the features' description).

Chapter 5: System Architecture

C START ~)

Open Data File

Declare Tables For
The 4 Levels

Variable Declarations

Structure Declarations

YES

NO
Read a Line

YES Read a Line

NO

YES L(5|1) is Digit
p = 2

NO
NO Level3 -> strinqtoint(L(5l2))L(p|1) is Digit

Level4 -> stringtoint(L(8|5))YES
Level2 -> 10*digit2+

decode(L(p|1) -4 8
NO > temp -> L(15llength(L)-14)

Name4 =
YES

Find Location ofFind 1 st location of : P

Find 2nd location of :Q

- 143 -

Chapter 5: System Architecture

temp-> L(15|loc-16)temp -> L(P|Q - P -1)

Name4 -> L((loc+2)|length(L)-loc-1)
lame NO

,temp

YES temp
J Name3 -> tempNO

Level3

YES enter Name3 to structure
Level! -> decode L(111) - 48

enter Name4 to structure

enter Name! to structure

Name2 -> L(Q+2|length(L)-Q-1)

enter Name2 to structure

Display the code

Store the system
in DB 'Code2'

Fig. S. 19 The flowchart of program 'incode'

After the whole coding system has been read successfully, the program 'commits' it to the

database.

5.5.5 '%$Modules'

The trend in programming development is towards analyzing a program and splitting it into

small manageable units. In fact, PS-algol is well suited to doing this [Cooper, 1987] and so

offers a most efficient way of carrying out large programming tasks. In other languages,

- 1 4 4 -

Chapter 5; System Architecture

various functions of the program are carried out by procedures. Since procedures are first-

class objects in PS-algol, they may be manipulated in the same way as other data types - in

particular, they can be assigned to variables, passed as parameters to other procedures and

be stored in databases.

The benefit of doing so is that, once a program has been divided into procedures, each one

of them can be put into a different source file and be compiled separately with consequent

savings in debugging time.

In fact, wherever the procedures are small or where they share a lot of data, it would have

been better to code more than one procedure in an individual module. In this case, the

procedures may be packaged together into a single structure for storage in the database.

Program 'Globals' has been written to store all global procedures in a database called

'%$Modules' because all the modules make use of them, (- the listing of the program is in

Appendix C). After listing all the global procedures contained in the program, a packaging

structure called 'listGlobals' is declared, then the procedures are packaged and entered into

the database.

5.6 S u m m a ry

It is clear from Fig. 5.8, that, in order to be able to manipulate all these modules in an

interactive manner, an overall Operational Management System (OMS) is needed, which

takes care of calling the different modules that the user may need during a working session.

A description of this system and the tasks which it carries out, together with the global

procedures that are needed in a global scope, are described in Chapter 6.

- 1 4 5 -

CHAPTER 6

Chapter 6; Operational Management System

CHAPTER 6: O P E R A T IO N A L M A N A G E M E N T S Y S T E M

6.1 I n tr o d u c tio n

The new trend in computer programming is towards simplicity of interaction between the

computer and the user. Programs fulfilling this objective (or role) are termed 'user

friendly'. The aim behind the user interface being 'friendly' is to make the program easier

to operate and to reduce the possibilities of entering wrong data in response to questions or

on issuing commands. Menu driven systems are one example of such systems which are

widely used nowadays. Indeed, a menu-driven approach was adopted in constructing the

GIS system developed during the research carried out for this thesis, since the language

used for programming allows such facilities to be constructed relatively easily [Brown &

Dearie, 1986].

6.2 O p era tio n a l M a n a g em en t S ystem (O M S)

The operational management system can be described as a set of procedure calls to perform

certain jobs in accordance with user commands, including the recording of all the results

obtained during processing. At the outset of an operational session, the OMS will display a

menu of the principal operations available in the system. These operations are Data Entry;

Cartographic Representation; Data Retrieval and Data Output. The functions carried out by

each of these operations are described in Chapters 7 to 10. When the user chooses a

particular operation, say Data Entry, the OMS will then call all the appropriate procedures

from the persistent store. At the end of the session, data being handled or generated by the

system will be returned to the store if no errors have occurred.

6.3 O M S C o m p o n en ts

The OMS forms the main body of the system, and is composed mainly of procedure calls

to the four main modules forming the framework within which all these calls are performed

(Fig. 6.1). These four modules correspond to the four operations defined in the previous

section (6.2) above.

- 1 4 6 -

Chapter 6; Operational Management System

DBs

Global
procedures

Local
procedures

first
module

B
B
0
0
0 :

Local
procedures

nr
second
module

Local
procedures

ZZL
third
module

Local
procedures

fourth
module

CHOOSE

DATA ENTRY

CARTO. REPRES.

DATA RETRIEVAL

DATA OUTPUT

Fig. 6.1 OMS linkages

Procedures used in the system are of two types; the first being called 'module' procedures

and the second, 'global' procedures. Module procedures are those used within the limited

scope of a particular module, and cannot be used on a wider scope. For example, a

procedure declared within the Data Entry scope cannot be used within the scope of Data

Retrieval. An example of a module procedure is the procedure used to read data from

original data files. This procedure is only needed in the Data Entry module, because no

other modules deal with the original data file.

Global procedures are defined as being those procedures that can be called from any scope

in the system as represented by Fig. 6.2. An example of a global procedure is the zooming

procedure which enables the user to enlarge part of the screen to make clearer the

manipulation of the data within that specified area of the screen.

- 1 4 7 -

Chapter 6; Operational Management System

| - GLOBAL SCOPE

^Module Scope 1

j^Module Scope 2

Fig. 6.2 Nesting of scopes

In the following sections, a description of the global procedures is presented together with

their functions.

6.4 O M S D e scr ip tio n

As previously discussed, OMS is composed mainly of four procedures. These procedures

deal with the various databases and other data objects. Arising from this, links should be

made to databases and data objects should be declared beforehand. Thus, the main body of

the program (Appendix H) is concerned with opening databases and declaring the

structures needed as such, followed by the data object declarations and the presentation of

the generic screen shown in Fig. 6.3, which allows a selection from the four different

modules.

UNIVERSITY OF GLASGOW

PS - GIS

Persistent Geographic Information System

(. H O O S E

Data Entry

Carto. Rep.

Data Retrieval

Data Output

uu ir

Fig. 6.3 The generic screen of the system

- 1 4 8 -

Chapter 6: Operational Management System

At the start of the program, the utility databases (available with PS-algol) are called. Such

utility databases hold the different fonts, and the menu-making facilities. Fonts are available

in a PS-algol database called 'FONTS', of which only eleven were used as will be seen in

Chapter 8.

The other utility database is called 'rutilities' and contains several important procedures

[Cooper, 1988] which are:

Procedure

s.editor

error, message

more

form.generate

set.up.choose

table.to.text

(Source: PPRR 56, 1988)

The next step is to call the system database (MDB) if it already exists, or create it if it does

not (see subsection 4.4.4.2). This database is the one that holds the geographical data, the

detailed description of which will be given in Chapter 7. Furthermore, the other databases

('global'; 'Symbol' and 'Code2') are also opened at this stage. Following this is the

declaration of the various structures used by the program and the global identifiers. The

OMS program then calls the system modules using a menu with five options, the first four

represent the four modules (Data Entry; Cartographic Representation; Data Retrieval and

Data Output) with the fifth option being the 'Quit' command.

6.5 G lo b a l P ro c e d u re s

In a system with more than one module, global objects are those which are shared by more

than one module. The system is designed so that there is a hierarchy of scopes of different

data objects, of which the main two scopes are the global and the module scopes.

Any data object declared within the global scope and outside the module scope will persist

and be used during the activation of the program. On the other hand, objects declared

within a module scope will only persist during the module activation, unless stored in the

Function

is a text editing procedure in a screen window

is a procedure which displays a message in a screen window

is a procedure which allows the paged display of long texts

this procedure generates a dialogue box as a set of light buttons

this procedure creates a menu which allows the user to choose

from a set of objects

makes a string vector of the keys of a table

- 1 4 9 -

Chapter 6: Operational Management System

persistent store. For example, procedure 'distance' is declared within the 'Cartographic

Representation' module, so this procedure is only callable from within this module and

cannot be called, say, from the 'Data Entry' module. On the other hand, procedure

'stringtoint' can be called from any module in the system because of its declaration being

in the global scope of the main program.

6.5.1 Global Procedures Description

Global procedures are also declared at this stage. There are twenty two of them used by the

four modules of the system. Global procedures are usually utilities which are needed to

perform frequently required tasks. These procedures are first declared and then compiled.

The compiled version is then stored in a single structure in a database called 'Global.Proc'.

They are called by retrieving the structure and extracting the procedures according to need

within the modules. In the following list, the individual global procedures are described.

Procedure Function

rec(int x, y, xd, yd)

This procedure draws a rectangle with its centre at a point 'x,y' and

with dimensions equal to 'xd' and 'yd'

Rec(x, y, xd, yd, text, font, position, backlit)

Draws a rectangle at a point 'x,y' with dimensions equal to 'xd, yd',

a header 'text', justification 'position' (left, middle and right) and

the choice of reverse video display (boolean: true or false). A sample

result having 'OPTIONS' as 'text', 'middle' for justification and

'true' for backlit is shown in Fig. 6.4.

O PT IO N S

Fig. 6.4 Display result of an example of the Rec' procedure

- 1 5 0 -

Chapter 6; Operational Management System

icon(x, y, text)

This procedure takes the 'x,y' coordinates specified for a point

together with an item of text and returns a picture of an icon

containing that text. The size of the icon is determined by the

procedure. Fig. 6.5 shows an example of the use of procedure

'icon' with 'text' being the word 'Cancel'. Once the cursor is placed

over the icon and the button is clicked, the icon will be displayed in

reverse video.

f c ln c e l j
^ --------------'V

Fig. 6.5 Result of procedure 'icon' before and after clicking

text.write(x, y, text, font, window)

This procedure displays a text item in a particular window with a

particular font at a specified location having coordinate values 'x,y'

as the starting point of this text.

first.screen()

The procedure is responsible for the displaying of the generic screen

of the system together with a menu of the four modules available.

Fig. 6.3 shows the result of this procedure.

zoomin(picture, grid, range, counter, offsetx, offsety, window)

This procedure enlarges the display of a particular area of the screen

specified by clicking the mouse at one location and releasing the

button at another. The procedure needs to specify the picture and (if

present) the grid, together with the range of the picture (in ground

coordinates) in order to compute the transformation. The 'x' and 'y*

offsets are used to display pan of a panicular window. The counter

allows continuous and successive zoomings.

zoomout(picture, grid, range, offsetx, offsety, window)

This procedure reverses the effect of the previous one.

checkin(vectorx, vectory, scopex 1, scopey 1, scopex2, scopey2)

This procedure checks whether a panicular point, line or polygon

(whose data are supplied by vectorx and vectory) lies within a

chosen pan of the display bordered by scopex 1, scopey 1, scopex2

and scopey2 respectively, and returns a boolean result (true if it does

or false if it does not).

- 1 5 1 -

Chapter 6: Operational Management System

minmax(vectorV)

This procedure takes a vector of reals, finds the minimum and the

maximum values and returns a vector of two elements, the first

being the minimum and the second the maximum.

drawline(xl, y l, x2, y2)

This procedure 'creates' a line between the two specified points (xl,

yl) and (x2, y2) and returns a picture of it.

polygon(x, y, r, resolution)

The polygon procedure is a multi-purpose one, since it is able to

'create' a multiplicity of shapes, namely: triangles, rhombuses,

hexagons and circles of different resolution. The 'resolution' factor

is a string and can be any one of the following:

’ t r ' triangle ' v 1' very low resolution circle

'rec' rhombus 'low ' low resolution circle

'hx ' hexagon 'h i' high resolution circle

' d f1 very high resolution circle

In each case, it returns a picture of the shape required. The

parameters 'x' and 'y' give the position and 'r' the radius of the

figure.

north.dir(angle, window)

The procedure takes the north bearing and 'creates' a picture of the

North direction. Fig. 6.6 shows the shape of the arrow-based

symbol which indicates the North direction.

S

Fig. 6.6 The North symbol

stringtoint(string)

This procedure takes a string of digits and returns an integer

number.

stringtoreal(string)

This procedure takes a string of digits including a decimal point and

- 1 5 2 -

Chapter 6: Operational Management System

returns a real number.

Highlight(vectorx, vectory)

The job of this procedure is to emphasize a point, a line or a polygon

to attract the attention of the user to the chosen feature. This is

distinguished by drawing small hexagons at the vertices of the

line/polygon (or one hexagon centred at the point x,y coordinate

values in case of a point feature) as in Fig 6.7.

Fig. 6.7 Highlighting a polygon

message.proc(stringl, string2, string3, x, y, xd, yd)

The task implemented via this procedure is to allow the user to

communicate with the screen via the mouse. It provides a question

(string 1) and two possible answers (string2 and string3) which

could, for example, be 'YES’ and 'NO', 'x' and 'y' represent the

coordinates of the lower left comer of the rectangle (in which the

message should be displayed) and 'xd' and 'yd' are its dimensions.

This procedure returns a boolean result. Fig. 6.8 shows an example

of a message resulting from this procedure giving the user the option

whether to proceed with a session or to quit.

Do You Want To Proceed ?

YES NO

Fig. 6.8 A typical display of the result of the procedure ’message.proc'

- 1 5 3 -

Chapter 6: Operational Management System

prepform(string)

feature.typeQ

trans.codeQ

This procedure 'creates' the layout of the screen for the Cartographic

Representation and Data Retrieval modules and draws the selected

layout on the screen. It is supplied with the heading or title of the

module. Fig. 6.9 represents the layout of the screen resulting from

this procedure.

T itle Zone

Menus
Zone

Fig. 6.9 The layout of the screen

This procedure activates a selection menu of feature types. The type

that can be chosen is one of the three types, point, line or polygon,

and returns a string reflecting the choice. Fig. 6.10 shows the

display resulting from this procedure.

POINT

LINE

POLYGON

< H<)< >SE

Fig. 6.10 The display of the 'feature.type' procedure

This procedure represents the first module of the system, within

which the calls to all the procedures concerned with data entry are

- 1 5 4 -

Chapter 6; Operational Management System

performed. This will be explained in Chapter 7.

data.prep()

This procedure represents the second module of the system. It calls

all the procedures required for cartographic representation. The

procedures used within this module are detailed in Chapter 8.

retrieve()

This is the third module procedure and calls the procedures needed

for manipulating queries in a menu-driven fashion and interaction.

Information retrieval is also performed at this stage. The

descriptions of these procedures are given in Chapter 9.

result()

This is designed to assist in sending the results of data processing to

different hard copy output channels. The output devices which are

supported are laser printers and plotters. The results are output via

transitional files and will be described in Chapter 10.

6.6 S u m m a ry

In this chapter, the reasons for employing an Operational Management System (OMS) to

handle the user interface with the proposed GIS system have been discussed. Furthermore,

this chapter has also presented a description of the various scopes together with a brief

description of each of the global procedures (and their functions) which are used in the

OMS. This introduces the framework within which the four main modules will be

discussed. These will be described in the next four chapters.

- 1 5 5 -

CHAPTER 7

Chapter 7: Data Entry & Code Transfer Module

CHAPTER 7: DATA ENTRY AND CODE TRANSFER MODULE

7.1 I n tr o d u c tio n

Data that represent the terrain surface, come in two distinct formats - raster and vector. The

work undertaken in this thesis deals solely with data in vector format, and so only vector

data can be accommodated in the system as it stands at the moment. The addition of raster

data has been taken into account in the basic design of the system but time has not been

available to implement this facility.

7.2 D a ta F o rm a ts

Digital data in vector format can have different arrangements according to the organization

from which the data were obtained. They also depend on the characteristics of the system

and the software package used for digitization. Different mapping organizations and users

also employ different data formats, but the trend nowadays is toward unification into one

standard format. In the U.K., the principal standard format used by the national mapping

organization, the Ordnance Survey (OS), is the Ordnance Survey Transfer Format (QSTF).

A new and more highly developed format agreed by the OS and the main user community

is in the course of being introduced. This is known as the National Transfer Format (NTF).

It must also be said however, that many other formats are used, notably the Standard

Interface Format (SIF) used by Intergraph and other leading system suppliers; the Data

Exchange Format (DXF) used by the popular CAD package Autocad; the MOSS format

which has been adopted widely by those organizations concerned with civil engineering

design and landscape architecture; etc. [Petrie, 1990].

In the meantime, various packages have been developed which aim at encoding maps

digitally with a reasonable accuracy using very good quality software and which come

complete with a menu-driven interface. Map Data (produced by Map Data Management Ltd.

of Kendal) is one of these software packages and has been used to furnish the data for this

project.

- 156 -

Chapter 7: Data Entry & Code Transfer Module

7.3 D ig itiza tio n a n d D a ta S tru c tu r in g

Digitization took place in the Department of Geography and Topographic Science at the

University of Glasgow using Map Data version 3.0 mounted on an Apricot Point Seven

micro-computer equipped with a 10Mb hard disk and linked to a large-format GTCO

digitizing tablet. The data which has been used to test the system has been acquired by

digitizing a part of the 1:10,000 scale Ordnance Survey map sheet NS 77 NE for a 5km x

5km area located in Strathclyde Region, Scotland covering part of the town of

Cumbernauld. The lower left comer is defined by the coordinate values: XL = 75,000m and

YL = 75,000m, while the opposite comer coordinates are: XR = 80,000m and Yr =

80,000m.

The format of the file of the resulting digitized data consists of (a) the heading of the file

followed by (b) sections for each of the digitized features (see Table 7.1). The heading

section has three lines allocated to it. These are as follows:-

(a) Heading

i) The first line is used to indicate the area being digitized. The user can, at the start of

the digitizing procedure, enter the name of the area (comprising up to 40 characters)

to enable the data set to be easily identified.

ii) The second line is used to locate the file containing the control points, i.e. the

coordinates of the grid intersections and the edges of the map.

iii) The third line contains the coordinate values (X, Y, and Z) of the centre point of the

map.

(bl Data Describing Features

For each digitized feature, there is a set of lines as follows:-

i) The first line contains the segment number and a space allowing comments to be

inserted, which might be of help in describing the digitized feature. The term segment

number as used in Map Data is a little bit confusing, since in fact it covers both

individual points and line segments.

ii) The next line contains a code which identifies and classifies the type of the features.

The 'code' is a number between 1 and 127 together with a 'sub-code' of the same

range as that of the code. The code and the sub-code are separated by a full-stop, e.g.

"127.127". The meaning of the codes may vary from one organization to another.

iii) Finally there is a set of lines giving the X, Y, and Z coordinate values for each

segment in a digitized line. These continue until the next feature is reached when a

- 157-

Chapter 7; Data Entry & Code Transfer Module

new segment number will be given.

Table 7.1 illustrates an example of data resulting from the digitization procedure using the

Map Data package.

Table 7.1 The typical Map Data format

Cumbernauld

cumcon

77500.000 78500.000 0.00000000 m m m

segment 1 ** **

code 6.1

77002.120 78696.620 0.00000000

77095.440 78739.940 0.00000000

77521.080 78871.140 0.00000000

77610.160 78823.720 0.00000000

segment 2 ** **

code 6.7

77123.060 78080.240 0.00000000

segment 3 ** **

code 6.7

77688.940 78196.100 0.00000000

In terms of the actual procedure which is followed in map digitizing and the related data

structuring, digitizing can be carried out in one of two ways, the first being the 'link and

node' method, while the second is called the 'spaghetti' method [Parker, 1990].

The link and node method recognizes links and nodes only. Nodes represent either point

features or intersections between line or area features. Links represent the grouping of

segments which connect two nodes. Linear features are represented by a series of links

(equivalent to the segments discussed in Chapter 2). Point features are positioned at nodes

and areas (polygons) are represented by closed chains of links (termed segments and lines

in the previous discussion in this thesis).

Theoretically, the structure used in the 'link and node' model provides the ability to handle

the majority of retrieval demands in a GIS, such as network analysis; the extraction of

- 1 5 8 -

Chapter 7: Data Entry & Code Transfer Module

specific feature classes; the generation of thematic maps; etc. On the other hand, using this

method with its attendant data structure, needs a lot of preparation and is time consuming,

because the operator will need to:

give names to the different polygons on the map (usually there are hundreds);

specify the nodes at which the digitizing of a line starts and ends;

ensure that digitization proceeds in a single direction throughout the operation;

specify those areas lying to the left and right of the line; and

specify polygons as groupings of links rather than as entities.

Not all data processing packages can cope with this model.

On the other hand, in the spaghetti method, digitization is carried out in a manner whereby

connectivity references are neglected. Features are digitized independently of one other and

may only be related subsequently by comparing the digitized values of these features.

However, the advantages of this method are the simplicity of the digitizing operation and

the fact that several layers of the same base map can be digitized separately and held as

separate units. The drawbacks resulting from this method are mainly concerned with

connectivity and the duplication (redundancy) which takes place when digitizing polygons.

Fig. 7.1 and Table 7.2 show the polygons T and 'II' and their representation in both the

link and node and spaghetti methods.

Fig. 7.1 A sketch showing an area of two polygons

- 159 -

Chapter 7; Data Entry & Code Transfer Module

Polygons 1 II
Diaitisina \
Method Links Segm ents Nodes Links Segm ents Nodes

LINK* 1st Link a, b 1 ,3 4th Link i 3, 9
NQDE 2nd Link c, d, e 3, 6 5th Link j 9, .10

3rd Link f, g, h 6, 1 6th Link k, I 10, 6

7th Link e, d, c 6, 3

SPAGHETTI a, b, c, d, e, i, j, k, I, e, d, c
f, g, h

Table. 7 .2 T ink & Node' and 'Spaghetti' methods o f digitizing polygons

Based on the above discussion, the spaghetti method was used for this particular project,

since the concentration has been on system design and implementation. In this case, the

initial data capture should be made as easy as possible. Indeed, it is the programmer's task

to sort out the problems encountered during the later stages of data processing, such as

creating links between different features held in different layers, and removing the resulting

slivers and gaps resulting from the duplication in carrying out the digitization operation

[Burrough, 1985]. Furthermore, the system should be able to handle this sort of data, since

it is so prevalent.

In fact, the system developed in this project does not let the user edit the input data, but on

the other hand, the package used for digitization is well equipped to do so. Moreover, the

possibility of recalling existing digitized points has already been provided in the Map Data

package, which, if used correctly, will reduce the problem of slivers and gaps to a

minimum. So, with careful digitizing, there should be no problem with regard to those

features which are inherent with this method of digitization. Thus, the system devised for

this project assumes that the original data is error free.

7 A ’tr a n s .c o d e ' M o d u le

This module takes a file of digitized data and stores it in the persistent store with all its

features coded. It contains two parts: one which permits some global configuration to be

given to the data by the user; while the other reads the data from the file and allows the user

to code each feature, one at a time. Fig. 7.2 illustrates the overall operations carried out by

'trans.code' module, namely data entry and code transfer. The coding part of this module is

organized so that coding may be interrupted at any stage and returned to in a subsequent

- 160-

Chapter 7: Data Entry & Code Transfer Module

run of the program.

The data entry and code transformation module is based on three types of procedures- (i)
global procedures (low level); (ii) modular procedures (mid level); and (iii) local procedures

(high level). Fig. 7.3 illustrates the interlinks between these three types of procedures.
Finally, Fig. 7.4 illustrates the line of actions carried out in this module by a flowchart.

I’ilillffilll:S 1 I I I E

Fig. 7.2 Operations o f 'trans.code' m odule

LOCAL
PROCEDURES

GLOBAL
PROCEDURES

MODULAR
PROCEDURES

HIGH
LEVEL

MEDIUM
LEVEL

LOW
LEVEL

Fig. 7.3 Types o f procedures in this module

- 161

Chapter 7; Data Entry & Code Transfer Module

(s t a r t)

CONFIGURATION
& DATA ENTRY

firstdrawn

true
done

false

YES
Zoom in

CODE
TRANSFER

NO

YES
.oom 01

YES
Start

NO

YES
Quit

1 st time
„ file j

zoomm

zoomout

picking

get.detail

get. detail

done •> true

third.screen

third.screen
second.screen

OPEN tracking DB

OPEN configuration file

RETRIEVE map
from tracking

DB

Fig. 7.4 Flow chart of module ’trans.code'

- 162-

Chapter 7: Data Entry & Code Transfer Module

In the next sections, general descriptions of the two main operations - Configuration &
Data Entry and Code Transfer - will be presented in Sections 7.4.1 and 7.4.2 respectively
and afterwards, descriptions of the procedures involved will also be provided in Section
7.5.

7.4.1 The Configuration & Data Entry Operation

At the outset of this module, the system will check whether a configuration file exists or
not. This file records some important details about the data to be manipulated in the system.
The discussion of this file will appear later on in this chapter.

When this module is selected for the first time, no such configuration file exists and, at this
stage, the layout of the screen changes as determined by the procedure 'second.screen'. A

series of questions are displayed on the screen, the responses to which are intended to
provide details about the data which the system needs to have if work is to be carried out on

the data. These questions are:-

1- Name of Package Used For Digitization
2- Map of (Volume Set Name)

3- X, Y Coords, of the Lower Comer

4- X, Y Coords, of the Opposite Comer

5- Grid Interval

6- Bearing from North (in degrees)

7- Total Number of Physically Separated Files

8- Individual File Number

9- Source File Name

10- Scale of the Map
11- Number of Features' Coordinates

Once all these questions have been answered, a box appears on the right hand side of the
screen allowing the user to go through these questions again correcting any errors that
might have occurred during the first time of answering or to proceed to the next step if no
correction is needed. Fig. 7.5 shows the typical display on the screen at this stage.

- 1 6 3 -

Chapter 7; Data Entry & Code Transfer Module

I’S - CIS

Name o f Package used in digitization : MapData

Map o f (Volum e Set Name) : Cumbernauld

Serial Number o f Volume Set : NE77NS

X, Y Coords o f the Lower Comer : 75000.00,75000.00

X, Y Coords o f the Opposite Comer : 80000.00,80000.00

Grid Interval : 500

Bearing from North (in degrees) : 0

Total Number o f Physically
Separated Files : 5

Individual File Number : 1

Source File Name : mapcumrd

Scale o f the Map : 1:10000

Number o f Features' Coordinates
(2 or 3) : 2

Fig. 7.5 The configuration data entry

Upon entering the answers to these questions, they will be recorded in the 'MDB' data

base and in a configuration file called 'config' so that this phase can be skipped in
subsequent sessions. Then the system will show another layout of the screen containing

three different types of display. The screen is divided into four zones; (i) a graphics zone,

to display the features' drawings; (ii) a text zone, to display details of the features that were
extracted from the original data together with the corresponding coordinate values; (iii)

another text zone to allow the display of the file details; and (iv) a menu zone which serves

to display the different menus needed during the process. The procedure entitled
'third.screeri is responsible for the display of these four zones. Fig. 7.6 shows the outline

of the divided screen.

<1. i o

- 164-

Chapter 7: Data Entry & Code Transfer Module

GRAPHIC ZONE

TEXT ZONE GIVING FILE
DETAILS

MENU ZONE

TEXT ZONE GIVING FEATURES DETAILS

Fig. 7 .6 Screen division

Next the system starts reading automatically the file specified in response to question No 9
and displays its contents on the screen. This is done through the procedure 'first.drawn'.

After completing the drawings, a snapshot of the displayed features is recorded and stored
in the data base 'global' which is accessed via a key identifier named 'dr' in a table called

'Variables'.

Since some of the data in the original file are textual and others are numerical, and since the
system will read all of them as being of type 'string', a differentiation needs to take place

at this stage. Thus, answers 3, 4, 5, 6, 7, 8, 10 and 11 need to be transformed back to their
original types, which is 'real' for answers 3, 4, and 10; and 'integer' for the rest. This is
done through the procedure 'get.detaiF which reads the file details from the configuration

file and, in turn, calls two other procedures named 'stringtoreaF and 'stringtoint'.

On the other hand, if the module had been activated in a previous session, then the system

will bypass the questions phase and will, instead, read the file details from the
configuration file 'config' and display the features graphically from the stored map in the
database. The user will notice the substantial difference in speed when displaying the map

on the screen on the second occasion.

- 165 -

Chapter 7; Data Entry & Code Transfer Module

7.4.2 The Code Transfer Operation

Coding systems play a major role in processing the acquired data. They help in structuring

these data into the databases, identifying their types, and in carrying out query processing
and data retrievals. The more comprehensive and well structured the coding system is, the
simpler the processing of data. This part of the program allows the user to associate a code

with each feature depicted on the map.

Once the map has been read and displayed, the user is offered four processing options in a

menu form. These options are: 'Zoom In'; 'Zoom Out'; 'Start' and 'Quit'. The
description of the activities of each of these options is given in the remainder of this
Section.

In this module, three main procedures are used. One of these called 'picking' is declared at
this module level while the other two - 'zoomin' and 'zoomout' - are of global scope.

7.4.2.1 Option 'Zoom In'

The description of this procedure has already been presented in Chapter 6, Section 6.5.2. It
is used here to select a smaller area of the graphic to code.

7.4.2.2 Option Zoom Out'

The description of this procedure has also been presented in Chapter 6, Section 6.5.2. It is

used here to reverse the action of the previous option, so that the user will be able to 'zoom
out' to the original display scale on the screen and is then in a position where he can 'zoom

in' on a different part of the map.

7.4.2.3 Option 'Start'

When the option 'Start is chosen from the menu, the procedure 'picking' is called which
starts picking features from the map sequentially and highlighting them, so the user can
identify which feature has been chosen. Then the various operations needed to be executed

with them are carried out. Fig. 7.7 illustrates the flowchart of this procedure.

- 166 -

Chapter 7: Data Entry & Code Transfer Module

7 . 4 . 2 . 4 Operational Aspects of Configuration & Data Entry

At the beginning of this module, the 'global' and 'MDB' databases are checked for any
specific details that might had been recorded for the particular map in hand. If the details
described in Section 7.3.1 are found, then the system will retrieve the data for this map and

assign the features to four temporal vectors - Avec; Lvec; Pvec and Tvec - according to
their data types. A total counter is established by summing the dimensions of these four

vectors.

Since data entry and code transfer will often constitute a lengthy task to carry out in one

session, the user might wish to quit the job at any time. This is allowed in this system by

keeping track of all the operations taking place during a session and storing this information

in three places as follows
(i) The 'global database stores the counters of the four types of data in a table called

'thevar1.
(ii) Data that have been dealt with during a working session are recorded in a temporary

vector called 'temporal1.
(iii) Features that have not yet been processed are stored in a temporary file named

'filename.temp2'.

At the start of any 'code.transfer' session, a temporary file, called 'filename.temp 1', is set
up which contains all those features which have yet to be coded. In the first run, this will
be a copy of the original file. Subsequently it will be a copy of the 'filename.temp2' file

left by the previous session. After the copying o f 'filename.temp2' into 'filename.tempi',

file 'filename.temp2' is erased.

- 167 -

Chapter 7; Data Entiv & Code Transfer Module

START

YEStemp2
exists

NO

NO~eoi &
~done

YES

ism -> true

kill temp2

READ L

checkin

readlines

done •> false

DECLARATIONS

copy temp2
onto tem pi

DECLARING ’readlines'

QUOTING
DATABASES

Cont.

- 1 6 8 -

Chapter 7: Data Entry & Code Transfer Module

©
NO copy features to temporal

vectorism

YES *
Highlight filecompiete -> false

DISPLAY ORIGINAL
FEATURE DETAILS

feature .type

counter -> counter + 1

change.code

text.entry

YES centroidpolygon

polygon counterNO

YES
line counter line

NO

point counter

text.entry

©
Cont.

169 -

Chapter 7; Data Entry & Code Transfer Module

store P

store L

store A

NO
done

YES

NOCOPY rest of file
to temporal vector

eoi

YES
CREATE temp2

f file N

complete
kill tem pi
kill config

YES
COPY temporal
vector to temp2

NO

COPY temporal vector
on temp2

STORE IN DB

Fig. 7.7 Flowchart o f procedure 'picking'

The declaration of all the variables needed throughout the module then follows together

with the declaration of one local procedure, called 'readlines'. This is a very simple
procedure which, when given a file name, reads data from this file in a sequence of lines

- 1 7 0 -

Chapter 7: Data Entry & Code Transfer Module

containing X, Y values. While reading, the procedure checks the start and the end of every
'grouping' of segments (or link) and then copies their coordinate values into two vectors

declared in the module scope. At the end, it returns all the lines read as a vector of strings.

Having read all the data relating to a feature, these data are then subjected to several

operations. To start with, suppose that the user had chosen to zoom in on a particular zone
of the map on the screen, then not all the features of the map can be seen. The system skips
all the features that do not appear on the screen leaving them until a later stage. This

checking is done by a procedure called 'checkin' which returns a boolean value (true if the

feature can be viewed or false if it cannot).

Any feature which lies entirely outside the screen limits has all its components recorded into
the temporary vector automatically. But if it is partly displayed, then a message asks the
user whether or not he can clearly identify the object, Fig. 7.8 shows the display of such a
case on the screen. However, if the object cannot be identified, the feature components are
also copied into the temporary vector. On the other hand, if the object lies in its entirety

within the screen limits or if it can be identified by the user, it will be subjected to further

operations.

The object to be processed should be distinguished from other objects on the screen, so that

the user may know which object is undergoing processing. This is done by highlighting
that particular feature by drawing small hexagons at each of its different vertices. If the
object had been passed through the procedure 'checkin', it would have been 'highlighted'

there. The procedure responsible for doing so is called 'Highlight' and has already been

described in Chapter 6, Section 6.5.2.

- 171 -

Chapter 7; Data Entry & Code Transfer Module

TEXT ZONE GIVING FILE
DETAILS

MENU ZONE

GRAPHIC ZONE

can object be identified ? |

psl X NO

TEXT ZONE GIVING FEATURES DETAILS

Fig. 7.8 'Highlight' in action

Next, the original details about the object (feature) are displayed in the text zone of the
screen. Following this, a type menu is displayed in the menu zone to allow the user to
specify the type to which this particular object belongs (see Fig. 7.9). Once this has been
done, the counter of that particular feature type is increased by one.

Classification of features is the next stage. This is done by calling the procedure

'change.code'. This procedure creates four successive menus to comply with the four
levels of classification discussed in Chapter 5. Thus 'change.code' opens database

'Code2' and retrieves sequentially the attributes from each level, subsequendy forming the

menus. From these, the user can choose those attributes which best describe the feature
using the four menus and thus forming the feature code. Once a menu has been created, it
is then stored in a temporary structure called 'menu'. This will increase quite substantially
the speed of displaying this same menu on the second or any subsequent occasion.

- 172-

Chapter 7; Data Entry & Code Transfer Module

Package MapData
Map of Cumbernauld
File Name mapcumlc
Scale 1:10000

point

line

polygon

LOW VEGETATION

9.18
77000 78000
78000 79000

Fig. 7.9 Exam ple o f the use o f the different zones o f the screen

If the feature is of polygon type, further information is needed about it. The system will ask

the user to introduce a 'centroid' which is done by positioning the pointer and then clicking
the mouse anywhere inside the boundaries of the polygon (this is checked by the system as
well). This will help in identifying the polygon and will help in determining the

neighbouring and any enclosed polygons as well.

Finally, textual information, such as its name, or any comments about the feature, is then

entered using the procedure 'text.entry'.

At the end, all the newly entered data are sorted and placed in different structures according

to their types, and the user is given the option whether to proceed to the next feature or to
quit the session. If the user decides to proceed, the operation continues by picking another
object. On the other hand, should the user decide to quit, then the data counters are stored

in the 'global' database, and the part of the entry file which has not been read yet is copied
into file 'filename.temp2'. Then file 'filename.tempi' is removed (killed).

- 1 7 3 -

Chapter 7; Data Entry & Code Transfer Module

7.5 P ro ce d u re s U sed In This M o d u le

There are some thirty procedures used in this module. Of these, sixteen are globals and the
remainder are modules. In this Section, only the module procedures are described, the

global procedures having been described in Chapter 6, Section 6.5.2. Fig. 7.10 shows the

interlinks between the different procedures in this module.

rec

ti a n t . c o d '

Fig. 7 .10 The module interlinks

Procedure Function
loc.print(Number, Xlocation, Y-clearance, text)

The aim of this procedure is to place a piece of text in a particular place
on the screen. It works in conjunction with the procedure

'second.,screen'. The identifiers passed to 'loc.print are:
'Number1: which is the number of text items in the list;

'Xlocation' : which is the distance at which the text should be placed

measured in screen units starting from the left edge of the screen;
'Y-clearance' : which is the allowed spacing in the vertical direction
(in screen units) between two consecutive lines of text; and

'text' : is the text to be displayed.

second.screenO
This procedure, together with 'loc.print', serves to display the list of

questions to be answered by the user about the map details. It makes use

of an editing procedure supplied by the 'utilities' database, and returns
the answers as a vector of strings. After all the answers have been

supplied, 'second.screen' calls up the procedure 'message.proc' to
allow the user to alter the information should any error occur. Finally,
'second.screen' copies these details into the file 'config'. Fig. 7.11

- 1 7 4 -

Chapter 7; Data Entry & Code Transfer Module

shows this procedure's calls to other procedures.
.(M'lcl

loc.print

Fig. 7.11 ’second.screen’ calls

get.detail(Answers)

This procedure takes the answers of 'second.screen' and transforms
them into reals and integers according to their original types. It returns a

vector of all transformed data called 'Tanswers'. Fig. 7.12 shows the
calls made by this procedure.

stringtoint stringtoreal

Fig. 7 .12 'get.detail' calls

third. screen(T answers)
This procedure divides the screen into four zones to allow three different

types of display:- graphics; texts and menus. Fig. 7.6 shows the design
of the screen implemented by this procedure. The upper part of the
menu zone is allocated to display the file details. The procedure then

draws the grid of the map and displays the north direction. Fig. 7.13

illustrates the procedure's calls to other procedures.

rec Rec

north.dir

text, write

stringtoint

Fig. 7.13 'third.screen' calls

drawfile(filename, Grid, bool)
As the name implies, 'drawfde' is a procedure that reads a file into the
system and draws it on the screen if the 'bool' is true. The procedure
starts by creating a table which, later on, will store the picture of the

whole map in the database. This table is called 'Variables' and is stored

- 175 -

Chapter 7; Data Entry & Code Transfer Module

in the 'global' database. Then it declares the different variables needed

within the procedure scope. Also it declares a temporary vector which

will hold all the data file's contents as strings, and, at the end of the

procedure, it stores this vector in a file called 'filename.temp 1'. This is

done to ensure that the original data file remains untampered with. It can

be removed at a later stage after all the data of the file has been passed

through the second module (described in Chapter 8). Within this

procedure scope, another procedure called 'readlines' is declared. It

searches for the beginning and end of each chain (i.e. each group of

segments forming a complete feature) within the file and reads its

various coordinate values and then creates pictures from them. After

having read all the file, the pictures of all the features are grouped into

one total picture, which is then stored in the database.

first.drawn(xmin, xmax, ymin, ymax)

The jobs carried out using this procedure are to call the 'drawfile'

procedure; to assist in passing the coordinate values of the comers of the

map; and to scale them to the window limits. Fig. 7.14 illustrates the

calls made by this procedure.

r L
J readlines g

3 _
stringtoreal

Fig. 7.14 'firstdrawn' calls

change.code()

It is the job of this procedure to attribute codes to all features according

to the classification system implemented in this project. Fig. 7.15

illustrates the calls needed within this procedure.

- 176-

Chapter 7; Data Entry & Code Transfer Module

rec Rectext.write

Fig. 7.15 'change.code'calls

At the beginning, the procedure creates a window in which details

regarding the progress of the coding operation are displayed to the user.

Then it makes use of two other procedures declared at this procedure

scope. The aim of the first one, called 'scan.table', is to scan through a

table and extract or list all the features which it encounters, returning a

vector of pointers and their counts. The second procedure is a recursive

procedure and is called 'choose'. It calls 'scan.table' four times, each

representing one level of the classification scheme. It then forms a menu

of what it finds in each level. Any chosen element of this text-based

menu returns a pointer to a lower level table, which in turn is then

scanned and so on. Since each element of the menus is assigned with a

particular code, traversing through the hierarchy from level 1 to level 4

will thus form the total code of the feature. This code is the value

returned by the procedure 'change.code'.

Fig. 7.16 shows the sequence of the operations as viewed on the

screen.
(I K)()Si : CLASS

BOUNDARIES__________
BUILDING______________
DESIGNATED AREA
HYDROGRAPHY________
RELIEF & LANDFORMS
LAND COVER__________
ROADS AND RAILWAYS
STRUCTURE____________
UTILITY_________________
< M . I I

n(ir

Fig. 7.16 The coding sequence using menus

CI K)< >SI C A H . (i (>RY

WOOD LAND
ARABLE/CULT. LAND
LOW VEGETATION
NO VEGETATION (I K)()M

I I \ 11 k l .

BARREN LAND
DESERT (J R A V h

ROCK
SAND

- 1 7 7 -

Chapter 7; Data Entry & Code Transfer Module

text.entry (text 1, text2)

This procedure is aimed at allowing text to be entered into the system. It

makes use of a procedure named 's.editor' which is called from the

'utilities' database, 'textl' is used to represent an instruction to the user

about the text that should be entered and 'text2' contains the original

version of the text which may be modified. This helps the user not to re­

enter the same text more than once. Fig. 7.17 shows the calls made by

this procedure.

Fig. 7.17 'text.entry' calls

centroid(vecx, vecy, xmin, xmax, ymin, ymax)

This procedure aims at introducing centroids to polygons to make it easy

to initiate links with other features. (This will be explained in more detail

in Chapter 8). It starts by displaying a message asking the user to locate

the centroid by placing the pointer at an appropriate position somewhere

in the middle of the polygon and then clicking the mouse. After

receiving the coordinate values from the mouse (in screen coordinates),

they are then transformed into map coordinates. Then the procedure

checks whether these coordinate values lie inside the polygon. If they

do, the procedure returns these values to the main body of the module

'trans.code' which stores these values in the polygon's record.

Otherwise it displays a message to the user to try again. Fig. 7.18

shows the 'centroid calls to other procedures.

rec

nt i o i d

minmax

Fig. 7.18 'centroid' calls

text.window()

This procedure's job is to display the details of the map as they are

retrieved from the 'MDB' data base.

- 178 -

Chapter 7: Data Entry & Code Transfer Module

picking(file.details)

Fig. 7.7 illustrates the line of action of this procedure as a flowchart

while Fig. 7.19 shows the calls made by this procedure to other

procedures.

read ines

minmax

text, window

stnngtoreal m essage.proc

Fig. 7.19 'picking' calls

At the start, the procedure opens database 'global' to retrieve details

about the file being read. It then opens database 'MDB' and establishes

counters for the different types of features and a total counter for all of

them. Next, declarations of all variables needed in the procedure are

made. As has been stated before in the discussion of procedure

'd ra w f i le the sequential selection of features is carried out from file

'filename.temp 1 '. Before this is done, the existence of the file

filename.temp2' is checked. If it does exist, the procedure will copy

this file into file 'filename.tempi' and erase 'filename.tempT. In the

next step, the procedure will create a temporary vector which will record

any feature which the system is not able to process. This vector is called

'dummy.vec'. Data are then read into the system using the procedure

'readlines ' , the same procedure as that used previously by the

procedure 'drawfile'. A loop is then repeated under two conditions, the

first being that the reading of data has not reached the end of the file,

and the second that the user has not issued a quit command.

As the procedure reads a feature, various operations are carried out on

it. At the beginning, the minimum and maximum extent of the feature

are determined using the procedure 'minmax' and then the results are

- 179 -

Chapter 7; Data Entry & Code Transfer Module

sent to the procedure 'checkin' to determine whether the feature can be

identified or not. If it can, then the procedure 'Highlight' is called and

the details of the feature, read from the original file, are displayed in the

text zone of the screen. Then a series of calls are made to the following

procedures:- 'feature.type'-, 'change.code'', 'text.entry'-, 'centroid.'’,

and 'polygon'. The features and their attributes are stored in one of the

following structures:- A-holder; L-holder and P-holder (at this stage,

texts are being treated as though they were of type ’points'). However,

if the feature cannot be identified, then it will be copied to 'dummy.vec'

and, at the end of the session, this vector is copied into file

filename.temp2'. Then the user is offered the choice of either

proceeding or quitting. If the user decides to continue, then another

feature is selected. On the other hand, if the user decides to quit, then

the three structures are stored in the 'MDB' database.

7.6 S u m m a r y

In this chapter, a detailed description of the Data Entry and Code Transfer module has been

provided. Details have been given about the digitizing method used in this system and the

subsequent code transfer operations. Following this, a listing has been provided of all the

various procedures used in this module together with a brief description of their individual

functions. At the end of running this module, data which have been passed through the

code transfer operation are then stored in the database and are ready for the processing

activities which can be executed by the two remaining system modules - Cartographic

Representation and Data Retrieval. These will be discussed in Chapters 8 and 9

respectively.

- 180-

CHAPTER 8

Chapter 8; Cartographic Representation Module

CHAPTER 8: C A R T O G R A P H IC R E P R E S E N T A T IO N M O D U L E

8.1 I n tr o d u c t io n

In this module, the main concern is to represent the data in a cartographic form so as to

allow the final representation of the analysis to be displayed and understood in the same

way as any other map. Various cartographic representation activities are introduced for the

different types of features by use of separate menus containing all the possible ways of

representation which have been implemented in the system. For example, in the present

system, polygons have two different styles of representation - hatching or filling - each of

which is presented in a separate menu. Whereas for lines, representations can be chosen

from a single menu containing several different line styles. Point entities also have only a

single menu to choose from but this menu is linked to three different procedures. Fig. 8.1

illustrates the different operations needed to generate the symbols available for each of the

three main feature types stated earlier.

SYMBOLS

V

T E X T U A L

LINEAREA P O I N T

G E O M E T R I CV E G E T A T I O N

Fig. 8.1 Types of symbolisation

8.2 C a r to g ra p h ic R e p re se n ta t io n o f F e a tu re s

At the start of this module, and before any cartographic treatment has been applied to any

feature, a snap shot of the whole of the screen is recorded in a temporary 'image'. The

system then displays a menu offering a choice between the three types of data, as shown in

Fig. 8.2. If, for example, 'POLYGON' is chosen from the menu, first a search of the

database will be carried out for polygon features only and then those procedures related to

polygon features are called. Fig. 8.3 shows the module's calls, while Fig. 8.5 gives the

flowchart for this module.

- 181 -

Chapter 8: Cartographic Representation Module

POINT

LINE

POLYGON

Fig.8.2 The type menu

'd a ta .p rep ' MODULE

w h a t. to .p ick

Fig. 8.3 The module calls

The cartographic representation of features is divided into three sections in accordance with

the three types of feature handled by the GIS system. Fig. 8.4 shows the calls required to

select the specific class or type of feature needed.

w h at. to .p ick

p tc k p o m t

Fig. 8.4 Types of feature selections

Firstly, the description of those general procedures needed by all three sections are

presented in Section 8.2.1. The description of the procedures available for polygon

representation then follow in Section 8.2.2. Next, those procedures required for the

representation of line features are described in Section 8.2.3. Finally those procedures

required for point representation are examined in Section 8.2.4. The procedures used in

this module will now be described.

- 1 8 2 -

Chapter 8: C artographic Representation Module

true
finished

false

YESZoom In

NO

YES
Zoom Out

NO

YES
Scroll

NO

YESStart

NO

NOQuit

YES

zoomout

zoom in

scroll

prepform

select MAP

what.to.pick

finished -> fasle

finished -> true

GET POINT
STRUCTURE

GET LINE
STRUCTURE

GETAREA
STRUCTURE

DISPLAY MAP
DETAILS

Fig. 8.5 The flowchart of the module ’data.prep'

8.2.1 General Procedures

The general procedures employed in this module play the same role as the global

procedures used for the overall system. They are defined as module utility procedures so

- 1 8 3 -

Chapter 8: Cartographic Representation Module

that they can be called from anywhere within the module scope. There are five of these

procedures, namely : 'lin e p a ra 'lineint'perpenline'; 'drawline' and 'dashing'.

Procedure Function

linepara(xA, yA, xB, yB)

This procedure is intended to determine the coefficients of a line.

Since a line can be represented by an equation of the type: 'y = mx

+ n', the coefficients 'm' and ’n’ can be determined for a line

passing through two points A(xa , yA) and B(xb , yB) by the two

equations, (see Fig. 8.6)

rn = Dy/Dx = (yB - yA) / (xB - xA)

and yi = (yA * xB - yB * xA) / (xB -xA)

m = AY /Ax
y = mx + n

Ax

►

Fig. 8.6 The parameters of a line passing through 'A' & 'B'

The procedure then returns these parameters in a vector of two

elements.

lineint(a, b, c, d)

Since given the coefficients of two lines, their point of intersection,

if any, can be determined by the following two equations, (see Fig.

8.7)

y « m ix + n1

i(xi, yi)

y - m2x + n2

Fig. 8.7 The intersection 'i' of the two lines ’y l 1 and 'y2'

xi = (n2 - nl) / (ml - m2)

- 1 8 4 -

--- C h a p t e r 8 ; C a r t o g r a p h i c R e p r e s e n t a t i o n M o d u l e

and yi = (ml * n2 - nl * m2) / (ml - m2)

The coordinate values of the point of intersection 'i' are then

returned in a vector of two elements.

perpenline(x, y, m)

The aim of this procedure is to determine the coefficients of a line

'W' perpendicular to another known line 'V' passing through a

specified point *P' (see Fig. 8.8). This procedure then takes the

coordinate values of 'P' and the gradient'm' of 'V', and calculates

the coefficients of W as follows:

m' = -1/m

and n' = y - n * x

y
y'« m'x + n'

P(xp, yp)
y * mx + n

Fig. 8.8 W perpendicular to 'V* at *P1

The procedure returns these values as a vector of two elements.

drawlineO

This procedure has been described earlier in Chapter 6, Section

6.5.2

dashing(xl, y l, x2, y2, dash, gap)

This is another graphics procedure which returns a picture of a

dashed straight line segment joining two points A(xa , yA) and

B(xb , yg)> using the dash and gap values specified for the drawing.

The procedure calculates first the distance between the two points

and then determines the angle 'ex' formed between the line passing

through these two points and the horizontal, (see Fig. 8.9). Next the

sizes of the gaps and dashes are adjusted so that the length of the

segment is a multiple of a period (a period is one dash and one gap).

For a better display, each dashed line should start with a half dash

and end with another half dash, thus forming one complete dash.

- 185 -

Chapter 8; -Cartographic Representation Module

Fig. 8.9 Dashes & gaps

The coordinate values of the two points forming a dash are then

calculated and stored in two vectors, one for the x-values and the

other for the y-values. Finally a picture of the segment is returned

using procedure 'drawline'. Fig. 8.10 shows the procedure call.

Fig. 8.10 'dashing' call

8.2.2 Polygon Representation

If the option 'POLYGON' has been chosen from the menu displayed in Fig. 8.2, then the

procedure 'pickarea' is activated. This then retrieves the structure 'A-holder' from the

database and, in a sequential manner, starts selecting polygons and highlighting them. After

a polygon has been selected, another menu is displayed showing two different methods -

hatching and filling - which may be used for polygon fill representation. Fig. 8.11 shows

the menu displayed at the outset of choosing 'pickarea'.

O P T I O N S

FILLING

HATCHING

Q U I T

Fig. 8.11 Menu of options for polygons

There is a list of procedures which are used in conjunction with polygon processing and

called by 'pickarea'. These are: 'H ig h l ig h t ’minmax'; 'text.write'; 'message.proc';

'nabor'\ 'area.prepare'', 'area'; 'perimeter'; 'inclave'; 'polycheck' and 'area.menu'.

Fig. 8.12 illustrates these calls, in which those procedures represented by filled boxes call

- 1 8 6 -

Chapter 8: Cartographic Representation Module

lower-level procedures, while the procedures in plain boxes do not.

II!

pickiiieo

Fig. 8.12 'pickarea' calls

The first five procedures have already been discussed in Chapter 6, Section 6.5.2, and the

last three make use of the lower level procedures. Thus 'inclave' calls 'linepara'; 'lineint'

and 'minmax'; 'polycheck' calls 'innerangle'; and finally 'areamenu', has two jobs, the

first is to hatch polygons and the second is to flood polygons with patterns, an operation

which is also known as filling. This 'areamenu' procedure calls any one of sixteen lower

level procedures. These are 'linepara'; 'lineint'; 'sorting'; 'drawline'; 'dashing';

'hatchpoly'; 'hatchtype'; 'hatchangle'; 'hatchspace'; 'rec'; 'default.menu'; 'hatch';

'plotsym'; 'symscale'; 'filling' and fill'. The polygon hatching procedures (hatch,

hatchpoly, hatchtype, hatchangle, hatchspace, etc.) will be described later in Section

8.2.2.1, while the polygon filling procedures (symscale, plotsym, filling, fill) will be

described later in Section 8.2.2.2. Fig. 8.13 shows these 'areamenu' calls.

Fig. 8.13 'areamenu' calls

However, the description of procedures starts with those of the higher level which are

called by 'pick.area' mentioned above and shown in Fig. 8.12.

- 187 -

Chapter 8; Cartographic Representation Module

Procedure

area(vecx, vecy)

Function

This procedure calculates the area of a polygon by simple calculation

of the area lying underneath each segment of the polygon regardless

of its sign, Fig. 8.14 shows the process of the calculation for an

individual segment. It first determines the least y value (ymin), on

which the calculations of areas will be based. Then, for every

segment, the differences in the x-direction (Dx) and in the y-

direction (Dy) of the end points are determined, and whether these

values are negative or positive. Fig. 8.15 shows how areas can be

either positive or negative with respect to the difference in the x-

direction.
2(x2, y2)

yav

a f

ymin

■D5T

at - (Dy x Dx)/2

a r « (yl - ymin) x Dx
atotal - at + ar

Fig. 8.14 The calculation of area under a segement

Ymina)

b) Ymin

Fig. 8.15 The direction of the polygon

lines decides the sign of area calculations

- 188 -

C h a p t e r 8 ; C a r t o g r a p h i c R e p r e s e n t a t i o n M o d u l e

As each segment passes through the area calculation process, areas

are accumulated including whether they are positive or negative and

finally the whole area is obtained. Fig. 8.15(a) shows the positively

calculated areas while Fig. 8.15(b) shows the negatively calculated

ones. Finally Fig. 8.16 illustrates the area resulted from the

calculation procedure.

Ymin

Fig. 8.16 The vertical hatchings represents the final area

The procedure returns the total area value of the polygon.

perimeter(vecx, vecy)

Knowing that the distance between two points can be determined by

the equation:

length = V Dx2 + Dy2 (see Fig. 8.17)

then, by accumulating the lengths of all the segments forming the

polygon, the length of the perimeter is obtained.

B(xB, yB)

A(xA, yA)

Ax

Fig. 8.17 Length determination

nabor(vecxl, vecx2)

This procedure takes the two vectors of two polygons and checks

whether or not these two polygons are neighbours. This procedure

follows an earlier check on the two polygons made in procedure

'inclave' as to whether or not one of them is contained within the

other. The procedure 'nabor' checks the compatibility of the

- 189-

Chapter 8: Cartographic Representation Module

segments in both polygons. If any two segments, comprising one

from each polygon, match, then these two polygons are neighbours

and the procedure returns 'true'. Otherwise it returns 'false'.

sorting(veca, vecb)

This is not a normal sorting procedure, because only the first Vector,

'veca1, is to be sorted as usual whereas the second vector, 'vecb', is

to be arranged in accordance with 'veca'. For example, the numbers

within 'veca' and 'vecb' given below represent dummy values to be

sorted by this procedure.

veca vecb

1 5 4

2 2 7

3 10 8

4 3 12

Since each of these vectors represents a set of coordinate values,

they should always have the same link. Thus, for example veca(i)

should always be coupled with vecb(i), i.e. from the example

above, 5 should always be coupled with 4, and 10 with 8 and so on.

So, after sorting the values in 'veca' into a numerical order, these

vectors become

veca vecb
1 2 7
2 3 12

3 5 4

4 10 8

This is done by using the standard 'swap' procedure and a sorting

procedure 'sort' which checks the values of 'veca' and places them

in an order of ascending values. Whenever two values in 'veca' are

interchanged, their corresponding values in 'vecb' are also

interchanged . A record of the interchanging activities is used to

keep track of the interchanging activities taking place and when this

becomes zero, the sorting operation is complete.

inclave(vecxl, vecyl, vecx2, vecy2, oxc, oyc)

The aim of this procedure is to determine whether or not a polygon

is enclosed totally by another. A series of checks are made for this

- 1 9 0 -

Chapter 8;. Cartographic Representation Module

purpose. The first check is to compare the maximum and minimum

coordinate values of both polygons to determine which is likely to

be enclosed within which. Then these maxima and minima are

compared for overlapping. If they are apart, then these polygons fail

this procedure. Next, checks are made for the segment intersections

of both polygons. If any are found, then these polygons do not meet

the conditions for enclosure. A further check is made to determine

whether or not the two polygons are in the situation illustrated in

Fig. 8.18.

centroid

Fig. 8.18 A special case for a non-enclosed polygon

These two polygons meet the above conditions but still, 'L' is not

enclosed by 'K'. Thus, an imaginary horizontal line passing through

the centroid of 'L' is generated, and the intersections of the line with

both polygons are established. So, if the number of intersections on

the one side of the centroid of 'L', is a multiple of two, then 'L'

does not lie inside 'K' and the procedure returns 'false'. Otherwise

it returns 'true'.

Procedure 'inclave' uses three other procedures as illustrated in

Fig. 8.19.

Fig. 8.19 'inclave' procedure calls

polycheck(vecX, vecY)

This procedure checks whether or not an individual polygon had

been closed and whether a gap still exists in its perimeter. The

following examples of polygons shown in Fig. 8.20 represent

polygons which have not been closed.

-191 -

Chapter 8; Cartographic Representation Module

Fig. 8.20 Non-closed polygons

A polygon is said to be closed if the sum of its inner angles satisfy

the following condition:

sum of angles = 90 * ((2 * No of sides) - 4)

The calculation of angles is made within a loop by calling the

procedure 'innerangle' for each pair of segments, (see Fig. 8.21).

These are then summed and tested to ensure that the result of the

above equation to an accurate to ± 0.001°, this is done due to the

rounding of numbers during the mathematical operations resulted

from the precision of the processor.

This procedure can cope with polygons where their vertices were

digitised in either direction (clockwise or anticlockwise). The

procedure then returns 'true' if the polygon is closed or 'false' if it is

not.

innerangle(xl, y l, x2, y2)

Given two segments, the inner angle V formed by these two

segments, shown in Fig. 8.21, can then be calculated using the

bearings of the segments as follows:

a = P2 - pi

Fig. 8.21 The bearings of a vertex

The procedure returns the calculated angle as real.

- 1 9 2 -

8.2.2.1 Hatching Polygons

Chapter 8; Cartographic Representation Module

Hatching can be carried out according to the specific characteristics selected from a default

menu which is displayed immediately after the option 'HATCHING' has been chosen from

the menu in Fig. 8.11. The user can either accept the default settings for hatching or change

the parameters.

If the user chooses the default settings, as displayed in Fig. 8.22, then the program will

proceed with the calculation of the different intersections and transformations needed.

Otherwise, if the user is not satisfied with the default settings, these can be changed by first

selecting the command 'Change' from the menu using the pointer and the mouse. If this is

done, the user can change any of the three setting parameters at a time, these being:

a- the line type used for hatching - implemented by placing the pointer in the box marked

'type' and then clicking the mouse;

b- the orientation of the hatched pattern (the angle at which the lines are drawn); - which

is activated by placing the pointer in the box marked 'slope' and then clicking the

mouse; and

c- the density or spacing allowed between the lines - which is selected by placing the

pointer in the box marked 'space' and then clicking the mouse.

DEFAULT MENU

type

s lope

space

Accepted Change

Fig. 8.22 The default menu for selection of

parameters for hatching

a) If the line type is being chosen, then a menu of the different line types which may be

used for polygon hatching is displayed (see Fig. 8.23). The user may then choose the type

that is regarded as the most suitable for the particular polygon in hand.

- 193 -

999

Chapter 8: Cartographic Representation Module

LINE TYPE

Fig. 8.23 The line type menu for polygon hatching

b) On the other hand, if the orientation setting is chosen, then a window for the change of

slope is displayed in which the user can alter the default setting of the slope clockwise or

anti-clockwise, in increments of 5° or 15°. Fig. 8.24 shows the menu with a set of arrows

which are used to alter the orientation of the line pattern.

SLOPE

in c reases slope by 15°

the resulting slope
angle in d eg re es

d e c re a s e s slope by 15°

clone

Fig. 8.24 The menu used for selecting the
orientation of the hatched lines

c) The third option is to choose to change the spacing between lines. This also can be

achieved using a third menu displaying different spacing settings as shown in Fig. 8.25,

from which a specific one can be chosen.

■a inc reases slope by 5C

■0 d e c re a se s slope by 5°

- 1 9 4 -

Chapter 8; Cartographic Representation Module

S PACI NG

Fig. 8.25 The spacing menu

After having chosen the parameters required for hatching a specific polygon, the system

will carry out the job using the specified line type, slope and spacing.

The procedures used to implement hatching are as described below:

Procedure Function

default.menu()

This procedure retrieves and activates procedure 'Default.Menu'

from the database. It enables the user to choose alternative settings

for hatching polygons. Otherwise the default settings are retained.

The procedure returns the particular values selected for hatching in a

vector of four elements.

hatchtypeQ

This procedure retrieves and activates the menu 'Htype' from the

database which enables the user to select a suitable line type for

polygon hatching. It returns information about the particular line

type chosen, i.e. the lengths of the dashes and gaps (giving a

negative value if the line is continuous).

hatchangleO

This procedure retrieves and activates the menu 'Hangle' from the

database which enables the user to choose the orientation, i.e. the

angle at which hatching lines should be drawn. It returns the value

of the chosen angle in degrees.

- 1 9 5 -

Chapter 8; Cartographic Representation Module

hatchspace()

This procedure retrieves and activates the menu 'Hspace' from the

database, thus allowing the user to choose a convenient spacing

between hatching lines. It returns the value of the chosen spacing.

hatchpoly(vecx, vecy, vecl, space, angle, dash, gap) [Harrington, 1987]

This procedure is used to actually implement the polygon hatching

after the selection of the settings has been made by the user. It

makes use of five other procedures, namely: 'linepara'; 'lineint';

'sorting'; 'drawline' and 'dashing'. These calls are illustrated in

Fig. 8.26.

Fig. 8.26 The calls of procedure 'hatchpoly'

The procedure takes two vectors for the x- and y-coordinate values

which are the coordinate values of the vertices of the specific

polygon to be hatched. It also utilises the addresses for other smaller

polygons that may exist within this polygon (given in vector 'vecl')

so that a void may be left inthe hatching pattern. Also it takes the

particular values selected for the line type, the gradient (or slope) of

hatching and spacing between the lines, already discussed above

under the headings hatchtype, hatchangle and hatchspace and

performs the hatching operation. If the slope is a non-zero value, a

transformation procedure is applied to all the coordinate values and

the original vectors are replaced by their transformed values in the

rotated coordinate system x\ y' (see Fig. 8.27).

- 1 9 6 -

Chapter Cartographic Representation Module

Period

Period/2

Y'max

Y’min slope

Fig. 8.27 The steps in the hatching procedure

In this system, the hatch lines are parallel to the x' axis. In order to

find the number of hatch lines required to cover the whole area, the

values 'ymin' and 'ymax' are found. Knowing the spacing between

the hatch lines chosen from 'hatchspace', the ordinate of the first

hatch line, 'starty' can be identified as:

starty = ymin - (((ymax - ymin) - (NoOfLines * space))/

NoOfLines) + space/2

This is done to distribute the hatch lines evenly all over the area.

The intersection points of every hatch line with the polygon sides are

then found. This is done in two nested loops for each hatch line. A

check for intersection with all sides of the polygon is made. If

intersections are found, they are then checked to see whether or not

they occurred between the end points of the segments. If they do,

the intersections are then recorded into two vectors for point

intersections, one for the x- and the other for the y-value s. These

two vectors are then sent to the 'sorting' procedure, and afterwards

the hatching lines are formed according to their chosen particulars.

At the end of this operation, the procedure returns a picture of all the

hatched lines of the polygon. Fig. 8.28 illustrates examples of the

output resulting from this procedure.

- 1 9 7 -

Chapter 8; Cartographic Representation Module

Fig. 8.28 Examples of the output from the hatching procedure

hatch(vecx, vecy)

This procedure is designed to manage the calls to other procedures

to hatch certain polygons. Fig. 8.28 shows the calls made by it.
hatch

defaul t m e n u

Fig. 8.29 The calls of procedure 'hatch'

First, it calls procedure 'default.menu' to obtain the particulars of

the hatch lines to be used and then it calls procedure 'hatchpoly' to

perform the task of hatching the polygon as specified by its

coordinate values in vectors ’vecx’ and 'vecy'.

8.2.2.2 Filling Polygons

The other alternative for polygon representation is filling. Filling is concerned with

flooding a particular polygon with patterns. With spatial data, these patterns are often

vegetational patterns such as those for grass, trees, etc. In this system, eleven vegetational

patterns are available, namely those for bracken, coppice, heath, marsh, conifer woodland,

deciduous woodland, orchard, reeds, rough-grass, saltings, and scrub. These patterns are

chosen from a text menu and can then be scaled to fit to the specified scale of the map.

The descriptions of the various procedures used to fill polygons for area representation are

presented below.

Procedure Function
drsym(symbolname, posx, posy, xscale, yscale)

This procedure is not listed as one of those called by either of the

three procedures 'inclave'\ 'polycheck' and 'areamenu' because it

is not called directly by them. However, it is needed by the two

higher level procedures 'symscale' and 'plotsym'. The task

- 198-

Chapter 8; Cartographic Representation Module

implemented by this procedure is to read the data of a specific

symbol, to scale it in both directions according to the factors 'xscale'

and 'yscale' and to generate a picture of it. In turn, it calls the

procedure 'stringtoint' to translate each of the symbols (which are

read as characters) into the corresponding set of numerical

coordinate values which describe the particular symbol and are held

in the database. The procedure returns the picture of the symbol.

symscale(symbolname)

This procedure takes a symbol name and places that symbol in the

menu shown in Fig. 8.30, where the user can then scale the symbol

in both the x- and y-directions.

in c reases sca le in Y

d e c re a s e s sca le in X

d e c re a s e s scale in Y

o

scaled size

original size

in c reases sca le in X

<>

d o n e

Fig. 8.30 The scaling menu

The use of the right arrow increases the scale in the x-direction while

the left arrow decreases it. Similarly, the use of the up arrow

increases the scale in the y-direction while the down arrow decreases

it. The modifications made to the scale of the symbol can be

followed in the uppermost box of the menu. At the end, the

procedure returns the scaling factors obtained in each direction as a

vector of two elements.

plotsym(xa, ya, length, pitch, xscale, yscale, symbolname)

The aim of this procedure is to place a series of symbols along a

stretch ('length') of line starting from a point A (xa , yA) at intervals

according to the selected pitch. The symbol is scaled by the xscale

and yscale factors. The procedure returns a picture of the whole line

of symbols (see Fig. 8.31).

- 199-

.Chapter Si Cartographic Representation Module

1----------1-rH
pitch V . pitch/2

Fig. 8.31 This figure illustrates the layout o f the ’p lotsym ’ procedure

filling(vecx, vecy, vecl, spacing, symbol) [McGregor & Watt, 1986]

Filling a polygon with a specified pattern of symbols is the task of

this procedure. It uses five other procedures to carry out this task.

These are: 'symscale', 'linepara'’, 'lineint'-, 'sorting' and

'plotsym'. Fig. 8.32 illustrates these calls.

s y m s r a l e

Fig. 8 .32 The calls o f procedure 'filling'

At the beginning, the procedure retrieves the table of available

symbols from the database and displays them in the form of a text-

based menu (Fig. 8.33) from which the user will be able to choose

the symbol needed. Once a symbol has been selected, a scaling

menu appears to scale that symbol to fit in with the scale of the map.

BRACKEN

SCRUB

)()S l

REEDS
ROUGH-GRASS

DECIDUOUS
HEATH

ORCHARD

SALTINGS

COPPICE

MARSH

CONIFER

Fig. 8.33 The menu used to select the filling sym bols

The steps which are followed to implement the filling operation are

similar to those used to hatch polygons except that, instead of

drawing the continuous or broken lines used in hatching, each line

used in a fill pattern is divided into periods or pitches where each

- 2 0 0 -

Chapter 8: Cartographic Representation Module

period represents the location where a symbol should be placed.

After the calculation of these locations (periods), a picture of the

symbols is created and returned using 'plotsym' as shown in Fig.

8.34.

Fig. 8 .34 The output o f the procedure used for area filling

fill(vecx, vecy, vecl, spacing)

The job of this procedure is to manage the calls to the filling

procedure and to display the returned picture on the screen.

8.2.3 Line Representation

When the option 'LINE' has been chosen from the menu in Fig. 8.2, procedure 'pickline'

is activated and retrieves the structure 'L-holder' from the database. Then, in a sequential

manner, the procedure highlights the selected feature. For line representation, the user will

be able to choose any one of the different line types available from the line type menu

shown in Fig. 8.35 (which is different to that used before for polygon hatching).

LI M I T Y P I

Fig. 8.35 The line type menu for linear representation

Procedure Function

doblseg(xA, yA, xB, yB, width, dash, gap)

This is a graphics procedure which enables the program to represent

Chapter 8: Cartographic Representation Module

a segment joining two points A(xa , yA) and B(xb , yB) as two

parallel lines spaced from each other by a distance equal to the value

contained in 'width'. These two lines can either be continuous or

dashed. Fig. 8.36 shows the effects of this procedure.

wid.h/2 T width

Fig. 8 .36 The principle o f the 'doblseg' procedure

This procedure uses the two other procedures, 'drawline' and

'dashing' described earlier, and returns a picture of the drawing.

dobline(vecx, vecy, width, type, dash, gap)

This is another graphics procedure which aims at representing a

chain of segments as double lines on either side of the original

segments (which are then omitted), and spaced apart by the 'width'

as shown in Fig. 8.37.

Fig. 8.37 The result of procedure 'dobline'

This is done in six steps:

(i) The first of these is to obtain the equation of the line that passes

through the first two points, shown as line 'AT in Fig. 8.38.

- 2 0 2 -

Chapter 8: Cartographic Representation Module

STEP 1

^ y = mix + n1

F ig . 8 .38 Step 1

(ii) Secondly, the equation of a line 'B l' perpendicular to 'A l' is

obtained using the procedure 'perpenline' as shown in Fig. 8.39.

90
STEP 2

F ig . 8 .39 Step 2

(iii) In the third step, two parallel lines, A IL ' and 'AIR', are then

established and spaced by 'width/2' on either side of A l ', as

shown in Fig. 8.40.

- 2 03 -

Chapter 8: Cartographic Representation Module

A1R

width/2 STEP 3

F ig. 8 .40 Step 3

(iv) Next, in the fourth step, the intersections of these parallel lines,

'AIL' and 'AIR', with the perpendicular 'B l' are calculated and

stored in two vectors 'VL' and 'VR', one for the left intersections

and the other for the right intersections (see Fig. 8.41).

A1R

I1L
STEP 4

MR

Fig. 8.41 Step 4

(v) In the fifth step, the previous steps (i) to (iv) are repeated for the

second segment, which will end having the lines 'A2'; 'B2'; 'A2L'

and 'A2R'. The intersection of 'A2L' with 'AIL' is then calculated

and stored in 'VL' while that of 'A2R' and 'AIR' is stored in 'VR'

(see Fig. 8.42).

- 2 0 4 -

Chapter 8; Cartographic Representation Module

A2
A2R

A2L

A1R
I2L

I2R

ST EP 5

Fig. 8 .42 Step 5

(vi) Finally in the sixth operation, steps (i) to (v) are repeated for all

the segments and at the end, the parallel segments are drawn in a

loop joining these segments with the type of lines specified by 'type'

(a number selected between 1 and 4). Fig. 8.43 illustrates the result

from this particular operation.

STEP 6The dashed
lines
representing
the original
lines will not
be shown

Fig. 8 .43 Step 6

The four types of lines which can be obtained from this procedure

are as shown in Fig. 8.44.

Fig. 8 .44 The four line sty les available for double lines

thkline(vecx, vecy, width)

This graphics procedure produces a thick line as shown in Fig.

8.45.

- 2 0 5 -

Chapter 8: Cartographic Representation Module

width/2

Fig. 8.45 The result o f procedure ’thkline'

This is done by calling procedure 'doblseg' from within a loop and

specifying the 'width'. At each call, the width is decreased so that

when width becomes zero, the whole space between the first two

lines is filled.

ddline(vecx, vecy, width, gap, dash)

This graphics procedure produces a thick dashed line as can be seen

in Fig. 8.46.

Fig. 8 .46 The result o f procedure 'ddline'

The design of this procedure is the same as that o f 'thkline' except

that, instead of using continuous lines in each call to procedure

'doblseg', 'ddline' uses a dashed line.

railine(vecx, vecy, width)

This procedure is used to represent railway lines. First, the

procedure calls the subsidiary procedure 'ddline' to draw the first

part of the shape, which comprises the thick dashed line, as

described above and shown in Fig. 8.46.

Secondly, 'dobline' is then called to draw two bounding lines on

either side of the thick dashed line, so ending up with the required

representation of this line symbol (see Fig. 8.47).

Fig. 8.47 The result o f procedure 'railine'

bordering(vecx, vecy, width)

This procedure imports a 'dash/dot' appearance to a given line. It is

implemented in a similar way to that used in 'dashing', except that

there is a counter for the dashes. Whenever this counter is a multiple

of two, the procedure then draws a 'dot' rather than a dash as

shown in Fig. 8.48.

Fig. 8.48 The result o f procedure 'bordering'

- 206 -

8.2.4 Point Representation

Chapter 8: Cartographic Representation Module

Having chosen the 'POINT' type from the menu in Fig. 8.2, procedure 'pickpoint' is

activated which in turn retrieves the structure 'P-holder' from the database, thus allowing

access to all the various features stored there. It then calls three other procedures;

'text.write; 'chpoint' and 'message.proc' to implement the cartographic representation of

point features. Fig. 8.49 illustrates these calls.

Fig. 8.49 The calls o f procedure 'pikpoint'

Since points represent those features occuring on the Earth's surface which are too small to

be distinguished by dimensions on a map at a specific scale, they need to be represented

symbolically. At the beginning of this procedure, a menu is displayed with the different

symbols which are available to represent features in this system. In the point representation

menu shown in Fig. 8.50 (and previously in Fig. 5.10), there are three different classes of

symbol types, which are:

a- Vegetational;

b- Geometrical; and

c- Textual.

Vegetational symbols are those used to represent the individual occurrence of a vegetation

feature such as a tree at a specific location, and they are the same as those mentioned earlier

in polygon filling. Geometrical symbols usually represent individual entities, such as cities

(which may be represented by a circle), triangulation marks, and so on. These two types of

symbols are stored in two different tables in the database and are called by two different

procedures. The third available type is textual where text can be introduced and be laid on

top of the graphical images using different fonts.

- 2 0 7 -

Chapter 8: Cartographic Representation Module

SYMBOLS

("W TXT

\\ I o
O

ST
A \/f\

® A A
A # u
© O □

© H O

Areal Symbols

Point Sym bols

Fig. 8 .50 The menu used for sym bol selection

Procedure 'chpoint' uses another procedure called 'Fonting' which manages texts.

'chpoint' and 'Fonting' are described below:

Procedure
chpoint(x, y)

Fonting(x, y)

Function

Given the x- and y-coordinate values of the position where a symbol

should be placed, this procedure retrieves the picture-based menu

shown in Fig. 8.50 above, which allows the user to select the most

appropriate symbol. Then the procedure retrieves that particular

symbol from the database and displays it at the location specified by

the 'x' and 'y' coordinate values.

At the start of this procedure, the fonts available with PS-algol are

retrieved and are divided into two sets for the reason of display

convenience. Several procedures are then declared within the

'Fonting' scope to allow for text entry and choice of fonts. These

- 2 08 -

Chapter 8; Cartographic Representation Module

are: 'text.writing'; 'chosefont'; 'fonting' and 'retrieve'. They are

described below individually. Fig. 8.51 illustrates the procedure's

calls while Fig. 8.52 shows the display resulted from 'Fonting' at
the 'text.entry' stage.

F o n t i n g

Fig. 8.51 The calls of procedure ’Fonting'

FONT

Enter Text

(OK) \ (c a n c e l)

Fig. 8.52 The figure illustrates the window and the individual boxes
used to enter text and choose the convenient font

text.writing(x, y, text, font, window)

The job implemented by this procedure is to take the 'text' supplied

to this procedure in the specified 'font' and place it in a particular

'window' on the screen at the determined location 'x' and 'y'.

chosefont(which.font.menu)

This procedure allows the user to select a convenient font for the text

out of the twelve available fonts in a pull down menu. Fig. 8.53

shows the display of the font selection window. It will be noticed

that only six of these fonts are available in the menu at any one time.

- 2 0 9 -

Chapter 8; Cartographic Representation Module

saltings

more

CANCEL

Fig. 8.53 Fonts are available from a pull-down menu

The procedure then returns the selected font.

fonting(text)

This procedure takes the entered text and calls procedure

'chosefont' to select a font and then displays that text in the chosen

font using procedure 'text.writing'. The procedure returns the final

chosen font.

retrieveO

The task implemented by this procedure is to activate the font

window which enables the user to select a font type. It first allows

the user to enter text using the procedure's.editor' taken from the

'utilities' database and by selecting any one of the three available

commands : 'OK'; 'Cancel' and 'Font', the user can (i) assign the

default font to the text entered; (ii) re-enter text; and (iii) choose a

different font style from the pull-down menu.

8.3 S c r o l l i n g

The scrolling facility, which implements the operation otherwise known as panning, works

hand in hand with zooming. This results from the fact that scrolling allows the user to

move to areas which were hidden due to zooming activities. As has been discussed in

Chapter 6, Section 6.5.2, if a window smaller than the image portrayed on the screen is

specified, this image is clipped automatically. Then if a viewport equal to the screen area is

specified and the contents of the window are displayed, the clipped image is then

- 2 1 0 -

Chapter 8: Cartographic Representation Module

magnified. Furthermore, scrolling is achieved by defining a series of windows, each

smaller than the full size of the screen.

The six procedures used to perform scrolling are: 1S c r o l l in g ’transform'Ushift';

'D shift'; 'Lshift' and 'Rshift'. Fig. 8.54 illustrates the links between these procedures.

However, only 'Scrolling'; 'transform' and 'Lshift' will be described here, because the

other three are similar to 'Lshift' but simply operate in different directions.

Fig. 8.54 The calls of procedure 'Scrolling'

Procedure Function

Scrolling(picture, window.range)

At the start of this procedure, a check is carried out to ascertain

whether or not zooming has already been done. If it has not, then

scrolling need not be implemented, and the procedure is aborted. On

the other hand, if zooming has been done, 'Scrolling' then takes the

coordinate values of the display window (given in map coordinates)

and displays the scrolling menu which allows the user to specify the

direction of scrolling. Fig. 8.55 shows the menu used for scrolling.

Fig. 8.55 The menu used for scrolling

The procedure then calls whichever one of the four matched

procedures is needed to perform the scrolling operation in the

required direction. Once the scrolling operations are completed, the

map coordinate values at which this scrolling ends are then recorded

in the global scope of the module.

- 2 1 1 -

Chapter 8; Cano graphic Representation Module

transform(avalue, screen.range)

This procedure transforms a value entered in screen units into the

equivalent map units.

Lshift(screen.range, window, picture)

This shifts the viewport over the map leftwards. The righthand part

of the window is copied to the left end of the screen. The resulting

gap on the right is then filled by drawing the picture within that
specified area.

The other three possible shifts - Rshift, Ushift and Dshift - are

implemented in a similar manner.

8.4 Q u it & th e S to ra g e o f C a r to g ra p h ic S ym b o ls

The generation of all required cartographic symbols is carried out for all the features held in

the database for the area in question in a sequential manner. Once a particular feature has

been passed through this module, it will be assigned with a flag in its record stating that

this feature has already been symbolised. So next time, the system will look for those other

features to be included in the map which have not yet been defined in a symbolic form.

After each individual symbolising activity, each of these items will be flushed out of the

screen and will be saved in the 'MDB' database as pictures in the record of their features.

They will not be seen again until data retrieval is carried out.

Once all the data available for display in cartographic form in a particular type of data

(points, lines, or polygons) have been consumed, the system will automatically quit the

operation and allow the user to choose another type of data or to quit the module.

If the user chooses to quit the module, he has the capability of recording all the changes

made to the data, or to discard all the changes that have been carried out during the whole

session. In the case where the save command is issued, all the changes to the data will be

recorded in the database, and these features need never be submitted to this module again.

- 2 1 2 -

Chapter 8; Cartographic Representation Module

8.5 S u m m a r y

In this chapter, the graphics procedures used for the cartographic representation of different

types of features have been discussed. These procedures are performed for all those

features entered into the system, whereby every feature, after having been passed to a

suitable procedure, has its resulting cartographic representation stored as a picture in its

record in the database.

This module is so organised that the process of cartographic representation may be

interrupted at any stage and returned to in a subsequent run of the program.

CHAPTER 9

Chapter 9; Data Retrieval Module

CHAPTER 9: D A T A R E T R IE V A L M O D U L E

9.1 I n tr o d u c t io n

This module is concerned with the different ways of retrieving data by making full use of

the data structures described earlier in Chapter 5, namely the hierarchical feature coding

system and the four relational data structures of the features themselves. This chapter

includes a description of the different procedures which handle the issuing of queries and

which ensure the display and saving of the results of these queries.

This procedure is carried out in the first instance by placing the pointer in the box

containing the appropriate menu entry and then clicking the mouse to retrieve the required

information. Records matching the given qualification are then retrieved and displayed. If

the query answer is to be saved, record identifiers are stored in a specific structure instead

of creating new tables, as is the case with other systems based on SQL.

Retrievals are carried out relative to three different partitioning mechanisms. Firstly, the

type of data required (Polygons, Lines or Points) may be selected. Secondly, a specific

layer of the data, for instance Roads or Land Cover, can be selected. Thirdly, a particular

kind of feature can be selected according to the hierarchy of the feature coding system (see

Appendix A). In fact, any combination of these can be used to restrict the amount of data

which has to be retrieved. For example, the user may select all the Polygons occurring in

the Land Cover layer for display.

As stated above, retrievals are carried out by menu selection. For example, if the Type'

menu is being activated, the user can then choose to retrieve features of any one of the three

types, namely 'Polygon'; 'Line' or 'Point', or any combination of two of them or all three

together. Should the user decided to retrieve data from the 'Layer' menu, this can be done

by first activating the 'Layer' menu, then simply selecting the layers of interest by pointing

at them and clicking the mouse as required. Furthermore, the object oriented

implementation of the database is exploited at this stage as well by allowing the user to

retrieve single entities from the databases, by using the 'Entity' menu. Using this menu, the

user can retrieve features down the hierarchy of the feature classification. For example, the

user can retrieve data according to a specified feature class, category and attribute.

- 2 1 4 -

Chapter 9: Data Retrieval Module

Moreover, a combination of selections from two menus at a time is allowed. Thus a user

can decide to retrieve items from both the 'Type' menu and the 'Layer' menu or from the

'Entity' menu and the 'Type' menu. It should be noted however that a combined selection

from the 'Entity' menu and the 'Layer' menu is not provided because of the fact that an

entity that belongs to a particular layer cannot be retrieved from another layer.

9.2 M o d u le A rc h i te c tu re

The tasks carried out by this module involve various different operations which are

concerned with (i) the layout of the screen to handle the various activities taking place; (ii)

establishing access to the databases; and (iii) the various retrieval operations required. It

also provides some other facilities such as zooming and saving the queries and the

information retrieved by them. Fig. 9.1 illustrates these different activities.

Menu HandlingScreen Layout

DATA
RETRIEVAL

DB Opening &
Map Selection

Query Processing &
■^ Information Retrieval

Zooming Displaying Results

Saving Results

Fig. 9.1 The module's activities

Some of these activities are performed via a series of procedure calls at the module level

while the rest are carried out by direct commands from the main body of the module. The

procedures which can be called are:- 'prepform '; 'text.write'; 'zoomin '; 'zoomout';

'c h e c k m 'a c t iv a te '; 'centity'; 'clayer'\ 'retType'; 'retLayer'; 'selectEntity'

'retEntity '; 'retT+L' and 'retT+E'. Fig. 9.2 shows the module's calls to these

procedures, while Fig. 9.3 illustrates the flowchart of the module. The first four

procedures have already been described in Chapter 6, Section 6.5.2; the rest (together with

those procedures called by them) will be described in the following sections.

- 2 15 -

Chapter 9; Data Retrieval Module

retT+E

re tT y p e

retrieve

re tEntity

re tL a yer retT+L

Fig. 9.2 The module’s calls

In the following sections, the description of each of these activities is given with an

emphasis on their relevance to query processing and information retrieval.

9.3 S c re e n L a y o u t

The screen layout is created so that the major part is allocated to the graphics display of the

map which results from the transactions performed by the module. This is done using

procedure 'prepform' described in Chapter 6, Section 6.5.2 and illustrated in Fig. 6.8.

- 2 1 6 -

Chapter 9; Data Retrieval Module

Zoom out

Quit

Start
Zoom in

(END)

true
~start

false

OPEN DB

zoomout

zoomin

prepform

SELECT MAP

start -> false

def.men ->

finished -> true

finished -> false

DSIPLAY MENUS

CHOOSE operation

RETRIEVE MAP
from DB

retLvec -> vector(12)

retTvec -> vector(3)
retevec -> vector(10)
retEvec -> vector(10)

Cont.

- 2 1 7 -

Chapter 9; Data Retrieval Module

kk -> 0
kkk *> 0

done -> false

start true

done

false

GET cursor location (x,y)

checkm clayer

YESdef.men .vec(ii) -> 'done'YES done -> true

NO

YESNO 'etLvec(ii) -> 'Quit' start -> true

NO

d ef.m en V YES
* > /

ctype jj -> jj + 1

NO

NO YES
vec(jj) -> 'done' done -> true

NO

Cont.

- 2 1 8 -

Chapter 9; Data Retrieval Module

YES
'etTvec(jj) -> ’Quit'

start -> true
NO

def.mei
- >

YES
kkk -> kkk + 1 centity

NO
YES

'etevec(kkk) -> 'Get Entity'false
start

kk -> kk + 1

NOtrue
selectfcntity

ii -> 0 YES
'etevec(kkk) -> ’Proceed’

kk -> 0
kkk -> 0 done -> true

NO

YES
retevec(kkk) -> ’Quit’

Quit -> true
NO

Ccmt.

- 2 1 9 -

Chapter 9: Data Retrieval Module

ii>-1 YES NO NO

jj>«1

YE: YES

NO

YES

kk =1

NO

YES

NO

YES

NO

YESkk >-

NO,

JJ->JJ+1

retEntity

retT-E

retLayer

retT-L

retType

Fig. 9.3 The flowchart of the module 'retrieve'

9.4 D a ta b a se O p en in g & M a p S e lec tio n

The particular database which is the concern of this module is 'MDB\ where the data of

the features are being held. In this module, database 'MDB' is opened in the 'read' mode.

The various maps which have been stored and are available within this database are then

presented in a menu form, thus allowing the user to select the particular map which has to

be retrieved from the database.

The map's general details (i.e. the scale of the map; the coordinate values of the edges, the

grid interval, etc.) are then retrieved and its grid is displayed on the screen. No further

retrieval from the database will be carried out until the user specifies the exact details of the

- 2 2 0 -

Chapter 9: Data Retrieval Module

data to be retrieved. This is done in the next stage after the user has chosen the zone of

interest to work on.

9.5 Z o o m in g

Zooming in and out facilities are available throughout the period that this module remains

activated. The description of these procedures can be found in Chapter 6, Section 6.5.2.

9.6 M enu H andling

Generally speaking, this module has been built around the concept of retrieving information

from the database in three ways; by types; by layers and finally by individual entities.

As has been discussed earlier, queries are issued to the system using a set of menus, where

each menu represents a different means of data retrieval. The module manages these menus

and activates the one at the foreground of the screen. Menus are sent backward and forward

by pointing at the header or title box showing the menu entry that is wanted and clicking the

mouse. This will cause that particular menu to be brought forward to the foreground of the

screen. This is done using procedures 'checkin' and 'activate'. The foreground menu in

the default setting is the one which allows retrieval by layer. Fig. 9.4 shows these menus at

the default setting. The module also keeps track of all the activities taking place during the

process, such as which menu is active and which items of a particular menu are being

selected.

Boundary i
Building 1
Designated Area oint
Hydrography me Entity
R elief & Landforms olygon day
Land Cover •one
Roads & Railways »uit
Structure
Utility
Text
D one
Quit

Fig. 9.4 The default setting o f the retrieval m enus

The various menus are handled by two procedures 'checkin' and 'activate'. Their jobs are

- 2 2 1 -

Chapter 9: Data Retrieval Module

to distinguish which menu is selected and to make it active. These procedures are described

below.

Procedure Function

checkm(x, y)

This procedure takes the 'x' and 'y' values of the location of the

pointer when the mouse is clicked and returns an identifier of the

chosen menu.

activate(x, y)

This procedure takes the result of 'checkm' and arranges the

display of the menus accordingly. Thus, any menu displayed in the

foreground is the active one. Menus are sent backward and forward

by clicking the mouse when the pointer points anywhere inside the

box showing the title of the menu. Fig. 9.5 shows the new setting

of these menus when the 'Type' menu is activated.

Boundary _ 1
Building 1
Designated Area Point
Hydrography Line Entity
R elief & Landforms Polygon (lay
Land Cover D one
Roads & Railways Quit
Structure
Utility
Text
D one
Quit

Fig. 9.5 The setting of the menus at the Type' selection

The user can, if he wants to, select from both the ’Layer’ and Type’

menus at any one time. Similarly, the ’Entity’ and Type’ menus can

also be used in combination.

9.7 Q u ery P ro c e ss in g & In fo rm a tio n R e tr ie v a l

When queries are issued, a select command is issued to retrieve the records satisfying the

required qualifications and when the selection is a combination of two menus (e.g. the

Chapter 9: Data Retrieval Module

'Type' and 'Layer' menus), the system then searches for those features of the specified

layer(s) in the structure(s) of the selected type(s); i.e. either one or a combination of A-

holder; L-holder; P-holder and T-holder. Those features satisfying the layer and type

conditions are then retrieved and displayed on the screen.

The procedures dealing with data retrieval are described in five subsections. Section 9.7.1

describes those procedures dealing with retrieval of data by type. Section 9.7.2 deals with

the procedures retrieving data by layer. Section 9.7.3, deals with the retrieval of data by

individual entities. Section 9.7.4 describes the retrieval of data by a combination of type

and layer information. Finally, Section 9.7.5 details the retrieval of data by a combination

of entity and type.

9.7.1 Retrieval By Type

Retrieval by type is carried out by first activating the menu which allows selection of the

three types of data (Point, Line and Polygon) to be carried out. This is done by calling the

procedure 'ctype'. Once the selection of one or all the types has been completed, the

procedure responsible for the retrieval of data, 'retType', is called. It takes a vector of

strings which contains the types required for the transaction. Fig. 9.6 illustrates the calls

made at the module level to retrieve by Type. Then a check of types is made and depending

on the results of this check, a selection from the three following procedures 'RetApic

'RetLpic' and RetPpic' is made and the appropriate ones are called. These procedures,

together with 'ctype', are described below.

Retrieval by Type

Fig. 9.6 The calls made for retrieval by Type at the module level

Procedure Function

ctype(x, y)
The operation that this procedure carries out is to specify the type(s)

of the data to be retrieved. When the 'Type' menu has been

activated, then, given the 'x' and 'y* values of the position (or

-2 2 3 -

Chapter 9; Data Retrieval Module

positions) at which the pointer was located when the mouse was

clicked, this procedure determines which type (or types) have been

selected for data retrieval. Two other operations, 'Done' and 'Quit',

are also available within the 'Type' menu. When 'Done' is selected,

this means that the end of the type selection process has been

reached. This will result in a message being sent to the system to

start the next phase. On the other hand, if 'Quit' has been selected,

this will abort the whole operation and return the user to the menu of

modules. Fig. 9.7 shows the display of the 'Type' menu.

l YI ’K
Point
Line______
Polygon
D one
Quit______

Fig. 9.7 The menu for 'Type' retrieval

The procedure returns the type(s) to be retrieved.

RetApic(string map.name; pntr A-structure)

This procedure takes a pointer to structure 'A-holder' and forms and

draws the pictures of the features stored in it.

RetLpic(string map.name; pntr L-structure)

This procedure takes a pointer to structure 'L-holder' and forms and

draws the pictures of the features stored in it.

RetPpic(string map.name; pntr P-structure)

This procedure takes a pointer to structure 'P-holder' and forms and

draws the pictures of the features stored in it.

retType(* string type.vec, string database.name, pntr map.name)

This procedure takes a vector of strings indicating the selected

type(s). It then checks the chosen types and calls any or all of the

three procedures dealing immediately with data retrieval by type.

These procedures return the graphic results which are then sent to

the screen. Fig. 9.8 illustrates the calls made by this procedure.

- 2 2 4 -

Chapter 9; Data Retrieval Module

re tT y pe

Fig. 9.8 'retType' procedure calls

9.7.2 Retrieval By Layer

Retrieval by layer is done by first activating the menu of layers (which is that displayed as

the default setting) by placing the pointer in the box showing the title 'Layer' and then

clicking the mouse. The menu shown in the foreground of Fig. 9.4 is the one which allows

the selection of layers to be carried out. The required layer(s) can then be selected from the

menu by simple pointing and clicking actions. Procedure 'clayer' is designed to detect the

chosen layer(s). The retrieval operation is then carried out by calling the procedure

'retLayer' (see Fig. 9.9), which in turn calls procedure 'codestrip'.

Retrieval by Layer

dffî nxr u,©ttlLa^®(r

Fig. 9.9 The calls for retrieval by Layer made at the module level

Procedure Function

clayer(int x, y)

This procedure determines the layer (or layers) needed to be

retrieved when the 'Layer' menu is activated. There are ten layers

and two commands available from this menu, see Fig. 9.10. The

two commands are the same as those contained in 'ctype' used in

the Type' menu and perform the same jobs. The ten layers are the

nine individual classes in the classification described in Appendix A,

while the tenth layer is text. The procedure returns a vector of

strings of the selected layer(s) for retrieval.

-2 2 5 -

Chapter 9; Data Retrieval Module

I AVI k
Boundary_____________
Building______________
Designated Area______
Hydrography__________
R elief & Landforms
Land Cover___________
Roads & Railways
Structure______________
U tility________________
Text__________________
D one_________________
Quit__________________

Fig. 9.10 The menu for Layer' retrieval

codestrip(int code)

This is a very simple procedure which takes a code number and

determines the specific layer to which the feature holding this code

belongs by returning a number between zero and nine (see Appendix

A).

retLayer(*string layer.vec, string database.name; pntr map.name)

The procedure opens the specified database and then accesses the

specific table corresponding to the selected map. It then analyses the

vector of layers which contains the selected layers which need to be

retrieved. Features satisfying the requirements (checked by calling

procedure 'codestrip') are then retrieved and displayed.

The calls made by procedure 'retLayer' are shown in Fig. 9.11.

retLayer

Fig. 9.11 'retLayer' Procedure Calls

9.7.3 Retrieval by Entity

Retrieval by entity is the most elaborate part of this module among the retrieval options

since it enables the user to select and retrieve by class, category, features and finally (at the

lowest level of classification) by the specific attributes of the features themselves (if these

have been provided). This could be one of the greatest advantages of employing the hybrid

- 2 2 6 -

Chapter 9: Data Retrieval Module

database system examined in Chapter 5.

In a manner similar to that used with the other options described earlier, retrieval by entity

is carried out by first activating the menu with the title 'Entity' (shown in Fig. 9.12) and

then choosing the box 'Get Entity'. The procedure responsible for doing so is 'centity'.

The selection of the entity code then follows using procedure 'select.Entity' which in turn

calls procedure 'obtain.code'. Finally, the retrieval operation starts by using procedure

'retEntity' which in turn calls four other lower level procedures. Fig. 9.13 illustrates the

calls made at the module level.

i \ I I IV
Get Entity
Display
Quit

Fig. 9.12 The menu for ’Entity' retrieval

s e l ec l . Enti ty

Retrieval by Entity

Fig. 9.13 The calls made to retrieve by Entity’ at the module level

The other four procedures called by 'retEntity' are: 'class.code'', 'retfromA'; 'retfromV

and 'retfromP '. Only the first two procedures ('class.code' and 'retfromA') will be

described since the other two procedures ('retfromL' and 'retfromP') are similar to

'retfromA' except that they retrieve the data from different structures of the database, i.e.

from 'L-holder and P-holder instead of from A-holder.

Procedure Function

centity(int x, y)

If the 'Entity' menu is activated, then this procedure determines

which operation is required when the pointer is placed in a specific

box inside the menu area and the mouse is clicked. These operations

- 2 2 7 -

Chapter 9; Data Retrieval Module

are:-

i) 'Get Entity' which leads to four consecutive menus that allow the

user to identify which entity is to be retrieved;

ii) 'Display' which allows the display of the retrieved entities on the

screen; and

iii) 'Quit' which returns the user to the module menu. The procedure

returns the name of the operation requested.

select.Entity()
The task of this procedure is to first call up procedure 'obtain.code'

and then to store the returned code with its level of classification in a

vector of two elements.

obtain.codeO
This procedure allows the user to select the level of classification at

which the retrieval of data will be carried out. Thus retrieval can be

made on the class level, which is equal to retrieval by layer. On a

lower level, features can be retrieved according to categories.

Furthermore, they can also be retrieved by stating the feature name

itself and finally, retrieval can be carried out according to the

attributes of the features (when available). This operation is carried

out via four consecutive menus showing the classes; the categories

within a class; the features within a category; and finally the possible

attributes of a specific feature. Fig. 9.14 illustrates an example of the

hierarchy of the menus generated by this procedure.

BOUNDARIES
BUILDING
DESIGNATED AREA
HYDROGRAPHY
RELIEF & LANDFO RM S
L A N D COVER

WOOD LANDRO A DS A N D RAILW AYS
ARABLE/CULT. LAND
LOW VEGETATION
NO VEGETATION

STRUCTURE
UTILITY

BARREN LAND
DESERT

SAND
ROCK

11: vi i ki:
(11< x >si:

(ll<)()M Cl .ASS

<M IT

(I KK)SF CATIXi(>RY

Fig. 9.14 The hierarchy of the menus to generate a code

- 2 28 -

Chapter 9; Data Retrieval Module

If the user chooses a class from the menu and then chooses the

'Quit' command from the class menu, then all the features of the

database having their code number indicating that class will be

retrieved from the database and will be displayed. A similar

approach has been adopted for categories, features and attributes.

Procedure 'obtain.code' declares another procedure 'choose'

within its scope which allows the scan of a particular table in a

database thus creating a text-based menu of the elements found in

that table.

The procedure returns the code obtained and the level at which the

code was generated, i.e. if the user had chosen to retrieve by class,

then the level is '1'; if the selection was by category, then the level is

'2'; and so on. Fig. 9.15 illustrates the calls made by this procedure.
o b ta in .c o d e

©fa®©©®

, ^
[Pltse 'IssahMrfU®

Fig. 9.15 The calls made by procedure ’obtain.code’

class.code(*int chosencode.level; int stored.code)

Whenever the level of searching has also been defined, this

procedure determines whether or not a chosen code matches those

codes passed to the procedure during the database search operation.

It returns a boolean value, 'true', if it matches, or, the value 'false'

if it does not.

retfromA(string database.name; pntr map.name)

This procedure establishes access to the specified 'map.name' table

within the given 'database.name'. It then scans through the codes of

the features stored in the structure A-holder, checking for those

features whose codes match the selected code. This is done by

calling procedure 'class.code'. Successful searches are then

reported to the screen.

retEntity(*int code.level; string database.name; pntr map.name)

- 2 2 9 -

Chapter 9: Data Retrieval Module

The task of this procedure is to make the calls to the three

procedures concerned with the search and retrieval of features by

specifying the chosen code and the level at which it was selected - as

described earlier in procedure 'obtain.code '. It calls procedures

'retfromA'; 'retfromL' and 'retfromP'. Fig. 9.16 shows these

calls together with the lower level calls of these procedures to

procedure ' class .code'.

Fig. 9.16 The calls of procedure 'retEntity'

9.7.4 Retrieval by a Combined Selection from the Type and Layer Menus

A layer can contain features of different types (Polygons, Lines and Points). For example,

the layer 'Roads and Railways' contains the codes for the associated features which belong

to type polygon, such as those used for filling embankments and cuttings. It also contains

features such as road signs (which are of type point) and obviously contains those features

such as roads and railways (which are of type line). So, sometimes it will be very desirable

(or indeed required) to retrieve those particular features of a specific type from a particular

layer. This is the task of procedure 'retT+L'. Based on the values returned from

procedures 'checkm' and 'activate', the main body of the module calls procedure

'retT+L' to retrieve the required information. The description of procedure 'retT+L' is

given below.

Procedure Function

retT+L(* string vec.of.layers, vec.of.types; string database.name; pntr map.name)

Given the layers to be searched in a vector, the procedure first

analyses this vector and discards the unwanted layers. Then it

checks the selected types and starts the search through the 'Type'

structure ignoring those features which do not meet both conditions

of type and layer. On the other hand, those features which do meet

- 2 3 0 -

Chapter 9; Data Retrieval Module

the two conditions are then reported to the user on the screen. In

turn, procedure 'retT+L' calls only one procedure, which is

'codestrip', (see Fig. 9.17).

retT+L

Fig. 9.17 The call made by procedure 'retT+L'

9.7.5 Retrieval by a Combined Selection from the Type and Entity Menus

This kind of retrieval is aimed mainly at speeding up the retrieval process. Rather than

searching through the whole of the database, (in the case where the user is not sure of the

possible types of features), the action of specifying a type will reduce the search time by a

factor of 3. The selection of features is then carried out by calling procedure 'retT+E'

which analyses the query and then passes the job of retrieval to one of the three procedures

described earlier; either 'retfromA'; 'retfromL' or 'retfromP'. The description of

procedure 'retT+E' is as follows.

Procedure Function
retT+E(string atype, database.name; int class.code; pntr map.name)

The task of this procedure is to identify the type passed to it from the

main body of the module. Once this has been done, it then calls the

appropriate retrieval procedure to carry out the operation. This could

be any one of the following:- 'retfromA'; 'retfromL' or

'retfromP'. In any case, it will also call procedure 'class.code'.

Fig. 9.18 illustrates these calls.

Fig. 9.18 The calls of procedure 'retT+E'

- 231 -

Chapter 9: Data Retrieval Module

9.8 D isp la y in g th e R esu lts

The results of the retrieval process are reported to the user at the time of search operation.

However, the addresses of the retrieved data are also compiled in a vector so that they can

be reached in a later process. This is done by storing the addresses (i.e. the feature

identifiers) together with a snap-shot of the screen (in pixel format) in a database called

'Maplmages'. This is designed to help in sending the data to the output devices.

9.9 S a v in g th e R esu lts

As has been mentioned above in Section 9.8, the result of a retrieval session can be stored

in the database 'Maplmages' for later usage. When the 'save' command is issued, the

system replies by asking the user to supply a 'name' to that particular query session. The

resulting information is then stored in the database. This database is structured so that it

has, at its highest level, a table where the names of the queries are stored. Within this table,

each name is supplied with a pointer to a structure holding information about the map for

which the query was issued. This information may include the map name; the extent of the

map; the grid interval; a snap-shot of the screen, including all the retrieved data; and finally

four vectors of type 'integer' containing the identifiers of the retrieved features. Fig. 9.19

illustrates the design of the 'Maplmages' database. Since the retrieved data stored are only

pointers, there is no duplication of the data.

Database 'Maplmages'

table 'queries'
grid query.imageXL YL XR YRmap.namepntrkey

cumroads
vec.A .item s vec.P .item s vec.T. itemsvec.L. items

Fig. 9.19 The structure of the database 'Maplmages'

- 232 -

Chapter 9; Data Retrieval Module

9.10 S u m m a ry

From the description of the Data Retrieval module, it is very clear that the adoption of the

hybrid system of database structure described earlier in Chapter 5 is very useful for the

generation of a wide scope of queries which is a particularly important feature for any

information system. A further advantage has been the adoption of the object oriented

provision that is supported by PS-algol which has made the implementation of these

functions possible and practicable.

However, in this chapter, the different methods of data retrieval have been described with

an emphasis on the ability of the system to reach those features which have very specific

attributes. This has been done by providing the user with a variety of ways of identifying

them.

- 23 3 -

CHAPTER 10

Chapter 10; Hard-Copy Data Output

CHAPTER 10: H A R D -C O P Y D A T A O U T P U T

10.1 I n tr o d u c tio n

This chapter is aimed at presenting the means by which the end result of queries can be

presented in a hard-copy form. In this project, a raster-based laser printer has been used to

produce the dumped images of the screen. Alternatively, a large-format vector-based central

plotter (Calcomp 1039) linked to the ICL 3980 mainframe computer can be accessed via a

graphic plotter driver. The graphics package used for this purpose is called 'Ghost 80' and

has been developed by the Culham Laboratory of the United Kingdom Atomic Energy

Authority (UKAEA). Ghost 80 is the latest version of the program suite which has been

used as a standard graphics output package in the University since the early 1970s.

This chapter is divided so that Section 10.2 discusses the details of the retrieval of the map

images which are to be sent to the output devices. Section 10.8.1 details the process of

outputting to the raster-based laser printer. Section 10.8.1 describes the process of sending

the results to the vector-based plotter. Finally, Section 10.9 is the summary.

10.2 M o d u le O rg a n iza tio n

The hard-copy output module is organized so that it deals first with the ways by which the

user is able to select the map images from the database where they are stored. Secondly, the

module deals with the retrieval of the images and the selection of the appropriate output

devices. Finally it provides the means by which the hard-copy results may be obtained.

Fig. 10.1 illustrates the functions carried out by the module.

Display to
Screen

Screen Layout

Retrieval of
Map Images

Selection of
Map Images

Appropriate
File Generation

Selection of the
Output Device

HARD-COPY OUTPUT
MODULE

Fig. 10.1 The module organization

- 234 -

Chapter 10; Hard-Copy Data Output

These functions are handled in either of two ways. The first involves calling module

procedures, while the second is implemented by using direct commands from within the

body of the module. The module makes use of eight procedures. These are:- 'drawline'\
'r e c 'R e c '\ 'prepform'\ 'ShowSymbol'; 'showOne'; 'LaserDump' and 'PlotDump'.

The first four procedures were described in Chapter 6, Section 6.5.2. The other procedures

will be described later in this chapter. In the following sections, a description of each of the

functions shown in Fig. 10.1 will be given.

10.3 S creen L a y o u t

The screen layout in this module is similar to those described in the Cartographic

Representation and Data Retrieval modules in Chapters 7 and 8. Hence use is made of

procedure 'prepform' (described earlier in Chapter 6, Section 6.5.2) and it is called from

the global procedures 'utility' database.

10.4 S e le c tio n o f M a p Im a g es

When the 'Output' module is selected from the menu of modules, the system will

automatically open the 'Maplmages' database and scan the table entitled 'maps'. A menu

of all the map images stored in the database is then generated from which the user can select

the required map, Fig. 10.2 illustrates an example of this menu. This activity is taking place

using the 'chooser' procedure from the PS-algol utilities database.

cum/Roads
cum/Grassland
cum/Lines

Fig. 10.2 The selection of a Map Image from a menu

10.5 D isp la y to S creen

Once a specific Map Image has been chosen, the stored image of the map (which is of a

PS-algol image type) is then retrieved from the database 'Maplmages' and displayed on

the screen.

- 2 3 5 -

Chapter 10; Hard-Copy Data Output

10.6 R e tr ie v a l o f M a p Im a g es

As has been discussed in Chapter 9, all the features comprising the map which has resulted

from the selection process have their identifiers stored in the database 'Maplmages' as

well. If the required map image is to be output to a plotter, then first of all, these specific

identifiers are retrieved from the 'Maplmages' database. Then the features themselves are

retrieved from the database 'MDB' and have their pictures decomposed as will be seen

later in Section 10.8.3.

On the other hand, outputting the map to laser printers only requires the retrieval of the

image of the map from the database 'Maplmages'. This will be described in Section

10 .8 . 1.

10.7 S e lec tio n o f O u tp u t D e v ic e s

At this stage, the user is given the choice to send the output either to a text file (by

implication to a plotter) or to an image file (which in practice means to a laser printer). This

is done through a text-based menu with two options: (i) a text file output; and (ii) an image

file output. Fig. 10.3 shows the menu from which the selection of the appropriate output

file can be carried out.

(' I l o o s e () l l l | U | [1 V\ K V

Laser Printer
Plotter
(.>u 11

Fig. 10.3 The output selection menu

10.8 F ile G en era tio n

Depending on the means of output, either the stored image of the resulting query result will

be sent to a graphics file (in the case of laser printers) which will be described below in

Section 10.8.1, or the pictures of the features concerned will be retrieved and be sent to

two different files in the form of the sets of coordinate values and commands required for

the cartographic representation of the data to be drawn by the central vector plotter. This

will be described in more detail in Section 10.8.2.

- 2 3 6 -

Chapter 10: Hard-Copy Data Output

Initially the result of the selection will be in the form of a PS-algol picture. In order to

produce a hard-copy version of this picture, it has first to be transformed into a form which

is acceptable to each of the output devices. The software which uses the laser printer

requires the query to be transformed into a PS-algol image. To use the graphic plotter, on

the other hand, the data must be stored in text files. Therefore Section 10.8.1 describes

how an image is sent to a laser printer, while Section 10.8.2 describes the process of

picking apart the data structure underlying a picture and outputting the data as a series of

text files. Section 10.8.3 describes the PS-algol picture data structure. Section 10.8.4

details a general overview of the use of the Ghost package and Section 10.8.5 describes the

program which calls the Ghost package.

10.8.1 Output to Raster-Based. Laser Printers

When a laser printer is used to print out the resulting graphics, the stored map image is then

processed by a program written by Dr. Cooper of the Department of Computing Science

which has been incorporated into the GIS package. This program will transform the format

of an image produced on the Sun work station into the Postscript format acceptable to the

laser printer. It takes the whole of the current window and prints it out. Therefore the

process of outputting the map image consists of drawing the resulting picture on the screen

and then simply calling the printing procedure and dumping the screen image out to the

laser printer. In fact, an Apple Laser Writer laser printer has been used in the present

project, but in principle any Postscript compatible laser printer can be used for the purpose.

The procedure responsible for doing this is called 'LaserDump'.

Procedure Function

LaserDumpO

When the user selects the output to a laser printer, the module calls

this procedure which copies the screen into an image file. Then it

issues a system command to run program 'laserdump' (which has

been developed outside the system environment by Dr. Cooper of

the Department of Computing Science). Fig. 10.4 illustrates the

result of this procedure.

- 237 -

Chapter 10: Hard-Copy Data Output

Fig. 10.4 The output from a laser printer

- 238 -

Chapter 10; Hard-Copv Data Output

10.8.2 Output to a Vector-Based Plotter

As has been mentioned earlier in Section 10.6 (Retrieval of Map Images), the coordinate

values of the map image are retrieved from the 'MDB' database and are sent to two

different files. The first contains the coordinate values of all those features of type Polygon,

Line and Point. Since polygons may require a specific cartographic representation (for

instance, the style of filling) as well as requiring the lines defining the polygon itself (the

perimeter) to be plotted, these two distinct pictures for polygons should be included in the

output file as well. However, Line and Point features do not necessarily require their

original data to be produced. For example, if a road has to be represented, the original data

could be the digitized central line of the road, while the cartographic representation of the

road is a double line. For this reason, the cartographic representations of Line and Point

features are stored as series of x- and y- coordinate values of each component of the line or

the point (for instance, the end points of the dashes in a dashed line). The second file holds

the text data including the coordinate positions, font style, size and orientation of the text,

etc. Tables 10.1 and 10.2 illustrate an example of the files produced to obtain hard-copy

output using vector-based plotters.

Table 10.1: The features file

Cumbernauld
775000 775000 80000 80000

3
77438.040 78147.860

77437.460 78156.000

77447.100 78157.600
2
77587.600 78931.520
77604.600 78933.700

Table 10.2: The text file

Cumbernauld

775000 775000 80000 80000

77123.060 78080.240 well cou20 10
77688.940 78196.100 TrMark cou20 10

77759.160 78556.320 RdSign cou20 10

A program written in FORTRAN 77 is then run to call the graphics package Ghost 80 and

to send these two files to the central plotter at the Computer Centre. This program will be

described later in this chapter.

10.8.3 PS-algol Picture Data Structures

It is worthwhile mentioning the method by which pictures are stored in the persistent store.

Pictures are stored as groupings of points. Points forming a picture can be related together

- 2 3 9 -

Chapter 10; Hard-Copv Data Output

in either of two ways: i) either they are linked by lines (see Fig. 10.5) or ii) they form a

complementary part of the picture but they are not linked all together (see Fig. 10.6).

Fig. 10.5 This picture is f(Mined by three points and two lines joining them

D(XD, YD)

B(XB, YB)

C(XC, YC)A(XA, YA)

Fig. 10.6 The picture in this diagram is formed of four points 'A', 'B\ 'C' and 'D'.

The first three are joined by lines T l' and T2' while 'D' just exists as an individual point

Points are stored in a structure called 'poin.strc' which holds the x- and y-coordinate

values, while the linkages between the different points are kept in another structure called

'oprtn.strc', Fig. 10.7(a) illustrates structure 'poin.strc' and Fig. 10.7(b) illustrates that of

'oprtn.strc'.

structure poin.strc real x real y

Fig. 10.7(a) An illustration of structure 'poin.strc'

structure oprtn.strc pntr left pntr right int n

Fig. 10.7(b) An illustration of structure 'oprtn.strc'

A picture is then composed of a hierarchy of these structures. At the highest level, structure

'oprtn.strc' describes the picture in hand. This structure is composed of three fields:- i) a

left pointer, ii) a right pointer, and iii) an integer (zero or one) to indicate whether or not this

structure points to a lower level structure. ('O' means no and '1' means yes).

This structure will point left and right (where appropriate) to lower level structures. These

could be either of type 'oprtn.strc' or 'poin.strc'. This process goes on until all the points

of the picture have been consumed. Fig. 10.8 shows the hierarchy of the structures used

for the picture shown in Fig. 10.6.

- 2 4 0 -

Chapter 10; Hard-Copv Data Output

Point A XA YA 1

poin.strc

Point B XB YB

poin.strc

Point C

oprtn.strc

r s

oprtn.strc

XC YC XD YD

poin.strc poin.strc

Point D

Fig. 10.8 The hierarchy of the building of structures to represent a picture

Two procedures are provided to allow the retrieval of the coordinate values of the graphic

representation of pictures used from the persistent store. These are 'showOne' and

'showSymbol'. However, these two procedures are controlled by another called

'PlotDump' which, in fact, manages the calls to be made to these two procedures and

generates the output file for the coordinate values. These procedures are described below.

Procedure Function

showSymbol(pntr P; string I; int W)

This is a recursive procedure which, given a pointer to the location

where a picture is stored in the persistent store, starts retrieving the

coordinate values of the different points encountered while going

through the hierarchy of the picture in either direction (left and

right). At the same time, these coordinate values are then loaded into

two vectors, one for the x-values and the other for the y-values.

showOne(string S; pntr V)

This procedure takes a pointer to a picture in the database and then

calls procedure 'showSymbol' to extract the coordinate values of

the different points forming that picture.

PlotDump(string OriginalMapName; pntr X-structure)

This procedure generates two files. The first is to hold the

coordinate values of the decomposed pictures retrieved from the

database, and the second is to hold the text to be displayed with the

- 2 4 1 -

Chapter 10; Hard-Copy Data Output

graphics images. The procedure then retrieves a vector of the

features' identifiers which were selected during a selection session

and stored in the database 'Maplmages' and starts calling procedure

'showOne' which in turn calls procedure 'ShowSymbol' for each

item of the vector retrieved. Once a feature picture has been through

'showOne' and 'ShowSymbol', its coordinate values are then

obtained, 'PlotDump' will then copy them into the generated file

which by default will have the same name as the map image plus an

extension. So if the map image name is for example 'cum/Rd', the

coordinate file name will be 'cum/Rd.coo' and the text file will be

'cum/Rd. txt'.

10.8.4 Use of Ghost

By definition, Ghost is a comprehensive graphical output system, which means that it is a

software package which can provide any program written in a high-level language with the

ability to create graphic plots or images on any available graphics device. It is supplied in

the form of a library of graphics subroutines which can be loaded along with the calling

program [Prior, 1985].

Ghost 88 is the heavily revised version of the previous edition of the system (Ghost 77)

which has been implemented on the ICL 3980 mainframe computer located in the Computer

Centre. It is therefore accessible to any user of the ICL mainframe.

The use of the Ghost subroutines is very much like the use of other FORTRAN

subroutines which are made using the command 'CALL'. For example, the statement -

CALL POSITN(X, Y) - will cause the pen (in the case of a plotter) to move to the position

defined by the X- and Y- coordinate values. Using Ghost, graphics files can be directed to

either of the output devices available, namely a graphics display unit (screen) or any other

attached plotter for hard-copy output, for instance the central plotter in the Computing

Centre. The instruction with which the output device is specified is issued at run time after

the program containing the call commands has been compiled. This instruction is as

follows:-

- 2 4 2 -

Chapter IQ; Hard-Copv Data Output

G80(program.name, device.name)

where 'program.name' is the name of the program within which the calls are being made;

and 'device.name' is the name of the output device to which the drawings should be sent,

for instance 'ADM' is used for the graphics display unit and 'Gplot' is used for the central

plotter at the Computing Centre.

10.8.5 The Plotting Program

The plotting program is composed mainly of three subroutines written in FORTRAN 77.

Given the name of the file which has been mailed to the VME environment (without any

extension) from the Sun graphics work station on which the GIS sits at present, the

program will read the data and call the Ghost package to obtain the output

i) The first subroutine is aimed at reading the heading of the file which is composed of two

lines, the map name and the extent of coverage of the map. The values shown in the second

line will help in producing a box within which all the graphics of the features will be

drawn.

ii) Since every line is formed of a number of segments, this number is given at the

beginning of any line. Thus, the second subroutine will read the number of points

comprising that line and will call the Ghost package to position the pen at the first point

specified by the X- and Y- coordinates. Then after having read all the points which follow,

the line defining the feature is drawn. This will be carried out for all the features contained

in the file.

iii) The third subroutine reads its data from the text file. It reads the X- and Y- coordinate

values of a point, then the text and the size and finally calls the Ghost package to display

the text in the specified location. This is done for all the text contained in the file. Fig. 10.9

illustrates an example of the output obtained from this program.

10.9 S u m m a ry

In this chapter, the hard-copy output of the result of queries has been discussed. The

supported output devices are laser printers and the central plotter at the Computer Centre.

However, there should have been a program to allow direct access to the plotters from the

- 2 4 3 -

 ---_ _Chanter 10: Hard-Conv Data Ontnut

Sun work station but this could not be done due to the lack of availability of plotters at the

Department of Computing Science. For this reason, the resulted data files had to be

'mailed' to the VME environment and then the 'Ghost' package was used to obtain high-

quality large format maps.

7 9 0 0 0

7 8 8 0 0

7 8 6 0 0

7 8 4 0 0

7 8 2 0 0

7 8 0 0 0

jtilh ,iJ||

SUU, tfUU,

7 7 0 0 0 7 7 2 0 0

CUMBERNAULD

7 7 4 0 0 7 7 6 0 0

LAND COVER LAYER

7 7 8 0 0 7 8 0 0 0

Fig. 10.9 The output from a plotter

- 2 4 4 -

02020201020202020100020102000200020202010102

CHAPTER 11

Chanter 11: Conclusion & Recommendations

CHAPTER 11: CONCLUSION & RECOMMENDATIONS
PART I: Conclusion

11.1 I n tr o d u c tio n

Having covered the different aspects of the project and the various components of the new

GIS system, the experience gained with PS-algol in terms of learning the language,

modelling the problem, and storing and retrieving the data will be discussed in this chapter.

Also various aspects of the implementation of a prototype GIS based on the novel

architecture permitted by the PS-algol language will be reviewed and discussed, including

comparisons with existing GIS systems.

11.2 L e a rn in g th e L a n g u a g e

PS-algol is presented to users in a 40 page reference manual [PPRR 12], which is also

supported by 'An Introduction to PS-algol' [PPRR 31] documented in 107 pages.

Graphics operations are also explained explicitly in two other pieces of documentation

entitled 'Implementation Issues in Persistent Graphics' [PPRR 23] and 'An Integrated

Graphics Programming Environment' [PPRR 14]. For advanced programmers, there are

two other references: 'User Interface Tools in PS-algol' [PPRR 56] and 'Applications

Programming in PS-algol' [Cooper, 87].

It should be said here that, in spite of the apparently voluminous reference material, these

documents are not really designed to enable a beginner to learn the language easily nor to

assist him in exploring its potential application to a problem. During the development of the

system, most of the difficulties which arose were only resolved with the help and advice of

those staff members in the Department of Computing Science who have been actively

involved in the development of the language and have had extensive experience with it. It

should also be mentioned here that, at certain stages, without the direct assistance of these

staff members (especially Dr. Cooper) in explaining many aspects of the language which

were not well documented, it would have taken a very much longer time to achieve the

results presented in this report. While the present author has had good access to this advice,

obviously other users who might not have this close relationship with the developers will

experience many difficulties.

- 2 4 5 -

Chapter 11: Conclusion & Recommendations

It is obvious therefore that further explanatory documentation of a professional standard

covering the various aspects of the PS-algol language should be produced in order that the

programmer does not need to consult with or refer to the developers of the language. This

is the case with other commonly used languages and certainly this is an urgent matter if the

language is to move from its present rather experimental status to become a widely used

language. Since the language has so many attractive and useful features, it would be a great

pity if potential users were put off or frustrated using it because of lack of professionally

produced documentation.

11.3 P ro p e r tie s o f th e L a n g u a g e

The principal properties of the language discussed earlier in Chapter 4 are:-

a) the principle of data type completeness;

b) the principle of abstraction;

c) the principle of correspondence;

d) the inclusion of pictures and images as data type objects;

e) and, most importantly, the principle of data persistence, which makes the language

relatively easy to work with.

Each of these properties is discussed in some detail below:-

a) The main advantage of applying the principle of data type completeness is that

procedures are first class types, which means that there is a simple and well understood

mechanism for modular system construction using procedure calls. The safety of the

system is provided by the type mechanism of the language which guarantees the type

checking for data of any persistence. A further advantage of data type completeness is that

there is no need to remember arbitrary restrictions placed on the handling of different data

types.

b) On the other hand, the power and facilities of abstract data types can be obtained from

encapsulating data in a procedure which yields as its result a record containing other

procedures to manipulate this data. Separate compilation of modules may be achieved by

storing the procedures in the persistent store.

c) The principle of correspondence applied in PS-algol allows the programmer to declare

- 2 4 6 -

Chapter 11; Conclusion & Recommendations

and use names in the same way anywhere in a program, thus allowing him to make his

declarations to be as close as possible to the use of the variable and to allow logically

related code to be grouped into modules. This also means that all aspects of the program -

computations, data storage and retrieval and the user interface - are all written in a

consistent style.

d) Another excellent feature of PS-algol is the availability of 'picture' and 'image'

constructs which help in the creation of graphical systems. When pictures and images are

given the same rights as any other data type of the language (complying with the principle

of 'data type completeness'), this allows pictures and images to be assigned, passed, stored

in and consequently retrieved from databases. Also, most importantly, they can be

concatenated to form complex pictures or images which can then be manipulated as an

individual feature. Clearly, the storage of pictures and images in a database is a

fundamental problem when implementing a GIS. Therefore having explicit operations to do

so makes PS-algol a suitable vehicle for the implementation of a GIS.

e) The provision of data persistence as an implemented feature of PS-algol provides

programmers with the facility to manipulate data whose lifetime does not extend beyond the

program activation (as is the case with other traditional languages), but also to be able to

manipulate persistent data with the same ease. Again, this is a most important attribute in

the context of cartographic data where the base material is definitely persistent, while the

results of an analysis carried out by the GIS may be quite transient.

Introducing the idea of persistence to languages such as PS-algol, also reduces the amount

of source code considerably, particularly that part of the code concerned with transferring

the data to and from the storage system. In traditional languages, this mechanism is

performed in three phases: (i) considering the real world application area and modelling it in

data structures inside a program; (ii) the modelling of the database and devising the types of

structures needed for long term storage; and (iii) the mapping between these two models.

The maintenance of this mapping is quite a difficult task and is costly in terms of time and

effort. A persistent language uses a single model to represent data in the program and in the

backing store.

Another advantage of the provision of persistence is the solid type protection which is

offered by PS-algol, whereas that offered by other programming languages is often lost

- 2 4 7 -

-Chapter 11; Conclusion & R ecommendations

across the mapping [Atkinson & Morrison, 1986]. Therefore, the programming

environment provides protection against the misuse of data by handling it as it were of a

different type.

All these properties implemented in PS-algol help to make the language easier to learn and

understand. Thus the ability to build the model in hand is a simpler task to carry out.

11.4 M o d e llin g th e R e a l W o rld

PS-algol offers a very good environment in which to build and develop models of the real

world. This is because of the built-in database management system which allows the

programmer direct access to the database rather than needing other foreign means or

another system to carry out the task and which, more often than not, set obstacles between

the programmer's visualization and the final realization of the model. This results in less

written source code and in turn implies a better control (from the programmer's point of

view) over the progress of the development of the program.

11.5 D a ta S to ra g e a n d R e tr ie v a l in P S -a lg o l

Integrating a Database Management System within a programming language (which is in

effect what PS-algol achieves) makes the task of building large programs easier. Since

programmers can use the language commands to define their schemas, records, data

attributes, etc., there is no need for the inclusion of any foreign routines from outside the

language domain.

The process of manipulating data is well supported in PS-algol. As has already been said,

the same data structures are used in the program as in the long-term store. Storage of a

complex composite data object consists merely of entering a reference to the 'top' of the

object into the persistent store and 'committing' this transaction.

In PS-algol, the transaction mechanism makes the concurrent revision of data values safe.

The effects of a transaction are not visible to other transactions until the transaction has

been committed. Programs starting after this stage will use the new version of the data for

the whole program execution.

- 2 4 8 -

Chanter 11; Conclusion & Recommendations

Data retrieval mechanisms are also supplied. Retrieving a complex composite object is a

single operation. The object is then traversed by the operations of the program which

would have been required even if the data are not persistent.

11.5 M o d u la r P ro g ra m m in g

With any large and complex system, as is the case with a GIS which is composed of

several inter-related applications, it is desirable and often necessary to construct the system

from separately compiled pieces of code. Therefore, a modular approach to its construction

is essential, so it is necessary to be able to compile separate 'modules' and then link them

together.

In PS-algol, this is quite possible since procedures are first class data objects which means

that procedures can be assigned or they can be passed from one procedure to another. A

procedure may also be the result of expressions or other procedures. Yet again, they may

be the elements of structures or vectors. Finally and most importantly, they can be

compiled and stored in databases. Thus the process of writing a program in PS-algol

consists of writing small procedures and storing them in the database for use by lower level

procedures. Management support for the process of handling these many procedures could

be extremely valuable and is in the course of being developed.

11.7 S p e e d o f P ro c e s s in g

It is worth mentioning here that the relatively slow speed of processing the code contained

in PS-algol programs, is one of the main factors against the language, since it tends to be

rather slow especially when dealing with graphical data. This could be the result of the type

checking procedure or the binding mechanism described earlier in Chapter 4. On the other

hand, the language is still experimental, and there is no reason why optimization cannot be

applied to it to improve the speed of processing, given industrial quality backing.

It should also be mentioned here that the speed can be improved by using faster hardware.

For example, at the beginning of the research carried out for this project, the author used

the ICL Perq machines which, at that time, were installed in the Department of Computing

Science. With these machines, the compilation and running of programs was extremely

slow. For example, to run the program 'incode' which loads the feature coding system into

-2 4 9 -

Chapter 11;.Conclusion & R ecommendations

the database, took about twenty four hours, but when this same program was run on the

Sun 3/50 machines in the same Department, the time spent was about 2 1/2 mins. The

Department of Computing Science has just installed another generation of the Sun work

station - a RISC-based Sun 4/80. These computers can run at a still higher speed which

will inevitably reduce greatly the problem of speed mentioned above.

11.8 T h e P ro to ty p e G IS

Having surveyed a number of the systems available and marketed in the field of GIS, as

reported in Chapter 3, the obvious point that can be made about all of these systems is that

they have two quite different types of database:-

i) a database that holds the textual data, the numerical data, etc., and

ii) a graphical database.

These two databases are then linked together via different mechanisms, such as the bucket

in the case of Intergraph. Undoubtedly the need for such linkages will make the

development and maintainance of the system a substantial piece of work to carry out.

On the other hand, those systems which require other foreign systems, such as an existing

RDBMS in the case of most current relational GISs, need a considerable effort to achieve

the necessary degree of integration between the component systems, so that the databases

can be queried. Also, some other systems (like for instance EMIS) need the information

part of another foreign system to be integrated with their own system to produce the final

system.

Thus it can be seen that normally the task of producing a GIS is not a simple one.

However, using PS-algol, the author has managed to build the prototype GIS described in

this thesis so that it provides a unique approach in which the graphical constructs of the

features are stored in the system side by side with the corresponding attributes of the

features. This has resulted in far less use of pointers and identifiers and consequently there

is a much smaller programming burden to be carried on the shoulders of the programmer.

Also using a separate feature coding system, which is then linked to the features held in the

- 2 5 0 -

Chapter 11: Conclusion & Recommendations

database, is a significant help in structuring the data. As a result, this has improved

immensely the quality and the way in which queries are analyzed and the results are

retrieved. It has also helped the storage aspects of the data by reducing the length of the

records used in the features database.

PART II: Recommendations

11.9 I n tr o d u c tio n

Within the scope of the time and resources available for the project, the system may be

regarded as a satisfactory development. However, as it stands at the moment, it should be

regarded as a thematic mapping information system rather than a full GIS. However, it

should form a very good basis for further developments and enhancements to be carried out

and implemented upon it.

11.10 G e n e ra l R e c o m m e n d a tio n s

Some of the recommendations suggested by the author are of a more general nature while

others are concerned with specific modules. The general recommendations for developing

the system include:-

i) the inclusion of an indexing facility to reference entities of the real world to some

known locations so that these features can be accessed either by location or by feature

code. This means that features, for example, can be indexed according to their grid

squares within a relation in the database where their identifiers are also stored.

ii) the inclusion of help menus to assist the user at the different stages of the running of

the program;

iii) the introduction of the facility which would allow the user to enter commands from the

keyboard as well as using menus, the pointer and the mouse; and

iv) the ability to allow users to define their own symbols and introduce them to the

database.

11.11 M o d u le s R ec o m m en d a tio n s

On the other hand, further developments at the level of the modules could be carried out as

- 2 5 1 -

Chapter 11; Conclusion & R ecommendations

follows:-

11.11.1 Data Entry

Data entry to the system should be made available from different sources and different

methods of data collection. In particular, the system should be able to read in data in

different formats such as OSTF used by the Ordnance Survey; SIF used by Intergraph; and

the DXF format used by Autocad and other CAD systems. Also the introduction of a

module which allows the user to enter data directly from a range of commonly used

digitizing tablets (GTCO, Summagraphics, Calcomp, etc.) could be of great benefit to the
system.

11.11.2 Cartographic Representation

Although the cartographic representation has taken up a major part of the development of

the system, it should be enhanced further by introducing more symbologies for the three

types of features, points, lines and polygons. For example, buildings could be denoted by

their activities, such as hospitals or swimming pools; roads could have arrows to indicate

traffic directions; etc.

11.11.3 Data Retrieval

As it stands at the moment, data retrieval deals only with the graphic data. However this is

definitely not the only kind of data that the user may need, so other types of data should

also be made available to the user. For example, by providing a menu of the fields of the

three types of data when the selection of features has taken place, the user may then select

the fields that he wants to look at or retrieve.

11.11.4 Data Output

Data output goes hand in hand with data retrieval. The system is capable of producing

output to laser printers as well as plotters. However, the system should also be able to

produce textual data in the form of tables, reports, etc. This should be carried out as well

by developing a report generation module that can be linked to both the data retrieval and

the data output modules.

- 2 5 2 -

Chapter 11: Conclusion & Recommendations

11.11.5 Applications Module

A completely new module should be included into the system to allow for further

processing of the data and to upgrade the current system fully into the GIS domain. This

module should contain different applications such as polygon overlay and intersections; line

intersection with polygons; point in polygon searches; network operations, etc. Other

analysis features such as attribute analysis; interpolation; and map projection and edge

matching could also be provided to help transform the present prototype system into a fully

featured and operational GIS.

11.12 S u m m ary

An immediate conclusion that can be drawn from this thesis is that the use of PS-algol as

the sole language to develop the system described in this thesis took place over the

comparative limited time of three years. This was the case in spite of the fact that most of

the first year of the author's research period was spent in learning the language and

attending database design and management courses in the Department of Computing

Science. It can be seen clearly that the language reduces greatly the time and the amount of

source code needed to develop the system. Thus it reduces the effort required to be spent

on the database design and interfaces. In particular, it eliminates the need for the

construction of a different database for the graphical data, as was the case with all the

systems described in Chapter 3. All of which decreases the burden on the shoulders of the

system designer.

Employing the hybrid database system discussed in Chapter 5, has also succeeded in

reducing the search time procedure by an average factor of three, since, when entity

retrievals are required, the search will be carried out over one third of the data contained in

the database and not the entire database.

Using the separate but linked hierarchical database for the feature coding system made the

selection of items to be retrieved systematic and the actual retrieval procedure simpler.

Furthermore, the use of record identifiers rather than copying the retrieved data to another

structure eliminates any duplication of data.

The user interface developed in the system has been done through menus and icons, which

- 2 5 3 -

Chapter 11; Conclusion & Recommendations

reduces the possibility of entering wrong data in a wrong format, and thus can be

considered as friendly.

Finally, the modular implementation of the system allows the future expansion of any of

the modules described earlier or the introduction of new ones.

11.13 E p ilo g u e

In the author's opinion, this project is potentially of great importance in the field of GIS

since it approaches the topic from a different point of view, and attempts to deal with a

number of the problems existing at the core of the GIS rather than those occurring at the

periphery. It tackles in a new way the design and the construction of the GIS database upon

which the end product will be judged for failure or success.

On the other hand, this project has also been of some importance to the Department of

Computing Science and, in particular to the Persistent Programming Research Group, since

the project has provided a direct and real-life application which allows the PS-algol

language to be fully exercised.

Finally and personally, the project has extended greatly my knowledge of several different

yet related fields. A considerable knowledge of the field of Digital Mapping and GIS is a

prerequisite to carry out such a project, and this has gradually been acquired over the period

of this research. Also, extensive programming experience and a knowledge of the design of

databases and database management systems were needed. Again the project has been the

vehicle through which these have been acquired albeit somewhat painfully.

In summary, the experience gained through the different stages of the project has included:-

i) the knowledge of the different data capture procedures, operations, instrumentation,

and data formats;

ii) knowledge of GIS system design, functions, analysis, and manipulations.

iii) a broad view of most of the better known GIS systems currently available on the

market, together with some insight into their respective approaches to the design of

their databases, functions, etc.

iv) structured programming in Pascal;

v) database design;

- 2 5 4 -

Chapter 11; Conclusion & Recommendations

vi) database management system functions and operations;

vii) structured programming in PS-algol; and last but not least

viii) some idea as to how to carry out research in the fields of Topographic and

Computing Science, integrating concepts from both disciplines.

Hopefully, all of these will be of great value in my future professional career.

- 2 5 5 -

BIBLIOGRAPHY

BibUogaphy

BIBLIOGRAPHY

Abel D J ., 1988. Relational Data Management Facilities for Spatial Information Systems,
Proceedings, Third International Symposium on Spatial Data Handling. Sydney:
9-18.

Anon, 1985. Lab-Log/Software. Laboratory for Computer Graphics and Spatial Analysis,
Harvard University. Cambridge, Mass.: 23 - 27.

Atkinson M.P. & Buneman O.P., 1987. Types and Persistence in Database Programming
Languages, ACM Computing Surveys, 19, 2: 105-190.

Atkinson M.P. & Morrison R., 1986. [PPRR-19] Integrated Persistent Programming
Systems, International Conference on System Sciences, Hawaii.

Atkinson M.P. & Morrison R., 1989. Persistence - Where Next? in J. Rosenberg (Ed.)
Proceedings, 3rd International Workshop on Persistent Object Systems - Their
Design, Implementation and Use, Newcastle, N.S.W.

Atkinson M.P., 1978. Programming Languages and Databases, Proceedings of the 4th
International Conference on Very Large Data Bases, Berlin, (ed. S.P. Yao),
IEEE: 408-419.

Atkinson M.P., Bailey P., Cockshott W.P., Chisholm K.J. & Morrison R., 1984. [PPR-
8-84] Progress with Persistent Programming, Database-Role and Structure,
Cambridge University Press.

Atkinson M.P., Morrison R. & Pratten G.D., 1986. [PPRR-21] A Persistent Information
Space Architecture, IFIP'86 Conference, Dublin.

Blakeman D.A., 1987. Some Thoughts About GIS Data Entry. ASPRS, GIS' 87 - San
Fransisco, I: 226 - 233.

Bouille F., 1978. Structuring Cartographic Data and Spatial Processing with the HBDS.
Harvard Papers on Geographic Information Systems, Cambridge, Mass.

Brown A.L. & Dearie A., 1986. Implementation Issues in Persistent Graphics,
Department of Computational Science, University of St. Andrews.

Burrough P.A., 1985. Principles of Geographical Information Systems. Clarendon Press,
Oxford.

- 2 5 6 -

-Bibliography

Byrne S.T. & Neil L., 1983. Application of the WildMap System in a Production
Environment, Photogrammetric Record, XI, 61: 47 - 52.

Byrne S.T., 1986. Digital Mapping: Some Commercial Experiences, Photogrammetric
Record, XII, 68: 143 - 154.

Canadian Council on Surveying and Mapping, 1984. National Standards for the Exchange
of Digital Topographic Data, Draft Reports Published by the Topographic
Survey Division, Surveys and Mapping Branch, Ottawa, Ontario.

Carrick R., Cole J. & Morrison R., 1986. [PPRR-31] An Introduction to PS-algol
Programming, Dept, of Computational Science, University of St. Andrews.

Charlwood G., Moon G. & Tulip J., 1987. Developing a DBMS for Geographic
Information- A Review, Wild Heerbrugg, Switzerland.

Cimon N. & Quigley T., 1986. Evolution of a Geographic Information System:
Integration into the Oregon Range Evaluation Computing Facility. Proceedings
of ASPRS "Geographic Information System Workshop": 99 - 109.

CODAS YL, 1971. Codasyl Data Base Task Group Report, Codasyl Committee on Data
System Languages, Technical Report, ACM.

Codd E.F., 1982. Relational Database: A Practical Foundation for Productivity.
Communications of the ACM, 24: 109 - 117.

Coe P.K. & Quigley T.M., 1986. Application of a Geographic Infformation System for
the Oregon Range Evaluation Project. Proceedings of ASPRS "Geographic
Information System Workshop": 88 - 98.

Cooper R., 1987. Applications Programming in PS-algol, Department of Computing
Science, University of Glasgow.

Cooper R., 1988. [PPRR-56] A Utility Library for PS-algol, in User Interface Tools in
PS-algol, Department of Computing Science, University of Glasgow.

Cooper R., 1989. On the Utilization of Persistent Programming Environment, Published
Ph. D. thesis, Department of Computing Science, University of Glasgow.

Dangermond J., 1985. A Review of Digital Data Commonly Available & Some of the
Practical Problems of Entering them into a GIS, ESRI, Redlands, CA.

Dangermond J., 19H6.The Software Toolbox Approach To Meeting The User's Needs
For GIS Analysis. Proceedings of ASPRS "Geographic Information System

- 2 5 7 -

Bibliography

Workshop": 66 - 75.

Date C.J., 1981(a). An Introduction to DataBase Systems, 3th ed., Addison-Wesley,
Reading, Mass.

Date C.J., 1981(b). Referential Integrity, in the Seventh International Conference on Very
Large Data Bases, Cannes, France.

Dueker K., 1985. Geographic Information Systems: Toward a Geo-relational Structure,
Proceedings of AutoCarto 7: 172-177.

Eastman J.R., 1987. Mapping Out a Plan of Action, Digital Review August 3, 1987,
Davis Publishing Co.: 1-7.

Egenhofer M J. & Frank A.U., 1988. Designing Object-Oriented Query Languages for
GIS: Human Interface Aspects, Proceedings, Third International Symposium on
Spatial Data Handling. Sydney: 79-96.

Elgarf T.M., 1986.77ie Role Of A Mapping Company In (GIS) Field, Proceedings of
Geographic Information Systems Workshop, Georgia.

Exler R.D., 1987. Appropriate Uses of Topology in Geographic Information Management
Systems. ASPRS, GIS' 87 - San Fransisco, I: 234 - 238.

Gatrell A.C. & Charlton M., 1987. ODYSSEY: A Low Cost Package for Geographical
Information Systems Research, Northern Regional Research Laboratory,
Research Report No 6.

Gittins D., 1986. Query Language Systems, Edward Arnold (Publishers) Ltd.

Goh P.C., 1989. A Graphic Query Language for Cartographic & Land Information
Systems, International Journal of Geographical Information Systems, 3, 3: 245-
255.

Haralick R.M., 1980. A Spatial Data Structure For Geographic Information Systems, in
Map Data Processing, editors Freeman H., and Pieroni G.G.: 63 - 99.

Harrington S., 1987. Computer Graphics, A Programming Approach, 2nd ed. McGraw-
Hill.

Horowitz E. & Sahni S., 1984. Fundamentals of Data Structures in PASCAL, Computer
Science Press.

- 2 5 8 -

Bibliography

IBM, 1982. IMS/VS General Information Manual. Form No. GH20-1260. IBM. White
Plains. N.Y.

Interview, 1987 Spatial Editor, Spatial Analysis: Topology in the Vox Environment,
Interview J., Third Quarter, 6, 3: 28-29.

ISO, 1987. Information Processing Systems - Database Language SQL, ISO Standard
9075.

Jones A.K. & Liskove B.H., 1978. A Language Extension for Expressing Constraints on
Data Access, Communications of the ACM, 21(5): 358-367.

Klein D.H., 1987. Combining Both GIS and CADD Capabilities in a Single PC-Based
Automated Mapping System for a Small Incorporated City. ASPRS, GIS’ 87 -
San Fransisco, II: 730 - 738.

Levinsohn A., Langford G., Rayner M., Rintoul J. & Eccles R., 1987. A
Microcomputer-Based GIS for Assessing Recreation Suitability. ASPRS, GIS'
87 - San Fransisco, II: 739 - 747.

M & S Computing, Inc., 1978. Interactive Graphic Design System (IGDS)- Municipal &
Utility Applications, Report No. 78-110.

M & S Computing, Inc., 1979. Introduction- Data Management & Retrieval System
(DMRS), Report No. 78-057.

Macro A. & Buxton J., 1987. The Craft of Software Engineering, Addison-Wesley.

Maggio R.C. & Wunneburger D.F., 1986. A Microcomputer-based Geographic
Information System for Natural Resource Managers. Proceedings of ASPRS
"Geographic Information System Workshop": 296 - 300.

McFadden F.R. & Hoffer J.A., 1988. Data Base Management. 2nd ed.,
Benjamin/Cummings Publishing Company, Inc.

McGregor J. & Watt A., 1986. The Art of Graphics for the IBM PC, University of
Sheffield, Addison-Wesley.

Menon S. & Smith T.R., 1989. A Declarative Spatial Query Processor for Geographic
Information Systems. J. Photogrammetric Engineering and Remote Sensing.
LV, 11: 1593- 1600.

Morrison R., Brown A.L., Dearie A. & Atkinson M.P., 1986. [PPRP-14] An Integrated
Graphics Programming Environment, EUROGRAPHICS UK Conference,

- 2 5 9 -

Bibliography

University of Glasgow.

Morrison R., Dearie A., Bailey P.J., Brown A.L. & Atkinson M.P., 1985. [PPRR-15]
The Persistent Store as an Enabling Technology for Integrated Project Support
Environment, International Conference on Software Engineering, Imperial
College, University of London.

Nijssen G.M., 1980. Database Semantics, in Atkinson, M. (ed.), Infotech State of the Art
Report on Database, Infotech.

Olle T.W., 1978. The Codasyl Approach to Data Base Management, John Wiley & Sons.

Oracle Corporation, 1984. SQL/UFI Reference Guide, Oracle Corporation, Menlo Park,
California.

Oracle Corporation, 1985. Introduction to SQL, Oracle Corporation, Belmont, California.

Oracle Corporation, 1987. Oracle, The SQL Development Method, Oracle Corporation,
Belmont, California.

Organick E.I., 1972. The MULTICS System, MIT Press, Cambridge, Massachusetts.

Palimaka J., Halustchack O. & Walker W., 1986. Integration of a Spatial and Relational
Database Within a Geographic Information System, ACSM Annual Spring
Meeting, Washington, D.C.

Parker D., 1990. Land Information Databases, in 'Engineering Surveying Technology',
eds. T.J.M. Kennie & G. Petrie,: 427-477.

Parker H.D., 1987. What is a Geographic Information System? ASPRS, GIS' 87 - San
Fransisco, I: 72 - 80.

Parker H.D., 1988. The Unique Qualities of a Geographic Information System: A
Commentary. J. Photogrammetric Engineering and Remote Sensing, LIY, 11:
1547 - 1549.

Parker H.D., 1989. GIS Software 1989: A Survey and Commentary. J. Photogrammetric
Engineering and Remote Sensing, LV, 11: 1585 - 1591.

Parks B.O. & Simmons G.A., 1987. Managing Cartographic Modeling and Linneage
Problems Using a Microcomputer. ASPRS, GIS' 87 - San Fransisco, II: 748 -
756.

- 2 6 0 -

Bibliography

Petrie G., 1990. Digital Mapping Technology: Procedures and Applications, in
Engineering Surveying Technology, eds T.J.M. Kennie & G. Petrie: 329-390.

Peuquet D.J., 1984. A Conceptual Framework and Comparison of Spatial Data Models,
Cartographica, 21, 4: 66-113.

Peuquet D.J., 1987. Data Models for Very Large Geographic Databases, Proceedings of
International Workshop on Geographical Information System, Beijing: 149-162.

PPRR 12, 1987. PS-algol Reference Manual, 4th ed. University of Glasgow and
University of St. Andrews.

Prior W.A.J., 1985. The Ghost-80 User Manual, Release 7. UKAEA, Culham
Laboratory, Abingdon. Oxon. England

Radwan M.M., Kure J. & Al-Harthi M., 1988. Data Structure in Topographic Data
Bases, ITC Journal, 1988-4: 327 - 331.

Scheitlin T.E., 1986. A Professional Geographic Management System. Proceedings of
ASPRS "Geographic Information System Workshop": 31 - 36.

Shapiro L.G. & Haralick R.A., 1980. Spatial Data Structure. Geoprocessing. 1: 313 -
337.

Shapiro L.G., 1980. Design of a Spatial Information System, in Map Data Processing,
eds. Freeman H., and Pieroni G.: 101 - 117.

Simon H.A., 1987. Data Organization in System 9, Wild Heerbrugg, Switzerland.

Smith J.M., 1971. GPL!I - APL/1 Extension for Computer Graphics, AFIPS SJGC:
511-528.

Synercom Technology Inc., 1984, EMIS Software Information Kit, Synercom, Sugar
Land, Texas.

SysScan, 1986. GINIS BASIC, Product Description Rerport PD-014, Release 4.1,
SysScan, Kongsberg. Norway.

SysScan, 1988. DNMS, Map Information System for Utilities, SysScan, Kongsberg.
Norway.

Ullman J., 1982. Principles of Database Systems, Computer Science Press, Rockville,
Md.

-2 61 -

Bibliography

Van Roessel J.W. & Fomight E.A., 1985. A Relational Approach to Vector Data
Structure Conversion, Proceedings of AutoCarto 7,: 541-551.

Van Roessel J.W., 1986. Design of a Spatial Data Structure Using the Relational Normal
Forms, Proceedings, Second International Symposium on Spatial Data
Handling. Zurich: 251-272.

Walker W., Palimaka J. & Halustchak O., 1987. Designing a Commercial GIS - A Spatial
Relational Database Approach, Proceedings of International Workshop on
Geographical Information System, Beijing: 342-351.

Wild, 1980(a). Informap: Interactive Graphic Mapping & Data Base System, Wild
Heerbrugg. Switzerland.

Wild, 1980(b). Wildmap: Interactive Photogrammetric Data Base Mapping System, Wild
Heerbrugg. Switzerland.

Yoeli P., 1982. Cartographic Drawing with Computer, eds. McCullagh M.J. & Mather
P.M., Computer Applications, 8, Nottingham, England.

- 2 6 2 -

UNIVERSITY OF GLASGOW

THE DESIGN AND IMPLEMENTATION

OF

A PROTOTYPE GEOGRAPHIC INFORMATION SYSTEM

USING A NOVEL ARCHITECTURE

BASED ON PS-ALGOL

BY

ABDULHAKIM A. ABDALLAH
B. Sc. (Civil Eng.),

P.G.Diploma (Photogrammetry & Remote Sensing)

VOLUME n

©A Thesis Submitted for the Degree of
Doctor of Philosophy (Ph. D.)
of the Faculty of Science
at the University of Glasgow,
Depatment of Geography
& Topographic Science
March 1990

T ab le o f C o n ten ts

VOLUME II

APPENDIX A: THE FEATURE CODING SYSTEM

A .l Introduction
A.2 The Feature Coding System
A.3 Special Codes for Feature Attributes

A. 3.1 Unspecified
A.3.2 Other
A.3.3 Abandoned

A.4 The Feature Coding System Listing

APPENDIX B: CREATION OF THE DIFFERENT DATABASES

APPENDIX C: GLOBAL PROCEDURES

APPENDIX D: DATA ENTRY MODULE

APPENDIX E: CARTOGRAPHIC REPRESENTATION MODULE

APPENDIX F: DATA RETRIEVAL MODULE

APPENDIX G: HARD-COPY DATA OUTPUT MODULE

APPENDIX H: OPERATIONAL MANAGEMENT SYSTEM PROGRAM

APPENDIX A

Appendix A: The Feature Coding System

APPENDIX A: T H E F E A T U R E C O D IN G S Y S T E M

A . l In tro d u c tio n

Knowing that topographic features are identifiable entities within the topographical
environment, these features can be grouped together according to specified criteria.
According to the classification diagram in Fig. A.l, topographic features are classified into
nine classes forming Level I of the classification. Each class is then subdivided into several
categories resulting in Level n. Then under each category, the features themselves are listed
in Level III, and finally, the feature attributes are given in Level IV.

Tables of

CLASSES

CATEGORIES

FEATURES

ATTRIBUTES

A.2 T he F ea tu re C od in g S ystem

The feature coding system adopted in this project is derived from the "National Standards
for the Exchange of Digital Topographic Data" published by the Canadian Council on
Surveying and Mapping in 1984. The reason for using the classification on this system is
that is has been devised in a very systematic way which helps tremendously in structuring
the database which eventually will use it. Regarding the four levels of the classification
system, the following coding scheme has been adopted:

* * * ** * * * is the format of any code and is of type integer.

1 23 45 6 7 8
In this scheme, the star number "1" may vary from 1 to 9 and represents the classification
within Level I (i.e. 'classes'), that is one of the following :
1- Designated Areas

1

LEVEL I

LEVEL II

LEVEL III

LEVEL IV

Fig. A .l Diagrammatic representation o f the feature coding system

Appendix A: The Feature Coding System

2- Buildings
3- Structures
4- Roads & Railways
5- Utilities
6- Boundaries
7- Hydrography
8- Relief & Landforms
9- Land Cover

Then stars numbered "2" and "3" may vary from 1 to 99 and describe Level II of the
classification. They define the different categories. For example, Designated Area is the
first class of the classification and the branch from it comprises the following categories:

00- Agriculture
01- Commercial
02- Conservation
03- Education
04- Religious
05- Residential
06- Sanitation or Waste Disposal
07- Government
08- Industrial
09- Medical
10- Recreational, Cultural, Historical or Ornamental
11- Transportation
12- Administrative, Political or Cadastral

The next two stars "4" and "5" may vary from 1 to 99 as well and are used to classify the
features within the above categories. The remaining three stars may vary from 10 to 990
(by an increment of 10) and describe the attributes of these features. For example :

"100 " means Designated Area - Agricul.
" 100 02 " means Designated Area - Agricul. - Farm
"100 02 000" means Designated Area - Agricul. - Farm - unspecified
"100 02 010 " means Designated Area - Agricul. - Farm - Dairy

A p p e n d i x A : T h e F e a t u r e C o d i n g S y s t e m

A clearance of 9 between codes is given to allow for the future expansion of the system.
These codes are meant and are used for the system development. They are intended to
speed up the processing of data only and the user does not need to see any of them. As has
been discussed in Chapter 9, since the selection of data for retrieval is carried out using
menus which in turn do not show any of these other codes, but rather the elements of the
features themselves, there is no need for the user to use or see these codes.

A.3 S p ec ia l C odes f o r F ea tu re A ttr ib u te s

On the other hand, there are some special feature attributes that have not been included in
the code listing, which will be presented at the end of this Appendix. These are special
cases and they are identified as follows :

A.3.1 Unspecified : 000

By default, a feature having an unspecified or indefinite attribute will be assigned the code
for level IV of "000".

A.3.2 Other: 999

This attribute code is not included in the topographic feature listing, since it can be applied
to practically all features. To give the attribute "Other", simply use the code "999" in Level
IV. Automatically this will mean that the attributes which are available do not describe the
feature concerned sufficiently well, and that the feature has a definite attribute which would
not allow it to receive the default code "000" for being unspecified.

A.3.3 Abandoned : 001

Since a number of features could be abandoned (for instance a railway station may no
longer be in use), the attribute "001" is being used as a standard code specifically for those
features which have been abandoned. The attribute code "001" is to be assigned to all
abandoned features, including abandoned features which already have attributes.

10- DESIGNATED AREA - Agriculture
100 00 000 Agriculture Land Reserve
100 01 000 Agriculture Region
100 02 000 Farm
100 02 010 Farm- Dairy
100 02 020 Farm- Experimental
100 02 030 Farm- Fruit
100 02 040 Farm- Fur
100 02 050 Farm- Mixed
100 02 060 Farm- Pig
100 02 070 Farm- Potato
100 02 080 Farm- Poultry
100 02 090 Farm- Seedcrop
100 02 100 Farm- Sheep
100 02 110 Farm- Sod
100 02 120 Farm- Tree
100 03 000 Feedlot
100 04 000 Ranch
100 04 010 Ranch-- Cattle
100 04 020 Ranch-- Horse
11- DESIGNATED AREA - Commercial
101 00 000 Lot (Car)
101 01 000 Lot (Other Vehicle)
101 05 000 Shopping Centre Complex
101 10 000 Yard
101 10 010 Yard- Auto Wrecker
101 10 020 Yard- Coal
101 10 030 Yard- Junk/ Scrap/ Salvage
101 10 040 Yard- Lumber
101 10 050 Yard- Stock
101 10 060 Yard- Storage
12- DESIGNATED AREA - Conservation
102 00 000 Archaeological Area
102 01 000 Ecological Area
102 02 000 Forest Reserve
102 03 000 Sanctuary
102 03 010 Sanctuary- Bird
102 03 020 Sanctuary- Wildlife
102 04 000 Wilderness Area
13- DESIGNATED AREA - Education
103 00 000 College Campus
103 01 000 School Grounds
103 02 000 University Campus
14- DESIGNATED AREA - Religious
104 00 000 Cemetery
104 01 000 Religious Complex
15- DESIGNATED AREA - Residential
105 00 000 Colony/Commune
105 01 000 Mobile Home Park
105 02 000 Trailer Park
16- DESIGNATED AREA - Sanitation/Waste Disi
106 00 000 Dump
106 00 010 Dump- Sanitary Landfill Site
106 01 000 Hazardous Waste Disposal
106 02 000 Liquid Waste Disposal Area
106 03 000 Oxidation Bed/Pond
106 04 000 Sewage Leaching Field
106 05 000 Slag Heap / Pile
106 06 000 Tailing Pile /Pond /Dump
17- DESIGNATED AREA - Government

107 00 000 Fish Hatchery
107 01 000 Government Reserve
107 01 010 Government Reserve-Buffer Zone
107 02 000 Jail Complex
107 02 010 Jail Complex- County
107 02 020 Jail Complex- Provincial
107 02 030 Jail Complex- Territorial
107 03 000 Legislative Grounds
107 04 000 Penitentiary Complex
107 04 010 Penitentiary Complex-Max Security
107 04 020 Penitentiary Complex-Med Security
107 04 030 Penitentiary Complex-Min Security
18- DESIGNATED AREA - Industrial
108 00 000 Cannery Complex
108 00 010 Cannery Complex- Fish Products
108 00 020 Cannery Complex- Fruit & Vegetables
108 00 030 Cannery Complex- Shellfish
108 01 000 Electric Power Generation Complex
108 01 010 Elect- Hydroelectric
108 01 020 Elect- Thermal(Coal)
108 01 030 Elect- Thermal(Nuclear)
108 01 040 Elect- Thermal(Oil)
108 01 050 Elect- Thermal(Unspecified)
108 02 000 Electtric Substation Complex
108 03 000 Factory/ Plant Complex
108 03 010 Factory- Aircraft
108 03 020 Factory- Aircraft Parts
108 03 030 Factory- Baking
108 03 040 Factory- Boat Building
108 03 050 Factory- Brewery
108 03 060 Factory- Cement
108 03 070 Factory- Chemical
108 03 080 Factory- Communication Equipment
108 03 090 Factory- Dairy Products
108 03 100 Factory- Distillery
108 03 110 Factory- Electrical Equipment
108 03 120 Factory- Feed
108 03 130 Factory- Food Proc.(Non-Canning)
108 03 140 Factory- Furniture
108 03 150 Factory- Garment
108 03 160 Factory- Machinery
108 03 170 Factory- Major Appliances
108 03 180 Factory- Metal Stamping & Processing
108 03 190 Factory- Motor Vehicle
108 03 200 Factory- Motor Vehicle Parts
108 03 210 Factory- Paint
108 03 220 Factory- Petrochemical
108 03 230 Factory- Pharmaceutical & Medicine
108 03 240 Factory- Plastics Fabrication
108 03 250 Factory- Poultry Proc.(Non-Canning)
108 03 260 Factory- Publishing & Printing
108 03 270 Factory- Rubber Products
108 03 280 Factory- Ship Building
108 03 290 Factory- Slaughter & Meat Processing
108 03 300 Factory- Soft Drink
108 03 310 Factory- Winery
108 04 000 Gas Field
108 05 000 Industrial Complex
108 06 000 Lumber Camp
108 07 000 Mill Complex
108 07 010 Mill- Feed
108 07 020 Mill- Flour
108 07 030 Mill- Iron & Steel
108 07 040 Mill- Pulp & Paper
108 07 050 Mill- Saw
108 07 060 Mill- Shake/Shingle
108 07 070 Mill- Textile
108 07 080 Mill- Veneer & Plywood
108 07 090 Mill- Wire & Rope
108 08 000 Mine (Open Pit)
108 08 010 Mine- Asbestos
108 08 020 Mine- Calcite
108 08 040 Mine- Copper

108 08 050 Mine- Feldspar
108 08 060 Mine- Gold
108 08 070 Mine- Gypsum
108 08 080 Mine- Iron Ore
108 08 090 Mine- Lead & Zinc
108 08 100 Mine- Magnesium
108 08 110 Mine- Nephline Syenite
108 08 120 Mine- Nickel
108 08 130 Mine- Silica (Quartz)
108 08 140 Mine- Silver
108 08 150 Mine- Titanium
108 08 160 Mine- Tungsten
108 08 170 Mine- Uranium
108 09 000 Mine (Placer) Gold
108 10 000 Mine (Strip)
108 10 010 Mine- Bentonite
108 10 020 Mine- Coal
108 10 030 Mine- Oil Sands
108 11 000 Mine (Underground)
108 11 010 Mine- Antimony
108 11 020 Mine- Asbestos
108 11 030 Mine- Barite
108 11 040 Mine- Coal
108 11 050 Mine- Columbium
108 11 060 Mine- Copper
108 11 070 Mine- Feldspar
108 11 080 Mine- Fluorite
108 11 090 Mine- Gold
108 11 100 Mine- Iron Ore
108 11 110 Mine- Lead & Zinc
108 11 120 Mine- Lithium
108 11 130 Mine- Mercury
108 11 140 Mine- Molybdenum
108 11 150 Mine- Nickel
108 11 160 Mine- Platinum Group
108 11 170 Mine- Potash
108 11 180 Mine- Salt
108 11 190 Mine- Selenium
108 11 200 Mine- Silver
108 11 210 Mine- Sulphur
108 11 220 Mine- Talc
108 11 230 Mine- Titanium
108 11 240 Mine- Tungsten
108 11 250 Mine- Uranium
108 12 000 Oil & Gas Field
108 13 000 Oil Battery/ Tank Farm
108 14 000 Oil Field
108 15 000 Peat Cutting
108 16 000 Pit
108 16 010 Pit- Gravel
108 16 020 Pit- Sand
108 16 030 Pit- Shale
108 17 000 Quarry
108 18 000 Refinery Complex
108 18 010 Refinery- Gasoline/Oil
108 18 020 Refinery-Liquid Petrol Gas/Oil
108 18 030 Refinery- Metal
108 18 040 Refinery- Sugar
108 19 000 Research Centre Complex
108 20 000 Salt Evaporator
19- DESIGNATED AREA - Medical
109 00 000 Hospital Complex
109 00 010 Hospital- Children
109 00 020 Hospital- General
109 00 030 Hospital- Mental Health
109 00 040 Hospital- Military
109 00 050 Hospital- University
109 01 000 Sanitarium Complex
110- DESIGNATED AREA - Recreational,Cultural,Historical or Ornamental
110 00 000 Battlefield
110 01 000 Botanical Garden

110 02 000 Campground/Campsite
110 02 010 Campground- Federal
110 02 020 Campground- Municipal
110 02 030 Campground- Private
110 02 040 Campground- Provincial
110 02 050 Campground- Regional
110 03 000 Court
110 03 010 Court- Basketball
110 03 020 Court- Tennis
110 04 000 Drive-In Theatre
110 05 000 Exhibition Ground
110 06 000 Fairground
110 07 000 Flower Bed
110 08 000 Fort
110 09 000 Golf Course
110 09 010 Golf Course- Miniature
110 10 000 Historic Area
110 11 000 Lacrosse Box
110 13 000 Lawn/Bowling Green
110 14 000 Look-Out
110 14 010 Look-Out/Covered
110 14 020 Look-Out/Scenic
110 15 000 Off-Road Vehicle Test Area
110 16 000 Outdoor Theatre
110 17 000 Park
110 17 010 Park- Amusement
110 17 020 Park- Memorial
110 17 030 Park- Municipal
110 17 040 Park- National
110 17 050 Park- Provincial
110 17 060 Park- Regional
110 18 000 Patio
110 19 000 Picnic Site
110 20 000 Playground
110 21 000 Playing Field (Sports)
110 22 000 Race Track
110 22 010 Race Track- Athletic
110 22 020 Race Track- Automotive
110 22 030 Race Track- Bicycle
110 22 040 Race Track- Horse
110 23 000 Range (Civilian)
110 23 010 Range- Archery
110 23 020 Range- Golf Driving
110 23 030 Range- Pistol
110 23 040 Range- Rifle
110 23 050 Range- Skeet/Trap
110 24 000 Resort
110 24 010 Resort- Summer
110 24 020 Resort- Winter
110 25 000 Riding Academy
110 26 000 Rink (Outdoor)
110 27 000 Ski Area
110 28 000 Soccer Field
110 29 000 Sports/Recreational Complex
110 30 000 Zoo
Ill-- DESIGNATED AREA - Transportation

Ill 00 000 Airfield
111 01 000 Airport
111 02 000 Airstrip
111 03 000 Anchorage
111 03 010 Anchorage- Seaplane
111 03 020 Anchorage- Ship (Large)
111 03 030 Anchorage- Ship (Small)
111 04 000 Ferry Route
111 05 000 Harbour/Port
111 06 000 Helipad
111 07 000 Landing (Boat)
111 08 000 Parking Apron
111 09 000 Parking Lot
111 09 010 Parking Lot- Paved
111 09 020 Parking Lot- Unpaved
111 10 000 Railway Yard
111 11 000 Rest Yard

Ill 12 000 Runway (Airport/Airfield)
111 13 000 Seaplane Base
111 14 000 Taxiway (Airport)
112- DESIGNATED AREA - Admin,Political/Cadastral

Block
Block-face
Borough
Built-up Area
Census Agglomeration
Census Consolidated Subdivision
Census Division
Census Farm
Census Metropolitan Area(CMS)
(CMS)/Census Agglomerations
Census Subdivision
Census Sub- Borough
Census Sub- Canton
Census Sub- City
Census Sub- Community
Census Sub- County (Municipality)
Census Sub- District (Municipality)
Census Sub- Hamlet
Census Sub- Improvement District
Census Sub- Local Government District
Census Sub- Local Improvement District
Census Sub- Municipal Corporation
Census Sub- Municipal District
Census Sub- Parish
Census Sub- Resort Village
Census Sub- Rural Municipality
Census Sub- Settlement
Census Sub- Special Area
Census Sub- Subdivision/County Municipal
Census Sub- Subdivision/Region District
Census Sub- Summer Village
Census Sub- Town
Census Sub- Township
Census Sub- Township and Royalty
Census Sub- Unorganized
Census Sub- Village
Census Tract
Census Tract- Provincial
City
Componenet (Census)
Concession
County
District
District Municipality
Easement
Electoral District/Riding
Electoral District- Federal
Electoral District- Provincial
Electoral District/Ward
Electoral District- Municipal
Enumeration Area
Environment Region
Forest & Grazing District
Hamlet/Community/Locality
Highway/Transportation
Highway/Transportation- District
Highway/Transportation- Region
Human Resources Region
Improvement District
Land & Housing Region
Land Assessment District
Land District
Land Grant (DLS)
Land Management District
Land Recording District
Land Title District
Lease
Lease- Campsite
Lease- Coal

112 00 000
112 01 000
112 02 000
112 03 000
112 04 000
112 05 000
112 06 000
112 07 000
112 08 000
112 09 000
112 10 000
112 10 010
112 10 020
112 10 040
112 10 050
112 10 060
112 10 070
112 10 080
112 10 090
112 10 100
112 10 110
112 10 120
112 10 130
112 10 140
112 10 160
112 10 170
112 10 190
112 10 200
112 10 210
112 10 220
112 10 230
112 10 240
112 10 250
112 10 260
112 10 270
112 10 280
112 11 000
112 11 010
112 12 000
112 13 000
112 14 000
112 15 000
112 16 000
112 17 000
112 18 000
112 19 000
112 19 010
112 19 020
112 20 000
112 20 010
112 21 000
112 22 000
112 23 000
112 24 000
112 25 000
112 25 010
112 25 020
112 27 000
112 28 000
112 29 000
112 30 000
112 31 000
112 32 000
112 33 000
112 34 000
112 35 000
112 36 000
112 36 010
112 36 020

112 36 030 Lease- Gas
112 36 040 Lease- Mineral
112 36 050 Lease- Oil
112 36 060 Lease- Placer Mining
112 36 070 Lease- Potash
112 36 080 Lease- Pulp
112 37 000 Legal Subdivision (DLS)
112 38 000 Licence/Permit
112 38 010 Licence/Permit- Coal
112 38 020 Licence/Permit- Gas
112 38 030 Licence/Permit- Mineral
112 38 040 Licence/Permit- Oil
112 38 050 Licence/Permit- Pulp
112 38 060 Licence/Permit- Timber
112 38 070 Licence/Permit- Tree Farm
112 39 000 Lot
112 39 010 Lot- District
112 39 020 Lot- River
112 39 030 Lot- Road
112 39 040 Lot- Township
112 40 000 Metropolitan Area
112 41 000 Mineral Claim
112 42 000 Mining District/Division
112 43 000 Parcel
112 44 000 Parish
112 45 000 Patented Land
112 46 000 Polling Division
112 47 000 Quarter Section
112 49 000 Range
112 50 000 Regional District
112 51 000 Regional Municipality
112 52 000 Resource Management Region
112 53 000 Right of Way
112 54 000 Road Allowance
112 55 000 Rural Municipality
112 56 000 School District
112 57 000 Section
112 58 000 Settlement
112 59 000 Subdivision
112 60 000 Sub-lot
112 61 000 Timber Berth
112 62 000 Town
112 63 000 Township
112 63 010 Township- DLS
112 63 020 Township- Municipal
112 64 000 Village
112 65 000 Water Management Region
20- BUILDING - Agriculture
200 00 000 Barn
200 01 000 Granary
200 02 000 Greenhouse
200 03 000 Maple Sugar Shack
200 04 000 Shed
200 04 010 Shed- Drying
200 04 020 Shed- Machinery
200 05 000 Stable
21- BUILDING - Commercial
201 00 000 Bank
201 01 000 Bar/Beer-Parlour/Saloon
201 02 000 Booth/Snack Bar/Canteen
201 03 000 Cabin (Tourist)
201 04 000 Car Wash
201 05 000 Crematorium
201 06 000 Funeral Home
201 07 000 Grain Elevator
201 08 000 Hotel/Motel/Tourist Lodge
201 09 000 Kennel
201 10 000 Office
201 10 010 Office- Commercial
201 11 000 Restaurant/Cafe
201 12 000 Service Station

201 12 010 Service Station- Refueling
201 12 020 Service Station- Repair (Automotive)
201 13 000 Shopping Centre
201 14 000 Store
201 14 010 Store- Personal Service
201 14 020 Store- Retail
201 14 030 Store- Wholesale
201 15 000 Trading Post
201 16 000 Warehouse
201 16 010 Warehouse- Storage
201 16 020 Warehouse- Wholesale
22- BUILDING - Communication
202 00 000 Station (Communication)
202 00 010 Station- Microwave
202 00 020 Station- Radio
202 00 030 Station- Radio - Government
202 00 040 Station- Radio - Military
202 00 050 Station- Radio - Private
202 00 060 Station- Radio - Telegraph
202 00 070 Station- Radio - Telephone
202 00 080 Station- Relay
202 00 090 Station- Satellite
202 00 100 Station- TV
202 00 110 Station- TV - Government
202 00 120 Station- TV - Private
202 01 000 Telegraph Office
202 02 000 Telephone Office
23- BUILDING - Education
203 00 000 College
203 00 010 College- Community
203 00 020 College- Military
203 01 000 Library
203 02 000 School
203 02 010 School- Art
203 02 020 School- Business
203 02 030 School- Community
203 02 040 School- Day Care
203 02 050 School- Day Care- Private
203 02 060 School- Day Care- Public
203 02 070 School- Day Care- Separate
203 02 080 School- Elementary
203 02 090 School- Elementary- Private
203 02 100 School- Elementary- Public
203 02 110 School- Elementary- Separate
203 02 120 School- Kindergarten
203 02 130 School- Kindergarten- Private
203 02 140 School- Kindergarten- Public
203 02 150 School- Kindergarten- Separate
203 02 160 School- Military
203 02 170 School- Nursery
203 02 180 School- Nersery- Private
203 02 190 School- Nersery- Public
203 02 200 School- Nersery- Separate
203 02 210 School- Primary
203 02 220 School- Primary- Private
203 02 230 School- Primary- Public
203 02 240 School- Primary- Separate
203 02 250 School- Retraining
203 02 260 School- Secondary
203 02 270 School- Secondary- Private
203 02 280 School- Secondary- Public
203 02 290 School- Secondary- Separate
203 02 300 School- Technical
203 02 310 School- Technical- Private
203 02 320 School- Technical- Public
203 02 330 School- Technical- Separate
203 03 000 University
24- BUILDING - Government
204 00 000 City Hall

204 01 000 Courthouse
204 01 010 Courthouse- Federal
204 01 020 Courthouse- Provincial
204 02 000 Customs Office
204 03 000 Customs Post
204 04 000 Customs Warehouse
204 05 000 Detention Home/Centre
204 05 010 Detention- Juvenile
204 05 020 Detention- Pre-sentencing
204 06 000 Embassy
204 07 000 Filtration Plant
204 08 000 Fire Lookout - Building
204 08 010 Fire Lookout - Tower
204 09 000 Fire Station
204 10 000 Government Agent Office
204 11 000 Government Office Bid
204 11 010 Government- Federal
204 11 020 Government- Municipal
204 11 030 Government- Provincial
204 12 000 Jail
204 12 010 Jail- County
204 12 020 Jail- Provincial
204 12 030 Jail- Territorial
204 13 000 Legislative Building
204 14 000 Municipal Hall
204 15 000 Observatory(Astronomical)
204 16 000 Park Administration Bid
204 17 000 Parliament Building
204 18 000 Penitentiary
204 18 010 Penitentiary- Max Security
204 18 020 Penitentiary- Med Security
204 18 030 Penitentiary- Min Security
204 19 000 Police Station
204 19 010 Police Station- Municipal
204 19 020 Police Station- Provincial
204 21 000 Post Office
204 22 000 Ranger/Warden Station
204 23 000 Research Centre Government
204 24 000 Town Hall
204 25 000 Village Hall
204 26 000 Weigh Scale Office
25- BUILDING - Industrial
205 00 000 Cannery
205 00 010 Cannery- Fish Products
205 00 020 Cannery- Fruit & Vegetables
205 00 030 Cannery- Shelfish
205 01 000 Electric Power Generating Station (EPGS)
205 01 010 EPGS- Hydroelectric
205 01 020 EPGS- Thermal(Coal)
205 01 030 EPGS- Thermal(Nuclear)
205 01 040 EPGS- Thermal(Oil)
205 01 050 EPGS- Thermal (Unspecified)
205 02 000 Electrical Substation
205 03 000 Factory/Plant
205 03 010 Factory- Aircraft
205 03 020 Factory- Aircraft Parts
205 03 030 Factory- Baking
205 03 040 Factory- Boat Building
205 03 050 Factory- Brewery
205 03 060 Factory- Cement
205 03 070 Factory- Chemical
205 03 080 Factory- Communication Equipment
205 03 090 Factory- Dairy Products
205 03 100 Factory- Distillery
205 03 110 Factory- Electrical Equipment
205 03 120 Factory- Feed
205 03 130 Factory- Food Processing(Non-Canning)
205 03 140 Factory- Furniture
205 03 150 Factory- Garment
205 03 160 Factory- Gas Processing
205 03 170 Factory- Machinery
205 03 180 Factory- Major Appliances
205 03 190 Factory- Metal Stamping & Processing

205 03 200 Factory- Motor Vehicle
205 03 210 Factory- Motor Vehicle Parts
205 03 220 Factory- Paint
205 03 230 Factory- Petrochemical
205 03 240 Factory- Pharmaceutical & Medicine
205 03 250 Factory- Plastics Fabrication
205 03 260 Factory- Poultry Proc (NonFactory-Canning)
205 03 270 Factory- Publishing & Printing
205 03 280 Factory- Rubber Products
205 03 290 Factory- Sash & Door
205 03 300 Factory- Ship Building
205 03 310 Factory- Slaughter & Meat Processing
205 03 320 Factory- Soft Drink
205 03 330 Factory- Winery
205 04 000 Gas Compressor Station
205 05 000 Lumber Camp Building
205 06 000 Meter Station
205 07 000 Mill
205 07 010 Mill- Feed
205 07 020 Mill- Flour
205 07 030 Mill- Iron & Steel
205 07 040 Mill- Pulp and Paper
205 07 050 Mill- Saw
205 07 060 Mill- Shake/Shingle
205 07 070 Mill- Textile
205 07 080 Mill- Veneer and Plywood
205 07 090 Mill- Wire and Rope
205 08 000 Pipeline Satellite Stn.
205 09 000 Pumping Station (PS)
205 09 010 PS- Gasoline
205 09 020 PS- Liquid Petrolium Gas/Oil Products
205 09 030 PS- Water
205 10 000 Refinery
205 10 010 Refinery- Gasoline/Oil
205 10 020 Refinery- Liquid Petroleum Gas
205 10 030 Refinery- Metal
205 10 040 Refinery- Sugar
205 11 000 Research Centre-Industrial
26- BUILDING - Medical
206 00 000 Clinic
206 00 010 Clinic- Convalescent
206 00 030 Clinic- Dental
206 00 040 Clinic- Handicapped
206 00 050 Clinic- Orthopaedic
206 00 060 Clinic- Rehabilitation
206 00 070 Clinic- Veterinary
206 01 000 Hospital
206 01 010 Hospital- Children
206 01 020 Hospital- Cottage
206 01 030 Hospital- General
206 01 040 Hospital- Geriatric
206 01 050 Hospital- Mental Health
206 01 060 Hospital- Military
206 01 070 Hospital- University
206 02 000 Research Centre - Medical
206 03 000 Sanitorium
27- BUILDING - Waste Disposal
207 00 000 Outhouse (Sanitation)
207 01 000 Restroom/Toilet Facility
207 02 000 Sewage Pumping Station
207 03 000 Sewage Treatment Plant
28- BUILDING - Recreational,Cultural,Historical/Ornamental

208 00 000 Arena
208 00 010 Arena- Boxing
208 00 020 Arena- Curling
208 00 030 Arena- Hockey
208 00 040 Arena- Track and Field
208 00 050 Arena- Velodrome
208 01 000 Art Centre

208 02 000 Art Gallery
208 03 000 Auditorium
208 04 000 Boathouse
208 05 000 Bowling Alley
208 06 000 Change House
208 07 000 Club House
208 07 010 Club House- Canoeing
208 07 020 Club House- Cricket
208 07 030 Club House- Flying
208 07 040 Club House- Fraternal
208 07 050 Club House- Golf
208 07 060 Club House- Rowing
208 07 070 Club House- Rugby
208 07 080 Club House- Skeet Shooting
208 07 090 Club House- Skiing
208 07 100 Club House- Speedboat Racing
208 07 110 Club House- Tennis
208 07 120 Club House- Yachting
208 08 000 Fitness/Athletic/Sport complex
208 09 000 Hall
208 09 010 Hall- Amusement
208 09 020 Hall- Billiard
208 09 030 Hall- Community
208 09 040 Hall- Dance
208 09 050 Hall- Exhibition
208 09 060 Hall- Music
208 10 000 Historical Building
208 11 000 Marina
208 12 000 Museum
208 12 010 Museum- Aeronautical
208 12 020 Museum- Military
208 12 030 Museum- Natural History
208 12 040 Museum- Nautical
208 12 050 Museum- Science
208 13 000 Planetarium
208 14 000 Ruin
208 15 000 Swimming Pool (Indoors)
208 16 000 Theatre
208 16 010 Theatre- Live Performance
208 16 020 Theatre- Moving Picture
209-- BUILDING - Residential
209 00 000 Apartment
209 01 000 Cabin/Hut/Shack
209 02 000 Cottage/Chalet
209 03 000 Dwelling
209 04 000 Dwelling (Institutional)
209 04 010 Dwelling- Club (Residential)
209 04 020 Dwelling- Hostel
209 04 030 Dwelling- Nursing
209 04 040 Dwelling- Old-age
209 04 050 Dwelling- Orphanage
209 04 060 Dwelling- Student Residence
209 04 070 Dwelling- YMCA/YWCA
209 05 000 Garage (Non-commercial)
209 05 010 Garage- Double - Attached
209 05 020 Garage- Double - Detached
209 05 030 Garage- Multiple - Attached
209 05 040 Garage- Multiple - Detached
209 05 050 Garage- Single - Attached
209 05 060 Garage- Single - Detached
209 06 000 House
209 06 010 House- Detached (Single)
209 06 030 House - Floating
209 06 040 House- Row
209 06 050 House- Semi-detached
209 07 000 Manse/Rectory/Presbytery
209 08 000 Mobile Home
209 09 000 Shed (Garden)
210-- BUILDING - Religious
210 00 000 Building Religious
210 01 000 Cathedral

210 02 000 Chapel
210 03 000 Church
210 04 000 Church Hall
210 05 000 Convent
210 06 000 Meeting Hall
210 07 000 Monastery
210 08 000 Mosque
210 09 000 Pagoda
210 10 000 Seminary
210 11 000 Shrine
210 12 000 Synagogue
210 13 000 Temple
212-• BUILDING - Other
211 00 000 Building - Dome
211 01 000 Building - Multiuse
30- STRUCTURE - Agriculture
300 00 000 Bin (Storage)
300 01 000 Corn Crib
300 02 000 Feeder Station
300 03 000 Silo
300 04 000 Stock Pen
300 05 000 Wind Mill
31- STRUCTURE - Commercial
301 00 000 Bill Board
301 01 000 Fuel Pump
301 01 010 Fuel Pump- Diesel
301 01 030 Fuel Pump- Gasoline
301 02 000 Fuel Pump Island
301 03 000 Parking Garage
301 03 010 Parking Garage- Multi-Level
301 03 020 Parking Garage- Single-Level
301 04 000 Stand/Kiosk
301 05 000 Storage Tank
301 05 010 Storage Tank- Fuel
32- STRUCTURE - Communication
302 00 000 Antenna
302 00 010 Antenna- Microwave
302 00 020 Antenna- Radio
302 00 030 Antenna- TV
302 01 000 Tower/Mast
302 01 010 Tower/Mast- Microwave
302 01 020 Tower/Mast- Radio
302 01 030 Tower/Mast- TV
33- STRUCTURE - Government
303 00 000 Station (Climate/Weather)
303 02 000 Station (Tide Monitoring)
303 03 000 Station (Water Quality)
34- STRUCTURE - Industrial
304 00 000 Bunker
304 01 000 Burner
304 01 010 Burner- Garbage
304 01 020 Burner- Sawdust
304 02 000 Crane
304 02 010 Crane- Moveable
304 02 020 Crane- Stationary
304 03 000 Drydock
304 03 010 Drydock- Floating
304 03 020 Drydock- On Land
304 04 000 Gas Well
304 05 000 Grating
304 06 000 Hopper
304 07 000 Injection Well
304 07 010 Injection Well- Gas

304 07 020 Injection Well- Water/Steam
304 08 000 Kiln
304 08 010 Kiln- Brick
304 08 020 Kiln- Lumber
304 09 000 Mine entrance/Adit
304 10 000 Mine Headframe
304 11 000 Mine Shaft
304 12 000 Oil Well
304 13 000 Platform (Offshore Drill)
304 14 000 Slipway
304 15 000 Smoke Stack/Chimney
304 16 000 Weigh Scale
35- STRUCTURE - Recreational,Cultural,Historical/Ornamental
305 00 000 Amphitheatre
305 01 000 Amusement Train
305 02 000 Bandstand
305 03 000 Bleachers
305 04 000 Fireplcae (Outdoor)
305 05 000 Flag Pole
305 06 000 Fountain
305 08 000 Grandstand
305 09 000 Landmark
305 10 000 Monument (Historical)
305 10 010 Monument- Memorial
305 11 000 Observation Tower
305 12 000 Park Entrance
305 13 000 Pavilion/Shelter
305 14 000 Picnic Table (Fixed)
305 16 000 Plaque (Historical)
305 17 000 Roller Coaster
305 18 000 Skateboard Bowl
305 19 000 Ski Jump
305 20 000 Ski Lift
305 21 000 Stadium
305 21 020 Stadium- Football
305 22 000 Statue
305 23 000 Sun Dial
305 24 000 Swimming Pool (Outdoor)
36- STRUCTURE - Religious
306 00 000 Church Tower - Attached
306 00 010 Church Tower - Detached
306 01 000 Minaret - Attached
306 01 010 Minaret - Detached
306 02 000 Religious Monument
306 03 000 Spire/Steeple
37- STRUCTURE - Residential
307 00 000 Carport
307 00 010 Carport- Double - Attached
307 00 020 Carport- Double - Detached
307 00 030 Carport- Multiple - Attached
307 00 040 Carport- Multiple - Detached
307 00 050 Carport- Single - Attached
307 00 060 Carport- Single - Detached
38- STRUCTURE - Sanitation/Waste Disposal
308 00 000 Incinerator
308 01 000 Refuse Bin
308 02 000 Septic Tank
39- STRUCTURE - Transportation

309 00 000 Aerial Cableway
309 01 000 Beacon
309 01 010 Beacon- Air
309 01 020 Beacon- Marine
309 02 000 Bollard
309 03 000 Bus Shelter
309 04 000 Capstan

309 05 000 Conveyor
309 06 000 Dock
309 06 010 Dock- Cargo
309 06 020 Dock- Coal
309 06 030 Dock- Ferry
309 06 040 Dock- Floating
309 06 050 Dock- Ore
309 07 000 Dolphin
309 08 000 Fog Signal
309 09 000 Jetty
309 10 000 Launching Ramp
309 11 000 Light House
309 12 000 Lock
309 13 000 Pier
309 14 000 Platform
309 14 010 Platform- Cargo
309 14 020 Platform- Freight (Hydraulic)
309 14 030 Platform- Passenger (Covered)
309 14 040 Platform- Passenger (Uncovered)
309 15 000 Quay
309 16 000 Radar Dome
309 16 010 Radar Dome- Government
309 16 020 Radar Dome- Military
309 17 000 Ramp
309 18 000 Ranging Light/Marker
309 19 000 Siren
309 20 000 Slip
309 21 000 Warning Light
309 22 000 Wharf
309 23 000 Windcone
310-- STRUCTURE - Other
310 00 000 Barrier
310 00 010 Barrier - Berm
310 01 000 Fence
310 02 000 Gate
310 03 000 Noise Barrier
310 04 000 Steps
310 05 000 Structure
310 06 000 Wall
310 07 000 Wind Charger
310 08 000 Wind Pump
40- ROADS OR RAILWAYS - Road
400 00 000 Road
400 00 010 Road - Under Construction (U/C)
400 01 000 Road (Gravel Divided)
400 01 010 Road/GD - 1 Lane Each Way (LEW)
400 01 020 Road/GD - 2 LEW
400 01 030 Road/GD - 3 LEW
400 01 040 Road/GD - Proposed
400 01 050 Road/GD - U/C
400 01 060 Road/GD - U/C - 1 LEW
400 01 070 Road/GD - U/C - 2 LEW
400 01 080 Road/GD - U/C - 3 LEW
400 02 000 Road (Gravel Undivided)
400 02 010 Road/GU - 1 Lane
400 02 020 Road/GU - 2 Lanes
400 02 030 Road/GU - 3 Lanes
400 02 040 Road/GU - Proposed
400 02 050 Road/GU - U/C
400 02 060 Road/GU - UC-1 Lane
400 02 070 Road/GU - UC-2 Lanes
400 02 080 Road/GU - UC-3 Lanes
400 03 000 Road (Paved Divided)
400 03 010 Road/PD - Elevated
400 03 020 Road/PD - E- 1 LEW
400 03 030 Road/PD - E- 2 LEW
400 03 040 Road/PD - E- 3 LEW
400 03 050 Road/PD - E- 4 LEW
400 03 060 Road/PD - E- > 4 LEW
400 03 070 Road/PD - Not Elevated
400 03 080 Road/PD - NE- 1 LEW

400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
41-
401
401
401
401
401
401
401
401
401
401
401
401
42-
402
402
402
402
402
402
402
402
402

03 090 Road/PD - NE- 2 LEW
03 100 Road/PD - NE- 3 LEW
03 110 Road/PD - NE- 4 LEW
03 120 Road/PD - NE- > 4 LEW
03 130 Road/PD - NE- Proposed
03 140 Road/PD - Under Construction
03 010 Road/PD - UC-Elevated
03 020 Road/PD - UC-E- 1 LEW
03 030 Road/PD - UC-E- 2 LEW
03 040 Road/PD - UC-E- 3 LEW
03 050 Road/PD - UC-E- 4 LEW
03 060 Road/PD - UC-E- > 4 LEW
03 070 Road/PD - UC-Not Elevated
03 080 Road/PD - UC-NE- 1 LEW
03 090 Road/PD - UC-NE- 2 LEW
03 100 Road/PD - UC-NE- 3 LEW
03 110 Road/PD - UC-NE- 4 LEW
03 120 Road/PD - UC-NE- > 4 LEW
04 000 Road (Paved Undivided)
04 010 Road/PU - Elevated
04 020 Road/PU - E- 1 Lane
04 030 Road/PU - E- 2 Lanes
04 040 Road/PU - E- 3 Lanes
04 050 Road/PU - E- 4 Lanes
04 060 Road/PU - E- > 4 Lanes
04 070 Road/PU - Not Elevated
04 080 Road/PU - NE - 1 Lane
04 090 Road/PU - NE - 2 Lanes
04 100 Road/PU - NE - 3 Lanes
04 110 Road/PU - NE - 4 Lanes
04 120 Road/PU - NE - > 4 Lanes
04 130 Road/PU - NE - Proposed
04 140 Road/PU - U/C
04 150 Road/PU - UC-Elevated
04 160 Road/PU - UC/E- 1 Lane
04 170 Road/PU - UC/E- 2 Lanes
04 180 Road/PU - UC/E- 3 Lanes
04 190 Road/PU - UC/E- 4 Lanes
04 200 Road/PU - UC/E- > 4 Lanes
04 210 Road/PU - UC Not Elevated
04 220 Road/PU - UC/NE- 1 Lane
04 230 Road/PU - UC/NE- 2 Lanes
04 240 Road/PU - UC/NE- 3 Lanes
04 250 Road/PU - UC/NE- 4 Lanes
04 260 Road/PU - UC/NE- > 4 Lanes
05 000 Road (Unimproved)
05 010 Road(Unimproved) - U/C
06 000 Road (Winter Road)
ROADS OR RAILWAYS - Accessway
00 000 Accessway
00 010 Accessway - Private
00 020 Accessway - Public
01 000 Accessway (Gravel)
01 010 Accessway/G - Private
01 020 Accessway/G - Public
02 000 Accessway (Paved)
02 010 Accessway/P - Private
02 020 Accessway/P - Public
03 000 Accessway (Unimproved)
03 010 Accessway/U - Private
03 020 Accessway/U - Public
ROADS OR RAILWAYS - Track or Trail
00 000 Track
00 010 Track - Cart/Tractor
00 020 Track - Winter
01 000 Trail
01 010 Trail - Portage
01 020 Trail - Proposed
01 030 Trail - Ski
01 040 Trail - Snowmobile
01 050 Trail - Under Construction

402
402
402
402
402
402
402
402
402
402
402
402
43-
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403
403

02 000 Trail (Broadwalk)
03 000 Trail (Improved)
03 010 Trail/I - Bicycle
03 020 Trail/I - Equestrian
03 030 Trail/I - Pedestrian/Hiking
04 000 Trail (Paved)
04 010 Trail/P - Bicycle
04 020 Trail/P - Pedestrian/Hiking
05 000 Trail (Unimproved)
05 010 Trail/U - Bicycle
05 020 Trail/U - Equestrian
05 030 Trail/U - Pedestrian/Hiking
ROADS OR RAILWAYS - Associated Feature
00 000 Bridge (Pedestrian/Cycle)
01 000 Bridge (Railway)
01 010 Bridge/Rl - Arch
01 020 Bridge/Rl - Covered
01 030 Bridge/Rl - Draw
01 040 Bridge/Rl - Lift
01 050 Bridge/Rl - Swing
01 060 Bridge/Rl - Trestle
02 000 Bridge(Road & Railway)
02 010 Bridge/Rd-Rl - Arch
02 020 Bridge/Rd-Rl - Covered
02 030 Bridge/Rd-Rl - Draw
02 040 Bridge/Rd-Rl - Lift
02 050 Bridge/Rd-Rl - Swing
02 060 Bridge/Rd-Rl - Trestle
03 000 Bridge (Road)
03 010 Bridge/Rd - Arch
03 020 Bridge/Rd - Covered
03 030 Bridge/Rd - Draw
03 040 Bridge/Rd - Floating
03 050 Bridge/Rd - Lift
03 060 Bridge/Rd - Suspension
03 070 Bridge/Rd - Swing
04 000 Bus Way
05 000 Cattle Gate
06 000 Causeway (Railway)
07 000 Causeway (Road & Rail)
08 000 Causeway (Road)
09 000 Crossing Gate (Railway)
10 000 Culvert (Railway)
11 000 Culvert (Road)
12 000 Curb
13 000 Cut (Railway)
14 000 Cut (Road)
15 000 Embankment/Fill (Railway)
16 000 Embankment/Fill (Road)
17 000 Guard Rail/Guide Rail
18 000 Gutter
19 000 Interchange
19 000 Interchange- Cloverleaf
20 000 Intersection
20 010 Intersection- Diamond
20 020 Intersection- Traffic Circle
20 030 Intersection- Trumpet
20 040 Intersection- Y/Fork
21 000 Median
22 000 Median Barrier
23 000 Overpass(Pedestrian/Cycle)
24 000 Parking Meter
25 000 Parking Rails
26 000 Pavement Marking
27 000 Post (Mile or Kilometre)
28 000 Retaining Wall
29 000 Revetment
30 000 Road Number Symbol
31 000 Runaway Preventer
32 000 Sidewalk
32 010 Sidewalk- Gravel
32 020 Sidewalk- Paved
33 000 Sign/Sign Post

403 34 000 Snow Shed (Railway)
403 35 000 Snow Shed (Road)
403 36 000 Stop (Railway)
403 37 000 Subway Entrance
403 38 000 Switch (Railway)
403 39 000 Toll Gate
403 40 000 Traffic Island
403 41 000 Traffic Light
403 42 000 Traffic Light Control Box
403 43 000 Traffic Signal (Railway)
403 44 000 Tunnel
403 45 000 Tunnel (Railway)
403 46 000 Tunnel (Road)
403 47 000 Turntable (Railway)
403 48 000 Underpass
403 48 010 Underpass- Cattle
403 48 020 Underpass- Pedestrian
403 49 000 Viaduct
403 50 000 Warning Light (Railway)
44- ROADS OR RAILWAYS - Through Rail Line
404 00 000 Monorail
404 01 000 Rail Line
404 01 010 Rail Line - Narrow Gauge
404 01 020 Rail Line/NG - Multiple Track
404 01 030 Rail Line/NG - Single Track
404 01 040 Rail Line - Proposed
404 01 050 Rail Line - U/C
404 02 000 Rail Line (Double Track)
404 02 010 Rail Line/DT - Elevated
404 02 020 Rail Line/DT - Surface
404 02 030 Rail Line/DT - Underground
404 02 040 Rail Line/DT - Subway
404 02 050 Rail Line/DT - Train
404 02 060 Rail Line/DT - Tramway
404 03 000 Rail Line(Multiple Track)
404 03 010 Rail Line/MT - Elevated
404 03 020 Rail Line/MT - Surface
404 03 030 Rail Line/MT - Underground
404 03 040 Rail Line/MT - Subway
404 03 050 Rail Line/MT - Train
404 03 060 Rail Line/MT - Tramway
404 04 000 Rail Line (Single Track)
404 04 010 Rail Line/ST - Elevated
404 04 020 Rail Line/ST - Surface
404 04 030 Rail Line/ST - Underground
404 04 040 Rail Line/ST - Subway
404 04 050 Rail Line/ST - Train
404 04 060 Rail Line/ST - Tramway
45- ROADS OR RAILWAYS - Subsidiary Rail Line
405 00 000 Siding
405 00 010 Siding - Light Rail Transit
405 00 020 Siding - Subway
405 00 030 Siding - Train
405 00 040 Siding - Tramway
405 01 000 Siding (Narrow Gauge)
405 02 000 Spur
405 02 010 Spur - Light Rail Transit
405 02 020 Spur - Subway
405 02 030 Spur - Train
405 02 040 Spur - Tramway
405 03 000 Spur (Narrow Gauge)
50- UTILITY -■ Utility
500 00 000 Cable
500 00 010 Cable - Above Ground (A.G)
500 00 020 Cable - Electrical
500 00 030 Cable - Electrical - A.G
500 00 040 Cable - Electrical - U.G
500 00 050 Cable - Electrical - U.W
500 00 060 Cable - Telegraph

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

00 070 Cable - Telegraph - A.G
00 080 Cable - Telegraph - U.G
00 090 Cable - Telegraph - U.W
00 100 Cable - Telephone
00 110 Cable - Telephone - A.G
00 120 Cable - Telephone - U.G
00 130 Cable - Telephone - U.W
00 140 Cable - Underground (U.G)
00 150 Cable - Underwater (U.W)
01 000 Cable TV
01 010 Cable - A.G
01 020 Cable - U.G
02 000 Canal/Ditch -Sewage/Storm
03 000 Catch Basin -Sewage/Storm
04 000 Collector - Sewage
05 000 Conduit
05 010 Conduit - Electrical
05 020 Conduit - Electrical - A.G
05 030 Conduit - Electrical - U.G
05 040 Conduit - Telephone
05 050 Conduit - Telephone - A.G
05 060 Conduit - Telephone - U.G
06 000 Disposal Bed - Sewage
07 000 Filtration Bed - Water
08 000 Hydrant
09 000 Junction Box - Electrical
10 000 Light Standard-Electrical
11 000 Line (Transmission)
11 010 Line/T - Electrical
11 020 Line/T - Electrical - Primary
11 030 Line/T - Electrical - Secondary
11 040 Line/T - Electrical - Tertiary
11 050 Line/T - Telegraph
11 060 Line/T - Telephone
12 000 Manhole
12 010 Manhole - Electrical
12 020 Manhole - Heating
12 030 Manhole - Sewage (Swg)
12 040 Manhole/Swg - Sanitation
12 050 Manhole/Swg - Storm
12 060 Manhole/Swg - Storm & Sanitation
12 070 Manhole - Telephone
13 000 Outlet
13 010 Outlet - Electrical
13 020 Outlet - Sanitation
14 000 Pedestal
14 010 Pedestal - Electrical
14 020 Pedestal - Multiple Use
14 030 Pedestal - Telephone
15 000 Pipeline
15 010 Pipeline - A.G
15 020 Pipeline - Crude Oil/Synthetic Oil
15 030 Pipeline - CO/SO/Flow/Gather Line
15 040 Pipeline - CO/SO/F-G L- A.G
15 050 Pipeline - CO/SO/F-G L -U.G
15 060 Pipeline - CO/SO/F-G L -U.W
15 070 Pipeline - CO/SO - Transmission
15 080 Pipeline - CO/SO/T - A.G
15 090 Pipeline - CO/SO/T - U.G
15 100 Pipeline - Heating
15 110 Pipeline - H - Hot Water
15 120 Pipeline - H/Hot Water -A.G
15 130 Pipeline - H/Hot Water -U.G
15 140 Pipeline - H - Steam
15 150 Pipeline - H/Steam - A.G
15 160 Pipeline - H/Steam - U.G
15 170 Pipeline - Natural Gas
15 180 Pipeline - NE- Distribution
15 190 Pipeline - NE/D - U.G
15 200 Pipeline - NE-Gather/Flow Line
15 210 Pipeline - NE/G.F L - A.G
15 220 Pipeline - NE/G-F L - U.G
15 230 Pipeline - NE/G-F L - U.W
15 240 Pipeline - NE-Service
15 250 Pipeline - NE-Service - U.G

500 15 260 Pipeline - NE-Transmission
500 15 270 Pipeline - NE/T - A.G
500 15 280 Pipeline - NE/T - U.G
500 15 290 Pipeline - Natural Gas Liquids
500 15 300 Pipeline - NEL - U.G
500 15 310 Pipeline - Non Potable Water-A.G
500 15 320 Pipeline - Non Potable Water-U.G
500 15 330 Pipeline - Petroleum Products
500 15 340 Pipeline - PP - U.G
500 15 350 Pipeline - Potable Water-A.G
500 15 360 Pipeline - PW - U.G
500 15 370 Pipeline - Sanitation
500 15 380 Pipeline - Solids/Slurry
500 15 390 Pipeline - SS - Coal
500 15 400 Pipeline - SS - Coal - A.G
500 15 410 Pipeline - SS - Coal - U.G
500 15 420 Pipeline - SS - Mine Tailings
500 15 430 Pipeline - SS - MT- A.G
500 15 440 Pipeline - SS - MT- U.G
500 15 450 Pipeline - SS - Sulphur
500 15 460 Pipeline - SS - S- A.G
500 15 470 Pipeline - SS - S- U.G
500 15 480 Pipeline - Storm
500 15 490 Pipeline - S- Sanitation
500 15 500 Pipeline - Underground
500 16 000 Pipeline - Heater-PP
500 17 000 Pole
500 17 010 Pole - Electrical
500 17 020 Pole - Telephone
500 18 000 Pump
500 18 010 Pump - Petroleum Products
500 18 020 Pump - Sewage
500 18 030 Pump - Water
500 19 000 Regulator
500 19 010 Regulator - Heating/Steam
500 19 020 Regulator - Petrol Products
500 19 030 Regulator - Water
500 20 000 Service Box - Electrical
500 21 000 Settling Bassin - Sewage
500 22 000 Sludge Well - Sewage
500 23 000 Sprinkler -Irrigation(Fixed)
500 24 000 Tank
500 24 010 Tank - Petroleum Products
500 24 020 Tank - PP- Horizontal
500 24 030 Tank - PP- Vertical
500 24 040 Tank - Sewage
500 24 050 Tank - Swg- Aeration
500 24 060 Tank - Swg- Digestion
500 24 070 Tank - Swg- Re-aeration
500 24 080 Tank - Swg- Sedimentation
500 24 090 Tank - Swg- Settling
500 24 100 Tank - Swg- Skimming
500 24 110 Tank - Water (Holding)
500 25 000 Tap - Water
500 26 000 Telephone (Pay)
500 27 000 Tower - Water (Holding)
500 28 000 Tower/Pylon - Electrical
500 29 000 Transformer - Electrical
500 29 010 Transformer/E - A.G
500 29 020 Transformer/E - On Pad
500 29 030 Transformer/E - On Pole
500 29 040 Transformer/E - U.G
500 29 050 Transformer - Substation
500 30 000 Utilidor
500 31 000 Valve
500 31 010 Valve - Heating
500 31 020 Valve - Petroleum Products
500 31 030 Valve - Water
60- BOUNDARIES - Boundary/Associated Feature
600 00 000 Boundary
600 00 010 Boundary - Borough
600 00 020 Boundary - City
600 00 030 Boundary - County

600 00 040 Boundary - District
600 00 050 Boundary - District Municipality
600 00 060 Boundary - Forest & Grazing District
600 00 070 Boundary - Government Reserve
600 00 080 Boundary - Highways/Transportation District
600 00 090 Boundary - Improvement District
600 00 100 Boundary - Metropolitan Area
600 00 110 Boundary - Military Reserve
600 00 120 Boundary - Parish
600 00 130 Boundary - Park
600 00 140 Boundary - Park - Municipal
600 00 150 Boundary - Park - National
600 00 160 Boundary - Park - Provincial
600 00 170 Boundary - Park - Regional
600 00 180 Boundary - Regional Municipality
600 00 190 Boundary - Rural Municipality
600 00 200 Boundary - Township
600 00 210 Boundary - Township Municipality
600 00 220 Boundary - Water Management District
600 01 000 Boundary (Baseline)
600 02 000 Boundary (International)
600 02 010 Boundary - Unsurveyed
600 03 000 Boundary (Interprovincial)
600 03 010 Boundary/Ip - Unsurveyed
600 04 000 Boundary (Interstate)
600 04 010 Boundary/Is - Unsurveyed
600 05 000 Boundary (Interterritorial)
600 05 010 Boundary/It - Unsurveyed
600 06 000 Boundary (Meridian)
600 07 000 Boundary (Party Wall)
600 08 000 Boundary Sign
600 09 000 Corner
600 10 000 Corner (Block)
600 11 000 Corner (Easement)
600 14 000 Corner (Lot)
600 14 010 Corner - District
600 14 020 Corner - River
600 14 030 Corner - Road
600 14 040 Corner - Township
600 15 000 Corner (Mineral Claim)
600 16 000 Corner (Parcel)
600 17 000 Corner (2uarter Section)
600 18 000 Corner (Range)
600 19 000 Corner (Right of Way)
600 20 000 Corner (Section)
600 21 000 Corner (Sub-lot)
600 22 000 Corner (limber Berth)
600 23 000 Corner (Township)
600 23 040 Corner - Municipal
600 23 050 Corner - M- Surveyed
600 23 060 Corner - M- Unsurveyed
600 24 000 Correction Line
600 25 000 Surveyed Line
61- BOUNDARIES - Survey Monument
601 00 000 Monument (Cadastral)
601 00 010 Monument - AP - Aluminium Post
601 00 020 Monument - CC - Cut Cross
601 00 030 Monument - CLS - Capped
601 00 040 Monument - DLS - Capped
601 00 050 Monument - IB - Iron Bar
601 00 060 Monument - IP - Iron Post
601 00 070 Monument - IP PITS-IP-FourPits
601 00 080 Monument - IPM - IP & Mound
601 00 090 Monument - SIB - Standard IB
601 00 100 Monument - SSIB - Short SIB
601 00 110 Monument - STONE M -Stone M
601 00 120 Monument - WIT IP-Witness IP
601 00 130 Monument - WP - Wooden Post
601 01 000 Monument
601 01 010 Monument - Calibration Baseline
601 01 020 Monument - Control Survey
601 01 030 Monument - CS- Horiz.Control
601 01 040 Monument - CS-HC- 1st Order

601 01 050 Monument - CS-HC- 2nd Order
601 01 060 Monument - CS-HC- 3rd Order
601 01 070 Monument - CS-HC- Astronomic
601 01 080 Monument - CS-HC- Doppler
601 01 090 Monument - International Boundary
601 01 100 Monument - Interprovincial Boundary
601 01 110 Monument - Interterritorial Boundary
601 01 120 Monument - Vertical Control
601 01 130 Monument -VC- Federal
601 01 140 Monument -VC- Municipal
601 01 150 Monument -VC- Private
601 01 160 Monument -VC- Provincial
62- BOUNDARIES - Unmonumented Control Point
602 00 000 Horizontal & Vertical C.P
602 00 010 H & V CP - Photogrammetric
602 00 020 H & V CP - Surveyed
602 01 000 Horizontal Control Point (HCP)
602 01 010 HCP - Aerodist
602 01 020 HCP - Photogrammetric
602 01 030 HCP - Surveyed
602 02 000 Vertical Control Point (VCP)
602 02 010 VCP - APR
602 02 020 VCP - Photogrammetric
602 02 030 VCP - Surveyed
63- BOUNDARIES - Other
603 00 000 Chainage Station
603 01 000 Photo Centre
70- HYDROGRAPHY - Water Course/Associat Feature
700 01 000 Aqueduct
700 02 000 Canal
700 02 010 Canal - Irrigation
700 02 020 Canal - Navigable
700 02 030 Canal - Non-navigable
700 02 040 Canal - Route Through Water
700 03 000 Channel
700 03 010 Channel - Navigable
700 03 020 Channel - Non-navigable
700 04 000 Confluence
700 05 000 Dam
700 05 020 Dam - Concrete
700 05 030 Dam - Earth
700 05 040 Dam - Masonry
700 05 050 Dam - Rockfill
700 06 000 Ditch
700 06 010 Ditch - Drainage
700 06 020 Ditch - Irrigation
700 07 000 Falls
700 08 000 Fish Ladder
700 09 000 Flow Arrow
700 10 000 Flume
700 11 000 Ford
700 12 000 Penstock
700 13 000 Rapids
700 13 010 Rapids - On Narrow River/Stream
700 13 020 Rapids - On River/Stream-Continuous
700 14 000 River/Stream
700 14 010 River/Stream - Braided
700 14 020 River/Stream - Disappearing
700 14 030 River/Stream - Dry
700 14 040 River/Stream - Indefinite
700 14 050 River/Stream - Intermittent
700 14 060 River/Stream - Perennial
700 14 070 River/Stream/P -Mean Water Level
700 14 080 River/Stream/P -Time of Photo Level
700 15 000 Shoreline
700 15 010 Shoreline - Indefinite
700 15 020 Shoreline - Wooded
700 16 000 Slide (Log)
700 17 000 Sluice

700 18 000 Sluice Gate
700 19 000 Spillway
700 20 000 Tailrace
700 21 000 Weir
71- HYDROGRAPHY - Inland Water Body
701 00 000 Dugout
701 01 000 Flooded Land
701 01 010 Flooded Land- Inundated
701 02 000 Lagoon
701 03 000 Lake
701 03 010 Lake - Alkali
701 03 020 Lake - Dry
701 03 030 Lake - Indefinite
701 03 040 Lake - Intermittent
701 03 050 Lake - Marshy
701 03 060 Lake - Perennial
701 03 060 Lake/P - Mean Water Lev<
701 03 070 Lake/P - Time of Photo ;
701 03 080 Lake - Salt
701 03 090 Lake - Shallow
701 03 100 Lake - Tundra
701 04 000 Oxbow
701 05 000 Pond
701 05 010 Pond - Tailing
701 05 020 Pond - Tundra
701 06 000 Quarry (Water-filled)
701 07 000 Reservoir
701 07 010 Reservoir - Underground
701 08 000 Slough
72- HYDROGRAPHY - Wetlands
702 00 000 Bog
702 00 010 Bog - Cranberry
702 00 020 Bog - Floating
702 00 030 Bog - Paisa
702 00 040 Bog - Peat
702 00 050 Bog - String
702 01 000 Fen
702 01 010 Fen - Floating
702 01 020 Fen - Paisa
702 01 030 Fen - String
702 02 000 Marsh
702 02 010 Marsh - In Water
702 02 020 Marsh - Salt
702 04 000 Swamp
73- HYDROGRAPHY - Permanent Frozen Hy<
703 00 000 Crevasse
703 01 000 Glacial Ice
703 02 000 Glacier
703 03 000 Ice Cap
703 04 000 Ice Shelf Limit
703 05 000 Icefield
703 06 000 Snowfield
74- HYDROGRAPHY - Related Hydrographi<
704 00 000 Beach
704 00 010 Beach - Mud
704 00 020 Beach - Pebble
704 00 030 Beach - Rock
704 00 040 Beach - Sand
704 01 000 Breakwall/Breakwater
704 01 010 Breakwall/Breakwater - ;
704 01 020 Breakwall/Breakwater - i
704 02 000 Crib
704 03 000 Dyke/Levee
704 04 000 Groyne
704 05 000 Island
704 05 010 Island - Marshy
704 05 020 Island - Wooded

704 06 000 Ledge
704 07 000 Piling/Pile
704 08 000 Reef
704 09 000 Rock
704 09 010 Rock - Exposed
704 09 020 Rock - Submerged
704 10 000 Sand Bar
704 11 000 Sea Wall
704 12 000 Shoal
704 13 000 Tidal Flats
704 13 010 Tidal Flats - Limits Unknown
704 14 000 Tide Limit
704 15 000 Water Mark
704 15 010 Water Mark - High
704 15 020 Water Mark - Low
704 16 000 Wreck
704 16 010 Wreck - Awash
704 16 020 Wreck - Exposed
704 16 030 Wreck - Submerged
75- HYDROGRAPHY - Ground Water Feature
705 00 000 Spring
705 00 010 Spring - Fresh
705 00 020 Spring - Hot
705 00 030 Spring - Intermittent
705 00 040 Spring - Mineral
705 01 000 Well (Water)
705 01 010 Well/W - Artesian
705 01 020 Well/W - Brine
705 01 030 Well/W - Drilled
705 01 040 Well/W - Dug
76- HYDROGRAPHY - Coastal Feature
706 00 000 Coastline
706 00 010 Coastline - Mean Sea Level
706 00 020 Coastline - Time of Photo Level
706 01 000 Kelp Bed
80- RELIEF & LANDFORM - Relief
800 00 000 Contour (Bathymetric)
800 00 010 Contour/B - Approximate
800 00 020 Contour/B - Auxiliary
800 00 030 Contour/B - Depression
800 01 000 Contour(Glacier,Ice,Snow)
800 01 010 Contour/G-I-S - Approximate
800 01 020 Contour/G-I-S - Auxiliary
800 01 030 Contour/G-I-S - Depression
800 01 040 Contour/G-I-S - Form Line
800 02 000 Contour (Land)
800 02 010 Contour/L - Approximate
800 02 020 Contour/L - Auxiliary
800 02 030 Contour/L - Depression
800 02 040 Contour/L - Form Line
800 03 000 Hachured Area
800 04 000 Relief Shaded Area
800 05 000 Spot Height
800 06 000 Water Level
81- RELIEF & LANDFORM - Landform
801 00 000 Alluvial Fan
801 01 000 Bench (Landform)
801 02 000 Bluff
801 03 000 Cave
801 04 000 Cinder Cone
801 05 000 Cliff
801 06 000 Crater
801 06 010 Crater - Explosion
801 06 020 Crater - Impact
801 06 030 Crater - Volcanic
801 07 000 Distorted Surface
801 08 000 Drumlin

801 09 000 Dune
801 10 000 Dyke
801 11 000 Escarpment
801 12 000 Esker
801 13 000 Fan Delta
801 14 000 Hill
801 15 000 Lava Flow
801 16 000 Moraine
801 16 010 Moraine - Lateral
801 16 020 Moraine - Medial
801 16 030 Moraine - Terminal
801 17 000 Mountain Peak
801 19 000 Pass (Mountain)
801 20 000 Pingo
801 21 000 Raised Beach/Strand Lines
801 22 000 Re-entrant
801 23 000 Rock Outcrop
801 24 000 Scree/Talus
801 25 000 Sinkhole
801 26 000 Slide
801 26 010 Slide - Mud
801 26 020 Slide - Rock
801 27 000 Spur (Landform)
801 28 000 Tundra Polygons
801 29 000 Volcano
90- LAND COVER - Woodland
900 00 000 Burn
900 01 000 Clear Area (Natural)
900 02 000 Cut Line
900 03 000 Firebreak/Fireguard (Cut)
900 04 000 Grove
900 05 000 Harvested Area
900 06 000 Reforested Area
900 07 000 Row of Trees
900 08 000 Stand
900 09 000 Tree
900 10 000 Wooded Area
900 10 010 Wooded Area- Coniferous
900 10 020 Wooded Area- Deciduous
900 10 030 Wooded Area- Mixed
91- LAND COVER - Arable/Cultivated Land
901 00 000 Cropland
901 00 010 Cropland- Grain
901 00 020 Cropland-Pasture & Forage Crops
901 00 030 Cropland- Root Crops
901 01 000 Hopfield
901 02 000 Market Garden
901 03 000 Nursery
901 03 010 Nursery - Horticulture
901 03 020 Nursery - Mixed
901 03 030 Nursery - Silviculture
901 04 000 Orchard
901 05 000 Vineyard
92- LAND COVER - Low Vegetation
902 00 000 Grassland
902 01 000 Hedge/Hedge row
902 02 000 Scrub/Brush
902 03 000 Shrub
902 04 000 Tundra
93- LAND COVER - No Vegetation
903 00 000 Barren Land
903 00 010 Barren Land - Gravel
903 00 020 Barren Land - Rock
903 00 030 Barren Land - Sand
903 01 000 Desert

APPENDIX B

A p p e n d i x B : C r e a t i o n o f t h e D i f f e r e n t D a t a b a s e s

APPENDIX B: CREATION OF THE DIFFERENT DATABASES

This Appendix lists all the programs needed to generate the menus used in the main

program; to create the required databases; and to store these menus in the appropriate

databases. These menus include the point and area symbols menu, the line patterns menu,

the fonts menu, the scaling menu, the line slope menu and the default menus.

Program 'incode' which loads the feature coding system into the database 'Code' is also

listed at the end of this Appendix.

All these programs should be run beforehand in order to create the different databases

needed by the main program, otherwise run-time errors will be encountered. This can be

done by writing a batch file which will execute these programs automatically when the

system is first installed

let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup("fixl3", FONTsdb)
let bold = s .lookup("fixbl3",FONTsdb)
let big = s .lookup("met22",FONTsdb)
let large = s .lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s.lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int-> string)

xproc)
prcget("seditor")(xproc) }

let error.message={structure procpak(proc(string,int,int) xproc)
prcget("error.message") (xproc) }

let more={structure procpak(proc(*string,int,int) xproc)
prcget("more")(xproc) }

let form.generate={structure procpak(proc(-> pntr) xproc)
prcget("form.generate")(xproc)}

let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)
prcget("form.null") (xproc) }

structure form.package(proc (pntr) Form, show;
proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc(pntr) Form.remove;
proc(string,pntr) Form.update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = (structure procpak(proc(*string -> pntr) xproc)
prcget("set.up.choose")(xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.to.text = {structure procpak(proc(pntr -> *string) xproc)
prcget("table.to.text") (xproc)}

let polygon = proc(real Xcentre, Ycentre, Radian;string resolution -> pic)
begin

let Picl := [Xcentre + Radian, Ycentre]
let AnglelnRadian := 0.0
let X := 0.0
let Y := 0.0
let interval := 0
let startang := 0
let endang := 0
case true of

resolution = "tr" { interval := 120 ; startang := 90; endang := 450
resolution _ " g q » { interval := 90; startang = 45; endang := 405
resolution = "hx" { interval := 60; startang = 0; endang := 420 }
resolution = »vl" { interval := 30; startang = 0; endang := 390 }
resolution = "low" { interval := 15; startang = 0; endang := 375 }
resolution = "hi" { interval := 10; startang = 0; endang := 370 }
default: { interval := 5; startang : = 0; endang = 365 }

for angle = startang to endang by interval do
begin

AnglelnRadian := angle * pi / 180
X := Radian * cos(AnglelnRadian) + Xcentre
Y := Radian * sin(AnglelnRadian) + Ycentre
Picl := if angle = startang then [X,Y]

else Picl A [X,Y]
end

Picl
end

let iradian := 6
let oradian := 10
let winl = limit screen to 40 by 40 at 0,0
let win2 = limit screen to 40 by 40 at 40,40
let win3 = limit screen to 40 by 40 at 80,80
let win4 = limit screen to 40 by 40 at 120,120

let hcircle := [0,0]
let scircle := [0,0]
let ccircle := [0,0]
let thcircle := [0,0]
let bcircle := polygon(20, 20, oradian, "vh")
for radian = iradian to 1 by -1 do

ccircle := if radian = iradian then bcircle & polygon(20, 20, radian, "vh")
else ccircle & polygon(20, 20, radian, "vh")

draw(winl, ccircle, 0, X.dim(winl), 0, Y.dim(winl))
for radian = iradian to iradian -1 by -1 do

thcircle := if radian = iradian then bcircle & polygon(20, 20, radian, "vh")
else thcircle & polygon(20, 20, radian, "vh")

draw(win2, thcircle, 0, X.dim(win2), 0, Y.dim(win2))
!draw(screen, circle, 0, X .dim(screen), 0, Y.dim(screen))
for radian = oradian to 1 by -1 do

scircle := if radian = oradian then bcircle & polygon(20, 20, radian, "vh")
else scircle & polygon(20, 20, radian, "vh")

draw(win3, scircle, 0, X.dim(win3), 0, Y.dim(win3))
hcircle := bcircle & polygon(20, 20, 4, "vh")
draw(win4, hcircle, 0, X.dim(win4), 0, Y.dim(win4))
let ssquare := [0,0]
let csquare := [0,0]
let ttrimark := [0,0]
let bsquare := polygon(20, 20, oradian, "sq")
xor winl onto winl
xor win2 onto win2
xor win3 onto win3
xor win4 onto win4
for radian = iradian-1 to 1 by -1 do

csquare := if radian = iradian-1 then bsquare & polygon(20, 20, radian, "sq")
else csquare & polygon(20, 20, radian, "sq")

draw(winl, csquare, 0, X.dim(winl), 0, Y.dim(winl))
for radian = oradian to 1 by -1 do

ssquare := if radian = oradian then bsquare & polygon(20, 20, radian, "sq")
else ssquare & polygon(20, 20, radian, "sq")

draw(win3, ssquare, 0, X.dim(win3), 0, Y.dim(win3))
let triangle := polygon(20, 20, oradian, "tr")
draw(win2, triangle, 0, X.dim(win2), 0, Y.dim(win2))
let trimark := triangle & polygon(20, 20, 4, "vh")
for i=l to 4 do

ttrimark := if i=l then trimark & polygon(20, 20, i, "vh")
else ttrimark & polygon(20, 20, i, "vh")

draw(win4, trimark, 0, X.dim(win4), 0, Y.dim(win4))
xor winl onto winl
draw(winl, ttrimark, 0, X.dim(winl), 0, Y.dim(winl))
let hexagon = polygon(20, 20, oradian, "hx")
xor win4 onto win4
draw(win4, hexagon, 0, X.dim(win4), 0, Y.dim(win4))
let DBsym := open.database("Symbols", "mys", "write")
if DBsym is error.record do DBsym := create.database("Symbols", "mys")
if DBsym is error.record do write"cannot open database'n"
let symbols := s .lookup("%$Geosym", DBsym)
if symbols = nil do {

symbols := table()
s.enter("%$Geosym", DBsym, symbols) }

structure geosym(pic a.pic)
s .enter("plain circle", symbols, geosym(bcircle))
s.enter("solid circle", symbols, geosym(scircle))
s.enter("hollow circle", symbols, geosym(hcircle))
s.enter("thick hollow circle", symbols, geosym(thcircle))
s.enter("city circle", symbols, geosym(ccircle))
s .enter("plain square", symbols, geosym(bsquare))
s.enter("solid square", symbols, geosym(ssquare))
s.enter("city square", symbols, geosym(csquare))
s.enter("plain triangle", symbols, geosym(triangle))
s .enter("tri.mark", symbols, geosym(trimark))
s.enter("thktri.mark", symbols, geosym(ttrimark))
s.enter("hexagon", symbols, geosym(hexagon))
if commit() ~= nil do write "could not store symbols'n"

let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup("fixl3", FONTsdb)
let bold = s .lookup("fixbl3",FONTsdb)
let big = s .lookup("met22",FONTsdb)
let large = s .lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let form.generate={structure procpak(proc(-> pntr) xproc)

prcget("form.generate")(xproc)}
let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)

prcget("form.null") (xproc) }
structure form.package(proc(pntr) Form, show;

proc() Form, all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc(pntr) Form, remove;
proc(string,pntr) Form.update;
proc() Form, clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let message.proc = proc(string txt, txtl, txt2; int xpos, ypos, xdim, ydim ->
bool)

begin
let BoxDim.x := 0
let lenthl.x := length(txtl)
let lenth2.x := length(txt2)
if lenthl.x >= lenth2.x then BoxDim.x := lenthl.x

else BoxDim.x := lenth2.x
BoxDim.x := BoxDim.x * 10 + 10
let Boxlx := xpos + 10
let Boxly := ypos + 15
let Box2x := xpos + xdim div 2 + 5
let Box2y := Boxly
let TxtBox.x := xpos + 10
let TxtDim.x := xdim - 10
let TxtBox.y := ypos + ydim - 40
let TxtDim.y := ydim div 3 - 5
let msgeBox == limit screen to xdim + 10 by ydim + 10 at xpos, ypos
let hmsgeBox = limit screen to xdim by ydim at xpos + 5, ypos + 5
let msgeSave = image xdim + 10 by ydim + 10 of off
copy msgeBox onto msgeSave
xnor msgeBox onto msgeBox
xor hmsgeBox onto hmsgeBox
let F = form.generate()
let Fadd = F(Form.add)
let the.bool := false
form.null(txt, TxtBox.x, TxtBox.y, TxtDim.x, TxtDim.y, fixl3)
let Yesproc = proc()

{ the.bool := true; F(Fender)() }
let Noproc = proc()

{ the.bool := false; F(Fender)() }
let dummy := Fadd(txtl, Boxlx, Boxly, BoxDim.x, 30, false, Yesproc,

fixl3)
dummy := Fadd(txt2, Box2x, Box2y, BoxDim.x, 30, false, Noproc, fixl3)
F(Form.monitor)()
let count := 1
while count ~= 2000 do count := count +1
copy msgeSave onto msgeBox
the.bool

end
let StringToInt = proc(string S -> int)

begin
let X := 0
let tsign := 1
let start := 1
if S(l|l) = do

begin

tsign := -1
start := 2

end
for i = start to length(S) do

X := (10 * X + decode(S(i|1)) - 48)
X := X * tsign
X

end
let DBsym := open.database("Symbols","mys","write")
if DBsym is error.record do DBsym := create.database("Symbols", "mys")
let agrsyms := s.lookup("%$Agrsym" , DBsym)
if agrsyms = nil do

begin
agrsyms := table()
s .enter("%$Agrsym",DBsym,agrsyms)

end
structure agrsym(pic f.pic)
let to.continue := true
while to.continue do

begin
write "Enter datafile name :"
let datafile := read.a.line()
let fd = open (datafile,0)
if fd = nullfile do

begin
write "The file ",datafile," cannot be opened'n"
abort

end
let vecx = vector 1::10,1::30 of 0
let vecy = vector 1::10,1::30 of 0
let vecm = vector 1::30 of nil
let I := 0
let count := 0
let PIC := [0.0, 0.0]
let PIC1 := [0.0, 0.0]
let aline := read.a.line(fd)
let fc := aline(1|1)
while ~eoi(fd) or fc ~= "e" do
begin

while fc ~= "/" and fc ~= "e" do
begin

let le := length(aline)
I : = I + 1
let p := 1
let q := 0
let fstring := ""
let sstring := ""
while aline(p|1) ~= " " do

begin
fstring := fstring ++ aline(p|l)
p := p + 1

end
while aline(p|1) = " " do p := p + 1
q := p-1
sstring := aline(pI(le - q))
vecx(count,I) := StringToInt(fstring)
vecy(count,I) := StringToInt(sstring)
PIC := if I = 1 then [vecx(count,I) , vecy(count,I)]

else PIC ~ [vecx(count,I) , vecy(count,I)]
aline := read.a.line(fd)
fc := aline(111)

end
if ~eoi(fd) do

begin
aline := read.a.line(fd)
fc := aline(111)

end
I := 0
count := count + 1
if count = 1 then PIC1 := PIC

else PIC1 := PIC1 & PIC
s .enter(datafile, agrsyms, agrsym(PIC1))

end
close(fd)

if commit() = nil do write"This symbol has been entered successfully'n"
to.continue := message.proc("Store Another Symbol ?","Yes","No",200,200,

250,140)
xor screen onto screen

end

let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup("fixl3", FONTsdb)
let bold = s.lookup("fixbl3",FONTsdb)
let big = s .lookup("met22",FONTsdb)
let large = s .lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort)
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int->

string) xproc)
prcget("seditor") (xproc) }

let error.message={structure procpak(proc(string,int,int) xproc)
prcget("error.message")(xproc) }

let more={structure procpak(proc(*string,int,int) xproc)
prcget("more") (xproc) }

let form.generate={structure procpak(proc(-> pntr) xproc)
prcget("form.generate") (xproc)}

let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)
prcget("form.null") (xproc) }

structure form.package(proc(pntr) Form, show;
proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc(pntr) Form.remove;
proc(string,pntr) Form.update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = {structure procpak(proc(*string -> pntr) xproc)
prcget("set.up.choose") (xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.t o .text = {structure procpak(proc(pntr -> *string) xproc)
prcget("table.to.text") (xproc)}

!let xmstart := X .dim(screen)-250
let text.write = proc(int xpos,ypos;string name,font;#pixel anyimage)

begin
if font = "cou20" then

copy string.to.tile(name,"cou20") onto limit anyimage at xpos,ypos
else if font = "fixbl3" then

copy string.to.tile(name,"fixbl3") onto limit anyimage at xpos,ypos
else copy string.to.tile(name,"fixl3") onto limit anyimage at xpos,ypos

end
let drawline = proc(real xl,yl,x2,y2 -> pic)

begin
let figure := [xl,yl]A [x2,y2]
figure

end
let Box = proc(int x,y,side)

begin
let a.pic := drawline(x,y,x+side,y)
a.pic := a.pic & drawline(x+side,y,x+side,y+side)
a.pic := a.pic & drawline(x+side,y+side,x,y+side)
a.pic := a.pic & drawline(x,y+side,x,y)
draw(screen, a.pic, 0, X.dim(screen), 0, Y .dim(screen))

end
let rec = proc(int x,y,length,width)

begin
let a.pic := drawline(x,y,x+length,y)
a.pic := a.pic & drawline(x+length,y,x+length,y+width)
a.pic := a.pic & drawline(x+length,y+width,x,y+width)
a.pic := a.pic & drawline(x,y+width,x,y)
draw(screen, a.pic, 0, X .dim(screen), 0, Y .dim(screen))

end
let Rec = proc(int x,y,thelength,width; string anything, font,position;

bool highlight)

begin
let chsize := 0
let ypos := 0
if font = "cou20" then

begin
chsize := 14
ypos := 7

end
else {chsize:= 8;ypos := 12}

rec (x,y,thelength,width)
let textlength := length(anything) * chsize
let rest := 0
if position = "begining" then rest := 10
else if position = "end" then rest := x + thelength - textlength
else rest := (thelength - textlength) div 2
let textbox := limit screen to thelength-4 by 33 at x+2,y+width-35
if font = "cou2 0" then

copy string.to.tile(anything,"cou20") onto limit textbox at rest,ypos
else if font = "fixbl3" then

copy string.to.tile(anything,"fixbl3") onto limit textbox at rest,ypos
else copy string.to.tile(anything,"fixl3") onto limit textbox at rest,ypos
if highlight do nor textbox onto textbox

end
let DBsym := open.database("Symbols", "mys", "read")
if DBsym is error.record do { write "could not open database'n"; abort }
let agrsyms := s .lookup("%$Agrsym", DBsym)
let geosyms := s .lookup("%$Geosym", DBsym)
structure agrsym(pic f.pic)
structure geosym(pic a.pic)
let fvec := table.t o .text(agrsyms)
let svec := table.to.text(geosyms)
let upperl := upb(fvec)
let upper2 := upb(svec)
let thetop := upperl + upper2
let symbols := vector l::thetop of ""
for i=l to upper2 do symbols(i) := svec(i)
let count := 0
for i=upper2+l to thetop do { count := count + 1; symbols(i) := fvec(count) }
let xmstart := X.dim(screen) - 160
let xbox := xmstart + 10; let ypos := 0; let xplotn := 0
let ybox := 130; let xpos := 0; let xplotx := 0; let h := 0
let PIC := [0.0, 0.0]
let a.win := limit screen to 40 by 40
Rec(xmstart,120, 140, 340, "SYMBOLS", "cou20","middle", true)
for i=l to 7 do {

ypos := ybox + (i-1) * 4 0
for j=l to 3 do {

xpos := xbox + (j-1) * 40
let a.win := limit screen to 40 by 40 at xpos, ypos
Box(xpos, ypos, 4 0)
h := (i-1) * 3 + j
case true of

h <= upper2 : { PIC := s .lookup(symbols(h), geosyms)(a.pic);
xplotn := 0; xplotx := 40 }

default : { PIC := s .lookup(symbols(h), agrsyms)(f.pic);
xplotn := -2 0; xplotx := 20 }

draw(a.win, PIC, xplotn, xplotx, 0, 40) } }
let totalwin = limit screen to 150 by 350 at xmstart-5, 115
let symimage = image 150 by 350 of off
copy totalwin onto symimage
let DBvar := open.database("global","variables","write")
structure gimage(#pixel menuimage)
let theimage := s .lookup("Images", DBvar)
s .enter("Symbols Menu", theimage, gimage(symimage))
s .enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

let FONTsdb:=open.database("FONTS","friend","read")
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int->

string) xproc)
prcget("seditor")(xproc) }

let icon = proc(int x, y; string atext -> int)
begin

let text.length := length(atext)
let box.length := text.length * 8 + 2 0
let xcoors = @1 of int [x+5, x, x, x+5, x+box.length-5, x+box.length,

x+box.length, x+box.length-5, x+5]
let ycoors = @1 of int [y, y+5, y+25, y+30, y+30, y+25, y+5, y, y]
let xil = @1 of int [x+7, x+2, x+2, x+7, x+box.length-7, x+box.length-2,

x+box.length-2, x+box.length-7, x+7]
let yil = @1 of int [y+2, y+7, y+23, y+28, y+28, y+23, y+7, y+2, y+2]
let PIC := [0,0]
let PIC1 := [0,0]
for i=l to 9 do

PIC := if i=l then [xcoors(i) , ycoors(i)]
else PIC * [xcoors(i) , ycoors(i)]

for i=l to 9 do
PIC1 := if i=l then [xil(i) , yil(i)]

else PIC1 A [xil(i) , yil(i)]
PIC := PIC & PIC1
let icon.image = limit screen to box.length by 30 at x,y
draw(screen, PIC,0,X.dim(screen),0,Y.dim(screen))
copy string.to.tile(atext, "fixbl3") onto limit icon.image at 8,10
box.length

end
let text.write = proc(int xpos,ypos;string name,font;#pixel anyimage)

begin
let Font := ""
case true of

font = "1" Font = "fix09"
font = "2" Font = "ngrl3"
font = "3" Font = "fixl3"
font = "4" Font = "fixbl3"
font = "5" Font = "gacl6n"
font = "6" Font = "gachal6
font = "7" Font = "met22"
font = "8" Font = "ngi20"
font = "9" Font = "non22"
font = "10" : Font := "olde25
font = "11" : Font := "hci45i
default : Font := "cou20"

copy string.to.tile(name,Font) onto limit anyimage at xpos,ypos
end

let drawline = proc(real xl,yl,x2,y2 -> pic)
begin

let figure := [xl,yl]A [x2,y2]
figure

end
let Box = proc(int x,y,side)

begin
let a.pic := drawline(x,y,x+side,y)
a.pic := a.pic & drawline(x+side,y,x+side,y+side)
a.pic := a.pic & drawline(x+side,y+side,x,y+side)
a.pic := a.pic & drawline(x,y+side,x,y)
draw(screen, a.pic, 0, X .dim(screen), 0, Y.dim(screen))

end
let rec = proc(int x,y,length,width)

begin
let a.pic := drawline(x,y,x+length,y)
a.pic := a.pic & drawline(x+length,y,x+length,y+width)
a.pic := a.pic & drawline(x+length,y+width,x,y+width)
a.pic := a.pic & drawline(x,y+width,x,y)
draw(screen, a.pic, 0, X.dim(screen), 0, Y .dim(screen))

end

let xstart := 200; let ystart := 250
let twinx := 500; let twiny := 400
let Fwin = limit screen to 45 by 303 at xstart+369,ystart+20
let fvecl = @1 of string ["2", "6", "5", "4", "3”, "2", "1"]

let fvec2 = @1 of string ["11", "10", "7", "14”, "9", "8", "2"]
let fwin = limit screen to 47 by 316 at 19, 19
let fiml = image 45 by 303 of off
let fim2 = image 45 by 303 of off
for i=l to 7 do
if i > 1 then {

B o x (2 0, 20+ (i—1)*43, 43)
text.write(25, 23+(i-l)*43, "A", fvecl(i), screen) }

else { Box(20, 20+(i-l)*43, 43)
text.write(25, 23, "More", "4", screen) }
copy fwin onto fiml
xor fwin onto fwin

for i=l to 7 do
if i < 7 then {

B o x (2 0, 20+ (i—1)*43, 43)
text.write(25, 23+(i-l)*43, "A", fvec2(i), screen) }

else { Box(20, 20+(i-l)*43, 43)
text.write(25, 283, "Back", "4", screen) }
copy fwin onto fim2
xor fwin onto fwin

let twin := limit screen to twinx by twiny at xstart, ystart
let text.win = limit screen to 350 by 80 at 47+xstart,147+ystart

rec(xstart+37 0, ystart+323, 44, 30)
rec(xstart+372, ystart+325, 40, 26)
text.write(375, 326, "Font", "4", twin)
let Fbox = limit screen to 47 by 33 at xstart+368, ystart+321
let Fim := image 47 by 33 of off
copy Fbox onto Fim
xor Fbox onto Fbox
let DBvar := open.database("global","variables","write")
structure gimage(tpixel menuimage)
let theimage := s .lookup("Images", DBvar)
s .enter("Font Menul",theimage, gimage(fiml))
s .enter("Font Menu2",theimage, gimage(fim2))
s .enter("Fone Title", theimage, gimage(Fim))
s .enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

let DBvar := open.database("global","variables", "write")
if DBvar is error.record do { write "Error creating Database'n" }
structure gimage(#pixel menuimage)
let theimage := s .lookup("Images", DBvar)
if theimage = nil do

theimage := table()
let Sht := X . dim(screen) - 540
let sorting = proc(*real k, r; int upper)

begin
let swap = proc(*real v; cint i,j)

begin
let temp = v(i)
v(i) := v (j)
v (j) := temp

end
let sort = proc(*real x, y; int ubd -> int)

begin
let v := 0; let u := 0;let count := 0
for i=l to ubd -1 do

begin
v := i; u := i+1
if x(v) > x(u) do

begin
swap (x, v, u)
swap(y,v,u)
count := count + 1

end
end

count
end

let howmany := sort(k,r,upper)
while howmany ~= 0 do

howmany := sort(k,r,upper)
end

let linepara = proc(real xl, yl, x2, y2 -> *real)
begin

let parameter = vector 1::2 of 0.0
if x2-xl = 0 then {parameter(1) := 0.0;parameter(2) := x2}
else {
parameter(l) := (y2-yl)/(x2-xl)
parameter(2) := (yl*x2 - y2*xl)/ (x2-xl)}
parameter

end
let lineint = proc(real a,b,c,d -> *real)

begin
let parameter = vector 1::2 of 0.0
if a = 0 and d = 0 then {
parameter(1) := c;parameter(2) := b}
else if b=0 and c=0 then{
parameter(1) := a;parameter(2) := d}
else if c = 0 and b ~= 0 then {
parameter(1) := -99999
parameter(2) := -99999}
else {parameter(1) := (d-b)/ (a-c)
parameter(2) := (a*d - b*c)/ (a-c)}
parameter

end
let perpenline = proc(real x,y,m -> *real)

begin
let parameter = vector 1::2 of 0.0
if m=0 then

begin
parameter(1) := x
parameter(2) := 0

end
else {
parameter(1) := -1/m
parameter(2) := y - parameter(1)*x}
parameter

end
let Lparaline = proc(real a,b,w; int K -> *real)

begin
let const = vector 1::2 of 0.0
const(1) := a
const(2) := b + K * w * sqrt(l + a*a)

const
end

let Rparaline = proc(real a,b,w; int K -> *real)
begin

let const = vector 1::2 of 0.0
const(1) := a
const(2) := b - K
const

sqrt(l + a*a)
end

let drawline = proc(real xl,yl,x2,y2 -> pic)
begin

let figure := [xl,yl]* [x2,y2]
figure

end
let dashing = proc(real xl,yl,x2,y2,dash,gap -> pic)

begin
let alpha := 0.0
let a.pic := [0.0, 0.0]
let period := dash + gap
let dy := y2 - yl
let dx := x2 - xl
let lengthofline := sqrt(dx * dx + dy * dy)
if dx = 0 then

if dy > 0 then alpha := pi/2
else alpha := pi

else
begin

let k := 1; let c := 1
let NoOfPeriods := 0; let thegap := 0.0; let theperiod := 0.0
alpha := atan(rabs(dy/dx))
if dx < 0 do k := -k
if dy < 0 do c := -c
if lengthofline > period then

begin
NoOfPeriods := truncate(lengthofline / period)
let rest := lengthofline - NoOfPeriods * period
thegap := rest / NoOfPeriods + gap
theperiod := thegap + dash
let XI := vector 1::(NoOfPeriods+1) of 0.0
let Yl ;= vector 1::(NoOfPeriods+1) of 0.0
let X2 := vector 1::(NoOfPeriods+1) of 0.0
let Y2 := vector 1::(NoOfPeriods+1) of 0.0
let thecos := cos (alpha)
let thesin := sin(alpha)
let dxgap := thecos * thegap
let dxdash := thecos * dash
let dxhdash := 0.5 * dxdash
let dygap := thesin * thegap
let dydash := thesin * dash
let dyhdash := 0.5 * dydash
X I (1) := xl
Y l (1) := yl
X2(l) := xl + dxhdash * k
Y2(l) := yl + dyhdash * c
a.pic := drawline(X I (1), Yl(l), X2(l), Y2(l))
for i = 2 to NoOfPeriods do

begin
XI (i) := X 2 (i—1)

:= Y2(i-1)
= XI(i) +
= Yl (i) +
= a.pic &

Yl (i)
X2 (i)
Y2 (i)
a .pic

end
Xl(NoOfPeriods+1)
Yl(NoOfPeriods+1)
X2(NoOfPeriods+1)
Y2(NoOfPeriods+1)
a.pic := a.pic

+ dxgap * k
+ dygap * c
dxdash * k
dydash * c
drawline{ XI(i), Yl(i), X2(i), Y2(i)

dxgap *
dygap *

= X2(NoOfPeriods) +
= Y2(NoOfPeriods) +
= x2
= y2

& drawline(Xl(NoOfPeriods+1),
Yl(NoOfPeriods+1),
X2(NoOfPeriods+1),
Y2(NoOfPeriods+1))

end
end

a. pic
else a.pic := drawline(xl,yl,x2,y2)

end
let Box = proc(int x,y,side)

begin
let a.pic := drawline(x,y,x+side,y)
a.pic := a.pic & drawline(x+side,y,x+side,y+side)
a.pic := a.pic & drawline(x+side,y+side,x,y+side)
a.pic := a.pic & drawline(x,y+side,x,y)
draw(screen, a.pic, 0, X.dim(screen), 0, Y.dim(screen))

end
let rec = proc(int x,y,length,width)

begin
let a.pic := drawline(x,y,x+length,y)
a.pic := a.pic & drawline(x+length,y,x+length,y+width)
a.pic := a.pic & drawline(x+length,y+width,x,y+width)
a.pic := a.pic & drawline(x,y+width,x,y)
draw(screen, a.pic, 0, X.dim(screen), 0, Y.dim(screen))

end
let Rec = proc(int x,y,thelength,width; string anything, font,position;

bool highlight)
begin

let chsize := 0
let ypos := 0
if font = "cou20" then

begin
chsize := 14
ypos := 7

end
else {chsize:= 8;ypos := 12}

rec(x,y,thelength,width)
let textlength := length(anything) * chsize
let rest := 0
if position = "begining" then rest := 10
else if position = "end" then rest := x + thelength - textlength
else rest := (thelength - textlength) div 2
let textbox := limit screen to thelength-4 by 33 at x+2,y+width-35
if font = "cou20" then

copy string.to.tile(anything,"cou20") onto limit textbox at rest,ypos
else if font = "fixbl3" then

copy string.to.tile(anything,"fixbl3") onto limit textbox at rest,ypos
else copy string.to.tile(anything,"fixl3") onto limit textbox at rest,ypos
if highlight do nor textbox onto textbox

end
let hatchpoly = proc(*real Xs,Ys; int size, enclaves; real pitch, angle, dash,

gap; *string names -> pic)
begin

if angle = 0 do angle := 180
angle := angle * pi /I80
let PIC := [0.0, 0.0]
let xx := 0.0
let yy := 0.0
for i=l to size do [transformation

begin
xx := Xs(i)
yy := Ys(i)
Xs(i) := xx * cos(angle) + yy * sin(angle)
Ys(i) := -xx * sin(angle) + yy * cos(angle)

end
let Ymin := 900000.0; let Ymax := 0.0
for i=l to size do

begin
if Ys(i) > Ymax do Ymax := Ys(i)
if Ys(i) < Ymin do Ymin := Ys(i)

end
let xdatarray := vector 1::10,1::50 of 0.0
let ydatarray := vector 1::10,1::50 of 0.0
let thesize := vector 1::10 of 0
if enclaves ~= 0 do

for count = 1 to enclaves do
begin

let filename := names(count)
let df = open(filename,0)
if df = nullfile do

begin
write "The file "," coords ", "cannot be opened'n"
abort

end
let num : = readr(df)
thesize(count) := truncate(num)
for i=l to thesize(count) do

begin
xdatarray(count)(i) := readr(df)
ydatarray(count)(i) := readr(df)

end
for i=l to thesize(count) do

begin
xx : = xdatarray(count)(i)
yy := ydatarray(count)(i)
xdatarray(count) (i) := xx * cos(angle) + yy * sin(angle)
ydatarray(count)(i) : = -xx * sin(angle) + yy * cos(angle)

end
end

let tempara := vector 1::2 of 0.0
let coords := vector 1::2 of 0.0
let ymin : = 0.0; let ymax := 0.0
let span := Ymax - Ymin
let theXs := vector 1 : : 5 0 of 0 . 0
let theYs := vector 1 : : 5 0 of 0 . 0
let NoOfLines :=truncate(span / pitch)
let Y : = vector l::NoOfLines of 0 . 0
let starty := 0.0
if pitch > 1 do

begin
let rest := span - NoOfLines * pitch
pitch : = pitch + rest/NoOfLines
starty := Ymin - pitch/2

end
if pitch =1 do starty := Ymin
let NoOfInt := 0
for i=l to NoOfLines do

begin
Y(i) := starty + pitch * i
for j=l to size-1 do

begin
if Ys(j) < Y s (j+1) then

begin
ymin := Y s (j)
ymax := Ys(j+1)

end
else

begin
ymin := Y s (j+1)
ymax := Y s (j)

end
tempara := linepara(Xs(j), Ys(j), Xs(j+1), Ys(j+1))
coords := lineint(0.0, Y(i), tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOfInt := NoOfInt + 1
theXs(NoOfInt) := coords(1)
theYs(NoOfInt) := coords(2)

end
if enclaves ~= 0 do
for count = 1 to enclaves do

for 1=1 to thesize(count)-1 do
begin

if ydatarray(count) (1) < ydatarray(count) (1+1) then
begin

ymin := ydatarray(count)(1)
ymax := ydatarray(count)(1+1)

end
else

begin
ymin := ydatarray(count)(1+1)
ymax := ydatarray(count)(1)

end
tempara := linepara(xdatarray(count)(1),

ydatarray(count)(1),
xdatarray(count) (1+1),
ydatarray(count)(1+1))

coords := lineint(0.0, Y(i), tempara(1), tempara(2)

if coords(2) > ymin and coords(2) < ymax do
begin

NoOfInt : = NoOfInt + 1
theXs(NoOfInt) : = coords(1)
theYs(NoOfInt) := coords(2)

end
end

end
sorting(theXs,theYs,NoOfInt)
for i=l to NoOflnt do

begin
xx := theXs(i)
yy := theYs(i)
theXs(i) := xx * cos(angle) - yy * sin(angle)
theYs(i) := xx * sin(angle) + yy * cos(angle)

end
if dash = -1 then

for 1=1 to NoOflnt by 2 do
PIC := PIC & drawline(theXs(1),theYs(1),theXs(1+1),theYs(1+1)

else
for 1=1 to NoOflnt by 2 do

PIC := PIC & dashing(theXs(1),theYs(1),theXs(1+1),
theYs(1+1), dash, gap)

!draw(win, PIC, 0, X .dim(screen), 0, Y.dim(screen))
NoOflnt := 0

end
PIC

end
let doblseg = proc(real XI, Yl, X2, Y2, width,type,dash,gap -> pic)

begin
let a .pic oooII 0]
let Para ::= vector 1:: 2 of 0.0
let Paral := vector 1: : 2 of 0.0
let ParalO := vector 1 : : 2 of 0.0
let Para2 := vector 1: :2 of 0.0
let Para3 := vector 1: :2 of 0.0
let Para30 := vector 1 ::2 of 0.0
let Para4 := vector 1: :2 of 0.0
let Para5 := vector 1: :2 of 0.0
let Para50 := vector 1 ::2 of 0.0
let k := 1
Para := linepara(XI,Yl,X2,Y2)
Paral := perpenline(XI,Yl,Para(1))
ParalO := perpenline(X2,Y2,Para(1))
if X2 < XI do k := -1 * k
Para2 := Rparaline(Para(1),Para(2),width/2,k)
Para4 := Lparaline(Para(1),Para(2),width/2,k)
Para3 := lineint(Paral(1),Paral(2),Para2(1),Para2(2))
Para30 := lineint(ParalO(1),ParalO(2),Para2(1),Para2(2))
Para5 := lineint(Paral(1),Paral(2),Para4(1),Para4(2))
Para50 := lineint(ParalO(1),ParalO(2),Para4(1),Para4(2))
let xintersecRl
let yintersecRl
let xintersecLl
let yintersecLl
let xintersecR2
let yintersecR2
let xintersecL2
let yintersecL2

Para3(1)
Para3(2)
Para5(1)
Para5(2)
Para30(1)
Para30(2)
Para50(1)
Para50(2)

if type = -1 then {
a .pic := drawline(xintersecRl,yintersecRl, xintersecR2, yintersecR2)
a.pic := a.pic & drawline(xintersecLl,yintersecLl,xintersecL2,yintersecL2)}
else if type = -2 then {

a .pic := dashing(xintersecRl,yintersecRl,xintersecR2,yintersecR2,
dash,gap)

a.pic := a.pic & dashing(xintersecLl,yintersecLl,xintersecL2,
yintersecL2,dash,gap)}

else if type = -3 then {
a .pic := dashing(xintersecRl,yintersecRl,xintersecR2,yintersecR2 ,

dash,gap)
a.pic := a.pic & drawline(xintersecLl,yintersecLl,xintersecL2,

yintersecL2)}
else if type = -4 do {

a .pic := drawline(xintersecRl,yintersecRl,xintersecR2,yintersecR2)
a.pic := a.pic & dashing(xintersecLl,yintersecLl,xintersecL2,

yintersecL2,dash,gap)}a .pic
end

let dobline = proc(*real Xs, Ys; real width,type; int themax,dash,gap -> pic)
begin

let xintersecR := vector 1: :100 of 0.0let yintersecR := vector 1: :100 of 0.0
let xintersecL := vector 1: :100 of 0.0
let yintersecL := vector 1: :100 of 0.0
let a .picl := [0.0, 0.0]let a .pier := [0.0, 0.0]let a. pic ooooII

let Para :== vector 1::2 of 0 .0
let Paral = vector 1::2 of 0.0
let Para2 = vector 1::2 of 0.0
let Para3 = vector 1::2 of 0.0
let Para4 = vector 1::2 of 0.0
let Para5 = vector 1::2 of 0.0
let Para6 = vector 1::2 of 0.0
let Para7 = vector 1::2 of 0.0
let k : = 1
for i-1- ll i-* ct o themax do

begin
if i < themax then

begin
k : = 1
Para := linepara(Xs(i),Ys(i),Xs(i+1),Ys(i+1))
Paral := perpenline(Xs(i),Ys(i),Para(1))
if Xs(i+1) < Xs(i) do k := -1 * k
Para2 := Rparaline(Para(1),Para(2),width/2,k)
Para4 := Lparaline(Para(1),Para(2),width/2,k)
if i=l then

begin
Para3 := lineint(Paral(1),Paral(2),Para2(1),Para2(2))
Para5 := lineint(Paral(1),Paral(2),Para4(1),Para4(2))
xintersecR(i) := Para3(l)
yintersecR(i) := Para3(2)
xintersecL(i) := Para5(l)
yintersecL(i) := Para5(2)
Para6 := Para2
Para7 := Para4
end

else
begin

Para3 := lineint(Para2(1),Para2(2),Para6(1),Para6(2))
Para5 := lineint(Para4(1),Para4(2),Para7(1),Para7(2))
Para6 := Para2
Para7 := Para4
xintersecR(i) := Para3(l)

yintersecR(i) := Para3(2)
xintersecL(i) := Para5(l)

yintersecL(i) := Para5(2)
end

end
else

if i=themax do
begin

Paral := perpenline(Xs(i),Ys(i),Para6(1))
Para3 := lineint(Paral(1),Paral(2),Para6(1),Para6(2))
Para5 := lineint(Paral(1),Paral(2),Para7(1),Para7(2))
xintersecR(i) := Para3(l)
yintersecR(i) := Para3(2)
xintersecL(i) := Para5(l)
yintersecL(i) := Para5(2)

end
end

for i=l to themax-1 do
begin

if type = -1 then {
a.pier := drawline(xintersecR(i),yintersecR(i),xintersecR(i+l) ,

yintersecR(i+1))
a.picl := drawline(xintersecL(i),yintersecL(i),xintersecL(i+1),

yintersecL(i+1))
a.pic := if i=l then a.pier & a.picl

else a.pic & a.pier & a.picl}

else if type = -2 then {
a.pier := dashing(xintersecR(i),yintersecR(i),

xintersecR(i+1),yintersecR(i+1),dash,gap)
a.picl := dashing(xintersecL(i),yintersecL(i),

xintersecL(i+1),yintersecL(i+1),dash,gap)
a.pic := if i=l then a.pier & a.picl

else a.pic & a.pier & a.picl}
else if type = -3 then {

a.pier := dashing(xintersecR(i),yintersecR(i),
xintersecR(i+1),yintersecR(i+1),dash,gap)

a.picl := drawline(xintersecL(i),yintersecL(i),
xintersecL(i+1),yintersecL(i+1))

a.pic if i=l then a.pier & a.picl
else a.pic & a.pier & a.picl}

else if type = -4 do {
a.pier := drawline(xintersecR(i) ,yintersecR(i),

xintersecR(i+1),yintersecR(i+1))
a.picl := dashing(xintersecL(i),yintersecL(i),

xintersecL(i+1),yintersecL(i+1),dash,gap)
a.pic := if i=l then a.pier & a.picl

else a.pic & a.pier & a.picl}
end

a. pic
end

let ddline = proc(*real Xs, Ys; real width; int themax,dash,gap -> pic)
begin

let k := width
let a.pic := [0.0, 0.0]
let a.picl := [0.0, 0.0]
for i=l to themax-1 do

begin
while k ~= 0 do

begin
a.picl := if k= width then doblseg(Xs(i),Ys(i),Xs(i+1),

Ys(i+1),k,-2,dash,gap)
else a.picl & doblseg(Xs(i),Ys(i),Xs (i+1),

Ys (i+1) , k, -2, dash, gap)
k := k - 0.5

end
a.pic := if i=l then a.picl

else a.pic & a.picl
k := width

end
a. pic

end
let thkline = proc(*real Xarray, Yarray; int breadth, thetop -> pic)

begin
let a.picl := [0.0, 0.0]
let a.pic2 := [0.0, 0.0]
let a.pic := [0.0, 0.0]
for j=l to thetop-1 do

a.picl := if j=l then drawline(Xarray(j),Yarray(j),Xarray(j+1),
Yarray(j+1))

else a.pic & drawline(Xarray(j),Yarray(j),Xarray(j+1),
Yarray(j+1))

let half := breadth / 2
for i=l to thetop-1 do {

let k := half
while k > 0 do

{a.pic2 := if k = half then doblseg(Xarray(i),Yarray(i),
Xarray(i+1),Yarray(i+1),k, -1,-1,-1)

else a.pic2 & doblseg(Xarray(i),Yarray(i),
Xarray(i+1),Yarray(i+1),k, -1,-1,-1)

k := k - 0.25}
a.pic := if i=l then a.picl & a.pic2

else a.pic & a.picl & a.pic2 }
a. pic

end
let railine = proc(*real Xarray, Yarray; int breadth, thetop -> pic)

begin
let a.pic := [0.0, 0.0]
let half := breadth div 2
for i= 1 to half do

a.pic := ddline(Xarray,Yarray,i, thetop,6,6)
a.pic := a.pic & dobline(Xarray,Yarray,breadth, -1, thetop, -1, -1)

a. pic
end

let bordering = proc(real xl,yl,x2,y2,dash,gap -> pic) begin
let alpha := 0.0
let a.pic := [0.0, 0.0]
let period := dash + gap
let dy := y2 - yl
let dx := x2 - xl
let lengthofline := sqrt(dx * dx + dy * dy)
if dx = 0 then

if dy > 0 then alpha := pi/2
else alpha := pi

else
begin

let k := 1; let c := 1
let NoOfPeriods := 0; let thegap := 0.0; let theperiod := 0.0
alpha := atan(rabs(dy/dx))
if dx < 0 do k := -k
if dy < 0 do c := -c
if lengthofline > period then

begin
let Periods := truncate(lengthofline / period)
NoOfPeriods : = Periods - truncate(Periods/3)
let rest := lengthofline - NoOfPeriods * period
thegap := rest / NoOfPeriods + gap
theperiod := thegap + dash
let XI := vector 1::(NoOfPeriods+2) of 0.0
let Yl := vector 1::(NoOfPeriods+2) of 0.0
let X2 := vector 1::(NoOfPeriods+2) of 0.0
let Y2 := vector 1::(NoOfPeriods+2) of 0.0
let thecos := cos (alpha)
let thesin := sin(alpha)
let dxgap := thecos * thegap
let dxdash := thecos * dash
let dxdashp := thecos
let dxhdash := 0.5 * dxdash
let dygap := thesin * thegap
let dydash := thesin * dash
let dydashp := thesin
let dyhdash := 0.5 * dydash
X I (1) := xl
Y l (1) : = yl
X2(l) := xl + dxhdash * k
Y2(l) := yl + dyhdash * c
a.pic := drawline(X I (1), Yl(l), X2(l), Y2(l))
for i = 2 to NoOfPeriods do

begin
if i rem 2 = 0 then {
XI (i) = X 2 (i—1) + dxgap * k
Yl (i) = Y2(i-1) + dygap * c
X2(i) = XI (i) + dxdashp * k
Y2(i) = Yl (i) + dydashp * c
a. pic = a.pic & drawline(XI(i), Yl (i), X2 (i), Y2 (i) }
else {
XI (i) = X2(i-1) + dxgap * k
Yl (i) = Y2 (i-1) + dygap * c
X2 (i) = XI (i) + dxdash * k
Y2(i) = Yl (i) + dydash * c
a .pic = a.pic & drawline(XI(i), Yl (i), X2 (i), Y2 (i) }

end
XI(NoOfPeriods+1) := X2(NoOfPeriods) + dxgap * k
Yl(NoOfPeriods+1) := Y2(NoOfPeriods) + dygap * c
X2(NoOfPeriods+1) := XI(NoOfPeriods+1) + dxdashp * k

Y2(NoOfPeriods+1) := Yl(NoOfPeriods+1) + dydashp * c
a.pic ;= a.pic & drawline(Xl(NoOfPeriods+1),

Yl(NoOfPeriods+1), X2(NoOfPeriods+1), Y2(NoOfPeriods+1))
XI(NoOfPeriods+2) := X2(NoOfPeriods+1) + dxgap * k

Yl(NoOfPeriods+2) := Y2(NoOfPeriods+1) + dygap * c
X2(NoOfPeriods+2) := x2
Y2(NoOfPeriods+2) := y2
a.pic := a.pic & drawline(Xl(NoOfPeriods+2),

Yl(NoOfPeriods+2), X2(NoOfPeriods+2), Y2(NoOfPeriods+2))
end

else a.pic := drawline(xl,yl,x2,y2)

end
a . pic

end
let typemenu = proc()

begin
let typeimage = image 110 by 355 of off
let themenu = limit screen to 100 by 355 at X .dim(screen)-110,120
let xpos := X .dim(screen)-95
let xloc := xpos + 10
let xend := X .dim(screen)-25
Rec(X.dim(screen)-105,130,95,280,"TYPES","cou20", "middle", true)
let a.pic := drawline(xloc,345,xend,345)
a.pic := a.pic & dashing(xloc,315,xend,315,10 , 5)a. pic := a.pic & dashing(xloc,285,xend,285,4, 4)
a. pic := a.pic & dashing(xloc,255,xend,255,12 ,2)
a .pic := a.pic & dashing(xloc,225,xend,225,2, 4)
a .pic := a.pic & dashing(xloc,195,xend,195,1, 2)
a. pic := a.pic & dashing(xloc,165,xend,165,1, 4)
draw(screen, a.pic, 0, X.dim(screen), 0, Y.dim(screen))
copy themenu onto typeimage
s .enter("Hlinetype", theimage, gimage(typeimage))
s .enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

end
let angmenu = proc()

begin
let angimage = image 155 by 27 0 of off
let themenu = limit screen to 155 by 275 at 385+Sht,115
Rec (390+Sht,340,140,38,"SLOPE ","cou20", "middle",true)
Box(390+Sht,290,40)
Box (390+Sht,170, 40)
Box (490+Sht,290,40)
Box (490+Sht,170,40)
rec (420+Sht,220,80,60)
Rec (420+Sht,12 0,80,30,"done" ,"fixl3 TV "middle",false)
let picbox = limit screen to 116 by 56 at 392+Sht,332
let picboxl = limit screen to 40 by 40 at 390+Sht,290
let picbox2 = limit screen to 40 by 40 at 390+Sht,170
let picbox3 = limit screen to 40 by 40 at 490+Sht,290
let picbox4 = limit screen to 40 by 40 at 490+Sht,170
let picbox5 = limit screen to 74 by 54 at 423+Sht,223
let picbox6 = limit screen to 80 by 30 at 420+Sht,120
let thesize := 8
let vecX = @1 of real [30,30, 10, 10,0 ,10 ,10 ,30]
let vecY = @1 of real [10,22, 22, 32,16,0 ,10 ,10]
let PIC := [0.0, 0.0]
let PIC1 := [0.0, 0.0]
for i=l to thesize do

begin
PIC := if i = 1 then [vecX(i) , vecY(i)]

else PIC * [vecX(i) , vecY(i)]
PIC1 := if i = 1 then PIC

else PIC1 & PIC
end

let PIC2 := rotate PIC1 by -90
let PIC3 := rotate PIC1 by 90
let PIC4 := scale PIC2 by 0.5,0.5
let PIC5 := scale PIC3 by 0.5,0.5
draw (picbox2, PIC2, -35,5,-5,35)
draw (picboxl, PIC3, -5,35,-35,5)
draw (picbox4, PIC4, -27,13,-13,27)
draw (picbox3, PIC5, -13,27,-27,13)
copy themenu onto angimage
s .enter("Hangle", theimage, gimage(angimage))
s .enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

end
let scalmenu = proc()

begin
let scalimage = image 150 by 320 of off
let themenu = limit screen to 150 by 320 at 385+Sht, 95
let picboxl = limit screen to 40 by 40 at 390+Sht,200
let picbox3 = limit screen to 40 by 40 at 490+Sht,200
let picbox4 = limit screen to 40 by 40 at 440+Sht,150
let picbox5 = limit screen to 40 by 40 at 440+Sht,250

'fixl3", "middle",false)

let picbox6 = limit screen to 80 by 30 at 420+Sht,100
Box (390+Sht,200,40)
Box (440+Sht,2 00,40)
Box (490+Sht,200,40)
Box (440+Sht,150,40)
Box (440+Sht,250,40)
Rec (420+Sht,100,80,30,"done1
Box (430+Sht,350,60)
let thesize := 8
let vecX = @1 of real [30,30,10,10,0,10,10,30]
let vecY = 01 of real [10,22,22,32,16,0,10,10]
let PIC := [0.0, 0.0]
let PIC1 := [0.0, 0.0]
for i=l to thesize do

begin
PIC := if i = 1 then [vecX(i) , vecY(i)

else PIC *
PIC1 := if i = 1 then PIC

else PIC1

]
[vecX(i) , vecY(i)]

& PIC
end

let PIC2
let PIC3
let PIC4
draw (picboxl, PIC1, -5,35,-5,35)

rotate PIC1 by -90
rotate PIC2 by -90
rotate PIC3 by -90

)

draw (picbox4, PIC2, -35,5,-5,35)
draw (picbox3, PIC3, -35,5,-35,5)
draw (picbox5, PIC4, -5,35,-35,5)
copy themenu onto scalimage
s.enter("Scaling", theimage, gimage(scalimage)
s.enter("Images”, DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

end
let hatchspace = proc()

begin
let themenu = limit screen to 100 by 350 at X.dim(screen)-105,120
let spaceimage = image 105 by 355 of off
Rec(X.dim(screen)-105,120,95,340,"space","fixbl3", "middle",true)
let xpos := X.dim(screen)-95
let names = 01 of string[""]

vector 1::5 of 0.0
vector 1::5 of 0.0

let vecx
let vecy
let xloc
let xend
let cons
let PIC
let APIC

:= xpos + 10
:= X .dim(screen)-25
: = 0 . 0
= [0 . 0 , 0 . 0]
:= [0 . 0 , 0 . 0]

for i=140 to 380 by 40 do
begin

cons := cons + 1
vecy(1)
vecy(2)
vecy(3)
vecy(4)
vecy(5)
for i=l to

xpos
:= xpos
:= xpos+80

APIC :=

i; vecx(l) :=
i+30; vecx (2)
i+30; vecx(3)
i; vecx(4) := xpos+80
i; vecx(5) := xpos
4 do
if i=l then drawline(vecx(i), vecy(i), vecx (i+1)

vecy(i+1))
else APIC & drawline(vecx(i), vecy(i), vecx(i+1)

vecy (i+1))
draw(screen, APIC, 0, X.dim(screen), 0, Y.dim(screen))
PIC := hatchpoly(vecx, vecy, 5, 0, cons, 90, -1, -1, names)
draw(screen, PIC, 0, X.dim(screen), 0, Y.dim(screen))

end
copy themenu onto spaceimage
s .enter("Hspacing", theimage, gimage(spaceimage))
s.enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

end
let default.menu = procO

begin
let PIC := [0.0, 0.0]
let xstart := X.dim(screen)-190
let menuwin = limit screen to 195 by 400 at xstart-5,115
let msgeSave = image 195 by 400 of off
Rec(xstart,160,184,250,"Default","cou20", "middle",false)

Rec (xstart+ 9, 180, 85, 40,"Spacing","fixl3", "middle",false)
let aboxl = limit screen to 85 by 40 at xstart+ 9, 180
Rec(xstart+ 9, 240, 85,40,"Angle","fixl3", "middle",false)
let abox2 = limit screen to 85 by 40 at xstartt 9, 240
Rec(xstart+ 9, 300, 85,40,"Style","fixl3", "middle",false)
let abox3 = limit screen to 85 by 40 at xstart+ 9, 300
Rec(xstart,120,92,40,"Accepted","fixl3", "middle",false)
let picboxl = limit screen to 88 by 36 at xstart+ 2, 122
Rec(xstart+92,120,92,40,"Change","fixl3", "middle",false)
let picbox2 = limit screen to 88 by 36 at xstart+ 94, 122
let picbox3 = limit screen to 185 by 40 at xstart-1, 120
let bxstart := xstart+115
rec(bxstart,240, 60, 40)
nor aboxl onto aboxl
nor abox2 onto abox2
nor abox3 onto abox3
let procdata := vector 1::4 of 0.0
let theperiod := vector 1::2 of 0.0
let x = @1 of real [bxstart, bxstart, bxstart+ 60, bxstart+ 60,bxstart]
let y = @1 of real [240,280,280,240,240]
let names = 01 of string [" "]
let thespacing := 2.0
let theangle := 0.0
let thedash := -1.0
let thegap := -1.0
PIC := hatchpoly(x,y,5,0,thespacing,theangle,thedash,thegap,names)
draw(screen, PIC, 0, X.dim(screen), 0, Y.dim(screen))
copy menuwin onto msgeSave
s.enter("Hdefault", theimage, gimage(msgeSave))
s.enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

end
let linemenu = proc()

begin
let xstart := X.dim(screen)-190
let a.pic := [0.0, 0.0]
let menuwin = limit screen to 195 by 400 at xstart-5,115
let lineimage = image 200 by 330 of off
let xloc := X .dim(screen)-85
let xlocl := xstart + 10
let xend := X.dim(screen)-25
let xendl := xlocl + 7 0
let xs := 01 of real [xlocl,xendl]
let ys := vector 1::2 of 0.0
Rec (xstart,120, 184,310,"LINE TYPE","cou20", "middle", true)
a.pic := drawline(xloc,365,xend,365)
a.pic := a.pic & doblseg(xlocl,365,xendl,365,4,-1,-1,-1)
a.pic := a.pic & dashing(xloc,335,xend,335,10,5)
a.pic := a.pic & doblseg(xlocl,335,xendl,335,4,-2,10,5)
a.pic := a.pic & dashing(xloc,305,xend,305,4,4)
a.pic := a.pic & doblseg(xlocl,305,xendl,305,4,-3,10,5)
a.pic := a.pic & dashing(xloc,275,xend,275,12,2)
a.pic := a.pic & doblseg(xlocl,275,xendl,275,4,-4,10,5)
a.pic := a.pic & dashing(xloc,245,xend,245, 2,4)
ys (1) := 24 5/ys(2) := 245
a.pic := a.pic & thkline(xs,ys,4,2)!thick line
a.pic := a.pic & dashing(xloc,215,xend,215,1,2)!dashed line
a.pic := a.pic & doblseg(xlocl,215,xendl,215, 4,-2,4,3) !double dashed line
a.pic := a.pic & dashing(xloc,185,xend,185,1,4)!dashed line
ys(l) := 185;ys(2) := 185
a.pic := a.pic & ddline(xs,ys,4,2,6, 6) !thick dashed line
a.pic := a.pic & bordering(xloc,155,xend,155,10,4)Iborder line
ys(l) := 155;ys(2) := 155
a.pic := a.pic & railine(xs,ys,4,2)!rail line
draw(screen, a.pic, 0, X .dim(screen), 0, Y .dim(screen))
copy menuwin onto lineimage
s .enter("LineMenu", theimage, gimage(lineimage))
s.enter("Images", DBvar, theimage)
if commit() ~= nil do write "Image is not stored"

end
typemenu()
xor screen onto screen
angmenu()
xor screen onto screen
scalmenu()

xor screen onto screen
hatchspace()
xor screen onto screen
default.menu()
xor screen onto screen
linemenu()

let DB := open.database("code2","code2","write")
if DB is error.record do DB := create.database("code2", "code2")
if DB is error.record do { write "Error creating Database'n" }
! procedure to transfer string number to integers
let StringToInt = proc(string S -> int)

begin
let X := 0
for i = 1 to length(S) do

X := 10 * X + decode(S(i|1)) - 48
X

end
write "Give file name: "
let filename = read.a.line()
let fd = open(filename,0)
let digit1 := 0; let Namel := ""
let digit2 := 0; let Name2 := ""
let digit3 := 0; let Name3 := ""
let digit4 := 0; let Name4 := ""
let L := ""
let Q := 0
let ch := ""
let P := 0
let Temp := ""
let Code2Table := table()
let level2table := table()
let level3table := table ()
let level4table := table()

structure StringPack (string StringValue)
structure Code2Node (string identifier; pntr subtree)
write "Started'n"
xor screen onto screen
let window = limit screen to X.dim(screen)-100 by 100 at 100, 100
while ~eoi(fd) do

begin
L := read.a.line(fd)
while L = "" and ~eoi(fd) do L := read.a.line(fd)
if digit(L(5 11))
then begin

digit3 := StringToInt(L(5 I 2))
digit4 := StringToInt(L(8|3))
if digit4 = 0

then begin
Temp := L(15 I length(L) - 14)
Name4 := ""

end
else begin

P := 15
while L (P | 1) ~= do P := P+l
Temp : =L(15 I P - 16)
Name4 := L((P+2) | (length(L) - P - 1))

end
if Temp ~= Name3

do begin
Name3 := Temp
level4table := table()
i.enter (digit3,level3table,Code2Node(Name3,level4table))

end
i .enter (digit4,level4table,Code2Node(Name4,StringPack(L(1110))))

end
else begin

P := 2
digit2 := 0
while digit(L(P|1)) do

begin
digit2 := 10 * digit2 + decode (L (P|1)) - 48

P := P+l
end

while L(P|1) ~= do P := P + 1
P := P+l
while L (P|1) = " " do P : = P + 1
Q := P+l
while L(Q|1) ~= do Q := Q + 1
Temp := L(P|Q-P-1)
if Namel ~= Temp do

begin
Namel := Temp
digit1 := decode (L(l|l)) - 48
level2table := table()
i.enter {digitl,Code2Table,Code2Node(Namel,level2table))

end
Name2 := L(Q+2|length(L)-Q-l)
level3table := table()
i.enter (digit2,level2table,Code2Node(Name2,level3table))

end
xor window onto window
print digitl,digit2,digit3,digit4 at 100, 100

end
close (fd)
s .enter ("Code2",D B ,Code2Table)
if commit() = nil then write "Code2 stored OK"

else write "Code2 not stored"

APPENDIX C

--- Appendix C: Global Procedures

APPENDIX C: GLOBAL PROCEDURES

This Appendix lists the program called 'utility.S' which contains all the global procedures

discussed in Chapter 6. The program is constructed so that it first creates the database

'Global.Proc', then a listing of the twenty two procedures forming the Global Procedures

are included. These are then packaged into a structure and stored in the database.

let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup("fixl3", FONTsdb)
let bold = s .lookup("fixbl3",FONTsdb)
let big = s .lookup("met22",FONTsdb)
let large = s .lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int->

string) xproc)
prcget("seditor") (xproc) }

let error.message={structure procpak(proc(string,int,int) xproc)
prcget("error.message") (xproc) }

let more={structure procpak(proc(*string,int,int) xproc)
prcget("more") (xproc) }

let form.generate={structure procpak(proc(-> pntr) xproc)
prcget("form.generate")(xproc)}

let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)
prcget("form, null") (xproc) }

structure form.package(proc(pntr) Form.show;
proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc(pntr) Form, remove;
proc(string,pntr) Form.update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let xmstart := X.dim(screen)-250
let XOL
let YOL
let XZL
let YZL
let xstart

0 . 0 ;
0 . 0 ;
0 . 0 ;
0 . 0 ;

let XOR
let YOR
let XZR
let YZR

= 0 . 0
= 0 . 0
= 0 . 0
= 0 . 0

:= 10; let ystart := 10
let xend := X.dim(screen)- 10; let yend := Y.dim(screen) - 53
let xspan := xend - xstart; let yspan := yend - ystart
let TotalYmenWin := yend-ystart-97
let Screen = limit screen to xspan by yspan at xstart, ystart
let xlcorner := xstart + 4; let ylcorner := ystart+101
let X.G := xspan -244
let Y.G := TotalYmenWin-2
if X.G > Y.G then X.G := Y.G

else Y.G := X.G
let GW = limit screen to X.G by Y.G at xlcorner, ylcorner
let xmenustart := X.dim(screen) - 250
let menuwin = limit screen to 236 by TotalYmenWin-3 at xmenustart,ylcorner
let menusaved = image 217 by 224 of off
let out.range := X.dim(screen) - Y .dim(screen)
let range := X.dim(screen) - out.range
let gw = limit screen to range by range at 0, 0
let message.proc = proc(string txt, txtl, txt2; int xpos, ypos, xdim, ydim

bool)
begin

let BoxDim.x
let lenthl.x
let lenth2.x

= 0
length(txtl)
length(txt2)

if lenthl.x >= lenth2.x then BoxDim.x := lenthl.x
else BoxDim.x := lenth2.x

BoxDim.x := BoxDim.x * 8 + 2 0
let Boxlx := xpos + 10
let Boxly := ypos + 15
let Box2x := xpos + xdim div 2 + 5
let Box2y := Boxly

= xpos + 10
= xdim - 10
= ypos + ydim - 4 0
= ydim div 3 - 5

let TxtBox.x
let TxtDim.x
let TxtBox.y
let TxtDim.y
let msgeBox = limit screen to xdim + 10 by ydim + 10 at xpos, ypos

let hmsgeBox = limit screen to xdim by ydim at xpos + 5, ypos + 5
let msgeSave = image xdim + 10 by ydim + 10 of off
copy msgeBox onto msgeSave
xnor msgeBox onto msgeBox
xor hmsgeBox onto hmsgeBox
let F = form.generate()
let Fadd = F(Form.add)
let the.bool := false
form.null(txt, TxtBox.x, TxtBox.y, TxtDim.x, TxtDim.y, fixl3)
let Yesproc = proc()

{ the.bool := true; F(Fender)() }
let Noproc = proc()

{ the.bool := false; F(Fender)() }
let dummy := Fadd(txtl, Boxlx, Boxly, BoxDim.x, 30, false, Yesproc,

fixl3)
dummy := Fadd(txt2, Box2x, Box2y, BoxDim.x, 30, false, Noproc, fixl3)
F(Form.monitor)()
let count := 1
while count ~= 2000 do count := count +1
copy msgeSave onto msgeBox
the.bool

end
let text.write = proc(int xpos,ypos;string name,font;#pixel anyimage)

begin
if font = "cou20" then

copy string.to.tile(name,Mcou20") onto limit anyimage at xpos,ypos
else if font = "fixbl3" then

copy string.to.tile(name,"fixbl3") onto limit anyimage at xpos,ypos
else copy string.to.tile(name,"fixl3") onto limit anyimage at xpos,ypos

end
let stringtoreal = proc (string S -> real)

begin
let p := 1; let x := 0.0
let si := 0; let s2 := 0
while ~digit(S(p|1)) do p := p + 1
while S(p|l) ~= "." do

begin
si := si * 10 + decode(S(p|1)) - 48
p := p + 1

end
let num := 1
p := p + 1
while p < length(S) do

begin
s2 := s2 * 10 + decode(S(p|1)) - 48
p := p + 1
num := num* 10

end
x := si + s2/num
x

end
let stringtoint = proc(string S -> int)

begin
let X := 0
let tsign := 1
let start ;= 1
if S (111) = do

begin
tsign := -1
start := 2

end
for i = start to length(S) do

X ;= (10 * X + decode(S(i|1)) - 48)
X := X * tsign
X

end
let minmax = proc(*real avector; int size -> *real)

begin
let values = vector 1::2 of 0.0
values(1) := avector(1)
values (2) := avector(1)
for i=2 to size do

begin
if values(l) > avector(i) do values(l) := avector(i)!the min
if values(2) < avector(i) do values(2) := avector(i)!the max

end
values

end
let icon = proc(int x, y; string atext -> int)

begin
let text.length := length(atext)
let box.length := text.length * 8 + 2 0
let xcoors = @1 of int [x+5, x, x, x+5, x+box.length-5, x+box.length,

x+box.length, x+box.length-5, x+5]
let ycoors = 61 of int [y, y+5, y+25, y+30, y+30, y+25, y+5, y, y]
let xil = 61 of int [x+7, x+2, x+2, x+7, x+box.length-7, x+box.length-2,

x+box.length-2, x+box.length-7, x+7]
let yil = 01 of int [y+2, y+7, y+23, y+28, y+28, y+23, y+7, y+2, y+2]
let PIC := [0,0]
let PIC1 := [0,0]
for i=l to 9 do

PIC := if i=l then [xcoors(i) , ycoors(i)]
else PIC A [xcoors(i) , ycoors(i)]

for i=l to 9 do
PIC1 := if i=l then [xil(i) , yil(i)]

else PIC1 A [xil (i) , yil (i)]
PIC := PIC & PIC1
let icon.image = limit screen to box.length by 30 at x,y
draw(screen, PIC,0,X .dim(screen),0,Y.dim(screen))
copy string.to.tile(atext, "fixbl3") onto limit icon.image at 8,10
box.length

end
let polygon = proc(real Xcentre, Ycentre, Radian;string resolution -> pic)

begin
let Picl := [Xcentre + Radian, Ycentre]
let AnglelnRadian := 0.0
let X := 0.0
let Y := 0.0

ral = case true of
resolution = "tr" 120
resolution = " rec" 90
resolution = "hx" 60
resolution = "vl" 30
resolution = "low" 15
resolution = "hi" 10
default:5

for angle =1 to 420 by interval do
begin

AnglelnRadian := angle * pi / 180
X := Radian * cos(AnglelnRadian) + Xcentre
Y := Radian * sin(AnglelnRadian) + Ycentre
Picl := PiclA [X,Y]

end
Picl

end
let Highlight = proc(*real x, y -> pic)

begin
let a.pic := [0.0, 0.0]
for i=lwb(x) to upb(x) do

a.pic := if i=l then polygon(x(i), y(i), 3 , "hx")
else a.pic & polygon(x(i), y(i), 3 , "hx")

a. pic
end

let drawline = proc(real xl,yl,x2,y2 -> pic)
begin

let figure := [xl,yl]A [x2,y2]
figure

end
let Box = proc (int x,y,side)

begin
let a.pic := drawline(x,y,x+side,y)
a.pic := a.pic & drawline(x+side,y,x+side,y+side)
a.pic := a.pic & drawline(x+side,y+side,x,y+side)
a.pic := a.pic & drawline(x,y+side,x,y)
draw (screen, a.pic, 0, X .dim(screen), 0, Y.dim(screen))

end
let rec = proc(int x,y,length,width)

begin
let a.pic := drawline(x,y,x+length,y)
a.pic := a.pic & drawline(x+length,y,x+length,y+width)

a.pic := a.pic & drawline(x+length,y+width,x,y+width)
a.pic := a.pic & drawline(x,y+width,x,y)
draw(screen, a.pic, 0, X.dim(screen), 0, Y.dim(screen))

end
let Rec = proc(int x,y,thelength,width; string anything, font,position;

bool highlight)
begin

let chsize := 0
let ypos := 0
if font = "cou20" then

begin
chsize := 14
ypos := 7

end
else {chsize:= 8;ypos := 12}

rec(x,y,thelength,width)
let textlength := length(anything) * chsize
let rest := 0
if position = "begining" then rest := 10
else if position = "end" then rest := x + thelength - textlength
else rest := (thelength - textlength) div 2
let textbox := limit screen to thelength-4 by 33 at x+2,y+width-35
if font = "cou20" then

copy string.to.tile(anything,"cou20") onto limit textbox at rest,ypos
else if font = "fixbl3" then

copy string.to.tile(anything,"fixbl3") onto limit textbox at rest,ypos
else copy string.to.tile(anything,"fixl3") onto limit textbox at rest,ypos
if highlight do nor textbox onto textbox

end
let north.dir = proc(int angle; #pixel any.window)

begin
let vecX = @1 of int [0,-12,-3,-10,0,10,3,12,0]
let vecY = @1 of int [-10,-20,10,5,20,5,10,-20,-10]
let PIC := [0.0,0.0]
let PIC2 := [0.0,0.0]
for i=l to 9 do

begin
PIC := if i = 1 then [vecX(i) , vecY(i)]

else PIC A [vecX(i) , vecY(i)]
end

if angle = 0 then
PIC2 := PIC

else PIC2 := rotate PIC by angle
let PIC3 := polygon(0,-2,22,"hi")
PIC3 := PIC3 & drawline(-25, -2, 25, -2)
PIC3 := PIC3 & drawline(0, -27, 0, 23)
PIC3 := PIC3 & PIC2
let xfactor := sin(angle * pi / 180)
let yfactor := cos(angle * pi / 180)
let Nxplace := truncate(33 * xfactor) + 50
let Nyplace := truncate(33 * yfactor) + 50
let Sxplace := truncate(-43 * xfactor) + 50
let Syplace := truncate(-43 * yfactor) + 50
draw(any.window,PIC3,-50,60,-50,60)
text.write(Nxplace, Nyplace, "N", "cou20", any.window)
text.write(Sxplace, Syplace, "S", "cou20", any.window)

end
let feature.type = proc(int this.counter -> string)

begin
let xloc := xmstart + 20
let xend := xloc + 110
let boxl = limit screen to 100 by 30 at xloc,220
let box2 = limit screen to 100 by 30 at xloc,180
let box3 = limit screen to 100 by 30 at xloc,140
let thismenu = limit screen to 217 by 224 at xmstart+9,119
if this.counter = 1 then {
Rec(xmstart+10,305,215,37,"CHOOSE","cou20", "begining", true)
Rec(xmstart+10,120,215,185,"FEATURE TYPE","cou20", "begining", true)
Rec(xloc,140,100,30,"polygon","fixl3", "begining", false)
rec(xloc+2,140+2,96,26)
rec(xloc+3,140+3,95,25)
Rec(xloc,180,100,30,"line","fixl3", "begining", false)
rec(xloc+2,180+2,96,26)
rec(xloc+3,180+3,95,25)
Rec(xloc,220,100,30,"point","fixl3", "begining", false)

rec(xloc+2,220+2,96,26)
rec(xloc+3,220+3,95,25)
copy thismenu onto menusaved }
else copy menusaved onto thismenu
let thetype := ""
let xo := 0
let yo := 0
let done := false
while -done do

begin
let lo := locator()
while -lo (the.buttons) (1) do lo := locator()
xo := lo(X.pos)
yo := lo(Y.pos)
while lo(the.buttons)(1) do lo := locator()
if xo > xloc and xo < xend and yo > 220 and yo < 250 do

begin
nor boxl onto boxl
thetype := "point"
done := true

end
if xo > xloc and xo < xend and yo > 180 and yo < 210 do

begin
nor box2 onto box2
thetype := "line"
done := true

end
if xo > xloc and xo < xend and yo > 140 and yo < 170 do

begin
nor box3 onto box3
thetype := "polygon"
done := true

end
end
xor thismenu onto thismenu

thetype
end

let zoomout = proc(pic PIC, thegrid; int Range, xshft, yshft; #pixel the.win)
begin

if XZL = 0 and XZR = 0 then
error.message(" Nothing to Zoom Out ", -1, -1)

else
begin

xor the.win onto the.win
Box (xshft, yshft, Range)
Box(xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XOL, XOR, YOL, YOR)
draw(the.win, PIC, XOL, XOR, YOL, YOR)
XZL := 0.0; XZR := 0.0
YZL := 0.0; YZR := 0.0

end
end

let zoomin = proc(pic PIC, thegrid;int Range, count, xshft, yshft;
#pixel the.win)

begin
let xl := 0.0; let xr := 0.0
let yl := 0.0; let yr := 0.0
if count < 2 then {

xl := XOL; xr := XOR
yl := YOL; yr := YOR }

else {
xl := XZL; xr := XZR
yl := YZL; yr := YZR }

let xo := 0; let xe := 0
let yo := 0; let ye := 0
let lo := locator()
while -lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos) - xshft
yo := lo(Y.pos) - yshft
while lo (the.buttons) (1) do lo := locator()
xe := lo(X.pos) - xshft
ye := lo(Y.pos) - yshft
if xo > xe do {

let t := xo
xo := xe

xe := t }
if yo < ye do {

let t := yo
yo := ye
ye := t }

let xdif := rabs(xe - xo)
let ydif := rabs(ye - yo)
let adif := truncate((xdif + ydif) / 2)
xe := xo + adif
ye := yo - adif
XZL := xl + (xr - xl) * xo / Range
XZR := xl + (xr - xl) * xe / Range
YZL := yl + (yr - yl) * ye / Range
YZR := yl + (yr - yl) * yo / Range
xor the.win onto the.win
B o x (xshft, yshft, Range)
B o x (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XZL, XZR, YZL, YZR)
draw(the.win, PIC, XZL, XZR, YZL, YZR)

end
let checkin = proc(*real Xvec,Yvec; real Xmin,Xmax,Ymin,Ymax; int Size -> bool)

begin
let PIC1 := [0.0, 0.0]
let savedwin = image X.G by Y.G of off
copy GW onto savedwin
let Can := false
PIC1 := Highlight(Xvec,Yvec)
draw(GW,PIC1,Xmin,Xmax,Ymin,Ymax)
let counter := 0; let limits := truncate(2*Size/3)
for i=l to Size do {

if Xvec(i) < Xmax and Xvec(i) > Xmin and
Yvec(i) < Ymax and Yvec(i) > Ymin do

counter := counter + 1 }
if counter ~= 0 and counter > limits then

Can := message.proc("Can Identify Object","Yes","No",
X.dim(screen)-215,120,200,140)

else Can := false
if -Can do copy savedwin onto GW
Can

end
let prepform = proc(string atitle)

begin
xor gw onto gw
B o x (0, 0, range)
B o x (1, 1, range-2)
rec(range, 0, out.range, Y.dim(screen))
rec(range+2, 2, out.range-4, Y .dim(screen)-4)
Rec(range+4, Y.dim(screen)-44, out.range-8, 38,atitle,"cou20",

"begining", true)
Rec(range+4, Y.dim(screen)-80, out.range-8, 36,"Map of :", "fixbl3",

"begining", false)
end

structure global.proc(proc(string, string, string, int, int, int, int ->
bool)MessageProc;

proc(int, int, string, string, tpixel)Text.Write;
proc(string -> real)StringToReal;
proc(string -> int)StringToInt;
proc(*real, int -> *real)MinMax;
proc(int, int, string -> int)Icon;
proc(real, real, real, string -> pic)Polygon;
proc(*real, *real -> pic)highlight;
proc(real, real,real, real -> pic)Drawline;
proc(int, int, int)box;
proc(int, int, int, int)rectangle;
proc(int, int, int, int, string, string, string,

bool)Rectangle;
proc(int, #pixel)North.Dir;
proc(int -> string)Feature.Type;
proc(pic, pic, int, int, int, #pixel)Zoomout;
proc(pic, pic, int, int, int, int, #pixel)Zoomin;
proc(*real, *real, real, real, real, real, int ->

bool)Checkin;
proc(string)Prepform)

let Global.Pack = global.proc(message.proc, text.write, stringtoreal,
stringtoint, minmax, icon, polygon, Highlight,

drawline, Box, rec, Rec, north.dir, feature.type,
zoomout, zoomin, checkin, prepform)

let ProcDB := open.database("Proc.Lib”, "proc", "write")
if ProcDB is error.record do ProcDB := create.database("Proc.Lib", "proc")
let GLOBALS := s .lookup("Procedures", ProcDB)
if GLOBALS = nil do

begin
GLOBALS := table()
s.enter("Procedures", ProcDB, GLOBALS)

end
s.enter("Global.Proc", GLOBALS, Global.Pack)
if commit() = nil do write "Global Procedures Stored Successfully'n"
?

APPENDIX D

Appendix D: Data Entry Module

APPENDIX D: DATA ENTRY MODULE

Appendix D contains the listing of the program concerned with Data Entry. It retrieves the

required Global Procedures from the database 'Global.Proc' and then lists the module

procedures needed and described in Chapter 7. The module is then stored in the database

'%$Modules'.

let DataEntry = proc()
begin
let FONTsdb:=open.database("FONTS"/"friend"/"read")
let fixl3 = s.lookup("fixl3"/ FONTsdb)
let bold = s .lookup("fixbl3"/FONTsdb)
let big = s .lookup("met22"/FONTsdb)
let large = s.lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort)
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int->

string) xproc)
prcget("seditor") (xproc) }

let error.message={structure procpak(proc(string,int,int) xproc)
prcget("error.message")(xproc) }

let more={structure procpak(proc(*string,int,int) xproc)
prcget("more") (xproc) }

let form.generate={structure procpak(proc(-> pntr) xproc)
prcget("form.generate") (xproc)}

let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)
prcget("form.null") (xproc) }

structure form.package(proc(pntr) Form.show;
proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc(pntr) Form.remove;
proc(string,pntr) Form.update;
proc() Form.clear;
proc (-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = {structure procpak(proc(*string -> pntr) xproc)
prcget("set.u p .choose") (xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.t o .text = {structure procpak(proc(pntr -> *string) xproc)
prcget("table.to.text")(xproc)}

let DB = open.database("code2","code2","write")
if DB is error.record do { write"cannot open DB "; abort }
structure Code2Node(string identifier; pntr subtree)
structure menuPack(proc (string, int, int -> string) menuProc; c*string Lname;

c*int Lnum)
let mainDB := open.database("MDB","data","write")
if mainDB is error.record do mainDB := create.database("MDB", "data")
if mainDB is error.record do { error.message("Cannot open database'n",-1,-1);

abort }
let mapstable := s .lookup ("Maps", mainDB)
if mapstable = nil do

mapstable := table()
structure m aps(string Package, SerialNo, Scale, North;real XL, YL, XR, YR, Grid

*pntr AST, LST, PST, TST)
structure Aholder(int ATN, AID; bool AP; real Xc, Yc; string AFN, AC; *real AX,

AY;pic anypic; real ADI, AD2; int NOI; *int Inc; pic FA.pic)
structure Lholder(int LTN, LID; bool LP; string LFN, LC; *real LX, LY; pic L.pic

real LD1, LD2; pic FL.pic)
structure Pholder(int PTN, PID; bool PP; string PFN, PC, PT; *real PX, PY;

pic P.pic)
structure Tholder(int Layer, Location; real xpos, ypos; string thetext, Font)
let Ainfo = vector 1: :10000 of nil
let Linfo = vector 1::5000 of nil
let Pinfo = vector 1::3000 of nil
let DBvar := open.database("global","variables","write")
if DBvar is error.record do DBvar := create.database("global", "variables")
if DBvar is error.record do { write "Error creating Database'n" }
structure globals(int varval)
structure gpic(pic thepic)
let DBsym := open.database("Symbols","mys","read")
let agrsyms := s.lookup("%$Agrsym" , DBsym)

let geosyms := s .lookup("%$Geosym", DBsym)
structure agrsym(pic f.pic)
structure geosym(pic a.pic)
structure gimage(#pixel menuimage)
let theimage := s .lookup("Images", DBvar)
let Hlinetype := s .lookup("Hlinetype",theimage)(menuimage)
let Hangle := s .lookup("Hangle",theimage)(menuimage)
let Scaling := s .lookup("Scaling",theimage)(menuimage)
let Hspacing := s .lookup("Hspacing",theimage)(menuimage)
let Hdefault := s .lookup("Hdefault",theimage)(menuimage)
let LineMenu := s .lookup("LineMenu",theimage)(menuimage)
let symenu := s .lookup("Symbols Menu", theimage)(menuimage)
let typeimage = image 110 by 355 of off
let angimage = image 155 by 270 of off
let scalimage = image 150 by 320 of off
let symtype := ""
let xmstart := X .dim(screen)-250
let Sht := X .dim(screen) - 54 0
structure global.proc(proc(string, string, string, int, int, int, int ->

bool)MessageProc;
proc(int, int, string, string, tpixel)Text.Write;
proc(string -> real)StringToReal;
proc(string -> int)StringToInt;
proc(*real, int -> *real)MinMax;
proc(int, int, string -> int)Icon;
proc(real, real, real, string -> pic)Polygon;
proc(*real, *real -> pic)highlight;
proc(real, real,real, real -> pic)Drawline;
proc (int, int, int)box;
proc(int, int, int, int)rectangle;
proc(int, int, int, int, string, string, string, bool)Rectan
proc(int, tpixel)North.Dir;
proc(int -> string)Feature.Type;
proc(pic, pic, int, int, int, tpixel)Zoomout;
proc(pic, pic, int, int, int, int, tpixel)Zoomin;
proc(*real, *real, real, real, real, real, int -> bool)Check
proc(string)Prepform)

let ProcDB := open.database("Proc.Lib", "proc", "write")
let GLOBALS := s .lookup("Procedures", ProcDB)
let message.proc = GLOBALS(MessageProc)
let text.write = GLOBALS(Text.Write)
let stringtoreal = GLOBALS(StringToReal)
let stringtoint = GLOBALS(StringToInt)
let minmax = GLOBALS(MinMax)
let icon = GLOBALS(Icon)
let polygon = GLOBALS(Polygon)
let Highlight = GLOBALS(highlight)
let drawline = GLOBALS(Drawline)
let Box = GLOBALS(box)
let rec = GLOBALS(rectangle)
let Rec = GLOBALS(Rectangle)
let north.dir = GLOBALS(North.Dir)
let feature.type = GLOBALS(Feature.Type)
let checkin = GLOBALS(Checkin)
let prepform = GLOBALS(Prepform)
let area = proc(*real xs, ys; int sizes -> real)

begin
let tempx := vector 1::2 of 0.0
let tempy := vector 1::2 of 0.0
tempy := minmax(ys, sizes)
let anarea := 0.0; let dx := 0.0
let dy := 0.0; let ya := 0.0
for i=l to sizes-1 do

begin
let j := 1 + i
dx := xs (j) - xs (i)
dy := y s (j) - ys(i)
ya := (ys(j) + ys(i))/2 - tempy(1)
anarea := anarea + dx * ya

end
if anarea < 0 do anarea := rabs(anarea)
anarea

end
let perimiter = proc(*real xs, ys; int sizes -> real)

begin

let dx := 0.0
let peri := 0.0; let dy := 0.0
for i=l to sizes-1 do

begin
let j := 1 + i
dx xs (j) - xs(i)
dy := y s (j) - ys (i)
peri := peri + sqrt(dx * dx + dy * dy)

end
peri

end
let distance = proc (real xl, yl, x2, y2 -> real)

begin
let Distance := sqrt(rabs((x2-xl) * (x2-xl) + (y2-yl) * (y2-yl)))
Distance

end
let nabor = proc(*real X,OX -> bool)

begin
let upperl := upb(X)
let upper2 := upb(OX)
let continue := false
let found := false
while -continue do

for i=l to upperl do
begin

for j=l to upper2 do
if OX(j) = X(i) do {

found := true
continue := true }

if i=upperl and -found do
begin

found := false
continue := true

end
end

found
end

let answer = vector 1::12 of ""
let questions = 01 of string ["Name of Package used in Digitization",

"Map of (Volume Set Name)",
"Serial Number of Volume Set",
"X,Y of the Lower Corner",
"X,Y of the Opposite Corner",
"Grid Interval",
"North Bearing",
"Total Physical Number of Files",
"Physical File Number",
"Source File Name”,
"Scale of the Map",
"Number of Features' coordinates (2 or 3) "]

let xstart := 10; let ystart := 10
let xend := X.dim(screen)- 10; let yend := Y .dim(screen) - 53
let xspan := xend - xstart; let yspan := yend - ystart
let TotalYmenWin := yend-ystart-97
let Screen = limit screen to xspan by yspan at xstart, ystart
let xlcorner := xstart + 4; let ylcorner := ystart+101
let X.G := xspan -244
let Y.G := TotalYmenWin-2
if X.G > Y.G then X.G := Y.G

else Y.G := X.G
let GW = limit screen to X.G by Y.G at xlcorner, ylcorner
let xmenustart := X.dim(screen) - 250
let menuwin = limit screen to 236 by TotalYmenWin-3 at xmenustart,ylcorner
let menusaved = image 217 by 224 of off
let out.range := X .dim(screen) - Y.dim(screen)
let range := X .dim(screen) - out.range
let gw = limit screen to range by range at 0, 0
let x.coord = vector 1::100 of 0.0
let y.coord = vector 1::100 of 0.0
let dummy.vec := vector 1::1000 of ""
let winsave := image X.G by Y.G of off
let XOL := 0.0; let XOR := 0.0
let YOL := 0 . 0 ; let YOR := 0 . 0
let XZL := 0 . 0 ; let XZR := 0 . 0
let YZL := 0 . 0 ; let YZR := 0 . 0

let TheGrid := 0.0
let thegrid := [0.0, 0.0]
let xt := range + 100; let yt := 271!Global
let tmenu = limit screen to 102 by 192 at xt-1, yt-1!Global
let xe := xt + 40; let ye := yt + 46!Global
let emenu = limit screen to 112 by 102 at xe-1, ye-1!Global
let xl := xt - 90; let yl := 100!Global
let lmenu = limit screen to 142 by 402 at xl-1, yl-1!Global
let eimage := s .lookup("Entity Menu", theimage)(menuimage)
let timage := s .lookup("Type Menu", theimage)(menuimage)
let limage := s .lookup("Layer Menu", theimage)(menuimage)
let def.menu := "1"
let zoomcounter := 0
structure feature(pic fea.pic)
let first.screen = proc()

begin
R e c (0,0,X.dim(screen),Y .dim(screen),"Ps - GIS","cou20",

"middle", true)
let borderl = limit screen to X.dim(screen)-10 by Y.dim(screen)-43 at 5,5
let border2 = limit screen to X.dim(screen)-20 by Y.dim(screen)-53 at 10,
nor borderl onto borderl
nor border2 onto border2

end
let loc.print = proc(int count,xloc,Phase;string phrase)

begin
let cput := (11 - count) * Phase + 120
copy string.to.tile(phrase, "fixl3") onto limit Screen at xloc + 10,

cput + 90
end

let text.window = proc()
begin

let fixtext = limit screen to 140 by 95 at 13,13
let yposition := 75
copy string.to.tile("FEATURE :","fixbl3")
copy string.to.tile("SEGMENTS :","fixbl3")

yposition -17
copy string.to.tile("CODE :","fixbl3")

yposition - 34
copy string.to.tile("LEFT COORDS :","fixbl3")

yposition - 51
copy string.to.tile("RIGHT COORDS :","fixbl3")

yposition - 68
nor fixtext onto fixtext

end
let second.screen = proc(-> *string)

begin
xor Screen onto Screen
let phase := yspan div 15
let interval := 1
while interval < 13 do

begin
loc.print(interval,25,phase,questions(interval))
interval := interval + 1

end
let continue := false
while -continue do

begin
for loop = 1 to 12 do

begin
loc.print(loop,400,phase,": ")
repeat answer(loop) := seditor(questions(loop),

answer(loop), 100, 85, 500, 50
while answer(loop) = "" do

loc.print(loop, 410, phase,answer(loop))
loc.print(loop, 410, phase,answer(loop))

end
continue := message.proc("Proceed or Retry ","Done","Cancel",

xend-215, 120,
200, 140)

end
let dummy := system ("touch config")
let fod = open("config",2)
for loop = 1 to 12 do

output fod,answer(loop),"'n"

onto limit fixtext at 10,
yposition
onto limit fixtext at 10,
onto limit fixtext at 10,
onto limit fixtext at 10,
onto limit fixtext at 10,

close(fod)
for i=l to 2000 do { }
xor Screen onto Screen
answer

end
let third.screen = proc(*string details;*real minmax -> pic)

begin
let ystartdetail := yend-200
rec(xstart+2,ystart+2,xspan-3,98)
rec(xstart+3,ystart+3,xspan-5,96)
rec(xmstart,ystart+100,238,TotalYmenWin)
Rec(xmstart,ystartdetail,238,200,"File Details","fixbl3","middle",true)
let detail = limit screen to 238 by 200 at xmstart,ystartdetail
let detail.data = @ 1 of string ["Scale ","File Name ","Map of ",

"Package "]
let detail.datal = @ 1 of string [details(11),details(10),details(2),

details (1)]
for i=l to 4 do {

let ypos := if i=l then 10
else if i=2 then 50
else if i=3 then 90
else 130

text.write(10, ypos,detail.data(i),"fixbl3",detail)
text.write(119, ypos,detail.datal(i),"fixl3",detail)

}
rec(xstart+2,110,xspan-243,TotalYmenWin)
rec(xstart+3,110,xspan-243,TotalYmenWin)
let the.grid := stringtoint(details(6))
let x.grid := minmax(1) + the.grid
let y.grid := minmax(2) + the.grid
let PIC := [0.0,0.0]
let i := 1
while x.grid <= minmax(3) do

begin
PIC := if i = 1 then [x.grid,minmax(2)] * [x .grid,minmax(4)] &

[minmax(1),y.grid] A [minmax(3),y .grid]
else PIC & [x.grid,minmax(2)] A [x.grid,minmax(4)] &

[minmax(1),y.grid] A [minmax(3),y.grid]
draw (GW, PIC, minmax (1) ,minmax (3) ,minmax (2) ,minmax (4))
x.grid := x.grid + the.grid
y.grid := y.grid + the.grid
i : = i + 1

end
let the.angle := stringtoint(details(7))
let x.dir := xmenustart - 14 0
let a.window = limit screen to 120 by 120 at x.dir,Y.dim(screen)-170
north.dir(the.angle, a.window)
thegrid := PIC
PIC

end
let drawfile = proc(string datafile;real Xmin,Xmax,Ymin,Ymax,Grid;bool Draw ->

pic)
begin

let thevar := s .lookup("Variables",DBvar)
if thevar = nil do

thevar := table()
let dfn = open (datafile,0)
if dfn = nullfile do

begin
write "The file ", datafile," cannot be opened'n"
abort

end
let filename = read.a.line(dfn)
close (dfn)
let fd = open (filename,0)
if fd = nullfile do

begin
write "The file ", filename," cannot be opened'n"
abort

end
let PIC := [0.0, 0.0]
let PIC1 := [0.0, 0.0]
let nfeatures := 0;let KL := 1
let features = vector 1 :: 100 of nil
let tempvec := vector 1::1000 of ""

let L := read.a.line(fd); tempvec(KL) := L; KL := KL + 1
L := read.a.line(fd); tempvec(KL) := L; KL := KL + 1
L := read.a.line(fd); tempvec(KL) := L; KL := KL + 1
let thepos := KL
let readlines = proc(string aline -> *string)

begin
let stemp = vector 1::100 of ""
let con := 1
stemp(con) := aline
let P := 0; let acounter := 0
if ~eoi(fd) and L(13|l) = do

begin
con := con + 1
L := read.a.line(fd); stemp(con) := L;
L := read.a.line(fd)
if eoi(fd) then

begin
P := 1
while L(P|1) ~= " " do P := P + 1
acounter := acounter + 1
x.coord(acounter) :=
y . coord(acounter) :=
PIC := if acounter =

con := con + 1

stringtoreal(
stringtoreal(
1 then

else PIC

L (1 1 P))
L(P+1|length(L) -

[x.coord(acounter) ,
y.coord(acounter)]
[x.coord(acounter) ,
y.coord(acounter)]

P))

:= Lstemp(con)
end

else {
let i := 0
while digit(L(l|l)) and ~eoi(fd) do

begin
i : = i
P := 1
while L(P|1) ~=

+ 1

x.coord(i)
y.coord(i)
PIC := if i
stemp(con)
L := read.a
acounter :=

" do P := P + 1
stringtoreal(L(1|P)
stringtoreal(L(P+1
1 then [x.coord(i)

else PIC A [x.coord(i)
= L; con := con + 1
line(fd)
i

)
length(L)

y.coord(i)
- P))
]

y.coord(i)]

end
if eoi(fd) do {

P := 1
while L (P11) ~= " " do P := P + 1
acounter := acounter + 1
x.coord(acounter) := stringtoreal(
y.coord(acounter) := stringtoreal(

L(1| P))
L(P+l|length(L) -
P))

y.coord(acounter)]PIC := PIC ̂ [x.coord(acounter)
stemp(con) := L } }

nfeatures := nfeatures + 1
features(nfeatures) := feature(PIC)

end
let thisvector := vector 1::acounter+2 of ""
for k=l to acounter+2 do

thisvector(k) := stemp(k)
for i = 1 to nfeatures do (

if Draw do
draw (GW, features(i)(fea.pic), Xmin, Xmax, Ymin, Ymax)

PIC1 := if i=l then features(i)(fea.pic)
else PIC1 & features(i) (fea.pic) }

!draw (GW, PIC1, Xmin, Xmax, Ymin, Ymax)
thisvector

end
L :== read, a . line (fd)
while -eoi(fd) do

begin
let temporal
let thesize
let vecsize
for i=thepos to (thepos + thesize - 1) do

begin
KL := KL + 1

:= readlines(L)
= upb(temporal)
= 0
to (thepos + thesize

tempvec(i) := temporal(i-thepos+1)
end

thepos := KL
end

close(fd)
KL := KL - 1
let a.dummy := system("touch tempi")
let td = open("tempi",1)
for i=l to KL do {

output td,tempvec(i),"'n" }
close(td)
s .enter("dr",thevar,gpic(PIC1))
s .enter("Variables",DBvar,thevar)
if commit() ~= nil do error.message("Could not store Picture'n", -1, -1)
PIC1

end
let getdetail = proc(*string filedetail -> *real)

begin
let thedetails = vector 1::6 of 0.0
let counter := 0
let mindata := filedetail(4)
let thestringlength := length(mindata)
for m=l to thestringlength do

if mindata(m|l) = "," do counter := m
thedetails(1) := stringtoreal(mindata(1|counter-1)); XOL := thedetails(1)
thedetails(2) := stringtoreal(mindata(counter+1|thestringlength-counter));

YOL := thedetails(2)
let maxdata := filedetail(5)
thestringlength := length(maxdata)
for m=l to thestringlength do

if mindata(m|l) = "," do counter := m
thedetails(3) := stringtoreal(maxdata(1|counter-1)); XOR := thedetails(3)
thedetails(4) := stringtoreal(maxdata(counter+11thestringlength-counter)) ;

YOR := thedetails(4)
thedetails(5) := stringtoint(filedetail(8))
thedetails(6) := stringtoint(filedetail(6)); TheGrid := thedetails(6)
thedetails

end
let firstdrawn = proc(*real borders;string filename;bool to.draw -> pic)

begin
let the.pic := drawfile(filename,borders(1),borders(3),borders(2),borders(4

borders(6),to.draw)
the.pic

end
let zoomout = proc(pic PIC, thegrid; int Range, xshft, yshft; #pixel the.win)

begin
if XZL = 0 and XZR = 0 then

error.message(" Nothing to Zoom Out ", -1, -1)
else

begin
xor the.win onto the.win
B o x (xshft, yshft, Range)
Box (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XOL, XOR, YOL, YOR)
draw(the.win, PIC, XOL, XOR, YOL, YOR)
XZL := 0.0; XZR := 0.0
YZL := 0.0; YZR := 0.0

end
end

let zoomin = proc(pic PIC, thegrid;int Range, count, xshft, yshft; #pixel
the.win)

begin
let xl := 0.0; let xr := 0.0
let yl := 0.0; let yr := 0.0
if count < 2 then {

xl := XOL; xr := XOR
yl := YOL; yr := YOR }

else {
xl := XZL; xr := XZR
yl := YZL; yr := YZR }

let xo := 0; let xe := 0
let yo := 0; let ye := 0
let lo := locator()
while -lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos) - xshft

yo := lo(Y.pos) - yshft
while lo(the.buttons)(1) do lo := locator()
xe := lo(X.pos) - xshft
ye := lo(Y.pos) - yshft
if xo > xe do (

let t := xo
xo := xe
xe := t }

if yo < ye do {
let t := yo
yo := ye
ye := t }

let xdif := rabs (xe - xo)
let ydif := rabs (ye - yo)
let adif := truncate((xdif + ydif) / 2)
xe := xo + adif
ye := yo - adif
XZL := xl + (xr - xl) * xo / Range
XZR := xl + (xr - xl) * xe / Range
YZL := yl + (yr - yl) * ye / Range
YZR := yl + (yr - yl) * yo / Range
xor the.win onto the.win
B o x (xshft, yshft, Range)
B o x (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XZL, XZR, YZL, YZR)
draw (the.win, PIC, XZL, XZR, YZL, YZR)

end
let change.code = proc(-> int)

begin
let thecode := 0
let former.image = image 238 by TotalYmenWin-3 of off
copy menuwin onto former.image
xor menuwin onto menuwin
let ystartdetail := yend-180
let detail = limit screen to 238 by 180 at xmstart,ystartdetail
rec(xmstart,ystart+100,238,TotalYmenWin)
Rec(xmstart,ystartdetail,238,180,"Feature Details","fixbl3","middle",true)
let classification = @ 1 of string["Class :", "Category :",

"Feature :",
"Attribute :","The Code :"]

for i=l to 5 do {
let ypos := if i=l then 110

else if i=2 then 85
else if i=3 then 60
else if i=4 then 35
else 10

text.write(10, ypos,classification(i),"fixbl3",detail) }
let VecNames = vector 1::100 of ""
let VecNums = vector 1::100 of 0
let N := 0
let procl = proc(int I; pntr V -> bool)

begin
N := N + 1
VecNames(N) := V(identifier)
VecNums(N) := I
true

end
let stopchose := false
let cat = 01 of string ["Class","Category","Feature","Attribute"]
let choices = vector 1::4 of ""
let catWidth = X.dim(screen) div 4
let choose := proc(int L; pntr T); nullproc
choose := proc(int L; pntr T)

begin
let theMenu := s.lookup("menu",T)
if theMenu = nil do

begin
N := 0
let X := i .scan(T,procl)
let S := ""
let levelname = vector 1::N of ""
let levelnum = vector 1::N of 0
for i=l to N do

{ levelname(i) := VecNames(i);
levelnum(i) := VecNums(i) }

for i=l to N—1 do for j=i+l to N do
{ X := levelnum(i); levelnum(i) := levelnum(j);

levelnum(j) := X; S := levelname(i);
levelname(i) := levelname(j); levelname(j) := S }

for i=l to N do
begin

if length(levelname(i)) > 25 do
levelname(i) := levelname (i) (1125)

if levelname (i) = "" do levelname (i) := "---------- "
end

let ch = set.up.choose(levelname)(do.choose)
theMenu := menuPack(ch, levelname, levelnum)
s.enter ("menu", T, theMenu)
if commit() ~= nil do print "COMMIT FAILS" at 50,300

end
let ch = theMenu(menuProc)
let levelname = theMenu(Lname)
let levelnum = theMenu(Lnum)
N := upb(levelname)
let choice = ch("Choose " ++ cat(L), X.dim(screen)-240,120)
if choice = "" do stopchose := true
let chint := 0
if choice -= "" do {
for i=l to N do

if choice = levelname (i) do chint := levelnum(i)
choices(L) := choice
thecode := if L =1 then chint * 10000000

else if L = 2 then thecode + chint * 100000
else if L = 3 then thecode + chint * 1000
else thecode + chint

let ypos := if L=1 then 110
else if L=2 then 85
else if L=3 then 60
else 35

text.write(119, ypos,choices(L),"fixbl3",detail) }
while -stopchose and L < 4 do choose(L+l, i .lookup(chint,T)(subtree)

end
let level1 := s .lookup("Code2",DB)
choose (1, levell)
print thecode at X.dim(screen)-120,ystartdetail+10
copy former.image onto menuwin
thecode

end
let text.entry = proc(string typeoftext,previous.string -> string)

begin
let awindow := limit screen to 740 by 150 at 40,140
let savedimage = image 750 by 150 of off
copy awindow onto savedimage
xor awindow onto awindow
rec (41,141,738,148)
rec (42,142,736,146)
copy string.to.tile ("Enter The ","fixbl3") onto limit awindow at 50,110
copy string.to.tile (typeoftext,"fixbl3") onto limit awindow at 150,110
copy string.to.tile ("(not longer than 43 characters including spaces)",

"fixl3") onto limit awindow at 50,80
write code(27),"N",code(27),"I"
let atext := ""
atext := seditor(" ", previous.string,50, 150,710,50)
if length(atext) > 43 do

atext := atext(11 43)
write code(27),"E",code(27),"W"
copy savedimage onto awindow
atext

end
let centroid = proc(*real avectorl,avector2; int the.size;real Xmin,Xmax,Ymin,

Ymax -> *real)
begin

let xloc := xmstart + 20
let thismenu = limit screen to 217 by 224 at xmstart+9,119
let msg.menu = limit screen to 100 by 40 at xmstart+9,159
rec(xmstart+10,120,215,180)
rec(xmstart+11,121,213,178)
text.write(10,150,"Chose the centroid of","fixbl3",thismenu)
text.write (10,120,"this area by clicking","fixbl3",thismenu)
text.write(10,90,"the left button of the","fixbl3",thismenu)

text.write (10,60,"mouse on the desired ","fixbl3",thismenu)
text.write(10,30,"location of polygon","fixbl3",thismenu)
let xminmax := minmax(avectorl,the.size)
let xmin := xminmax(1); let xmax := xminmax(2)
let yminmax := minmax(avector2,the.size)
let ymin := yminmax(1); let ymax := yminmax(2)
let counter := 1
let lo := locator ()
let coords = vector 1::2 of 0.0
let proceed := false
while -proceed do

begin
if counter > 1 do
begin

rec(xmstart+10,160,98,38)
text.write(10,15,"Try again","fixl3",msg.menu)

end
while -lo(the.buttons) (1) do lo := locator ()
let xo := lo(X.pos) - xlcorner
let yo := lo(Y.pos) - ylcorner
coords(1) := Xmin + (Xmax - Xmin) * xo / X.G
coords(2) := Ymin + (Ymax - Ymin) * yo / Y.G
while lo(the.buttons) (1) do lo := locator ()
if coords(1) < xmax and coords(1) > xmin do

if coords(2) < ymax and coords(2) > ymin do
{ proceed := true

counter := counter + 1 }
xor msg.menu onto msg.menu

end
xor thismenu onto thismenu
coords

end
let picking = proc(*string givens; int areacounter,linecounter, pointcounter)

begin
let thevar := s .lookup("Variables",DBvar)
if thevar = nil do

thevar := table()
text.window()
let xmin := 0.0; let xmax := 0.0
let ymin := 0.0; let ymax := 0.0
if XZR = 0 and YZR = 0 then {

xmin := XOL; xmax := XOR
ymin := YOL; ymax := YOR }

else {
xmin := XZL; xmax := XZR
ymin := YZL; ymax := YZR }

let yposition := 75
let PIC := [0.0 , 0.0]
let PIC1 := [0.0 , 0.0]
let dummy.pic := [0.0 , 0.0]
let Dummy.vec := 01 of int[0]
let feature.name := ""
let s.code := ""; let featype := ""
let feature.count := areacounter + linecounter + pointcounter
let local.counter := 0
if feature.count > 0 do

begin
let atable := s .lookup("Maps", mainDB)
let Avec := s .lookup(givens(2),atable)(AST)
let Lvec := s .lookup(givens(2),atable)(LST)
let Pvec := s .lookup(givens(2),atable)(PST)
let Atop := upb(Avec)
let Ltop := upb(Lvec)
let Ptop := upb(Pvec)
let thetop := 0
for i= 1 to Atop do

Ainfo(i) := Avec(i)
thetop := Atop
for i= 1 to Ltop do

Linfo(i) := Lvec(i)
thetop := thetop + Ltop
for i= 1 to Ptop do

Pinfo(i) := Pvec(i)
thetop := thetop + Ptop

end

let the.centroid vector 1::2 of 0.0
let previous.text := ""
let xdim := X.dim(screen) - 340 - xlcorner
let detail.window = limit screen to xdim by 95 at 153,14
let ind := 1; let typecount := 1
let exist := true
let out.of.range := false
let fe = open("temp2",0)
if fe = nullfile do

exist := false
if exist do

begin
let dummy := system("rm tempi")
dummy := system("touch tempi")
dummy := system("cp temp2 tempi")
dummy := system ("rm temp2")
close (fe)

end
let fd = open("tempi",0)
if fd = nullfile do

{ write "the file tempi cannot be opened"; abort }
let tempx = vector 1::100 of 0.0
let tempy = vector 1::100 of 0.0
let nfeatures := 0
let KL := 1
let L := read.a.line(fd); dummy.vec(KL) := L; KL := KL + 1
L := read.a.line(fd); dummy.vec(KL) := L; KL := KL + 1
L := read.a.line(fd); dummy.vec(KL) := L; KL := KL + 1
let thepos := KL
let readlines = proc(string aline -> *string)

begin
while -eoi(fd) and aline(1|1) = "/" do

begin
aline := read.a.line(fd); aline := read.a.line(fd)
while digit(aline(1|1)) and ~eoi(fd) do

aline := read.a.line(fd)
end

let stemp = vector 1::100 of ""
let con := 1
stemp(con) := aline
L := aline
let P := 0
let acounter := 0
if -eoi(fd) and (L(13|l) = "*" or L(14|l) =) do

begin
con := con + 1
let Q := 1
while L(Q|1) ~= do Q := Q + 1
let t.length := length(L) - Q - 2
feature.name := L(Q+2|t.length)
L := read.a.line(fd); stemp(con) := L; con := con + 1
s.code := L (5 I length(L)-4)
L := read.a.line(fd)
if eoi(fd) then

begin
P := 1
while L(P|1) ~= " " do P := P + 1
acounter := acounter + 1
tempx(acounter) := stringtoreal(L(1 | P))
tempy(acounter) := stringtoreal(L(P+l | length(L) - P)
stemp(con) := L

end
else

begin
let i := 0
while digit(L (1|1)) and ~eoi(fd) do

begin
i := i + 1
P := 1
while L(P|1) ~= " " do P := P + 1
tempx(i) := stringtoreal(L(1 | P))
tempy(i) := stringtoreal(L(P+l | length(L) - P)
stemp(con) := L; con := con + 1
L := read.a.line(fd)
acounter := i

end
if eoi(fd) do {

P : = 1
while L(P|1) -= " " do P := P + 1
acounter := acounter + 1
tempx(acounter) := stringtoreal(L(1| P))
tempy(acounter) := stringtoreal(L(P+l|length(L) - P)
stemp(con) := L }

end
end

let thisvector = vector 1::acounter+2 of ""
for k=l to acounter+2 do

thisvector(k) := stemp(k)
thisvector

end
let done := false
L := read.a.line(fd)
while -eoi(fd) and -done do

begin
let temporal := readlines(L)
let thesize := upb(temporal)
let isin := true
let checked := false
let vecsize := thesize - 2
if vecsize <= 0 do done := true
let tempscreen = image X.G by Y.G of off
copy GW onto tempscreen
let Xs := vector l::vecsize of 0 . 0
let Ys := vector l::vecsize of 0 . 0
for avar = 1 to vecsize do

begin
Xs(avar) := tempx(avar)
Ys(avar) := tempy(avar)

end
if vecsize = 1 then

isin := if Xs(l) <
Ys (1) <

xmax and X s (1)
ymax and Y s (1)

> xmin and
> ymin then true

else false
else

begin
let Xminmax := minmax(Xs,vecsize)
let Yminmax := minmax(Ys,vecsize)
isin := if Xminmax(1) > xmin and Xminmax(2)

Yminmax (1) > ymin and Yminmax (2)
< xmax and
< ymax then true

else {
checked := true
checkin(Xs,Ys,xmin,xmax,ymin,ymax,vecsize) }

end
if isin then {

local.counter := local.counter + 1
temporal(1) := "/" ++ temporal(1)
for i=thepos to (thepos + thesize - 1) do

begin
KL := KL + 1
dummy.vec(i)

end
if vecsize < 2 then

begin
let xposition

= temporal(i - thepos + 1)

= truncate((Xs (1) - xmin)
xmin)) - 5
(Ys (1) - ymin)
ymin)) - 5

text.write(xposition, yposition, "fixbl3", GW)
]

let yposition := truncate(
* X.G / (xmax -
* Y.G / (ymax -

[X s (1) , Y s (1)PIC : =
end

else
begin

if -checked do {
PIC1 := Highlight(Xs, Ys) !thkline(Xs,Ys,6,vecsize)
draw(GW,PIC1,xmin,xmax,ymin,ymax) }

for i=l to vecsize do
PIC := if i = 1 then [Xs(i)

else PIC A [Xs(i)
end

xor detail.window onto detail.window

Ys (i)]
Ys (i)]

copy string.to.tile(feature.name,"fixl3") onto limit
detail.window at 25, yposition

print (vecsize-1) at 180,yposition - 5
copy string.to.tile(s.code,"fixl3") onto limit detail.window at 20

yposition - 34
print xmin,ymin at 163, yposition - 40
print xmax,ymax at 163, yposition - 57
let feature.kind := feature.type(typecount)
typecount := typecount + 1
let feature.code := change.code()
if feature.code = 0 do feature.code := change.code()
let thename := text.entry("Name","")
let thismenu = limit screen to 217 by 94 at xmstart+9,350
if feature.kind = "polygon" then

{ the.centroid := centroid(Xs,Ys,vecsize,xmin,xmax,ymin,ymax)
let a.pic := polygon(the.centroid(1),the.centroid(2),8,"hx")
draw(GW,a.pic,xmin,xmax,ymin,ymax)
areacounter := areacounter + 1 }

else if feature.kind = "line" then
linecounter := linecounter + 1

else if feature.kind = "point" do
pointcounter := pointcounter + 1

let thetext := text.entry("Comment",previous.text)
previous.text := thetext
case true of
feature.kind = "polygon" : Ainfo(areacounter) := Aholder(areacount

feature.code, false, the.centroid(1), the.centroid(2), thename
thetext, Xs, Ys, PIC, 0, 0, 0, Dummy.vec, dummy.pic)

feature.kind = "line" : Linfo(linecounter) := Lholder(linecounter,
feature.code, false, thename, thetext, Xs, Ys, PIC, 0, 0,
dummy.pic)

default : Pinfo(pointcounter) := Pholder(pointcounter,feature.code
false, thename,thetext,"", Xs, Ys,PIC)

xor thismenu onto thismenu
if -eoi(fd) then

done := message.proc("Chose what next","Break","Proceed",
xend-215, 120, 200, 140)

else done := true
xor GW onto GW
copy tempscreen onto GW
}

else {
for i=thepos to (thepos + thesize - 1) do {

KL := KL + 1
dummy.vec(i) := temporal(i-thepos+1) }

out.of.range := true }
thepos := KL

end
if eoi(fd) then

begin
if out.of.range then

begin
let vec.text = @1 of string["This is the end of the file,",

"but there are still some ",
"features not yet identified.",
"Advice to change zooming.",
"click to proceed"]

more(vec.text, 50,100)
let a.dummy := system("touch temp2")
let td = open("temp2",1)
let ind := 1
while dummy.vec(ind) ~= "" do

begin
output td,dummy.vec(ind),"'n"
dummy.vec(ind) := ""
ind := ind + 1

end
close(td)
close(fd)

end
else

begin
error.message("Nothing out of range",X.dim(screen)-250,120)
let a .dummy := system("rm tempi; rm config")
for i=l to 1000 do

dummy.vec(i) := ""
end

end
else {

dummy.vec(thepos) := L
let local.count := thepos + 1
while -eoi(fd) do

begin
dummy.vec(local.count) := read.a.line(fd)
local.count := local.count + 1

end
close(fd)
let a.dummy := system("touch temp2")
let td = open("temp2"/1)
for i=l to local.count-1 do {

output td,dummy.vec(i),"'n"
dummy.v e c (i) := "" }

close(td)
}

let abase := 1
if areacounter = 0 do abase := 0
let avec := vector abase::areacounter of nil
for i=l to areacounter do

avec(i) := Ainfo(i)
let lbase := 1
if linecounter = 0 do lbase := 0
let lvec := vector lbase::linecounter of nil
for i=l to linecounter do

lvec(i) := Linfo(i)
let pbase := 1
if pointcounter = 0 do pbase := 0
let pvec := vector pbase::pointcounter of nil
for i=l to pointcounter do

pvec(i) := Pinfo(i)
let feat.text := vector 1::1000 of nil
s .enter("a",thevar,globals(areacounter))
s .enter ("1",thevar,globals(linecounter))
s .enter("p",thevar,globals(pointcounter))
s .enter("Variables",DBvar,thevar)
if commit() ~= nil do error.message("Could not store Variables'n", -1,-1
s.enter(givens(2),mapstable,maps(givens(1), givens(3), givens(11),

givens(7), XOL, YOL, XOR, YOR, TheGrid, avec, lvec, pvec,
feat.text))

s.enter("Maps", mainDB, mapstable)
if commit() ~= nil do { error.message("data are not stored'n",-1,-1) ;

abort }
end

let xtransform = proc(real anx; int range -> real)
begin

let unx := XZL + (XZR - XZL) * anx / range
unx

end
let ytransform = proc(real anx; int range -> real)

begin
let unx := YZL + (YZR - YZL) * anx / range
unx

end
let shiftL = proc(int range; #pixel Win; pic PIC)

begin
let mrange := range - 100
let commonpart = image mrange by range of off
let commonpic = limit screen to mrange by range at 98, 0
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by range at 0, 0
copy commonpart onto newin
let xst := xtransform(mrange+2, range)
let diff := XZR - xst
XZL := XZL + diff
XZR := XZR + diff
draw(gw, PIC, XZL, XZR, YZL, YZR)

end
let shiftR = proc(int range; #pixel Win; pic PIC)

begin
let mrange := range - 100

let commonpart = image mrange by range of off
let commonpic = limit screen to mrange by range at 2, 0
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by range at 100, 0
copy commonpart onto newin
let xst := xtransform(mrange+2, range)
let diff := XZR - xst
XZL := XZL - diff
XZR := XZR - diff
draw(gw, PIC, XZL, XZR, YZL, YZR)

end
let shiftD = proc(int range; tpixel Win; pic PIC)

begin
let mrange := range - 34
let commonpart = image range by mrange of off
let commonpic = limit screen to range by mrange at 0, 32
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to range by mrange at 0, 0
copy commonpart onto newin
let yst := ytransform(mrange+2, range)
let diff := YZR - yst
YZL := YZL + diff
YZR := YZR + diff
draw(gw, PIC, XZL, XZR, YZL, YZR)

end
let shiftU = proc(int range; tpixel Win; pic PIC)

begin
let mrange := range - 34
let commonpart = image mrange by mrange of off
let commonpic = limit screen to mrange by mrange at 0, 2
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by mrange at 0, 34
copy commonpart onto newin
let yst := ytransform(mrange+2, range)
let diff := YZR - yst
YZL := YZL - diff
YZR := YZR - diff
draw(gw, PIC, XZL, XZR, YZL, YZR)

end
let Scroll = proc(pic the.pic; int Range; tpixel win)

begin
let bxl := XZL
let bxr := XZR
let byl := YZL
let byr := YZR
if XZL = 0 and XZR = 0 then

error.message("Nothing to Scroll", -1, -1)
else {
!draw(win, the.pic, bxl, bxr, byl, byr)
let shft := X.dim(screen) - 230
let xstep = 100
let ystep = 100
let xdif := rabs(XZR - XZL)
let ydif := rabs(YZR - YZL)
for i=l to 2 do {

Box ((shft + (i-1) * 100), 200, 40)
Box ((shft + 50), (150 + (i-1) * 100), 40) }

let picboxl = limit screen to 40 by 40 at shft,200
let picbox3 = limit screen to 40 by 40 at shft+100,200
let picbox2 = limit screen to 40 by 40 at shft+50,150
let picbox4 = limit screen to 40 by 40 at shft+50,250
let icon.length := icon (shft+45, 100, "Done")
let picbox5 = limit screen to icon.length by 30 at shft+45, 100
let vecx = @1 of int [30, 30, 10, 10, 0, 10, 10, 30]
let vecy = @1 of int [10, 22, 22, 32, 16, 0, 10, 10]
let VPIC1 := [0,0]
for i=l to 8 do

VPIC1 := if i=l then [vecx(i), vecy(i)]
else VPIC1 A [vecx(i), vecy(i)]

let VPIC2 := rotate VPIC1 by -90
let VPIC3 := rotate VPIC2 by -90
let VPIC4 := rotate VPIC3 by -90

draw (picboxl, VPIC1, -5, 35, -5, 35)
draw (picbox2, VPIC2, -35, 5, -5, 35)
draw (picbox3, VPIC3, -35, 5, -35, 5)
draw (picbox4, VPIC4, -5, 35, -35, 5)
let xo := 0; let yo := 0
let done := false
while -done do

begin
let lo := locator()
while -lo (the.buttons) (1) do lo := locator()
xo := lo(X.pos)
yo := lo(Y.pos)
while lo (the.buttons) (1) do lo := locator()
if xo > shft + 45 and xo < (shft+45+icon.length) and

yo > 100 and yo < 130 then
begin

nor picbox5 onto picbox5
done := true

end
else if xo > shft and xo < shft + 40 and yo > 200 and

yo < 240 then
begin

nor picboxl onto picboxl
bxr := bxr + xstep
if bxr > XOR do {

!error.message("Exceeded limit of map", -1, -1)
bxr := XOR }

shiftL(Range,win, the.pic)
nor picboxl onto picboxl

end
else if xo > shft + 100 and xo < shft + 140 and

yo > 200 and yo < 240 then
begin

nor picbox3 onto picbox3
bxl := bxl - xstep
if bxl < XOL do {

!error.message("Exceeded limit of map", -1, -1)
bxl := XOL }

shiftR(Range,win, the.pic)
nor picbox3 onto picbox3

end
else if xo > shft + 50 and xo < shft + 90 and yo > 150 and

yo < 190 then
begin

nor picbox2 onto picbox2
byl := byl - ystep
if byl < YOL do {

!error.message("Exceeded limit of map", -1, -1)
byl := YOL }

shiftD(Range,win, the.pic)
nor picbox2 onto picbox2

end
else if xo > shft + 50 and xo < shft + 90 and yo > 250 and

yo < 290 do
begin

nor picbox4 onto picbox4
byr := byr + ystep
if byr > YOR do {

!error.message("Exceeded limit of map", -1, -1)
byr := YOR }

shiftU(Range,win, the.pic)
nor picbox4 onto picbox4

end
if -done do {

!xor win onto win
B o x (0, 0, Range)
B o x (1, 1, Range-2)
!draw(win, the.pic, bxl, bxr, byl, byr)

}
!XZL := bxl; XZR := bxr
!YZL := byl; YZR := byr

end
let tempwin = limit screen to 215 by 200 at shft - 5, 95
xor tempwin onto tempwin}

end

let trans.code = proc()
begin

let thevar := s.lookup("Variables",DBvar)
let areacount := s.lookup("a",thevar)(varval)
let linecount := s.lookup("1",thevar)(varval)
let pointcount := s .lookup("p",thevar)(varval)
let details := vector 1::12 of ""
let borders := vector 1::4 of 0.0
let MinMax := vector 1::6 of 0.0
let datafile := ""
let operations = @1 of string ["Zoom In", "Zoom Out", "Start"]
let exist := true
let fe = open("config",0)
if fe = nullfile do

exist := false
if exist then

begin
let ind := 1
while -eoi(fe) do {

details(ind) := read.a.line(fe)
ind := ind + 1 }

close (fe)
xor screen onto screen
first.screen()
datafile := details(10)
MinMax := getdetail(details)
let the.grid := third.screen(details,MinMax)
let datapic := s .lookup("dr",thevar)(thepic)
draw(GW,datapic, XOL, XOR, YOL, YOR)
let parwin := limit screen to 120 by 30 at range+90,Y.dim(screen)-315
let finished := false
while -finished do {
let chooseoperation = set.up.choose(operations)(do.choose)
let operationchosen = chooseoperation("OPTIONS ", xmstart+50,120)
if operationchosen = "Zoom In" then {

xor parwin onto parwin
rec(range+91, Y .dim(screen)-314, 100, 28)
text.write(20, 10,operationchosen,"fixbl3",parwin)
zoomcounter := zoomcounter + 1
!zoomin(the.grid, thegrid, X .G,zoomcounter,xlcorner,ylcorner,GW)
zoomin(datapic, thegrid, X.G, zoomcounter, xlcorner,ylcorner,GW)
xor parwin onto parwin }

else if operationchosen = "Zoom Out" then {
xor parwin onto parwin
rec(range+91, Y .dim(screen)-314, 100, 28)
text.write (20, 10,operationchosen,"fixbl3",parwin)
!zoomout(the.grid, X.G, xlcorner, ylcorner, GW)
zoomout(datapic, thegrid, X.G, xlcorner, ylcorner, GW)
xor parwin onto parwin
zoomcounter := 0 }

else if operationchosen = "Start" then {
if XZR = 0 and YZR = 0 do

XZL := XOL; YZL := YOL; XZR := XOR; YZR := YOR
picking(details, areacount, linecount, pointcount) }

else if operationchosen = "" do
finished := true }

end
else {
xor screen onto screen
first.screen ()
details := second.screen()
datafile := details(10)
MinMax := getdetail(details)
let the.grid := third.screen(details,MinMax)
let datapic := firstdrawn(MinMax,datafile,true)
draw(GW,datapic, XOL, XOR, YOL, YOR)
let parwin := limit screen to 120 by 30 at range+90,Y.dim(screen)-315
let finished := false
while -finished do {
let chooseoperation = set.up.choose(operations)(do.choose)
let operationchosen = chooseoperation("OPTIONS ", xmstart+50, 120)
if operationchosen = "Zoom In" then {

xor parwin onto parwin
rec(range+91, Y .dim(screen)-314, 100, 28)
text.write(2 0, 10,operationchosen,"fixbl3",parwin)

zoomcounter := zoomcounter + 1
zoomin(datapic, thegrid, X.G, zoomcounter, xlcorner, ylcorner, GW)
xor parwin onto parwin }

else if operationchosen = "Zoom Out" then {
xor parwin onto parwin
rec(range+91, Y.dim(screen)-314, 100, 28)
text.write(20, 10,operationchosen,"fixbl3",parwin)
zoomout(datapic, thegrid, X.G, xlcorner, ylcorner, GW)
xor parwin onto parwin
zoomcounter := 0 }

else if operationchosen = "Start" then {
if XZR = 0 and YZR = 0 do

XZL := XOL; YZL := YOL; XZR := XOR; YZR := YOR
picking(details, areacount, linecount, pointcount) }

else if operationchosen = "" do
finished := true }

}
copy winsave onto GW

end
end
structure modulesl(proc()dataentry)
let moduleDB := open.database("M", "m", "write")
if moduleDB is error.record do moduleDB := create.database("M", "m")
let the.module := s .lookup("Modulel", moduleDB)
if the.module = nil do

begin
the.module := table()
s .enter("Modulel", moduleDB, the.module)

end
s.enter("dataentry", the.module, modulesl(DataEntry))

APPENDIX E

Appendix E; Cartographic Representation Module

APPENDIX E: CARTOGRAPHIC REPRESENTATION MODULE

This Appendix contains the listing of the program dealing with Data Cartographic

Representation. The module first retrieves the Global Procedures from the database

’Global.Proc' and then lists the different module procedures needed and described in

Chapter 8. The module is stored in the database '%$Modules\

let CartoRep = proc()
begin
let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup("fixl3", FONTsdb)
let bold = s .lookup("fixbl3",FONTsdb)
let big = s .lookup("met22",FONTsdb)
let large = s .lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int-> string) xproc

prcget("seditor") (xproc) }
let error.message={structure procpak(proc(string,int,int) xproc)

prcget("error.message") (xproc) }
let more={structure procpak(proc(*string,int,int) xproc)

prcget("more")(xproc) }
let form.generate={structure procpak(proc(-> pntr) xproc)

prcget("form.generate")(xproc)}
let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)

prcget("form.null")(xproc) }
structure form.package(proc(pntr) Form.show;

proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc(pntr) Form.remove;
proc(string,pntr) Form.update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = {structure procpak(proc(*string -> pntr) xproc)
prcget("set.up.choose")(xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.to.text = {structure procpak(proc(pntr -> *string) xproc)
prcget("table.t o .text") (xproc)}

structure global.proc(proc(string, string, string, int, int, int, int ->
bool)MessageProc;

proc(int, int, string, string, tpixel)Text.Write;
proc(string -> real)StringToReal;
proc(string -> int)StringToInt;
proc(*real, int -> *real)MinMax;
proc(int, int, string -> int)Icon;
proc(real, real, real, string -> pic)Polygon;
proc(*real, *real -> pic)highlight;
proc(real, real,real, real -> pic)Drawline;
proc(int, int, int)box;
proc(int, int, int, int)rectangle;
proc(int, int, int, int, string, string, string, bool)Rectan
proc(int, tpixel)North.Dir;
proc(int -> string)Feature.Type;
proc (pic, pic, int, int, int, tpixel)Zoomout;
proc(pic, pic, int, int, int, int, tpixel)Zoomin;
proc(*real, *real, real, real, real, real, int -> bool)Check
proc(string)Prepform)

let ProcDB := open.database("Proc.Lib", "proc", "write")
let GLOBALS := s .lookup("Procedures", ProcDB)
!let Global.Pack = s.lookup ("Global.Proc", GLOBALS)
let message.proc = GLOBALS(MessageProc)
let text.write = GLOBALS(Text.Write)
let stringtoreal = GLOBALS(StringToReal)
let stringtoint = GLOBALS(StringToInt)
let minmax = GLOBALS(MinMax)
let icon = GLOBALS(Icon)
let polygon = GLOBALS(Polygon)
let Highlight = GLOBALS(highlight)
let drawline = GLOBALS(Drawline)
let Box = GLOBALS(box)

let rec = GLOBALS(rectangle)
let Rec = GLOBALS(Rectangle)
let north.dir = GLOBALS(North.Dir)
let feature.type = GLOBALS(Feature.Type)
let checkin = GLOBALS(Checkin)
let prepform = GLOBALS(Prepform)
let DB = open.database("code2","code2","write")
if DB is error.record do { write"cannot open DB "; abort }
structure Code2Node(string identifier; pntr subtree)
structure menuPack(proc (string, int, int -> string) menuProc; c*string Lname;

c*int Lnum)
let mainDB := open.database("MDB","data","write")
if mainDB is error.record do mainDB := create.database("MDB", "data")
if mainDB is error.record do { error.message("Cannot open database'n",-1,-1);

abort }
let mapstable := s.lookup ("Maps", mainDB)
if mapstable = nil do

mapstable := table()
structure maps (string Package, SerialNo, Scale, North;real XL, YL, XR, YR, Grid;

*pntr AST, LST, PST, TST)
structure Aholder(int ATN, AID; bool AP; real Xc, Yc; string AFN, AC; *real AX,

AY; pic anypic; real ADI, AD2; int NOI; *int Inc; pic FA.pic)
structure Lholder(int LTN, LID; bool LP; string LFN, LC; *real LX, LY; pic L.pic;

real LD1, LD2; pic FL.pic)
structure Pholder(int PTN, PID; bool PP; string PFN, PC, PT; *real PX, PY;

pic P.pic)
structure Tholder(int Layer, Location; real xpos, ypos; string thetext, Font)
let Ainfo = vector 1
let Linfo = vector 1
let Pinfo = vector 1

1 0 0 0 0 of nil
5 0 0 0 of nil
3 0 0 0 of nil

let DBvar := open.database("global","variables","write")
if DBvar is error.record do DBvar := create.database("global", "variables")
if DBvar is error.record do { write "Error creating Database'n" }
structure globals(int varval)
structure gpic(pic thepic)
let DBsym := open.database("Symbols","mys","read")
let agrsyms := s.lookup("%$Agrsym" , DBsym)
let geosyms := s.lookup("%$Geosym", DBsym)
structure agrsym(pic f.pic)
structure geosym(pic a.pic)
structure gimage(tpixel menuimage)
let theimage := s.lookup("Images", DBvar)
let Hlinetype := s.lookup("Hlinetype",theimage)(menuimage)
let Hangle := s.lookup("Hangle",theimage)(menuimage)
let Scaling := s.lookup("Scaling",theimage)(menuimage)
let Hspacing
let Hdefault
let LineMenu

s .lookup("Hspacing",theimage)(menuimage)
s .lookup("Hdefault",theimage)(menuimage)
s .lookup("LineMenu”,theimage)(menuimage)

let symenu := s .lookup("Symbols Menu", theimage)(menuimage)
let typeimage = image 110 by 355 of off
let angimage = image 155 by 270 of off
let scalimage = image 150 by 320 of off
let symtype := ""
let xmstart := X .dim(screen)-250
let innerangle = proc(real xl,yl,x2,y2 -> real)

begin
let angle := 0.0
let dx := x2 - xl
let dy := y2 - yl
if dx ~= 0 then

begin
let ang := atan(rabs(dy/dx)) * 180 / pi
let index = case true of

dx > 0 and dy > 0 :90 - ang
dx > 0 and dy < 0 :90 + ang
dx < 0 and dy < 0 :270 - ang
dx < 0 and dy > 0 :270 + ang
dx > 0 and dy = 0 :9 0
dx < 0 and dy = 0 :270
default:{-999999}

angle := index
if angle = -999999 do abort

end
else

begin

if dx = 0 and dy > 0 then
angle := 0

else if dx = 0 and dy < 0 do angle := 180
end

angle
end

let area = proc(*real xs, ys; int sizes -> real)
begin

let tempx := vector 1::2 of 0.0
let tempy := vector 1::2 of 0.0
tempy := minmax(ys, sizes)
let anarea := 0.0; let dx := 0.0
let dy := 0.0; let ya := 0.0
for i=l to sizes-1 do

begin
let j := 1 + i
dx := x s (j) - xs (i)
dy := y s (j) - ys(i)
ya := (ys(j) + ys(i))/2 - tempy(1)
anarea := anarea + dx * ya

end
if anarea < 0 do anarea := rabs(anarea)
anarea

end
let perimiter = proc(*real xs, ys; int sizes -> real)

begin
let dx := 0.0
let peri := 0.0; let dy := 0.0
for i=l to sizes-1 do

begin
let j := 1 + i
dx := x s (j) - xs(i)
dy := ys (j) - ys(i)
peri := peri + sqrt(dx * dx + dy * dy)

end
peri

end
let distance = proc(real xl, yl, x2, y2 -> real)

begin
let Distance := sqrt(rabs((x2-xl) * (x2-xl) + (y2-yl) * (y2-yl)))
Distance

end
let nabor = proc(*real X,OX -> bool)

begin
let upperl := upb(X)
let upper2 := upb(OX)
let continue := false
let found := false
while -continue do

for i=l to upperl do
begin

for j=l to upper2 do
if OX(j) = X(i) do {

found := true
continue := true }

if i=upperl and -found do
begin

found := false
continue := true

end
end

found
end

let polycheck = proc(*real xs, ys; int sizes -> bool)
begin

let angsum := 0.0
let calsum := 0.0
let h := 0
let j := 0
let apl := 0.0
let ap2 := 0.0
let angle := 0.0
let closed := false
for i=l to sizes-1 do

begin

h := i-1
j := i+1
if h = 0 do h := sizes-1
apl := innerangle(xs(i), ys(i), xs(h), ys(h))
ap2 := innerangle(xs(i), ys(i), xs(j), ys(j))
angle := apl - ap2
if angle < 0 do angle := angle + 360
angsum := angsum + angle

end
calsum := 90 * (2 * (sizes - 1) - 4)

let diff := rabs(angsum - calsum)
if diff > (1/100) then

closed := false
else closed := true

if ~closed do
begin

angsum := 0.0
for i=l to sizes-1 do

begin
h := i-1
j := i+1
if h = 0 do h := sizes-1
apl := innerangle(xs(i), ys(i), xs(h), ys(h))
ap2 := innerangle(xs(i), ys(i), xs(j), ys(j))
angle := apl - ap2
if angle < 0 then angle := rabs(angle)
else angle := 360 - angle
angsum := angsum + angle

end
calsum := 90 * (2 * (sizes - 1) - 4)
let diff := rabs(angsum - calsum)
if diff > (1/100) then

closed := false
else closed := true

end
closed

end
let linepara = proc(real xl, yl, x2, y2 -> *real)

begin
let parameter = vector 1::2 of 0.0
if x2-xl = 0 then {parameter(1) := 0.0;parameter(2) := x2}
else {
parameter(1) := (y2-yl)/ (x2-xl)
parameter(2) := (yl*x2 - y2*xl)/ (x2-xl)}
parameter

end
let perpenline = proc(real x,y,m -> *real)

begin
let parameter = vector 1::2 of 0.0
if m=0 then

begin
parameter(1) := x
parameter(2) := 0

end
else {
parameter(1) := -1/m
parameter(2) := y - parameter(1)*x)
parameter

end
let Lparaline = proc(real a,b,w; int K -> *real)

begin
let const = vector 1::2 of 0.0
const(1) := a
const (2) := b + K * w * sqrt(1 + a*a)
const

end
let Rparaline = proc(real a,b,w; int K -> *real)

begin
let const = vector 1::2 of 0.0
const(1) := a
const(2) := b - K * w * sqrt(l + a*a)
const

end
let lineint = proc(real a,b,c,d -> *real)

begin

let parameter = vector 1::2 of 0.0
if a = 0 and d = 0 then {
parameter(1) := c;parameter(2) := b}
else if b=0 and c=0 then{
parameter(1) := a/parameter(2) := d}
else if c = 0 and b ~= 0 then {
parameter(1) := -99999
parameter(2) := -99999}
else {parameter(1) := (d-b)/ (a-c)
parameter(2) := (a*d - b*c)/ (a-c)}
parameter

end
let dashing = proc(real xl,yl,x2,y2,dash,gap -> pic)

begin
let alpha := 0.0
let a.pic := [0.0, 0.0]
let period := dash + gap
let dy := y2 - yl
let dx := x2 - xl
let lengthofline := sqrt(dx * dx + dy * dy)
if dx = 0 then

if dy > 0 then alpha := pi/2
else alpha := pi

else
begin

let k := 1; let c := 1
let NoOfPeriods := 0; let thegap := 0.0; let theperiod := 0.0
alpha := atan(rabs(dy/dx))
if dx < 0 do k := -k
if dy < 0 do c := -c
if lengthofline > period then

begin
NoOfPeriods := truncate(lengthofline / period)
let rest := lengthofline - NoOfPeriods * period
thegap := rest / NoOfPeriods + gap
theperiod := thegap + dash
let XI := vector 1::(NoOfPeriods+1) of 0.0
let Yl := vector 1::(NoOfPeriods+1) of 0.0
let X2 := vector 1::(NoOfPeriods+1) of 0.0
let Y2 := vector 1::(NoOfPeriods+1) of 0.0
let thecos := cos(alpha)
let thesin := sin (alpha)
let dxgap := thecos * thegap
let dxdash := thecos * dash
let dxhdash := 0.5 * dxdash
let dygap := thesin * thegap
let dydash := thesin * dash
let dyhdash := 0.5 * dydash
XI (1) := xl
Yl (1) := yl
X2(l) := xl + dxhdash * k
Y2 (1) := yl + dyhdash * c
a.pic := drawline(X I (1), Yl(l), X2(l), Y2(l))
for i = 2 to NoOfPeriods do

begin
XI (i) := X2(i-1) + dxgap * k
Yl (i) := Y2(i-1) + dygap * c
X2 (i) := XI(i) + dxdash * k
Y2 (i) := Yl (i) + dydash * c
a. pic := a.pic & drawline(XI(i), Yl(i), X2(i), Y2(i))

end
XI(NoOfPeriods+1) := X2(NoOfPeriods) + dxgap * k
Yl(NoOfPeriods+1) := Y2(NoOfPeriods) + dygap * c
X2(NoOfPeriods+1) := x2
Y2(NoOfPeriods+1) := y2
a.pic := a.pic & drawline(XI(NoOfPeriods+1), Yl(NoOfPeriods+1) ,

X2(NoOfPeriods+1), Y2(NoOfPeriods+1))
end

else a.pic := drawline(xl,yl,x2,y2)
end

a .pic
end

let doblseg = proc(real Xl, Yl, X2, Y2, width,type,dash,gap -> pic)
begin

let a.pic := [0.0, 0.0]

let Para := vector 1::2 of 0.0
let Paral := vector 1::2 of 0.0
let ParalO := vector 1::2 of 0.0
let Para2 := vector 1::2 of 0.0
let Para3 := vector 1::2 of 0.0
let Para30 := vector 1::2 of 0.0
let Para4 := vector 1::2 of 0.0
let Para5 := vector 1::2 of 0.0
let Para50 := vector 1::2 of 0.0
let k := 1
Para := linepara(XI,Yl,X2,Y2)
Paral := perpenline(Xl,Yl,Para(1))
ParalO := perpenline(X2,Y2,Para(1))
if X2 < XI do k := -1 * k
Para2 := Rparaline(Para(1),Para(2),width/2,k)
Para4 := Lparaline(Para(1),Para(2),width/2,k)
Para3 := lineint(Paral(1),Paral(2),Para2(1),Para2 (2))
Para30 := lineint(ParalO(1),ParalO(2),Para2(1),Para2(2))
Para5 := lineint(Paral(1),Paral(2),Para4(1),Para4(2))
Para50 := lineint(ParalO(1),ParalO(2),Para4(1),Para4(2))
let xintersecRl := Para3(l)
let yintersecRl := Para3(2)
let xintersecLl := Para5(l)
let yintersecLl := Para5(2)
let xintersecR2 := Para30(l)
let yintersecR2 := Para30(2)
let xintersecL2 := Para50(l)
let yintersecL2 := Para50(2)
if type = -1 then {
a .pic := drawline(xintersecRl,yintersecRl,xintersecR2,yintersecR2)
a.pic := a.pic & drawline(xintersecLl,yintersecLl,xintersecL2,yintersecL2)}

-2 then {
dashing(xintersecRl,yintersecRl,xintersecR2,yintersecR2,

dash,gap)
a.pic & dashing(xintersecLl,yintersecLl,xintersecL2,

yintersecL2,dash,gap)}
-3 then {
dashing(xintersecRl,yintersecRl,xintersecR2,yintersecR2,

dash,gap)
a.pic := a.pic & drawline(xintersecLl,yintersecLl,xintersecL2,

yintersecL2)}
-4 do {
drawline(xintersecRl,yintersecRl,xintersecR2,yintersecR2)
a.pic & dashing(xintersecLl,yintersecLl,xintersecL2,

yintersecL2,dash,gap)}

else if type
a.pic :=
a.pic :=

else if type =
a.pic :=

else if type
a .pic
a .pic

a .pic
end

let dobline = proc(*real Xs, Ys;
begin

real width,type; int themax,dash,gap -> pic)
let xintersecR := vector 1: :100 of 0.0
let yintersecR := vector 1: :100 of 0.0
let xintersecL := vector 1: :100 of 0.0
let yintersecL := vector 1: :100 of 0.0
let a .picl := [0.0, 0.0]
let a.pier := [0.0, 0.0]
let a .pic ooooII

let Para :== vector 1::2 of 0 .0
let Paral = vector 1::2 of 0.0
let Para2 = vector 1::2 of 0.0
let Para3 = vector 1::2 of 0.0
let Para4 = vector 1::2 of 0.0
let Para5 = vector 1::2 of 0.0
let Para6 = vector 1::2 of 0.0
let Para7 = vector 1::2 of 0.0
let k := 1
for i=l to themax do

begin
if i < themax then

begin
k : = 1
Para := linepara(Xs(i),Ys(i),Xs(i+1),Ys(i+1))
Paral := perpenline(Xs(i),Ys(i),Para(1))
if Xs(i+1) < Xs(i) do k := -1 * k
Para2 := Rparaline(Para(1),Para(2),width/2,k)
Para4 := Lparaline(Para(1),Para(2),width/2,k)

if i=l then
begin
Para3 := lineint(Paral(1),Paral(2),Para2(1),Para2(2))
Para5 := lineint(Paral(1),Paral(2),Para4(1),Para4(2))
xintersecR(i) := Para3(l)
yintersecR(i) := Para3(2)
xintersecL(i) := Para5(l)
yintersecL(i) := Para5(2)
Para6 := Para2
Para7 := Para4
end

else
begin

Para3 := lineint(Para2(1),Para2(2),Para6(1),Para6(2))
Para5 := lineint(Para4(1),Para4(2),Para7(1),Para7(2))
Para6 := Para2
Para7 := Para4
xintersecR(i) := Para3(l)

yintersecR(i) := Para3(2)
xintersecL(i) := Para5(l)

yintersecL(i) := Para5(2)
end

end
else

if i=themax
begin

Paral
Para3 :=
Para5 :=
xintersecR(i)
yintersecR(i)
xintersecL(i)
yintersecL(i)

end
end

for i=l to themax-1 do
begin

if type = -1 then {
a.pier := drawline(xintersecR(i),yintersecR(i),xintersecR(i+1),

yintersecR(i+1))
a.picl := drawline(xintersecL(i),yintersecL(i),xintersecL(i+1),

yintersecL(i+1))
a.pic := if i=l then a.pier & a.picl

else a.pic & a.pier & a.picl}
= -2 then {
:= dashing(xintersecR(i),yintersecR(i),xintersecR(i+1) ,

yintersecR(i+l),dash,gap)
:= dashing(xintersecL(i),yintersecL(i),xintersecL(i+1),

yintersecL(i+1),dash,gap)
:= if i=l then a.pier & a.picl
else a.pic & a.pier & a.picl}

= -3 then {
:= dashing(xintersecR(i),yintersecR(i),xintersecR(i+1) ,

yintersecR(i+1),dash,gap)
a.picl := drawline(xintersecL(i),yintersecL(i),xintersecL(i+1)

yintersecL(i+1))
:= if i=l then a.pier & a.picl
else a.pic & a.pier & a.picl}

= -4 do {
:= drawline(xintersecR(i),yintersecR(i),xintersecR(i+l)

yintersecR(i+1))
a.picl := dashing(xintersecL(i),yintersecL(i),xintersecL(i+1),

yintersecL(i+1),dash,gap)
:= if i=l then a.pier & a.picl
else a.pic & a.pier & a.picl}

do
:= perpenline(Xs(i),Ys(i),Para6 (1))
lineint(Paral(1),Paral(2),Para6(1),Para6(2))
lineint(Paral(1),Paral(2),Para7(1),Para7(2))

Para3(1)
Para3(2)
Para5(1)
Para5(2)

else if
a ,

type
pier

a.picl
a.pxc

else if
a .

type
pier

else
a.pic :

if type
a.pier

a .pic
end

a. pic
end

let ddline = proc(*real Xs, Ys; real width; int themax,dash,gap -> pic)
begin

let k := width
let a.pic := [0.0, 0.0]
let a.picl := [0.0, 0.0]
for i=l to themax-1 do

begin

while k ~= 0 do
begin

a.picl := if k= width then doblseg(Xs(i),Ys(i),Xs(i+1),Ys(i+1)
k, -2, dash, gap)

else a.picl & doblseg(Xs(i),Ys(i),Xs(i+1),Ys(i+1)
k, -2,dash, gap)

k := k - 0.5
end

a.pic :=* if i=l then a.picl
else a.pic & a.picl

k := width
end

a .pic
end

let thkline = proc(*real Xarray, Yarray; int breadth, thetop -> pic)
begin

let a.picl := [0.0, 0.0]
let a.pic2 := [0.0, 0.0]
let a.pic := [0.0, 0.0]
for j=l to thetop-1 do

a.picl := if j=l then drawline(Xarray(j),Yarray(j),Xarray(j+1),
Yarray(j+1))

else a.pic & drawline(Xarray(j),Yarray(j),Xarray(j+1),
Yarray(j+1))

let half := breadth / 2
for i=l to thetop-1 do {

let k := half
while k > 0 do

{a.pic2 := if k = half then doblseg(Xarray(i),Yarray(i),Xarray(i+1) ,
Yarray(i+1),k, -1,-1,-1)

else a.pic2 & doblseg(Xarray(i),Yarray(i),Xarray(i+1),
Yarray(i+1),k, -1,-1,-1)

k := k - 0.25}
a.pic := if i=l then a.picl & a.pic2

else a.pic & a.picl & a.pic2 }
a. pic

end
let railine = proc(*real Xarray, Yarray; int breadth, thetop -> pic)

begin
let a.pic := [0.0, 0.0]
let half := breadth div 2
for i= 1 to half do

a.pic := ddline(Xarray,Yarray,i, thetop,6,6)
a.pic := a.pic & dobline(Xarray,Yarray,breadth, -1, thetop, -1, -1)
a. pic

end
let bordering = proc(real xl,yl,x2,y2,dash,gap -> pic)

begin
let alpha := 0.0
let a.pic := [0.0, 0.0]
let period := dash + gap
let dy := y2 - yl
let dx := x2 - xl
let lengthofline := sqrt(dx * dx + dy * dy)
if dx = 0 then

if dy > 0 then alpha := pi/2
else alpha := pi

else
begin

let k := 1; let c := 1
let NoOfPeriods := 0; let thegap := 0.0; let theperiod := 0.0
alpha := atan(rabs(dy/dx))
if dx < 0 do k : = - k
if dy < 0 do c := -c
if lengthofline > period then

begin
let Periods := truncate(lengthofline / period)
NoOfPeriods := Periods - truncate(Periods/3)
let rest := lengthofline - NoOfPeriods * period
thegap := rest / NoOfPeriods + gap
theperiod := thegap + dash
let Xl := vector 1::(NoOfPeriods+2) of 0.0
let Yl := vector 1::(NoOfPeriods+2) of 0.0
let X2 := vector 1::(NoOfPeriods+2) of 0.0
let Y2 := vector 1::(NoOfPeriods+2) of 0.0

let thecos := cos(alpha)
let thesin := sin(alpha)
let dxgap := thecos * thegap
let dxdash := thecos * dash
let dxdashp := thecos
let dxhdash := 0.5 * dxdash
let dygap := thesin * thegap
let dydash : = thesin * dash
let dydashp := thesin
let dyhdash := 0.5 * dydash
XI (1)
Yl(l)
X2(l)
Y2(l)
a .pic
for i

:= xl
:= yl
: = xl + dxhdash * k
:= yl + dyhdash
= drawline(X I (1) , Y l (1),

= 2 to NoOfPeriods do
begin

if i rem 2 = 0 then {
X2(i-1) + dxgap *
Y2(i-1) + dygap *
XI(i) + dxdashp *
Yl(i) + dydashp

rem
XI (i)
Yl (i)
X2(i)
Y2(i)
a .pic
else {
XI (i)
Yl (i)
X2 (i)
Y2(i)
a .pic

end
XI(NoOfPeriods+1)
Yl(NoOfPeriods+1)
X2(NoOfPeriods+1)
Y2(NoOfPeriods+1)
a.pic := a.pic

X2 (1), Y2 (1))

= a.pic & drawline (XI(i), Yl (i) , X2(i), Y2 (i)) }
= X2(i-1) + dxgap * k
= Y2(i-1) + dygap * c
= XI(i) + dxdash * k
= Yl(i) + dydash * c
= a.pic & drawline(XI(i), Yl (i), X2(i), Y2(i)) }

X2(NoOfPeriods) + dxgap * k
Y2(NoOfPeriods) + dygap * c

= XI(NoOfPeriods+1) + dxdashp
= Yl(NoOfPeriods+1) + dydashp

XI(NoOfPeriods+2)
Yl(NoOfPeriods+2)
X2 (NoOfPeriods+2)
Y2 (NoOfPeriods+2)
a.pic := a.pic

& drawline(Xl(NoOfPeriods+1), Yl(NoOfPeriods+1)
X2(NoOfPeriods+1), Y2(NoOfPeriods+1))

= X2(NoOfPeriods+1) + dxgap * k
+ dygap= Y2(NoOfPeriods+1)

= x2
= y2

& drawline(Xl(NoOfPeriods+2), Yl(NoOfPeriods+2)
X2(NoOfPeriods+2), Y2(NoOfPeriods+2))

end
else a.pic := drawline(xl,yl,x2,y2)

end
a .pic

end
let linetype = proc(*real theX, theY; int size -> pic)

begin
let xstart := X.dim(screen)-210
let menuwin = limit screen to 195 by 400 at xstart-5,115
copy LineMenu onto menuwin
let a.pic := [0.0, 0.0]
let xpos := X.dim(screen)-115
let xposl := X.dim(screen)-205
let xloc := xpos + 10
let xlocl := xstart + 10
let xend := X.dim(screen)-45
let xendl := xlocl + 90
let xs := @1 of real [xlocl,xendl]
let ys := vector 1::2 of 0.0
let picboxl = limit screen to 80 by 30 at xpos,350
let picboxll = limit screen to 80 by 30 at xposl,350
let picbox2 = limit screen to 80 by 30 at xpos,320
let picbox22 = limit screen to 80 by 30 at xposl,320
let picbox3 = limit screen to 80 by 30 at xpos,290
let picbox33 = limit screen to 80 by 30 at xposl,290
let picbox4 = limit screen to 80 by 30 at xpos,260
let picbox44 = limit screen to 80 by 30 at xposl,260
let picbox5 = limit screen to 80 by 30 at xpos,230
let picbox55 = limit screen to 80 by 30 at xposl,230
let picbox6 = limit screen to 80 by 30 at xpos,200
let picbox66 = limit screen to 80 by 30 at xposl,200
let picbox7 = limit screen to 80 by 30 at xpos,170
let picbox77 = limit screen to 80 by 30 at xposl,170

let picbox8 = limit screen to 80 by 30 at xpos,140
let picbox88 = limit screen to 80 by 30 at xposl,140
let xo := 0
let yo := 0
let done := false
while -done do

begin
let lo := locator()
while ~lo (the.buttons) (1) do lo := locator()
xo := lo(X.pos)
yo := lo(Y.pos)
while lo (the.buttons) (1) do lo := locator()
if xo > xloc and xo < xend and yo > 350 and yo < 380 do

begin
nor picboxl onto picboxl
for i=l to size-1 do

a.pic := if i=l then drawline(theX(i), theY(i), theX(i+l)
theY(i+1))

else a.pic & drawline(theX(i), theY(i), theX(i+l)
theY (i+1))

done := true
end

if xo > xlocl and xo < xendl and yo > 350 and yo < 380 do
begin

nor picboxl1 onto picboxl1
a.pic := dobline(theX,theY,4,-1,size,-1,-1)
done := true

end
if xo > xloc and xo < xend and yo > 320 and yo < 350 do

begin
nor picbox2 onto picbox2
for i=l to size-1 do

a.pic := if i=l then dashing(theX(i), theY(i), theX(i+l),
theY(i+1),10,5)

else a.pic & dashing(theX(i), theY(i), theX(i+l),
theY(i+1),10,5)

done := true
end

if xo > xlocl and xo < xendl and yo > 320 and yo < 350 do
begin

nor picbox22 onto picbox22
a.pic := dobline(theX,theY,4,-2,size,10,5)
done := true

end
if xo > xloc and xo < xend and yo > 290 and yo < 320 do

begin
nor picbox3 onto picbox3
for i=l to size-1 do

a.pic := if i=l then dashing(theX(i), theY(i), theX(i+l),
theY(i+1),4,4)

else a.pic & dashing(theX(i), theY (i), theX(i+l),
theY(i+1),4,4)

done := true
end

if xo > xlocl and xo < xendl and yo > 290 and yo < 320 do
begin

nor picbox33 onto picbox33
a.pic := dobline(theX,theY,4,-3,size,10,5)
done := true

end
if xo > xloc and xo < xend and yo > 2 60 and yo < 290 do

begin
nor picbox4 onto picbox4
for i=l to size-1 do

a.pic := if i=l then dashing(theX(i), theY(i), theX(i+l),
theY(i+1),12,2)

else a.pic & dashing(theX(i), theY(i), theX(i+l),
theY(i+1),12,2)

done := true
end

if xo > xlocl and xo < xendl and yo > 260 and yo < 290 do
begin

nor picbox44 onto picbox44
a.pic := dobline(theX,theY,4,-4,size,10,5)
done := true

end
if xo > xloc and xo < xend and yo > 230 and yo < 260 do

begin
nor picbox5 onto picbox5
for i=l to size-1 do

a.pic := if i=l then dashing(theX(i), theY(i), theX(i+l),
theY(i+1),2,4)

else a.pic & dashing(theX(i), theY(i), theX(i+l),
theY(i+1),2,4)

done := true
end

if xo > xlocl and xo < xendl and yo > 230 and yo < 260 do
begin

nor picbox55 onto picbox55
a.pic := thkline(theX, theY,4,size)
done := true

end
if xo > xloc and xo < xend and yo > 200 and yo < 230 do

begin
nor picbox6 onto picbox6
for i=l to size-1 do

a.pic := if i=l then dashing(theX(i), theY(i), theX(i+l),
theY(i+1),1,2)

else a.pic & dashing(theX(i), theY(i), theX(i+l),
theY(i+1),1,2)

done := true
end

if xo > xlocl and xo < xendl and yo > 200 and yo < 230 do
begin

nor picbox66 onto picbox66
a.pic := dobline(theX,theY,4,-2,size,1,4)
done := true

end
if xo > xloc and xo < xend and yo > 170 and yo < 200 do

begin
nor picbox7 onto picbox7
for i=l to size-1 do

a.pic := if i=l then dashing(theX(i), theY(i), theX(i+l),
theY(i+1),1,4)

else a.pic & dashing(theX(i), theY(i), theX(i+l),
theY(i+1),1,4)

done := true
end

if xo > xlocl and xo < xendl and yo > 170 and yo < 200 do
begin

nor picbox77 onto picbox77
a.pic := ddline(theX, theY, 4, size,6,6)
done := true

end
if xo > xloc and xo < xend and yo > 140 and yo < 170 do

begin
nor picbox8 onto picbox8
for i=l to size-1 do

a.pic := if i=l then bordering(theX(i), theY(i), theX(i+l),
theY(i+l),10,4)

else a.pic & bordering(theX(i), theY(i), theX(i+l),
theY(i+1),10,4)

done := true
end

if xo > xlocl and xo < xendl and yo > 14 0 and yo < 170 do
begin

nor picbox88 onto picbox88
a.pic railine(theX, theY, 4, size)
done := true

end
end

let clrwin = limit screen to 205 by 450 at X .dim(screen)-215,120
xor clrwin onto clrwin
a .pic

end
let Sht := X.dim(screen) - 540
let xstart := 10; let ystart := 10
let xend := X.dim(screen)- 10; let yend := Y .dim(screen) - 53
let xspan := xend - xstart; let yspan := yend - ystart
let TotalYmenWin := yend-ystart-97

let Screen = limit screen to xspan by yspan at xstart, ystart
let xlcorner := xstart + 4 ; let ylcorner := ystart+101
let X.G := xspan -244
let Y.G := TotalYmenWin-2
if X.G > Y.G then X.G := Y.G

else Y.G := X.G
let GW = limit screen to X.G by Y.G at xlcorner, ylcorner
let xmenustart := X.dim(screen) - 250
let menuwin = limit screen to 236 by TotalYmenWin-3 at xmenustart,ylcorner
let menusaved = image 217 by 224 of off
let out.range := X .dim(screen) - Y.dim(screen)
let range := X.dim(screen) - out.range
let gw = limit screen to range by range at 0, 0
let x.coord = vector 1: :100 of 0.0
let y.coord = vector 1::100 of 0.0
let dummy.vec := vector 1::1000 of ""
let winsave := image X.G by Y.G of off
let XOL := 0.0; let XOR := 0.0
let YOL := 0.0; let YOR := 0.0
let XZL := 0.0; let XZR := 0.0
let YZL := 0.0; let YZR : = 0.0
let TheGrid := 0.0
let thegrid := [0.0, 0.0]
let xt := range + 100; let yt := 271[Global
let tmenu = limit screen to 102 by 192 at xt-1, yt-1!Global
let xe := xt + 40; let ye := yt + 46[Global
let emenu = limit screen to 112 by 102 at xe-1, ye-1[Global
let xl := xt - 90; let yl := 100[Global
let lmenu = limit screen to 142 by 4 02 at xl-1, yl-1!Global
let eimage := s .lookup("Entity Menu", theimage)(menuimage)
let timage := s .lookup ("Type Menu", theimage) (menuimage)
let limage := s .lookup("Layer Menu", theimage)(menuimage)
let def.menu := "1"
let zoomcounter := 0
structure feature(pic fea.pic)
let Fonting = proc(int x, y -> string)

begin
let xstart := 200; let ystart := 250
let twinx := 500; let twiny := 400
let Fwin = limit screen to 45 by 303 at xstart+369,ystart+20
let fvecl = @1 of string ["2", "6", "5", ”4", "3", "2", "1"]
let fvec2 = @1 of string ["11", "10", "7", "14", "9”, "8", "2"]
let fwin := limit screen to 47 by 316 at 19, 19
let Fiml := s .lookup("Font Menul",theimage)(menuimage)
let Fim2 := s .lookup("Font Menu2",theimage)(menuimage)
let twin := limit screen to twinx by twiny at xstart, ystart
let text.win = limit screen to 350 by 80 at 47+xstart,147+ystart
let Fbox = limit screen to 47 by 33 at xstart+368, ystart+321
let Fim3 := s .lookup("Fone Title", theimage)(menuimage)
let afont := "14"
let atext := ""
let fontype := true
let text.writing = proc(int xpos,ypos;string name,font;#pixel anyimage)

begin
let Font := ""
case true of

font = "1" Font = "fix09"
font = "2" Font = "ngrl3"
font = "3" Font = "fixl3"
font = "4" Font = "fixbl3"
font = "5" Font = "gacl6n"
font = "6" Font = "gachal6
font = "7" Font = "met22"
font = "8" Font = "ngi20"
font = "9" Font = "non22"
font = "10" : Font := "olde25
font = "11" : Font := "hci45i
default : Font := "cou20"

copy string.to.tile(name,Font) onto limit anyimage at xpos,ypos
end

let chosefont = proc(bool Type -> string)
begin

let Fonts := ""
let done := false
while ~done do {

if Type then {
copy Fiml onto Fwin
let loc := locator()
while ~loc(the.buttons)(1) do loc := locator()
while loc(the.buttons)(1) do loc := locator()
let AX := loc(X.pos)- (xstart+369); let AY := loc(Y.pos)

(ystart+20)
if AX > 0 and AX < 44 and AY > 0 and AY < 301 do {

let ylocation := truncate(AY / 43)
let thebox := limit screen to 44 by 44 at xstart+369

ystart+20+ylocation*43
nor thebox onto thebox
Fonts := case true of

ylocation = 0 : "More
ylocation = 1 : "6"
ylocation = 2 : "5"
ylocation = 3 : »4»i
ylocation = 4 : "3"
ylocation = 5 : "2"
default : "1"

xor Fwin onto Fwin
if Fonts ~= "More" do

copy Fim3 onto Fbox
done := true } }

else {
copy Fim2 onto Fwin
let loc := locator()
while ~loc(the.buttons)(1) do loc := locator()
while loc (the.buttons) (1) do loc := locator()
let AX := loc(X.pos)- (xstart+369); let AY := loc(Y.pos)

(ystart+20)
if AX > 0 and AX < 44 and AY > 0 and AY < 301 do {

let ylocation := truncate(AY / 43)
let thebox := limit screen to 44 by 44 at xstart+369

ystart+20+ylocation*43
nor thebox onto thebox
Fonts := case true of

ylocation = 2 : tl 'J If
ylocation = 5 : "8"
ylocation = 4 : itgn
ylocation = 1 "10"
ylocation = 3 : "14"
ylocation = 6 : "Back
default : "11"

xor Fwin onto Fwin
if Fonts ~= "Back" do

copy Fim3 onto Fbox
done := true)

}
}
[write Fonts

Fonts
end

let fonting = proc(string anytext -> string)
begin

afont := chosefont(fontype)
while afont = "More" or afont = "Back" do

{ fontype := ~fontype
afont := chosefont(fontype) }

xor text.win onto text.win
text.writing(50, 150, anytext, afont, twin)
afont

end
let retrieve = proc(-> string)

begin
let tim = image twinx by twiny of off
copy twin onto tim
xor twin onto twin
rec (xstart+2, ystart+2, twinx-4, twiny-4)
rec(xstart+3, ystart+3, twinx-6, twiny-6)
rec(xstart+5, ystart+5, twinx-10, twiny-10)
rec(xstart+6, ystart+6, twinx-12, twiny-12)
let xdone := icon (xstart+50, ystart+50, "OK ")
let xcanc := icon(xstart+250, ystart+50, "Cancel")
copy Fim3 onto Fbox

let fbox = limit screen to xdone by 30 at xstart+50, ystart+50
let sbox = limit screen to xdone by 30 at xstart+250, ystart+50
atext := seditor("Enter Text", "", xstart+50, ystart+150, 200, 50)
text.writing(50, 150, atext, afont, twin)
let done := false
while -done do {

let lo := locator()
while ~lo(the.buttons)(1) do lo := locator()
let axn := lo(X.pos); let ayn := lo(Y.pos)
!let showplace := limit screen to 80 by 30 at axn-40, ayn-15
!nor showplace onto showplace
while lo(the.buttons) (1) do lo := locator ()
let ax := lo(X.pos); let ay := lo(Y.pos)
!nor showplace onto showplace
if ax > xstart+50 and ax < xstart+50+xdone and ay > ystart+50 and

ay < ystart+80 then
{ nor fbox onto fbox

done := true }
else
if ax > xstart+250 and ax < xstart+250+xdone and ay > ystart+50 an

ay < ystart+80 then
{ nor sbox onto sbox

atext := seditor("Enter Text", "", xstart+50,ystart+150,200,50)
xor text.win onto text.win
text.writing(50, 150, atext, "14", twin)
nor sbox onto sbox
rec(xstart+370, ystart+323, 44, 30) }

else
if ax > xstart+375 and ax < xstart+419 and ay > ystart+326 and

ay < ystart+356 do
{ nor Fbox onto Fbox

afont := fonting(atext)
!nor Fbox onto Fbox
}

}
!write

afont
end

let thefont := retrieve()
text.writing(x, y, atext, thefont, gw)
thefont

end
let first.screen = proc()

begin
R e c (0,0,X.dim(screen),Y.dim(screen),"Ps - GIS","cou20",

"middle", true)
let borderl = limit screen to X.dim(screen)-10 by Y.dim(screen)-43 at 5,5
let border2 = limit screen to X.dim(screen)-20 by Y.dim(screen)-53 at 10,10
nor borderl onto borderl
nor border2 onto border2

end
let text.window = proc()

begin
let fixtext = limit screen to 140 by 95 at 13,13
let yposition := 75
copy string.to.tile("FEATURE :","fixbl3") onto limit

yposition
copy string.t o .tile("SEGMENTS :","fixbl3") onto limit

yposition -17
copy string.to.tile("CODE :","fixbl3") onto limit

yposition - 34
copy string.to.tile("LEFT COORDS :","fixbl3") onto limit

yposition - 51
copy string.to.tile("RIGHT COORDS :","fixbl3") onto limit

yposition - 68
nor fixtext onto fixtext

end
let zoomout = proc(pic PIC, thegrid; int Range, xshft, yshft; fpixel the.win)

begin
if XZL = 0 and XZR = 0 then

error.message(" Nothing to Zoom Out ", -1, -1)
else

begin
xor the.win onto the.win
Box(xshft, yshft, Range)

fixtext at 10,
fixtext at 10,
fixtext at 10,
fixtext at 10,
fixtext at 10,

B o x (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XOL, XOR, YOL, YOR)
draw(the.win, PIC, XOL, XOR, YOL, YOR)
XZL := 0.0; XZR := 0.0
YZL := 0.0; YZR := 0.0

end
end

let zoomin = proc(pic PIC, thegrid;int Range, count,xshft,yshft;#pixel the.win)
begin

let xl := 0.0; let xr := 0.0
let yl := 0.0; let yr := 0.0
if count < 2 then {

xl := XOL; xr := XOR
yl := YOL; yr := YOR }

else {
xl := XZL; xr := XZR
yl := YZL; yr := YZR }

let xo := 0; let xe := 0
let yo := 0; let ye := 0
let lo := locator()
while ~lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos) - xshft
yo := lo(Y.pos) - yshft
while lo(the.buttons)(1) do lo := locator()
xe := lo(X.pos) - xshft
ye := lo(Y.pos) - yshft
if xo > xe do {

let t := xo
xo := xe
xe := t }

if yo < ye do {
let t := yo
yo := ye
ye := t }

let xdif := rabs(xe - xo)
let ydif := rabs(ye - yo)
let adif := truncate((xdif + ydif) / 2)
xe := xo + adif
ye := yo - adif
XZL := xl + (xr - xl) * xo / Range
XZR := xl + (xr - xl) * xe / Range
YZL := yl + (yr - yl) * ye / Range
YZR := yl + (yr - yl) * yo / Range
xor the.win onto the.win
B o x (xshft, yshft, Range)
Box (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XZL, XZR, YZL, YZR)
draw (the.win, PIC, XZL, XZR, YZL, YZR)

end
let change.code = proc(-> int)

begin
let thecode := 0
let former.image = image 238 by TotalYmenWin-3 of off
copy menuwin onto former.image
xor menuwin onto menuwin
let ystartdetail := yend-180
let detail = limit screen to 238 by 180 at xmstart,ystartdetail
rec(xmstart,ystart+100,238,TotalYmenWin)
Rec(xmstart,ystartdetail,238,180,"Feature Details","fixbl3","middle",true)
let classification = 0 1 of string["Class :", "Category :",

"Feature :",
"Attribute :","The Code :"]

for i=l to 5 do {
let ypos := if i=l then 110

else if i=2 then 85
else if i=3 then 60
else if i=4 then 35
else 10

text.write(10, ypos,classification(i),"fixbl3",detail) }
let VecNames = vector 1::100 of ""
let VecNums = vector 1::100 of 0
let N := 0
let procl = proc (int I; pntr V -> bool)

begin
N := N + 1

VecNames(N) := V(identifier)
VecNums(N) := I
true

end
let stopchose := false
let cat = @1 of string ["Class","Category","Feature","Attribute”]
let choices = vector 1::4 of ""
let catwidth = X.dim(screen) div 4
let choose := proc(int L; pntr T); nullproc
choose := proc(int L; pntr T)

begin
let theMenu := s.lookup("menu",T)
if theMenu = nil do

begin
N := 0
let X := i.scan(T,procl)
let S := ""
let levelname = vector 1::N of ""
let levelnum = vector 1::N of 0
for i=l to N do

{ levelname(i) := VecNames(i);
levelnum(i) := VecNums(i) }

for i=l to N-l do for j=i+l to N do
{ X := levelnum(i); levelnum(i) := levelnum(j);

levelnum(j) := X; S := levelname(i);
levelname(i) := levelname(j); levelname(j) := S }

for i=l to N do
begin

if length(levelname(i)) > 25 do
levelname(i) := levelname(i)(1|25)

if levelname (i) = "" do levelname (i) := "---------- "
end

let ch = set.up.choose(levelname)(do.choose)
theMenu := menuPack(ch, levelname, levelnum)
s.enter ("menu", T, theMenu)
if commit() ~= nil do print "COMMIT FAILS" at 50,300

end
let ch = theMenu(menuProc)
let levelname = theMenu(Lname)
let levelnum = theMenu(Lnum)
N := upb(levelname)
let choice = ch("Choose " ++ cat(L), X.dim(screen)-240,120)
if choice = "" do stopchose := true
let chint := 0
if choice ~= "" do {
for i=l to N do

if choice = levelname(i) do chint := levelnum(i)
choices(L) := choice
thecode := if L =1 then chint * 10000000

else if L = 2 then thecode + chint * 100000
else if L = 3 then thecode + chint * 1000
else thecode + chint

let ypos := if L=1 then 110
else if L=2 then 85
else if L=3 then 60
else 35

text.write(119, ypos,choices(L),"fixbl3",detail) }
while ~stopchose and L < 4 do choose(L+l, i .lookup(chint,T)(subtree)

end
let levell := s.lookup("Code2",DB)
choose (1, levell)
print thecode at X.dim(screen)-120,ystartdetail+10
copy former.image onto menuwin
thecode

end
text.entry = proc(string typeoftext,previous.string -> string)

begin
let awindow := limit screen to 740 by 150 at 40,140
let savedimage = image 750 by 150 of off
copy awindow onto savedimage
xor awindow onto awindow
rec (41,141,738,148)
rec (42,142,736,146)
copy string.to.tile ("Enter The ","fixbl3") onto limit awindow at 50,110
copy string.to.tile (typeoftext,"fixbl3") onto limit awindow at 150,110

copy string.to.tile ("(not longer than 43 characters including spaces)"
"fixl3") onto limit awindow at 50,80

write code(27),"N",code(27),"I"
let atext := ""
atext := seditor(" ”, previous.string,50, 150,710,50)
if length(atext) > 43 do

atext := atext(1|43)
write code(27),"E",code(27),"W"
copy savedimage onto awindow
atext

end
let centroid = proc(*real avectorl,avector2; int the.size;real Xmin,Xmax,Ymin

Ymax -> *real)
begin

let xloc := xmstart + 20
let thismenu = limit screen to 217 by 224 at xmstart+9,119
let msg.menu = limit screen to 100 by 40 at xmstart+9,159
rec (xmstart+10,120,215,180)
rec (xmstart+11,121,213,178)
text.write(10,150,"Chose the centroid of","fixbl3",thismenu)
text.write (10,120,"this area by clicking","fixbl3",thismenu)
text.write(10,90,"the left button of the","fixbl3",thismenu)
text.write(10,60,"mouse on the desired ","fixbl3",thismenu)
text.write(10,30,"location of polygon","fixbl3",thismenu)
let xminmax := minmax(avectorl,the.size)
let xmin := xminmax(l); let xmax := xminmax(2)
let yminmax := minmax(avector2,the.size)
let ymin := yminmax(1); let ymax := yminmax(2)
let counter := 1
let lo := locator()
let coords = vector 1::2 of 0.0
let proceed := false
while -proceed do

begin
if counter > 1 do
begin

rec(xmstart+10,160,98,38)
text.write(10,15,"Try again","fixl3",msg.menu)

end
while -lo(the.buttons)(1) do lo := locator()
let xo := lo(X.pos) - xlcorner
let yo := lo(Y.pos) - ylcorner
coords(1) := Xmin + (Xmax - Xmin) * xo / X. G
coords(2) := Ymin + (Ymax - Ymin) * yo / Y. G
while lo(the.buttons)(1) do lo := locator()
if coords(1) < xmax and coords(1) > xmin do

if coords(2) < ymax and coords(2) > ymin do
{ proceed := true

counter := counter + 1 }
xor msg.menu onto msg.menu

end
xor thismenu onto thismenu
coords

end
let picking = proc(*string givens; int areacounter,linecounter, pointcounter)

begin
let thevar := s .lookup("Variables",DBvar)
if thevar = nil do

thevar := table()
text.window()
let xmin := 0.0; let xmax := 0.0
let ymin := 0.0; let ymax := 0.0
if XZR = 0 and YZR = 0 then {

xmin := XOL; xmax := XOR
ymin := YOL; ymax := YOR }

else {
xmin := XZL; xmax := XZR
ymin := YZL; ymax := YZR }

let yposition := 75
let PIC := [0.0 , 0.0]
let PIC1 := [0.0 , 0.0]
let dummy.pic := [0.0 , 0.0]
let Dummy.vec := @1 of int[0]
let feature.name := ""
let s.code := ""; let featype := ""

let feature.count := areacounter + linecounter + pointcounter
let local.counter := 0
if feature.count > 0 do

begin
let atable := s .lookup("Maps", mainDB)
let Avec := s .lookup(givens(2),atable)(AST)
let Lvec := s .lookup(givens(2),atable)(LST)
let Pvec := s .lookup(givens(2),atable)(PST)
let Atop := upb(Avec)
let Ltop := upb(Lvec)
let Ptop := upb(Pvec)
let thetop := 0
for i= 1 to Atop do

Ainfo(i) := Avec(i)
thetop := Atop
for i= 1 to Ltop do

Linfo(i) := Lvec(i)
thetop := thetop + Ltop
for i= 1 to Ptop do

Pinfo(i) := Pvec(i)
thetop := thetop + Ptop

end
let the.centroid := vector 1::2 of 0.0
let previous.text := ""
let xdim := X .dim(screen) - 340 - xlcorner
let detail.window = limit screen to xdim by 95 at 153,14
let ind := 1; let typecount := 1
let exist := true
let out.of.range := false
let fe = open("temp2",0)
if fe = nullfile do

exist := false
if exist do

begin
let dummy := system("rm tempi")
dummy := system("touch tempi")
dummy := system("cp temp2 tempi")
dummy := system("rm temp2")
close (fe)

end
let fd = open("tempi",0)
if fd = nullfile do

{ write "the file tempi cannot be opened"; abort }
let tempx = vector 1::100 of 0.0
let tempy = vector 1::100 of 0.0
let nfeatures := 0
let KL := 1
let L := read.a.line(fd); dummy.vec(KL) := L; KL := KL + 1
L := read.a.line(fd); dummy.vec(KL) := L; KL := KL + 1
L := read.a.line(fd); dummy.vec(KL) := L; KL := KL + 1
let thepos := KL
let readlines = proc(string aline -> *string)

begin
while ~eoi(fd) and aline(111) = "/" do

begin
aline := read.a.line(fd); aline := read.a.line(fd)
while digit(aline(111)) and ~eoi(fd) do

aline := read.a.line(fd)
end

let stemp = vector 1::100 of ""
let con := 1
stemp(con) := aline
L := aline
let P := 0
let acounter := 0
if -eoi(fd) and (L(13|l) = "*" or L(14jl) =) do

begin
con := con + 1
let Q := 1
while L(Q|1) ~= "*" do Q := Q + 1
let t.length := length(L) - Q - 2
feature.name := L(Q+2|t.length)
L := read.a.line(fd); stemp(con) := L; con := con +
s.code := L (5|length(L)-4)
L := read.a.line(fd)

if eoi(fd) then
begin

P := 1
while L(P|1) -= " " do P := P + 1
acounter := acounter + 1
tempx(acounter) := stringtoreal(L(1 | P))
tempy(acounter) ;= stringtoreal(L(P+l | length(L) - P))
stemp(con) := L

end
else

begin
let i := 0
while digit(L (1|1)) and -eoi(fd) do

begin
i := i + 1
P := 1
while L(P|1) ~= " " do P := P + 1
tempx(i) := stringtoreal(L(1 | P))
tempy(i) := stringtoreal(L(P+l | length(L) - P))
stemp(con) := L; con := con + 1
L := read.a.line(fd)
acounter := i

end
if eoi(fd) do {

P := 1
while L(P|1) ~= " " do P := P + 1
acounter := acounter + 1
tempx(acounter) := stringtoreal(L(1| P))
tempy(acounter) := stringtoreal(L(P+l | length(L) - P)
stemp(con) := L }

end
end

let thisvector = vector 1::acounter+2 of ""
for k=l to acounter+2 do

thisvector(k) := stemp(k)
thisvector

end
let done := false
L := read.a.line(fd)
while -eoi(fd) and -done do

begin
let temporal := readlines(L)
let thesize := upb(temporal)
let isin := true
let checked := false
let vecsize := thesize - 2
if vecsize <= 0 do done := true
let tempscreen = image X.G by Y.G of off
copy GW onto tempscreen
let Xs := vector l::vecsize of 0.0
let Ys := vector l::vecsize of 0.0
for avar = 1 to vecsize do

begin
Xs(avar) := tempx(avar)
Ys(avar) := tempy(avar)

end
if vecsize = 1 then

isin := if Xs(l) < xmax and Xs(l) > xmin and
Ys(l) < ymax and Ys(l) > ymin then true

else false
else

begin
let Xminmax := minmax(Xs,vecsize)
let Yminmax := minmax(Ys,vecsize)
isin := if Xminmax(1) > xmin and Xminmax(2) < xmax and

Yminmax(1) > ymin and Yminmax(2) < ymax then true
else {

checked := true
checkin(Xs,Ys,xmin,xmax,ymin,ymax,vecsize) }

end
if isin then (

local.counter := local.counter + 1
temporal(1) := "/" ++ temporal(1)
for i=thepos to (thepos + thesize - 1) do

begin

KL := KL + 1
dummy.vec(i) := temporal(i - thepos + 1)

end
if vecsize < 2 then

begin
let xposition := truncate((Xs(l) - xmin) * X.G / (xmax -

xmin)) - 5
let yposition := truncate((Ys(l) - ymin) * Y.G / (ymax -

ymin)) - 5
text.write(xposition, yposition, "fixbl3", GW)
PIC := [Xs (1) , Y s (1)]

end
else

begin
if -checked do {

PIC1 := Highlight(Xs, Ys) !thkline(Xs,Ys,6,vecsize)
draw(GW,PICl,xmin,xmax,ymin,ymax) }

for i=l to vecsize do
PIC := if i = 1 then [Xs(i) , Ys (i)]

else PIC A [Xs (i) , Ys(i)]
end

xor detail.window onto detail.window
copy string.to.tile(feature.name,"fixl3") onto limit

detail.window at 25, yposition
print (vecsize-1) at 180,yposition - 5
copy string.to.tile(s.code,"fixl3") onto limit detail.window at 20

yposition - 34
print xmin,ymin at 163, yposition - 40
print xmax,ymax at 163, yposition - 57
let feature.kind := feature.type(typecount)
typecount := typecount + 1
let feature.code := change.code()
if feature.code = 0 do feature.code := change.code()
let thename := text.entry("Name","")
let thismenu = limit screen to 217 by 94 at xmstart+9,350
if feature.kind = "polygon" then

{ the.centroid := centroid(Xs,Ys,vecsize,xmin,xmax,ymin,ymax)
let a.pic := polygon(the.centroid(l),the.centroid(2),8,"hx")
draw (GW, a . pic, xmin, xmax, ymin, ymax)
areacounter := areacounter + 1 }

else if feature.kind = "line" then
linecounter := linecounter + 1

else if feature.kind = "point" do
pointcounter := pointcounter + 1

let thetext := text.entry("Comment",previous.text)
previous.text := thetext
case true of
feature.kind = "polygon" : Ainfo(areacounter) := Aholder(

areacounter, feature.code, false, the.centroid(1),
the.centroid(2), thename, thetext, Xs, Ys, PIC, 0, 0, 0,
Dummy.vec, dummy.pic)

feature.kind = "line" : Linfo(linecounter) := Lholder(linecounter,
feature.code, false, thename, thetext, Xs, Ys, PIC, 0, 0,
dummy.pic)

default : Pinfo (pointcounter) := Pholder(pointcounter,feature.code
false, thename,thetext,"", Xs, Ys,PIC)

xor thismenu onto thismenu
if -eoi(fd) then

done := message.proc("Chose what next","Break","Proceed",
xend-215, 120, 200, 140)

else done := true
xor GW onto GW
copy tempscreen onto GW
}

else {
for i=thepos to (thepos + thesize - 1) do {

KL := KL + 1
dummy.vec(i) := temporal(i-thepos+1) }

out.of.range := true }
thepos := KL

end
f eoi(fd) then

begin
if out.of.range then

begin

let vec.text = 01 of string["This is the end of the file,",
"but there are still some ",
"features not yet identified.",
"Advice to change zooming.",
"click to proceed"]

more(vec.text,50,100)
let a.dummy := system("touch temp2")
let td = open("temp2",1)
let ind := 1
while dummy.vec(ind) ~= "" do

begin
output td,dummy.vec(ind),"'n"
dummy.vec(ind) := ""
ind := ind + 1

end
close(td)
close(fd)

end
else

begin
error.message("Nothing out of range",X.dim(screen)-250,120)
let a.dummy := system("rm tempi; rm config")
for i=l to 1000 do

dummy.vec(i) := ""
end

end
else {

dummy.vec(thepos) := L
let local.count := thepos + 1
while ~eoi(fd) do

begin
dummy.vec(local.count) := read.a.line(fd)
local.count := local.count + 1

end
close(fd)
let a.dummy := system("touch temp2")
let td = open("temp2",1)
for i=l to local.count-1 do {

output td,dummy.vec(i),"'n"
dummy.v e c (i) := "" }

close(td)
}

let abase := 1
if areacounter = 0 do abase := 0
let avec := vector abase::areacounter of nil
for i=l to areacounter do

avec(i) := Ainfo(i)
let lbase := 1
if linecounter = 0 do lbase := 0
let lvec := vector lbase::linecounter of nil
for i=l to linecounter do

lvec(i) := Linfo(i)
let pbase := 1
if pointcounter = 0 do pbase := 0
let pvec := vector pbase::pointcounter of nil
for i=l to pointcounter do

pvec(i) := Pinfo(i)
let feat.text := vector 1::1000 of nil
s.enter("a",thevar,globals(areacounter))
s.enter("1",thevar,globals(linecounter))
s .enter("p",thevar,globals(pointcounter))
s .enter("Variables",DBvar,thevar)
if commit() ~= nil do error.message("Could not store Variables'n", -1
s.enter(givens(2),mapstable,maps(givens(1), givens(3), givens(11),

givens (7), XOL, YOL, XOR, YOR, TheGrid, avec, lvec, pvec,
feat.text))

s.enter("Maps", mainDB, mapstable)
if commit() ~= nil do { error.message("data are not stored'n",-1,-1)

abort)
end
transform = proc(real anx; int range -> real)

begin
let unx := XZL + (XZR - XZL) * anx / range
unx

end

let shiftL = proc(int range; #pixel Win; pic PIC)
begin

let mrange range - 102
let commonpart = image mrange by range of off
let commonpic = limit screen to mrange by range at 100, 0
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by range at 0, 0
copy commonpart onto newin
let xst := transform(mrange+2, range)
!let exwin := limit screen to 100 by range at mrange, 0
!nor exwin onto exwin
let diff := XZR - xst
XZL := XZL + diff
XZR := XZR + diff
draw(gw, PIC, XZL, XZR, YZL, YZR)

end
let shiftR = proc(int range; #pixel Win; pic PIC)

begin
let mrange := range - 100
let commonpart = image mrange by range of off
let commonpic = limit screen to mrange by range at 2, 0
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by range at 100, 0
copy commonpart onto newin
let xst := transform(mrange+2, range)
let diff := XZR - xst
XZL := XZL - diff
XZR := XZR - diff
draw(gw, PIC, XZL, XZR, YZL, YZR)

end
let shiftD = proc(int range; #pixel Win; pic PIC)

begin
let mrange := range - 34
let commonpart = image mrange by mrange of off
let commonpic = limit screen to mrange by mrange at 2, 32
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by mrange at 2, 2
copy commonpart onto newin
for i=l to 2000 do { }

end
let shiftU = proc(int range; tpixel Win; pic PIC)

begin
let mrange := range - 34
let commonpart = image mrange by mrange of off
let commonpic = limit screen to mrange by mrange at 2, 2
copy commonpic onto commonpart
xor Win onto Win
let newin = limit screen to mrange by mrange at 2, 32
copy commonpart onto newin
for i=l to 2000 do { }

end
let Scroll = proc(pic the.pic; int Range; #pixel win)

begin
let bxl := XZL
let bxr := XZR
let byl := YZL
let byr := YZR
if XZL = 0 and XZR = 0 then

error.message("Nothing to Scroll”, -1, -1)
else {
!draw(win, the.pic, bxl, bxr, byl, byr)
let shft := X.dim(screen) - 230
let xstep = 100
let ystep = 100
let xdif := rabs(XZR - XZL)
let ydif := rabs(YZR - YZL)
for i=l to 2 do {

Box ((shft + (i-1) * 100), 200, 40)
Box ((shft + 50), (150 + (i-1) * 100), 40) }

let picboxl = limit screen to 40 by 40 at shft,200
let picbox3 = limit screen to 40 by 40 at shft+100,200
let picbox2 - limit screen to 40 by 40 at shft+50,150

32, 16, 0, 10, 10]

let picbox4 = limit screen to 40 by 40 at shft+50,250
let icon.length := icon(shft+45, 100, "Done")
let picbox5 = limit screen to icon.length by 30 at shft+45, 100
let vecx = 01 of int [30, 30, 10, 10, 0, 10, 10, 30]
let vecy = 01 of int [10, 22, 22,
let VPIC1 := [0,0]
for i=l to 8 do

VPIC1 := if i=l then [vecx(i),
else VPIC1 A [vecx(i),
= rotate VPIC1 by -90
= rotate VPIC2 by -90
= rotate VPIC3 by -90

-5, 35, -5,
-35, 5, -5,

-35,
-35,

let VPIC2
let VPIC3
let VPIC4

vecy(i)
vecy(i)

-35, 5,
-5, 35,
0

35
35
5

)

5)

:= locator()

:= locator()

draw (picboxl, VPIC1,
draw (picbox2, VPIC2,
draw (picbox3, VPIC3,
draw (picbox4, VPIC4,
let xo := 0; let yo
let done := false
while -done do

begin
let lo := locator()
while -lo (the.buttons) (1) do lo
xo := lo (X.pos)
yo := lo(Y.pos)
while lo(the.buttons)(1) do lo :
if xo > shft + 45 and xo < (shft+45+icon.length) and

yo > 100 and yo < 130 then
begin

nor picbox5 onto picbox5
done := true

end
else if xo > shft and xo < shft + 40 and yo > 200 and

yo < 240 then
begin

nor picboxl onto picboxl
bxr := bxr + xstep
if bxr > XOR do {

error.message("Exceeded limit of map", -1, -1
bxr := XOR }

shiftL(Range,win, the.pic)
!bxl := bxr + xdif
nor picboxl onto picboxl

end
else if xo > shft

yo > 200 and yo
begin

nor picbox3 onto picbox3
bxl := bxl - xstep
if bxl < XOL do {

error.message("Exceeded limit of map", -1, -1)
bxl := XOL }

shiftR(Range,win, the.pic)
!bxl := bxr - xdif
nor picbox3 onto picbox3

end
else if xo > shft + 50 and xo < shft + 90 and yo > 150 and

yo < 190 then
begin

nor picbox2 onto picbox2
byl := byl - ystep
if byl < YOL do {

error.message("Exceeded limit of map", -1, -1)
byl := YOL }

!byr := byl + ydif
shiftD(Range,win, the.pic)
nor picbox2 onto picbox2

end
else if xo > shft + 50 and xo < shft + 90 and yo > 250 and

yo < 290 do
begin

nor picbox4 onto picbox4
byr := byr + ystep
if byr > YOR do {

error.message("Exceeded limit of map", -1, -1)
byr := YOR }

+ 100 and xo
< 240 then

< shft + 140 and

!byl := byr - ydif
shiftU(Range,win, the.pic)
nor picbox4 onto picbox4

end
if -done do {

!xor win onto win
B o x (0, 0, Range)
B o x (1, 1, Range-2)
!draw(win, the.pic, bxl, bxr, byl, byr)
}

!XZL := bxl; XZR := bxr
!YZL := byl; YZR := byr

end
let tempwin = limit screen to 215 by 200 at shft - 5, 95
xor tempwin onto tempwin}

end
let hatchtype = proc(-> *real)

begin
let themenu = limit screen to 100 by 355 at X.dim(screen)-130,120
copy Hlinetype onto themenu
let dashinfo := vector 1::2 of 0.0
let xpos := X..dim(screen)-115
let xloc := xpos + 10
let xend := X..dim(screen)-45
let picboxl = limit screen to 80 by 30 at xpos, 330
let picbox2 = limit screen to 80 by 30 at xpos, 300
let picbox3 = limit screen to 80 by 30 at xpos, 270
let picbox4 = limit screen to 80 by 30 at xpos, 240
let picbox5 = limit screen to 80 by 30 at xpos, 210
let picbox6 = limit screen to 80 by 30 at xpos, 180
let picbox7 = limit screen to 80 by 30 at xpos, 150
let xo := 0
let yo := 0
let count := 0
let done := false
while -done do

begin
let lo := locator()
while -lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos)
yo := lo(Y.pos)
while lo(the.buttons)(1) do lo := locator()
if xo > xloc and xo < xend and yo > 330 and yo < 360 do

begin
nor picboxl onto picboxl
for bb =1 to 2000 do count := count + 1
dashinfo(1) := -1; dashinfo(2) := -1
done := true

end
if xo > xloc and xo < xend and yo > 300 and yo < 330 do

begin
nor picbox2 onto picbox2
for bb =1 to 2000 do count := count + 1
dashinfo(1) := 10; dashinfo(2) := 5
done := true

end
if xo > xloc and xo < xend and yo > 270 and yo < 300 do

begin
nor picbox3 onto picbox3
for bb =1 to 2000 do count := count + 1
dashinfo(1) := 4; dashinfo(2) := 4
done := true

end
if xo > xloc and xo < xend and yo > 240 and yo < 270 do

begin
nor picbox4 onto picbox4
for bb =1 to 2000 do count := count + 1
dashinfo(1) := 12; dashinfo(2) := 2
done := true

end
if xo > xloc and xo < xend and yo > 210 and yo < 24 0 do

begin
nor picbox5 onto picbox5
for bb =1 to 2000 do count := count + 1
dashinfo (1) := 2; dashinfo(2) := 4

by 56 at 392+Shft,332
by 40 at 390+Shft, 290
by 40 at 390+Shft, 170
by 40 at 490+Shft, 290
by 40 at 490+Shft, 170
by 54 at 423+Shft,223
by 30 at 420+Shft, 120

done := true
end

if xo > xloc and xo < xend and yo > 180 and yo < 210 do
begin

nor picbox6 onto picbox6
for bb =1 to 2000 do count := count + 1
dashinfo(1) := 1; dashinfo(2) := 2
done := true

end
if xo > xloc and xo < xend and yo > 150 and yo < 180 do

begin
nor picbox7 onto picbox7
for bb =1 to 2000 do count := count + 1
dashinfo(1) := 1; dashinfo(2) := 4
done := true

end
end

let mnuwin = limit screen to 240 by 350 at X.dim(screen)-250,100
xor mnuwin onto mnuwin
dashinfo

end
let hatchangle = proc(->real)

begin
let Shft := X.dim(screen) - 560
let themenu = limit screen to 155 by 275 at 385+Shft,115
copy Hangle onto themenu
let picbox = limit screen to 1
let picboxl = limit screen to
let picbox2 = limit screen to
let picbox3 = limit screen to
let picbox4 = limit screen to
let picbox5 = limit screen to
let picbox6 = limit screen to
let theangle := 0
print theangle at 440+Shft,240
let count := 0
let xo := 0
let yo := 0
let done := false
while -done do

begin
let lo := locator()
while ~lo (the.buttons) (1) do lo := locator()
let xo := lo (X.pos)
let yo := lo(Y.pos)
while lo(the.buttons)(1) do lo := locator()
if xo > 420+Shft and xo < 500+Shft and yo > 120 and yo < 150 do

begin
for bb =1 to 2000 do count count + 1
nor picbox6 onto picbox6
done := true

end
if xo > 390+Shft and xo < 430+Shft and yo > 290 and yo < 330 do

begin
nor picboxl onto picboxl
theangle := theangle + 15
for bb =1 to 2 000 do count := count + 1
nor picboxl onto picboxl

end
if xo > 490+Shft and xo < 530+Shft and yo > 290 and yo < 330 do

begin
nor picbox3 onto picbox3
theangle := theangle + 5
for bb =1 to 2000 do count := count + 1
nor picbox3 onto picbox3

end
if xo > 490+Shft and xo < 530+Shft and yo > 170 and yo < 210 do

begin
nor picbox4 onto picbox4
theangle := theangle - 5
for bb =1 to 2000 do count := count + 1
nor picbox4 onto picbox4

end
if xo > 390+Shft and xo < 430+Shft and yo > 170 and yo < 210 do

begin

nor picbox2 onto picbox2
theangle := theangle - 15
for bb =1 to 2000 do count := count + 1
nor picbox2 onto picbox2

end
xor picbox5 onto picbox5
print theangle at 440+Shft,240

end
xor themenu onto themenu
theangle

end
let drsym = proc(string datafile; real x, y, Xscale, Yscale -> pic)

begin
let fd = open (datafile,0)
if fd = nullfile do

begin
write "The file ", datafile," cannot be opened'n"
abort

end
let vecx = vector 1::10,1::30 of 0.0
let vecy = vector 1::10,1::30 of 0.0
let vecm = vector 1::30 of nil
let I := 0
let count := 0
let PIC := [0.0, 0.0]
let PIC1 := [0.0, 0.0]
let aline := read.a.line(fd)
let fc := aline(1|1)
while -eoi(fd) or fc ~= "e" do
begin

while fc ~= "/" and fc ~= "e" do
begin

let le := length(aline)
I := I + 1
let p := 1
let q := 0
let fstring := ""
let sstring := ""
while aline(p|1) ~= " " do

begin
fstring := fstring ++ aline(p|l)
p := p + 1

end
while aline(p|1) = " " do p := p + 1
q := p - isstring := aline(pI(le - q))
let tempx := stringtoint(fstring)
vecx(count,I) := tempx * Xscale + x
let tempy := stringtoint(sstring)
vecy(count,I) := tempy * Yscale + y
PIC := if I = 1 then [vecx(count,I) , vecy(count,I)]

else PIC A [vecx(count,I) , vecy(count,I)]
aline := read.a.line(fd)
fc := aline(1|1)

end
if -eoi(fd) do

begin
aline := read.a.line(fd)
fc := aline(1|1)

end
I := 0
count := count + 1
if count = 1 then PIC1 := PIC

else PIC1 := PIC1 & PIC
end

close(fd)
PIC1

end
let symscale = proc(string anysymbol -> *real)

begin
let Shft := X.dim(screen) - 560
let themenu = limit screen to 150 by 320 at 375+Shft, 95
copy Scaling onto themenu
let SYM = s .lookup(anysymbol,agrsyms) (f.pic)
let picbox2 := limit screen to 40 by 40 at 440+Shft,200

let picbox7 := limit screen to 40 by 40 at 430+Shft,350
draw(picbox2, SYM, -20,20,0,30)
draw(picbox7, SYM, -20,20,0,30)
let xscale := 1.0
let yscale := 1.0
let the.pic := [0.0, 0.0]
let scales = vector 1::2 of 0..0
let picboxl = limit screen to 40 by 40 at 390+Shft, 200
let picbox3 = limit screen to 40 by 40 at 490+Shft, 200
let picbox4 = limit screen to 40 by 40 at 440+Shft, 150
let picbox5 = limit screen to 40 by 40 at 440+Shft, 250
let picbox6 = limit screen to 80 by 30 at 420+Shft, 100
let picbox8 := limit screen to 60 by 60 at 430+Shft, 350
let xo := 0
let yo := 0
let done := false
while ~done do

begin
let lo := locator()
while ~lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos)
yo := lo(Y.pos)
while lo(the.buttons) (1) do lo := locator ()
if xo > 420+Shft and xo < 500+Shft and yo > 100 and yo < 130 then

begin
for bb =1 to 2000 do { }
nor picbox6 onto picbox6
done := true

end
else if xo > 390+Shft and xo < 430+Shft and yo > 200 and yo < 240 the

begin
nor picboxl onto picboxl
xscale := xscale - 0.1
for bb =1 to 2000 do { }
nor picboxl onto picboxl

end
else if xo > 490+Shft and xo < 530+Shft and yo > 200 and yo < 240 the

begin
nor picbox3 onto picbox3
xscale := xscale + 0.1
for bb =1 to 2000 do { }
nor picbox3 onto picbox3

end
else if xo > 440+Shft and xo < 480+Shft and yo > 150 and yo < 190 the

begin
nor picbox4 onto picbox4
yscale := yscale - 0.1
for bb =1 to 2000 do { }
nor picbox4 onto picbox4

end
else if xo > 440+Shft and xo < 480+Shft and yo > 250 and yo < 290 do

begin
nor picbox5 onto picbox5
yscale := yscale + 0.1
for bb =1 to 2000 do { }
nor picbox5 onto picbox5

end
scales(1) := xscale; scales (2) := yscale
xor picbox8 onto picbox8
Box (430+Shft,350,60)
the.pic := drsym(anysymbol, 470+Shft, 350, xscale, yscale)
draw(screen, the.pic, 0, X.dim(screen) , 0, Y.dim(screen))

end
xor themenu onto themenu
scales

end
let plotsym = proc(real X, Y, space, pitch, xscale, yscale;int marker ;

string a.symbol -> pic)
begin

let xplot := 0
if marker rem 2 ~= 0 then xplot := truncate(X + pitch/2)

else xplot := truncate(X + pitch)
let yplot := truncate(Y)
let SYM := [0 . 0 , 0 . 0]
let thecounter := 0

while xplot < (X + space) do
begin

thecounter := thecounter + 1
if thecounter = 1 then SYM := drsym(a.symbol, xplot, yplot, xscale

yscale)
else SYM := SYM & drsym(a.symbol, xplot, yplot, xscale

yscale)
xplot := xplot + truncate(pitch)

end
SYM

end
let sorting = proc(*real k, r; int upper)

begin
let swap = proc(*real v; cint i,j)

begin
let temp = v(i)
v (i) := v(j)
v (j) := temp

end
let sort = proc(*real x, y; int ubd -> int)

begin
let v := 0; let u := 0;let count := 0
for i=l to ubd -1 do

begin
v := i; u i+1
if x(v) > x(u) do

begin
swap(x,v,u)
swap(y,v,u) -
count := count + 1

end
end

count
end

let howmany := sort(k,r,upper)
while howmany ~= 0 do

howmany := sort(k,r,upper)
end

let filling = proc(*real Xs,Ys; int enclaves; real pitch; *int names;
*pntr RetVec -> pic)

begin
let PIC := [0.0, 0.0]
let TPIC := [0.0, 0.0]
let Ymin := 900000.0; let Ymax := -900000.0
let size := upb(Xs) - lwb(Xs) + 1
for i=l to size do

begin
if Ys(i) > Ymax do Ymax := Ys(i)
if Ys(i) < Ymin do Ymin := Ys(i)

end
let xdatarray := vector 1::10,1::50 of 0.0
let ydatarray := vector 1::10,1::50 of 0.0
let symbolNames = table.t o .text(agrsyms)
let chooseSymbol = set.up.choose(symbolNames)(do.choose)
let symbolChosen = chooseSymbol("Choose Symbol",X.dim(screen)-150,100)
let thescales := symscale(symbolChosen)
let picbox = limit screen to 175 by 340 at X.dim(screen) - 175,80
xor picbox onto picbox
let tempara := vector 1::2 of 0.0
let coords := vector 1::2 of 0.0
let ymin := 0.0; let ymax := 0.0
let span := Ymax - Ymin
let theXs := vector l::(size*2) of 0.0
let theYs := vector l::(size*2) of 0.0
let NoOfLines :=truncate(span / pitch)
let Y := vector l::NoOfLines of 0.0
let starty := 0.0
if pitch > 1 do

begin
let rest := span - NoOfLines * pitch
pitch := pitch + rest/NoOfLines
starty := Ymin - pitch/2

end
if pitch =1 do starty := Ymin
let NoOfInt := 0

for i=l to NoOfLines do
begin

Y(i) := starty + pitch * i
for j=l to size-1 do

begin
if Ys(j) < Ys(j+1) then

begin
ymin
ymax

end
else

begin
ymin
ymax

end
tempara

Ys(j)
Y s (j+1)

Ys(j+1)
Ys (j)

:= linepara(Xs(j), Ys(j), Xs(j+1), Ys(j+1))
coords := lineint(0.0, Y(i), tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOflnt : = NoOflnt + 1
theXs(NoOfInt) : = coords(1)
theYs(NoOflnt) : = coords(2)

end
if enclaves ~= 0 do

for count = 1 to enclaves do
begin

xdatarray(count) := RetVec(names(count)) (AX)
ydatarray(count) := RetVec(names(count)) (AY)
let thesize := upb(xdatarray(count)) -

lwb(xdatarray(count)) + 1
for 1=1 to thesize-1 do {

if ydatarray(count)(1) < ydatarray(count)(1+1)
begin

ydatarray(count)
ydatarray(count)

then
(1)
(1+ 1)

ymin
ymax

end
else

begin
ymin := ydatarray(count)(1+1)
ymax := ydatarray(count)(1)

end
tempara := linepara(xdatarray(count)(1),

ydatarray(count) (1), xdatarray(count) (1+1),
ydatarray(count)(1+1))

coords := lineint(0.0, Y(i), tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOflnt := NoOflnt + 1
theXs(NoOflnt)
theYs(NoOflnt)

:= coords(1)
: = coords(2)

end
}

end
end

sorting(theXs,theYs,NoOflnt)
let kay := 0
for 1=1 to NoOflnt by 2 do

begin
kay := kay + 1
let distance := rabs(theXs(1) - theXs(1+1))
if 1=1 then PIC := plotsym(theXs(1), Y(i),

thescales(1), thescales (2) ,
else PIC := PIC & plotsym(theXs(1), Y(i),

thescales(1), thescales (2) ,
end

TPIC := if i=l then PIC
else TPIC & PIC

!draw(screen, PIC, 0, X.dim(screen), 0, Y.dim(screen)
NoOflnt := 0

end
TPIC

end
let hatchpoly = proc(*real Xs,Ys; int enclaves; real pitch,

*int names; *pntr RetVec -> pic)
begin

distance, 40,
kay, symbolChosen)
distance, 40,
kay, symbolChosen)

angle, dash, gap;

let size := upb(Xs) - lwb(Xs) + 1
if angle = 0 do angle := 180
angle := angle * pi /I80
let xx := 0.0
let yy := 0.0
let PIC := [0.0, 0.0]
for i=l to size do !transformation

begin
xx := Xs(i)
yy := Ys(i)
Xs(i) := xx * cos(angle) + yy * sin(angle)
Ys(i) := -xx * sin(angle) + yy * cos(angle)

end
let Ymin := 900000.0; let Ymax := -900000.0
for i=l to size do

begin
if Ys(i) > Ymax do Ymax := Ys(i)
if Ys(i) < Ymin do Ymin := Ys(i)

end
let xdatarray := vector 1::10,1::50 of 0.0
let ydatarray := vector 1::10,1::50 of 0.0
let thesize := vector 1::10 of 0
if enclaves ~= 0 do

for count = 1 to enclaves do
begin

xdatarray(count) := RetVec(names(count)) (AX)
ydatarray(count) := RetVec(names(count)) (AY)
for i=l to thesize(count) do

begin
xx := xdatarray(count) (i)
yy := ydatarray(count)(i)
xdatarray(count)(i) := xx * cos(angle) + yy * sin(angle)
ydatarray(count) (i) := -xx * sin(angle) + yy * cos(angle)

end
end

let tempara := vector 1::2 of 0.0
let coords := vector 1::2 of 0.0
let ymin ;= 0.0; let ymax := 0.0
let span := Ymax - Ymin
let theXs := vector 1::50 of 0.0
let theYs := vector 1::50 of 0.0
let NoOfLines := truncate(span / pitch)
let Y := vector l::NoOfLines of 0.0
let starty := 0.0
if pitch > 1 do

begin
let rest := span - NoOfLines * pitch
pitch := pitch + rest/NoOfLines
starty := Ymin - pitch/2

end
if pitch =1 do starty := Ymin
let NoOflnt := 0
for i=l to NoOfLines do

begin
Y(i) := starty + pitch * i
for j=l to size-1 do

begin
if Ys (j) < Y s (j+1) then

begin
ymin := Y s (j)
ymax := Ys(j+1)

end
else

begin
ymin := Y s (j+1)
ymax := Y s (j)

end
tempara := linepara(Xs(j), Ys(j), Xs(j+1), Ys(j+1))
coords := lineint(0.0, Y(i), tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOflnt := NoOflnt + 1
theXs(NoOflnt) := coords(1)
theYs(NoOflnt) := coords(2)

end

if enclaves ~= 0 do
for count = 1 to enclaves do

for 1=1 to thesize(count)-1 do
begin

if ydatarray(count)(1) < ydatarray(count)(1+1) then
begin

ymin := ydatarray(count)(1)
ymax := ydatarray(count)(1+1)

end
else

begin
ymin := ydatarray(count)(1+1)
ymax := ydatarray(count)(1)

end
tempara := linepara(xdatarray(count)(1),

ydatarray(count)(1), xdatarray(count)(1+1),
ydatarray(count)(1+1))

coords := lineint(0.0, Y(i), tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOflnt := NoOflnt + 1
theXs(NoOflnt) := coords(1)
theYs(NoOflnt) := coords(2)

end
end

end
sorting(theXs,theYs,NoOflnt)
for k=l to NoOflnt do

begin
xx := theXs(k)
yy := theYs(k)
theXs(k) := xx * cos(angle) - yy * sin(angle)
theYs(k) := xx * sin(angle) + yy * cos(angle)

end
let tpic := [0.0, 0.0]
if dash = -1 then

for 1=1 to NoOflnt by 2 do
tpic := if 1=1 then drawline(theXs(1), theYs(1), theXs(1+1),

theYs(1+1))
else tpic & drawline(theXs(1), theYs(1), theXs(1+1),

theYs(1+1))
else

for 1=1 to NoOflnt by 2 do
tpic := if 1=1 then dashing(theXs(1), theYs(1), theXs(1+1),

theYs(1+1), dash, gap)
else tpic & dashing(theXs(1), theYs(1), theXs(1+1), theYs(1+1), dash,

gap)
NoOflnt := 0
PIC := if i=l then tpic

else PIC & tpic
end

PIC
end

let hatchspace = proc(real angle,infol,info2 -> real)
begin

let themenu = limit screen to 100 by 345 at X.dim(screen)-145,120
copy Hspacing onto themenu
rec(X.dim(screen)-145,120, 95, 340)
let xpos := X.dim(screen)-135
let cons := 0.0
let theypos := 0; cons := 0.0
let space := 0.0
let xo := 0
let constant := 0
let yo := 0
let done := false
let lower := 140
while ~done do

begin
let lo := locator()
while ~lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos)
yo := lo (Y.pos)
while lo (the.buttons) (1) do lo := locator()
if xo > xpos or xo < xpos + 8 0 do

if yo > 140 or yo < 410 do
begin

constant := truncate((yo-140) div 40)
theypos := 140 + constant * 40
space := constant
done := true

end
end

let thisbox := limit screen to 80 by 30 at xpos,theypos
nor thisbox onto thisbox
xor themenu onto themenu
space

end
default.menu = proc(-> *real)

begin
let xstart := X.dim(screen)-210
let menuwin = limit screen to 195 by 400 at xstart-5,115
copy Hdefault onto menuwin
let aboxl = limit screen to 85 by 40 at xstart+ 9, 180
let abox2 = limit screen to 85 by 40 at xstart+ 9, 240
let abox3 = limit screen to 85 by 40 at xstart+ 9, 300
let picboxl = limit screen to 88 by 36 at xstart+ 2, 122
let picbox2 = limit screen to 88 by 36 at xstart+ 94, 122
let picbox3 = limit screen to 185 by 40 at xstart-1, 120
let bxstart := xstart+115
nor aboxl onto aboxl
nor abox2 onto abox2
nor abox3 onto abox3
let thespacing := 2.0
let theangle := 0.0
let thedash := -1.0
let thegap ;= -1.0
let procdata := vector 1::4 of 0.0
let theperiod := vector 1::2 of 0.0
let xo := 0
let yo := 0
let done := false
while -done do

begin
let lo := locator()
while ~lo(the.buttons)(1) do lo := locator()
let xo := lo(X.pos)
let yo := lo(Y.pos)
while lo(the.buttons)(1) do lo := locator()
if xo > xstart and xo < xstart+92 and yo > 120 and yo < 160 do

begin
for bb =1 to 2000 do { }
nor picboxl onto picboxl
done := true

end
if xo > xstart+92 and xo < xstart+184 and yo > 120 and yo < 160 do

begin
for bb =1 to 2000 do { }
nor picbox2 onto picbox2
xor menuwin onto menuwin
Rec (xstart,160, 184,250,"Choose to change","fixl3", "begining",

true)
Rec (xstart+ 9, 180, 85,40,"Spacing","fixl3", "middle",false)
Rec(xstart+ 9, 240, 85,40,"Angle","fixl3", "middle",false)
Rec (xstart+ 9, 300, 85,40,"Style","fixl3", "middle",false)
let finished := false
while -finished do

begin
let lo := locator()
while -lo (the.buttons) (1) do lo := locator()
let xo := lo(X.pos)
let yo := lo(Y.pos)
while lo (the.buttons) (1) do lo := locator()
if xo > xstart+9 and xo < xstart+180 and yo > 180 and

yo < 22 0 do
begin

nor aboxl onto aboxl
for bb =1 to 2000 do { }
xor menuwin onto menuwin
thespacing := hatchspace(theangle,thedash,thegap)

copy Hdefault onto menuwin
nor picbox2 onto picbox2
nor aboxl onto aboxl
nor abox2 onto abox2
nor abox3 onto abox3

end
if xo > xstart+9 and xo < xstart+240 and yo > 240 and

yo < 280 do
begin

nor abox2 onto abox2
for bb =1 to 2000 do { }
xor menuwin onto menuwin
theangle := hatchangleO
copy Hdefault onto menuwin
nor picbox2 onto picbox2
nor aboxl onto aboxl
nor abox2 onto abox2
nor abox3 onto abox3

end
if xo > xstart+9 and xo < xstart+300 and yo > 300 and

yo < 340 do
begin

nor abox3 onto abox3
for bb =1 to 2000 do { }
xor menuwin onto menuwin
theperiod := hatchtypeO
thedash := theperiod(1)
thegap := theperiod(2)
copy Hdefault onto menuwin
nor picbox2 onto picbox2
nor aboxl onto aboxl
nor abox2 onto abox2
nor abox3 onto abox3

end
if xo > xstart and xo < xstart+92 and yo > 120 and

yo < 160 do
begin

for bb =1 to 2000 do { }
nor picboxl onto picboxl
finished := true

end
end

done := true
end

end
procdata(l) := thedash
procdata(2) := thegap
procdata(3) := thespacing
procdata(4) := theangle
procdata

end
let hatch = proc(* real vecX, vecY; *int vecl; *pntr retvector -> pic)

begin
let win = limit screen to 200 by 350 at X.dim(screen)-220,100
xor win onto win
let thedata = default.menu()
let thedash := thedata(1)
let thegap := thedata(2)
let thespace := thedata(3)
let theangle := thedata(4)
let IncNo := if upb(vecl) = 0 then 0

else upb(vecl) - lwb(vecl) + 1
let HPIC := hatchpoly(vecX,vecY,IncNo,thespace,theangle,thedash,thegap,

vecl,retvector)
if XZR = 0 then

draw(gw, HPIC, XOL, XOR, YOL, YOR)
else draw(gw, HPIC, XZL, XZR, YZL, YZR)
xor win onto win
HPIC

end
let fill = proc(* real vecX, vecY; *int vecl; *pntr retvector -> pic)

begin
let win = limit screen to 200 by 350 at X .dim(screen)-220,100
xor win onto win
let IncNo := if upb(vecl) = 0 then 0

else upb(vecl) - lwb(vecl) + 1
let FPIC := filling(vecX, vecY, IncNo, 35.0, vecl, retvector)
if XZR = 0 then

draw(gw, FPIC, XOL, XOR, YOL, YOR)
else draw(gw, FPIC, XZL, XZR, YZL, YZR)
xor win onto win
FPIC

end
let inclave = proc(*real X, Y, OX, OY; real oxc, oyc -> bool)

begin
let upperl = upb(X); let upper2 = upb(OX)
let ymin := 0.0; let ymax := 0.0
let tempara := vector 1::2 of 0.0
let coords := vector 1::2 of 0.0
let Xintl := vector 1::20 of 0.0
let Yintl := vector 1::20 of 0.0
let Xint2 := vector 1::20 of 0.0
let Yint2 := vector 1::20 of 0.0
let smallercount := 0
let NoOfInti := 0; let NoOfInt2 := 0
let theminmaxl = minmax(X, upperl); let theminmax2 = minmax (Y, upperl)
let theminmax3 = minmax(OX, upper2); let theminmax4 = minmax(OY, upper2)
let minXl = theminmaxl(1); let maxXl = theminmaxl (2)
let minYl = theminmax2(1); let maxYl = theminmax2(2)
let minX2 = theminmax3(1); let maxX2 = theminmax3(2)
let minY2 = theminmax4(1); let maxY2 = theminmax4(2)
let inside := false
if minX2 > minXl and maxX2 < maxXl do

if minY2 > minYl and maxY2 < maxYl do
begin

for i=l to upper2-l do
begin

if OY(i) < OY(i+1) then {
ymin := OY(i)
ymax := OY(i+l) }

else {
ymin := OY(i+1)
ymax := O Y (i) }

tempara := linepara(OX(i), OY(i), OX(i+1), OY(i+l))
coords := lineint(0.0, oyc, tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOfInti := NoOfInti + 1
Xintl(NoOfInti) := coords(1)
Yintl(NoOfInti) := coords(2)

end
end

for i=l to upperl-1 do
begin

if Y(i) < Y(i+1) then {
ymin := Y(i)
ymax := Y (i+1) }

else {
ymin := Y(i+1)
ymax := Y(i) }

tempara := linepara(X(i), Y(i), X(i+1), Y(i+1))
coords := lineint(0.0, oyc, tempara(1), tempara(2))
if coords(2) > ymin and coords(2) < ymax do

begin
NoOfInt2 := NoOfInt2 + 1
Xint2(NoOfInt2) := coords(1)
Yint2(NoOfInt2) := coords(2)

end
end

let xintl := vector 1: ::NoOfInti of 0.0
let yintl ::= vector 1: ::NoOfInti of 0.0
let xint2 ::= vector 1: ::NoOfInt2 of 0.0
let yint2 ::= vector 1: ::NoOfInt2 of 0.0
for i=l to NoOfInti do {

xintl(i) := Xintl(i)
yintl(i) := Yintl(i) }

for i=l to NoOfInt2 do {
xint2(i) := Xint2(i)
yint2(i) := Yint2(i) }

let Intminmaxl := minmax(xintl, NoOfInti)

let Intminmax2 := minmax(xint2, NoOfInt2)
let minlntl := Intminmaxl(1)
let maxlntl := Intminmaxl(2)
let minlnt2 := Intminmax2(1)
let maxlnt2 := Intminmax2(2)
inside := case true of

minlntl > minlnt2 and maxlntl < maxlnt2 : true
rabs(minlntl - minlnt2) < (1/1000) and maxlntl < maxlnt2 : true
minlntl > minlnt2 and rabs(maxlntl - maxlnt2) < (1/1000) : true
default : false

for h=l to NoOfInt2 do {
if minlntl < xint2(h) do smallercount := smallercount + 1
if smallercount rem 2 = 0 do inside := false }

end
inside

end
let areamenu = proc(*real Xs, Ys; *int InclVec; *pntr vecret -> pic)

begin
let finished := false
let options = @1 of string ["Fill", "Hatch"]
let choseoption = set.up.choose(options)(do.choose)
let optionchosen = choseoption("OPTIONS ", xmstart+50, 120)
let thepic := [0.0, 0.0]
case true of

optionchosen = "Fill" : { thepic := fill(Xs, Ys, InclVec, vecret);
finished := true }

optionchosen = "Hatch" : { thepic := hatch(Xs, Ys, InclVec, vecret);
finished := true }

default : finished := true
thepic

end
let pikarea = proc(*pntr retvector)

begin
let area.prepare = proc(*real Xs, Ys; *int Inclaves -> real)

begin
let thesize := upb(Xs)
let Oarea := area(Xs, Ys, thesize)
let Iarea := 0.0
let Ninclaves := upb(Inclaves)
for i=l to Ninclaves do

begin
let loc := Inclaves(i)
let xin := retvector(loc)(AX)
let yin := retvector(loc)(AY)
let upper := upb(xin)
Iarea := Iarea - area(xin, yin, upper)

end
let TotalArea := Oarea + Iarea
TotalArea

end
let is.nabor := false
let is.inclave := false
let nabors := vector 1::20 of 0
let inclaves := vector 0::20 of 0
let infodis = limit screen to 225 by 102 at xmstart+5, 345
let naborcounter := 0
let inclavecounter := 0
let xlen := X.dim(gw)
let ylen := Y.dim(gw)
let imagesaved = image xlen by ylen of off
copy gw onto imagesaved
let TPIC := [0.0, 0.0]
let APIC := [0.0, 0.0]
let theupper := upb(retvector)
let i := 1
let finished := false
while i <= theupper and -finished do

begin
if -retvector(i)(AP) then {
let Acount := retvector(i)(ATN)
let featcode := retvector(i)(AID)
let xc := retvector(i)(Xc)
let yc := retvector(i)(Yc)
let xs := retvector(i)(AX)
let ys := retvector(i)(AY)

naborcounter := 0
inclavecounter := 0
let thearea := 0.0
let theperi := 0.0
let upper := upb(xs)
TPIC := Highlight(xs, ys)
if XZR = 0 then { draw(gw, TPIC, XOL, XOR, YOL, YOR) }
else { draw(gw, TPIC, XZL, XZR, YZL, YZR) }
let xminmax := minmax(xs,upper)
let yminmax := minmax(ys,upper)
let the.radian := (xminmax(2) - xminmax(1) + yminmax(2) -

yminmax(1)) * 2
for j=l to theupper do

if j ~= i do
begin

let oxc := retvector(j)(Xc)
let oyc := retvector(j)(Yc)
let oxs := retvector(j)(AX)
let oys := retvector(j)(AY)
let the.dis := distance(xc,yc,oxc,oyc)
if the.dis < the.radian do {

is.nabor := nabor(xs,oxs)
if is.nabor then {

naborcounter := naborcounter + 1
nabors(naborcounter) := retvector(j) (ATN) }

else {
is.inclave := inclave(xs, ys, oxs, oys, oxc, oyc)
if is.inclave do {

inclavecounter ;= inclavecounter + 1
inclaves(inclavecounter) := retvector(j)(ATN) }
}

}
end

let check := polycheck(xs, ys, upper)
if check do {

if inclavecounter > 0 then
thearea := area.prepare(xs, ys, inclaves)

else thearea := area(xs, ys, upper)
theperi := perimiter(xs, ys, upper)
retvector(i)(ADI) := thearea
retvector(i)(AD2) := theperi
xor infodis onto infodis
rec(xmstart+10,350,215,92)
rec(xmstart+11,351,213,90)
text.write(10,60,"Area ","fixbl3",infodis)
text.write(10,30,"Perimiter","fixbl3",infodis)
print thearea at xmstart+100,410
print theperi at xmstart+100,380 }
let lowerb := 0; let upperb := 0
if inclavecounter > 0 then {

lowerb := 1; upperb := inclavecounter }
else {

lowerb := 0; upperb := 0 }
let inclavec := vector lowerb::upperb of 0
for i=lowerb to upperb do

inclavec(i) := inclaves(i)
retvector(i)(NOI) := inclavecounter
retvector(i)(Inc) := inclavec
retvector(i)(AP) := true
xor infodis onto infodis
retvector(i)(FA.pic) := areamenu(xs, ys, inclavec, retvector)
if i <= theupper then

finished := message.proc("Chose what next","Break","Proceed",
xend-215, 120, 200, 140)

else finished := true
i := i + 1
xor gw onto gw
copy imagesaved onto gw }
else i := i + 1

end
if commit() ~= nil do error.message("Could not Store Information", -1, -1)

end
let pikline := proc(*pntr retvector)

begin
let xlen := X.dim(gw)

let ylen := Y.dim(gw)
let imagesaved = image xlen by ylen of off
copy gw onto imagesaved
let TPIC := [0.0, 0.0]
let LPIC := [0.0, 0.0]
let theupper := upb(retvector)
let i := 1
let finished := false
while i <= theupper and -finished do

begin
if -retvector(i)(LP) then {
let Lcount := retvector(i)(LTN)
let featcode := retvector(i)(LID)
let xs := retvector(i)(LX)
let ys := retvector(i)(LY)
let upper := upb(xs)
TPIC := Highlight(xs, ys)
if XZR = 0 then

draw(gw, TPIC, XOL, XOR, YOL, YOR)
else draw(gw, TPIC, XZL, XZR, YZL, YZR)
retvector(i)(LP) := true
let thispic := linetype(xs, ys, upper)
retvector(i)(FL.pic) := thispic
if XZR = 0 then

draw(gw, thispic, XOL, XOR, YOL, YOR)
else draw(gw, thispic, XZL, XZR, YZL, YZR)
i := i + 1
if i <= theupper then

finished := message.proc("Chose what next”,"Break","Proceed"
xend-215, 120, 200, 140)

else finished := true
xor gw onto gw
copy imagesaved onto gw }
else i := i + 1

end
if commit() ~= nil do error.message("Could not Store Information", -1

end
let chpoint = proc(real xio, yio -> pic)

begin
let totalwin = limit screen to 180 by 350 at xmstart-5, 115
copy symenu onto totalwin
let xo := 0; let yo := 0
let xb := xmstart + 10; let xf := xb + 3 * 40
let yb := 130; let yf := yb + 8 * 40
let Procedure := ""
let continue := false

while -continue do {
let xpos := 0; let ypos := 0
let lo := locator()
while -lo(the.buttons)(1) do lo := locator()
xo := lo(X.pos); yo := lo(Y.pos)
xo := xo - xb; yo := yo - yb
while lo(the.buttons)(1) do lo := locator()
let column := yo div 40
let row := xo div 40
case row of

0 : case column of
0 : { xpos := row * 40 + xb; ypos := column * 40 + yb

let win := limit screen to 4 0 by 40 at xpos, ypos
nor win onto win
Procedure := "city circle"
nor win onto win; continue := true }

1 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 40 by 40 at xpos, ypos
nor win onto win
Procedure := "hollow circle"
nor win onto win; continue := true }

2 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 40 by 40 at xpos, ypos
nor win onto win
Procedure := "plain triangle"
nor win onto win; continue := true }

3 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 40 by 40 at xpos, ypos
nor win onto win

Procedure := "thick hollow circle"
nor win onto win; continue := true }

4 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "bracken"
nor win onto win; continue := true }

5 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 40 by 4 0 at xpos,
nor win onto win
Procedure := "heath"
nor win onto win; continue := true }

6 : (xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "orchard"
nor win onto win; continue := true}

7 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "saltings" }

default : { }
case column of
0 : { xpos := row * 40 + xb; ypos := column * 40 +

let win := limit screen to 4 0 by 4 0 at xpos,
nor win onto win
Procedure := "city square"
nor win onto win; continue := true }

1 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 4 0 by 4 0 at xpos,
nor win onto win
Procedure := "plain circle"
nor win onto win; continue := true }

2 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 4 0 by 4 0 at xpos,
nor win onto win
Procedure := "solid circle"
nor win onto win; continue := true }

3 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "thktri.mark"
nor win onto win; continue := true }

4 : { xpos := row * 4 0 + xb; ypos := column * 40 +
let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "coppice"
nor win onto win; continue := true }

5 : { xpos := row * 4 0 + xb; ypos := column * 40 +
let win := limit screen to 4 0 by 4 0 at xpos,
nor win onto win
Procedure := "marsh"
nor win onto win; continue := true }

6 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "reeds"
nor win onto win; continue := true }

7 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 4 0 by 4 0 at xpos,
nor win onto win
Procedure := "scrub"
nor win onto win; continue := true }

default : { }
case column of
0 : { xpos := row * 40 + xb; ypos := column * 40 +

let win := limit screen to 40 by 40 at xpos,
nor win onto win
Procedure := "hexagon"
nor win onto win; continue := true }

1 : { xpos := row * 40 + xb; ypos := column * 40 +
let win := limit screen to 4 0 by 4 0 at xpos,
nor win onto win
Procedure := "plain square"
nor win onto win; continue := true }

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

yb
ypos

2 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 40 by 40 at xpos, ypos
nor win onto win
Procedure := "solid square"
nor win onto win; continue := true }

3 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 40 by 40 at xpos, ypos
nor win onto win
Procedure := "tri. mark"
nor win onto win; continue := true }

4 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 4 0 by 4 0 at xpos, ypos
nor win onto win
Procedure := "conifer"
nor win onto win; continue := true }

5 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 4 0 by 40 at xpos, ypos
nor win onto win
Procedure := "non-con"
nor win onto win; continue := true }

6 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 40 by 40 at xpos, ypos
nor win onto win
Procedure := "rgrass"
nor win onto win; continue := true }

7 : { xpos := row * 40 + xb; ypos := column * 40 + yb
let win := limit screen to 4 0 by 40 at xpos, ypos
nor win onto win
Procedure := "TXT"
nor win onto win; continue := true }

default : { }
default : { }

}
xor totalwin onto totalwin
let apic := [0.0, 0.0]
let xposn := 0; let xposx := 0
case Procedure of

"plain circle" : { xio := xio - 20; yio := yio - 15; xposn := 0;
xposx := 40; symtype := "geo"; apic := s .lookup (Procedure,

geosyms) (a.pic)
"solid circle" : { xio := xio - 20; yio := yio - 15; xposn := 0;

xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,
geosyms)(a.pic)

"hollow circle" : { xio := xio - 20; yio := yio - 15; xposn := 0;
xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,

geosyms)(a.pic)
"thick hollow circle" : { xio := xio - 20; yio := yio - 15; xposn := 0

xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,
geosyms)(a.pic)

"city circle" : { xio := xio - 20; yio := yio - 15; xposn := 0;
xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,

geosyms)(a.pic)
"plain square" : { xio := xio - 20; yio := yio - 15; xposn := 0;

xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,
geosyms)(a.pic)

"solid square" : { xio := xio - 20; yio := yio - 15; xposn := 0;
xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,

geosyms)(a.pic)
"city square" : { xio := xio - 20; yio := yio - 15; xposn := 0;

xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,
geosyms)(a.pic)

"plain triangle" : { xio := xio - 20; yio := yio - 15; xposn := 0;
xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,

geosyms)(a.pic)
"tri. mark" : { xio := xio - 20; yio := yio - 15; xposn := 0;

xposx := 40; symtype := "geo"; apic := s .lookup(Procedure,
geosyms) (a.pic)

"thktri.mark" : { xio := xio - 20; yio := yio - 15; xposn := 0;
xposx := 40; symtype := "geo"; apic := s .lookup (Procedure,

geosyms)(a.pic)
"TXT" : { let x := truncate (xio); let y := truncate (yio);

let font := Fonting(x, y); apic := [0.0, 0.0] }
default : { xio := xio-20; yio := yio; xposn := -20;

xposx := 20; symtype := "agr"; apic := s .lookup(Procedure,
agrsyms) (f.pic) }

let Xpos := truncate(xio); let Ypos := truncate(yio)
let plotwin := limit screen to 40 by 40 at Xpos, Ypos
draw(plotwin, apic, xposn-10, xposx+10, 0, 60)
apic

end
let pikpoint := proc(*pntr retvector)

begin
let xlen := X.dim(gw)
let ylen := Y.dim(gw)
let xmin := 0.0; let xmax := 0.0
let ymin := 0.0; let ymax := 0.0
let imagesaved = image xlen by ylen of off
copy gw onto imagesaved
let LPIC := [0.0, 0.0]
let theupper := upb(retvector)
let i := 1
let finished := false
while i <= theupper and -finished do

begin
if -retvector(i)(PP) then {
let Pcount := retvector(i)(PTN)
let featcode := retvector(i)(PID)
let xs := retvector(i)(PX)
let ys := retvector(i)(PY)
let upper := upb(xs)
if XZR = 0 then {

xmin := XOL; xmax := XOR; ymin := YOL; ymax := YOR }
else { xmin := XZL; xmax := XZR; ymin := YZL; ymax := YZR }
let xposition := truncate((xs(l) - xmin) * xlen / (xmax - xmin)) - 3
let yposition := truncate((ys(l) - ymin) * ylen / (ymax - ymin))
text.write(xposition-3, yposition-3, "fixbl3", gw)
retvector(i)(PP) := true
retvector(i) (P.pic) := chpoint (xposition, yposition)
retvector(i)(PT) := symtype
i := i + 1
if i <= theupper then

finished := message.proc("Chose what next","Break","Proceed",
xend-215, 120, 200, 140)

else finished := true
xor gw onto gw
copy imagesaved onto gw }
else i := i + 1

end
if commit() ~= nil do error.message("Could not Store Information", -1, -1)

end
let what.to.pick = proc(string mapof; pntr anytable; int anycounter)

begin
let feature.kind := feature.type(anycounter)
let retvec := case feature.kind of

"polygon" : s .lookup(mapof, anytable)(AST)
"line" : s .lookup(mapof, anytable)(LST)
default : s .lookup(mapof, anytable)(PST)

let parwin := limit screen to 90 by 30 at range+110,Y.dim(screen)-152
xor parwin onto parwin
rec(range+104, Y.dim(screen)-152, 100, 36)
case feature.kind of

"polygon" : { text.write(10, 12,"polygon","fixl3",parwin);
pikarea(retvec) }

"line" : { text.write(10, 12,"line","fixl3",parwin); pikline(retvec)
default : { text.write(10, 12,"point","fixl3",parwin);

pikpoint(retvec) }
end

let data.prep = proc()
begin

xor screen onto screen
prepform("Enhancement")
let atable := s.lookup("Maps", mainDB)
let key.names = table.t o .text(atable)
let the.top := upb(key.names)
let choosemap = set.up.choose(key.names)(do.choose)
let mapchosen = choosemap("Choose Map of:", xmstart+50, 120)
XOL := s .lookup(mapchosen,atable)(XL)
YOL := s .lookup(mapchosen,atable)(YL)
XOR := s .lookup(mapchosen,atable)(XR)
YOR := s .lookup(mapchosen,atable)(YR)

let parwin := limit screen to length(mapchosen)*8 +30 by 36 at range+80,
Y.dim(screen)-80

text.write(10, 12,mapchosen,"fixl3",parwin)
Rec(range+4, Y.dim(screen)-116, out.range-8, 36,"Operation "fixbl3",

"begining", false)
let sangle := s .lookup(mapchosen,atable)(North)
let angle := stringtoint(sangle)
let thepic := [0.0, 0.0]
let a.exist := false
let 1.exist := false
let p.exist := false
let Afeat := s .lookup(mapchosen,atable)(AST)
let uba := upb(Afeat)
if uba ~= 0 do a.exist := true
let Lfeat := s .lookup(mapchosen,atable)(LST)
let ubl := upb(Lfeat)
if ubl ~= 0 do 1.exist := true
let Pfeat := s .lookup(mapchosen,atable)(PST)
let ubp := upb(Pfeat)
if ubp ~= 0 do p.exist := true
let Apic := [0.0, 0.0]
let Lpic := [0.0, 0.0]
let Ppic := [0.0, 0.0]
if a.exist do {

for i=lwb(Afeat) to upb(Afeat) do
Apic := if i=l then Afeat(i)(anypic)

else Apic & Afeat(i)(anypic)
thepic := thepic & Apic }

if 1.exist do {
for i=lwb(Lfeat) to upb (Lfeat) do

Lpic := if i=l then Lfeat(i)(L.pic)
else Lpic & Lfeat(i)(L.pic)

thepic := thepic & Lpic }
if p.exist do {

for i=lwb(Pfeat) to upb(Pfeat) do
Ppic := if i=l then Pfeat (i) (P.pic)

else Ppic & Pfeat(i)(P.pic)
thepic := thepic & Ppic }

!xor gw onto gw
let a.window = limit screen to 120 by 120 at xmstart+50,Y.dim(screen)-300
north.dir(angle, a.window)
let is.nabor := false
draw(gw, thepic, XOL, XOR, YOL, YOR)
let operations = @1 of string ["Zoom In", "Zoom Out”, "Scroll",

"Pick Feature"]
zoomcounter := 0
let a.pik.count := 0
parwin := limit screen to 120 by 30 at range+110,Y.dim(screen)-115
let finished := false
while -finished do {
let chooseoperation = set.up.choose(operations)(do.choose)
let operationchosen = chooseoperation("OPTIONS ", xmstart+50, 120)
if operationchosen = "Zoom In" then {

xor parwin onto parwin
text.write (10, 12,operationchosen,"fixl3",parwin)
zoomcounter := zoomcounter + 1
zoomin(thepic, thegrid, range, zoomcounter, 0, 0, gw)
xor parwin onto parwin }

else if operationchosen = "Zoom Out" then {
xor parwin onto parwin
text.write(10, 12,operationchosen,"fixl3",parwin)
zoomout (thepic, thegrid, range, 0, 0, gw)
xor parwin onto parwin
zoomcounter := 0 }

else if operationchosen = "Scroll" then {
xor parwin onto parwin
text.write(10, 12,operationchosen,"fixl3",parwin)
Scroll(thepic, range, gw)
xor parwin onto parwin }

else if operationchosen = "Pick Feature" then {
xor parwin onto parwin
text.write(10, 12,operationchosen,"fixl3",parwin)
a.pik.count := a.pik.count + 1
what.t o .pick(mapchosen, atable, a.pik.count)
let porwin := limit screen to 105 by 36 at range+100,Y.dim(screen)-153

xor porwin onto porwin
xor parwin onto parwin }

else if operationchosen = "" do
finished := true }

end
end
structure modules2(proc()cartorep)
let moduleDB := open.database("M", "m", "write")
if moduleDB is error.record do moduleDB := create.database ("M", "m")
let the.module := s .lookup("Module2", moduleDB)
if the.module = nil do

begin
the.module := table()
s.enter("Module2", moduleDB, the.module)

end
s.enter("cartorep", the.module, modules2(CartoRep))
9

APPENDIX F

Appendix F: Data Retrieval Module

APPENDIX F: DATA RETRIEVAL MODULE

Appendix F contains the listing of the program handling the data retrieval operations. The

program retrieves the Global Procedures needed from the database 'GlobaLProc' and then

lists all those module procedures described in Chapter 9. The module is then stored in the

database '%$Modules'.

let DataRet = proc()
begin
let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup ("fixl3", FONTsdb)
let bold = s.lookup("fixbl3",FONTsdb)
let big = s.lookup("met22",FONTsdb)
let large = s .lookup("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do (write "No utilities database - do prcdbmaker first'n"; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int-> string) xproc

prcget("seditor") (xproc) }
let error.message={structure procpak(proc(string,int,int) xproc)

prcget("error.message")(xproc) }
let more={structure procpak(proc(*string,int,int) xproc)

prcget("more") (xproc) }
let form.generate={structure procpak(proc(-> pntr) xproc)

prcget("form.generate")(xproc)}
let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)

prcget("form.null")(xproc) }
structure form.package(proc(pntr) Form.show;

proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
proc (pntr) Form.remove;
proc(string,pntr) Form.update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = (structure procpak(proc(*string -> pntr) xproc)
prcget("set.up.choose")(xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.to.text = (structure procpak(proc(pntr -> *string) xproc)
prcget("table.to.text")(xproc)}

structure global.proc(proc(string, string, string, int, int, int, int ->
bool)MessageProc;

proc(int, int, string, string, #pixel)Text.Write;
proc(string -> real)StringToReal;
proc(string -> int)StringToInt;
proc(*real, int -> *real)MinMax;
proc(int, int, string -> int)Icon;
proc(real, real, real, string -> pic)Polygon;
proc(*real, *real -> pic)highlight;
proc(real, real,real, real -> pic)Drawline;
proc(int, int, int)box;
proc(int, int, int, int)rectangle;
proc(int, int, int, int, string, string, string, bool)Rectan
proc (int, #pixel)North.Dir;
proc (int -> string)Feature.Type;
proc(pic, pic, int, int, int, #pixel)Zoomout;
proc (pic, pic, int, int, int, int, #p.ixel) Zoomin;
proc(*real, *real, real, real, real, real, int -> bool)Check
proc(string)Prepform)

let ProcDB := open.database("Proc.Lib", "proc", "write")
let GLOBALS := s .lookup("Procedures", ProcDB)
let message.proc = GLOBALS(MessageProc)
let text.write = GLOBALS(Text.Write)
let stringtoreal = GLOBALS(StringToReal)
let stringtoint = GLOBALS(StringToInt)
let minmax = GLOBALS(MinMax)
let icon — GLOBALS(Icon)
let polygon = GLOBALS(Polygon)
let Highlight = GLOBALS(highlight)
let drawline = GLOBALS(Drawline)
let Box = GLOBALS(box)
let rec = GLOBALS(rectangle)

let Rec = GLOBALS(Rectangle)
let north.dir = GLOBALS(North.Dir)
let feature.type = GLOBALS(Feature.Type)
let checkin = GLOBALS(Checkin)
let prepform = GLOBALS(Prepform)
let DB = open.database("code2","code2","write")
if DB is error.record do { write"cannot open DB "; abort }
structure Code2Node(string identifier; pntr subtree)
structure menuPack(proc (string, int, int -> string) menuProc; c*string Lname;

c*int Lnum)
let mainDB := open.database("MDB","data","write")
if mainDB is error.record do mainDB := create.database("MDB", "data")
if mainDB is error.record do { error.message("Cannot open database'n",-1,-1);

abort }
let mapstable := s.lookup("Maps", mainDB)
if mapstable = nil do

mapstable := table()
structure m aps(string Package, SerialNo, Scale, North;real XL, YL, XR, YR, Grid;

*pntr AST, LST, PST, TST)
structure Aholder(int ATN, AID; bool AP; real Xc, Yc; string AFN, AC; *real AX,

AY; pic anypic; real ADl, AD2; int NOI; *int Inc; pic FA.pic)
structure Lholder(int LTN, LID; bool LP; string LFN, LC; *real LX, LY; pic L.pic;

real LDl, LD2; pic FL.pic)
structure Pholder(int PTN, PID; bool PP; string PFN, PC, PT; *real PX, PY;

pic P.pic)
structure Tholder(int Layer, Location; real xpos, ypos; string thetext, Font)
let Ainfo *= vector 1::10000 of nil
let Linfo = vector 1::5000 of nil
let Pinfo = vector 1::3000 of nil
let DBvar := open.database("global","variables","write")
if DBvar is error.record do DBvar create.database("global", "variables")
if DBvar is error.record do { write "Error creating Database'n" }
structure globals(int varval)
structure gpic(pic thepic)
let DBsym := open.database("Symbols","mys","read")
let agrsym3 := s.lookup("%$Agrsym" , DBsym)
let geosyms := s .lookup("%$Geosym", DBsym)
structure agrsym(pic f.pic)
structure geosym(pic a.pic)
structure gimage(#pixel menuimage)
let theimage := s .lookup("Images", DBvar)
let Hlinetype := s .lookup("Hlinetype",theimage)(menuimage)
let Hangle := s .lookup("Hangle",theimage)(menuimage)
let Scaling := s .lookup("Scaling",theimage)(menuimage)
let Hspacing := s .lookup("Hspacing",theimage)(menuimage)
let Hdefault := s .lookup("Hdefault",theimage)(menuimage)
let LineMenu := s .lookup("LineMenu",theimage)(menuimage)
let symenu := s .lookup("Symbols Menu", theimage)(menuimage)
let typeimage = image 110 by 355 of off
let angimage = image 155 by 270 of off
let scalimage = image 150 by 320 of off
let symtype := ""
let xmstart := X .dim(screen)-250
let Sht := X .dim(screen) - 540
let xstart := 10; let ystart := 10
let xend := X .dim(screen)- 10; let yend := Y .dim(screen) - 53
let xspan := xend - xstart; let yspan := yend - ystart
let TotalYmenWin := yend-ystart-97
let Screen = limit screen to xspan by yspan at xstart, ystart
let xlcorner := xstart + 4; let ylcorner := ystart+101
let X.G := xspan -244
let Y.G := TotalYmenWin-2
if X.G > Y.G then X.G := Y.G

else Y.G ’= X.G
let out.range := X .dim(screen) - Y.dim(screen)
let range := Y .dim(screen)
let GW = limit screen to X.G by Y.G at xlcorner, ylcorner
let xmenustart := X .dim(screen) - 250
let menuwin = limit screen to 236 by TotalYmenWin-3 at xmenustart,ylcorner
let menuwinl = limit screen to 244 by TotalYmenWin-3 at xmenustart-6,50
let menusaved = image 217 by 224 of off
let ystartdetail := yend-280
let detail = limit screen to 244 by 180 at xmstart-4,ystartdetail
let gw = limit screen to range by range at 0, 0
let x.coord = vector 1::100 of 0.0

let y.coord = vector 1::100 of 0.0
let dummy.vec := vector 1::1000 of ""
let winsave := image X.G by Y.G of off
let XOL := 0.0; let XOR := 0.0
let YOL := 0.0; let YOR := 0.0
let XZL := 0.0; let XZR := 0.0
let YZL := 0.0; let YZR := 0.0
let TheGrid := 0.0
let thegrid := [0. 0 , 0 . 0]
let xt := range + 100; let yt := 271!Global
let tmenu = limit screen to 102 by 192 at xt-1, yt-1!Global
let xe := xt + 40; let ye := yt + 12!Global
let emenu = limit screen to 112 by 136 at xe-1, ye-1!Global
let xl := xt - 90; let yl := 100!Global
let lmenu = limit screen to 142 by 402 at xl-1, yl-1!Global
let eimage := s .lookup("Entity Menu", theimage)(menuimage)
let timage := s .lookup("Type Menu", theimage)(menuimage)
let limage := s .lookup("Layer Menu", theimage)(menuimage)
let def.menu := "1"
let zoomcounter := 0
structure feature(pic fea.pic)
let first.screen = proc()

begin
R e c (0,0,X.dim(screen),Y.dim(screen),"Ps - GIS","cou20",

"middle", true)
let borderl = limit screen to X .dim(screen)-10 by Y.dim(screen)-43 at 5,5
let border2 = limit screen to X.dim(screen)-20 by Y.dim(screen)-53 at 10,10
nor borderl onto borderl
nor border2 onto border2

end
let zoomout = proc(pic PIC, thegrid; int Range, xshft, yshft; #pixel the.win)

begin
if XZL = 0 and XZR = 0 then

error.message(" Nothing to Zoom Out ", -1, -1)
else

begin
xor the.win onto the.win
B o x (xshft, yshft, Range)
Box (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XOL, XOR, YOL, YOR)
draw(the.win, PIC, XOL, XOR, YOL, YOR)
XZL := 0.0; XZR := 0.0
YZL := 0.0; YZR := 0.0

end
end

let zoomin = proc(pic PIC, thegrid;int Range, count, xshft, yshft;
#pixel the.win)

begin
let xl := 0.0; let xr := 0.0
let yl := 0.0; let yr := 0.0
if count < 2 then {

xl := XOL; xr := XOR
yl := YOL; yr := YOR }

else {
xl := XZL; xr := XZR
yl := YZL; yr := YZR }

let xo := 0; let xe := 0
let yo := 0; let ye := 0
let lo := locator()
while ~lo(the.buttons)(1) do lo :* locator()
xo := lo(X.pos) - xshft
yo := lo(Y.pos) - yshft
while lo(the.buttons)(1) do lo := locator()
xe := lo(X.pos) - xshft
ye := lo(Y.pos) - yshft
if xo > xe do {

let t := xo
xo := xe
xe := t }

if yo < ye do {
let t := yo
yo := ye
ye := t }

let xdif := rabs (xe - xo)
let ydif := rabs(ye - yo)

let adif := truncate((xdif + ydif) / 2)
xe := xo + adif
ye := yo - adif
XZL := xl + (xr - xl) * xo / Range
XZR := xl + (xr - xl) * xe / Range
YZL := yl + (yr - yl) * ye / Range
YZR := yl + (yr - yl) * yo / Range
xor the.win onto the.win
B o x (xshft, yshft, Range)
Box (xshft+1, yshft+1, Range-2)
draw(the.win, thegrid, XZL, XZR, YZL, YZR)
draw(the.win, PIC, XZL, XZR, YZL, YZR)

end
let obtain.code = proc(-> *int)

begin
let thecode := 0
let former.image = image 242 by TotalYmenWin-3 of off
copy menuwinl onto former.image
xor menuwinl onto menuwinl
!let ystartdetail := yend-250
!let detail = limit screen to 244 by 180 at xmstart-4,ystartdetail
let detail.image = image 244 by 180 of off
!rec(xmstart,ystart+100,238,TotalYmenWin)
Rec (xmstart,ystartdetail,238,180,"Feature Details","fixbl3","middle",true)
let classification = @ 1 of string["Class :", "Category :",

"Feature :",
"Attribute :","The Code :"]

for i=l to 5 do {
let ypos := if i=l then 110

else if i=2 then 85
else if i=3 then 60
else if i=4 then 35
else 10

text.write(10, ypos,classification(i),"fixbl3",detail) }
let VecNames = vector 1::100 of ""
let VecNums = vector 1::100 of 0
let N := 0
let procl = proc(int I; pntr V -> bool)

begin
N := N + 1
VecNames(N) := V(identifier)
VecNums(N) := I
true

end
let code.detail := vector 1::2 of 0
let stopchose := false
let cat = 01 of string ["Class","Category","Feature","Attribute"]
let choices = vector 1::4 of ""
let catWidth = X.dim(screen) div 4
let choose := proc(int L; pntr T); nullproc
choose := proc(int L; pntr T)

begin
let theMenu := s.lookup("menu",T)
if theMenu = nil do

begin
N := 0
let X := i .scan(T,procl)
let S := ""
let levelname = vector 1::N of ""
let levelnum = vector 1::N of 0
for i=l to N do

(levelname(i) := VecNames(i);
levelnum(i) := VecNums(i) }

for i=l to N-l do for j=i+l to N do
{ X := levelnum(i); levelnum(i) := levelnum(j);
levelnum(j) := X; S := levelname(i);
levelname(i) := levelname(j)/ levelname(j) := S }

for i=l to N do
begin

if length(levelname(i)) > 25 do
levelname(i) := levelname(i) (1125)

if levelname (i) = "" do levelname (i) := "---------- "
end

let ch = set.up.choose(levelname)(do.choose)
theMenu := menuPack(ch, levelname, levelnum)

s.enter ("menu", T, theMenu)
if commit () ~«= nil do print "COMMIT FAILS" at 50,300

end
let ch = theMenu(menuProc)
let levelname = theMenu(Lname)
let levelnum = theMenu(Lnum)
N := upb(levelname)
let choice = ch("Choose " ++ cat(L), X.dim(screen)-240,120)
if choice = "" do stopchose := true
let chint := 0
if choice ~= "" do {
for i=l to N do

if choice = levelname(i) do chint := levelnum(i)
choices(L) := choice
thecode := if L =1 then chint * 10000000

else if L = 2 then thecode + chint * 100000
else if L = 3 then thecode + chint * 1000
else thecode + chint

let ypos := if L=1 then 110
else if L=2 then 85
else if L=3 then 60
else 35

code.detail(2) := L
text.write(119, ypos,choices(L),"fixbl3",detail) }
while -stopchose and L < 4 do choose(L+l, i .lookup(chint,T)(subtree)

end
let level1 := s .lookup("Code2",DB)
choose(If levell)
print thecode at X.dim(screen)-120,ystartdetail+10
copy detail onto detail.image
copy former.image onto menuwinl
copy detail.image onto detail
!write class.counter
code.detail(1) := thecode
code.detail

end
let clayer = proc(int x, y -> string)

begin
let Layer := ""
let xr := xl + 2
let yr := (y-102) div 30
let localm := limit screen to 136 by 26 at xr, yr*30+104
nor localm onto localm
Layer : =: case true of

yr = 11 : "Building"
yr = 10 : "Delimiter"
yr = 9 : "Desig. Area
yr = 8 : "Hydrography
yr = 7 : "Hypsography
yr = 6 : "Land Cover"
yr = 5 : "Road & Rail
yr 4 : "Structure"
yr 3 : "Text"
yr = 2 : "Utility"
yr = 1 : "Done"
default : "Quit"

Layer
end

let ctype = proc(int x, y -> string)
begin

let Type := ""
let xr := xt + 2
let yr := (y-273) div 30
let localm := limit screen to 96 by 26 at xr, yr*30+275
nor localm onto localm
Type := case true of

yr = 4 : "Points"
yr = 3 : "Lines"
yr = 2 : "Polygons"
yr = 1 : "Done"
default : "Quit"

Type
end

let centity = proc(int x, y -> string)
begin

let Entity := ""
let xr := xe + 2
let ys := ye + 8
let yr := (y-ys) div 30
let localm := limit screen to 106 by 26 at xr, (yr*30) + ys
nor localm onto localm
Entity := case true of

yr = 2 : "Get Entity"
yr = 1 : "Proceed"
default : "Quit"

Entity
end

let checkm = proc(int x, y -> string)
begin

let themenu := ""
if def.menu = "1" then

if x > xl and x < xl+140 and y > yl and y < yl+364 do themenu :=
else if def.menu = "t" then

if x > xt and x < xt+100 and y > yt and y < yt + 154 do themenu
else if def.menu = "e" do

if x > xe and x < xe+110 and y > ye and y < ye + 96 do themenu :
themenu

end
let activate = proc (int x, y)

begin
if def.menu = "1" then

if x > xl and x < xl+14 0 and y > yl+364 and y < yl+400 then
begin

def.menu := "1"
copy limage onto lmenu

end
else

if x > xl+141 and x < xt+100 and y > 425 and y < 461 then
begin

def.menu := "t"
copy timage onto tmenu

end
else

if x > xt+100 and x < xe+110 and y > 381 and y < 417 do
begin

def.menu := "e"
copy eimage onto emenu

end
else

if def.menu — "t" then
if x > xl and x < xl+140 and y > yl+364 and y < yl+400 then

begin
def.menu := "1"
copy limage onto lmenu

end
else

if x > xt and x < xt+100 and y > 425 and y < 461 then
begin

def.menu := "t"
copy timage onto tmenu

end
else

if x > xt+100 and x < xe+110 and y > 381 and y < 417 do
begin

def.menu := "e"
copy eimage onto emenu

end
else if def.menu = "e" do

if x > xl and x < xl+140 and y > yl+364 and y < yl+400 then
begin

def.menu := "1"
copy limage onto lmenu

end
else

if x > xt and x < xt+100 and y > 425 and y < 461 then
begin

def.menu := "t"
copy timage onto tmenu

end

if x > xt+40 and x < xe+110 and y > 317 and y < 417 do
begin

def.menu := "e"
copy eimage onto emenu

end
end

let codestrip = proc(int acode -> int)
begin

let layerid := truncate(acode/10000000)
layerid

end
structure Lstr(string thelayer; int featID; pic picl, pic2)
structure Tstrl(string thetypel; int tlfeatlD; pic tlpicl, tlpic2)
structure Tstr2(string thetype2; int t2featID; pic t2picl, t2pic2)
structure Tstr3(string thetype3; int t3featID; pic t3picl, t3pic2)
structure Estr(string theentity; int entitylD; pic epicl, epic2)
let polygon.vec = vector 1::1000 of 0; let pol.count := 0
let line.vec = vector 1::1000 of 0; let line.count := 0
let point.vec = vector 1::1000 of 0; let point.count := 0
let text.vec = vector 1::1000 of 0; let text.count := 0
let retLayer = proc(*string layers.vec; string MapChosen; pntr Atable)

begin
let size := upb(layers.vec) - lwb(layers.vec) + 1
let layerid := vector l::size of 0
for i=l to size do

layerid(i) := case true of
layers.vec(i) = "Building" : 2
layers.vec(i) = "Delimiter" : 6
layers.vec(i) = "Desig. Area" : 1
layers.vec(i) = "Hydrography" : 7
layers.vec(i) = "Hypsography" : 8
layers.vec(i) = "Land Cover" : 9
layers.vec(i) = "Road & Rail" : 4
layers.vec(i) = "Structure" : 3
layers.vec(i) = "Utility" ; 5
default : 0

let Afeat := s .lookup(MapChosen, Atable)(AST)
let Lfeat := s .lookup(MapChosen, Atable)(LST)
let Pfeat := s .lookup(MapChosen, Atable)(PST)
!let Text := s .lookup(Mapchosen, Atable)(TST)
Rec(range+4, Y.dim(screen)-116, out.range-8, 36,"Operation :", "fixbl3",

"begining", false)
let thepic := [0.0, 0.0]
let Enhpic := [0.0, 0.0]
let Asize := if upb(Afeat) > 0 then upb(Afeat) - lwb(Afeat) + 1

else upb(Afeat) - lwb(Afeat)
let Lsize := if upb(Lfeat) > 0 then upb(Lfeat) - lwb(Lfeat) + 1

else upb(Lfeat) - lwb(Lfeat)
let Psize := if upb(Pfeat) > 0 then upb(Pfeat) - lwb(Pfeat) + 1

else upb(Pfeat) - lwb(Pfeat)
let totalsize := Asize + Lsize + Psize
let features := vector l::totalsize of nil
let nfeatures := 0
if Asize > 0 do
for i=l to Asize do

begin
let Aid := Afeat(i)(AID)
let stripcode := codestrip(Aid)
for j=l to size do

if stripcode = layerid(j) do
begin

nfeatures := nfeatures + 1
thepic := Afeat(i)(anypic)
Enhpic := Afeat(i)(FA.pic)
let theid := Afeat(i)(ATN)
pol.count := pol.count + 1
polygon.vec(pol.count) := theid
features(nfeatures) := Lstr("A", theid, thepic, Enhpic)
if XZR = 0 then { draw(gw, thepic, XOL, XOR, YOL, YOR)

draw(gw, Enhpic, XOL, XOR, YOL, YOR) }
else { draw(gw, thepic, XZL, XZR, YZL, YZR)
draw(gw, Enhpic, XZL, XZR, YZL, YZR) }

end
end

if Lsize > 0 do
for i=l to Lsize do

begin
let Lid Lfeat(i)(LID)
let stripcode := codestrip(Lid)
for j=l to size do

if stripcode = layerid(j) do
begin

nfeatures := nfeatures + 1
thepic := Lfeat(i)(L.pic)
Enhpic := Lfeat(i)(FL.pic)
let theid := Lfeat(i)(LTN)
line.count := line.count + 1
line.vec(line.count) := theid
features(nfeatures) := Lstr("L", theid, thepic, Enhpic)
if XZR = 0 then draw(gw, Enhpic, XOL, XOR, YOL, YOR)
else draw(gw, Enhpic, XZL, XZR, YZL, YZR)

end
end

if Psize > 0 do
for i=l to Psize do

begin
let Pid := Pfeat (i) (PID)
let stripcode := codestrip(Pid)
for j=l to size do

if stripcode = layerid(j) do
begin

nfeatures := nfeatures + 1
let px := Pfeat (i) (PX); let py := Pfeat(i) (PY)
thepic := [px(l), py(l)]
Enhpic := Pfeat(i)(P.pic)
let theid := Pfeat(i)(PTN)
point.count := point.count + 1
point.vec(point.count) := theid
features(nfeatures) := Lstr("P", theid, thepic, Enhpic)

end
end

!if XZR = 0 then draw(gw, Enhpic, XOL, XOR, YOL, YOR)
!else draw(gw, Enhpic, XZL, XZR, YZL, YZR)

end
let RetApic = proc(string MapChosen; pntr Atable)

begin
let Afeat = s .lookup(MapChosen, Atable) (AST)
let asize := upb(Afeat) - lwb(Afeat) + 1
let features := vector l::asize of nil
let nfeatures := 0
let a.pic := [0.0, 0.0]
let ao.pic := [0.0, 0.0]
for i=l to asize do {

nfeatures := nfeatures + 1
a.pic := Afeat(i)(FA.pic)
ao.pic := Afeat(i) (anypic)
let theid := Afeat(i)(ATN)
pol.count := pol.count + 1
polygon.vec(pol.count) := theid
features(nfeatures) := Tstrl("A", theid, a.pic, ao.pic)
if XZR = 0 then { draw(gw, ao.pic, XOL, XOR, YOL, YOR)

draw(gw, a.pic, XOL, XOR, YOL, YOR) }
else { draw(gw, ao.pic, XZL, XZR, YZL, YZR)

draw(gw, a.pic, XZL, XZR, YZL, YZR) } }
end

let RetLpic = proc(string MapChosen; pntr Atable)
begin

let Lfeat = s .lookup(MapChosen, Atable) (LST)
let asize := upb(Lfeat) - lwb(Lfeat) + 1
let features := vector l::asize of nil
let nfeatures := 0
let a.pic := [0.0, 0.0]
let ao.pic := [0.0, 0.0]
for i=l to asize do {

nfeatures := nfeatures + 1
a.pic := Lfeat(i)(FL.pic)
ao.pic := Lfeat(i)(L.pic)
let theid := Lfeat(i)(LTN)
line.count := line.count + 1

line.vec (line.count) :*= theid
features(nfeatures) Tstr2("L", theid, a.pic, ao.pic)
if XZR = 0 then draw(gw, a.pic, XOL, XOR, YOL, YOR)
else draw(gw, a.pic, XZL, XZR, YZL, YZR) }

end
let RetPpic = proc(string Mapchosen; pntr Atable)

begin
let Pfeat = s .lookup(MapChosen, Atable)(PST)
let xlen := X.dim(gw)
let ylen := Y.dim(gw)
let xmin := 0.0; let xmax := 0.0
let ymin := 0.0; let ymax ;= 0.0
if XZR = 0 then (

xmin := XOL; xmax := XOR; ymin := YOL; ymax := YOR }
else { xmin := XZL; xmax := XZR; ymin := YZL; ymax := YZR }
let asize := upb(Pfeat) - lwb(Pfeat) + 1
let features := vector l::asize of nil
let nfeatures := 0
let xpos := 0; let ypos := 0; let xposn := 0; let xposx := 0
let a.pic := [0.0, 0.0]
for i=l to asize do {

a.pic := if i=l then Pfeat(i)(P.pic)
else a.pic & Pfeat(i)(P.pic)

let stype := Pfeat(i)(PT)
let x := Pfeat(i)(PX); let y := Pfeat(i)(PY)
if stype = "geo" then {
xpos := truncate(x(l)-20)
ypos := truncate (y(l)-15); xposn := 0; xposx := 40 }
else {
xpos := truncate(x(l)-20); ypos := truncate (y(l))
xposn := -20; xposx := 20 }
xpos := truncate((xpos - xmin) * xlen / (xmax - xmin))
ypos := truncate((ypos - ymin) * ylen / (ymax - ymin))
if XZR = 0 then {

if ypos+4 0 < YOR and ypos > YOL do
if xpos+40 < XOR and xpos > XOL do {
let plotwin := limit screen to 40 by 40 at xpos, ypos
draw(plotwin, a.pic, xposn-10, xposx+10, 0, 60) } }

else {
if ypos+40 < YZR and ypos > YZL do

if xpos+40 < XZR and xpos > XZL do {
let plotwin := limit screen to 4 0 by 40 at xpos, ypos
draw(plotwin, a.pic, XZL, XZR, YZL, YZR) } }

}
end

let retType = proc(*string types.vec; string MapChosen; pntr Atable)
begin

let size := if upb(types.vec) > 0 then upb(types.vec) - lwb (types.vec) +
else upb(types.vec) - lwb(types.vec)

if size > 0 do 1
let typeid := vector l::size of ""
let typetable := vector l::size of nil
Rec(range+4, Y .dim(screen)-116, out.range-8, 36,"Operation :", "fixbl3",

"begining", false)
let thepic := [0.0, 0.0]
let Enhpic := [0.0, 0.0]
for i=l to size do {

if types.vec(i) = "Polygons" then RetApic(MapChosen, Atable)
else if types.vec(i) = "Lines" then RetLpic(Mapchosen, Atable)
else if types.vec(i) ■= "Points" do RetPpic(MapChosen, Atable)

! Enhpic := if i = 1 then thepic
! else Enhpic & thepic }

!if XZR = 0 then draw(gw, Enhpic, XOL, XOR, YOL, YOR)
!else draw(gw, Enhpic, XZL, XZR, YZL, YZR)
})

end
let class.code = proc(int stored.code; *int retobj -> bool)

begin
let match ;= false
let the.code := retobj(1)
let the.class := retobj(2)
if the.class = 4 then

if stored.code = the.code do match := true
else if the.class = 3 then {

stored.code := truncate(stored.code/1000) * 1000

if stored.code =* the.code do match := true }
else if the.class ** 2 then {

stored.code := truncate(stored.code/100000) * 100000
if stored.code = the.code do match := true }

else if the.class = 1 do {
stored.code := truncate(stored.code/10000000) * 10000000
if stored.code = the.code do match := true}

!write the.code, stored.code
match

end
let retfromA = proc(*int retvec; string mapchosen; pntr atable)

begin
!write mapchosen
let Afeat := s .lookup(mapchosen, atable)(AST)
! write aname
let asize := upb(Afeat) - lwb(Afeat) + 1
let featid := 0
let a.pic := [0.0, 0.0]
let ao.pic := [0.0, 0.0]
let features := vector l::asize of nil
let nfeatures := 0
for i=l to asize do {

featid := Afeat(i)(AID)
let does.it.match := class.code(featid, retvec)
if does.it.match do {

nfeatures := nfeatures + 1
a.pic := Afeat(i)(FA.pic)
ao.pic := Afeat(i)(anypic)
pol.count := pol.count + 1
polygon.vec(pol.count) := Afeat(i)(ATN)
!features(nfeatures) = Estr("E", featid, a.pic, ao.pic)
if XZR = 0 then { draw(gw, ao.pic, XOL, XOR, YOL, YOR)

draw(gw, a.pic, XOL, XOR, YOL, YOR) }
else { draw(gw, ao.pic, XZL, XZR, YZL, YZR)

draw(gw, a.pic, XZL, XZR, YZL, YZR) }
}

}
end

let retfromL = proc(*int retvec; string mapchosen; pntr atable)
begin

let Lfeat := s .lookup(mapchosen, atable) (LST)
let lsize := upb(Lfeat) - lwb(Lfeat) + 1
let featid := 0
let a.pic := [0.0, 0.0]
let ao.pic := [0.0, 0.0]
let features := vector l::lsize of nil
let nfeatures := 0
for i=l to lsize do {

featid := Lfeat(i)(LID)
let does.it.match := class.code(featid, retvec)
if does.it.match do {

nfeatures := nfeatures + 1
a.pic := Lfeat(i)(FL.pic)
line.count := line.count + 1
line.vec(line.count) := Lfeat(i)(LTN)
!features(nfeatures) = Estr("E", featid, a.pic, ao.pic)
if XZR = 0 then draw(gw, a.pic, XOL, XOR, YOL, YOR)
else draw(gw, a.pic, XZL, XZR, YZL, YZR)
}

}
end

let retfromP = proc(*int retvec; string mapchosen; pntr atable)
begin

let Pfeat := s .lookup(mapchosen, atable) (PST)
let psize := upb(Pfeat) - lwb(Pfeat) + 1
let featid := 0
let a.pic := [0.0, 0.0]
let ao.pic := [0.0, 0.0]
let features := vector l::psize of nil
let nfeatures := 0
for i=l to psize do {

featid := Pfeat(i)(PID)
let does.it.match := class.code(featid, retvec)
if does.it.match do {

nfeatures := nfeatures + 1

a.pic := Pfeat(i)(P.pic)
point.count :“ point.count + 1
point.vec(point.count) := Pfeat (i) (PTN)
!features(nfeatures) = Estr("E", featid,
}

a.pic, ao.pic)
}

end
let retEntity = proc(*int retent; string MapChosen; pntr Atable)

begin
retfromA(retent, Mapchosen, Atable)
retfromL(retent, MapChosen, Atable)
retfromP(retent, MapChosen, Atable)

end
let retT.E = proc(*int retent; *string retentl; string Mapchosen; pntr Atable)

begin
let NofType := upb(retentl) - lwb(retentl) + 1
for k = 1 to NofType do

case true of
retentl(k) = "Polygons"
retentl(k) = "Lines"
retentl(k) = "Points"
default

end
let selectEntity = proc(-> *int)

begin
let the.code.detail := vector 1::2 of 0
the.code.detail := obtain.code()
xor detail onto detail
the.code.detail

end
let retT.Layer = proc(*string lvec, tvec; string MapChosen; pntr Atable)

begin
let lsize := upb(lvec) - lwb(lvec) + 1
let layerid := vector lrrlsize of 0

retfromA(retent,
retfromL(retent,
retfromP(retent,
{ }

MapChosen,
Mapchosen,
Mapchosen,

Atable)
Atable)
Atable)

for i=l to lsize do
layerid(i) : = case true of

lvec(i) = "Building" 2
lvec(i) = "Delimiter" 6
lvec(i) = "Desig. Area" 1
lvec(i) = "Hydrography" 7
lvec(i) = "Hypsography" 8
lvec(i) = "Land Cover" 9
lvec(i) = "Road & Rail" 4
lvec(i) = "Structure" 3
lvec(i) = "Utility" 5
default

let the.pic := E o o o o

let tsize ;= upb(tvec) - lwb(tvec)
for k=l to tsize do

if
+ 1

e do
tvec(k) = "Polygons" then {
let Afeat := s .lookup(MapChosen, Atable)(AST)
let asize := if upb(Afeat) > 0 then upb(Afeat) - lwb(Afeat) + 1

else upb(Afeat) - lwb(Afeat)
if asize > 0 do

for i=l to asize do
begin

let Aid := Afeat(i)(AID)
let stripcode := codestrip(Aid)
for j=l to lsize do {

if stripcode = layerid(j) do
the.pic := Afeat(i)(anypic) & Afeat(i)(FA.pic)

if XZR = 0 then draw(gw, the.pic, XOL, XOR, YOL, YOR)
else draw(gw, the.pic, XZL, XZR, YZL, YZR) }

end
}

else if tvec(k)
let Lfeat :=
let Lsize ;=

= "Lines" do {
s .lookup(MapChosen, Atable)(LST)
if upb (Lfeat) > 0 then upb(Lfeat) - lwb(Lfeat) + 1

else upb(Lfeat) - lwb (Lfeat)
do
Lsize do

if lsize > 0
for i=l to

begin
let Lid := Lfeat(i)(LID)
let stripcode := codestrip(Lid)
for j=l to lsize do {

if stripcode = layerid(j) do
the.pic := Lfeat(i)(FL.pic)

if XZR = 0 then draw(gw, the.pic, XOL, XOR, YOL, YOR)
else draw(gw, the.pic, XZL, XZR, YZL, YZR) }

end
}

end
let retrieve = proc()

begin
xor screen onto screen
prepformC'Data Retrieval")
let total.menu = limit screen to 242 by 410 at xt-91, 95!Frog
xor total.menu onto total.menu
let atable := s .lookup("Maps", mainDB)
let key.names = table.t o .text(atable)
let the.top := upb(key.names)
let choosemap = set.up.choose(key.names)(do.choose)
let mapchosen = choosemap("Choose Map of:", xmstart+50, 120)
XOL := s .lookup(mapchosen,atable)(XL)
YOL := s .lookup(mapchosen,atable)(YL)
XOR := s .lookup(mapchosen,atable)(XR)
YOR := s .lookup(mapchosen,atable)(YR)
let parwin := limit screen to length(mapchosen)*8 +30 by 36 at range+80,

Y.dim(screen)-80
text.write(10, 12,mapchosen,"fixl3",parwin)
let the.grid := s .lookup(mapchosen, atable)(Grid)
let x.grid := XOL + the.grid
let y.grid := YOL + the.grid
let PIC := [0.0,0.0]
let i := 1
while x.grid <= XOR do

begin
PIC := if i = 1 then [x.grid,YOL] ̂ [x.grid,YOR] &

[XOL,y.grid] A [XOR,y.grid]
else PIC & [x.grid, YOL] * [x.grid, YOR] &

[XOL,y.grid] ̂ [XOR,y.grid]
draw (gw, PIC, XOL, XOR, YOL, YOR)
x.grid := x.grid + the.grid
y.grid := y.grid + the.grid
i : = i + 1

end
!let Afeat := s .lookup(mapchosen, atable)(AST)
!let Lfeat := s .lookup(mapchosen, atable)(LST)
!let Pfeat := s .lookup(mapchosen, atable) (PST)
!let Text := s .lookup(mapchosen, atable)(TST)
let operations = @1 of string ["Zoom In", "Zoom Out", "Start"]
let parwinl := limit screen to 120 by 30 at range+110,Y.dim(screen)-115
let finished := false
while "finished do {
let chooseoperation = set.up.choose(operations)(do.choose)
let operationchosen = chooseoperation ("OPTIONS ", xmstart+50, 120)
if operationchosen = "Zoom In" then {

xor parwinl onto parwinl
text.write(10, 12,operationchosen,"fixl3",parwinl)
zoomcounter := zoomcounter + 1
zoomin(PIC, thegrid, range, zoomcounter, 0, 0, gw)
xor parwinl onto parwinl }

else if operationchosen = "Zoom Out" then {
xor parwinl onto parwinl
text.write(10, 12,operationchosen,"fixl3",parwinl)
zoomout(PIC, thegrid, range, 0, 0, gw)
xor parwinl onto parwinl
zoomcounter := 0 }

else if operationchosen = "Start" then {
copy eimage onto emenu
copy timage onto tmenu
copy limage onto lmenu
let total.image := image 242 by 410 of off
copy total.menu onto total.image
let start := false
while -start do

begin
xor total.menu onto total.menu
copy total.image onto total.menu

if def.menu = "1" then copy limage onto lmenu
else if def.menu = "t" then copy timage onto tmenu
else if def.menu = "e" do copy eimage onto emenu
let retLvec = vector 1::12 of ""
let retTvec = vector 1::4 of ""
let retevec = vector 1::10 of ""
let retEvec := vector 1::10 of 0
let ii := 0; let jj := 0; let kk := 0; let kkk := 0
let done := false
while -done and -start do

begin
let lo := locator()
while -lo(the.buttons)(1) do lo := locator()
let xo := lo(X.pos)
let yo := lo(Y.pos)
while lo (the.buttons) (1) do lo := locator()
let am := checkm(xo, yo)
if def.menu = "1" and am = "1" then {

ii := ii + 1
retLvec(ii) := clayer(xo, yo)
if retLvec(ii) = "Done" do {

done := true
xor total.menu onto total.menu }

if retLvec(ii) = "Quit" do {
start := true
xor total.menu onto total.menu } }

else if def.menu = "t" and am = "t" then {
jj := jj + 1
retTvec(jj) := ctype(xo, yo)
if retTvec(jj) = "Done" do {

done := true
xor total.menu onto total.menu }

if retTvec(jj) = "Quit" do {
.start := true
xor total.menu onto total.menu } }

else if def.menu = "e" and am = "e" do {
kkk := kkk + 1
retevec(kkk) := centity(xo, yo)
if retevec(kkk) = "Proceed" then

done := true
else if retevec(kkk) = "Get Entity" then {

kk : = 1
retEvec := selectEntity() }

else if retevec(kkk) = "Quit" do {
i

start := true
xor total.menu onto total.menu } }

if -start then
activate(xo, yo)

else {
xor menuwinl onto menuwinl

ii := 0; jj := 0; kk := 0 }
end

if ii >= 1 and jj >= 1 then {
if ii = 1 do ii := ii + 1
i f j j = l d o j j : = j j + l
let retentl := vector l::ii-l of ""
let retent2 := vector 1::jj—1 of ""
for k = 1 to ii-1 do

retentl(k) := retLvec(k)
for k = 1 to j j — 1 do

retent2(k) := retTvec(k)
retT.Layer(retentl, retent2, mapchosen, atable) }

else
if jj >= 1 and kk >= 1 then {

if jj = 1 do jj : = j j + l
let retentl := vector l::jj-l of ""
for k = 1 to j j—1 do

retentl(k) := retTvec(k)
retT.E(retEvec, retentl, mapchosen, atable)

}
else {

if ii > 1 do (
let retent := vector l::ii-l of ""
for k=l to ii-1 do (

retent(k) := retLvec(k)
retLayer(retent, mapchosen, atable) } }

if jj > 1 do {
let retent := vector 1 r:j j —1 of ""
for k=l to j j —1 do {

retent(k) := retTvec(k)
retType(retent, mapchosen, atable) } }

if kk >= 1 do
retEntity(retEvec, mapchosen, atable)

}
end

}
else if operationchosen = "" do

finished := true }
let saving := message.proc("Save Results ?*’, "Yes", "No", xend-210, 120,

205, 140)
if saving do

begin
let atext := seditor("Enter Image Name", "", xstart+50, ystart+150,

200, 50)
let animage = image X.dim(screen) by Y.dim(screen) of off
not screen onto screen
copy screen onto animage
not screen onto screen
let QDB := open.database("Maplmages", "query", "write")
if QDB is error.record do QDB := create.database("Maplmages", "query"
if QDB is error.record do { write "Failed to open the database'n";

abort }
let Queries := s .lookup("TQ", QDB)
if Queries = nil do
Queries := table()
s .enter("TQ", QDB, Queries)
structure Query(string mapname; real XQL, YQL, XQR, YQR; *int PV, LV,

AV, TV; #pixel Maplmage)
let XI := 0.0; let Y1 := 0.0; let Xr := 0.0; let Yr := 0.0
if YZR = 0 then {

XI := XOL; Y1 := YOL; Xr := XOR; Yr := YOR }
else { XI := XZL; Y1 := YZL; Xr := XZR; Yr := YZR }
if point.count = 0 do point.count := 1
let pv := vector 1::point.count of 0
for k = 1 to point.count do

pv(k) := point.vec(k)
if line.count = 0 do line.count := 1
let lv := vector 1::line.count of 0
for k = 1 to line.count do

lv(k) := line.vec(k)
if pol.count = 0 do pol.count := 1
let av := vector l::pol.count of 0
for k = 1 to pol.count do

av(k) := polygon.vec(k)
if text.count = 0 do text.count := 1
let tv := vector 1::text.count of 0
for k = 1 to text.count do

tv(k) := text.vec(k)
s .enter(atext, Queries, Query(mapchosen, XI, Yl, Xr, Yr, pv, lv, av,

tv, animage))
if commit() ~= nil do

{ error.message("Query Results are not stored'n", -1, -1); abort }
end

end
end
structure modules3(proc()dataret)
let moduleDB := open.database("M", "m", "write")
if moduleDB is error.record do moduleDB := create.database("M", "m")
let the.module := s .lookup("Module3", moduleDB)
if the.module = nil do

begin
the.module := table()
s .enter("Module3", moduleDB, the.module)

end
s .enter("dataret", the.module, modules3(DataRet))

APPENDIX G

--- Appendix G: Hard-Copy Data Output Module

APPENDIX G: HARD-COPY DATA OUTPUT MODULE

This Appendix contains the listing of the program dealing with Hard-Copy Data Output.

First, the module retrieves the Global Procedures needed from the database 'Global.Proc',

then it lists the different procedures required and described in Chapter 10. Finally, the

module is stored in the database ’%$Modules'.

let DataOut = proc()
begin
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n"; abort)
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int->

string) xproc)
prcget("seditor") (xproc) }

let error.message={structure procpak(proc(string,int,int) xproc)
prcget("error.message")(xproc) }

let more={structure procpak(proc(*string,int,int) xproc)
prcget("more") (xproc) }

let form.generate={structure procpak(proc(-> pntr) xproc)
prcget("form.generate")(xproc)}

let form.null={structure procpak(proc(string,int,int,int,int,pntr) xproc)
prcget("form.null")(xproc) }

structure form.package(proc(pntr) Form.show;
proc() Form.all.show;
proc(string,int,int,int,int,bool,proc(),pntr ->

pntr) Form.add;
p roc(pntr) Form.remove;
p roc(string,pntr) Form.update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = {structure procpak(proc(*string -> pntr) xproc)
prcget("set.up.choose")(xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.t o .text = {structure procpak(proc(pntr -> *string) xproc)
prcget("table.t o .text") (xproc)}

let QDB := open.database("Maplmages", "query", "write")
if QDB is error.record do { write "Failed to open the database'n"; abort }
let Queries := s .lookup("TQ", QDB)
structure Query(string mapname; real XQL, YQL, XQR, YQR; *int PV, LV, AV,

TV; #pixel Maplmage)
let mainDB := open.database("MDB","data","write")
if mainDB is error.record do mainDB := create.database("MDB", "data")
if mainDB is error.record do { error.message("Cannot open database'n",-1,-1)

; abort }
let mapstable := s .lookup("Maps", mainDB)
structure m a p s (string Package, SerialNo, Scale, North;real XL, YL, XR, YR,

Grid; *pntr AST, LST, PST, TST)
structure Aholder(int ATN, AID; bool AP; real Xc, Yc; string AFN, AC;

*real AX, AY; pic anypic; real ADI, AD2; int NOI; *int Inc
; pic FA.pic)

structure Lholder(int LTN, LID; bool LP; string LFN, LC; *real LX, LY;
pic L.pic; real LD1, LD2; pic FL.pic)

structure Pholder(int PTN, PID; bool PP; string PFN, PC, PT; *real PX, PY;
pic P.pic)

structure Tholder(int Layer, Location; real xpos, ypos; string thetext, Font)
let xmstart := X .dim(screen)-250
let Sht := X.dim(screen) - 540
structure global.proc(proc(string, string, string, int, int, int, int ->

bool)MessageProc;
proc(int, int, string, string, fpixel)Text.Write;
proc(string -> real)StringToReal;
proc(string -> int)StringToInt;
proc(*real, int -> *real)MinMax;
proc(int, int, string -> int)Icon;
proc(real, real, real, string -> pic)Polygon;
proc(*real, *real -> pic)highlight;
proc (real, real,real, real -> pic)Drawline;
proc(int, int, int)box;
proc(int, int, int, int)rectangle;
proc(int, int, int, int, string, string, string, bool)Rectan
proc(int, #pixel)North.Dir;

proc(int -> string)Feature.Type;
proc(pic, pic, int, int, int, #pixel)Zoomout;
proc(pic, pic, int, int, int, int, tpixel)Zoomin;
proc(*real, *real, real, real, real, real, int -> bool)Check
proc(string)Prepform)

let ProcDB := open.database("Proc.Lib", "proc", "write")
let GLOBALS := s .lookup("Procedures", ProcDB)
let message.proc = GLOBALS(MessageProc)
let text.write = GLOBALS(Text.Write)
let stringtoreal = GLOBALS(StringToReal)
let stringtoint = GLOBALS(StringToInt)
let minmax = GLOBALS(MinMax)
let icon = GLOBALS(Icon)
let polygon = GLOBALS(Polygon)
let Highlight = GLOBALS(highlight)
let drawline = GLOBALS(Drawline)
let Box = GLOBALS(box)
let rec = GLOBALS(rectangle)
let Rec = GLOBALS(Rectangle)
let north.dir = GLOBALS(North.Dir)
let feature.type = GLOBALS(Feature.Type)
let checkin = GLOBALS(Checkin)
let prepform = GLOBALS(Prepform)
let out.range := X .dim(screen) - Y.dim(screen)
let range := Y.dim(screen)
let gw = limit screen to range by range at 0, 0
let xl := 0.0; let yl := 0.0
let xr := 0.0; let yr := 0.0
let the.win = limit screen to out.range-30 by 60 at range+10, 200
let winl = limit screen to 40 by 30 at range+20, 202
let win2 = limit screen to 4 0 by 30 at range+135, 202
let Bl = vector 1::100 of 0.0
let B2 = vector 1::100 of 0.0
let fod := nullfile
let N := 0
let tempN := 0
let showSymbol := proc(pntr P; string I; int W); nullproc
showSymbol := proc(pntr P; string I; int W)

begin
Iwrite I, class.identifier(P)(1 | 10)
case true of
P is trnsfrm.strc:

begin
case true of

P(trnsfrm)=1: write I, "Scale by ", P(trnsfrm.x):6, ", ",
P(trnsfrm.y):6

P(trnsfrm)=2: write I, "Shift by ", P(trnsfrm.x):6, ”, ",
P(trnsfrm.y):6

P(trnsfrm) =3: write I, "Rotate by ", P(trnsfrm.x):6, " degrees "
default: write "?????"

showSymbol(P(mrtre), I ++ " ", 0)
end

P is oprtn.strc:
begin

if P (opoo) = W
then begin

showSymbol(P(lft), I, P(opoo))
showSymbol(P(rght), I, P(opoo))

end
else begin

if N > 0 do
begin

if N=1 and Bl(N) = 0 and B2(N) = 0 then { }
else if N > 1 and Bl(N) = 0 and B2(N) = 0 then

{ N := N - 1
output fod, N,"'n"
for i=l to N do

output fod, Bl(i), B2(i),"'n" }
else {
output fod, N,"'n"
for i=l to N do

output fod, Bl(i), B2(i),"'n" }
N := 0

end
case true of

P(opoo) = 1 : {}
P(opoo) = 2: {}
default: write "????"

showSymbol(P (lft), I ++ " ", P(opoo))
showSymbol(P(rght), I ++ " ", P(opoo))

end
end

P is poin.strc:
begin

N := N+l
Bl(N) := P(pnx)
B2(N) := P(pny)

end
default: write "????? ", class.identifier(P),"'n"

end
let showOne = proc(pic apic -> bool)

begin
N := 0
showSymbol(pic.pntr(apic), "", 0)
if N > 0 do

begin
tempN := N
N := 0

end
true

end
let Laserdump = proc()

begin
error.message("When Ready Click the Mouse", -1, -1)
let dummy := system("date '"+Map Output for $USER on %a %h %d, %y at

%H:%M.) show'" > /tmp/lsd89.$$")
dummy := system("screendump | strip_head.sun3 | bin_hex.sun3 |

cat lsd89.head - lsd89.rear /tmp/lsd89.$$ lsd89.tail | lpr -PlwslOl")
end

let Plotdump = proc(string o.mapname, n.mapname; *int Aid, Lid, Pid; pntr atable)
begin

rec(range+11, 201, out.range-32, 58)
text.write(10, 40, "Total Current", "fixbl3", the.win)
output fod, o.mapname,"'nM
output fod, xl, " ", yl, " ", xr, " ", yr, "'n"
let asize := if upb(Aid) > 0 then upb(Aid) - lwb(Aid) + 1

else upb(Aid) - lwb(Aid)
let lsize := if upb(Lid) > 0 then upb(Lid) - lwb(Lid) + 1

else upb(Lid) - lwb(Lid)
let psize := if upb(Lid) > 0 then upb(Pid) - lwb(Pid) + 1

else upb(Pid) - lwb(Pid)
let the.total := asize + lsize + psize
let abool := false; let lbool := false; let pbool := false
!if asize = 1 then {

!let Afeat := s .lookup(o.mapname, atable)(AST)
while -abool do

if asize > 0 do
begin

if Aid(l) = 0 then { write Aid(l); the.total := the.total - 1;
abool := true; write abool }

else {
xor winl onto winl

xor win2 onto win2
print the.total at range+30, 210
let Afeat := s .lookup(o.mapname, atable)(AST)
for i = 1 to asize do {

let k := Aid(i); write k
!let k := Afeat(kk)(ATN)
print i at range+145, 210
let thepic := Afeat(k)(anypic)
let rpic := Afeat(k)(FA.pic)
let fpic := thepic & rpic
let thebool := showOne(fpic)
if i = asize do abool := true } }

end
if lsize > 0 do {

xor winl onto winl
xor win2 onto win2
print the.total at range+30, 210

let Lfeat := s.lookup(o.mapname, atable)(LST)
for i = 1 to lsize do {

print i+asize at range+145, 210
let k := Lfeat(i)(LTN)
let thepic := Lfeat(k)(FL.pic)
let thebool := showOne(thepic)
} }

if psize > 0 do {
xor winl onto winl
xor win2 onto win2
print the.total at range+30, 210
let Pfeat := s .lookup(o.mapname, atable)(PST)
for i = 1 to lsize do {

print i+asize+lsize at range+145, 210
let k := Pfeat (i) (PTN)
let thepic := Pfeat(k)(P.pic)
let thebool := showOne(thepic)
} }

xor the.win onto the.win
end

let parwinl := limit screen to 120 by 30 at range+110,Y.dim(screen)-85
prepform ("Data Output")
let MapChosen := ""
let OMapName := ""
let finished := false
while -finished do

begin
let key.queries = table.to.text(Queries)
let choosemap = set.u p .choose(key.queries)(do.choose)
let mapchosen = choosemap("Choose Map of:", xmstart+50, 120)
if mapchosen = "" or mapchosen = " " then finished := true
else {
let theimage := s .lookup(mapchosen, Queries)(Maplmage)
OMapName := s .lookup(mapchosen, Queries)(mapname)
text.write (10, 14, OMapName,"fixl3",parwinl)
xl := s .lookup(mapchosen, Queries)(XQL)
yl := s .lookup(mapchosen, Queries)(YQL)
xr := s .lookup(mapchosen, Queries)(XQR)
yr := s .lookup(mapchosen, Queries)(YQR)
copy theimage onto gw
MapChosen := mapchosen
fod := create(MapChosen ++ ".coo", 422)
}

end
let aid := s .lookup(MapChosen, Queries)(AV)
let lid := s .lookup(MapChosen, Queries)(LV)
let pid := s .lookup(MapChosen, Queries)(PV)
let operations = @1 of string ["Laser Printer", "Plotter"]
!write MapChosen
finished := false
while -finished do

begin
let chooseoperation = set.up.choose(operations)(do.choose)
let operationchosen = chooseoperation("Select Output Device",

xmstart+50, 120)
if operationchosen = "Laser Printer" then LaserdumpO
else if operationchosen = "Plotter" then Plotdump(OMapName, Mapchosen,

aid, lid, pid, mapstable)
else if operationchosen = "" do finished := true

end
close(fod)
end
structure modules4(proc()dataout)
let moduleDB := open.database("M", "m", "write")
if moduleDB is error.record do moduleDB := create.database("M", "m")
let the.module := s .lookup("Module4", moduleDB)
if the.module = nil do

begin
the.module := table()
s .enter("Module4", moduleDB, the.module)

end
s.enter("dataout", the.module, modules4(DataOut))

APPENDIX H

Appendix H: The Operational Management System

APPENDIX H: THE OPERATIONAL MANAGEMENT SYSTEM

This Appendix lists the main part of the system. It is concerned with linking the different

modules into an operational organization, thus forming the operational management system

discussed in Chapter 6. This program also handles the calls to the Global Procedures.

let FONTsdb:=open.database("FONTS","friend","read")
let fixl3 = s.lookup("fixl3", FONTsdb)
let bold = s .lookup("fixbl3",FONTsdb)
let big = s .lookup("met22",FONTsdb)
let large = s.lookup ("hci45i",FONTsdb)
let procsdb:=open.database("rutilities","friend","read")
if procsdb is error.record

do {write "No utilities database - do prcdbmaker first'n”; abort}
let prcget=
begin
structure procpak(proc(string -> pntr) xproc)
s .lookup("prcget",procsdb)(xproc)

end
let seditor={structure procpak(proc(string,string,int,int,int,int-> string) xproc

prcget("seditor") (xproc) }
let error.message={structure procpak(proc(string,int,int) xproc)

prcget("error.message")(xproc) }
let more={structure procpak(proc(*string,int,int) xproc)

prcget("more") (xproc) }
let form.generate={structure procpak(proc(-> pntr) xproc)

prcget("form.generate")(xproc)}
let form. null={ structure procpak (proc (string, int, int, int, int,pntr .) xproc)

prcget("form.null") (xproc) }
structure form.package(proc(pntr) Form.show;

proc() Form.all.show;
proc (string,int,int,int,int,bool,proc(),pntr -> pntr

) Form.add;
proc(pntr) Form.remove;
proc(string,pntr) Form, update;
proc() Form.clear;
proc(-> pntr) Form.mouse;
proc() Fender;
proc() Form.monitor)

let set.up.choose = {structure procpak(proc(*string -> pntr) xproc)
prcget("set.up.choose")(xproc)}

structure chooser.pack(proc(string, int, int -> string) do.choose;
proc(string) add.choose;
proc(string) remove.choose;
proc(int, int) list.choose)

let table.to.text = {structure procpak(proc(pntr -> *string) xproc)
prcget("table.t o .text") (xproc)}

structure global.proc(proc(string, string, string, int, int, int, int ->
bool)MessageProc ;

proc(int, int, string, string, #pixel)Text.Write;
proc (string -> real)StringToReal;
proc(string -> int)StringToInt;
proc(*real, int -> *real)MinMax;
proc(int, int, string -> int)Icon;
proc(real, real, real, string -> pic)Polygon;
proc(*real, *real -> pic)highlight;
proc(real, real,real, real -> pic)Drawline;
proc(int, int, int)box;
proc(int, int, int, int)rectangle;
proc(int, int, int, int, string, string, string, bool

)Rectangle;
proc(int, #pixel)North.Dir;
proc(int -> string)Feature.Type;
proc(pic, pic, int, int, int, #pixel)Zoomout;
proc(pic, pic, int, int, int, int, #pixel)Zoomin;
proc(*real, *real, real, real, real, real, int -> bool)Check
proc(string)Prepform)

let ProcDB := open.database("Proc.Lib", "proc", "write")
let GLOBALS := s .lookup("Procedures", ProcDB)
let message.proc = GLOBALS(MessageProc)
let text.write = GLOBALS(Text.Write)
let stringtoreal = GLOBALS(StringToReal)
let stringtoint = GLOBALS(StringToInt)
let minmax = GLOBALS(MinMax)
let icon = GLOBALS(Icon)
let polygon = GLOBALS(Polygon)
let Highlight = GLOBALS(highlight)
let drawline = GLOBALS(Drawline)
let Box = GLOBALS(box)
let rec = GLOBALS(rectangle)
let Rec = GLOBALS(Rectangle)

let north.dir = GLOBALS(North.Dir)
let feature.type = GLOBALS(Feature.Type)
let checkin = GLOBALS(Checkin)
let prepform = GLOBALS(Prepform)
structure modulesl(proc()dataentry)
structure modules2(proc()cartorep)
structure modules3(proc()dataret)
structure modules4(proc()dataout)
let moduleDB := open.database("M", "m", "write")
let Modulel := s .lookup("Modulel", moduleDB)
let trans.code = Modulel(dataentry)
let Module2 := s .lookup("Module2", moduleDB)
let data.prep = Module2(cartorep)
let Module3 := s .lookup("Module3", moduleDB)
let retrieve = Module3(dataret)
let Module4 := s .lookup("Module4", moduleDB)
let result = Module4(dataout)
let first.screen = proc()

begin
R e c (0/0,X.dim(screen),Y .dim(screen),"Ps - GIS","cou20",

"middle", true)
let borderl = limit screen to X.dim(screen)-10 by Y.dim(screen)-43 at 5,5
let border2 = limit screen to X.dim(screen)-20 by Y.dim(screen)-53 at 10,10
nor borderl onto borderl
nor border2 onto border2

end
let finished := false
let first := 1
let mtitle = string.to.tile(" OPTIONS ","cou20")
let mentries = 01 of #pixel

[string.to.tile("DATA TRANSFER","fixl3"),
string.to.tile("DATA ENHANCEMENT","fixl3"),
string.to.tile("DATA RETRIEVAL","fixl3"),
string.to.tile("OUTPUT","fixl3"),
string.to.tile("QUIT","fixl3")]

let mactions = @1 of proc(ctpixel,cint)
[proc(c#pixel Y;cint z);trans.code (),
proc(c#pixel Y;cint z);data.prep (),
proc(ctpixel Y;cint z);retrieve (),
proc(ctpixel Y;cint z);result (),
proc(ctpixel Y;cint z);finished := true]

xor screen onto screen
let locate = proc(string anystring, Font -> int)

begin
let size := case true of

Font = "met22" : 14
Font = "hci45i" : 22
Font = "cou20" : 14
default : 8

let alength := truncate(length(anystring)* size / 2)
let pos := X.dim(screen) div 2 - alength
pos

end
let h.xpos := locate("GLASGOW UNIVERSITY", "met22")
copy string.to.tile("GLASGOW UNIVERSITY","met22") onto limit screen at h.xpos,

Y .dim(screen) -100
h.xpos := locate ("Ps-GIS", "hci45i")
copy string.to.tile("Ps-GIS","hci45i") onto limit screen at h.xpos,

Y.dim(screen) -200
h.xpos := locate ("Persistent Geographic Information System", "cou20")
copy string.to.tile("Persistent Geographic Information System","cou20") onto

limit screen at h.xpos, Y.dim(screen) -250
let mmenu = menu(mtitle,mentries,true,mactions)
write code(27),"N",code(27) , "I"
while ~finished do

begin
let pdone := false
let mxpos := X.dim(screen) - 190
let mypos := 12 0
while pdone = false do pdone := mmenu(mxpos,mypos)

end
write code(27),"E",code {21),"W"
finished := false

