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SUMMARY

This thesis describes a computer based method and a procedure to simulate the 

motion response of a damaged platform under wave, wind and current effects. The aim 

of the study was to develop an analysis procedure which could be a useful tool to 

designers and certifying authorities in assessing the safety of mobile platforms in extreme 

environmental and damaged conditions.

The thesis begins by explaining the benefits of using floating structures in 

developing oil fields. Basic stability requirements for floating production vessels are 

summarised. Recent and past damage simulation studies in the literature are reviewed. 

Some information about the number of accidents involving floating offshore platforms 

operated world-wide is presented. A few of the disasters occurring in recent years are 

given as examples to emphasise the importance of the subject.

The Morison approach and 2D source-sink distribution technique are reviewed, and 

calculations of wave forces acting on a semi-submersible are carried out in order to make 

comparisons between the two methods. Theoretical derivations of wave forces in the 

frequency domain based on the Morison approach are carried out in detail for a twin­

hulled semi-submersible. The development of computer programs based on both 

methods is summarised.

A general method for calculating wave forces and moments on circular cylinders of 

offshore structures is derived. By using the developed method one can calculate the wave 

loading on cylindrical members of fixed or floating offshore structures orientated 

randomly in waves. This method also provides a basic tool for determining the wave 

forces and moments that a floating structure is subjected to as it experiences large 

amplitude oscillations in six degrees of freedom.

A general method is established in this chapter to calculate the hydrodynamic 

loading due to the rigid body motion of the platform. The calculation of restoring forces

xxii



is discussed: a detailed description of the methods used to calculate hydrostatic forces, 

mooring stiffness coefficients and wind forces is given in the appendices. The calculation 

of inertia forces and moments defined from Newton's second law is introduced as part of 

a general calculation procedure. The derivation and the solution of motion equations in 

the time domain are presented.

Details of model tests carried out to validate the non-linear large amplitude motion 

calculation procedures are presented.

A description of a circular twin-hulled semi-submersible model and the loading 

conditions is given. The test setup and instrumentation are presented briefly. Test 

procedures for inclining, natural period and motion tests in waves are discussed. 

Methods of analysis of motion response measurements in six degrees of freedom in 

intact, transient and damaged conditions for head and beam seas are given. The results of 

motion response measurements are presented in time histories. In order to validate the 

numerical prediction procedures and the software based on these procedures, the physical 

test conditions are simulated numerically and a comparison of test results with numerical 

predictions is presented.

Simulation studies based on the non-linear motion equations are presented with the 

aim of providing comparisons to illustrate the effects of non-linearities in wave and 

motion induced forces. A summary of the systematic study carried out to illustrate the 

effects of non-linear terms on the solution of the motion response equations is given. The 

results of the parametric studies to investigate the effects of flooding rate and of size of 

damaged compartment on motion response characteristics are also discussed.

The other aspects of roll motion such as the effects of non-linear drag force, first 

order wave elevation, different wave heights and GM's, and non-linear added mass and 

damping forces on the motion behaviour and the steady tilt of semi-submersibles are 

investigated. The variations of GM and GZ values as a function of heel angle are also 

presented.

xxiii



CHAPTER 1

INTRODUCTION
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1 .1  OIL AND GAS PRODUCTION FACILITIES

The development of small oilfields is common not only in the North Sea but also in 

other parts of the world. Development forecasts (Goodfellow Associates Limited, 1986) 

suggest that 80% of future production will be from fields with recoverable reserves of 

100 million barrels or less. Proposed early production and subsea systems for small 

oilfields are as follows:

i) Semi-submersible exporting crude oil through offshore loading,

ii) Semi-submersible exporting crude oil through submarine pipeline,

iii) Tankers with storage, and shuttle tankers,

iv) Articulated columns,

v) Jack-up rigs.

Since the fixed production platforms are not cost-effective for deep waters, floating 

production platforms together with subsea systems are accepted as being more feasible 

solutions for deep water application.

The increasing incidence of small field development has highlighted the importance 

of floating production systems as opposed to more conventional jacket systems. The 

benefits of using a floating production system are as follows:

i) Low initial capital investment

ii) Early production and thus early return on investment

iii) Low abandonment costs

iv) Ease of relocation at end of field life

v) Good mobility allows system to be moved from politically unstable areas or

after change of perceived reservoir.

The semi-submersible was designed in the 1950's primarily as an exploratory 

drilling vessel. The use of the semi-submersible has since been extended to include 

floating production facilities, and construction and diving support platforms. Moreover,
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the semi-submersible hull has been proposed for use as a mobile radar tracking ocean 

platform for NASA, the USAF and the Navy. It has also been proposed for use to 

support combat training systems (Shields et al. 1987, Shields and Zueck, 1984). New 

generation semi-submersibles have been proposed for use in deep water and hostile 

environments (Deepwater Drilling Report Aug., 1982). Innovative semi-submersibles 

were designed to help some of the service problems on fixed platforms and subsea 

pipelines (Deepwater Drilling Report June, 1982). Recently, the development of a new 

multi-purpose semi-submersible design proposed by Seaways Engineering (U.K.) Ltd. 

was assisted by the Department of Naval Architecture and Ocean Engineering at the 

University of Glasgow (Faulkner et al. 1989). While the use of semi-submersibles has 

increased, the incidence of two major offshore disasters has led to a focus on the damaged 

stability of semi-submersibles.

1.2 STABILITY AND PAYLOAD OF FLOATING OFFSHORE  

UNITS

Basic Stability Requirements

A major consideration of any floating production vessel is the weight of payload 

required. With this payload onboard, the vessel must meet certain stability requirements.

The offshore structure should experience minimal movement to provide a stable 

work station for operations such as drilling and producing oil.

Moreover, from the motion response point of view the main reason for adopting the 

semi-submersible geometry in preference to a monohull vessel is probably the better 

motion response that can be achieved in a relatively small unit.

There are worldwide a variety of semi-submersible vessels available (Martinovich 

and Praught, 1986). The dynamics and performance of these vessels are of great 

importance in overall field development.
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Historical Development o f  Stability Work on Semi-Submersibles

As the demand for floating offshore vessels for the development of marginal oil 

fields in deeper waters increased in the mid 1970's, studies on the stability of semi- 

submersibles were initiated in an effort to provide safer stability limits for existing and 

new design semi-submersibles. Pioneering work on the problem was conducted by 

Numata and Michel (1974), Numata and McClure (1975) and Numata et al (1976). The 

work carried out by Numata et al (1976) was directed by SNAME Panel MS-3 and 

concerned with the effects of underdeck clearance and wave-induced steady heel on the 

stability of semi-submersibles. Similar effects on the stability assessment was also 

investigated by Kuo et al (1977), and De Souza and Miller (1978). The importance of 

damaged stability was highlighted by Dahle (1981) and Abicht (1982) after Alexander 

Kielland floating platform disaster in the North Sea in 1980. The objective of the research 

performed by Hineno et al (1982) was to identify a method to predict the minimum 

underdeck clearance of a semi-submersible platform in irregular waves. The influence of 

mooring lines on the stability of semi-submersible platforms was investigated by 

Takarada et al (1982). Mclver et al (1983) highlighted the requirements for a more 

general approach to the total stability analysis, that is, static and dynamic stability. A 

quasi-dynamic stability assessment procedure based on the energy-balance method was 

introduced by Vassalos et al (1985). Takarada et al (1986) investigated the possibility of 

capsizing in survival sea conditions, such as steady heeling moment, and proposed a new 

computational approach for determining the required minimum GM. A pilot study on the 

intact stability of semi-submersibles, undertaken by ABS was presented by Chen et al 

(1986). Takai et al (1987) examined the characteristics of static stability of semi- 

submersibles using the results of parametric studies. After the capsize of two semi- 

submersibles (Alexander L. Kielland and Ocean Ranger) with substantial loss of life in 

the early 1980's, the ABS initiated the pilot study mentioned above which was continued 

as a joint industry project in order to develop a dynamic-response-based criterion. The 

new criterion will be studied by the IMO with a view to replacing the present IMO MODU 

code. ABS work which was summarised by Shark et al (1989) gave examples of 

dynamic motion simulations. These dynamic motion analyses were carried out for the
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generic offshore units comprising three or four column-stabilised semi-submersibles. 

The analyses only considered post-flooding conditions in establishing the new stability 

criterion. However, transient conditions are also important in assessing the stability of a 

mobile platform as emphasized by several researchers.

The literature reviewed in the preceding section, apart from the last reference, refers 

to the intact stability of semi-submersibles. There are also published studies carried out 

over the years on dynamic motion analysis of damaged semi-submersibles. The first 

time-domain simulation study for a semi-submersible was reported by Paulling (1977), 

and aimed at analysing the non-linear terms in the motion equations. Experiments with a 

semi-submersible platform having a large list angle were carried out by Huang et al 

(1982) and Huang and Naess (1983). Stability and dynamics of semi-submersibles after 

accidental damage (post-flooding condition) were also investigated experimentally by 

Clauss (1984), Nakamura et al (1984) and Naes et al (1985). Naess and Hoff (1984) 

presented a non-linear time-domain simulation method to predict the motions of a platform 

with large list angles. A brief methodology in predicting the behaviour of a damaged 

platform in progressive and post-flooding conditions is also reported by Moncarz et al 

(1985). Huse and Nadrelid (1985) stated in their work that the effect of waves and 

dynamic wind forces should be taken into account when the dynamic stability of a semi- 

submersible is examined. The need to perform a dynamic analysis for both intact and 

damaged platform conditions in order to evaluate proper locations of floodable openings 

was highlighted by Dahle (1985). The transient (progressive flooding or sudden breaking 

of mooring lines) behaviour of a semi-submersible type platform was studied both 

theoretically and experimentally by Adachi and Kagemoto (1986). Kagemoto et al (1987) 

emphasized the importance of dynamic effects in the prediction of the behaviour of semi- 

submersibles after damage. Mourelle et al (1987) investigated the non-linear uncoupled 

motions of a semi-submersible anchored with catenary moorings. The stabilisation of a 

heavily listed semi-submersible by adjusting the ballast water was proposed by Takaki et 

al (1987).

The studies referred to above did not present a complete motion simulation 

procedure which takes into account intact, progressive flooding and post-flooding
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conditions in coupled six-degrees of freedom. The development of generalised non-linear 

motion equations (coupled in six-degrees of freedom) to study intact, progressive and 

post-flooding behaviour of a floating structure was presented by the author (1988).

1 .3  REQUIREMENT FOR DYNAMIC MOTION ANALYSIS

The damaged stability criteria based on the experience gained with ships over many 

years have been applied to floating platforms. However, these rules, based on the calm 

water level assumption, are not necessarily realistic recommendations for floating 

structures having different geometrical configurations from ships.

Loss of, or damage to, any buoyant compartment due to accidents, including 

collisions, structural failure, explosions, etc. can cause submergence of non-watertight 

openings. Classification rules combine static stability properties with dynamic wind load. 

These rules appear to be unrealistic since high waves are not taken into account. 

Additionally, a damage zone is defined as an area bounded by horizontal lines 5 m above 

and 3 m below the waterline (Springett and Praught, 1986), whereas flooding can start 

anywhere on the platform, for instance due to structural failure, as happened in the 

Alexander L. Kielland disaster (Rusaas, 1982), and in the Ocean Ranger disaster 

(Dudgeon, 1986), where chain lockers were damaged and high waves subsequently 

caused the flooding.

Present classification society rules for damaged stability can be summarised as 

follows:

The damaged platform's metacentric height in calm water is calculated. A wind 

heeling moment for a wind speed of 100 knots or more is used in connection with 

metacentric height of damaged platform to determine the tilt or list angle without taking 

into account the effects of the waves. With such high winds, the assumption of calm 

water and static attitude of the platform are obviously unrealistic.
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Due to the considerable differences between the geometrical configurations of the 

floating platforms and those of ships, global criteria based on the experience gained from 

ships may not be appropriate.

With today's modem technology, i.e. fast computers, it is possible to develop more 

realistic mathematical models for floating platforms or ships by simulating their behaviour 

in a damaged condition, taking into account effects of waves, winds, currents, etc.

Flooding rate and associated changes in the vessel buoyancy are significant factors 

in rescue programmes or in planning remedial action. Since flooding rate is a time- 

dependent process with the vessel submergence and the sea-state history, a time-domain 

analysis is necessary to approach the problem more realistically.

In the frequency domain analysis of motion, it is assumed that the platform motions 

are small and the member configurations are symmetrical. All hydrodynamic coefficients 

are calculated and the motion equations are also solved by assuming that the platform 

remains at the calm water level. These assumptions can be relaxed when motion 

equations are derived and solved in the time-domain.

In the time-domain simulation procedure, damaged condition can be considered in 

two stages, i.e. progressive flooding and post damage. During progressive flooding, 

mass, all hydrodynamic coefficients and excitation forces and moments vary with time 

and consequently with position. In solving large amplitude non-linear coupled motion 

equations in the time-domain, one needs to carry out a step-by-step integration procedure. 

In this study, the Runge-Kutta method was adopted.

Since the step-by-step technique to solve the motion response will require the 

calculation of hydrodynamic, hydrostatic and forcing function many times over a given 

wave cycle, one has to select an appropriate method to determine these values so that the 

computational task will be feasible.
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Methods to be considered are:

a) Mori son approach,

b) 2-D sink-source distribution technique,

c) 3-D sink-source distribution technique.

The method chosen should permit the time-domain simulations to be carried out 

accurately and quickly by a computer. With this in mind, calculations were carried out

by the author to compare the Morison approach with the 2-D sink-source distribution

technique. In this study, 3-D sink-source distribution technique is not considered.

The reason behind the idea of the comparison is to ascertain whether the calculations 

can be accurate enough if the Morison approach is used and to check that computing time 

and space will also be manageable.

In these calculations the Morison approach considers the inertia forces and 

drag (velocity) forces whereas the 2-D sink-source distribution technique does not take 

into account drag forces.

1 .4  STUDY OBJECTIVES

The purpose of the study is to develop a prediction technique to simulate the motion 

response of a damaged platform under wave, wind and current forces.

Anproach Adopted

The analysis technique employs large displacement non-linear motion equations. 

Solutions were obtained in the time-domain to predict the motion characteristics. In this 

study, analysis procedures were developed to calculate:
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a) Wave loading on asymmetrical structural configurations

b) Hydrodynamic reaction forces (inertia or moment of inertia, damping and 

restoring forces) on asymmetrical shapes.

During the damage simulation, change in the mass of the structure as well as wave 

and hydrodynamic reaction forces, were taken into account.

The expected benefits of the study to designers and to the certifying bodies may be 

summarised as follows:

a) Simulation of the motion response and dynamic stability of a damaged 

floating structure in order to determine the adequacy of watertight spacings 

and openings for a given structure,

b) The provision of an accurate tool to predict the behaviour of a damaged 

platform in order to assess the adequacy of existing damaged stability rules,

c) The provision of a reliable tool to determine the ultimate strength of the 

members of a damaged structure.

1 .5  STRUCTURE OF THESIS

The work presented in the thesis begins by comparing the methods intended to be 

employed in the calculation of external forces acting on the semi-submersible. Therefore, 

Chapter 2 is devoted to a review of the Morison and 2-D source-sink distribution 

techniques and to a presentation of a comparison between the two methods. In Chapter 3, 

the derivation of a general method to calculate wave forces on the cylindrical members of 

offshore structures is given.

A general method is established in Chapter 4 to calculate the hydrodynamic loading 

due to the rigid body motion of the platform. A discussion is given on the calculation of 

restoring forces. The calculation of inertia forces and moments defined from Newton's
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second law are introduced in a general calculation procedure. The derivation and the 

solution of motion equations in the time-domain are presented.

In chapter 5, details of the model tests carried out to validate the non-linear large 

amplitude motion calculation procedures are presented. Methods of analysis of motion 

response measurements in six degrees of freedom in intact, transient and damaged 

conditions for head and beam seas are given. Finally, in Chapter 6, a summary of the 

systematic study carried out to illustrate the effects of non-linear terms on the solution of 

the motion response equations is given.
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CHAPTER 2

REVIEW OF THE METHODS
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2 .1  INTRODUCTION

The calculation of hydrodynamic load on offshore structures is of great importance 

to designers involved in offshore engineering. The hydrodynamic load calculations for 

design form a very difficult task because the environmental conditions are very complex 

and, because interaction occurs between waves and structure. Although ocean waves are 

of a random nature, it is of great interest to designers to investigate the environmental 

forces and resulting motions of offshore structures under regular sea conditions. This is 

known as the design wave approach. This type of analysis technique is fully 

deterministic and considers two parameters which are the period and the height of a given 

wave. However, there is another approach which works with the wave-energy spectrum 

by using probabilistic theory. The statistical design parameters; extreme forces and 

significant motion responses, etc. could be predicted by employing this approach.

There are a wide variety of offshore structures to accomplish various tasks. Among 

them are; jacket type platforms which are composed of small tubular members; concrete 

gravity type platforms; semi-submersibles and tension-leg platforms. Depending on the 

type and size of the members of an offshore structure in comparison with the wave 

length, different calculation methods are employed in predicting the hydrodynamic forces 

and resulting responses.

The existing methods for the hydrodynamic loads on offshore structures are mainly 

based on one of the following: Morison's Equation, two dimensional (2-D) and three 

dimensional (3-D) source-sink distribution techniques. Among these methods, the 3-D 

method is used generally for structures comprising large structural members. If a 

structure consists of small members, the strip approach utilising Morison's equation or 

2-D source-sink distribution method provides an adequate tool for design and analysis 

calculation.

Oo and Miller (1976) examined the heave motion aspect of several different type of 

semi-submersible design. The sensitivity of motion responses of a semi-submersible and 

a tension leg platform to different calculation methods in use for computing the
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hydrodynamic loads on floating platforms was discussed by Paulling, J.R. (1981). A 

comparison of methods for calculating the motion of a semi-submersible was carried out 

by the 17th ITTC Ocean Engineering Committee. A summary of the results of the project 

in which 34 computer programs from 28 different organisations were used was reported 

by Takagi et al. (1985). The results of the study predicting wave and motion induced 

forces on a tension leg platform, which was initiated by the 9th IS SC, were published by 

Eatock Taylor and Jefferys (1986). The study reported by Standing (1987) examined the 

effects of wave spreading on the motion response of a transportation barge. Two 

different offshore platforms: a semi-submersible and an articulated tower, were 

considered in quantifying the effects of different design parameters and analysis ‘methods 

on motion and structural response predictions by Incecik et al. (1987). Ostergaard and 

Schellin (1987) presented hydrodynamic calculations as applied to a variety of offshore 

structures and discussed the validity and accuracy of predicted results by comparison with 

closed form solutions or model test measurements. In these studies, it was concluded 

that the Morison approach and those based on the potential theory compare favourably 

with each other and with measurements.

In the following sections of this chapter, the Morison approach and 2D source-sink 

distribution technique are compared in calculating the wave forces on a semi-submersible. 

Theoretical derivations of wave forces in the frequency domain based on the Morison 

approach are carried out in detail for a twin-hulled semi-submersible given in Fig.2.2.

In this study, the calculation of the wave kinematic properties is based on the Airy 

wave theory. The reasons for choosing the linear Airy wave theory instead of a non­

linear wave theory were due to the following factors:

a) In a pilot study carried out with the Stokes fifth-order theory it was found that 

there was not any converging solution in lower wave frequency range. Dean (1970) also 

indicated that if DIT2<0.1 (D is defined in meter), Stokes fifth-order theory does not 

yield converging solutions. For water depth of 150 metres this corresponds to <5x0.2 

rad/s. Since one of the objectives of this study is to investigate the large motions around 

the natural frequencies the use of Stokes fifth-order theory would have not made, motion
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predictions possible around the natural roll and pitch frequencies.

b) Another high-order wave theory developed by Dean (1965) was considered and 

found that implementation of this theory into a time-domain simulation program will not 

be feasible due to very extensive computer time requirements.

The development of computer programs based on both methods is summarised. A 

summary of and conclusions arising from the results are presented at the end of the 

chapter.

2 .2  REVIEW OF THE METHODS

2 . 2 . 1  HYDRODYNAMIC FORCES

The hydrodynamic forces to which an offshore structure is subject are the result of 

various physical mechanisms. They can linearly be decomposed into the following 

components:

1) Froude-Krylov force : This force is due to the hydrodynamic pressure 

change below the surface of a wave train while the wave is proceeding. It is assumed that 

the presence of the structure does not interfere with the flow field. The Froude-Krylov 

force can be calculated from the dynamic pressure which is derived from the incident 

wave potential.

2) Diffraction force: If the interaction between the structure and the waves is 

taken into account, (assuming that the structure is motionless) the potential called 

scattering wave potential must be added to the incident wave potential within the limits of 

linear theory.

3) Radiation force: The radiation potential resulting from the oscillation of the 

structure in calm water gives rise to the radiation force (or motion induced force). This
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must also be added to those described above with the linear theory assumption.

4) Drag force: The force in-line with the velocity which is proportional to the 

square of the velocity due to the separation of the boundary layer.

5) Lift force: Lift force is generated when two separation points behind the 

cylinder are not symmetrical about the direction of wave particle velocity or if the vortex 

shedding is in non-symmetrical order. Lift forces act on the structure transversely to the 

velocity direction.

6) Other forces: The wave forces are non-linear in nature. Those described in 

1-2-3 are linear and first order. There are also forces of second or higher order which 

could induce significant motions of some platform configurations. For example 

compliant platforms (i.e. tension leg, articulated tower and SALM systems) could 

experience large motions due to the second-order forces.

2 . 2 . 2  E V A L U A T I O N  OF W A V E  F O R C E S  ON C Y L IN D E R S  BY  

MORISON EQUATION

WAVE

"KiiMNnr

Fig.2.1 Definition sketch for wave forces on small diameter cylinder 

(Chakrabarti,1987)
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The Morison equation was first proposed by Morison et al. (1950) where the 

authors described the horizontal wave forces acting on a vertical pile which extends from 

the sea-bed up to the free surface (Fig.2.1). Morison et al. (1950) suggested that one 

may superimpose the two flow regimes, which generate inertia and drag forces to obtain 

the total time-varying load per unit length of a cylinder which is stationary in a plane flow 

field with arbitrary free stream velocity u(t).

The interpretation of the inertia force is that in principle a water particle moving in a 

wave pattern creates a momentum due to its motion. The water particle acceleration 

changes as it passes around a circular cylinder. According to Newton’s law the change of 

the momentum with respect to time results in an excitation force acting on the cylinder. 

The inertia force acting on a segment (ds) of a cylinder can be expressed in terms of the 

wave particle acceleration at the centre of cross-section of a small diameter cylinder as 

follows:

d f M = C M p \ D 2 ^ d s  ( 2 1 )

where

dfM Inertia force on the segment ds of the vertical cylinder

D  Cylinder diameter

Local water particle acceleration at the centre line of the cylinder
at
C ,, Inertia coefficient

M

p  Water density

The wake region behind the cylinder gives rise to the drag force component. Since 

the pressure in the wake field is dropped compared to that in the region where the cylinder 

faces oncoming stream, a pressure differential is created in an instant. The change in the 

pressure causes drag or velocity force acting in the direction of the instantaneous water 

particle velocity. The drag force component in the Morison Equation is given in the 

following form:
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d fD =  -jCD p  D u\u  |d s (2.2)

where

dfD Drag force on the segment ds on the vertical cylinder 

u Instantaneous water particle velocity

CD Drag coefficient

coefficients for the drag force calculations in waves are not only the function of 
the Reynolds Number which changes throughout one wave cycle, but they are also

related to the inertia coefficients with the Keulegan-Carpenter Number which is defined as

uT/D. Therefore, the most accurate viscous force prediction in the waves could be

obtained from the experimental results with time averaging where flow is sinusoidally

oscillating or from real wave data. For the prediction of drag forces in waves, CD values

obtained from the steady flow results may be used, although the values of drag

coefficients in waves show similarity to the drag coefficients in steady flow, where CD

decreases considerably with Reynolds Number over the approximate range 104<Re<106.

It should be noted that special care must be taken if steady flow results are applied to sea-

wave flows due to the two main flow phenomena which do not exist neither in steady

flow nor in the sinusoidally oscillating flow:

i) The water particle motions are orbital,

ii) Irregularities of sea-waves.

If a member of the structure is relatively large with respect to the wave height, the 

viscous drag coefficient becomes less sensitive to Reynolds Number and steady flow 

results may be more suitable.

The drag force is proportional to the square of the flow particle velocity and in the 

case of an oscillatory flow the flow velocity is multiplied by the absolute value of the flow 

velocity to ensure that a correct sign will be assigned to the velocity force.
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When the characteristic dimensions of members of a structure are equal to 0.2 times 

the wave length or greater, wave force calculations should take into account the scattering 

potential. Wave force calculation on large arbitrary geometries utilising the 3-D sink- 

source distribution method is also described by several authors (see Hogben and 

Standing, 1974; Faltinsen and Michelsen 1974; Garrison 1978).

It was proved that wave forces due to water particle velocity and accelerations can 

be computed by Morison equation only, if the characteristic dimensions of the members 

of a structure do not exceed 0.2 times the wave length. Various flow regimes are 

summarised as follows (Hallam et al. 1978):

D!k>\ Conditions approximate to pure reflection

D/A>0.2 Diffraction increasingly important

D/A<0.2 Morison approach is valid

D/W>0.2 Inertia increasingly predominant

D/W<0.2 Drag predominant

Within Morison 

Equation

where

where

D

X

w

H

d

The diameter or width of the member 

The wave length

The orbit width of the water particle. 
H

tanh
(2.3)

the wave height 

the water depth.

Final form of the Morison equation is obtained by summing inertia and drag forces 

given in Eqs.(2.1-2.2).

dFT = C M p A s u d s  + j p C D D u  \u\ds (2.4)
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where

D Diameter of the member 

Cross section area 

duldt

Length of the member

u

L

or

(2.5)

2 . 2 . 3  REVIEW OF THE 2D SOURCE-SINK METHOD

In combination with the strip theory approach the 2D source-sink distribution 

technique was first introduced for the calculation of semi-submersible motions by Kim et 

al. (1973), as an alternative to the Morison equation. In this approach, a floating 

structure is divided into several elements (i.e. lower hulls, columns, bracings etc.) and 

each element is considered individually. The hydrodynamic interference between the 

members of the structure is neglected. A comparison of the approach proposed by Kim 

et al. (1973) with improved 2-D source-sink distribution technique as well as with 3-D 

source-sink distribution technique was given by Mathisen et al. (1980).

The forces calculated using the strip method given by Kim et al. (1973) take into 

account the free surface effect. The use of the strip method for twin-hulled semi- 

submersible is satisfactory for main hulls since their longitudinal dimensions in the 

direction normal to wave propagation are large compared to its other dimensions. 

However the use of this method for vertical column sections, bracings etc. is open to 

question since the strip theory rules are not satisfied for such members of the semi- 

submersible.

In this study the beamwise strip theory was utilised in combination with the 2D 

source-sink distribution technique which is known as Frank Close-Fit method as 

explained in detail by Atlar (1985 a). The Frank-Close Fit method will be applied to a
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semi-submersible platform geometry shown in Fig.2.2 to determine the wave and motion 

induced forces acting on the structure.

The method employs linearised potential theory. Evaluation of the wave exciting 

forces including wave diffraction requires the solution of a boundary value problem 

which is identical to the problem of an oscillating body in proximity to an initially calm 

free surface. The semi-submersible is split into many beamwise strips as shown in 

Fig.2.3 to calculate the motion (added mass and damping) and wave induced forces. The 

source and sinks (Green's Functions) which satisfy the various boundary conditions 

represent the velocity potential of the fluid at each location point around each strip. The 

fluid disturbance due to the body motions which is represented by the radiation potential 

is utilized to obtain the sectional motion-induced force (added mass and damping) 

coefficients. In order to obtain the sectional wave-induced (exciting) forces which 

consist of diffraction and the Froude-Krylov components, incident wave potential and 

diffraction potential are combined within the kinematic boundary condition.

In order to perform the sectional hydrodynamic force calculations for the semi- 

submersible model, two available computer programs, based on the Frank-Close Fit 

technique, BURAK for the motion induced coefficients and AYHANR for the wave 

induced forces were used, Atlar and Lai (1985 b). A numerical integration procedure 

were carried out to obtain total hydrodynamic loads acting on the structure. The motion 

equations were derived from Newton's second law. The inverse matrix technique is used 

to solve the coupled motion equations.

In this study the following points were highlighted:

i) The effects of hydrodynamic interference between the sectional hull and 

column forces,

ii) The effect of hydrodynamic coupling on the motion response,
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iii) The comparisons of the forces, moments and motion responses obtained from

the calculations based on the Morison equation and the 2D source-sink distribution 

technique.

2 . 2 . 4  F O R M U L A T I O N  OF H Y D R O D Y N A M I C  L O A D S  A ND  

D E R I V A T I O N  OF M O T I O N  E Q U A T I O N S  IN F R E Q U E N C Y  

DOM AIN

In this section, theoretical derivations for the calculations of wave exciting forces 

and moments acting on a twin hull semi-submersible are carried out by using Morison's 

Equation. The forces and resulting motions of the semi-submersible derived in this 

section include head and beam sea conditions.

The inertia force term given in Eq.(2.1) can be expressed in terms of pressure (Fp) 

and acceleration (FA) components as follows:

(2.6)

where

Fp = p  A s u L (2.7)

and

f a ~  P  a s u L (2 .8)

where

k'M Added mass coefficient

In the following, the derivation of vertical and horizontal forces and moments to 

predict heave, surge, roll and pitch mode of motions using the Morison approach will be 

summarised.



Derivation o f Vertical Forces for Head Sea Condition

Vertical forces on the hull: 

Pressure force: From Eq.(2.7)

1 /2  2 oFp = -  J p n  R h 0 . 5 co e kH cos (kx -  c o t ) d x
- l 12 (2.9)

where

Rh Radius of hull

H (0 Wave height

co Wave frequency

p  Water density

k Wave number

H  Distance between calm water level and centre of hull

Acceleration force: From Eq.(2.8)

1  12 2 Fa - ~  J kM p  ti Rh 0. 5H co e *** cos (kx -  cot )dx
- L I  2 (2.10)

Velocity (Drag) force: From Eq.(2.2)

Fy = -  J j C D p A L (0.5Hmco)2e
-L 12

sin (k x — co t )  |sin (k x -  co t )|dx  ^  11)

Total vertical force acting on the hull is written as a summation of the three 

components given above, in the following form:
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L / 2  2 
Fw  = -  j CM p  n R h 0.5/Z^e ~ kH cos {kx - c o t  )dx

- L  / 2

L / 2
+ yCp p Al  (0 .5/Z^G)) e ~2kH j  sin (&jc -  G)f) |sin (kx - c o t  )\dx

- L  / 2

(2 .12)

where

CM- / +

Vertical forces on the column, 

Pressure force:

FP = P d n R ?

or
2 — IcH

Fp = p g n R c O.SH^e c cos (Jcxc  - c o t )  (2 .1 3 )

where

Pd Dynamic pressure

Rc  Radius of column

xc  Horizontal distance between centre of column and the vertical

axis

Acceleration force:

f a  ~  m a v m  , v  u y

a 2 o
Fa = - j P Rc 0 . 5 H a co2e c cos (kxc - c o t )  (2 ^
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where

Mavm v Vertical added mass
4  n  3 j P Rc

given by Hooft (1972).

Velocity force:

Fy — yP K Rg Cp Uy JUy

1 2 2 -2£tf . ,
Fv  = p  k  Rc  (0 .5 Hq G) ) e c sin (kxQ -  co t ) sin (kxc  -  c o t)

(2.15)

Total vertical force acting on a column is written as

4 0 -  *//
Ftc  = p 0 .5  {g n  -r $ 0) ZRC )e c cos (kxc -  cot)

1 2 2 -  2fe// . .
-  p  n Rc  (0. 52//w 6)) e c sin (kxc -  cot ) sin Qcxc -  c o t)

(2.16)

The summation of F and F for each member of the semi-submersible is 
TH TC

carried out to calculate the total vertical force.

The motion equation to obtain heave displacements can be written as:

(m + a ) y ' + c y' + k y  = F cos cot (2.17)

where

m mass of the structure

a added mass of the structure

c damping coefficient

k stiffness coefficient
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If it is assumed that F is constant for a given frequency, the usual solution for a 

linear single degree of freedom system is

x = Y  ge ~ i m  (2 .18)

where

0 /     -^ ( k  -  (w + a)co ) + (cco )2\2 , s2
(2.19)

It is possible to write XQ in terms of frequency and damping ratio as follows: 

Y F / k ________

° "  J v - r 2 )2 + ( 7 r d ) 2 (2.20)

where

n  _  . k co„ = (m + a )

c

(2 .21)

(2.22)

(2.23)

(2.24)

where critical damping is

cc = 2 ^ (m  + a )  k

Derivation of Vertical Forces for Beam Sea Condition

The vertical forces for beam sea condition can be derived by following a similar 

procedure to that of the head sea condition.
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Total vertical force on the hull for beam sea condition can be written as follows:

= -  CM p  co 2x  0 . 5 /^  e ~ kH Lh c o s  (kxc - c o t )
1 2 + jC p  p  A L (0. 5 H .  co) e ~ 2kH Lh sin (kxc -  co t ) | sin (kxc -  c o t ) |

(2 .2 5 )

where

L„ Length of hull

Total vertical force on the column for beam sea condition can be written as:

4  9 2 ~  kH= p  0. 5 H.  (g n -  —co Rc )RC e c cos (kxQ - c o t )

i 2 -  2kH , ,
-  jC D p  A l (0 .5H .co ) e c sin (kxc -  co t ) |sin (kxQ - c o t )| 2 ^

Derivation of Horizontal Forces for Head Sea Condition

The total horizontal force on the hull can be written as follows:

= p  n r £  0 .5Ha g e ~ kH cos (kxc - c o t )

+ kM 0 .5Ha co2e ~ kH L H sin (k xc - c o t )

+ \ C D p  A l {0.5H.CO )2e ~'2kH cos {k xc  - c o t ) |cos (k xc  - c o t )| ^  ^  

where
, _ 4 3
M " TP k h (2.28)



Total horizontal force on the column can be written in the following form:

2 - 2 „
= CM p  n Rc 0 . 5 H .  g (1 -  e c )sm (k X c  -  c o t )

i 2 -  2kH  , ,
+ p  Rc ( 0 .5 H . ) g (1 - e c ) cos (kxc -  c o t ) cos (k xQ -  cot )\

(2.29)

The total horizontal wave forces on the structure is

F h  = F t h  + F t c  (2.30)

Derivation of the Horizontal Forces for Beam Sea Condition 

Total force on the hull for beam sea condition is given by the following equation:

= CM p  0 .5H a n r £  c o e ~ kH Lh sin (k xc  - c o t )

+ 1  P r h 00 ~ 2kH c o s (kxc -  co t )  | cos (k xc -  co t )|

(2.31)

Total force on the column for beam sea condition is as follows

_ _
= CM p i t  Rc 0 . 5Ha g ( l - e  c ) sin (kxc -  c o t )

i 2  ~ 2 kH , .
+ j C D p  Rc  (0.5 H . )  g ( 1 -  e c ) cos (k xc  -  cot )| cos (k xQ -  cot )|

(2.32)

The total horizontal forces acting on the structure become



Derivation o f  Pitching Moments

Moments acting on the hull:

Mt = -  p CM 0. SH^x R 2co 2e kH sin co t [ -  j -  cos k y  + -y sin k y] 
// ^

1 , ^ /A frr N2 _ OkH 8 f r  ̂ I  ̂ . 2 . ,
+ yp LCD (0. SH^CO ) £ 3̂ “{cos 60 t  [ “ F C0S  ̂T H-----2 sm £ 2"]

k

-  y  cos co t [ -  jj-  cos 3fc y  + —y  sin 3fc y  ]}
9k

+ { -  p  g H . x  R 2e kH sin k y  sin co t

— kM Ha co 2e kH cos k y  sin co t

+  y p  C p  ^ /? H2 (0. 5/Z ^G ) )2e 2kH [cos (k y  -  cot )  cos(k y -  G) t ) |

+ [cos (£ y  + G) f ) |cOS(k y  + G) t ) J  } / v
(2.34)

Moments acting on the column:

2 -M nMt = [ p  g 0 .5H .x  Rc e cos (Jc xc — co t )
c

a 3  -5 -  kH„
+ —p R c  0. 5H.co e c cos(kxc - c o t )

-  y p  A lQd (0.5H.co ) e sin (k xc —cot )|sin (k xQ -  cot )|]xc

+ CMp x R 2g 0 . 5 H (Osin(kxc -  cot )[(tfc  + ~)e -  y  ]

2 . I 1 1 .+ pC D/?c (0 . 5//^,) g cos(kxc -  co t )|cos(fcxc - c o t ) \ [ e  ( - j -  + ^y) -  4*-]
(2.35)
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Derivation o f Rolling Moments

Moments acting on the hull:

MT = [ -  CM p co 2x R 2 0.5Hm e kH LH cos(k xc - c o t )
H

+ CDp Rh (0.5H.CO )2e 2kHLH sin (k xQ - c o t )  |sin (kxc - co t  ) | Jx(

2 2+ [CM p O.SH^co x Rh Lh sin (k xc - c o t )

+ \CD p Rh (0.5H . co )2e ^  cos (k xc - c o t )  |cos (k xc -  co t )|] yc

(2.36)

Moments acting on the column:

2 -Mt = [p g x  Rc 0.5H.e c cos (k xQ - c o t )

4 3  -  *//
+ y p  Rc 0.5H .e  c cos(kxc -  cot)

1 2 2 - ,-  j-CD P x R c (0.5H.co ) e c sin {kxQ -  cot ) [sin (k xQ -  cot )|]*c

2   1 -  *//
+CM P 0.5H. x R^ g [ (1 -  e c )(OG - f )  + Hc e c ] sin (kxc -  cot)

+Cf l p « c (O.Sff^)2  ̂ [ y ( l - e  c>)(O G --jr) + y«c e ^ J c o s Qcxc - a > t )
(2.37)

where



K = L h /  2

yc =~k g - r h / 2

/ /c  Distance between calm water level and bottom of column

OG Distance of C.O.G from calm water level

2 .3  DEVELOPMENT OF COMPUTER PROGRAMS

In order to carry out wave force and motion response calculations for the semi- 

submersible geometry shown in Fig.2.2 a number of routines were developed as 

summarised in the following.

The program HEAVE calculates the total vertical force acting on the semi- 

submersible and solves the single degree of freedom system. The program SWAY 

calculates the horizontal hull, column and hull+column forces for beam sea condition. 

The program SURGE performs the horizontal force calculations in head sea condition. 

The program BEAM was written for the estimation of vertical forces and heave response 

for the beam sea condition. The program MORHP was written to calculate pitching 

moments. The coupled heave and pitch motion equations were solved by using the 

results from MORHP as input to the program HPCM. The program MORHR was 

developed for predicting wave induced roll moments. Results from the program 

MORHR are used as input to the program HPCM and coupled heave and roll motion 

equations were solved.

The same calculations were carried out by using 2D source-sink distribution 

technique in order to compare the two different methods. In utilising the programs based 

on the 2D source-sink distribution technique the semi-submersible was represented by 7 

typical sections. These sections were chosen so that 3 typical sections can represent each 

of inner and outer columns and one typical section can represent the main hull. One of 

the sections is shown in Fig.2.3. The co-ordinates of segments on each section were 

generated using the program BISCONT. Sectional added mass and damping values were 

calculated by running program BURAK. In order to calculate sectional wave-excitation 

forces AYHANR was run for the seven sections. Program PM was written to calculate
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total pitch moment of the semi-submersible. This program integrates the sectional wave- 

excitation forces and pitching moments along the length of the semi-submersible. 

Similarly program ADC integrates the sectional added mass and damping values. The 

coupled heave-pitch motion equations were solved in program HPC using the output data 

obtained from PM and ADC.

2 . 4 .  SUMMARY OF THE RESULTS OBTAINED USING  

M O R ISO N  E Q U A TIO N  AND 2D S O U R C E -SIN K  

DISTRIBUTION TECHNIQUE

In Figs.2.4-2.9 the variation of damping, added mass coefficients and wave 

exciting forces with the wave frequency are presented. The results of the study to 

investigate the effect of interference between the hull and the column are shown by 

Figs.2.4-2.7.

Figs.2.10-2.11 show the variation of total damping, and added mass values which 

were obtained by the integration of the sectional values over the length of the semi- 

submersible.

As shown in Fig.2.4 the variation of added mass coefficients of typical sections 

taken from the column members with different aspect ratios for the heave mode of motion 

has a significant decrease of up to 3 rad/s. The added mass values become constant in the 

range of high frequencies. However, added mass coefficients for the submerged hull 

show a constant trend for the whole range of frequencies. The effect of the free surface 

tends to be more significant on the surface piercing column members in the lower 

frequencies.

Variation of damping force coefficients shown in Fig.2.5 has a peak at about 2 

rad/s for the surface piercing sections whereas the peak for the submerged hull section 

appears to be at a frequency of 7 rad/s. There is a large difference of magnitude in 

damping values of the most slender (i.e. min H/R) and of the most bluff section 

(i.e. max H/R) up to 8 rad/s. Damping coefficients for the submerged hull section are

31



almost constant up to 2 rad/s.

In order to study the importance of the hydrodynamic interaction between the hull 

and columns, Figs.2.4-2.6 which show added mass and damping values being obtained 

with and without interaction are presented. Comparison of Fig.2.4 and Fig.2.6 reveals 

that the effect of interaction between the hull and the column is to increase the added mass 

values particularly in the high frequency range.

In Fig.2.7 variation of damping force coefficients with frequency without the 

interaction effect being taken into account between hull and column sections is shown. 

Comparisons between Fig.2.7 and Fig.2.5 shows that there is on average a 25% increase 

in the maximum damping forces for the sections with different aspect ratios at 2 rad/s if 

the interaction effects are not taken into account.

Variation of sectional wave forces with frequency for head sea condition is given in 

Fig.2.8. The sectional column forces have a minimum of between 6 and 10 rad/s and 

when the columns become larger in diameter, wave forces increase. In Fig.2.9 variation 

of wave forces is given for beam sea condition. The difference between Fig.2.8 and 

Fig.2.9 is that the wave forces acting on the hull are at a minimum at about 6 rad/s for the 

beam sea condition.

The total added mass values of the semi-submersible with and without the 

interaction effects being taken into account are compared in Fig.2.10. The total added 

mass values increase by about 20% if the interaction between the hull and columns is not 

taken into account. Similarly the total damping forces on the structure are compared in 

Fig.2.11. The interaction between the members appears to have no effect on total 

damping forces below the frequency of 2 rad/s. However, the difference between the 

two cases increases as the wave frequencies increase. The maximum difference is about 

33% and occurs at a frequency of 6 rad/s.

The variation of the vertical hull and column forces (calculated using the Morison 

equation) with frequency in the beam sea condition is shown in Fig.2.12. Fig.2.13
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shows the heave response of the semi-submersible in the beam sea condition. As can be 

seen from Fig. 2.13 the magnitude of damping ratio affects the motion response 

significantly in the region of the natural frequency.

Fig.2.14 shows the horizontal hull and column forces for the head sea condition. 

The vertical "hull and column forces for the head sea condition are shown in Fig.2.15. 

Fig. 2.16 shows the heave response of the semi-submersible. The effect of damping in 

heave response in head seas is illustrated in Fig.2.16. The total sway forces as well as 

hull and column force components are shown in Fig.2.17.

The total vertical forces in head seas calculated using the Morison approach and 2D 

source-sink method are compared in Fig.2.18. As can be seen in Fig. 2.18 the two 

methods correlate very well except for the frequency range below 2 rad/s. This can be 

attributed to large discrepancy in sectional forces between the column sections with 

different aspect ratios as shown in Fig.2.8.

Pitching moments obtained from the Morison approach and 2-D source-sink 

distribution method are compared in Fig.2.19. Since with Morison approach the pitching 

moments due to the surge forces can be calculated and 2D source-sink distribution 

technique does not have the facility to incorporate the surge forces, a significant 

difference arises between the results of the two methods as illustrated in Fig.2.20.

Coupled heave and pitch motions as well as coupled heave and roll motion response 

values obtained from both methods are shown in Fig.2.21-2.24.
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Fig.2.3.Segment distributions of the typical cross-section of the semi-submersible
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CHAPTER 3

A GENERAL METHOD TO CALCULATE HYDRODYNAMIC LOADING
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3 .1  INTRODUCTION

In this chapter the derivation of a general method to calculate wave forces on the 

cylindrical members of offshore structures is presented. By means of the developed 

method one can calculate the wave loading on cylindrical members of fixed or floating 

offshore structures orientated randomly in waves. The method is based on the 

hydrodynamic theory and the calculation procedure summarised by Incecik (1982).

In the following sections, a general method for calculating wave forces and 

moments on circular cylinders is derived. This method will provide a basic tool for 

determining the wave forces and moments that a floating structure is subjected to as it 

experiences large amplitude oscillations in six degrees of freedom. In addition, in 

Chapter 4 the non-linear motion equations of the platform will be derived and solved by 

utilising these force and moment calculations.

The following force components will be taken into account in calculating the wave 

forces and moments. Detailed discussion on these force components has also been given 

in Section 2.2.1.

1) Dynamic Pressure Force (Froude-Krvlov Force): Dynamic Pressure Force is 

due to the hydrodynamic pressure change below the surface of a wave while the wave 

propagates. It is assumed that there is no interference between the flow field and the 

structure.

2) Acceleration Force: The presence of the structure (or its components) fixed 

relative to the waves gives rise to an acceleration force which is calculated as the product 

of the added virtual mass of the structure (or of its components) and the acceleration of 

the fluid particles. In order to calculate the wave acceleration forces on the ends of 

cylindrical members, an approach given by Hooft (1972) is used. Using this approach 

the acceleration forces are calculated by multiplying the acceleration of the water particles 

at the centre of top or bottom cross-sections of the cylinder by the added mass of a disk 

which has the same diameter as the cylinder in question. The method may be formulated
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as follows:

Fy = J  p R  3Uy

3) Drag Force: The drag force mainly results from the turbulent flow downstream 

of the body due to viscous effects which are significant when diameter/wave 

height<0.125 for circular cylinders.

The following basic philosophy which was given by Incecik (1982) is employed in 

the derivation of a general three dimensional method for wave loading calculations:

a) All the wave properties, i.e. dynamic pressure, velocity and acceleration of 

water particles which are defined in the fixed wave reference system are first 

transferred to the structure reference system (which moves relative to the 

wave reference system) and from the structure reference system to the 

member reference system (which is fixed relative to the structural reference 

system).

b) All force and moment calculations are carried out in the member reference 

system.

c) The results of the force and moment calculations are transferred back to the 

structure reference system and moments are summed along the principle axes 

of the structure reference system to obtain pitch, roll and yaw moments. 

Forces are transferred to the wave reference system and summed along the 

principle axes of the wave reference system to obtain heave, surge and sway 

forces.
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3 .2  D E R I V A T I O N  OF A G E N ER A L  M E T H O D  TO 

CALCULATE WAVE FORCES ON THE CIRCULAR  

C Y L I N D R I C A L  M E M B E R S  OF O F F S H O R E  

STRUCTURES

3 . 2 . 1  DEFINITION OF REFERENCE SYSTEMS

The wave properties, i.e. pressure,velocity and acceleration of water particles may 

be defined in the wave reference system (Oxyz).

ROLL = XYAV = X

PITCH = X
Initial Position | + 

of CG j -----

Fig.3.1 Co-ordinate system used in hydrodynamic force calculation

The structural global reference system (GXYZ) is chosen at the centre of gravity of 

a floating structure. (Auvw) are the reference axes for an individual member within the 

structure (see Fig.3.1).

3 . 2 . 2  CALCULATION OF WAVE FORCES

In order to calculate pressure,acceleration and velocity forces coordinates defined in 

the (Oxyz) system are transferred to the (GXYZ) system using the following 

transformation matrix:
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~x ' P n @12 y
>

1

" X  ' " * G  '

y = @ 21 @22 @2 3 r + ^ G
z

.  @31 @3 2 @ 3 3  _
_z

.  Z G .

where

X G , Yq and Z G are the vessel's C.O.G at initial position.

P xl ~ cos X 5 cos X 6 

P 12~ ~ cos sin X 6 
P 13= sin  X $

@21 = cos sin ^ 6 + sin X 5 cos X 6 sin X 4 

P22 = cos % 6 cos X  4 -  sin X  4 sin X 5 sin X 6 
P23 = -  sin X 4 cos X 5 

P31 = sin X 4 sin X 6 -  cos X 4 sin X 5 cos X 6 

P32 = sin X 4 cos X 6 + cos X 4 sin X 5 sin X 6

@33 ~  c o s  ^ 4  c o s  ^  5 (3.2)

Using the transformation Eqs.(3.1), the wave particle velocity, acceleration and 

pressure equations, by referring to the structure reference system can be written as 

follows:

Horizontal Wave Particle Velocity

^  * ^ 21*  + P J  + ^ 2 3 z  + Y g )u ,  = 0 . 5Hw co e 2 f 22 23 g
x ,(s ) w

cos [£ (Pl7X +j5jjr + ^ 13Z + X G ) - o r ] (3.3)

where

2
& Wave number given by ~

0) Angular wave frequency
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uy i s )  = 0.5H w coe " 21 "22 *

u , = -  0 .5 Hw co e
y , ( s )  w

(3.4)

Ha Wave height ,

Subscript (s ) denotes structure reference system.

Vertical Wave Particle Velocity

+ +r0 )

sin l k ( P n X + p j  + P n Z + X G ) - c o t )

Horizontal Wave Particle Acceleration

sin [ k ( Pn X + P J  + P l3Z + X G ) - ( 0 f [  (35)

Vertical Wave Particle Acceleration

2e * ( V + ',2 z + v + v

cos Ik CjSirSf + p j  + P n Z + X a ) - m t  ] (3 6)

Dynamic Pressure

K e r r  *^2,* + $ r ?  + ? 21Z + YG 1
P ( m ) = ° - 5H« P 8 e

cos[A (Pl l ^  + P X̂  + X G ) -  w t ] q -j')

where

p Density of water 

g Gravity acceleration
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In order to carry out force and moment calculations on an individual member of the 

structure one has to transfer these wave particle velocity, acceleration and pressure 

equations, which have been written in the structure reference system, to the member 

reference system using the following matrix equation:

“ X ■ '  « n ^12 a i3
Y = a 21 «22 a 23

_ Z _ a 31 °32 a 33 _

r x ,  iU i

V + Y i
. w

_ z i _ (3.8)

where

a  The cosine of the angle between X and u
11

a  : The cosine of the angle between X  and v
12

a  : The cosine of the angle between X  and w
13

a  The cosine of the angle between Y and u
21

a  : The cosine of the angle between Y and v
22

a  : The cosine of the angle between Y and w
23

a  : The cosine of the angle between Z and u
31

a  : The cosine of the angle between Z and v
32

a  : The cosine of the angle between Z and w
33

The direction cosines are calculated by following the procedure described by 

Incecik (1982). The relationships between the direction cosines and the unit vectors are 

given in the following:

a \  i  “  i *  e \  a \ 2 ~  *• e 2  ° 1 3 == l '  e 3

°t21 =  J  e 1 <X2 2 = J  e 2 a 2 3 = j ’ e 3

ai l = k . e l CLl 2 ~ ^ ' e 2 a 3 3 ~ ^ ' e 3 (3.9)
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3 . 2 . 3  CALCULATION OF PRESSURE FORCES

The dynamic pressure change with depth below the surface of a wave in the

structural reference system is given in Eq.(3.7). This equation can be transformed to the

member reference system, using matrix Eq.(3.8) to calculate the dynamic wave pressure 

forces acting on an individual member as follows:

p,  . = 0 .5 Hw p g e kB cos (k A - c o t )
( ) (3.10)

where

a =pux +£12r +p13z  +xG

B = P n X + / 3 J  + p 23Z + Y g ( 3 n )

The total pressure force in a member's reference system can be determined using 

the following integration equation

v

Fig.3.2 Pressure definition on circular cylinder 

/ 2n
FP.  . , f J { p ( sR cos 0 d Q d u e o + p ( ,R sin 8 d6 du e

u = 0 9 =  0 { m)  { m)

(3.12)
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where subscript m indicates member reference system 

Since

dS = RdOdu  (3.13)

n : unit normal vector to surface (positive outwards)

= cosOe + sinOe (3 14)
2 3 v '

FP may be written as follows: 
i/m)

FPi.(.m)= ~ j P (  m)ndS
S (3.15)

Using the divergence theorem of Gauss, the surface integral form of FP can
i,(m)

be converted to a volume integral:

FPi , ( m ) = - l P ( m ) n d S  = ~ M V P(»,)dV
5 V  (3.16)

where V is the volume bounded by a closed surface S and

V = — e + —  e + 4 — ed u  l d v  2 dw  3 (3.17)

The pressure force components along the w and v axes can be written in the form 

of a volume integral as follows

FFwi ~  )dV e 3..(») y  (3 !  8)

or

FPW = -  5HW p g e  kB cos (k A -  co t )]dV e
iXm) v  (3>19)

65



Since dV-  r dO dr du 

v= rcos8  

w= r sin 8 (3.20)

The following equation can be written from the transformation matrix Eq.(3.8):

X = a 1 jM + « 12(r cos 0 ) + a 13(r sin 6 ) + X 

Y = a 21u + a 22(r cos 6 ) + « 23(r sin 0 ) + Y 1 

z  = a 31u + a 32(r cos 6 ) + a 33(r sin 0 ) + Z l

Since fcv«l and k w « l  in the case of small diameter cylinders (D/X<0.2) the 

terms involving kv and kw can be neglected and therefore further simplifications can be 

made in Eq.(3.19).

/  R 2x
FPW = -  0 .5HW m 2 J |  I P  e kB cos(k A - c o t )

‘ >(m) « = 0 r  = 0 0  = 0

-  D e kB sin(k A -  co t )]r d6 dr du e 3

(3.22)

where

^  = ^2ia i3 + ^22a 23'f  ^23a 33

D ~ ^lia i3 + ^12a 23 + ^l3a 33 (3.23)

Having carried out the integrations with respect to r and 0 in Eq.(3.22), the 

pressure force in w direction can be written in the following form:

/
FPW = -  0 .5Hw p  CD 2k R  j IP e kE cos (k F -  co t )

»'.(«) u = 0
- D  e kE sin(k F -  co t ) ] d u  e 3

(3.24)

66



where

E = P 21(a1p  + X j  ) + P 22(pc2lu + r i ) + ^ 23(a31M + Z 1) + Y C 

£  = p u <(X1ji + X  x) + P 12(fx2p  + Y  j) + P 13(a31u + Z 1) + X G (3 25)

Similarly, the pressure force along the v direction can be obtained as follows:

FP d V e 2
,,(m) v (3.26)

FPV = -  5Hw p  g e kB cos (k A -  co t )]dV e 2
i,(m) v  (3.27)

l  R 2 k

FPV = -  0 .5 Hw p co2 j  J j e kB cos (k A -  co t )
1 ’(m) u = Or = 09 = 0

-  H e kB sin (fc A — co t ) ] r  dO dr du e 2

(3.28)

where

G — p2ia i 2+ ^22a 22+ ^23a 32

H = ^ lia i2 + ^12a 22+ ^1^32 (3.29)

Similarly, the pressure force in v direction can be written in the following form:

/
FPW = -  0 .5 Hy, p  co 2k R J |G e k E cos {k F -  co t )

« .(«) u = 0

- H  e kE s in (k F - c o t ) V u e 2

(3.30)
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The pressure forces at the bottom and at the top of a cylindrical member can be

written as follows:

R 2n
=  J J

r = o e = o ' (m) ( 3 . 3 1 )

Since the dynamic pressure change may be assumed to be constant across the 

diameter of the cylindrical member, Eq.(3.31) can take the following form

FPU = 0 .5 Hw p  g it R 2e kB cos (kA -  co t )
i , ( m  )

Pressure force on the bottom of a cylindrical member:

F P U =0, ( m )  = 0 -5H» P 8 k R  * * 7 cos (k J  ~ C 0 t ) e 1

where

/ = p21x l + p22Y1+p23z 1 + YG

j  = p u x l + p l j l + p l3z 1+ x G

Similarly, the pressure force at the top end of the cylindrical member will be:

F P U =i , ( m) ==~ ° ' 5H” P 8 K R 2e kK cos (* L -  CO t )e 1

where

K = 2̂1̂ 11̂  X 1 ̂  2̂2 2̂1̂   ̂1 ̂  2̂3 ̂ 31̂  Z1 

L = P n (an i + x  i) + P n & i J  + Y 0  + + z 0  + x g

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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When the total pressure force acting on a member in the member and structure 

reference systems are written the following equations are obtained:

FP; (m \ = FPW e ~ + F P v e 0 + (FP n -  FP . ) e ,
'•(”■) V e o  3 vi,<»> 2 “ = 0 / .u )  1 (3 .37)

FP  , , = (FP. , i  )/ +(FP. , J  ) j  + (FP. , Jfc )k
i , ( s ) v i , ( m J  v  I , ( m y  J J  v i , (m ) ( 3 .38)

Using the direction cosines the pressure equation given above can also be written in 

the following form:

FPi,(s) = F̂Pw i (m)a i3 + FPv (m)a i2 +(^ >« =0. , ~ FP“ =1. ? a iI-*1*1 >\m ) t ) i ,(m ) t ,(m )
* I- — I I.Illl f  I III _ l l .  ^

surge force com ponent 

+ F̂ P w i <m {*23 + FFv a 22 + ^ i t  =0 “  FFu = /. ) a 21^*
‘ > 1 / i ,{m  )  i , ( m  )

* ■" ■"  ■ ■■■ - » -  ■ " ■ •

heave force com ponent

+ F̂Pyvi {m? 33 + F P v a 32 +  = ° .  ~ F P u = / .  ^ a 3 1 ^
* - vm   ̂ 1 A m  ) i , ( m  )  » , ( m  )

*  — ■ -r   — —  —■ ■ — «
w a j  force com ponent

(3.39)

The total force components are transferred to the fixed wave reference system to 

obtain heave, surge and sway force components with the following equation:

) =  ( F P . M )'■ v ' +  <-F P . , ( * ) ■ > ' V ' +  < r p i , ( s ) k  * (3.40)

or
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FF [FP, oc. 3 +  FPV
i .(« ) 15 II O : , (m )

1

K II

.("» )
[f p m I O' + FPV

.(« ) 15 i . ( - “ 2 2  + F P  nv u = 0 i . ( «  )
-FF .W = /i .("« )

[F P ,
I

(x33 + FPV
.(m) i . < m “ 3 2  +

(FP .
v w =  0

1 ,l> )
- F P  .u = l i

>
.(« )

)oc0AP21^12 surge

+  F̂ P y V i  ( «  f 1 3  +  F P y i ( m ? 1 2  +  ^FF>U =  0  F P U =  I ^a i  1 ^ 2 11 ‘ i , ( m  ) i , ( m )

+ [FPwi ,<„ “ 23 + .<„ ,“ 22 + ^ Pu =0. (m j

+  ^ N  +  ^  ,(„  « 3 2  +  = 0 ,  ’ _ ,, ) « 3 I *  23

PPu = l  )a 21^22
x , ( m  ) heave

+ [FFW a  + FFV a  + (FF
« ,(m) ^  i ,(«) 51 u -V;  >(w)

.(« )
-  FFu = Ii ,(m )

.("> )
- F P u = Ii , (m )

.(« )
- F P u = /

)0^21^32

)«3ll^33

► sway

(3.41)

3 . 2 . 4  THE CALCULATION OF ACCELERATION FORCES

The horizontal and vertical components of wave particle acceleration in the structure 

reference system have been given in Eqs.(3.5-6) in the following form:

2  k ^ 2iX  + ^ 23z  + y g ) 
u x ( s ) ~  co e 21 22 23 G

sin [ k ( p n X + p j  + p 13Z + X G ) - c o t  ]

2  k ( P  X  + 0 Y  + B Z  + Y )
u . = -  0 .5 Hw co e 2f 22 23 Gy As) w

cos [ k ( p ^  + p j  + p 13Z + X G ) - c o t ]

Assuming that the change of wave particle accelerations across the diameter of a 

cylinder can be neglected for small diameter cylinders, the following equations are 

obtained for the acceleration components in the member reference system:
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u‘ \ =0- co 2e k E sin (k F -  co t )
(3.42)

u v /m \ = 0- 5 Hw co2e kE cos (k F -  c o t )
(3.43)

The above expressions have been written in the member reference system but they 

are along lines which are parallel to the wave propagation. If one resolves them along the 

structure reference system's axes the following equations are obtained

UX  X m  ) =  U 'x ,(m ) C0^ X ’ X  ) C0S(*  • *  )  =  011

12

4 , ( m  ) =  u 'y .(«  ) COS(^ ■ y  ) COS^  - 7  ) =  022

“z ,(m ) = “*,(m ) C0S(* > Z > C0S^  ' Z > =013

“z .(« ) = “ ' , , ( » ) cos ^  ’ Z > cos ( y , Z ) = f i 23 (3 44)

Now one can write the wave acceleration forces in the member reference system 

along the w and v axes

F A w i l s s >+ >}cos ( w ’ x  )dV

+ fl! ( < ,  (m J + (m}) cos(w , Y )dV 

+ W (“z ,(m)+ “z .(m)>COS(M'>Z 1*3
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Substituting &jj=1 (since the acceleration force is calculated along the w axis on 

circular cylinders), the values of u’x (m y Uy >(m y u'z  ,(m) from Eq.(3.44) and 

2dV —n R  du into Eq.(3.45) the wave acceleration force becomes:

2 'FAW = p 7r R j [fa' M. .  + u ,
i,(rn) _ L 11 y , ( , m T 2 Y  13u = 0

+  &x, (m ) P l 2  + U y ,(m ) P 22̂ 23

+ ^ x , ( m  )̂ 13 + Uy ,(m 23^33^“ *3 (3.46)

If u'x n̂  ̂ and u'y n̂  ̂ given in Eqs.(3.42-43) are substituted in Eq.(3.46), the 

wave acceleration force on the circular cylindrical member along the w axis can also be 

written as:

FA„ = p n  R 2 0 . 5 H „ o> 2
i  , ( m  )

/
j e kE {[sin(£F  -  cot )PU ~ cos(kF - c o t ) p 21] a 13 

« =o

+ [sin(£F  -  cot )P12-  cos (Jc F -  cot )P12} <X22>

+ [sin QcF -  cot ) p 13- c o s  (Jc F -  cot ) p 23] a 33) d u e  3
(3.47)

A similar expression to that in Eq.(3.45) can be written to obtain FAV _ .̂

FAfU my=  *22^ [ ^ ( “x ,<m)+ ^ ( « ) > C0S(V > X )dV

+  / / / 0 v . f r ,  , +  < « . ) ) “ * ( v . n * v  

+ W (« z ,(m )+ MZ.(m))C0S(V> Z ) d V  ] e 2 (3.48)
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Substituting fcjj=l (since the acceleration force is calculated along the w axis on

circular cylinders), the values of u 'x  Am y^Y Am )'u 'z ,{m ) from Eq*(3.44) and 
2dV —%R  du into Eq.(3.48) the wave acceleration force along v direction becomes:

+  ) P \ 2 +  U y ,(m ) $ 2 2 ^ 2 2

+  & x , ( m  ) ^ 1 3 +  U y Am 2 3 ^ 3 2 ^  e (3.49)

If u'x n̂ j and u'y ^^  given in Eqs.(3.42-43) are substituted in Eq.(3.49) the 

wave acceleration force on the circular cylindrical member along the v axis can also be 

written as:

T k ,  = p x  R 20 . 5 Hw o> 2
i , ( m  )

I
j e kE {[sin(£F -  cot )PU ~ cos(kF -  co t )P2^ a \ 2

u = 0

+ [sin (kF -  cot cos(k F -  cot )p22](X22

+ [sin (IcF -  cot ) p 13 -  cos(k F -  cot )P23\ a 32)due 2

(3.50)

Finally the acceleration forces on the end surfaces of a cylindrical member can be 

calculated as follows:

_o -  m j j[ {ux (m ) + ux ( m  )) cos (« , X )
i A m  )

+  (U? . ( m )  +  UY>, ( m) ' >C 0 S ( U ’ ¥  )

jc ,y
+ (w7 , , + u 7 . Jcos(m , Z )]e . 

v Z Am ) Z A m y  v (3 .51)
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^ ux, (m ) an(* uy ,(m ) are reP̂ aced with Eqs.(3.42-43) respectively, Eq.(3.51) 

takes the following form:

FAu = o  = k 22O.5Hw c02e k >
i  , ( m  )

{ [p11sin (Jc J  -  co t ) -  p 2l cos(& J -  co t ) ] « n  

+ [p12sin(k J -  co t ) -  P 22cos(k J - c o t ) ] a 21 

+ [P13 sin (k J -  co t ) - p 23cos(k J - ( o t ) ] a 3 l ) e l

FAu =l = k 220.5Hw co2e kK
i ,(m )

{ [ p l l sin(k L -  co t ) -  p 21cos(k L -  c o t ) ] a n  

+ [p12 sin (k L - c o t )  -  p 22cos(k L -  co t ) ] « 2i 

+ [p13 sin (k L - c o t )  -  p 23cos(k L -  co t ) ] a 31)e x

where

(3.52)

(3.53)

k 22 = j p R 3 (3.54)

3 . 2 . 5  THE CALCULATION OF VELOCITY FORCES

As with the acceleration force calculations, if one neglects the velocity variation 

along the diameter of the cylinder, and assuming that wave particles move along the 

diameter of the cylinder with a velocity equal to that at the centre of the cylinder cross- 

section, the following equations can be written to calculate the velocity forces.

The horizontal and vertical components of the wave particle velocity given in the 

structure reference system by Eqs.(3.3-4) can be transferred into the member reference
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system as follows:

ux (m ) = coe kE cos (k F -  co t )

uy (m ) = 0- co e k E sin (k F -  co t )

(3.55)

(3.56)

The above expressions for the water particle velocity are written in the member 

reference system but they are parallel to the direction of wave propagation. If one 

resolves them along lines which are parallel to the structure reference system's axes the 

following equations are obtained:

UX  , (m )  =  “ x , ( m ) c 0 s ( * ’ *  )  C OS(X , X  ) = /?,,

UX  ,(m ) = , (m  ) X  > COS ( y  , X  ) = P 21

Uy* (m , = ux (m J cos(x , Y ) co s(x , Y ) = p 12

22

“ z  , ( *  )  =  “ * . ( »  )  C 0 S ( X  ’ Z  C 0 S ( X  ’ Z ) = P l 3

Now one can obtain the velocity forces in the member reference system along the 

w and v axes:

75



F V w i .<« ) 2 p C D D  J ^ ^ UX  , { m ) +  UX  ,(m ) )  C0S ^  ’ X  )

+  ÛY , ( m ) JrUY , (m p C0S (w > ^  )

+  M̂Z , (m ) +  UZ , (m )) cos (w » ^  ) ]

^ ( UX  , (m ) +  UX  ,(m ) )  C0S ’ ^  )

+  ^  ,(m ) +  ,(m P  C° S ^  ^

+ ŴZ , (m ) + MZ , (m )) C0S » Z ) ] I du e 3 ^  ^

where

CD Drag coefficient

D Diameter of the members

or substituting Eq.(3.57) into Eq.(3.58) the drag force along w axes on each member 

may also be written as follows

FVw = T c d P d  (0.5Hw co)2
i , ( m  )  "

I
j e 2kE {[cos(kF -  cot )/?n  + sin (kF -  cot )/?21] # 13 

u = o

+ [cos (kF -  cot )P12 + sin (k F -  cot ) p 22) a 23

+ [cos(kF -  co t ) p 13 + sin (k F -  cot ) p 23] a 33}

l{[cos(feF -  cot ) p xl+s in (k F - c o t ) p 2^ a l3

+ [cos(£F -  co t )P12 + sin (k F -  cot ) P22\ a 23

+ [cos (kF -  cot )P13 + sin (k F -  cot ) p 23\ a 33}\du e 3

(3.59)
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Similarly the velocity force along the v axis will be 

F v\  .(„ , = CD D u [  0[ {UX . (» ) + UX ,(m )) COS ^ X )

+  ( V , ( m ) + < ( m ) ) C0S(V * }' )

+ (“z ,(m ) + “z ,(m ))cos(v )]

.(m ) + “ x ,(m ) )C0S<V » X  )

+  (“r ,(m ) +  “z ,(m ) ) c o s (v • ^  )

+ (“zI ,(«) + “z,(m))cos(v >z  )!■ d u e 2  (360)

By substituting Eq.(3.57) into Eq.(3.60) the drag force along v axes on each 

member may also be written as follows:

FVv = ? p C n D (0.5Hwco)2
i ,(m ) u

I
/  e 2kE {[cos (kF -  cot )PXI + sin (kF -  cot )p2]\ a 12

u =o

+ [cos(kF -  co t )Pl2+ sin (k F -  cot )p22\tx22

+ [cos {kF -  cot ) p 13 + sin (k F -  cot )p23] a 32)

l{[cos(£F -  cot )PU + sin (kF -  cot )P2]\ocl2

+ [cos (kF -  cot )Pl2+ sin (k F -  cot )p22\ a 22

+ [cos(£F -  cot )P13 + sin {kF -  cot )p23] a 32}\du e 2

(3.61)
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3 .2 .6  CALCULATION OF CURRENT FORCES

Currents have a velocity profile which decays very slowly with depth if a pure tidal 

current arises from the propagation of very long tidal waves. In such a wave, the water 

particle motion is nearly horizontal and the decay with depth may be given by a factor of 

exp(ky) where the wave number k-2nlX and, y  is the negative downward. For long 

waves k is very small, thus the decay is very slow. Therefore, the current can be 

expected to have an influence over the whole immersed part of the structure.

Brebbia and Walker (1979) reported that the presence of the current implies four 

main effects in the force calculation as follows:

i) The water particle velocities of the surface waves are affected by the current. 

A moderately small current may have a significant effect because the drag 

force is proportional the square of the velocity.

ii) Some modification may also be necessary to the surface field. For example, 

surface wave amplitude may be changed and wave steepening may occur as 

given by Longuet-Higgins and Stewart, (1961). The velocity of propagation 

and length of the waves can be altered. Taylor (1955) showed that a 

potentially dangerous concentration of wave energy may be cancelled due to 

currents which can stop the waves. Waves travelling obliquely over a current 

will also be refracted (Muir Wood (1969)).

iii) A current acting on a fixed body gives a rise to a standing wave pattern behind 

the body which is analogous to the waves generated by a ship travelling in 

calm water. Methods using Green's function are available to solve for this 

type of problems but they are very complex and the effort required for the 

calculation would not be justified except for large diameter members.

iv) Vortex shedding is the fourth effect of a current for slender members. A lift 

force perpendicular to the current direction is created due to vortex shedding.
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The equations for velocity forces given in Section 3.2.5. are modified to take into 

account the effect of steady current forces. The current is assumed to have a constant 

velocity with depth. In the calculation procedure only the first two effects mentioned 

above are taken into account. However, no modification is made to the surface wave 

amplitude.

Wave Modification

In order to calculate the current forces, wave modifications given by Brebbia and 

Walker (1979) are adopted in the drag force calculations. When the current velocity is 

incorporated into the water particle velocity equation, only the component of water particle 

velocity in the wave propagation direction is assumed to be effected.

Stationary Moving

Ut

Uniform current V,

WX.A.W A \y  AWAVV A \V  ASX
(a)

Wavenumber vector «'
Wavenumber vector k Celerity c"

Celerity e

(cl

Fig.3.3 Wave modification a) coordinate systems; b) wave crest; c) wave and 

current speeds (Brebbia and Walker, 1979)



The dispersion relation in the moving coordinate system k = g>' /  g is given in 

the following form:

Modified wave frequency can be expressed after some manipulations to the equation 

above as follows:

co' — CD — V c k 
= co -  Vc k cos a

or the above equation can be written in terms of the x component of the current velocity

CD' =  CD - k V x

If similar manipulations are done to Eq.(3.62), the following expression is 

obtained:

k'  = 4-(0) -  kVx )2

In order to include the effect of current forces in the drag force calculations, the 

component of the current in the wave propagation direction is added to the water particle 

velocity expression in the member reference system which is given in Chapter 3, 

Eq.(3.55).

ux (m ) = 0 • 5Hw C De k E  cos(k F -  CD t ) +  Vx

Hence, the velocity force in direction w given in Chapter 3 may be re-written in 

terms of both wave and current velocity:
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+ ) + V* ^ 1 2 + U y,(m ^22^a 23

+ [*ttx,(m) + Vx ^13 + “ j,(m )^23^ * 33)

| { [^ ,(m )  + V*)/Jl l+

+ ^ x ,(m ) + Vx ) ^ 2 + « > , (m) ^ 22] « 2 3 

+ t^x,(m ) + V* ^13 + Uy,(m)^23^ “ 33 ) e 3

Similarly the velocity force in direction v can be given as follows:

F ^ v i ,{rn) =  u _̂Q ^*,(« ) + ^ x ̂ 11+ Uy ,(m ) 2̂1̂ ai2

+  ^ x . ( m )  +  V * >^12+  * V  0 ^ 2 2 ^ 2 2 -  

+ ^jc,(m ) + ^13 + ,(m )^23^ ^32^

^ ^x,(m ) + Vx)P\ i  + Uy ,(m )p21^a i2

+  [ & x , ( m )  +  V x  ^ 1 2  +  U y , ( m  ) ^ 2 2 ^ a 22  

+ [^x,(m) + Vx ^13 + Uy , (m)p23^a 3 2 ^ du e 2

3 . 2 . 7  CALCULATION OF THE TOTAL WAVE FORCE

The total wave force which consists of the dynamic pressure force, acceleration 

force and velocity force can be written in the structure's reference system in the following 

form:
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FT • ( ) = I  [FTW a  +FTV a  2 +FT a  ]i
,K } i =1  *' .(«) 13 *,(m) 12 i , (m ) 11

surge/orce com ponent

m
+ Z [fT„ a  + FTv a 21 + FTu a 2. ] j

i =1  * .(« ) «.(m) ZZ i ,(m ) Zi

heave force com ponent

+ X [FTW a „  + FTv a , + FTu a -J fc
i = 1  / , ( « )  "  i . («)  ^  « , ( m )

*—  — ■ — u - ■ •
sway force com ponent (3.63)

When Eq.(3.63) is transferred to the wave reference system the following equation 

is obtained to calculate the total wave force acting on a floating structure.

F I V  r (FT^  '  + ^ r «  9 '  +<FT(s f
surge heave sway (3.64)

or the total force can be written in the wave reference system in the following form:

m

F T‘ ^  ) = ,-? i ( f .<» )“ 13 + FTv. .<» P 12 + jF7’“, <m 1] P 11
+ [FTW a 0^+ FTv cc77 + FTU a 7.] p . 2 \surge

» , ( m )  i , ( m  )'•V O nf23

+  ^ z , < ™  i® 33 +  ^ z  ®32 + ^ “z.(* >®3l] ^ 13 )J

+ ([Fr"'z,(»)a i3  + Frvz.(M®12 + /:T“z.(m)a i l] . ^21 

+ [^ w . a 23+ ^ v- .a 22+ ^ V  , 5*21-I P 22 >heave* .(« ) I ,(m ) I ,(m )

+ [^W. a 33+ ^ v - a 32 + ^ “. 5*31-^23i , (w ) < ,(w ) i > (/n j ^

+ tF7'wz.(»)a23 + F:rvz.(»)a 2 2 + F r “z.<m)a2l] ^ 32 i™ 0?

+ . .a 33+ ^v,. (m)a 32 + ^ « J. (m 5*31^33 ^  )j» ,(m ) * ,(m ) < ,(m ) fj

(3.65)
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where

FT1 w

FTV = FPV + F A , + FVv
i X<n ) i ,(m ) i ,(m ) i ,(« )

i , (m )
+ FA u = li ,(m ) (3.66)

The terms in the last expression in Eq.(3.66) are to be determined according to the 

ends of the cylindrical members exposed to the wave loading, i.e. if the member is inter­

costal these terms will vanish.

3 . 2 . 8  CALCULATION OF THE TOTAL WAVE MOMENT

If an individual member is considered in a member reference system, the moments 

due to the wave forces about the member reference system's origin, A, can be written as 

follows:

(3.67)

(3.68)

(3.69)

Eq.(3.67) becomes:
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I I
m A = “  I  Z r (F T» .  )m d u e .  +  j  z r ( F T v ) u  d u e

u = 0 i ,(m ) u = 0 i ,(m ) (3.70)

The total moment about the structure reference system's origin can easily be 

obtained by using the moment transformation rule as follows:

m G = m A + r  a (JFTw  e + FTV e 0 + FTu e .)
i i i , ( m)  i , {m) i ,(m ) (3.71)

where

r = GA = X xi + Y J  + Z^k (3.72)

and, e l and e 2 are defined in Eq.(3.9).

The total moment acting on the structure:

i =  1 (3.73)

The total moment vector can also be expressed in terms of principal components as 

follows:

M  = a i + b  j + c k  1   »  .   * '
ro ll m om ent y a w  m om ent p itchm om ent

If the second term of Eq.(3.71) is calculated as follows:

(3.74)

r a  F T  =

I j k

Z i

F 7 ’w i . < m )a i 3 F T w l .(„“ 23 f 7 'wi . ( - “ as
+ FTV

i , ( m «12 + FTV a „
i .(« )

+ FTV (X~~
i . («)

+ FTu
i , ( m “ ll + FTU a 2

i . ( m  ) Z 1
+ ETU a

i .(« ) 61 (3.75)
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Each component of the roll moment can be written as follows: 

Roll moment component:

a = 2  [ / - a xf T w )udu
I =  1  h  — 0  * * 'm  '  * >(m  )

+ F T u i im)Qr {*31

+ ^ v«,(m)^ f * 32

+ FTwi , (m )^  ia 33_ Z ia 23^

Y aw moment component:

b  -  51 [ 1 ^  ( « 2 3 f 7 ’v a 2 ' F T ” i (m)^
i  =  1 I t  =  0 * A *  ) » • ( " * )

+ F T «l .0ll) ^ f * l l " Z f f31)

+ FTV_ ^ @ { X l 2 ~ X p c 32)

+ FTW _ ^ ^ ^ 13- X ^ 33)] 

Pitch moment component:

+ , (in f*21 “  ^ 1 P

+ W », („>(Xia 2 2 - y ]a 12)

+ FT
I J

(3.76)

(3.77)

(3.78)
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CHAPTER 4 

MOTION RESPONSE SIMULATION
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4 .1  INTRODUCTION

In this chapter, hydrodynamic and restoring forces due to the motions of a floating 

structure composed of circular cylindrical members are discussed. A general method to 

calculate the hydrodynamic loading on the circular cylindrical members of offshore 

structures is derived. A general calculation procedure for rigid-body induced inertia 

forces are presented. The motion equations are obtained using Newton's second law and 

the numerical solution technique of non-linear motion equations is explained for intact and 

damaged cases. The computer program developed for the time-domain simulation is 

introduced.

4 .2  D E R IV A T IO N  OF A . G E N E R A L  M E T H O D  TO  

CALCULATE HYDRODYNAM IC LOADING ON THE  

CIRCULAR CYLINDRICAL MEMBERS OF OFFSHORE  

STRUCTURES

In this section, a general method is described to calculate the hydrodynamic loading 

due to the rigid body motions of a platform with circular cylindrical members. The 

general method used in deriving the formulations given in this section is based on the 

theory given by Incecik (1982). The hydrodynamic loading is calculated on each 

individual member of the structure in terms of the velocities and accelerations of the 

structure in its translational and rotational modes. The total hydrodynamic loading is 

obtained by summing up these forces along the members and then transferring them to 

the principal axes of the structure reference system (G,X,Y,Z). The velocities and the 

accelerations of the structure are determined from the numerical solutions of the motion 

equations in the time-domain.

During derivation of the equations, it is assumed that the centre of rotation is at the 

origin of the structure reference system of the floating platform. Therefore, velocity and 

acceleration at any point on an individual member can be defined in terms of the 

structure's velocities and accelerations in translational and in rotational modes as follows
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(see Fig.(4.1)).

Y*

Heave ^ X ^ Y ^ Z ,)

Ron

Pitch

Fig.4.1 Co-ordinate system used in hydrodynamic force calculation

The expressions of velocities and accelerations of a point on an individual member in 

this member's reference system will be as follows:

V*T = v sT +VS *R = v sr + v s * <r  +AC)
T , S T R T R (4.1)

where

UM Velocity of point C relative to structural reference
t  , s

system

U Q Translational velocity of point C relative to
T

member reference system,

U c Rotational or angular velocity of point C relative to
S R

member reference system 

In the following equation the Coriolis acceleration is neglected.
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U M  = U S + U S  A ^ S  A  / ?  )  +  U .  A  R
T  , S  T  _ R  R  J *

centripetal acceleration linear acceleration ( 4  2 )

where

or

UM Acceleration of point C relative to structural
T , S

reference system

Us Translational acceleration of point C relative to
T

member reference system 

Us Rotational or angular acceleration o f point C
R

relative to member reference system

U u  =  t / c + U „  A j l / C A ( r  + A C  )] + U~ a  (r + A C  )
T , S T R R R ( 4 3 )

where

U „ =  U . i + U 0 j  + U~ k
US) ^(5) °(S) (4.4)

U„ =  UA i + U ,  j  + U ,  k
*R \ s )  D(s) °(s) (4.5)

U\  =  U.  i + U-  j  + U 3 k
t  (s ) ( S )  ( S )  (4.6)

U.  = U .  i  +  U.  j  + u 6 k
s r  (s) 5(J) (S) (4.7)

A C  = u e . = u [ ( f . . i ) . i  + < e r j ) J  +  ( e , . * ) . * ]
1   - r — » «------   * '    *

“ 11 “ a “ 31 (4.8)
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A C  = uic^J + a 2lj  + a31k)
(4.9)

My is the transformation matrix to transfer the co-ordinates from (G,X,Y,Z) 

structure's reference system to (A,u,v,w) member's reference system. The second term in 

Eqs.(4.2-3) can be omitted since the centripetal acceleration of the structure due to the 

rigid body motion is of a small magnitude.

Eqs. (4.1-3) define vectors in the member reference system whose principal 

components are along lines parallel to the structure’s reference system. These velocity and 

acceleration vectors can also be written with reference to lines parallel to the member 

reference system's axes using the following transformation matrix:

UM = r f u M T , S (4.10)

UM = w f  U
T , M T , S (4.11)

where

u f  =
a il  a21 ° 3 1

a i 2  a 22  ° 3 2  

a i 3  a 23  ° 3 3 (4.12)

The UM U >UM vectors can be written explicitly with
T , M T ,MT , S  ' T , S

reference to the chosen axes system of a member. The rigid body velocities of the 

structure and the member co-ordinate u are as follows:

r = X xi + Y J  + Zxk

v M = u xi + U J  + u 3k +
T ,S

J
ut

k
U.

X j+  u a ll  Y j+  u a 2l Z 1+ u a 31

(4.13)

(4.14)
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UM s = \U1 + U 5( Z X+ ua31) -  U 6<y 1+ u a 21)]i

+ VJ 2 + U 6(X i + u a n ) ~  UA( Z 1 + ua3l) ] j  

+ \U3 + U 4(Y 1 + ua2l) - U 5(X 1 + u a 11) ]k

UM = + U 5(Zl + u a 31) -  U (Y + u a 21)]i
T ,S

+ \U2 + U 6QC j + u a x  ̂ -  U4(z 1 + w«31) ] j

+ \U3 + U4(K j  + w«21) -  £75(X j  + Man)]fc 

£7m = A ( ^ ) e 1 + 5 ( ^ ) e 2 + C(^)e3
T  , 5

where
A(u)  = A \ ( u ) a xl+ B\(u)oc21+ Cl(u)oc31 

B (u) = A l ( u ) a n + B l(w)022 + C l(w)a32 

C (w) = A1(w)«13+ B \{u)a23 + C l (u)a33

Al (u )  = Ux+ U5(ZX + ua3l) -  C/6(T1 + w«21) 

B \ ( u )  = U2 + C/gCXj + mo ĵ) -  £/4(Zj + ua^)

C 1 (w) = £/3 + wo^) -  U^(Xx + wo^)

Similarly,

l /M =A(M)e1 + 5 > ) e 2 + C > ) e 3
r ,5

where

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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A(u)  = A l ( u ) a xl+ Bl(u)oc2 l+ C l ( u ) a 3l

B (u ) = A1(m)«12+ 51  (u)a22 + C l(w)a.'32

C (u) = A l ( u ) a 13 + B \ { u ) cx23 + C \{u)a.'33 (4.21)

and

Al ( u)  = Ux+ U5(ZX + ua3l) -  U6(Y1 + m«21)

51 (w) = £/2 + U6(Xx + wan ) -  £/4(Zj + wa^) J.

C1(m) = t/3 + U4(Y1 + uo^j) -  U5(Xx + mo ĵ) (4.22)

The total hydrodynamic forces and moments on an individual member can be 

written in this member's reference system as follows:

F i , (m ) =  { [ a i £  (U ) +  b l £  to } I] K =0

+ [axfi ) + b xfi )\A (y. ) |]U =/ } e 1

+ J [fl22B*^ )+  b 2f  ty. )|B (y. )\]du e
u =o

+ J [a3f  )+  b 3f  (f/ )|C ty, )\]du e
u = 0 (4.23)

where

4 d 3 
an = 3 P R

°22 = ^

° 33  =  1

\ 1= i P ^ D ^ P  

^22= 2 P ^ D A P 

^33 = 2 P ^ D AP (4.24)
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a \v  a i v  a 33 Added mass coefficients in heave, surge and sway

modes respectively 

b j  v b 22, b 33 Damping force coefficients in heave, surge and

sway modes respectively

where

p Water density

Drag coefficient 

Ap Projection area of the member

R Radius of the member

/ Member length

/

M i ( m ) = f {*! A [(a22fl (?<)+fc22fl GO|8 ) |)e  
u =o

+ (a33C (y.) + b 33C (^)|C fy,)\)e 3]u du
(4.25)

The first component of the force vector given in Eq.(4.23) is to be determined 

according to the cylindrical member's ends exposed to wave loading, i.e. if the member is 

inter-costal this component will vanish.

The moment due to the hydrodynamic loading about the origin of the structure's 

reference system can be expressed as follows:

M . = M . + r  a  F.
l s  1m 1m  (4.26)

The total hydrodynamic forces and moments are calculated to obtain the principal 

components as follows:

F -  -  ( a t . + b j  + c k  . )

sur8e (4.27)
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M  = -OgjL + ^ /  + / *  )
roll yaw p itch (4.28)

where
m

a = . I 1[“ iiFi . ( + a i / 2 , ,  + « i / 3 1l = 1 * .(« ) * ,(m ) «,(»»)

m
b ~ H [Ol2f  1 + 0C2 'f  2 + a 23^3 ^

l =  1 * . ( » » )  i  , ( m  ) » , ( m  )

C . ^  + a 32^2 + CC3‘f  3 )1=1 * ,(«) « ,(m) » ,(m)

(4.29)

(4.30)

(4.31)

where

F 1 = [a 1]4'(M ) + &lf4 (j<)[4 ^ ) | ] u =Q+ [alf4 >  ) + &lf4 (j/ )|A )|]u =
*.(«)

(4.32)

l
F2 = J ) + ft22B )|B ^ )|]Jw

*•.(«) « = o (4.33)

/
F3 = J [a33c  ^ )  + &33c  40  |C 40|]dw

*■.(«) u = 0 (4.34)

Using Eqs.(4.25-26) the principal components of the hydrodynamic moment vector 

can be written as follows:

1
M.  = /  [(a2f  f y ) + b 2f i  fy)\B $1 )\)e3 ~ ( a 3f  fy) + b 3f  fy)\C <ii)\y>2]udu

u =0   --------------  *------------- * --------------------- --------------------- -
m 2 m 3

i ,(m ) 1 ,(m )

(4.35)
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where

rrt

d = l l a ^ 2 + Y f \ - Z i * ' ]J — 1 i ,(m ) i ,(m )

e =  S  [a23M2 - « 22W3 + Z lfl;. - X lC']
I = 1 * .(« ) i ,(m )

/ • = S [ a 33M 2 - a 32M3 + X ^ ; - y / , ' ]
1=1  * .(« ) *,(»*)

b i a i F  1 + a 22^2 + a 23^3* .("» ) * .(« ) » ,(m )

Ct a 2F\  + a 32^2 + a 33^3
i  , ( m  ) i , ( m  ) i , ( m  )

(4.36)

(4.37)

(4.38)

fli ^ l / 71 + ^ l / 7 2 + ^ l / 7 3*.(«) *.(«) * .(m ) (4.39)

(4.40)

(4.41)

i
M 0 = J (a0Jl f y ) +  b 0£  (n))udu

i.(m) u = o (4.42)

/
= J (fl~£ f a ) + b ~ £  fa))udu  

« = o (4.43)

4 .3  CALCULATION OF NON-LINEAR RESTORING FORCES 

AND MOMENTS

In this section, the restoring forces and moments which are introduced by an 

excursion of the platform from its equilibrium position are discussed. The main 

components of restoring forces can be classified as buoyancy forces due to change in the 

structure's underwater geometry and mooring forces due to the weight of its mooring 

lines. In addition to these main components, restoring force can also be generated by
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dynamic positioning systems.

In the following, only restoring forces due to hydrostatic and mooring effects will 

be discussed only.

For floating structures, the hydrostatic restoring forces and moments can be related 

to the translational and/or rotational displacements with the following equation by making 

use of standard naval architectural formulae (see Rawson and Tupper (1968)).

I  ( K . , ( X ) + R  . .(K))*. = F  
k  =  i  J k  k  j h y d

j  = 1, 2 r.., 6
(4.44)

where

KjkiX) ' Mooring stiffness coefficient

: Hydrostatic Restoring coefficient 

: Total restoring force

Rjkm

HYD

R , * W  can be given in the following equations:

R Jk( X ) = p  g Aw p m  j  = k = 3

R j k m  = p g V (t y}ZT (K) j  = k  = 4

R j k (X) = P g V  ( t V Z L (X) j  = k  = 6 (4.45)

where

Awp Total water plane area of surface piercing members

P Displacement of the floating structure

GZj, (X), GZl (K) Transverse and longitudinal righting lever respectively

The calculation procedure for restoring forces due to heave, roll and pitch motions 

and a flow chart of computer subroutines to calculate these forces are given in

96



Appendix C. The calculation of mooring forces for surge, sway and yaw motions is 

presented in Appendix B.

The non-linear stiffness characteristics are taken into account by calculating the

GZ (X) value corresponding to an instantaneous displacement and the heel or list angle 
at every time step from a data block generated from the cross curves of stability. The

details of the program for the calculation of stability curves and the interpolation and

extrapolation programs are explained in Appendix C. The non-linear restoring moment

can be given in the following form for roll and pitch motions.

REST and PREST are the subroutines which calculate the non-linear restoring 

moment for roll and pitch motions respectively by using the GZ (X) value calculated by 

subroutines SINT and PSINT.

The non-linear heave restoring force is calculated in subroutine HSTIFF. The 

heave restoring force formulation was carried out taking into account the pitch and roll 

motions in calculating the water plane areas of the columns. Heave restoring force is 

formulated as follows:

Fr = p  g G Z  (X)7(r) (4.46)

where

g

P Water density 

Gravitational constant

GZ (X) 

V {t )

Instantaneous righting moment lever 

Instantaneous displacement of the structure.

~ P g ^WP^2 (4.47)

where
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where

R ,■ Radius of surface piercing members

4 .4  CALCULATION OF BODY FORCES

The inertia forces and moments defined from Newton's second law as the 

multiplication of actual mass of a cylinder element pM dV and the absolute body 

acceleration of the structure can be calculated as follows (see Fig.4.2.):

F -  M V c  (4.48)

M =  pu \ l ! rA AUi dV
v  (4.49)

where

M  Total mass of the floating structure

Uq Acceleration vector at the gravity centre of the

platform

U. Acceleration vector at the centre of the mass

element i

TA  =  r G  +  r i

rG Position vector of the centre of rotation from the

centre of gravity

r. Position vector of the mass element i from the

centre of rotation

Pm Mass density
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dV

Fig.4.2 Co-ordinate systems used in inertia force calculations

The total force vector can be calculated in terms of translational and rotational 

acceleration and the total mass as follows.

VC = UST + US, A rG (4.50)

where

Us =  Uxi +  U2 j  + U3k (4.51)

USK = UA( + U5 j  + U6 k (4.52)

(4.53)

If Eq.(4.50) is substituted in Eq.(4.48) the total force vector becomes:
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F = M ( U l + U5Z G - U 6YG) i  

+ M (U2 + U6X G -  U ZG) J

+  M (U3 +  U4Yg U5X g ) k (4.54)

If we replace rA with rG + r. anci U. with Us + U„ a  r. in Eq.(4.49), the
T R

following equation is obtained to calculate moments due to the structure's rigid body 

acceleration:

M = p M { [ - z g u2 + yg u3 + u4<yf + zf) -  X Y i us - x i Zt U6] i

+ [Zr  U . - X - U . - X . Y  .U.  + U A X 2 +  Z 2) -  Y. Z.  U A jL G 1  G 3 i i A 5 v t i i i 6 J J

+ [ -  Yn U, + Xr U . ~  X . Z . U . -  Y . Z . U . +  U A X 2 + 7 2) ] *  }dVL G 1 G 2 i i A i i 5 6 v j i /J 1

(4.55)

The basic definitions to find the mass and mass moments of inertia can be written as 

follows:

M  =  p M \\\d V
v (4.56)

ixx = p m U1<Y?+ z 2) dv
v  (4.57)

iYr = pu  III( X2 + Z 2)dV
rr  v (4.58)

Ia  =  PM J J J ( *  " +  Yf )dV
v  (4.59)

i x y  =  i y x  = ~  Pm M X i Yi dVXY YX M v (4.60)
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'xz =  7z x  =  -  P m  M x i z i dv
v  (4.61)

IY Z = IZ Y = ~ p M l J J Yi Zi dV
v  (4.62)

Eqs.(4.54-55) can be summarised with the following matrix equation using 

Eqs.(4.56-62):

" M 0

0 M

F 31 3
0 0

j 4 0 - m z g

^ 5 m z g 0

f 6J — MYG m x g

0

0

M

m y g

-  MXC 
0

0

-  MZC 

MY^

lx x

h x

lzx

m z g

0

- MX(

JXY
IyY

lZY

-  MYC
m x g

0

l x z

h z

‘zz

1 ■ t f l '

*2

< >

1 ^ 6 .

(4.63)

For structures having cylindrical members, the mass moment of inertia values can 

be predicted for each member. It will be assumed that the mass of each volume element 

can be concentrated at the centre of this volume. Since the diameter over length ratio is 

generally small this assumption may be acceptable and can be formulated as follows:

PM ^ d v = PM S x R d u
V U = 0 (4.64)

Following the above statement the X . , Y . , Z. co-ordinates can be written in the 

individual member's reference system as:
X . = MO..+ X,

I  1 1  1

Y i -  u a 2 1 +  Y x

^ i ~  U °31 + ^1 (4.65)
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If we substitute Eq.(4.65) into Eqs.(4.57-62) the following mass moment of inertia 

values are obtained for an individual member:

lX X  = m i t j l  2 («22l +  a 32l  ̂ +  / ^ ! a 2 1 + Z i a 3l)  +  7 12 + Z 12 ]

iYY — (a n + a $\) +  ̂ ^  ia 1i + Z ia 31) + x  \ + Z i ]

izz = m i [ ^ l 2 (a1\ + a 221) + lQC1a n + Y 1a 2l) + X 12 + Y 12]

iXY 2an a 2 i +l2 ^  ia n + x ia 2i  ̂+ x ^

*XZ  a n a 31 +  2 (Z 1^11 ^  ia 31̂  + X  1Z  1-1

iyZ [ y /  a 2 ia 31 +  "2’ ‘̂Z ia 21 +  Z i a 31  ̂+  Z 1Z 1

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

The total moment of inertia of mass can be calculated by summing Eqs.(4.66-71) as 

follows:

m
h x  = * 1iXXi (4 .72)

m

i = i z / i (4.73)
m

m

I" a‘ , l i i x r , (4.75)
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m
!xz = lxz .I = 1 » (4.76)

m

h z  ~ . ^  zV z
‘ = 1 * (4.77)

4 .5  SOLUTION OF NON-LINEAR MOTION EQUATIONS IN THE 

TIME-DOMAIN

In this section, a method to solve the motion equations which take into account the 

non-linearities in wave and motion induced forces is discussed.

The wave excitation, hydrodynamic, steady wind and current and restoring forces 

on the floating structure are calculated at each time step taking into account the exact 

instantaneous position of the floating structure in the waves.

The following non-linear differential equation system is solved to obtain the motion 

responses in six degrees of freedom.

[M + A] { s }  + [ B ] { k  | k | } +  [R + / f ]{K} = { F }  (4.78)

where

[M] Mass and mass moment of inertia matrix of the

structure

[A] Added mass and added mass moment of inertia

matrix of the structure 

[5] Damping coefficient matrix

[R] Hydrostatic restoring coefficient matrix

[K] Mooring stiffness coefficient matrix

{F ) Total external force
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» }  Acceleration, velocity and displacement

vectors respectively in six degrees of freedom

X X

(4.79)

This system of second order non-linear differential equations in six degrees of 

freedom is solved using a numerical step-by-step integration technique. The NAG 

Library Routines (1978) provide several different numerical methods for solving non­

linear differential equations. In order to solve a non-linear second order (or higher order) 

ordinary differential equation system, a system of ordinary differential equations has to be 

written in first-order form as follows:

The N dependent variables which are the solutions of the system of differential 

equations y v y T . . ., yN are functions of the independent variable x . The above 

differential equations written in first-order form give the expressions for the first 

derivatives y\ — /  dx terms of an independent x and dependent variables

y v y 2, . .  ., yN . For a system of N first-order differential equations, N associated 

boundary conditions are required to obtain the solutions.

(4.80)
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Using the general mathematical methodology given above, Eq.(4.78) can be written 

as a system of first order non-linear differential equations. Hence the number of equations

is doubled. If one writes { 9 ^ }  and { ^ 2}  then Eq.(4.78) can be

expressed in the form of a first order non-linear differential equation system:

(4.81)

{ * 2} = w t m  ( 4 8 2 )

Hence, a system of first order non-linear differential equations is obtained and the 

number of boundary conditions required in order to define the solution is equal to the 

number of equations in the system of first order non-linear differential equations. This is 

so called an initial value problem because these boundary conditions are specified values 

at certain points given below:

{ 9 ^ }  = 0  at t = 0 |

{ ^ 2 } = 0  at t = 0 J (4.83)

These conditions would enable the solution technique to integrate the equations 

numerically from the point t=0 to some specified end-point

105



4 .6  DEVELOPMENT OF THE TIME-DOMAIN SIMULATION

In linear theory, it is assumed that the motions of the platform are small and member 

configurations are symmetrical. Based on these assumptions, the motion equations can 

be written in terms of constant hydrodynamic and hydrostatic coefficients, and the wave 

excitation forces are calculated at the mean draft level of the vessel.

In order to simulate the damaged behaviour of a platform in extreme conditions, one 

has to consider that the mass of the platform will increase due to flooding. The 

hydrodynamic, hydrostatic and wave excitation forces will vary either linearly or non- 

linearly as the platform experiences large amplitude oscillations. Since all hydrodynamic 

and hydrostatic coefficients tend to be non-linear as well as time-dependant, it is almost 

impossible to find a closed-form solution. In order to avoid the risk of obtaining 

inaccurate results associated with a simplified non-linear mathematical model for which a 

closed form solution can be found, it becomes necessary to use a numerical technique 

based on the integration of differential equations in a step-wise manner as described in 

the previous section.

The non-linear large amplitude motion equations in six degrees of freedom as a 

function of time and position are given in the following to show the three stages of motion 

simulation of a semi-submersible platform:

1) When the platform is in intact condition:

[M + A] { k }  +  [ B ] { s  | k | } +  t/e +  / n ( N }  =  { F } (4.84)

2) When the platform is in progressive flooding condition:

[M( t )  + A]  {& } + [£ ] { «  |k |} +  [R + AT]{K} = {<F} (4.85)
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where

M ( t ) =  M + R t for tsp < t < tjg (4 .86)

R flooding rate and is given in the following expression by Moncarz et al. (1985):

R = c A J i g  h
(4.87)

where

c Coefficient of contraction for flow through an opening

A Contraction area

g Acceleration of gravity

h Average water head

3) When the platform is in the post-flooding condition:

[Mpf + A] { 'k }  + [ B ] { k  I k | } +  [R + J f]{S}  = { F } (4.88)

where

Mpp M + R ( t^ tsp) (4.89)

The non-linear motion equations given above are solved in the time-domain using 

the Runge-Kutta-Merson numerical integration technique. The right hand side of the 

equations is re-calculated at each time step following the procedure described in Chapter 3 

as a function of both time and the structure's location with respect to the wave reference 

system. The non-linear stiffness co-efficients are obtained at each time step from pre­

calculated stiffness values as a function of the instantaneous displacement and the 

position of the floating structure. A method to calculate A and B given in Eqs.(4.84)-

(4.88) is described at the beginning of this chapter. This method is utilised in the 

numerical calculations.
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In order to achieve fast steady-state solutions of the non-linear motion equations, 

and thereby to save computing time various types of ramp functions are introduced to the 

excitation forces. In the solution of the motion equations variable integration steps are 

selected to improve the accuracy of the solutions. The integration steps are varied 

automatically by the NAG routine for a fast stable convergence.

4 .7  DEVELOPMENT STAGES FOR THE TIME-DOMAIN  

SIMULATION PROGRAMS

In this section a brief summary of the development stages for the time-domain 

motion simulation programs is given to highlight the problems such as slow convergence, 

large CPU time, etc. encountered during the study.

Development of the time domain simulation programs was started by solving a non­

linear second order differential equation which represents uncoupled heave motions of the 

semi-submersible platform. Having obtained the heave displacements in the time- 

domain, the amplitudes of heave oscillations were verified with those obtained from the 

frequency-domain analysis (see Soylemez (1986)). In solving the heave motion equation, 

NAG routines based on the Runge-Kutta-Merson method were employed.

During the development of the time-domain programs for the simulation of large 

amplitude uncoupled roll motions, a large CPU time was required due to slow 

convergence of non-linear roll motion equations. In order to overcome this problem the 

following steps were taken: Firstly, different differential equation solvers within the NAG 

library were tried. This attempt did not yield any improvement on CPU time. Secondly, 

the parametric studies involving the variation of different damping co-efficients were 

tested. However, a typical computer run on VAX 11/730 for a converged solution 

required 1 hr 30 min 3.34 sec CPU time. Thirdly, it was decided to introduce ramp 

functions to the excitation moment. Two different types of ramp function i.e. sinusoidal 

and exponential were tested. It was found that the introduction of exponential ramp 

function yielded a significant reduction in CPU time. A typical CPU time required for the
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solution of uncoupled roll motion equation reduced to 40.15 sec. Details of ramp 

functions are given in Section 4.8.3.

Having improved the computational time, the non-linear roll restoring co-efficient 

was included in the large amplitude roll equation and it was found that this increased the 

required CPU time by a factor of 2. At this stage the programs were transferred from 

VAX 11/730 to ICL 3980. The CPU time was reduced by a factor of about 7 when the 

programs were mounted and run on ICL 3980 for solving the motion equations 

representing a 3 degrees of freedom system (heave, roll and pitch). However, it was 

anticipated that solutions of the coupled motion equations to simulate large amplitude 

oscillations of an intact or a damaged platform would require a considerably faster 

computer for the efficient development of the time-domain simulation package. 

Fortunately, the arrival of an IBM 3090 computer at the University was very timely for 

the smooth progress of this study.

The remaining major development work was carried out on IBM 3090 utilising the 

vectorisation and optimisation features of the machine.

The following figures are given as a typical example to indicate the CPU time 

efficiency achieved when the IBM 3090 was used. For the same input conditions, 

coupled large amplitude motion simulations of the semi-submersible in three degrees of 

freedom required 2V4 hours CPU time on VAX 11/730 whereas they required about 1V2 

minutes on IBM 3090. Morover this figure could further be improved with the 

introduction of new vectorised NAG routines. The CPU time required on IBM 3090 to 

simulate large amplitude non-linear motions of an intact and damaged platform in six 

degrees of freedom is about 4 minutes for a 120 second real time simulation on model 

scale which corresponds to 20 minutes in full scale.

Another important aspect in using the differential equation solvers in the NAG 

library is the correct choice of tolerance. Tolerance must be set to a positive value to 

control the error in the integration. The user of NAG routines is recommended to call the 

time-solver routine with more than one value of TOL and to compare the results obtained
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to estimate their accuracy.

In order to decide on the tolerance range, a few tests were carried out. The highest
-3

tolerance range was taken as 10 which yielded converging solutions over a long period

of simulation time whereas when the tolerance range was decreased to 10  ̂it was found

that convergence was quicker and therefore 10 was chosen which also gave appropriate 

simulation period for comparing the physical simulation with numerical ones.

4 .8  BRIEF DESCRIPTION OF THE COMPUTER PROGRAM

In this section, a brief description of the computer program MOTION which was 

developed for the motion simulation of a semi-submersible in the time-domain is given. 

The program MOTION has twenty one subroutines which were written to implement 

different types of calculation required to simulate non-linear, large motions of a floating 

structure in intact and damaged conditions. A flow chart of the program MOTION is 

shown in Fig.4.3.

4.8.1 NON-LINEAR FORCING FUNCTION

The general method described in Chapter 3 to calculate wave loading on the circular 

cylindrical members of floating structures forms the basis for the subroutine FORCE. 

Three components of the wave exciting force are calculated on each member of the 

structure every time step by taking into account the position of each member and the 

instantaneous wave profile. In order to take into account the instantaneous position of the 

structure in the wave reference system subroutine BETDIR was written. This subroutine 

calculates the direction cosines which relate the co-ordinates defined in the wave reference 

system to those in the structure reference system. Subroutine DIRCOS was written to 

relate the co-ordinates defined in the member reference system to those in the structure 

reference system (see also Chapter 3).
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Fig.4.3 Flow -chart of program MOTION
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4 . 8 . 2  POSITION DEFINITION OF THE STRUCTURE

In order to calculate the wetted length of surface piercing members by either 

assuming that the surface piercing members intersect with calm water or with waves, a 

number of subroutines were written. Subroutines POSW and TRANS calculate the co­

ordinates of an intersecting point between a surface piercing member and water level by 

allowing rigid-body motions of the structure. The co-ordinates of the intersecting point 

between the surface piercing member and the water level together with the co-ordinates of 

the starting point of the member are used to determine the wetted length of the member. 

The wetted length which is calculated at each time step determines the integration limits 

during the calculation of wave forces and moments on surface piercing members.

Subroutine ITRW which is called by POSW was written to calculate the co­

ordinates of the intersecting point berween the surface piercing member and the wave 

profile.

Derivation of the function to calculate the intersection point of a surface piercing 

member with a propagating wave profile is based on the assumption that the cylindrical 

member of the structure is represented as a straight line in space. The calculation of the 

intersection points of the straight line with a sinusoidal surface representing wave 

elevation is carried out in following (see Sommerville (1939)).

The Equation of a Straight Line

If let the straight line is allowed to pass through the point A = [xY yv  Zj] and to 

have direction-cosines (or ratios) [/, m, n],  then if P = [ x ,  y ,  z ] is any point on the 

line, and AP = r , we have

x = x 1 + I r

y = y x+ m r

2 = Zj + n r (4.90)
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Eliminating r, the following equation is obtained,

* y  ~ y  1 z ~ z i
I “  m ~ n ~ r (4.91)

Eq.(4.91) is adopted as the standard form for the equations of a straight line. 

Eq.(4.90) is called the freedom-equation of the line in terms of the parameter r.

zj] which are the beginning co-ordinates of the surface piercing members. The 
co-ordinates of any point on the joint of [*v yv z^ and [*2> y?  2 2}  which are the end

co-ordinates of the member can be written as follows:

x  = x ! +  r ( z 2 — JCj) 

y = y x + r  ( 3 ; 2 - 3 7 1 )

z  = z 1 + r ( Z 2 - Z j )  j  ( 4 9 2 )

These are the freedom equations in terms of the parameter t.

Intersection of a Column and Water Surface

Instantaneous water surface is defined as a function of y  and t along x direction 

as it does not vary along the z axis.

y  -  <2C0s(fc x  -  (0 t )  ( 4 ,9 3 )

Substituting for jc, y, z in the Eq.(4.93) of the plane the following equation is 

obtained.

y 1 + m r  -  a cos [k (Xj+Zr ) -  co t ] = 0
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where

* 1 '*1 Beginning co-ordinates of the member

m, I Direction cosines of the member

r Wetted length

k Wave number

CO Wave frequency

t Time

If r is obtained by iterating the above equation, the co-ordinates of the intersection 

point can be calculated. However, direction-cosines of the straight line are needed in 

order to start iteration. In order to calculate the direction-cosines the co-ordinates of two 

points (which are the beginning and the end co-ordinates of the member) on the straight 

line are provided by subroutine TRANS.

Eq.(4.94) is solved by the Newton-Raphson iteration method, thus the wetted 

length of the member is calculated taking into account the relative wave elevation at each 

time step.

4 .8 .3  RAMP FUNCTIONS

In order to avoid slowly decaying transient motions of the structure due to wave 

excitation forces an exponantial ramp function is used. A ramp function is multiplied with 

the external force for a certain period at the beginning of the simulation. By means of M s 

r a m p  function, the external force is increased gradually for a certain period to avoid 

slowly decaying transient motions due to suddenly applied environmental forces. The 

application of a ramp function enables a quick convergance in the time-domain solution of 

motion equations.
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The ramp(slope) function can be any function which increase gradually and reaches 

1 after a certain period. Two of the ramp functions which are shown in Fig. (4.4) are 

given in the following expressions:

Sinusoidal Ramp Function:

-  J  C O S +  j

RAMP
t <

(4.95)

This ramp function reaches 1 at the half period. However, this function can be set 

to reach at time segment to be 1. An exponential ramp function which is given in the 

following is more flexible than Eq.(4.95).

Exponential Ramp Function:

2
RAMP = l - e  at (4.96)
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where

2
a was calculated in the following form so that e ~ at approaches zero as t 

approaches tUnd .

a = In (1000) —
t
hend (4.97)

where

where

t = J - rhend ft end (4.98)

tend End of simulation

n An integer to divide terui

thend A certain beginning part of simulation in

which the ramp function is applied

One important point in applying a ramp function to a numerical solution is that the 

derivative of the function should be zero at time t= 0  and at the end of the application of 

the function in order to avoid any discontinuity in the function on which the ramp function 

is applied. Thus, numerical instability during a solution procedure is avoided.

The results of a sample run are shown in Figs.4.5-6 to demonstrate the effect of a 

ramp function on the numerical solution. Fig.4.5(a.b.c) and Fig.4.6(a-b) show the last 

20 second time intervals of 1000, 1500, 3000, 4000 and 6000 cyle of roll simulation. As 

shown in these figures, if no ramp function is employed, the more the number of cyles 

for the simulation the better the convergence obtained for the solution. During the study, 

various ramp functions were applied in order to achieve quicker convergence of solutions 

of non-linear differential equations. The ramp functions used were various forms of 

sinusoidal and hyperbolic function. It was concluded the exponential function given in 

Eq.4.96) was the most effective one in yielding the quickest convergence. As can be seen

118



from Fig.4.6.c when the exponential function was applied to the roll motion equation. 

The steady solution was reached in 10 seconds.

Finally it should also be noted that when a ramp function is not applied to a function 

describing the wave excitation on a platform at the initial stages of simulation, the rigid 

body oscillations of the platform comprise slowly varying oscillations at the rigid-body 

natural frequencies and oscillations at the frequency of wave excitation. As the simulation 

proceeds the slowly varying oscillations disappear. This phenomenon is illustrated in 

Figs.4.7 and 4.8. Fig.4.8 was obtained by applying a Fast Fourier Transform to the 

time-series data shown in Fig.4.7.

It was also noted that increased damping in the transient region yields quick 

convergence in the solution of motion equations. However, the application of a ramp 

function yields a much faster convergence.
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CHAPTER 5

NUMERICAL AND PHYSICAL SIMULATION STUDIES
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5 .1  INTRODUCTION

This chapter presents the results of model tests carried out to measure the motions 

of the model platform under intact, progressive flooding and post flooding conditions and 

the results of numerical simulation studies representing the model test conditions.

There have been two main objectives in carrying out this test series:

1) To study the motions of the model semi-submersible in a range of wave 

frequencies and heights varying from 2.5 to 8.8 rad/s (0.3 to 1.05 rad/s in full 

scale) and 6.7 to 12.3 cm (4.69 m to 8.61 m in full scale) respectively during 

intact, progressive flooding and post flooding conditions.

2) To verify the computer generated simulations obtained by means of the 

method developed in the previous chapters with the experimental 

measurements.

A twin-hulled 1:70 scale semi-submersible model shown in Fig.2.1 was tested for 

one draught (36 cm), two heading angles (head and beam seas) and two different GMs 

(7.8 cm and 2.29 cm) in the 77 m x4.6 m x2.4 m towing tank of Glasgow University.

The results of the motion response analyses for six degrees of freedom and the 

wave elevation are given in the form of time histories at the end of this chapter.

Intact, progressive flooding and post-flooding conditions were simulated during 

each experiment. The progressive flooding condition was initiated by filling one or two 

of the inner columns (symmetrical or asymmetrical damage) on seaward side and a variety 

of flooding time and flooding mass (or the size of the compartment) were adopted in 

simulating the progressive flooding condition. About 110 individual experimental runs 

were carried out, including inclining tests and natural frequency tests to determine the 

dynamic particulars of the model. Tests were performed in order to measure heave, 

sway, surge, roll, pitch and yaw motions as well as the flooding mass versus flooding 

time.
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5 .2  NUMERICAL SIMULATION

As the second objective of the experimental study was to verify the theoretical 

formulation and the computer software developed, numerical simulations were carried out 

for the model test conditions.

The non-linear, large amplitude coupled motion equations introduced in Section 4.5 

were applied to the semi-submersible geometry shown in Fig. 2.1. The results of surge, 

sway, heave, roll, pitch and yaw motion simulations in intact, progressive flooding and 

post-flooding conditions are presented in this chapter in order to make comparisons 

between experimental measurements and numerical simulations.

The initial conditions for each simulation run were set to zero for initial velocity and 

displacement of the model. The ramp function was applied to the external forces for one 

fifth of the total simulation time. This time-scale was long enough for the wave form to 

develop to its required amplitude at a point where the model semi-submersible was 

moored.

In simulating the test conditions, the flooding mass measured and the flooding time 

during experiments were used as input in the numerical motion simulation program.

In order to reduce the computation time, constant added mass and non-linear 

damping force for the entire structure rather than those for each segment of each member 

of the structure were taken into account in the motion equations.

5 .3  PHYSICAL SIMULATION

5 . 3 . 1  DESCRIPTION OF THE MODEL

A twin hulled semi-submersible model was built to the scale of 1:70 in accordance 

with the drawings shown in Fig.2.1. The semi-submersible model consists of two 

circular pontoons each with four circular columns (see Figs.5.1-5.2). The reason for 

choosing this particular geometry for the semi-submersible model was because it was 

already available in the department's hydrodynamics laboratory.
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5 . 3 .2  MODEL PARTICULARS

The principal dimensions for the prototype and the model are given in Table 5.1.

The twin circular hulled semi-submersible model consists of members which are 

made of P.V.C., aluminium sheets and bolts. P.V.C. welding was the means of 

connecting the P.V.C. parts. Special ballast containers were placed in the comer columns 

to ballast the model to the desired draught level. These ballast containers could be moved 

vertically so as to adjust the centre of gravity of the model for the desired GMs. The 

ballast material was made of leadshot and arrangements were made so that any movement 

of the ballast due to model motion was prevented.

Harnesses were used as soft moorings in order to stop the model from drifting 

along the tank.

The mass distribution and geometrical properties of the model are given in Table 

5.2a-2b. The mass moment of inertia of each member of the model is calculated in Table 

5.2a-2b according to the formulation given in Section 4.4 for roll, pitch and yaw 

motions. The total mass moments of inertia of the semi-submersible are listed in 

Table 5-3.
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Fig.5.1 Disassembled view of the semi-submersible model

Fig.5.2 Side view of the semi-submersible model
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Particulars of the Model 1/70 Model Prototype
Length of Pontoon 1.446 m 101.22 m
Breadth of Pontoons 0.834 m 58.38 m
Radius of Pontoon 0.070 m 4.90 m
Radius of Small Column 0.0415 m 2.905 m
Radius of Large Column 0.057 m 3.99 m
Draught 0.360 m 25.20 m
Displacement 58.400 kg 20031.2 t
KB 0.1134 m 7.935 m
BM 0.1867 m 13.069 m
BM 0.1814 m 12.698 m
GM Test Series 1 0.0781 m 5.467 m

Test Series 2 0.0229 m 1.603 m
GM Test Series 1 0.0712 m 4.984 m

Test Series 2 0.0154 m 1.078 m
KG Test Series 1 0.2224 m 15.568 m

Test Series 2 0.2781 m 19.467 m
k (roll radius of gyration) Test Series 1 0.463 m 32.41 m

Test Series 2 0.454 m 31.78 m
k (pitch radius of gyration) Test Series 1 0.489 m 34.23 m

Test Series 2 0.481 m 33.67 m
k (yaw radius of gyration from calculation) Test Series 1 0.617 m 43.19 m

Test Series 2 0.614 m 42.98 m
Natural (Period-Charac. Freq.-Radian Freq.) S Hz rad/s S Hz rad/s

Heave 2.44 0.41 2.57 20.45 0.049 0.31
Surge (calc.) 29.8 0.034 0.21 249.3 0.004 0.025
Sway (calc.) 36 0.028 0.174 301.2 0.003 0.021
Roll Test Series 1 4.19 0.24 1.5 35.05 0.029 0.18

Test Series 2 9 0.11 0.69 75.3 0.013 0.08
Pitch Test Series 1 4.3 0.23 1.46 36.01 0.03 0.17

Test Series 2 8.56 0.117 0.734 71.62 0.014 0.088
Yaw (calc.) 206 0.005 0.031 1723 6E-04 0.004

Table 5.1 Main particulars of the semi-submersible model
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Figures in brackets indicate the number of members.

M Mass of the member

L Length of the member

Al l '
A 21> Direction cosines of members defined in Chapter 3.
A31J

X 1, Y 1 ,Z 1 Beginning co-ordinates of members

Ixx Rolling mass moment of inertia

Iyy Yawing mass moment of inertia

Izz Pitching mass moment of inertia

GM (cm) KG (cm) Ixx (kgm2) Iyy (kgm2) Izz (kgm2)
2.29 27.81 13.601 22.216 12.162
7.81 22.43 13.974 22.216 12.535

Table 5-3 Total mass moment of inertia for roll, yaw and pitch 

5 . 3 . 3  INCLINATION TESTS

The basic purpose of the inclination tests was to identify the actual GM of the model 

before the each test series was carried out. The instrumentation of the inclination test was 

the same as for motion tests (see Section 5.3.5). An analysis method for these test series 

is given by Atlar (1986), therefore the method is not included in this section. Briefly, 

during the inclination test procedure, a group of known test weights was placed at the 

longitudinal or transverse symmetry of the deck in a row and symmetrical to both the 

longitudinal and transverse axes of the model for pitch and roll inclination tests 

respectively. Therefore, no heel or trim was recorded. The deflection corresponding to 

zero level due to the addition of test weights was marked on the chart recorder. 

Progressively the weights on the centre line were removed to an equal distance and the 

resultant heel or trim angle was recorded. Then the weights were returned to their original 

position at the centre. The same procedure was repeated by transferring the weights to the 

other side of the model. The results of these tests are given in Table 5.4a-4d.

131



i w.

(grs)

df

(cms) (cms)

4>;

(dcg) (gr*cm)

GM;

(cms)

4=58400 gr 
£  w■, =600 gr 
^ =59000 grs

1 200 41.75 1.56 1.07 8350 7.63

GM=7.85 cm 
KB=11.60 cm 
BM=18.51 cm

2 400 41.75 3.04 2.09 16700 7.80 KG=22.26 cm
3 600 41.75 4.75 3.26 25050 7.46 KGC=22.24 cm
4 200 -41.75 1.42 0.97 -8350 8.38 KB.=11.34 cm
5 400 -41.75 3 2.06 -16700 7.91 BMC= 18.71 cm
6 600 -41.75 4.49 3.08 -25050 7.90 GMt-^7.81 cm

Table 5-4a Inclination test data for bigger GM in Roll

i w,

M

di

(cms)

Y,

(cms)

4>i

(deg)

mi

(gr*cm)

GM,-

(cms)

4=58400 gr 
£ W; =600 gr 
^ =59000 grs

1 200 49.5 2.07 1.40 9900 6.94

GM=6.72 cm 
KB=11.60 cm 
BM=18.03 cm

2 400 49.5 4.29 2.89 19800 6.67 KG=22.91 cm
3 600 49.5 6.3 4.24 29700 6.79 KGt=22.43 cm
4 200 -49.5 2.18 1.47 9900 6.59 KBC=11.34 cm
5 400 -49.5 4.16 2.80 19800 6.88 BM .̂=18.21 cm
6 600 -49.5 6.64 4.47 29700 6.44 GMr=7.12 cm

Table 5-4b Inclination test data for bigger GM in Pitch

i w;

(grs)

di

(cms)

Y;

(cms)

4

(deg)

m(.

(gr*cm)

GMj

(cms)

Ac=58900 gr 
Iw,-=345 gr 
A =59245 grs

1 111 41.75 4.48 3.07 4634 1.46

GM=2.16 cm 
KB=11.70 cm 
BM=18.53 cm

2 234 41.75 6.03 4.13 9770 2.29 KG=28.07 cm
3 345 41.75 9.12 6.23 14404 2.23 KGC=27.81 cm
-4 111 -41.75 2.6 1.78 4634 2.52 KBC= 11.55 cm
5 234 -41.75 6.29 4.31 9770 2.19 BM^18.55 cm
6 345 -41.75 8.93 6.10 14404 2.27 GMr=2.29 cm

Table 5-4c Inclination test data for smaller GM in Roll

i w(.

(grs)

d,

(cms)

Yj

(cms)

4>i

(deg)

m,

(gr*cm)

GM;

(cms)

4=58900 gr 
£ w /= 3 4 5  gr 
A =59245 grs

1 111 49.5 6.9 4.64 5495 1.15

GM=1.20 cm 
KB=11.70 cm 
BM=18.10cm

2 234 49.5 14.9 9.94 11583 1.12 KG=28.60 cm
3 345 49.5 17.58 11.69 17078 1.39 KGC=28.22 cm
4 111 -49.5 7.68 5.16 5495 1.03 KBC= 11.55 cm
5 234 -49.5 14.21 9.49 11583 1.17 BM^IS.21 cm
6 345 -49.5 17.97 11.94 17078 1.36 GM^l.54 cm

Table 5-4d Inclination test data for smaller GM in Pitch
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i Number of shifts carried out.

Wj The sum of the weights transferred each time,

dj Horizontal shift of the weights. A plus sign (+) indicates a

shift from the centre line to leeward, a negative sign (-)

indicates a shift from the centre line to seaward.

Yj Total heel on the model

(j)i Total heel angle calculated by:

§ . = arc tan ( Y . / 1)

where I is the distance between the vertical axes of the 

transducers and its value is 83.5 cm for roll and 99 cm for 

pitch tests

mj static moments of the test weights calculated by:

m. = w. d .i i i
GMj Metacentric height, which includes the effect of test

weights, after each shift calculated by:
GM. = m . / ( A + w . ) t a n  <b.i i v i J T i
where A is model displacement

GM Mean metacentric height calculated by:
N

GM = X GM. /  N

where GM includes the effect of test weights which should 

be corrected to have the model's actual GM.

Subscript c indicates the actual values of the geometrical properties.

5 .3 .4  NATURAL PERIOD TEST

Free motion tests were carried out in order to measure the natural heave, roll and 

pitch periods of the model. The yaw period was not measured because the model was not 

moored by catenary moorings. However, the calculated value of the yaw period is given 

in Table 5.1.

The model was pushed down symmetrically at a certain draught and then released to 

perform the free oscillations. Therefore, the heave free oscillations were recorded on the 

chart recorder. The natural heave period was determined by taking the average period 

over a number of cycles.
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For the natural roll and pitch periods, the model was heeled or listed to one side 

symmetrically by applying a moment and then released to perform free oscillations in roll 

or pitch mode. Recordings were taken as for the free heave oscillation test. The same 

calculation method was applied to determine the natural periods of roll and pitch as 

explained for heave.

The measured and calculated natural periods and frequencies for each mode are 

presented in Table 5.1. Figs.5.3-5 show the recordings of natural pitch period test, the 

numerical simulation of free pitch oscillation test and the results of FFT analysis of the 

numerical simulation in order to obtain the natural pitch frequency. The natural pitch 

frequency obtained from the model test is 1.46 rad/s whereas it was calculated by FFT 

analysis of numerical simulation as 1.2 rad/s.

5 . 3 . 5  I N S T R U M E N T A T I O N  F O R  M O T I O N  R E S P O N S E  

E X P E R I ME NT S

The instrumentation was organised so that the amplitudes of the regular wave trains, 

heave, surge, sway, roll, pitch and yaw motions of the model and also the amount of 

flooding water could be measured. Tests were carried out for two different GMs. The 

model was moored beam and head onto waves on the centre line of the tank. The 

mooring lines were attached at the level of the CG of the model and to the walls of the 

tank in order to give a soft spring effect (see Fig.5.6).

Regular waves were created by a plunger type wave-maker driven by an 

electronically controlled hydraulic pump.

Three resistance type wave probes were installed across the tank width. These 

probes induce electrical signals whose strength is changed by the varying wave height. 

These electrical signals were amplified and recorded by the chart recorder and on the 

computer as well.
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The heave, roll and pitch motions of the model platform were recorded with two 

pairs of gravity type Linear Vertical Displacement Transducers (LVDT). They were 

connected to a sub-carriage and attached to the deck of the model with piano wires 

suspended over a pair of pulleys. The weight of the LVDTs were balanced in order to 

avoid any possible acceleration being induced on the transducers during the motion of the 

model.

Electronic signals were sent to the chart recorder via an amplifier to record the 

vertical displacements of LVDTs versus real time.

The surge, sway and yaw motions of the model were recorded with two Light 

Emitting Diodes (LEDs or selspots) and two cameras. The displacements of LEDs were 

also recorded on the pen recorder chart. Program DATAGRAPHMOD was written to 

analyse the experimental data stored in digital form on the computer the experimental data 

were analysed and converted to real physical magnitudes.

In order to flood one or two of the inner columns, a water container was placed on 

the carriage. Fig.5.7 shows the set up of the water container and the pipe connections 

and stop valves which were used to flood the compartments through the pipes. Either or 

both of the two inner columns on the seaward side were flooded in order to simulate 

symmetrical or asymmetrical damage conditions. Flooded compartments were emptied by 

sucking the water from the compartments using a water pump.
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Fig.5.7 Experimental setup for the water container and the stop-valves to flood the 

compartments of the model
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5 . 3 .6  DESCRIPTION OF CALIBRATION PROCEDURES

All wave probes were calibrated when they were submerged 5 cm into the tank 

while the water was calm and zero readings on the wave probe amplifiers were taken by 

marking the pens' positions on the chart corresponding to the zero wave elevation. Then 

the calibration procedure was continued by lifting the probes 5 cm up and the new 

positions of pens were marked on the recorder. A linear relationship was found from the 

calibration records between the displacements of the wave probes and the displacements 

of pens on the recorder.

The slope of the calibration curves or the calibration factor for the wave height was 

given as follows:

Wave probe displacement ( = wave elevation )
Pen displacement {or voltage) {5 1)

The calibration of the LVDTs was similar to that of the wave probes. While the 

model was floated in calm water, zero deflections were recorded by the pen recorder from 

four transducers attached to the upper comers of the model. Then each transducer was 

displaced 5 cm downward using a vertical vernier attached to the piano wires which 

connected to the model and transducers. At that moment, the pen deflection on the chart 

recorder was marked. The calibration factor was evaluated using Eq.(5.1).

Calibration of LEDs was done by moving the cameras 5 cms towards the wave 

maker. Calibration factors of LEDs were also calculated by Eq.(5.1).

5 . 3 . 7  DESCRIPTION OF MOTION RECORDS

Typical time history records of the motion responses drawn by the multi-channel 

pen recorder are shown in Fig.5.8.

As shown in Fig.5.8, the records indicate the displacements versus real time which 

was scaled by the chart feeder speed. Four records at the centre of the chart show the 

displacements received from LVDTs due to the vertical motion of the comer columns. 

The other three records at the top of the chart show the wave displacements while the
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record at the bottom of the chart shows the amount of water flooding into the column.

Time history records of the motion test were produced from the stored data on the 

computer and each run was also simulated on the computer in order to make comparisons 

between theoretical results and experimental measurements which are given at the end of 

this chapter.

As evidenced by some of the test recordings, at the beginning of the test a large 

steady displacement developed following the first impact of the wave on the model and 

then the displacements settled down to steady values. In order to avoid this, the 

wavemaker was operated in such a way that regular wave trains gradually reached then- 

required amplitudes. Therefore, the motion of the model semi-submersible was also built 

up gradually as seen in Fig.5.8.

5 . 3 . 8  MOTION TEST PROCEDURE

During the motion experiments, signals from 14 channels (4 from wave probes, 4 

from LVDTs, 6 from, LEDs) were recorded and stored by the multi-channel pen recorder 

and the computer simultaneously.

Each test was preceded and followed by zero measurements in calm water. Before 

recording of the test signals started, the wavemaker was started and a period of time was 

allowed for the waves to arrive at the wave probes. The duration of tests varied from 55 s 

to 120 s (9 m to 17 m in full scale) depending on the wave frequency and duration of 

flooding. In the first stage of each run, the model was tested in the intact condition and 

then one or two of the compartments were flooded for 10 or 5 seconds. For the 

remaining time of the run, the model test was continued for the post-damage simulation.
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Fig 5.9 Motion response experiment (Beam sea condition-asymmetrical flooding) 
\VH=9.8 cm Flooding Mass=0.9 kg Flooding Time=20 s
GM=2.29 cm co=6.3 r/s (1.0 hertz)

Fig 5.10 Motion response experiment (Beam sea condition-asymmetrical flooding)
W H=9.8 cm Flooding Mass=0.5 kg Flooding Time=10 s

GM =2.29 cm co=6.3 r/s (1.0 hertz)
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Fig 5.11 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=9.8 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=6.3 r/s (1.0 hertz)

Fig 5.12 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=7.3 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=7.5 r/s (1.2 hertz)
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5 .4  PRESENTATION AND DISCUSSION OF RESULTS

Results of motion experiments and their numerical simulations are presented in 

Figs.5.13-101. Experimental results were obtained in head and beam sea conditions for 

two different GMs.

For the head sea condition, measurements of surge, heave, roll, yaw, pitch 

motions and wave height are presented as time series data. Sway motion is not included 

in the presentation of numerical and physical simulations carried out for head sea 

condition. Similarly, surge motion response is not presented for the beam sea condition. 

Roll motion responses in head sea condition or pitch motion responses in beam sea 

condition are presented because they are affected by asymmetrical damage to the platform. 

Although the test was initiated in an intact condition in each experiment, changes in model 

configuration gave rise to roll or pitch motion response in head and beam sea conditions 

respectively.
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Fig.5.13 Motion response experiment (Head sea condition-asymmetrical flooding) 
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Fig.5.23 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH= 11.5 cm Flooding Mass= 1.7 kg Flooding Time=20 s
GM=7.81 cm co=3.8 r/s (0.6 hertz) TS2922S.DAT

155



-  b.bS
Q  5 . BO

1 .4 2 0

0 .7 4 7

D.OQ&

0 .0 0

'MAAAAAAA/m
T o T W

6
t  o>o5

Fig.5.24 Motion response simulation (Head sea condition-asymmetrical flooding)
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Fig.5.25 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=12.0 cm Flooding Mass=1.6 kg Flooding Time=20 s
GM=7.81 cm co=5.0 r/s (0.8 hertz) TS2923S.DAT
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Fig.5.26 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=12.0 cm Flooding Mass=1.6 kg Flooding Time=20 s
GM=7.81 cm co=5.0 r/s (0.8 hertz)
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Fig.5.27 Motion response experiment (Head sea condition-asymmetrical flooding) 
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Fig.5.30 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=11.2 cm Flooding Mass=1.5 kg Flooding Time=20 s
GM=7.81 cm co=7.5 r/s (1.2 hertz)
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Fig.5.31 Motion response experiment (Head sea condition-asymmetrical flooding)
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Fig.5.35 Motion response experiment (Head sea condition-symmetrical flooding)
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Fig.5.36 Motion response simulation (Head sea condition-symmetrical flooding)
WH=11.7 cm Flooding Mass=2.1 kg Flooding Time=20 s
GM=7.81 cm co=6.3 r/s (1.0 hertz)

168



PI
TC

H 
CD

ES

401 
SECONDS

-  0 . 0 0

- 3 . 6 3

8  5 .7 3

2 .  B7

0 .0 0  

^  - i .6 9  

X  - 3 . 3 7

7 W \ 7 #

3.3
2.5
i .T

*Ior lor 30T To! SoT
SECONDS

W T6T "SoT

§  3.61

Z  0.5
1 - 3 . 5
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Fig.5.39 Motion response experiment (Beam sea condition-asymmetrical flooding) 
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Fig.5.40 Motion response simulation (Beam sea condition-asymmetrical flooding) 
WH= 10.1 cm Flooding Mass= 1.2 kg Flooding Time=20 s
GM=7.81 cm co=5.0 r/s (0.8 hertz)
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Fig.5.46 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=8.1 cm Hooding Mass=1.4 kg Hooding Time=20 s
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Fig.5.47 Motion response experiment (Beam sea condition-symmetrical flooding) 
WH=9.8 cm Flooding Mass=0.9 kg Flooding Time=10 s
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Fig.5.48 Motion response simulation (Beam sea condition-symmetrical flooding)
WH=9.8 cm Flooding Mass=0.9 kg Flooding Time=10 s
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Fig.5.49 Motion response experiment (Beam sea condition-symmetrical flooding) 
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Fig.5.50 Motion response simulation (Beam sea condition-symmetrical flooding)
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Fig.5.51 Motion response experiment (Beam sea condition-symmetrical flooding) 
WH=7.0 cm Flooding Mass=0.9 kg Flooding Time=10 s
GM=7.81 cm co=8.8 r/s (1.4 hertz) TS2941S.DAT
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Fig.5.52 Motion response simulation (Beam sea condition-symmetrical flooding)
WH=7.0 cm Hooding Mass=0.9 kg Flooding Time=10 s
GM=7.81 cm co=8.8 r/s (1.4 hertz)
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Fig.5.53 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=8.2 cm Flooding Mass=0.6 kg Flooding Time=10 s
GM=2.29 cm co=3.8 r/s (0.6 hertz) TS2957S.DAT
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Fig.5.54 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=8.2 cm Flooding Mass=0.6 kg Flooding Time=10 s
GM=2.29 cm co=3.8 r/s (0.6 hertz)
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Fig.5.55 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=10.1 cm Flooding Mass=0.6 kg Flooding Time=10 s
GM=2.29 cm co=5.0 r/s (0.8 hertz) TS2958S.DAT
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Fig.5.56 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=10.1 cm Flooding Mass=0.6 kg Flooding Time=10 s
GM=2.29 cm co=5.0 r/s (0.8 hertz)
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Fig.5.57 Motion response experiment (Head sea condition-asymmetrical flooding)
WH=4.7 cm Flooding Mass=0.4 kg Flooding Time=10 s
GM=2.29 cm co=2.5 r/s (0.4 hertz) TS2959S.DAT
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Fig.5.58 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=4.7 cm Flooding Mass=0.4 kg Flooding Time=10 s
GM=2.29 cm co=2.5 r/s (0.4 hertz)
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Fig.5.59 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=7.8 cm Flooding Mass=0.6 kg Flooding Time=10 s
GM=2.29 cm co=3.8 r/s (0.6 hertz) TS2960S.DAT
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Fig.5.60 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=7.8 cm Flooding Mass=0.6 kg Flooding Time=10 s
GM=2.29 cm co=3.8 r/s (0.6 hertz)

192



NA
VE

 
H 

(0
4

-3 .83 ,

Fig.5.61 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=8.8 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=5.0 r/s (0.8 hertz) TS2961S.DAT
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Fig.5.62 Motion response simualtion (Head sea condition-asymmetrical flooding)
WH=8.8 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=5.0 r/s (0.8 hertz)
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Fig.5.63 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=9.6 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz) TS2962S.DAT
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Fig.5.64 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=9.6 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz)
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Fig.5.65 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=7.3 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=7.5 r/s (1.2 hertz) TS2963S.DAT
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Fig.5.66 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=7.3 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=7.5 r/s (1.2 hertz)
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Fig.5.67 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=6.6 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=8.8 r/s (1.4 hertz) TS2964S.DAT
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Fig.5.68 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=6.6 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=8.8 r/s (1.4 hertz)
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Fig.5.69 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=6.8 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz) TS2967S.DAT
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Fig.5.70 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=6.8 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz)
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Fig.5.71 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=6.2 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=2.5 r/s (0.4 hertz) TS2968S.DAT
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Fig.5.72 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=6.2 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=2.5 r/s (0.4 hertz)
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Fig.5.73 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=12.3 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=3.8 r/s (0.6 hertz) TS2969S.DAT
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Fig.5.74 Motion response simulation (Head sea condition-asymmetrical flooding) 
WH=12.3 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=3.8 r/s (0.6 hertz)
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Fig.5.75 Motion response experiment (Head sea condition-asymmetrical flooding)
WH=12.9 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz) TS2970S.DAT
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Fig.5.76 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=12.9 cm Flooding Mass=0.4 kg Flooding Time=5 s
GM=2.29 cm CO=5.0 r/s (0.8 hertz)
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Fig.5.77 Motion response experiment (Head sea condition-asymmetrical flooding) 
WH=12.3 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz) TS2971S.DAT
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Fig.5.78 Motion response simulation (Head sea condition-asymmetrical flooding)
WH=12.3 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz)
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Fig.5.79 Motion response experiment (Beam sea condition-asymmetrical flooding) 
WH=5.3 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=2.5 r/s (0.4 hertz) TS2972S.DAT
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Fig.5.80 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=5.3 cm Flooding Mass=0.5 kg Flooding Time=10 s
GM=2.29 cm co=2.5 r/s (0.4 hertz)
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Fig.5.81 Motion response experiment (Beam sea condition-asymmetrical flooding) 
WH=10.2 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=3.8 r/s (0.6 hertz) TS2974SDAT
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Fig.5.82 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=10.2 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=3.8 r/s (0.6 hertz)

214



5  1 3 . 5 3

0 . 9 8 7

0.000
0 . 9 8 7

SECONDS

-o .*/

SECONDS

> 8 . 6 4

10.S 

8.S  

0 . 5 ~W ~m sor TSolTW

Fig.5.83 Motion response experiment (Beam sea condition-asymmetrical flooding) 
WH=9.4 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz) TS2975S.DAT
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Fig.5.84 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=9.4 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz)
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Fig.5.85 Motion response experiment (Beam sea condition-asymmetrical flooding) 
WH=7.4 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz) TS2976S.DAT
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Fig.5.86 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=7.4 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz)
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Fig.5.87 Motion response experiment (Beam sea condition-asymmetrical flooding) 
WH=8.6 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=7.5 r/s (1.2 hertz) TS2977S.DAT

219



Fig.5.88 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=8.6 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=7.5 r/s (1.2 hertz)
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Fig.5.89 Motion response experiment (Beam sea condition-asymmetrical flooding) 
WH=7.0 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm co=8.8 r/s (1.4 hertz) TS2978S.DAT
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Fig.5.90 Motion response simulation (Beam sea condition-asymmetrical flooding)
WH=7.0 cm Flooding Mass=0.2 kg Flooding Time=5 s
GM=2.29 cm 0=8.8 r/s (1.4 hertz)
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Fig.5.91 Motion response experiment (Beam sea condition-symmetrical flooding) 
WH=5.5 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=2.5 r/s (0.4 hertz) TS2979S.DAT
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Fig.5.92 Motion response simulation (Beam sea condition-symmetrical flooding)
WH=5.5 cm Flooding Mass=0.3 kg Flooding Time=5 s
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Fig.5.93 Motion response experiment (Beam sea condition-symmetrical flooding) 
WH=10.1 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=3.8 r/s (0.6 hertz) TS2980S.DAT
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Fig.5.94 Motion response simulation (Beam sea condition-symmetrical flooding)
WH=10.1 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=3.8 r/s (0.6 hertz)
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Fig.5.95 Motion response experiment (Beam sea condition-symmetrical flooding) 
WH=8.9 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz) TS2981S.DAT
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Fig.5.96 Motion response simulation (Beam sea condition-symmetrical flooding)
WH=8.9 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=5.0 r/s (0.8 hertz)
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Fig.5.97 Motion response experiment (Beam sea condition-symmetrical flooding) 
WH=8.9 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz) TS2982S.DAT
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Fig.5.98 Motion response simulation (Beam sea condition-symmetrical flooding)
WH=8.9 cm Flooding Mass=0.3 kg Flooding Time=5 s
GM=2.29 cm co=6.3 r/s (1.0 hertz)
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CHAPTER 6 

PARAMETRIC STUDIES
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6 .1  INTRODUCTION

This chapter presents the results of an extensive parametric study to investigate 

various non-linear aspects of the prediction of the large amplitude motion responses of a 

semi-submersible. The investigations were carried out for the particular semi- 

submersible geometry using a numerical simulation technique in the time-domain. The 

simulations were performed for the model during intact, progressive and post-flooding 

conditions under the combined loading of regular waves, steady wind and current for two 

different heading angles.

The main objectives of the parametric studies were to investigate the following 

aspects, which can non-linearly influence the motion responses and which can not be 

studied by linear frequency-domain prediction techniques. These aspects are the effects 

of flooding time and mass, non-linear wave-exciting and rigid-body induced motion (i.e. 

added mass and damping) forces, non-linear restoring forces, steady wind and current, 

variation of GM, initial position of the semi-submersible on motion responses.

Thus, this chapter is intended to provide some insight into the physical effects of 

the non-linear terms in the motion equations which are associated with the wave- 

excitation forces, rigid-body induced motion forces and restoring forces. Since the 

resulting motion responses could have a steady component as well as the oscillatory one, 

the force and motion phenomenon were also highlighted through the computation of these 

components.

6 .2  PRESENTATION OF PARAMETRIC STUDIES

This section provides general information on the parametric studies. The aspects 

mentioned as the objectives of this chapter in the previous section were investigated under 

the following subtitles:

i) Effects of flooding time and mass on the roll response
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ii) Effects of non-linear wave excitation and restoring forces on the 

motion behaviour

iii) Effects of coupling between heave and roll modes of motion

iv) Effects of steady wind and current on the motion behaviour

v) Effects of second-order forces

- First-order relative wave elevation

- Non-linear drag force

vi) Effects of non-linear added mass and damping force on motion 

behaviour

vii) Effect of different GM in steady and oscillatory motion behaviour

viii) Effect of initial condition on motion behaviour

Among the effects listed above, v is associated with the second-order phenomenon. 

Therefore, a brief definition of the second-order steady forces and their components is 

presented prior to considering the effects of second-order forces. Parametric studies were 

carried out for the semi-submersible model which was described in more detail in 

Chapter 5. A general arrangement of the model is shown in Fig.2.2.

Head and beam sea conditions were considered in the parametric studies. In most 

of the computations, the wave frequency range varied from 1 to 10 rad/s (0.12 to 1.19 r/s 

in full scale). The wave heights varied from 5 to 30 cm (3.5 to 21 m in full scale).

When the effects of steady wind and current were taken into account, it was 

assumed that they acted as in the same direction as the waves. Based on some full scale 

measurements, a typical value of 6.16 m/s (51.5 m/s in full scale) for the steady wind 

velocity and 0.1 m/s (0.8 m/s in full scale) for the steady current velocity were selected.

In damaged conditions, the model was assumed to be damaged at one or two of the 

inner columns. The flooding time varied from 5 to 15 s (41 to 125 s in full scale) while 

the flooding mass was varied from 1.5 to 5 kg (514 to 1715 t in full scale).
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For the investigation of varying GMs, three different loading condition were tested. 

These conditions yielded corresponding GM values of 1.9, 3.8 and 7.9 cm in model 

scale. The highest GM value was used in the parametric studies presented in the other 

sections of the chapter.

6 . 2 . 1  THE EFFECT OF FLOODING TIME AND MASS ON THE ROLL  

R E S P O N S E

The non-linear motion equations given in Section 4.5 were applied to a semi- 

submersible model in the presence of no wind or current. As defined in more detail by 

Soylemez (1988), 110 computer simulations were carried out. The objective of this 

investigation was to determine the effect of size of flooded compartment and flooding 

time on motion response amplitudes.

Tabulated results of the computations for the above defined damaged condition (i.e. 

semi-submersible was assumed to be damaged at the inner columns) are given in Tables 

6.1 and 6.2 and Figs.6 .1-3 for the roll motion response. Although it is not very 

significant in the tables but quite clear in Figs.6.1-3, the general trend of the findings is 

that as the flooding time increases, the motion amplitudes in the transient region decrease. 

This group of studies also indicated that the transient motion displacement during 

progressive flooding can be significantly higher than that during post-flooding

(Figs.6.1-3).

-0.S

Fig .6.1 Motion response simulation of roll
WH=10 cm Flooding Mass=5 kg Hooding Time=5 s
GM=7.9 cm to=7 rad/s
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Fig.6.2 Motion response simulation of toll
WH=10 cm Flooding Mass=5 kg Flooding Time=10 s
GM=7.9 cm co=7 rad/s

Fig.6.3 Motion response simulation of roll
WH=10 cm Flooding Mass=5 kg Flooding Timc=15 s
GM=7.9 cm oo=7 rad/s

Roll D isplacem ents in
Freq Roll D isp lacem ents Post Flooding C ondition (deg)
(rad/s) In In ta c t Condition Flooding Flooding Flooding

(deg) Tlme=5 s Tlme=10 s Time=15 s
1 0.325 8.300 8.300 8.021
2 2.120 9.983 10.225 9.834
3 1.948 10.070 9.774 9.940
4 2.120 10.385 10.137 9.983
5 2.005 10.225 9.920 9.877
6 1.490 9.822 9.483 9.167
7 0.802 9.167 8.855 8.820
8 0.218 8.905 8.626 8.251
9 0.097 8.709 8.709 8.467

10 0.160 8.840 8.467 8.403
Wave Height = 10 cm

Water Mass in Flooded Compartment ”  13  kg

Table 6.1- The Effect of Flooding Time on Roll Response Predictions
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6 . 2 . 2 .  E F F E C T S  OF N O N - L I N E A R  W A V E  E X C I T A T I O N  AND  

RESTORING FORCES ON MOTION BEHAVIOUR

In order to show these two effects, the results of the computations for the heave and 

roll motion responses are provided in Tables 6.3 and 6.4 for two different wave heights 

(10 and 30 cm). In these computations, the model was in intact condition and no effect of 

wind or current was taken into account.

In table 6.3, linear displacements were obtained from the solution of the linear small 

amplitude motion equations in the frequency-domain whereas non-linear displacements 

were obtained from the solution of the large amplitude non-linear motion equations in the 

time-domain. In the latter solution, the two force terms were obtained through an actual 

non-linear modelling while in the former solution the non-linear effects were neglected.

In general, the heave and roll response values obtained from the non-linear model 

are higher than the response values obtained from the linear model. This trend becomes 

strong in the resonance regions. For instance, in the heave resonance region (2.5 rad/s) 

the non-linear formulation yields response values which are about 45% higher than the 

linear formulation for the extreme wave height of 30 cm in model scale. In the roll 

resonance region (1.5 rad/s), the non-linear formulation gives roll response displacement 

about 14% higher than does linear theory.

Table 6.4 shows the effects of non-linearities in wave excitation forces and 

stiffness terms independently. Since the heave stiffness remains constant during large 

amplitude oscillations in single degree of freedom due to the geometrical configuration of 

the semi-submersible, heave displacements compared in the Table 6.4, show the effect of 

non-linear heave excitation forces only.
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Ro l l  D i s p l a c e m e n t s in
Freq R o l l  D i s p l a c e m e n t s P o s t  F l o o d in g  C o n d i t i o n ( d e g )

(rad/s) In I n t a c t  C o n d i t i o n F l o o d i n g F l o o d i n g F l o o d i n g
(deg) T i m e  = 5 s T i m e  = 10 s T i m e  = 15 s

1 1 .328 2 7 . 6 2 2 2 7 . 5 4 2 2 7 . 0 6 7
2 6 .7 6 7 2 8 . 0 9 8 2 8 . 1 0 9 2 8 . 1 0 9
3 6 .0 4 3 2 8 . 7 6 2 2 8 . 6 4 8 2 8 . 6 4 8
4 6 .4 4 6 2 9 . 8 1 7 2 9 . 7 9 4 2 7 . 8 9 2
5 6 .0 4 3 2 8 . 6 4 8 2 8 . 0 8 6 2 8 . 0 0 0
6 5 .6 0 5 2 9 . 2 0 9 2 9 . 0 8 9 2 7 . 3 9 9
7 2 . 3 8 0 2 9 . 8 8 5 2 9 . 8 6 3 2 7 . 6 2 2
8 0 . 7 2 4 2 9 . 4 0 4 2 9 . 2 8 4 2 7 . 2 6 7
9 0 .3 7 1 2 8 . 6 4 8 2 8 . 5 4 5 2 7 . 3 0 1
10 0 .4 9 8 2 9 . 4 0 4 2 9 . 2 8 4 2 7 . 2 6 7

W ave Height = 30 cm
Water Mass in Flooded Com partm ent =  5 ke

Table 6.2- The  Effect o f  Flooding Time on Roll Response Predictions

F r e q L i n e a r H eave N o n - L i n e a r H eave L i n e a r R o l l N o n - L i n e a r  R o l l
(rad/s) D i s p l a c e m e n t s  (m) D i s p l a c e m e n t s  (m ) D i s p l a c e m e n t s  ( d e c ) D i s p l a c e m e n t s  ( d e e )

H w = I0  cm Hw=30 cm Hw=10 cm' Hw= 30 cm H w = ]0  cm Hw=30 cm H w = 1 0 c m Hw=30 cm
1 0 . 0 5 0 0 .1 4 9 0 . 0 5 0 0 .1 5 1 0 . 3 9 0 1 . 1 7 0 0 . 3 2 5 1 .3 2 8
2 0 . 0 5 6 0 .1 6 6 0 .0 5 8 0 .1 5 9 1 .9 7 2 5 . 9 1 7 2 . 1 2 0 6 . 7 6 7
3 0 . 0 1 6 0 .0 4 9 0 .0 1 8 0 .071 1 .9 0 4 5 .7 1 1 1 .9 4 8  ' 6 .0 4 3
4 0 . 0 1 7 0 .0 5 2 0 .0 1 7 0 .0 5 3 2 . 0 6 4 6 . 1 9 3 2 . 1 2 0 6 .4 4 6
5 0 . 0 0 9 0 .0 2 6 0 . 0 0 9 0 . 0 2 6 1 .9 2 7 5 . 7 8 0 2 . 0 0 5 6 .0 4 3
6 0 .0 0 1 0 . 0 0 2 0 .0 0 1 0 . 0 0 2 1 .4 2 2 4 . 2 6 6 1 . 4 9 0 5 .6 0 5
7 0 .0 0 4 0 .0 1 3 0 .0 0 4 0 .0 1 3 0 . 6 8 8 2 . 0 6 4 0 . 8 0 2 2 . 3 8 0
8 0 .0 0 6 0 .0 1 6 0 . 0 0 5 0 .0 1 6 0 .1 1 5 0 . 3 4 4 0 . 2 1 8 0 . 7 2 4
9 0 .0 0 3 0 . 0 1 0 0 . 0 0 3 0 . 0 1 0 0 . 1 8 3 0 . 5 5 0 0 . 0 9 7 0 .3 7 1

10 0 .0 0 1 0 .0 0 3 0 .0 0 1 0 .0 0 3 0 . 2 0 6 0 . 6 1 9 0 . 1 6 0 0 . 4 9 8

Table 6 3 -  Comparison o f  Linear and Non-linear Motion Response  Predictions

H e a v e  D i s p l a c e m e n t s  (m) Rol l  D i s p l a c e m e n t s  ( d e e ) R ol l  D i s p l a c e m e n t s  ( d e c )
F req L i n e a r  H e a v e N o n - L i n e a r L i n e a r  Ro ll N o n - L i n e a r L i n e a r N ' o n - L l n e a r

(TadIs) E x c i t a t i o n H e a v e  E x c l t . E x c i t a t i o n Rol l  E x c l t . S t i f f n e s s S t i f f n e s s
F o r c e s F o r c e s F o r c e s F o r c e s

1 0 . 1 4 9 0 .1 5 1 1 .1 7 0 1 .585 1 .1 7 0 1 .5 1 6
2 0 . 1 6 6 0 . 1 5 9 5 .9 1 7 5 . 9 2 5 5 . 9 1 7 8 . 5 9 5
3 0 . 0 4 9 0 .0 7 1 5 .711 5 . 8 8 2 5 .7 1 1 6 . 5 0 5
4 0 . 0 5 2 0 .0 5 3 6 .1 9 3 6 . 4 7 6 . 1 9 3 6 . 6 0 6
5 0 . 0 2 6 0 . 0 2 6 5 . 7 8 0 5 . 9 9 4 5 . 7 8 0 5 . 8 8 4
6 0 . 0 0 2 0 . 0 0 2 4 . 2 6 6 4 . 4 8 4 4 . 2 6 6 4 . 2 1 6
7 0 . 0 1 3 0 .0 1 3 2 .0 6 4 2 . 3 6 2 . 0 6 4 2 . 0 7 8
8 0 . 0 1 6 0 .0 1 6 0 . 3 4 4 0 . 7 2 2 0 . 3 4 4 0 . 3 3 6
9 0 . 0 1 0 0 . 0 1 0 0 . 5 5 0 0 . 3 9 4 0 . 5 5 0 0 . 5 3 9
1 0 0 . 0 0 3 0 .0 0 3 0 .6 1 9 0 . 5 0 2 0 . 6 1 9 0 . 5 9 6

Heave  Stiffness Constant Roll Stiffness Constant Linear Roll Excit.  Moment
Wave Height = 30 cm

Tab le  6.4- Th e  Effect o f  Non-linear Wave Excitation forces and o f  Non-linear Stiffness on Motion Responses

6 .2 .3  E FFE C T  OF COUPLING BETW EEN T H E  HEAV E AND R O LL 

MODE OF MOTION

The hydrodynamic coupling between heave and roll motions is one of the most 

important aspects in simulating large amplitude motions. In Table 6.5, the results of the 

computations for the coupled and uncoupled cases are provided for the intact condition. 

As shown in the table the inclusion of the coupling indicates the higher motion responses 

for both modes of the motions.
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Freq U n c o u p le d C o u p le d U n c o u p le d C o u p le d
(rad/s) Heave (cm) Heave (cm) Roll (deg) Roll (deg)

1 5 .00 5.13 0.33 0 .44
2 5 .80 6.31 2 .12 3 .30
3 1.80 2 .69 1.95 2 .06
4 1.70 1.94 2 .12 2.21
5 0 .90 0 .99 2.01 2 .17
6 0.05 0.06 1.49 1.58
7 0 .40 0 .48 0 .80 0 .82
8 0 .50 0 .58 0 .22 0 .24
9 0 .3 0 0.37 0 .10 0 .10
10 0 .09 0.11 0 .16 0.18

Wave Height = 10 cm

Table 6.5- Effect of Coupling Between Different Mode of Motions

6 . 2 . 4  EFFECTS OF STEADY WIND AND CURRENT

The environmental effects caused by wind and current influence the motion 

responses. When the effects are combined with the effect of the waves, large amplitude 

motions could occur and this aspect can be investigated through time-domain analysis.

In order to explore the effects, the steady wind and current were formulated and 

combined with the wave effects in the program. The method for the wind force 

calculation is given in Appendix A while that for the current is represented in Section 

3.2.6.

The results of the computations for the intact model's motion responses in surge 

heave and pitch motions are presented in Figs.6.4., 6.6  and 6.7. The results presented in 

Figs.6.4 and 6.7 excluding wind and current effects do not include drag forces.
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Fig.6.4 Effect of wind and current and current loading on surge response 

predictions (GM=7.9 cm)
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Fig.6.5 Effect o f wind and current loading on surge drift predictions 

(GM=7.9 cm)

239



4>
Vi
(3OO.
Vi4>o*
a>
►
CGV
X

Q Heave 
♦ Heave W&C

Wind Velocity = 6.16 m/s 
Current Velocity =0.1 m/s 
Wave Height = 5 cm

2 4 6

Frequency (rad/s)

1 0

Fig.6.6  Effect of wind and current loading on heave response predictions 

(GM=7.9 cm)

“35

5  -

3

4>
Vi

4  -

e
©
a .
Vi
V

3  -

u

J 3
u4->

2  -

c - 1 -

0  -

□
♦

Pitch
Pitch W&C

Wind Velocity = 6.16 m/s 
Current Velocity =0.1 m/s 
Wave Height = 5 cm

0 2 4 6 8 10

Frequeny (rad/s)
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The effect of steady wind and current on first order oscillatory and steady drift 

motions was also investigated. This investigation showed that steady wind and current 

forces alter the mooring stiffness characteristics and this in turn causes significant 

changes in motion response characteristics, except for heave motions (see Figs.6.4-6.7).
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6 .2 .5  EFFECTS OF SECOND-ORDER STEADY FORCES

When a floating structure is subjected to the surface waves, hydrodynamic forces 

and moments are exerted on its body. These forces and moments will have first- 

order,oscillatory components as well as small second-order, steady (mean) or low 

frequency components due to various non-linear effects (Pinkster 1980).

The first-order forces (or moments) are linearly proportional to wave height and 

cause the oscillatory motions of the structure with frequencies equal to the frequencies in 

the wave spectrum. The second-order forces (or moments) are linearly proportional to 

the square of the wave height and can cause large amplitude resonant behaviour of 

motions with very low damping. In a general definition, the term of second-order 

contains the product of two first-order terms which can be wave height, particle 

velocity,pressure, current velocity or vessel's motion response.

In spite of their small magnitudes, the second-order forces may have important 

effects on semi-submersibles. Depending on the mode of excitation, the motion response 

of the vessel can be magnified resulting in large excursions from the mean position when 

the vessel's has a long natural period.

Semi-submersibles experience relatively large second order forces in the vertical 

direction as well as large drift forces in the horizontal direction because of their small 

waterplane area and large submerged hulls. These forces are thought to be responsible 

for the long period roll or steady tilt behaviour and heave phenomena of semi- 

submersibles (Numata et al. 1976, Martin and Kuo 1979, Atlar 1986).

In the most general case, the second-order forces can be grouped into two main 

categories based on the flow characteristics as follows:

i) Potential flow forces

ii) Viscous flow forces
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The most comprehensive discussion of the second-order potential forces is given by 

Pinkster (1980) who presented five contributions involved in these forces as follows:

i) Relative wave elevation

ii) Pressure drop

iii) Product of first-order translational motion and pressure

iv) Product of first-order rotational motion and inertia forces

v) Second-order potential

Later Standing et al. (1981a,1981b) introduced a 6th component to the steady 

forces due to the non-linear restoring effects. On the other hand, Morison's equation has 

the advantage of taking account of the viscous effect. By using this approach, several 

researchers introduced a 7th component to the steady forces associated with the viscous 

effects (Pijfers 1977, Ferretti 1980, Lundgreen 1982, Chakrabarti 1983).

In the following, these seven components are briefly defined based on the above 

references. By referring to these components, the components incorporated in the time- 

domain simulation program developed in the thesis are identified.

i) First component of the Second-Order Steady Forces due to First 

Order Relative Wave Elevation

First order relative wave elevation between the mean waterline of the structure and 

instantaneous free surface gives rise to the first component of the second-order steady 

forces.

I P  8 J C n d l
WL (6.1)

where

Cr Relative wave elevation

dl Line element of the waterline
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This second-order force component was also introduced as wave elevation drift 

force by Chakrabarti (1984b). Chakrabarti (1984a) gave a broad theoretical explanation 

of the steady drift forces on vertical cylinders.

ii) Second Component of the Second-Order Steady Forces due to 

Pressure Drop

The quadratic term in Bernoulli's equation gives rise to a steady second-order 

component when the first-order potential is used to calculate the pressure acting on the 

surface of the structure

Chakrabarti (1984b) named this component the velocity head drift force.

iii) Third Com ponent o f  the S econ d-O rder  S teady  F orces  

due to Product o f  Gradient o f  F irst-O rder Pressure and 

First-Order Motion

This component represents the change in the force due to first order motions 

through the pressure field (see Standing et al. 1981b).

(6.2)

where

V Vector operator 

Velocity potential

Unit normal vector to surface (positive outward) 

Surface element of SQ

it

d S

-  JJ- p ( X (1)V  <f>t l ) ) n d s

(6.3)
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where

a ( 1 )< i Derivation of the first-order velocity potential with 

respect to time

„U )
A. First-order motion vector of surface element ds

relative to the fixed co-ordinate system

iv) Fourth Component o f  the Second-Order Steady Forces due to 

Products of First-Order Angular Motions and Inertia Forces

The first-order rotation on the direction of the fluid pressures acting at right angles 

to the structure's instantaneous surface gives rise to the fourth component of the second- 

order steady forces (See Standing 1981a). Therefore, this term takes the structure's 

rotational oscillations into account in the calculation of first-order wave exciting forces 

acting on a floating vessel.

( i ) ..(i)
a  a (M  X g )

where

( i )
ol First-order angular motion vector
..(i)

ir
8 First-order acceleration vector o f the centre o f 

gravity relative to the fixed co-ordinate system

Contribution from the products of first-order angular motions and inertia forces is 

defined by Chakrabarti (1984b) as rotational inertia drift force.

v) Fifth Component o f  the Second-Order Steady Forces due to 

Second-Order Potential

This component arises due to the second-order velocity potentials and is expressed

as:
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r r (2) (2)-  J J - P (0 w  )n d S
(6.5)

where

(2)
Derivative of second-order potential o f undisturbedt
incoming waves with respect to time

(2)
<J>d D erivative of second-order d iffraction  potential

t
incoming waves with respect to time

vi) Sixth Com ponent of the Second-Order Steady Forces due to 

Non-linear Hydrostatic Stiffness

This component of the second order steady forces was defined by Standing et al. 

(1981a-1981b) in the following form:

(6.6)

where

Zc A (T)42 + r;52) (0 ,0 ,1 )

z c Heave motion

A Water plane area

% Roll motion response

Pitch motion response

(0 ,0 ,1 ) Normal vector components

The equation given above by Standing et al. (1981b) represents the changes in the 

buoyancy force due to second-order motions.
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vii) Seventh Com ponent  o f  the S e c o n d -O r d e r  S teady  F orc e s  due to

Non-linear Viscous Drift Force

Morison's formula has the advantage of taking into account the viscous effect of the 

flow. In this formula, the flow velocity in the viscous drag term may have a constant part 

and a harmonic part. The constant part is induced by the mass transport of the waves 

(Stokes drift) and a possible current, whereas the harmonic part is induced by the wave 

particle motions (Pijfers and Brink 1977).

The constant velocity components induce steady "wave-current drag" forces at a 

submerged location in terms of the form and friction factor (Ludgren et al. 1982, Ferretti 

et al. 1980). The latter is a very small part of the form drag.

Since the wave particle velocity is harmonic, the drag forces induced by this 

velocity at a submerged location have a zero-mean over one period. However, because of 

the changing surface elevation along the splash zone of a vertical cylinder, a mean "wave- 

drag" force in the horizontal direction arises due to the horizontal wave particle velocities 

(Pijfers and Brink 1977). This component is obtained when the drag forces acting on 

vertical cylinders are calculated by integrating the forces up to the splash (instantaneous 

water) zone.

When Morison's formula is used in the frequency-domain analysis, it is necessary 

to linearise the viscous drag term (Naess and Hoff 1984). However, this linearisation 

process removes the mechanism which induced the steady component associated with the 

viscous effect. Whereas in the time-domain calculations, this non-linear drag term can be 

taken into account without linearisation since the numerical methods are employed to 

solve the motion response equations.

Chakrabarti 1984 calculated this force component for a fixed vertical cylinder and 

presented it in the following form:
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F (k H )  r i i
p  g CD D I  k2 =  12x Lsinh 2kd +CS k H ) 00(11 2 M J

(6.7)

where

H Wave height 

Water depth

A coefficient function of kH

d

C

Among the seven above defined steady force components, the first component was 

taken in the time-domain solution by taking the upper limit of the wave-induced force and 

moment integrations up to the instantaneous free surface. The second component due to 

pressure drop was not taken into account since the Morison approach is used. The third 

and fourth components were automatically taken into account in the time-domain 

simulations since the translational and rotational oscillatory motions of the structure were 

considered in the calculations of the wave-exciting forces and moments at every time step. 

Since the fifth component is derived from the second-order potentials, the calculations 

presented in this thesis ignore this component. The contributions of the sixth component 

due to non-linear stiffness were taken into account in the simulation.

The seventh component due to viscous effect was also incorporated in the motion 

equation through the non-linear drag term in the Morison approach.

In addition to the above components, centripetal forces arising from rotational 

motions as explained in the formulation of non-linear added mass calculations given in 

Section 4.2 were taken into account in the time-domain formulations. These forces also 

contribute to the second-order steady forces acting on the structure.

Having highlighted the physics of the second-order force components, in the 

following sections a set of computations is presented for the semi-submersible model 

under consideration to investigate the effects of these forces.
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In these computations particular emphasis is placed on the prediction of steady tilt 

behaviour of the model. This phenomenon has been reported by several investigators 

(Numata et al. 1976, De Souza 1976, Martin and Kuo 1979, Atlar 1986) during several 

model experiments. In these tests, it was noted that especially at low values of GM, the 

models developed a "steady tilt" in regular waves which could be as high as 10°-15° and 

that the model made roll oscillations about this tilt angle. It was conjectured that the main 

forces responsible for this behaviour were the steady potential vertical forces (Ogilvie 

1963, Lee and Newman 1971) (i.e. due to pressure drop component) on the lower hulls 

and steady horizontal forces on the columns induced by both the viscous and potential 

effects. These phenomena was observed in both directions (i.e. bi-stable tilt) or in one 

direction (preferred tilt).

In none of the above mentioned investigations has this non-linear steady behaviour 

been looked at in the time-domain. Therefore, it would be most appropriate to explore 

various aspects of this behaviour by the simulation program developed in this thesis. 

However, steady vertical forces on the lower hulls are neglected in the formulation of the 

simulation program.

6 . 2 . 6  THE EFFEC T OF N O N -L IN E A R  DRAG FO R C E AND FIRST-  

ORDER RELATIVE WAVE ELEVATION

Figs.6.8 and 6.9 shows the results of the first groups of computations for the 

model in intact condition under the effect of beam waves for two different wave heights 

(10 and 30 cm). In these computations, the forces acting on the vessel were evaluated by 

integrating them up to still water level. In the figures a minus sign indicates the steady tilt 

in the leeward direction while a positive sign indicates the seaward tilt. As shown in both 

Figs.6.8 and Fig.6.9 the steady tilt could develop in both directions over the frequency 

range tested and its magnitude increases with increasing wave height.
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Fig.6.8 Steady Tilt Angle (Integration up to the Still Water Level)
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Fig.6.9 Steady Tilt Angle (Integration up to the Still Water Level)

The results of the second group of computations for the same wave conditions were 

presented in Figs.6.10 and 6.11. In this case, the forces were integrated up to the 

instantaneous water level which allowed the effect of relative wave elevation (i.e. first 

component) and non-linear viscous drag (i.e. seventh component) as well as others as 

indicated earlier in the chapter.
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Fig.6 .11 Steady Tilt Angle (Integration up to the Wave Elevation)

Comparison of Figs.6.10 and 6.11 with Figs.6.8 and 6.9 indicates that the 

inclusion of the first and seventh components increases the magnitude of the steady tilt as 

well as changing its bi-stable character. As shown in Figs.6.10 and 6.11, steady tilt 

occurred always in the leeward direction over the entire frequency range with the same 

model as reported by Atlar (1986).



Fig.6.12 compares the steady tilt predictions obtained from non-linear time-domain 

analysis with the test measurements for the semi-submersible configuration given in 

Chapter 5. As noticed in this figure the predicted steady tilt values were underestimated 

for the frequency range from 4.5 to 6.5 rad/s. This underestimation is attributed to the 

vertical component of the second-order force acting on the lower hulls which were not 

considered in the formulation of the simulation program.

°  Measurements 
♦ Calculations

0 . 1 2 -

OD
•o 0.08 -

H 0.04 -

0.00
2 3 4 65 7 8

Frequency (rad/s)

Fig.6 .12 Comparison of steady tilt angle predictions with measurements

6 .2 .7  T H E  EFFE C T OF NON -LINEAR ADDED MASS AND DAM PING 

FO R C E

The parametric studies described in the preceding sections took into account the 

non-linearities due to the time and position dependent wave forces, non-linear restoring 

forces, and also non-linear damping forces in a simplified form.

Subroutine AM AS was written to calculate the non-linear added mass and damping 

forces which were formulated in Section.4.2. Having included the AMAS into the 

simulation program, computations in every time step increased the CPU time 

significantly. Therefore, only a few wave frequencies were tested in order to investigate 

the effect of non-linear added mass and damping. Table 6.6 shows the effect of non­

linear added mass and the damping force on roll response amplitudes for 1,5 and 8 rad/s.
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Frequency
(rad/s)

Roll Response (deg) 
Linear Added Mass 

and Damping

Roll Response (deg) 
Non-Linear Added Mass 

and Damping
1 0.32 0.16
5 1.95 1.96
8 0.23 0.30

Wave Height = 10 cm

Table 6.6 Effect of Non-linear Added Mass and Damping

Comparisons between the results obtained both for the linear and the non-linear 

case show that there is no significant change in the motion response amplitudes results by 

including non-linear added mass and damping forces for the intact condition especially for 

the frequency of 5 rad/s. The roll response amplitude significantly decreased at 1 rad/sec 

both for intact and damage cases whereas the roll response increased at 8 rad/s.

The significant decrease in roll magnitude shown in Table 6.6 for frequency of 

1 rad/s which coincides with the natural roll frequency of the platform is due to the effect 

of an increase in non-linear damping forces.

6 . 2 . 8  THE EFFECT OF DIFFERENT GMs ON MOTION BEHAVIOUR

In order to investigate the effects of different GM values on roll and pitch motions, 

cross-curves of stability for roll and pitch motions are generated for different KG values. 

Figs.C.3-8 show the cross curves of stability for three different KGs for roll and pitch 

oscillations.

The application of different GMs in the solution of the roll motion equation resulted 

in changes in the oscillation amplitudes and increased the steady tilt. At 1 rad/s reduction 

in GM value increased the response amplitude significantly as shown in Figs.6.14-15.

The response amplitudes obtained from the differential equations with linear and 

non-linear hard and soft spring characteristics are discussed in theoretical detail by Stoker 

(1950). Wilson (1984) gives some insight concerning the physical response of inherently
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Fig.6.14 Motion response simulation of roll
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non-linear cable-stayed systems such as moored ship or moored landing ship tank. The 

effect of non-linear pitch restoring moment on the motion response amplitude of the semi- 

submersible at the resonant frequency is shown in Fig.6.16. As seen in Fig.6.16, the 

pitch restoring moment has soft spring characteristics for small amplitude motions and 

hard spring characteristics for large amplitude motions. This figure is also an example of 

incipient jumps or erratic changes in the response amplitudes of non-linear equations. 

More theoretical background on this subject is given by Bishop et al. (1986). Theoretical 

investigations into the non-linear stiffness or restoring force of an offshore structure was 

carried out by Virgin and Bishop (1988). Bishop and Virgin (1987) described a 

combined numerical and geometric approach to study the dynamic behaviour of a moored 

semi-submersible based on solutions of the differential equations which are non-linear in 

stiffness term only. Data presented in Fig.6.16 was obtained from the numerical time- 

domain simulations.

Fig.6.17 shows the importance of the initial conditions on the motion response

amplitude. As can be seen from Fig.6.17, the pitch response of a semi-submersible with
o o

15 initial list angle is about three times larger than that of a semi-submersible with 0

initial list angle.

Investigations into the effect of GM on the pitch motion response values and the 

steady list angle under wave loading only, and under wave,wind and current loading 

were presented in Figs.6.18-21. It was found that the effect of different metacentric 

heights is not significant for higher frequencies so far as the magnitude of the motion 

amplitudes are concerned.

Table 6.7 shows the effects of variation of GM on steady tilt and oscillatory roll 

motions.
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GM  - 7.9 cm GM = 3.8  cm GM = 1.9 cm
F req Wave Height *= 10 cm Wave Height = 10 cm Wave Height = 10 cm
(rad/s) R oll R esp . (deg) Roll R esp . (deg) Roll R esp . (deg)

O sc illa to ry S te a d y O sc illa to ry S te a d y O sc illa to ry S te a d y
1 0.44 0.00 1.59 0.00 2.99 -0.08
2 3 .30 -0.07 1.36 -0.10 1.19 -0.16
3 2.06 -0.11 1.76 -0.20 1.69 -0.34
4 2.21 -0.20 2.13 -0.35 2.15 -0.60
5 2.17 -0.22 2.08 -0.48 2.13 -0.69
6 1.58 -0.28 1.70 -0.63 1.78 -1.04
7 0.82 -0.50 0.99 -1.30 1.07 -2.46
8 0.24 -0.69 0.31 -2.39 0.44 -6.34
9 0 .10 -0.90 0.15 -3.51 0.40 -12.93
10 0.18 -1.22 0.55 -7.70 1.16 -15.51

Table 6.7- Effect of Variations of GM in Steady and Oscillatory Motions

Fig.6.17 Effect of initial condition on pitch response
GM=3.8 cm HW=15 cm 0=1.3 rad/s
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Fig.6.18 Effect of different GMs on pitch response predictions
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6 .3  DISCUSSION OF RESULTS

The parametric studies were performed to determine the effect of the size of the 

flooded compartment and the flooding time in motion amplitudes. Tables 6.1 and 6.2 

show that as the flooding time decreases the motion amplitudes increase. The parametric 

calculations carried out in this study revealed that transient motion displacements during 

progressive flooding can be significantly higher than those during post-flooding.

The effects of various non-linear terms in the motion equations were studied 

systematically. Table 6.3 shows comparisons between the solutions of linear small 

amplitude motion equations and the solutions of large amplitude non-linear equations of 

the semi-submersible geometry in intact condition. As can be seen from Table 6.3, heave 

and roll response values obtained from non-linear large amplitude motion equations are 

higher than the response values obtained with linear motion equations, except when wave 

frequencies are 9 and 10 rad/sec. In the heave resonance region, non-linear formulations 

yield response which is about 45% higher than does small amplitude linear theory for the 

extreme wave height of 30 cm in model scale. In the roll resonance region, non-linear 

formulations give a roll displacement about 14% higher than does linear theory. The 

effects of non-linearities in wave excitation forces and in stiffness terms are also 

illustrated in Table 6.3. Table 6.4 shows that non-linear wave force and non-linear 

stiffness terms equally affect the response values.

The heave and roll amplitudes obtained from the solutions of uncoupled and coupled 

non-linear equations are compared in Table 6.5. The motion amplitudes given in this 

table were obtained for a wave height of 10 cm. Table 6.5 shows that solutions obtained 

from uncoupled motion equations are significantly less than those obtained from coupled 

equations. Table 6.7 shows the effect of variation of GM on steady tilt and oscillating 

roll motions.
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The effect of non-linear pitch restoring moment on the motion response amplitude is 

shown in Fig.6.16. Fig.6.17 shows the importance of the initial conditions on the 

motion response amplitude. As can be seen from Fig. 17, pitch response of a semi- 

submersible with 15° initial list angle is about three times larger than that of a semi- 

submersible with 0° initial list angle.

The effect of steady wind and current on first order oscillatory and steady drift 

motions was also investigated. This investigation showed that steady wind and current 

forces alter the mooring stiffness characteristics and this, in turn, causes significant 

changes in motion response characteristics, except in heave motions (see Figs.6.4-7 and 

Figs.6.18-21).

The effect of GM on the pitch motion response values and on steady list angle was 

also investigated under wave and wave,wind and current loading (see Figs.6.18-21). 

These figures suggest that the effect of small GM was amplified with the inclusion of 

drag forces into the wave force calculations particularly for the steady motions. For 

oscillatory motions, responses in the resonance region are mostly affected by increasing 

the GM.
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CHAPTER 7 

CONCLUSIONS
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7 .1  GENERAL

The general aim of the study reported in this thesis was to develop a prediction 

technique to simulate the motion response of a damaged platform under wave, wind and 

current forces. This objective was achieved through the development of a computer 

program based on the technique presented in Chapter 3 and 4. This program was 

successfully validated through the simulation of test measurements. Some parametric 

studies were conducted in order to investigate the effects of various non-linearities in 

motion response predictions.

It is expected that designers and certifying bodies will benefit from this study in 

their motion simulation work on the determination of several aspects of dynamic stability 

including the assessment of adequacy of watertight openings.

Conclusions of the study are presented and discussed below. Recommendations 

for the future work on the subject are given at the end of this chapter.

7 .2  CONCLUSIONS OF CH APTER TW O

Since the purpose of the study was to develop a prediction technique in order to 

determine the motion response of a damaged platform in waves utilising a time-domain 

solution technique one has to choose an accurate as well as computationally efficient 

method of calculating hydrodynamic forces.

At the beginning of the study, hydrodynamic forces were calculated using the 

Morison approach. A number of computer routines were developed to calculate heave 

motions for head and beam sea conditions, as well as sway and surge motions of the 

semi-submersible platform. Following these calculations, the coupled heave-pitch and 

heave-roll motions of the semi-submersible using the Morison approach were formulated 

and calculated using a new set of computer programs. The motion response values 

calculated using the Morison approach were also re-calculated utilising the computer 

programs based on 2-D source-sink distribution method developed by another research
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student in the Department of Naval Architect and Ocean Engineering, Glasgow 

University. Comparisons of the Morison approach with the 2D source-sink distribution 

technique showed that there is reasonably good agreement between the two methods for 

coupled heave-pitch and heave-roll motions. Comparisons of forces for head and beam 

sea conditions were also conducted and it was shown that there is also good agreement 

between the two methods. Additionally, the effect of columns on the hulls was 

investigated using 2-D source-sink distribution method.

The step-by-step technique to solve the coupled motion equations in the time- 

domain for the simulation of large amplitude motions of a semi-submersible in intact and 

damaged conditions requires the calculation of the hydrodynamic, hydrostatic and wave 

exciting forces many times over a given wave cycle. One has to select an appropriate 

method to determine these values so that the computational task becomes feasible.

Although both methods have advantages and disadvantages (e.g. while Morison 

equation considers viscous forces, the 2D source-sink does not; while the 2D approach 

can take into account the interaction effect between members the Morison approach can 

not; the application of strip theory is also questionable in the case of members which do 

not have uniform cross-sections such as columns) the two methods produced results in 

good agreement with each other for this particular semi-submersible geometry.

Having regard to the computing and storage requirements and limitations, the 

Morison approach was chosen and implemened in the time-domain motion simulation of a 

damaged platform in waves.

Since the Morison approach was found to correlate well with the 2-D source-sink 

distribution technique and also to be considerably more efficient in terms of CPU time 

than the 2-D source-sink method, the Morison's approach was chosen to derive wave and 

motion induced forces to simulate the coupled non-linear motions of a semi-submersible 

in intact, progressive and post-flooding conditions.
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7 .3  CONCLUSIONS OF CHAPTER THREE

The formulations derived in the previous sections were used in developing a 

computer program which predicts the non-linear large amplitude motions of a floating 

platform in six degrees of freedom. This computer program is described in Section 4.8. 

The calculation procedure derived in Chapter 3 provides a very efficient means of 

calculating wave forces and moments during the time-domain simulations of a floating 

platform experiencing large amplitude motion in intact, progressive flooding and damaged 

conditions.

7 .4  CONCLUSIONS OF CH APTER FOUR

In this chapter, a general method to obtain the loading on the circular cylindrical 

members of offshore structures due to rigid body motion was presented. Rigid body 

induced motions and total external forces were combined to obtain motion equations. 

Non-linear, coupled six degrees of freedom equations were reduced to a first order 

differential equation system so that a numerical solution using the Runge-Kutta method 

could be employed to obtain the motion responses in the time-domain.

Some examples from simulation studies were presented to illustrate various aspects 

during the development of the motion program. The results of parametric studies 

obtained using these equations were presented in Chapter 6. Several difficulties 

encountered during the development of the time-domain simualtion program were 

explained. Particular emphasis was given to the application of ramp functions which are 

necessary to obtain quick convergence in the time-domain simulation.

The formulations and the computational procedures given in this chapter provide 

useful tools for the investigataion of the non-linear dynamic stability characteristics of 

floating structures in waves for intact, damaged and post-flooding conditions in six 

degrees of freedom.
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7 .5  CONCLUSIONS OF CHAPTER FIVE

The experimental setup for intact and damaged simulation tests of a twin-hulled 

semi-submersible model and the measurements carried out during inclination, natural 

period and motion tests were described in Chapter 5.

The primary objectives of these tests were to compare the calculated motion 

responses with the measurements in order to verify the computer simulation method, and 

to study the motions of the model semi-submersible under intact, progressive flooding 

and post-flooding conditions.

Comparison of the test results with the numerical simulations shows good 

agreement for heave, roll and pitch motions. The measured first-order oscillatory motion 

responses for surge and sway modes correlated well with those obtained numerically but 

second-order steady displacements for surge and sway motions predicted using the 

stiffness characteristics of a catenary mooring system are larger than experimental 

measurements. This discrepancy was due to the fact that the model was moored to the 

tank walls by means of harnesses which possessed high stiffness characteristics. 

Similarly, the yaw motion simulation on the computer differed from experimental 

measurements which showed first-order oscillatory response about a mean position. This 

may be attributed to highly non-linear behaviour of the mooring lines or to the reflected 

waves between tank walls. This first-order oscillatory response was not observed in the 

numerical simulations during intact condition period since there was no yawing moment 

acting on the platform due to its symmetrical geometry with respect to the wave direction.

During the post-flooding simulation, as can be seen in some of the figures, i.e. 

Fig.5.13, there is an oscillatory roll motion in head sea condition. This could be due to 

the effects of piping used to flood the model and/or green water on the deck, which would 

have introduced assymmetry in the model and/or the reflected waves between tank walls.

The effect of free surface in the flooded compartment was also investigated and it 

was found that it had a negligible effect on the GM.

It was noticed that the smaller the GM, the higher the probability of capsize of a 

platform under post-flooding condition. During the experiments in which a maximum
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roll angle was measured as 10° and the maximum pitch angle was measured as 15°. (see 

Fig.5.85), green water on the decks was observed. These two typical experiments 

suggest that a platform with a smaller GM (2.29 cm in model scale or 1.6 m in full scale) 

could be capsized even with a flooded compartment volume of 1% of the total 

displacement.

Although GM is an important parameter in determining the capsize phenomenon in 

waves, the effects of the downflooding angle and the green water in deck should also be 

considered since they all contribute towards the occurrence of the capsize.

Although reasonable agreement, was found between theoretical predictions and 

experimental measurements, further investigations into the time-domain simulation both 

theoretically and experimentally is essential for a through understanding of the points 

given in Section 7.7.

7 .6  CONCLUSIONS OF CH A PTER SIX

The parametric studies carried out during the investigation reported in this chapter 

show that non-linear coupled large amplitude motion equations yield higher responses 

than those obtained from linear uncoupled motion equations as the wave excitation 

frequencies approach the natural oscillation frequencies. For example, as seen in 

Table 6.5, coupled heave and roll responses are 33% and 36% higher than the uncoupled 

heave and roll responses respectively.

The integration of wave exciting forces acting on the columns up to the wave surface 

makes a significant contribution to the steady motions (Figs.6.8-11).

It was concluded that in the resonance regions the non-linear heave and roll motion 

equations yield 45% and 14% higher response values than those obtained by the linear 

heave and roll motion equations respectively.
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The inclusion of static wind and current loading causes significant changes in 

oscillatory and steady motion characteristics, except in heave motions, due to changes in 

mooring stiffness. A large steady tilt angle occurs as the GM values decrease particularly 

at high wave frequencies.

These parametric studies have also revealed that the non-linear drag force which 

gives rise to steady motions does increase in the higher frequency range.

7 .7  RECOM M ENDATIONS FOR FUTURE W O RK

With this recently completed work as a foundation, some extension of the study by 

incorporating the following aspects is recommended.

i) Mooring Effects: The stiffness terms currently used in the motion response

equations take into account the effects of non-linear hydrostatic stiffness and 

the non-linear mooring stiffness due to large steady and oscillatory 

translational and oscillatory displacements of the platform. The effects of the 

mooring line failure, its location and the configuration should be considered

during transient and post mooring damaged conditions.

ii) Wind and Wave-Drift Effects: Effects of dynamic wind and gust, and

second-order steady wave forces due to pressure drop on the motions of the 

platform should be investigated. The wind velocity variations obtained from 

recent measurements carried out in various offshore locations should be 

incorporated into the analysis.

iii) Interference Effects: The effect of wave inertia, added-mass and damping 

coefficients which take into account the interference between the members of 

the structure should also be incorporated into the analysis.
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iv) Effect o f Upper Deck Buoyancy: An improved analytical technique needs to 

be developed and incorporated into the analysis routines to take into account 

the effects of both the buoyancy and the hydrodynamic loads of the deck on 

the motion responses of a mobile platform experiencing large amplitude 

oscillations during intact or damaged conditions.

v) Effects o f Multi-Directional Random Seas: An application of multi­

directional random seas in the motion response analysis should be considered.

vi) Effects o f Different Semi-Submersible Configurations: The non-linear time- 

domain simulation programs developed during this study and the results given 

in this thesis were based on the semi-submersible geometry shown in 

Fig.2.2. However, it is also recommended that the non-linear motion 

characteristics of different semi-submersible configurations be determined 

systematically to arrive at general conclusions and recommendations for the 

safety of mobile platforms.

7 .8  CLO SU RE

This thesis describes research which was aimed at providing an accurate tool to 

predict the behaviour of a damaged platform under extreme environmental conditions. By 

the use of this analytical tool, this study has made a contribution to the understanding of 

some non-linear effects in the motion response simulation of platforms through time- 

domain simulations.

It is hoped that the work presented in the thesis will enable designers and certifying 

authorities to assess the safety of mobile platforms in extreme environmental and damaged 

conditions.



APPENDIX A

CALCULATION OF WIND FORCES

In this appendix, a method of wind force prediction recommended by the American 

Bureau of Shipping (ABS 1973) is summarised. This method is adopted in the 

calculation of wind forces acting on the semi-submersible.

The total wind force on the object can be predicted using the following equation.

F = j  p c .  cs A „v
(A .l )

where

P Density of air (1.225 kg/m3 for dry air) 

Height coefficient from Table A.l 

Shape coefficient from Table A.2 

Characteristic area of the body 

Wind velocity

Height (metres) cA

0.0 - 15.3 1.00
15.3 - 30.5 1.10
30.5 - 46.0 1.20
46.0 - 61.0 1.30
6 1 .0 -7 6 .0 1.37
76.0 - 91.5 1.43
91.5 -106.5 1.48

106.5 -122.0 1.52
122.0 -137.0 1.56
137.0 -152.5 1.60
152.5 -167.5 1.63
167.5 -183.0 1.67
183.0 -198.0 1.70
198.0 -213.5 1.72
213.5 -228.5 1.75
228.5 -244.0 1.77
244.0 -256.0 1.79
256.0 1.80

Table A.l Height Coefficient
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Object c*

Cylinders 0.5
Hull (surface type) 1.0
Deck house 1.0
Isolated structural shapes 1.5
(cranes, angles, channels, beams,etc.)

Under deck areas (smooth surfaces) 1.0
Under deck areas (exposed beams and girders) 1.3
Rig derrick (each face) 1.3

Table A.2 Shape Coefficient

If several members of an offshore structure are located in a plane normal to the wind 

direction, as in the case of a plane truss or a series of columns, the solidification effect 

must be taken into account. The wind force given in Eq.A.l then becomes:

F  ~  2 P CDE ® A p e  v 2 (A.2)

where

cDE Effective force coefficient from Table A.3

6 Solidity ratio defined as the projected exposed

area of the frame normal to the direction of the 

force divided by the area enclosed by the 

boundary o f the frame normal to the direction 

of the force

Apg Projected area enclosed by the boundaries of

the frame

Solidity Ratio Effective Force Coefficient
Flat-side Members Circular Sections

Re<4.2xl0 Re>4.2xl0
0.1 1.9 1.2 0.7
0.2 1.8 1.2 0.8
0.3 1.7 1.2 0.8
0.4 1.7 1.1 0.8
0.5 1.6 1.1 0.8

0.75 1.6 1.5 1.4
1.0 2.0 2.0 2.0

Table A.3 Effective Force Coefficient
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If two or more parallel frames or members are located behind each other in the wind 

direction, the shielding effect must be taken into account.

The wind force on a shielded member can be calculated as:

F = \  p C D A pv 2T)

or

where

CD Drag coefficient

TJ Shielding factor

If more than two members are located in line with the wind direction, the wind force 

on the third and subsequent members should be taken to be equal to the wind load on the 

second member.
Spacing ratio Value of t) for an aerodynamic aolidity ratio 0, of
a 0.1 0.2 0 5 0.4 0 5 0.6 0.7 0 5  and over

up to 1.0 1.0 0.96 0.90 0.80 0.68 0 5 4 0.44 0 5 7
2.0 1.0 0.97 0 5 1 0.82 0.71 0 5 8 0.49 0.43
3.0 1.0 0.97 0.92 0.84 0.74 0 5 3 0 5 4 0.48
4.0 i n 0.98 0.93 0.86 0.77 0.67 0 5 9 0 5 4
5.0 1.0 0.98 0.94 0.88 0.80 0.71 0.64 0.60
6.0 and over 1.0 0.99 0.95 0 5 0 0.83 0.75 0 5 9 0 5 6

Spacing ratio a: The distance, centre to centre, o f  the 
frames, beams or girders divided by the l^ast overall 
dimension o f the frame, beam or girder measured at right 
angles to the direction o f  the wind. For triangular or 
rectangular framed structures diagonal to the wind, the 
spacing ratio should be calculated from the mean distance 
between the frames in the direction o f the wind.

Aerodynamic solidity ratio (3 = 0*a 

where

0  solidity ratio, see B 1.2.2
a constant

a = 1.6 for flat-sided members;
= 1.2 for circular sections in subcritical range 
and for flat-sided members in conjunction with 
such circular sections;
= 0.5 for circular sections in the supercritical 
range and for flat-sided members in conjunction 
with such circular sections.

Table A.4 The shielding factor rj
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The wind load calculations were carried out for the semi-submersible structure for 

heel and list angles of 0°, 5°, 10° and 15° in order to take into account the wind forces for 

head and beam sea condition in the time-domain simulation. Lift force due to wind acting 

on the vessel was not considered in the calculations. Fig.A .l shows the general 

arrangement of the superstructure which the wind load calculations are based on. Fig.A.6 

shows perspective view of the superstructure and the dimensions of each element.

Results of the calculated head and beam wind force and moments are plotted in 

Figs.A.2-5. Third order polynomial curves were fitted through the results in order to 

define continuous functions to be used in the time-domain simulations.

\
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Fig.A.l General arrangement of the superstructure
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Fig.A.2 Wind forces obtained for the beam sea condition
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Fig.A.5 Wind moments obtained for the head sea condition
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APPENDIX B

CALCULATION OF YAW RESTORING MOMENT

In this appendix, a set of formulations to calculate the yaw restoring moments is 

presented. In the time-domain simulations, the yaw restoring moments are calculated 

from the non-linear mooring forces measured during the experiments of a similar semi- 

submersible which was tested with catenary moorings at the Hydrodynamics Laboratory.

In calculating the yaw restoring moment, the semi-submersible is assumed to be 

moored by four cables from the comer columns at an angle of 45° with respect to the 

wave reference system axis. Fig.B.l shows the mooring forces acting on the comer 

columns in surge and sway directions.

sw

su

sw

su

su

sw

su

z

Fig.B.l Mooring forces acting on the comer columns of the semi-submersible
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Anti-clockwise rotation is the positive yaw displacement and the mooring force 

characteristics in sway and surge direction are assumed to be similar.

Restoring moments due to the mooring forces can be calculated using the following 

equation:

M  -  I  r. a  F  
i = i 1 (B.l)

Since there are only four cables to moore the semi-submersible for this particular 

case, Eq.(B.l) takes the following form:

10
M  = X r. a  F

i = l l (B.2)

where

wave reference system 

F

Position vector of the ith node with respect to the

Mooring forces acting on the ith node

Mooring forces are taken from Fig.B.2 for instantaneous displacements of surge 

and sway motions. Since the experimental measurements give the total mooring force in 

one direction surge or sway forces used in the calculations are obtained by dividing the 

mooring force values by two as follows:

F su = I  Ssu(x ) i (B.3)

Fsw 2 ) j

where

S s u O c ) 

S s w ( z )

(BA)

Surge forces 

Sway forces
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In general, r. position vector is given in the following form, 

r. = x. i + y.  j  + z. ki i ■'r i (B.5)

and

F i = * V «  + Fsw. J (B.6)

If Eq.(B.6) is expressed in an explicit form for mooring forces acting on each node:

(B.7)

(B.8)

F -  -  F i -  F kJ Q J  M S W  *v> 9 9 (B.9)

F = -  F i + F k
10 J“io w io (B.10)

Vertical forces due to mooring lines are ignored, therefore cross production in 

Eq.(B.l) takes the following form:

10 i j k
M  = X x.i y t z.i

i =7 F 1 su 0 F1 sw (B .ll)

Yaw restoring moment due to mooring forces is the j  th component of Eq.(B.2).

10
M y a w  —  X  ( .F s u  2 i  F s w  X . )

i =7 (B.12)
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APPENDIX C

CALCULATION OF NON-LINEAR ROLL AND PITCH RESTORING

MOMENTS

In order to solve the large amplitude non-linear roll and pitch motion equations for a 

semi-submersible, roll and pitch restoring coefficients are needed as well as the other 

hydrodynamic properties for any given heel or list angle. For this purpose, program 

ROSTP was written, which generates the data for restoring forces for a given semi- 

submersible configuration.

Calculations of stability cross curves were based purely on geometric 

considerations. In program ROSTP, the centre of gravity; G is supposed to be fixed and 

the displacement is allowed to vary as the vessel inclines, hence both the displacement and 

the righting arm values are calculated for each waterline. Basically, there are four main 

sections in the program to calculate the volume of hulls and columns, the buoyancy centre 

of the vessel and GZ values which are obtained by using the geometrical relationship 

between the coordinates of the buoyancy centre and the centre of gravity. A flow-chart 

given in Fig.C.l shows the calculation steps in program ROSTP.

In order to use the stability data which was generated by program ROSTP at any 

given time step, another subroutine called INT was written. This program interpolates 

and extrapolates GZ values from the stability cross curves using instantaneous 

displacement and heel (or list) angle of the vessel.

The linear interpolation technique is used in subroutine INT. When solving large 

amplitude roll and pitch motions, restoring moments as a function of GZ values for a 

given instantaneous displacement and heel (or list) angle, are calculated by calling 

subroutine INT. However, different types of interpolation methods can be applied for 

greater accuracy in obtaining GZ values which may have a very non-linear trend as a 

function of angular motions. A flow-chart for subroutine INT is given in Fig.C.2.
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Figs.C.3-8 show cross curves of stability for angles increasing from 5° to 60° for 

heel and from 5° to 20° for list. Stability cross curve data presented in Figs.C.3-7 were 

prepared in block data form so that easy access to the data was possible during the 

calculation of roll and pitch restoring moments in the time-domain simulations. At each 

time step, the displacement of the vessel was calculated by taking into account the vessel's 

instantaneous position. This information was then transferred to interpolation routine 

INT. Using the instantaneous angular motion values and displacements, the 

corresponding GZ value was obtained by iteration and returned to the subroutine which 

calculates the roll and pitch restoring moments.

Since there were three different GMs chosen during this study, three different data 

blocks were generated for each GM. Therefore, the time-domain simulation program 

requires appropriate data for other GM values which are different than those three GM 

values, viz. 7.9 cm, 3.8 cm and 1.9 cm (5.53 m, 2.66 m and 1.33 m in full scale). The 

selected GM values include possible maximum and minimum metacentric heights for the 

semi-submersible geometry chosen for the study. On the other hand, in order to avoid 

this restriction for the GM values, program ROSTP can be used as a subroutine for the 

main program and instead of interpolating or extrapolating instantaneous GZ values, they 

can be calculated at every time-step for the corresponding underwater geometry of a given 

semi-submersible configuration. However, this will require a longer CPU time to solve 

the motion equations. Nevertheless, direct use of program ROSTP in the time-domain 

simulations will provide more accurate GZ values.
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PROGRAM ROSTP

CONTINUE

CALCULATION OF GZ

INITIAL DATA

PRINT RESULTS

VOLUME OF COLUMNS

START

STOP

HEEL ANGLE=5,60 
LIST ANGLE=5,20

CALCULATION OF 
BUOYANCY CENTRE

Fig.C.l Flow-Chart of Program ROSTP
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SUBROUTINE INT

DATA FOR CROSS CURVES OF 
STABILITY 

FROM MAIN PROGRAM

HEEL OR LIST ANGLE 
AND DISPLACEMENT

NOIF THE ANGLE <5 
OR >60

YES

HEEL (OR LIST) 
ANGLE, 

DISPLACEMENT AND 
GZ VALUE >

TO MAIN PROGRAM

LINEAR EXTROPOLATION

LINEAR INTERPOLATION

Fig.C.2 Flow-Chart of Subroutine INT
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Fig.C.7 Longitudinal cross curves of stability 

KG=28 cm GM=3.8 cm in model scale
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