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Abstract

Partial evaluation is becoming ever more promising as a programming tool. arly
partial evaluators depended over much on the source program being written in a
particular style, and needed certain ad hoc optimisations to produce good results.
The practice of partial evaluation is now fairly well developed but the theoretical

underpinnings are not equally well understood.

A partial evaluator takes a program, together with some of the input to the program,
and produces a new program. This new, or residual, program is an optimised version
of the old, having taken the input data into account. Work undertaken at DIKU in
Copenhagen has shown the importance of prior analysis of the program. This binding-
time analysis discovers which values within the program may be computed during
partial evaluation—called static values- -and which values may not  the dynamic

values.

In this thesis we propose using domain projections in binding-time analysis. This
allows a greater level of data separation than before because values are no longer
trecated atomically. In particular, we are able to pinpoint static values within data
structures containing both static and dynamic parts. An interesting consequence of
using domain projections is that we are able to demonstrate an intimate relationship

between binding-time analysis and strictness analysis.

Dependent sum and product are familiar from constructive type theory. We give a
less familiar domain-theoretic definition and show how projections determine partic-
ular dependent sums. The practical application of this result is to generate residual
functions whose types depend on the static values from which they were produced.
Certain optimising techniques, such as tag removal and arity raising, arise as a direct

consequence.

We extend the use of projections to polymorphic programs, giving a practical ap-
plication of developments in the theory of polymorphism. Polymorphic functions
arc regarded as natural transformations between appropriate functors. This leads to
three benefits: polymorphic functions are analysed once and the result reused; the
static input to polymorphic functions is described by polymorphic projections; which
reduces the search space of the analysis; and polymorphic functions are specialised

to polymorphic values, leading to polymorphic residual functions.



Preface

This thesis 1s submitted in partial fulfillment of the requirements for a Doctor of
Philosophy Degree at Glasgow University. It comprises a study of partial evaluation,
with the thesis that domain projections provide an important theoretical and practical

tool for its development.

Our aim, therefore, is not so much to describe a stronger or more robust partial
evaluator than has been achieved hitherto, but to improve our understanding of the
partial evaluation process. Because of this much of the thesis is theoretical. However,
to demonstrate that the ideas are also practical, they have been implemented. As a
result, the chapters tend to alternate between theory and practice. In Chapter 1 we
explore the principles of partial evaluation and in Chapter 2 we study the algorithms
and techniques used. In Chapters 3 and 4 we address the issue of binding-time anal-
ysis. Chapter 3 contains theory, including the relationship between congruence in
binding-time analysis and safety in strictness analysis, and Chapter 4 the practice -
the equations used in an implementation and a proof of their correctness. In Chapter
5, we discuss the nature of residual functions and their run-time arguments, and de-
velop a theoretical framework based on dependent sums of domains. The practical
implications of this are seen in Chapter 6 where we bring the material from the pre-
vious chapters together in a working projection-based partial evaluator. In Chapter
7 we turn our attention to polymorphism to address some of the issues it raises,
and Chapter 8 concludes the thesis. The appendices which follow contain annotated

listings of the programs used to construct the final polymorphic partial evaluator.

To a large extent this thesis is self contained. No prior knowledge of partial eval-
uation is nceded, since a comprehensive introduction 1s included.  However, some
knowledge of other areas is assumed, in particular an elementary understanding of
both functional languages and domain theory. For Chapters 5 and 7 a little category
theory is useful but, again, nothing too deep. In cach case appropriate background

material may be found in any of the standard references. Bird and Wadler provides



m

an excellent introduction to functional programming [BW88] and Schmidt’s chapters
on domain theory are very readable [Sch86]. There are few ecasy introductions to
category theory, but both Rydcheard and Burstall [RB88] and Picree [Pier88] could
be recommended. Finally, the reader is encouraged to follow up some of the many

excellent references on partial evaluation that are included in the bibliography.
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Chapter 1

Partial Evaluation in Principle

There seems to be a fundamental dichotomy in computing between clarity and ef-
ficiency. From the programmer’s point of view it is desirable to break a problem
mto subproblems and to tackle cach of the subproblems independently. Once these
have been solved the solutions are combined to provide a solution to the original
problem. If the decomposition has been well chosen, the final solution will be a clear
implementation of the algorithm, but because of intermediate values passing between
the various modules, whether they are functions and procedures or separate processes
connected by pipes, the solution is unlikely to be as efficient as possible. Conversely, if
efficiency is considered paramount, many logically separate computations may need to
be performed together. As a consequence, the algorithm will be reflected less directly
in the program, and correctness may be hard to ascertain. Thus, in most programs

we find a tradeofl between these conflicting requirements of clarity and efficiency.

An extreme form of modularisation is to write programs in an interpretive style, where
flow of control is determined by stored data. Programs in this style are comparatively
casy to prove correct and to modify when requirements change, but are well known
to have extremely poor run-time behaviour— often an order of magnitude slower than
their non-interpretive counterparts. Because of this, the interpretive style tends to
be used infrequently and in non time-critical contexts. Instead, flow of control is
determined deep within the program where a reasonable level of efficiency may be

obtained.

Partial evaluation is a serious attempt to tackle this issue. In principle it allows the
programmer to write in a heavily interpretive style without paying the corresponding
price in efficiency. At partial cvaluation timne (compare with compile time) many of

the interpretive computations are performed once and for all, and a new program is
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produced. Flow of control decisions are moved from stored data into the structure of

the new program.

Correctness is paramount for partial evaluation to be widely useful. Optimisation
phases in many compilers regularly introduce bugs and so are often distrusted by
programmers. This is rarely serious because most optimisers may be switched off
with little loss—they often give only a marginal improvement anyway. With partial
evaluation the situation is very different. In choosing an interpretive style the pro-
grammer will be relying on the partial evaluation process for making the program
rcasonably efficient. If the transformation does not preserve the semantics of the
source program, then the partial evaluation process cannot be relied upon, and the

programmer will return to the original style.

The purpose of this chapter is to survey partial evaluation. Our intention is to provide
intuition as to what partial evaluation is and to consider some applications. The name
partial evaluation is one of a number used to describe the same process. Others are
mired computation (because the computation operates on a mix of program text
and program data), program specialisation (because the new program is a specialised
version of the old one), and program projection (because in some sense we construct

a projection collapsing the first argument).

1.1 Correctness

Let us put all this in a more concrete setting. Suppose we have a program which
we intend to run often. Also suppose that for many of the runs some of the input
data will remain constant. This means that many of the same computations will be
performed repeatedly. We would like to generate a new program from the old one
incorporating the data that remains constant. The new program should have the
same behaviour when given the remainder of the input as the onginal did with all
the input. Moreover, those computations that would have been performed repeatedly
should be performed just once--when the new program is being produced. This latter
condition can never be completely satisfied but exists as a goal of partial evaluation.
In contrast, the former condition is a requirement that should be satisfied by every

partial evaluator. We can express it more formally.

For historical reasons we call our partial evaluator mur (from “mixed computation”).
Suppose that the program takes two arguments and that we want to specialise it to

its first argument. If we define,
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fo=miz fr

then we require that

fxy:fxy

The notation we use is intended to draw a distinction between a program and the
function or operation that the program computes. Thus if f is a function, then f is
some program defining that function. More generally, if r is a value of any type then =
is a program (or piece of program text) defining that value. Thus the function mir (as
defined by a program mir) takes two programs as arguments and returns a program
as a result!. Similarly, in the example above, f; is a program defining the specialised
function f;. Notice that this notation does not preclude some non-overlined variable

from having a program valuc.

We describe the first parameter as static. We expect that it will not vary for some
number of runs but, more importantly, its value is known during partial evaluation.
The second parameter, whose value is not known until run-time, is described as
dynamic. Clearly there are natural generalisations of the correctness condition, where
a function may have many parameters, some subset of which are static. One of the
aims of this thesis is to generalise further, so that individual parameters may have

both static and dynamic parts.

1.2 Applications

Partial evaluation has a long history. Lombardi and Raphael used it in LISP to
handle incomplete data [ILR64]. Futamura [[Fut71] realised that partial evaluation
could be used to derive compilers from interpreters. We will look at his idea in
some detail. Boyer and Moore used partial evaluation in a theorem prover for LISP
functions [BM75], and Darlington and Burstall used it to optimise procedures [DB75).
So far, partial evaluators have not been sufficiently powerful to be widely useful,
even though a team at Linkoping University considered using partial evaluation as a
general purpose programming tool as early as 1976 [BHHOST76]. More recently, interest

in partial evaluation has resurfaced as the process has become hetter understood.

"The overbar notation has been introduced here instead of the more common form L mix f x
[JSSB5] as it may express multiple levels of representation more easily. Note that overbar is not a
function: f and f are merely distinct lexical symbols whose meanings are refated.
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In this section we will consider some of the most promising applications of program
specialisation. Many of these have appeared in [Ersh82], [Fut83] and [Tur86] amongst

others.

1.2.1 Automatic Compilation

Historically, automatic compilation was one of the earliest applications of partial
evaluation to be proposed. Suppose that int is an interpreter for some language, and
that prog is a program in that language. When we run the program prog using the

interpreter along with some input data dafa we compute the result,
result = int prog dala

For many runs of int we would expect the prog argument to be constant, varying
only the data argument. The same instructions will have to be interpreted again and

again. Let us therefore specialise the interpreter to its first argument.
tnlyre, = mir nt prog

The result of the specialisation is a program (in the language in which wnf is written)

which computes some function int By the correctness condition we know that,

prog:

nlyroy data = int prog data

The action of int,,,, on the data s the same as the action of prog when interpreted
by int. But, unlike prog, the function int,,,, does not require an interpreter. Thus
int,,,, 1s a compiled equivalent of prog. The computations usually performed by int
every time it 1s run will have been performed by miz during specialisation. These are
the computations that relate to the static properties of prog. In principle; the only
computations of int that int,,,, needs to perform are those that depend on data (that
is, on the dynamic properties of prog). Of course this is an idealistic picture. How

far this ideal is attained depends on many factors.

This use of partial evaluation is known as the first Futamura projection.



CHAPTER 1. PARTIAL EVALUATION IN PRINCIPLE 3

1.2.2 Producing Compilers Automatically

We can take the process further. If we had many different programs to compile,
we would compute miz inf prog; for each of the programs prog;. The int parameter
to mizr is unchanged in each of these computations. So it likewise makes sense to
specialise miz to the interpreter program int. How do we do this? We use mir itself.
Applying the mizr equation to itself gives

miz;ﬂ—t = miz mix int

Again the result is a program computing a function. What sort of function is mir—?

By the correctness condition,

mir— prog = mix int prog

= nly,,
But tnt,,, is the compiled version of prog. The function mir— is therefore playing
the role of a compiler. This is the second Futamura projection. By specialising mir
to an interpreter for some language we obtain a compiler for that language. There is,
of course, no requirement that the two miz’s are identical as long as they are both

specialisers, but there is a certain elegance when they are the same.

We can take one final step. If we have many interpreters to turn into compilers, we
will need to calculate miz miz int; for each interpreter int;. In ecach case the mar

parameter remains unchanged. It makes sense, therefore, to specialise mir to itself.

MmiT — = mir Mmir miz
mr

By the correctness condition,

mir — nl = mir miz nl
mar

= mir—
int

The function miz— is a compiler generator. Given an interpretive definition of
a language (an executable denotational semantics, for example) mir — produces a
compiler. The potential of this, the third Iulaimura projection, was actually first
noticed by Turchin in 1979 [Tur79], but it was not until the mid-1980"s that it was
realised in practice. Working in a purely functional subsct of LISP) the gronp at

DIKU, Copenhagen, led by Neil Jones, produced a version of mar that was able to
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specialise a copy of itself to itself [JSS85]. Using the result (now called cogen by the
Danish group) they were able to convert interpreters into compilers for a number of
small example languages. The compilers produced code that ran between 5 and 20
times faster than the interpreted programs did, and the code quality of the compiler

itself was quite reasonable. In Chapter 2 we will study their algorithms in some detail.

Understanding precisely the link between compilers and interpreters is important.
Barzdin extracts a compiler basis from an interpreter and uses this to construct
a compiler [Bar88]. Bulyonkov and Ershov have undertaken complementary work
[BE88]. They attempt to understand where the traditional compiler structures come
from. Where in an interpreter are the proto versions of object code templates, symbol
tables, the stack, and so on? Is it possible for these structures to be created by partial

evaluation alone?

1.2.3 Embedded Languages

The goal of producing compilers automatically for production languages is still some
way ofl. Automatically generated compilers are unable to compete effectively against
hand written compilers, and for commercially available languages it is worth expend-
ing human effort to obtain high quality. In other situations, automatically produced
compilers are more appropriate. For example, Emanuelson and Haraldsson used par-
tial evaluation to compile extensions to LISP [ISHS80]. The extensions were defined
interpretively and, prior to execution, were optimised by partial evaluation. In the
reference they give a detailed example involving a pattern matching extension. Their

results compared well with those given by a commercial compiler.

The concept of language extension can be taken further. Some hard problems become
more tractable through the use of an intermediate language. The programmer writes
an interpreter for some problem-specific language, and then writes the solution to
the problem in that language. Occasionally it is convenient to have more than one
intermediate language and to form an interpretive tower, where cach language inter-
prets the one above. It is imperative to have some means of collapsing such towers
automatically once the program is written, because each interpretive layer represents
an order of magnitude loss of efficiency. Only when this is possible will this approach

to programming become practicable.

So far, the applications have been orientated towards programming languages. There

are other areas for which partial evaluation shows promise.
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1.2.4 Ray Tracing

In his Master’s thesis, Mogensen reports on an experiment involving ray tracing
[Mog86]. A ray-tracer is a function ray of two arguments: a scene s and a view-
point v. The result of computing ray s v is a picture of the scene as it appears from
the given viewpoint. Typically, ray-tracers are heavily interpretive -many flow-of-
control decisions are based on the scene which has to be constantly re-examined. If
the the ray-tracer is specialised to the scene, these control decisions become built
into the structure of the residual program. This program computes a function ray,
which, when given a viewpoint, draws the scene from that point. Because ray, is no
longer interpretive, the specialised ray-tracer is able to draw the scene rapidly from

any required viewpoint.

Surprisingly, Mogensen found that even if only one view was required, it proved to
be faster to specialise the ray-tracer and then run the specialised version, than it
was to run the original. In retrospect the reason is clear. In the original ray-tracer
the scene description is examined many times involving many repeated computations
whereas in the specialised version these are reflected i the program structure. This
parallels the familiar situation in programming where, for most programs, compiling

then running the program is faster than using an interpreter.

Similar principles may be scen at work in the following (speculative) examples.

1.2.5 Theorem Proving

A theorem prover takes a set of axioms and a theorem, and determines whether the
theorem is a consequence of the axioms or not. We could represent it as a function
prove taking two arguments, axioms a and theorem . Becanse of the interpretive
nature of prove and because the set of axioms a may be used repeatedly, it makes
sense to specialise prove to a. The result, prove,, is a theorem prover optimised to
prove theorems derivable from the axioms a. In essence prove is an interpreter for a
restricted “programming language” where sets of axioms correspond to “programs”.
Rather than interpret the “program” «a afresh for cach new theorem, we “compile” a

to give prove, to use instead.

Of course, instead of calculating mur prove a directly, we can first use mur — 1o obtain

a “compiler” for prove, namely mir, — . We can use this and compute mir, =, a to

obtain prove,. Morcover, if we have an alternate set of axioms a', we can apply
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mizr,—. to a' to produce prove,. This example shows that mir— is a compiler

generator in a broad sense of the term and 1s not restricted to programming languages.

1.2.6 Expert Systems

Very similar methods may be applied to expert systems. We can regard an expert
system as consisting of three parts, an inference engine infer, a set of rules r and a
set of facts f. Let us suppose that the result, given by infer r f, is the set of facts
deducible from f using the rules r. A general inference engine proceeds interpretively.
It takes the set of facts, chooses a rule, and determines whether the rule is applicable
to the facts. If so the newly inferred fact is added to the body of facts. Then the next
rule is considered, and so on. In practice this approach turns out to be too slow to be
useful, especially when many rules and facts are being manipulated. It is particularly
acute when the expert system is hierarchical, i.e. when there are rules that govern
the applicability of other rules. Usually, the problem is overcome by compiling the
expert systemn by hand (a process which is tedious, error-prone, and time-consuming)
yet the same effect may be obtained by specialisation. The residual program anfer,
is an inference engine customised to the set of rules 7. It s a function from facts to
facts that contains little or none of the original interpretive machinery. Of course, we
cannot hope that the efficiency gained by automatic specialisation will be as great as

is obtainable by hand, but the difference between the two may be quite small.

Turchin goes one stage further [Tur86]. Suppose that the body of rules is gradually
increasing. We produce specialised versions of infer to perform inference according
to the rules we already have, but we also retain the original unspecialised version of
infer in case any new rules are added. This allows the expert system to grow. What
is more, in quict periods the inference engine could be specialised to the new set of
rules to allow these to be handled more efficiently. This, Turchin postulates, may

correspond with what happens to us during sleep.

Of course, rather than use the general specialiser again and again we would use mur —
to produce one optimised to the task of specialising the inference engine mfer. This

is another example of “compiler generation™.

These examples do not exhaust the possible applications for partial evaluation. As a
final example, Consel and Danvy reported taking a clear but ineflicient string match-
ing algorithm and, by specialising it to the pattern, antomatically produced what was

essentially the Knuth-Morris-Pratt algorithm [CD89]. It is reasonable to expect that
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as partial evaluators become more powerful and robust many more applications will

be found.

1.3 How Strong is a Partial Evaluator?

The equations given earlier actually say nothing about how eflicient the programs
resulting from partial evaluation are. The equations are consequences of the S-m-n
theorem of recursive function theory. The theorem states that a specialised version
of a recursive function is itself an effectively constructible recursive function (that
1s, there exists a recursive function which acts as a general specialiser). A direct
implementation of the proof of the theorem leads to a trivial implementation of spe-
cialisation. Thus, suppose that f r y is a two parameter function and that we wish

to produce fx using some value X for r. We can do so by defining

fxy =Xy

and gain no improvement at all.

Fortunately, there are non-trivial implementations of partial evaluation but cach dif-
fers in power. Jones suggests a test for assessing their strength. Suppose that s_int

is a self interpreter for the language in which mir is written, so for any program f|

sanl f=f

Then we would hope that

mir s_int7 ~ f

where ~ is meant to imply that the two sides are comparable in size and efficiency. If

this equation is satisfied then miz is able to remove a complete layer of interpretation.

1.4 Related Topics

As with every area of study, partial evaluation does not stand on its own. We have
already alluded to the fact that it has much in common with compilation.  One

could argue that constant folding is like partial evaluation but on a very hmited
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scale, and that function or procedure unfolding to produce in-line code is more so.
Compiler generation techniques come even closer to mir technology. There has been
active rescarch in this area for some time producing familiar products like LEX and
YACC. Another example is the Cornell Synthesizer Generator [R'1T39] which produces

structure editors from grammars.

One motivation for automatic compiler gencration is the difficulty of producing se-
mantically correct, hand-written compilers. An automatic compiler generator would
take a denotational (or other) description of some language and produce a compiler
for that language. Any compiler generator needs to be proved correct, of course, but
the proof only has to be done once. In contrast, cvery hand-produced compiler needs
its own proof of correctness. An early attempt along these lines was Mosses” semantics
implementation system [Mos79] but the residual programs produced by the system
generally contained a large interpretive element. A later example, the CERES project

[Tof84], produced better results through the use of more sophisticated techniques.

Schmidt has explored the possibility of automatically recognising which parameters in
a denotational semantics may be implemented using the state or a stack ete. [Sch8g]
and Nielson’s two level type system attempts to separate compile-time and run-time
computations [Nie88]. To attack the problem from a different direction, action se-
mantics [MW8T7] defines interpreters in terms of combinators which manipulate facets.
There are facets to capture variable binding, value manipulation, state transition and
parallel communication. Facets are orthogonal in the sense that action in one facet
is independent of action in the others. It is hoped that separating these facets may

assist the production of eflicient compilers.

There are also similarities between partial evaluation and more general program trans-
formation methods. For example, fold/unfold transformations [BD77] are closely
mimicked in specialisation. Methods of program analysis are also relevant. As we
shall see in the next chapter, a prior program analysis is a vital part of the par-
tial evaluation process. In Chapter 3 we explore the link between this binding-time

analysis and the more familiar strictness analysis [AHST7].

Turchin’s supercompilation [Tur86] is more general than partial evaluation. The su-
percompiler supervises the evaluation of a program and compiles a residual program
from it. Optimisation can occur even when no input data is present, through the use
of driving. Expressions are driven across case-expressions, generating the informa
tion that (by assumption) the pattern suceceded. This information is nsed allowing

for more reduction than by partial evaluation alone. The same principle s seen in
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Wadler’s deforestation algorithm [Wad88]. Ensuring termination is still a big prob-
lem in partial evaluation, but it seems even worse when driving is present. Wadler
addresses this issue by placing heavy restrictions on the form of function definitions
to which his algorithm is applied. In contrast, Turchin applies his supercompiler to
arbitrary programs and unites two states when they are “dangerously similar™. This

works in many cases though non-termination still occurs.

1.5 maz Curries Programs

Before we close this chapter it will be useful to consider the types of objects given to
and returned by mizr. Its arguments are two pieces of program, the first representing
a function of two arguments, and the second representing a value suitable for the
function’s first argument. Let us write T for the type of program code representing

an object of type T'. Thus, using the previous notation, if t € 7' then 7 € T. Then,
mix: AxB 5 CxA - B C

That is, mur takes a definition of a two argument function and a definition of a value
for the first argument, and produces a definition of the corresponding function of the

remaining argument.

What is the type of mizr — 7 Substituting into the type definition of mir gives,

miInT;I:A xB—o(C - A > BoC

Given a definition of a program specifying a two argument function mir — returns a
program which, when executed, takes a definition of a value, and returns a program

to compute the corresponding function of the remaining argument.

These equations motivate the slogan: partial evaluation is currying on programs.



Chapter 2

Partial Evaluation in Practice

Having seen some of the principles of partial evaluation we now consider practicalitics.
In this chapter we will study the standard algorithm used in partial evaluation and
introduce an extended example which we develop throughout the thesis. The material
of this chapter draws very heavily on the experience of the DIKU group and much of

the material presented here may be found in [JSS85], [Ses86] and [JSS8Y)].

Partial evaluation has been attempted in a number of different programming
paradigms. The earliest work used LISP-like languages because programs in such
languages can easily be treated as data. In particular, the first self-applicable partial
evaluator was written in a purely functional subset of first order, statically scoped
LISP. Since then work has been done to incorporate other language features of LISP-
like languages including, for example, global variables [BDS89]. A self-applicable par-
tial evaluator for a term rewriting language has been achieved [Bon89], and more

recently a higher-order A-calculus version has been developed [Gomy9).

Because of these successes, partial evaluation is sometimes linked with functional lan-
guages. Indeed the word “evaluation” itself is expression orientated. However, partial
evaluation has also become popular in logic languages, and in Prolog in particular.
Kursawe, investigating “pure partial evaluation”, shows that the principles are the
same in both the logic and functional paradigms [Kur88]. Using the referentially
opaque clause primitive, very compact interpreters (and hence partial evaluators)
can be written. However, it is not clear how the clause predicate itsell should be
handled by a partial evaluator and, hence, whether this approach can ever lead to

2l

self-application. Other “features™ of Prolog that can cause problems for partial eval-
uation are the cut and negation by failure. Lloyd and Shepherson have addressed
some of these [1LS87]. However, by restricting themselves to the clean parts of Prolog,

12

F
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Fuller and Abramsky have achieved a self-applicable partial evaluator [FAS88]. Their

method is directly equivalent to the functional approach used at DIKU.

Every language paradigm introduces its own problems, and this is also true in the
imperative case. The early LISP work, for example, concentrated only on functional
aspects because the imperative features seemed too difficult. Surprisingly, however,
a fully self-applicable partial evaluator for a small imperative language has been
reported [GJ89]. The language consists of a sequence of commands, which are as-
signment, conditionals, or gotos. Values are S-expressions manipulated using the
standard LISP primitives. A few other operators are provided. Not only are the
resulting compilers reasonably small and efficient, but they also exhibit much of the

structure of hand-written compilers.

Much of the interest in partial evaluation in the Soviet Union focuses on imperative
languages and on Pascal in particular. There the process is called polyvariant mired
computation [Bul88]. Technically, mired computation is more general than partial
evaluation. It includes any semantics preserving process that operates on a mix
of program and data. The adjective polyvariant describes the situation where one
program fragment may be specialised to many different states thereby producing
more than one descendent fragment in the residual program. We will see this idea in

the functional model.

In the Soviet work, the state is split into two parts  the accessible and the tnaceessible.
As one might expect this is equivalent to the static/dynamic separation. Analysis is
harder in the imperative case because both procedural unfolding and evaluation of
expressions may sometimes be invalid. Nonetheless, results have been interesting:
for example, Ostrovsky uses mixed computation as part of the process of producing

industrial quality parsers [Ost88].

It is interesting to note that all the self-applicable partial evaluators reported to date
use S-expressions as their sole data structure. This situation must change if partial
evaluation is to gain a place as an everyday programming tool. We will return to this

point at the end of the thesis.

2.1 The Partial Evaluation Process

We will present the specialisation algorithm using a functional language. The DIKU
group implemented miz in a subset of purely functional statically scoped LISP but

for consistency with the rest of the thesis we will use a typed lazy functional language.
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There are two stages to specialisation. The pre-processing phase takes a program and
information about what data will be present initially, and returns an annotated pro-
gram. Irom this annotated program and the partial data the second phase produces
the residual program. In most cases, the two phases could be performed together
with only a small loss of efficiency. For self-application, however, it turns out to be
crucial to separate the phases. If this is not done, the generated programs (compilers

ctc.) are huge and inefficient. The reason for this is discussed in Section 2.2.

The first phase itself consists of two interdependent parts. These are called binding-
time analysis (or BTA for short), and call annotation. Binding-time analysis deter-
mines which expressions will be evaluated during partial evaluation, and call anno-
tation decides which function calls will be unfolded. The result of this phase is an
annotated program. If prog is the original program then we write prog™™" for the

annotated version.

2.1.1 Binding-Time Analysis

The purpose of binding-time analysis is to discover which expressions within the
program can be evaluated by the partial evaluator given the limited amount of data
that will be present. The analysis can be performed by abstract interpretation. In
this chapter we follow the DIKU work and treat values atomically. That is, if an
expression contains any dvnamic part, then we will consider the whole expression to

be dynamic.

The abstract domain of values is the two point domain {5, 1} where S T D, 'To
associate S with an expression indicates that the expression is totally static it can be
fully evaluated during partial evaluation. In contrast, D indicates that the expression
may be dynamic, 1.e. it is not possible to guarantee that it can be evaluated during
partial evaluation. As ever, the analysis 1s approximate in that there may be some
expressions that are classified as dynamic which could actually be evaluated. The
converse never applies: an expression is only classified as static if it can definitely be
evaluated. The result of the binding-time analysis is an annotated program where

the parameters of each function are either classified as static or as dynamic.

2.1.2 Call annotation

A partial evaluator that never unfolded function calls conld make hittle improvement

to the programs to which it was applied. Conversely, if a partial evalnator unfolded
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all function calls, it would be unlikely to terminate. We must decide, therefore, which
function calls to unfold and which to leave folded. Rather than classify the functions
themselves as unfoldable or non-unfoldable, we annotate individual function calls. So
a particular function may be unfolded in one place but not in another. Function calls

to be unfolded are called eliminable, those that are to remain are called residual.

In the early miz work call annotations were inserted by hand. Subsequently, Sestoft
described an analysis, called call graph analysis, which can deduce the annotations
automatically [Ses88]. The analysis takes a program having static/dynamic annota-
tions and inserts call annotations. But, because a residual call cannot be unfolded,
its result cannot be classified as static, so call annotations might cause some expres-
sions, previously considered static, to become dynamic. Thus, after call annotation,
the program must have its static/dynamic annotations recomputed. The new an-
notations may in turn force some calls, previously considered eliminable, to become

residual, and so on.

Fortunately this process is monotonic-- no dynamic annotation ever becomes static
and no residual call ever becomes eliminable. Termination of the process is therefore
ensured. In practice, the cycle is rarely followed more than a couple of times before

a limit is found.

To summarise: the annotations resulting from the first phase of the partial evaluation
process classify parameters as static or dynamic and function calls as residual or
eliminable. Primitive operators may also be annotated. [If all their arguments are
present they are eliminable, otherwise they are residual. Once annotated, the program

is ready to be specialised.

2.1.3 Specialisation

Imagine we have a function f defined by f r y = ¢ where z s static and y dynamice.
Further suppose that we wish to specialise f to a value a for r. We evaluate ¢ in
an environment in which z is bound to a. As the environment binds static values
only, the result of the evaluation is an expression which, in this case, may involve y.
Depending on the annotations in e, some function calls may remain in the residual
expression. Suppose, for example, there is a residual call to f with a value o for its
r parameter. We wish to replace this call also with a call to a specialised version of
£, this time specialised to the value o', Producing this new specialised version may,

in turn, generate new function/argument pairs that also need to be replaced with
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specialised versions, and so on. This process continues until all residual function calls
are replaced with calls to appropriate specialised functions. This is the functional

counterpart of polyvariant specialisation.

We can describe the algorithm more generally. We are given a list of function names
paired with values for their static parameters. This is called the pending list, and
identifies which functions need to be specialised to which values. There is also a list
of function/value pairs for which specialised versions have already been produced.
We repeatedly select and remove an element from the pending list. If the appropriate
specialised version has already been produced, we go on to the next one. Otherwise,
we obtain the relevant function definition from the program, giving the static and
dynamic parameters along with the function body. The function body is evaluated
in the partial environment (binding the static names to the static values) resulting
in a residual expression which forms the body of the new specialised function. The
new body is scanned to find any function calls that may require specialisation and
these are appended to the pending list. An implementation of the algorithm in LML,

appears in Appendix C.

The result of specialisation is a list of new function definitions. Initially the new
residual functions are named by the original function name together with the values
of the static parameters. Later on, a new function name is generated for ecach such
pair, and the program consistently renamed. During renaming, the static parame-
ters disappear completely from the program. The specialised functions retain their

dynamic parameters only.

2.1.4 Two Small Examples

It 1s worth looking at some small examples. These emphasise the point made in Chap-
ter 1 that partial evaluation has more applications than just language interpreters and

compilers. The first is the standard exponentiation function.

power n x = 1f n=0
then 1

else x * power (n-1) x

We will specialise power’s first argument to the value 3. The first parameter is static
and the second dynamic. This is consistent with the recursive call) for if the valne

of n can be computed, then so can the corresponding value (n-1) in the recursive
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call. The specialised function will lose the static parameter and be a function of the
dynamic parameter x only. In this example the recursive call may be safely unfolded

so 1t is classified as eliminable.

Evaluating the body of the function in the environment in which n is bound to 3 gives
the residual expression x * (x * (x * 1)). All the conditionals have been reduced

and the recursive calls unfolded. The (re-named) residual function is, therefore,
power_3 x = x * (x * (x * 1))

(Note that simplifying (x * 1) to x requires the laws of arithmetic, not just partial
evaluation). This residual function is more efficient than the original. Instead of
having to evaluate a series of conditionals and perform a number of function calls the

calculation is performed directly.

The previous example shows only some aspects of partial evaluation. A richer example

is given by Ackerman’s function.

ack m n = 1if m=0
then n+1
else 1if n=0
then ack (m-1) 1
else ack (m-1) (ack m (n-1))

Suppose we intend to specialise ack to the value 2 for its first parameter mo As before
the first parameter can be classified as static and the second as dynamic. However,
in this case the final two recursive calls should not be unfolded and must be classified
as residual, but as the first recursive call (ack (m-1) 1) has static information for

all its parameters it can be unfolded.

Initially the pending list contains only the pair (ack, [2]). There is only one static
parameter so the list of static values has only one element. The new body, found by

partial evaluation, is the expression

1f n=0
then 3
else ack 1 (ack 2 (n-1))
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The outer conditional has been reduced but the inner one remains because it de-

tated as residual, and so when this expression is scanned for residual calls the list
[(ack, [1]), (ack,[2])] is produced. This is appended onto the end of the (now

empty) pending list for the recursive call of spec.

Next, a version of ack specialised to the static value 1 is produced in exactly the same
way. Then, in the following recursive call to spec, the pending list has the value
[(ack, [2]), (ack, [0]), (ack, [1])]. Because a version of ack specialised to
(2] has already been produced, the first of these is discarded and ack is specialised
to [0]. After this process has been repeated a couple of times the pending list will be

empty and the process will terminate. After renaming. the result will be the program

ack_0 n = n+1

ack_1 n = 1if n=0

then 2

else ack_0 (ack_1 (n-1))
ack_2 n = 1if n=0

then 3

else ack_1 (ack_2 (n-1))

With only half the number of conditionals per function call, the residual program is
noticeably more efficient than the original. There is a price to pay, however. It is also
larger that the original. While there is, in principle, no limit to the increase in size
the DIKU group found that a linear growth (with respect to the sum of the sizes of

program and data) is typical of most examples.

In cach of these examples the gain in efficiency is around 300%. This is fairly low for
partial evaluation as, in each case, the original programs contained only a moderate
interpretive element. At the end of this chapter we will introduce a larger exam-
ple that will be developed throughout the thesis. This will have a more significant

interpretive element and so larger gains can be expected.
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2.2 Self-Application

We recall from Chapter 1 that sclf-application of a partial evaluator is required in
order to produce compilers and compiler generators. The first attempts at self-
application created huge residual programs. On examination it turned out that mir
was not obtaining sufficient information to perform reductions on the partial evaluator
appearing in its first argument. To make this clear imagine that we are computing

ML, = MIT; MITe inl

(We number the two occurrences of mir to distinguish between them in the

explanation—the two programs mir, and mir, are identical). The program mir
contains an evaluator which reduces static expressions. Any static expressions in
mizs can be recognised during partial evaluation even without binding-time analysis,
and can be reduced accordingly (using the evaluator in mir;). However, the decision
whether or not to apply the evaluator in murs to expressions in inf depends on which
parts of the input to nt are to be static when the compiler mir— is used. Without
binding-time annotations, this information is dynamic. This means that very little

reduction can be performed, resulting in bulky and ineflicient compilers.

The insight that allowed the DIKU group to circumvent this problem is that it is
sufficient to know which expressions of inf are static or dynamic. The actual values
are not required. Thus, if it is annotated appropriately by a preprocessing phase,
then miz; is able to decide when to apply the evaluator appearing in mirs. The mir
equation should, therefore, be expressed as

= mir inl"" prog

Nl prog

so that when self-application takes place we get

n —;ann

—_— . . __an
TMIT— = MIT; miTy nd

The annotations on int are available for mur, and allow its evaluator to be applied. It
is the annotations on mir’s sccond argument, therefore, that allows efficient compilers

to be produced.

This msight defines what is essentially a new binding time. We are already familiar

with static and dynamic binding-times. A static value will be present during partial
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evaluation, whereas dynamic values are not available until run-time. In order to
allow self-application there must be some information that is even more static than
the static values. It must not depend on the static values themselves, but only
on the knowledge that there will, at partial evaluation time, be such static values.
This sort of information is called metastatic [Mog89]. Binding-time analysis must be
metastatic. If it is not (that is, if the analysis ever uses the actual static values), then

the results will be of no use in self-application.

2.3 Congruence and Finiteness

There are other constraints that binding-time analysis must satisfy. Not only must
the analysis be metastatic, but the resulting annotations must be congruent and finife.
We will study congruence in some detail in Chapter 3 but for now we will confine

ourselves to informal definitions and intuitions.

Stated simply, congruence requires that static values only ever depend on static values
and never on dynamic values. For example, suppose we have the following function

definition.

f xy=1f x=0
then y
else f (x-1) (x*y)

If £'s first parameter is dynamic then its second must also be dynamie. This is because
the value of £s second parameter in the recursive call depends on the (dynamic) value
of 1ts first. As we noted before, the aim of specialisation is to omit static parameters
in the residual program. If we make y static while x 1s dynamic, and we specialise £
to the value 2 (for y) then we have a problem. Which specialised version of £ should
be used to replace the recursive call? The answer is that there is no single call that
is sufficient. Instead we have to replace it with an infinitely branching conditional

giving a residual function of the form

f_2 x = if x=0
then 2
else case x in
1 > f_2 (x-1)
2 > f 4 (x-1)
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This is clearly undesirable! However, if the result of binding-time analysis is congru-
ent, then it is always possible to calculate the static parameters of each function call
during partial evaluation. As a result, there is a single residual function with which
to replace each original call. Furthermore, the only conditionals to appear in the
residual program originate from the source program-—none need to be added. The

residual program is, in this sense, “congruent” with the source program.

In addition to congruence, the results of binding-time analysis must be finite. As
congruent annotations produce a congruent program, so finite annotations lead to a

finite residual program. Consider the following example.

f xy=1f y=0
then x
else f (x+1) (y-1)

We declare x to be static and y dynamic. This is congruent but not finite. Suppose
we specialise £ to the value 1 for x. Making the recursive call residual, we obtain the

following residual program.

f_ 1y =1f y=0
then 1
else f_2 (y-1)
f_.2y=1f y=0
then 2
else f_3 (y-1)
etc.

Annotating the recursive call as eliminable does not help. While we would then have
only a single residual function, its body would be infinite in size. Poor call annotations
can in themselves cause infinite unfolding, but good call annotations cannot cause an

inherently infinite annotation to become finite.

Jones describes an analysis using a three point domain that goes some way to pro
ducing a finite annotation [Jon88]. The only time its results may not be finite is if
the program contains an infinite loop. Under strict semantics, the program would

not terminate anyway, and so it is not unreasonable for the partial evaluation to loop
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also. However, under lazy semantics, exactly the same program may be very well
behaved. Indeed infinite structures are a popular and powerful programming method

in lazy languages. There is a need, therefore, for further work in this area.

In the rest of the thesis we will sidestep this issue. The binding-time analysis given in
Chapter 4 produces congruent annotations but they are not necessarily finite. How

to achieve this is still an open problem.

In the remainder of this chapter we introduce the example which will be developed

throughout the thesis.

2.4 Example

Our main example concerns automatic compilation. Using fairly standard lazy func-
tional language notation, we define an interpreter for a block structured imperative
language. Programs in this language are constructed from assignment, conditional,
and while statements. New variables are introduced using the Alloc declaration and
are in scope in the block immediately following. Blocks are sequences of statements,
represented as lists. Communication with the outside world takes place via streams
(lists). The Read command retrieves the first value from the input stream and the
Write command places a value on the output stream. Commands may be represented

as terms of the following datatype,

type Command = Read Ident
+ Write Exp
+ Alloc Ident [Command]
+ DeAlloc
+ Assign Ident Exp
+ If Exp [Command] [Command]
+ While Exp [Command]

with appropriate definitions for the types Ident and Exp (we will consider integer
expressions only and represent hooleans as integers). The DeAlloc variant does not
correspond with a command, but the interpreter uses it to mark the end of a vari-
able’s scope. Fach of the others correspond directly with commands. The following
is provided as an example of programs in this language. Its action is to find the

maximum of a series of inputs (terminated by 0).
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Alloc X
[ Alloc Y

[ Assign Y zero,
Read X,
While (greater (var X) zero)

[ If (greater (var X) (var Y)) [Assign Y (var X)] (],
Read X ],

Write (var Y) ] ]

where zero, greater, and var are the obvious functions associated with the expres-
sion type Exp. Notice that the effect of an If without an else branch is achieved by

supplying an empty list of commands as the else part.

The interpreter is inspired by continuation semantics, following about as closely as is
possible in a first order language. The main function exec takes a list of instructions
and the input stream, and returns the output stream. It achieves this by calling the
function run, starting it off with an empty state which will contain the variables and
their values when augmented by any Alloc statements. Because of a deficiency of
the binding-time analysis we are considering at the moment, the state is split into
two parts: a name list and a value list. This allows the names to be static while the
values are dynamic. Once the interpreter reaches the end of the program the output

stream is terminated. The definitions are,
exec block inp = run block [] [] inp

run (] ns vs inp = []
run (com:coms) ns vs inp
= case com 1n
Read k
-> run coms ns (update ns vs k (hd inp)) (tl inp)
Write e

-> eval ns vs e : run coms ns Vs 1np

Alloc k cs
-> run (cs++(DeAlloc:coms)) (k:ns) (0:vs) inp
DeAlloc

-> run coms (tl ns) (tl vs) inp
Assign k e

-> run coms ns (update ns vs k (eval ns vs e)) inp
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If e csl cs2
-> if (eval ns vs e = 0)
then (run (cs2++coms) ns vs inp)
else (run (csi++coms) ns vs inp)
While e cs

-> run [If e (cs++(com:coms)) coms] ns vs inp

There are two non-standard aspects to this definition. Firstly, in the interpreta-
tion, the block structure is flattened and implemented explicitly (using DeAlloc)
rather than by using recursion to do so implicitlv. Secondly. looping is performed
by appending the body of the loop to the front of the program. The implementa-
tion makes use of the law that states that [while E C] has the same behaviour as
[if E then (C;While E C) J- We will leave a discussion of the motivation for these

choices until the conclusion.

The auxiliary functions referred to by run have fairly standard definitions.  The
expression evaluator eval uses the state to supply values for variables. It cannot
cause side effects on the state but just returns an integer result. In contrast, update
returns a new value list in which the value associated with the named variable is

replaced with the new value.

If, in the initial call, the block input to exec is supplied but the input stream inp is
not, then significant gains can be achieved by partial evaluation. The first two param-
eters to run are static, the other two dynamic. This means that residual versions of
run have only the value list and the input list as parameters. In order to ensure finite
unfolding the call to run in the While case should be made residual. Everywhere
clse the program parameter decreases in size, so finiteness is gnaranteed. Calls to the
update function (and its sibling lookup which will appear in eval) must all be made
residual. These functions will have versions specialised to cach of the variables that

they are used with.
To see what the results are like we will specialise exec to the example program above.

There is a single While loop so only one residual version of run is produced.

exec 1np
= run (update_x (update_y [0,0] 0) (hd inp)) (tl inp)

run vs 1np

= 1f lookup_x vs > O
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then if lookup_x vs > lookup_y vs
then run (update_x (update_y vs (lookup_x vs))
(hd inp))
(t1 inp)
else run (update_x vs (hd inp)) (t1 inp)
else lookup_y vs : []

The residual versions of update and lookup will be fairly efficient. For example,

vl : n : vs

L}

update_x n (v1:v2:vs)

"

update_y n (v1:vs) n: vs
There are no comparisons of variable names in order to find the correct place in the

value list. Those actions are performed during partial evaluation.

The residual imterpreter (which is a compiled version of the input program) is far
more cfficient than the original interpreted version. It is not as good as a hand
written program for finding the maximum in a list, but is not a long way off. As a

program produced by automatic compilation the results are satisfactory.

Some problems remain however. The first concerns the call annotations.  In the
interpreter code handling an If statement, the same code suffix coms appears in
both branches of the 1f. . . then...else... expression. This means that some code
duplication may take place in the residual program. An example appears above in
the body of the residual version of run. Looking at the the inner conditional, we
see that the expression (update_x ... (hd inp)) occurs in both branches. Both
occurrences arise from a single occurrence of Read x in the input program. It so
happens that in this example, this is actually desirable, but for input programs with

nested conditionals the growth in residual program size could he quite disastrous.

The solution to this problem is to make each of the recursive calls to run residual. This
produces a less pleasing result in some ways, but prevents any possible code explosion.
In most cases each instruction in the input program leads to a single residual function.
The exceptions are Alloc and While, which each lead to two versions. Thus, the size
of the restdual program will be linear in the size of the input program. Many of these
function calls may be unfolded in a post-processing phase. Jones calls this (ransition

compression [Jon8s).

A second problem concerns the residual versions of update and lookup. Because the

residual state is represented as a list, these perform a great deal of heap manipulation
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with associated time penalties. All that they are actually doing is accessing or replac-
ing values in a fixed length list. Even more serious, however, is the third problem.
In order to obtain any worthwhile results whatsoever, we were forced to separate the
state into two components, the name list and the value list, even though the most
natural structure is a list of pairs. This flies in the face of one of the aims of partial
evaluation, namely, to allow increcased modularity. It is these last two issues that are

addressed in the ensuing chapters.



Chapter 3

Static Projections

The equations for mir assume that it is operating on a two argument function where
the first argument is static and the sccond dynamic. This is the canonical case. In
practice we cannot hope that all functions will turn out this way. For example, a func-
tion may have many arguments, the first and third being static, say. Alternatively, a
single argument may have both static and dynamic parts. We need a framework for

reducing the general case to the canonical case.

We can simplify the general case by requiring that all functions have exactly one
argument. In first order languages this is no real restriction. Functions must always
be applied to all their arguments, so we can just express them as a single tuple.
The next stage is to factorise this single (composite) argument into two parts, the
static and the dynamic. We use the results of binding-time analysis to control the

factorisation.

Note that, even though functions will only have one argument, we will still loosely
describe them as having many. For example, we will talk of a function f (x,y) = ...

as having two arguments when this is helpful.

3.1 Motivation

For the present we will focus our attention on the static part of the argument. To
select the static part, we use a function from the argument domain to some domain of
static values. If we make the static domain a sub-domain of the original we can simply
“blank out” the dynamic part of the argument and leave the static part unchanged.

We use L to represent the static part of dynamic data. Here L has its fundamental

-
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meaning of “no information”—we get no static information from a dynamic value
(L 1s often associated with non-termination, but this is a secondary and derived
interpretation. As a non-terminating computation gives no information about its

result, L is its natural value).

As an example, suppose that the original domain is A x B where B’s value is static
and A’s dynamic. Then the function that selects the static part will be the map
(a,b) — (L,b). We can generalise this example to arbitrary domains by using

domain projections.

Definition
A projection v on a domain D is a continuous function y: 1) — D such that

(i) ¥ C ID, and (i1) v oy = v (idempotence).

The first condition ensures that a projection adds no new information. This accords
with the intuition that we can know no more about the static part of a value than
we knew about the value originally. The second condition ensures that the function
picks out the static part in one go. We will not need to repeatedly apply the function

to check that the result we have really does represent the static part.

There are two important projections, ID and ABS, which crop up frequently. 1D
is the identity function—used when the argument is completely static  and ABS 1s
the constant function that always returns L - -used when the argument is completely

dynamic.

In general we cannot hope to find a projection that selects all the static part of an
argument, but we should guarantee that what is selected is actually static. This
means that we will often make do with a projection that is smaller than ideal, for if a
projection 7 selects only static information from some argument then any projection
smaller than 4 does also (smaller in the usual function space ordering). As in Chapter

2, therefore, “static” means “definitely available during partial evaluation”.

3.2 Other Uses of Projections

The projections we have defined are special cases of a more general class of functions
called retractions (or retracts for short). Retractions are idempotent continuous func-
tions, but need bear no relation to the identity function. Scott [Sco76] used closures

(retractions greater than ID) to pick out sub-domains of Pw. The range of a closure
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is always a Scott domain, but this is not true for arbitrary retracts. The image of
any projection is always a consistently complete, complete partial order, but is not
necessarily algebraic. (Recall that a Scott domain is a complete partial order (so
having a bottom element 1, and limits of directed sets) which is also consistently
complete (every set with an upper bound has a least upper bound) and w-algebraic
(every element is the limit of its finite approximations, there being only countably
many finite elements)). Scott describes as finitary those projections whose image is

algebraic, and hence a domain. All the projections used in this thesis are finitary.

Embedding/projection pairs (often just called projection pairs) crop up frequently in
foundational issues in domain theory. They occur in the inverse limit construction,
for example. An embedding/projection pair consists of two functions. One, the
projection, maps from a larger domain to a smaller one and the other, the embedding,
from the smaller to the larger. Applying the projection after the embedding gives the
identity function, and applying the embedding after the projection gives a function
weaker than the identity. A projection from a domain to itself corresponds to this
latter composition. Projection pairs will be important to us in Chapter 5 where they
are used in the dependent sum construction. However, most relevant to us for the

present is the use of projections in strictness analysis.

3.2.1 Strictness Analysis

It is well known that the halting problem is uncomputable. That is, it is impossible
to write a program that, given any input program, can always tell if it terminates or
not. However, there are many programs which clearly do terminate, and there are
many which clearly do not. This means that we can write an analysis program which
approximates the halting problem in the following sense: if the analysis can be sure
that the input program definitely loops then it will say so, otherwise it will suppose it
halts. If we consider the answer HALTS to be greater than the answer LOOPS then we
are approximating the halting problem from above- -the algorithm will always give an
answer at least as great as the true one. Strictness analysis is such an approximation.
A function f is called strict if f L = 1, so strictness analysis attempts to answer
the question: if T give my function no information (typically, by applying it to a

non-terminating computation) then does it also return no mformation?

Strictness analysis has provoked a lot of interest because of its use in improving
the quality of compiled code from lazy functional languages. There are essentially

two main approaches to the analysis, forwards and backwards. Forwards analysis
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([AH8T7]) attempts to address the strictness question directly by considering if the
function returns L when applied to L. In contrast, backwards analysis considers how
demand is propagated. It deduces how much input a function requires to produce a
certain amount of output. The name “backwards analysis” arises because information
is propagated from a function result to its argument. A detailed development may
be found in [Hug88]. One way to specify “a certain amount” of information is to usc
domain projections [WH87]. From our point of view this is immediately promising.
By having both strictness analysis and binding-time analysis cast in the same frame-
work we may hope that the techniques of one will be applicable in the other. Indeed,

we will see an example of this in Chapter 7.

Suppose, we are performing a backwards analysis and want to know how much of
its argument some function f: X — Y needs in order to be able to return 4’s worth
of result (where v is some projection v: Y — V). Let us call this amount 3 (a
projection S : X — X). How are f, v, and S related? The answer is that they must

satisfy the safety condition:

yof=v0fop

Consider applying both sides to some value z. The safety condition imples that the
application of (yo f) to z gives exactly the same value as applying it to (8 r). So
to get 4’s worth of information about the result of (f z) we only need to know f3’s
worth about z. Of course, we could still get at least 4's worth if we knew more
about r. That is, if é is another projection such that § C é thenyo f =~yo foé also
holds. This means that it is always acceptable for a backwards strictness analyser
to approximate upwards-—a larger projection than the optimum will still be safe. In

backwards analysis smaller projections convey more accurate information.

There is nothing about the safety condition that forces it to be used with backwards
analysis. We can also interpret it in terms of forwards analysis. If I know /3’s worth
about the argument to f then yo f = yo f o # implies that I know at least y’s worth
about the result of f. Further, for some projection é where 6 C v it is also true
that § o f = 60 f o 3, so it is safe to approximate the result downwards. In forwards

analysis larger projections convey more accurate information.

As the safety condition is applicable to both forward and backward analyses it is
reasonable to ask which method is more suitable for a particular analysis problem. In

binding-time analysis we start with an initial description of the input parameters and
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this information is propagated through the program. The direction of information

flow is from argument to result, so we will use a forwards analysis.

There is an equivalent formulation of the safety condition that is often useful in
proofs, namely, that yo f =~y o f o 3 holds exactly when yo f C fo 3 holds. The
proof follows easily from the fact that both v and § are projections, and may be found
in (WH87]. We will freely swap between the two formulations and use whichever is

most appropriate at the time.

3.3 Congruence

Given a program and a description of which parts of the input are static. binding-time
analysis produces a projection for cach of the functions in the program. The analysis
may only produce a projection 7y for a function f if 4 is a static projection for the
argument of f wherever f is called. But, there may be a place in which the argument
to f is given by the result of some other function, ¢ say. We may know how much of
the argument to g is static, but what do we mean when we say the result of ¢ (and

hence the argument to f) 1s static?

In [Jon88] Jones defines congruence to answer this question. Congruence has become
the standard correctness condition in binding-time analysis for partial evaluation. We
have already come across it informally, but in this chapter we give a precise definition.
As we show, congruence is actually weaker than safety. However, it turns out that it
is too weak to be suitable for most partial evaluators. A more suitable variant, which

we call uniform congruence, is equivalent to the safety condition.

Jones models a program in terms of its stepwise behaviour and then uses this model
to define congruence. The program is regarded as a triple (2, ¥V, nr) where [7is a set
of program points, V a set of values (states) and nz a step function mapping (p, v)
pairs into (p’, v') pairs. Fach (p, v) pair represents a single point in the computation,
and the function nz defines a single computation step --from program point p and
value v the computation proceeds to program point p’ and value »". The program is
understood to have terminated with value v whenever nz (p,v) = (p,v). In functional

programs, the program points are the function names.

The choice of the destination program point under the action of nr depends, in gen-
eral, on both the initial program point and the value. So from any given program
point p, the destination point depends on the value at that point. At p, there-

fore, we can partition the value set ¥V ointo subsets V, such that iff » ¢ V, then the
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destination point i1s p;. Moreover, we can define functions f; : V; = V" such that
veE V, = nr (p,v) = (pi, fi v). Such a choice of partition and functions is called
a control transfer. A collection of control transfers, one for each program point, is

called a control structure.

Congruence is defined in terms of a control structure and a program division.
A division consists of three collections of functions--static, dynamic, and pairing
functions—indexed by the program points. We will typically call these o, §, and
7 respectively, each duly subscripted with the program point. The purpose of the
pairing function is to ensure that ¢ and § are well-behaved with respect to cach other
through the requirement that 7,0 < 0,,6, >= id (at cach program point p). We give

the precise definition of divisions in Chapter 5, but have sufficient for the present.

Definition (Jones)
A division (0,6, m) 1s congruent at a program point p with respect to a control struc-

ture {(V;, fi : Vi = V)} if for each i,
Vo,we V.o, v=0, w = o, (fiv)=0, (/i v)

The definition requires that any two values with equal static parts are mapped to new
values whose static parts are also equal. Thus, if a division is congruent we will be
able, during partial evaluation, to calculate the static part of a value at any point in
the computation: we can calculate the initial static value it is given tous and if we
assume we can calculate the static value at some program point, congruence ensures
that we will be able to calculate it at its immediate successors. Induction completes
the proof. Congruence, therefore, satisfies the intuitive requirements we discussed in
Chapter 2. Given a congruent division we can always calculate the value of o, v and

so can always choose which specialised version of p will replace (p, ).

3.4 Uniform Congruence

To justify the carlier claim that congruence is too weak a condition for most partial

evaluators we will consider an example. Suppose we have the function,

po (x,y) = if y=3
then pl (x*y)
else p2 x
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and a division where o,, = fst, 0, = ID and 0,, = ID where fst (r,y) = r. The set

of values V at py is N x N and the control structure is given by,

V, = {(2,9) |z €N}
Vo = {(x,y)|z€N,y€N\{3}}

The transfer functions are given by

fi (z,y) = zxy
fo(z,y) = ¢

To sce that this division is congruent suppose that v, w € V; and that o, v =0, w.

Then

0?1 (fl 'U)

fr v

fst v x 3 [definition of fi]

fst w x 8  [becausec o, v = 0, w]
fiw

o5, (Ji w)

{l

fl

f

and the casc of V, is as easy. But, even though the division is congruent it would
cause problems for most partial evaluators. Congruence only examines f; in the re-
stricted context in which it will actually be called, and not over the whole domain
of values. This means that divisions may take into account implications from sur-
rounding conditionals and still be congruent. Thus f; is allowed to “know™ that its
parameter y will have value 3. If a division takes advantage of this then so must the
specialisation algorithm—-it must perform driving. What is more. all the information
implied by the conditional must be extracted and used in case the division has taken
advantage of it. In general this is uncomputable. If, on the other hand, the speciali-
sation is performed by an ordinary partial evaluator then the division will act as if it

were not congruent.

In practice problems do not occur as a far stronger version of congruence, namely
intensional congruence, is normally used. However, this is defined syntactically rather

than semantically which makes it heavily language dependent.

It is possible to revise the definition of congruence so that it Joses this value depen-
dence but otherwise remains the same. In the definition of control structures the
functions {f;} were only defined on the particular V;, and so it only made sense to

draw the values v and w from V,. This led to value dependence. There 1s actually no
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reason why the functions { f;} should not be defined over the whole of the value domain
V. After all, that is the range of their definition in the program. The original {f;}
are just restricted versions of these. Let us now use {f;} to denote the unrestricted
versions, so that fi : V. — V for each i. Now we can define a value independent, or

uniform, variant of congruence which we shall call uniform congruence.

Definition
A division (0,6, 7) is uniformly congruent at a program point p with respect to a
control structure {(V;, fi: V — V)} if for each i,

Vvwe V.o, v=0,w = g, (fiv)=0, (i w)

Note that, unlike the definition of congruence, the values v and w are free to range
over the whole of V. As this is a stronger condition than congruence, uniformly
congruent divisions are also congruent, but a congruent division is only uniformly

congruent if any two values with equal static parts are given equal static parts by f.

3.5 Safety < Uniform Congruence

In order to compare uniform congruence and safety we have to make a small extension
to the revised program model. The definition of nr assumes that it will always be
possible to determine which program point is the destination. This is not unreasonable
in an iterative language where the value v is computed using built in operators only.
In a recursive language, the computation of v may be given by user defined functions
and so may not terminate. Then nz (p, v) will be undefined. This must be reflected in
the control structure. We add a new program point p; and define nr (p, v) = (py, )
for all values v € V. Adding an ordering where py C p for all p € I’ makes I’ into
a (flat) domain. V likewise becomes a domain and the {V,} disjoint open sets in V.
The rest of V' (that is, V \U{Vi}) is a closed set which we will call Vi Finally we
define the transfer function f; : V. — V by fi v = L. So,if v € V, for some 1(# 1),
then nz (p,v) = (pi, fi v) as before, but if v € V| then nr (p,v) = (py, 1) and the

value of the program is L. Notice that V| may be empty at some program points.

At every program point fi v = 1, so a division which is congruent with respect to
some control structure will still be congruent if we extend the control structure with
V.. This means that we can be a little sloppy with our notation. We will typically

include Vi in the {¥}.
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Definition
A division (0,6,7) is safe al a program point p with respect to a control structure

{(Vi, fi: Vo V)}ifforeachi, o, 0f,=0, 0fio00,

The extension to the program model is required because it is possible for a projection
o to map a value from a set V; into V. Having defined safety we can now prove that

it is equivalent to uniform congruence.

Theorem 3.1

Let A (= (o,6,7)) be a division. A is safe if, and only if, it is uniformly congruent.

Proof

Assume A is safe. Let p be a program point and let {(V;, fi: V" — V)} be the control
structurc at p. As A is safe we know that o, o f; = ¢, o f o0, for cach :. We want
to prove that if o, v = o, w then o, (fi v) =0, (fi w) forall i and v,w € V. So,
assume that o, v = o, w for some arbitrary 7 and »,w € V. Then,

Tp, (fiv) =

0y, 0fi) v

0, 0fi00,) v [safety]

o 1) (7, 1)

0p,0fi) (0, w)  [by assumption]
Ty, 0 fioad,) w

g, 0f) w [safety]

a,, (fi w)

fl

(il

(l

[l
AAA/Q‘\/—\A
by

and so A is uniformly congruent a p.

Conversely, assume A is uniformly congruent. Let p be a program point and let
{(Vi, fi: V — V)} be the control structure at p. The projection o, is idempotent
$0 0, v = 0, (0, v) for any value v € V. As the division is uniformly congruent we
may conclude that o, (f; v) = o, (fi (0, v)) for any value v € V. In other words,

0y, 0 fi = 0p, 0 fi 00, as required. O

.
We have seen, at least in principle, that projections may be used to provide descrip-
tions of program values, pinpointing which parts are static. I'urthermore, the safety
condition used in strictness analysis is precisely the condition needed to ensure uni-
form congruence. What we must do now is to provide both concrete and abstract
semantics for some particular language to verify that the principle of using projections

is realisable in practice. This is done in the next chapter.



Chapter 4

Binding-Time Analysis

In this chapter we explore some of the practicalities of using projections in binding-
time analysis of typed lazy functional languages. We have chosen typed languages
because we use type information to control the structure of the projections. Ior
concreteness we define a simplified language and with its aid present the binding-time
analysis equations. We demonstrate their safety, and show that an approximation to

the analysis may be performed in a finite time.

4.1 PEL Abstract Syntax

The language PEL (Partial Evaluation Language) is intended as a toy language only
but is very much in the style of other lazy functional languages. Unlike “realistic”
languages it has no predefined types like integer or character and without the addition
of certain standard features it would be impractical to use regularly. However the
programmer is able to define arbitrary algebraic data types so it is possible to write
fairly complex programs. The advantage in restricting ourselves to a simple language
is that we should be able to avoid being swamped by unnecessary detail. What we

learn from discussing it can be applied to larger languages.

Various syntactic classes appear in the grammar. Single (subscripted/decorated)

letters represent variables in the various classes.

e € krpr  [Expressions]
x € Var [Variables]

f € [lun [Functions]

c € Con  [Constructors]

36
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Tdefn [Type Definitions]
Tdecl [Function Type Declarations]

d € Fndefn  [Function Definitions]
p € Prog [Programs]

T € Type [Types]

A € Alg [Algebraic Types|

D €

C ¢

So, for example, program variables will be called x, x; etc. Rather than continually
distinguish between individual variables and vectors of variables we will assume that,
typically, x represents a vector of variables. When we do need to describe the th

variable from a vector x we will use the notation x(i).

A program consists of a series of type definitions followed by some function definitions,
cach of which is immediately preceded by a declaration of its type. The program
concludes with an expression and its associated type. The expression represents the
meaning of the program in the context of the preceding declarations. We use {patiern}

to signify zero or more repetitions.

p — {D} {C d}e::
d —» f x = ¢;
e — X

[ (elv )

| ce

| fe

| case e inc, x; -> e, Il ... Il c, x, -> e, end
D - A=cT{+cT};
C - £ :: T ->T,;
T — A

l (T]) Tn)

An example program will make the grammar easier to follow. To make programs
easier to read, some constructors (e.g. False) are not given an argument. When the
argument to a constructor is omitted it is assumed to be the empty tuple () which
represents the element of the void (or unit) type. We will write either () or 1 to

denote this type.
Bool ::= False + True;

and :: (Bool,Bool) -> Bool;

and (x,y) = case x in
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False -> False
Il True ->y
end;

and (and (True,False), True) :: Bool

4.2 Type Rules

We will assume the program satisfies various well-formedness criteria in addition to
syntactic correctness. For example, no function should be defined twice, the construc-
tors in a case cxpression should all be from the same type, and so on. In addition a
program must be well-typed. PEL is first order and, at this juncture, monomorphic.
It allows for the definition of new types using (separated) sum, (standard) product
and recursion. Explicit type declarations are provided for the functions, so the type

of any expression may be ecasily inferred.

We use the variables R, S and T to represent types and write assumptions of the form
x::Ttomean x(1)::T(1),...,x(n)::T(n). The assumption lists only contain details
about the local variables within a function body. A typing judgement concerning
a function is true exactly when it accords with the type declaration given in the
program. The same is true of constructors. If a constructor ¢; appears in the definition
of a type S then S is of the form S=c¢; S, +---+ ¢, S, for some types {S;} and

ci::5;->S as usual. The typing rules for expressions are as follows.
x::T F x(1)::T(1)

x::TFe::Ry --- x::Tke,::R,
x::T F (eq,...,e.)::(Ry,...,Ry)

f::R->S x::TFe::R

x::TF f e::S

c;::5,->S x::Tke::S;

x::T F ¢;e::S

x::Tke::S Vi.(x::T,y,::S, F e::R)

x::T F case e in ¢y, -> e Il ... Il c,y, -> e, end::R
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Only well-formed and well-typed programs are assigned a meaning. This meaning is

defined by the denotational semantics.

4.3 Denotational Semantics

The denotational semantics is fairly standard. There are three semantic domains
one to model values and the other two to model value and function environments
respectively. The function environment is kept separate because functions are not

values—all functions are first order.

v € Value = (Con x Value) + (Value x Value)
p € Venv = Var — Value
¢ € Fenv = Fun — (Value — Value)

While we use a universal value domain it is often useful to imagine otherwise. For
example, if we have a program function £ with type X->Y it is convenient to think
of its meaning f as being a function f: X — Y where the domain X corresponds
to the type X and likewise with Y. We can make this more precise. Using do-
main sum, product and limit we can construct domains to correspond with the type
definitions and can construct the obvious projection pairs between these domains
and the universal value domain. Thus if X i1s a type with corresponding domain X,
there exist maps ¢y : X — Value and oy : Value — X such that oy o ¢y = IDy and
¢x 0¥x C IDya.. Then any value z € X may be identified with a unique v € Value
given by v = ¢x(z). This means that we can ignore the distinction between elements
in X and elements in Value lying in the range of ¢x. We do not prove that our typed

programs cannot go wrong [Mil78] but the proof would be similar to Milner’s.

There are two semantic functions. The first constructs a function environment from
the function definitions. The second assigns meanings to expressions in a context
supplied by the function and value environments. There are no predefined functions
so the function environment is constructed from the program’s function definitions

only.

D : Fndefn® — Fenv
Dify x, = e ,..., f, x, = e,
= fir (A\¢. {f; — )\U~5¢[[91H{,1,_,U) R Av.&,,ﬂe"ﬂ{rn._m} 1)
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E : Fenv - Erpr — Venv — Value

Eslx], = plx]

El(er,.-ven)], = (Esler],, - Eslen],)

Elc el, = ¢ (&lel)

Eolf e], = ¢[£] (&lel,)

Eslcase e in ¢y x; => e | ... |l cpx, => e, end]]p

= case Efle] in
c; vy = 5¢ﬂel HD@{ervx}

Cp Vn = 5d,|1en]]p®{r"Hv"}

The operator @ combines environments. It is defined by,

(p®p)z =

p r otherwise

{ p' = if defined

So p@®p' is p overridden by p’. The form {z — v} represents a function cle-
ment in the usual way, but as x is in general a vector of variables, this mecans
{z(1) — fst v, 2(2) — snd v,...}. We will use this notation freely on environments

of any type.

The functions in the program can be mutually recursive. This 1s captured in D
through the use of fiz. The fixed point is taken across all the function definitions
simultaneously. In &, certain values need to be appropriately injected into Value
using the device discussed earlier. For example, the meaning of the constructed term
c (&l e],) is really given by the value inl (¢, €[ e],) in Value. Finally we notice the
distinction between the syntactic “case” and the semantic “case™ in the definition of
E. We assume the latter to be the standard mathematical function but are providing

a definition for the former.

Explicitly writing Eg[ e] ) for the meaning of an expression e, and ¢ £] for the mean-
ing of a function f is cumbersome. There are times when we will need to be precise
in this way. Otherwise, when @ is the full function environment defined by D we will

just write f for ¢[£] and ¢, for Eé[[e]](rHv).

4.4 Abstract Semantics

We define an abstract semantics for PEL. The abstract values are projections over

the universal value domain. As before there are two environments, one for abstract
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values and the other for abstract functions. We will follow Mycroft’s notation [Myc81]

and use a # superscript to indicate the abstract interpretation.

~ € Proj = Value "% Value [domain of finitary projections]
p* € AbsVenv = Var — Proj
¢* € AbsFenv = Fun — (Proj — Proj)

The greatest lower bound of two projections within the domain of functions (as given
by yMé =Az.y 216 z) is not, in general, a projection. However, greatest lower
bounds do exist in Value ¥ Value for the following reason. Projections are bounded
by ID, so the set of projections {f; | Vi.(3; T v) A (8: C é)} is consistent and, hence,
its least upper bound exists. This least upper bound is a finitary projection and is

greater than all other lower bounds for 4 and é and so it is the greatest lower bound.

The difference between these different greatest lower bounds becomes irrelevant when
we introduce particular finite domains of projections. We will find that the usual
greatest lower bound of any set of projections from these domains is itself a projection

and, morcover, also a member of the same finite domain.

Using the same trick as before we can identify projections over a domain X' with
projections in Proj. Write Projy for the projections on XA'. Then there exist func-
tions @x : Projx — Proj and W¥x : Proj — Projx such that ¥y o @y = [Dp,,,, and
¢x o Wx C IDp,,;. Px and ¥y can be defined using the projection pair ¢y, Py of

the previous section.

dx = Ay .dxoyoyx
Uy = A3 .y¢xoflodx

Therefore, as with values, we need not distinguish notationally between a projection

in Projx and the corresponding projection in Proj.

We need to define product and sum operations on projections.

Definition
If {i:Xi > Xi}(1<icn) 1s a family of projections, then we define the projection
(71 X oeee X f)/") : (,\71,...,‘\,,1) — (Aflw”leln) l)y

(’Y’X"'X’)‘n)(II,...,In) = (71 Liyeoeyn ‘T")
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Definition
If {7i:Xi = Xi}{1<i<n) is a family of projections, then we define the projection

(cr i+ Fcatm)iler Xp+4ea Xp) = (e X +---+ ¢, X,) by

(cryid-deam) L =1
(crvit-tenm)(erm) = o (v 7)

(cl 0 I R o "7") (Cn .’En) = Cn (711 In)

We will sometimes use the notation 3~ (¢; v;) as a short formfor (¢; v, + -+ o Yn)-

There are two abstract semantic functions. These evaluate functions and expressions

in the abstract domains and correspond directly with the concrete semantic functions.

D* . Fndefn* — AbsFenv
D¥[f; x1 = e ,..., £, Xn = e, ]
= gfp (Ad)#'{fl = Av'gf#ﬂel]]{r 1

B /\IV.Er#Henﬂ{

=y v}
E* : AbsFenv — Exzpr — AbsVenv — Proj
gf#ﬂ)(]]p# = p# [IX]]
gf#l[(el""’en)]]p# = gr#ﬂel]]p# KXo ##Hen]]
5f#[[cke1|p# = ¢ ID+- -+ o (ELle 1. . ID
AL _ o# (5] (hale 1]
gf#[[case einc;xy->e Il ... Ilc,x,-> e, end]]p#
= (‘accf;#ﬂ ]]
ABS :> AB§
Yilav) = Tl [[ ]]#(p{x ._,7}

As the only projections that can arise over a sum domain are ABS and sums of
projections, the two cases in the final equation are exhaustive. Initially surprising,
in the definition of D¥, is the use of greatest fixed point (gfp). Actually any fixed
point is safe but, as we noted in Chapter 3 (and in contrast with backwards analysis),
larger projections give more accurate information. As with the concrete semantics we
will sometimes use an abbreviated notation. When ¢# is the result of D# applied to

the whole program, we will write f# for ¢#[£], and ('[f/r] for Ef‘[[e]]{IHw}.

Before we give the binding-time equations and prove them correct we will demonstrate

that the abstract semantics are indeed an abstraction of the concrete semantics.
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Lemma 4.1
If ¢ and ¢# are function environments for which ¢*¥[£] vo ¢[£] C ¢[£] o~ for all

function names f and all projections 4 (of the appropriate type) then

gf*ﬂe]]{qu} o /\v.Ed,[[e]]{IHv} C )"’-845[[9]{:._..,} 0y

Proof

The proof is by induction over the structure of e. We will prove the equivalent
result, that (5# [e ]]{ s} ) (Esle]..y) E Esle],..yy for all values v (obtained by
applying both sides to v)

Case: (x(1))

SAEIEY b)) (Eelx@ )
= (1) v(1)
= E[x()]

{zr—yv}

Case: (e;,...,e,)

(i llene el ) (Eol(enee. e M)

= 54##[[611]{1“7}*' #Hen]] ) (Eolerinye s Ealer o)

= (LT, ) Elor T (Ehlen, ) (Eeleu] )
(Esller H{rv—»‘yv}’ o Eslenlinny) [induction]

1

¢[I €1y .- eﬂ)]]{rr—»'yv}

Case: (c; e)

(€ le el ) Eolle el
= (a ID+- At (Eflel, )+ e ID) (e Ele],. )
= & ((gf#ﬂe]]{sz}) (5¢>[[eﬂ{p-.v}))
C « (Ed,ﬂe]}{r__,w}) (induction]
= &k el

Case: (f e)
(5f#ﬂf e]]{r ) (&£ e]]{r._..j}
= (¢*[f] 5*[[ ), (@lE] (Eeleliny))
C [f] (( [Ie]{r €¢|Ie]]{rHv})) [assumption]
C ¢[f] Edvﬂ B{r»—v’yv [induction]

g¢ﬂf e]]{IHW}
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Case: (case e in ... ¢t X; -> e; ... end)

The (projection valued) result of Ef#[[case ein ... cp X -> e ... end]}{ \ is
I—-y

expressed as a case statement with two possibilitiecs. We will consider these two

possibilities separately. The first possibility is that Ef#ﬂe]]{ - ABS in which
I—y

case Ef#[[case e in ... ¢y Xf > €, ... end] = ABS and,

{r—=}

ABS (Ey[case e in ... ck xx -> e ... end] . )
4
Esllcase e in ... cp Xk => e ... end]]{r._.w}

i

The other possibility is that Ef#[[e]] =3 ¢; 7. I this is the case then

{r)

Ef#ﬂcase e in ... cp X ~>eg ... end]}{“w} = (Ef#ﬂe;]] ) and,

{r—=~.rp—y}

i £fele]

{IH%I‘HM}) (Eyllcase e in ... cp xp > e ... end]]{p_w})

case Ele]y,, .,

= (M €4 le]

{r'—*‘Y'I:'—“Y-}) Ck Yr = gcb[[ek]]{a-wzufk'—‘yk}

C  case Eyle]y,,.,, in
Ck Yk = (gf#ﬂek I'{TH’Y‘TkH’Yk}) (g(ﬁﬂek ]]{'T’""'--"k”*yk})
C

case Egle],, .,y 0 [induction]

Ck Yk = gé[[ekﬂ{rv—»‘vv,rk'—"uyk}

= case (X o 1) (Eslle]ian,y) 0 [meaning of case]

Ck Yk = glf’[[ €k H{z»—-c'yu,rk»—ﬂyk}

= case (Er#{[e]]{ﬂ_q}) (Eoleli,y) i

Ck Yk = gci’lIek]]{erl',rk'—'yk}
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C  case &fe],,, .\ in [induction]

Ck Y = g¢ﬂek]]{x»—wv.rk'—’yk}

= &yfcase e in ... cp xx -> ek ... end]]{,Hw}

which completes the proof. O

Lemma 4.2

If v is a projection (of the appropriate type) then (f# v)o f C f o~

Proof

The proof is by fixed point induction. We write f, for the n" approximation to f
(that is, for ¢,[f] where the {¢,} form the Kleene chain approximating the full
function environment ¢). Recall that while f is defined by least fixed point (and so
its Kleene chain of approximations is increasing), f# is defined using greatest fixed
point. If we define f# = ¢#[£], then f# =My ID and f# C fF for any integer k.
We use this latter fact in the inductive case. Suppose the definition of f is given by

f x = e. The induction hypothesis is that f# vo f, C f, 05 for all functions f.

Case: Base

(f¥7) o fo = (f*9) o Ar.L
= Az.L [f# 7 is strict]
= fo o
Case: Inductive
(f# Y) © fats (fnﬁ! ¥) © fats

1M

#
Ed)v,f[[e]{IHﬂ o M.&lel .,
Ay lelinn [induction and lemma 4.2]

Jakr 0

in

1l

Case: Limit

L, (f¥ v o f) [continuity of f* 9]
U, (fa o) [finite induetion]
f o~ [definition of ]

(f# ) o f

ot
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which completes the proof. 0O

We have proved, therefore, that the abstract version of a function maps a description
of f’s argument into a description of its result. The same result holds at the expression

level.

Corollary 4.3

If v i1s a projection (of appropriate type)
e L olv.e C Av.ey/p10
[v/2] Clo/z] = AV-€ufa] OF

Proof

This is a restatement of the first lemma. Its precondition is satisfied by the second.
O

4.5 Safety

In Chapter 3 we defined what it means for a division to be safe in terms of a slightly
extended version of Jones’ program model. However; that model 1s most suited to
iterative programs where the various transfer functions, the {f.}, are just primitive
operations. In recursive programs much of the meat of the computation is likely to be
performed by these transfer functions, and so we need to focus on their definitions also.
To do this we will give a more general definition of safety which, in the case of iterative
programs, will reduce to the one in Chapter 3. PEL programs are sufficiently similar
to other recursion equation languages to serve as a suitable model directly. We write
f x = ...(g e)--- to mean that the function g appears in the definition of £ with
argument e (which will typically depend on x). In Jones model the static projection
o is subscripted with the program point. For PEL programs it is subscripted with
the function name—there is one static projection per function. Note that the static

projection is a description of the argument to the function and not of the result.

Definition
Let p be a PEL program and A = (0,6,7) be a division. A is safe for p if for every

definition of the form £ x = ---(g e)--- in p,

og 0 (Av.eyn)) = 040 (Av.eyya) 0 0y
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Writing this out fully and applying both sides to v gives the equivalent statement,

Iy (5¢ﬂe]{xHu}) =0y (gd>[[e]]{r._.al.,})

In other words, in order to calculate o,’s worth of the argument to g we only need

oy’s worth of the argument to f.

4.6 Binding Time Analysis Equations

The abstract semantics form the basis of binding-time analysis. We want to produce
a division for the program and will use the abstract semantics to do so. We introduce
one more semantic domain to model program divisions. In the next chapter we will
sce that the functions §; and 7y can be derived from the static function ay. Therefore,
all we need to model divisions is a function from variable names to static projections.

Thus,

A € Dwis = Fun — Proj

Three functions are used to generate divisions. The function P#* (corresponding to
Sestoft’s function P [Ses86]) produces a partial description, detailing which projec-
tions should be associated with the functions appearing in its expression argument.
The other two combine this information at the program level. The value of M#* is
bounded by the term Pf#ﬂe]]{/\riABS (where e is the final expression in the program)

which associates the projection ABS with any free variables appearing in e.

M* . Prog — Divis
M#[[dh""dn)el] = gfp (AA . (Hl ff#udtl]A) 0 P‘f*[[e]{/\r.AHS})

where

¢# = D#ﬂdla“‘vdn]]

F* . AbsFenv — Fndef — Divis — Divis
# #
Foeltx=el, = TPolel, a1y
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P* . AbsFenv — Ezpr — AbsVenv — Divis

pf#[[x]]p# = {Af.ID}

’Pf#[[(el,...,e,,)]]p# = Pf#ﬂel]]p#ﬂ...ﬂpf#[[e"]]p#
Pf#[[c e]]p# = Pf#ﬂe]p#

PLIt <1, = (= Ehlel, ) N Phlel,
’Pf#[[case einc x;->e |l ... llcyhx, => e, end]]p#

= case Ef#[[e]]p# in
# #
ABS = Pi#ﬂeﬂp#”(ﬂi7’¢#ﬂefﬂpm{x,HAm})
Yiavi = Phlel ,0( Plele:l )

p#* @ {r v}

We will continue to use the notation o; for A[f] when A is the division defined by

M*.

To show that these binding-time equations are correct we prove the following theorem.

Theorem 4.4
If p is a PEL program, the division A defined by M#*[p] is safe for p.

Proof
Suppose f x = ---(g e)--- is a definition occurring in p. Then,
Alg] C (ff#ﬂf x = ---(g e)---HA) [g] [definition of M¥)
= # . ..
- (P¢#[I"<f e) ]]{rv—»A[f]}) ﬂgﬂ

Il

#
g¢#ﬂe]]{m4[f]}
Rewriting this in the abbreviated form gives, o, C C[if//r]' But, using this, we obtain

Ty 0 Av.€[y/q e[t//r] 0 Av.€[y/s]

C
C Av.eyq © 0y [corollary 4.4]

which is equivalent to the safety requirement. 0O
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4.7 Generating Finite Domains

The domain Projx contains all finitary projections over X; in general, uncountably
many of them. Finding the greatest fixed point required by the definition of D¥ is
therefore uncomputable. Instead we will restrict ourselves to a finite sub-domain of
projections (FinProjx) and compute an approximation to the fixed point by finite

iteration.

An alternative approach would be to use the infinite domain of projections. To achicve
a finite analysis time, we would rely on algebraic manipulation techniques to approx-
imate a solution to the abstract semantics equations. Hughes used this approach for
backwards analysis [Hug87] and came across two problems: the algebra was compli-
cated and tedious and, more seriously, apparently recasonable approximation methods
could yield very poor results. As the use of finite domains has been successful in

many arcas we will adopt it here.

4.7.1 Projections

We give an explicit construction of FinProjx based on the form of the type defini-
tion defining X'. In addition to projection sum and product, we define projections
recursively using the fixed point operator p. The projection py.P(7) is defined to
be L2, P*(ABS) as usual (i.c. the least fixed point). In order to cope with mutual
recursion we ought also to define a selection operator, but as this obscures rather
than clarifies the material we will omit 1t here. An equivalent technique appears in

the implementation.

Each finite domain FinProjy is defined by the inference rules below. A projection v

is in FinProjy if v proj X can be inferred using these rules.
ABS proje, Ty + -4 ¢, T,

PyprojTy --- P,projT,

Cy )1+"'+(‘n. Pn proj Cl,1‘1+"'+(‘n,]vn

» proj 1y -+ P,projT,
Py x-.-xP, proj (Ty,...,T)

P(y) proj T(t) [v proj
py-P(v) proj ut.T(t)
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The final rule should be read, “if P(y) proj T'(t) can be inferred under the assump-

tion that y proj ¢ then puvy.P(y) proj ut.T(t) can be inferred.”

Because type definitions are finite, it is casy to sce that if any type X is defined using

the base types and +, x and p then FinProjx is a finite domain.

Which projections are included in FinProjy? Certainly ABS always is (possibly
occurring as ABS x ABS or py.ABS). ID also is always included, though this
may not be immediately obvious, particularly in the recursive case. However, if
P(y) proj T(t) (under the assumption that v proj t) and if P(ID,) = IDy(y, then
1. P(v) = ID,y 7y as required. Over a product domain we have only those projec-
tions which act on the components separately. If X is a sum domain then FinProjy
contains the ABS projection and, in addition, projections which discriminate between
all the injective tags. The only projections we have over recursive domains are those
which treat every level of recursion identically. Finally, we note that ABSy = 1Dy as

there is only one projection on the one point domain.

4.7.2 Examples

To make this clearer, we will consider the following examples. Suppose that for
some types X and Y, FinProjx = {ABS,ID} = FinProjy. Then the clements of

FinProjx yy are given by

PinProjx.yy = {ABS x ABS, ID x ABS, ABS x ID, ID x ID}
— {ABS, LEFT, RIGHT, ID)}

To take another example, suppose that the type Union is a tagged union of Bool,
Int, and Char. That is,

type Union = Bl Bool + Num Int + Ch Char

The elements of FinProjymi,n are ABS, TAG (which retains the tag but discards
everything else), ID, and six projections lying between TAG and ID which variously
discard values in one or two of the summed domains (under the assumption that the
projections over these types are just ABS and ID). This means that, not only can
we model total presence or absence of information, but we can also model partial
information -knowing only the tag but not the associated value for example. If we

have a function that operates on a tagged union our partial evaluator may, at least
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potentially, be able to evaluate away the tags to provide separate functions specialised
to arguments of the different types. This is a key idea in the development in the next

chapter.

Finally, consider association lists as used to implement environments. Assuming we

have two other types Var and Val we could define,
type Assoc = End + More ((Var, Val), Assoc)

The projections in FinProjs,,,. include ABS and ID as usual. In addition we have
STRUCT (where only the recursive structure is known) and STRUCT(LEFT) and
STRUCT(RIGHT) which discard the Val are Var parts respectively. These are

ordered as follows.

ID

N

STRUCT(LEFT) STRUCT(RIGHT)

NV

STRUCT

ABS

Using these projections, we can model the situation where we know only the names
in an environment but not the values, for example. This situation is likely to occur
during partial evaluation of an interpreter. It means that it should not be necessary to
write interpreters with separate name and value lists in order to benefit from partial

evaluation.

4.7.3 Relating to Projy

We must relate the domains FinProjx and Projx. The inclusion map supplies a
suitable embedding of FinProjy in Projx. The corresponding projection from Projx

to FinProjx is given by,

fold v = mazr {B € Finlrojx | # C 7}
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(&1
o

Currently, the abstract semantics are defined over the whole of Proj. By applying fold
to every right hand side in £# we obtain an approximation to the abstract semantics
whose values are all in the appropriate finite domains of projections. (Actually,
because of the construction of the finite domains, fold only needs to be applied in the
constructor case). As fold is a projection, the finite abstract semantics underestimate

the true abstract semantics, so the proof of safety still holds.

4.8 Summary

After defining a small typed language together with its concrete semantics, we defined
an alternative semantics that manipulates projections. These alternative semantics
were shown to abstract the notion of static data correctly with respect to the concrete
semantics. Consequently, we were able to show that the equations intended to produce
a congruent division were also correct. Finally, we demonstrated how to approximate

the abstract semantics in a safe and computationally feasible way.

We now know how to describe the static data. In the next chapter we turn our

attention to the dynamic.



Chapter 5

Run Time Arguments

The static projection tells us which part of a function’s argument will be present
during partial evaluation. In any particular call of the function, this part of the
argument is used in the production of a residual function. However, this still leaves
the question: which part of the argument should the residual function be given at
run-time? Obviously we could pass the whole argument if we wanted to, but we can
do a lot better. After all, the partial evaluator will have taken the static part into
account in producing the residual function. It ought to be unnecessary to supply the

residual function with the same information all over again.

We need a way to sclect the run-time information. The original argument to a func-
tion f must be factorised, or decomposed, into static and dynamic factors, and this
factorisation should be as complete as possible. That is, the amount of static informa-
tion which is also regarded as dynamic should be minimised. Then, when we pass the
dynamic argument to the residual function, we will be passing as little information

at run-time as possible.

There are, of course, many possible factorisation methods. Some produce an exact
decomposition while others do not. We will look at two methods in this chapter. The
first does not produce an exact factorisation but is based on very familiar construc-

tions. The second method, which is exact, arises as a generalisation of the first.

5.1 Projection Complements

The canonical equation for miz assumes that the program argument is defined on a

product of the static and dynamic domains. Soif f: X — } is a function defined in
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the program, we would like to regard it as having the type f: A x B — Y, where
is static and B dynamic. Assuming we are suppled with a static projection 5 for f we
can produce A—it is just the range of the static projection, which we write as v(.\)
(this is a domain as all the elements of each FinProjx are finitary projections). Ideally,
we would like to pick another projection, § say, so that B = §(X)) and X = A x B.
Unfortunately, this is not possible in general. However, while we cannot achieve
isomorphism we can ensure that, in some sense, X is a sub-domain of A x B. A
trivial solution to this is for § to be the identity function and then B would equal .

Fortunately we can do better.

Suppose we are given a static projection and want the dynamic function to be a

projection also. This dynamic projection must be a complement of the static.

Definition
Ifv:D — Dand f: D — D are projections, and if y U 3 = ID, then 8 is a comple-

ment of v (and vice versa).

There may be many projections which are complements of a projection 4. We will

choose one in particular and describe it as the complement of v, written 7.

From the definition it is clear that for each value z € D the property that
v rU% r =z holds. In other words, between a projection and its complement no
information is lost. But for it to be a good choice, the complement should discard as
much as possible consistent with this. That is, the complement should be as small
as possible. In general there is no least complement, but as we are only interested in
static projections drawn from an appropriate FinProjp we will take its complement

from there also. If we do this then we can choose one which 1s minimal.

We know that D can be embedded in o(D) x (D) when o and & are comple-
ments because the canonical map < 0,8 >: D — o(D) x 6(D) is injective. That is,

if(cd, §dy=(0d', 6d)ford,d € Dthend=0dUéd=0dUéd =d"

5.1.1 Constructing Complements

In the previous chapter, elements of FinProjx were defined constructively. For any

such projection, we can give a corresponding construction of its complement.
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ABS = ID

1D = ABS

Cr Vit tym = ¥+ + ey, iy #ID for some:
Y X X Yn = J; X--- X7,
1y-P(y) = wv.P(v)

[t is not hard to establish that v U% = ID for all 4 € Projp. The only non-trivial case
is the recursive one. This may be established by recognising that Pr(y) = P"(¥) for
all n and that ABSy = IDy on the one point domain. As ut.T(t) = |32, T*(1) we

can appeal to continuity to complete the result. The details may be found in [Lau88].

An example will show that the factorisation is not always exact. Suppose that D
is the Assoc domain from the previous chapter—essentially a list of pairs —and that
the static projection is STRUCT which discards all the elements leaving only the list
structure. What is the complement of STRUCT? If we restrict ourselves to elements
of Projp then the answer is ID. As STRUCT(Assoc) = Listy (lists of elements of
the void type) it is clear that Assoc % STRUCT (Assoc)) x Assoc. This example also
shows that the complement of the complement of a projection is not necessarily equal

to the original projection itself.

5.1.2 Examples

What sort of residual functions are produced when we use complements? Some ex-

amples will be useful.

The simplest case is where the argument to a function is a tuple of values ecach of
which is either completely static or completely dynamic. Here projections provide

exactly the same results as the original DIKU work.

A more challenging, but now standard, example is given by the association lists
described in the previous chapter. Suppose we have the function lookup which takes
an association list and an index value and returns the value associated with the index.

Thus,

lookup :: (Assoc,Var) -> Val;
lookup (xys,w)
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= case Xys 1in
Empty => fail
Il More ((x,y),xys’) => case equal (x,w) in
False => lookup (xys’,w)
[1 True =>y
end;

end;

where fail and equal are suitably defined. The association list associates vari-
able names with values. Suppose that we know the names at specialise-time
but not the values, as we might when specialising an interpreter to a pro-
gram. Fach call to the function lookup in the original program will be replaced
by calls to specialised versions of it. The static projection for lookup will be
o : (Assoc x Var) — (Assoc x Var) given by o (a,v) = (STRUCT(LEFT) a, v).
Its complement is given by 6 (a,v) = (STRUCT(RIGHT) a, 1). Thus the param-
eter to the residual function will be from a domain isomorphic to the range of the
dynamic projection é—essentially a list of values. The specialised versions of lookup
will move down this list of values a set distance, and return the value found there.
So, not only is there no testing on the names in the environment at run-time, but
the names have totally vanished. Knowing this, we could rewrite the the example in
Chapter 2 so that the state is modelled by a single association list without affecting

the results of partial evaluation.

A less successful result occurs with the Union type. If the static projection is TAG
then the dynamic projection is ID. So, although a function body using a value of
the Union type may be streamlined somewhat to its argument, the whole argument
is still used at run-time—the value is still packaged up with its tag. The consequent
packaging and unpackaging constitutes an unnecessary inefficiency. While not too

serious in this example, it is symptomatic of the weakness of the complement method.

5.2 Program Divisions

Using complementary projections to factorise the argument to a function into its
static and dynamic components is an example of a program division [Jon88]. We
have already touched on this informally in Chapter 3, but will now give its precise

definition. I is cast in terms of Jones’ program model.
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Definition (Jones)

A program dwision is a triple (0,6,7) where o,:V — V, &,:V — V,, and
m,: Vo, x Vg — V for each program point p, such that for all v € V, v, € V,, and
vy € vd7

) m, (0, v,8,v) = v
(i) op (7p (vs,02)) = v,
(iii) &, (mp (vs,02)) = wg

The first condition requires that between them, the static and dynamic functions do
not lose any information—the pairing function 7, is able to reconstitute the original
value from the two parts. The other two conditions imply that the static parts stay

static, and the dynamic dynamic.

This intuition is very similar to the informal justification we offered for using comple-
mentary projections. There is a good reason for this. Suppose we were to choose 1
and V; to be sub-domains of the original domain, and the pairing function 7, to be
least upper bound. Then for the static and dynamic functions to form a division, they
must be complementary projections. Why projections? Because, for example, condi-
tion (i) requires that o, v U é, v = v for all values v, which implies that o, C [D. In
addition, condition (ii) requires that o, (v, U vg) = v, for all values v, and vs. Choos-
ing vy = L and expressing v, as (o, v) for some value v gives 0, (0, v) = 0, v. Thus,
o, is idempotent and weaker that ID. It is a projection. Iixactly the same argument
applics to 6. Why must they be complements? Condition (i), when expressed using

least upper bound for 7, is precisely the complement condition.

We can extend this slightly. Rather that insist that V, and Vg are actually sub-
domains of V it is sufficient for them to be isomorphic to sub-domains. It then still
makes sense to talk of the least upper bound of elements drawn from V, and V.
From all this we draw the conclusion: If the pairing function 7 from a division is
essentially least upper bound, then the static and dynamic functions o and é are

essentially complementary domain projections.

There are other choices for the pairing function which give rise to different sorts of
divisions. In the previous section we pointed out some of the shortcomings of the
complement division. We will now study a more complicated division, but one which

provides an exact factorisation.
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5.3 Domain Theoretic Dependent Sum

In the introduction to the chapter, we noted that it is usually impossible to find
non-trivial factorisations of an arbitrary domain X as the product of two others. The
problem is that the domain product operation is too restrictive. We need some more
general operation from which product arises as a special case. That more general

operation is dependent sum.

Dependent sum is usually thought of as a set construction and is often associated
with constructive type (set) theory [Mar80] where it occurs as a primitive. However,
it made its debut as a domain construction in an exercise in Plotkin’s lecture notes
in 1978 [Plo78]. Since then it has been used to provide models for the polymor-
phic A-calculus [CGWS8T7]. Categorically speaking, dependent sum is a Grothendieck
construction where the underlying domain is viewed as a category. This aspect is

particularly relevant later on.

In order to develop a basic understanding we will give a set theoretic definition of

dependent sum, and then show how to extend it to domains.

Definition
Let A be aset and {B,} a family of sets indexed by elements of A. Then the dependent

sum y_,c4 B, is the set,

Y. Bo={(a,b) | a€ A, be B}

The dependent sum is a (possibly infinite) tagged union of the family of sets {3, }.
If the family is constant, i.c. if there exists some set B such that 3, = B for every
a € A then Y, 4 B, reduces to the set product A x B.

Now suppose that A and the family {B,}.ca are domains and not just sets. Let us
consider what it means to index a family of domains by a domain. It is clear what it
means to index by a set, but a domain has more structure and this should he taken
into account. We might quite reasonably require that as we move up a chain in the
indexing domain, the corresponding domains in the family become larger. That is, if
a,a’ € A are indexing elements such that a C a’ then there must be an embedding
$a.ar : B, — By which embeds B, into B,. Of course, the embeddings should be
such that if a C @’ T a” then ¢gon = @aran © ¢a,0r. This much reflects the ordering

relation on the domain. We must also express completeness. If we have a directed
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set V C A then we require that BL]V =|{B. | a € V} and that for any a C ||V
the embedding ¢“vUV is given by ¢a,[_|v = U{da,ar | @ € V} (we use the least upper
bound of domains following Scott’s information systems; in some other framework it

may be replaced by a union, for example).

This may be expressed very concisely categorically. If we view the indexing domain
as a category, then the indexed family corresponds to a continuous functor from this
category into the category of domains Dom® whose arrows are embedding/projection
pairs (that is, pairs of functions ¢: X — Y, ¢ : Y — X such that ¢ o ¢ = idx and
doy Cidy).

Now that we know what a domain-indexed family of domains is, we can construct

the dependent sum.

Definition (Domain Dependent Sum)
If {B,}.ea is a domain-indexed family of domains, then the dependent sum of the

family is given by,

S B, ={(a,b)| a€ A, beB,}

a€ A

with the ordering

(a,0) Cx (a',0') & (a Eg ') A(¢a,u(a) Cp,, )

al
Lemma 5.1

The dependent sum of a domain-indexed family of domains is a domain.

Sketch Proof

A complete proof that this construction results in a Scott domain appears in [CGW8T7]
but we will give an outline here. We need to show that the sum is an w-algebraic,
consistently complete, complete partial order. It is clear that it has a bottom element,
given by (L4, Lo, ) and the fact that the relation C over the elements of the sum
is a partial order follows almost immediately from the fact that C4 and the g, are

all partial orders.

To construct the least upper bound of a directed set of elements drawn from the sum
we initially consider the set of first components. These form a directed set in A which

will have a least upper bound. If all the second components of the original directed
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set are injected into the domain indexed by this least upper bound, then again we
obtain a directed set which will itself have a least upper bound. The pair, whose
components are the two least upper bounds, is an element of the dependent sum and
is the least upper bound of the original set. We can form the least upper bound of a

consistent set in the same way.

To show algebraicity we have to characterise the finite elements. An clement (a, b)
of the sum is finite exactly when a is finite in A and b is finite in B,. The set of
finite approximations to an element form a directed set. Because A4 and the {B,)}
are algebraic, and because the indexing is continuous, the least upper bound of this
directed set will be the original element. Finally, because A and the {B,} have

countable bases, the set of finite elements is countable. O

As we might expect, domain product is a special case of domain dependent sum. To
see this suppose that B, = B for every a € A. The elements of the sum are then just
the elements of the product. Furthermore, all the embeddings are constrained to be

the identity, and so the order relation simplifies to the usual product ordering.

We have retained the set style notation for dependent sum even though it does not
make the embeddings explicit. To be fully formal we should work with the functors
given by the categorical view. Later on, when we do need the formality, we will
do this. Elsewhere, however, we will use the set notation in the belief that familiar

notation is helpful.

5.4 Projection Factorisation

Let us summarise what we have done. We started with a domain-indexed family of
domains. From this, we produced a sum domain that respects the structure of the
indexing domain. In this section we do things the other way around. We start off
with a single domain and discover a domain-indexed family of domains sitting inside

it. This allow us to express the original domain as a dependent sum.

We have already noted that domain-theoretic dependent sum is a special case of the
(covariant) Grothendieck construction. This (very general) construction has a corre-
sponding decomposition, namely the Grothendieck cofibration. Cofibrations have the
property that they give rise to an indexed family whose Grothendieck construction re-
constructs the original structure. It turns out that cofibration is precisely the concept

we require in order to generalise our earlier notions of projection complements.
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Consider a call of some function, (f ) say, and supposc that 7 is the static projection
for f. During partial evaluation, we will be able to compute the static portion of r
using 7. Call this value a. Hence a = v z. At partial evaluation time, the value a
represents the sum total of our knowledge about the value z. Prior to calculating the
static value, all we would have known about z was its type, X say. Now, however, we
can be more precise. Not only must z lie in X, but it must also lic in the inverse image
of a under 5. That is, £ € y~'{a}. This might provide fairly tight constraints on the
possible value of z. How tight the constraints are will depend on «, of course. If 5 is
a large projection (indicating lots of static information) its inverse images (or fibres)
will be relatively small but, conversely, if 4 is small (not much static information) its

fibres will be large.

A question naturally arises. Given that the fibres are subsets of the domain, what
sort of structure do they have? The precise answers depends on the projections. The
fibres of any projection form a consistently complete cpo but it will not necessarily
be algebraic. However, for the projections we use, not only are all the fibres Scott
domains, but they also correspond to first-order constructible types. In particular,

they are just products of types that already appear within the source program.

With these observations our overall strategy should have become clear. The range of
the static projection forms a domain which indexes the family of its fibres, cach of
these being domains. It should, therefore, be possible to express the original domain
as a dependent sum, where each of the summands is the inverse image of some static
value. In any particular function application, we will know that the dynamic value
must be constrained to the fibre corresponding to the static value, and so may express

the type of the residual function accordingly.

Towards the end of the chapter we will see some examples of this in practice, but in

the meantime will show that the strategy may be realised.

5.4.1 Cofibration

When is a projection a cofibration? That is, when does it give rise to a family of
domains whose dependent sum is isomorphic to the original domain? Rather than
give a very general answer we will show that the projections we use do indeed have this
property. Unsurprisingly, we induct over the projection constructions. This approach
is sufficiently flexible so that if another domain construction were added at any time

then 1t alone would need to be checked.
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For the present we will take on trust that all the fibres form domains. We will present
a lemma shortly which gives a stronger result. Our immediate task is to demonstrate

that appropriate embeddings exist.

Definition

Let v : X — X be a projection in FinProjx (Section 4.5) with r,z’ € v{X) such that
z C2'. Then ¥, . : 7' {z} — 4" {2’} is a mapping from y~' {r} into v~ ' {+'} where
the ~ operation is defined inductively by

7/;6(1‘,3:), (') = ep X Sy.y

ABS, . = id

7T6L’ inl ot = Ar.z’ (likewise for inr)
’7/1:557.1 e inl o = oo + id (likewise for inr)
W1 P(),e = L (900 PRABS),, 400 ¥n)

where (¢,,1,) 1 T"(L) — ut.T(t) is the canonical embedding/projection pair.

Lemma 5.2
Let v : X — X be a projection in FinProjx with z,z’ € v{X)) such that z C r’. Then
Yror iy {2z} = v {2’} is an embedding with the property that

aCd & F..(a)Cd
for any a € y='{z} and o' € v~ {z'}.

Proof

The only case in which the result is not immediately obvious is the recursive case.
To simplify notation we will write P* for P*(ABS) and P’? for uvy.P(v). We need
to show three things. Firstly that T’:,Jr does indeed map elements of the = fibre to
clements of the z’ fibre. Secondly that the map is an embedding, and finally that it

preserves order.

Let a be an element in the z fibre (that is, P¥ a = 7). In order to show that 7"”:,r'

maps elements of the z fibre into the z’ fibre, we must show that % (P, .o a) = r'.
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(P« 0P, .) (a)

(Po (U, éno0 P"w,.z dnz' O Pn)) (a) [defn of 7’\“’]
= (U PYogno pr Ynz, Ynz! O 71),,) (a) [continuity]
= (Un Ur geoPfogpou0Pry,. y,i0t) (a) [defn of P]
= (Un @aoPro ﬁo ¢ao0 P* ¥nz, Ynz' O Pn) (@) [rearranging]
= (Un ¢no P*0Pyz yoer09s) (a) [thn © b = 1d]
= Un ¢a (P (Pnil/n:, Ynz! (d’n a)))
= Un ¢n (¥n 2') [finite induction]
= 2 [algebraicity]

To see that 7)::,:' is an embedding we only need to note that (by finite induction)

its approximations are all embeddings on larger and larger subdomains. In the limit

we obtain an embedding on the whole domain. Finally, suppose that a C o’ (where

a €y '{z} and o’ € y7'{z’}). As order between the finite approximations of a and
!

a' (namely, ¥, a and i, a') is preserved by the approximations to I’A“’,_r, (an casy

induction), then order is also preserved in the limit. 0O

We are now in a position to show that all the projections in FinProjyx are cofibrations.
Their fibres form an indexed family of domains such that, when we construct their
dependent sum, we obtain a domain isomorphic to the original. This, our main result,

is expressed in the following theorem.

Theorem 5.3 (Projection Factorisation)
If v: X — X is an element of FinProjx then

X Z v~ {a}

a€v(X)

Proof
The elements of the sum are all of the form (v z, z) and so are in one-to-one corre-
spondence with the elements of X. Furthermore, both X and the sum have the same

ordering, for

(v, z) g (v &', ©)
& (Y2 Cx vy z')AFyrqe(z) Ty 2')  [definition]
< (yrCxyz)A(zCyx 1) [lemma 2]
& rCyzr [y monotonic]

which completes the proof. O
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The factorisation theorem allows an arbitrary domain to be decomposed in many
different ways depending on the choice of projection. In contrast with using projection
complements, this factorisation is exact. It is applicable in partial evaluation because
it can be driven by the projection obtained as the result of binding-time analysis.
However, there is still an issue open. We must show that all the fibres form domains.
We actually want something stronger than this. As the fibres correspond to the
possible dynamic values we would like to produce a residual function whose argument
type corresponds to the fibre. We need to know, therefore, whether the fibres are
expressible in the type system. Fortunately, in most cases they are. We will consider

a few examples before proving the result in general.

Consider the Assoc type again (Section 4.7), together with the projection STRUCT
that discards all the elements. The element More ((1, 1), End) is in the range
of STRUCT and its inverse image is isomorphic to the domain (Var,Val). Again,
the element More ((L, 1), More ((L,L1l), End)) is also in the range of STRUCT.
[ts inverse image is isomorphic to the domain (Var,Val,Var,Val). To take another
example consider the Union type together with the projection TAG which discards
everything except the injection tags. The element Num L is in the range of TAG and

its inverse image is isomorphic to Int.

These examples are typical and may be generalised to any finite element in the range

of a projection, as the following theorem makes clear.

Theorem 5.4
Let X be a domain and o € FinProjy a projection. If a € (X)) is a finite element
then there exists a domain B, = o~ '{a} such that B, is expressible in the type

system.

Sketch Proof

The proof is by induction over the static projection constructions. If the projection
is ABS then the inverse image is just one of the domains we started with and so
1s expressible in the type system. In the sum and product cases the induction is
straightforward. For the recursive case we appeal to the restriction that the static
value is finite. In this case we only need to apply the recursive rule finitely often and

so will end up with a finite product of domains each expressible in the type system.
0

The restriction in the theorem to finite elements ensures that we will never need

to construct an infinite product. There is in principle no reason why we should not,
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except that many languages (including PEL) exclude such constructions. Nonetheless,
this is not a serious restriction. Attempting to specialise a function to an infinite value
will fall foul of the infinity problem, and the partial evaluator will loop. If the division

is finite then no infinite values will arise.

5.4.2 Domain Dependent Products

In order to describe the action of the partial evaluator we need to define dependent
products. Again these are more familiar in set theory than domain theory, but we

may define them quite easily after having defined dependent sum.

Definition (Domain Dependent Product)
If {B.}sca is a domain-indexed family of domains then the dependent product of the
family 1s given by,

Il B.={f | f. € B}

a€A

where the elements f are continuous families indexed by A with the ordering
fEHQ@VQGA-fa[;Baga

The elements of the product are like functions except that their range is not very
clearly defined. Supplying an indexing element a € A produces an element of the

corresponding B,. Each family is continuous, so if a C a’ then ¢, .(f,) Cp, f, and

if a = U{a;‘} then fo= U{¢a.',a(f¢l.‘)}'

A proof that dependent product is a Scott domain appears in [CGW87]. An equiv-
alent formulation defines the elements of the product to be the continuous sections
of the first projection from the dependent sum. That is, the elements are func-
tions f: A — Y (A, B) such that fst o f = id4. Such functions must have the form
f a=(a,b) where b € B,. This formulation makes it very clear that, if the family
of domains is constant, then the dependent product [[,c4 B is isomorphic to the

function space (A — B).

There is an important isomorphism between function spaces from dependent sums

and dependent products of function spaces.
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Lemma 5.5

If {B.}ac4 is a domain-indexed family of domains, and if C is some domain, then

(>.B.)— C = J][(B. - C)

a€A aCA

Proof
This can be proved directly for the case of domains, but we can give an elegant
category theoretic proof (communicated to me by Andrew Pitts). The details may

be skipped without serious consequences.

The isomorphism is a consequence of the following adjoint situation. Let Dom be
the usual category of domains and continuous functions, Dom be the category
of domains with embedding/projection pairs, and [A — Dom*?] be the category of
continuous functors from the domain A (viewed as a category) to Dom*?. This latter
category corresponds to domain-indexed families of domains. There is a functor
A: Dom — [A — Dom*] (called the diagonal functor) which maps any domain D
into the constant functor Ap (i.e the constant family {D},c4). This functor has
both a left and a right adjoint which are dependent sum and product, respectively
(written 3° + A 4]]). Let X be an arbitrary domain and B : A — Dom*? be a functor
corresponding to an indexed family of domains {B,},e4. Then all the following are

natural isomorphisms:

Hom(X, (X B) — C)
Hom(}> B, X — C) [currying twice and product commutative]
Hom(B AX — Q) [ HA]
m(B, AX — AC) [A preserves —]
m(AX B — AC) [currying twice and product commutative]
om(X, TI(B - AC))  [AAT]

1R 1R 1R 1R

Thus, Hom( -, (3> B) — C) is naturally isomorphic to Hom( _, [[(B — AC)) and
so, by the Yoneda lemma, (3> B) — C 2 [](B — AC). Written in the notation of
families this is just (Z,cq Be) = C Z [laen(B. —» C). O

Using this isomorphism, we are able to describe the action of a partial evaluator.
Suppose we start with some function f: X — Y together with a partial descrip-
tion of a value r € X. Let v: X — X be the static projection, so that the par-
tial description of the value z € X gives us complete information about the value
7 z € y(X). As the domain X is isomorphic to the domain }-,c.x)(v™"{a}), we
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may view f as a function f:(¥,eyx)(7"'{a})) = Y. Now, we are in a posi-
tion to appeal to the isomorphism above, and so also view f as an indexed family
f € [aeqyx)(7y~'{a} — Y). Supplying the index value (y z) gives us the correspond-

ing residual function f, ;) : v~/ {a} — Y.

We may interpret the isomorphism above as a statement about the existence (and
uniqueness) of the residual functions. It states that any function may be viewed as
a collection (product) of (residual) functions, one for each static value. Furthermore,
this result does not depend on the static value being in a particular form, but holds
for any projection which is also a cofibration (i.e which will allow a dependent sum
construction). As we know, the purpose of binding-time analysis is to chose a projec-
tion which accurately describes the static information. We can now see miz as the
means for extracting the appropriate residual function. Of course, as with the S-m-n
theorem, this view says nothing about the engineering aspects of miz (efliciency of the
residual programs etc.) but only about the existence of the residual functions. It is,
therefore, important to remember that a partial evaluator actually manipulates pro-
grams (i.e. representations of functions) rather than functions themselves. As such,
each of the steps above require a fair amount of symbolic manipulation to achieve in
practice. The description above expresses eztensionally what happens to the func-
tions, but says very little about the algorithms that achieve it through intensional

manipulation.

The type of miz

The version of miz that uses dependent sum has a correspondingly more general type

than that appearing in Chapter 1.

miz :: () By) = C ——)_H;(Ba — C)

a€A a€A

Providing miz with a program as its argument produces a dependent product, that is,
an indexed family. Supplying this family with an index value (the static information)
results in a residual program whose type depends on that static information. This

has important consequences, as we will see in the next section.

If, in the isomorphism demonstrated above, we reduce the dependent sum and depen-
dent product to their special cases of product and function space respectively, then
the isomorphism reduces to currying. Thus, as a special case, currying remains a use-

ful idiom for discussing partial evaluation. However, it fails to exhibit one important
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point: in general, the type of a residual function depends on the static value used to
produce it. It is because of this fact that the use of dependent sum is unavoidable in

general.

5.4.3 Examples

We return to the examples based on the Assoc and Union types defined in Section
4.7. Suppose that, as in the previous examples, we intend to specialise the lookup
function knowing the variable names but not their values. What do the residual
programs look like? The following is a typical example. Suppose the static part of

the association list is
[(nxn ,_L) s (HYII , _L) s (uzu s _L)]

(using a list notation for an element of Assoc) and that we apply lookup to it with

index "Y". The residual function would be,
lookup_1 (a,b,c) =b

The residual function now has three arguments whereas the original only had one.
This is an example of arity raising as described by Sestoft [Ses86] and Romanenko
[Rom88]. Sestoft reports that residual functions can have a significantly greater ef-
ficiency if arity raising is performed, but relied on hand placed annotations in the
program to obtain it. In contrast, Romanenko performed a post processing analysis
and achieved arity raising automatically. More recently, Mogensen [Mog89] used the
results of binding-time analysis for the same purpose. However, each of these ap-
proaches were fairly ad hoc. With dependent sum factorisation, arity raising arises as

a natural consequence of the theory.

Arity raising is not the only optimisation that dependent sum factorisation provides

automatically. Another is tag removal. Consider the numeric type,
type Num = Intg Int + Re Real + Comp (Real,Real)

(where Real is some suitably defined type of floating point numbers), and the follow-

ing coercion function,
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make_complex :Num->(Real,Real);
make_complex x = case x in
Int n -> (make_real (Intg n), 0.0)
[l Rexr -> (r, 0.0)
Il Comp ¢ -> ¢

end;

Suppose that binding-time analysis determines that the projection TAG specifies
the static portion of the input to the function make_complex. Then the possible

specialisations of make_complex are the functions,

make_complex_1:Int->(Real,Real);

make_complex_1 n = (make_real_4 n, 0.0);

make_complex_2:Real->(Real,Real);
make_complex_2 r = (r, 0.0);

make_complex_3: (Real,Real)->(Real,Real);
make_complex_3 ¢ = c;

Not only has the run-time test been eliminated (and, presumably, another test in
make_real) but so has the unnecessary packaging and unpackaging that occurred
with complements. The arguments to the residual functions are optimal in that they
contains no static information at all.

5.4.4 Dependent Sum Factorisation is a Division

We will close this chapter by showing that the dependent sum factorisation constitutes
a division. As the domain is decomposed into a dependent sum, the dynamic function
becomes an indexed family of functions—one for each static value. Define § z = §,, =

for a family of functions {6, | a € o(D)} where
§,:07"{a} = B,

is a bijection for each a € o(D). The pairing function 7 must take a pair of values—in

this case an element of a dependent sum—and reconstitute the original value. We

define,
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7 (a,b)=67"b

These functions form a division. Before we can show this we need a lemma examining

the interaction between the static and dynamic functions.

Lemma 5.6
If a € 0(D), and b € 8,(0~"{a}), then o (67! b) = a

Proof
As b € 6,(0c7"{a}) there exists a value z € 0~/ {a} such that 67/ b = z. But then

o (87! b) =0 z = a as required. O
Using this result we can prove,

Theorem 5.7
A triple (o, 6, 7) defined above forms a division.

Proof
We have to check the three conditions contained in the definition of a division. The

first can be done directly.

7(ocz,dz) = §
871 (6,- )  [definition of 4]

= z
The other two conditions use the lemma.

o (r (a,b)) = o (6" D)
= a [by the lemma)]

8 (r (a, b)) = 6 (671 °0)

by(521 b (671 )  [definition of §]
8. (671 b) [by the lemma)
= b

Il

Thus (0,8, ) form a division as required. O

This completes the theoretical development in the monomorphic case. We now know
how to describe both static and dynamic data using projections, and have seen that
it fits into Jones’ general framework. In Chapter 7 we will consider the implications
of moving to a polymorphic language, but before we do so we should check that the

theory we have already seen may be realised in practice.



Chapter 6

Implementation

We have studied some of the theoretical aspects of using projections in binding-time
analysis and how, again in theory, the dependent sum construction can be used to
define the run-time arguments. In this chapter we will draw these threads together
in the implementation of a projection-based partial evaluator. The current version is
written in LML [Aug84] and not in PEL itself, so it is not yet self-applicable. Indeed
there are still some problems about self-application of LML-like languages, which we

discuss in the concluding chapter.

One slightly surprising feature is that the moderately complicated dependent sum
construction turns out to be almost trivial to implement. In contrast, however, the
binding-time analysis is fairly intricate because of the complexity involved in rep-
resenting projections. Of necessity, parts of the following will interest only those
intending to produce an implementation themselves. Anyone uninterested in the
gory details should skim much of this chapter and turn to the final section where we

develop the extended example.

6.1 General

A PEL program, as defined in Chapter 4, consists of type definitions followed by a
series of function definitions. At the end of these is an expression to be evaluated.
The value of this expression gives the value of the whole program. When we intend
to partially evaluate a program we present it in exactly the same form except that
the final expression is permitted to have free variables. These free variables indi-

cate non-static data. After partial evaluation, the residual program is in a similar

71
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form. It contains whichever type definitions are required, the residual functions with
their associated type definitions and, finally, a residual expression. This expression
contains the same free variables as before, but refers to the newly produced residual
functions. Substituting any values in for the free variables in both the source and

residual programs will, on evaluation, produce the same answer.

Expressions are represented as trees constructed in the following data type.

type Expr = Var String

Prod [Expr]

Constr String Expr

Call String Expr

RCall String Expr

Case Expr [(String, (Expr, Expr))]

+ 4+ 4+ o+ o+

Most of the tags are self explanatory. In the Case variant, the first Expr argument is
the expression over which the case is performed. The names appearing in the asso-
ciation list are the various constructors appearing as patterns in the case statement.
Paired with each name is a pair of expressions, the first of which is a nested product
of variables. This allows products to be decomposed. The second expression in the
pair is the expression on the right hand side of the case statement. It is evaluated in

the original environment augmented with the bindings implied by the pattern.

The function definitions are represented by an association list in which the function
names are paired with a pair of expressions. As in the case statement, the first is a
nested product of variables (which again allows products to be decomposed) and the
second is the body of the function. This association list is present as a global value

throughout the partial evaluator.

Currently only binding-time analysis is implemented; call annotations are inserted by
hand. In the concrete syntax, a residual call is indicated by a # symbol preceding the
function name. This gives rise to the distinction between the Call and the RCall

tags above.

6.2 Binding-Time Analysis

The abstract objects manipulated in the binding-time analysis are projections and

hence functions. As the analysis contains tests for equality we may not manipulate
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projections directly, but are forced to handle representations and implement func-

tional equality by representational equality.

6.2.1 Representing Projections

By construction, each projection is finitely representable. However, for representa-
tional equality to be a correct implementation of functional equality, each projection
must have a canonical representation. This must be preserved by the various projec-

tion manipulating operations such as greatest lower bound.

Sums and Products

Projection sum and product are easy to model. Because we use a tagged sum with
named tags we represent a projection sum by an association list. The names in the
association list are the constructor names, and they are paired with the appropriate
projection to be applied to the summand. Over a sum, however, we may also have
the projection ABS. This gives us two possible variants in the representation type:

either Abs on its own, or Sum with its association list.

Products are even easier. A projection over a product is represented by a list of
projections, one for each of the factors. A product node in the tree is indicated by a

Prod constructor.

To give a uniform distinction between projection constructors and constructors in
other types, such as the type of expressions, we prefix the projection constructors
with the letter P. So far, this gives the tags PAbs, PSum and PProd.

Recursion

Some of the representation problems occur when representing projections over recur-
sive domains. We indicate a recursive projection using a constructor PMu and use a
placeholder PRec in the parts of the tree where recursion takes place. This echoes the
form pv.P(y). To access the internal structure of the projection we must unfold the
representation. This involves removing the PMu tag, and replacing every occurrence
of PRec in the subtree with the original projection. This is performed by the function

unfold.
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Mathematically, it makes no difference to a projection whether it is unfolded or not.
By the definition of the fixed point operator y, the equation P(uvy.P(v)) = puvy.P(7)
always holds. Representationally, however, there is a difference between these two.

We must ensure that, when we want to compare two recursive projections for equality,

they are both folded.

The fold function from Chapter 4 is essentially the reverse of unfold, although this
might not be obvious from the definition. When folding an arbitrary projection, the
various parts that are to be replaced by the PRec placeholder may not all be the
same. In this case we have to approximate and take the greatest lower bound. This
is a direct result of the decision to use finite domains and, moreover, this is where
finiteness is achieved. Replacing the parts with their greatest lower bound and then
folding, produces the largest projection in the finite domain which is smaller than the
original. Thus we see that the simpler but less constructive definition in Chapter 4 is
the same as we have here. We may note that the two functions involved, namely fold
and unfold, constitute the embedding/projection pair because fold o unfold = ID and
unfold o fold T ID. They are maps between the finite domain of projections we use

in the analysis and the domain of all projections.

Domain definitions in PEL may be mutually recursive. In order to represent these, it
is not sufficient to have a single recursion marker. This is not because it is impossible
to represent the projections doing so, but because it becomes extremely hard to keep
uniqueness of representation. We arrange the domain definitions into mutually recur-
sive blocks using a standard algorithm for finding the strongly connected components
of a graph. A projection over one domain may involve projections over any of the
other domains in the same component. If, in turn, any of those projections involve a

projection in the original domain it will be the one we started with.

We enhance the PRec marker to include the name of a domain and likewise with the
PMu constructor. The body of the projection is an association list in which domain
names are paired with projections. All the domains in a single mutually recursive
component appear in the list. To unfold a projection we extract the projection as-
sociated with the domain appearing as the first argument to PMu. All occurrences of
the PRec placeholder are replaced by the original projection with the first parameter

to PMu changed to the domain indicated by PRec.

For an example, consider the following mutually recursive domains,

Nili + Consi (Int,Listb)
Nilb + Consb (Bool,Listi)

type Listi

type Listdb
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These define lists whose elements alternate between integers and booleans. The pro-

jection over Listi that discards all the elements while retaining the structure is given

by

PMu "Listi"
[("Listi",PSum [("Nili',PAbs),
("Consi",PProd [PAbs, PRec "Listb"])]),
("Listb",PSum [("Nilb",PAbs),
("Consb" ,PProd [PAbs, PRec "Listi"])]1)]

The corresponding projection over Listb is exactly the same except that the string
"Listb" appears as the first parameter to PMu. If we unfold the projection in the
example and access the projection associated with the second argument to Consi we
will obtain this projection—it will have exactly the same representation. Represen-
tational uniqueness is therefore preserved and function equality may be implemented

by representational equality.

The Representation Type

The datatype we use to represent projections may be defined as follows.

type Proj = PProd (Proj]

PAbs

PSum [(String,Proj)]

PMu String [(String,Proj)]
PRec String

+ + + +

Because of the restrictions imposed by PEL on the form of type definitions we can
use a less general domain. In PEL, possible domain recursion is always followed by
a sum and this is the only place a sum may occur. The projections over a sum are
represented using PAbs or PSum so we may remove them from the generic Proj type
and place them in a type of their own. This allows the type checker to provide more
security guaranteeing for example, that we never compare a folded projection with

an unfolded one.
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6.2.2 Computing Fixed Points

As shown by the equations in Chapter 4, the meanings of the abstract functions are
given by a greatest fixed point. This, theoretically, is computed across all functions
at all values simultaneously. However, even in fairly small example programs, a
direct implementation of this can be prohibitively expensive. It is not uncommon,
for example, for a domain of projections to contain 10 or more elements. A function
that maps between two such domains is a member of a domain containing some 101°
elements (less actually because only the monotonic functions will be included). It is

clearly out of the question to attempt to find the fixed point by brute force.

Fortunately we do not need to know the value of the function for all of its possible
arguments. On the contrary it is usually sufficient to calculate it for only a few of
them. We calculate the value of the function at those points using the ideas of minimal
function graphs [JM86]. For each function we record argument/result pairs for only
those arguments we need. The arguments may arise directly from the analysis, or
they might be needed to calculate the value of another function. The starting values
come from the description the expression at the end of the program. Where that

expression has free variables the PAbs projection tag is used.

Having obtained a table of (over-)approximations to some argument/result pairs of
some of the functions, the functions are repeatedly applied to the arguments using
the values in the table for any other function calls. These values are given by the

formula

fuwv e =[Hy|3z.2Cz {f:2— y} € tad}

Whenever a function is used, it and its argument are added to the table paired with

the value computed for its result.

When finally an application of the functions leaves the table unchanged the argu-
ment /result pairs are correct and may be used in the analysis. Termination of the
cycle is bound to occur because the abstract semantics is monotonic, and the domains

are finite.

6.3 Specialisation

Much of the implementation of the specialisation function spec is unchanged from

Chapter 2. The major difference concerns the presentation of static values and dy-
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namic parameters. In Chapter 2 we assumed that, in the program, each function
definition had two sets of parameters—one static the other dynamic—and that each
function call had its arguments arranged likewise. This meant that it was very easy to

construct the partial environment and to obtain parameters for the residual function.

In the current situation, with each function having a single argument that may con-
tain both static and dynamic parts, we cannot hope to have the split performed
beforehand. As we noted in Chapter 5, the generation of the residual domain is not
a metastatic operation. Instead we use two functions to simulate the action of the
functions o and é defined in Chapter 5.

We need some object to represent the use of L. We cannot use L itself because it
would lead to non-termination of the partial evaluator. We introduce a new summand
into the Expr type, called Bot. The function sigma takes a function name and a
partially static argument intended for that function. It uses the projection associated
with the function retrieved from the (global) division to guide the replacement of
the dynamic parts of the expression with Bot. This takes place within the search
function mentioned in Chapter 2. The resulting pair, consisting of the function name
and the static part of the argument, is returned in the result of search to be added
to the pending list in the recursive call of spec. The specialisation function spec

may be defined as follows.

spec [] done = []
spec ((f,s):pending) done
= if member done (f,s)

then spec pending done

else
((f,s),(new_vs,new_body))
spec (pending++new_fns) ((f,s):done)

where

(vs,body) = lookup program f

(s’,vars’) = replace s vars

new_vs = delta s s’

new_body = eval (make_env vs s’) body

new_fns = search new_body

The replace function uses a global list of variables (vars) and replaces each occur-
rence of Bot in the static argument with a fresh parameter. The resulting argument

s’ contains no occurrences of Bot, therefore.
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To obtain the new variables for the residual program—this corresponds to calculat-
ing the inverse image of oy—we use the function delta. It is initially surprising that
delta requires the original blanked out argument as well as the renamed one. How-
ever, recalling the mathematical construction of the § function in Chapter 5, it will
be immediately recognised as necessary. Unlike the é function of Chapter 5, however,
delta does not need to know which program function its argument belongs to. This
is because we are using a generic value (expression) domain. All delta has to do is
to produce a product containing all the parts of s’ that are twinned with Bot in s.

In this case, this will produce a product of variables.

Correspondingly, we must use delta at the original call of the function. Not only will
the old function name be replaced with the name of the new residual function, but a
new argument constructed from the dynamic parts of the original argument must be
produced. This is the role of delta. Given the static information it will build a new

argument which will match precisely the formal parameters of the residual function.

6.4 Example

In this chapter we have only touched on some of the more significant implementation
issues. However, the action of the partial evaluator on other programs is more inter-
esting than the text of the partial evaluator itself. Consequently, we will return to
the example introduced in Chapter 2, and consider how it is affected by the use of a

projection based partial evaluator.

In returning to the example we will see some gains but also some losses. It will come
as no surprise that the state in the interpreter may be treated as a single parameter.
No longer need it be implemented as two separate lists: a single association list
suffices. The update function takes a name, a value, and an association list and
returns a suitably altered association list. Working inside the structure, the binding-
time analysis is able to recognise that the names are static while the values are

dynamic.

Previously the value list appeared as a parameter to residual versions of run to be
manipulated by residual versions of the update and lookup functions. Now, however,
the values appear in the residual program not as a list but as part of a product. The
residual versions of the lookup function are merely selections from the product and
the residual versions of update map between products. There will be no harm in

allowing these functions to be unfolded.
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However, as indicated above, not everything has improved. In the example in Chapter
2 the binding-time analysis completely ignored type information (indeed, the language
could have been untyped). Each value was treated atomically so there was no differ-
ence between monotypes and instances of polytypes. At this stage in the thesis we
can only handle monotypes, so all occurrences of polymorphism must be removed.
As a consequence, we must introduce three different types of list, for example, one
for commands, one for name/value pairs and one for integers. Each of these require
their own monomorphic accessing functions. We will use the same names as before

but with the type name appended.

Specialising the new interpreter to the example program from Chapter 2 (which finds

the maximum value in the input) gives the residual program,

exec inp

= run (0, hd_int inp, tl_int inp)

run (y,x,inp)
= if x>0
then 1if x>y
then run (x, hd_int inp, tl_int inp)
else run (y, hd_int inp, tl_int inp)
else Cons_int (y, Nil_int)

The result is now extremely close to a hand written version. There is little (if any-
thing) that may be done in terms of improvement. A major gain has come from the

automatic arity raising arising as a consequence of the dependent sum.

This gain is even more evident in the following example, involving a nested While.

Alloc X
[ Read X,
While (greater (var X) zero)
[ Alloc Y
[ Assign Y one,
While (greater (var X) zero)
[ Assign Y (multiply (var Y) (var x)),
Assign X (subtract (var X) one) ],
Write (var Y) 1],
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Read X ],

Write zero ]

The program maps a list of integers into a list of corresponding factorials. Both input
and output lists are terminated by 0. A notable feature in this example is that we
have chosen to allocate a variable within the outer While loop. This variable exists
for one pass of the loop and is then deallocated. On the next pass it is reallocated

and so on.

What does the result look like after partial evaluation? There are now two While

loops and so there are two residual versions of run.

exec inp = run_1 (hd_int inp, tl_int inp)

run_1 (x,inp)
= if x>0
then run_2 (1, x, inp)
else Cons_int (0, Nil_int)

run_2 (y,x,inp)
= if x>0
then run_2 (y*x, x-1, inp)

else Cons_int (y, run_1 (hd_int inp, tl_int inp))

The residual program reflects very clearly the tail recursive structure of the inter-
preter. The two residual versions of run are in mutual tail recursion with each other.
Once again, there is nothing in the residual program that is not essential to the

computation.

The inner allocation of the y variable is reflected in the fact that run_2 has three
parameters whereas run_1 has only two. What would be less efficient interpretively
(because the Alloc would have to be interpreted each time around the loop) turns
out to provide greater efficiency when compiled, for the outer function (run_1) would

have three parameters even though one would not be live.

Let us not forget the fly in the ointment. Polymorphism is very important as a
means for obtaining modularity. At the moment, every input program to the partial
evaluator must be monomorphic, and every residual program will be monomorphic.
In the example above this forced us to declare three different sorts of list. In the next

chapter we explore how to extend our techniques to cope with polymorphism.



Chapter 7

Polymorphism

There are two almost separate issues to be addressed when we consider polymorphic
languages: How to perform polymorphic binding-time analysis, and how to specialise

polymorphic functions. We address both here.

Strachey identified two flavours of polymorphism [Str67] which he styled parametric
and ad hoc. We will only consider parametric polymorphism, as arises in the widely
used Hindley-Milner type system, for example. As ad hoc polymorphism may be
reduced to parametric polymorphism by introducing higher order types [WB89], this
decision is consistent with the thrust of the thesis where we have been considering

first order types only.

A polymorphic function is a collection of monomorphic instances which, in some sense,
behave the same way. Ideally, we would like to take advantage of this uniformity to
analyse (and perhaps even specialise) a polymorphic function once, and then to use
the result in each instance. Up to now the only work in polymorphic partial evaluation
has been by Mogensen [Mog89]. However, with his polymorphic instance analysis each
instance of a polymorphic function is analysed independently of the other instances

and, as a result, a single function may be analysed many times.

To capture the notion of uniformity across instances Abramsky defined the term
polymorphic invariance [Abr86]. A property is polymorphically invariant if, when it
holds in one instance, it holds in all. Abramsky showed, for example, that a particular
strictness analysis was polymorphically invariant. Unfortunately this does not go far
enough. Polymorphic invariance guarantees that the result of the analysis of any
monomorphic instance of a polymorphic function can be used in all instances, but
not that the abstraction of the function can. An example of this distinction appears
in [Hug89a].

81



CHAPTER 7. POLYMORPHISM 82

A more promising avenue of research is suggested by category theory. In a first order
language, polymorphic functions turn out to be natural transformations in the cate-
gory of (Scott) domains and continuous functions. In higher order languages things
are not so simple. Higher order functions may be seen as dinatural transforma-
tions [BFSS87, FGSS88] but, unfortunately, these do not compose in the way natural
transformations do which limits their usefulness. Alternatively, generalising to trans-
formations between structors (a generalisation of functors) seems more promising.
These results turn out to be consequences of Reynold’s original representation theo-
rem for the polymorphic A-calculus [Rey74]. This is developed by Wadler showing its
application to “everyday theorems” [Wad89] and Abramsky has used these notions
to greatly simplify the proof that strictness is polymorphically invariant [Abr88].

In this thesis we have restricted ourselves to the first order case, so we can treat
polymorphic functions as natural transformations. Using this view we develop a
theory of polymorphic binding-time analysis. The development is based heavily on
Hughes’ work in polymorphic strictness analysis [Hug89b]—an example of the cross
fertilisation between the two analyses suggested in Chapter 3. We then discuss how

to use the results to control the specialisation of polymorphic functions.

7.1 Semantic Properties of Polymorphism

Because typechecking takes place on the syntactic description of a function, poly-
morphism is usually understood to be a syntactic condition. Furthermore, it is quite
possible for two functions having the same behaviour to have different degrees of poly-
morphism. The following two definitions of the identity function provide an example
of this.

id x = x

id’ x if true then x else 7

The first has type id :: Vi . t — ¢ whereas the second has type id’ :: Int — Int. So,
while these two definitions denote the same function, they have distinct types. We
deduce, therefore, that we cannot infer the type of a function from its semantic
properties. We can, however, do the converse—some semantic properties of a function

may be inferred from its type.
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What sort of properties might we expect to be able to infer? Parametric polymor-
phism corresponds to a reuse of essentially the same function applied to objects of
different types. The basic intuition behind such functions is that they do nothing to
the polymorphic parts of their arguments except possibly discard or duplicate them.
The very same reverse function, for example, will work identically on both lists of
integers and lists of booleans. One way to express this is to imagine some function
from integers to booleans being applied to each of the elements of a list. Because
the behaviour of reverse is consistent across these types we could apply the function

either before or after reversing the list without affecting the final result.

We can state this more generally. If a function is truly polymorphic (in the parametric
sense) then we cannot trick it into altering its action by applying some coding function
to the polymorphic parts of its argument prior to application. We would obtain the
same result by applying the same coding function after application. The fact that
the values of the polymorphic parts of the argument are different in each case will
not result in a different behaviour. Of course this is still rather vague. For example
we have not specified what we mean by the “polymorphic parts of an argument”. We

use the language of category theory to supply the necessary precision.

7.1.1 Types as Functors

We focus on one particular category, that of Scott domains with continuous functions
which we denote by Dom. In a monomorphic language it is sufficient to model
types by domains and program functions by continuous functions, but not if the
language is polymorphic. It is useful to consider type constructors to see the necessary

generalisation.

Type constructors, such as List or Pair, take one or more types and return a new
type. They may be successfully modelled by functors. For example, from the domain
of integers the List functor will return the domain of lists of integers. Functors act
on arrows also. By defining the actions of the basic type constructions in the obvious
way we can derive the action of any type constructor. So, for example, the action of
List on arrows is given by map (the arrow (function) is applied to each element of
the list). List is a functor List : Dom — Dom but as an arbitrary type constructor
may have many arguments each will correspond to a functor F' : Dom™ — Dom for

some n.

Monomorphic types may be included in the same scheme. Such types, for example

Bool, are functors Bool : 1 — Dom where 1 is the category Dom’ containing only
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the one point domain and the identity function. Any such functor has no opportunity
to vary and so is constant. The image of the Bool functor, for example, is just the
boolean domain. Types themselves, therefore, are no longer modelled by domains

directly, but by functors.

Another monotype is List Bool. Because we treat monotypes such as Bool as functors
Bool : 1 — Dom, the usual application of type constructors to types must be replaced
by functor composition. Then List Bool (actually, List o Bool of course) is also a

functor ListBool : 1 — Dom.

7.1.2 Natural Transformations

Program defined functions are mappings between types. As types are modelled by
functors, these functions should be modelled by transformations between functors. In

fact, by natural transformations.

From their definition, we recall that a natural transformation f: F — G between
functors is a collection of functions (which correspond to the monomorphic instances).
If the source and target of F' and G are the categories D and &£ respectively then
for each object D € D there is a corresponding function fp : FD — GD in €. These
functions are uniform (or natural) in the following sense: If v : D — D’ is any function
in D then the property that Gy o fp = fpr o Fy must hold. This captures precisely the
notion that all the instances of a polymorphic function behave, in some sense, in the
same way. It also expresses our intuition about applying coding (or other) functions to
the polymorphic parts either before or after application of the polymorphic function
without changing the result. In the case of reverse, for example, this means that
List f o reverse = reverse o List f for any function f : X — Y, or to use more usual

notation, that map f o reverse = reverse o map f.

To strengthen the intuition further we will consider a couple of examples. We have
seen the implications for the List functor with the function reverse. Now consider
the selection function fst. Its type is fst : Vs.Vt.(s,t) — s. Expressed in the functor
notation we could write fst : Pair — Fst where Pair s t = (s,t) and Fst s t = s.
Each of these are functors Dom® — Dom. The naturality condition says that,
for any continuous functions 7y: A — B and 6 : C — D, it must be the case that
Fst v § o fst = fst o Pair v §. In other words, that v (fst (z,y)) = fst (v z,6 y) for
all z,y.

All this works for monomorphic functions as well. Recall that types such as Bool
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or Int correspond to functors Bool:1 — Dom and Int:1 — Dom. Consider an
arbitrary function f : Int — Bool, say. There is no polymorphism here as the function
is purely monomorphic so how does the naturality condition apply? The only function
in the trivial category 1 (i.e Dom’) is the identity function, which is mapped by any
functor 1 — Dom onto the identity function of the object picked out by the functor.
Thus the naturality property reduces to the condition that f satisfies the equation
IDg,o10 f = f o IDp,,. But this is no restriction at all, and so f may be any function.
We conclude, therefore, that it is only when a function is not monomorphic that the

naturality condition has any effect.

Depending on the emphasis at any particular time, we will either give the type of
polymorphic functions in the usual notation or in functor notation. From the exam-
ples it should be clear that the two are interchangeable. The functor notation may
be obtained from the usual type notation merely by abstracting over the quantified

variables.

7.1.3 Polymorphism in Languages with Recursion

In most languages with recursion, L is an element of every type. This gives rise to a

necessary modification of the above. Consider the following function definition,
fx=1fx

The function f is the constant 1 function and has type f : Vt.t — t or, equivalently,
f : Id — Id. For the naturality property to hold, that is, for Id yo f = fo Id v to be

true, ¥ must be strict. As we will see later this is the only extra condition required.

Domains together with the strict continuous functions form a sub-category of Dom
which we write Dom,. We change our view of type constructors and regard them
as functors Dom] — Dom,. We can do this since all our basic type constructions
preserve strict functions and, therefore, so does any functor constructed from them.
However, there is a minor technicality. Regarding program defined functions as natu-
ral transformations between functors Dom; — Dom, only caters for strict polymor-
phic functions. But, as every functor Dom; — Dom, may be viewed as a functor
Dom? — Dom by inclusion, this problem may be solved by treating program defined

functions as natural transformations between functors Dom} — Dom.
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7.1.4 Functors and Projections

Before addressing polymorphic binding-time analysis we ought to note a couple of
facts about the interaction of functors and projections. The functors that correspond
to PEL types are of the form F' : Dom” — Dom, so we need to define the projections
in Dom;. The objects of Dom] are n-tuples of objects of Dom and arrows, likewise,
are n-tuples of Dom arrows. The projections in Dom” are, therefore, simply n-tuples
of projections in Dom. Most of the time we will use a single letter (typically v) to
refer to the whole tuple.

If F is a functor corresponding to a type expressible in PEL and if v is a projection,
then F is also a projection. Idempotence follows from the composition property
of functors, and dominance by the identity from the fact that all the functors are
monotonic. Furthermore, because projections are weaker than the identity function,
all projections are strict. This makes them suitable for commuting with polymorphic

functions in the manner described above.

7.1.5 Polymorphic PEL

We have to extend PEL to allow for polymorphism. The only thing in the language
that will change is the type system. In addition to the syntactic classes in Chapter 4

we will introduce the classes of type constructors and type variables,

F € Func [Type Constructors]
t € TVar [Type Variables]

The revised (abstract) syntax of the language now caters for polymorphic types.

t

p — {D} {C d}e::T
d —» fx=e
e — X

| (er,.. . en)

| ce

| fe

| case e incyx; -> e, Il ... Il cpx, -> e, end
D — F{t}=cT{+cT}
C —» f ::T->T
T — FT

| (TyyoooyTa)

|
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Algebraic types have been replaced by type constructors applied to type variables. As
we noted earlier, from any type expression we may obtain the corresponding functor
by abstracting out the type variables. In the following we use F, G, H and K as

variables ranging over functors.

Type Rules

The typechecking rules are much the same as before. The only additions are two
rules that state that polymorphic functions (including constructors) and expressions
have any type which is an instance of their general type. We express this using
composition of functors, F' o H say. Because F' may be a functor Dom! — Dom
where n # 1, the functor H must be of the form Dom™ — Dom?. Such functors
may be expressed as a categorical product of functors H; : Dom?" — Dom (1 < i < n)
written < H;,..., H, >.

xu F F x(1)::F(2)

xuFlFe::Gy - xuFlte,::G,
x:F F (e,...,e;):: <Gyy...,Gp >

f::G—- H x:FlFe::G
x2F F fe::H

c;::Gi—= G x:uFle::G;
xuoF F c,e::G

x:Flre::H Vi.(x:Fly::H;Fe;::G)

x:F F caseeincy,->e Il ... llc,y, > e, ::G

f::G—- H
f::GoK - HokK

xu:FlFe::G
x:FoKte::GoK

In these rules we have departed from the notation of Chapter 4 and used the functor

notation. Notice that the notation applies to variables as well as functions. A value
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v of type F : Dom} — Dom may be seen as a natural transformation v : 1* — F,
where 1" : Dom — Dom is the constant functor picking out the terminal object of

Dom (the one point domain). Using this notation simplifies the proof to come.

As before, we assume that a constructor ¢; comes from a type definition of the form
G =c¢ Gi+---+ ¢n G, (using functor notation—note that + is not categorical co-

product). For any object A or arrow f in Dom? we have,

GA = ¢ (G A)+ -+ c. (Gn A)
Gf ¢t (Gr f)+-+ e (Gr f)

Similarly, the product of functors is given by,

<Gy...,Go> A = (G; A,...,G, A)
<GI,...,Gn>f = Gle"'Xan
as usual.
Semantics

Because the dynamic semantics of Chapter 4 was defined using a universal domain of
values we can use it without change. The only difference arises in the way in which we
relate this semantics to the category of domains. In Chapter 4 we exhibited retracts
between individual domains and the universal value space. Using these we were able
to relate the action of a function on the universal domain with a particular arrow
in the category of domains. If we desired we could do something similar. We would
use indexed retractions to relate the action of a polymorphic function on the value
space with the actions of its monomorphic instances in the category of domains. The

details, however, are unnecessary for the following development.

7.1.6 Naturality

Functions defined in PEL correspond to natural transformations between functors
Dom? — Dom. This property could be deduced from proofs about the second order
lambda calculus, and in particular from Reynolds’ abstraction theorem, by exhibiting
an appropriate relationship between PEL and the polymorphic A-calculus. However,

a direct proof is just as straightforward.
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Theorem 7.1 Naturality
Let f be a function and F and G be functors defined in PEL. If f :: FF — G is a valid
typing of f then for all strict functions v : A — B (where A and B are arbitrary)

foFy=Gyof

The proof is by fixed point induction over the definition of f (= ¢[£]), but first
we need a lemma. The lemma states that if everything works in some function
environment (that is, that for any £, the function @¢[£] is a natural transformation)
then any expression (seen as a function of its free variables, using the same function

environment) is also a natural transformation.

Lemma 7.2

If x::FFe: G is a valid typing of e, and if ¢ is some function environment
such that for every function g appearing in e the valid typing g :: H — K implies
Vy. ¢[g]o H v = K v o0 @[g], then for all strict functions v: A — B,

Eleliz u pyo) = G (&leliz o))

Proof

The proof is by induction on the structure of e. There are five main cases to consider.
Each case will be presented in the same way. First the type rule for the appropriate
case will be given, followed by a demonstration of the lemma in the form required by

the type rule.

Case: x(i)
The type rule is,

x2 F F x(1)::F(7)
So in this case G = F(1). The corresponding derivation is,

g¢IIX(i)]]{x+—>F'yv} = F(i) v v(7)
= F(i) v (&[xD 1, o))

Case: (ey,...,en)

The type rule is,
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x:Fle Gy x:Fle,

2 Gy

x:F F (ef,...,e;) G
where G =< Gy, ...,

Eol(er, o)Lz s )
= Glealip o pyo)o
(Gr v 5¢‘[91]]{x,_,v}7~»,

= Gy (Glelz vy

= G~ £¢ﬂ(el,~~-aen)]]{x — v}
Case: (g e)
The type rule is,
g::G—H x:Flre::G

x:F F ge::H
The corresponding derivation is,

Esle eliz o F y )
= dlel (Eslely s F oy o))
= ¢le] (G 7 (&leliz s v}))
= H v (¢le] (Esleliz s v}))
= H v (&le eliz s o))

Case: (c e)
The type rule is,
cii:G; -G x:FFe::G;
x:2F F ¢ e::G

where G =¢; G; +---

Sd,ﬂc e]]{mr—bF'y v}
= ¢ (Gleliz s F yv))
= & (G v 847[[ ]{sz})
= G(e&leliz vy
= G (&fci e]]{x,_, v})

G, >. The corresponding derivation is,

Esllenliz s F oy )
Gn 0 5¢‘[enﬂ{z — ’U})
gcb[[enﬂ{x Hv})

[ind. hyp.]

[inductive hypothesis]

[condition on @]

+ ¢, G,. The corresponding derivation is,
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Case: (case e in -+ ¢; x; -> &; --- )

The type rule is,

xuFbre::H Vi.(x: Fyx;:i:Hi ke :G)

xu2F F case e in - ¢; x;->¢; --+ :G
where H = ¢; H; +---+ ¢, H,. The corresponding derivation is,
Eslcase e in --- c; x; -> e --- ]]{xHF'yv}
= case E¢[[e]]{z s F v} mn

¢ vy = gtf)ﬂei]]{x — F vy v, ; — v}

= case H v (8¢[Ie]]{m . v}) in [ind. hyp.]

G v = 5¢Heiﬂ{xHF7v, T v}

= case €¢ﬂe]]{$ - v) in [meaning of case]

G v = 5¢ﬁeiu{$HF7v, z; — Hi v v}

= case €¢ﬂe]]{z - v) in [ind. hyp.]

avi = Gy (gtbuei]]{xl——)v, I; — v,'})

case 8¢|Ie]{x — v} in

= Gy¥y (G v strict]

.V = gtbllei H{x — v, T; v,-}

= G v (Efcase e in -+ ¢c;x; > ¢; --- ]]{:vr—rv})

In order to complete the proof we must consider the instance rules also. If f : ' — G

is a natural transformation from F : Dom; — Dom to G : Dom} — Dom then it is
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also a natural transformation from ¥ o K : Dom” — Domto Go K : DomT — Dom

where K is some functor K : Dom] — Dom}. A simple calculation suffices.

fo((FoK)y) = fo(F (Kv))
G (Kv))of [naturality]

(
= ((GoK)y)of

I

as required. The same calculation holds for values as they may be treated as natural

transformations from 1" to appropriate functors. This completes the proof. 0O

The function environment ¢ used in the lemma need not necessarily be the complete
function environment defined by the program, of course. When we use the lemma in

the following proof, ¢ will be a finite approximation to the complete environment.

Proof (naturality)

We have to prove that if f is a function and F and G are functors defined in PEL
such that f:: FF — G is a valid typing of f, then for all strict functions v: 4 —» B
(where A and B are arbitrary)

foFy=Gyof

The proof is by fixed point induction over the definition of ¢. From the static seman-
tics, ¢ = fix (Ad . {£; = Av.Eler], iy -0 En o AvEyfen Jiznsuy }) Where the
function definitions in the program are of the form f; x; = e;. As in earlier proofs
we write {¢;} for the Kleene chain approximating ¢ (then, by the definition of fiz,
¢ =2 ,{¢:}) and use f, to denote ¢,[£]. There are three cases for the fixed point

induction.

Case: base

fo o Fy = Az.L o Fr

Ar.L

G~y o dz.L [G 7 strict]
= Gy o fy

Case: inductive

Suppose that the definition of f is given by £ x = e. Then,
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fax:s o Fy = )\v.8¢"[[e]]{IHU} o F vy
= /\U.g¢nI[e]{x — F v ‘U}
= G~vyo Av.&g"[[e]]{w s ) [lemma and ind. hyp.]
= G v 0 fups

Case: limit

foFy = (UZ{fiD) o Fru

U2e{fi o F v} [defn. of ]
?io{G’Y o f:}

Gy o UZ.{f} [continuity]

= G~vyof

I

I

which completes the proof. 0O

It is instructive to note where the various restrictions played their part. The strictness
of the commuting function v was essential in the inductive base case. In a language
without recursion the inductive proof would not be required and without it there
would be no need for strictness. Indeed, if 1 were inexpressible in PEL then program
functions would be natural transformations over the usual category of domains with
arbitrary continuous functions. When L is expressible, case expressions commute

only with strict functions, hence an appeal to strictness in the lemma also.

The restriction that PEL functions be first order is used in the proof of the lemma
in the function case. It is because the meaning of a function can be expressed in
terms of ¢ without reference to the values of variables, that the inductive hypothesis
may be used to effect the commutativity essential to the proof. If functions could
be arbitrary expressions (as is the case in a higher order language) then the need to
reference variables to obtain their meaning would stop the proof from going through,

and a more general theorem would be required.

7.2 Polymorphic Analysis Theorem

We will see later that we can use polymorphic projections (projections that satisfy the
semantic polymorphism condition) to describe the results of binding-time analysis of
polymorphic functions. Such projections interact cleanly with the program functions
as the following theorem {from strictness analysis, [Hug89b]) shows.
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Theorem 7.3
If f: F— G is polymorphic, and if o : G — G and 8 : F — F are polymorphic pro-
jections such that oo f = a0 f o 8, then for any projection v: X — X

(ax oG y)ofx =(axoG v)ofxo(BxoF )

Proof
We will use the equivalent statement of safety.
(ax o G v)o fx axofxoF vy [naturality]

(fx oBx)oF ~ [assumption]
fxo(BxoF 7)

i

as required. 0O

7.2.1 Approximate Factorisation of Projections

The practical consequence of the theorem is to improve the efficiency of binding-
time analysis. Each function f has an abstract version f# associated with it, with
the property that f#¥3 0 f C f o for any projection 8. By the above theorem it
is clear that we can define f#(Bx o F'y) = (f#8)x o Gv. If we restrict ourselves to
projections which may be factorised in this way then f# will be fast to compute. In
general there are far fewer polymorphic projections than monomorphic. For example,
over the List functor we use only three polymorphic projections (ABS, List ABS,
and ID) but over some particular list domain we have these and more. Thus, instead
of having to find a fixed point in some large domain we can do as well by computing
it in a far smaller domain. There is a second advantage, namely that the results
of the analysis are not restricted to one particular instance but may be used in all.
Separately computing f# for each monomorphic instance loses on two accounts—the

size of the domains, and the repeated work.

To discover whether the method will be generally applicable, however, we must ask
whether it is sufficient to consider only those projections that can be factorised in this
way. This is certainly the case with the List functor. In designing finite domains of
projections we chose to treat each recursive level alike. Thus all the projections over
lists may be decomposed into a projection that works on all the elements identically

(and only on the elements) and a projection which (possibly) alters the list structure.
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The same is not necessarily true in all cases. For example, consider a function
f:Vt.(t,t) = t. As the only polymorphic projections over f’s source functor are
ABS and ID (given by (ABS,ABS) and (ID,ID)), the only projections that may
be factorised as above treat both elements of the pair in the same way. However, in
any particular instance of f, for example fg,,;: (Bool, Bool) — Bool, there is noth-
ing that constrains the two elements to be equally defined or otherwise. Indeed we
might commonly expect the first to be defined and the second not, or vice versa.
What can we do in such cases? The answer is that instead of demanding an ex-
act factorisation we find an approximate factorisation. Thus for any ¢ : FA — FA we
find projections 8 : F' — F (polymorphic) and v : A — A such that 8o Fy C §. Such
an approximation is safe because we are underestimating the available information.
In the example above, a projection (v, ) : (Bool, Bool) — (Bool, Bool) would be re-
placed by (yMé,vM4§). While there is information loss here it often turns out to
be minimal. In some cases, exactly the same information loss arises anyway but by

another route. The primitive operator if is a good example of this as we now show.

The type of if is if : Vt.(Bool,t,t) — t. Written using the functor notation, it is
if : Cond — Id where Cond t = (Bool, t,t). There are four polymorphic projections
from Cond to itself. The Bool field may either be blanked (using ABSg,.:) or left
intact, and likewise for the polymorphic parts (using polymorphic ID and ABS). The
table for the polymorphic abstract function if# is below.
a if*a
(ABSpgo.1, ABS,ABS) | ABS
(ABSpBoo, ID, ID) ABS

(IDgoo, ABS, ABS) | ABS
(IDgoot, ID, ID) D

An arbitrary projection, (5,7, 8) say, over the argument to an instance of if is decom-
posed into the composition of either (ABSg,.1, ID, ID) or (IDp,., ID, ID) (depending
on whether 7 = ABSp,,i or not) with the projection Cond (M 6). Then, the result
of applying if# is either ABS o (yM§) or ID o (v M) respectively, that is, either
ABS or v M é. Depending on whether the boolean is static or not, the result is either
completely dynamic, or is static where both branches are static. But this is exactly

the same result that separate analysis of each monomorphic instance would obtain!

Neither type checking nor binding-time analysis is based on program values. The fact
that it was necessary to take an approximation to obtain the factorisation (which is
type based) corresponds to the fact that binding-time analysis cannot determine which

of the branches of an if may be returned and so must assume the worst. It might
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be hoped that there is a more general result here—possibly that the approximate
factorisation will never do any worse than the binding-time analysis would anyway.
After all, both have access to the same information. Unfortunately this is not the

case. Consider the function,
f (x,y) = fst (x, if true x y)

The type of this function is f : Vt.(¢,¢) — ¢ or, in functor notation, f : A — Id where
At =(t,t). If we analyse an instance of f polymorphically, using two projections
7,6 : A — A say, we must approximate the projection (v, 6) by A (7 M 6). The result
of applying the abstract function is, unsurprisingly, ¥ M. If, on the other hand, we
choose to analyse f monomorphically, then we do not need an approximation step,
and will obtain 7y as the result. So, this example shows that, even though both type
checking and binding-time analysis have access to the same information, the binding-
time analysis is able to make fuller use of it. Recently, a type checking approach to
binding-time analysis has been developed [Gom89]. It would be interesting to see

whether the more general result we hoped for above holds in this case.

The counter-example is so contrived that we might think the problem has no practical
significance. However it is closely related to an important observation. If a function is
given a type which is not as general as it could be, then unnecessary information loss
may occur. For example, if the function fst is given the type fst : Vt.(¢,t) — t rather
than its fully general type, then the result will always need to take both parameters
into account. In the example above, the if expression is used solely as an artificial
constraint upon the type of the function. Experience suggests that, where the type
is not constrained artificially but only out of necessity (as in the if example), the

information loss is minimal.

7.3 Polymorphic Specialisation

Binding time analysis is not the only beneficiary from taking polymorphism into
account. The process of function specialisation may also be improved by using such

information.

If we have a polymorphic function which we wish to specialise to part of its argument
we have two choices. Either all the available information can be used in the specialisa-

tion, or only the parts of the information over which the function is not polymorphic.
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So long as efliciency is not lost the latter is clearly better. The residual function will
be more general than the in the former case, and will retain a polymorphic type.
Consequently, we will need to produce fewer residual functions, and each may be
used in many situations. The residual functions will be at least as polymorphic as

the source function because no instance information is supplied.

Is efficiency lost? To answer this we must consider what might happen to polymorphic
values within the body of a polymorphic function. There are two possibilities. Either
the values appear in the result of the function, possibly as part of a data structure,
or, alternatively, they are provided in an argument to another function. In this case
the typechecking rules guarantee that this other function must itself be polymorphic.
In neither case, therefore, can any significant computation take place. The apparent
circularity of this argument may be removed by noticing that the polymorphic prim-
itives can themselves do no processing on the polymorphic parts of their arguments
(e.g. fst). Again, this is an appeal to the basic intuition about polymorphic func-
tions. We conclude, therefore, that because the source function is (by assumption)
parametrically polymorphic, the only possible loss of efficiency is that some values
will be passed as parameters rather than appearing as in-line constants. Any increase
in cost is restricted merely to an increase in the number of parameters. This penalty
1s expected to be minimal on most implementations. It should be re-emphasised that
this whole argument depends on the source language being first order with parametric

polymorphism only.

Let us consider an example, that of the standard lookup function. It is sometimes
ascribed the type lookup : VnVv.([(n, v)],n) — v. However, this requires the use of
a “polymorphic” equality function. The behaviour of such a function can easily be
altered by coding its arguments in a non-one-to-one manner. Following the argument
above, therefore, this brand of polymorphism is ad hoc and not parametric. If we
replace the overloaded equality function with a monomorphic version, then the actual
type of the lookup function is lookup : Vv.([( Name, v)], Name) — v for some fixed type

Name.

We consider a case where the values are static but the names are dynamic. When
specialising an interpreter we might expect the reverse, of course, but in other contexts
the situation we describe could arise. From the discussion above we recognise that
even though the values are actually present we will gain nothing by using them in the

specialisation. As the value part is polymorphic we treat it as if it were dynamic.

Suppose we specialise lookup to the value ([(x,3),(y,4)],z) where x, y and z are
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dynamic. The values are indeed static—they are provided as constants. Using the

approach outlined above we obtain the residual function

lookup_1 (a,b,c,d,e) = if eq_Name a e then
b
else if eq_Name c e then
d

else fail

The original function call is then replaced by a call lookup_1 (x,3,y,4,2). The
same residual function lookup_1 is suitable for any two-list. Contrast this with the
situation that would have arisen if the values were used in the specialisation. Then

the residual function would have been

lookup_1 (a,b,c) = if eq_Name a e then
3
else if eq_Name c e then
4
else fail

Granted that there are two fewer parameters, but this residual version of lookup is
only suitable for this particular association list. Any other list, even if it had two

elements, would require a new residual function to be produced.

Consequences for Binding-Time Analysis

If a polymorphic function is only ever to receive the non-polymorphic parts of its
argument during specialisation, then its static projection will have ABS in the poly-
morphic positions. Because ABS is polymorphic, this means that the projection
associated with a polymorphic function is itself polymorphic. Therefore, we only
need to consider a finite domain of polymorphic projections when calculating the
projection associated with a polymorphic function. There are, of course, fewer of
these than projections over arbitrary instance types. This means the search space is

smaller giving an additional benefit for binding-time analysis.
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7.4 Representing Polymorphic Projections

Very little change is required in order to implement the methods of this chapter. Of
course the parser must be altered, the typechecker must now handle polymorphism,

and so on, but such things are standard.

The datatype used to represent projections is much the same as before. The recursion
former PMu has an extra parameter consisting of a list of projections in order to
simulate the form S o Fv. The list of projections corresponds to v (which may, in
general, be an n-tuple of projections, i.e. a projection in Dom™). Type variables in the
type definitions lead to variables in the projection structure (PParm). On unfolding,

the particular projections are substituted for the corresponding parameters.

The complete datatype is,

type Proj = PProd [Proj]

PAbs

PSum [(String,Proj)]

PMu String [(String,Proj)] [Proj]
PRec String

+ + + + o+

PParm String

If a projection parameter is encountered within the specialiser, it is treated like PAbs.
This implements the principle that polymorphic parts of an argument are to be dis-

carded. Further details of the implementation may be found in the appendices.

7.5 Example

It should be fairly clear by now how the methods of the chapter affect the extended
example. The ugliness from Chapter 6 (the many list types) has gone, as we are able
to write the interpreter using polymorphic lists, and obtain polymorphic lists in the
residual program. In addition, the advantages developed in this chapter will apply, so
the analysis of functions such as append will be improved (it will happen once only,
and the result will be obtained more quickly). However, the interpreter was origi-
nally a monomorphic program in that the only polymorphic structures appeared as
monomorphic instances. As a result, the residual programs are little better than their

monomorphic counterparts. We should not be surprised at this: the main purpose
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of the polymorphism material was to allow more freedom in the source program, to
allow polymorphism (an important modularity technique) to be used. A complete
listing of the example is given as the last section of Appendix C.

If the interpreter had many different types of list or perhaps various kinds of trees that
appeared in residual programs, then the improvement in moving to the methods of
this chapter would be more visible. Not only would the analysis benefit from taking
polymorphism into account, but the residual programs would contain polymorphic
functions manipulating the various structures. In the monomorphic case, we would

have many separate instances of these functions.



Chapter 8

Conclusion

In conclusion we will summarise the previous chapters so that we can assess the work

within a wider context and see what remains to be done.

8.1 Appraisal

After introducing partial evaluation and its potential as a programming tool we saw,
in Chapter 2, the DIKU implementation strategy which was simple yet powerful.
Values are treated atomically—a value is either static or dynamic—but even so, such
partial evaluators have been used successfully in practice. We discussed the role of
binding-time analysis including an argument that it is crucial if self-application is to

be attempted.

In an attempt to reach inside data structures, to express a greater degree of separation
of binding-times, we used domain projections to indicate static data. There were
various advantages associated with this. Firstly, there is a very natural sense in
which a projection can capture the absence of information—dynamic data is mapped
to L. Secondly, it turned out to be easy to generate finite domains of projections
tailored to each data type. Thirdly, projection-based analysis has already received
attention and, as a backward analysis at least, is fairly well understood. Indeed, we
discovered a close relationship between binding-time analysis and the more familiar
strictness analysis. Finally, projections are semantic objects with a semantically
expressed safety condition, and so need no interpretation to fit with semantically

derived methods, two of which we studied in detail.

This last point came to the fore in Chapter 5. Earlier, in Chapter 4, we had expressed

101
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the binding-time analysis as a forwards analysis, and proved the safety of the equa-
tions. This took care of values that are present during partial evaluation, so in Chapter
5 we turned our attention to run-time values. Motivated by the need to express the
origin of the run-time parameter, a decomposition theorem was explored. The use of
dependent sum as a generalisation of product allowed us to express mathematically
the familiar techniques of arity raising and tag removal. These optimisations need no
longer be seen as arbitrary or ad hoc, but as natural outgrowths of the theory. That
the decomposition theorem is built around projections is no accident. Their role in
the decomposition is motivated by the same intuition that gave rise to their use in

binding-time analysis in the first place.

Chapter 6 brought the threads of the previous chapters together in a working
projection-based partial evaluator. The extended example showed significant im-
provements over the situation in Chapter 2, but also some degradation: all types
were monomorphic. This prohibited the use of polymorphic lists, for example, (which
we had been able to use in the simpler (untyped) setting of Chapter 2). We turned

our attention, therefore, to polymorphism.

Semantic characterisations of polymorphism have become popular recently. They
seem to open up powerful proof methods, in addition to providing new intuitions as
to the nature of polymorphic functions. Again, the advantage of using a semantic
characterisation of binding time analysis became clear as we were able to make imme-
diate use of these new insights. In particular, we were able to apply Hughes’ polymor-
phic analysis result directly, a result originally intended for strictness analysis. Thus
polymorphic types fitted neatly into the framework we had previously constructed.
The most important consequence of this is the most obvious, namely that the partial
evaluator is actually able to specialise polymorphic programs. This removes one of
the restrictions previously placed on the form of the input program. Binding time
analysis of polymorphic functions is cheaper than the analysis of monomorphic in-
stances because the respective domains are smaller, and as the specialised versions
of polymorphic functions are themselves polymorphic, the residual functions may be

used in many instances.

8.2 Development

The story does not end here, of course. In particular, there are still many restrictions

on the form of the input program. For example, it is not yet clear how to extend the
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methods described here to cater for higher order functions. This is by no means the

only shortcoming. In this section, we consider some other areas open to improvement.

8.2.1 Finiteness

In Chapter 2, we noted that a division produced by binding-time analysis should be
both congruent and finite. It is possible to capture congruence quite well using an
abstract interpretation, but finiteness does not seem to be so straightforward. In lazy
or higher order languages another problem arises that is very closely related, that of
comparing partial or infinite objects. This arises in the following situation. Suppose
there is a call of a function f with argument y. Further suppose that we have already
produced specialised versions of f, specialised to values z;, z, etc. We need to know
whether the static part of y is equal to the static part of any of the z’s. To be of any
use, this test must be computable. That is, we must guarantee that the test o y = z;
cannot have the result L (here = is computable rather than mathematical equality).
If any of the static values are infinite, then mathematical equality is not computable.
In order to ensure that this does not arise, the values we compare must be finite
and, furthermore, must be maximal in the domain of static values. If the value is
not maximal then again we would need a non-monotonic (hence non-computable)
equality test. Stating this another way, any L appearing in the result of o y must

have been introduced by o.

It is possible to discover finiteness using abstract interpretation. We noted in Chapter
3 that congruence is an over-estimate of the halting problem. Finiteness requires an
under estimate of the same problem. That is, the answer LOOPS should be returned
if there is any possibility of non-termination. Recognising this, Mycroft introduced
two analyses, # and b, the former being strictness analysis, the latter termination
analysis. Strictness analysis has become very popular, while termination analysis has
not. The reason for this is that, while abstract interpretation can give excellent results
for strictness analysis (and hence congruence analysis), it gives very poor results for

termination analysis. An example will help to show why. Consider the function
f (x,y) = if x=0 then y else f (x-1,y)
defined over the natural numbers. It is clearly strict in both z and y for if L is sub-

stituted for either parameter the result is also L. Even the earliest strictness analysis

techniques could discover this. In contrast, consider the corresponding termination
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question. If non-L values are substituted for both z and y, is the result also non-_17?
By inspection the result is obviously “yes”. However more mental work is required to
discover this. In particular one has to consider the range of possible values for z to
check that, whatever its value is, the value 0 will be reached in the recursion. Thus,
the function will only return a non- L value if the values for z and y are non-1 and
if the recursion finishes. Such a distinction does not need to be made for strictness
analysis. If the value for y is L then the result could be L either because the recur-
sion terminates and y = 1, or because the recursion does not terminate. We do not
need to distinguish between these cases and, in particular, never need to ensure that

recursion is finite.

At first it seems quite puzzling that strictness and termination are not equally easy to
discover when one is the dual of the other. The reason is that there is an asymmetry
in the language semantics: recursive definitions are given by least fixed point. If, in
some topsy turvy world, recursive definitions were given by greatest fixed point then
termination would be the easy property to discover and strictness would be hard. In
the example above, if neither £ nor y were L then either y would be returned (if the
recursion finished) or else the recursion would not finish and the result would be T.
In neither case 1s the result L. However, in the real world we have no option but to
use least fixed point, so termination analysis will always be harder than strictness.
In partial evaluation terms, this means that finiteness will be harder to solve than

congruence. This certainly accords with experience.

8.2.2 Values from Residual Functions

A residual function is produced whenever a residual call is encountered. The idea
behind making a function residual is that the function call cannot be unfolded safely.
As a consequence, it may be thought that no result may be obtained from a residual
call, for how can a result be obtained without unfolding? However, there may be
sufficient input to the function to cause some part of the result to be static even
though the function as a whole cannot be unfolded. Unfolding could take place to
allow the static part to be computed, while a residual function is produced to generate

the remainder.

Unless the binding-time analysis handles partially static structures, we will only ob-
tain trivial results. In Chapter 3, we argued that it is unreasonable to expect the
input to a function to be pre-divided into static and dynamic parts. The argument

is even more forceful regarding the result of a function. Thus, we must perform the
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factorisation ourselves using whichever method used in the partial evaluator. Before
discussing the case of dependent sum factorisation, we will consider the complement
factorisation. This will give us insight into what we should expect in the more com-

plicated situation.

Suppose we have a function f: X — Y where we are able to factorise X into the
product A x B in which A contains the static part of the input. Suppose also that Y
factorises into the product C x D with C containing the static part of the result. The
C part of the result must be determined, therefore, by the A part of the argument

alone. Now, we know that
X2 YZAXxB->CxDZ(AxB—- C)x(AxB— D)

but because the C value is determined by the A value, we do not need to consider
the whole function space (A x B — C) x (A x B — D) but only the part isomorphic
to (A — C) x (A x B — D). The first component of such a pair of functions gives
the static result and may be unfolded, whereas the second gives the dynamic result.
It will not be unfolded but the function will be specialised to the A value leaving a

residual function in its place.

Manipulating products in this way is not new. In his thesis Mogensen gives the syn-
tactic translations needed to carry it out [Mog89] and produces independent textual
definitions of each function. This is performed as a preprocessing phase to miz and
results in a program in which the data can be treated atomically. This allows the
original miz to be used. Because it is a preprocessing phase, only metastatic informa-
tion 1s used to drive the transformation. As a result, the type of the residual function
is also determined metastatically, in this case it will be B — D, which means, for
example, that lists will remain as lists rather than tuples and that all tags must

remain.

We can perform similar factorisations using dependent sum. Again we assume a
function f : X — Y with the static part of the input being given by A, in this case
as defined by a projection a. The static part of the result is given by C and de-
fined by a projection 3 where fof =0 foa. The domains B and D from the
complement division must be replaced by the family of domains given by the fibres
of the projections. Thus, for each a € A, the domain B, = o~ '{a}, and for each
c € C, the domain D, = 8~'{c}. The function f may be regarded as a function
f:3(A,B) — 3(C, D). By the isomorphism given in Chapter 5, we can also regard
it to be f : [[(A,B — Y(C, D)). By assumption, the value of C' does not depend on
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B, so we may also regard f as a function f :[[(A,>(C, B — D)). Now the types
of both the domain and the range of the residual version of f depend on the actual
static value supplied.

An example will be useful. Suppose that f is a function f : Union — Union (using the
type defined in Section 4.7) and that f¥ TAG = TAG. That is, in order to compute
the tag of the result it is sufficient to know the tag of the argument. Furthermore,
suppose that the tag of the argument is static, and so will be available during partial
evaluation. The residual versions of f will all be tagless in both argument and result,
and instead will map, say, characters to integers etc. Each will have a type appropriate
to the (now absent) static tags. We can take this example further. Imagine an
interpreter for a statically typed language which uses a universal value domain for
the value of expressions. Suppose it is given sufficient static data for the value tags
to be static. Then, instead of having to manipulate values in a universal type, the

residual programs would manipulate data objects directly.

8.2.3 Self-Application

It is very noticeable that all the self-applicable partial evaluators to date have used
S-expressions as their sole data structure. There are two reasons for this. Firstly, it is
very easy to represent programs using S-expressions, especially in LISP-like languages.
More importantly, however, the absence of multiple types in the language means that

a level of data encoding is not required. In Chapter 1, the type of miz was given as,
miz:AxB—>CxA—-B—-C
and unless we have dependent types we can do no better. However, in the world of
S-expressions, where there is a single universal type, the static input may be passed
directly. Thus,
miz: AxB—->CxA—-B->C

When this is applied to itself, we obtain the type of miz — , namely

mizﬁzzAxB-—»CHAHB—»C
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This issue is considered in [Bon88] in the context of term rewriting systems with
many signatures. Eventually, in order to produce a self-applicable partial evaluator,
a single signature system was adopted.

Without a doubt, typed languages are here to stay, so a solution to this coding
problem needs to be found if self-applicable partial evaluators are ever to be written in
such languages. One possible method is to make the coding both as cheap as possible,
and eliminable during partial evaluation. We can illustrate the former requirement
as follows. Both of the (LISP style) expressions

(cons (quote a) (cons (quote b) (quote nil)))
and
(quote (a b))

evaluate to the list (a b), but the former entails a linear increase in size, whereas the
latter only entails a constant increase. This difference becomes much greater if each
expression is itself represented in the same manner. Using the first method, the size
of the representation is exponential with respect to the representation level, whereas
the second is linear. In a multiply typed language, therefore, some equivalent to
quote must be included in the datatype representing expressions. This will, at least,

prevent the self-applicable partial evaluator from requiring huge data structures.

8.2.4 Value Preservation

The binding-time analysis given in this thesis is not sufficiently strong to be adequate
in every case. What is worse, it fails in one of the very cases where we would want it
to succeed, that of interpreters which implement denotation semantics directly. An
example, due to Mogensen, of the failure may be seen in interpreters for languages
that handle state. The standard denotation description of such languages typically

contains a function,
C : Com — State — State

(ignoring any environment parameter) where the state may be represented by an

association list as usual. We will focus on two standard clauses in such a definition.

C{I C1; Cg ]]0'
C[Ilf I CI Cg ]]0'

C[C: ](CICi Jo)
E[E]e—C[Cy]o, C[Ce o

1

il
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The first expresses composition. The command function C returns the state resulting
from the commands executed. The original state is given to the commands in C; and
the state produced by these is given to C,. The result is the final state after C, has
effected any changes. The second equation handles if statements. The expression is
evaluated in the current state and, depending on whether the result is true or false,
the respective commands are executed with the current state. The result is the state

after these commands have been performed.

In the standard scenario, the names in the state will be known during partial evalua-
tion, but the values will not be available until run time. As a consequence, the result
of € will be dynamic, but because of this, the state resulting from the execution of an
if statement will be completely dynamic: the current binding-time analysis equations
do not allow for the possibility for a dynamic conditional producing anything static.
However, assuming a sensible block approach to introducing variables, the variable
names can be determined during partial evaluation (if variables are introduced arbi-

trarily, then the name list may not be statically determined, of course).

In most cases it is quite correct that the result of an if with a dynamic condition
should be dynamic. Even if both branches return completely static results, we will
not be able to decide which static result will be the result of the if. There is one
case, however, when we can determine it: when the static parts of the two branches
are identical. Until a binding-time analysis is produced which captures this sort of
static information, partial evaluation will not be able to produce compilers from some
denotational style interpreters. This explains why an unusual structure neceded to be

adopted for the interpreter appearing in the extended example.

8.2.5 Domain Reduction

There is an additional optimisation that fits neatly into the framework we have con-
structed. Suppose that, by using projection-based strictness analysis, we discover
that fo 3 = f for some projection #. This means that we need no more that §’s
worth of information about the argument to f to be able to determine its result. So,
rather than consider f to be a function X — Y, say, we can regard it as a func-
tion B(X) — Y. Then, when we factorise the domain of f’s argument into static
and dynamic parts, we start with a smaller domain than would otherwise be the case.

Consequently, the residual functions may also end up with smaller argument domains.

The length function provides an example of this. Suppose that only the spine

of a list is available during partial evaluation and that, for some reason, we
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wanted to produce a residual version of the length function. If the property that
length = length o map ABS was available to the partial evaluator then no run time
arguments need to be produced. This possible optimisation is the natural extension

of the notion of projection difference suggested in [Lau88].

8.3 Final Remarks

In this chapter we have seen some areas in which significant development of partial
evaluation is still needed. Nonetheless, partial evaluation already is an exciting and
promising method for both optimising interpretive programs, and for understanding
the theoretical relationship between interpreters and compilers. To be generally useful
in either of these areas, it is essential that its mathematical underpinnings are well
developed. This is where the effort of this thesis has been directed. We hope that
the results will be as useful in the long run as the excellent practical work of others
has already proved to be.



Appendix A

Implementation of PEL

The projection based partial evaluator described in this thesis was implemented in
LML [Aug84]. The complete program is listed in these appendices for reference,
together with some annotations intended to facilitate understanding. LML has an
elementary module mechanism which was used to provide some structure to the pro-

gram. The modules are presented more-or-less in dependency order.

A.1 Type Declarations

The major types used in the program are defined together. Two are used in the
implementation of PEL itself, and two in binding-time analysis.

module -- TYPES.M

export term,domain,projection,sum;

The types term and domain provide representations for PEL-expressions and PEL-
types respectively. The Bot summand of term is used to represent L after a projection
has been applied.

rec

Constr (List Char) term

u

type term

+ Case term (List ((List Char) # (term # term)))
+ Prod (List term)

+ Parm (List Char)

+ Call (List Char) term

+ RCall (List Char) term

+ Bot

and
type domain = DProd (List domain)

110
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+ DFunctor (List Char) (List domain)
+ DParm (List Char)

Projections are represented by the types projection and sum. Separating the rep-
resentation in this way allows the LML typechecker to provide additional checks on
projection manipulation. This is discussed in Appendix B.

and

type projection

PProd (List projection)

PMu (List Char)
(List ((List Char) # sum))
(List projection)

PRec (List Char)

PParm (List Char)

+

+

+

PAbs
+ PSum (List ((List Char) # projection))

type sum

end

A.2 The PEL Interpreter

Now the implementation of PEL itself. The following module contains an interpreter,
a parser, and a printer. The interpreter is the most significant as regards partial
evaluation, for it is this that will be modified to produce the partial evaluator.

module -- PEL.M

#include "library.t"

#include "parselib.t"

#include “types.t"

-- #include "globals.t" (a cyclic dependency)

import program : List ((List Char) # (term # term));

export eval, make_env,
parse, prog, fn, exp, type_def, type_dec,
print_prog, print_fn, print_exp,
print_type_def, print_type_dec, print_type;

A parsed program has type [(string,(term,term))]. The string (list of char-
acters) component contains the function names, the first term a (possibly nested)
product of parameter names, and the second term the body of the function. The
environment is an association list between strings and terms, and the result of eval-



APPENDIX A. IMPLEMENTATION OF PEL 112

uation i1s a term.

rec eval env (Parm v) lookup env v

N eval env (Prod exps)

Prod (map (eval env) exps)
I eval env (Constr ¢ arg)
11 eval env (Call f arg)

Constr ¢ (eval env arg)

let (vs, body) = lookup program f in
eval (make_env vs (eval env arg)) body

I eval env (Case e cls) eval_case env (eval env e) cls

and eval_case env (Constr name e_arg) ((c,(vs,exp)).cls)
= if name = ¢
then eval (make_env vs e_arg © env) exp

else eval_case env (Constr name e_arg) cls

and make_env (Parm x) e
I make_env (Prod vs) (Prod es)

[(x,e)]

conc (map2 make_env vs es)

Parsing is split up into two phases, lexical and syntactic analysis. Lexemes are just
strings. The only purpose of the lexer is to remove white space and to divide contigu-
ous characters appropriately. The basic parsing operators are defined in Appendix

D.

and white = some (sat (\c.c<=? ?))

and comment = 1lit ’-’ .. 1lit °’~’ .. skip ’\n’
and opchar = sat (member '"~-=|+>:")

and identch = sat isupper !! sat islower !!

sat isdigit !! 1lit °_’

and lexeme = (white .as. (\c.'""))
1t (comment .as. (\c.""))
1t (sat (member "(),;[1#") .as. (\c.[c]))
1! (some opchar)
!! (sat isupper .. many identch .as. cons)
't (sat islower .. many identch .as. cons)

tt (some (sat isdigit))

and lex inp = filter (\s.s"=[]) (fst (hd (many lexeme inp)))

and parse p = hd o p o lex

The parser culminates in the function prog which, when applied to a program text,
returns the parse tree. The tree has the structure
([type definition], ([(type declaration, function definition)], (term, type)))
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We allow the usual syntax for lists and numbers. However this is merely syntactic
sugar for expressions such as Cons (x,Nil) or Succ Zero etc. The usual definitions
of these types need to be provided for a program that uses these syntactic forms to

be legal.

and prog = many type_def

. many (type_dec .. fn)

. opt (exp .. 1lit "::" x.. type_arg) (Prod [],DProd (1)
and in = lower .. patt .. 1lit "=" x.. exp ..x lit ";"
and exp = case_exp !! data !! call !! rcall !! simple
and patt = (lower .as. Parm) !!

(tuple patt .as. make Prod)
and case_exp= 1lit "case" x.. exp

1it "in" x.. (clause .sep_by. lit "||")

..x 1lit "end" .as. uncurry Case
and clause = upper .. opt patt (Prod [1) .. lit "->" x.. exp
and data = upper .. opt simple (Prod [])

.as. uncurry Constr

and call = lower .. simple .as. uncurry Call
and rcall = 1lit "#" x.. lower .. simple

.as. uncurry RCall
and simple = (parse_list exp .as. make_Cons)
't (lower .as. Parm)
't (upper .as. (\c.Constr c¢ (Prod [1)))
1! (tuple exp .as. make Prod)

t!1 (number .as. (make_Succ o stoi))

and type_def = lit 'type" x.. upper .. many lower
. 1lit "=" x.. type_rhs ..x 1lit ;"
and type_rhs = (upper .. opt type_simple (DProd []))

.sep_by. 1lit "+"

and type_simple = (lower .as. DParm)
1! (upper .as. (\c. DFunctor c []))
'! (tuple type_arg .as. make DProd)

and type_arg = (upper .. many type_simple .as. uncurry DFunctor)

'! type_simple
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and type_dec= lower .. 1lit "::" x.. type_arg
. lit "->" x.. type_arg ..x lit ";"

and tuple p = (lit “(" .. 1lit *)* .as. (\x.[1))
'Y (1it (" x.. (p .sep_by. 1lit ",") ..x lit ")")

and parse_list p = (lit “[* .. lit "]* .as. \x.{J)
rt (it [ x.. (p .sep_by. 1lit ",") ..x lit "1")

and upper = sat (\w. isupper (hd w))
and lower = sat (\w.islower (hd w) &
“member ["case";"in'";"end";"type"] w)

and number = sat (\w. isdigit (hd w))

and make_Cons [] = Constr "Nil" (Prod [J)

| make_Cons (x.xs) = Constr "Cons" (Prod [x; make_Cons xs])

o

= Constr "Zero" (Prod [])

N make_Succ n = Constr "Succ" (make_Succ (n-1))

and make_Succ

The converse of a parser is a print function. Those defined here constitute an
extremely basic pretty-printer, but the output is parseable by the parsers given above.

and print_prog (tdefs, (tfs,(e,t)))
= map_sep print_type_def "\n\n" tdefs @ "\n\n\n"
€ map_sep print_tfs "\n\n" tfs @ "\n\n\n"
Q print_exp e @ " :: " @ print_type t @ "\n\n"

and print_fn (f,(x,exp)) = £ @ print_arg x @ " =\n\t "
€@ print_exp exp €@ ;"

and print_exp (Case exp cls)
= "case " € print_exp exp © " in\n\t "
€ map_sep print_cl "\m\t|| * cls
0 "\n\tend"

i print_exp (Constr name arg) = name @ print_carg arg
i print_exp (Call name arg) = name @ print_arg arg
I print_exp (RCall name arg) = "#" @ name ¢ print_arg arg
I print_exp (Parm x) = x
I print_exp (Prod exps) = "(" @ map_sep print_exp ", ' exps Q@ ')"

and print_arg (Parm x) =" "Qx
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I print_arg (Prod exps) = " (" @ map_sep print_exp ", " exps @ ")"
11 print_arg any = " (" @ print_exp any € ")"
and print_carg (Prod [J]) = .
11 print_carg other = print_arg other
and print_cl (c,(x,e)) = ¢ @ print_carg x @ " -> " @ print_exp e
and print_type_def (f, (vs, cds))

= “type " € f @ " " @ map_sep id " " vs @ " =\n\t "

€ map_sep print_summand "\n\t+ " cds @ ";"

and print_summand (c,DProd []1) = ¢
] print_summand (c,t) = ¢ @ print_type_arg t
and print_type (DParm x) =X
I print_type (DFunctor f ts) = f @ concmap print_type_arg ts
Il print_type (DProd xs) = "(" @ map_sep print_type ", " xs @ ")"
and print_type_arg (DParm x) =" " @ x
11 print_type_arg (DProd ts) = '" (" @ map_sep print_type ", " ts @ ")"

B print_type_arg any " (" @ print_type any @ ")"

and print_tfs (t,fn) = print_type_dec t @ "\n" € print_fn fn
and print_type_dec (f,(t,s))=f @ " :: " Q@ print_type t
¢ " -> " Q@ print_type s @ ";"

end

A.3 Typechecking

PEL is a typed language. The implementation of typechecking follows. This may
be thought to be superfluous in an experimental system but in practice it has been
extremely useful in tracing errors in example programs. The typechecking module
makes heavy use of the YN datatype defined in the library module (Appendix D).
Use of this datatype makes failure (with messages) easy to propagate through the
use of the =~ operator. If the left hand argument fails, then the result is failure. If
it succeeds, then the right hand argument (a function) is applied to the successful
value.

module -- CHECK.M
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#include "library.t"

#include "types.t'

#include '"pel.t"

-- #include "globals.t" (a cyclic dependency)

import

export

rec

types : List ((List Char) # (domain # domain));

check_fn,check,app_type,unify;

check_fn (f,(vs,e))

= (f, lookupYN types f = (\ (x,s).
make_envYN vs r === (\ env.
check false env e vars === (\ (v,t,ns).

unify v (DProd [app_type v r;t],
DProd [r;s]) - (\
if (app_type u s "= s | app_type u r "= r)
then N '"type too unconstrained"

else Y [1) N

116

The check function returns the type of the expression being checked, together with
a substitution function for the polymorphic variables (app_type is used to apply
substitutions). Due to the need for fresh variables a list of variables is piped around

the functions.

The other parameters to check are: a boolean which determines

whether the expression may contain free variables (this is the means for indicating
absent data in the final expression); and an environment binding variables to their

types.

and

and

check b env (Parm x) (n.ns)
= if b

then Y (DParm, DParm n, ns)

else lookupYN env x ~~“~ \t. Y (DParm,t,ns)
check b env (Constr ¢ e) ns
= check b env e ns "~~~ \(v,t,ns). apply_fnc ¢ v t ns
check b env (Call f e) ns
= check b env e ns ~"~ \(v,t,ns). apply_fnc f v t ns
check b env (RCall f e) ns
= check b env e ns ~~~ \(v,t,ns). apply_fnc f v t ns

check b env (Prod es) ns

= check_list b env es ns -~~~ \(v,ts,ns). Y (v,DProd ts,ns)

check b env (Case e cls) ns

= check b env e ns

check_cls b env v t 0 (n.ns) = Y (v, DParm n, ns)
check_cls b env v t ((c,(vs,e)).cls) ns

\(v,t,ns). check_cls b env v t cls ns
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and

and

= check_cls b env v t cls ns === (\ (v’,u,ns).
fresh_type c ns -~ (\ (r,s,ns).
unify v’ (s,t) == (\ w.
make_envYN vs (app_type w r) =77 (\ env’.
check b (env’ €@ app_env w env) e ns “~~ (\ (w’,t,ns).
Y (compose w’ w, t, ns) NN

check_list b env 0

ns = Y (DParm, [], ns)

check_list b env (e.es) ns
= check b env e ns === (\ (v,t,ns).
check_list b (app_env v env) es ns ~~~ (\ (u,ts,ns).

Y (compose u v, (app_type u t).ts, ns) ))

apply_fnc £ v t ns = fresh_type f ns === (\ (r,s,ns).
unify v (r,t) - (\ W
Y (w, app_type w s, ns) ))

Polymorphic type-checking requires unification. A fairly standard implementation
is given in the function unify. The first parameter to unify is a substitution, the
second is a pair of types to be unified.

and

and

unify v (DParm x, t)

if v x = DParm x

then extend v x (app_type v t)

else unify v (v x, app_type v t)

unify v (t, DParm x)
unify v (DFunctor f xs,
= if f=g

then  unify_list v

unify v (DParm x, t)

DFunctor g ys)

(xs // ys)

else N (“Cannot unify " @ f @ " with " @ g)
unify v (DProd ds, DProd es)
= if length ds = length es

then  unify_list v

(ds // es)

else N "Cannot unify different size products"

unify v (s,t) = N ("Cannot unify " €@ print_type s

unify_list v ]
unify_list v ((s,t).sts)

@ " with " @ print_type t)

Yv
unify v (s,t) ~~° (\u. unify_list u sts)

The auxiliary functions required the functions above appear next and are all fairly

self-explanatory. Some manipulate type variables and others manipulate program

variables.
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and free_vars (DParm y) = [y]
I free_vars (DProd ds) = concmap free_vars ds

I free_vars (DFunctor f ds) = concmap free_vars ds

and fresh_type f ns = lookupYN types f -~~~
\ (z,8).
let rec vr = free_vars r
and vs = free_vars s
and ns’ = tail (length vr) ns
and ns’’= tail (length vs) ns’
and env = (vr // ns) @ (vs // ns’)

in Y (subst env r, subst env s, ns’’) )

and subst env (DParm x) DParm (lookup env x)
Il subst env (DProd ds) DProd (map (subst env) ds)
| subst env (DFunctor f ds) = DFunctor f (map (subst env) ds)

and extend v x t = if t = DParm x then Y v
else if member (free_vars t) x
then N ("Cyclic type: " @ x @ ", " @ print_type t)

else Y (\y.if x=y then t else (v y))

and app_type v (DParm y) vy

DProd (map (app_type v) ds)

"

Il app_type v (DProd ds)

i app_type v (DFunctor f ds) = DFunctor f (map (app_type v) ds)

and app_env v env = map (\(x,y).(x, app_type v y)) env
and compose Vv W X = app_type v (¥ x)
and make_envYN (Parm x) t =Y [(x,t)]

I make_envYN (Prod xs) (DProd ts)
= if length xs = length ts
then AppendYN (map2 make_envYN xs ts)
else N "Cannot make environment to match'
I make_envYN any any’ = N “Cannot make environment to match"

end
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A.4 Global Values

Many items, such as the input program, remain unchanged throughout any partic-
ular execution and so are defined as global values. These values are defined on the
assumption that there are no errors, but if errors occur, the result function reports
those errors rather than returning a result that would require the other global values
to be evaluated.

module -- GLOBALS.M
#include <0OK>
#include <FILE>
#include "library.t"
#include '"types.t"
#include 'pel.t"
#include '"check.t"

export errm,unparsed,ill_typed,parsed_prog,
type_defs,type_decs,program,
expr,t_expr,types,
result,

cycles,mutual;

The value argv is a list of strings which gives the arguments supplied in the program
invocation. This list should contain the name of a file containing the input program.
Assuming such a file exists, the value of prog_text is the file’s contents.

rec (errm,prog_text) =
if argv=[] then
("Please supply a file name",[])
else
case openfile (hd argv) in
Yes file: ([], file)
I No mesg : ("No file " @ hd argv @ "\n" Q mesg,[])

end

If prog_text represents a syntactically correct program, then the parser will reach
the end of the text resulting in an empty unparsed portion. In this case, the parsed
program may be split into its various components: type definitions, declarations giv-
ing the types of the functions defined in the program, function definitions, and a final
expression together with its type. The constant types is an association list giving
the declared types of all the functions and constructors defined in the program. The
function mutual takes a type name and returns the names of all the types mutually
recursive with with it. This uses the function cyclic (defined in 1ibrary.m) which
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takes a graph and returns an ordered list of its strongly connected components.

and
and

and

and
i
1

(parsed_prog,unparsed) = parse prog prog_text
(type_defs, (tf_defs,(expr,t_expr))) = parsed_prog
(type_decs, program) = unzip tf_defs

get_constr_types (t, (vs, cds))
= [(c,(d, DFunctor t (map DParm vs)));; (c,d) <- cds]
types = type_decs @ concmap get_constr_types type_defs

cycles = cyclic (concmap edges type_defs) (map fst type_defs)

mutual x = hd [xs ;; xs<-cycles; member xs x]

edges (t,(vs,cds))
= map (\f.(t,f)) (merge_list [functors d;; (c,d) <~ cds])

functors (DProd ds)
functors (DParm x)

merge_list (map functors ds)
8]

functors (DFunctor f ds) = merge_list ([f] . map functors ds)

If any errors arise then errors returns the appropriate message, otherwise it returns
the empty string. The boolean argument allows for free variables to occur in the final
expression. The function result returns its second argument only if no errors arise.

and
H

and

and

err_str (f, Y x) = v
err_str (f, Nms) = "\t" ¢ f @ ": " Q@ms €@ "\n"
ill_typed = concmap (err_str o check_fn) program

errors b
= if errm "= [] then errm
else if unparsed "= {] then
“Syntax error(s) in:\n" @ map_sep id " " unparsed

else if ill_typed "= [] then
"Error(s) in:\n" @ ill_typed

else
case check b [] expr vars in
N ms : "Error(s) in final expression:\n\t" @ ms
II Y x . nn

end
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and result b stri str2 = stri € "\n\n"
Q@ case errors b in
oo ostr2
|| err : err
end
€ "\n\n"
end

A.5 The RUN Command

Finally, the run module collates all the previous into a single expression. When
compiled this produces a binary file which may be executed like any UNIX command.

- RUN.M
#include "types.t"
#include "pel.t"
#include "globals.t"

result false
"Standard Interpretation of PEL"

(print_exp (eval [] expr))



Appendix B

Implementation of BTA

This appendix contains the implementation of polymorphic projection-based binding-
time analysis. The first module provides functions that manipulate the data struc-
tures used to represent projections; the second computes the abstract function envi-
ronment ¢# described in Chapter 4. The final executable file prints the result of the
binding-time analysis.

B.1 Manipulating Projections

module -- PROJECTIONS.M

#include "library.t"

#include "types.t"

#include "pel.t"

#include "globals.t"

-- #include "fn_vals.t" (a cyclic dependency)

import fn_values: List ( ((List Char) # projection) # projection);
import initial_env: List ( (List Char) # projection);

export glb, glb_list, get_id, get_abs, make_abs,
unfold, fold, extract, mask,
get_env, squash, psubst,
print_proj,print_proj_sum,
evalp, make_penv, apply,
descr, abs_env, description,iter_descr,descr;

The function glb computes the greatest lower bound between two projections while
remaining within the finite domain. Its definition relies heavily on the fact that it
will only ever be applied to projections defined over exactly the same type. Thus, in
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the various clauses, we can guarantee that f=g, for example.

rec

glb (PProd ps) (PProd gqs) = PProd (map2 glb ps gs)

glb (PMu f fps ps) (PMu g gqs gs)

PMu £ (map2 (\(h,p).\(k,q).(h, glbSum p q)) fps ggs)
(map2 glb ps gs)

glb (PRec f) (PRec g) = PRec £
glb  any (PParm y) = any
glb (PParm x) any = any

glb_list (p.ps) = reduce glb p ps

glbSum  PAbs P = PAbs
glbSum P PAbs PAbs
glbSum (PSum cps) (PSum dgs) = let (cs,ps) = unzip cps

L]

]
|

and (ds,qs) = unzip dgs
in PSum (cs // map2 glb ps gs)

In a number of different situations we need to produce either ID or ABS over partic-
ular types. These have a structural form which reflects the definition of the type.

and
and

and
and
I
I

and
I
I

get_id t = get_id’ [0 ¢
get_id’ ts (DProd ds) = PProd (map (get_id’ ts) ds)
get_id’ ts (DParm x) = PParm x
get_id’ ts (DFunctor f ds)

= if member ts f then PRec f else

let ts’=mutual f in
PMu £ [(t, PSum [(c, get_id’ (ts@ts’) d);; (c,d)<-cds]) ;;
(t,(vs,cds))<-type_defs; member ts’ t]
(map (get_id’ ts) ds)

get_abs t = get_abs’ [] t
get_abs’ ts (DProd ds) = PProd (map (get_abs’ ts) ds)
get_abs’ ts (DParm x) = PParm x
get_abs’ ts (DFunctor f ds)
= if member ts f then PRec f else
PMu £ [(t,PAbs);; t <- mutual f] (map (get_abs’ ts) ds)

make_abs (PProd ps)
make_abs (PParm x) = PParm x
make_abs (PMu f fps ps)

= PMu f [(f,PAbs);; (f,p) <- fps] (map make_abs ps)

PProd (map make_abs ps)
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In order to get “inside” a projection on a recursive type we must unfold the definition.
This will involve substituting the original projection for the recursive markers, and
substituting the appropriate projections for the polymorphic parameters. Notice that
the result in a sum-type projection, thus allowing the type system to distinguish
between a folded and unfolded projection.

and unfold (PMu f fps ps)
= let (vs,cds) = lookup type_defs f
in case lookup fps f in
PAbs : PAbs
il PSum cps : PSum
[(c, unfold_rec (vs//ps) fps ps p);; (c,p) <- cps]
end

and unfold_rec env fps ps p

= case p in

PProd gs : PProd (map (unfold_rec env fps ps) gs)
I PMu g ggs gqs : PMu g gqs (map (unfold_rec env fps ps) gs)
I PRec g : PMu g fps ps
i PParm x : lookup env x
end

The fold function is a converse to unfold. Its arguments represent the projection
coID+---4+c p+---+ ¢, ID as occurs in the constructor clause of the abstract
semantics. This is not, in general, an unfolded version of a projection in the finite
domain (though, by assumption, all the projections it refers to are). Thus, in folding
the projection, some information will be lost, as evidenced by the call to glb_list.

and fold ¢ p
= let rec (r,DFunctor f ds) = lookup types ¢
and ts = mutual f
and (rp, env) = (squash r p, get_env r p)
in glb_list (mask ts ¢ env rp . extract ts f rp)
and extract ts f (PProd ps) = conc (map (extract ts f) ps)

I extract ts f (PMu g gps ps)
= if member ts g then [PMu f gps ps] else
conc (map (extract ts f) ps)

] extract ts f (PRec g) = []
I extract ts £ (PParm x) = [
and mask ts ¢ env p = let rec (r,s) = lookup types c

and (PMu f fps ps) = get_id s
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in PMu f [(f, insert ts c p q);; (f,q) <- fps]

(map (instance env) ps)

and insert ts ¢ p PAbs = PAbs
Il insert ts c p (PSum cps)
= PSum [if c=c’ then (c, ins ts p) else (c’,q);; (c’,q) <- cps]

and ins ts (PProd ps) PProd (map (ins ts) ps)

PParm x

I ins ts (PParm x)
[ ins ts (PMu f fps ps) = if member ts f then PRec f else

PMu f fps (map (ins ts) ps)
and instance env (PParm x) = lookup’ (PParm x) env x

To implement the material of Chapter 7, we have to be able to factorise a projec-
tion into its polymorphic and monomorphic parts. This factorisation is not always
exact as it may involve taking the glb of different projections that appear in the
position of multiple occurrences of a single type variable. The function squash takes
a type that may involve free type variables, together with a projection over an in-
stance of the type, and returns the corresponding projection over the original type.
In contrast get_env extracts the parts of the projection occurring at each poly-
morphic point and constructs an environment binding the type variables to their
respective projections. Constructing the environment may involve approximation if
a single type variable appears more than once. The “inverse” to these is psubst
which takes a polymorphic projection, together with an environment binding type
variables to projections, and substitutes for these variables in the projection. Thus
psubst (get_env r p) (squash r p) C p for all types r and projections p.

and squash (DProd ds) (PProd ps) = PProd (map2 squash ds ps)
I squash (DParm x) P = PParm x
I squash d (PParm x) = get_id d

| squash (DFunctor f ds) (PMu g gps ps) = PMu g gps (map2 squash ds ps)

and get_env (DProd ds) (PProd ps) = join_list glb (map2 get_env ds ps)
[(x,p)]
I get_env (DFunctor f ds) (PMu g gps ps)

Il get_env (DParm x) P

= join_list glb (map2 get_env ds ps)

and psubst env (PProd ps) PProd (map (psubst env) ps)

I psubst env (PParm x) lookup env x

It psubst env (PMu f fps ps) = PMu f fps (map (psubst env) ps)

and abs_env ¢ vs p
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= let (r,s) = lookup types c in
make_penv vs (psubst (get_env s (make_abs p)) (get_abs r))

The function print_proj provides a textual representation of projections.
and print_proj (PProd ps) = "(" @ map_sep print_proj ", " ps €@ ")"

Il print_proj (PRec f) = "(PRec " @ show_string f @ ")"
Il print_proj (PParm x)

1]

x
Il print_proj (PMu f fps ps)
= “(PMu " @ show_string £ @ " "
€ show_list (show_pair (show_string,print_proj_sum)) fps
€ " " Q show_list print_proj ps € ")"

and print_proj_sum  PAbs = "PAbs"
|l print_proj_sum (PSum cps)
= "(PSum " @ show_list (show_pair (show_string,print_proj)) cps @ ")"

In Chapter 4 we presented the £# function. Here it is called evalp. It takes an
environment associating parameter names with projections, and an expression, and
returns the projection value of the expression. The function evalp has access to the
complete abstract function environment through the use of apply. This function en-
vironment is computed in the module fn_vals (in this appendix).

and evalp env (Parm v) = lookup env v

I evalp env (Prod es) = PProd (map (evalp env) es)
I evalp env (Constr c e) = fold ¢ (evalp env e)

I evalp env (Call f e) = apply f (evalp env e)

I evalp env (RCall f e) = applyR f (evalp env e)

I evalp env (Case e cls)
= let p = evalp env e in
case unfold p in
PAbs : let (c,(vs,e))=hd cls in
make_abs (evalp (abs_env ¢ vs p € env) e)
I PSum cps : glb_list
[evalp (make_penv vs (lookup cps c) @ env) e;; (c,(vs,e)) <- cls]
end

and make_penv (Parm x) P

[(x,p)]
] make_penv (Prod vs) (PProd ps) = conc (map2 make_penv vs ps)

and apply f p = let (r,s) = lookup types f
in  psubst (get_env r p) (lookup fn_values (f,squash r p))
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and applyR £ p = let (x,s) = lookup types f
in  psubst (get_env r (make_abs p)) (get_abs s)

In addition to implementing £#, we must implement P#. This also takes an abstract
environment and an expression, but returns a list of function names paired with
projections which (in the limit-—see below) places lower bounds on the amount of in-
formation available to the function at partial evaluation time. The value description
is the final result of the binding-time analysis and corresponds to the result of M#*.
and descr env (Parm v) ]

join_list glb (map (descr env) es)

B descr env (Prod es)

i descr env (Constr c e) = descr env e
(1 descr env (Call f e) = let (r,s) = lookup types f in

join glb [(f, squash r (evalp env e))] (descr env e)
I descr env (RCall f e) = let (r,s) = lookup types f in

join glb [(f, squash r (evalp env e))] (descr env e)
N descr env (Case e cls) = let p = evalp env e in

join glb (descr env e)

(case unfold p in
PAbs : join_list glb
[descr (abs_env ¢ vs p @ env) e;; (c,(vs,e)) <- cls]
I PSum cps : join_list glb
(descr (make_penv vs (lookup cps c) @ env) e;;
(c,(vs,e)) <- cls]

end)
and iter_descr desc = join glb desc (join_list glb (map descr_fn desc))
and descr_fn (f,p) = let (vs,body) = lookup program f in
descr (make_penv vs p) body
and description = limit (repeat iter_descr (descr initial_env expr))

end

B.2 The Abstract Function Environment

The abstract function environment ¢#* (Chapter 4) is computed by the functions
in this module. Its value is given by the constant fn_values, which is defined by
iteration to the greatest fixed point. As described in Chapter 6, we restrict the table
to contain only the arguments that might possibly be required. The table has the
structure [((function name, argument),result)].
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module

—— FN_VALS.M

#include "library.t"

#include "types.t"

#include "pel.t"
#include 'check.t"

#include “globals.t"

#include "projections.t"

export fn_values, iter_fns, initial_table, initial_env,

rec

and

and
and
and
[
I
(]
I

evalf, apply_fn;
fn_values = limit (repeat iter_fns initial_table)

iter_fns table
= let  (table’,tabs) = unzip (map (iter_fn table) table)
in join_list glb (table’.tabs)
iter_fn table ((f,p),q)
= let rec (vs,body)

lookup program f
and (q’,tab) = evalf table (make_penv vs p) body
in  ( ((£,p),q’) , tab)

initial_table = snd (evalf [] initial_env expr)

initial_env get_abs_env expr t_expr

get_abs_env (Parm x) t = [(x, get_abs t)]

get_abs_env (Prod es) (DProd ds) = conc (map2 get_abs_env es ds)
get_abs_env (Call f e) ¢t
get_abs_env (RCall f e) t

get_abs_env (Constr c e) t

get_abs_env e (arg_type f t)

get_abs_env e (arg_type f t)

n

get_abs_env e (arg_type c t)

arg_type f t = let (r,s) = lookup types f in
case unify DParm (s,t) in
Y v : app_type v r
end

The evaluator returns a pair of values. The first is the abstract value of an expression
computed with respect to the function table provided. The second is a table of all
the (possibly new) function/argument pairs that were used, paired with the best
approximation to the result then known. This table is used to extend the function
environment.

and

evalf vals env (Parm v) (lookup env v, [1)
(PProd, join_list glb) @2

unzip (map (evalf vals env) es)

evalf vals env (Prod es)
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| evalf vals env (Constr c e) = (fold c, id) @2 evalf vals env e
I evalf vals env (Call f e)
I evalf vals env (RCall f e)

I evalf vals env (Case e cls)

apply_fn vals f (evalf vals env e)

apply_fn vals f (evalf vals env e)

= let (p,t) = evalf vals env e in
case unfold p in

PAbs : let (c,(vs,e))=hd cls in

(make_abs,id) €2 (evalf vals (abs_env c vs p @ env) e)
! PSum cps : let (ps,ts) = unzip
[evalf vals (make_penv vs (lookup cps c) @ env) e;;
(c,(vs,e)) <- cls] in
(glb_list ps, join_list glb (t.ts))

end
and apply_fn vals f (p,t)
= let rec (r,s) = lookup types f
and (q,env) = (squash r p, get_env r p)
and fq = apply_tab f q s vals
in

(psubst env fq, join glb [((f,q),fq)] t)

The table contains representations for each of the functions. The meaning of any
particular function f is defined to be fi,; z =[|{y |3z .2 C 2z, {f : z — y} € tad}.

and apply_tab f p s [] = get_id s
I apply_tab f p s (({g,q),gq).rest)
= if f=g & less p q then
glb gq (apply_tab f p s rest)
else apply_tab f p s rest

and less (PParm x) (PParm y) = true
I less (PRec x) (PRec y) = true
I less (PProd ps) (PProd gs) = And (map2 less ps qs)
I less (PMu f fps ps) (PMu g ggs gs)
=  And (map2 (\x.\y.less_sum (snd x) (snd y)) fps ggs)
& And (map2 less ps gs)

and less_sum PAbs any = true
I less_sum any PAbs = false
I less_sum (PSum cps) (PSum dqs)
= And (map2 (\x.\y.less (snd x) (snd y)) cps dgs)

end
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B.3 Binding-Time Analysis Output

We have not defined an intermediate annotated version of PEL designed to convey
binding-time information as this is only actually necessary for self-application. In-
stead, the binding-time information is computed each time the program is specialised
to some input values. However, if separate binding-time information is required it
may be obtained from the following executable program.

-- BTA.M
#include "library.t"
#include "types.t"
#include '‘globals.t"

#include "projections.t"

let sep = "\n\n::::::::::::::::::::::::::::::::::::::::\n\n"
and pr (f,p) = £ @ ":\n" @ print_proj p
in result true

"Projection-Based Partial Evaluation"

("Binding-Times Analysis Results:" @ sep

@ map_sep pr "\n\n" description @ sep)

In Appendix C we discuss the way in which the specialiser uses the binding-time
information computed by the modules occurring here.



Appendix C

Implementation of Specialisation

This appendix contains the definition of the specialiser itself. The module spec.m
provides the definitions of the specialisation functions, and these are brought together
at the end of the appendix into an executable program. The appendix closes with
the example specialisation referred to in Section 7.5.

C.1 Specialisation

module -- SPEC.M
#include "library.t"
#include "types.t'
#include "pel.t"
#include "globals.t"
#include "projections.t"

#include "fn_vals.t"

export spec,resid_prog,sigma,delta,

make_menv,self_env;

The key function in specialisation is spec. The first argument to spec is often called
the pending list. It consists of a list of function names, each paired with a static value,
that await specialisation. The second argument is also a list of function/static-value
pairs corresponding to the specialisations already performed. Static values contain
occurrences of Bot where the static projection has caused the dynamic value to be
blotted out. Each of these occurrences is replaced with a fresh parameter name (ob-
tained from the list vars), and a product of these new names is constructed by delta
(corresponding to the 6 function of Chapter 5). After the function body has been

131



APPENDIX C. IMPLEMENTATION OF SPECIALISATION 132

evaluated it is searched to find any function calls that will themselves need special-
1sation.

rec spec [ table = []
I spec (fn.fns) table
= if member table fn then
spec fns table

else let
rec (f,arg) = fn
and (vs, body) = lookup program f
and (arg’,vars’) = replace arg vars
and new_vs = delta arg arg’
and new_body = evalm (make_menv vs arg’) body
and new_fns = search new_body

in  (fn,(new_vs,new_body))
spec (fns © new_fns) (fn.table)

and replace Bot (n.ns) = (Parm n, ns)

I replace (Constr ¢ e) ns = (Constr c, id) @2 replace e ns
[ replace (Prod es) ns = (Prod, id) €2 feed replace es ns
and evalm env (Parm x) = lookup env x

[ evalm env (Prod exps) = Prod (map (evalm env) exps)

[ evalm env (Constr c arg)= Constr ¢ (evalm env arg)

[ evalm env (Call f arg) = let (vs, body) = lookup program f in
evalm (make_menv vs (evalm env arg)) body

I evalm env (RCall f arg) = RCall f (evalm env arg)

|1 evalm env (Case e cls) = evalm_case env (evalm env e) cls

and evalm_case env (Constr name e_arg) ((c,(vs,exp)).cls)
= if name = ¢ then evalm (make_menv vs e_arg € env) exp
else evalm_case env (Constr name e_arg) cls
Il evalm_case env any cls

= Case any [(c,(vs, evalm (self_env vs € env) e));; (c,(vs,e)) <~ cls]

[(x,Parm x)]

self_env e

and self_env (Parm x)
H self_env (Call f e)
I self_env (RCall f e)

N self_env (Constr c e)

self_env e

self_env e

Il self_env (Prod es) = concmap self_env es

[(x,e)]

conc (map2 make_menv vs es)

and make_menv (Parm x) e

11 make_menv (Prod vs) (Prod es)



APPENDIX C. IMPLEMENTATION OF SPECIALISATION 133

1 make_menv (Prod vs) e = conc (map (\y.make_menv y e) vs)

Projections are applied using sigma. Given a function name and an expression (as-
sumed to be an argument to the function), sigma extracts from the binding-time
description the projection associated with the function, and applies it to the expres-
sion. Because the recursion is guided by the projection, the parts of the expression
reached will be in normal form. When the projection ABS is encountered the expres-
sion Bot is returned, representing L.

and sigma f e = sigma_exp (lookup description f) e

and sigma_exp (PProd ps) (Prod es) = Prod (map2 sigma_exp ps es)

H sigma_exp (PMu f fps ps) e = sigma_sum (unfold (PMu f fps ps)) e
1 sigma_exp (PParm x) e = Bot

and sigma_sum PAbs e = Bot

I sigma_sum (PSum cps) (Constr c e)

Constr ¢ (sigma_exp (lookup cps c) e)

and delta e’ e = make Prod (delta_exp e’ e)
and delta_exp Bot e = [e]
I delta_exp (Prod es’) (Prod es) = conc (map2 delta_exp es’ es)

I delta_exp (Constr ¢’ e’) (Constr c e) = delta_exp e’ e

and delta_type e’ e = make DProd (delta_t e’ e)
and delta_t Bot t = [t]
R delta_t (Prod es) (DProd ts) = conc (map2 delta_t es ts)
I delta_t (Constr c e) (DFunctor f ts)
= let (vs,cds) = lookup type_defs f in
delta_t e (subst (vs//ts) (lookup cds c¢))

and subst env (DParm x) lookup env x
I subst env (DProd ds) DProd (map (subst env) ds)
il subst env (DFunctor f ds) = DFunctor f (map (subst env) ds)

The function search will go through the specialised function body and pick out any
remaining function calls along with the static part of the arguments. Repeats are not
checked for, as they will not cause a problem for spec.

0
a

(f, sigma f arg) . search arg

and search (Parm x)

]

I search Bot
I search (RCall f arg)

I search (Constr c arg)

search arg

1}

Il search (Prod es) concmap search es

| search (Case exp cls) = search exp @ conc [search e;; (c,(vs,e))<-cls]
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Having produced the specialised program, we need to tidy it up by renaming each
specialisation of the original functions. First a table is constructed of the instantia-
tions giving the new name, and then the program is altered to suit. At this point the
new types of the residual functions may be generated from the old using a version of
delta defined over types.

and rename_fn ns (fn,(vs,body))
= let rec new_f = lookup ns fn
and (f,e) = fn
and (r,s) = lookup types f in

( (new_f, (delta_type e r, s)),
(new_f, (vs, rename_exp ns body)) )

Parm x
Bot

and rename_exp ns (Parm x)

I rename_exp ns Bot

Il rename_exp ns (Constr c¢ e) Constr ¢ (rename_exp ns e)

Prod (map (rename_exp ns) es)

[ rename_exp ns (Prod es)
I rename_exp ns (RCall f e)
= let se = sigma f e in
Call (lookup ns (f,se)) (delta se (rename_exp ns e))
I rename_exp ns (Case exp cls)

= Case (rename_exp ns exp) [(c,(vs,rename_exp ns e));; (c,(vs,e))<-cls]
and new_name n ((f,arg),rhs) = ((f,arg), £ @ “_" @ n)

The functions above are now combined to give produce the residual program. The
type definitions appearing in the residual program will be a subset of the definitions
appearing in the original. The function get_types scans the (new) types of the resid-
ual functions and inserts the required type definitions.

and get_types ts [J = []
I get_types ts (((f,(r,s)),fn_def).rest)
= let ti = difference (scan r) ts in
let t2 = difference (scan s) (ti1€ts) in
[(t,det);; (t,def) <- type_defs; member (ti@t2) t]
Q get_types (t10t2Qts) rest

and scan (DProd ds) = merge_list (map scan ds)
0

I scan (DFunctor f ds)

11 scan (DParm x)

= merge_list ([[g];; g<- mutual f] @ map scan ds)
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and resid_prog
= let rec new_expr = evalm (self_env expr) expr
and spec_fns = spec (search new_expr) []
and nev_names = map2 new_name vars spec_fns
and new_fns = map (rename_fn new_names) spec_fns
and new_types = get_types [] new_fns
in

(new_types,
(new_1ns,
(rename_exp new_names new_expr, t_expr)))

end

C.2 Residual Program Output

All the modules used up to now are brought together by the following executable
which, when compiled, produces a UNIX command to perform partial evaluation.

-= PE.M
#include "types.t"
#include "pel.t"
#include "globals.t"

#include "spec.t'
let sep = "\n\n:::::::::::::::::::::::::::::::::::::::::\n\n“

in result true

"Projection-Based Partial Evaluation"

("Partially Evaluated Program:" @ sep
€@ print_prog resid_prog
© sep)

C.3 Extended Example

We conclude this appendix with an actual listing obtained from the partial evaluator.
We specialise the imperative language interpreter introduced in Chapter 2 (given
below) to the factorials program of Section 6.4. The definitions of functions such as
gt (>) have been deleted as they do not affect the results—the residual versions are
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identical to the original versions.

type Command = Read Ident
+ Write Exp
+ Alloc (Ident, List Command)
+ DeAlloc
+ Assign (Ident, Exp)
+ If (Exp, List Command, List Command)
+ While (Exp, List Command);

type Exp = Val Num + Id Ident + Op (Oper, Exp, Exp);
type Ident = X + Y + Z;

type Oper = Gt + Mul + Minus;

type List a = Nil + Cons (a, List a);

type Num = Zero + Succ Num;

exec :: (List Command, List Num) -> List Num;

exec (block, inp) = run (block, Nil, inp);

run :: (List Command, List (Ident,Num), List Num) -> List Num;
run (block, env, inp)
= case block in Nil -> Nil || Cons (com,coms) -> case com in
Read k

-> run (coms, update (env, k, #hd inp), #tl inp)
|l Write e

-> Cons (eval (env,e), run (coms, env, inp))
I| Alloc (k,cs)
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-> run (append (cs, Cons (DeAlloc,coms)), Cons ((k,Zero),env), inp)

|| DeAlloc

-> run (coms, tl env, inp)
Il Assign (k,e)

-> run (coms, update (env, k, eval (env,e)), inp)
Il If (e, cs1, cs2)

-> #if (eval (env,e), run (append (csi,coms), env, inp),

run (append (cs2,coms), env, inp))

|| While (e,cs)
-> #run ([If (e, append (cs,block), coms)], env, inp)
end

end;
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eval :: (List (Ident,Num), Exp) -> Num;
eval (env,e) = case e in
Valn -> n
Il Id k => lookup (env,k)
Il Op (oper,ei,e2) —>
case oper in
Gt -> #gt (eval (env,el), eval (env,e2))
Il Mul -> #mul (eval (env,el), eval (env,e2))
|| Minus -> #minus (eval (env,el), eval (env,e2))
end

end;

lookup :: (List (Ident,Num), Ident) -> Num;
lookup (env,k) = case env in
Cons ((j,y),jys) —> if (eq (k,j), y, lookup (jys,k))
end;

update :: (List (Ident,Num), Ident, Num) -> List (Ident, Num);
update (env,k,v) = case env in
Cons ((j,y),jys)
-> if (eq (k,j), Comns ((j,v),jys),
Cons ((j,y), update (jys,k,v)))
end;

eq :: (Ident,Ident) -> Num;
eq (j,k) =case j in
X -> case k in X->1 || Y->0 || Z->0 end
Il Y -> case k in X->0 || Y->1 || Z->0 end
[t Z -> case k in X->0 || Y->0 || Z->1 end
end;

if :: (Num,a,a) -> a;

if (n,x,y) = case n in Zero -> y || Succ m -> x end;

append :: (List a, List a) -> List a;
append (xs,ys) = case xs in
Nil -> ys
Il Cons (z,zs) -> Cons (z, append (zs,ys))
end;

hd :: List a -> a;

hd xs = case xs in Cons (y,ys) -> y end;
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tl :: List a -> List a;

tl xs = case xs in Cons (y,ys) -> ys end;

gt :: (Num,Num) -> Num;
gt (a,m) = ... ;
mul :: (Num,Num) -> Num;

mul (n,m) = ... ;

minus :: (Num,Num) -> Num;

minus (n,m) = ... ;

#exec ([ Alloc (X,
[ Read X,
While (Op (Gt, Id X, Val 0),
[ Alloc (Y,
[ Assign (Y, Vval 1),
While (Op (Gt, Id X, Val 0),
[ Assign (Y, Op (Mul, Id Y, Id X)),
Assign (X, Op (Minus, Id X, Val 1)) 1),
Write (Id Y) ]),
Read X 1]),
Write (Val 0) 1) 1],

input

) :: List Num
The result of specialisation is the following residual program. Apart from altering
the layout of the program (including sugaring the syntax of numbers and lists), and
deleting the definitions of functions such as gt (>), the output is unchanged. Note
in particular that different residual versions of run are equipped with distinct types.

Projection-Based Partial Evaluation

Partially Evaluated Program:

type List a = Nil + Cons (a, List a);
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type Num = Zero + Succ (Num);

exec_a :: List (Num) -> List (Num);

exec_a a = run_b (hd_c a, tl._d a);

run_b :: (Num, List (Num)) -> List (Num);
run_b (a, b) = if_e (gt_f (a, 0), run_g (1, a, b), [0]);

run_g :: (Num, Num, List (Num)) -> List (Num);

run_g (a, b, ¢) = if_e (gt_t (b, 0),
run_g (mul_h (a, b), minus_i (b, 1), c),
Cons (a, run_b (hd_c c, t1_d ¢)));

hd_c :: List a -> a;

hd_c a = case a in Cons (y, ys) -> y end;

tl_d :: List a -> List a;
tl_d a = case a in Cons (y, ys) -> ys end;

if_e :: (Num, a, a) -> a;
if_e (a, b, ¢) = case a in
Zero -> ¢
Il Succem->b

end;

gt_f :: (Num, Num) -> Num;
gt_f (a, b) = ... ;

mul_h :: (Num, Num) -> Num;
mul_h (a, b) = ... ;

minus_i :: (Num, Num) -> Num;

minus_i (a, b) = ... ;

exec_a input :: List (Num)

Substituting any value for the free variable input in either the original or the residual
program will give identical results, but with significantly less computation needed in
the latter case.



Appendix D

Library Functions

D.1 General Library Functions

In addition to the standard prelude of LML the following functions were needed.
Most of these are fairly familiar, but those that are less so will be explained.

module -- LIBRARY.M

infixr "//"; -- curried form of zip
infixr "@2'"; -- apply function on pairs
infixr "°°""; -- combinator for YN type

export fst,snd,cons,uncurry,®2,id,//,unzip,
lookup, lookup’ ,member,
map_sep,map2,feed,
make,repeat,limit,vars,
join,join_list,merge,merge_list,
cyclic,dfs,span,
YN,”" " ,lookupYN,AppendYN,1listYN;

rec fst (x,y) = x

and snd (x,y) = ¥y

and cons (x,xs) = x.xs

and swap (x,y) = (y,x)

and uncurry f (x,y) = fxy
and - (f£,g) @2 (x,y) = (f x, g y)
and id x = x

and o /s ys =10

11 xs // 01 =10

140
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I (x.xs) // (y.ys) = (x,y) . (xs // ys)

i

and unzip |

Q.
((\xs.(x.xs)), (\ys.(y.ys))) @2 (unzip xys)

I unzip ((x,y).xys)

and lookup ((n,v).rest) m = if n=m then v else lookup rest m

and lookup’ def ((n,v).rest) m = if n=m then v else lookup’ def rest m
i lookup’ def a m = def

and member Xs X = mem X XS

In addition to the usual map function, other variants are convenient. The function
map?2 is a binary version of map, and map_sep concatenates the result list but inserts
the separator provided. The feed function acts like map except that a second, state-
like, parameter is fed down the list. This is used to pass a list of new variable names
so that at each application the function f has access to fresh variables.

and map2 £ [] ys =101
K map2 f  xs 0 =0
I map2 f (x.xs) (y.ys)

f xy . map2 f xs ys

and map_sep f str [ =10
I map_sep f str [x] =f x
I map_sep f str (x.xs) = f x @ str € map_sep f str xs

and feed f [] ns = ([], ns)
I feed f (x.xs) ns = let (y, ns’) = f x ns

i}

in  ((\ys.y.ys), id) @2 feed f xs ns’

The main use of make is in conjunction with constructors such as Prod where the con-
structor is only required if the list is not a singleton. The function repeat generates
an infinite list of iterations of its function argument, and 1imit extracts the element
of the list once stability has been reached. The list vars is an infinte list of distinct
variable names.

and make ¢ [x] = x

Il make ¢ XS = C XS

and repeat f x = x . repeat f (f x)

and limit (x.y.rest) = if x=y then x else limit (y.rest)

and atoz = "abcdefghijklmnopqrstuvexyz"

and vars = [[x];; x <- atoz] @ [(x.xs);; xs <- vars; x <- atoz]
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The merge function merges ordered lists. Similarly, the join function is used to merge
ordered association lists. When the names p and q are distinct the action is clear, but
when they are the same their values are combined. As the method of combination
depends on the situation we use an extra parameter to describe it.

and merge [] ys ys

1 merge  xs ] xs

I merge (x.xs) (y.ys) = if x<y then x . merge xs (y.ys) else
if x>y then y . merge (x.xs) ys else

X . merge Xxs ys

and merge_list = reduce merge []
and join £ xs 0 = xs
Il join f O ys = ys

I join £ ((p,x).pxs) ({(q,y).qys)
= if p<q then (p,x) . join f pxs ((q,y).qys) else
if p>q then (q,y) . join f ((p,x).pxs) qys else
(p, £ xy) . join f pxs qys
and join_list f = reduce (join f) []

When constructing projections we need to divide type definitions into mutually recur-
sive groups. This reduces to the problem of detecting strongly connected components
in a directed graph. The graph is represented as a list of edges and a list of vertices.

and cyclic es vs = let ins w = [x ;; (x,y) <- es; y=vw]
and outs w = [y ;; (x,y) <- es; x=w]
in

snd (span ins ([J,[]) (snd (dfs outs ([O,[]) vs)))

and dfs r (vs,ns) ([
|1 dfs r (vs,ns) (x.xs) = if member vs x then dfs r (vs,ns) xs else
let (vs’,ns’) = dfs r (x.vs,[]) (r x)

in dfs r (vs’,x.ns’@ns) xs

(vs,ns)

and span r (vs,ns) [] (vs,ns)

| span r (vs,ns) (x.xs) if member vs x then span r (vs,ns) xs else
let (vs’,ns’) =dfs r (x.vs,[]) (r x)

in span r (vs’,(x.ns’).ns) xs

The YN type allows conditional responses. The major means of combining these is
through the use of ~~~.

and
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type YN *a *b = N *a + Y *b

and (Nw) =7 £ =
I (Y x) =77 £ =
and lookupYN 01 y = N (y ¢ " not found")

i lookupYN ((x,v).xvs) y

if x=y then Y v else lookupYN xvs y

and AppendYN xs = 1listYN xs =~ (\ys. Y (conc ys))

- listYN :: List (YN a b) -> YN a (List b)

and listYN [] =Y [

I listYN (x.xs) = add¥N x (1istYN xs)
and addYN (N y) any =Ny

[ addYN (Y x) (Ny) =Ny

[ addYN (Y x) (Y xs) = Y (x.xs)

end

D.2 Parsing Primitives

In order to provide a accept PEL programs a parser is required. This section contains
the primitives used to construct it. The technique is described in [Wad85] and [FL89].
The particular choice of primitives has been guided by experience.

module -- PARSELIB.M

#include "library.t"

infixr "t -- ’orelse’, corresponds to | in BNF

infixr ".."; -- ’then’, BNF uses a space

infixr “x.."; -- ’then’, dropping the left hand value

infixr "..x"; -- ’then’, dropping the right hand value

infixr ".sep_by."; -- returns a list delimited by the given separators
infix ".as."; -- applies semantic functions

export !! , .. , x.. , ..x , .as. , succeed,

opt, many, some, .sep_by. , sat, skip, lit;

rec pl !! p2 = \inp . pl inp @ p2 inp

and pt .. p2 = \inp . [((v,w),inp’’);; (v,inp’) <- pi inp;

(w,inp’’)<- p2 inp’]
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and PXx..q=p..q .as. snd

and P.-.xq=p..q .as. fst

and p -as. £ = \inp . [(f v, inp’);; (v,inp’) <- p inp]
and succeed v = \inp . [(v, inp)]

and opt p v = \inp . [hd ((p !! succeed v) inp)]
and many p = opt (p .. many p .as. cons) [J

and some p = p .. many p .as. cons

and P -sep_.by. q = p .. many (q x.. p) .as. cons
and sat p (c.1) = if p ¢ then [(c,1)] else []

I sat p [0 =10

and lit t = sat (\x.t=x)

and skip x (c.1) = if x=c then [(c,1)] else skip x 1
H skip x 0O = [(x,[)]

end
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