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Preface ii

P R E F A C E

This thesis is based on the author's research carried out during the 
period from October 1 986 to September 1 989, under the supervision of 
Prof. G. Petrie. It is documented in fifteen chapters. Apart from the 
introduction (Chapter 1) and concluding remarks (Chapter 15), the rest 
of this thesis can be divided into two parts, i.e. the part from 
Chapters 2 to 7 giving the background and the basic theoretical aspects 
of the research and the part from Chapters 8 to 1 4 covering the more 
experimentally orientated investigations - mainly concerned with the 
design and execution of the work carried out during this project and 
with the analysis of the experimental results.

Actually, this thesis covers a variety of topics related to both the 
theory and practice of digital terrain modelling and some of these 
discussions are even conducted in some detail. The only purpose of 
doing this has been to make this very specialised research topic more 
general, and thus to enhance the readability of this thesis.

Key Words:

Digital terrain modelling; Digital terrain models (DTM); Mathe­
matical models; Terrain descriptors; Slope; Sampling strategy; 
Photogrammetric sampling; Photogrammetrically measured data; 
Contour maps; Cartographic digitisation; Digital contour data; 
Surface reconstruction; Surface continuity; DTM networks; DTM 
data quality; Gross error detection; Check points; Accuracy 
assessment; Accuracy models; Optimum sampling interval; etc.

With the rapid development of science and technology, especially 
computing technology, digital terrain modelling, which originated only 
thirty years ago, has already become a relatively important branch of 
topographic science. What is new today might be totally out of date in 
a few years time. In some years time, there will be no surprise when 
the readers of this thesis find that there is nothing new inside.

The author



Abstract iii

A B S T R A C T

In this thesis, investigations into some of the problems related to 
three of the main concerns (i.e. accuracy, cost and efficiency) of 
digital terrain modelling have been carried out. Special attention has 
been given to two main issues - the establishment of a family of mathe­
matical models which is comprehensive in theory and reliable in 
practice, and the development of a procedure for the determination of 
an optimum sampling interval for a DTM project with a specified 
accuracy requirement. Concretely, the following discussions or 
investigations have been carried out:-

i). First of all, a discussion of the theoretical background to 
digital terrain modelling has been conducted and an insight into 
the complex matter of digital terrain surface modelling has been 
obtained.

ii). Some investigations into the improvement of the quality of DTM 
source data have been carried out. In this respect, algorithms 
for gross error detection have been developed and a procedure 
for random noise filtering implemented.

iii). Experimental tests of the accuracy of DTMs derived from various 
data sources (i.e. aerial photography, space photography and 
existing contour maps) have been carried out. In the case of the 
DTMs derived from photogrammetrically measured data, the tests 
were designed deliberately to investigate the relationship 
between DTM accuracy and sampling interval, terrain slope and 
data pattern. In the case of DTMs derived from digital contour 
data, the tests were designed to investigate the relationship 
between DTM accuracy and contour interval, terrain slope and the 
characteristics of the data set.

iv). The problems related to the reliability of the DTM accuracy 
figures obtained from the results of the experimental tests have 
also been investigated. Seme criteria have also been set for the 
accuracy, number and distribution of check points.

v). A family of mathematical models has been developed for the
prediction of DTM accuracy. These models have been validated by 
experimental test data and evaluated from a theoretical stand­
point. Some of the existing accuracy models have also been 
evaluated for comparison purposes.

vi). A procedure for the determination of the optimum sampling
interval for a DTM project with a specified accuracy requirement 
has also been proposed. Based on this procedure, a potential 
sampling strategy has also been investigated.
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Chapter 1 Introduction

Chapter One

I N T R O D U C T I O N

People live on the Earth and learn to cope with its terrain. Civil 
engineers design and construct buildings on it; geologists try to study 
its underlying construction; geomorphologists are interested in its 
shape and the processes by which the landscape was formed; and 
topographic scientists are concerned with measuring and describing its 
surface and presenting it in different ways, e.g. using maps, 
orthophotographs, etc. Despite these differences in emphasis and main 
interests, all of these specialists still have a common interest, i.e. 
they wish the surface of the terrain to be represented conveniently and 
with a certain accuracy. It is this widespread common interest in 
representing or modelling the terrain surface and the many problems 
associated with it that has caused the author to devote his research to 
this important topic.

In this introduction, first of all, the importance of carrying out a 
research project in digital terrain modelling in practice will 
be discussed; then the problems associated with digital terrain 
modelling will be examined; after which the research objectives of this 
project will be introduced. Finally, the structure of this thesis is 
described at the end.

1.1 The importance of carrying out research 
into digital terrain modelling

The importance of carrying out a research project in the field of 
digital terrain modelling is embodied in the important role which a 
digital terrain model (DTM) plays in terrain surface representaion and 
in related application fields.

Terrain surface can be represented in different ways. One of these 
could be a painting, and indeed this may be the oldest representation. 
A painting may offer some general information about the terrain which 
it depicts. However, the metric quality is extremely low and, in fact, 
it cannot be used at all for engineering purposes.

Photography is another way of recording ani representing the terrain. 
The most useful form is aerial photography. In an aerial photograph, 
one dimension of the 3-D terrain, the height, is essentially absent, so 
that a single aerial photograph cannot be used to derive any 
information about the true heights of ground points. Also in metric 
terms, it gives information of only limited usefulness in respect of 
the true horizontal positions of the image recorded on the photograph.

1



Chaoter 1 Introduction

But an orthophotograph, the photographic image produced after 
differential rectification, can be used as a plan, and indeed it may 
offer more information than a plan constructed using map symbols, 
though this information may not be available or interpretable without 
specialist knowledge.

A contoured topographic map is, perhaps, the most familiar way of 
representing the terrain. In a topographic map, all the features 
present in the terrain are projected orthogonally onto a horizontal 
datum. The detail is then reduced in scale and represented by lines and 
symbols. The terrain height and morphological information are 
represented selectively by contour lines.

The terrain can also be represented by a perspective view. The process 
of representing a surface in this way includes projecting it onto a 
plane surface and removing those lines which are not visible from the 
direction or point of projection. One such product is the so-called 
"block diagram"; another is the perspective contour diagram. A digital 
model of the terrain surface is essential for the easy production of 
such representations, though laborious manual methods have been used in 
the past.

The real world is three-dimensional. Any system of projection on to a 
two-dimensional surface such as a paper sheet (or map) 'loses' one 
dimension. So some alternative kind of 3-D representation is very 
desirable. As stated before, a digital terrain model is necessary for 
the generation of such a 3-D product. More importantly, in contour map 
production and other related areas, such a model plays an ever more 
important role. Therefore, carrying out sane investigations into the 
theory and practice of digital terrain modelling is of fundamental 
importance for a wide range of geo-sciences.

1.2 The problems associated with digital terrain modelling

The concept of the DTM came into use in the late 1 950s (Miller & 
Laflamme, 1953). Since then, it has received great attention and has 
developed rapidly in the fields of surveying, civil engineering, 
geology, mining engineering, landscape architecture, military 
operations, aircraft and battlefield simulation, etc. In spite of all 
this activity, there are still a lot of problems to be solved.

In order to understand the problems associated with digital terrain 
modelling, first of all, the general process needs to be described and 
understood. The overall process can be shown in a diagram such as 
Fig.1.1 which the present author has devised for the purpose. In this

2
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Chapter 1 Introduction

diagram, six stages can be distinguished. Furthermore one or more 
operations need to be applied to the process to make it advance from 
one stage to another. As a result, 12 operations are distinguished. In 
practice, not all of these operations are necessary in the context of a 
particular DTM project. However, the following parts are essential, 
i.e. the raw data must be acquired from the data source, then the DTM 
surface has to be constructed fran the raw data.

1.2.1 General problems associated with digital terrain modelling

For a DTM project, the final goal is to produce a DTM with a required 
or specified accuracy, preferably in an economical and efficient 
manner. That is to say, the following three criteria:-

i). accuracy;
ii). cost; and
iii). efficiency

are those of most concern to both producers and clients involved in DTM 
production. And these three criteria are strongly inter-related.

Among them, accuracy is possibly the most important single concern 
since usually it lies at the core of a particular DTM project. From 
this point of view, the accuracy of the raw data should be as high as 
possible; comprehensive methods and/or algorithms should be used for 
surface reconstruction; and the raw data should be collected as densely 
as possible. However, an increase in the data density will almost 
certainly increase the cost and possibly affect the efficiency of the 
modelling process. Therefore, fran the viewpoints of both economy and 
efficiency, the number of data points used in the process should be 
kept to a minimum.

Thus, attempts to optimize both accuracy and cost are usually contra­
dictory. In order to reach a compromise between these two factors, an 
optimum density should be used, as a result of which, the accuracy 
requirement can be achieved and the data points kept to a minimum. So 
far, this problem still remains unsolved although efforts to produce a 
solution have been made by several investigators. In DTM practice, the 
data density for a DTM project is determined more or less by experience 
or common practice. Obviously some more rigorous theoretical guide is 
desirable, especially if it can be proven or bucked up by experimental 
results.

In order to set a rigorous theoretical guide for the determination of 
such an optimum density for DTM data acquisition and terrain surface 
representation, a mathematical model (or models) is necessary to 
predict the accuracy of the DTM (or DTM products).

3
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FroTi the discussions above, it can be concluded that -

i). the establishment of a family of mathematical models for DTM 
accuracy prediction, which will be comprehensive in theory and 
can produce a reliable prediction in practice; and

ii). the devising of procedures for the determination of optimum data 
density

are the two of the main issues in digital terrain modelling. If the 
former can be achieved successfully, it can be used as the basis for 
the latter.

1.2.2 Individual factors involved in digital terrain modelling

In the previous section, the main concerns of digital terrain modelling 
have been outlined and two of the main issues have been identified. 
Therefore, it seems pertinent next to inspect some individual factors 
which are associated with these general problems to see what has been 
done and what needs to be done.

Since it has been discussed previously that the establishment of a
comprehensive mathematical model for DTM accuracy prediction is of 
fundamental importance, those factors which affect the accuracy of a 
DTM should, first of all, be identified. As one can imagine, the errors 
present in a DTM are the accumulated consequence of all the stages and 
operations involved in the terrain modelling process. Therefore, a 
number of factors need to be taken into account in the analysis of DTM 
accuracy. In particular, the following may be regarded as the main 
factors

i). the characteristics of the terrain surface;
ii). the density and distribution of the measured data, i.e. the DTM 

source data;
iii). the accuracy of the source data;
iv). the methods and approaches used for the DTM surface modelling 

and the characteristics of the finally constructed DTI surface.

The problems relating to each of these factors together with sane other 
individual problems related to the more general problems inherent in 
DTMs will be examined and analysed in some detail in the following 
paragraphs.

(1). Terrain surface characteristics

First of all, there is the matter of the characteristics of the terrain
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surface which, in the context of terrain modelling, can, to large 
extent, be summarized in a single concept - that of terrain roughness. 
While most people will feel intuitively that they knew what is meant by 
this term, it is, in fact, a very abstract concept which is difficult 
to define exactly. Different types of descriptors have been used. Mark 
(1 975) evaluated all the existing geomorphometric parameters. Ayeni
(1976) discussed the requirements for a terrain classification system. 
Kubik and Botman (1976) endeavoured to use autocovariance as a 
descriptive parameter of the terrain. Frederiksen (1930) and his 
colleagues (1933, 1986), tried to use some other more complicated 
mathematical descriptors, e.g. the Fourier spectrum of the terrain 
profiles, fractal dimension and variogram. However, all of these 
mathematical descriptors are not too practical to use because, as 
Yoeli (1 983) points out, ’’the Earth's surface, being completely 
irregular, is, prima facie, void of any mathematical characteristics." 
Therefore, what should be used as the measure of terrain roughness is 
still an open discussion.

(2). Density and distribution of DIM source data

In order to implement the terrain modelling process, a certain amount 
of data, referred to as source data in this thesis, has to be acquired. 
This data is then used to generate the DTM surface. The principal 
characteristics of the source data can be described by three parameters 
(referred to as attributes in this thesis), which are the accuracy, 
density, and distribution of the data. The latter two are combined in 
the term sampling. Thus, sampling is the process of defining the 
density and distribution of the points to be used for terrain 
modelling.

In DTM data acquisition using photogrammetric methods, although 
different sampling methods such as selective sampling, profiling, 
progressive sampling, composite sampling, etc. have been and are being 
used, sampling based on the use of a regular grid is still the most 
popular one. In this area, there is still no proven or accepted theory 
on which to base the sampling required for different types of terrain. 
In practice, the theoretical background to sampling is rarely 
discussed, thus the effectiveness of the existing sampling methods is 
rarely examined.

In DTM data acquisition based on existing cartographic material, only 
two methods - line-following and the raster scanning of contours - are 
used. At the present time, the manual line-following method dominates 
this area. Even here, there is no systematic theory to guide the 
selection of sampling intervals for different types of terrain for 
varying contour intervals and to satisfy the specific accuracy 
requirements of the DTM.
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From this discussion, it can be seen that the two main parameters 
(density and distribution) involved in sampling should be verified or 
controlled. At present, the ways of doing so are limited to the optical 
superimposition of data points onto photographs or the injection of 
data points onto a stereo model (e.g. carried out in an analytical 
plotter) or the employment of a graphics editor (see Beerenwinkel et 
al, 1986; Ostman, 1986a, 1986b; Reinhardt, 1936, 1938; Uffenkamp, 1986; 
and Ebner and Reinhardt, 1987).

(3). Accuracy of DIM data

Considering first of all accuracy of DTM source data, this is related 
to the errors present in different stages of measurement. Different 
types of errors such as systematic errors, gross errors amd random 
errors will inevitably occur in the DTM source data Some of them need 
to be detected and removed from the data set and some of them lessened 
in extent. Up till now, not too much work has been done in this 
respect.

The errors likely to be encountered both in the source data and in the 
final DTM data should consist of two components, i.e. the horizontal 
error and the vertical error. So any assessment of accuracy should be 
applied to both of these components. Horizontal accuracy is not easy to 
assess and very little work has been dene on this. Ley (1986) mentioned 
some methods, but he also mentioned that these are either impractical 
or difficult to carry out. So the question of how to assess this is 
still open and it is one which is difficult to answer. In contrast to 
the assessment of the horizontal accuracy of a DTM, more and more 
attention has been focused on the assessment of DTM height accuracy.

For a researcher working in this area, the main purpose of assessing 
the accuracy of a DTM is to gain experience so that some predictions 
may be made which may be useful for DTM practice. Such an experience 
may be expressed by a mathematical model, which could be either 
empirical or theoretical in origin. An empirical model can be obtained 
through experimental tests, but a theoretical model can only be 
obtained by a theoretical analysis.

To form an accuracy model through experiments1 investigation, an 
intensive test against the factors which affect DTM accuracy needs to 
be carried out, then some kind of empirical model can be obtained using 
regression techniques. However, in order to complete such a task, a 
huge amount of work needs to be carried out. In fact, it can be said 
that as yet not many comprehensive tests have been carried out. Indeed, 
for such a purpose, many more comprehensive experimental tests are 
required. This testing will be very time-consuming and almost certainly
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will be very costly. Therefore, at the present time, a prior 
theoretical analysis is more appropriate. However, although it is 
impractical to establish a really satisfactory empirical model based on 
the results of intensive and comprehensive experimental tests, in 
practice, sane experimental tests are unavoidable, e.g. some results 
are needed to validate a theoretical model.

On the theoretical side, quite a lot of efforts have already been made 
by several investigators using different techniques to establish 
establish satisfactory accuracy models. Usually, a numerical parameter 
such as those mentioned previously has been used to describe the 
roughness of the terrain surface. Makarovic (1972) tried to solve this 
problem through the analysis of a sine wave; Kubik and Botman (1 976) 
utilized autocovariance analysis; Frederiksen (1980) used Fourier 
transformation to analyze the spectrum of terrain profiles; Tempfli 
(1930) has employed linear system analysis; Frederiksen and his 
colleagues (1986) also tried to use the concepts of variogram and 
fractal dimension. Although a lot of efforts have already been made to 
investigate this area, the results have not always been fruitful and 
there is still a lot of work to be done. In this respect, the following 
general remarks can be made at this stage -

i). Most of these analyses have only been applied to and concerned 
with measured profiles; therefore, one of the important things 
which needs to be done would be to extend these analyses to a 
complete surface.

ii). Actually, it seems to the present author that no single existing 
theoretical model is either convenient to use and or can be used 
to make a reliable prediction of DTM accuracy. Therefore, more 
comprehensive and reliable models need to be devised and 
investigated as a matter of some urgency.

Also it appears to the present author that there is no systematic 
theoretical basis to tell users how check points should be employed in 
DTM accuracy assessments, i.e. how many such points are essential, 
where they should be located and what is the required accuracy of these 
check points, for a given DTM accuracy requirement.

Furthermore, a lot of efforts have been made for the devising of 
procedures for the determination of optimum data density, but, the 
result has not been fruitful due to the lack of comprehensive and 
reliable accuracy models. Again, this points to the urgency and 
importance of establishing a family of new mathematical models of DTM 
accuracy.
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(4). Hie methods used for terrain surface modelling and 
the tvie characteristics of the resulting surface

In the development of DTM methodology, the first main development has 
been in the field of interpolation met hod s. In this respect, someone 
tries to devise an interpolation algorithm; then its effectiveness is 
tested using one or more sets of test data; and finally there is a 
declaration as to how good the method is. A comprehensive review of 
these interpolation methods (or algorithms) has been given by Schut
(1976), which is still largely valid today. Although a lot of different 
interpolation methods have been proposed, there is still very little 
detailed information and few practical or methodological comparisons 
between the different techniques which have actually been used in 
practice (Ackermann, 1979).

Furthermore, there is a lot of confusion in this area. Indeed, this is 
one of the most serious problems which bedevil digital terrain 
modelling. Actually, interpolation techniques have been applied mainly 
for two quite different purposes, i.e. either for the pre-processing of 
data such as the so-called random-to-grid interpolation before surface 
modelling or for the computation of DTM points from a DTM surface after 
surface modelling. Therefore, the discussion of interpolation should be 
related to the methods and approaches used for surface modelling. 
Indeed, all of this matter needs to be clarified.

Although, initially grid-based modelling has been the basic modelling 
approach of most DTMs, triangulation is another alternative to form 
networks for surface reconstruction which has become popular in recent 
years. In this respect, several triangulation algorithms or procedures 
have been developed by different authors, e.g. McLain (1976), Yoeli
(1977), Elfick (1979), McCullagh and Ross (1930), Mirante and Weigarten 
(1932), etc. In addition, some contour-specific triangulation methods 
have also been designed by several investigators such as Christensen 
(1937). The main problem associated with triangulation procedures is 
how to accommodate distinctive terrain features in the terrain model, 
especially break lines and form lines. It seems to the present author 
that, till now, no single triangulation procedure has solved this 
prob 1 em comprehens ive 1 y.

From above discussion, it is obvious that any researcher trying to 
advance the methodology of digital terrain merle 1 ling must at all times 
keoo the matter of the specific methods used for modelling the terrain 
surface in the forefront of his mind since they bear so heavily on the 
characteristics of the particular surface which will result.
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1.3 Research objectives

As discussed above, accuracy, economics and efficiency are three of the 
most important concerns in digital terrain modelling. To carry out some 
work related to these three concerns is, of course, the objective of 
this project. However, many problems related to each of these concerns 
have already been pointed out in the previous section. Therefore, no 
attempt can be made or has been made to solve all of these problems 
due to the limited period of time available, and the basic 
unsolvability of some parts of those problems - at least at the present 
time. However, to solve or to contribute to a solution of some of the 
problems related to digital terrain modelling is the main objective of 
this research project.

In more specific terms, research into the following areas will be 
carried out in the course of this project:

i). First of all, photogrammetric sampling will be examined from 
various viewpoints; existing sampling methods will also be 
scrutinised; and the problem of optimizing regular grid sampling 
will also be considered.

ii). The errors which occur in source data will also be under 
investigation. Attempts will be made to develop some algorithms 
for gross error detection and random noise filtering. These 
algorithms will also be validated experimentally.

iii). Some experimental tests of the accuracy of DTMs derived from the 
data sets acquired from different data sources (i.e. aerial 
photographs, space photographs, and existing contour maps) with 
different data attributes will be carried out. In the case of 
DTMs derived from photogrammetrically measured data sets, 
special attention will be paid to the variation of DTM accuracy 
with data density (expressed in terms of sampling interval).

iv). In the context of experimental tests of DTM accuracy, an attempt 
will be made to carry out a theoretical analysis of the effects 
of the characteristics of check points on the reliability of the 
DTM accuracy figures which have been derived from the test 
results and then to set some theoretical guidelines for the 
requirements of check points, i.e. the minimum number needed and 
their required accuracy, as well as the desirable distribution 
of such points.

v). A family of mathematical models will be established for the 
height accuracies of DTMs derived from photogrammetrically 
measured elevation data. These models will be validated using
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experimental test results and evaluated using some theoretical 
standards. Some existing accuracy models will also be evaluated 
using test data generated by this project.

vi). After the establishment of these models, some procedures for 
determining the optimum density of DTM source data in different 
cases wi 11 be proposed.

1.4 The structure of this thesis

Apart from this introductory chapter, the rest of this thesis is 
organised as follows:

Chapter 2 discusses some of the theoretical background to modelling in 
general and digital terrain modelling in particular. This is followed 
in Chapter 3 by a discussion of the main terrain descriptors used in 
the geo-sciences. In this chapter, not only are the different types of 
terrain descriptors discussed but the adequacy of using slope as the 
principal terrain descriptor for terrain modelling purposes is also 
emphasized.

Chapter 4 is concerned with photogrammetric sampling strategy. The 
theoretical background to photogrammetric sampling and the requirements 
of different sampling methods are discussed and analysed. Photogram­
metric sampling is also examined from various other points of view such 
as those employed in statistics, geometry, geomorphology and 
topographic science; existing sampling methods are briefly reviewed; 
and a critical analysis of the most important attributes of photogram­
metric sampling will also be undertaken.

Chapter 5 discusses briefly the accuracy of photogrammetrically 
measured DTM source data. The acquisition of DTM source data from 
existing maps is reviewed in Chapter 6, where the vexed question of the 
estimation of the accuracy of digitised contour data is also discussed.

In Chapter 7, the different approaches to the construction of DT.M 
surfaces are outlined; some discussion of the characteristics of DTM 
surfaces is also given; existing knowledge in this field is reviewed 
critically.

Chapter 8 is allocated to a discussion of possible methods for an 
improvement in the quality of measured DTM source data. Algorithms for 
detecting gross error in source data sets have been devised and are 
presented and tested experimentally. The effect of random noise on the 
quality of raw data is also discussed and has been investigated 
experimentally.
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In Chapter 9, various alternative plans for carrying out experimental 
tests on DTM accuracy are outlined. This is followed by a description 
of a specially designed experimental test of the variation of DTM 
accuracy with the density (expressed in terms of sampling interval) of 
DTM source data. Finally, a critical analysis of the results of this 
test is conducted.

As an extension of Chapter 9, an experimental test on the accuracy of 
DTMs derived from space photography taken by the Metric Camera will be 
described in Chapter 10.

Chapter 11 describes the theory behind the use of check points in 
experimental tests of DTM accuracy. Three problems (attributes) are 
discussed, i.e. the required accuracy, the minimum number of points 
required and the desirable distribution of these points. The 
relationship between these and the reliability of DTM accuracy 
estimates is also established. This theoretical work has also been 
validated with data from the experimental tests.

Chapter 12 is concerned with the theoretical aspects of DTM accuracy 
assessment. Existing mathematical models of DTM accuracy will be 
evaluated both experimentally and theoretically. A new family of mathe­
matical models has also been established. These models will be 
evaluated from a theoretical viewpoint and validated experimentally.

The discussions in the previous chapters (from 8 to 12) are more or 
less related to the accuracy of DTMs derived from photogrammetrically 
measured data. In Chapter 13, two sets of experimental tests into the 
accuracy of the DTMs derived from contour maps for different purposes 
will also be described.

In Chapter 14, some procedures for the determination of optimum data 
density will be presented. In this chapter, a discussion of the 
optimization of regular grid sampling will also be carried out.

In Chapter 15, some concluding remarks on the results of this research 
project are given, together with recommendations for future research.

Following this general introduction, the next chapter will contain a 
more detailed discussion of the theoretical background to digital 
terrain modelling.
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Chapter Two 

Mathematical Models and Digital Terrain Modelling

In the previous introductory chapter, four topics have been discussed, 
i.e. the importance of undertaking a research project in digital 
terrain modelling; the main problems associated with digital terrain 
modelling; the objectives of this research project; and finally the 
structure of this thesis. In this chapter, a more detailed introduction 
to digital terrain modelling will be given to act as background to the 
discussions about this subject which will take place later in this 
thesis. More specifically, general concepts about models and 
mathematical models are introduced and reviewed; concepts and technical 
terms used with digital terrain models are introduced and discussed; 
and finally a brief discussion on the mathematical models used in 
digital terrain modelling is also given.

2.1 About models in general

It seems pertinent first to have a brief discussion about the general 
concept of a model. A typical definition of the term is the folloving:

"A model is an object or a concept that is used to represent 
something else. It is reality scaled down and converted to a 
form which we can comprehend" (Meyer, 1935).

A model may have a few specific purposes such as prediction, control, 
etc., in which case, the model only needs to have just enough 
significant detail to satisfy these purposes. The model may be used to 
represent the original situation (system or phenomenon) or it may be 
used to represent seme proposed or predicted situation.

Thus, the word "model" usually means a representation and, in many 
situations, it is used to describe the system at hand. Consequently, 
there are strong differences of opinion as to the appropriate use of 
the word "model". For example, it may be applied to a photogrammetric 
replication of a piece of the terrain surface which has been 
photographed or it may suggest a perspective view of the piece of the 
terrain.

Generally speaking, there are three kinds of models as follows:

i). conceptual;
ii). physical (analogue); and
iii). mathematical models.

The Conceptual model is the model borne in a person's mind about a
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situation or an object based on his knowledge or experience. Often, 
this particular type of model forms the primary stage of modelling and 
will be followed later by a physical or mathematical model. However, if 
the situation or object is too difficult to represent in any other way, 
then the modelling will remain in conceptual form.

A Physical model is usually an analogue model. An example of this kind 
of model would be a terrain model made of rubber, plastic, or clay. A 
stereo-model of the terrain based on optical or mechanical projection 
principles, which has a widespread use in photogranmetry, would also 
fall into this category. The size of a physical model is usually much 
smaller than the real object.

A Mathematical model is the representation of a situation, an object, 
or a phenomenon in mathematical terns. In other words, a mathematical 
model is a model whose component parts are mathematical concepts, such 
as constants, variables, functions, equations, inequalities, etc. In 
the context of stereo-photogrammetry, the most obvious examples of this 
type of model are those used in analytical photogrammetrv based on the 
use of col linearity or coplanarity equations.

2.2 About mathematical models

General speaking, mathematical models may be divided into two types 
(Saaty and Alexander, 1981) as follows:-

i). quantitative; and
ii). qualitative.

Quantitative models are based on the number system, while qualitative 
models are, on the other hand, possibly based on set theory, not 
reducible to numbers.

Also, a problem may either be deterministic or be subject to changes 
and therefore probabilistic. Therefore, mathematical models may be 
classified into:-

i). functional models, which are those intended to solve 
deterministic problems, and

ii). stochastic models, which are those used to solve probabilistic 
problems.

2.2.1 Advantages of mathematical models

One very important question about mathematical models is "what kind of
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benefit can one have by using mathematical models" or "why should we 
make use of mathematical models" ? Saaty and Alexander (1981) give sane 
reasons for using mathematical models as follows:

i). MaleIs permit abstractions based on logical formulation using a 
convenient language expressed in a shorthand notation, thus 
enabling one to visualise better the main elements of a problem 
while, at the same time, satisfying communication, decreasing 
ambiguity, and improving the chance of agreement on the results;

ii). A model allows one to keep track of a line of thought, focusing 
attention on the important [Darts of the problem;

iii). Models help one to generalise or to apply the results of solving 
problems in other areas;

iv). They also provide an opportunity to consider all the 
possibilities, to evaluate alternatives, and to eliminate the 
impossible ones; and

v). They are tools for understanding the real world and discovering 
natural lav/s.

2.2.2 Standards for evaluating mathematical models

From the foregoing discussion, it appears that some benefits can be 
gained by using mathematical models. New comes the question -"what kind 
of mathematical models should be used" ? This is related to the problem 
of "hew to judge the 'goodness' or value of a mathematical model".

As one can imagine, there must be certain characteristics which all 
models must have to a varying degree and which bear on the question of 
how good they are. These characteristics can be used as standards for 
model evaluation. Meyer (1935) suggests the following as being 
important:

i). accuracy;
ii). descriptive realism;
iii). precision;
iv). robustness;
v). generality; and
vi). fruitfulness.

A model is said to be accurate if the output of the model (i.e. the 
answer it gives) is correct or very near to correct. A model is said to 
be descriptively realistic if it is based on assumptions which are 
correct. A model is said to be precise if its predictions are definite
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numbers (or other definite kinds of mathematical entities, such as 
functions, geometric figures, etc.). By contrast, if a model's 
prediction is a range of numbers (or a set of fuctions, a set of 
figures, etc.), the model is said to be imprecise. A model is said to 
be robust if it is relatively immune to errors in the input data. A 
model is said to be general if it applies to a wide variety of 
situations. A model is said to be fruitful if either its conclusions 
are useful or it inspires and/or points the way to other good models 
(Meyer, 1 935).

2.2.3 Practical considerations for mathematical models

The six characteristics discussed above can be regarded as the 
theoretical standards for model evaluation. However, in modelling 
practice, other practical considerations should also be taken into 
account.

In practice, the situation may arise that two models are both good in 
terms of these characteristics and the question which then arises is 
which should be selected for practical use. In this case, it could be 
that one is simpler than the other and could be preferred. Thus, it can 
be seen that the simplicity (or complexity) of models could or should 
become a very important criterion for the comparison or selection of 
models.

Indeed, the basic premise in modelling is that complicated models are 
not always needed even though a phenomenon :nay be complicated. It has 
been stated as the principle of parsimony (Cryer, 1986) that the 
(mathematical) model used should require the smallest possible number 
of parameters that will adequately represent the data sampled from the 
phenomenon (or so-called reality).

Evidence from many fields shows that mathematical models with a dejree 
of complexity beyond a certain level often perform poorly in comparison 
with other simpler models when reality is taken into account. Often, if 
a mathematical model for a given phenomenon involves a large number of 
parameters, it is a good indication that an entirely different family 
of models should be considered for the representation of this 
phenomenon.

.Another situation may arise in which a model may be unable to produce 
a very accurate representation or prediction for a situation or 
phenomenon, in which case, what kind of attitude should be taken 
towards it ? In practice, for a mathematical model, what should be 
considered, rather than rejecting it, is to try and estimate how wrong 
it is. If a model can still produce reasonable results in any case, it 
can still be regarded as a robust model.
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2.3 About digital terrain models

2.3.1 Hie introduction of digital terrain models

Terrain models have always appealed to military personnel, planners, 
landscape architects, civil engineers, as well as specialists in the 
various disciplines of the earth sciences. Originally, the models were
physical models, made of rubber, plastic, as well as clay, sand, etc.
For example, during the Second World War, many models were made by the 
American Navy and reproduced in rubber (Baffisfore, 1957). In the 
recent Falklands War in 1932, the British forces in the field used sand 
and clay models extensively to plan military operations.

The introduction of mathematical, numerical and digital techniques to 
terrain modelling owes much to the activities of photogrammetrists 
working in the field of civil engineering. In the 1950s, photogrammetry 
had begun to be used widely to collect data for highway design. Roberts 
(1957) first proposed the use of a digital computer with photogrammetry 
as a new tool for acquiring data for planning and design in highway 
engineering. Miller & Laflamme (1958) of the Massachussetts Institute 
of Technology (MIT) described such a development in more detail, and 
introduced the concept of the digital terrain model (DTM). The 
definition given by them is as follows:

"The digital terrain model (DTM) is simply a statistical 
representation of the continuous surface of the ground 
by a large number of selected points with known X,Y,Z 
coordinates in an arbitrary coordinate field."

In summary, DTM is simply a digital (numerical) representation of 
the terrain surface.

2.3.2 Technical terms regarding digital terrain modelling

Since Miller and Laflamme (1 958) coined the original term (digital 
terrain model), some other (alternative) terms have been brought into 
use. These include digital elevation model (DBM), digital height model 
(DHM), digital ground :nodel (DG.M), as well as digital terrain elevation 
model (DTL'M). These terns originated from different countries. DEM is 
widely used in America; DHM came from Germany; DGM is used in the UK; 
and DTEM was introduced and used by the USGS and DMA (Petrie and 
Kennie, 1987).

Some restrictions in their usage may be desirable. So Yoeli (1983) 
proposed to restrict the use of term DTM to the height points on the 
Earth's surface, and use the term DEM (or DHM) for all other
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geographical and geological phenomena. This proposal might solve the 
confusion for modelling the Earth's surface, but leaves unsolved that 
for surfaces underwater. However, Yoeli's proposal has not been 
accepted by the rest of surveying and mapping community, so some 
further discussion of this point may be of value.

In practice, these terms (DTM, DEM, DHM and DTEM) are often assumed by 
many people to be synonymous and indeed this may often be the case. But 
sometimes they actually refer to quite distant products. That is to 
say, there may be slight differences between these terms. A selection 
of the meanings of these related words taken from dictionaries or 
literature includes the following:

Ground: "the solid surface of the Earth", "a solid base or
foundation"; "a surface of earth"; "bottom of the 
sea"; etc.

Height: "measurement from base to top"; "elevation above
ground or recognized level, esp. that of sea"; 
"distance upwards"; etc.

Elevation:"height above a given level, esp. that of the sea"; 
"height above the horizon"; etc.

Terrain: "tract of country considered with regard to its natural
features, etc."; "an extent of ground, region, 
territory"; etc.

Fran these definitions, sane of the differences between DGM, DHM, DEM 
and DTM begin to manifest themselves. So a DGM more or less has the 
meaning of "digital model of a solid surface". In contrast to the use 
of "ground", the terms "height" and "elevation" emphasize the 
"measurement from a datum to the top" of an object. They do not 
necessarily refer to the altitude of the terrain surface, but in 
practice, this is the aspect which is emphasized in the use of terms 
DHM and DEM. The meaning of "terrain" is more complex and embracing. It 
may contain the concept of "height" (or "elevation"), but it attempts 
to include other geographic elements and natural features. Therefore, 
the term DTM tends to have a wider meaning than DHM or DEM and will 
attempt to incorporate specific terrain features such as rivers, ridge 
lines, break lines, etc. into the model.

2.4 Mathematical models of the terrain surface

Digital terrain modelling is a process of mathematical modelling. 
.And a digital terrain model was defined as a digital representation of
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the terrain surface. In digital terrain modelling, a sample of the 
points forming the surface of the terrain under concern is measured 
with a certain accuracy. In this sense, the terrain surface is 
represented by a set of digital (or numerical) data. When information 
about the height values of other points present on the surface of this 
particular piece of terrain is needed, then an interpolation process is 
applied to the digital data set. In interpolation, a mathematical model 
is selected and used for the construction of a model of the terrain 
surface on the basis of the measured digital data points. The height 
value of any other point lying on this surface can then be obtained 
from this mathematical model.

A variety of mathematical models have been in use for this purpose such 
as a global polynomial surface, a linked series of local surfaces, a 
contiguous set of linear facets, etc. The general expression can be 
written as follows:

This simply means that H, the height value of a point on the surface 
whose location is defined by its X and Y coordinates is a function of 
two variables, which are the planimetric coordinates defining its 
position on the surface.

Expression (2.1 ) can also be rewritten in another form as follows:

This definition wi 11 suffice for this introduction; a more detailed 
discussion of this topic will be given in Chapter 7.

2.5 Mathematical models of DTM accuracy

It has been mentioned above that accuracy is an important criterion or 
standard for the evaluation of models in general and that the accuracy 
of the mathematical model used to represent the corresponding terrain 
surface is a matter of the highest concern in digital terrain .modelling. 
Therefore, a mathematical model for the assessment or prediction of DTM 
accuracy is of importance both in theory and in practice.

The model for assessing or predicting DTM accuracy will be more 
complicated than that for the terrain surface itself because the latter 
has only two variables (X and Y coordinates) while the former will have 
quite a few other variables. These variables may include the roughness 
of the terrain surface, the specific interpolation functions and methods 
used, as well as the accuracy, density and distribution of the source

H = f(X,Y) (2 . 1 )

f (X, Y, H) = 0 (2 .2 )

1 9



Chapter 2 Mathematical model

data, and so on. Therefore, the mathematical models of DTM accuracy 
could be written in a general form as follows:

Where, Ac (DIM) denotes the accuracy of a DIM;
S is a factor related to the characteristics of DIM surface;
M is the method used for surface modelling;
R is the roughness of the terrain surface;
A, Ds and Dn are the accuracy, distribution and density of 

source data, respectively; and
0 refers to other factors.

Also, as will be discussed later in Chapter 12, there are many accuracy 
models in use which take different forms and which employ different 
mathematical tools. Even so, it is still one of the most important 
topics in digital terrain modelling. Indeed, the building of this type 
of accuracy model in digital terrain modelling occupies a major part of 
this project.

As stated in the introduction, the model expressed by (2.3) may be 
established either by theoretical analysis or experimental tests or a 
combination of both. In experimental tests of DTM accuracy, check 
points will be used. The relationship between the reliability of the 
obtained accuracy results with the attributes (number, accuracy and 
distribution) of the check points may also be expressed in a 
mathematical form, thus a mathematical model may be formed. Such a 
model may also be expressed by an equation similar to (2.3) as follows:

Where, R refers to the reliability of the obtained accuracy estimates;
A, No, and Ds denotes the accuracy, the number and the distri­
bution of the check points used for the experimental test.

2.6 Other mathematical models in digital terrain modelling

These two types of mathematical models discussed above are the main 
models in use in digital terrain modelling. However, if it is viewed as 
an engineering system, another two types of main models may be 
considered. One of these models is the economic model to be applied in 
digital terrain modelling. It is not a easy job to establish such a 
model since all the costs involved in different stages of the modelling 
process should be taken into consideration. In doing so, both 
theoretical data and practical (or empirical) values or data are also 
needed if the model is to be effective. It can be expected that this

Ac (DIM) = f (S, M, R, A, Ds, Dn, 0) (2.3)

R = f(A, No, Ds) (2.4)
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type of model can only be established if DTM production has become a 
routine operation.

Another type of model which can be considered within the context of 
digital terrain modelling is the optimization model. This type of model 
can be used to design the optimum combination of data sources, 
instrumentation, sampling strategy, interpolation method, and other 
factors involved in the operation. The model should take both economic 
factors and accuracy into consideration or only one of them. 
Mathematical tools such as dynamic programming and/or linear 
programming may be used for the establishment of such models.

Of course, there could be quite a lot of other minor mathematical 
models used in digital terrain modelling; however, it is not the 
purpose of this section to examine all these minor models.

2.7 Simulation

Before ending this chapter, it seems pertinent to have an examination 
of the term, simulation, because simulation is relevant to modelling. ,

First of all, it would be appropriate to have a look at the position of 
simulation in the manipulations of mathematical models. It is 
commonplace to say that there are two great pillars upon which the 
experimental sciences rest - theory and experiment. Similarly, as Meyer 
(1985) pointed out, in mathematical manipulation, there are also two 
approaches. One is the analytical approach, which used to be and still 
is regarded as being the greater pillar; the other might almost be 
called the experimental approach. Simulation is one form of 
mathematical experiment. The difference between an analytical solution 
and a solution determined through a simulation is that the former 
involves finding a formula that relates the quantiity which we are 
trying to estimate to other quantities known to us, thus to provide a 
closed-form expression in terms of defining parameters; while the 
latter attempts to estimate the value of a quantity by mimicking 
(simulating) the dynamic behaviour of the system involved, by employing 
a procedural model.

As a matter of fact, in operational research, a simulation is defined 
as "a model of some situation in which the elements of the situation 
are represented by arithmetic and logical processes that can be 
executed on a computer to predict the dynamic properties of the 
situation" (Emshoff & Sisson, 1970). This emphasis on dynamic behaviour 
or properties is or appears to be a fundamental characteristic of 
simulation.
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Simulation was initially developed as a way of tackling problems for 
which no explicit mathematical solution can be devised. However, as the 
method has developed, it has been seen to be very powerful, thus it is 
widely used in practice. Rivett (1972) has stated that there are in 
general three reasons for using simulation as follows:

i). Technical problems may be too complex so that an analytical 
approach breaks down. As stated above, this is the situation, 
for which simulation was initially developed. For example, to 
produce a mathematical model for the overall effect of different 
error sources on stereo-compilation simultaneously is so complex 
that Alspaugh (1985) made use of simulated images to form 
stereo-mode Is in his experimental study (on the effects of 
different error sources on dynamic profiling) for the purpose of 
isolating the effects of some errors from others. Those images 
are simulated by using a digital terrain model and the so-called 
surface shadowing technique so that some parameters such as 
orientation elements and heights of image points can be known 
beforehand.

ii). Researchers or users need to gain some understanding of a
complex real situation. An example of such a situation related
to a digital terrain model is the well-known device called an 
aircraft simulator, which always includes a digital terrain 
model to impart some sense of reality to the trainee or pilot 
using the simulator.

iii). Researchers may be dealing with problems which do not as yet
exist in the real world. For example, before the SPOT satellite
was launched, the characteristics of SPOT images have been 
studied by using simulated SPOT images which could be used to 
form stereo-models, etc for the production of digital terrain 
data.

2.8 Concluding remarks

In this chapter, the concepts of a model and modelling have first been 
introduced and reviewed; then some discussions of mathematical models 
have been made - the concepts were given; their advantages were 
reviewed; and the standards for model evaluation have also been 
examined. This general introduction has been followed by the 
definitions and discussions of digital terrain models; after which, the 
applicability of mathematical models in digital terrain modelling has 
been discussed. Finally, a short discussion of simulation has been 
included with a reference to its relationship to modelling in general 
and to terrain modelling in particular.
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The purpose of including such an introduction is to provide some 
background for more detailed discussions which will be included later 
in this thesis. Thus, an understanding of the basic concepts of models, 
mathematical models and digital terrain models will be helpful in 
understanding what digital terrain models are; and how they may be 
applied. The standards for model evaluation could be used later as the 
basis for evaluating both existing mathematical models for DTM accuracy 
and those which have been developed in this project. Also the 
discussions on the practical considerations of mathematical models will 
be useful in comparing these models.

After these definitions and introductory discussions about models and 
terrain models, it is time to consider the main characteristics of the 
object being modelled, that of the terrain itself. The discussions will 
start with the matter of terrain descriptors and terrain classification, 
which form the principal topics of the next chapter.
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Chapter Three

Terrain Descriptors

In order to determine the optimum sampling density of data points and 
to select and/or design the best function for surface reconstruction, 
as well as to estimate the accuracy of a digital terrain model, it is 
necessary to have some knowledge about the actual terrain surface.

The terrain surface can be described in different ways. In this chapter, 
first of all, a general discussion will take place regarding the 
different terrain descriptors which may be used by different 
specialists. This will be followed by a more detailed discussion of 
those descriptors which are of special importance in digital terrain 
modelling.

3.1 Introduction

To describe the terrain surface is a necessary preliminary to 
understanding its myriad characteristics. As stated in the 
introduction, the terrain surface is a matter of concern to specialists 
in a wide variety of disciplines. Those disciplines such as geology, 
hydrology, geography, botany, zoology, ecology, pedology and 
meteorology can be considered as being mainly scientific in nature, 
while others such as agriculture, forestry, civil engineering, military 
engineering, urban and rural landscape design, and mapping can be 
regarded as being mainly applied. Obviously, many of these fields 
overlap so that no rigid distinctions should be made.

The specialists in the academic earth sciences (including geologists, 
pedologists, geomorphologists, zoologists, botanists, ecologists, etc.) 
may be as much concerned with past processes as with future 
possibilities. The specialists in agriculture (including foresters, 
agriculturists, pastoralists, planters, etc.) are mainly concerned with 
three properties of the land apart from its location: those of soil 
fertility, soil manageability and the nature of the existing 
vegetation. Civil engineers consider the suitability of ground for 
bearing, compressibility and shear strength of soil under different 
moisture conditions. Usually these considerations are made in the 
context of the design and construction of structures such as roads, 
dams, buildings, railways, harbours, open-cast pits, etc. in which 
earthwork quantities will often be a matter of major importance. 
Military engineers may focus on less permanent works, but also on such 
aspects as artillery lines of sight, the suitability of ground for 
excavating trenches, fortifications, holding tent pegs, laying 
minefields, accepting parachute drops, and sustaining the repeated
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passage of troops and both tracked and untracked vehicles. The 
specialists in meteorology and climatology are concerned with the 
effect of terrain on weather and climate because absolute elevation, 
slope, aspect, and the nature of the soil surface all influence climate 
both directly through their effect on winds, insolation, fog, cloud as 
well as rain and indirectly through the effects of vegetation cover. 
Hydrologists are especially concerned with runoff regimes and 
quantities, with stream flow, and with ground water infiltration, 
depths and movements with practical application to water supply, soil 
erosion and flood hazards, etc. (Mitchell, 1973).

The list of these interests could be very lengthy. However, it is not 
the purpose of this section to provide a survey of all these interests. 
What the author wishes to point out is that, for different types of 
specialists, the descriptors used for terrain classification could be 
very different arising from their different interests.

In general, two basic types of descriptors may be distinguished as 
follcws:

i). qualitative descriptors, which are expressed in some kind of 
general terns, so they are referred to as general descriptors in 
this thesis; and

ii). quantitative descriptors, which are those specified by seme kind 
of numerical value such as a statistical value, so they are 
referred to as numerical descriptors in this thesis.

In this chapter, the general descriptors are examined in outline only; 
whereas those numerical descriptors which have been used in DTM 
practice are discussed in rather more detail. Some comments on the 
suitability of these descriptors in DTM practice are also made and a 
specific descriptor is recommended as a critical factor to be 
considered in DTM work.

3.2 General (or qualitative) terrain descriptors

Based on these different interests outlined above, a variety of general 
or qualitative descriptors can be found. However, seme are irrelevant 
to the concerns of topographic scientists. For example, it does not 
matter to topographic scientists whether or not a piece of terrain is 
suitable for planting or cultivation. Actually, it is only the 
descriptors of the roughness and the coverage of the terrain surface, 
especially the former, that are mainly of interest in the context of a 
DTM because they affect the accuracy of the photogrammetric and/or 
other measurement and thus the accuracy of the final DTM. Therefore,
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only these related descriptors will be examined briefly in this section.

3.2.1 Terrain descriptors based on
the characteristics of terrain surface cover

The terrain surface is covered with a rich content such as vegetation, 
soil, water, ice, artificial features and so on. These various feature 
which cover the terrain surface also affects the accuracy of photogram- 
metric measurement but the degree of this effect varies with the 
specific type of feature, e.g. the type of vegetation, and even with 
the season. The specific question about how this terrain surface cover 
affects the measurement accuracy is one which lies outside the main 
scope of this discussion. What is of interest here is the fact that, 
given a particular type of terrain, some idea about the accuracy of 
photogrammetric measurement may be obtained, although such information 
will be of a very general nature. Therefore, the characteristics of 
the terrain surface cover can be regarded as useful terrain 
descriptors•

Seme parts of the terrain surface are covered by water. These include 
rivers, lakes, reservoirs, canals, etc. It may be very difficult, 
indeed sometimes impossible, to provide heights for these features 
using stereo-photogrammetric methods. Many other areas of the terrain 
surface are covered with vegetatioiv including forest, bush, grass, 
marsh, orchards, crops, as well as scattered trees, etc. These may also 
have their effects on the accuracy of photogrammetric measurement. Also 
in some areas in winter, the terrain may be covered with snow. 
Especially in high mountainous areas like some parts of North-west 
China, the terrain surface is covered with snow and ice the whole year 
round. Also in sane types of terrain, the surface is covered with rocks 
or dry soils. The latter is called a desert. Last but not least, large 
pieces of terrain surface may be covered with artificial man-made 
features, e.g. roads, buildings, aircraft runways, etc. which may or 
may not have an influence on DTM accuracy.

3.2.2 Terrain descriptors based on the genesis of landforms

One of the terrain classification systems used in geomorphology is 
based on the genesis of landforms, i.e. it is related to specific 
processes. Generally speaking, two such forms have been distinguished 
as follows (Demek, 1972):-

i). endogenetic forms, which have been formed by internal forces; and
ii). exogenetic forms, which have been formed by external forces.

The endogenetic forms include neotectonic forms, volcanic forms and 
those forms resulting from deposition by hot springs. The exogenetic
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forms include denudation forms, fluvial forms, fluvio-denudation forms, 
glaciofluvial forms, karst forms, suffosion forms (from Latin suffosio, 
meaning underwashing), glacial forms, nivation and cryogenetic forms, 
thermokarst forms, eolian forms, lacustrine and marine forms, forms of 
organic origin, and anthropogenetic forms, etc.

Of course, each form has its own special characteristics. Therefore, 
the accuracy of DTMs derived from sets of data (e.g. aerial photographs 
taken in a single run) for two adjacent areas with differing land forms 
could be different. This means that these descriptors can provide users 
with seme information about the roughness of the terrain surface, and 
thus provide some pointers to the accuracy of DTMs. However, normally 
the information provided by this type of genetic classification is so 
general that it is difficult to incorporate it in the planning of a 
sampling strategy for a specific project covering a specific area, 
except in a very broad sense.

3.2.3 Terrain descriptors based on physiography

In a terrain classification based on physiography, an individual 
country, e.g. Great Britain, is divided into generalised regions 
according to the structure and characteristics of its landforms. Each 
division is kept as homogeneous as possible and each has a dominant 
characteristic. For example, the island of Great Britain can be divided 
broadly into two physiographic regions —  a Highland Zone in the north 
and west, and a Lowland Zone in the south and east (Stamp and Beaver, 
1971).

Of course, such regions can also be sub-divided into smaller units. For 
example, the Highland Zone of Britain can be sub-divided into the 
Scottish Highlands, the Scottish Uplands, the Pennines, the Welsh 
Mountains, and the Southwestern Peninsula.

Such broad physiographic regions are specific to particular countries 
or to large regions rather than forming a classification which can be 
applied universally. Their purpose is primarily one of generalisation, 
to allow an area to be broken down into areas with consistent broad 
physiographic relationships, within which detailed terrain features are 
not specified. It is difficult to see hew such broad terrain descriptors 
can be employed usefully in the context of DTM planning or operations.

3.2.4 Terrain descriptors based on classification of 
relief type and landfarm units

The terrain surface can also be classified at a variety of scales and 
with varying degree of specificity according to relief type or on the 
basis of land form units. The degree of detail and the nature of the
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classification will vary according to the purpose involved. In such 
cases, the descriptors are not geographically specific in the sense of 
physiographic units, but are usually environmentally specific in the 
sense that a landform classification designed for the humid tropics 
will clearly be different to one designed for high altitude glacial or 
periglacial environments.

Similarly, the classification may involve descriptors which, by 
definition, are genetic in inference —  for example, a classification 
devised for glaciated topography involving such terms as eskers, kames, 
moraines, etc is, on the one hand descriptive of their surface features 
but, on the other hand, also implies a specific genetic origin.

Terrain descriptors based on landform units are therefore very varied 
in nature according to the purpose of the classification. A 
classification of terrain which is to be used for hydrological purposes 
might highlight certain aspects such as slope angles and degrees of 
terrain dissection. A classification intended to correlate with 
climatological findings might be based on height and aspect 
information. A terrain classification for agricultural development 
purposes might be based on height, dissection and rock type, so as to 
correlate with information on soils, drainage and vegetation.

In all these cases, the degree of accuracy and complexity will depend 
largely on the scale at which the classification exercise has been 
carried out. An exercise conducted at a scale of 1:2,500 would permit a 
sub-division of major terrain units into secondary terrain units and 
terrain facets. Conversely, a regional study at a scale of 1 :100,000 
would imply greater generalisation into a smaller number of terrain 
types.

As a basis for sampling for DTM purposes, these various types of 
classification would be of variable value. Small areas with a precise 
categorisation of landforms could well offer a satisfactory sampling 
frame. Conversely, a generalisation of a more descriptive nature to 
cover a large area would be of little value in terms of assisting a 
photogrammetrist in making a good decision about the sampling strategy 
or sampling interval to be employed over such an area.

3.2.5 Discussion of general or qualitative descriptors

Those descriptors of terrain discussed above may be so broad that they 
can only provide the user with seme very general information about a 
particular landscape. Such information is often not precise enough for 
DTM purposes because, in this case, a mathematical model is desirable 
and some kind of numerical descriptors are either essential or 
preferred since it is numerical data that is being provided and
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processed.

The terrain surface coverage gives very little information about the 
roughness of the terrain. For example, a bush area could be very flat 
or rolling. Therefore, these descriptors are, by no means, adequate for 
DTM purposes, though the presence of bush or forest will definitely 
have a negative effect on the accuracy of height measurement.

Physiographic divisions are usually too broad. For example, within the 
zone of the Scottish Highlands, there are still some flat areas. Of 
course, the roughness of these flat areas must be very different to 
those of the main mountainous areas. Therefore, physiographic 
descriptors may only be used for the general planning of DTMs over very 
large areas or regions, but are not adequate for an individual project.

Again with geomorphological descriptors, based either on the genesis of 
the landforms or the relief types and landform units, the information 
which they can provide will usually be too general, just like the 
physiographic descriptors.

Furthermore, although each of the different geomorphological types of 
terrain have different characteristics, the information provided by 
geomorphologists is so often concerned primarily with process as not to 
be useful to those topographic scientists who are charged with the task 
of DTM data acquisition. However, it must also be said that this is an 
area where an increased collaboration between the two groups of 
scientists could be fruitful in terms of the planning of DTM data 
acquisition and in the later modelling and reconstruction of the 
terrain surface.

3.3 Numerical (or quantitative) descriptors

As discussed above, the general descriptors are unsuitable for detailed 
DTM planning purposes although they do provide the user with some 
information about the terrain surface. Therefore, in this section, some 
numerical or quantitative descriptors such as statistical values will 
be discussed. The definitions of these descriptors are given at the 
beginning while the discussion of the usefulness of these descriptors 
will be given at the end under the heading of discussion.

3.3.1 Descriptors of the complexity of terrain surfaces

The complexity of a DTM surface can be specified by the concepts of 
roughness or irregularity. These can be characterised by different 
parameters such as its frequency spectrum, fractal dimension, and other 
geomorphometric parameters. These parameters characterise the general

30



Chapter 3 Terrain descriptors

shape of a terrain surface. They should, therefore, be able to serve as 
the basis for determining the optimum sampling strategy to be used for 
a specific DTM.

(1). Frequency spectrum:

A surface can be transformed from the space domain to the frequency 
domain by means of a Fourier Transformation. The terrain surface in 
its frequency domain is characterised by its frequency spectrum. The 
estimation of such a spectrum from equally spaced discrete (profile) 
data has been discussed by Frederiksen (1980) and his colleagues 
(1978). The spectrum can be approximated by the following expression:

S(F) = E . F3 (3.1)

Where, F denotes the frequency, at which the spectrum magnitude is 
S(F); and E and a are constants (i.e. characteristic parameters), which 
are two statistics expressing the complexity of the terrain surface (or 
profiles) over all of the area. Thus they, like some of the numerical 
descriptors which will be discussed later, can also considered as 
rather general parameters but they do provide much more precise 
information about the terrain surface than those described under the 
heading of General or Qualitative Descriptors.

Different values could be obtained for these two characteristic 
parameters from different types of terrain. According to the study 
carried out by Frederiksen (1980), if the parameter, a, is larger than 
2, the landscape is hilly with a smooth surface, and if the value of a 
is smaller than 2, it indicates a flat landscape with a rough surface 
since the surface contains relatively large variation with high 
frequency (or short wavelangth). Such information is, of course, very 
general. However, no more detailed information about the relationship 
between these parameters and terrain characteristics is available so 
far, therefore, as Frederiksen (1980) pointed out, "further experiments 
must be carried out to interpret the connection between the terrain 
variations and the spectrum".

Obviously, up till now, the use of the frequency spectrum of the 
terrain has not moved out of the research domain. Also a great deal of 
work still has to be done before the usefulness of the method is 
established in the context of DTMs.

(2). Fractal dimensicn:

Fractal dimension is another statistical descriptor which can be used 
to characterise the complexity of a curve or a surface. The discussion 
will start with the concept of effective dimension.
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It is well-known that, in Euclidean geometry, a curve has a dimension 
of 1 and a surface has a dimension of 2 regardless of its complexity. 
However, in reality, a very irregular curve is much longer than a 
straight line between the same two points, and a complex surface has a 
much larger area than a plane over the same area. In the extreme, if a 
line is so irregular that it fills a plane fully, then it becomes a 
plane, thus having a dimension of 2. Similarly, a surface could have a 
dimension of 3.

In fractal geometry, the concept of which was introduced by Mandelbrot 
(1982), the dimension of an object is defined by necessity (meaning 
"practical need"), thus leading to the so-called effective dimension. 
The idea of effective dimension can be explained by taking the example 
of the shape of the Earth's surface when viewed from different 
distances.

i). if it is viewed from an infinite distance, the Earth appears as 
a point, thus having a dimension of 0;

ii). if it is viewed from a position on the Moon, it appears to be a 
small ball so that the terrain relief is negligible, thus having 
a dimension of 3;

iii). if the viewer comes nearer, for example to a distance above the 
Earth's surface of about 830km (the altitude of the SPOT 
satellite's orbit), the height information is extractable but 
not in detail, thus, in general terms, the observer can see a 
mainly smooth surface in some flat areas with a dimension of 2;

iv). if the Earth's surface is viewed on the ground, then the 
roughness of the surface can be seen clearly, thus the effective
dimension of the surface should be greater than 2.

In fractal geometry, the effective dimension is allowed to be a 
fraction, which is called the fractal dimension or fractal. For 
example, the fractal dimension of a curve lies between 1 and 2, and 
that of a surface between 2 and 3.

The following is an example to show how the fractal dimension of a 
coast line can be determined (Mandelbrot, 1967). To evaluate the coast 
between A and B, a person may use a different measuring scale, G. For 
instance, if a ruler with a smallest scale (resolution) of h (i.e. 
G=h) is used to measure the length of this coast, then a value of L(h) 
(i.e. L(G)=L(h)) can be obtained. With a different value of G, he would
obtain a different length L(G). The relationship between L(G) and G can
be expressed as follows:
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L(G) = M G1"D (3.2)

Where, M is a constant, and D is interpreted as the fractal dimension 
of the coast line between A and B.

Similarly, the fractal dimension of a surface can also be measured by a 
series of square planes with different sizes.

From the discussion above, it can be concluded that a fractal dimension 
opproaching 3 indicates a very complex and probably rough surface, 
while a simple (near-planar) surface has a fractal dimension value 
which is near 2.

As in the case of the frequency spectrum approach discussed previously, 
the use of the fractal dimension is, as yet, far from proven to be 
useful in the context of defining a sampling strategy for DTM data 
acqusition. Much more work must be undertaken and many more 
measurements made before the use of fractal data becomes a viable 
method to be employed in DIM data acquisition.

(3). Plan and profile curvatures

It is also known that an individual relief form can be synthesized by 
combining form elements which are defined as relief units of 
homogeneous plan and profile curvatures.
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Fig.3.1 Classification of form elements by plan and profile curvature
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Suppose a profile can be expressed as y = f(x), then the curvature at 
position x can be computed as follows:

d2y / dx2
C  -------------------  (3.3)

(1 + (dy/dx)2 )3/2

In this respect, curvature (C) is inversely proportional to the radius 
of the curve (R), (i.e. C=1/R) in which case, a large value of
curvature is associated with a small value of radius. Thus, 
intuitively, it can be seen that the larger the curvature, the rougher 
is the relief. Therefore, curvatures can also be used as a measure for 
the roughness of the terrain. This criterion has already been used for 
terrain analysis (Dikau, 1989). Fig.3.1 shows different type of 
curvatures as illustrated in Dikau's paper.

This does seems to be a potentially useful method for planning DTM 
sampling strategies. Hcwever, it would seem that a rather large volume 
of data (that of a DTM!) needs to be available to allow the curvature 
values to be derived —  which leads to a chicken and egg situation.

3.3.2 Descriptors for the similarity of terrain surfaces

The degree of similarity between the pairs of surface points can be 
described by a correlation function. This correlation function may take 
different forms —  auto-correlation, (auto-)covariance and variogram 
are all examples of these differing forms or functions. These are the 
descriptors of the general shape of a surface and, therefore, they can 
be used as the basis of weight determination in interpolation methods. 
For example, variogram has been used for this purpose in the Kriging 
method used in random-to-grid interpolation. They should also be able 
to serve as the basis for determining the optimum sampling intervals 
for regular gridded sampling. The computation is as follows:

Covariance: Cov(d) = [ (Z^-M)(Z^^-M) ] / (N-1) (3.4)

Auto-correlation: R(d) = Cov(d) / Var (3.5)

Where "[ ]" denotes summation; M is the mean of Zs (heights); d is the 
distance between two data points; N is the number of terms in the 
summations; and Var denotes the variance which is computed as follows:

Variance: Var = [ (Z^M)2 ] / (N-1) (3.6)

Similarity values should have a high correlation with the complexity of 
the surface. The relationship should be such that the smaller the
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similarity, the more complex is the surface.

(1). Ocrvariance:

Auto-covariance, or simply covariance, is one of the concepts used to 
describe the similarity of a DTM surface. The formula for the 
computation is expressed by equation (3.4). The value of the covariance 
decreases with the increase of distance between pairs of data points. 
Seme empirical models such as the exponential model:

have been used (Kubik and Botman, 1976), where c is the parameter 
indicating the correlation distances at which the value of covariance 
approaches to zero. Therefore, the smaller the value of c, the less 
similar the surface points.

The covariance can also be plotted against the distance between pairs 
of data points. Such a diagram is referred to as covariogram. The shape 
of the curve is determined largely by parameter "c" which has a 
function very similar to that of the root mean square error in the 
random error model.

(2). Auto-correlation:

Auto-correlation is a very powerful descriptor of a DTM surface. It is 
a concept similar to that of covariance. The auto-correlation function 
also indicates the average degree of similarity between all pairs of 
data points.

The auto-correlation coefficient takes a value from 0 to 1. A 
coefficient of 1 indicates that the elevation values of two points are 
identical, while a coefficient of 0 indicates that there is no 
similarity between the two points in terms of elevation.

(3). Variogram:

Variogram is another descriptor used to describe the similarity of a 
DTM surface. It has also been used for DTM accuracy estimation, and 
thus for the determination of optimum sampling distance. The expression 
for its computation is as follows:

Cov (d) = VAR * Exp (-2 d /c) (3.7)

and the Gaussian model:

Cov (d) = VAR * Exp (-2 d^/c2) (3.8)

2r(d) = [ (Z(x)-Z(x+d)2 ]/N (3.9)
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Where, "[ ]" denotes the summation; d is the distance between two data 
points; and N is the number of summation terms. Then r(d) is the value 
of the semi - var iogram between data points with a distance of d apart. 
In the elevation case, the follaving model is often suitable:

r(d) = A * db (3.10)

Where, A and b are constants; and d is still the distance between two 
data points. This model is Known as the De Wijsian model (see David, 
1977).

It can also be concluded that the smaller the value of the variogram, 
the greater the similarity between two sampled points in terms of 
elevation.

3.3.3 Discussion of numerical descriptors

These numerical descriptors are essentially statistical descriptors. 
They are computed from a sample of terrain points from the project 
area. Usually, some profiles are used as the sample and then a 
numerical value is computed from these profiles. However, there are 
some problems connected with this approach. One of these is that the 
numerical value computed from the selected profiles could be different 
to that derived from the whole surface. If one tries to compute it for 
the whole surface, then a sample from the whole surface is necessary. 
In this case, the original purpose of having a terrain descriptor for 
project planning disappears. Also the numerical values are very 
sensitive to the sampling interval used, the length of profile used and 
even the location and direction of the profiles used in the 
computation. Therefore, it is very possible that the obtained numerical 
descriptor fails to convey the correct message to a DTM planner.

In conclusion, it is often very difficult to have a robust estimate of 
these numerical descriptors for a given area, thus it is difficult to 
make use of them in defining a sampling strategy. Thus in practical 
terms, these descriptors have been used experimentally in DTM research 
and practice but not so far successfully in operational or routine 
production terms.

3.4 A recommendation for slope together with wavelength to be used 
as the main terrain descriptor for DIM purposes

It has been found that these various numerical /statistical descriptors 
discussed in the previous section are not too suitable for the purposes 
of DTM planning and practice. Therefore, the aim of this section is to
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recommend a more practical approach.

3.4.1 Roughness vector: Slope and wavelength

Roughness is the concept originally used in geomorphometry to describe 
the complexity of a topographic surface. The parameters used for such 
purposes have been reviewed by Mark (1975). It has been found that 
roughness cannot be completely defined by any single parameter, but 
must be represented by a roughness vector or set of parameters.

In this set of parameters, relief is used to describe the vertical 
dimension (or amplitude of the topography), while the terms grain and 
texture (the longest and shortest significant wavelengths) are used to 
describe the horizontal variation. The parameters for these two 
dimensions are connected by slope. Thus, relief, wavelength and slope 
are the roughness parameters. The relationship between them can be 
illustrated in Fig.3.2(a). It can be seen that the slope angle at a 
point on the "wave" varies from position to position. The following 
mathematical equation may be used as an approximate expression of their 
relationships:-

tanA = H / (W/2) = 2 H / W (3.11)

Where, A denotes the average value of the slope angle; H is the local 
relief value; and W is the so-called wavelength. It is clear that, if 
any two of them are known, then the third can be computed from
Equ.(3.11).

Slope angle fo r  P

|<------------  w a v e le n g th -----------] r w "

Fig.3.2 Relationship between slope, wavelength and relief 
(a). Their full relationship; and (b). simplified diagram

For many reasons which will be discussed in the next sections, slope 
and wavelength together are recommended as the main terrain descriptors 
for DTM purposes.
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In practical terms, the relief parameter for a given area will often be 
known. Therefore, the value of the corresponding wavelength will also 
be known if the slope value is known. Therefore, the adequacy of this 
descriptor depends above all on the availability of slope values in 
terms of terrain description.

3.4.2 Hie adequacy of slope as a terrain descriptor 
from the geomorphcmetric point of view

Evans (1981) states that "a useful description of the landform at any 
point is given by altitude and the surface derivatives, i.e. slope and 
convexity (curvature)." "Slope is defined by a plane tangent to the 
surface at the given point and is completely specified by the two 
components: gradient (vertical component) and aspect (plan component)." 
"Gradient is essentially the first vertical derivative of the altitude 
surface while aspect is the first horizontal derivative." Further land 
surface properties are specified by convexity (induing positive and 
negative convexity - concavity). These are the change rates in the 
gradient at a point (in profile) and the aspect (in plan tangential to 
the contour passing through this point). In other words, they are the 
second derivatives.

These five attributes (altitude, gradient, aspect, profile convexity 
and plan convexity) are the main elements which are descriptive of 
surface points. Among then, slope, comprising both gradient and aspect 
components, is the fundamental attribute.

The gradient component should be measured in the steepest direction. 
However, when taking the gradient of a profile or in a specific 
direction, it is actually the vector of gradient and aspect that is 
obtained and used. Therefore, the term slope or slope angle is used in 
this thesis to refer to the gradient in any specific direction.

3.4.3 Hie adequacy of slope as a terrain descriptor 
from other different points of view

The usage of slope as the main terrain descriptor for DTM purposes can 
be justified for the following reasons:

i). Slope is a very powerful terrain descriptor. As quoted by Evans 
(1972), Strahler (1956) pointed out that "slope is perhaps the 
most important aspect of surface form, since surfaces may be 
formed completely from slope angles..."

ii). Slope is the first derivative of altitude on the terrain surface. 
It shows the rate of the change of height of the terrain surface 
with distance.
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iii). Traditionally, slope has been recognised to be a very important 
descriptor and is well utilized in practice. For example, the map 
specifications for contours are given all over the world in terms 
of slope angle.

iv). More importantly, in DTM practice, Ley (1986) found that "a 
positive correlation exists between the vertical error of a 
regional DTM and the mean slope of that region as measured from 
the DTM. The correlation coefficient was very high with a low 
standard error". From this discovery, Ley (1986) then concluded 
that it is possible to predict the vertical accuracy of DTMs 
purely by analysing the mean slope of the model".

3.4.4 Practical considerations for slope

In the previous section, it was suggested that slope could be used as 
the main terrain descriptor for DTM purposes. In this section, seme of 
the problems and/or difficulties of using slope will be discussed.

One of the problems is the availability of slope data. In the present 
context, the purpose of classifying the terrain on the basis of slope 
values is to design a sampling strategy for this area. Therefore, the 
slope values should be available or estimated before sampling takes 
place.

Actually, slope can be determined directly from the height and plan 
measurements carried out in a stereo-model or derived from contour 
maps. The method designed by Wentworth (1930) is still widely used for 
estimating the average slope of an area from a contour map. If there is 
no contour map available for the project area, then the slope may be 
estimated from aerial photographs. Some of the methods which are 
available for the measurement of slope from aerial photos have been 
compared by Turner (1977).

Another problem may be the variability of slope values. Slope may vary 
from place to place so the slope estimate which is representative for 
one area may be not suitable for another. In this case, the average 
value may be used in suitable situations as suggested by Ley (1986). If 
the slope varies too greatly in an area, then the area may be divided 
into small pieces and different sampling strategies may be applied to 
each of these pieces. However, the discussion of the design of this 
sampling strategy will take place later (i.e. outside of this chapter) 
after the discussion of the accuracy of DTMs from different data 
sources.

Although there may be some difficulties in measuring or estimating
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slope, just like those encountered in providing estimates of other 
numerical descriptors, there are still some advantages of slope over 
the others:

i). One of these is that people have a lot of experience in dealing 
with slopes when making topographic maps. Thus a lot of prior 
knowledge is available that can be put to use in defining or 
deciding upon a sampling strategy.

ii). The second is that, there is evidence of a high correlation 
between slope and relief (e.g. see Evans, 1972). Therefore, 
relief information may be used as a rough guide for the value of 
slope. For example, in deciding the contour intervals to be used 
in small scale topographic mapping, Imhof (1965) takes 45° as 
the average slope value used in for high mountainous areas of 
rugged relief, 26° for lower mountainous areas with a less 
rugged relief and 9° for relatively flatter areas.

iii). Due to the high correlation between slope and relief, the 
concept appears very intuitive to every one, though obviously 
there are exceptions such as high plateaux with large elevation 
or altitude values but maybe a relatively gentle terrain in 
terms of slope.

3.5 Concluding remarks

In this chapter, a brief discussion of terrain descriptors has been 
made. These descriptors include general descriptors and numerical 
descriptors. It has also been pointed out that the general or 
qualitative descriptors can only provide users with such a general 
knowledge about the roughness of the terrain surface that they can only 
be used in the planning stage for modelling large areas. By contrast, 
numerical or quantitative descriptors are capable of providing more 
precise information about the roughness of the terrain. Thus they can 
be used at the design stage for specific projects within a relatively 
small area. However, there are some problems associated with those 
numerical descriptors which have already been used in DTM practice. Due 
to these problems, it is difficult to make practical use of these 
descriptors.

From both the theoretical analysis and the results from DTM practice, 
slope together with wavelength appears to be a very premising terrain 
descriptor, and therefore it will be the main descriptor used in this 
project.

Using numerical parameters to classify terrain is referred to as a
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parametric classification. In this system, terrain is classified on the 
basis of the user's demand for a specific purpose —  in this particular 
case, the acquisition of DTM data. In the case of terrain modelling, 
the main purpose is to decide upon and then design the sampling 
strategy, the basis for which will be discussed in the next chapter.
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Chapter Four

Sampling Strategy for Data Acquisition Using Photogranroetric Methods

After the classification of terrain types, the next step is data 
acquisition. Since the formation of a digital terrain model is a 
numerical and mathematical process, a suitable set of digital 
coordinate data of the terrain surface is required before any modelling 
can be carried out. The acquisition of this data is the primary (and 
probably the single most important) stage in the terrain modelling 
process. This is the topic of this chapter.

4.1 Introduction and background

The source data, comprising positional coordinates and elevation 
values, can be measured directly on the terrain surface by field survey 
methods or it can be obtained indirectly from other sources such as 
aerial photographs, remotely sensed imagery, and/or existing contour 
maps. The method used will depend partly on the availability of these 
different materials but also on the scale or the required sampling 
interval and the accuracy requirements of the DTM. Furthermore, the 
intended use and the type of information which will be extracted from 
the model will help to decide which source and which particular method 
will be used to acquire the data for the DTM.

4.1.1 Data sources for digital terrain modelling

The actual terrain surface of the Earth occupies a vast area —  about
149.5 million square kilometres —  although it is only a small fraction 
(29.2%) of the total area of the Earth's surface. The approach of 
acquiring data directly from measurements on the terrain surface is 
referred to as ground survey or field survey.

The data acquired by ground survey is (or should be) of a very high 
quality in terms of accuracy. It is suitable for large-scale terrain 
modelling such as projects in civil and mining engineering covering a 
relatively limited areal extent. However, it is not an efficient or 
practical approach for measuring or modelling large areas of the 
Earth's surface. Therefore, consideration of digital terrain modelling 
based on data from this particular source will not be undertaken in 
this thesis.

Space photographs are another source which could be used for terrain 
modelling. Seme photographic systems such as the Sky lab S-190A and S- 
190B, the Space lab Metric Camera and the Large Format Camera have been 
used experimentally to collect terrain model data. However, the height
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accuracy of data points measured from the photographs taken by these 
systems is so low that they can only be used for reconnaissance 
purposes. Remotely sensed imagery, taken from space can also be 
considered as a data source for terrain modelling. However, although 
many satellite scanner systems such as the MSS and TM sensors used in 
Landsat series and the stereo-scanner used in SPOT have been 
experimented with, the quality of height information v/hich can be 
obtained from such systems is very poor in terms of both relative and 
absolute elevation accuracy. Thus, it is impractical to use such space 
imageries as the data source for terrain modelling except for some kind 
of reconnaissance purpose. Therefore, least consideration has been 
given in this thesis to using this second type of space image as a data 
source. However, a test of DTM accuracy has been carried out using 
space photography and is reported in Chapter 10.

Existing contour maps are another source for terrain modelling. The 
acquisition of data from existing maps is referred to as cartographic 
digitisation. The problems associated with this particular data source 
will be discussed later in Chapter 6 and a practical test of accuracy 
of a DTM derived from this type of data will be reported in Chapter 13.

Aerial Photography is a vital and very useful data source for many 
different disciplines. It has been widely used in topographic mapping, 
geology, agriculture, forestry, ecology, archaeology, resource 
management, urban planning, etc. It is also the main source for the 
production of accurate DTMs over large areas and so its characteristics 
will be considered at length in this thesis.

4.1.2 Photogrammetric methods of DTM data acquisition

The method used to acquire (i.e. measure) data from aerial photographs 
is referred to as photogrammetry. Photogrammetric data can be acquired 
for DTM production in any of several different ways. It is possible to 
use a photogrammetric operator to measure a set of data points on a 
stereo-model following some kind of procedure designed specifically for 
the purpose, or it can be collected as a by-product of some other 
photogrammetric operations such as orthophoto production or contouring. 
It is also possible to obtain photogrammetric data by automated or 
semi-automated measuring methods, e.g. using correlation techniques.

The specific procedure designed for the purpose of DTM data acquisition 
is referred to as the photogrammetric sampling method in this thesis 
and forms the principal topic of this chapter.

Indeed, sampling is a vital matter in digital terrain modelling since 
more and more evidence is becoming available which shews that the loss 
of fidelity in terrain topography resulting from the failure to
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acquire sufficient or appropriate information at the data aquisition 
stage cannot be regained by interpolation at the reconstruction or 
modelling stage (see Makarovic, 1972; Kubik and Botman, 1976; 
Ackermann, 1979). Therefore, determining the location of points to be 
measured and/or the optimum sampling interval between points is the 
most important topic in sampling theory. This will be discussed later 
in more detail in Chapter 14 which is concerned with the optimization 
of photogrammetric sampling for different types of DTM projects after 
discussion of the accuracy of digital terrain models.

Various photogrammetric sampling methods have already been in use. 
These include profiling, regular grid sampling, selective sampling 
(Makarovic, 1984), progressive sampling (Makarovic, 1973) and composite 
sampling (Makarovic, 1977). However, the theoretical background of 
these different methods, the effectiveness of each method and the 
overall philosophy of the photogrammetric sampling methods themselves 
have rarely been discussed. However, such a discussion is of great 
importance if the most suitable sampling method for a specific project 
is to be selected. Also the discussion might lead to the development of 
more comprehensive and effective methods.

The concept of sampling used above refers to the sampling before 
measurements, thus it can be considered as pre-measurement sampling. 
However, in some cases, the data points may have already been measured 
with a great density, as in the case of data sets produced by automatic 
correlation, but not all points may be necessary for a specific 
project. Therefore, some methods of filtering need to be applied to 
such data sets. This type of filtering can be called post-measurement 
filtering and a brief discussion on this topic will be given at the end 
of this chapter.

4.2 Theoretical background for photogrammetric sampling

From the theoretical point of view, a point on terrain surface is zero­
dimensional, thus without size, while a terrain surface comprises an 
infinite number of such points. If full information about the geometry 
of a terrain surface is required, it is necessary to measure an 
infinite number of points. That is to say, from both the theoretical 
and practical points of view, it is impossible to obtain full 
information about the geometry of a terrain surface.

However, in photogrammetric practice, the terrain surface is represented 
quite adequately by the surface of the reconstructed stereo-model of 
the area being modelled. It follows that the height of a point measured 
on the stereo-model surface (which is actually formed from two tiny 
fuzzy circles on aerial photographs) represents the elevation value
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(height) over a certain size of area. Any lack of accuracy in this 
value is mainly due to the limitations of the photographic imaging 
system (including the resolution of the aerial camera-lens/emulsion 
combination) and to the mechanical accuracy of the photogrammetric 
instrument.

In practice, a stereo-model surface is represented by a finite number 
of measured points. That is to say, a stereo-model (and thus a piece of 
the terrain surface) can be represented quite adequately by measuring 
only a finite number of points on it. This fact makes photogrammetric 
sampling meaningful in a practical sense.

In most cases, full or complete information about a stereo-model 
surface is not required for a specific DTM project, and so the photo­
grammetric measurements required for a DTM project can be carried out 
with a view to obtaining a set of digital data which can represent the 
corresponding terrain surface to the required density and/or to the 
required degree of accuracy and fidelity.

4.3 Sanpling theorem and its possible application to DTM data sampling

The fundamental sampling theorem, used in mathematics, statistics, 
engineering and other related disciplines is well-known and can be 
stated as follows:

"If a function is sampled at an interval of Dx, then the 
variations at frequencies higher than 1/(2 Dx) cannot be 
reconstructed from the sampled data."

As Tobler (1969) explained, the theorem states that "if a function has 
no spectral components of frequency higher than W, then the value of 
the function is completely determined by a knowledge of its values at 
points spaced 1/(2W) apart."

In the case of terrain modelling, if a terrain profile is long enough 
to be representative of the local terrain, it can then be represented 
by a sum of its sine and cosine waves. If it is assumed that the number 
of the terms in this sum is finite, there is, therefore, a maximum 
frequency value, say F, for this set of sinusoidal s. According to this 
theorem, the terrain profile can be completely constructed if the 
sampling interval along the profile is smaller than 1/(2F). Therefore, 
extending this idea to surfaces, the sampling theorem could also be 
used to determine the sampling interval between profiles in order to 
obtain adequate information about a terrain surface v/hich is 
represented by a stereo-model surface.
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Furthermore, according to this theorem, if a terrain profile is sampled 
at an interval of Dx, then the information about the variations of the 
profile with a wave length of 2 times Dx or more is totally lost. 
Therefore, as Peucker (1972) has pointed out, "a given regular grid of 
sampling points can depict only those variations of the data with wave 
lengths of twice the sampling interval or more."

This theorem has been used for the determination of the sampling 
interval by Frederiksen (1980) and his colleagues (Frederiksen et al, 
1986). The computation takes place in the frequency domain.

4.4 Photograimetric sampling from different points of view

The surface of a stereo-model can be considered to be an assemblage of 
points. These points can be viewed in various ways from the differing 
view points inherent in subjects such as statistics, geometry, 
topographic science, etc. Therefore, different sampling methods can be 
designed and evaluated according to each of these different view 
points. The following paragraphs will discuss these view points and 
methods.

4.4.1 Statistics-based sampling

From the view point of statistics, a stereo-model surface is a 
population (also called a sample space) and the sampling can be carried 
out either randomly or systematically. The population can then be 
studied by the sampled data.

Random sampling is sampling in which any sampled point is selected by a 
chance mechanism with known chances of selection. The chance of 
selection may be different from point to point. If the chance is equal 
for all sampled points, then it is referred to as simple random 
sampling. In systematic sampling, the sampled points are selected in a 
specially designed way, each with a chance of 100% probability of being 
selected.

The whole population can be sub-divided into several sub-populations, 
each called a stratum, and the sampled points can be taken from each of 
these strata. Any sampling carried out in this way is referred to as 
stratified sampling. The sampling can also be taken in another way in 
which the whole population is divided first into several groups 
(referred to as clusters in statistics), and then one of them is 
randomly selected for the estimation of the population. This method is 
referred to as cluster sanpling.
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4.4,2 Geometry-based sampling

Sampling strategy.

From the geometrical point of view, a stereo-model surface can be 
represented by different geometric patterns. This pattern could be 
either irregular or regular in nature. The regular pattern can, in 
turn, be sub-divided into 1-D regular and 2-D regular patterns.

The data points obtained from the sampling with an irregular pattern 
can be represented by irregularly-shaped triangles or polygons. If the 
sampling is conducted with a regular pattern which is only regular in 
one dimension, then the corresponding method is referred to as 
profiling (or contouring). A two-dimensional ly regular pattern could be 
a square or regular grid, or a series of contiguous equilateral 
triangles, hexagons, or other regularly shaped geometric figures.

4.4.3 Feature-based sampling

In this thesis, "feature-based sampling" refers to the sampling as seen 
from the point of view of topographic science. From this view point, a 
stereo-model surface consists of a finite number of surface points, and 
the information content of these surface points may vary with their 
positions on the stereo-model surface (representing the corresponding 
terrain surface). In surface theory, surface points are classified into 
two groups, one of which comprises feature-specific points (and lines) 
while the other comprises random points.

Feature-specific points are those points on the surface which represent 
surface features with a much higher or more significant information 
content than the average surface point. Examples of these are peaks, 
pits and passes. These points not only contain their own coordinate 
values, but are also be able to give some information about their 
surroundings. Peaks are the summits of mountains and hills, so they 
have a set of points of lower height around them. By contrast, pits are 
the bottoms of valleys (or holes), so they have a set of greater height 
values around them.

The lines connecting certain types of feature-specific points are 
referred to as feature-specific lines in this thesis. Examples of these 
are ridge lines and course lines (e.g. rivers, valleys, ravines, etc.). 
Ridge lines are the lines connecting pairs of points such that the 
points on them are local maxima; and course lines are, on the other 
hand, linking pairs or strings of points so that the points defined by 
them are local minima.

The crossing points of these two types of lines are referred to as 
Passes. They are, therefore, the points which, at the same time, can 
have a maximum elevation value in one direction and a minimum value in
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the other direction.

Sampling strategy..

As discussed in Chapter 3, it has been found in gecmorphometry, that a 
terrain surface may be characterised almost completely by its slope 
angles. From this point of view, it can be thought that the importance 
of feature-specific points present on the terrain surface arises from 
the fact that, at these points, terrain slope changes not only its 
direction but also its sign or magnitude. For example, at peaks, it 
changes from positive to negative and at pits, it changes from negative 
to positive. There are also two other types of points at which the 
terrain slope changes its vertical angle but not its sign. They are 
convex points and concave points. If a slope is viewed as an up-down 
transition, then the slope change is from gentle to steep at the former 
and in an opposite direction at the latter.

The convex and concave points are also, invariably feature-specific 
points, connected to become linear features. If there is a special case 
where the slope change is very sudden, then these linear features are 
referred to as break lines.

All these points —  feature-specific points, points along feature- 
specific lines, points along break lines, etc. —  are very important 
points (VIPs) in representing the terrain surface.

As has been discussed before, in the statistics-based sampling 
approach, every surface point is considered as a random point. However, 
in the topographic science context, a random point (RP) refers to any 
point randomly located on the surface. Unlike the VIPs, a random point 
which has been measured can only give information about its own height 
value but nothing more. That is to say, if a surface may be represented 
by N points, knowing one of them only gives us 1/N more information 
about the geometry of the surface. From the point of view of 
topographic science, random points are of only minor significance and 
little effort is made to collect data on this basis.

The discussions above suggest that there is very little loss of 
information about the terrain surface features if any points other than 
VIPs are not selected. In other words, if only these VIPs are selected, 
the main features of the terrain surface can still be obtained. This 
results in the method of selective sampling. In this context, any other 
sampling method can be classified into the group of non-selective 
sampling.

4.5 The requirements for photogrammetric sanpling methods

In the preceeding section, photogrammetric sampling has been discussed
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from several different points of views. This section will discuss the 
requirements for a photogrammetric sampling method.

The whole DTM production system can be considered as an engineering 
system. The following criteria are the main standards for system 
judgement: performance, cost, reliability and time (Chestnut, 1965). 
Specifically for a sampling method, the requirements are described as 
follows:

i). In order that the whole DTM production system can have a good 
performance, the sampling method should enable data to be 
obtained with sufficient fidelity to recreate the original 
surface while fitting into a comprehensive data structure.

ii). As far as the time factor is concerned, a sampling method is 
required which will enable the operator to measure a stereo- 
model rapidly and have the sampled data processed very 
efficiently.

iii). Cost is another concern for a DTM production system and must 
include the cost of purchasing and operating the hardware, the 
cost of accommodation, personnel costs including salaries and 
insurance, etc. The cost factor should also include items such 
as the CPU time of data processing. In addition, a sampling 
method should enable the operator to measure data points in as 
straightforward a way as possible in order not to take excessive 
time for measurement nor to incur the cost of additional 
hardware and/or software.

iv). The discussion above is about the general requirements for a 
photograirmetric sampling method. In practice, a further matter 
of high concern is with the structure of the sampled data. This 
is related to the characteristics of the modelling programs. For 
example, if a surface modelling program accepts only square grid 
data sets, then as far as possible, the (square) grid sampling 
method should be considered since the use of any other pattern 
will lead to the need for substantial pre-processing, including 
the transformation of and interpolation from the measured data 
before it can be employed in the modelling program.

4.6 Existing photogrammetric sampling methods

The general requirements for a sampling method have been discussed in 
previous sections. This section will discuss the merits and demerits of 
existing sampling methods so that other potential sampling methods can 
be searched for.
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(1). Selective sampling

Using this method, the data on the stereo-model is obtained in a 
similar way to the procedure used in optical and electronic tacheometry 
in land surveying. That is to say, all the VIPs are selected, thereby 
ensuring that the data is reasonably comprehensive in its coverage. 
This method has the distinct advantage that fewer points can represent 
the surface with high fidelity. But it is not an efficient way of 
selecting data points because it requires substantial interpretation of 
stereo-model by a trained human observer. In practice, no automated 
procedure can be implemented on the basis of this strategy so that it 
is not popular in certain mapping organisations (e.g. military survey 
organisations) where speed of data acquisition is of prime importance.

(2). Regular grid saiqpling

As the name implies, regular grid sampling ensures that the data 
points are obtained in the form of regular grid. This can be achieved 
by keeping one dimension (e.g. the X direction) constant and changing 
position along the line of the second dimension (Y in this case) in a 
series of equidistant steps while measuring the height (Z) values at 
each grid node. In this method, a microcomputer can be implemented to 
control the movement in the both X and the Y directions instead of it 
being implemented manually. That is to say, it is convenient for the 
automatic or semi-automatic positioning of the data points which have 
to be measured. Another advantage of using this method is that the 
height data can be stored in a regular matrix, which simplifies the 
processing of data. For these reasons, this is a popular method in many 
surveying and mapping organisations.

But in terms of sampling, a heavy redundancy of data is required in 
order to ensure that all slope discontinuities are detected or the 
changes in the topographic surface texture are represented in an 
adequate manner.

(3). Progressive sampling

In order to solve the problem of data redundancy in regular grid 
sampling, Makarovic (1973) designed a modified method, which he called 
progressive sampling. In this procedure, the sampling is carried out in 
a grid pattern whose interval changes progressively from coarse to fine 
over a small area.

The procedure is: First, a set of grid points are measured at a low
density, then the elevation values at these data points are analysed by
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an on-line microcomputer. In turn, the computer generates the location 
of new points which are required to be sampled in next run. The 
procedure may be repeated until seme prior criteria are satisfied.

For such criteria, Makarovic (1973) proposed initially to use the 
second differences of elevation values computed along both rows and 
columns of the measured (sampled) coarse grid. Several additional or 
alternative criteria have also been proposed by Makarovic later (1975), 
such as the so-called random-variation criterion, parabolic criterion, 
distance criterion and contour criterion, etc. Of course, these other 
criteria may also be used as the basis of the sampling strategy for 
a particular terrain type. However, this is by no means the principal 
topic of this section.

Progressive sampling can solve part of the redundancy problem that is 
inherent in the regular grid sampling method, but still there are 
shortcomings as Makarovic (1979) has noted:

i). the sampled data points exhibit a high degree of redundancy 
in the proximity of abrupt changes in terrain surface;

ii). some pertinent features might be lost in the first run with 
its wide (coarse) spacing. These cannot be recovered by the 
foil wing sampling runs; and

iii). the tracking path is rather long, which incurs a decrease of 
the time efficiency.

To overcome these drawbacks of this method, Makarovic (1977) proposed 
the use of another method which he called composite sampling.

(4). Composite sampling

Composite sampling is the combination of selective and regular grid 
sampling or a combination of selective and progressive sampling. Abrupt 
changes —  specific terrain features in the terrain surface such as 
ridges, break lines, etc. —  are sampled selectively, and these values 
and feature-specific points —  peaks, passes and hollows —  are added 
to the regular grid-sampled data.

The use of this method may solve many of the problems encountered with 
regular grid sampling and/or progressive sampling.

(5). Profiling

This method is similar to regular grid sampling. The only difference 
between them is that the measured elevation data yielded by regular
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grid sampling is regular in both directions of the grid cells, whereas 
in profiling, it is regular in only one-dimension along the direction 
of profiling. Usually, the data points are measured in a dynamic mode 
rather than in the static mode which is normally associated with 
regular grid sampling. Thus the actual measurement process should be 
very efficient in terms of speed. But the accuracy of the measured data 
will be lower than that of the data obtained from regular grid sampling 
where the height measurement is carried out in a stationary position. A 
problem with the profiling method is the large data redundancy which is 
inherent in the method if small but important terrain features are to 
be picked up.

Frequently,this method is associated with orthophotograph production 
rather than being carried out primarily for the production of DTM data. 
In this sense, the DTM data can be regarded as a by-product rather than 
a main product of the profiling process. Users must therefore view the 
shortcomings of this method (e.g. in terms of height accuracy) and the 
potential usefulness of the measured data, bearing this in mind.

4.7 Attributes of photogrammetric sampling

In the context of digital terrain modelling, sampling is the process of 
selecting those points which have to be measured in certain positions. 
This operation can be characterised by two parameters: the distribution 
(location and pattern) and the density of the points whose elevations 
have to be measured. These two parameters are referred to as the 
attributes of sampling in this thesis. This section is to discuss the 
problems associated with these attributes of sampling.

4.7.1 Distribution of sampled data

The distribution of sampled data is usually specified by the terms 
"location" and "pattern". The location will of course be defined in 
terms of two positional coordinates - longitude and latitude in the 
geographical coordinate system, or easting and northing in grid 
coordinates. Regarding pattern, a variety of these, such as a regular 
or rectangular grid, are available for selection. Sane discussion about 
these patterns has been already given in the section on "geometry-based 
sampling". A further discussion starting from the point of view of the 
data itself together with existing sampling methods will be given in 
this section.

These patterns can be classified in different ways, as one likes. The 
Figure 4.1 shows one way of carrying out such a classification.

Regular two-dimensional data is produced by means of regular grid
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sampling or progressive sampling. The resulting pattern could be a 
rectangular grid, a square grid, or a hierarchical (or progressive) 
structure of these two. The square grid is most commonly used. The 
hierarchical structured data, sampled by means of progressive sampling 
can be decomposed into a normal square grid structure.

Data which is regular in one dimension is produced by sampling with one 
dimension fixed (in X, Y or Z). When this operation is carried out for 
either of the first two values being fixed, it is referred to as 
profiling; if the Z value is fixed, then it is called contouring.

There are also other special regular patterns, e.g. equilateral 
triangles and hexagons, etc. However, it seems to the author that these 
structures are not in any way as widely used in DTM practice as 
profiled data or the use of a regular (or square) grid.

As has been discussed before, data patterns can be divided into two 
categories, i.e. regular and irregular patterns. Regular patterns have 
been discussed above. Regarding irregular patterns, they may be 
generally classified into two groups, i.e. random data and string data. 
By random data, it is meant here that the measured points are located 
randomly, i.e. not in any specific way.

Another irregular data pattern is that produced in the form of strings. 
Although string data is not located in a regular pattern, yet it does 
follow certain features (e.g. break lines). The data sets which are 
sampled along rivers, break lines, as well as morphological lines, etc. 
all belong to this pattern. This is actually not an independent 
pattern, but rather a supplemental m e  which is feature-specific. For 
example, the pattern of the data resulting from composite sampling is 
usually a combination of string data with regular (or rectangular) 
gridded data.

4.7.2 Density of sampled data

Density is another attribute of sampled data. It can be specified by a 
few measures, such as the distance between two points, the number of 
points per unit area, the cut-off frequency, etc.

The distance between two sampled points is usually referred to as the 
sampling interval (or sampling distance or sample spacing). If the 
sampling interval varies with position, then an average (or 
representative) value should be used. This measure is specified by a 
number with an unit, e.g. 20 metres. Another measure which could be 
used in DTM practice is the number of points per unit area, e.g. 500 
points per square kilometre.

54



Chapter 4 Sampling strategy.,.

If the sampling interval is transformed from the space domain to the 
frequency domain, then the cut-frequency (the maximum frequency which 
the sampled data represents) can be obtained. From other points of 
view, the required maximum frequency can also be used as a measure of 
data density because the sampling interval can also be obtained from 
it (the value of maximum frequency).

4.8 Hie concept of post-measurement filtering

As mentioned in the introductory section of this chapter, post­
measurement filtering is also necessary in some cases. For example, if 
the data sets are derived from digital image correlation techniques, 
e.g. obtained automatically from correlator-equipped analytical 
plotters, then the resulting data points could be very dense —  500,000 
to 700,000 points per stereo-model in the case of the GPM-2 (Petrie, 
1990). Such dense data sets are not always an advantage but instead, in 
some cases, constitute a definite drawback. Therefore, an optimum 
density of data points should be used in the surface modelling process 
—  a matter which will be discussed in Chapter 1 4 of this thesis. The 
procedure used for the reduction in data density from the original data 
set to the optimum one can be referred to as post-measurement 
filtering.

Post-measurement filtering is, actually, the selection of data points 
from the very dense set of measured points which define the terrain 
surface. For such a filtering to be successful, some preliminary 
analysis regarding the information content of the data points needs to 
be carried out to determine which points should be selected. In order 
to do this, certain selection criteria, for example based on the second 
derivative values and/or curvatures, must be applied to the data set. 
For instance, any point with a profile curvature greater that 1/600 
might be considered as being significant and included in the reduced 
(sampled) data set. In this way, the density of data points will be 
reduced but the information loss from the data sets is kept to a 
minimum.

If the original data is irregularly distributed, then local surfaces 
may need to be reconstructed for the computations of curvatures at data 
points.

The above discussions are included at this stage only for the 
introduction of the concept of post-measurement filtering. In the 
published literature, a different terminology may be used including 
such terms as data post-processing, redundancy removal, etc. However, 
essentially, these are covering the same basic concepts and procedures.
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4.9 Concluding remarks

In this chapter, the theoretical background for photogrammetric 
sampling has been given; sampling strategies using photogrammetric 
methods have been examined; the requirements for sampling methods have 
been sketched; existing photogrammetric sampling methods have been 
reviewed; the attributes of photogrammetric sampling have also been 
discussed; and at the end, the concept of post-measurement filtering 
has been introduced.

Data acquisition using photogrammetric methods consists, as we know, of 
two main operations, i.e. sampling and measurement. A discussion of 
photogrammetric sampling has already been presented in this chapter, so 
following on in the next chapter should be a discussion on 
photogrammetric measurements carried out for DTM purposes, including 
the especially important matter of the accuracy of photogrammetrically 
measured data.
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Chapter Five

'Hie Accuracy of Photogrammetrical ly Measured Data (PMD)

In DTM data acquisition using photogrammetric methods, two main 
operations are involved. One of them is the sampling and the other is 
the actual measurement. The former can be characterised by two 
parameters, i.e. the distribution and density of the data while the 
latter can be described by its accuracy. Photogrammetric sampling has 
been discussed in general terms in the previous chapter, so it is the 
task of this chapter to discuss photogrammetric measurement and the 
accuracy of the resulting data.

5.1 Introduction

The errors which occur in photogrammetrically measured data (PMD) are 
the consequence of the errors involved in all the operations and 
materials used in the process. Broadly speaking, they comprise the 
errors inherent and present in the stereo-model itself and those 
involved in the actual photogrammetric measurements of position and 
height. Thus, it can be said that the overall accuracy of PMD is a 
function of the fidelity of the stereo-model and the accuracy of 
photogrammetric measurement.

The fidelity of the stereo-model itself is determined by the quality 
and metric characteristics of the actual aerial photographs from which 
the model is formed; the accuracy of the control points provided by 
ground survey or aerial triangulation; the skill and care taken by the 
operator in the orientation procedure; as well as the accuracy of 
the photogrammetric instrument itself.

To large extent, the accuracy of measurement is also determined by the 
skill and experience of the operator, the state of the adjustment of 
the photogranmetric instrument and the morphological characteristics of 
the terrain, especially its slope and roughness.

Many tests of photogrammetric accuracy have already been carried out by 
several international organisations, especially ISPRS and OEEPE, and 
some of these results will be reviewed in this chapter. However, first 
of all, a short theoretical discussion must also be provided for the 
convenience of later presentation and discussion.

5.2 The accuracy of photograirmetric instruments

From the discussion in the previous section, it can be seen that the
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accuracy of the photogrammetric instrument which is used for data 
acquisition affects both the fidelity of the stereo-model and the 
accuracy of photogrammetric measurement. Therefore, it see:ns pertinent 
to allocate a complete section for the discussion of this matter.

The accuracy of photogranmetric instruments is usually specified for a 
particular type of instrument but not for an individual example of that 
type. For an individual stereo-plotting machine, if it is known that it 
belongs to a particular type or class of instrument, then its accuracy 
will be known in general terms. However, the individual instrument's 
accuracy will not be known in exact terms and this can only be 
established by carrying out some form of calibration procedure, e.g. 
tests conducted using high precision grid plates.

A great variety of photogrammetric instruments is currently available 
with very substantial differences between them in terms of concept, 
design, construction, and expense. The classification of these 
instruments can be based on different criteria. A very basic classifi­
cation is into analogue, analytical and digital instruments. In the 
first two groups, hard copy photographs are used to form the stereo- 
model, while digitized photographs are used in the third.

With analogue instruments, a physical reprojection of the ray 
directions which existed at exposure is implemented, e.g. using optical 
rays or mechanical rulers or space rods.

Analogue stereo-plotters can be sub-divided into a few groups according 
to some criteria. Two such systems are in common usage. The first is 
based on the actual type of physical projection system used —  optical, 
mechanical, optica 1-mechanica 1, etc. This is supplemented by a 
statement of its order, i.e. first order, second order and third order 
stereo-plotters, a classification based on both the accuracy and the 
range of functions which can be carried out by the measurement. An 
alternative to this system, based on the same criteria, led to their 
classification into universal, precision, topographic and approximate 
instruments.

In analytical and digital instruments, the reprojection and model 
formation is purely mathematical and invariably involves the use of a 
high-speed computer. Analytical instruments may be sub-divided into 
comparators, image space plotters and analytical plotters with either 
image or object coordinates as primary input to the computational 
process. Till now, only one or two digital instruments have appeared, 
so a classification of these instruments is inappropriate at present.

Associated with all such classifications is a further classification 
based on the degree of automation. Using this criterion, the photogram-
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metric instruments can be classified into three categories: i.e. fully 
automated, partly automated, and manual stereo-plotting instruments.

The accuracy of photogrammetric instruments is normally tested using 
precise grid plates which have been calibrated by a standards 
laboratory. Such a test result is an overall result, affected by many 
factors such as the projector system, measuring system, etc. Two types 
of grid tests are in use,—  monocular grid tests and stereoscopic grid 
tests. In the case of analogue instruments, the main objective of the 
monocular tests is to evaluate the metric performance of individual 
projectors in combination with their associated tracking and measuring 
devices. The measuring accuracies in the x and y directions are assessed 
through monocular measurement of grid points which have been projected 
from the negative plane into the instrument's projection plane. In the 
case of analytical instruments, where there is no physical reprojection 
of the rays, the monocular grid tests give the accuracy of the 
individual plates and carriages directly in terms of x and y image or 
photo coordinates. For both classes of instruments, the measuring 
accuracy in height is assessed using stereo grid tests. The overall 
accuracy in terms of X, Y and Z model coordinates is determined through 
the measurement of the grid model formed from the projection of a pair 
of grid plates.

Table 5,1 Hallert's test results for analogue instruments

Plotting machine Machine No L.H. Projector R.H. Projector

Wild A7
(all C=150mm, 

Z=300nm)

No. 362 _+ 3 .Sum +_ 4.6um
No. 515 _+ 3.8um ± 4.4um
No. 2153 _+ 2.8um _+ 2.7um

Wild A8
(all C=150mm, 

Z=300mm)

No. 443 ± 5.6um _+ 8.3um
No. 480 _+ 5.0um _+ 5.4um
No. 1443 _+ 4.9um _+ 6.4um
No. 2019 +_ 4.0um +_ 3.2um

Zeiss Jena 
Sterecmetrograph 

(all C=150,Z=300rrm)
No. 222320 _+ 4.1um _+ 5.4um
No. 222322 _+ 4.5um _+ 3.1um

Zeiss Oberkochen 
Stereoplanigraph 
(C=152.5, Z=300rrm)

No. 71133 ± 3.3um _+ 5.2um

60



Chapter 5____________________________     Accuracy of PMD

T&ble 5.2 Savolainen1 s test results for analogue instruments

l-Tacnine Machine No m^um) niy(um) mz(%o I!) Notes
No. 687 10.3 8 .2 0.079 HUT, 1975
No. 718 11.2 12.6 0.150 NBPRW, 1974
No. 718 7.2 10.7 0.051 NBPRW, * 1975

Wild A8 No. 936 9.4 12.0 0.076 NBPRW, 1974
No. 338 4.3 3.7 So]l1 & Water,1974
No. 460 11.4 6.4 Soil & Water,1974
No. 2013 6.0 6.0 Soil & Water,1974

Wild A8 No. 703 5.8 11 .2 0.096 N3S, 1971
No. 535 — — 0.106 NBS, 1974
No. 638 — — 0.060 NBS, 1974
No. 686 — — 0.081 NBS, 1974
No. 703 — — 0.096 NBS, 1974
No. 1626 — — 0.069 HITT, 1973
No. 1250 — — 0.055 NBS, 1974

Wild B8 No. 1254 — — 0.076 NBS, 1974
No. 1281 — — 0.077 NBS, 1974
No. 1284 — — 0.120 NBS, 1974
No. 1618 — — 0.101 NBS, 1974
No. 4692 — — 0.081 NBS, 1974

Wild B8S No. 4718 — — 0.055 Finnmap, 1975
Zeiss Ober. 
Stereo- 
planigraph

No. 71552 5.6 4.9 0.070 HUT, 1972
No. 71553 9.4 11.6 0.138 NBS, 1974

* These figures are the test results for Wild A8 with instrument No 718 
and after repair and recalibration.
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For analogue plotters, extensive testing took place in Scandinavia just 
over twenty years ago and the results were reported by Hallert et al in 
1968. These figures are still of much interest and relevance today 
since so many of these types of analogue instruments are still in 
production use for high accuracy mapping and DTM work. Some of the 
results from Hallert's paper are listed in Table 5.1:

As stated above, these figures are still of interest since they show 
that the standard deviation values of ̂ =^=+,3 to 5um for monocular 
grid tests of high precision analogue instruments have been realisable 
over a long period.

Some further tests of a similar nature have also been carried out by 
Savolainen & Ruotsalainen (1976) of the Helsinki University of 
Technology (HUT). They also quoted some results of additional tests 
carried out by other organisations in Finland such as the National 
Board of Survey (NBS) and the National Board of Public Roads and 
Waterways (NBPRW). Some results from these tests are quoted in 
Table 5.2.

Again these figures are of extreme interest in that, while the best 
figures agree with those of Hallert, there is also a wide variation in 
the accuracy figures for similar instruments. This shows that individual 
instruments may not have been serviced regularly nor checked for 
accuracy on a regular basis, resulting in a decided lowering of the 
accuracy available with a specific instrument.

Of course, many other tests of this type have been carried out; those 
quoted above are only examples. It is by no means the main purpose of 
this section to review all the test results. The only purpose of 
quoting these results is to give the reader some idea about the 
fundamental accuracy of these analogue photogrammetric instruments 
which have been used extensively to acquire DTM data.

From these results quoted above, it can be seen that it is very 
difficult to say what accuracy can be obtained from an individual 
analogue stereo-plotting machine, even though it is known which group 
(class, or order) it belongs to, because the exact status of the 
stereo-plotting machine in terms of its calibration is also a very 
important factor. For example, in some cases (see Table 5.2), the two 
best test results from the Wild B8 and B8S, which belong to the 
supposedly less accurate group of topographic plotters, are better than 
those from all but one of the several Wild A8 machines (which belong to 
the precision plotter class) and are even better than those from the 
Zeiss Oberkochen Stereoplanigraphs, which belong to the group of first 
order or universal machines.
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Turning next to the accuracy of analytical plotters (APs), this is 
declared by manufacturers to be in the order of +2-3um in x and y and 
+_6-7um in height, referred to the image planes. For example, in the 
case of the Zeiss Oberkochen Planicomp C-100, Hobbie (1977) stated 
that, "the absolute measurement accuracy in the photocarriage axes (and 
thus the image coordinates) is +3um standard deviation over the entire 
photograph area." He also stated that a grid measurement carried out 
using 24 points gave RMS errors referred to the image plane of +4um for 
x and y and +6um for Z. In fact, the differences between the values 
declared by different manufacturers are very small. In practice, some 
of the APs give better results than the declared values. For example, 
Berg (1988) tested a Wild Aviolyt AC-1, and obtained a result of +0.7 
to 0.8um in x and y while the values declared by Wild are +1.0 to 
1.5um. Even Hallert testing an early OMI AP/C analytical plotter in 
1968 obtained ^=±1,6um and ny=Ĥ 2.0um.

However, it has also been found by Laiho and Kilpela (1988) that 
analytical plotters can behave in an unstable manner. They found that 
the coordinate readings may vary in a range of 2um to 5um between two 
successive measuring times and 3um to 10um over a whole day. Even 
though these figures are preliminary test results, they do give us some 
idea about the magnitude of the variation. The measuring results varied 
with time, the temperature, the movement of photo carriers, the 
position of the measured points, and even the hardware components of 
the instrument. Actually, the two authors also stated that it is still 
difficult at the present stage to draw conclusions about the reasons 
which cause these instabilities.

So just as with analogue instruments, different analytical instruments 
of the same type may exhibit different behaviour and different accuracy 
figures. Thus, it needs to be kept in mind that, in practice, the DTM 
data acquired by an analytical plotter may have been measured with an 
accuracy poorer than expected due to this instability.

5.3 The accuracy of the stereo-model

Having discussed the matter of the inherent accuracy of the 
photogrammetric instrument itself, it is now pertinent to discuss the 
accuracies which will be achieved when it is used with actual 
photographs. Ideally, after orientation, the resultant stereo-model 
should be an exact replica of the photographed terrain. But invariably 
this is not the case in practice due to various errors.

Stereo-model errors can be divided into two categories, i.e. the 
orientation errors and the non-orientation errors. The orientation 
errors include those errors which occur during interior, relative and
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absolute orientation and may result from the mechanical and optical 
imperfections of the instruments or from errors or shortcomings on the 
part of the operator or from errors in the control points used for 
absolute orientation. The non-orientation errors are those errors due 
to atmospheric refraction, residual lens distortion, instability in the 
photographic material, etc. Generally speaking, the non-orientation 
errors are negligible with modem materials and equipment provided they 
are handled with care and attention.

The matter of the inner orientation should not give rise to serious 
problems provided, of course, that the various parameters —  the 
position of the principal point, the values of the camera focal length, 
lens distortion, etc —  have been accurately determined during camera 
calibration and that these values can be replicated accurately in the 
photogrammetric instrument.

The accuracy of relative orientation is affected by the quality of the 
photographs, the state of adjustment of the instrument, the skills of 
the operator, etc. For an analytical plotter, the accuracy of relative 
orientation should be much higher than that of analogue instruments 
since the instrumental accuracy does not depend on the accuracy with 
which the physical rotation of the plates may be made in the instrument.

The accuracy of absolute orientation is also affected by many factors 
such as the accuracy of the control points and their identification, as 
well as the accuracy of the instrument itself and the skills of the 
operator, etc. but it can be checked after orientation. Normally, as 
cited by Rinner and Burkhardt (1972), after orientation, there should 
be an average residual error in height of +0.05 - 0.10 per mil of the 
flying height (H).

5.4 Ttie accuracy of height measurement

Since the accuracy of the measured elevation data is critical in the 
context of DTM accuracy assessment, so futher discussion may be 
justified. The accuracy of height measurement in static mode, mn, which 
can be achieved by photogrammetric methods, can be expressed 
theoretically as follows:

mn = H:B * H/f * mp = S/B:H * (5.1)

Where, m is the accuracy of parallax measurement; f is the camera 
focal length; H is the flying height; S is the reciprocal scale of the 
photography; and B:H is the base:height ratio.

This means that the height accuracy is dependent on the photo scale,
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the base:height ratio and the accuracy of parallax measurement. From 
(5.1), it is obvious that, for a given camera with a certain focal 
length (f), the larger the photo scale leading to a reduction in the 
value of the flying height (H), the smaller the value of the scale 
factor, 5, and the higher the accuracy of the measured DTM data. 
Therefore, the accuracy of photogrammetric measurement is directly 
related to the flying height. It becomes obvious that the larger the 
flying height, the smaller the photo scale, thus the poorer the 
accuracy of height measurement.

Of course, if the economic factor has to be considered, the scale of 
the aerial photography should be kept as small as possible, in which 
case, the flying height (H) would be greater. In terrain modelling 
practice, the photo scale and thus the flying height should be 
determined by the requirements of the DTM products, e.g. the accuracy 
of the DTM elevation values required for the specific project in 
question, or the scale and contour interval of the map which will be 
produced through the DTM, etc.

The base:height (B:H) ratio expresses the relationship of the distance 
between successive photographs and the flying height (H), which 
characterizes the geometry of the successive photographs and the 
resulting stereo-mode Is. In general, the larger the B:H ratio, the more 
accurate the measurement will be. The B:H value is dependent on the 
focal length (f) and thus the angular coverage of the lens, the forward 
overlap as well as the photographic format, etc. If the forward overlap 
and the photo format are fixed, then the value of base:height ratio is 
determined by the value of the focal length of the aerial camera used. 
Thus the accuracy of height measurement is also determined by the 
camera focal length if other conditions, especially the scale, are all 
the same.

Stark (1976) carried out sane experimental tests over the Rheidt test 
field in West Germany on the effect of the focal length of an aerial 
camera on the accuracy of height measurement. The same photo scale 
(1 :10,000) was used in each case, which means that the flying height 
(H) was different for each flight. The test results conform to a 
general trend, but the values are not exactly the same as those given 
by theoretical models. Some of Stark's test results are given in Table 
5.3.

Again, these results are of extreme interest, since the Planimat 
represents a very high precision analogue stereo-plotting machine and 
the PSK-2 is a high precision analytical instrument (stereoconparator). 
It is interesting to note that, in general, the PSK-2 gives somewhat 
better results in height than the Planimat, but really only 
significantly so in the case of the super-wide angle photography where
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the Planimat results are inexplicably poor and quite out of line with 
the other results achieved with the instrument.

•Rable 5.3 Stark's test results fear the effect of focal length 
on the accuracy of photograimetrically measured data

Focal
Length
(mm)

Planimat P SK-2

"x "V mz ™x ■v mz
(urn) (um) (um) (H%o) (um) (um) (um) (H%o)

305 4.8 5.0 21.1 0.069 6.7 5.2 16.6 0.054
210 5.8 7.8 11.0 0.052 5.0 6.3 12.5 0.060
153 5.8 7.4 13.3 0.074 3.4 4.1 8.2 0.054
85 4.6 6.7 12.0 0.141 4.2 4.9 6.3 0.074

Plotting out these results for the PSK-2 gives the general accuracy 
plot shown in Fig.5.1, where the theoretically expected results are 
also shown by solid lines.
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Fig.5.1 Accuracy of PMD varying with focal length

For planimetry, the standard deviation values both in x and in y are 
only varying slightly regardless of focal length and angular coverage 
with my values roughly 25 to 30% greater than the values. With the 
height values, the accuracy does get better with increasing angular 
coverage and thus a corresponding increase in the base:height (B:H) 
ratio.

Of course, the accuracy of height measurement given in any test will 
also be affected by the accuracy of parallax measurement, which in turn 
is affected by many factors such as the photogrammetric instrument, the
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skill of the operator, the accuracy of relative orientation, the 
resolution of the photographs, etc. These factors may affect the 
accuracy of measurement significantly. For example, some experimental 
tests on an operator's personal stereoscopic measuring capability 
(Schwarz, 1982) show that 70 to 90% of operators are measuring with a 
precision from 10 to 20um, which does seem to be unduly pessimistic. 
The discussion of the effect of these factors on the accuracy of 
parallax measurement is emitted here partly because such an effect is 
so complex that it is not easy to be discussed clearly in a few 
paragraphs and more importantly because what is mainly of concern is to 
obtain some idea about the overall accuracy of the photogrammetrically 
measured data, and not discuss in detail the sources of the errors in 
measurement.

5.5 Hie accuracy of statically measured photogrammetric data

Photogrammetric measurement can be carried in one of two modes, i.e. in 
either static or dynamic mode. The accuracy of data measured using 
these two different modes of measurement will be different since the 
accuracy with which the parallax measurement can be carried out is 
different in each case. In this section, some further results for 
static measurements will be given.

Gut & Hohle (1977) carried out extensive tests on the accuracy of 
photogrammetrically measured data from high altitude aerial 
photography. The photographs were taken at different times and with 
different focal lengths and different flying heights using a Wild RC-10 
camera. The points were pre-marked with circular marks and quadri­
lateral pointers. The measurements were carried out on an analytical 
instrument - the Wild STK-1 stereocomparator - and two analogue 
instruments - both Wild A10 Autographs. Some of these results are 
listed below in Table 5.4.

Table 5.4 shows some astonishing results. In particular, the figures 
for height accuracy expressed in terms of per mil (%o) of the flying 
height (H) are quite an improvement on the already good figures 
produced by Stark. Indeed, they are some of the best figures produced 
by any form of testing, even better than many of those for grid tests 
given in Table 5.2. Partly, this is because, as stated before, the 
results listed in this table are obtained frcm pre-marked points on the 
photographs. But presumably the excellent flying and seeing conditions 
experienced over the Arizona Desert also have something to do with the 
superb results. In practice, with ordinary points and less good 
conditions for photography, the accuracy results will be much poorer.
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Chapter 5 Accuracy of PMD

Table 5.4 Gut1 s test results for the accuracy of 
photogramnetrically measured data from high altitude aerial photographs

Photo
Scale

Flying Ht
(H)
(m)

Focal
Length
(f)
(cm)

R. M. S. E
my

(m) (um)
mz
(%o H)

1:33,000 5,000 15 0.24 0.39 0.13 7 12 0.026
1:33,000 5,000 15 0.23 0.37 0.13 7 11 0.026
1:56,500 5,000 8.3 0.75 0.54 0.36 13 10 0.072
1:58,000 8,800 15 — — 0.37 — — 0.042
1:57,000 8,400 15 — — 0.30 — — 0.036
1:58,000 8,900 15 — — 0.33 — — 0.037
1:58,000 8,900 15 0.66 0.70 — 11 12 0.034
1:88,000 13,400 15 0.54 0.92 0.52 6 11 0.039
1:63,000 13,400 21 0.54 0.82 0.78 9 13 0.060
1 :78,000 11,900 15 — — 0.41 — — 0.035

H (FLYING HEIGHT IN KM)

Fig.5.2 Accuracy of PMD varying with flying height (H)

Petrie (1987a) has summarized many of these test results and concluded 
that the following figures for spot height accuracy might be used for 
practical planning purpose:

Analytical Plotter: 0.067 per mil of the flying height (H)
Precision Plotter: 0.1 - 0.2 per mil of the flying height (H)

Actually, these are the values commonly accepted by most people in the
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photogrammetric community as practical and realistic for the purposes 
of spot height accuracy in DTM work. Fig.5.2 shows the relationship 
(given above) between the height accuracy of statically measured data 
points and the range of flying heights over which the aerial 
photographs may be taken.

5.6 The accuracy of dynamically measured photogrammetric

Dynamic measurement includes profiling and contouring. The accuracy of 
points measured dynamically in a stereo-model should be much lower than 
the values obtained in a static mode because there will be an additional 
error in the manipulation of the stereo-plotting machine by the human 
operator (keeping the floating mark on the stereo-model surface as it 
moves) and this will have a significant effect on the accuracy of the 
profile data. In the case of dynamic measurement, the speed of 
measurement is also a very important factor. In some cases, it also 
displays a systematic behaviour.

Alspaugh (1985) found that, in dynamic profiling, in addition to the 
factors discussed above, the direction of the profile relative to the 
model base and the direction (forward or reverse) in which a profile 
is traversed as the height is measured also affects the accuracy of 
measured points.

Sigle (1984) reported some tests on the accuracy of profile data in an 
area of Baden-Wurttemberg in West Germany. Wide-angle photography with 
photo scale of 1 :30,000 was used. Six test areas with considerably 
different terrain forms were selected. Data points which had been 
measured statically with a Zeiss Oberkochen Planicomp C100 with an 
accuracy from 0.3m to 0.6m were used as check points. About 600 points 
from the profile data were compared with the check points. The mean 
height differences which resulted ranged from 1.5m (in flat terrain) up 
to 5m (in rough terrain) with a considerable systematic component of 
more than 2m for some test areas. If stated in terms of per mil of 
flying height, then the accuracy figures vary from 0.33 to 1.11 per mil 
of H with systematic errors of more than 0.44 per mil of H for some 
test areas. These results imply that an accuracy of 0.3 per mil of H is 
achievable but only if systematic errors are not too serious.

Photogrammetrically measured contour data is also a type of dynamically 
measured elevation data and the accuracy of this kind of data will 
again be lower than that of statically measured data and might be 
expected to be similar to that of profiled data. Indeed, quite 
independently, Rinner and Burkhardt (1972) suggested the use the same 
value of 0.3 per mil of H for the overall accuracy of photogram­
metrically measured contour data, as has been mentioned above for
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profile data.

5.7 Concluding remarks

In this chapter, the error sources likely to affect photogrammetrically 
measured data were sketched at the beginning. This account was then 
followed by a discussion of the accuracy of photogrammetric 
instruments, the accuracy of stereo-mode Is and the accuracy of height 
measurement; In each case, some representative results of the tests 
carried out to establish the accuracy of photogrammetrically measured 
data have also been given.

Up to this stage, the three principal attributes of photogrammetrically 
produced DTM data, i.e. their distribution, density and accuracy, have 
all been discussed. This chapter will be followed by a discussion of 
the acquisition of DTM elevation data from the other main source -- 
existing contour maps.
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Chapter Six 

Data Acquisition from Existing Contour Maps

6.1 Introduction

In Chapter 4, the acquisition of DTM data from aerial photographs using 
photogrammetric methods has been discussed and the accuracy of the 
resulting data (referred to as photogrammetrically measured data) has 
also been discussed in Chapter 5. In this chapter, the data acquisition 
from another data source - existing contour maps - will be discussed. 
First of all, a general discussion of the characteristics of contour 
maps will be made; then the existing methods of digitising maps will be 
reviewed; and finally, the accuracy of the digital contour data which 
is acquired from existing maps will be discussed.

6.2 Topographic Maps: Another main data source for terrain modelling

Every country possesses at least some topographic maps and these may 
be used as another main data source for (small-scale) digital terrain 
modelling. For many developing countries, this source may be poor due 
to lack of topographic map coverage or the deficient quality of the 
height and contour information contained in the map. However, for most 
developed countries, even some developing countries such as China, most 
of the terrain is covered by good quality topographic maps containing 
contours. Therefore, these form a rich source of data for terrain 
modelling provided that the limitations of extracting height data from 
contours are kept in mind.

6.2.1 General discussion of topographic maps

The scale and the contents of a basic topographic map series can vary 
from one country to another. Thus, for example, in the UK, the scale of 
the basic topographic map series covering the whole country is 
1 :10,000; in other countries (e.g. China) it may be 1 :50,000. The 
classification of topographic maps according to scale and the degree of 
generalisation is shown in Table 6.1 (Konecny, 1979).

One important concern with topographic maps is the quality of the data 
contained in them, especially the metric quality, which is then 
specified in terms of accuracy. The fidelity of the terrain representa­
tion given by a contour map is largely determined by the density of 
contour lines and the accuracy of the contour lines themselves. One 
important measure of contour density is the contour interval. The 
commonly used contour intervals for different map scales are shown in 
Table 6.2 (Konecny, 1979).
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Table 6.1 Different Scale Topographic Maps and Their Features

Map Scale Feature
Large to Medium Scale 
Topographic Base Maps > 1:10,000 Representation true to plan
Medium to Small Scale 
Topographic Maps

1:20,000 to 
1:75,000

Representation similar to
plan

General Topographic 
Map

< 1:100,000 High degree of generalisation 
or signature representation

Table 6.2 Map Scales and Contour Intervals

Scale Contour Interval
1 : 200,000 25 to 100 m
1 : 100,000 10 to 40 m
1 : 50,000 10 to 20 m
1 : 25,000 5 to 20 m
1 : 10,000 2.5 to 10 m

1:90000 Schwrti

1:24 000 U.S.A. 
1:25 000 England 1:25000 Schwait

1:25 000 Daulichland 
1 :5 0 0 0  DautscMand

1:10 000  Schwaiz 
1 '10 560 England 
1 :2 0 0 0 0  Franknalch

t0 20 30 40 30 90 70 d 0 f 0  100%
6al> nda n tlg u n g  In %

Fig.6.1 Examples of contour accuracy specifications (Imhof, 1965)

The accuracy requirements of a contour map are given by the so—ca 1 led 
map specification. Examples of the specifications for the accuracy of 
contours for different map scales used in different countries are given 
in Table 6.3 (Imhof, 1965, Konecny, 1979) and some of them are shown 
diagrammatically in Fig.6.1.

 aahr atad —
1:50 000 U.S.A.flach

5«
I
C

73



cfoaj2t:er-.6  _____________________  ...from existing maps

Table 6.3 Contour Accuracy Specifications for Different Countries

Country Scale in metres
W. Germany 1 : 5,000 0.4 + 3  tan A
Switzerland 
Gt. Britain

1 : 10,000 
1 :10,000/1 :10,560

1.0 + 3  tan A 
(1.82 + 3.02 tan2A)1/2

Italy
NATO
Norway
Switzerland
Israel
W. Germany
Finland
Holland

1 : 25,000

1.8 +12.5 tan A
3.0 +7.5 tan A
2.5 +7.5 tan A
1.0 +7.5 tan A
1.5 +5.0 tan A 
0.8 + 5.0 tan A
1.5 +3.0 tan A 
0.3 + 4.0 tan A

Switzerland 
United States 
NATO

1 : 50,000
1.5 +10 tan A 
1.8 +15 tan A 
6.0 + 15 tan A

N.B. where A denotes the slope angle.

The approach for acquiring data from this source involves measurement 
of the contour lines contained in the existing topographic maps and is 
referred to as cartographic digitisation. Some kind of digitiser, e.g. 
a line-following digitiser or a raster scanner, is used to measure and 
transform the data from analogue form (on the map) to digital form. The 
digitised contour data is then used as the source from which the final 
DTM data is generated by some method of interpolation.

The accuracy of the digital terrain data acquired from contours on 
existing topographic maps is usually much lower than that acquired by 
ground survey or by photogrammetric methods. Therefore, topographic 
maps are primarily a data source for small-scale terrain modelling 
where accuracy demands are much lower.

6.2.2 Ordnance Survey (OS) Maps

To show an example of a topographic map series from which DTM data can 
be extracted, the various OS map series are briefly described. Another 
reason why such a discussion is included is that, in this project, a 
test on the accuracy of DTMs derived from an OS 1 :63,360 scale 
topographic map has also been carried out (see Chapter 13). Some 
information about the topographic map series produced by OS GB is shown 
in Table 6.4 (Coleetal, 1983).
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Table 6.4 Ordnance Survey Map Series

Map Scale Ground Area 
( km )

Map Size 
( rnn )

No. of Sheets 
in The Series

Contour
Interval

1:10,000 5.0 x 5.0 679 x 559 10,198 5m or 10m
1:25,000 10 x 10 483 x 559 1,376 25 ft
1:50,000 40 x 40 1 ,000x890 204 50ft (in m)
1 :63,360 40 x 45 1,000x725 198 50 ft

The height information of the last three series is simply derived from 
the basic 10,560 or 10,000 scale maps at which the contours have been 
surveyed, measured and compiled.

The 1:10,560 series is one of the oldest OS map series and it is the 
largest scale at which the whole island of Great Britain is covered. 
This series was the basic scale in mountainous and moorland areas. The 
contour interval is 25ft with a thicker gauge used to pick out the 
index contours at 100ft intervals. This series was replaced by the 
1:10,000 series after metrication in early 1970's. The 1:10,000 series 
covers the whole country with contour lines. Contours are shown at 
vertical intervals of 5m or 10m according to the relief. The contours 
are depicted on the map as thin continuous lines with a thicker gauge 
used for 25m (if a 5m interval is used), or 50m (if a 10m interval is 
used) to act as index contours.

The sheets in the older 1:10,560 scale series were produced originally 
in the 19th Century with selected contours surveyed by simple ground 
surveying methods and the intervening contours interpolated between 
them. Since the 1950s, the 1:10,560 (or 1:10,000) scale series has been 
completely resurveyed to a much higher standard using photogrammetric 
methods. For mountain and moorland areas, it was a complete resurvey 
of both the plan detail and the contours. However, for urban and rural 
areas, the planimetric information was derived from the larger scale 
maps (1 :1 ,250 for urban areas and 1 :2,500 for rural areas), but the 
contour information was measured separately and added to the derived 
planimetric map detail. Table 6.5 lists some information about the OS's 
resurvey work as applied to the measured contour data, all of which has 
been carried out using high precision plotting machines such as the 
Wild A8, Thompson-Watts Plotter, etc (Fagan, 1972).

The figures listed in this table can give fairly clear information 
about the quality of the contours which were measured in the photogram­
metric resurvey. For example, if one takes the flying height (H) to be
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3,300m and the possible contour interval to be H/1,500 (i.e. a C-factor 
of 1,500) which is quite feasible with instruments in the class of the 
Wild A8, then the minimum possible contour interval would be 
3,800/1 ,500 =2.5m. Since the actual contour interval used by the O.S. 
is 5m or 10m according to the type of terrain, it can be seen that the 
O.S. solution is a quite conservative one and should lead to very good 
quality contour being available on the 1:10,000 scale maps. Looking at 
this matter from another viewpoint, if the accuracy figure of 0.311 per 
mil accepted, for the flying height of 3,800m, this would lead to an 
accuracy (R.M.S.E.) of +1.2m which would be very acceptable in relation 
to a 5m or 10m contour interval.

Table 6.5 Information about OS resurvey work

Area Type of Survey Photo Scale Flying Ht Camera
Mountain

+
Moorland

Resurvey 1:25,000 3,800m W. A
Continuous revision 1:25,000 3,800m W. A

Urban
+

Rural
Gontouring on sheets 
derived from larger 
scale maps

1:24,000
1:31,000

3,600m
2,700m

W. A 
S.W.A

The 1:25,000 scale series map sheets are simply photographically 
reduced from the 1:10.560 or 1:10,000 scale series. For those 1:25,000 
scale maps which have been derived from the old 1:10,560 scale series, 
the contour interval is 25ft, while for those which have been derived 
from the newer 1:10,000 scale series, the contour interval remains 5m. 
Thus, the height information depicted on the 1:25,000 scale map sheets 
is the same as that shown on the corresponding 1 :10,000 or 1:10,560 
scale maps.

The vertical contour interval for the older 1:63,360 scale series of 
maps is 50ft. Much of this information was in fact derived from the old 
surveyed contours rather than the newly contoured maps produced in the 
1960s and 1970s by photogrammetric methods. After metrication, this 
series was replaced by a 1:50,000 scale series. The First Series of 
1:50,000 scale maps were basically a photographic enlargement of the 
1:63,360 scale material. The contours shown on the First Series are 
those which appeared on the 1 :63,360 scale series with the values 
simply converted from the actual foot values given on the 1 :63,360 
scale series (i.e. from the 50ft values) into the nearest equivalent 
values in terms of metres. The Second Series 1 .50,000 scale maps 
produced more recently have contours which are derived from the photo­
grammetrically produced 1:10,000 scale series by photographic reduction 
with some generalisation followed by redrawing. The contours have a
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10m vertical interval.

The relationship between these various Ordnance Survey map series of 
Great Britain is shown in Fig.6.2 (Chorley, 1987).

BASIC SCALE SU RV EY S

I

CONTOURS

1:1250

1:50.000

1:2500

1:250.000

1:10.000
(BASIC)

1:10.000
(DERIVED)

1:25.000

Fig.6.2 Links between OS map series (Chorley, 1987)

6.3 Accuracy of contour lines on a map

First of all, the accuracy of the contour lines shown on a map needs to 
be considered. Some discussion of this matter has already taken place 
in Section 5.6. In practice, a contour line can be regarded as 
consisting of a continuously connected string of points of a constant 
elevation and the accuracy of the contour line is a result of the 
errors present in this string of points. It is also well-known that the 
position and height of any point lying on the terrain surface can be 
defined by its 3-D coordinates (X, Y, Z) and there may be an error in 
each of these directions at this point. Usually, the two errors in
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planimetry (i.e. in X and Y) are considered together as a vector, 
usually referred to as the planimetric error or positional error.
Therefore, the overall accuracy of contour lines can also be specified 
by its accuracies in both planimetry and height.

The magnitudes of the deviations of a point lying on a contour from its 
true position (i.e. the planimetric error) may be measured, e.g. with 
respect to a reference contour which is produced usually at a much 
larger scale and using lower flying heights and high accuracy photogra­
mmetric equipment. Some statistics may be constructed from these 
deviations, especially from the planimetric deviations. For example, 
the mean (average) values of the errors in the X and Y directions may 
be used as the measures of the systematic shifts (translations) of the 
contour lines in the X and Y directions and the ratio of these two mean 
values might be used as the measure of the mean direction error 
(rotation), etc. Hov/ever, as to what kind of statistics should be 
constructed and used in practice all depends on the purpose of the 
accuracy assessment.

The height error and the positional error are also inter-related due to 
the existence of terrain slope. Koppe (1902, 1905) first described such 
a relationship using en empirical formula as follows:

= mh + mp^ tanA (6.1 )

Where, m^ refers to the accuracy of height measurement; nip̂  is the 
positional or planimetric accuracy of the contour line; and A is the 
slope angle. Thus me is the overall accuracy of the contour in height 
including the effect of planimetric errors. This formula can also be 
shown diagrammatically as in Fig.6.3.

The overall planimetric accuracy of the contour lines, m^, can then be 
determined by transposing the coefficients (m^ and mp^) of Formula 6.1 
and reversing the slope function as follows:

m^ = nip̂  + m^ cotA (6.2)

While the planimetric error in the contour alone is mp^=(m(-.-m^)cotA.

These formulae used together are usually referred to as the Koppe 
Formulae and are very widely used in the mapping communities in Central 
European countries such as Germany, Austria and Switzerland.

In this project, due to the difficulties which will be mentioned in 
Chapter 13, only the assessment of the height accuracy of DTMs will be 
considered. Therefore, what will be the particular concern of this 
discussion will be the height accuracy of digitised contour data.
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T T
m h
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m L
Fig. 6.3 Diagrammatic presentation of the Koppe Formulae

The accuracy of contour lines on a map can also be studied using one or 
other of two different approaches, i.e. by theoretical analysis or 
experimental tests, or by a combination of both these approaches. With 
the former, the errors which are likely to occur in different stages of 
the mapping process are estimated usually on the basis of extensive 
experience. Then the accumulated results are concatenated into an 
overall figure for contour accuracy. In the latter, as mentioned above, 
much more accurate contours, which have been produced from much larger 
scale stereo-modeIs using much larger scale aerial photographs taken at 
much lower flying heights and employing high precision photogrammetric 
equipment, are used as reference (error-free) contours to check the 
deviation of those contours under investigation by superimposition. 
Then some measurements of the respective contours can be made and 
various statistics can be compiled and analysed to serve as the basis 
for estimating the accuracy of the contour lines.

Regarding this type of experimental investigation, a comprehensive 
study on the accuracy of contour lines was carried out many years ago 
by Lindig (1956). In his study, Lindig concentrated on the positional 
(or planimetric) errors. Indeed, the height errors are computed almost 
entirely from the corresponding positional errors. Lindig also 
introduced and constructed two additional errors, i.e. the curvature 
error and the direction error from the values of the positional errors. 
Fig.6.4 illustrates these errors diagrammatically considering points 
Pj_' and P^_i' lying on the original contour. In this diagram, H denotes 
the reference contour and H' denotes the contour under investigation. 
In this case, dv is the positional error; and dw is the direction 
error. The curvature error is defined as the difference betwen the 
curvatures at and P^'. The height error, dh, is computed from the 
positional error and is equal to dv.tanA, where A is the slope angle.
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Lindig (1956) also devised some methods to measure the errors in 
position, direction and curvature directly from the superimposed 
contour lines. Lindig's work has been of considerable theoretical and 
practical interest and indeed, in spite of its limitations, it has been 
used subsequently by a number of researchers to give figures for 
contour accuracy.

i-1

Fig.6.4 Contour errors defined by Lindig(1956)

In another later and largely theoretical study, Richardus (1973) 
carried out an investigation into the accuracy of the contour lines 
contained in large- and medium-scale topographic maps over the range of 
1:250 to 1:50 000, where the angular slope values are assumed to vary 
from 4° to 45°. It was considered that the height accuracy of contour 
lines on the map is affected by the errors involved in the control 
points as well as in the photogrammetric measurements made in the 
stereo-model and the errors introduced by the overall mapping procedure.

Richardus also carried out an estimation of the loss in accuracy due to 
each of these factors mentioned above and produced a mathematical 
expression for the overall accuracy of contour lines on a map. However, 
Richardus's work has not been widely accepted or used in mapping 
practice. Therefore, no further or more detailed discussion is made 
here.

Through the analysis of the height accuracy achievable during contour 
measurement and all the associated positional errors which are likely 
to be encountered in the photogrammetric mapping process, it is also 
possible to make an overall estimate of contour accuracy. In the 
analysis carried out by Rinner and Burkhardt (1972), the average 
planimetric error for the points on contour lines was stated to be 
+0.2mm to 0.3mm at map scale. By taking ̂ 0.281™ as a representative 
value for the planimetric accuracy and +0.3 per mil of H for the height 
accuracy of contours on topographic maps, they produced some estimates, 
expressed in a form similar to that given by the Koppe Formulae, as 
shown in Table 6.6.
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Table 6.6 Height accuracy of contours with map scale

Map
Scale

Photo
Scale

Focal (run) 
Length

Flying 
Height (m)

Height Accuracy 
of Contours (m)

1: 5,000 1:15,000 153 2,300 0.7 +1.4 tanA
1:10,000 1:20,000 153 3,100 0.9 + 2.6 tanA
1:25,000 1:30,000 153 4,600 1.4 + 5.8 tanA
1:50,000 1:60,000 115; 88 6,900;5,200 1.8 + 11. tanA *
1:100,000 1:70,000 115; 88 8,000;6,200 2.0 + 21. tanA *

* denotes that the average flying heights (6,000m and 7,000m 
respectively) were used for these estimates.

6.4 Cartographic digitisation methods

Unlike photogrammetric sampling, there are not many choices for 
cartographic digitising - one must carry out measurements of succesive 
positions lying along each contour line. The question of sampling is 
largely confined to making a decision about the intervals between 
successive positions measured along each contour. This section is going 
to review such limited methods.

The contours contained in a map can be digitised using one or other of 
two basic methods, i.e. either by line following or by raster scanning. 
The digitisation can also be carried out either as a manual operation 
or using automatic devices. Therefore, in essence, there are four 
possible ways to digitise a contour map. The characteristics of each of 
these methods have been fully discussed by Petrie (1987b) and are 
quoted in Table 6.7. Fran this table, it is obvious that manual raster 
digitisation is impractical. Therefore, there are only three methods in 
practical use.

The manual line following digitising method is still commonly used. In 
this method, either a mechanically-based digitising system or a solid- 
state digitising tablet can be used - nowadays usually the latter. In 
either case, the digitiser is operated manually. Contours are digitised 
either in point or stream mode, contour by contour. In point mode, the 
decision as to where each point should be measured is made by the 
operator. Usually, the actual measurement is made in a stationary (i.e. 
static) position to give the best possible accuracy. Where the stream 
mode is used, the tracing/measurement process is carried out in dynamic 
mode (i.e. with lower accuracy), with the coordinates being recorded
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either on a time basis or on a distance basis. Although extremely 
common, manual digitising of contours is a tedious, demanding and time- 
consuming operation.

In order to overcome these difficulties encountered in manual 
digitisation, automatic line-following devices such as Laser-Scan's 
Fastrak and Lasertrak systems have been developed to remove the need 
for the manual movement of the cursor during measurement. However, an 
operator is still required to carry out supervision of the system and 
to execute various operations such as the initial positioning of the 
device on the contour; guiding the device through areas of close-packed 
contours, cliffs, etc; inserting contour elevation values, etc. Given 
this degree of manual intervention, the method is usually referred to 
as semi-automatic digitisation.

Table 6.7 Characteristics of contour digitising methods
(Petrie, 1987b)

Line Following Raster Scanning
Measurement Points measured along 

contour lines only
The whole area of the 
map is scanned

Features

-Selective - only 
contour lines measured 
-Less data to be 
recorded and stored 
-Length of time required 
for measurement related 
to total length of 
contours

-Not selective - whole 
sheet scanned and measured 
-Very large amounts of data 
to be recorded and stored 
-Length of time required 
for measurement related 
to the size of sheet & the 
resolution of scan line

Chara­
cteri­
stics

Manual
Opera­
tion

-Lew speed of measure­
ment and data recording 
-Inexpensive hardware 
-Relatively easy feature 
coding

-Low speed
-Enormous time required
N.B. impractical to 

implement

Auto­
matic
Opera­
tion

-Very high speed 
measurement and 
recording
-Expensive hardware 
-Operator intervention 
for coding, etc.

-Very high speed measure­
ment and recording 
-Very expensive hardware 
-Need for separate feature 
coding/labelling operation 
-Very considerable post- 
measurenent processing 
required

Unfortunately, all automatic and semi-automatic line-following 
digitisers are very expensive and beyond the means of many smaller 
mapping organisations. Thus, the principal users are national 
topographic mapping agencies such as the Mapping & Charting
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Establishment (UK), United States Geological Survey (USA), Geographic 
Survey Institute (Japan), Military Survey Directorate (Saudi Arabia), 
etc. and large private geophysical companies, e.g. GECO (Norway), and 
digitising bureaux, e.g.Taywood (UK), which have the capital resources 
to purchase, maintain and operate these systems.

The raster scanner makes fully automatic digitisation possible. In 
raster scanning, each line scan in the raster is divided into resolution 
units (pixels) of, say 25 to 50um, and, in each unit, the scan provides 
a return as to whether a contour line image is present or not. Each 
response may be recorded in some way, e.g. with a zero if nothing is 
present and a one if there is a line image. For contour digitising, 
very large format, high resolution raster-scanners are required. Both 
flatbed and drum-based designs are employed, but whichever is used, a 
huge capital investment is again required to purchase, maintain and 
operate such systems, e.g. those from Scitex, SysScan, Intergraph, 
Tektronix, etc.

As one can imagine, the data resulting from raster scanning is huge. 
For example, a map of 100cm square will produce four hundred million 
bits of information if the resolution is of the order of 50um, which is 
used in most cases. Furthermore, since most existing graphics software 
and hardware operate in vector mode, a raster-to-vector conversion is 
required both to make full use of existing technology and also to 
ensure a substantial degree of data compression.

6.5 Accuracy of digital contour data (DCD)

The term digital contour data can be used to refer to two types of 
data. One is the data directly measured and recorded from a stereo- 
model while the original contouring is in progress. While the other is 
the data which is digitised from the contour lines shown on published 
hard-copy maps. These two types of data will have different accuracies 
because the latter has undergone various cartographic and digitisation 
processes. The accuracy of photogrammetrically measured contoured data 
has already been discussed in the previous chapter. In this section, 
only the accuracy of the digitised hard-copy contour data will be 
discussed.

As explained above, the manual method is still the dominant one used 
for contour digitising. Therefore, the discussion v/ill be confined to 
this type of digitising.

As was the case with data acquisition using photogrammetric methods, 
the accuracy of digitised data is also the overall result of the errors 
from different sources, including the basic accuracy of the contours

83



Chapter 6 .from existing maos

themselves, the accuracy of the digitiser, and the fidelity with which 
the operator carries out measurement of the contours. The accuracy of 
the contour lines shown on the contour maps has been discussed before, 
so only the accuracies of the digitiser and of the measurement process 
will be given here.

First of all, there is a matter of the inherent resolution (or least 
count) given by the digitiser itself, which is a very important factor 
in indicating the potential accuracy of a digitiser. The absolute 
accuracy of the digitiser will of course be lower than the resolution. 
Some examples of such information are quoted in Table 6.8 from Kelk 
(1973).

Table 6.8 Accuracy of digitisers

Device
Parameters

Mechanically-Based 
Penci1-Follower

Solid State 
Tablet

Resolution (least count) 0.025mm to 0.1mm 0.025 rm
Repeatabi1ity (preci sion) +0.01mm to 0.1mm +0.025 mm
Absolute positional 
static accuracy

Better than 
_+0.1nn to 0.15mm +0.15mm/m

Dynamic accuracy <0.2im up to 2.5cm/sec.

Table 6.9 Rollin's Test Results on Digitisers

Digitising Table No.of Tables Tasted Quoted Accuracy RMSE
Ferranti Freescan 23 +0.127mm +0.083mm
Altek Datatab 3 8 +0.076mm +0.075mm
Altek Datatab 2 1 j+0.127mm +0.090mm

Aristo Aristogrid 
100 1 HhO. 127mm +0.142mm

Kontron Digikon 2436 1 +0.10mm j+0.037mm

Also like stereo-photogrammetric instruments, the accuracy of an 
individual digitiser may also vary with its condition in terms of its 
maintenance. Roll in (1986) reported some figures from the calibration 
of the manually-operated tablet digitisers used by the OS, and found 
that the poorest results came from one of the older Ferranti Freescan 
solid state tablets which displayed an RMSE in x and y of +0.123mm and
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+0.168mm respectively. But in general, most of the RMSE values lie in 
the range from +75um to +_90um which may be regarded as very satisfactory 
having regarded to the intrinsic accuracy (+0.2 to 0.3mm) of the 
contours being measured. Some results from Rollin’s tests are given in 
Table 6.9.

When manual digitisation is carried out, an additional error is 
introduced when using the cursor of the digitiser to measure the 
contour lines. For such errors, an accuracy of +0.10mm in terms of 
R.M.S.E at map scale is a reasonable estimate because the resolution of 
the human eye is believed to be around such an amount. The overall 
accuracy of digitising might be up to +0.15mm. This value may be 
appropriate for the measurement of contours in point mode which corre­
sponds to the static mode of the measurement on stereo-plotting 
machines. However, like the dynamic mode of measurement in a photogram- 
metric stereo-model, the accuracy of the measurement of contours in 
stream mode will also be lower, though it is difficult to tell hew much 
lower. An estimate based on experience indicates that a figure of +0.2 
to 0.25mm might not be inappropriate.

In some organisations, the digitising process is carried out on an 
enlarged copy of the map, so that better conditions will be created for 
the operator's measurement. Therefore, the accuracy of digitising 
should be rather better than some of the values quoted above. In the 
case of the OS, the original document is usually enlarged by a factor 
of 1.5x. In this case, the accuracy figure of +0.1 5mm at the enlarged 
map scale is equivalent to only +0.1 mm at the original map scale. 
Taking into account the improvement in the conditions for measurement, 
then the accuracy may be better than +0.1 mm. Sometimes, this is, of 
course, not such a serious problem since the positional error for 
contours allowable by the map specification is often larger than this 
value.

6.6 Concluding remarks

In this chapter, some discussion of the characteristics of contour maps 
has been made, including their specified accuracy. In particular, the 
OS map series has been described as an example. Then, the various 
methods of contour digitising and their characteristics have been 
reviewed; and the height accuracy of the contour data digitised from 
existing contour maps has also been discussed. Finally, a brief survey 
of the accuracy of digitisers is also given, followed by a discussion 
of the accuracy of digitising and digitised data.

Up to this stage, the main topics concerning DTM data acquisition have 
been discussed and the accuracies of the raw (source) data from 
different sources have been examined in some detail. However, since the
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discussion of the accuracy of the source data has, till new, only been 
related to random error, some more discussions about gross error and 
its detection and the improvement of the quality and accuracy of the 
source data with some pre-processing procedures are also desirable. It 
might be also reasonable to allocate the chapter about these 
discussions (on data pre-processing) in the next chapter. However, it 
v/ill be introduced as Chapter 8 since the matter of the procedures used 
for surface reconstruction and the characteristics of the OTM surface 
itself are also extremely important in this context. Therefore these 
matters will be covered in the chapter which follows in order to finish 
off the discussion about theory and background to the the present 
project, and thus, to complete the first part of this thesis.
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Chapter Seven 

Digital Terrain Surface Mode 11 ing

7.1 Introduction

As discussed in the introductory chapter, the main factors affecting 
the accuracy of final digital terrain models are the type of terrain 
itself; the attributes of the source data (including its accuracy, 
pattern and density); and the type of terrain model surface required - 
which is linked to the techniques used for surface modelling. In the 
previous chapters, the types of terrain surface have been described in 
Chapter 3; the attributes of photogrammetrical ly measured data have 
been discussed in Chapters 4 and 5; and the characteristics of the 
digital contour data have also been discussed in the Chapter 6. However, 
the matter of the techniques used for modelling the terrain surface 
still remain to be discussed before the assessment of DTM accuracy can 
be carried out.

In this chapter, a discussion of various topics related to the 
modelling of the terrain model surface from the data sets which can be 
obtained by both photogrammetric sampling and cartographic digitisation 
will be undertaken. First of all, the basic concepts will be introduced 
and defined; the various approaches which can be used for terrain 
surface modelling will outlined; and the types of terrain model 
surfaces which can be obtained from data sets with different patterns 
and by different modelling approaches will also discussed; Fran these 
discussions, the importance of different types of terrain model surface 
to the present study can then be judged and it can then be decided 
which types of terrain model surface should be taken into serious 
consideration when the DTM accuracy assessment is carried out later in 
this project.

7.2 Interpolation and surface reconstruction

7.2.1 Basic concepts

A digital terrain model (DTM) is a mathematical (or numerical) model of 
terrain surface. It employs one or more mathematical functions to 
represent the terrain surface according to some specific methods based 
on the set of measured data points. The mathematical functions are 
usually referred to as interpolation functions. The process by which 
the representation of the terrain surface is achieved is referred to as 
surface reconstruction or surface modelling and in the published 
literature, the actual reconstructed surface is often referred to as 
the DTM surface. Therefore, terrain surface reconstruction can also be
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considered as DTM surface construction or DTM surface generation. After 
this reconstruction has been achieved, the required height information 
for any point in the model can be extracted from the DTM surface.

Interpolation is a frequently discussed topic in the area of digital 
terrain modelling. A lot of work has been done by many investigators. A 
comprehensive review of the interpolation methods used in DTM work has 
been given by Schut (1976). In Schut’s paper, six groups of 
interpolation methods were distinguished, namely, (i) moving surface; 
(ii) summation of surfaces; (iii) simultaneous patchwise polynomials; 
(iv) interpolation in a rectangular grid; (v) interpolation in a net of 
triangulation; and (vi) interpolation in a string DTM.

From different viewpoints, these methods may be classified in different 
ways. For example, according to Wild (1980), the following four main 
groups can be distinguished instead, namely, (i) polynomial interpola­
tion; (ii) least squares prediction; (iii) summation of surfaces; and 
(iv) interpolation with finite elements.

These classifications are more or less based on the characteristics of 
the interpolation methods themselves. Some other alternatives can also 
be used. For example, Petrie and Kennie (1986) classified these methods 
into three groups under the heading of pointwise, patchwise and global 
interpolation, based on the size of the individual areas used to 
represent the DTM surface. This classification was made in the context 
of random-to-grid interpolation procedures. In addition, triangulation 
was treated by them as a separate method since interpolation to form a 
basic network of elevations is not a requirement to form the DTM 
surface.

The concept of interpolation is a little different to that of surface 
reconstruction. The former includes the whole process of estimating the 
elevation values of new points which may in turn be used for surface 
reconstruction while the latter emphasises the process of actually 
reconstructing the surface, which, as noted above with the triangulation 
method, may not involve interpolation. To attempt to clarify this 
matter further, surface reconstruction only covers those topics 
concerned with "how the surface is reconstructed and what kind of 
surface will be constructed", e.g. is it a continuous curving surface 
or does it consists of a linked series of planar facets.

3y contrast, interpolation covers a much wider range. It ray include 
the matter of surface reconstruction and that of extracting height 
information from the reconstructed surface; it may also Include the 
formation of contours either from randomly located points or by from a 
measured set of elevation values obtained in a regular gridded pattern. 
In both of these latter cases, the measured values are honoured in the
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resulting surface and the interpolation process only takes place after 
the surface reconstruction, either to extract height information for 
specific points or to construct contoured plots.

In this chapter, various topics concerning the characteristics of DTM 
surfaces and the construction (or generation) of such surfaces are 
those of most concern. First of all, the approaches for constructing 
DTM surfaces from different data patterns will be discussed in the 
following section; then the different types of DTM surfaces which can 
possibly be constructed from a data set will be briefly sketched in the 
section after that. Finally, for the sake of completeness, some brief 
discussions of the methods (procedures or algorithms) used in these 
approaches to form special data patterns will also be presented.

7.2.2 General polynomial function
for terrain surface realization and interpolation

Before starting to discuss the various approaches for DTM surface 
construction (or generation), it seems pertinent first to introduce the 
mathematical function widely used in DTM practice to realize these DTM 
surfaces.

As has been discussed in Chapter 2, the mathematical expression for a 
DIM surface can be defined explicitly as follows:

Z = f(X,Y) (7.1)

The most widely used function for realization of this expression is the 
polynomial function as shown in Table 7.1.

Table 7.1 Polynomial function used for surface reconstruction
(Petrie & Kennie, 1986)

Individual Terms Order Descriptive No.of 
Terms Terms

Z= a0
+ a-jX + a2Y 
+ a3xy+ a4x2 + a5Y2 
+ a5X3 + a7Y3 + aQX2Y + agXY2 
+ a10X4+ an Y4+ a12X3Y+ a13X2Y2 
+ a15X5+

+ a14XY

Zero Planar 1
First Linear 2
Second Quadratic 3
Third Cubic 4
Fourth Quartic 5
Fifth Quintic 6
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The characteristics of each term in this function have been fully 
discussed by Petrie and Kennie (1986) and are shown graphically in 
Fig.7.1.

Z = a o Z = a i x Z =  3i V

Z = a i  x1
■X

Z = a »  x y

Z = a » x J Z =  a> y1
X

Z =  a » x y ’ Z = a » x * Z = a n y *

Fig.7.1 Surface shapes produced by individual terms 
(Petrie & Kennie, 1986)

For the generation of the actual surface in a specific modelling 
program, it is not necesssary (and in practical terms, impossible) to 
use all the terms inherent in this function. In practice, only a few 
terms are used, the selection of these being decided upon by the system 
designer and implementor. Only in a very few cases is there the 
possibility for the user to select which terms in the function might be 
most appropriate for modelling the specific piece of terrain in 
question.

As have been shown in Fig.7.1, each individual term of the general 
polynomial function has its cwn characteristics in terms of shape. By 
using certain of these terms, a surface with special characteristics 
can be constructed.
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7.3 Alternative approaches for digital surface modelling

As discussed in Chapter 4, various data patterns are available using 
different sampling methods for DTM data acquisition. From these 
different data sets, different approaches can be used for DTM surface 
construction and different types of surfaces can also be constructed. 
However, a general discussion of the various types of DTM surfaces will 
be given in the next section. In this section, only the approaches for 
constructing these surfaces from different data patterns themselves 
will be examined.

Three main approaches can be distinguished for modelling the terrain 
surface, namely, point-based modelling, triangle-based modelling and 
grid-based modelling. Also a hybrid approach combining any two of these 
is also possible.

7.3.1 Point-based surface modelling

If the zero order term in the polynomial is used for DTM surface 
realization, then the result is a horizontal (or level) plane, as shown 
in Fig.7.1. At every point, a horizontal (or level) planar surface can 
be constructed. If the planar surface constructed from an individual 
data point is used to represent the small area around the data point 
(also referred to as the region of influence of this point in the
context of geographical analysis), then the whole DTM surface can be
formed by a series of such contiguous horizontal planar surfaces. The 
resulting overall surface will be discontinuous.

For each individual horizontal planar sub-surface, the mathematical 
expression is simply as follows:

ZA = H± (7.2)

Where is the height on the level plane surface for an area around
point I and is the height value of point I.

This approach is very simple. The only difficult thing which needs to 
be done is to define the boundaries between the adjacent areas. As 
stated before, the discussion about this type of surface and the 
determination of the area boundaries will not be given here but later 
in Section 7.4.1. Since this approach forms a series of sub-surfaces 
based on the height information of individual points, so the modelling 
based on this approach can be regarded as point-based surface 
modelling.

Theoretically, this approach is suitable for any data pattern since it 
concerns only individual points. Furthermore, irregularly shaped areas

92



Chanter 7 DIM surface.

(and planar surfaces) based on irregularly distributed data points are 
also possible. However, as far as the process of determining the 
boundaries of the region of influence by each point is concerned, the 
computation will be much simpler if regular patterns such as a square 
grid, equilateral triangle, hexagon, etc are used. Although it would 
seem quite feasible to implement this approach in surface modelling, 
it is not really a practical one due to the resulting discontinuities 
in its surface as will be discussed later.

7.3.2 Triangle-based surface modelling

If more terms are used, then a more complex surface can be constructed. 
Inspection of the first three terms (the two first order terms together 
with the zero-order in Table 7.1) shows that they form linear surfaces. 
To determine the three coefficients of this particular polynomial, 
three data points are the minimum requirement. These three points can 
form a spatial triangle, in which case, a tilted planar surface can be 
defined and constructed.

If the plane surface determined by an individual triangle is used to 
represent only that area covered by the triangle, then the whole of the 
DTM surface can be formed by using a linked series of contiguous plane 
triangles. Again, the discussion about the resulting surface will be 
given in Section 7.4.2. The modelling based this approach is usually 
referred to as triangle-based surface modelling.

The triangle may be regarded as the most basic unit in all geometrical 
patterns in any case, since a regular grid of square or rectangular 
cells or any polygon with any shape can be decomposed into a series of 
triangles. Therefore, triangle-based surface modelling is the approach 
which is feasible with any data pattern no matter whether it has 
resulted from selective sampling, composite sampling, regular grid 
sampling, profiling or contouring. Since triangles have a great flexi­
bility in terms of their shape and size so this approach can also 
easily incorporate break lines, form lines, discontinuities and any 
other data. Therefore, the triangle-based approach has received 
increasing attention in terrain modelling practice, and can be regarded 
as one of the main approaches that can be taken in surface modelling.

The specific manner in which the triangle-based modelling approach is 
actually implemented in modelling practice is not the main concern of 
this research project. Nevertheless, in view of its current importance 
in practice, a brief discussion about the methods of forming triangular 
networks will be given in Section 7.5.
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7.3.3 Grid-based surface modelling

As discussed above, the use of the first three terms in the general 
polynomial to generate spatial triangles is very feasible and is 
becoming widely used in practice. However, if more than the first three 
terms of the polynomial are used, then the use of other approaches 
may be considered although, as will be seen later, the additional terms 
can also be used with triangles to create curved facets if a linked 
series of triangles forming a polygon is being considered.

If the first three terms, together with the term a^XY of the general 
polynomial, are used for DTM surface construction, then four data points 
are the minimum requirement to form a surface in this case. The 
resulting surface is referred to as a bilinear surface. Theoretically, 
quadrilaterals of any shape such as a parallelogram, rectangle, square, 
or an irregular one can be used as the basis for this type of surface. 
However, for practical reasons, such as the resulting data structure 
and the final surface presentation, a regular square grid is the most 
suitable pattern. As in the case of triangle-based surface modelling, 
the resulting surface will consist of a series of contiguous bilinear 
surfaces.

Higher-order polynomials can also be used for DTM surface construction. 
The use of a high-order polynomial function to construct a DTM surface 
for a large area may lead to unpredictable oscillations in the 
resulting surface. In order to reduce the risk of this situation 
arising, a restricted number of terms - usually only the second- and 
third-order terms - will be used in practice. The minimum number of 
elevation points which will be necessary to construct the DTM surface 
will of course be governed by the number of terms used, but in any 
case, the number will be greater than four. In this case, different 
patterns and geometric figures other than the basic triangle or square 
grid cell can be considered for use in the surface reconstruction. 
Nevertheless, because of the difficulties likely to be encountered in 
data structuring and handling, elevation source data which is evenly 
distributed, as in the case of regular grid and equilateral triangle 
patterns, is still of significant importance.

In fact, from the practical point of view, as has been discussed in 
Chapter 4, grid data has many advantages in terms of data handling. 
Therefore, it might be said that elevation grid data from regular grid 
sampling and progressive sampling, especially the square grid data, is 
particularly suitable in this case. Indeed, such are the advantages 
that many DTM packages only accept gridded data for surface 
construction, in which case, a preliminary data pre-processing 
operation (random-to-grid interpolation) is necessary to ensure that 
the input data is in the required form.

94



Chapter 7 DTM surface.

The approach of surface modelling based on a regular grid is usually 
referred to as grid-based surface modelling. In practice, this approach 
to surface modelling can be used to construct a smooth surface and is 
often applied to a global data set covering rolling terrain. It will be 
obvious that it has less relevance (or application) to broken terrain 
with steep slopes, numerous break lines, sharp terrain discontinuities, 
etc. A further discussion about the surfaces resulting from the grid- 
based approach will also be given in the next section.

7.3.4 Hybrid surface modelling

The actual data structure which is implemented using a particular 
geometric pattern for surface modelling is usually referred to as a 
network in the context of terrain modelling. So, on this basis, it can 
also be said that a DTM surface is usually constructed from one or the 
other of two main types of network - a gridded network or a triangular 
network. However, a hybrid approach has also been widely used to 
construct DTM surfaces. For example, a gridded network may be broken 
down into a triangular network to form a contiguous surface of linear 
facets. Going in the opposite direction, a gridded network may also be 
formed by interpolation within an irregular triangular network.

Fig.7.2 An example of the hybrid approach to surface modelling (HIFI)

One of the latest developments in this hybrid approach, which is now 
being used in the HIFI 88 and CIP packages, is to have a basic grid of 
squares or triangles obtained by systematic grid sampling. Where break 
lines and form lines are available (as in the case of composite 
sampling), the regular grid is broken into and a local irregular 
triangular network is implemented. Fig.7.2 is an example produced from 
the HIFI package showing the hybrid approach to surface modelling.
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It might be also possible to combine point-based modelling with either 
grid-based modelling or triangle-based modelling to form a hybrid 
approach. That is, the boundaries of the region of influence of a point 
can be determined using either a gridded or a triangular network in the 
case of data located in a regular pattern or based on a triangular 
network in the case of irregularly located data. Examples are shown in 
Fig.7.3 (Section 7.4.1). In the case of Fig.7.3(a), the surface has 
been constructed from regular data in a square grid using point-based 
modelling; while the surface shown in Fig.7.3(b) has been constructed 
from a regular triangular network also using point-based modelling.

7.3.5 Alternative methods for surface modelling

Attempting to summarize the discussion up to this point, there are, in 
principle, three possible approaches for surface modelling - point- 
based, triangle-based and grid-based approaches. Each is suitable for 
a specific data pattern. However, in practice, point-based modelling is 
not practical and is therefore not widely used. Only the triangle-based 
and grid-based approaches to surface reconstruction have been widely 
used and so these were considered as the two basic approaches by Petrie 
and Kennie (1986).

In fact, as Petrie and Kennie (1986) have emphasized, there are also 
two basic methods which have been used for a digital terrain model 
(DTM) surface construction in these modelling approaches as follows:

i). direct construction from measured elevation data; or
ii). indirect construction from derived data.

Thus, the surface can be constructed directly from the original source 
data, e.g. by using square grids or regular triangles or through 
triangulation in the case of randomly located data. Also as noted 
above, a hybrid approach combining grids and triangles or a mixture of 
equilateral and irregularly shaped triangles can be employed with the 
measured source data. Alternatively, the surface can be constructed 
from elevation data which has been derived by interpolation from the 
original measured data, as is the case when a preliminary random-to- 
grid interpolation has been carried out before the DTM surface 
construction is attempted.

The above discussion shows that various different approaches can be 
used to construct different types of DTM surfaces even from the same 
data set. Another point which needs to be made here is that the 
different approaches to surface modelling may be classified further 
based on different points of view, so providing a further insight into 
the surface reconstruction process.
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7.4 Classification of DIM surfaces

DTM surfaces can be classified based on different criteria. For 
example, they may simply be classified into three groups based on the 
size and coverage of the areas which are represented by the individual 
elements which go to make up a DTM surface. On this basis, one can 
define either:

i). a local surface; 
ii). a regional surface; or 

iii). a global surface.

The usual basis on which a global surface may be constructed is a 
situation comprising a very large data set and covering a large area of 
terrain containing very simple and regular terrain features. Alterna­
tively it may be used when only very general information about the 
terrain surface is needed for purposes such as reconnaissance. 3y 
contrast, the construction of local surfaces could be based on the 
premise that the area to be modelled is very complex or that only a 
local area is of interest. The reasons for using a regional surface 
could be the result of some type of compromise between those criteria 
given for using a global surface and those used to justify the use of a 
local surface.

Another criterion which may be useful in the classification of DTM 
surface models is to make use of certain specific characteristics of 
these models. One of the most important characteristics of a DTM 
surface concerns the continuity of its surface. Based on this 
criterion, DTM surfaces can be classified further into three groups, 
namely,

i). those with discontinuous surfaces;
ii). those exhibiting a continuous surface; and
iii). those having a smooth surface.

7.4.1 Discontinuous surfaces

A discontinuous surface is the result of the thought that the height 
value of any measured point is representative for the values in its 
neighbourhood (Peucker, 1972). On this basis, the height of the point 
to be interpolated can be approximated by adopting the height of the 
closest reference point. In this way, a series of local level surfaces 
are used to represent the terrain surface. Theoretically speaking, this 
type of surface is the realization of the so-called point-based surface 
modelling which has been discussed before in Section 7.3.1.

As has been pointed out in the discussion of point-based surface
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modelling, this type of surface can be constructed from any type of 
data set, no matter whether it is regular or irregular.

(b)

Fig.7.3 Discontinuous surface constructed from different patterns
(a), from regular gridded data; (b). from equilateral triangular data.

For the regular data, the determination of boundaries between the sub­
surfaces is much easier. Fig.7.3(a) shows such a surface constructed 
from gridded data sets, while Fig.7.3(b) shows the plan of a discon­
tinuous surface consisting of a series of horizontal planes each with a 
hexagonal shape resulting from a data set with an equilateral triangle 
pattern (Peucker, 1972). From these diagrams, it can be seen clearly 
how the boundaries are determined in each of these cases. Therefore, no 
further explanation needs to be given here.

However, whenever the data is irregularly distributed, then the boun­
daries of the so-called region of influence of each of the data points 
needs to be determined. Normally, this is dene by constructing the so- 
called Thiessen polygons which are widely used in the context of 
geographical analysis since this method was proposed by the climato­
logist A. H. Thiessen in 1911 (Brassel & Reif, 1979). Actually, the 
Thiessen polygon is a region enclosed by a embedded series of 
perpendicular bisectors, each located midway between the point which is 
under consideration and each of the surrounding neighbours. Fig.7.4 
shows such a polygon.

Again, a level plane can be constructed over the area enclosed by a 
Thiessen polygon. Therefore, a whole series of discontinuous surfaces 
can be constructed from the network of Thiessen polygons derived from 
the data set. In the literature, such a network is referred to as the 
Thiessen diagram, or Voronoi diagram, or as Wigner-Seitz cells or the 
Dirichlet tesselation - the actual term used seeming to vary between 
different scientific disciplines, although the basic idea is common to 
them all.
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THIE SSEN POLYGON
• - data points ^  a - Thiessen vertices  Perpendicular bisectors

Fig.7.4 Thiessen polygons and Delaunay triangles 
(Petrie and Kennie, 1986)

It can also be seen from Fig.7.4, that the dual of a Dirichlet 
tesselation (or Thiessen Diagram) is a triangulation. This dual 
relationship was first recognized by Delaunay (1934). Therefore, such a 
triangulation is usually named after Delaunay. Fig.7.5(a) and (b) shew 
a Thiessen diagram and its dual - the corresponding Delaunay triangu­
lation. Nowadays, the actual procedure to determine the Dirichlet 
tesselation (or Thiessen diagram) is to carry out first the Delaunay 
triangulation, then to define the Thiessen polygons from the triangular 
network. More discussion about the Delaunay triangulation will be given 
later in this chapter in another context.

Fig.7.5 The dual relationship between Thiessen diagram and Delaunay 
triangulation (Green & Sibson, 1978). (a). The Thiessen polygons; 

(b). The correspondingDelaunay triangles
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So, from the discussions above, it can be found that, at least in 
principle, an approach combining point-based modelling with either 
grid-based or triangle-based networks can be employed in the modelling 
of a surface. In practice, this type of discontinuous surface is not 
acceptable for topographic mapping. However, for some other purposes, 
such as planning, it could be a very efficient one for very flat areas, 
especially when high accuracy is not required. In other disciplines, 
such as statistical modelling, this type of surface is still widely 
used and the resulting map is referred to as "proximal" map, as in the 
case of Fig.7.3(b) which was produced by the Harvard SYMAP program. 
Fig.7.6 is a perspective view of the discontinuous surfaces constructed 
from irregularly located data produced by the Harvard SYMVU program 
(Ziegenfus, 1981).

Fig.7.6 Discontinuous surfaces constructed from irregular data
(Ziegenfus, 1981)

7.4.2 Continuous surfaces

By contrast, a continuous surface is one based on the idea that each 
data point represents a sample of a single-valued continuous surface. 
The first derivative of the surface can be either continuous or discon­
tinuous. However, in this thesis, this definition v/ill be used that a 
continuous surface is one which exhibits discontinuity in the first 
derivative. Furthermore, any surface which is continuous in both the 
first and in any higher derivatives will be referred to instead as a 
smooth surface.

Therefore, a continuous DTM surface will consist normally of a series 
of local surfaces (or patches) which are linked together to form a

100



Chapter 7 DTM surface.

continuous surface over the whole of the terrain area being modelled. 
The boundary between two adjacent sub-surfaces (or patches) may not 
smooth, i.e. it is not continuous in the first and higher derivatives. 
A series of contiguous linear facets is an example of such a surface. 
These have been employed extensively in practical DTM operation. Either 
the triangle-based modelling approach or grid-based modelling approach 
can be employed. Fig.7.7(a) & (b) show examples of such surfaces. 
Fig.7.3(a) is a cross section view of a boundary between two adjacent 
sub-surface, where a discontinuity occurs in the first derivative 
(Fig.7.8(b)).

Fig.7.7 Continuous surfaces comprising a series of contiguous planar 
surfaces, based on (a) square grid cells (Ebner, 1980); (b) triangles.

XP

Fig.7.8 Discontinuity in the first derivatives at boundary point P
(a). Cross section view of a boundary between two adjacent facets;
(b). Discontinuity in the first derivative at the boundary.

The lack of continuity in the first derivative is, for many users of 
DTMs, something rather undesirable either in terms of the modelling 
itself or in terms of the final graphic output. However, the fact is 
also worth noting that the lack of continuity in the first derivative 
resulting in a distinct boundary between adjacent patches, grid cells 
or triangles is a feature which may not be undesirable in some cases. 
Indeed it may be deliberately sought after or introduced into the 
modelling process. This is particularly the case with data located 
along linear features such as rivers, break lines, faults, etc. acquired
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via selective sampling or composite sampling. In such cases, the lack 
of continuity in the first derivative is indeed desirable so that 
interpolated contours change direction abruptly along such lines. 
Fig.7.9(a) is an example produced by SCDP.

Fig.7.9 Continuous surface incorporating linear features 
(a). Contours crossing break lines (SCOP);

(b). Linear feature in a grid-based surface (Ebner, 1980)

Even in a sophisticated grid-based DTM package such as HIFI, which 
incorporates smoothing and continuity between patches, provision is 
made to sub-divide an individual patch into two linear facets along the 
break line which acts as their common boundary allowing a continuous 
surface but without continuity in the first derivative (Fig.7.9b).

Furthermore, it can be found in the literature (Peucker, 1 972), that, 
in many cases, a continuous surface comprising a series of contiguous 
linear facets is the least misleading one although it may look not so 
convincing or attractive from the visual point of view.

7.4.3 Shiooth surfaces

Smooth surfaces refer to those surfaces which exhibit continuity in the 
first and higher derivatives. Usually, they are implemented on a 
regional level or on a global scale. The generation of such a surface 
is based on the assumptions that

i). the source data always contains a certain level of random noise 
or errors in measurement so that the surface to be constructed 
from the source data does not necessarily pass through all data 
points; and

ii). the surface to be constructed should be smoother than (or at
least as smooth as) the variation which is indicated by the 
source data.
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For this condition to be achieved, normally, a certain level of data 
redundancy is used and least squares method is implemented using a 
multi-termed polynomial to model the surface (Fig.7.10(a)).

In the case of a single global surface based on a large data set, the 
whole of the surface is modelled by a single high-order polynomial. A 
huge amount of data may be involved, with an equation formed from each 
data point. However, the number of unknowns will still be relatively 
small, so that using a least squares solution, there will be a very 
substantial comuputational burden or overhead on the modelling 
operation when a very large amount of data is involved.

Actually, not only does this approach involve considerable computation 
in calculating the unknown parameters of the polynomial and in creating 
the model surface, but also, as stated before, the final result may 
often exhibit unexpected and unpredictable spikes or oscillations 
between data points. These are highly undesirable both in terms of the 
surface modelling process itself and in the fidelity of the final 
result in terms of the actual representation of the terrain surface 
delivered to the user in the form of contour plots or perspective 
views.

The result of these considerations is that the data sets are often 
divided into a series of continuous patches. The patches themselves may 
be regular in terms of shape and size, as in the case of square grid 
cells or equilateral triangles, or they may be irregular both in shape 
and size, as in the case of the randomly distributed points normally 
encountered in a triangulation procedure. Within each data patch, a 
lower-order polynomial can be used to model or reconstruct the surface 
again using the least squares method if redundant data is available.

Fig.7.10 Examples of smooth surfaces 
(a). A global (smooth) surface; (b). A smooth surface 
comprising a series of patches or regional surfaces
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While the use of the polynomial ensures a smooth surface within each 
patch, a break in continuity will almost certainly occur along the 
boundaries between patches since different terms will be dominant in 
the polynomials used in each of the individual patches.

The upshot of this is that continuity in the first and higher 
derivatives between adjacent patches will have to be built into the DTM 
system so that a smooth surface can be achieved between the patches 
without breaks or discontinuities along their boundaries. In other 
words, a so-called seamless join must result between patches. Needless 
to say, the successful implementation of such a requirement carries a 
very heavy computational overhead (Fig.7.10(b)).

7.4.4 Summary and discussion of surface continuity

Attempting to summarize the discussions made in this section, using the 
continuity of a surface as a basis for a classification of DTM surface, 
three types of terrain model surface can be distinguished, namely, 
discontinuous surfaces; continuous surfaces; and smooth surfaces. It 
has also been shown that, in most cases, discontinuous surfaces are not 
acceptable in the context of terrain modelling, although they are 
widely used in other disciplines such as statistical modelling.

By contrast to discontinuous surfaces, smooth surfaces always appeal to 
topographic scientists and to many practitioners or users of DTMs. 
However, care needs to be taken in the case of using high-order poly­
nomials. Another point associated with smooth surfaces is that, in most 
cases, a heavy computational overhead may be involved if this approach 
is adopted.

It has also been discussed that, in many cases, continuous surfaces 
comprising a series of linear facets are the least misleading surface 
representation although they do not look so nice from the visual point 
of view. Another very important advantage of this type of surface 
consists in the flexibility of incorporating geomorphological 
information such as break lines, form lines, faults, etc.

As mentioned in the introductory chapter, it has also been found that 
the final accuracy of a DTM surface is most strongly affected by the 
attributes of the source data and by the characteristics of terrain but 
not usually by the type of model applied to represent the surface. 
Nevertheless, as will have become apparent from the discussion in this 
chapter, the selection of an appropriate method for surface modelling 
is a matter of some importance. As a result, some care has been taken 
to select appropriate models for use in the present project. In parti­
cular, the use of continuous surfaces comprising a series of linear 
facets obtained from both grid-based modelling and triangle-based
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modelling will receive special attention in the assessment of DTM 
accuracy which will be discussed later in this thesis.

In some sense, these remarks could be the end of this chapter. Indeed, 
perhaps they should be. However, as stated before, just for the sake of 
completeness as a document, the methods used to form both triangular 
networks and gridded networks, which can then be used for terrain 
surface modelling by using the triangle-based approach and the grid- 
based approach respectively, will be briefly reviewed in the following 
two sections. In fact, another important reason for doing so is to give 
readers a more complete understanding about how the process of digital 
terrain surface modelling - from source data to network to surface 
model - is actually carried out in practice.

7.5 Triangular network formation

7.5.1 DttM networks: An introduction

As defined before, a network is a data structure implemented in a 
special pattern for surface modelling. It needs to be emphasized that a 
network concerns mostly the inter-relationship of the data points in 
the positional (planimetric) sense but not necessarily in the third 
dimension. This is the main difference between a network and the DTM 
surface which is constructed from the network and comprises a series of 
sub-surfaces which may or may not have continuity in the first 
derivative. The data structure for a regular grid is built-in (i.e. it 
is implicit) due to the special characteristics of the regular grid 
itself so that often this difference is not appreciated or shown 
clearly. 3y contrast, in the case of triangle-based modelling, this 
distinction is very clear - the planimetric inter-relationship needs 
to be sorted out to form a triangular network; then the third dimension 
can be added to the network to form a continuous surface comprising a 
series of contiguous triangular facets.

The triangular network pattern can be viewed as being the most basic 
one of all, since, as mentioned earlier, it can be applied to both 
regularly and irregularly located data. Also as already noted, a 
gridded network can be formed by interpolation from a triangular 
network and either a continuous or a smooth surface can also be 
constructed from the same network. Therefore, first of all, the 
formation of a triangular network will be discussed in the next sub­
sections (Section 7.5.2 onwards) and a discussion about the formation 
of gridded network will be given later in Section 7.6.

The process of forming a triangular network is usually referred to as 
triangulation. A triangulation procedure can be applied either to
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regularly distributed data such as gridded data to form a regular 
triangular network or to irregularly distributed data to form a TIN 
(triangular irregular network) which comprises a series of contiguous 
triangles of irregular size and shape.

7.5.2 Formation of a triangular network from regular data

If the source data has been acquired systematically in a regular 
pattern, then this is the simplest network of all to form. In the case 
of a square grid, simple sub-division using one or two diagonals 
produces a series of regular triangles. Fig.7.11a, b, & c show these 
three possible triangular patterns derived from a grid pattern. In the 
much less common case of the measuring pattern being based on 
regular triangles (Fig.4.1), then implicitly the network is already 
triangular.

4---- 4 — _+ 4.---- 4----------- ->. 4 .— 4 —

(a) (b) (c)
Fig.7.11 Triangular networks formed from a regular grid

Fig.7.12 Possible types of linear facets 
constructed from a square grid cell
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Of course, such an approach to form triangular networks from square 
grids is sometimes very arbitrary. Fig.7.12 shows such a situation 
clearly. Fig.7.12(a) shews a bilinear surface which can be constructed 
from a square grid cell. Fig.7.12(b) shows that such a grid cell can be 
split into two triangles by a single diagonal whose plan is shown in 
Fig.7.11 (a). Similarly, Fig.7.12(c) shows the two triangles corre­
sponding to those divided by the alternative single diagonal shewn in 
Fig.7.11(b). Finally, those in Fig.7.12(d) correspond to the arrange­
ment shown in Fig.7.11 (c) with four centre point triangles formed by 
using both diagonals. It is apparent that the height value of a point 
interpolated from those different surfaces shown in Fig.7.12 (a) to (d) 
will all be quite different, although the same elevation values have 
been used at the grid nodes in each of the four examples given above.

Indeed, this is a problem with this type of arbitrary triangulation of 
square grids. Therefore, some care needs to be taken in practice. 
However, at present, most of DTM programs, even the commercial packages 
like CIP carry out such a triangulation process blindly (Fig.7.13).

Fig.7.13 Triangulation from grids with linear features 
using hybrid approach (CIP)

7.5.3 Formation of a triangular network from irregular point data

If the source data is irregularly distributed, then special methods (or 
algorithms) need to be used. There are quite a few triangulation 
algorithms (methods) in common use. Their principles are briefly 
reviewed below.

(1). Radial sweep algorithm (RSA):

This algorithm was designed by Mirante and Weingarten in 1982. It
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constructs a triangular network in two separate steps. The first step 
is to form a series of thin triangles radiating from a central point 
and the second step is to correct the shapes of these triangles until a 
more acceptably shaped series results to for the final network.

The point located nearest to the centroid of the data set is selected 
as the starting point for the network construction. Then the data 
points are sorted into an order which may be clockwise or anti­
clockwise, according to their bearings around the starting point. After 
that, the radial line to each point is established and a thin triangle 
is formed using each pair of adjacent radial lines and the lines conne­
cting the two data points at the ends of these two radial lines. The 
process of forming triangles is carried out systematically by sweeping 
around the starting point. The resulting triangles are very thin, but 
they are ordered, contiguous, and linked to their neighbours. Fig.7.14 
shows the formation for these thin triangles.

Fig.7.14 First step of forming Fig.7.15 Concavity elimination
triangles by RSA. and shape alteration for RSA

(Mirante & Weingarten, 1982)

A supplementary step at this stage is also needed to form triangles to 
eliminate the concavities which exist around the perimeter of the data 
set. The next step is to alter the shapes of the triangles, i.e. to 
make triangles as nearly equilateral as possible. Two adjacent thin 
triangles may be altered by swapping their diagonals to form two new 
triangles which are more nearly equilateral in shape. Usually, several 
iterations of this process are necessary to achieve an acceptable 
network of triangles. If needed, then contours can also be produced 
from the DTM surface constructed from such a network. These two steps
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can be summarized in Fig.7.1 5.

(2). Minimum sum-distance or circumscribing circle radius algorithms:

As the names imply, the sum-distance refers to the sum of the distances 
from a new point under inspection to the two end points of a base line. 
The corresponding algorithms are based on the criterion that the new 
point which should be selected to construct a new triangle is the one 
which has the sum of its distances to the end points of the base as the 
smallest value. Consequently, these can be referred to as minimum sum- 
distance algorithms. Similarly, the circumscribing circle radius refers 
to the radius of the circle which circumscribes the triangle consisting 
of two end points of a base and the new points under consideration. The 
algorithm is based on the criterion that the new point which is 
selected should form a triangle in which its circumscribing circle 
radius is the smallest value. Thus it is referred to as minimum 
circumscribing circle radius algorithm.

A number of existing algorithms are based on one or the other of these 
two criteria. In fact, they are very similar one to another.

(c). No break lines provided; (d). Layout of points and triangles

(d)(c)
Fig.7.16 Triangulation with Yoeli's method 

(a). The first three triangles; (b). Break lines provided;
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Yoeli (1977) developed a procedure, RANDCON (RANDom point CONtours), 
based on the minimum sum-distance criterion. His line of thought is as 
follows. First of all, the shortest of all possible lines between any 
two data points in the whole data set is searched for (Fig.7.1 6(a)). 
This line is then used as the base for the first triangle. The neigh­
bouring points are then searched for and examined and, among these, the 
new point is selected as the third vertex of this triangle if the sum 
of its distances to the end points of the base is the smallest value 
among the sum-distances of all the neighbouring points which have been 
tested. After this, the second shortest line contained in the whole 
data set is searched for to serve as the base for the second triangle. 
This may not be contiguous with the first triangle (see Fig.7.16(a)). 
The process of forming other triangles then continues in a very similar 
way. However, any line which has already been used as a component of 
any previous triangle should not be selected as the base of any new 
triangle. Before any side of a new triangle is decided upon, the 
program checks that it does not intersect any already stored line or 
break line. If such an intersection occurs, the side is abandoned and 
an alternative searched for (Fig.7.16(b), (c), and (d)).

Elfick (1979) described a procedure to form triangles for the 
interpolation and plotting of the contours from stadia tacheometric 
survey data based on the minimum circumscribing circle radius 
criterion. The procedure is as follows: Firstly, the data points are 
sorted in ascending values of X; after this, the triangulation process 
can then be started. As Elfick (1979) has described, "The point nearest 
the centre is used as a starting point. It is then joined to the 
nearest point to it (to form the first base); and then the most 
suitable point to the right looking from the first point towards the 
second point is selected to form the third point of the first triangle. 
The most suitable point is that which forms a triangle with a circum­
scribing circle of minimum radius". The triangulation is then expanded 
from the three sides of the first triangle.

Other procedures can also be developed based on these criteria. For 
example, instead of starting from the point nearest the centre or the 
shortest line, the triangulation process can also start from the 
boundary of the area concerned using the concept of an advancing front 
(Elfick, 1979). The first front is just the boundary lines enclosing 
the data set. A procedure to form a triangular network based on this 
idea has already been developed in the Department of Photogramme try and 
Geology, South-western Jiaotong University (in China), where the author 
used to work.

McLain (1976) has described an algorithm based on a criterion similar 
to that of the minimum circumscribing circle radius. However, instead 
of using the radius itself, the distance from the centre of the circum-

110



Chapter 7 DIM surface..

scribing circle to the base line is used in his algorithm.

(3). Delaunay triangulation:

The Delaunay triangulation method is the most popular cane because of 
its consistency in terms of the resulting triangles which are produced. 
Regardless of the starting point of the triangulation process, the same 
set of triangles will be produced. As has been mentioned before, the 
Delaunay triangulation is associated with the Thiessen diagram. 
Delaunay (1934) first recognised that at the time when a Thiessen 
polygon is determined, a network of triangles can also be connected 
together, thus forming a triangulation. Thus a triangular network can 
be formed in the process of finding the neighbouring points to form 
Thiessen polygons.

In the original sense, the criterion of this method should be that the 
perpendicular bisectors of all sides connecting a starting point and 
its neighbours, which are found to form Delaunay triangles, should form 
a Thiessen polygon or reach to the boundary. However, it has also been 
pointed out in Section 7.4.1 that, nowadays, the inverse procedure is 
used in which the Thiessen polygons are defined from the Delaunay 
triangles. Therefore, forming a Thiessen polygon is not the criterion 
used in practice.

Fig.7.17 Results of Delaunay triangulation storting from two different 
imaginary points, (b) is rotated through 180° against (a). (McCullagh 
and Ross, 1980).

There are possibly many procedures to form Delaunay triangles. The 
following is the procedure described by McCullagh and Ross (1980). This 
Delaunay triangulation procedure employs a set of imaginary points 
which serve to define the boundary box of the area to be triangulated. 
The triangulation process starts from two of these imaginary boundary 
points, although it may possibly begin using any arbitrary pair of 
points which are neighbours. In the latter case, one arbitrary point is

(a)

.S hall 4

(b)
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used as the starting point (also called the rotation point) of the 
triangulation procedure and another (the nearest neighbour) is called 
the known point. These two points form the initial base. Then a new 
point which is located to the right (i.e. clockwise looking from the 
known point to the rotation point) of the base and has the largest 
angle subtended from the base from all possible choices around the 
starting point is selected to act as the vertex of a new Delaunay 
triangle. Fig.7.17 shows the results of the Delaunay trianglulation 
starting from two different imaginary points, but with identical 
pattern.

Of course, these possible choices can be confined to a certain level by 
first defining a search area around the starting and rotation points 
using a circle with the base used as diameter. If this does not succeed 
in finding a point, then the search circle is expanded using the base 
line as a chord and with progressively larger circles until the appro­
priate neighbours are found (Fig.7.1 8).In this way, the most likely 
neighbours are first picked up and are then tested to find the one with 
the largest angle.

Fig.7.18 Search for nearest neighbour (McCullagh, 1983)

7.5.4 Formation of a triangular network froa contour data

General purpose triangulation algorithms of the types discussed above 
consider every data point independently. If these were applied to 
digitized contour data, then the special configuration of contour data 
would not be taken into consideration. This would result in very poorly 
configured triangles and in some quite anomalous situations. These 
might include those where the three vertices of a triangle are taken 
from the same contour and that where a side of a triangle goes across a 
contour (Fig.7.19). For these reasons, special care has to be taken in 
carrying out the triangulation process with digital contour data. The 
implementation of a triangulation procedure which incorporates 
procedures needed to accommodate the special characteristics of digital 
contour data can be referred to as contour-specific triangulation
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procedure. Actually, the main criterion which is used with such 
procedures is to treat every contour line as a break line or form line 
across which no triangle may be formed. Some procedures have also been 
developed for contour-specific triangulation such as those described by 
Gannapathy and Dennehy (1982) and Christensen (1987), etc. Fig.7.20 
shows an example of a triangular network produced by Delaunay triangu­
lation with special consideration for contours.

Fig.7.19 Problems with blind triangulation from contour data 
(Christensen, 1987). (a) Crossing a contour;

(b). Three vertices of a triangle taken from the same contour line

Fig.7.20 Triangular network formed by treating contours as break lines

7.5.5 Formation of a triangular network from composite data

Up to this stage, the formation of a triangular network from different 
data patterns - square grids, any irregular pattern as well as contour 
data has been considered. However, there is still one data pattern left 
to be mentioned here - that of composite data.

As has been discussed in Chapter 4, composite data could be a combi­
nation of string data (form lines, rivers and break lines) and gridded 
data either from regular grid sampling or from progressive sampling. A

(a) (b)
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typical example of the formation of a triangulation network from such a 
data set has already been shown in Fig.7.13 which was produced by CIP. 
That is, the individual grid cells have been split into regular 
triangles. However, if any linear feature passes through a square grid 
cell, then instead of splitting the cell using diagonals, the string of 
data points are also taken into account in the triangulation process to 
produce irregularly-shaped triangles within the grid cells.

7.6 Gridded network formation

7.6.1 Introduction

As has been discussed previously, grid-based surface modelling is the 
other main approach for constructing a DTM surface. However, rather 
obviously, this approach is only suitable for gridded data sets. 
Therefore, it is desirable to have a brief discussion about the 
formation of a gridded network from the different data patterns which 
are obtained using different sampling strategies.

It is obvious that, if the regular grid sampling method was employed on 
the basis of a square grid, then the resulting data is already in a 
suitable (grid) form. Therefore, no special process is needed to form 
the grid-based network.

However, if other sampling strategies such as selective sampling, 
profiling or contouring, etc. have been used during data acquisition, 
then comes the problem of how to form the required gridded network. In 
DTM literature, the process of forming a gridded network from any other 
non-grid data pattern is referred to as random-to-grid interpolation.

As discussed in Section 7.2 of this chapter, three methods were distin- 
gushed by Petrie and Kennie (1986) for random-to-grid interpolation, 
namely pointwise methods; patchwise methods; and global methods. 
However, basically only local information is of most interest in the 
process of random-to-grid interpolation, since, in this particular 
process, the concern is only with the adequate representation of the 
local elevation height by the surrounding grid nodes and not with the 
relief of the whole area to be modelled. Therefore, pointwise and 
patchwise interpolation methods are those which are most important for 
this particular purpose.

7.6.2 General methods

Normally, the use of patchwise methods involves the division of an area 
into a series of patches, preferably each of equal size and identical 
shape, and then constructing a local surface for each patch from all
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the data points located within the patch by employing a relatively low- 
order polynomial function and finally assigning height values to each 
grid node lying within the patch in much the same way as is used in 
global methods. The interpolation of regular grid nodes from a trian­
gular network can also be considered as a patchwise method where the 
individual patch is a triangle or a group of a few triangles.

Pointwise methods involve constructing a local surface for each point 
(grid node) to be interpolated and then assigning the height value of 
the local surface at the grid node position to this node. The local 
surface is constructed from the neighbours of the point to be inter­
polated. The local surface could be a summation of individual surfaces 
as discussed in Section 7.4.2 or a low-order polynomial surface fitting 
through the neighbouring data points, the centre of which is the point 
to be interpolated.

The selection of the neighbours may be specified in terms of the number 
of nearest points or those lying within a specified distance of a point 
to the points to be interpolated or seme combination of both of these 
criteria. Almost always, a weighting function is used with most weight 
being given to the nearest neighbours. Thus, the weighting function 
could be a simple distance function (which is used in most cases) or a 
function determined by the distances between the neighbours (including 
itself) and the information about the height variation of this data 
set, e.g. using the variograms described in Chapter 3 in the case of 
Kriging method.

In the case of "summation of surfaces" method, these individual 
surfaces are usually level planes (i.e. each is a horizontal linear 
surface). From each of the measured randomly located neighbours, a 
horizontal linear surface is constructed. An average of all these level 
surfaces constructed from the neighbours may then be taken to give the 
elevation value at the node - often weighted according to the distance 
of each measured position from the node, leading to the name of the so- 
called distance weighted average (DWA) (Fig.7.21 (a)).

An extension of this method forms tilted linear (planar) surfaces at 
each randomly located measured point, the tilt of each surface being 
determined by estimating the slopes in both the grid X and Y directions 
at this point - which could be derived by fitting a trend surface 
through the neighbouring points. Each separate linear surface is then 
projected on to the vertical line through the node and an average 
elevation value calculated for the node. Clearly this value will be 
different to that calculated using the series of horizontal surfaces. 
This method is called the projected distance weighted average (PDWA) 
value of the elevation at the grid node (Fig.7.21 (b)).
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(a) ~ ~ -"-O Distance Weighted Average

z9 ----------- ^
i©-

Projected Weighted Average
^  ^ ■  A

Fig.7.21 Distance weighted average for pointwise interpolation 
(a) Cross section view of simple distance weighted average;

(b). Cross section view of the projected distance weighted average

In the case of using a low-order polynomial surface, the interpolation 
can be considered to take place in such a way that a local surface goes 
from one node to another with both its shape and orientation changed. 
Thus this method of randan-to-grid interpolation is also referred to as 
the "moving surface” method.

Pointwise methods have also been implemented in other ways. In this 
context, either some functional models such as polynomial functions and 
sinusoidal functions as discussed before, or stochastic models such as 
those based on similarity and random functions (lFrederiksen et al,
1985), or a combination of these two such as ARIMA (AutoRegressive 
Integrated Moving Average) used in a Time series analysis (Lindberg,
1986) have all been employed. However, the simpler methods outlined in 
the previous paragraph are those which are most commonly used in 
practice.
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Fig.7.22 Nine cells as a patch far DIM surface construction

One point which needs to be emphasized here is that those gridded 
points obtained through randcm-to-grid interpolation are normally used

116



Chapter 7 DIM surface...

for grid-based surface modelling. Thus once these values have been 
obtained, they are usually followed by the construction of a continuous 
surface or smooth surface using the grid-based approach. In the latter 
case, more them one grid cell, normally nine grid cells (Fig.7.22), are 
will be used and a low-order polynomial function is fitted through 
these grid nodes to provide the required continuity in the first or 
higher derivatives or smoothing and to remove any ambiguity in the 
subsequent contouring of the data.

7.6.3 Grid network formation from contours

Gridded networks can also be formed from contour data. The process of 
carrying out the necessary interpolation to form the grid is referred 
to as contour-specific interpolation in this thesis.

In general, two different methods have been in use. One of them is the 
contour-specific interpolation along certain pre-specified axes (CIPA). 
The number of axes used may be one, two or four. The intersecting 
points formed by these axes and two adjacent contour lines are used as 
neighbouring points to be used for the interpolation. Then a pointwise 
interpolation is carried out by employing a distance-weighted function 
as before. Many papers about this method have been published such as 
those by Schults (1974) and Yoeli (1975), as cited by Clarke et al 
(1982). As shown in Fig.7.23, all of these points from 1 to 8 will be 
used as the reference points for interpolating the height value of 
point P, in this case.

Fig.7.23 Grid point interpolation from contour data 
(Leberl and Olson, 1982)

Another method is called interpolation along the line of the steepest 
slope passing through the point to be interpolated (IASS). Unlike CIPA, 
but like the procedure of manual interpolation, two points on the
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adjacent contour lines along the steepest slope line are searched for 
and used for interpolation. Then the elevation value desired for the 
grid node position is interpolated linearly from these two points. As 
described by Leber 1 and Olson (1982), all those points (1 to 8) inter­
sected by the pre-defined axes on two adjacent contours (at heights of 
60m and 80m in this diagram) are used to determine which of these 
directions has the steepest slope. In this case, points 1 and 5 
(Fig.7.23) will be used for linear interpolation of the height value of 
point P. Non-linear interpolation using cubic polynomial function has 
also be implemented by Clarke et al (1982). In this case, as shown in 
Fig.7.24, four points on the four contours (two next to each direction 
of either up or down) along the steepest direction are used. The method 
is called cubic interpolation along steepest slope (CISS).

Selection of steepest 
slope direction and data points 
for Interpolation by CISS.

O  * Interpolation point

•  * test points for steepest 
slope determination

O  B data points for Interpola­
tion

Fig.7.24 Points used for CISS method (Clarke et al, 1982)

Actually, the problem associated with all contour-specific interpolation 
is how to find the reasonable points for interpolation. In this respect, 
Inaba et al (1988) tried to use the aspect information of contours.

7.7 Concluding remarks

In this chapter, some basic concepts in surface reconstruction have 
been introduced and defined; the approaches which could be used in 
surface modelling have also been discussed; the basic methods used in 
these approaches have also been pointed out; different types of surface 
which it is possible to construct from a data set have been sketched; 
after which, the methods for forming both a gridded network and a 
triangular network have also been reviewed.

Up to this stage, the first part of this thesis - the theoretical 
background - has been described and discussed. From the next chapter 
on, attention is turned to the author's own main investigations which 
are more practically orientated. The discussion will start 
considering the quality of source data.
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Chapter Eight

Techniques for the Improvement of the Quality of DOM Source Data

8.1 Introduction

As one can imagine, the quality of the DTM source data will greatly 
affect the fidelity (or accuracy) of the final DTM surface which is 
constructed from the source data and the products derived from the DTM. 
Therefore, before starting any discussion about the accuracy of final 
DTMs, it is pertinent to discuss first of all the matter of the quality 
of DTM source data.

The quality of the DTM source data can be judged by using its three 
attributes (i.e. accuracy, density and distribution) as criteria. In 
the first place, it is apparent that the quality of a set of data can 
be considered as being poor if the data points are not well 
distributed, e.g. in a situation with very few scattered points in 
areas of rough and steep terrain but with a high density of points 
distributed in very tight clusters in relatively smooth and flat areas. 
However, these first two factors - density and distribution - are 
related to sampling, which has been discussed in Chapter 4, and the 
problems related to both of them can be solved somehow by employing an 
appropriate sampling strategy. Thus they will not be discussed further 
here.

Another important factor concerning the quality of DTM source data is 
its inherent accuracy, which has been discussed in Chapters 5 and 6. It 
is also obvious that, the lower the accuracy, the poorer the data 
quality. Accuracy is related primarily to measurement. After a set of 
data points have been measured, an accuracy figure can be obtained or 
estimated. Here it needs to be emphasized that the accuracy figure 
obtained (or achieved) for any measured data set is the overall result 
of different types of errors. In fact, the aim of this chapter is to 
devise algorithms or procedures to eliminate or to reduce the effects 
of some of these errors to achieve an improvement in the quality of the 
final DTM and thus in its products.

8.2 Errors in DTM source data

It is well-known that any measured data set is subject to various types 
of errors regardless of the method of measurement. In this respect, DTM 
source data is no exception. These errors affect the quality of the DTM 
source data. Thus, the problem of dealing with these errors will arise.

Generally speaking, three types of errors can be distinguished, namely,
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random errors (also referred to as random noise in image processing and 
as white noise in statistics), systematic errors and gross errors.

In classical error theory, the variability of a series of measurements 
of a single quantity is due to observational errors. Such errors do not 
follow any deterministic rules, thus leading to the concept of random 
errors. Random errors have been recognised as having a normal distribu­
tion. A statistical value such as RMSE (root mean square error) or SD 
(standard deviation) can be calculated from these measurements to 
represent the precision of the set of measurements.

In this chapter, an investigation into the effects of these random 
errors in source data on the quality of the DTM and its products will 
be carried out and the results obtained from an experimental test using 
a set of photogrammetrically measured data will be described.

In photogrammetric practice, systematic errors usually occur due to 
physical causes (e.g. they may be the result of temperature changes in 
the photographic materials or in the instrument itself); or they may 
arise from the lack of adequate adjustment of the instrumentation 
before use. Alternatively, they may be the result of the human 
observer’s limitations, e.g. in stereo-acuity or through carelessness 
such as failing to execute a correct absolute orientation. Systematic 
errors may be constant or counteracting. In reality, most practitioners 
in the area of terrain data acquisition are well aware of systematic 
errors and usually strive to minimize their presence. Therefore, no 
attempt has been made to deal with this type of error in the present 
study.

Gross errors are, in fact, mistakes. During measurement, they should 
occur with a small probability. Gross errors happen when, for example, 
the operator makes or records a wrong reading on the correct point, or 
observes the wrong point through misidentification; or the measuring 
instrument is not in proper working order when an automatic recorder is 
used. Gross errors often occur in automatic image correlation due to 
mismatches of the images.

From a statistical point of view, gross errors are specific observa­
tions that cannot be considered as belonging to the same population 
(or sampling space) as the other observations. Therefore, they should 
not be used together with the other observations from the population. 
Consequently, measurements should be planned and observational 
procedures designed in such a way as to allow for the detection of 
gross errors so that they can be rejected and removed from the set of 
observations (Mikhail, 1976).

Therefore, in this chapter, some algorithms will be described later for
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detecting those gross errors which occur in DTM source data. Experi- 
mental results produced from the use of these algorithms on seme sets 
of photogrammetric data will also be presented.

8.3 The improvement of DTM quality with filtering processing

As mentioned above, some algorithms or procedures will be developed to 
deal with the various errors existing in DTM source data. In this 
section (8.3), a discussion of the effects of the random errors and 
other high frequency phenomena present in source data on the quality of 
the DTM derived from it (the source data) will be given. Then a 
procedure designed to reduce these effects will be described and some 
results given.

8.3.1 Random errors, data components, random noise and filtering

In this context, any high frequency phenomena (i.e. small-scale 
variations in the measured data) may be regarded as random noise. So 
random error can be regarded as a type of random noise. Alternatively, 
the view can be taken that random noise includes both random errors and 
also other high frequency phenomena present in a data set.

In order to understand these other high frequency phenomena present in 
a data set, it is desirable to have a lode at the data components. Any 
spatial data set can be viewed as consisting of three components, 
namely, (i) regional variations; (ii) local variations; and (iii) 
random noise. In the context of digital terrain modelling, the first 
component is of most interest since it defines the basic shape of the 
terrain surface. Interest in the second component varies with the scale 
of the desired DTM product. For example, at large scales, it is 
extremely important. However, if a small-scale contour map covering a 
large region is the desired product, then the second component may be 
regarded as random error since much less detailed information about the 
spatial variation of the terrain surface will be needed in this case. 
By contrast, it is definite that the third component is always a matter 
of concern since it may distort the image (appearance) of both the 
regional and local spatial variations in the terrain surface, but 
especially the latter. As a matter of fact, it is very difficult to 
define these data components clearly. Therefore, as discussed above, 
random noise, in this particular context, will be regarded as the high 
frequency component of the data set.

It is obvious that it is important to separate the main components of 
the data set which are of interest to the user from the remainder of 
the information present in the data set which is regarded as random 
noise. The technique used for this purpose is referred to as filtering
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and the device or procedure used for filtering is referred to as a 
filter. Thus the process of applying a filter to a data set is referred 
to as data filtering in this thesis.

After these definitions, it is clear that a digital filter can be used 
to extract a particular component from a digital data set, thus 
ensuring that all other components are filtered out. If a digital 
filter separates the large-scale (low frequency) component from the 
remainder, this filter is called a low-pass filter. By contrast, if a 
digital filter separates the small-scale (high frequency) component 
from the remainder, then it is referred to as a high-pass filter. 
However, in this study, only the low-pass filter is of interest since 
it is the high frequency component that needs to be filtered out.

In this section, the effect of random noise on the quality of the DTM 
(and thus on its products) will be examined first of all; then a low- 
pass filter will be designed and used to filter out the high frequency 
component present in a digital data set to see if any improvement in 
data quality will result.

8.3.2 The effect of random noise on the quality of DIM source data

Before conducting a discussion about how to filter out the random noise 
and how much improvement in the quality of the DTM data will result 
after the application of a filtering process, it may be pertinent to 
quote some examples from existing literature showing how random noise 
affects the quality of the DTM and thus its products.

Ebisch (1984), discussed the effect of the round-off errors found in 
gridded DTM data on the quality of the contours which were derived from 
it, and he also demonstrated the effect of random noise in the DTM data 
on the contours produced from it. Ebisch first produced very smooth 
contours (Fig.8.1a) with 1.0m intervals from a conical surface which is 
represented by a grid of 51 by 51 points. Then he rounded off the grid 
heights to the nearest 0.1m (1dm) to produce another contour map 
(Fig.8.1b) to show the effect of round-off error. After that, he added 
random noise with a maximum amplitude of +0.165m to the grid heights 
and produced another map which resulted in zigzag and meandering contour 
lines (Fig.8.1c). This example shows very well the effects of random 
noise on the quality of DTM source data, and thus on the quality of the 
contours derived from this data.

Fig.8.2(a) is another example (see Section 8.3.4) showing the effect of 
random noise in DTM source data on the quality of the contours produced 
from it. It can be seen clearly that, from the visual point of view, 
these contours are not at all desirable or acceptable due to the 
effects of random noise, which include both the measuring error and
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(perhaps) too detailed information about the terrain roughness present 
in the data set, resulting in high frequency local variations.

(a). Contours produced from the original data set (a smooth surface);
(b). Contours produced from the data set after rounding off the data 

heights to the nearest dm;
(c). Contours produced from the data set with a random noise of 

magnitude +0.165m added.
(d). Contours produced from the data set with both random noise and 

round-off errors included.

8.3.3 Design of a low-pass filter based on a convolution operation

The effects of random noise in DTM data on the quality of the contours 
produced from the DTM data have been demonstrated above. In this 
section, a low-pass filter based on a convolution operation will be 
described which will be used later for data filtering.

(1). Definition of convolution

Convolution can take place either as a 1-D or a 2-D operation. However, 
the principles are the same in both cases. Therefore, for simplicity, 
the 1-D convolution is discussed here.

Suppose X(t) and f(t) are two functions, and the result of convolving 
X(t) with f(t) is Y(t). Then the value of Y(t) at position u, is 
defined as follows:

(b)

(c)

Fig.8.1 Effect of round-off errors and random noise 
on the contours produced from a DIM data set

(8.1)
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In the case of the DTM data filtering carried out in this study, X(t) 
is the input data in which randan noise is present; f(t) can be thought 
of as a normalized weighting function; and Y(t) comprises the low 
frequency components present in the input data and can be thought of as 
the remaining part after filtering out the random noise. Actually, Y(t) 
is a smoothed function. Practically, it is not necessary to have the 
integration from minus infinity to positive infinity for Formula (8.1). 
In most cases, an integal which operates over a certain restricted 
length will do.

Certain functions such as a rectangular pulse, a triangular pulse or a 
Gaussian pulse can be used as the weighting function for this purpose. 
In this experiment, the Gaussian pulse has been used. The expression is 
as follows:

£(t) = Exp(-t2/2Var) (8.2)

where Var is the variance of the Gaussian distribution.

(2). Discrete convolution operations

The definition of convolution given above is that which applies to 
continuous functions. However, in DTM practice, the source data is only 
available in a discrete form such as a regular grid. Therefore, only 
the discrete convolution operation is of interest here. Ihe principle 
of such an operation using a symmetric function as weighting function 
will be described here since the weighting function used in this 
experiment - the Gaussian pulse - is symmetric. Its principle as applied 
in 1-D is explained below.

Table 8.1 Discrete convolution operation

X(t) 00 00 A1 A2 A3 A4 A5 A6 A7 00 00
Results

Operations x + x + x + x + x + x + x + x + x + x + X

W1 W2 W3 W4 W5 B1

W1 W2 W3 W4 W5 B2

W1 W2 W3 W4 W5 B3

f(t) W1 W2 W3 W4 W5 = B4

W1 W2 W3 W4 W5 B5
W1 W2 W3 W4 W5 B6

W1 W2 W3 W4 W5 B7
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Suppose, X(t) = (Al, A2, A3, A4, A5, A6 and A7); 
f(t) = (W1, W2, W3, W4 and W5); and 
Y(t) = (B1, B2, B3, B4, B5, B6 and B7);

then, the convolution operation is illustrated in Table 8.1. lb explain 
how it works, the result for B4 can be taken as an example, i.e. B4 = 
W1xA2 + W2xA3 + W3xA4 + W4xA5 + W5xA6.

(3). Parameters far the filter

The size of the window and the weights selected for the various data 
points lying within the window have a large effect on the degree of 
smoothing achievable by the convolution operation. For example, if only
one point is present within the window, then no smoothing effect will
actually take place.

Also the smaller the differences in the weights given to the points 
lying within the windcw, the larger the smoothing effect it will have. 
For example, if the same weight is given to every point within the 
window, then the result is simply the arithmetic average. Table 8.2 
lists seme of the values for the Gaussian pulse expressed by Equation 
(8.2). From these values, a variety of weighting matrices may be 
constructed. Of course, the weight matrix can also be computed directly 
from Equation (8.2) using pre-defined parameters.

Table 8.2 Saiqple values of the Gaussian function

t O.OxSD 0.5xSD 1.OxSD 1.5xSD 2.OxSD 3.OxSD

f(t) 1.0 0.8825 0.6065 0.3247 0.1353 0.0111

8.3.4 Experimental test

The source data used in this study was generated using a completely 
digital stereo-photogrammetric system (DSP) which has been designed and 
implemented by one of my research colleagues, Mr. Ali Azizi (1990). The 
digitised photos used in the DSP were formed from a pair of aerial 
photos taken at scale of about 1:18,000 using a scanning microdensito­
meter with a pixel size of 32um. The DSP system utilizes the image 
coordinates primary solution to form the stereo-model. The data was 
measured in a profiling mode with a four pixel interval between 
measured points. Thus the interval between any two data points is 128um 
at photo scale. Since this DSP is based on an image coordinate primary 
solution, the data points, which were arranged in grid form (with a 4 
pixel interval) on the image plane, produced a data set only approxi­
mately in a grid form in this test area, with a grid interval of about
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2.3m. The data generated by this system for this study is very dense. 
In an area of about 1cm by lean at photo scale, the elevations of 8,588 
(113x76) points were measured (Azizi, 1990). This data set provides 
very detailed information about the terrain roughness.

The check points used for this study were measured from the same 
photos in hardcopy form using an analytical instrument (Azizi, 1990).

A filter based on the convolution operation described above was used 
for this test. Since the data is not in an exact grid, a 1-D convo­
lution was carried out in each of the two grid directions rather than a 
single 2-D operation. Therefore, for every point, the average of the 
two corresponding values is used as the final result.

The window size comprises 5 points along each grid direction. The five 
weights for these five points were computed according to Equation (8.2) 
individually since the point intervals are varied. These values before 
normalization are approximately as follows:

f(t) = (0.1353, 0.6065, 1.0, 0.6065, 0.1353) (8.3)

In confuting the value for each of these five weights corresponding to 
each of the five points lying within the window, the distance of the 
point to the central point of the window is used as the value of the 
variable t. Also the average value of the interval between each pair of 
data points (i.e. 2.3m) was used as the standard deviation of the 
Gaussian pulse - the weighting function.

Table 8.3 Accuracy improvement with random noise filtering

Parameters Before Filtering After Filtering

+ Max residual ♦ 3.20 m + 2.67 m

- Max residual - 3.29 m 2.76 m
Mean 0.12 m 0.02 m
SD +1.11 m +0.98 m

RMSE +1.12 m +0.98 m

No. of Check Pts 154 154

Where, Mean denotes the mean value of the DTM errors;
SD denotes the standard deviation of the DTM errors; and 
RMSE is the root mean square error.
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A triangulation-based DTM package (PANACEA) was used for this 
experiment - both for the interpolation of the DTM points and for 
production of contours from the DSP data. The interpolated height 
values were compared with the corresponding check heights and then the 
standard deviation (SD) and the root mean square error (RMSE) values 
were computed. The results for the data set both before and after 
filtering are given in Table 8.3, where it can be seen clearly that 
much improvement in accuracy (about 14% in terms of the RMSE value) has 
been achieved by using a filtering process on this particular data set.

Contour maps were also produced for comparison. The contours were 
threaded directly from the triangulated network. The contours produced 
from the original DSP data are shown in Fig.8.2(a). The corresponding 
contours from the data set after the filtering process are shown in 
Fig.8.2(b). It can be clearly seen that the small fluctuations in the 
contour shapes arising from the noise in the data have to a large 
extent been removed. Therefore, the presentation of the contours after 
the filtering processing is also much better from the visual point of 
view.

8.3.5 Discussion of data filtering regarding data quality

The data set used in this particular test is very dense. The average 
grid interval is 128um at photo scale which corresponds to about 2.3m 
in the terrain. Realistically, such a dense data set can only be 
obtained from devices equipped with automated or semi-automated 
techniques, e.g. using image matching techniques for height measurement 
based on automatic image correlation. In such a data set, the loss in 
the fidelity of representation of the terrain topography is not likely 
to be a serious problem. By contrast, the effects of the random errors 
involved in the measuring process and of any other random noise on the 
data quality is considerable at the local or detailed level.

As quoted previously in Chapter 5, 70 to 90% of stereo-plotting machine 
operators are measuring with a precision (RMSE) within the range +10um 
to 20um (Schwarz, 1982). Such a precision of the parallax measurement 
will result in a precision (RMSE) of +0.3m to 0.6m for the measured 
data in this particular case. For this relatively smooth and homogeneous 
area, the random errors associated with such a precision of 
measurement will, of course, distort the spatial variation considerably.

By comparing the RMSE values resulting from the data set before and 
after filtering, it can be computed (according to the law of error 
propagation) that the amount of improvement is about +0.54m. This value 
is well within the empirically determined value range as given above.

Frcm the discussions above, it is very clear that the availability of
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too detailed information about the roughness of the terrain morphology, 
coupled with the measuring errors likely to be encountered with image 
correlation techniques, can have a significant negative effect on DTM 
quality, and thus on the quality of derived DTM products such as 
contour maps. In the case of very dense data, a filter such as that 
based on a convolution operation which has been implemented in this 
study can be used to smooth the digital data set, and improve the 
quality of the digital data. Thus the quality of the products derived 
from this data can also be much improved.

A very important question arising from the results of this test is: 
when should a filtering process be applied to the digital data? This 
is, of course, a question which is very difficult to answer. Obviously, 
the magnitude of the random errors occuring during measurement need to 
be taken into consideration. According to the remarks made by Dr. 
Forstner (see Kubik and Roy, 1986), such a value might be considered as 
smaller than +0.05 per mil of H. Therefore, a rough answer to this 
question might be that, if the accuracy loss arising from data 
selection and reconstruction (topographic generalisation) is much 
larger than this value (+0.05%o of H), then the filtering process 
should not be applied. By contrast, if the random noise does form an 
important part of the error budget, then a filtering process may be 
applied to improve data quality.

As can be seen from inspection of Fig.8.2(b), there are still some 
contours with segments which exhibit zigzag patterns. This may be due 
to larger errors occuring during measurement or they may be the results 
of other unnatural features associated with the terrain variations 
themselves. This problem will be considered in the next section.

8.3.6 Discussion of the computational effort 
required far data filtering

As stated in the introductory chapter (One), the cost and efficiency of 
processing are another two factors (besides accuracy) which are of 
great concern in the context of digital terrain modelling. Therefore, 
it is pertinent to have a brief discussion regarding the computational 
aspects of data filtering. Obviously, if the computational effort 
involved in data filtering places a large overhead and expense on the 
overall DTM operation, then the filtering process is unlikely to be 
used. Thus some quantitative values are needed in order to form a 
judgement on this particular matter.

(1). Relationship between cpu time and number of data points

The smoothing procedure described in Section 8.3.3 was implemented on 
the ICL 3980 mainframe computer belonging to the University. For this
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particular example of 8,588 points, it takes 33,369ms cpu time. This is 
equivalent to 3.89ms per point, which is a relatively fast processing 
time.

As one can imagine, much of the computation time must have been spent 
on the calculation of weights for this particular procedure. But in 
practice, the weight function can be pre-defined if the data is 
gridded. Therefore, an attempt was made to see how much cpu time can be 
saved if the weights are pre-defined instead of being calculated. 
Therefore, another test was carried out, in which the weight matrix 
given by Equation (8.3) was used. As expected, a much smaller amount of 
cpu time - 16,645ms - was used. This is equivalent to 1.94ms per point. 
Even in the multi-user environment of the ICL 3980 mainframe machine, 
the results from this test came out almost instantly.

It seemed very reasonable to assume that the cpu time needed for a 
specific data set is linearly proportional to the number of points in 
the data set since the same amount of computation is involved for each 
point. To confirm this point, another smaller set of data comprising of 
1,862 (49x38) points was also processed. Again, the weight matrix given 
by Equation (8.3) was used. The resulting cpu time was 3,506ms. It is 
equivalent to 1.89ms/point.

The results obtained from these two tests seemed very promising with 
regard to the above assumption of a linear relationship between the 
number of data points and the time required for computation. In order 
to obtain more evidence, two further tests were carried out using data 
sets of 3,200 (80x40) and 6,000 (100x60) points, respectively. All the 
results are shown in Table 8.4. A graphical representation of these 
results is shown in Fig.8.3.

Table 8.4 Variation of required cpu time with number of points

Test 1 Test 2 Test 3 Test 4
No. of Pts 1,862 3,200 6,000 8,588

Matrix Size 49 x 38 80 x 40 100 x 60 113 x 76

CPU Time 3,506ms 6,458ms 12,137ms 16,645ms

CPU Time/Pt 1.88ms 2.02ms 2.02ms 1.94ms

During these tests, it was also found that the values for the cpu times 
may be slightly (up to 4%) different if the same data set is run at 
different times within the multi-user mainframe computer environment. 
The figures for Tests 1 and 4 in Table 8.4 were obtained at the same
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time while the values for Tests 2 and 3 were obtained at another time. 
Therefore, from these test results, the assumption of the linear 
relationship between the number of data points and the cpu time 
required for processing these data points is acceptable. Furthermore, 
it might also be concluded that 2ms per point is the approximate time 
for this smoothing processing.
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Fig.8.3 Relationship between required cpu time and no. of data points

(2). Estimation of the cpu time required for an entire model

Another point regarding the computational aspect which is of interest 
is the cpu time needed for smoothing the data set for an entire stereo- 
model. Since, the cpu time required for a data set is proportional to 
the number of data points, it is necessary, first of all, to estimate 
the number of points which will be measured in an entire stereo-model.

As is well-known in photogramme try, a 60% forward overlap is normally 
used to form individual stereo-mode Is. Also, in most photogramme trie 
practice, those areas about 1.5cm from each edge of the photo ( the 
side lap areas), are not used. Therefore the area of a stereo-model at 
photo scale is 20cm x 9.2cm. For such an area, the possible number of 
data points using different pixel sizes is listed in Table 8.5.

Supposing that every point is measured (- this is possible by automatic 
digital image correlation using the multipoint matching technique -), 
then the cpu times required to smooth the whole data set can also be 
estimated. Seme examples are also shown in Table 8.5.
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Table 8.5 CPU times required to smooth the whole data set 
from an entire model with different pixel sizes

Pixel Size Possible No. of Data Points Required CPU Time
32 um 2,875 x 6,250 = 17,968,750 35,937,000ms = 9.98hr
25 um 3,680 x 8,000 = 29,440,000 58,880,000ms = 16.36hr
12 um 7,666 x 16,666 = 127,761,000 255,520,000ms = 70.98hr
10 um 9,200 x 20,000 = 184,000,000 368,000,000ms =102.22hr

The results listed above are extrapolated from the limited test 
results. Therefore, they might not be very reliable. Nevertheless they 
do provide seme very general information about the amount of computa­
tion required to smooth the data set for an entire model, with every 
point measured. The range of the computational times ranging from 
35,973secs (=9.98hrs) to 368,000ms (=102.22hrs) is very substantial, 
given the power of the ICL 3980 mainframe machine, and certainly will 
cause many practitioners to think hard and long before deciding to 
implement such filtering techniques.

8.4 An algorithm for detecting gross errors in a gridded data set

8.4.1 Introduction

Often the presence of gross errors will distort the image (i.e. the 
appearance) of the spatial variation present in digital elevation data 
sets much more seriously than that resulting from random noise. In some 
cases, totally undesirable and even unacceptable results may be 
produced in the DTM and in the products derived from it due to the 
existence of such gross errors. Therefore, some methods need to be 
devised to detect this type of error in a digital elevation data set 
and then to ensure their removal from the data set.

As discussed before, DTM source data may be either in the form of a 
regular grid or it could be irregularly distributed. Regularly gridded 
data has certain special characteristics, e.g. it can be stored in the 
concise and economic form of a height matrix. These special charac­
teristics can also be of help in designing an algorithm for gross error 
detection in such a data set. However, an algorithm which is suitable 
for application to gridded data is very unlikely to suit irregularly 
distributed data. Therefore, a quite different approach needs to be 
taken for the detection of gross errors in each of these two cases.
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In this section, an algorithm for the detection of gross errors in 
a regularly gridded data set will be described, and some experimental 
results using this algorithm will also be presented. The algorithms for 
detecting gross errors in irregularly distributed data will be 
presented later in Section 8.5

8.4.2 Theoretical background to the algorithm development

The first question arising in algorithm development is "what kind of 
information can be used for this purpose"? To answer this question, it 
is necessary to refer back to the discussions in Chapter 3, where, the 
view is expressed that slope is the fundamental attribute of a surface 
point. Therefore, the answer to the question posed above is that, in 
this case, slope information can probably serve as the basis for the 
development of a suitable algorithm.

If this first point is accepted, then the second problem to be 
considered is the feasibility of obtaining the slope information from 
the set of gridded data. It is clear that the computation of the slopes 
existing at each individual grid point in different directions is 
reasonably convenient to arrange, and does not present a real problem. 
In view of this, it appeared promising to make use of slope information 
as the basis of the algorithm for detecting gross errors in gridded 
data.

From inspection of the DTM literature, it was found that Hannah (1981) 
had already developed an algorithm for such a purpose. Therefore, it 
seems pertinent to have an insight into her algorithm to judge the 
merits and demerits inherent in this approach so that a more compre­
hensive algorithm might be developed.

The principle of Hannah's algorithm is briefly as follows: As a first 
step, the slopes between the point under investigation, say P, and its 
neighbours (eight if not located on the boundary) are computed. Once 
this has been done for the whole data set, then three sets of tests are 
carried out on the slopes.

i). The first of these is called a slope constraining test, which 
checks the (eight) slopes immediately surrounding P to see if 
they are reasonable, i.e. whether they exceed the pre-defined 
threshold value (an absolute value) or not.

ii). The second is called the local neighbour slope consistency test, 
which checks the four pairs of slopes crossing P to see if the 
absolute value of the difference in slope in each pair exceeds 
the given threshold value.
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iii). The third is the distant neighbour slope consistency test, which 
is very similar to the second. This test checks whether pairs of 
slopes approaching a point across each of the eight neighbours 
are consistent or not.

The results of these three tests will be used as the basis to judge 
whether a point is accepted or rejected. The overall result of using 
this algorithm is that it produces oversmoothing in areas of rough 
terrain in order to detect the gross errors or other unnatural features 
in relatively smooth areas of terrain.

However, in many ways, the most serious demerit of Hannah's algorithm 
is that all the given criteria for acceptance or rejection of data are 
expressed in an absolute sense. Obviously, the absolute slope values 
and slope differences will vary from place to place. For example, in an 
area with rough terrain, the absolute slope differences would be larger 
than those found in relatively smooth areas. The absolute values of 
slopes in the steep areas will be much larger than those found in 
relatively flat areas. That is to say, it is impossible for an absolute 
threshold value to be suitable for an overall area of interest except 
in a very homogeneous area. This discussion suggests that some criteria 
should be defined that can be used in a relative sense rather than 
simply setting absolute values. This is the basic starting point for 
the development of the new algorithm.

8.4.3 The principle of detecting gross errors

(1). General principle

The algorithm which is to be described in this section is based on the 
concept of slope consistency. Instead of the absolute values of slope 
change, relative values are considered. Furthermore, a statistic is 
computed from these relative values which can be used as the threshold 
value to measure the validity of a data point instead of using a pre­
defined value.

Essentially, there two main differences between the algorithm to be 
presented in this section and Hannah's algorithm. In this new algorithm, 
first of all, the relative slope changes instead of the absolute values 
are being considered; secondly, the criterion for acceptance or 
rejection of a specific height value will be based on the statistical 
information about these relative slope changes, instead of using a pre­
defined absolute value. The principle of this algorithm is as follows:

As shown in Fig.8.4, a data point, say P, can be defined by its row and 
column values, (I,J) within the height matrix. Its eight immediate 
neighbours - points 5, 6, 7, 10, 12, 15, 16, and 17 - can also be
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defined by the rows and columns as (1+1 ,J-1), (1+1 ,J), (1+1 ,J+1), (I, 
J-1), (I,J+1), (1-1,J-1), (1-1 ,J), and (1-1,J+1).

Frcm these eight points and point P itself, six slopes can be computed 
in both the row (I) and column (J) directions. Taking the row direction 
as an example, six slopes - those between points 5 and 6, 6 and 7, 10 
and P, P and 12, 15 and 16 as well as 16 and 17 can be computed. From 
each set of six slope values, three slope changes can then be computed. 
For example, the slope changes at points 6, P and 16 can be computed 
from those slope values mentioned above. As stated before, these initial 
values are given in an absolute sense and will vary from place to 
place. Therefore, some relative values need to be computed from them to 
serve the purpose of the test.

8

13

11

Fig.8.4 Point P and its neighbours

As one can imagine, if there is no gross error at point P, then for the 
same direction (e.g. the row direction), the difference in the slope 
change (DSC) at point P and that at its immediate neighbour (e.g. point 
6 or point 16 located in the row direction) will be consistent, even 
though the absolute values of slope and slope change may vary from 
place to place. Therefore, these differences in slope change (DSC) are 
the relative values which are being searched for and can be used as the 
basis of the assessment of slope consistency and thus as the basis of a 
method of detecting gross errors.

That is to say, for every point except those along the boundary, two 
DSC values can be computed from the three slope changes in each 
direction. The DSC values from all the data points will be used as the 
basic information for this algorithm. From all these DSC values, a 
statistic will be computed and it will then be used to construct the 
required threshold value. Then this threshold value will be used as the
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basis on which a judgement may be made as to whether a point has a 
gross error in elevation or not. For example, if all these four DSC 
values centred at a point, say P, exceed the threshold value, then 
point P will be regarded as having a gross error.

(2). Confutation of the differences in slope changes (DSC values)

(a). The computation of the slope for the J direction, for example, 
is as follows:

SLOPEj (1+1 ,J-1 ) = (Z(I+1 ,J)-Z(I+1 ,J-1 ))/DIST(J-1 ,J) (8.4)

Where, DIST(J-1 ,J) is the distance between the points located at nodes 
(1 + 1 ,J) and (1 + 1 ,J). Similarly, the values of SLOPEj (1 + 1 ,J), 
SLOPEj (I,J-1), SLOPEj (I,J), SLOPEj (1-1,J-1) and SLOPEj (1-1 ,J) can be 
computed. The computation of slopes in the I direction will be 
implemented in a similar manner.

(b). After the computation of slopes, three slope changes in both 
directions can be computed as follows, e.g. in the J direction:

SLOPCj (I,J) = SLOPEj (I, J) - SLOPEj (I,J-1) (8.5)

Also SLOPCj(1+1 ,J) and SLOPCj(1-1 ,J) can be confuted in a similar way. 
The computation of slope change in the I direction is also very similar.

(c). After this, two differences in the slope changes (the DSC values) 
for the point at (I,J) in each direction can be computed as 
follows:

J direction: DSLOPCj (I,J,1) = SLOPCj (I,J) - SLOPCj (1+1 ,J)

and: DSLOPCj (I,J,2) = SLOPCj (I,J) - SLOPCj (1-1 ,J)

I direction: DSL0PCi(I,J,1) = SLOPCi(I,J) - SL0PCi(I,J-1)

and: DSL0PCi(I,J,2) = SLOPCi(I,J) - SL0PCi(I,J+1)

(8.6)

(8.7)

All these values for the differences in slope change (DSC values) 
computed from all of the data points will be used for the computation 
of the threshold value for acceptance or rejection of data points.

Actually, the concept of computing slopes and slope differences is very 
similar to that used by Makarovic (1973) in the progressive sampling 
mrthod to compute the first height differences and second height 
differences. In his case, since square grids were used, the planimetric
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structure of the data is homogeneous, therefore, the first and second 
differences in height can provide all the information required.

(3). Confuting a threshold value

The consistency in slope changes can be validated through the use of 
some kind of statistic computed from the DSC values calculated from all 
the data points. For example, the absolute mean, the range (biggest 
minus smallest), the mode, root mean square error, as well as the 
standard deviation and mathematical mean are all possible options.

In this test, the mathematical mean and the standard deviation were 
first considered since these statistical values have many advantages 
over the others as discussed by the author (Li, 1988a). In fact, for 
the particular test which will be described in Section 8.4.5, it is 
also the case that the mathematical mean of the DSC values is very 
small and, therefore, the root mean square error (RMSE) is equally 
valid and used in this study. In this case, the threshold value is K 
times RMSE, where K is a constant.

There are three possible ways to compute the required threshold 
value(s) for this algorithm:

i). One of them is to compute only one RMSE value from all the DSC 
values at all the data points and in all directions;

ii). Another possible way is to compute four RMSE values from the DSC 
values at all the data points, one for each of the four sides 
(above, left, below, and right) defining each data point;

iii). The third possible way is to compute two RMSEs, one of which is 
related to the row (i.e. the I) direction and the other of Which 
is for the column (i.e. the J) direction. In this case, the two 
DSC values of every point in the same direction, say the J 
direction, can also be added together to become a new value and 
the RMSE value can be computed from these new values.

Theoretically, the last method is the most reasonable because the 
absolute value of a sum of the two DSC values at the same point (e.g. 
P) in the same direction (e.g. the J direction) will become smaller 
(approaching zero) if the slope change is consistent, and it will 
become larger if it is not consistent. In this study, different 
criteria were tried and the final result proved this point. Therefore, 
a procedure based on the last method was implemented in this particular 
test study.
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(4) Suspecting a point

All the methodology described above is designed to allow a judgement to 
be made whether a point has a gross error or not. A particular threshold 
value for an individual direction (e.g. the J direction) is used as the 
basis for a judgement to be made as whether the data points in this 
particular direction are acceptable or not. If the threshold value is 
exceeded at a point, then this point is regarded as being unnatural in 
the neighbourhood. In this case, it can be said that this point is 
suspected of having a gross error in this direction.

Actually, the procedures used for suspecting a point of having a gross 
error in the all these methods described above should be very similar 
since the only difference is to compare the DSC values with the overall 
RMSE or a particular RMSE value. Taking the second method as an 
example, if the absolute value of the difference in the slope change at 
a point along a single side is greater than the threshold value - K 
times the RMSE of this side - then the point is suspected of being 
unnatural in the context of the values in the neighbourhood of this 
point. If all four sides around the point are suspect, then, this 
particular point will certainly be suspected of having a gross error. 
In most cases, if three sides of a point exhibit characteristics which 
cause them to be suspect, then again it may then be regarded as having 
a gross error. For the last method, if a point is suspect in both the 
row and column direcions, then it is certainly regarded as having a 
gross error.

Another question which needs to be answered is what value of K should 
be adopted in each case. For different cases, different values may be 
used. In this specific study, it was found that the DSC values for the 
test area are quite normally distributed, thus a value of 3.0 was used.

8.4.4 Data correction

It is also possible that some gross errors may have not been detected 
in a single run if the gross errors are located closely together, in 
which case, a point which has a gross error may still be considered as 
natural if its neighbours also have gross errors of a similar 
magnitude. This means that a further detection of the remaining gross 
errors may be necessary in some cases. However, in this algorithm, 
since all data points are used for the computation of slopes and thus 
for the slope changes, correction of those points found to have gross 
errors must be carried out to secure an improvement in the results. 
Therefore, in order to have reliable values, on the basis of which the 
next run to detect gross error will take place, those data points which 
were regarded as having gross errors in the previous run need to be 
"corrected" immediately. The principle of data correction used in this
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algorithm is as follows:

In Fig.8.4, suppose that point P is the point which is suspected of 
having a gross error, and points 1 to 20 are its neighbours. In the 
process of detecting the gross errors, the slope and slope change 
values at all these points have been calculated (except those points 
near boundaries). From points 6, 16, 10 and 12, four estimates have 
been made. The estimation from Point 10 may be taken as an example. The 
average value of the slope change values at points 5 and 15 (in the J 
direction) are taken as the estimated slope change at point 10 (in the 
same direction). The new slope at point 10 (to P) can then be computed 
as follcws:

SLOPE(10,J) = SL0PE(9,J) + (SLOPC(5,J)+SLOPC(15,J) )/2.0 (8.8)

Where, SLOPE(10,J) denotes the slope at point 10 in the J direction; 
and SLOPC(15,J) denotes the slope change at point 15 in the J 
direction; and the definitions of the other terms in the equation 
will be similar to those.

This slope value is used to compute the height value for point P. At 
last, the average of four such estimates (from the four directions,
i.e. above, left, below and right) is used as the height estimate for 
point P. Of course, if either point 9 or point 10 is also suspected of 
having a gross error, or if the other neighbours in this side (points 
4, 5, 6, 14, 15, and 16) are suspected of having gross errors, then any 
estimate from this side will be unreliable and should not be used. 
Similarly, it is also possible that no reliable estimate can be made 
for point P in a single run. Therefore, some form of interactive 
processing is needed.

This algorithm can only be used to correct those suspected points which 
are not located near the boundary of the area covered by the data set. 
For those points along the boundary, no correction will be made.

8.4.5 Experimental validation and discussion

As mentioned at the end of Section 8.3, some unnatural features still 
seemed to be present along some of the contours produced from the data 
set after filtering. For example, in Fig.8.2b, the contours plotted for 
the height values of 330m, 430m, and 440m all exhibit unnatural charac­
teristics. There are also two very tiny closed contours located in 
between the contours at 410m and 420m. It was then assumed that there 
may be seme small gross errors, or at least seme unnatural data points 
present in the data set. Therefore, this data set was used to test the 
algorithm presented in this section since no better data sets were 
available to the author.

139



in o in o in oin in <r 'd- m tr>in in in in in inin in .in in in in
ro ro 0

9 ro K) rn rn

oroinin
inminin

oinininin

oininin
inininin

o
ino
c\j

inminS3
CNJ

OminS3
CNJ

inCMin>o
CM

oCMino
CM

o•<rinsd
CM

inroinNO
CM

oK)in'O 
CM UJ

CJ

in .S'CM LlinS3
CM

g
Q) cr
. x:C -pd
d. w 0£■ -p £

CJ 0
w M
L i 
0 r2 QJj. •P -P

T 4-
TJ <T-

oi i- -P-p 03 CLiV C inT H
CT 'X

l/) •r-1 -pX d. TJ
Q 0 u

4-' u £c x: r0 -P -pU — V
£ £ iT.

(L 0 0 _>
r f*;
4-̂ d <+ £
1+ T3 TJ

c.
c CJ CiU u
c 3 -J

TJ
OJ C 0£ cQj D. QN0 UJ iji
Q_ •4 p

I-1

E □ G d
+ J 4 -1r - J. TJ

Jx 0 0
-P u CJ : JH
— 1 • ,
nj
3 £5

oCMin>o
CM

03

ro N3 m to m N3

139a



Chapter 8 For data quality...

After applying the algorithm to the data set, these unnatural features 
have in fact been removed. The result is shown in Fig.8.5(b). For 
comparison, Fig.8.2(a) (the contour plot produced from the original 
data set) has been placed as Fig.8.5(a) alongside the plot after 
removal of gross errors.

As already mentioned above, for those points along and near the boun­
daries of the area, no error detection and correction can be applied. 
This is the reason why there are still sane unnatural features occuring 
in the contours near the boundaries, especially along the top of the 
plot. Although the test carried out on this algorithm is very limited, 
yet the results show that it works quite well.
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Fig.8.6 Another example of contours produced from the data set 
(a), before; and (b). after removal of gross error

Fig.8.6 is another example showing how this algorithm works. Fig.8.6(a) 
shews the contours produced from part of the data set comprising model 
coordinates of the same area after smoothing. Clearly, seme residual 
errors exist producing unnatural features in some of these contours. 
After applying the gross error detection procedure, the corresponding 
contour plot (Fig.8.6b) shews that that these unnatural features have 
again been removed.

8.4.6 Discussion of the computational effort
required to detect gross error in a regular gridded data set

As was done in the previous section (8.3.6), a brief discussion 
regarding the computational aspects of the gross error detection method 
is also desirable. The cpu time spent on the detection of gross error 
in this test data set of 8,588 points was 20,558ms which is a little 
more than the time - 16,645ms - spent on smoothing the same data set. 
It is equivalent to 2.39ms/point.

It might also be assumed that the amount of cpu time required to detect 
the gross errors in a regularly gridded data set is proportional to the 
number of data points since the amount of computation for every data 
point should be the same. If this assumption applies, then the amount 
of cpu time needed for processing the whole data set from an entire
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model is listed in Table 8.6.

It must be said that, once again, this shows that an intensive 
computational effort needs to be made if gross error detection is to be 
applied to a dense gridded data set. Even with a powerful computation 
engine such as the ICL 3980, the range of times required for such a 
single stereo-model varies between 43,014secs (=11.95hrs) to 
440,460secs (=122.35hrs). Again, if applied, these are very expensive 
overheads to be added to the DTM process and it is an open question 
whether potential users will feel that the benefits justify the very 
considerable expense needed to improve the quality of the DTM.

Table 8.6 GPU times required to detect gross errors 
in the gridded data set from an entire stereo-model

Pixel Size Possible No. of Data Points Required CPU Time
32 urn 2875 x 6250 = 17,968,750 43,014,000ms = 11,95hr
25 urn 3680 x 8000 = 29,440,000 70,474,000ms = 19.58hr
12 urn 7666 x 16666 = 127,761 ,000 305,835,000ms = 84.95hr
10 urn 9200 x 20000 = 184,000,000 440,460,000ms =122.35hr

Actually, it may not be necessary to apply this algorithm to the whole 
data set. Sometimes, a visual inspection of the perspective plots or 
contours produced from the data set may help in finding where the gross 
errors are located. In this case, this algorithm need only be applied 
to those areas where gross errors exist. In this case, the cpu time 
required for processing should be much smaller than that listed in 
Table 8.6.

8.5 Algorithms for detecting gross errors 
in an irregularly distributed data set

8.5.1 Introduction

The algorithm described in the previous section is based on the 
consistency of slope changes in the neighbourhood of a point under 
investigation within a regular grid-based data set. However, if the 
data points are irregularly distributed, then difficulties in checking 
the consistency of slope change will be met. It will, therefore, not be 
applicable in this case.

In an irregularly distributed data set, the information which is 
conveniently available to users is the set of X,Y,Z coordinates of the
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data points. Therefore, in this case, the height information for every 
data point and its neighbours can still be used as the basis on which 
to assess the validity of the data point elevations. The algorithm to 
be described in this section is based on this height information.

Gross errors may be scattered as isolated occurrences in the data set 
or they might occur in clusters. In the latter case, the situation is 
much more complicated. So, in this chapter, an algorithm for detecting 
the individual gross errors scattered in the data set will first be 
described. Then this algorithm will be modified to suit the detection 
of gross errors occuring in clusters. Sane experimental results will 
also be presented.

8.5.2 Approaches for algorithm development

Depending on the size of the area to be considered, three approaches 
can be distinguished to develop an algorithm for gross error detection, 
namely, a global approach; a regional approach and a local approach. In 
this sense, it has some similarity to the basis on which interpolation 
methods were discussed in Chapter 7.

Any method using a global approach must involve the construction of a 
global surface through all points in the data set using a high-order 
polynomial function, then checking the deviation of every data point 
from the constructed surface. If the deviation at a point is greater 
than the threshold value, then this point can be considered as having a 
gross error. The threshold value might be a pre-defined one or it may 
be computed from the deviations of the heights of the data points from 
the global surface. As Hannah (1981) pointed out, global techniques 
"have the drawback that they give identical treatment to all areas". 
However, terrain is rarely uniform in roughness, so the uniform appli­
cation of a global technique to an area may result in too many points 
being regarded as having gross errors in rough areas, which in fact are 
not errors, while failing to detect gross errors in relatively smooth 
areas. That is to say, the final result might be totally undesirable or 
indeed wrong.

The methods employed in a regiona 1 approach could be very similar to 
those used in the global approach, i.e. constructing a regional surface 
and then checking the deviations of the data points from the specific 
surface. The only difference is the size of the area which the surface 
covers. The adequacy of this approach depends partly on the size of the 
area which a particular regional surface covers.

A major drawback to the method of using a polynomial surface, 
regardless of the size of the area which such a surface covers, is that 
those points which have gross errors will also have been used to
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construct the DTM surface. In this case, all points near the particular 
point with a very large gross error may have large deviations from the 
constructed DTM surface due to the large influence of the erroneous 
point on the constructed surface. Thus they may all have been 
identified as having gross errors when in fact this is not the case.

If a local approach is employed, then the use of a polynomial surface 
to fit the data points can be avoided. A method similar to that used in 
pointwise interpolation, and consequently referred to as a pointwise 
method in this context, can be employed. This method involves comparing 
the height value of the point under investigation with a representative 
value such as the average height derived from the heights of its neigh­
bours. As a result, if the difference is larger than a certain thres­
hold value, then this point can be regarded as having a gross error 
(see Section 8.5.3).

The principle of the pointwise method is so simple and intuitive and 
the computation could also be so simple (e.g. simply compute the 
average) that a procedure based on this method has been developed and 
will be presented below.

8.5.3 An algorithm based on the pointwise method (Algorithm 1)

(1). General principle

The general principle is as follows. For a specific point which is 
being tested, say P, a window of a certain size is first defined 
centred on P. Then a representative value will be computed frcm all the 
points located within this windcw. This computed value is then regarded 
as an appropriate estimate for the height value of the point, in this 
case, P. Or this value can be regarded as the "true value" of point P. 
By comparing the measured value (of P) with the representative value 
estimated frcm the neighbours, a difference in height can be obtained. 
If this difference is larger than the computed threshold value, then 
this point can be considered as having a gross error. The computation 
of threshold values will be discussed later.

In this method, the height value of the point P which is being tested 
is not taken into consideration when computing the representative 
value for P. Therefore, the height value of point P has no influence on 
the estimated value derived from the neighbours. Thus the height 
difference obtained through this procedure provides more reliable 
information about the relationship between point P and its neighbours.

(2). Range of neighbours

The range of the area within which neighbouring points will be searched
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for is (like that used in the pointwise interpolation method) specified 
by a window centred on point P. This can be specified by defining 
either an area, or the number of nearest neighbours required. The 
former can be expressed as follows:

X range: Xp - D x < X i < X p + Dx (8.9)
Y range: Yp - Dy < Yi < Yp + Dy

Where, Xp and Yp are the X and Y coordinates of P - the point under 
inspection; X^ and Y^ are the X and Y coordinates of the ith point in 
the neighbourhood; and Dx and Dy are the half-window sizes in the X and 
Y directions respectively.

Also, a combination of both criteria can be used. The average window 
size can be computed according to the total number of points and the 
coordinate ranges of the area. This average value can be used as the 
initial window size. In an area with a higher density of points, the 
number of points lying within a windcw of this size will be larger than 
average. However, in a lower density area, it may happen that only a 
few points are located inside such a window. Therefore, a minimum 
number of points may also need to be specified. If the number of points 
within a windcw is smaller than the specified value, then the windcw is 
enlarged a little until the specified number of points is reached.

(3). Computation of the representative value

In this algorithm, the average of the height values of the neighbours 
is used as the representative value. The average (height) value can be 
computed in either of two ways. The simpler one is to simply take the 
arithmetic mean and the other is to use a weight for every point 
according to its distance to the point under investigation, e.g. the 
weight is inversely proportional to the distance.

The weighted mean should be closer to the real value of the central 
point - P in this example - if there are no gross errors in the neigh­
bourhood. However, if a point with a large gross error is very close to 
the central point (P), then the weighted mean is greatly affected by 
this point, thus producing a very unreliable value. Therefore, the 
simple arithmetic mean may be more desirable. In fact, practical tests 
confirmed this particular point. Since the calculation of the simple 
arithmetic mean will take much less computation time, it has, therefore, 
been used in this algorithm.

(4). Computing threshold value and suspecting a point

The height differences of all points are used to compute a statistical
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value which will then serve as the basis for deciding on a threshold 
value.

Suppose, is the arithmetic mean of the neighbouring heights centred 
at the ith point in the data set and the difference between the and 
the height value of this (ith) point (H^ is Vif then

V± = H± - (8.10)

If the data set has N points, then the total number of V values is also 
N. The required statistical value can then be computed from these 
values of v. In this study, the mathematical mean (u) and standard 
deviation (SD) are computed from these values of V and are then used as 
the basis for constructing the threshold value. A threshold value, 
KxSD, which is similar to the one discussed in the previous section, is 
used in this algorithm with K=3. After the threshold value has been 
set, every data point in this data set can be checked. For any point i, 
if the absolute value of (V^-u) is larger than this threshold value, 
then this point, i in this example, is considered as having a gross 
error.

8.5.4 Experimental tests using Algorithm 1

Two sets of irregularly distributed data were available to the author 
and were used for this study. The data sets have been compiled from 
digital image correlation in a DSP and were again kindly provided by my 
research colleague, Mr. Ali Azizi (1990).

(1). Results obtained from the first data set

The distribution of the first data set and the contours produced frcm 
this set of data are shown in Fig.8.7. Fig.8.7(a) shows the irregular 
distribution of the data points. Fig.8.7(b) (the corresponding contour 
plot) shows clearly that there are seme gross errors in the data set, 
which need to be detected. The size of this area is about 4.5cm x 4.5cm 
on the photo and about 800m x 800m on the ground respectively. Within 
this area, the height values of 4,964 points were correlated.

The simple arithmetic mean was used as the representative value derived 
frcm the neighbouring points while the windcw size was defined by the 
combination of specifying an area size and a certain number of points. 
The minimum number of points was initially specified as five. As a 
result, the algorithm did not work well. Then the number was gradually 
increased. For this data set, a number lying between 15 and 20 gave the 
best results.

After applying this algorithm, those points which created the unnatural
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contours (see Fig.8.7b) were detected and their locations plotted in 
Fig.8.8(a). The distribution of the data points after removal of those 
erroneous points and the contours produced frcm this corresponding data 
set are shown in Fig.8.8(b). The results show that this algorithm 
works very well.

The search for the neighbours of every data point was undertaken over 
the whole of the test area. As a result, it took a very considerable 
amount of cpu time - 324,118ms - to complete this exercise for this 
data set with a number of 4,694 points. It is about 69ms/point.

(2). Results frcm the second data set

The distribution of the data points in the second data set and the 
contours produced from this data set are shown in Figs.8.9(a) and (b). 
The size of this test area is about 4.0cm x 2.2cm on the photo and 
about 700m x 400m on the ground. In total, the height values of 4,733 
points were available within this area. Again, Fig.8.9(b) shows clearly 
that some gross errors are present in the data set. Once again, the 
author's algorithm was applied to this data set.

Initially, the same parameters and window size as those used for the 
previous test were used for this test. The detected points and the 
contours produced frcm the data after removal of the erroneous points 
are shown in Fig.8.10. From the contour plot (Fig.8.10b), it can be 
seen that there are still seme gross errors left in the data set.

A much larger window size (containing 60 points) was also used, but 
still failed because the remaining gross errors occur in clusters and 
have a large magnitude as well. In order to solve this problem, another 
algorithm was developed which will be described be lew.

The search for the neighbours of every data point must be undertaken 
for the whole of the test area. It took a very considerable amount of 
cpu time - 403,906ms - to complete this exercise conducted on only 
4,733 points. This amounts to about 85ms/point.

8.5.5 Algorithm for detecting a cluster of gross errors (Algorithm 2)

The algorithm described above appears to be suitable for the detection 
of scattered gross errors. To put the situation in another way, 
implicitly the assumption is made that there are serious gross errors 
in the window for every point. However, gross errors may be in a very 
tight cluster and with a large magnitude - indeed this could very well 
be the case where the data is derived using automatic correlation 
(image matching) techniques. In this case, this algorithm will fail to
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detect these errors. Therefore, some further development or 
modifications need to be made to the algorithm presented above.

(1). A solution to the problem associated with Algorithm 1

Theoretically, the use of an increased windcw size should be a solution. 
However, as already described, it still failed to work with a window 
size of up to 60 points. If the window size is increased more and more, 
it might work in some cases, but the result may be unsatisfactory since 
the representative value derived from the neighbouring points may then 
be quite deviated from what it should be, thus leading to an unreliable 
judgement being made. Therefore, a search was made for an alternative 
solution.

The idea behind the algorithm development is to find those points which 
have a very great influence on the representative value, in this case, 
the average value. Then these points would not be taken into consi­
deration while computing this representative value.

(2). Point data snooping in a window

The method used for point data snooping in a window is very similar to 
the idea used in Algorithm 1 for detecting gross errors. The procedure 
used is as follcws:

First of all, the first point in the window area is taken out of the 
windcw and then a new value of the representative value - in this case, 
the average value - is computed frcm all the remaining points in the 
windcw; then the difference between this average value and the original 
one is computed and recorded. This procedure is then applied to every 
point in the window. Suppose, there are M points in the windcw, then M 
differences can be obtained as follcws:

v± = a± - a (8.11)

Where, v^ is the difference between the new average, a^, computed from 
all the remaining neighbouring points in the window other than the ith 
point and the original average value, a, which was computed from all 
the points in the window. The rest of the procudeure is the same was as 
done for detecting gross error in Algorithm 1. That is to say, the M 
values of v are used to compute a single statistical value, which is 
then used as the basis on which to construct a threshold value for 
snooping data points within the window. After that, every value of v 
can be checked. If any value of v, say vj, exceeds this threshold 
value, then point J will be excluded from this windcw. In this way, all 
those points which appear to make a very great change in the represen­
tative value in a window can be excluded from this window.
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This point data snooping technique is then applied to every window. 
After this has been done, the rest of the procedure is exactly the same 
as the procedures described before for Algorithm 1, i.e. computing a 
representative value, constructing a threshold value and identifying 
suspect points.

8.5.6 Experimental test using Algorithm 2

The second algorithm was then tested with the second data set. The 
errors detected by this algorithm are plotted in Fig.8.11 (a) and the 
contours produced from the data set after removal of gross errors by 
Algorithm 2 are shown in Fig.8.11(b).

It can be seen clearly from Fig.8.11 (b) that there is still a point 
with a small gross error located in the north-west of the test area 
since it produces an unnatural contour in that part of the plot. The 
reason why this point was not detected by this new version of the 
algorithm could be due to the fact that, in applying this algorithm, a 
larger window size needs to be used. In the case of this example, the 
minimum number of 35 points was specified. However, the use of a large 
window size results in a decrease in the sensitivity of this algorithm 
to gross error.

As expected, it took much more cpu time - 412,131ms - to run this 
program on the test data set. This amounts to about 87ms/point.

8.5.7 Discussion of algorithms used for the detection of gross error

From inspection of Figs.8.10 and 8.11, it can be found that the majority 
of the gross errors detected by these two programs are identical. 
However, each may omit one or more points for the specific reasons 
which have been discussed in previous sections. Therefore, a complemen­
tary use of both algorithms may produce desirable results, in which 
case, all the points detected by both of them should be deleted from 
the data set.

Fig.8.12(a) shows the gross errors detected by both programs while the 
contours produced frcm the data set after removal of these points are 
shown in Fig.8.12(b). It can be found that a much more reasonable 
result was produced after removal of the gross errors. (N.B., The 
unnatural contours at the bottom left corner of the plot are artificial 
since no data points are located there).
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8.5*8 Discussion of the computational effort
required for detecting gross errors in irregular data sets

Another important question which should be answered here is how much 
influence is the large amount of cpu time required for detecting gross 
errors using these algorithms for a given area or for a given number of 
data points going to have on the users' willingness to adopt these 
methods. In practice, the required cpu time may vary with many factors 
such as the distribution of the data points in the data set, the size 
of the area, the distribution of the gross errors, the initial values 
given in the program, the effect of increasing the window size, etc. 
For example, the test results using Algorithm 1 show that the cpu times 
spent on the two test areas are quite different although the number of 
total points in both cases are almost the same, due almost entirely to 
the differences in data density and distribution.

If the data is evenly distributed, then the average value of the area 
size per point will provide a relatively reliable basis on which to 
determine the window size, thus saving time in the search for the 
neighbouring points. If the area is very large and the amount of data 
is huge, then it will take a long time to search for the neighbours 
from the whole data set. In this case, if the data is divided into a 
number of patches, then much less cpu time may be needed. If the gross 
errors occur in clusters, then a much larger window is needed, which 
needs much more time, first of all for the point search and then for 
the subsequent processing. If the initial size of the window area is 
too small, then a number of iterations will be required before it 
reaches a reasonable size. This will of course be dependent on the rate 
at which the size of the window is enlarged - a matter which is only 
going to be resolved with experience. Anyway, it is a complex matter. 
Nevertheless, some estimates will be given below although those figures 
may not be too reliable.

(1). CPU times per point varying with the size of an area

In order to provide more information about the computational side, 
further tests have been carried out. The purpose of these tests is to 
provide some information about the relationship between the area size 
and the cpu time required to check all the points within the area. 
Therefore, the second test area has been sub-divided into a few patches 
(which partly overlap on one another). The information about the size 
of an area and the number of data points within each area is listed in 
Table 8.7.

The second version of the algorithm was used for these tests. The 
minimum number of points in a window is specified as 40. The initial 
area for the window in terms of the ha If-window size is 3 times the

1 49



Chapter 8 For data quality.

average value of area size per point. The results are given in Table 
8.7. Fig.8.13 shows the relationship between the cpu time per point and 
the number of points existing within an area.

Table 8.7 Required cpu time and the size of the area

Area 1 Area 2 Area 3 Area 4 Area 5
Size on Ground 200x400m 200x400m 300x400m 400x400m 500x400m
Size on Photo 1.1x2.2am 1.1x2.2cm 1.7x2.2cm 2.2x2.2cm 2.8x2.2cm
No. of Points 527 1 ,121 2,143 3,380 4,188
Total CPU Time 11,886ms 45,597ms 134,515ms 251 ,480ms 439,997ms
CPU Time/Pt 22.6ms 40.7ms 62.8ms 74.4ms 105.1ms
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Fig.8.13 The relationship between the CPU time per point and 
the number of points lying within the neighbouring search area

From this table, it can be seen clearly that the cpu time required to 
check a point varies with the size of the area within which the search 
for the neighbours has to be undertaken. Therefore, it is very 
desirable to use small patches. In this case, as stated previously, a 
considerable amount of cpu time can be saved. If the sub-area - Area 5 
in Table 8.7 - is divided into four patches, each with 1 ,047 points, 
then the time required for each patch is 45,597ms. For the four 
patches, the total time required is 4x45,591ms = 182,388ms. This is 
much less than the 439,997ms which is required if the large patch size 
(Area 5 as a single patch) is used. In percentage terms, it amounts to 
only about 40% of that required to process Area 5 as a single patch. 
However, even with this substantial reduction, it goes virtually
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without saying that the times required for processing are still very 
large and therefore very expensive to implement.

(2). CPU times required to check all data points of entire model

From the discussion above, it will be seen that the cpu time required 
for checking all the data points in an entire model will vary 
considerably with the total number of points and with the size of the 
patches into which the entire model has been divided. In this context, 
no prediction about the cpu time required for the entire area of the 
stereo-model will be wholly reliable. However, as noticed above, it 
must be kept in mind that the computational time will be very heavy. In 
any case, the values for the cpu time per point listed in Table 8.7 may
help in carrying out some very rough estimates. The following is such
an estimate.

Suppose that the data in the second test area which was kindly provided 
by Mr. Azizi is a typical example. In which case, the density and 
distribution of the data set for the entire model will be more or less 
the same. Then extrapolation may be made based on the information in 
Table 8.7. The largest area listed in Table 8.7 is 2.8x2.2cm. This 
represents about 1/30 of the entire model area. Therefore, the number 
of points likely to be generated for the entire model will be about 
30x4,188 = 125,640 (points). The cpu times required to check this 
number of data points using different patch sizes (with a varying 
number of points in the patch) are given in Table 8.8.

Table. 8.8 CPU times required to detect gross error 
in the entire stereo-model

Size of patch 527pts 1 ,121pts 2,143pts 3,380pts 4,188pts
CPU Time/Pt 22.6ms 40.7ms 62.8ms 74,4ms 105.1ms

Total CPU Time 2,993secs
=0.83hrs

5,101 secs 
=1.42hrs

7,890secs 
=2.19hrs

9,347secs
=2.60hrs

13,205secs 
=3.67hrs

8.6 Concluding remarks

In this chapter, some discussions concerning the quality of DTM source 
data have been made and some algorithms or procedures have been 
presented which are designed to improve the quality of this data in 
various ways. First of all, the effect of random error on DTM data 
quality has been investigated. Seme examples of these effects have been 
given and a filter-cum-smoothing procedure has been devised and irnple-
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men ted to remove or lessen their effect. Some experimental results have 
also been presented which confirm the effectiveness of this type of 
procedure in certain situations and in certain types of terrain.

For gross error# two cases have been considered, i.e. those with 
gridded data and irregularly distributed data respectively. Some 
algorithms have been developed and presented for gross error detection 
and removal. Experimental results prove that they work very well - at 
least with the rather limited amount of data which was available for 
the testing.

However, it must be emphasized here that a considerable amount of 
computation time is needed to implement techniques such as those 
described in this chapter. In particular, the cpu time required to 
detect gross errors in an irregular data set may indeed be regarded as 
quite excessive. Therefore, on the basis of the experience gained in 
this present project, the advice must be not to apply such an algorithm 
to an entire model. Instead, it is desirable to carry out a visual 
inspection to find the general area of difficulty, and then to apply 
the algorithm to the area which has been identified as probably 
containing gross errors.

In this chapter, all the discussion and testing have been concerned 
with the quality of the photogrammetric source data. Starting with the 
next chapter, the problem of making an estimation or assessment of DTM 
accuracy will be considered. The discussions will be based both on a 
theoretical analysis and on experimental investigations. A chapter 
concerning the relationship between DTM accuracy and sampling distance 
will be the first step in this investigation.
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Chapter Nine

Variation of the Accuracy of Digital Terrain Models 
with Sampling Interval

9.1 Introduction and background

The various problems concerning the quality of DTM source data have 
been discussed in the previous chapter, where an attempt was made to 
remove the gross errors and even the random errors from the source data 
using certain procedures or algorithms. From this chapter onward until 
Chapter 13, the discussion will focus on the possible accuracy of DTMs 
derived from different data sets which are assumed to be free from 
gross error.

9.1.1 General introduction

As emphasized in the introductory chapter (One), the assessment of the 
accuracy of DTMs, derived from a set of data which may be acquired from 
different data sources using different sampling strategies, is one of 
the two main issues addressed by this project. It has also been 
emphasized several times previously in this thesis that the accuracy of 
a DTM is a function of many factors, but mainly the three attributes of 
the source data (i.e. their acccuracy, density and distribution); the 
characteristics of the terrain itself; the characteristics of the DTM 
surface which is constructed from the source data; and the method used 
for the construction of the DTM surface. The assessment of DTM accuracy 
made in this project attempts to find the relationship between the 
accuracy of DTMs and these six accuracy factors. However, the final 
expression of such a relationship might either be very implicit (i.e. 
implied) or very explicit (i.e. plainly stated).

The assessment of DTM accuracy can also be carried out either by 
theoretical analysis, or by experimental investigation or through a 
combination of both. This chapter and the following chapters will 
describe the experimental results while the theoretical analysis of DTM 
accuracy based partly on the results of the various assessments will be 
discussed later in Chapter 12.

9.1.2 Alternative plans for experimental investigation

Attempting to investigate experimentally the variation of DTM accuracy 
with any one of the six main factors given above, it is necessary to 
isolate the effects of each of the other (five) factors on the DTM 
accuracy by keeping these factors unchanged. In doing so, six possible 
plans are possible as follows:-
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i). The accuracy of the source data could be varied while all the 
other factors remain unchanged. This could be achieved by using 
aerial photographs with different scales and different flying 
heights taken over the same test area, employing the same 
sampling strategy and utilizing the same modelling method to 
construct the same type of DTM surface.

ii). The density of the source data could be varied while all the 
other factors remain unchanged. This can be achieved by using 
different sampling intervals in the case of regular grid 
sampling or composite sampling or alternatively by generating 
new grids from the original (grid-based) source data.

iii). The distribution of the source data could be varied while al 1 
the other factors remain unchanged. This can be achieved by 
using different data patterns such as square grids, rectangular 
grids, triangular grids, strings obtained from profiling, etc.

iv). The test area could be varied but all other factors remain 
unchanged. This can be achieved very easily by using many 
different test areas.

v). The characteristics of the constructed DTM surface might be 
varied (e.g. the continuity and smoothness could be changed) 
while all the other factors remain unchanged. This can be 
achieved by using different modelling approaches to construct 
different types of DTM surface as discussed in Chapter Seven.

vi). The method used far the construction of the DTM surface could be 
varied while all the other factors remain unchanged. This can be 
achieved by employing as many methods as possible, e.g. to 
construct the DTM surface either directly from the measured data 
or from a data set which has undergone a random-to-grid 
processing.

In this project, no attempt has been made to make use of the fifth and 
the sixth possibilities due to the complexities inherent in the nature 
of the surface modelling itself. Therefore, a particular type of 
surface - in this case a continuous surface - was selected for the 
modelling and this surface has been directly constructed from the 
measured source data (i.e. without undergoing any random-to-grid inter­
polation). The question as to why a continuous surface has been 
selected for the studies in this project has already been discussed and 
established in Chapter 7. Investigations have therefore been 
concentrated on the first four plans.

Arising from purely practical considerations of expense and the availa­
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bility of data, inevitably some of the tests are not as well designed 
as they should be. The various sampling patterns include square grids, 
square grids plus strings of feature-specific lines, parallel strings 
measured by profiling and data strings of constant elevation generated 
by contours. The test areas include three in West Europe and one in the 
Sudan. The data sets have been acquired from many different sources, 
e.g. photogrammetric data acquired from aerial photographs with scales 
varying from 1:4,000 to 1:30,000 and space photographs at 1:950,000 
scale obtained using the Metric Camera. Thus the accuracy of the source 
data will also vary considerably. Furthermore, different data densities 
have also been utilized with the acquired source data from different 
areas.

However, it should be emphasized that the second of the various plans 
described above is the one which will be given most serious attention 
and consideration in this project, since, as has been emphasized 
previously several times, sampling interval is the factor which 
potentially has a most significant effect on the accuracy of a DTM. A 
fairly systematic investigation into the variation of DTM accuracy with 
sampling interval for certain types of terrain using certain data 
patterns will be presented in this chapter. The remaining tests will be 
presented later in Chapters 10 and 13.

9.1.3 Basic methodology used for the experimental investigation

For the experimental investigations carried out in this project, the 
so-called black box approach will be used as the basic methodolody of 
the study. As the name implies, this is an approach which does not take 
account of the internal composition and workings of the system, which 
may be unknown, known only partially, or known but ignored. The actual 
interest of this approach is focused on the input-output behaviour of 
the system, which accepts one or more inputs and produces one or more 
outputs.

In the context of the experimental investigation into DTM accuracy, the 
modelling package is the system (black box), of which much knowledge 
such as the basic approach for network formation, the possible options 
of surface types, the subroutines within the programs, the detailed 
data arrangement within the programs, the variables used in the 
programs, etc may all be known. However, not all of this information is 
of interest for a particular project. For example, in this project, 
only the information about the network formation and the available 
types of DTM surface need to be known. All other information will be 
ignored.

The input to the system should, of course, be the DTM source data and 
the check point data while the desirable outputs in the case of
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accuracy testing are the accuracy figures. However, since a DTM system 
is not usually built specifically for such a purpose but for production 
purposes, a supplementary program needs to be used to compute accuracy 
figures from the output of the DTM package (the 3-D coordinates of the 
DTM). This program can also be considered as an integrated part of this 
system.

In this chapter, information about the source data acquired from photo­
graphy taken at different scales for three different test areas will be 
given first. Then a discussion about how to generate new grids from the 
original grids will be presented. Next, the DTM package and the program 
for the computation of accuracy figures (comprising the black box) used 
for this study will be briefly described; after that, the output from 
the black box - the accuracy figures - will be presented. Finally, an 
analysis will be conducted to try to establish the inter-relationship 
between the input and the output of the black box (the DTM system).

9.2 Description of test data

The source data sets used in this experimental test are seme of those 
which were used for the ISPRS DTM test (Torlegard et al, 1986) although 
all the processing and the tests based on these data sets were carried 
out independently by the author.

9.2.1 Test areas

In the ISPRS DTM test which was conducted by Working Group 3 of the 
Commision III, six areas were used. Some data sets for five of these 
six areas were made available to the author for use in this project. 
However, it was found that only three of these data sets, i.e. those 
for the Uppland, Sohnstetten and Spitze areas, were suitable for the 
studies to be described in this chapter due to problems related to data 
patterns which had been collected and/or certain limitations of the DTM 
package used in the tests.

The descriptions of these three test areas have been given by Torlegard 
et al (1986). However, for convenience, a brief summary is included 
here in the form of Table 9.1.

Contour plots and isometric views of the DTM surfaces for each of these 
three areas are given in Figs.9.1, 9.2 and 9.3. The data sets and the 
corresponding contour plots had been measured on a Zeiss Oberkochen 
Planicomp C-100 analytical stereo-plotter at the Technical University 
of Munich and were made available to the author through the courtesy of 
Prof. H. Ebner and Dr. W. Reinhardt.
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Table 9.1 Locations and descriptions of the test areas

Test Area Description Height Range
A. Uppland (Sweden) Farmland and forest 7 to 53 m
E. Sohnstetten (W.G) Hills of moderate height 538 to 647 m
F. Spitze (W.Germany) Smooth terrain 202 to 242 m

9.2.2 Source data sets

The data sets had been acquired on the Planicomp C-100 using composite 
sampling. The gridded data sets were stored separately from those of 
the feature-specific points (including the points measured along break 
lines and form lines). Figs.9.4 to 9.6 show the distribution of the 
data points for each of the three test areas. The grids were more or 
less arbitrarily orientated. For the area of Uppland only, two grids 
were measured with origins shifted against each other by 20m in the X 
and Y directions; however, the data points shown in Fig.9.4(a) belong 
to only one of these two grids. The information about the grid sizes, 
together with the photo scales, is given in Table 9.2.

Ifeble 9.2 Data sets used for testing

Test Area Location Photo Scale H Grid Interval
A Uppland (Sweden) 1: 30,000 4,500m 40m (2)
E Sohnstetten (W.G) 1: 10,000 1,500m 20m
F Spitze (Germany) 1: 4,000 600m 10m

Table 9.3 Accuracy of source (raw) data

Test
Location

Orientation accuracy Data accuracy
Area Planimetric Height Height

A Uppland +0.474m +0.497m +0.67m
E Sohnstetten +0.110m +0.057m +0.16m
F Spitze j+0.072m +0.048m +0.08m

The standard errors (standard deviations) of unit weight for the 
absolute orientation at ground scale ( in which the co-ordinate obser-
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vations are given unit weight) are quoted in Table 9.3. The height 
accuracy of the raw data has been estimated according to the discussion 
in Chapter 5 and is also given in Table 9.3.

9.2.3 Check points

The check points used in this test were measured from much larger scale 
photography in the Royal Institute of Technology (the ISPRS DTM test 
centre) in Stockholm and were kindly made available to the author 
through the courtesy of Prof. K. Torlegard and Dr. M. Li. These check 
points were used in the ISPRS tests and are also referred to as "ground 
truth" in the paper by Tolegard et al (1986).

The check points are located in a grid pattern which is orientated in 
an arbitrary direction. This means that the grid directions of the 
check points are not parallel to those of the source data or to the X 
and Y coordinate directions. Actually, not every grid node was measured; 
those points which are located in the areas where no reliable measure­
ments can be made such as areas covered by bush or trees and those with 
extremely steep slopes were not measured and their height values were 
recorded as zero. Figs.9.7(a), 9.8(a) and 9.9(a) show the distribution 
of the check points for each of the three test areas. In fact, for each 
test area, more than 1,700 points were measured on analytical plotters 
in a static mode. Aerial photographs with scales much larger than those 
used for the acquisition of the DTM source data were used in order to 
ensure that check points did indeed have a much higher accuracy. 
Detailed information about the characteristics of these check points 
has been given by Lindgren (1983). Table 9.4 shows some of this 
information.

Table 9.4 Informtion about check points

Test Area Photo Scale H No. * RMSE Qnax
Uppland 1: 6,000 900m 2,314 +0.090m 0.20 m
Sohnstetten 1: 5,000 750m 1,892 +0.054m 0.07 m
Spitze 1: 1,500 230m 2,115 +0.025m 0.05 m

* No. in this table denotes the number of check points.

The accuracy of the check points was checked in the test centre and the 
results are given in Table 9.4 under the headings of RMSE (root mean 
square error) and Emax (maximum error). The check points are not 
distributed over the whole of each test area but only over a part of 
each area. Figs.9.7(b), 9.8(b) and 9.9(b), which are the contour maps
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produced from each set of these check points, indicate the variations 
in the terrain elevations within the areas which are covered by the 
check points for each test area. Inspection of these contours shows 
that some segments of these contours are unnatural and artificial in 
appearance. The presence of such artificial features indicates that no 
points have been measured in such areas due to woodland or too steep 
terrain.

9.3 Generation of new grids from the original gridded data sets

As has been stated in the introductory section of this chapter, the 
purpose of this experimental investigation is to find some relationship 
between DTM accuracy and the density of the data set for certain types 
of terrain using certain data patterns. In fact, as described in the 
previous section, only three types of terrain and two data patterns are 
available to check this specific case.

The type of terrain is specified by its slope as suggested in Chapter 
3. Therefore, representative slope values have been derived from the 
contours for each of these three areas, with values of 6°, 15° and 7° 
for the Uppland, Sohnstetten and Spitze areas respectively. The two 
types of data pattern are, of course, gridded data and composite data. 
The data density can be defined in terms of sampling interval since the 
source data comprises either gridded data or gridded data plus strings.

In order to reach the goal of this investigation, it would have been 
best if a few sets of gridded data (then composite data by adding 
string information) had been measured for each of three areas. This had 
not been done - which was not in any way the fault of the participants 
in the test since it was not a requirement of the ISPRS test. So for 
each area, only a single specific sampling interval was used. There­
fore, a solution had to be found to overcome this problem associated 
with this specific goal of this investigation.

There are possible two solutions. The first is to measure more data 
sets for each test area using the same diapositives on a photogram- 
metric instrument. The second is to generate gridded data sets with 
different grid intervals by changing the sampling pattern of the 
original measured data using wider intervals or other selection 
criteria. Of course, the latter is not only a quicker and more economic 
solution but also a more appropriate solution since, in this way, the 
accuracies of the (new) generated gridded data will be the same as 
those of the original gridded data. Therefore, the latter procedure has 
been selected for this study.

The method which has been implemented to generate gridded data sets
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with different grid intervals is illustrated in Fig.9.10. The first 
four figures, Figs.9.10(a) to (d), show the generation of new grids 
with twice the interval of the original grid. In these diagrams, those 
points marked with "o'* are those which have been retained by selecting 
every other point along both the rcw and column directions. They also 
show that, by using a different starting point, four such alternative 
data sets can be generated from the original gridded data.

Figs.9.11(e) and (f) illustrate the generation of grids with a grid 
interval of 1.414 (the square root of 2) times the original one. Again, 
the symbol "o" denotes those points which have been selected. The 
directions of the new grids have been rotated and orientated along the 
diagonal directions of the original grids. It can be seen from these 
diagrams that two such new grid data sets can be generated from the 
original gridded data. Actually, this method can also be viewed as 
producing a regular triangular network comprising isosceles right- 
angled triangles with each hypotenuse lying along the row direction. It 
can also be viewed that a regular grid cell is constructed by two such 
triangles with their common hypotenuse as a diagonal of the grid cell.

This selection can also be considered as adding together two grids with 
a grid interval of twice the original one and with the origins shifted 
against each other by the original grid interval. Therefore, very 
similarly, for the Uppland area, a new grid with a grid interval of 
about 28.28m (0.707x40m) can be formed by adding together the two grids 
with a grid interval of 40m.

Table 9.5 No. of Data sets generated from the original data sets

Grid Interval Uppland Sohnstetten Spitze
10.00 m - - 1 *
14.14 m - - 2
20.00 m - 1 * 4
28.28 m 1 2 -

40.00 m 2 * 4 -
56.56 m 4 8 -

80.00 m 8 - -

Where * denotes that the set is the original one.

In practice, the measurement process has been carried out twice in a 
forward and in a backward direction. Therefore, in the generation of
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new grids, a corresponding rearrangement had also to be made.

Table 9.5 lists all the test data sets generated from the original data 
sets (including the original data sets themselves), which are to be 
used in this experiment.

9.4 Some features of the modelling system - the PANACEA package

In the previous section, the input to the black box has been described. 
In this section, a brief discussion of some features of the black box 
itself - the modelling package - will be given.

9.4.1 General structure of the PANACEA package

The modelling package used for the studies of this project is called 
PANACEA, which is a triangu 1 at ion-based DTM package. The PANACEA system 
was developed by McCullagh (1983) of the University of Nottingham. Ihe 
first version of this package was implemented sane years ago in the ICL 
2988 mainframe computer at the Univerisity of Glasgow and transferred 
to the new ICL 3980 machine when it was installed two years ago. The 
individual programs of this package implemented on the ICL mainframe 
machine call routines from GINO (a general graphics system) for 
graphics realisation, either on a graphics terminal or on a hard-copy 
plotter. The general process of modelling is as follows:

£ input dataj— > triangular network J— > ^gridded network — > products

That is, the input data points are, first of all, triangulated by a 
program called PANIC. Then DTM grids are interpolated from the surface 
constructed from the triangular network by the program PANDORA. Finally, 
any desired product, such as an isometric view and/or a contour line 
plot, will be produced from the surface constructed from the (interpo­
lated) gridded data, in this case, by the corresponding programs - 
PANORAMA and PANACHE respectively. In addition, a graphics editor 
called PANDEMON allows users to carry out some editing work, e.g. to 
display the structure of the triangular network and contouring from the 
triangular network; to allow the insertion of additional elevation 
values or strings; and to calculate and display the height of any 
point lying within a triangular area. Another program called PANEL 
merges the individual (smaller) grids interpolated by PANDORA into a 
large single grid. Fig.9.11 shews the inter-relationships between these 
programs described above.

Actually, for the new version of the PANACEA package, a contouring
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program PANTEC has also been developed for the production of contour 
plots from the DTM surface which is directly constructed from the 
triangular network formed by PANIC. This program was modified and 
implemented by the author on the ICL 3980 mainframe machine, on which 
all the contour plots in this thesis were produced.

STRINGS

PANIC PANDEMON

PANDORA PANACHE
PANORAMA

PANEL
FINAL
DTM

Fig.9.11 Hie structure of the PANACEA system

9.4.2 Selection of features from the modelling system for this study

As described above, the PANDORA program in the PANACEA system carries 
out the interpolation of gridded points from the surface constructed 
from the triangular network. This surface could either be a continuous 
surface comprising a series of contiguous triangular facets or or a 
smooth patch surface, given as options. Next the grid intervals need to 
be defined. The program will ask the user to enter the numbers of rows 
and columns needed to cover the area of interest, as well as the grid 
intervals in both the X and Y directions. After these have been 
defined, the height matrix from the grid data will be supplied as the 
output. That is to say, PANDORA will only interpolate the data points 
in the form of grids which cure parallel to the X and Y coordinate axes. 
Obviously, this did not suit the interpolation of DTM points in the 
case of this project since the check grids in this test were 
arbitrarily orientated and the check points in the other tests of this 
project were randomly located.

Another possible option is to use PANDEMON. The interpolation of the 
elevation value for each specific point again takes place using the 
linear facets constructed from the triangular network. However, this 
program only displays the height of a point at the cursor position on 
the screen by moving and hitting the cursor and not by accepting the 
input from a file.
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Therefore, some modification either to PANDORA or to PANDEMON was 
necessary for the purpose of interpolating the DTM values which corres­
pond to the check points used in this project. Actually, it was decided 
to modify the PANDEMON program. After modification, the program accepts 
a file containing the coordinates of the check points, then computes 
the new height (Z) values using linear interpolation for each pair of X 
and Y coordinates. Indeed, the modified PANDEMON program has been used 
throughout this project to interpolate the DTM data points which corre­
spond to the check points. The output from the PANDEMON is then 
compared with the input to the program to compute the errors at the DTM 
points. From these errors, statistical values for overall accuracy have 
been computed.

9.5 Results of the experimental tests

The characteristics of the input data and the so-called black box 
itself (the PANACEA system) have been discussed in the previous 
section. In this section, the output - the accuracy results - from the 
experimental tests will be presented.

9.5.1 Alternative measures of DOM accuracy

In order to present the results of the experimental tests informatively, 
some comprehensive measures of DTM accuracy should be used. The 
accuracy measures which can possibly be used in practice have been 
described and the usefulness of these measures has also been discussed 
by the author (Li, 1988a). A brief discussion will also be given here.

Considering the case of the experimental tests, the set of values of 
the height differences between the points on the DTM surface and those 
measured on the actual terrain surface are used to compute the required 
accuracy figures. Therefore, the height differences between the terrain 
surface and the DTM surface can be considered as a random variable, DH, 
in the context of the accuracy test. The set containing all possible 
values of the variable is referred to as the sample space (or 
population). Therefore, the set of height differences computed through 
the use of check points is a subset of the population. The charac 
teristics of this population are then studied by analyzing the subset 
sampled from it. In particular, an attempt is made to find:

i) the magnitude of the random variable; and 
ii) the spread or dispersion of the random variable.

To measure the former, some parameters can be used such as the extreme 
values (DH^n and D ^ ^ ) ,  the mode (the most likely value), the median
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(the frequency centre) and the mathematical expectation (weighted 
average or mean). The two extreme values can be used as such a measure 
in the sense that they indicate the general location of all the other 
values, i.e. they lie between these two values. The mode is a measure 
in the sense that it is the value of the quantities most often observed 
(i.e. with the largest probability). The median is a value such that 
observations (the values of DH in this case) above it would occur with 
the same frequency as those below it. The mathematical expectation is 
the "balance" point of the distribution of a randan variable, like the 
centre of gravity in physics. In the context of a DTM accuracy test, 
the simple arithmetic mean (or simply mean)of the DH values is the 
mathematical expectation of random variable DH. The last has been 
adopted in most cases. However, if the distribution is normal, these 
parameters have the same value.

To measure dispersion, some parameters such as range (DHmax - DHm^n), 
the expected absolute deviation, and the standard deviation can be 
used. Among these, the last is the most useful in most cases.

In summary, in the case of this study, the extreme values, the mean and 
standard deviation of the test results have been used. In addition, the 
values of root mean square error have also been computed since this is 
a traditional measure which is still widely used at present time. The 
annotation is as follows:

RMSE - root mean square error;
Mean - average value of residuals (DH values);
SD - standard deviation of the residuals from the mean;
Bnax - one of the two extreme values - the maximum EH 

value (or residual) of the distribution; and 
-Qnax - the other extreme value - the minimum DH value 

of the same distribution.

The values of all these parameters given in the corresponding tables 
are expressed in metres. The symbol before the values for SD and 
RMSE has been emitted simply for convenience in this study.

The occurrence frequencies of large residuals have also been computed 
and are given in the corresponding tables for the reasons that the 
information about the occurrence frequencies of large residuals can 
also give investigators some general hint about the accuracy of the 
DTMs and that this information will be useful for the theoretical 
analysis of DTM accuracy which will be conducted later in Chapter 12.
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9,5.2 Accuracy of the DIM derived from regularly gridded data sets

The accuracy results of the digital terrain models formed from the 
regularly gridded data sets from the ISPRS experiment are given in 
Tables.9.6 and 9.7. Diagrammatic representations of the test results 
are presented in Figs.9.12(a), (c) and (e), while the occurrence 
frequencies of large residuals are given in Tables 9.8 and 9.9.

'Cable 9.6Accuracy results from gridded data sets for the Uppland area

Grid No. Data Set RMSE SD MEAN +Emax -Qnax
40m G1+G2 28.28m Grid 0.69 0.63 0.26 3.26 -5.78

40m Grid 0.77 0.76 0.10 3.49 -6.42

56.56m G
1 0.91 0.91 0.06 3.41 -6.42
2 0.94 0.94 0.08 3.87 -6.51

40m Grid 1
F1 1.24 1.24 0.07 6.49 -6.83

80m Grid
F2 1.15 1.15 0.05 4.68 -7.18
B1 1.14 1.14 0.06 4.17 -6.82
B2 1.17 1.17 0.12 4.40 -6.57

40m Grid 0.84 0.71 0.44 3.84 -5.33

56.56m G
1 1.01 0.91 0.44 5.04 -5.75
2 0.99 0.88 0.45 4.74 -5.33

40m Grid 2
F1 1.29 1.23 0.42 6.81 -6.52

80m Grid
F2 1.28 1.21 0.42 4.92 -5.87
B1 1.25 1.16 0.46 6.07 -5.36
B2 1.21 1.14 0.41 5.34 -5.87

N.B. F=Forward, B=Backward sets of measurements. The same annotation 
will be used in other tables.
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liable 9.7 Accuracy results from gridded data sets 
for the Sohnstetten and Spitze areas

Area Data Sets RMSE SD MEAN +Emax -Emax
20 metre Grid 0.57 0.56 -0.11 3.03 -3.33

S 28.28m 1 0.86 0.86 -0.02 4.03 -3.66
0 Grid 2 0.88 0.88 -0.02 4.95 -4.06
H F1 1.57 1.56 0.19 5.95 -5.42
N 40 m F2 1.54 1.53 0.12 7.61 -9.14
S Grid B1 1.34 1.34 0.08 5.71 -7.82
T B2 1.35 1.35 0.10 6.29 -6.37
E

F1
1 2.42 2.37 0.46 11.16 -5.69

T 2 2.34 2.33 0.29 10.68 -10.62
T

F2
1 2.59 2.57 0.37 11.16 -11.11

E 56.56m 2 2.27 2.26 0.27 10.52 - 6.54
N Grid

B1
1 2.34 2.31 0.33 11.97 - 9.09
2 2.49 2.43 0.54 11.35 - 8.05

B2
1 2.46 2.42 0.42 12.18 - 6.57
2 2.54 2.47 0.59 15.08 - 6.06

s 10m Grid 0.22 0.21 0.07 1.44 -2.26

p 14.14 m Grid
1 0.29 0.28 0.07 1.70 -3.06

I 2 0.28 0.28 0.06 1.93 -1.77

T
F1 0.39 0.39 0.06 2.79 -3.49

Z
E

20 m Grid
F2
B1

0.34
0.37

0.34

0.36
0.05
0.06

3.17

3.05

-1.91

-3.02
B2 0.36 0.36 0.07 2.92 -1.93
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Table 9.8 Occurrence frequencies of large residuals 
from gridded data sets of the Uppland area

Grid Data Set
> 2 * SD > 3 * SD > 4 * SD

No. % No. % No. %
Grid 1 + 2 28.28m Grid 112 4.8 22 0.95 7 0.3

40m Grid 1 119 5.1 21 0.9 7 0.3
56.56m 1 127 5.5 25 1.1 6 0.3
Grid 2 130 5.6 25 1.1 7 0.3

40m Grid 1
FI 130 5.6 31 1.3 8 0.3

80m Grid
F2 135 5.8 26 1.1 10 0.4
B1 123 5.3 24 1.1 7 0.3
B2 138 6.0 27 1.2 3 0.1

40m Grid 2 115 5.0 32 1.4 7 0.3
56.56m 1 110 4.8 37 1.6 10 0.4
Grid 2 111 4.8 30 1.3 10 0.4

40m Grid 2
FI 120 5.2 30 1.3 10 0.4

80m Grid
F2 133 5.7 33 1.4 8 0.3
B1 128 5.5 28 1.2 11 0.4
B2 134 5.8 36 1.1 9 0.3

Where, M> N * SD" means the residuals more than or equal to N times 
the standard deviation distant from the mean; No. denotes the number of 
large residuals and % the percentage occurrence frequency. The same 
annotation will be used in the other tables showing occurrence 
frequencies.
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Table 9.9 Occurrence frequencies of large residuals 
from gridded data sets of Sohnstetten and Spitze areas

Grid

Sohnstetten

Spitze

Data Set
> 2 * SD > 3 * SD > 4 * SD

No. % No. % No. %
20m Grid 106 5.6 33 1.7 15 0.8

28.28m 
Grid

1 119 6.3 30 1.6 8 0.4
2 106 5.6 35 1.8 14 0.7

40m Grid

FI 131 6.9 21 1.1 0 0.0
F2 133 7.0 42 2.2 8 0.4
B1 115 6.1 24 1.3 8 0.4
B2 120 6.3 25 1.3 5 0.3

56.56
m
Grid

F1
1 117 6.2 16 0.8 2 0.1
2 115 6.1 28 1.5 7 0.4

F2

B1

1 111 5.9 31 1.6 5 0.3
2
1

115
121

6.1
6.4

27
41

1.4
2.2

5
9

0.3
0.5

2 113 6.0 22 1.2 3 0.2

B2
1 121 6.4 30 1.6 8 0.4
2 106 5.6 33 1.7 9 0.5

10m Grid 106 5.0 48 2.3 31 1.5

14.14m G
1 113 5.3 54 2.6 26 1.2
2 131 6.2 61 2.9 25 1.2

20m Grid

F1 89 4.2 48 2.3 30 1.4
F2 124 5.9 61 2.9 28 1.3
B1 114 5.4 61 2.9 38 1.8
B2 130 6.1 58 2.7 29 1.4
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9,5.3 Accuracy of the EWM derived from composite data sets

As discussed in Chapter 4, there are two types of composite data set, 
i.e. (i) regularly gridded data with a fixed grid interval plus 
selected feature-specific points, and (ii) gridded data with varying 
grid intervals plus selected feature-specific points. The data sets 
used in this test belong to the former type.

For the data sets used in this test, the form lines and/or break lines 
have been sampled with a great density. For example, the number of 
points contained in these lines for the Uppland area is about 1,750 
while the total number of points produced by the two 40m grids is only 
3,638. To give another example, for the data set for the area of 
Sohnstetten, the total number of points provided by these break lines 
and form lines is about 1 ,550, while that provided by the 20m grid is 
only 1,716. Therefore, during the process of triangulation, about 150 
points from the form and break lines for each area were filtered out 
automatically by the triangulation program itself because they were 
considered to be duplicated.

The composite data sets should be providing a higher fidelity in terms 
of representing the topography of the terrain surface than the 
regularly gridded data sets. That is to say, the accuracy of the DTM 
formed from a composite data set should be higher than that resulting 
from the use of regular gridded data only. The results from each of 
these composite data sets are given in Tables 9.10 and 9.11. The 
diagrammatic representation of these test results is shown in 
Figs.9.12(b), (d) and (f). The occurrence frequencies of the large 
residuals for each of the test areas are also recorded and given in 
Tables 9.12 and 9.13.
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Table9.10 Accuracy results from the composite data sets
for the Uppland area

Grid No. Data Set RMSE SD MEAN +Enax -Qnax
Grid 1 + 2 28.28m G + P 0.64 0.59 0.24 2.41 -5.78

40m Grid 1 + P 0.67 0.66 0.10 3.33 -6.42
56.56m G 1 0.71 0.70 0.10 2.69 -6.42
Points 2 0.71 0.71 0.09 3.29 -6.51

40ra Grid 1
FI 0.84 0.83 0.10 3.15 -5.91

80m Grid F2 0.82 0.81 0.11 4.68 -5.88
Points B1 0.79 0.78 0.13 3.19 -6.47

B2 0.79 0.78 0.12 3.74 -6.43
40m Grid 2 + P 0.72 0.63 0.35 2.41 -5.33
56.56m G 1 0.77 0.70 0.32 3.48 -5.75

+
Points 2 0.74 0.67 0.31 2.70 -5.33

40m Grid 2
FI 0.86 0.82 0.24 4.11 -6.52

80m Grid F2 0.83 0.77 0.31 3.46 -5.42
Points B1 0.83 0.77 0.30 3.76 -5.36

B2 0.83 0.77 0.32 4.19 -5.16

Where, the term points refers to the feature specific points and those 
located along form lines and break lines. Also G=Grid and P=Points. The 
same annotations will be used later in other tables.
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Table 9.11 Accuracy results from the composite data sets 
for the Sohnstetten and Spitze areas

Test Area Data Set RMSE SD MEAN +Emax -Qnax
20m Grid + P 0.43 0.40 -0.15 1.68 -2.55
28.28m G 

+
1 0.55 0.53 -0.14 2.00 -3.63

Points 2 0.58 0.56 -0.13 2.40 -3.30
Sohnstetten F1 0.79 0.78 -0.15 2.82 -3.00

40m Grid 
+

F2 0.78 0.77 -0.15 2.90 -4.34
Points B1 0.78 0.77 -0.14 3.23 -3.75

B2 0.78 0.76 -0.15 2.67 -4.63

F1
1 1.08 1.08 -0.12 5.12 -5.19
2 1.09 1.07 -0.22 3.37 -5.19

F2
1 1.09 1.07 -0.19 3.79 -6.27

56.56m 2 1.09 1.08 -0.18 4.45 -5.51
Grid

B1
1 1.07 1.06 -0.16 4.59 -5.59

+ P 2 1.10 1.08 -0.20 3.73 -4.98

B2
1 1.09 1.07 -0.23 4.38 -5.22
2 1.12 1.12 -0.10 5.43 -3.73

10m Grid +P 0.16 0.14 0.07 0.87 -0.79
14.14m G

4.
1 0.17 0.16 0.07 0.88 -2.71

Points 2 0.17 0.15 0.07 0.88 -2.66
Spitze FI 0.175 0.16 0.05 0.88 -2.38

20m Grid F2 0.18 0.17 0.06 0.88 -2.66
Points B1 0.174 0.16 0.06 0.88 -2.27

B2 0.174 0.16 0.06 0.88 -2.72
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Table 9.12 Occurrence frequencies of large residuals 
from the composite data sets for the Uppland area

Grid Data Set
> 2 * SD > 3 * SD > 4 * SD

No. % No. % No. %
Grid 1 + 2 28.28m Grid 101 4.3 18 0.8 4 0.2

40m Grid + P 92 4.0 16 0.7 7 0.3
56.56m G 

+
1 102 4.4 20 0.9 5 0.2

Points 2 104 4.5 24 1.0 4 0.2

40m Grid 1
FI 112 4.8 36 1.5 10 0.4

80m G 
+

F2 120 5.2 32 1.4 9 0.4
Points B1 116 5.0 30 1.3 5 0.2

B2 114 4.9 29 1.2 5 0.2
40m Grid + P 110 4.8 18 0.8 4 0.2
56.56m G

4.
1 115 5.0 28 1.2 5 0.2

Points 2 119 5.1 21 0.9 2 0.1

40m Grid 2
FI 111 4.8 24 1.0 9 0.4

80m G F2 124 5.3 30 1.3 5 0.2
points B1 133 5.7 26 1.1 3 0.1

B2 115 5.0 31 1.3 12 0.5
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Table 9.13 Occurrence frequencies of large residuals 
from the composite data sets for the Sohnstetten and Spitze areas

Area Fbfa Oof > 2

ii1 Q 
1 W 
1l * > 3 * SD > 4 * SD

No. % No. % No. %
20m Grid + P 109 5.8 26 1.4 9 0.5
28.28m G 1 107 5.7 18 1.0 5 0.3
Points 2 104 5.5 31 1.6 8 0.4

Sohnstetten F1 122 6.4 24 1.3 0 0.0
40m Grid F2 125 6.6 24 1.3 3 0.2
Points B1 110 5.8 30 1.6 6 0.3

B2 105 5.5 28 1.5 6 0.3

F1
1 130 6.3 24 1.3 7 0.3
2 112 6.3 24 1.3 5 0.3

F2
1 128 6.3 22 1.3 4 0.3

56.56
m

2 97 6.3 26 1.3 6 0.3
Grid

B1
1 116 6.3 36 1.3 13 0.3

+ P 2 125 6.3 18 1.3 3 0.3

B2
1 129 6.3 30 1.3 4 0.3
2 107 6.3 30 1.3 9 0.3

10m Grid + P 101 4.7 39 1.8 16 0.8
14.14m G 1 84 4.0 30 1.4 8 0.4

+
Points 2 87 4.1 33 1.6 15 0.7

Spitze
F1 96 4.5 33 1.6 9 0.4

20m G F2 97 4.6 33 1.6 7 0.3
Points B1 88 4.2 39 1.8 16 0.8

B2 96 4.5 31 1.5 7 0.3
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9.6 Analysis of test results

The test results have been given in the previous section and some 
analysis will be given in this section. This will include a descriptive 
analysis of the accuracy results obtained from both the regularly 
gridded data sets and the composite data sets; a regression analysis of 
the obtained accuracy figures; and a descriptive analysis of the 
occurrence frequencies of large residuals for these different data sets.

9.6.1 Descriptive analysis of the accuracy results

(1 )• Analysis of the accuracy results for the Uppland area

From Table 9.6 giving the accuracy results obtained from the regular 
gridded data sets for the Uppland area, it can be seen that the mean 
values and the RMSE values of the DTM residuals obtained from the first 
40m grid for the Uppland area are quite different to those from the 
second grid, but the SD values are quite similar. This might suggest 
that there is a systematic shift between these two data sets. The value 
of this shift is about 0.30m. Evidence showing such a trend is also 
given by the mean resulting from the grid data set with the 28.28m 
interval which was generated by adding the two 40m grids together. This 
gives a value of 0.26m which is almost equal to the average of the two 
means (0.10m and 0.44m) resulting from the two 40m grids.

For the composite data set for the Uppland area, the accuracy results 
are given in Table 9.10. From this table, again, a constant shift 
between the two 40m grids can be observed. However, the value of the 
shift becomes smaller - about 0.2m - in this case, when the feature- 
specific points are added to the gridded data. The amount of reduction 
is about 0.1m. Another interesting point arising from this change is 
that the value of the mean resulting from the second 40m grid is 
reduced by 0.12m. By contrast, the mean resulting from the first 40m 
grid is increased very little by 0.03m (which is insignificant).

Also it can be found from inspection of Figs.9.12(a) and (b) that the 
RMSE and SD values increase with an increase in the sampling interval. 
In both cases, the trend looks very linear. The only difference between 
these two trends is that the speed of decrease in accuracy is faster in 
the case of regular gridded data than when composite data is used.

It is also of interest to notice that, in this test, the accuracy 
figures from the data sets measured in the forward direction are almost 
the same as those of the corresponding data sets measured in the 
backward direction.
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(2). Analysis of the accuracy results
for the Sohnstetten and Spitze areas

The accuracy results from the gridded data for the Sohnstetten area are 
listed in Tables 9.7 and 9.11. From Table 9.7, it can be found that, in 
general, the mean error values increase with the increase in the grid 
interval. The magnitudes of the extreme errors (i.e. the positive and 
negative maximum errors) also show a similar tend.

The reason for these phenomena may be found from the test area itself. 
It is not difficult to notice that the area covered by the check grid 
lies, in the most part, along and on either side of a ravine. It is not 
difficult to imagine that, with the increase in the grid interval, the 
DTM surface which is constructed linearly from the gridded data has 
been lifted up over the ravine area. If this is the case, then the 
magnitude of the errors (positive in this case) in the points lying on 
the DTM surface will increase. The consequence is an increase in the 
magnitude of the positive maximum errors. Also in this area, a small 
part covers a ridge line. As in the case of the ravine area, the DTM 
surface covering this small area will be lowered when a larger grid 
interval is used. This would result in an increase in the magnitude of 
the negative errors, and thus of the maximum value. However, since most 
of the area lies on either side of the ravine line, so the increase in 
the sum of the positive errors will be far larger than that of the 
negative errors. Thus the resulting mean value increases in a positive 
sense with the increase in the grid interval.

Fig.9.1 3 is the plot of the DTM errors for the 20m grid data for the 
Sohnstetten test area. The size of a circle indicates the magnitude of 
the DTM error. The red circles indicate the positive errors and the 
blue circles denote the negative errors. From this diagram, it can be 
seen clearly that the positive errors are almost all located along the 
bottom of the ravine while the largest negative errors are located 
along the ridge lines (e.g. see top left on the diagram). Ihis diagram 
provides a very strong back up to the analysis given above. Another 
strong evidence to back up the reasoning given above is provided by the 
fact (see Table 9.11) that, after adding the points measured along the 
ravine lines and ridge lines, the magnitude of the extreme errors is 
significantly reduced and the mean value is kept almost constant.

It is of interest to note that the two extreme values of the DTM errors 
for the grid data for the Sohnstetten test area appear very large when 
the grid interval reaches a value of 56.56m. The values for the maximum 
errors range from 10.52m to 15.08m. These values are larger than 0.67 
per mil of the flying height and about 10% of the height range. At the 
first look, they seem enormous. However, they can by no means be 
considered as gross errors and they are due to the inherent nature of
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Fig.9.13 Distribution o-F DTM errors for the 20m gridded data 
for the Sohnstetten area 

(red circles: positive errors; blue circles: negative errors)
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the terrain surface in the test area. Strong evidence to back up this 
point is that, after the addition of the form lines and break lines for 
this area, the extreme values are significantly reduced to a level of 
about 5m. The theoretical analysis which will be described in Chapter 
12 will also show that it is still possible for such large extreme 
values to occur. Similarly, the large errors for the grid data for the 
Spitze area - amounting to 0.4 per mil of flying height and 5% of the 
height range - can also be expected to occur.

From the analysis conducted above, it can be seen that, in the 
estimation of the accuracy of a DTM which is derived from the data 
acquired by regular grid sampling (i.e. in the case when these lines 
are not included), the proportion of the grid cells across which form 
lines and break lines may pass should be taken into serious consi­
deration. Further discussion of this matter will be given in more 
detail later in this thesis where a mathematical model for DTM accuracy 
prediction will be described.

As expected, the trend that the RMSE and SD values will increase with 
an increase in the grid interval can be seen clearly from the results 
for both the Sohnstetten and the Spitze areas. The rate of increase in 
the RMSE and SD values is again greater in the case of gridded data sets 
than for composite data sets. Also it is faster for the Sohnstetten 
area than for the Spitze area. The trend is also more or less linear.

Another point which needs to be mentioned here is that the accuracy 
results from the two 40m grid data sets measured in a forward mode are 
a little different to those resulting from the corresponding two data 
sets measured in a backward mode. However, after the addition of the 
form lines, these differences disappeared.

9.6.2 Analysis of the occurrence frequency of large residuals

In this experiment, the occurrence frequencies of large residuals have 
also been computed and the results are given in Tables 9.8, 9.9, 9.12 
and 9.13. The purpose of recording these values is to provide informa­
tion about the distribution of DTM errors since it has been found that 
the distribution of DTM errors may vary with the type of terrain and 
the pattern of data points. Some display an approximately normal 
distribution but others do not (Torlegard et al, 1986). The simple 
histograms included in Figs.9.14(a) and (b) are two examples which 
prove these two points since they not only show different distributions 
but also show the differences in the frequencies of error distribution. 
Since it is still difficult to visualize the distribution of the DTM 
errors, it is, therefore, necessary to undertake a detailed examination 
of the occurrence frequencies of large residuals.
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The occurrence frequencies of large residuals may also vary with 
terrain type and with the pattern of the data points. One would expect 
that the occurrence frequencies of large residuals will be much higher 
for broken terrain than for smooth terrain, if the data for the break 
lines and form lines are not used for surface reconstruction.

These large residuals have been classified into three classes, i.e. 
those larger or equal to 2 times SD (standard deviation), 3 times SD 
and 4 times SD. From the test results obtained from this study, it was 
found that the frequency of the residuals larger than 2 times SD is 
smaller than 7.0%. For those residuals larger than 3 times SD, it is 
2.0%. Finally, the frequency figure is much smaller than 1.0% for those 
errors larger than 4 times SD in all cases, except for the gridded data 
set of Spitze area where terrain discontinuities exist.

Therefore, from this series of tests, it can be stated that the vast 
majority of DTM errors are smaller than 4 times SD (the standard 
deviation). Comparing this with the normal distribution, it can also be 
found that the probability with which DTM errors fall within the range 
from -4xSD to 4xSD from the mean is very approximately equal to the 
probability with which random errors of normal distribution fall within 
the range of 3 times the corresponding SD. This is a very important 
conclusion for the development of mathematical models for DTM accuracy 
prediction which will be discussed later in this thesis.

9.6.3 Regression analysis of the accuracy results

As stated previously, the main purpose of this experimental test is to 
obtain information about the general relationship between sampling 
interval and the accuracy of the resulting digital terrain model. A 
discussion about the general impression given by the results has been 
given in the previous section (9.6.1). In this section, a regression 
analysis will be carried out to obtain some quantitative results. The 
procedure used in this study is as follows:

i). First of all, a mathematical model is selected based on experi­
ence. Thus in practical terms, the selected model is usually an 
empirical model.

ii). Then the experimental test results are used to compute the 
parameters (coefficients) of this model.

iii). Finally, the adequacy of this model is examined by the value of 
its correlation coefficient and/or through variance analysis.

The mathematical model used in this analysis is as follows:
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VAR(DTM) = a2.VAR(PMD) + b.(Dx.tanA)2 (9.1)

Where, a and b are two coefficients; VAR(PMD) denotes the variance of 
PMD (the photogrammetrica 1 ly measured data); A refers to the typical 
slope angle in the area; Dx is the sampling interval (the grid 
interval); and VAR(DTM) denotes the variance of the resulting DTM. This 
is, in fact, a model which is similar to that suggested by Ackermann 
(1979).

It can be seen that, for the same data set, the first term of the right 
side of Equ.9.1 is a constant; and b.tan2A will also be a constant for 
the same area. Therefore, in the case of this study, this model can 
simplified as follows:

VAR (DIM) = c + d.Dx2 (9.2)

where c and d are the coefficients. The regression results are shown in 
Table 9.14.

For the Uppland area, due to the constant shift between two 40m grids, 
the SD values were used instead of the RMSE values. For the accuracy 
results for the Spitze and Sohnstetten areas, the mean values of the 
residuals are comparatively small, therefore, the SD values are almost 
equal to the RMSE values. Thus, either of these two values will do. 
Actually, the RMSE values have been used in this analysis.

Table 9.14 Regression results for the coefficients "c" and "d"

Test Area Data Set c d r

A. Uppland
Gridded 0.2575 0.0001775 0.983

Composite 0.3335 0.0000459 0.953

E. Sohnstetten
Gridded -0.8269 0.0019505 0.990

Composite 0.0253 0.0003719 0.999

F. Spitze
Gridded 0.0240 0.0002749 0.955

Composite 0.0251 0.0000151 0.890

where, r is the correlation coefficient.

By substituting the value of VAR(PMD) into Equ.(9.1), then the value of 
the coefficient "a" can be obtained for each of the different test 
areas. The values of "a" should lie in between the values 0.0 and 1.0. 
The reason is very obvious, in that, if any parameter in the second 
term on the right side of Formula (9.1) is zero, then this term will be
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zero. In which case, the errors in the DTM points are simply propagated 
directly from the source data points. In this case, the DTM height is 
the mean (maybe weighted) of the reference points which have been used 
for interpolation. The accuracy of the mean value is, of course, higher 
than the accuracy of the reference points. Thus "a" should lie within 
the range 0.0 to 1.0.

Table 9.15 Regression results for the coefficient "a"

Uppland Sohnstetten Spitze
Gridded 0.7574 1.9365
Composite 0.8620 0.9990 2.8228

It was found that this model is more or less suitable for the results 
from the data sets of the Uppland area and the composite data set of 
the Sohnstetten area which are set out in Table 9.1 5. However, the 
results for the gridded data set of the Sohnstetten area shew that the 
value of the variance of the DTM errors from that data set is propor­
tional to the sampling interval (grid cell in this case) to a power 
greater than 2. Of course, the results from the regression process are 
very sensitive to even a small variation. However, in any case, the 
results obtained from the gridded data set for the Sohnstetten area 
strongly indicate that quite different mathematical models should be 
used for gridded data sets and composite data sets.

It would seem that the results from the data sets for the Spitze area 
indicate that this model does not fit the experimental data. One of the 
reasons could be that too few sampling intervals were used for the 
analysis, therefore the results which were obtained are very 
unreliable.

Of course, if one likes, one can try different mathematical models to 
see how will they fit these test results. However, this is not the 
primary objective of this project. Realistically, even if a 
mathematical model does fit the practical data very well, it does not 
necessarily mean that this model expresses the fundamental or inherent 
relationship between the variables under investigation. On the other 
hand, a model which does not fit a specific set of experimental data is 
not necessarily inadequate. Thus, as has been discussed in Chapter 2, 
for a particular mathematical model, the important thing which one 
should do is to estimate how wrong it is instead of just rejecting it. 
Therefore, for the time being, the only conclusion which can be reached 
is that the model expressed by Formula (9.1) does apply in some cases 
but not always. Further discussion about this matter will be given in 
Chapter 12 where a deeper investigation into the mathematical models
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which can be used for DTM accuracy will be described.

9.7 Conclusions

From the experimental tests described in this chapter, the following 
concluding remarks can be made:

i). The accuracy of a DTM formed from photogrammetrica 1 ly measured 
data is highly correlated with the sampling interval (grid 
interval) if only gridded data is used.

ii). When feature-specific points are added to the data set, the 
accuracy of the DTM can be improved. This improvement is greater 
if the sampling interval is large. With a small sampling 
interval, this effect may not be significant.

iii). Large residual errors do occur but the occurrence frequencies of 
these residual errors being greater than 4xSD is usually very 
small. With the inclusion of feature-specific points (including 
points measured along break lines and form lines), the magnitude 
of large residuals can be reduced. If the area has many break 
lines and terrain discontinuities, this reduction could be 
significant.

iv). It was also found that the accuracy of DTMs is correlated with 
the slope angle of the terrain surface. In those areas with 
steeper slopes, the RMSE and SD values increase with a faster 
speed.

v). The accuracy results obtained from two data sets of the same 
area may be quite different, even if the sampling interval is 
the same for both of them. Therefore, it is impossible to be 
definite about the accuracy value which can be obtained from a 
data set employing a given sampling interval. However, an appro­
ximate value or a range of values can be given for the accuracy.

In this chapter, an experimental test deliberately designed to establish 
the variation of DTM accuracy with sampling interval has been presented. 
The results of this test will be used to validate the mathematical 
models developed in this project which will be presented in Chapter 12. 
As has been described previously, the scale of the aerial photography 
used in this test ranges only from 1 :4,000 to 1 :30,000. In the next 
chapter, an experimental test on the accuracy of the DTMs derived from 
the data measured from the space photography taken from the Metric 
Camera will be presented as an extension of this study.
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Chapter Ten

Accuracy of the DflMs Derived from Metric Camera Photography

10.1 Introduction

In Chapter 8, the first of a series of tests on DTM data acquired 
through photogrammetrie measurement was reported upon. This was 
concerned with data acquired using digital correlation (i.e. image 
matching) techniques and in accordance with the characteristics of this 
data, the tests and discussion concentrated on the matter of data 
filtering and gross error detection with the objective of improving the 
accuracy of the measured data. In Chapter 9, an experimental investiga­
tion into the accuracy of the DTMs derived from source data acquired 
from aerial photography using standard manual photogrammetrie methods 
of measurement based on the use of an analytical plotter has been 
presented.

In this chapter, a further test of the accuracy of a DTM, in this case 
derived from space photography, will be described. In this context, as 
has been pointed out in Chapter 4, only a few types of space 
photography are in experimental use. In this particular project, the 
accuracy of a DTM derived from the data sets acquired from one of these 
systems - the Metric Camera (MC) - has been investigated to extend the 
range of the photographic scales and flying heights over which DTM data 
accuracy can be obtained and evaluated. In addition, a different method 
of measurement - dynamic profiling - has been employed, again with a 
view to extending the range of data acquisition methods being evaluated.

10.2 Background to this study

10.2.1 Background to Metric Camera Experiment

The main objective of the Metric Camera (MC) experiment was to obtain 
high resolution space photography for topographic and thematic mapping 
and for map revision at scales of 1 :50,000, 1:100,000, 1 :250,000 and 
smaller, since it was believed that there is a great demand for such 
maps in both developed and developing countries. In developed 
countries, there is a need for continuous updating (revision) of such 
maps over a cycle of 2 to 3 years, which is often difficult to 
implement by conventional means. In some developing countries, 
especially those in South America and Africa, many countries do not 
have anything like complete coverage even at these small scales. As a 
result, the two main space cameras - the Metric Camera (MC) and the 
NASA Large Format Camera (LFC) - have been used extensively to carry 
out experimental tests using a wide variety of techniques to produce
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maps by both conventional analogue and digital photogrammetric 
instrumentation and techniques.

Since the distribution of MC photographs in January 1984, a lot of work 
has already been carried out for many different purposes such as topo­
graphic mapping, orthophoto production, etc. However, it is important 
to test the accuracy of digital terrain models derived from MC photo­
graphy in order that the effectiveness, flexibility and economy of 
applying the MC photography to produce DTMs and other related products 
can be fully evaluated.

10.2.2 Previous work

Some work in this area has already been done by one or two investi­
gators, e.g. that carried out by Ackermann and Stark (1985), who have 
presented their test results at the Metric Camera Workshop held at 
Oberpfaffenhofen in 1985. Two different pairs of MC photographs 
covering an area of f luvio-glacial morphology with height variations 
from 360m to 600m, located in South Bavaria in West Germany, were used 
and a DTM produced from each pair. The forward overlap was 80%. In 
fact, only a small area of 5km x 25km was measured with a Zeiss 
Oberkochen Planicomp C-100 analytical plotter. Each model was 
absolutely orientated using 10 control points. These control points 
were well-defined terrain details such as the crossings or junctions of 
highways or rivers, etc. The planimetric and height coordinates of 
these points were interpolated graphically from the 1:25,000 scale West 
German topographic maps covering the test area. The influence of Earth 
curvature was automatically corrected for during the measurement of the 
stereo-mode Is with the analytical plotter. The mean y-parallax after 
relative orientation was about 8um and the mean of the residual errors 
after absolute orientation was 11m in the X and Y, and 15m in the Z 
direction.

The elevation data were acquired in the form of a regular grid with a 
sampling interval of 100m. A total of 12,500 (50x250) grid points were 
measured, and a futher 160,000 DTM points were interpolated from these 
12,500 measured points using the linear prediction method implemented 
in the SOOP package. By comparing the two sets of DTM data, a relative 
accuracy of 22m was obtained. A further 100 spot heights taken from the 
1 :25,000 scale topographic maps were used as check points and the 
result of comparing the DTM elevation values with those of the check 
points gave a root mean square error (RMSE) of about +24m. The maximum 
value of the residuals was 75m.

Elmhorst and Muller (1988) also carried out an experimental test on the 
accuracy of DTMs derived from a pair of Metric Camera photographs with 
B:H = 0.3. Their test area was a hilly area located near the Bavarian
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Alps in West Germany. The size of the test area was about 6.3km x 
5.6km. The data was measured using a Zeiss Oberkochen Planicomp C-100 
analytical plotter. The composite sampling method was used. The 
interval for the grid was 100m. In total, 3,648 (64x57) grid nodes were 
measured. In addition, a total of 208 surface-specific points and 
points lying on surface-specific lines were also measured. The TASH 
program which was developed in the University of Hannover was used for 
the interpolation of the DTM data. The positions and elevations of 92 
spot points were digitised from the 1:10,000 and 1:25,000 scale 
topographic maps and used as check points, against which the elevation 
values derived from the DTM points were checked. An RMSE value of 
jf42.3m was obtained. The corresponding maximum error was 103.5m.

These results cure substantially much poorer than those of Ackermann and 
Stark, whose RMSE value for check points represents 24/250 = 0.096 per 
mil of H. By contrast, Elmhorst and Muller's RMSE value of +42.3m 
represents 42.3/250 = 0.17 per mil of H. Nevertheless both sets of RMSE 
values lie well within the range of 0.1 to 0.2 per mil of H which 
certainly represents a most acceptable range of RMSE values for heights 
interpolated from a photogrammetrically measured set of elevation 
values.

Obviously the results of the tests reported on above are interesting 
but they also have a somewhat limited applicability because the inves­
tigators have selected and tested only a small area - 5km x 25km in the 
case of Ackermann and Stark and 6.3km x 5.6km in the case of Elmhorst 
and Muller. In order to obtain more reliable information for practical 
production, a complete Metric Camera stereo-model was profiled and a 
very large area has been tested in this present study.

10.3 Die Sudan test area

The model used for this new test covers an area of 100km x 180km in the 
Red Sea Hills area of Sudan. This is a predominantly hilly and 
mountainous area with a height variation from 300m to 3,000m above sea 
level. This area can be considered as one of the most undeveloped areas 
in Sudan so that the cultural features are at the lowest level of 
density. Therefore only topographic features such as the tops of hills, 
the junctions of river beds, etc. could be used as control points for 
absolute orientation.

The whole model covers a complete sheet together with parts of six 
other sheets of the 1 :100,000 scale topographic map of the Sudan. In 
this study, only the data covering 3 of these sheets (136, 163 and 164) 
were used for testing due to the fact that no suitable check points 
were available for the rest of the area.
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The area used for this testing has also been divided into several sub- 
areas (Fig.10.1) according to relief range for the purpose of the test 
since the height varies greatly from place to place. The main morpholo­
gical parameters for each of these sub-areas are given in Table 10.1.

Table 10.1 Relief Parameters for the Red Sea Hills Test Areas

Area Contour Range Slope Range (°) |Typical Slope(°)
A136 540m —  960m 1 —  39 < 5, 10
a  36 530m —  1,200m 1 —  39 < 5, 15
D136 620m —  1 ,240m 2 —  40 about 16

D36/B63 550m —  720m 1 —  5 < 5
A163 490m —  600m 1 —  15 < 5
B163 550m —  920m 2 —  30 about 10
a  63 490m —  920m 1 —  30 about 12
D163 530m —  1,120m 5 —  35 about 20
A164 660m —  1,040m 1 —  30 about 12
B164 720m —  1,560m 5 —  40 20 -24
C164 650m —  1 ,040m 1 —  35 about 15
D164 780m —  1 ,360m 5 —  40 about 24

Area A136 is, in general, a very flat area. However, in the middle of 
this area is a small mountainous and hilly area. The slope varies from 
very small to about 40 degrees. Most of the area of C136 is also very 
flat, the typical slope being less than 5 degrees. The left half of 
area D136 is mountainous with a typical slope of about 16 degrees; 
whereas the right half is a less hilly area in which the height 
variation is much smaller. Area D36/B63 actually comprises two adjacent 
areas occuring on Sheets 136 and 163. This is a very flat area with a 
few hills. Also area A163 is an extremely flat area, with only a few 
hills. However, B163, C163 and D163 are mountainous and hilly areas 
with much larger height variations. The area covered by Sheet 164 is, 
in general, very mountainous, the height variation in this area ranging 
from about 650m to 1,600m. The largest slope is about 40 degrees. Uiis 
area is also divided into 4 sub-areas. Among them, A164 is the flattest 
area and D164 is the steepest one.
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10.3.1 DTM source data

.from Metric Camera photography

The source data was measured directly in the stereo-model by a 
professional photogrammetric operator and was made available to the 
present author by courtesy of his reasearch colleague - Dr. A. El- 
Niweiri. The stereo-model was formed by two MC photographs - Nos.11 0 
and 111. This stereo-pair has also been used for other test work 
carried out in the Department, e.g. into the planimetric accuracy of 
topographic features, the accuracy of orthophotographs, etc. (see El- 
Niweiri, 1988).

The source data was measured on a Kern DSR 11 analytical plotter at the 
University of York. The whole area was measured at two different times. 
Profiling in a dynamic mode was used instead of a regular grid being 
measured in a static mode, which is perhaps the more popular method. A 
method of so-called "distance-controlled profiling" was used to record 
the data points. A distance interval of 400m was used. This value is 
the maximum distance in space (essentially a vector) for the measuring 
marks to move from the previously measured point to the next. In 
practice, therefore, in hilly areas, the recorded points are much 
closer in the XY plane than this value of 400m, although in flat areas, 
the interval between two recorded points will be close to this value. 
On this model, 182,000 points were measured and recorded in 52 
profiles. This took a solid 40 hours of measurement to complete. The 
distribution of data points is as shown in Fig.10.2.

The detailed information about the orientation of the stereo-model has 
been described by El-Niweiri (1 988) in his Ph.D. thesis. For 
convenience, a brief quotation is given here. "The inner orientation 
was carried out using an affine transformation. The largest residual at 
the fiducial marks in both the x and y directions was 4um. After 
relative orientation, the standard deviation of all the measured 
parallaxes was 10um. Absolute orientation was carried out with 14 
control points, which are well distributed over the model area. The 
RMSE values in easting, northing and height which have been obtained at 
the control points were _+18m, +18m and +30m respectively."

10.3.2 Check points

For check points, much larger scale photogrammetric data is highly 
desirable in order to obtain a very reliable result. However, it is 
very difficult to do this because the area covered by a single MC 
stereo-pair is so large. Therefore, as in the case of the two previous 
West German tests mentioned above, it was decided to use contour data 
from existing maps instead. That is, a number of points located along 
the contour lines were digitised from the existing photogrammetrically 
produced topographic maps for the area and these were then used as
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check points for the accuracy testing of the DTM.

The contour maps available in the Department were the 1:100,000 scale 
topographic maps of the area with a contour interval of 40m in the 
mountainous areas, 20m in flatter areas, and with 10m complementary 
contours (form lines) for very flat areas. These maps were compiled 
from 1:40,000 scale wide angle and 1 :60,000 scale super-wide angle 
aerial photography, both taken from a flying height (H) of 5,500m. 
Various types of analogue photogrammetric plotter - Wild A7, B8 and 
Kern PG-2 - were used for the map compilation which was carried out by 
the UK Directorate of Overseas Surveys as part of a British aid 
programme to the Sudan. The details have been discussed by Dr. El- 
Niweiri (1988) in his Ph.D. thesis.

According to the discussion given by Dr. El-Niweiri (1988), averagely, 
the accuracy of contouring is about +_4.3m. These values of accuracy 
for the check points were considered as being quite acceptable for use 
in a test involving MC photography, since the standard deviation of the 
measuring errors even for stationary (static) measurement could exceed 
_+20m (Togliatti and Moriondo, 1985; Elmhorst and Muller, 1988) and thus 
the accuracy of the profile data measured in the dynamic mode employed 
in this case might well exceed +20m.

The check points used in this study were, therefore, digitised from the 
Sudanese 1:100,000 scale topographic maps. During the process of 
digitisation, an attempt was made to ensure a relatively even distri­
bution of the check points. Fig.10.3 shews an example of the resulting 
distribution for the C163 area. The numbers of check points used in the 
tests for different areas are given in Table 10.2.

10.4 Test results and the analysis

The source data was processed using the PANACEA triangulation-based 
program. Therefore, the points in the profile data were first of all 
triangulated, then the interpolation of the elevations for the DTM 
points took place on the surface constructed from the TIN. Linear 
interpolation within the triangular facets was used for purpose. Hie 
results are shown in Table 10.2, where, as usual, the Emax (maximum 
positive error), -Emax (maximum negative error), Mean (average value of 
the residuals), SD (the standard deviation of the residuals from the 
mean) and RMSE (root mean square errors) are all recorded. The symbol 
"+" before SD and RMSE values has been omitted simply for convenience. 
Actually, in some areas, a couple of residuals larger than 100m 
occured. However, they were considered as gross errors and deleted.

It can be found that all the means are negative, varying from about -7m
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to -42m with an overall average of -21.0m. This strongly indicates that 
there could be either a single overall systematic error or the sum of a 
few systematic errors affecting the results. Actually, such a 
systematic error has also been reported by several other investigators 
carrying out accuracy tests on space imagery. For example, Ackermann 
and Stark (1985) have reported that in their test, a systematic shift 
of 15m was found in the measured elevation values. Also a similar 
experience has been reported recently by investigators at University 
College London (D. Tait, personal communication). This error(s) may be 
due to many different factors, e.g the operator keeping the floating 
marks too far down during operation such as profiling.

'table 10.2 Test results for DTM of the Red Sea Hills area 
derived from MC photographs

Area No.of C.P înax _Emax RMSE Mean SD
A136 82 19.5 -51.5 16.1 -8.8 13.5
a  36 94 10.1 -68.1 27.2 -23.0 14.5
D136 129 68.5 -80.9 25.1 -6.4 24.3
D36/B63 117 24.9 -60.1 25.9 -19.5 17.0
A163 113 31.3 -47.2 18.6 -6.6 17.4
B163 126 69.1 -90.5 29.9 -18.3 23.7
C163 100 18.8 -72.8 44.6 -41.7 16.6
D163 165 42.5 -93.3 42.0 -33.5 25.3
A164 113 33.2 -72.1 35.4 -30.8 17.5
B164 105 60.7 -80.3 38.2 -30.3 23.4
a  64 120 86.5 -75.6 38.0 -32.1 20.3
D164 125 92.7 -99.5 52.2 -26.6 37.2

Overall 1389 92.7 -99.5 34.1 o•CM1 26.8

N.B. "No.of C.P" means the number of check points used for this test. 
The units used for the accuracy figures in this table are metres.

The results given in Table 10.2 were computed after the deletion of 
these gross errors. The RMSE values vary from VI6.1m to +52.2m and the 
SD values from +1 3.5m to V37.2m. The overall RMSE value is +34.1 m and 
the corresponding SD value is +26.8m.
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In certain mainly flat areas such as A136 and A163, the resulting RMSE 
values are even smaller than j+20m. These results are very good indeed, 
especially when one considers the fact that the source data points were 
measured in a stereo-model formed from a pair of space photographs 
taken from a flying height (H) of over 250,000m using the dynamic 
profiling method. Also for two or three other test areas, the resulting 
RMSE values are about +25m. Again, these are still very good results, 
which would be acceptable even with statically measured spot height 
data.

In general, the results obtained from this testing are very reasonable. 
The overall RMSE value is about +0.14 per mil of H. This is well within 
the normal range of the accuracy expected from photogrammetrically 
measured data. The largest RMSE value is about +0.21 per mil of H. This 
value is still quite acceptable. Indeed, all of these figures fall well 
within the figure of 0.3 per mil of H suggested by various 
experimenters with dynamically measured height data as discussed 
previously in Section 5.6.

The poorest results were obtained from area D164. In this area, unlike 
the other test areas where either none or only a couple of large 
residuals exceeded 100m, many large residuals occured exceeding 100m. 
This may be due to the reason that this is an area over which cloud and 
haze were present and therefore the measuring conditions were at the 
poorest level. Another reason why the RMSE value for this area is the 
largest could well be that this is also the most mountainous area with 
the steepest slopes.

This test results show clearly that the standard deviation increases 
with the increase of slope with a very high correlation. On the other 
hand, the root mean square error (RMSE) does not provide so clear a 
conclusion because of the existence of the systematic errors which 
could have resulted from a combination of many different factors. If 
one was to take 10m as the value for a constant shift for these 
results, then a RMSE from +20m to _+35m may be obtained. This test 
result is quite in accordance with the results which have been obtained 
by other investigators; at the lower end, the figures can be regarded 
as very good indeed.

10.5 Concluding remarks

From this intensive test, the following conclusions can be made:

i). In general, the accuracy of the DTM data decreases with the 
increase of slope for the same data sets.
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ii). Some kind of systematic errors are very likely to happen. The 
reason for their occurrence is still not clear and is a matter 
of concern to several investigators. This might be related to 
the fact that a very small shift in the floating mark position 
(i.e. in the x-parallax measurement) will result in a quite 
larger change in the height value due to the very large flying 
height and the narrow base:height ratio.

iii). In general, the accuracy (RMSE) of a DTM derived from the MC 
photography will be in the range from +20m to +35m, depending on 
many factors such as the type of terrain, the control for 
orientation, the skill of the operator, etc. While this will 
certainly not be sufficient for a high accuracy DTM as required 
for example for a civil engineering project, it is still quite 
sufficient for reconnaissance purposes, e.g. for military 
defence purposes, landscape visualization, aircraft flight simu­
lators and the production of contours for small scale topo­
graphic mapping and charting on a regional or national basis.

The discussions carried out in this chapter and the previous chapter 
(Nine) are purely about practical investigations into the accuracy of 
the DTMs derived from photogrammetrica 1 ly measured data. In the next 
chapter, a theoretical discussion will be carried out to see how 
reliable are these accuracy figures derived from the experimental test 
results.
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Chapter Eleven

Effects of Check Points on the Reliability of DTM Accuracy Estimates
Obtained from Experimental Tests

11.1 Introduction

In the previous chapter, some experimental tests have been carried out 
on the accuracy of digital terrain models derived from photogramme- 
trically measured data with different sampling intervals for three test 
areas. In each test, a set of check points was used as the "ground 
truth". Then the points interpolated from the constructed DTM surface 
were checked against the corresponding check points. After that, the 
difference of the two heights (DH) at each DTM point was obtained. 
These errors were used to compute some statistical values such as the 
mean and standard deviation which were used as a measure of DTM 
accuracy. In these circumstances, DH was considered as a random 
variable.

In the case of the experimental tests on DTM accuracy, it is clear that 
the final DTM accuracy figures estimated from the test results - in 
this case, the mean and standard deviation values - are definitely 
affected by the characteristics of the set of check points. To put it 
in another way, it can be said that the characteristics of the set of 
check points which were used as the ground truth in the experimental 
tests have effects on the reliability of the final DTM accuracy figures 
obtained from these tests.

It is obvious that the reliability of the accuracy values estimated 
from an experimental test is also a problem which is of considerable 
importance in DTM accuracy tests since, only if the accuracy values are 
reliable to certain level, can one use the accuracy estimates to 
evaluate the "goodness" of the digital terrain model which has just 
been tested. Therefore, this chapter is an attempt to obtain an insight 
into the effects of the set of check points used in the experimental 
tests on the reliability of the DTM accuracy values estimated from the 
test results.

In this chapter, first of all, the concept of reliability in the context 
of DTM accuracy tests will be introduced and alternative measures for 
this will be sketched. Then, the effects of the characteristics of a 
set of check points on the DTM accuracy estimates will be investigated 
both through a theoretical analysis and by experimental tests.
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11.2 Reliability in the context of DTM accuracy tests

Reliability is a concept which is widely used in engineering and 
industry. It seems pertinent to have a look at how this concept is 
defined and used in these areas before it can be adopted into the 
methodology and context of experimental tests on DTM accuracy.

11.2.1 Hie concept of reliability in engineering and industry

Due to the many differing operational requirements and varying environ­
ments existing in engineering and industry, the concept of reliability 
may mean quite different things to different people. Nevertheless, a 
generally acceptable definition given by the B.S.I. (British Standards 
Institution) is as follows (Dummer and Winton, 1986):

"Reliability is the characteristic of an item expressed by 
the probability that it will perform a required function 
under stated conditions for a stated period of time."

For example, suppose the life of the bulbs made by a lamp manufacturer 
is declared to be 1,000hrs (which is the stated period of time required 
by the above definition), then the reliability is 98% if one tested 100 
bulbs of this make and found that 2 of them had shorter lives than 
declared.

This might belong to one of the simplest examples. In practice, the 
reliability of an engineering system or structure is much more 
complicated. However, the detailed discussion of this matter lies 
outside the interest of this thesis. What is intended here is to adopt 
the concept of reliability into the context of DTM accuracy estimates.

11.2.2 Reliability in the context of DOM accuracy tests

Obviously, in the context of experimental tests on the accuracy of a 
digital terrain model, there is nothing which is concerned with "a 
required function under stated conditions for a stated period of time". 
Instead, what is of concern in this context is "with what probability 
are the estimated accuracy values (i.e. the mean and standard deviation 
values) likely to be correct" or "to what degree of accuracy will the 
accuracy results have been estimated". In any case, it is an obvious 
fact that the DTM accuracy results obtained from experimental tests are 
not absolutely certain and one can accept these results only to a 
certain confidence level. Therefore, the concept of reliability can be 
adopted into this context since reliability is concerned only with 
uncertainty.

In some sense, the concept of reliability in this context might be
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defined as the degree of accuracy to which the DTM accuracy results 
have been estimated, or as the probability with which the DTM accuracy 
estimates are correct.

Of course, the reliability of DTM accuracy estimates in the context of 
experimental tests may be affected by several factors such as the 
capabilities of the person who has undertaken the work; the program by 
which the accuracy results have been calculated and recorded; and the 
characteristics of the set of check points which have been used as 
ground truth against which the DTM points have been checked.

It is obvious that, the accuracy results will be unreliable if the 
program which has been used to compute the accuracy figures is not 
correct. Similarly, if the person whose duty is to carry out the test 
and to record the accuracy figures is careless, then the accuracy 
results will also be unreliable or incorrect. However, in this study, 
it is assumed that these two factors are absolutely reliable. 
Therefore, only the effect of certain characteristics of the set of 
check points on the reliability of DTM accuracy estimates will be 
considered.

A set of check points can be characterised by three main parameters, 
namely, their accuracy; the sample size (i.e. the number of points in 
the data set); and the location and distribution of the data points. 
Therefore, the main discussion in this chapter will be about how each 
of these three main parameters of a set of check points affect the 
reliability of DTM accuracy estimates in the context of experimental 
tests.

11.2.3 Alternative measures of reliability

As one can imagine, a measure is required for the reliability of DTM 
accuracy estimates. There may be two types of measure available. One is 
qualitative (or descriptive) and the other type is quantitative (or 
numerical). For the former, words such as absolutely reliable, most 
reliable, very reliable, quite reliable, fairly reliable, not so 
reliable, not reliable, unreliable, most unreliable, absolutely 
unreliable, etc. can be used. However, in the scientific community, 
such a statement is not acceptable since the definition of such a term 
is usually too loose.

For the quantitative (or numerical) measures, there are three 
alternatives as follcws:

i). One possible measure is to use the absolute values of the 
accuracy of each of the obtained accuracy estimates, e.g. the 
value of standard deviation of the obtained standard deviation
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estimate. Suppose that the estimated standard deviation values 
for the DH accuracy is SD(DH), then such an absolute value may 
denoted as SD(SD(DH)).

ii). Another possible measure is to use a relative value, similar to 
the term "per mil of flying height" which is commonly used to 
state the accuracy of photogrammetrica 1 ly measured data. Thus in 
this case, a percentage value may be quite adequate and 
thoroughly acceptable. For example, the percentage value of the 
ratio SD{SD(DH))/SD(DH) might well be adequate.

iii). The third possible way is to use the concept of "membership" 
used in the context of fuzzy sets. Percentage values between 0% 
and 100% can be used and these values represent the degree of 
reliability to which an accuracy estimate belongs. In this case, 
it is not necessary that the percentage value be obtained fran 
the ratio SD(SD(DH))/SD(DH). Instead, the SD(SD(DH)) value is 
converted into a figure expressing the degree of reliability by 
a pre-defined function.

There is no fundamental difference between the second and the third 
approaches. The second value will become the same as the third if the 
former is stretched into the range of 0% to 100%.

After these introductory discussions and definitions, it is time to 
look into the matter of the effect of check points on the DTM accuracy 
estimates.

11.3 Effect of sample size (number) on the reliability 
of the OTM accuracy estimates

11.3.1 Introduction

The problem of the effect of sample size of the check points on the 
reliability of DTM accuracy estimates may be considered first. More 
precisely, the discussion in this context will be about the sample size 
of the random variable DH. However, in practice, the values for both of 
them are exactly the same, since the height differences are computed 
from the check points. Therefore, the number of check points is used as 
a synonym for the term sample size of the random variable DH.

It seems obvious that the inclusion of more check points in the data 
set shall lead to a more reliable result. So researchers try to use 
large sample sizes in order to ensure that the obtained accuracy values 
will be reliable. For example, in the ISPRS DTM test which was 
conducted by Commission Ill's Working Group No.3 (Torlegard et al,
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1986), more than 1,800 check points were used in each test area. 
However, a large number of check points may sometimes be costly to 
produce and, in scxne cases, even impossible to provide in the context 
of DTM accuracy testing.

Therefore, an important question which arises is whether such a large 
number of check points is necessary. If not, then the obvious follow-up 
question is what is the minimum number of check points required for a 
given degree of reliability for the accuracy estimates." That is to 
say, the important matter in this case is to determine the required 
minimum sample size (number) for the given degree of reliability 
required for the accuracy estimates (i.e. the estimated mean and 
standard deviation values).

Ley (1986) tried to provide a solution to this problem based on his own 
experience and pointed out that "a sample size of 150 points will 
guarantee that the subsequent accuracy statement possesses a standard 
deviation of 10%" (of the estimated standard deviation). This number 
(150 points) is over 10 times smaller than that used in the ISPRS test. 
However, he didn't provide any information about how this figure was 
obtained nor the context in which it occured. Therefore, a theoretical 
deduction may be both revealing and important.

In an attempt to answer the questions raised above, this section 
starts with a theoretical analysis; then the theoretical results will 
be validated with experimental data. The theoretical analysis in this 
study is based on the assumption that the check points are free of 
error.

11.3.2 Effect of sample size on the accuracy of 
the estimated mean value

From statistical theory, it can be found that the sample size required 
for a given degree of accuracy for the accuracy values to be estimated 
depends on the variation associated with the random variable - DH in 
the case of the DTM accuracy tests. The smaller the variation, the 
smaller the sample size that is needed to achieve a given degree of 
accuracy required for the accuracy estimates. For an extreme example, 
if the standard deviation (SD) of the height differences was equal to 
zero, then one check point would be enough no matter how large is the 
test area or the size of the data set. The required minimum sample size 
also depends on the given degree of the accuracy requirement itself. A 
general discussion about the relationship between the sample size, the 
value of SD and the given degree of the accuracy requirement is given 
in the following paragraphs.

Let M be the mean of a random sample of size n from a particular
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distribution, and u be the true value of the random variable. Then the 
ratio

M - u
Y = ----------  (11 .1 )

SD / n1/2

is the standardized variable and has approximately the normal distri­
bution N(0,1), even though the underlying distribution is not normal, 
as long as n (the sample size) is large enough (Hogg and Tanis, 1977).

Suppose the SD of a distribution is known but the value of u (the true 
value of the random variable) is unknown. Then, for the probability r 
and for a sufficiently large value of n, a value Z can be found from 
the statistical table for N(0,1) distribution such that the probability 
that Y will be within the range from -Z to Z is approximately equal to 
r; or mathematically

P(-Z < Y < Z) = r (11.2)

The closeness of the approximate probability r to the exact probability 
depends upon both the underlying distribution and the sample size. When 
the underlying distribution is unimodal (with only one mode) and 
continuous, the approximation is usually quite good for even a small 
value of n (e.g. n=5). If the underlying distribution is "less normal", 
(i.e. badly skewed or discrete), a large sample size is required to 
keep a reasonably accurate approximation. However, 20 or 30 is the 
number which is quite adequate for n in all cases (Hogg and Tanis, 
1977).

Substituting Equ.(11.1) into Equ.(11.2) and rearranging it, the 
following expression can be obtained:

P(M - Z SD/ n1^2 ,< u ( M + Z SD/ n1/2) = r (11.3)

For a given constant S, the percentage of the probability, (100r)%, of 
the random interval M+S including u is called the confidence interval, 
where S is, in fact, the specified degree of accuracy for the mean 
estimate, M in this case. In general, if the required confidence 
interval (100r)%=100(1 -o()%, then the sample size n can be expressed as 
the following according to (11.3):

Zr .SD

n1/2
(11.4)

Where, SD is the standard deviation of the random variable; 
S is the given degree of accuracy; and
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Zr is the limit value within which the values of the random 
variable Y will fall with a probability of r. Its value can be 
found in the statistical table for the N(0,1) distribution.

In the case of a DTM accuracy test, the SD in (11.4) is the expected 
standard deviation of the final DTM accuracy, and an approximate 
estimate is required before starting to measure the check points. The 
value of r is commonly selected as 95%, 98% or even 99%. S is the 
specified degree of accuracy for the mean - M in this case. Equation 
(11.4) can also be rewritten as:

Where, S is the accuracy requirement for the mean; SD is the expected 
standard deviation of the DTM and n is the required minimum sample size 
for the check points with a given confidence level which is expressed 
by Zr. The ratio S/SD expresses the proportion of S to SD; thus it is 
a value which can be used as the reliability of the estimated mean 
value. If it is denoted as R(M), then Equation (11.6) can be rewritten 
as follows:

The diagrammatic presentation of Equ.(11.7) is given in Fig.11.1(a). 
Equ.(11.7) can also be rewritten as follows:

11.3.3 Effect of sample size on the reliability of estimated SD value

Next, the influence of sample size on the reliability of the SD estimate 
should be considered. It can be found that the variance of the standard 
deviation estimated from a sample can be approximately expressed as 
follows (Burington and May, 1970):

The mathematical expression is the following:

<[>(Z) = 1 -oC/2 (11.5)

and the commonly used values are as follows:
Zr=0.95 = 1 -96°; zr=0.98 = 2«326? zr=0.99 "= 2.576.

Zr2 . SD2
n (11.6 )

n (11.7)
R2(M)

R(M) = (11.8 )

VAR(SD(DH)) = VAR(DH) / (2n) (11.9)
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In the context of a DTM set, this would mean that the estimated 
standard deviation of the DTM errors possesses a precision of (1/2n)^2 
times itself if the check points are free of error, or with a precision 
higher than the critical value which will be discussed later. This can 
be expressed as a percentage of the estimated variance. It can be 
written as follows:

1
R(SD) = ------- x 100% (11.10)

(2n)1/2

For example, a sample size of 150, which was given by Ley (1986) as an 
example, will provides a precision of 6% for the standard deviation 
estimate. This value is very close to that presented by Ley (1986). To 
give another example, a sample size of 1,800 will produce a precision 
of 2% for the standard deviation estimate.

Accordingly, if the reliability requirement for the DTM precision 
statement is given beforehand, then the required minimum sample size 
can also be computed from the following:

1
n = --------------------  (11.11)

2 R2(SD)

Where R(SD) is a percentage value. For example, if R(SD)=10% is the 
precision required, then from (11.11), it can be computed that the 
required number for this example is 50. The graphical presentation of 
(11.11) is shown in Fig.11.1b.

11.3.4 Experimental validation

The discussion given in previous two sections is purely theoretical. 
One very important question arising from this discussion is whether 
these criteria can really be applied in practice. To answer this 
question, some experimental tests are necessary.

This has been done using the data sets which had been generated and 
used in the ISPRS test. Detailed information about these data sets is 
given in Chapter 9. Two areas, i.e. Uppland and Sohnstetten, have been 
selected for this experiment because, from the tests which have been 
described in Chapter 9, it was found that the occurrence frequencies of 
large residual errors are very lew for these two areas. Thus, the data 
sets for these two areas are assumed to be very reliable. Therefore, 
only these two have been used.
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The check points were originally arranged in a grid form. For Uppland, 
the grid size is 69x36 = 2,484 points and 20x104 = 2,080 points for 
Sohnstetten. However, not every point was measured because a certain 
number fell in a woodland area or on some other unsuitable feature. In 
fact, only 2,314 grid nodes were measured for Uppland and 1,892 for the 
Sohnstetten area. From these points, several sub-sets were selected. 
These data sets were selected simply by choosing every nth point from 
the data file. The test results are shown in Tables 11.1 and 11.2, 
where the symbol "+" before SD and RMSE values is simply omitted.

Table 11.1 shows the variation in the accuracy of the DTM from composite 
data sets for Uppland with the number of check points used. The SD for 
the Uppland data is obtained from Chapter 9 as +p.592m. According to 
(11.6), if the estimated mean should lie within a range of i0.05m from 
the true value with 95% confidence, then 535 check points are required 
for the purpose. However, with the same confidence level, 134 and 273 
points will give estimated means within a range of +0.1 0m and +0.07m 
from the true value, respectively. From the same table, it can also be 
seen that the results obtained using more than 578 check points are 
very consistent not only for the mean values (varying within a range of 
+0.016m) but also for the SD and RMSE. Below this number, the mean, the 
SD and the RMSE all show bigger variations. When the number of check 
points lies within the range between 257 and 578, the mean varies 
within the range of +0.065m. When fewer than 115 check points were 
used, then the figures of these accuracy parameters become very 
unstable. The results in this table shew more or less similar trends to 
those expressed by Equs.(11.6) and (11.8).

Table 11.2 shews the variation in DTM accuracy with the number of check 
points for the Sohnstetten area. The SD value for the Sohnstetten data 
set obtained in Chapter 9 is +0.401 m. Also according to (11.6), with 
95% confidence, 683, 245, 125, and 62 check points will give the 
estimated means within the ranges of +0.03m, ^0.05m, +0.07m, and +0.10m 
from the true value respectively. From Table 11.2, it can be found that 
the mean varies from 0.153 to 0.173 in a range of 0.02m. At this stage, 
the SD and RMSE values are very stable.

When the number of check points falls within the range 379 to 237, the 
mean varies over a greater range of 0.035 (0.154 to 0.189). Also the SD 
and RMSE values vary over a greater range. When the number of check 
points lies within the range of 211 to 119, the means vary with a range 
of 0.063m (0.144 to 0.207m). When the number of check points lies 
within the range between 106 to 64, the mean varies from 0.085m to 
0.236m. It is 0.068m lower and 0.083m higher than the value 0.0153m 
which is that obtained using all the check points (i.e. 100%) in this 
test. Accordingly, the RMSE and SD values also vary with a greater 
range when fewer check points are used. This test again shows that the
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Equs. (11.6) and (11.10) are appropriate.

Table 11.1 Variation of DIM accuracy with number of check points
for the Uppland the area

Parameters for check points Parameters for DIM accuracy
Fraction % Number RMSE SD Mean

1 / 1 100.0 % 2,314 0.636 m 0.590 m 0.238 m
5 / 6 83.3 % 1,928 0.618 m 0.575 m 0.227 m
3 / 4 75.0 % 1,735 0.61 4 m 0.573 m 0.222 m
7 /12 58.3 % 1,349 0.618 m 0.574 m 0.229 m
1 / 2 50.0 % 1,157 0.615 m 0.574 m 0.222 m

1 / 3 33.3 % 771 0.622 m 0.576 m 0.235 m
1 / 4 25.0 % 578 0.612 m 0.571 m 0.220 m

1 / 5 20.0 % 462 0.592 m 0.566 m 0.175 m
1 / 6 16.7 % 385 0.619 m 0.579 m 0.218 m

1 / 7 14.3 % 330 0.597 m 0.547 m 0.240 m

1 / 8 12.5 % 289 0.587 m 0.545 m 0.218 m
1 / 9 11.1 % 257 0.623 m 0.568 m 0.256 m
1 /10 10.0 % 231 0.606 m 0.586 m 0.155 m
1 /20 5.0 % 115 0.566 m 0.545 m 0.166 m
1 /30 3.3 % 77 0.574 m 0.571 m 0.058 m
1 /40 2.5 % 58 0.570 m 0.548 m 0.157 m
1 /50 2.0 % 47 0.759 m 0.743 m 0.154 m
1 /60 1.7 % 39 0.580 m 0.580 m 0.016 m
1 /70 1.4 % 34 0.437 m 0.346 m 0.268 m
1 /80 1.25% 29 0.554 m 0.546 m 0.095 m
1 /90 1.1 % 26 0.630 m 0.613 m 0.148 m
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l^ble 11.2 Variation of DIM accuracy with number of check points
for the Sohnstetten Area

Parameters for check points Parameters for DIM accuracy
Fraction % Number RMSE SD Mean

1 / 1 100.0 % 1,892 0.429 m 0.401 m -0.153m
5 / 6 83.3 % 1,580 0.422 m 0.391 m -0.159m
3 / 4 75.0 % 1,419 0.429 m 0.398 m -0.160m
7 /12 58.3 % 1,104 0.430 m 0.393 m -0.173m
1 / 2 50.0 % 946 0.423 m 0.395 m -0.152m

1 / 3 33.3 % 631 0.421 m 0.385 m -0.170m
1 / 4 25.0 % 473 0.442 m 0.405 m -0.178m

1 / 5 20.0 % 379 0.443 m 0.405 m -0.159m
1 / 6 16.7 % 316 0.409 m 0.377 m -0.159m
1 / 7 14.3 % 271 0.437 m 0.401 m -0.172m

1 / 8 12.5 % 237 0.439 m 0.396 m -0.189m
1 / 9 11.1 % 211 0.415 m 0.389 m -0.144m
1 /10 10.0 % 190 0.417 m 0.372 m -0.189m
1 /12 8.3 % 158 0.406 m 0.363 m -0.181m
1 /14 7.1 % 136 0.449 m 0.401 m -0.201m
1 /16 6.25% 119 0.460 m 0.410 m -0.207m
1 /18 5.56% 106 0.398 m 0.379 m -0.122m
1 /20 5.0 % 95 0.477 m 0.414 m -0.236m
1 /25 4.0 % 76 0.371 m 0.361 m -0.085m
1 /30 3.3 % 64 0.349 m 0.291 m -0.193m
1 /40 2.5 % 48 0.518 m 0.420 m -0.302m
1 /50 2.0 % 38 0.346 m 0.315 m -0.143m
1 /60 1.7 % 32 0.358 m 0.298 m -0.197m
1 /70 1.4 % 28 0.492 m 0.410 m -0.272m
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More intuitively, these data values are presented graphically in 
Fig.11.2 and Fig.11.3. The continuous lines represent the variation 
ranges which are predicted from purely theoretical considerations. The 
lines in Fig.11.2 are produced according to Equ.(11.4), where a 95% 
confidence level is selected; and 0.220m and -0.155m are used as the 
'‘true" values of the means for the Uppland and Sohnstetten areas 
respectively. Here it needs to be pointed out that the term S used in 
Equ.(11.4) is the given degree of absolute accuracy but not the 
precision. The latter is well-known to topographic scientists as 
follows:

VAR(M) = VAR(DH) / n (11.12)

The lines in Fig.11.3 are produced according to Equ.( 11.10); using
0.575 and 0.401 as the SD values for Uppland and Sohnstetten areas 
respectively. Symbol "+“ presents the points obtained from experimental 
tests which have been listed in Table 11.1 and Table 11.2. These 
diagrams appear to prove the validity of the theoretical discussions 
which were conducted in the previous two sections, at least in the 
context of the ISPRS test data.

11.4 Effects of errors in the check points on the reliability 
of the DIM accuracy estimates

11.4.1 Introduction

Next the matter of the errors in the check points which were used as 
ground truth in the experimental tests and their effects on the relia­
bility of the DTM accuracy estimates requires discussion.

As stated before, the sample of DH values is obtained by comparing the 
heights of the points given by the DTM with the values given by the 
check point data. The errors present in the check points themselves 
affect the values of DH, and thus the DTM accuracy estimates. It is 
obvious that the smaller the errors in the elevation values of the 
check points, the less influence they will have on the estimated DTM 
accuracy figures. Thus eventually, if the check points are free of 
error, they have no effect, i.e. they will not contribute to the DTM 
accuracy estimates. In practice, such a case can never occur. 
Therefore, the important thing is to establish the relatioship between 
the accuracy of the check points and the reliability of the final DTM 
accuracy estimates so that the maximum tolerable accuracy for the check 
points can be determined for a given degree of reliability required for 
the final DTM accuracy figures to be estimated.
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11.4.2 Accuracy requirement for the check points

In the context of topographic science, in most cases, the accuracy of 
the check points is specified in terms of root mean square error 
(RMSE). In the present discussion, this RMSE value is assumed to be the 
same as the standard deviation (SD). Therefore, in this context, the 
important thing is to find the relationship between the SD value of the 
check points and the given degree of reliability required for the final 
standard deviation estimate which depends on the sample size of the 
check points.

Let DH2 be the error involved in the check points and DH-j be the true 
height difference. Then the overall error (DH) is as follows:

DH = DH1 + DH2 (11.13)

By applying the error propagation law to Equation (11.13), the
following expression can be obtained:

VAR(DH) = VAR(DH-j ) + VAR(DH2) (11.14)

The variance of DH could be the sum of a few random variables. In this
study, it is split into two, i.e. VAR(DH-|) and VAR(DH2). The value of 
VAR(DH) itself is not of interest, but the value of VAR(DH<|) is. An 
attempt may be made to estimate the latter through the former because 
only the former can be known. The attempt which is made here is to find 
a critical value for VAR(DH2) so that the value of VAR(DH) is still 
acceptable as being representative of VAR(DEj).

Also as quoted in Section 11.3.2, the standard deviation estimated from 
a sample of size n has a variance as follows:

VAR( SD(DH-| ) ) = VAR(DH.| ) / (2n) (11.15)

Therefore, the acceptable range for SD(DH) to deviate from SD(DH^) can 
be expressed as follows:

SD(DH1) - SD(DH<| )/( 2 n p < SD(DH) < SD(DE, ) + SD(SD(DH., )/(2n)1
(11.16)

It is much more convenient to use a single value, so the square root of 
these two terms is used as the representative value since they are 
independent. Then the following equation can be obtained:

VAR(DH) = VAR(DH1) + VAR(DH-j ) / (2n)
= (2n+1) VAR(DH1) / (2n) (11.17)

Combining Equs.(11.17) and (11.14) with a simplification, the following
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expression can be derived:

VAR(DH2) = VAR(DH) / (2n+1) (11.18)

It is more convenient to express this criterion in terms of the 
standard deviation. So Equation (11.18) can be converted to the 
following form:

SD(DH2) = SD(DH) / (2n+1)1/2 (11.19)

Let K = SD(DH2)/SD(DH), then equation (11.19) can be rewritten as 
follows:

K = 1 / (2n + 1)1/2 (11.20)

Where, K is a function of the sample size, n. A graphic presentation is 
shown in Fig.11.4. For a given sample size which is determined by the 
reliability requirement discussed in the previous sections (11.3.2 and 
11.3.3), the critical value for the required accuracy of the check 
points can be determined by equation (11.19). In which case, SD(DH2) 
may be given a special annotation, thus denoted as SD(t) in this 
context.

Obviously, the value of K decreases with an increase in n. This means 
that, with the increase in n, the precision of the estimated SD(DH-| ) 
value increases. And the higher the precision of SD(DH-j), the greater 
the influence of the check points with the same precision on the relia­
bility of the estimated SD(DH^) which is approximated by SD(DH).

As discussed before, if the precision of the check points is higher 
than the critical value, then SD(DH) can be used to approximate SD(DH^) 
since the former is still within the precision range of the latter. The 
reliability of SD(DH) can still be approximated by Equation (11.10).

On the other hand, if the standard deviation of the check points is 
larger than the value of SD(t), then the estimated value of SD(DH) is 
not as reliable as it should be in theory with the same sample size. 
Alternatively, it can said that the value of SD(DH) possesses a larger 
variance than the theoretical value for that sample size. Therefore, 
the value of SD(DH) is not reliable enough to be used to represent 
SD(DH|). In this case, some special treatment needs to be given to 
SD(DH).

The traditional method is to subtract a value of SD(DH2) from SD(DH) 
according to the principle of error propagation expressed by Equation 
(11.14). However, two problems then arise. The first concerns the 
reliability of such a treatment. The second concerns the limits of 
SD(DH2) within which such an operation can be carried out and still be
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valid. In the extreme case, it is still valid to carry out such an 
operation even if SDfD^) is greater than or equal to SD(DH-j). These 
are problems which are difficult to solve since there appears to be no 
theory to offer guidance on this matter. Therefore, the criterion 
expressed by Equation (11.19) might be used when the DTM accuracy test 
experiment is carried out.

11.4.3 Accuracy of check points and the reliability 
of the standard deviation estimate

From the discussions conducted in the previous section, it can be 
concluded that if the standard deviation of the check points is smaller 
than the critical value set out in this section, then their effect is 
negligible. However, if the check points have a standard deviation 
larger than the critical value, then the precision of check points 
itself affects the reliability of the estimated accuracy figures. This 
section will discuss these effects.

Substituting Equ.(11.20) into Equ.(11.10), the following relationship 
can be obtained:

K
R(SD) = --------------- x 100% (11.21)

(1 - K2 )1^2

This formula expresses the relationship between K (the standard devia­
tion of the check points in terms of the percentage of the standard 
deviation of the final DTM) and the reliability of the precision 
estimates. For example, if K=0.09, then R=9.0%. The graphical represen­
tation of Equ.(11.21) is shown in Fig.11.5.

The reliability of the estimated standard deviation figure R(SD) 
derived from both Equ.(11.10) and Equ.(11.21) should be very similar if 
the accuracy (precision) is higher than the critical value. However, 
when the accuracy of the check points is lower than the criterion which 
has been set, then the value of reliability computed from Equ.(11.21) 
will be much lower than that from Equ.(11.10). Equation (11.21) also 
shows that, if the SD of the check points is 70.7% of the DTM SD, then 
the SD of the estimated standard deviation - SD(SD(DH)) - will be equal 
to the SD(DH) itself. This confirms what has been stated before - 
namely that the accuracy of the check points affects the reliability of 
the precision estimates if it is lower than the critical value set by 
the formula given in Equ.(11.19).
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11.5 Effect of the distribution of check points 
on the reliability of the accuracy estimate

Another important concern with the check points used for the DTM 
accuracy test is their distribution.

11.5.1 Introduction

The distribution of the check points can be characterised by their 
locations and patterns. In the ISPRS test, the check points are in a 
grid pattern. The question must be raised as to whether such a pattern 
is suitable. If not, then it poses the question as to what kind of 
distribution is desirable. Ley (1986) has made some efforts to answer 
this question. He stated that "an accuracy assessment of a DTM should 
be based on a sample of heights taken from the entire model". He also 
points out that such "a sample of points should include both the 
recorded (measured) and interpolated heights." However, the answer to 
the question as to their distribution is still not complete.

Therefore, it is of interest to know how this factor affects the relia­
bility of the DTM accuracy figures to be estimated from test results. 
If this was known, then the desirable distribution of check points 
could then be determined.

In this section, an attempt will be made to discuss this particular 
matter from the viewpoint of statistical theory. An experimetal test 
has also been carried out to see if such a theoretical analysis is 
applicable to DTM practice.

11.5.2 Theoretical discussion

A serious shortcoming of using check points located in a grid pattern 
is that they then represent a systematic sample. In this case, if the 
first point is sampled, then the positions (locations) of all other 
points are definitely determined. Such a sample is evenly distributed 
whereas the procedure which has been discussed for use in an DTM 
accuracy assessment is based on random sampling. From this point of 
view, a gridded data pattern is not so appropriate. Thus from the 
purely theoretical standpoint, in order to make such a statistical 
procedure applicable, random sampling is desirable.

The use of a grid pattern for check points may be the result of the 
thought that the DH values in some parts of the area being tested may 
be greater than those in other parts and, that the sample is represen­
tative only if the points are so distributed. But such a line of 
thinking would ignore the pre-requisite for such a statistical test - 
namely that the sample should come from the same distribution - because
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the fact that the DH values in some parts of the test are greater than 
those in other parts means that they are not from the same sample space 
or population. If the stated pre-requisite should be applied, then the 
large values of DH should also be randomly distributed. Therefore, the 
use of a gridded pattern of check points is not always sound. The 
advantages of using it are, in the first place, its convenience and 
efficiency in terms of implementing a sampling and measuring strategy 
in a stereo-plotting machine, and its convenience in terms of the 
resulting data structure which can be implemented in the computer used 
for the processing of the data.

In this case, the concept of random sampling is very clear. It means 
that there is no intention to select a point in a specific position 
(location) so that any point, including the recorded points, has an 
equal chance of being measured at every time of sampling.

Finally, it should be noted that the remarks made in this section are 
based solely on a purely theoretical analysis and may be not so 
suitable in practice since the terrain surface is certainly not the 
result of a purely stochastic process.

11.5.3 Experimental test

The two ISPRS test areas, Uppland and Sohnstetten, have again been used 
for this purpose. The aim of this test is to find how DTM accuracy 
estimates vary with different distributions of check points.

The first step in this test is to select randomly some sets of check 
points with a certain size (number) from the original data sets (1,892 
points for Sohnstetten area and 2,314 for Uppland). In this test, for 
each area, 15 sets of check points have been used, each with a sample 
size of 500 points. The randomness of the selection was achieved by 
using a set of random numbers from a uniform distribution which are 
generated by computer using a NAG routine. In generating the random 
numbers, the range is determined by the total number of points in the 
original data set. For example, for the Uppland area, the random 
numbers lie within 1 to 2,314. After this, those check points with the 
same numbering as the generated random numbers are taken from the data 
set and form the sample.

The test results are listed in Table 11.3. Some standard statistical 
parameters compiled from these results are given in Tables 11.4 and
11.5. In the computation of the percentage values, the arithmetic means 
are assumed to be the best estimates of these values. The expected 
tolerable values are computed according to the theoretical formulae set 
out in the previous sections.
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Table 11.3 Accuracy results for the randomly selected check points 
for the Uppland and Sohnstetten areas (No. =500)

File Results for Uppland Area Results for Sohnst Area
No. RMSE (+m) SD (+m) Mean (m) RMSE (+m) SD (+m) Mean (m)
No1 0.628 0.589 0.219 0.426 0.397 -0.155
No2 0.589 0.543 0.228 0.421 0.390 -0.158
No3 0.603 0.565 0.204 0.417 0.387 -0.157
No4 0.648 0.585 0.278 0.412 0.382 -0.155
No5 0.633 0.595 0.216 0.403 0.369 -0.160
No6 0.621 0.586 0.207 0.407 0.384 -0.136
No7 0.637 0.597 0.224 0.437 0.415 -0.138
No8 0.601 0.565 0.205 0.448 0.425 -0.143
No9 0.629 0.570 0.227 0.453 0.427 -0.152
No10 0.630 0.594 0.212 0.398 0.372 -0.142
No11 0.637 0.593 0.232 0.451 0.426 -0.149
No12 0.623 0.570 0.252 0.431 0.389 -0.186
No13 0.622 0.586 0.208 0.417 0.385 -0.162
No14 0.618 0.567 0.249 0.424 0.397 -0.148
No15 0.617 0.562 0.235 0.408 0.381 -0.145

Table 11.4 Statistical estimates for the SD

Uppland Area Sohnst Area
Average Value (AV) 0.5778 0.395
SD of Distribution 0.015 0.019
SD/AV Computed 2.64% 4.72%

Expected 3.16% 3.16%

From these results, it can be seen that the precision of the standard 
deviation for the Uppland data set behaves very well, but that for the 
Sohnstetten data set is much larger than expected. Using another
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measure - the mean, all the values derived from both the Uppland data 
set and the Sohnstetten data set fall within the range expected.

Table 11.5 Statistical estimates for the mean

Uppland Area Sohnst Area
AV (Average Value) 0.226 -0.152
SD Computed 0.020 0.012

Expected 0.026 0.018
Max. (computed) 0.052 0.034

S 99% Confidence 0.067 0.046
98% Confidence 0.060 0.041
95% Confidence 0.051 0.035

11.5.4 Discussion of the test results

Of course, the variation in the accuracy results may also be related to 
the roughness and/or the steepness of the terrain surface. The fact 
that the results for Uppland behave better could be due to the smaller 
slope angles which prevail in the area. The results could also have 
been affected by the errors in the check points themselves. This test 
shows that, to a certain extent, random sampling over the entire area 
(without taking into account geographical location) is a method which 
is acceptable for the creation and acquisition of check points.

Before ending this discussion, some remarks on the randomness of the 
check points used in this test need to be made. In this experimental 
test, nominally, the check points were randomly sampled with a size of 
150 points from the entire set of check points. However, in practice, 
truly random numbers can only be obtained by rolling dice, dealing 
cards or be generated by special mechanical machines. The randomness 
which were achieved by the NAG routine is always doubtful since the 
random numbers generated by computer software follow certain rules 
specified by algorithms. The following is an example:

The uniform random numbers X-j, x3 * ••• which were used in this test
may be generated by a recurring arithmetic process as follows (Frodesen 
et al, 1979):

Xi+1 = *xi-1' * * * *^i—k^ (11.22)

where g is some generating function and k is a constant usually given 
as 1 or 2. In this case, each X^+  ̂ in the sequence will therefore be
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completely determined by its predecessors and the given starting 
values. Thus the sequence is not really random, but it will appear to 
be so and the results are suitable for most practical applications. The 
sequence will always be periodic, with a cycle of certain numbers. The 
sequence can be repeated endlessly if one likes. The random numbers 
generated in such a way are usually called pseudo-random or quasi­
random numbers.

11.6 Discussion and conclusion

All the theoretical discussion set out in the previous sections of this 
chapter are based purely on statistical theory - that is to say, they 
are valid in theory. The theory on sample size has been confirmed by 
the limited tests in this study. No tests on the theory related to the 
accuracy of check points have been carried out in this study because it 
is too difficult to acquire a set of samples of check points with 
different accuracies. On the random sampling of check points, one test 
shows quite encouraging results, but the other is not so satisfactory. 
Therefore, more studies on the applicability of these theories to the 
practice of DTM accuracy test still need to be carried out because 
practical situations are not as perfect as those required by 
statistical theories.

The standard deviation of the DTM is assumed to be known beforehand 
both for the estimation of required minimum sample size and the required 
accuracy (especially the precision) of check points. It needs, 
therefore, to be estimated at first. However, a rough estimate may 
serve the purpose.

From the preceding discussion, some conclusions might be drawn for the 
check points used in the experimental tests on DTM accuracy as follows:

a). The accuracy and the reliability of the final DTM accuracy 
estimates are affected by the sample size (the number) of the 
check points used in the experimental tests. In a reverse way, 
it can be said that the required minimum sample size is deter­
mined by the given degree of accuracy or the reliability 
requirement. A general guide to the required values can be 
derived from Equations (11.6) and/or Formula (11.10), if the 
check points are free of errors.

b). The reliability of the estimated DTM accuracy figures are also 
affected by the accuracy of check points. Again, the accuracy 
of check points required for a given degree of reliability can 
also be determined by Equ.(11.19).
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c). The reliabibility of the estimated standard deviation figure was
expressed in terms of percentage of the estimated value. It can 
be obtained through the use of Equs.(11.8) and (11.21). When the 
precision of the check points is lower than the critical value, 
then Equ.(11.21) should be used to compute the reliability 
factor.

d). The check points should be sampled randomly from the entire 
testing area (and preferabably as a result of a very even 
distribution). In this context, the use of the word "randomly" 
is meant to convey the concept that every point, including the 
recorded points, has the same chance of being selected every 
time sampling is carried out.

e). Only if the sample size is increased and the accuracy of the 
check points is improved at the same time, can the reliability 
of the final estimates be improved. It may be very difficult to 
implement the second of these criteria.

The discussion carried out in this chapter has been concerned with the 
effects of the check points which were used in the experimental tests 
on DTM accuracy, on the reliability of the final DTM accuracy estimates 
obtained from the tests. In the next chapter, an experimental test on 
the accuracy of DTMs derived from space photographs will be presented.
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Chapter Twelve

Mathematical Models of the Accuracy of Digital Terrain Model Surfaces

12.1 Introduction

After the final DTM surface has been constructed, its fidelity needs to 
be validated. In the context of digital terrain modelling, the 
validation of the fidelity of the constructed DTM surface is usually 
referred to as the DTM accuracy assessment.

DTM accuracy assessment can be carried out in different ways, i.e. 
either through theoretical analysis or via an experimental test, or a 
combination of them. As one can imagine, the feasibility of 
establishing a mathematical model for DTM accuracy through experimental 
tests has some limitations since the results can only be obtained from 
special cases. Furthermore, in doing so, an extensive series of tests 
need to be carried out. This would be very costly and time-consuming, 
and it might even be impossible to execute in some cases. Therefore, a 
theoretical analysis is desirable.

In respect of a theoretical analysis of DTM accuracy, as mentioned in 
the introductory chapter, quite a lot of efforts have been already made 
by several investigators such as Makarovic (1972), Kubik and Botman 
(T976), Frederiksen (1980), Tempfli (1980), Frederiksen et al (1986). 
However, as will be shown from the evaluation of these models which 
will be given later in this chapter, each of them has certain 
difficulties or undesirable features. Therefore, the construction of a 
more comprehensive model is desirable. Indeed, this is the main concern 
of this chapter.

In this chapter, first of all, the approaches which might be used for 
the theoretical analysis of DTM accuracy will be discussed; then some 
of the existing DTM accuracy models will be evaluated; after that, new 
mathematical models will be established; and finally, these models will 
be validated using the experimental test results which have been 
presented in Chapter 9 and evaluated using the seven standards for 
judgement of such models given in Chapter 2.

12.2 Approaches for DTM accuracy assessment

Unavoidably, some errors will be present in each of the three 
dimensions of the spatial (X,Y,Z) coordinates of the points occuring on 
digital terrain model surfaces. Two of these (X and Y) are combined to 
give the planimetric error while the third is in the vertical (Z) 
direction and is referred to as the elevation error. The planimetric 
error is also known as the horizontal error, and the elevation error as
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the vertical error.

The assessment of DTM accuracy can be carried out in two different 
modes, by which either the planimetric accuracy and the elevation 
accuracy can be assessed separately or both are assessed 
simultaneously. For the former, accuracy results for the planimetry can 
obtained separately from the accuracy results in the vertical 
direction. Hcwever, for the latter, an accuracy measure for both error 
components together is required.

Ley (1986) compared the relief portrayal in conventional map production 
with that resulting from DTM production, and discussed some methods for 
assessing the accuracy or fidelity of DTMs using the separate 
assessment approach. He discussed four possible approaches for 
assessing the elevation accuracy of DTMs, namely, (a) that predicted by 
production; (b) that predicted by area; (c) evaluation by cartometric 
testing; and (d) evaluation by means of diagnostic points. Among them, 
the first two can be used for theoretical analysis.

(a). One method for implementing the first approach (i.e. that 
predicted by production) is to "assess the likely errors introduced at 
the various production stages together with an assessment of the 
vertical accuracy of the source material" (Ley, 1986). Then the 
accuracy of the final DTM is the consequence or concatenation of the 
errors involved in all these stages.

(b). The second approach (the elevation accuracy predicted by area) is 
based on the fact that the vertical accuracy of contour lines on 
topographic maps is highly correlated with the mean slope of the area. 
There might be an uncertainty about whether it is also the case in the 
context of DTMs. In fact, the testing carried out in the British 
Military Survey showed a positive answer (Ley, 1986).

(c) and (d). The third and the fourth approaches are actually not 
suitable for a theoretical analysis. Instead, they describe methods of 
experimental investigation. The third approach is the most commonly 
used one in practice and has also been used in this project (see 
Chapter 9).

Ley (1986) also mentioned three approaches for the assessment of the 
planimetric accuracy of DTMs, namely, (i) no error; (ii) a predictive 
approach; and (iii) through height. However, as he also mentioned, it 
is difficult to bring these into practical use. And it seems to the 
author that no better methods have ever been proposed so far. 
Therefore, the assessment of the planimetric accuracy of a DTM will not 
be discussed in this thesis.
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The reason for undertaking the assessment of DTM accuracy combining 
both the horizontal and vertical directions has been stated by Ley 
(1986) as follows:

i). Terrain is composed of an infinite number of points located on a 
three-dimensional surface. The uniqueness of each data point and 
its relationships with surrounding points are destroyed by 
dividing the matrix of three-dimensional coordinates into two 
distributions.

ii). By undertaking the vertical and horizontal tests separately, 
there is a danger of including some error components twice.

The simultaneous assessment of DTM accuracy requires a measure which is 
capable of characterising the accuracy in three dimensions. Based on 
his research, Ley (1986) suggested that a comparative measure of the 
mean slopes between the DTM surface and the original terrain surface 
may be appropriate. However, such a measure may be not quite 
acceptable, at least at present, since people have got used to the 
measures for the errors being expressed in 3-D coordinates. Therefore, 
the feasibility of applying this method to DTM accuracy assessment 
still needs to be investigated. Unfortunately, recent experimental 
tests carried out by Ley (1990, personal communication) using this 
approach also show very disappointing results. Therefore, the 
assessment of DTM accuracy in such a mode will also not be discussed in 
this thesis.

For the reasons given above, the assessment of vertical accuracy in 
this study will be carried out only through theoretical analysis. 
Actually, the development of mathematical models of DTM accuracy in 
this study is based on the combination of first two approaches (for 
vertical accuracy assessment) described by Ley (1986).

12.3 Evaluation of existing mathematical models

The work of establishing mathematical models for the height accuracy of 
digital terrain models started in the early 1970s. Makarovic (1972) in 
the ITC of the Netherlands did pioneering work in this respect. After 
this, a number of efforts have been made by several investigators using 
a variety of mathematical tools such as Fourier transformation, 
statistics, regionalized variable theory (geo-statistics), etc. By 
means of these tools, some mathematical models have been established 
for the prediction of DTM accuracy. These existing models will be 
evaluated both by theoretical analysis and through experimental tests 
in this section.
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12.3.1 Hieoretical evaluation of existing mathematical models

Makarovic (1972) used the mathematical tool of Fourier analysis to 
investigate the fidelity of the DTM surface. He considered the data 
sampling and the reconstruction from sinusoidal functions. The fidelity 
of the reconstructed surface is represented by the ratio of the mean 
value of the magnitude of the linearly constructed sinusoidal waves to 
the amplitude of the input waves. Transfer functions can also be 
derived for different interpolation techniques. Makarovic (1974) then 
tried to convert the fidelity figures into standard deviation values. 
Later, Tempfli and Makarovic (1979) made an intensive study of the 
transfer functions for a number of interpolation functions. In this 
way, the accuracies of different digital terrain models can also be 
compared for different types of terrain surface. As Ackermann (1979) 
has commented, "In principle, this theory is complete. If the frequency 
distribution of a terrain is known, all questions regarding point 
density, interpolation method and accuracy can be answered according to 
Makarovic. The task remains to investigate the frequency distribution 
of different terrain types and to relate the corresponding theoretical 
and empirical accuracy results". Unfortunately, this task still largely 
remains to be fullfiled up to the present time.

Tempfli (1980) found that the knowledge gained only about the transfer 
function is not sufficient if the required quality of a DTM is to be 
specified by a standard deviation value or if the law of error 
propagation should be applied. By considering the digital terrain 
modelling system as a linear system, Tempfli (1980) then tried to 
estimate the accuracy of DTM by a spectral analysis of such a linear 
system. As in the case of Makarovic's theoretical model, the 
investigation into the frequency distribution of different terrain 
types must be carried out before any use of this model can be made. 
Also, experimental tests should be carried out to see how it works in 
practice. Unfortunately, once again, such work still remains to be 
carried out up to the present time.

Kubik and Botman (1976) have also made several studies of the accuracy 
of digital terrain models using different interpolation techniques. 
Their accuracy models are related to point density, interpolation 
techniques and terrain characteristics, which were assumed to be known 
and described in terms of (auto)covariance. Again, as Ackermann (1979) 
pointed out, "up to now, the theoretical results have not yet been 
compared with empirical results". Therefore, "a study would be required 
to see how well covariance functions can describe real terrain and 
which function should be assigned to different types of terrain". Yet 
again, such a study as suggested by Ackermann (1979) has not yet been 
carried out up to the present time - at least to the present author's 
knowledge.
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In a manner similar to their work of using covariance, Kubik and his 
collaborators (Frederiksen et al, 1983; 1986) also tried later to use 
the variogram which is a basic concept in geostatistics (see Chapter 
3). They connected this variable to the covariance which was used by 
Kubik and Botman (1976) to produce yet another model for DTM accuracy 
prediction. As one can imagine, again a study would be required to see 
how well the variogram functions can describe real terrain and which 
function should be assigned to different types of terrain, although in 
the papers published by Frederiksen et al (1983, 1986), some examples 
were given, based on very limited tests.

Frederiksen (1980) and his colleagues (Frederiksen et al., 1978) have 
also designed a mathematical model on the basis of the summation of 
Fourier spectra of the terrain surface in their high-frequency parts,
i.e. those higher than 1/(2.Dx), where Dx is the sampling interval. 
Here, again, the Fourier spectra of a terrain surface is assumed to be 
known or estimated using measured profiles comprising data points of a 
high density. Then the accuracy of the DTM is estimated by sunning the 
known spectra from the frequency of 1/(2.Dx) to the infinite, which is 
supposed to be the part of information loss due to the sampling with an 
interval of Dx. However, one important point which has not been taken 
into account in their model is the fact that the magnitude of the 
spectra will also be reduced if the spectra are computed from data 
points with a larger interval between these points. As a result, their 
model may well produce too optimistic a prediction.

12.3.2 Experimental evaluations of existing accuracy models

Several mathematical models of DTM accuracy have been outlined briefly 
in the previous section (12.3.1), and it has also been pointed out that 
a study of these various models is required to see how well they can 
predict DTM accuracy. Indeed, this section is an attempt to carry out 
such a study. Actually, the evaluation has been limited to the models 
based on variogram analysis, (auto)covariance analysis and the 
summation of Fourier spectra over their high-frequency parts.

The data sets used for this evaluation are again those generated for 
the ISPRS DTM test which have been described in Chapter 9.

(1). Evaluation of the models based an variogram function

The mathematical expression of this model can be expressed as follows:

Dx 1 4
VAR(Int) = A ( —  )b(- - + ------------  ) (12.1)

L 3 (b+1) (b+2)
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Where, A and b are the parameters of the variogram functions given in 
Equ.{3.10); L is the sampling interval along the profiles which were 
used to compute the parameters A and b; Dx is the sampling interval of 
the DTM source data; and VAR(Int) denotes the DTM accuracy without 
taking the errors in the DTM source data into consideration.

Table 12.1 Regression results for the coefficients 
for the model based on variogram analysis

Test Area L 2 A b r
Uppland 40m 5.32 1.196 0.999
Sohnstetten 20m 17.15 1.727 0.998
Spitze 10m 1.365 1.537 0.9998

N.B. r is the correlation coefficient for the regression.

Table 12.2a Comparison of theoretical values produced by Bgu.(12.1) 
with experimental test results obtained from gridded data sets

Test Area Dx Dx / L Predicted Test Result
•

Differ.

Uppland
40m 1.0 0.63m 0.76 m -0.14m

56.56m 1.414 1.18m 0.93 m 0.25m
80m 2.0 1.38m 1.18 m 0.20m

Sohnstetten

20m 1.0 0.52m 0.56 m -0.04m
28.28m 1.414 0.98m 0.87 m 0.11m
40m 2.0 1.38m 1.45 m -0.07m

56.56m 2.828 1.77m 2.40 m -0.63m

Spitze
10m 1.0 0.08m 0.21 m -0.13m

14.14m 1.141 0.37m 0.28 m 0.09m
20m 2.0 0.48m 0.35 m -0.13m

The semi-variograms computed from different data sets are shown in 
Fig.12.1(b), (d) and (f). For each area, the variogram produced from 
the data set with the smallest sampling interval has been used to
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compute the coefficients for these models using a regression technique. 
Actually, for the Sohnstetten area, only the first 8 points were used 
for the regression. The results are given in Table 12.1. Also some 
examples of the comparison of the accuracy results predicted by this 
model with the experimental results which were described in Chapter 9 
are shown in Table 12.2a.

It can be seen that the predicted results are mostly in reasonable 
agreement with the actual results obtained from the experimental test 
data with the vast majority of the differences being below 0.13m. The 
poorer results are all associated with larger sampling intervals. For 
example, for the Uppland area, the values 0.25m and 0.20m were obtained 
for the 56.56m and 80m sampling intervals respectively, while for the 
Sohnstetten area, the largest difference is up to 0.63m for the case of 
56.56m interval.

It needs to be pointed out here that the values listed under the 
heading "test result" are the average values obtained from the gridded 
data sets. However, when the DTM accuracy figures obtained from the 
composite data sets were used, the differences were found to be much 
greater. A comparison of these results is given in Table 12.2b. From 
this it can be seen that some results are unacceptable in the case of 
the DTM derived from composite data sets.

Table 12.2b Cbnpariscn of theoretical values produced by Equ. (12.1) 
with experimental test results obtained from composite data sets

Test Area Dx Dx / L Predicted Test Result Differ.

Uppland
40m 1.0 0.63m 0.66 m -0.03m

56.56m 1.414 1.18m 0.70 m 0.48m
80m 2.0 1,38m 0.80 m 0.58m

Sohnstetten

20m 1.0 0.52m 0.43 m 0.09m
28.28m 1 .414 0.98m 0.56 m 0.42m
40m 2.0 1.38m 0.78 m 0.60m
56.56m 2.828 1.77m 1.08 m 0.69m

Spitze
10m 1.0 0.08m 0.16 m -0.08m

14.14m 1.141 0.37m 0.17 m 0.20m
20m 2.0 0.48m 0.18 m 0.30m
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Analyzing the results, it will be seen that the difference values were 
very small in the case of the smallest sampling interval used for each 
of the three test areas - -0.03m in the case of Uppland; 0.09m in the 
case of Sohnstetten; and -0.08m in the case of Spitze. However, in the 
case of the Uppland area, as soon as larger sampling intervals were 
used, the difference values increased to 0.48m (for 56.56m) and 0.58m 
(for 80m). A similar experience was noted with the Sohnstetten area, 
where the values increased to 0.42m (for 28.28m); 0.60m (for 40m) and 
0.69m (for 56.56m) respectively. In the case of the Spitze area, the 
increase in the difference values was a litte less marked with 0.20m 
(for 14.14m) and 0.30m (for 20m), but these values are still sharp 
increases in the value (-0.08m) for the minimum sampling interval of 
10m.

It is very interesting to note that the predictions produced by this 
variogram model are so close to the actual results obtained from the 
gridded data sets, whereas they are not at all in good agreement with 
the results obtained from the composite data sets. This might be due to 
the fact that the values of the variogram used in this model were 
computed from gridded data sets only and not from the composite data 
sets since it is complicated and difficult to compute variograms from 
non-gridded data sets. As one can imagine, if the variogram values were 
computed from grids with very small grid intervals, then the prediction 
produced by this model might be closer to the results obtained from 
composite data sets.

Another interesting point is that, in the case of gridded data, the 
difference between the experimental results and the prediction produced 
by this model is rather consistent with the increase in sampling 
interval. This is due to the fact that the semi-variograms (see 
Fig.12.1) computed from the gridded data with different grid intervals 
were very similar to one another.

(2). Evaluation of the model based on covariance function

The same ISPRS test data has also been used to evaluate the models by 
means of covariance analysis. Here only one model has been selected - 
that for linear interpolation using the exponential covariance model. 
The expression is follows:

SDfint)^ = 1.1 SD(T) (Dx/c)1/2 (12.2)

Where, SD(int)max is the maximum standard error due to topographic 
generalisation; SD(T) is the standard error of the terrain height, i.e. 
the square root of the terrain variance; Dx is the grid interval (or 
sampling interval of the source data; and c is the parameter used in 
the variance model. Of course, SD(int)mean should be used in practice.
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However, the difference is very small as shown by Kubik and Botman 
(1976). Therefore, Equ.(12.2) has been used in this particular case.

Considering the effect of errors in the source data, the following 
expression was suggested by Kubik and Botman (1976):

SD(DTM) = ( SD2(int) + 0.36 VAR(raw) )1^2 (12.3)

Where, the VAR(raw) is the accuracy of the raw (source) data and 
SD(DTM) is the predicted accuracy of the DTM.

The (auto)covariances computed from the test data are shown graphically 
in Figs.1 2.1 (a), (c) and (d). The following formula was used to carry 
out the regression to estimate the parameters for (12.2):

Y = A Exp(B.X) (12.4)

The regression results using Equ.(12.4) are shown in Table 12.3.

Table 12.3 Regression results for the coefficients for the model 
based on covariance analysis

Test Area L A B r
Uppland 40m 76.178 -0.002338 -0.988

Sohnstetten 20m 327.540 -0.005285 -0.944
Spitze 10m 51.684 -0.007848 -0.978

N.B. r is the correlation coefficient for the regression.

A comparison of the results predicted by this mathematical model with 
the experimental results is shown in Table 12.4.

From these two tables, it can be seen that the predictions are quite 
poor. The results might be improved by using the Gaussian variance 
model instead of the exponential model (Kubik and Botman, 1976). 
However, as can be seen from Fig.12.1, the covariance values computed 
from the gridded data with different intervals were so different that 
it is difficult for this model to produce a very consistent prediction 
no matter which model is used to express the covariance value. As one 
can see from Fig.12.1, clearly there is no indication to show that the 
covariance values can be expressed better by the Gaussian function. 
Therefore, such an investigation is omitted here since an exhaustive 
evaluation of existing accuracy models is not the main purpose of this 
project.
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Table 12.4a Comparison of accuracy predicted by E q u . ( 1 2.3) 
with test results obtained from gridded data sets

Test Area Dx SD(int) Predicted Test result Differ.

Uppland
40m 0.30m 0.50m 0.76 m -0.26m
56.56m 0.35m 0.53m 0.93 m -0.40m
80m 0.42m 0.58m 1.18 m -0.60m

Sohnstetten

20m 1.02m 1.02m 0.56 m 0.46m
28.28m 1.22m 1,22m 0.87 m 0.35m
40m 1.45m 1.45m 1.45 m 0.00m

56.56m 1.72m 1.72m 2.40 m -0.68m

Spitze
10m 0.49m 0.49m 0.21 m 0.28m
14.14m 0.59m 0.59m 0.28 m 0.31m
20m 0.70m 0.70m 0.35 m 0.35m

Table 12.4b Comparison of accuracy predicted by Bqu.(123) 
with test results obtained from composite data sets

Test Area Dx SD(int) Predicted Test result Differ.

Uppland

40m 0.30m 0.50m 0.66 m -0.16m
56.56m 0.35m 0.53m 0.70 m -0.17m
80m 0.42m 0.58m 0.80 m -0.22m

Sohnstetten

20m 1,02m 1.02m 0.43 m 0.59m
28.28m 1.22m 1,22m 0.56 m 0.66m
40m 1,45m 1,45m 0.78 m 0.67m

56.56m 1.72m 1,72m 1 .08 m 0.64m

Spitze

10m 0.49m 0.49m 0.16 m 0.33m
14.14m 0.59m 0.59m 0.17 m 0.42m
20m 0.70m 0.70m 0.18 m 0.62m
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(3). Evaluation of the model based on high-frequency spectral analysis

As mentioned previously, to make use of the mathematical models based 
on Fourier spectral analysis, digital profile data with a high density 
must be used. In the case of the gridded data from the ISPRS test, it 
was considered that the grid data points were not sufficiently dense 
for such a purpose. However, such estimation work using the model based 
on the summation of Fourier spectra over the high-frequency part of a 
data set has been carried out by Prof. Ackermann and Dr. Sigle at the 
University of Stuttgart. The results predicted by this model for the 
ISPRS data sets measured at the University of Stuttgart, together with 
the original data sets, were made available to the author through the 
courtesy of Prof. Ackermann and Dr. Sigle.

The data sets measured at the University of Stuttgart included those 
for three of the ISPRS areas - Sohnstetten, Spitze and Drivdalen. A 
brief description of the terrain features existing in the first two 
areas has already been given in Chapter 9 and therefore will not be 
repeated here. The Drivdalen area has a very steep and rough terrain 
surface with a height variation of 780m and an average slope of about 
40°. The height accuracies (RMSE values) of the source data sets for 
these test areas were estimated as +0.17m for the Sohnstetten area; 
+0.10m for the Spitze area; and _+0.35m for the Drivdalen area. These 
data sets have also been processed by the author using the same 
procedures as described in Chapter 9 and the results are given in Table
12.5.

Table 12.5a Accuracy results for the gridded data sets from Stuttgart

Test Area Data Set RMSE SD MEAN +Emax -Emax
D. Drivdalen 20m Grid 1.61 1.57 -0.36 9.89 -14.78
E. Sohnstetten 15m Grid 0.49 0.46 -0.15 2.70 -3.51
F. Spitze 15m Grid 0.31 0.31 0.05 4.01 O 
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1 
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Table 12.5b Accuracy results for the composite data sets from Stuttgart

Test Area Data Set RMSE SD MEAN +Emax -Emax
D. Drivdalen 20m Grid +P 1.50 1.47 -0.34 9.89 -9.92
E. Sohnstetten 15m Grid +P 0.39 0.35 -0.15 1.44 -2.20
F. Spitze 15m Grid +P 0.20 0.20 0.03 4.65 CO 

1 
O 

1 
. 
1

T— 
1 

1 
1

225



Chapter 12 DTM accuracy models

A comparison of the predicted values with the results obtained from the 
experimental tests has been given in Table 12.6. In general, it can be 
found that the results are not at all bad. Indeed, in the case of the 
composite data, the results can be considered as good. However, it must 
be pointed out here that these results were obtained from the data sets 
with small sampling intervals.

'Table 12.6 Oomparian of test results with the value predicted by 
the model based on the summation of high-frequency Fourier spectra

Test Area Grid Predicted
Gridded data Composite data

Tested Differ. Tested Differ.
Sohnstetten 15m 0.26m 0.46m -0.20m 0.35m -0.09m
Spitze 15m 0.10m 0.31m -0.21m 0.20m -0.11m
Drivdalen 20m 1.25m 1,57m -0.32m 0.47m -0.22m

It will be noted that the results predicted by this model are quite 
close to the accuracy figures obtained from composite data sets. This 
may be due to the fact that the spectra in this case were computed from 
high-density profile data. In such a case, it may well be the case that 
the information about feature-specific points and lines was more or 
less included in the profile data. Thus the results produced by this 
model are very close to those obtained from the composite data sets. It 
is also interesting to note that, in the case of these limited results, 
this model, as expected, always produces too optimistic a prediction.

12.3.3 Discussion

In this section, three existing mathematical models of DTM accuracy 
have been evaluated experimentally. From the comparisons of the values 
predicted by these models with the test results, it can be found that 
these models behave very differently. In general, the predictions made 
by the models based on the use of the covariance function are quite 
poor. On the other hand, the results predicted by the model based on 
the variogram function seem to be quite similar to those obtained from 
gridded data sets but not with those resulting from the composite data 
sets. By contrast, the results predicted by the model based on spectral 
analysis are closer to those obtained from the composite data sets.

It must be pointed out here that the parameters of the models based on 
both variogram analysis and covariance analysis were estimated from the 
whole set of data points. In practice, it is impossible to do this with 
confidence since the DTM accuracy for a given sampling interval needs 
to be predicted before the actual measurement of the data points can be
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carried out. Therefore, it may be not easy to obtain very reliable 
estimates for the parameters in these models. Thus, these models may be 
not too practical even though some of them may produce reasonable 
results in some cases.

As noted by Ackermann (1979), in practice, to make use of the models 
based on covariance (or variogram) analysis, an intensive study of the 
covariance (or variogram) for different types of terrain is necessary 
in order to make use of these models for DTM accuracy prediction. 
However, the covariance (or variogram) values for different areas even 
of the same geomorphological type may be different. Even for the same 
area, the covariance values derived for different directions could be 
quite different. This means that it may still be very difficult for 
these models to produce a very reliable prediction. For those models 
based on a Fourier spectrum analysis, the situation is very similar to 
those based on covariance or variogram functions.

According to these experimental results and the theoretical discussion 
conducted above, it can be concluded that these models cannot satisfy 
all the seven standards for evaluating mathematical models which have 
been discussed in Chapter 2 .

Considering the demerits of these numerical descriptors such as Fourier 
spectrum, variogram, covariance, etc (see Chapter 3), and the relative 
weakness of those mathematical models of DTM accuracy based on these 
descriptors, it can be concluded that, at least on the present rather 
limited evidence, these models may not be among the best models that 
can be used for DTM accuracy prediction. Therefore, attention should be 
paid to the development of alternative mathematical models which should 
be more appropriate both in theory and in practice. The parameters of 
such a model must have a physical realisation. Such models will be 
discussed in the next sections in this chapter.

12.4 Background information about the new DIM accuracy model

In the previous sections (12.2 and 12.3), the basic approaches for DTM 
accuracy assessment have been briefly discussed; the existing accuracy 
models have been outlined; and some of the accuracy models have also 
been evaluated by experimental tests. From this section onwards, the 
discussion will be concentrated on the development of alternative 
mathematical models for the accuracy of the DTMs derived from 
photogrammetrically measured data. Before starting the derivation of 
formulae, the basic information about the procedures for the model 
development will be described in this section.
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12,4.1 Basic parameters in the new accuracy model

Before the procedure used for accuracy model development can be 
described, first of all, the parameters which will be used in this 
accuracy model need to be specified here.

As has been identified previously (in Chapters 1 and 9), the accuracy 
of a digital terrain model surface is affected by six main factors, 
i.e. the characteristics of the terrain surface; the three attributes 
of the DTM source data; the method used for DTM surface modelling, and 
the characteristics of the DTM surface itself.

The characteristics of the terrain surface in this model will be 
described mainly by the mean (or representative) value of the slope 
angles in the areas to be modelled since the use of slope has many 
advantages over other numerical descriptors (see Chapter 3). The letter 
"A" will be used to denote the mean slope value.

As has also been discussed in Chapter 3, there is a high correlation 
between the slope value and the variations in the elevation values. 
Therefore, relief information may be used as a rough guide. Based on 
the experience accumulated by the surveying and mapping communities in 
many countries, a general relationship between the slope values and the 
relief information can be summarized in Table 12.7.

Tbble 12.7 General relationship between relief and slope angles

Type of Terrain Local Relief Mean Slope (°)
Flat regions < 20 m < 2
Hilly areas < 150 m 2 - 6
Low mountains > 150 m 6 - 25
High mountains > 500 m > 25

The DTM source data which will be considered in this study is the 
photogrammetrically measured data. As has been discussed in Chapters 4 
and 5, three attributes i.e. accuracy, distribution and density, are 
associated with such a data set.

The accuracy of such photogrammetrically measured data has been 
discussed in Chapter 5. It has also been summarized there that +0.067 
to 0.20 per mil of H is the range of RMSE values which are commonly 
accepted for the accuracy of data points measured in a static mode and 
+0.3 per mil of H might be a reasonable value for the data points

228



Chapter 12 DIM accuracy models

measured in a dynamic mode - although, in fact, the tests of the Sudan 
model gave a much better value. In this study, the accuracy of the DTM 
source data is expressed in terms of either variance, denoted as 
VAR(PMD), or standard deviation, SD(PMD).

The distribution of the data is specified by the data pattern. The 
patterns which will be considered in this study are limited to square 
gridded data and a composite of the square grid and the data about the 
feature-specific points and feature-specific lines, since these are the 
most widely used ones. Actually, the orientation of the data pattern is 
also associated with the data distribution and this may also have 
effects on the accuracy of the final DTM. However, this factor has not 
been taken into consideration here due to the complexity of the matter 
itself.

The density of the DTM source data is specified by its grid interval 
since the data points are homogeneous over all of the area. Dx is used 
to denote the grid interval, and it is also referred to as the sampling 
interval.

The method used for surface modelling which will be considered in this 
study is limited to one which constructs a DTM surface directly from 
the acquired source data. This means that no random-to-grid interpola­
tion procedure has been applied to the source data, thus there is no 
loss in accuracy in the source data due to pre-processing. By 
considering only this method, the complex matter of the loss in the 
fidelity of representation of the terrain topography due to the random- 
to-interpolation process can be avoided, since inevitably such a 
process will have some generalisation effects on the spatial variations 
present in the source data.

The type of DTM surface which will be considered in this study is 
limited to the continuous surface comprising a series of linked linear 
facets which are either triangular facets or bilinear surfaces in the 
case of gridded data or a hybrid of a series of contiguous bilinear 
surfaces and triangular facets in the case of composite data since, as 
has been pointed out before, surfaces formed from such data are the 
least misleading in most cases. Another reason why only this type of 
continuous surface is being considered is for the sake of the 
resulting simplicity in analysis.

12.4.2 The line of thought and procedure for the model development

After the description of this background information about the basic 
parameters used in this model, the line, of thought for the model 
development can be outlined here, then the procedure which has actually 
been used for the model development can be described here.
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It is obvious that the errors at the DTM points are the results of the 
deviations (discrepancies) of the DTM surface from the real terrain 
surface. These deviations result in a loss in the fidelity of the 
terrain topography represented by the DTM. This can be considered to 
come from two basic aspects:-

i). the errors present in and propagated from the source data 
points; and

ii). the generalisation effect resulting from the sampling process 
during acquisition and the subsequent reconstruction carried out 
by the modelling program.

The degree of this generalisation is a function of the sampling 
interval of the source data, the characteristics of the DTM surface and 
the method of surface modelling. Also the distribution of the source 
data, the characteristics of the terrain surface, and even the errors 
at the source data points contribute to this effect. The errors in the 
source data points will of course be propagated to the DTM points.

Therefore, the procedure used in this study will be, first of all, to 
investigate the possible magnitude of the errors which may come from the 
individual items of the two basic aspects mentioned above, and then to 
integrate the errors from these two different sources into a single 
entity.

12.5 Propagation of the errors from the source data

The discussion of the DTM errors will start with the propagation of 
errors from the DTM source data. Before this discussion can be carried 
out, the interpolation of the data points occuring on the DTM surface 
needs first of all to be considered. Of course, these interpolation 
procedures are not at all new. However, a description of the 
interpolation will facilitate the theoretical analysis of the error 
propagation. Indeed, it will be found that such a description is 
necessary for this purpose.

12.5.1 Interpolation of data points on a continuous DOM surface

Since the type of DTM surface which will be considered in this study is 
confined to the continuous surface comprising a series of contiguous 
linear facets, therefore, the interpolation of the data points carried 
out on such a DTM surface will be a linear interpolation.
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(1). Linear interpolation between two points

Linear interpolation between two points is the simplest possible 
procedure. The principle is illustrated in Fig.12.2. In the figure, Hj 
is the height of the interpolated point I; HA and HQ are the heights at 
points A and B; Dx denotes the sampling interval (spacing); and X is 
the distance between the point to be interpolated and point A (in 
plan). The mathematical function for the linear interpolation between A 
and B is as follows:

Hj = (Ha (Dx-X) + Hb X) / Dx (12.5)

(2). Interpolation in a bilinear surface

The interpolation in a bilinear surface which may be constructed from a 
series of contiguous square grids is illustrated in Fig.12.3. In this 
figure, A, B, C and D are four nodes of the grid, from which the 
bilinear surface is constructed. Point I is the point to be interpo­
lated. In order to determine the height of point I, the heights of E 
and F (or G and H) need first of all to be interpolated using 
Equ.(12.5). Therefore, the interpolation of a point, I in this case, in 
a square grid is as follcws:

Hj = (Hh (Dx-X) + Hq X) / Dx (12.6)

Where, HR = ( ^  (Dx-Y) + HD Y) / Dx (12.7)
Hq = (Hb (Dx-Y) + Ha  Y) / Dx

(3). Interpolation in a right-angled isosceles triangular facet

As discussed in Chapter 7, the square grid data can also be split into 
a triangular network, which consists of a set of isosceles right-angled 
triangles. From this network, again a continuous surface comprising a 
series of contiguous linear facets can be constructed.

There are many ways to interpolate a point in an isosceles right-angled 
triangular facet. Fig.12.4 shows some of these possibilities. In this 
figure, A, B, and C are the three nodal points and I is the point to be 
interpolated. Fig.12.4(b) is the plan view of the perspective diagram
(a). From Fig.1 2.4(b), it can be found that I can be determined by A 
and G, or J and C, or B and E, or H and D, or K and F. In this 
particular case, purely for the convenience of the later discussion of 
the matter of the generalisation of terrain topography due to the 
sampling pattern and the later reconstruction, the interpolation using 
points K and F, or D and H is discussed, since basically this is 
similar to the interpolation procedure carried out in a square grid. 
By employing the procedure discussed in the preceding section, the
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following equations can be obtained (Fig.12.4 (b) & (c)):

Hd  = (Ha  (Dx -X ) + Hq X) / Dx ( 1 2 . 8 )
Hh  = (Hb  (Dx -X )  + ^  X) /  Dx

Finally, the height at interpolation point, I in this case, is:

H j = (Hd  (Dx -Y )  + Hh  Y) /  Dx  ( 1 2 . 9 )

The slope angle of BC, hy, is not equal to that of either AC or AB. It
is illustrated in Fig.12.4.(d). It can be found that:-

tan(hy) = (tan(Ax) + tan(Ay)) / 21^2 (12.10)

Where, Ax denotes the slope angle in one direction, say the profile 
direction, in which case, Ay denotes the slope angle in the direction 
perpendicular to the profiles. The maximum value for tan(hy) is 
21/2 tan(Ax) when tan(Ax) is equal to tan(Ay) and the minimum value is 
tan(Ax)/2^2 when tan(Ay) is equal to zero. The average value of 
tan(hy), considering different cases, is therefore as follows:

tan(hy)av = ( 2 ^ 2tan(A) + tan(A)/ 2 ^ 2 )/2
= 3/4 x 21/2 tan(A) (12.11)
= 1.06 tan(A)

Where A denotes the average slope angle in the area.

12.5.2 Propagation of errors from the source data to DIM data

Turning next to the propagation of the errors in the PMD (photogram- 
metrical ly measured data) to the data points interpolated on the DTM 
surface, the accuracy of the PMD can be expressed by a variance, 
VAR(PMD) or standard deviation, SD(PMD). By applying the error 
propagation laws to Equ.(12.5), the variance of the errors at the point 
interpolated in the case of a linear profile, VAR(P) can be obtained as 
follows:

Dx2 VAR(P) = (Dx-X)2 VAR(PMD) + X2 VAR(PMD) (12.12)

This is the expression for a point located at a distance X from a grid 
node and (Dx-X) from the other grid node. In practice, it is very 
difficult to deal with individual points. Furthermore, the result which 
is of interest to both DTM producers and DTM users is the overall 
average value. Therefore, it is desirable that the average value of 
VAR(P) be used as the loss of accuracy arising from the errors 
propagated from the PMD. This average value can be computed by 
summarizing all the possible VAR(P) values over a grid and dividing
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them by its sampling interval (Dx). Such an operation can be expressed 
as follows:

Dx2 VAR(P) = ( \°x ((Dx-X)2 VAR(PMD) + X2 VAR(PMD))dx)/Dx (12.13)0
Therefore, VAR(P) = 2/3 VAR(PMD) = 0.667 VAR(PMD)

or SD(P) = (2/3)1/2SD(PMD) = 0.82 SD(PMD) (12.14)

This represents the propagation of errors from the source data to the 
DTM points in one direction only. In a similar way, the propagation of 
errors in the other direction can also be evaluated. Considering the 
case of points H and G in Fig.12.3, the effects of errors in the source 
data on the accuracy of points H and G can be estimated using 
Equ.(12.14). When point I (Fig.1 2.3) is to be interpolated, the errors 
at points H and G will affect the accuracy of point I. Therefore, 
Equ.(12.13) can also be used to estimate the accuracy loss due to the 
errors propagated from points H and G. However, the accuracies of 
points H and G will be higher than that of any of the grid nodes (i.e. 
either A, B, C or D). In this case, the generalisation of terrain 
topography along the profile lines of DC and AB will bring a loss of 
accuracy to points H and G, respectively. It is clear that the error 
propagation is a nested process. Therefore, before any further 
progress can be made, the effect of generalisation of the terrain 
topography on point accuracy should be studied.

12.6 Accuracy loss of DTM data points due to generalisation effect

The effect of generalisation of the terrain topography on the accuracy 
of the data points interpolated on a DTM surface is usually more 
serious than the errors in the source data, especially when a large 
sampling interval is in use. Therefore, it is extremely important to 
understand the effects of such a generalisation. This section is an 
attempt to carry out such an investigation.

12.6.1 Introduction

From DTM literature, it can be found that the investigation into the 
generalisation effect has been carried out in different ways such as 
using Fourier spectra, covariance, variogram, etc. However, as has been 
pointed out previously (Section 12.3), the applicability of those works 
is somewhat limited. Therefore, an attempt is made here to relate the 
generalisation effect to the slope angle of the terrain surface. The 
procedure used in this section is as follows:
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i). First of all, the two extreme values (the positive maximum and 
negative maximum errors) of the errors resulting from the loss 
in the fidelity of the terrain surface caused by the generali­
sation effect due to sampling and reconstruction are analysed;

ii). Then, the relationship between the two extreme values and the 
standard deviation of the distribution of DTM errors due to the 
generalisation effect will be investigated;

iii). Finally, the two extreme values are used for the estimation of 
the value of the standard deviation which represents the 
accuracy loss due to the generalisation effect, for different 
types of data.

12.6.2 Analysis of extreme errors

In order to analyse the possible value for the extreme errors, the 
possible shapes of terrain profiles need to be considered. Fig.1 2.5 
shows some of the possible shapes of such profiles and the ways in 
which extreme errors may arise due to the linear construction of DTM 
surface from the gridded data points.

Fig.12.5(a) shows the maximum possible error at point C due to a fault 
or other geological structure giving rise to the steep change in slope. 
Therefore, if the information giving a full description of this 
structure or discontinuity has not been collected, a huge error may 
result. The value of such an error, E^, varies with the characteristics 
of the feature itself. It can only be measured and is not readily 
predictable. In this specific diagram, the value is approximately as 
the following:

Where A is the slope angle at point A ( i.e. angle CAB) and Dx is the 
sampling interval (spacing). This value might be used as a 
representative value when E^ is relatively small.

Fig.12.5(b) shows the possible maximum error at a point C where regular 
grid sampling has been carried out without selecting local minima and 
maxima, i.e. feature-specific points and the points along feature- 
specific lines have not been measured. The possible value of this 
maximum error when point C lies at the top of the hill represented by 
the diagram is as follows:

Figs.12.5(c) and (e) also show some other possible profiles formed by

E^ = CB = Dx tanA (12.15)

Er = (1/2) Dx tanA (12.16)
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convex and concave slopes respectively and the possible errors which 
would result when a linear surface is constructed from them. 
Fig.1 2.5(d) is yet another case, where the ground has a regular slope 
and the profile is almost a straight line.

Fig.1 2.5(f) shows the possible maximum error which may occur for the 
data obtained from composite sampling. Here it has been assumed that 
the data points are gridded data plus local maxima and minima. That is 
to say, the points along ridge lines and ravine lines are included, but 
the points defining convex and concave slopes are still not all 
included. This assumption seems to be not too unrealistic since it is 
not practical to include all the convex and concave points except in 
the case when pure selective sampling has been carried out on a stereo- 
model to simulate the data acquisition by ground surveying. On the 
other hand, the diagram of Fig.12.5(f) itself may seem very unrealistic 
since the point C in this case will be selected in practice. Indeed, it 
must be admitted that it is quite exaggerated. However, such an 
exaggeration is necessary since it is the extreme case that is under 
investigation in this study.

After this assumption, the extreme errors can be analysed using 
Fig.12.5. In this diagram, the line AB is the linearly constructed 
profile. It can be seen clearly that the largest error is at point C 
and the value of CE will be analysed below. In this diagram, angle CAD 
is the slope angle, A; so CF = BD = X tanA; and EF=BD.X/Dx; so

CF = X.tanA - (X.tanA).X/Dx = X.tanA - X^ tanA /Dx (12.17)

By letting the first derivative of CF be equal to zero, the location of 
X where the value of CF reaches its maximum can be determined. So,

From Equ.(12.18), it can be found that X = Dx/2. This means that the 
position where CF reaches its maximum value is in the middle of a grid. 
By letting X=Dx/2, the maximum value of CF, donoted as EQ, can be found 
from Equ.(12.17) as follows:

Therefore, it can also be noticed that the value of possible extreme 
errors in the case of only regularly gridded data is 2 times that in 
the case of composite data. It needs to be pointed out that the extreme 
values estimated in this section are all positive maximum values. The 
estimation of the corresponding negative maximum values can be carried 
out in a similar manner but obviously will result in absolute values of 
the estimated negative maximum errors being equal to those of the

d (CF)/dX = tanA - 2.X.tanA / Dx = 0 (12.18)

Ec = Dx tan(A) / 4 (12.19)
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corresponding positive maximum errors. Therefore, such an estimation 
will not be duplicated here in this study.

12.6.3 Relationship between extreme errors
and the standard deviation of the distribution

In DTM practice, the accuracy figures are normally expressed in terms 
of RMSE (root mean square error) or SD (standard deviation). Therefore, 
these extreme values of DTM errors caused by the generalisation of the 
terrain topography represented by the DTM surface need to be converted 
to the SD values. This section is such an attempt.

If the distribution of the errors due to the generalisation effect is 
known, then it will be an easy task to convert the values of the 
extreme errors into the value of the standard deviation. However, the 
problem in the context of DTM accuracy assessment is that the distri­
bution of DTM errors is still not known. Torlegard et al (1986) found 
that "they (the unfiltered DTM errors) are not normally distributed 
with a zero mean. After filtering out the blunders and levelling the 
DEMs, quite a number of them seem to show a normal distribution". This 
statement implies that DTM errors may approximate to a normal 
distribution, but are not necessarily normal. This means that the laws 
for normal distribution may be not applicable in the case of a DTM. 
Therefore, some alternative approaches need to be considered.

Nevertheless, for any distribution, according to Chebyshev's theorem, 
most of the observations of a random variable (DTM errors in this case) 
of will fall within the range of 4 times the SD (standard deviation) 
distant from u (mean). Chebyshev's theorem states that the probability 
is at least as large as 1-1/k2 that an observation of a random 
variable, say X, will be within the range from u-k.SD(X) to u+k.SD(X), 
i.e.

P( |X-u| > k.SD(X) ) < 1/k2 (12.20)

or P( |X-u| $ k.SD(X) ) » 1-1/k2 (12.21)

Where, k is any constant larger than 1. If the distribution is 
approximately normal, the probability of a point lying within this 
range is much larger than the value P in Equ.(12.21).

More importantly, from the experimental test results which were given in 
Chapter 9, it was found that the occurrence frequency of DTM residuals 
(errors) larger than 4xSD is usually much smaller than 1.0% in most 
cases. Therefore 4xSD in this case, like 3xSD in the normal 
distribution, can be used as the limit of the maximum random errors.
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From the discussion above, it can be concluded that from both the 
practical and theoretical points of view, the value of 4xSD can be used 
as the criterion for the maximum random error. Therefore, conversely, 
if the maximum random error is known, then the standard deviation of 
the distribution of the errors can also be estimated. Thus, the 
possible maximum random errors which have already been estimated in the 
previous section (12.6.2) can be converted into a standard deviation. 
This will be discussed in the next section.

12.6.4 Extreme error to standard deviation conversion 
for different types of data set

According to the discussion above, the standard deviation of the errors 
resulting from the effect of topographic generalisation, SD(F) in this 
annotation, in the case of terrain profiles can be expressed as 
follows:

SD(F) = K Dx tanA (12.22)

Where A is the slope angle and K is a proportional facter. The next 
step which needs to be carried out is to consider the value of K in 
different cases since more than one of the possible extreme errors may 
occur in a single case.

(1). Hie value of K for the DTM derived from composite data

For the composite data, the surface-specific points and surface- 
specific lines are all sampled, therefore, there is only one possible 
type of extreme error involved in the data points interpolated from the 
linear facets which are constructed from the composite data. In this 
case, the value of the possible extreme error is expressed by 
Equ.(12.19), thus the values of in this casev is

Kc = (1/4) (1/4) = 1/16 (12.23)

Therefore, the standard deviation of the corresponding distribution, 
SD(FC), can be estimated as follows:

SD(FC ) = Ec / 4 = Dx tanA /16 (12.24)

(2). Hie value of K far the EfIM derived from gridded data

For the gridded data, the geomorphological information is not included. 
In other words, the surface-specific points and surface-specific lines 
have not been included. In this case, all types of extreme values can 
possibly occur in the points interpolated from the DTM surface which 
are constructed from the gridded data. Therefore, the overall value of
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the K in Equ.(12.22) should be the weighted average of all the 
different types of extreme errors which may occur.

Therefore, the value of K depends on the occurrence frequencies of 
the different types of extreme errors, i.e. the proportions of the 
slopes like those shown in Fig.1 2.5(a) and Fig.12.5(b). Therefore, the 
value of the K, in this case, can be expressed as follows:

Where, P̂ . is the proportion of the grids covering the slopes with 
faults or discontinuities; Pv is the proportion of grids covering the 
slope with local minima or maxima (surface-specific points and those 
points lying along surface-specific lines); Pu is the proportion of the 
grids with normal slope; and Pu = 1 -Py -P̂ . in this case. If there are 
no faults or discontinuites in this area or if they have been measured 
and included in the data set, then the value of Pj. is given as zero. 
Similarly, if points along form lines have been included, Pv should be 
given as zero. If Py and P^ are both equal to zero, then it is the case 
that the DTM surface has been constructed from a composite data set.

By taking 4xSD as the limit of the maximum random errors, then the 
proportional factors for U and V can be expressed as follows:

V = 1/8; for those grids covering local minima or maxima; (12.26)
U = 1/16; for those grids covering normal (random) slopes.

The value of the proportional factor T is very difficult to tell since 
it depends the value of the E^, which may vary from case to case. 
However, if the E^ is not too large, then 1/4 might be used as an 
approximate value. In practice, faults or discontinuities are included 
in most cases.

The next problem which arises is how to estimate the proportional 
factor for V and U. Of course, if V is known, then U=(1-V). Again, the 
estimation of the value of U is a very difficult matter to solve. For a 
very small area, there is no better method other than simply counting 
the numbers of points included for surface-specific lines in the area 
to be modelled. However, for a large area, the concept of "wavelength" 
may be used. According to the discussion conducted in Chapter 3, the 
value of such a wavelength can be estimated approximately as follows 
(Fig.12.6) (see p231a).

Where, H denotes the average relative height which may also vary from 
place to place; A is the slope angle; then W is the approximate value

Kj. = U.PU + V.Py + T.Pt (12.25)

W = 2 H cotA (12.27a)
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of the so-called wavelength of the height variation present in the data 
set. The planimetric shape of a hill (expressed by contours) could be 
very different from place to place. Even for the same hill, the 
wavelength could be different if the profiles are taken along different 
directions and it is also not the same for different profiles even in 
the same direction. Therefore, an average value should be used. 
Therefore, if the value of in the local area is used for
the H in Equ.(12.27a), then the following equation might be 
appropriate:

W = <Hmax-Hmin) cotA (12.27b)

After the estimated value of W has been obtained, the proportional 
factor - V - can then be estimated. As one can imagine, both the top 
and the bottom of a spatial variation will occur once over a single 
wavelength in one profile direction. Therefore, for a grid which has 
two profile directions perpendicular to each other, the occurrence 
frequency of the extreme values among the all acquired data points is 
as follows:

Pv = 4 Dx / W (12.28)

By letting P̂ -=0 and substuting Equ.( 12.28) into Equ.( 12.25), then the 
following expression can be obtained:

Kj. = (1/16M1- 4Dx/W) + (1/8)(4Dx/W) (12.29)
= (1/16)(1+ 4Dx/W)

Therefore, finally, the expression for the accuracy loss of the DTM 
data points interpolated from the DTM surface constructed from regular 
gridded data due to the generalisation effect, SD(Fr), is as follows:

SD(Fr) = (1/16)(1 + 4Dx/W) Dx tanA (12.30)

12.7 Overall accuracy of the digital terrain model surface

The accuracy loss of the digital terrain surface due to the two basic 
factors has been discussed individually in the previous sections (12.5 
and 12.6). Next, the overall accuracy of the digital terrain model 
surface can be studied by integrating the accuracy losses due to these 
two factors. This section is an attempt to perform such an integration.

12.7.1 Accuracy of OEM points in the case of profiles

The case of the DTM points interpolated only along profiles needs first 
of all to be considered. In this case, according to the laws of error 
propagation, the value of the accuracy of DTMs, having regard to the
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topographic generalisation effect and the errors in source data, can be 
written as follows:

VAR(Pr) = VAR(P) + VAR(F) (12.31)
= (2/3) VAR(PMD) + ( K Dx tanA )2

'Where, VAR(Pr) denotes the variance of the DTM points in the case of 
profiles; VAR(P) is the accuracy loss due to the errors in the PMD; and 
VAR(F) is the accuracy loss due to the topographic generalisation 
effect.

A profile is a feature with only two dimensions. However, a surface is 
three-dimensional, therefore, the accuracy of the DTM points 
interpolated via profiles is not equal to that of a surface. The latter 
will be considered in the next paragraphs.

12.7.2 Accuracy of DTM points on a square-gridded cell 
modelled by a bilinear surface

The linear interpolation on a square-gridded bilinear surface has been 
discussed previously (Section 12.5.1) and the interpolation functions 
are expressed by Equs.(12.6) and (12.7). The accuracy of points H or G 
(Fig.12.3) can be expressed by Equ.(12.31). By taking into 
consideration the errors in the source data (points H and G) and the 
topographic generalisation effect, the accuracy of the points inter­
polated from the points H and G is therefore as follows:

VAR(sg) = (2/3) VAR(Pr) + VAR(F2) (12.32)

Where, the first term in the right side of the equation expresses the 
accuracy loss due to the errors propagated from points H and G, the 
accuracy of which is expressed by a variance - VAR(Pr); and the second 
term, VAR(F2), expresses the accuracy loss due to the topographic 
generalisation effect. In this case, VAR(F2) might be different from 
VAR(F) (see Equ.12.22). If the latter represents the accuracy loss due 
to the topographic generalisation effect in the profile direction, then 
the former is that in the direction perpendicular to the profiles; and 
vice versa. Since the average slope value is used to represent the 
characteristics of the terrain in any direction of the profiles, for 
the sake of convenience, they are assumed to be equal. Therefore,

VAR(sg) = (2/3)( VAR(P) + VAR(F) ) + VAR(F)
= (2/3) ( 2/3 VAR(PMD) + 5/3 VAR(F)
= 4/9 VAR(PMD) + 5/3 VAR(F) (12.33)
= 4/9 VAR(PMD) + 5/3 SD2(F)
= 4/9 SD2(PMD) + 5/3 ( K Dx tanA )2
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Where, VAR(sg) denotes the variance of the DTM surface constructed from 
square-gridded data. The value of K varies with the data pattern which 
has been discussed previously (in Section 12.6.4). Therefore, for the 
composite data set (including the surface-specific points and lines), 
the accuracy of the DTM can be approximated by the following 
expression: -

VAR(sg)c = 4/9 VAR(PMD) + 5/3 (Kc Dx tanA )2
= 4/9 VAR(PMD) + 5/3 ( 1/16 Dx tanA )2 (12.34)
= 4/9 VAR (PMD) + 5/768 (Dx tanA )2

On the other hand, for the regular gridded data only, the accuracy of 
the DTM is as follows:

VAR(sg)r = 4/9 VAR (PMD) + 5/3 ( ^  Dx tanA )2
= 4/9 VAR(PMD) + (5/768)((1 + 4Dx/W) Dx tanA )2 (12.35)

12.7.3 Accuracy of the DIM points interpolated using triangular facets

The interpolation of the DTM points on the continuous surface 
comprising a series of isosceles right-angled triangular facets has 
also been described (Section 12.5.1) and it has been noted that the 
interpolation procedure is very similar to that on sqaure-gridded 
bilinear surface. The only differences (see Fig.12.4) are as follows:

(a). Any side, DH or KF, parallel to either grid side is shorter 
than the square grid side;

(b). The length of the hypotenuse is 1.414 times that of the 
square grid side; and

(c). The slope of hypotenuse is on average 1.06 times the average
value of the slope along either of the two grid directions 
(see Equ.(1 2.11 )).

The average value of the accuracy loss at points H, G, and F in the 
hypotenuse resulted from the topographic generalisation effect is

SD(Fh) = K. 21/2 Dx. ( 21/2x 3/4)tanA = 3/2 K.Dx.tanA (12.36)

Therefore, the accuracy of the points occuring along the hypotenuse 
considering both the errors in the source data and the generalisation 
effect is

VAR(hy) = 2/3 VAR(PMD) + VAR(Fh) (12.37)
= 2/3 VAR(PMD) + 9/4 (K Dx tanA )2
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Next an estimation of the accuracy of the DTM points derived from the 
triangular facets needs to be made. Taking the interpolation along HD 
(Fig.12.4) as an example, the accuracy of the DTM points interpolated 
from such a surface can be expressed as follows:

VAR(tg) = 1/3 VAR(pr) + 1/3 VAR(hy) + (K.HDtanA )2 (12.38)

Where, the terms in the right side of the equation are as follows: the 
first term represents the accuracy loss due to the errors in the point 
D (i.e. along the grid side); the second term expresses the accuracy 
loss due to the errors in point H (i.e. along the hypotenuse); and the 
third term represents the accuracy loss resulting from the 
generalisation effect. In this case, considering the length of line DH 
as a variable, it varies from the position to position. Therefore, the 
average value for (K HD tanA )2 should be used and it can be calculated 
as follows:

(K HD tanA )2 = (K tanA )2 (1/Dx)jQY2 dY (12.39)
= (1 /3) (K.Dx.tanA)2

By substituting Equs.(12.39), (12.37) and (12.31) into (12.38), the 
following can be obtained:

VAR(tg) = (1/3) ( 2/3 VAR(PMD) + (K.Dx.tanA)2 )
+ (1/3) ( 2/3 VAR(PMD) + 9/4 (K.Dx.tanA)2 )
+ (1/3) (K.Dx.tanA)2

(4/9) VAR(PMD) + (17/12) (K.Dx.tanA)2
(4/9) SD2(PMD) + (17/12) (K.Dx.tanA)2 (12.40)

Following a similar procedure to that discussed for the bilinear 
surfaces, the accuracy of the DTM points on the triangular facets 
constructed from composite data may be expressed as follows:

VAR(tg)c = (4/9) VAR(PMD) + (17/12) (Kc.Dx.tanA)2
= (4/9) VAR(PMD) + (17/3072) (Dx.tanA)2 (12.41)

However, for the triangular surface constructed from only regular
gridded data, the accuracy of the DTM points is as follows:

VAR(tg)r = 4/9 VAR(PMD) + 5/3 (1^ Dx tanA )2
= 4/9 VAR(PMD) + 17/3072 ((1+4Dx/W) Dx tanA )2 (12.42)

12.7.4 Summary of the important formulae

For the sake of convenience in comparison, the important formulae 
developed in this section are summarized as follows:
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i). Accuracy of DTM data interpolated along profiles:

VAR(Pr) = (2/3) VAR(PMD) + ( K Dx tanA )2 (12.31)

ii). Accuracy of DTM data interpolated from the hybrid of bilinear
surfaces and triangular facets from composite data (i.e. in the 
case that surface-specific points and lines have been included 
in the source data):

VAR(sg)c = 4/9 VAR(PMD) + 5/768 (Dx tanA )2 (12.34)

iii). Accuracy of DTM data interpolated fron the bilinear surfaces:

VAR(sg)r = 4/9 VAR(PMD) + 5/768 ((1 + 4Dx/W)Dx tanA )2 (12.35)

where, W = (Hrna>t-Hmin) cotA (12.27b)

iv). Accuracy of the DTM points on the triangular facets constructed 
from composite data is as follows:

VAR(tg)c = (4/9) VAR(PMD) + (17/3072) (Dx.tanA)2 (12.41)

v). Accuracy of DTM data interpolated from the triangular facets 
which are constructed from the gridded data set:

VAR(tg)r = 4/9 VAR(PMD) + 17/3072 ((1+4Dx/W) Dx tanA )2 (12.42)

12.8 Evaluation of various new theoretical models

After the mathematical models of DTM accuracy have been established for
various terrain situation, their "goodness" requires to be judged. In
this section, first of all, these models will be compared with the 
experimental results presented previously in this thesis; then they 
will be evaluated from a theoretical standpoint.

12.8.1 Experimental validation of new accuracy models

Some experimental test results have been presented in Chapter 9 and 
earlier in this chapter. In this section, an attempt is made to use 
these test results to validate the mathematical models which have just 
been developed above.

(1). Comparison of the test results obtained from the Munich ISFRS 
data with the predictions by the new accuracy models

In Chapter 9, it was intended to use an empirical model to fit the
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experimental data. It was found that this seems to work well for the 
accuracy of DTM data derived from composite data sets, but not for 
gridded data sets. It can also be found clearly that the theoretical 
model for composite data sets which has been just described above is 
exactly the same as that used in Chapter 9. However, the model used for 
gridded data sets is different because the occurrence frequency (or 
probability if the data set is very large) of the grids covering local 
minima or maxima (points along form lines) varies with sampling 
interval.

Fig.12.7 shows in diagrammatic form the comparison of theoretical 
models with the experimental data. It can be found that they fit rather 
well. The worst case concerns the gridded data sets for Spitze. This is 
still within the limits of expectation since it was found from the test 
results given in Chapter 9 that the occurrence frequencies of gross 
errors for these data sets are very high due to the existence of faults 
or discontinuites. The parameters used for the theoretical models which 
have produced Fig.12.7 are as follcws:

The slope angles are estimated from the contours. The values used for 
the Uppland, Sohnstetten and Spitze areas are 6, 15 and 7 degrees, 
respectively. The accuracies of the source data in terms of the 
VAR (PMD) values for different data sets are also estimated in Chapter 9 
as follows: 0.67m for the Uppland set, 0.16m for the Sohnstetten set 
and 0.08m for the Spitze set.

For the accuracy model for the DTM surface constructed from only 
gridded data, the so-called terrain wavelength needs also to be 
estimated. As has already been discussed in Chapter 9, for the 
Sohnstetten area, the test area is actually located along a valley in a 
mountainous area. The width of such a profile (for the area with check 
points because only this area has been tested) is about 214m. This 
value is considered as the wavelength for this area and can be written 
as W=214m. Similarly, the value of W for the Spitze area is given as 
300m. The value of W for Uppland has been estimated according to the 
discussions in this chapter as 470m. Also for the Spitze area, two 
faults or discontinuites exist. The height variations encountered in 
the different segments of the discontinuites are different, varying 
from 3m to 0.5m. The average height variation has been estimated (from 
the contours) to be 1.25m, thus G^=1«25in. P̂ . for these discontinuites 
is 4Dx/W. According to these estimates, the curve lines for the 
composite data sets are also presented in Fig.12.7 for comparison with 
experimenal data.

The purpose of presenting such descriptions for the parameter 
estimation is to give readers some idea about the adequacy of these 
parameters, and thus form some impression of the adequacy of these
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theoretical models.

In order to provide more complete information about the accuracy of the 
predictions produced by these new models, some figures corresponding to 
Fig.1 2.7 have also been given in Table 12.8. It can be seen clearly 
that vast majority of the differences are below 0.1m. It goes without 
saying, these results are indeed very good.

liable 12.8 Comparison of accuracy predicted by new models with 
test results obtained from the Munich data sets

Test Grid Gridded Data Canposite Data
Area Interval Predicted Tested Differ. Predicted Tested Differ.

Upp­
land

28.28m
40m

56.56m
80m

0.53m 
0.62m 
0.80m 
1.16m

0.63m 
0.76m 
0.93m 
1,18m

-0.10m 
-0.14m 
-0.13m 
-0.02m

0.50m
0.55m
0.63m
0.78m

0.59m
0.66m
0.70m
0.80m

-0.09m
-0.11m
-0.07m
-0.02m

Sohns­
tetten

20m
28.28m
40m
56.56m

0.58m 
0.90m 
1,44m 
2.38m

0.56m
0.87m
1.45m
2.40m

0.02m
0.03m
-0.01m
-0.02m

0.42m 
0.58m 
0.81m 
1.15m

0.43m 
0.56m 
0.78m 
1.08m

-0.01m
0.02m
0.03m
0.07m

Spitze
10m
14.14m
20m

0.16m
0.23m
0.35m

0.21m
0.28m
0.35m

-0.05m
-0.05m
0.00m

0.11m
0.14m
0.19m

0.16m 
0.17m 
0.18m

-0.05m
-0.03m
0.01m

(2). Comparison of test results obtained from the Stuttgart 
data with the prediction by the new accuracy models

Earlier in this chapter, the results obtained from the data sets 
measured at the University of Stuttgart have been used to evaluate the 
existing mathematical models of DTM accuracy based on the summation of 
Fourier spectra over their high-frequency parts. These test results 
will now also be used to evaluate the mathematical models which have 
just been described above to see how well these models fit the results 
from the Stuttgart data. The results are shown in Table 12.9.

In this estimation, the slope angle for Drivdalen was taken as 40°. The 
width of the area covered by the check points, 1,200m, has been used as 
the wavelength for this test. It can be seen clearly that the predic­
tions produced by these accuracy models developed in this project are 
very close to the test results. Indeed, it may be said that the predic­
tions are very good.
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Table 12.9 Comparison of test results from Stuttgart data 
with the values predicted by new accuracy models

Test Area
Grid data Composite data

Predicted Tested Differ. Predicted Tested Differ.

Spitze 0.25 m 0.31 m -0.06m 0.16 m 0.20 m -0.04m
Sohnstetten 0.40 m 0.46 m -0.06m 0.32 m 0.35 m -0.03m
Drivdalen 1.60 m 1.57 m 0.03m 1.57 m 1.47 m 0.10m

12.8.2 Theoretical evaluation of the new DIM accuracy models

As has been discussed in Chapter 2, seven characteristics of mathe­
matical models can be used as the standards to judge their "goodness". 
These are their resulting accuracy, descriptive realism, precision, 
robustness, generality, fruitfulness and simplicity. Therefore, these 
seven standards will be applied to the mathematical models of the 
accuracy of digital terrain model surfaces which have just been 
developed in this chapter.

The accuracy of the new models will first of all be considered. It has 
been defined in Chapter 2 that a model is said to be accurate if the 
output of the model (i.e. the answer it gives) is correct or very near 
to being correct. The comparison of the new models with the ISPRS 
experimental data shows that the predicted results are very near to the 
experimental data. Therefore, at least on the basis of these limited 
tests, it can be said that these new models are accurate.

The descriptive realism of the new accuracy models will then be 
considered. It has been defined that a model is said to be 
descriptively realistic if it is based on assumptions which are 
correct. In the development of the accuracy models in this study, a 
basic assumption which has been used that the two extreme values of a 
distribution are about 4 times the standard deviation of the 
distribution (distant from the mean of the distribution) in the case of 
digital terrain models. As has been discussed previously (Section 
12.6.3), this assumption seems appropriate both in theory and practice. 
Therefore, it can be said that these new models are descriptively 
realistic.

It has also been defined in Chapter 2 that a model is said to be 
precise if its predictions are definite numbers (or other definite 
kinds of mathematical entities, such as functions, geometric figures, 
etc.). Obviously, all the accuracy models developed in this study are
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expressed by mathematical functions which can also be presented in a 
graphical form. Therefore, by this definition, they are precise models.

According to the definition given in Chapter 2, a model is said to be 
robust if it is relatively immune to errors in the input data. 
Considering the particular cases of the new accuracy models, the input 
parameters are the sampling interval, the slope angle, the accuracy of 
source data and perhaps the wavelength. In these models, the sampling 
interval plays the most important role. However, in any case, the 
sampling interval will be very precise. As'far as the other parameters 
are concerned, a small error in the input will merely produce a small 
error in the output. Therefore, in a certain sense, these new models 
can be said to be relatively robust.

It has been defined in Chapter 2 that a model is said to be general if 
it applies to a wide variety of situations. In some ways, it can be 
said that the new mathematical models are not general since they apply 
only to the limited specific cases - employing (i) either gridded data 
or composite data; (ii) a continuous surface comprising a series of 
linear facets which are constructed directly from the measured data 
(i.e. without the pre-processing of a random-to-grid interpolation); 
and (iii) a relatively small sampling interval.

The last limitation must be emphasized here, i.e. these models will 
apply to only these cases where the sampling interval is smaller than 
the so-called wavelength. This limitation is obvious since the values 
of the maximum errors cannot increase any more when the sampling 
interval reaches the value equal to the wavelength of the terrain 
variation.

The fruitfulness of a model is also very important. It has been defined 
that a model is said to be fruitful if either its conclusions are 
useful or it inspires and/or points the way to other good models. 
Obviously, the accuracy models developed in this study would appear to 
be useful for application in DTM practice. They also point the way to 
the definition of an optimum sampling interval which will be discussed 
later in Chapter 14.

Simplicity is also an important standard for a mathematical model, 
especially for the purpose of comparison. A model may be regarded as 
simple if it comprises only a small number of parameters, each of which 
has some specific or special meanings. It is clearly the case that the 
accuracy models developed in this study have been derived in an 
intuitive way and no complicated mathematics are needed at all. 
Furthermore, each model consists of only a few parameters, each of 
which has its own physical meaning. Finally, it should be said that the 
mathematical expressions of these models are extremely simple and are
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in a form which is similar to that of the traditional expression of map 
accuracy. It might be believed (at least by the present author) that 
these models are the simplest ones which can ever be obtained. 
Therefore, if this is indeed correct, it is obvious that these models 
also satisfy the standard of simplicity.

From the discussion conducted above, it would seem that these models do 
satisfy the six standards out of the total of seven. The exception is 
that of the generality. Actually, generality is not a serious problem 
in this particular case since the gridded data and composite data are 
the two types of DTM source data which are most widely used in DTM 
practice and since the continuous surface comprising a series of linear 
facets is, by general consent, the least misleading surface which can 
be used in most cases. Therefore, it can be understood that these 
models may be placed in a fairly high rank in terms of "goodness".

12.9 Concluding remarks

In this chapter, existing mathematical models of the DTM accuracy have 
been evaluated and two main types of mathematical model describing the 
accuracy of the DTMs derived from photogrammetrically measured data 
sets have been described. One of the models is for composite data, 
while the other is for regularly gridded data - both of which are 
commonly used in DTM practice. These mathematical models have also been 
validated with the experimental results which have been presented in 
Chapter 9 and have also been discussed using the seven standards given 
in Chapter 2. As a result, it can be concluded that these models are 
reasonably apt and fairly comprehensive models.

It can also be found that these formulae expressing the accuracy models 
are so simple that they can also be expressed in a form similar to that 
of Koppe formulae (see Chapter 6) which have been widely used in the 
mapping communities in Central European countries such as Germany, 
Austria and Switzerland to express the accuracy of a contour map. The 
expressions corresponding to the form of the Koppe formulae might be 
expressed as follows:-

i). Accuracy of DTM data interpolated from the hybrid of bilinear 
surfaces and triangular facets from composite data (i.e. in the 
case that surface-specific points and lines are included in the 
source data):

SD(sg)c = (2/3) SD(PMD) + 0.081 Dx tanA (12.43)

ii). Accuracy of DTM data interpolated from bilinear surfaces:
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SD(sg)r = (2/3) SD(PMD) + 0.031 (1 + 4Dx/W) Dx tanA (12.44)

iii). Accuracy of the DTM points on the triangular facets constructed 
from composite data is as follows:

SD(tg)c = (2/3) SD(PMD) + 0.075 Dx.tanA (12.45)

iv). Accuracy of DTM data interpolated from the triangular facets 
which are constructed from a gridded data set:

SD(tg)r = (2/3) SD(PMD) + 0.075 (1+4Dx/W) Dx tanA (12.46)

So far, the matter of the accuracy of the DTMs derived from photo- 
grammetric data has been investigated in some detail. However, the 
problem of the accuracy of the DTMs derived from digital contour data 
has not as yet been touched upon. The next chapter is an attempt to 
conduct some useful investigations into this specific topic.
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Chapter Thirteen 

Accuracy of Digital Terrain Models Derived from Digital Contour Data

13.1 Introduction

As has been discussed in Chapter 4, based on practical considerations, 
aerial photography and the contour lines on existing topographic maps 
are the two main sources for modelling large areas of the Earth's 
surface. Therefore, the accuracies of the DTMs derived from both of 
these sources have been investigated in this project. Some experimental 
tests on the accuracies of the DTMs derived from the data acquired by 
photogrammetric sampling have already been described in previous 
chapters (9 and 10) and a family of mathematical models predicting the 
accuracy of the DTMs derived from photogrammetrically measured data has 
been presented in Chapter 12. However, the accuracies of DTMs derived 
from digital contour data have not been discussed till now. This 
chapter is an attempt to deal with this subject.

As has been pointed out in Chapter 6, the term "digital contour data" 
includes both the digital data digitised from existing contour maps and 
the digital data recorded directly from photogrammetric contouring. In 
this project, an experimental test on each of these two types of 
contour data has been carried out and will be reported on in this 
chapter. Actually, the first test was an attempt to investigate the 
accuracy of the DTMs derived from contour data related to different 
slope angles of the terrain while the second test was designed to 
investigate the possible improvement in the accuracy of the DTMs 
derived from digital contour data through the addition of feature- 
specific data.

13.2 A study of the DTM produced from an OS 1:63,360 scale 
topographic map

A brief description of OS topographic map series has been given in 
Chapter 6. In this section, an experimental test on the accuracy of the 
DTM derived from a 1:63,360 scale map will be presented.

13.2.1 Introduction

Existing topographic maps are one of the main sources for the 
establishment of a small-scale topographic data base and for digital 
terrain modelling on a regional basis. In Great Britain, the 1:50,000 
scale topographic map series was recommended to be the principal data 
source for such purposes by the Ordnance Survey (OS) Review Committee 
(Haywood, 1981). Indeed, McMaster et al (1986) reported that the OS was

251



Chapter 13 Accuracy of DTMs derived from contours

concentrating on "the creation of a data base from its 1 :50,000 scale 
digital maps,...11 and that the OS was also "examining 1:50,000 digital 
data produced by other agencies with a view to using this in the data 
base and had started digitising one 1:50,000 scale sheet for assessment 
by potential users". Therefore, a study of the accuracy of the DTMs 
which could be derived from topographic maps at such a scale is of 
practical interest.

A preliminary test carried out by Shearer and one of his students 
(Lowthian, 1986; Shearer, 1987) in this Department for the production 
of a DTM from this scale of OS topographic map gave very disappointing 
results. The resultant root mean square error (RMSE) was about +6.75m 
for a low mountain area.

So it seemed particularly interesting to test the accuracy of DTM from 
an Ordnance Survey (OS) 1:63,360 (one inch to mile) scale topographic 
map, not only because these two scales are quite close but, more 
importantly, because the OS 1:50,000 scale series is the successor to 
the 1:63,360 series after metrication. "The 1:50,000 First Series 
sheets are basically an enlargement of the material of the Seventh 
Series 1:63,360 sheets". The contours are straight conversions from 
feet to the nearest metre. As Harley (1975) mentioned, "the actual 
contour interval of the 1 :63,360 scale series - 50ft - remains the 
same". Such a test may also facilitate the feasibility study for 
creating a small topographic data base.

In addition to these reasons mentioned above, a large area of digital 
contour data digitised from the 1:63,360 scale OS topographic maps in 
East Fife which has been used for testing the rectification of remotely 
sensed image data was available in this Department. For these reasons, 
a test of the accuracy of a DTM derived from one of these 1 :63,360 
scale topographic maps was carried out.

13.2.2 Test area

The digitized area covers a complete sheet - Sheet 56. The coordinate 
range of the test area is approximately as follows (see Fig.13.1):

The relief in this area belongs to three categories as follows:

i). high hills covering an elevation range between 700 and 2,000ft 
(21 0 to 600m);

ii). low hills lying between 350 and 700ft (105 to 210m); and

Easting: 325,000 m
Northing: 700,000 m

360.000 m
725.000 m
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iii). a considerable area of lowland and shallow valleys.

Slope angle ranges from 1° to 30°. The contour lines in the test area 
are shown in Fig.13.1.

Because of the large variation in relief and slope angle in this area 
and the capacity limitations of the terrain modelling package (PANACEA) 
used for data processing, the test area was divided into 8 sub-areas. 
The relief parameters are shown in Table 13.1, where the slope angles 
have been estimated from the contour map itself and they should be 
regarded only as approximate values.

Table 13.1 Relief parameters for Sheet 56

Parameters A1 A2 A3 A4 A5 A6 A7 A8
Slope range 6-30 6-30 5-25 3-25 3-25 3-15 1-13 3-13
Typical slope 24 26 15 10 13 7 4 6
Contour range 50-550 50-700 50-500 100-1100 50-950 50-650 50-600 50-650

N.B. The slopes are in a unit of "degrees" and the contours are given 
in "feet".

13.2.3 The digitised contour data

With the digitised contour data, two aspects are of main concern. One 
is the quality of the contour data included on the maps and the other 
is the "goodness" of the digitisation.

Table 13.2 Statistics of Digital Contour Data

Values c>n Ground Values on Map

Dmin 1.6 m ^min 0.03nm

Dmax 85.7 m ^max 1.35mm

Dav 40.0 m dav 0.63rrm
No. of Pts about 66,200 density 87pts/km^

N.B. Dmin, Dmax and Dav denote the shortest, longest, and 
average distances on the ground; and
dmin# ^max anĉ  ̂ av ̂ en°te the corresponding distances at 
map scale.
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Chapter 13 Accuracy of C/IMs derived from contours

The vertical contour interval on the 1 :63,360 scale maps is 50ft (about 
15m). The contour lines were digitized manually on a Hewlett-Packard 
digitising system using stream mode. The distribution of the distances 
(chords) between pairs of digitised points is shown as a histogram in 
Fig.13.2. The corresponding statistics regarding these distances and 
the number and density of the points which are included in the 
digitised contour data set are also given in Table 13.2. From Fig.13.2, 
it can also be seen that about 86 per cent of the distances between 
pairs of digitized points are smaller than 1 mm at map scale which is 
equivalent to about 65m on the ground.

According to the discussion in Chapter 6, the accuracy of the digitised 
contour data for this area will be about 2m on average if the contours 
were compiled from the manuscripts measured from a stereo-model. 
However, the actual accuracy of this set of digital contour data should 
be lower (worse) than this value since the contours on OS 1 :63,630 
scale maps were derived from the older series of OS 1 :10,560 scale 
maps.

13.2.4 Hie check points

As discussed before, three main aspects of the check points are of 
concern. One of them is their geometric accuracy; another is the number 
of check points which are available for checking; and the third is the 
distribution of those points.

As far as the accuracy is concerned, photogrammetric data is desirable 
for checking the accuracy of a DTM derived from contour maps. However, 
as already noted in the discussion of the accuracy of the DTM data 
derived from space photography in Chapter 11, it is impractical to use 
large scale photographs for the measurement of check points for so 
large an area. Therefore, attention was concentrated on the 
availability of larger scale contour naps.

As discussed in Chapter 6, the largest scale at which the OS measures 
and compiles contour maps is 1:10,000. However, the corresponding maps 
for this area were not available in the Department. Therefore, the OS 
(Pathfinder Series) 1:25,000 scale topographic maps were considered as 
an alternative. In other words, points digitised from the contours on 
such maps were to be used as check points for this test.

The 1:25,000 scale maps for this area are the recently published sheets 
of the OS Pathfinder Series. The sheets of this Series have in fact 
been compiled directly by simple photographic reduction from the 
1 :10,000 or 1 :10,560 Series published in the 1970s and 1980s. The 
contour interval is 5m and the contours themselves have been measured
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Chapter 13 Accuracy of DTMs derived from contours

photogrammetrically. According to the map specifications discussed in 
Chapter 6, points interpolated from such contours will have an RMSE of 
about jf1.7m. The accuracy of the points actually lying on the contours 
may be a little higher than this value. On the other hand, according to 
the map specifications published by the OS, the accuracy (RMSE value) 
of points interpolated from the contours on 1:63,360 scale topographic 
map with 50 feet (about 15m) contour interval is about +5m even in flat 
areas. Therefore, the points digitised along the contours on the 
1 :25,000 scale maps were considered acceptable to be used as check 
points for this test.

Another important concern with check points for the testing of DTM 
accuracy is their distribution. In this test, only those points 
occurring at certain selected height values have been used and these 
points may be not representative in some sense. Nevertheless, an 
attempt had also been made to select the check points as randomly as 
possible, and also as evenly distributed as possible. Fig.13.3 is an 
example of the point distribution.

Regarding the number of check points used, as discussed previously 
(in Chapter 11), the use of more check points may lead to a more 
reliable test result. However, when the accuracy of the check points 
themselves is relatively low, not much improvement in the reliability 
of the DTM accuracy estimates can be achieved even if a large number of 
check points are used. Therefore, it was decided not to use as many 
points as had been used in the ISPRS DTM test. The numbers of check 
points used in this test are shown in Table 13.3.

13.2.5 Test results and the analysis

Again, the PANACEA system (a triangulation-based DTM package) was used 
for the DTM generation. The digitised contour data was, first of all, 
triangulated; then the continuous surface comprising a series of 
contiguous linear facets was constructed from the triangular network. 
Finally, the DTM points were linearly interpolated from the 
triangulated facets. Fig.13.4 shows an example of the triangular 
network which has been constructed from the digital contour data of 
area A7.

The same statistical parameters as those used in the previous tests 
were computed and the test results are shown in Table 13.3. Also as 
was done before, the occurrence frequencies of the large residuals were 
also recorded and are given in Table 13.4.

From Table 13.3, it can be seen that the extreme values of the 
residuals are more or less equal to the contour interval although a few 
exceeded this value. The RMSE and SD values obtained from this test
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Chapter 13 Accuracy of DTMs derived from contours

show that the same accuracy figures as those given by the map specifi­
cation may be obtained for the DTM derived from the digitised contour 
data. The overall RMSE value is +_4.4m, which is even a little better 
than the expected value: Cl/3 = 15/3 = 5.0m. Of course, it is also 
clear that the RMSE values vary greatly with the actual terrain 
features.In the two hilliest areas with greatest slope values (i.e. 
areas A1 and A2), the RMSE values exceeded 5.0m, while in the four 
flatter areas with lowest average slope values (i.e. areas A4, A5, A7, 
and A8), the RMSE values were below _+4.0m.

Table 13.3 Test results for Sheet 56

A1 A2 A3 A4 A5 A6 A7 A8 Overall
No. 117 94 168 74 137 178 104 88 960

*1nax 16.2 16.6 21.7 7.1 6.9 10.2 6.2 8.3 21.7

-Emax -17.2 -15.1 -16.7 -14.9 -22.2 -12.8 -11.6 -10.0 -22.2
RMSE 5.6 5.9 4.4 3.9 4.1 3.9 3.1 3.9 4.4
Mean 0.2 -1.0 -0.2 -1.5 -0.6 0.5 -0.2 -0.9 -0.3
SD 5.6 5.8 4.4 3.7 4.0 3.8 3.1 3.8 4.4

N.B. No. denotes the sample size (number of check points); RMSE denotes 
root means square error; and SD standard error; and the symbol '*+" 
before RMSE and SD has been omitted simply for convenience, ftnax 
and _Emax denote the maximum and minimum errors; The unit for 
accuracy figures used in this table is the metre.
Table 13.4 Occurrence frequency of large errors

Area
Number Frequency

>2xSD >3xSD >4xSD >2xSD >3xSD >4xSD
A1 6 1 0 5.13 % 0.85% 0.0%
A2 5 0 0 5.32 % 0.0% 0.0%
A3 11 3 1 6.55 % 1.78% 0.6%
A4 3 1 0 4.05 % 1.35% 0.0%
A5 3 2 2 2.19 % 1.46% 1.46%
A6 5 2 0 2.81 % 1.12% 0.0%
A7 4 1 0 3.85 % 0.96% 0.0%
A8 6 0 0 6.82 % 0.0% 0.0%
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The occurrence frequencies of large residuals are shown in Table 13.4. 
From this table, it can be seen that large errors (those larger than 
3xSD) which might often be considered to be gross errors do occur in 
six out of the eight test sub-areas, with a small but discernible 
frequency. The errors larger than 4xSD did not occur in any of the 
areas with the lowest average slope values (areas A4, A6, A7, and A8) 
nor in the two hilliest areas (A1 and A2).

Since, as noted above, there is a trend visible in Table 13.3 for the 
RMSE or SD values to rise with an increase in the slope (and relief), 
it was decided to carry out a more detailed analysis in order to have a 
deeper insight into this trend.

Using the same empirical model and procedure as that used in Chapter 9, 
a similar regression analysis was carried out. The mathematical 
expression was rewritten as follows:

The coefficients "a" and "b" can be obtained by means of a regression 
analysis using the experimental data. "A" denotes the slope angle. If 
the so-called typical slope angles for those sub-areas listed in Table
13.2 are used for the regression analysis, then the resultant values 
for "a" and "b" are 3.5 and 9.86, respectively. The value of the 
correlation coefficient obtained for this regression, r, is 0.987. And 
so, the final expression becomes:

VAR (DTM) in Equs.(13.1) and (13.2) denotes the variance of the DTM and 
the standard error can be obtained by taking the square root of the 
value of VAR(DTM). The diagrammatic representation is shown in 
Fig.13.5.

Equ.(13.2) can only be an approximate one because the slope angles 
listed in Table 13.2 are not accurate values. Nevertheless, it does 
provide some useful information about the relationship between the DTM 
accuracy and the slope angle of the terrain. Indeed, Equ.(13.2) is very 
similar to the relationship actually set out in the map specifications 
discussed in Chapter 6.

13.2.6 Discussion

From this limited test, the following conclusions may be made:

VAR(DTM) = a2 + (b tan A)2 (13.1 )

VAR (DTM) = 12.25 + (9.86 tanA)2 (13.2)
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Chapter 13 Accuracy of DT̂ -Is derived from contours

i). The height accuracy of the DTM data derived from contours is 
highly correlated with the slope angles occuring in the test 
area. The correlation coefficient is very high (0.987 for this 
example) for the model expressed by Equ.(13.1).

ii). Errors larger than 3xSD do occur, but with a less small 
frequency than might be expected. So whether the traditional 
error theory is valid in this area still needs to be proven.

iii). The mean of DH is usually not large, but it is not necessarily 
zero.

iv). The RMSE value of the DTM derived from the OS 1 :63,360 scale 
topographic map will exceed +3.5m even in very flat areas. 
However, the range of RMSE values between +3.5 to 5.9m will 
still be quite acceptable for quite a number of small-scale 
applications.

As a final note about this study, it must be pointed out here that this 
experimental test was carried out early in 1987, shortly after the 
author started his Ph.D. study. At that time, it seemed still 
interesting to carry out such an experimental test. However, this study 
now seems a little out of date since the small scale DTM data base 
derived from the contours on the new OS 1:50,000 scale map series by 
the Mapping and Charting Establishment of Military Survey has already 
become available in some parts of England and will be available for the 
whole of Great Britain by 1991 as reported by Ley (1990) at the IBG 
Annual Conference held in the University of Glasgow earlier this year.

Nevertheless, these test results have been presented here since they 
still provide users with some useful information about the quality of 
the small scale DTM data which can be derived from the OS's smaller 
(1:50,000/63,360) scale maps. This may assist then in making a correct 
judgement as to whether such small scale DTM data is accurate enough 
for their specific applications. Undoubtedly, this data will still be 
of value to applications such as landscape visualisation, aircraft 
simulators, radio communications planning, etc. where large area 
coverage is required and a very high accuracy is not required of the 
DTM data.
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13.3 Accuracy of the DTMs derived from photogranroetric contour data

The experimental test on the accuracy of the DTM derived from the OS 
1 :63,360 scale topographic maps has been reported in the previous 
section. In this section, an experimental test on the accuracy of the 
DTM derived from directly recorded photogrammetric contour data will be 
presented.

13.3.1 Test data

As has been stated in Chapter 9, a set of photogrammetrically measured 
contour data for each of the three test areas (Uppland, Sohnstetten and 
Spitze) was also made available to the author through the courtesy of 
Prof. H. Ebner and Dr. W. Reinhardt at the Technical University of 
Munich. These data sets were also measured on an analytical plotter. 
The contour intervals for each of these areas are given in Table 13.5, 
from which it will be seen that a contour interval (Cl) of 5m was used 
for both the Uppland and Sohnstetten areas, while an interval of 1m was 
used for the Spitze area. A brief description of each of these areas 
has already been given in Table 9.1, while the contour plots and 
isometric diagrams for these areas have been given in Figs.9.1 to 9.3.

The data sets containing the information about feature-specific points 
and feature-specific lines have also been used in this test and the 
diagrammatic representations of these data sets have been given in 
Figs.9.4(b), 9.5(b) and 9.6(b).

The same check points as those used for the experimental tests which 
were presented in Chapter 9 have also been used in this test. Some 
useful information about these check points has already been given in 
Table 9.4, and the diagrammatic representations of the distributions of 
these check points have been given in Figs.9.7 to 9.9.

Table 13.5 Accuracy of the DTM data derived from 
ISPRS photogrammetrically measured contour data sets

Uppland Sohnstetten Spitze
Contour Inter. 5.0 m 5.0 m 1.0 m
R M S E 1.74 m 0.91 m 0.27 m
Mean 1.05 m 0.22 m 0.10 m
S.D. 1.39 m 0.88 m 0.24 m

+ Emax 5.91 m 4.52 m 2.66 m
- Emax -5.18 m -3.01 m -0.95 m
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13.3.2 Test results using the contour data only

The PANACEA system was also used for this test and the same procedure 
as that used in the test of the OS contour data was applied to this 
ISPRS contour data. The accuracy results are shown in Table 13.5. Also 
as usual, the occurrence frequencies of the large residuals for each of 
the test areas have also been recorded and are given in Table 13.6.

Table 13.6 Occurrence frequencies of large residuals in the DTM 
derived from ISPRS photogrammetrically measured contour data

Uppland Sohnstetten Spitze
No. % No. % No. %

> 2 * SD 105 4.5 122 6.4 55 2.6
> 3 * SD 27 1.2 65 3.4 24 1.1
> 4 * SD 1 0.04 16 0.8 13 0.6

No regression analysis will be carried out for the accuracy results of 
the DTMs derived from photogrammetrically measured contour data since 
only one contour interval was used for each test area. Therefore, only 
a descriptive analysis of the accuracy figures and the residuals will 
be carried out.

From Table 13.5, it can be seen that the RMSE or SD values of the DTMs 
derived from the photogrammetrically measured contour data is more or 
less equal to Cl/3. If these RMSE values are expressed in terms of per 
mil of flying height, then the RMSE values are 0.39 for the Uppland 
area, 0.61 for Sohnstetten and 0.45 for Spitze. These values are very 
much greater than 0.3 per mil of H which is the expected accuracy of 
dynamically measured data suggested by Rinner and Burkhardt (1972) and 
discussed in Chapter 5. Therefore, a big error budget appears to come 
from the loss in the fidelity of the terrain topography which is 
represented selectively by the measured contour lines. The RMSE values 
for such a budget are +0.25 per mil of H for the Uppland area, j+0.53 
for Sohnstetten area and +0.34 for Spitze area.

From the test results, it can be found that the maximum errors for the 
DTMs derived from photogrammetrically measured contour data are roughly 
equal to one contour interval. However, for the area of Spitze, there 
are 7 residuals which are larger than 1.0m which occur in a cluster. 
These errors occur in the area with terrain discontinuities already 
mentioned in Chapter 9 and therefore cannot be considered as being 
normal. After the deletion of these non-normal errors, the maximum
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errors for this area are also about one contour interval. Errors 
greater than 4xSD did also occur, although their occurrence frequencies 
were small.

It is also interesting to relate the contour interval of a set of 
digital contour data to the grid interval of a set of measured gridded 
elevation data. The test results show that, for the Uppland area, the 
DTM data derived from the contour data with a 5m vertical interval 
cannot match the corresponding data derived from gridded spot height 
measurements even with the large grid interval of 80m. For the Spitze 
area, the contour data with 1m interval can only match the gridded 
elevation data with a grid interval of about 15m. However, with the 
same contour interval as that for Uppland, the contour data for 
Sohnstetten can match the grid data with a grid interval of about 30m. 
These results may be useful when making a decision as to which sampling 
strategy is to be used for a specific DTM project.

13.3.3 Test results using additional feature-specific data

However, if the data describing the feature-specific points and lines
are added to the contour data, then the accuracy of the height points 
derived from the DTM can be greatly improved and the magnitude of the 
residual errors can also be significantly reduced. The accuracy results 
corresponding to such data sets are given in Table 13.7. Again, the 
occurrence frequencies of the large residuals have also been recorded 
and are given in Table 13.8.

Table 13.7 Accuracy of the DOT4 data derived from ISPRS 
photogrammetrically measured contour data plus feature-specific data

Uppland Sohnstetten Spitze
Contour Inter. 5.0 m 5.0 m 1.0 m
R M S E 0.93 m 0.35 m 0.17 m
Mean 0.47 m 0.11 m 0.09 m
S.D. 0.80 m 0.35 m 0.15 m

+ Emax 3.25 m 1.73 m 0.75 m
- Emax -5.18 m -2.48 m -0.95 m

It is interesting to note that, after the feature-specific data has 
been added, the accuracies of these DTMs derived from the ISPRS contour 
data have been greatly improved and the values of RMSE or SD have been 
reduced to a level of Cl/5 from their original level of Cl/3. The
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actual figures for the improvement in the RMSE values for these three 
areas are about 45% for both the Uppland and Spitze areas and 60% for 
the Sohnstetten area. If the RMSE values of the DTMs obtained from the 
contour data plus the feature-specific information are expressed in 
terms of per mil of H, then the values are 0.21 for the Uppland area, 
0.23 for Sohnstetten and 0.28 for Spitze. These values are even better 
than 0.3 per mil of H which is the expected value of 
photogrammetrically measured contour data discussed in Chapter 5.

Table 13.8 Occurrence frequncies of large residuals in DTM data derived 
from ISPRS photogrammetric contour data plus feature-specific data

Uppland Sohnstetten Spitze
No. % No. % No. %

> 2 * SD 129 5.6 96 5.1 71 3.4
> 3 * SD 21 0.9 20 1.1 16 0.8
> 4 * SD 3 0.1 7 0.4 7 0.3

The occurrence frequencies of large residuals are similar to those in 
the case when other photogrammetrically measured data sets were tested. 
When the feature-specific points and lines were added, then the 
magnitude of the large residuals can be greatly reduced and the DTM 
accuracy improved. However, errors exceeding 4xSD did still occur 
although the occurrence frequency is not large.

13.4 Concluding remarks

In map production, there are some specifications for the tolerable 
accuracy for the points interpolated from the contours on a map. Some 
of these specifications for topographic maps at different scales used 
in different countries have been given in Chapter 6. The accuracy 
figure for contours which is given by a map specification can, in fact, 
be considered as one kind of expected accuracy of the DTMs derived from 
a contour map because the DTM points are interpolated in a manner 
similar to that used for map checking.

Indeed, the results obtained from the two experimental tests presented 
in this chapter appear to prove this point. As one can imagine, the 
results obtained from these two tests are quite representative since 
each of the two main types of digital contour data (i.e. photogram­
metrically measured contour data and digitised contour data from an 
older existing map series) were used for the tests carried out in this 
study, even though these tests were somewhat limited.
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In the context of digital terrain modelling from digital contour data, 
one of the most important concerns is "how much improvement in the 
accuracy of the final DTM can be achieved if feature-specific points 
and lines are included ?". The results obtained from the tests using 
the ISPRS contour data in this study show that the RMSE or SD values 
can be reduced from a value of about Cl/3 to a value of approximately 
Cl/5. To put it in a relative sense, it might be said that the amount 
of improvement is about 40%. Indeed, this prediction may be considered 
as being a little conservative since the actual values obtained from 
the tests described in this chapter were in fact rather better than 
this value.

Actually, Tuladhar and Makarovic (1988) have also reported that an 
improvement of 53% in the RMSE value was achieved in their test when 
feature-specific points and lines were added to the digitised contour 
data in the generation of a DTM. This value is more or less similar to 
what has been obtained in the test described in this chapter.

Up to this stage, the problems of the accuracy of the DTMs derived from 
different data sources have all been touched upon in some way or 
another. Therefore, no more discussion about the DTM accuracy 
assessment will be carried out in this thesis. In the next chapter, a 
discussion concerning the optimum design of photogrammetric sampling 
will be carried out.
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Chapter Fourteen 

Determination of Optimum Data Density with a Specified DTM Accuracy

14.1 Introduction

In the previous chapters, some investigations into the accuracy of DTMs 
have been made and a family of mathematical models have also been 
developed for the prediction of DTM accuracy. As has been pointed out 
in the introductory chapter (One), these mathematical models can be 
used as the basis to develop some procedures for the determination of 
the optimum data density used in a digital terrain modelling project. 
Indeed, this chapter is such an attempt to produce such procedures.

As has been discussed in Chapter 4, the density of DTM source data can 
be specified either in terms of sampling interval in the case of 
regularly distributed data or in terms of "number per unit area" in the 
case of irregularly distributed data. Therefore, in the former case, 
the minimum sampling interval defines the optimum data density and, in 
the latter, the optimum data density can be specified through the use 
of a minimum number of data points.

From a purely practical point of view, the following two topics which 
are related to optimum data density may be of interest to topographic 
scientists who are carrying out data acquisition or research work in 
the area of digital terrain model ling:-

i). Determination of the optimum sampling interval using an existing 
sampling strategy for a project with a specified accuracy 
requirement for the final DTM;

ii). Selection of a minimum number of data points from existing 
gridded data sets for a project with a specified accuracy 
requirement for the final DTM.

Actually, this chapter is an attempt to carry out some investigations 
into both of these two topics. For the first topic, only a theoretical 
discussion will be given since the experimental results obtained in 
Chapter 9 can be used as backup in this case. However, for the second 
topic, both a theoretical discussion and an experimental investigation 
will be carried out.

4.2 Determination of optimum sampling interval

First of all, the determination of the optimum sampling interval for 
both regular grid sampling and composite sampling will be discussed for
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a project with a specified DTM accuracy requirement. Then, a discussion 
of the selection of a minimum number of data points from an existing 
data set will follow.

4.2.1 Introduction and background

The selection of an appropriate sampling interval is a very important 
concern for a DTM project since the use of too large a sampling 
interval wi 1 1 bring about the result that the required DTM accuracy 
cannot be fulfilled, while the use of too small a sampling interval 
will result in the collection of a huge amount of data which is not 
necessary for a specific DTM project. Therefore, the important thing is 
to find the sampling interval with which the given accuracy requirement 
can be reached and the minimum data excess will be generated. Such a 
sampling interval is referred to as the optimum sampling interval and 
the discussion of how to determine such an interval is the topic of 
this section.

Much time and energy has been spent on the determination of optimum 
sampling interval by several investigators, such as Ayeni (1982), 
Fritsch (1984, 1988), Balce (1986, 1987a, 1987b), Frederiksen et al 
(1986), Blais et al (1986), and others.

Balce (1986, 1987) used four programs, Spectra, Logkv, Linear, and RF, 
to test which is the most suitable interval for a practical project. 
Spectra is a program which carries out the test based on Fourier 
spectra analysis. Logkv is a program based on the operational use of 
variograms. The accuracy models on which these two programs have been 
based and developed have already been outlined in Chapter 12. Linear is 
a program based on a test of the reduction in accuracy which occurs if 
only the Nth points in a data set are selected. And RF is a program 
based on the analysis of mean slope or a roughness factor. Blais et al 
(1986) followed almost the same procedure. Both Balce and Blais et al 
found that no single method can be applied effectively to different 
types of terrain. And the values estimated by different programs 
differed greatly - by more than 2.5 times in some cases - which, in 
view of the discussions carried out in the previous chapters of this 
thesis, will come as no surprise.

Thus, an important question which must arise and be answered is why are 
the estimated values derived from these various models so different? 
The fact that the differences are so great means that at least some of 
them, if not all, must be unreliable. The problems which might have 
arisen with these programs could be:

i). They are designed for modelling only profiles but not a surface.
However, as has been discussed previously (in Chapter 12), the
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accuracy of the DTM points interpolated from profiles is quite 
different to those derived from a surface.

ii). The values used for terrain roughness are very sensitive to the 
lengths of profiles and to the variations in the elevations of 
the points measured along the profile themselves. This means 
that it is very difficult to find adequate or satisfactory 
values for terrain roughness for inclusion in these programs.

iii). The six main factors which affect the DTM accuracy (see Section 
12.4) may not have been taken fully into consideration.

Actually, the determination of a value for the optimum sampling 
interval is always based on some kind of mathematical model of DTM 
accuracy into which is placed the required or specified accuracy for 
the DTM. However, most of the existing DTM accuracy models exhibit the 
various problems mentioned above. In this discussion, the accuracy 
models developed in Chapter 12 will be used instead. As has been 
pointed out there, these models are very simple, so only a relatively 
uncomplicated computation is needed. When the average slope of an area, 
the required DTM accuracy, and the accuracy with which source data can 
be measured are known, then the sampling interval can easily be 
calculated. The detailed discussion is given below.

14.2.2 Determination of sampling interval for composite sampling

As discussed in Chapter 12, the accuracy model for a composite data set 
is quite different to that for a gridded data set. Therefore, the 
optimum sampling intervals associated with a specified accuracy 
requirement are also diffemet. In this section, the determination of 
an optimum sampling interval for composite sampling will be discussed 
while the determination of an optimum sampling interval for regular 
square grid sampling will be discussed in the next section.

It can also be found that there is not much difference between the 
accuracy model for use with bilinear surfaces and that for triangular 
facets, if both of them are being constructed from the same composite 
data set. Therefore, the accuracy models for the bilinear surfaces will 
be used here as an example. The mathematical expression can be recalled 
from Chapter 12 as follows:

VAR(DTM) = (4/9) VAR(PMD) + (5/768) (Dx tanA )2 (14.1)

Where VAR (DTM) is the specified DTM accuracy; VAR(PMD) is the accuracy 
of the photogrammetrically measured data (PMD); A is the average value 
of the slope angle for the area; and Dx is the sampling interval to be 
used. This equation can be rearranged as follows:
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Dx = 12.39 cotA ( VAR(DTM) - 4/9 VAR(PMD) )1^2 (14.2)

Since the value of Dx expressed by Equ.(14.2) is intended specifically 
for use with composite sampling, thus, a specific annotation, Dc, can 
be used. Then Equ.(14.2) can be rewritten as follows:

Dc = 12.39 cotA ( VAR(DTM) - 4/9 VAR(PMD) )1^2 (14.3)

This formula can be used for planning a DTM project if composite 
sampling is being used. For example, for the Uppland area, if the DTM 
accuracy requirement is 0.75m, then it can be calculated that the 
optimum sampling interval, Dc, is about 70m.

14.2.3 Determination of sampling interval for square-grid sampling

It is assumed that there are no faults or terrain discontinuities 
inside the area to be modelled, since such features will be or should 
be measured in any case. The mathematical model for estimating the 
accuracy of DTM from gridded data sets is, as discussed in Chapter 12, 
as follows:

VAR(DIM) = (4/9)VAR(PMD) + (5/768)( (1+4Dx/W) Dx tanA )2 (14.4)

Where, W is the so-called wavelength and a rough value of this 
parameter can be obtained from Equ.(12.27b). Equ.(14.4) can be
rewritten as follows:

Dx (1 + 4Dx/W) = 12.39 cotA ( VAR(PMD) - (4/9) VAR(PMD) )1^2 (14.5)
= Dc

Where Dc is the optimum sampling interval for composite sampling with a 
specified accuracy requirement of VAR(PMD) (see Equ.(14.3)). Using Dr 
to denote the optimum sampling for regular grid sampling, then the 
exact solution to Equ.(14.5) is as follows:

Dr = ( (1 + 16 Dc/W )1/2 - 1) / (8/W) (14.6)

It seems that this expression is a little inconvenient to use from the 
computational point of view. In practice, a more convenient expression 
which will result in an approximate value can be obtained from 
Equ.(14.5). Such a value is derived in the following paragraphs.

First of all, Equ.(14.5) can be rewritten in a form as follows:

D x = D c / ( 1 + 4 D x / W )  (14.7)
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At first sight, it would appear that this expression is not convenient 
at all since the variable to be solved - Dx - appears on both sides of 
the equation. However, it is not the final expression. The aim of this 
discussion is to derive a formula which is similar to Equ.(14.7) and 
is capable of producing a value which is very close to that produced by 
Equ.(14.6) for Dx.

From Equ.(14.7), it can be seen clearly that the value of the optimum 
sampling interval for regular grid sampling is only a fraction of that 
for composite sampling. If an approximate value, say Da, is used to 
replace the Dx in the right side of Equ.(14.7), then an approximate 
value can be obtained for the optimum sampling interval. Therefore, 
such an approximate formula can be expressed as follcws:

Dr = Dc / (1 + 4 Da / W) (14.8)

Actually, at the initial stage, the value of Dc may be used for this 
approximate value, Da. Taking the example used in the previous section, 
it was computed that Dc=70m. By letting Da=70m, it can be computed from 
Equ.(14.8) that Dr=44m. The exact solution obtained from Equ.(14.6) is 
that Dr=49.3m. Therefore, the difference between the approximate 
solution and exact solution is about 5m. However, if one likes, a 
solution closer to the exact solution can be obtained from Equ.(14.8) 
by substituting the the variable Da with the new value of Dr which has 
just been computed from Equ.(14.8), 44m in this particular example. 
Thus, a new value of Dr=50m can be obtained from Equ.(14.8). Actually, 
if such an iteration is repeated, then the approximate value will 
approach to the exact one. For example, the values of Dr in the next 
three iterations will be equal to 49.1, 49.4 and 49.3, respectively.

14.3 Selection of a minimum number of data points

In the previous section, the matter regarding the determination of 
optimum sampling interval for both square grid sampling and composite 
sampling has been discussed. In this section, attention is turned to 
the use of a minimum number of data points which are irregularly 
located for the modelling of a DTM surface with a specified accuracy 
requirement. The main concern is with the selection of such an 
irregularly distributed data set from a very dense set of gridded data.

14.3.1 Introduction and background

As has been discussed in Chapter 8, in the case of data acquisition 
using digital image correlation techniques, the resulting data sets 
will be very dense, for example, up to 500,000 to 700,000 points per 
stereo-model are measured in the case of the GPM-2 (Petrie, 1990). Such
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very dense data sets are not always suitable or appropriate for use by 
applications specialists such as engineers, planners, etc; indeed in 
some cases, their sheer volume constitutes a definite deterrent or 
drawback to their use. Also if the efficiency of the modelling process 
and the cost of computation are being considered, as they should be, 
then a filtering procedure needs to be applied to such data sets so 
that only a minimum number of data points will be selected from the 
data set while the specified accuracy of the final DTM will still be 
achieved.

A filtering processing may be also applicable in other cases when 
regular grid sampling has been employed as the sampling strategy for 
data acquisition. In this case, the usual practice is to employ a 
sampling interval which is suitable for the area with the roughest 
terrain in order to ensure the accuracy of the final DTM. Of course, 
such an interval can be determined by using the precedures described in 
the previous section. However, the problem is that, in the flatter 
areas, too many data points will have been measured. Therefore, it may 
be also desirable to apply a filtering processing to such a data set.

One may argue that progressive sampling can be used to avoid such a 
problem. Indeed, the idea of using varying grid cell sizes for each 
piece of terrain with a different roughness is that employed in the 
progressive sampling strategy originally suggested by Makarovic (1973). 
This sampling strategy has been implemented by many organisations and 
works well in many cases. However, progressive sampling cannot solve 
the whole problem.

At the DTM workshop held at Edmonton, Canada in 1984 (see Toomey, 
1984), there were a lot of interesting discussions about this sampling 
strategy based on the experinces gained by the participants. Prof. 
Collins commented that "the fundamental problem of progressive sampling 
is that a low second derivative value does not mean that the surface is 
necessarily OK. When a new point is tested, it may be good enough; but 
that doesn't mean that there are no irregularities in the neighbour­
hood." Prof. Molnar agreed with Collins and stated that "the remarks of 
Professor Collins are really important. You can check whether it is OK 
but the answer doesn't give you a 100% security." These remarks 
indicate that it might be difficult to come to a reliable decision as 
to whether or not an area should be further densified. Indeed 
alternative criteria for making such a decision have been searched for 
by Makarovic himself (1975) and by one of his students (Charif and 
Makarovic, 1988). However, this foundamental problem is one which is 
difficult to solve since this methodology goes from the unknown to the 
known. Therefore, it may be concluded that simple regular grid sampling 
will still remain in widespread use in DTM practice and that the 
problems associated with this sampling strategy still need to be
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considered and an alternative solution offered.

From the discussions conducted above, it does seem that an investiga­
tion into the selection of a minimum number of points from data sets 
such as those acquired from digital image correlation and dense regular 
grid sampling is very desirable. Thus an effort to contribute a 
solution to this problem has been carried out in this project.

14.3.2 Hie procedure used for data selection

As has been discussed in Chapter 4, a point which has been specially 
selected on the basis of its importance for terrain representation has 
a greater importance or significance than a purely random point in 
terms of defining or representing a particular surface area. In order 
to select such points, the significance of every point needs first of 
all to be evaluated.

Chen and Guevara (1987) developed a procedure, which defines Very 
Important Points (VIPs), to serve such a purpose. The first step in 
their procedure is to select a measure for significance. The measure 
which was used by them is the spatial differential operator, which is a 
measure of the changing behaviour of a point from its neighbours. The 
principle for the one-dimension case is as follows:

Suppose, the height of a point along a profile is a function of its 
position as follcws:-

H = f(x) (14.9)

Fig. 14.1 The second differential of a point 

then, its second order differential value at point Xq (Fig. 14.1) is
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d 2 H / d X 2  = f'XXg) (14.10)
= 2 ( f(Xq ) - (f(X, ) + f(X2))/2 )

Actually, the distance AC in Fig.14.1 is the second order differential 
value at point X q .  They also consider four spatial directions (up-down, 
left-right, upper left-lower right, lower left-upper right). For every 
point, the second differential values for all four directions are added 
together to represent the degree of the significance of this point. 
Actually, the line of thought is very similar to that used by Makarovic 
(1973) in designing the progressive sampling method.

Chen and Guevara also pointed out that, if the number of points to be 
selected is specified, then those points with the greatest significance 
can be selected. However, in the case of this present study, what has 
been defined and is therefore known is the required DTM accuracy. 
Therefore, the selection of VIPs should be related to the required 
accuracy of the DTM itself instead of a pre-defined number of points. 
In this case, a critical value should be used so that any point with a 
degree of significance smaller than this value may be removed.

14.3.3 Hie relationship between the critical value
used for data selection and the resulting DIM accuracy loss

To find the critical value for data selection, a close examination of 
distance AC in Fig.14.1 must first be undertaken. It can be found that 
AC is the error at X=Xq if Xq is removed and the profile is constructed 
by linear interpolation between the elevation values at X̂  and X2 . This 
means that the value of the so-called degree of significance itself 
represents the DTM error and a loss of accuracy will result from the 
selection of VIPs or the removal of those points which have been 
regarded as insignificant. The problem new arising is hew much will the 
loss of accuracy be in terms of standard deviation or RMSE if all the 
data points with the so-called degree of significance smaller than a 
specific value are removed. In other words, the relationship between 
the accuracy loss and the specified critical value needs to be 
investigated.

If the distribution of these errors is known, then such a relationship 
can easily be set out. The distribution may be known by analysing these 
errors. Obviously, their distribution may vary from area to area. 
Therefore, some kind of rough estimation has been carried out in this 
study.

To find such a relationship, an experimental investigation has been 
carried out in this study. The results of these tests will be reported 
in the next section. By analysing the set of values for the degree of
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significance for the data points obtained from the experimental tests 
and using a trial-and-error method, it has been found that the accuracy 
loss due to the deletion of those insignificant points in terms of 
standard deviation is 1/3 of the critical (threshold) value used.

Suppose that the critical value of the degree of significance for data 
selection is SIG(crit), while SD(loss) is used to denote the accuracy 
loss due to the deletion of insignificant points in terms of standard 
deviation, then the following expression can be obtained:-

SD(loss) = SIG(crit) / 3 (14.11)

In practice, since the tolerable value of such an accuracy loss may be 
known, the critical value, SIG(crit), for data selection can then be 
determined using Equ.(14.11).

14.3.4 Experimental Results

In order to find the relationship between the critical value used for 
data selection and the resulting DTM accuracy loss, some experimental 
tests have been carried out. Two of the data sets described in Chapter 
9 were used, i.e. the sets of gridded data for both the Uppland and 
Sohnstetten areas.

In this test, the value of the so-called degree of significance of 
every point is first computed; then different critical values are 
specified for data selection. The accuracy of the DTM derived from the 
data sets after the removal of the insignificant (i.e. unwanted) data 
points is then computed to see how the experimental results fit the 
theoretically expected values.

Table 14.1 lists the results of DTM accuracy obtained from the data 
sets selected from one of the two grids for the Uppland area with 
different critical values. In this table, "Pts No." denotes the number 
of gridded data points which were selected; "% No of Pts" denotes the 
percentage value of grid points selected from the original total number 
of 1,862; and, as usual, RMSE, SD and Mean denote the root mean square 
error, standard deviation and the mean of the errors in the DTM from 
these selected grid points. Under the term "Orig", all the values used 
are either those of the original data set or were obtained from the 
original data sets. For example, it can be found that the root mean 
square error and standard deviation values obtained from the original 
data set are +0.770m and +0.764m, respectively.

This table lists the results of the accuracy of the DTMs derived from 
selected data sets with the threshold values from 0.4m to 0.9m. The 
results in this table demonstrate clearly that, with an increase in the
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value of SIG(crit), the number of data points selected by this 
filtering procedure is fewer; thus the accuracy of the DTM derived from 
the selected data set becomes lower (i.e. the values for RMSE and SD 
are greater).

Table 14.1 DTM accuracy variation with difference requirements 
for grid 1 of the Uppland area

Data Description Accuracy Description
File SIG(crit) Pts No. % No of Pts RMSE SD Mean
Orig 0.0m 1,862 100.0% 0.770 0.764 0.102
F4 0.4m 1,489 80.0% 0.778 0.772 0.098
F5 0.5m 1,392 74.8% 0.779 0.775 0.086
F6 0.6m 1,301 69.9% 0.783 0.787 0.084
F7 0.7m 1,206 64.8% 0.801 0.795 0.102
F8 0.8m 1,123 60.3% 0.810 0.803 0.104
F9 0.9m 1,044 56.1 % 0.825 0.818 0.108

A comparison of the experimental results (only SDs) with the 
values predicted computed from Equ.(14.11) is shown in Table 14.2. From 
this table, it can be seen clearly that Equ.(14.11) is almost a perfect 
expression of the results obtained from this test.

Table 14.2 DTM precision variation with critical value 
for the Uppland area

SIG(crit) 0.4m 0.5m 0.6m 0.7m 0.8m 0.9m
Experimental 0.772m 0.777m 0.787 0.795m 0.803m 0.818m
Theoretical 0.776m 0.782m 0.790m 0.799m 0.809m 0.821m

In order to come to a more reliable conclusion, a second test was also 
carried out using the data for the Sohnstetten area. The test results 
are listed in Table 14.3. For the original data set, the RMSE and SD 
values are +_0.572m and +0.561m, respectively. The range of threshold 
values used in this test range from 0.2m to 0.7m. The comparison of the 
experimental results with the values predicted by Equ.(14.11) is shewn 
in Table 14.4. Again, only the SD values are listed, and as Table 14.4 
shows, it was found that the values predicted by Equ.(14.11) agree 
almost with the experimental test results.
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Table 14.3 DIM accuracy variation with difference requirements 
for grid data of the Sohnstetten area

Data Description Accuracy Description
File SIG(crit) Pts No. % No of Pts RMSE SD Mean
Orig 0.0m 1,716 100.0% 0.572 0.561 -0.112
F2 0.2m 1,442 84.0% 0.579 0.567 -0.114
F3 0.3m 1,321 77.0% 0.581 0.571 -0.112
F4 0.4m 1,220 71.1% 0.580 0.571 -0.102
F5 0.5m 1,110 64.7% 0.586 0.576 -0.106
F6 0.6m 1,017 59.3% 0.596 0.588 -0.095
F7 0.7m 942 54.9% 0.613 0.606 -0.087

Tab. 14.4 DIM precision variation with critical value 
for the Sohnstetten area

SIG(crit) 0.2m 0.3m 0.4m 0.5m 0.6m 0.7m
Experimental 0.567m 0.571m 0.571m 0.576m 0.588m 0.606m
Theoretical 0.565m 0.570m 0.577m 0.585m 0.596m 0.608m

14.3.5 Sunmary and discussion

In this section, a filtering procedure has been described for the 
selection of a minimum number of data points from a dense gridded data 
set using the second differential value as the measure of the degree of 
significance. It has also been shown that the important problem with 
such a filtering procedure is to decide on a critical value for data 
selection.

It has also been pointed out that there will be an accuracy loss in the 
final DTM resulting from the removal of those points which have been 
regarded as being insignificant. Therefore, the determination of 
the critical value should be related to the tolerable value of such an 
accuracy loss.
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In a relative sense, the importance of a data point in surface 
representation will depend on the closeness of the data points. If all 
the data points are located very closely together, then the removal of 
an individual data point can only result in an insignificant loss of 
accuracy in the final DTM. By contrast, the removal of an individual 
data point might bring about a significant accuracy loss when the 
interval between points is very large. Actually, the measure of the 
degree of significance used in this study has already taken this fact 
into consideration.

Of course, in a manner similar to the problem associated with 
progressive sampling discussed above in Section 14.3.1, there may still 
be a problem of reliability in the decision as to which point should be 
removed. However, the decision made in this case will definitely be 
more reliable since this method goes from a dense data set to a coarse 
data set.

14.4 Optimization of regular grid sanpling with compressive approach

As has been discussed in the previous section, there will be always a 
problem associated with regular grid sampling in that the data points 
measured in the flatter areas will be too dense. Of course, a data 
filtering procedure such as the one which has just been described in 
the previous section can be applied to this data. Moreover, the matter 
of the accuracy loss in the final DTM when those points which have been 
evaluated as being insignificant are removed from the data set has also 
been investigated. The relationship between the critical value used for 
data selection and the resulting accuracy loss in the final DTM has 
been expressed by Equ.(14.11). Therefore, in the case of regular grid 
sampling, if a decision has been made to apply such a filtering 
procedure to the acquired data set, then the extent of the accuracy 
loss in the final DTM should also be considered at the time when the 
optimum interval for the grid sampling is being determined.

Suppose that the required final DTM accuracy in terms of variance is 
VAR (DTM), and the accuracy loss due to the deletion of the measured 
points which have been considered as being insignificant is VAR(loss), 
Then, the accuracy requirement for the initial regular grid is:-

VAR(inital) = VAR(DTM) - VAR(loss) (14.12)

The procedures described earlier in this chapter can be used for such a 
purpose. In this way, an overall optimization of regular grid sampling 
might be reached.
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14.5 Concluding remarks

In this chapter, the determination of an optimum sampling interval for 
both regular grid sampling and composite sampling has first of all been 
discussed; then, the problem of selection of data points from a gridded 
data set with an optimum data density has been investigated; and 
finally an integration of regular grid sampling and a data filtering 
technique has been outlined.

Up to this stage, all the main goals which have been set out in the 
introductory chapter (One) have been reached at least in a certain 
fashion. Thus, the time has now been reached to make some concluding 
remarks on the investigations which have been carried out in this 
project. These remarks will be presented in the next chapter.
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Chapter Fifteen

C o n c l u d i n g  R e m a r k s

The investigations carried out in this project have all been documented 
in the previous chapters. At this stage, it seems pertinent to have 
some concluding remarks on these investigations to see how much 
contribution has been made to the theory and practice of digital 
terrain modelling; how adequate are the results obtained from the 
various investigations; and what kind of limitations exist in the 
present investigations. After such a discussion, some recommendations 
might be made for future research.

15.1 General remarks on the research carried out in this project

It has been pointed out in the introductory chapter (One) that there 
are three main concerns with digital terrain modelling, i.e. accuracy, 
cost and efficiency. Among them, accuracy is usually the core. 
Therefore, the accuracy of the final DTM surface has been the main 
matter which has been pursued in this project. It has also been pointed 
out previously that the accuracy of the final DTM surface is affected 
by many factors such as the characteristics of the terrain surface, the 
sampling pattern used and the surface reconstruction. It has also been 
found by previous investigators that sampling is the most vital factor. 
Therefore, sampling has also been an important issue which has been 
addressed in this project. Thus, this thesis is entitled "sampling 
strategy and accuracy assessment for digital terrain modelling".

The accuracy of the surfaces produced by a DTM is a complex matter. In 
order to clarify this matter, first of all, the factors which affect 
the accuracy of the DTM surfaces, need to be clearly defined and 
examined. The discussions in Chapters 3, 4, 5, 6 and 7, which form the 
first part of this thesis, are an attempt to serve such a purpose. In 
other words, the discussions carried out in these chapters laid down a 
solid theoretical foundation for the later discussions of the 
assessment of DTM accuracy.

The main goal arising from the theoretical discussions and the 
accompanying experimental work on the assessment of DTM accuracy in 
this project is to develop a family of mathematical models which will 
define or predict the accuracy of the different types of digital 
terrain model surface which are constructed from different data 
patterns. This goal may be achieved in two ways, i.e. either by a 
theoretical analysis or by experimental tests, or a combination of 
both. The purely experimental method is time consuming and costly, in
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which case, the method using a theoretical analysis is more attractive. 
Therefore, the mathematical models in this project were developed 
largely through a theoretical analysis (Chapter 12).

To attempt to establish mathematical models for DTM accuracy, some 
discussions of the general concept of a mathematical model and the 
theoretical background to the development of mathematical models are 
also required as a guideline. Such discussions have been conducted in 
Chapter 2. To validate a mathematical model, some practical results 
obtained from experimental tests are required. Therefore, a specially 
designed experimental investigation into the variation of the DTM 
accuracy with sampling interval was also carried out in this project 
and reported in Chapter 9. Also an experimental test on the accuracy of 
a DTM acquired from space photography taken by the Metric Camera has 
been carried out and reported in Chapter 10. In addition, a discussion 
about the effects of the check points used in an experimental test of 
DTM accuracy on the reliability of the estimated DTM accuracy figures 
which were obtained from the experimental test has also been carried 
out in Chapter 11.

The investigations mentioned above were all concerned with the accuracy 
of the DTMs derived from photogrammetrically measured data. However, 
some other experimental investigations into the accuracy of the DTMs 
derived from digital contour data have also been carried out and the 
results have been reported in Chapter 13.

As has been pointed out previously, the errors in the source data 
affect the accuracy of the final DTM. In the case of DTM accuracy 
assessment through a theoretical analysis, it is assumed implicitly 
that the source data which is to be used for modelling the terrain 
surface is free from gross errors. However, in practice, the measured 
raw (source) data - especially that derived from digital image corre­
lation techniques - will include gross errors. It goes virtually 
without saying that these gross errors should be detected and removed 
from the source data set. In the studies carried out in this project, 
some numerical algorithms were developed to perform such an operation. 
Furthermore, an investigation into the effect of random errors present 
in the source data on the DTM quality has also been carried out and 
also reported in Chapter 8.

The establishment of a family of mathematical models for DTM accuracy 
is not the final destination of this project, but instead it is only a 
means to reach this destination. Indeed, the final destination of this 
project is the optimisation of photogrammetric sampling for a DTM 
project with a given accuracy requirement, i.e. to optimize the 
sampling strategy and to determine the optimum sampling interval for a 
particular sampling strategy.
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Optimisation of a sampling strategy based on the use of photogrammetric 
methods is also a difficult task. In order that an optimized sampling 
strategy could be devised, a deep insight into the matter of photogram­
metric sampling is essential. Chapter 4 attempts to provide this. With 
the theoretical background to photogrammetric sampling given in Chapter 
4 and the DTM accuracy models described in Chapter 12, the vexed 
problem of the optimisation of photogrammetric sampling could then be 
discussed. Such a discussion has been carried out at the end of this 
thesis (in Chapter 14).

15.2 Remarks on mathematical models of DTM accuracy

In the context of DTM accuracy, for a time in the late 1970s and early 
1980s, there was a trend that more and more complicated mathematical 
models should be devised and used. However, as has been pointed out 
previously in Chapter 2, a complicated mathematical model is not always 
necessary although the phenomena under investigation could be 
complicated. Therefore, this trend towards compication seemed to 
suggest that the problem as to how the errors from different sources 
are propagated in the processes of digital terrain modelling was (and 
is) still not fully understood. As has also been pointed out in Chapter 
2, this trend indicates that, if possible, an entirely different family 
of mathematical models needs to be considered. Hopefully, this explains 
why the author has concentrated much of his effort into development of 
new mathematical models.

Each of the mathematical models of DTM accuracy developed in this 
project consists of two terms, i.e. a term related to the accuracy of 
source data and a term related to the sampling interval and terrain 
characteristics. As has been mentioned previously, the mathematical 
models of DTM accuracy developed in this project are all simple, 
accurate, precise, descriptively realistic, robust, and fruitful, but 
not general. More concretely, they should not be applied when a very 
large sampling interval is used. Therefore, further research work is 
needed to extend the applicability of this family of accuracy models to 
such a case (with a large sampling interval).

As one can imagine, in the case of a large sampling interval, the rate 
at which the value of the standard deviation of the final DTM increases 
with the increase in sampling interval will become lower and lower 
after the sampling interval reaches a certain level. In topographic 
mapping by ground surveying, some test results (Li, 1982) have come to 
suggest that the loss in the accuracy of contour lines due to the 
effect of topographic generalisation (the loss in fidelity of the 
terrain topography which is represented by the data points measured by
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ground survey) can be approximated using the following expression:

SD(c) = k. L1^  (unit: m) (15.1)

Where, k is a constant and L is the average point interval in units of 
10m. Such an expression might also be suitable for DTM points in the 
case when a large sampling interval is used. Actually, a trend similar 
to that expressed by Equ.(15.1) has also been illustrated by Ley (1990) 
in the IBG Annual Conference held at the University of Glasgow earlier 
this year (January 1990). Nevertheless, more investigations into this 
matter are still required to clarify this point.

Regarding the assumption about a relationship between the extreme 
values of a distribution and the corresponding standard deviation, on 
the basis of which a family of mathematical models of DTM accuracy have 
been developed in Chapter 1 2, a comparison with the the limited test 
results described in Chapter 9 has shown that it is descriptively 
realistic. However, many more investigations of this type are desirable 
since such a relationship may vary with the characteristics of the 
terrain surface. In such a study, the terrain characteristics may then 
be classified according to their geomorphological forms and an investi­
gation made into such a relationship for each individual type of 
terrain. In this way, more accurate models may be obtained.

It has also been mentioned previously in Chapter 4, that the 
distribution of source data will also affect the DTM accuracy. In fact, 
the distribution of the raw (source) data points can be defined by two 
parameters, i.e. their location and pattern. In the case of regular 
grid sampling and composite sampling, the location of source data may 
be defined by the orientation of the grids. In the study carried out in 
this project, only pattern has been taken into serious consideration, 
since it was assumed that the orientation is not among the most 
important factors affecting DTM accuracy. Nevertheless, it must have 
some kind of effect on the DTM accuracy even though the effect might 
not be too significant. Therefore, a family of more comprehensive 
mathematical mcdels may be developed by taking the location of the raw 
(source) data points into consideration. Also some investigations into 
the DTM accuracy related to other patterns of DTM source data may be of 
interest.

The mathematical models of DTM accuracy developed in this project are 
intended for use with the DTMs derived from photogrammetrical ly 
measured data, but not for the DTMs derived from digital contour data. 
For the accuracy of the DTMs derived from contour data, it has been 
found from the test results described in Chapter 13 that the map speci­
fications can be used as empirical models. This empirical model 
consists of two parts, i.e. a value of Cl/K plus a term related to the

282



Chapter 15 Concluding remarks

average slope angle of the area. From the limited tests carried out in 
this project, it has been found that the coefficient K is approximately 
equal to 3 for the DTMs derived from digital contour data only. As 
expected, the accuracy of the DTMs derived from the digital contour 
data will be greatly improved if the feature-specific points and lines 
(e.g. derived from photogrammetric measurement) are also included. The 
limited test results show that the value of the coefficient K will be 
increased to 5. However, as one can imagine, the amount of improvement 
in the accuracy of the final DTM will also vary with the charac­
teristics of the terrain surface itself and obviously the value of 5 
for the K is only an approximate value. Therefore, more investigations 
into the amount of such an improvement for different types of terrain 
would be of interest to establish a suitable range of values.

When a test of the accuracy of the DTMs derived from digital contour 
data is carried out, usually, the source data (i.e. digital contour 
data) is assumed to be so dense that it can represent the original 
terrain sufficiently well. In this way, a huge amount of digital data 
may result. However, sometimes, not all of the digital contour data 
points are necessary for a given degree of DTM accuracy. Thus there may 
be a redundancy of data, which needs to be removed using some methods 
such as those reviewed and the one developed by the author (Li, 1988b). 
An interesting point arising here is "how does the accuracy of the DTMs 
vary with the density of the retained digital contour data while 
different methods are employed to reduce the data density"? Actually, 
Shearer and one of his students (Gar-Al-Nabi, 1988) have already 
carried out some investigations into the accuracy of the DTM varying 
with the interval between the pairs of digital contour data points. 
Shearer has given an interesting demonstration of their results in the 
IBG Annual Conference held at the University of Glasgow earlier this 
year (Shearer and Li, 1990). However, more investigations into this 
area are still desirable.

As an extension of this project, the mathematical models of the 
accuracy of DTM products such as contour maps may also be considered 
here. Ostman (1987) tried to form some mathematical models for the 
accuracy of DTM products using different terrain descriptors such as 
correlation functions, autocovariance functions and others. However, as 
has already been pointed out in Chapter 3, these descriptors have many 
demerits. Therefore, the "goodness" of these models still need to be 
evaluated. On the other hand, a family of mathematical models for the 
accuracy of DTM products may also be developed in a way similar to the 
theoretical analysis carried out in this project.
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15.3 Remarks on photogrammetric sampling strategy

Since more and more evidences is becoming available to show that 
sampling is the most vital stage in digital terrain modelling, 
therefore, a comprehensive sampling strategy together with the establi­
shment or definition of an optimum sampling interval is of most 
importance for any DTM project. And this, as has already been pointed 
out previously at start of this thesis, is the final goal of this 
project.

Regarding a sampling strategy, there are two important aspects to be 
investigated. The first is how to optimize existing sampling strategies 
and the second is to design a comprehensive new sampling strategy.

The optimization of a sampling strategy means that it has to satisfy 
the requirements discussed in Chapter 4. Actually, Charif and Makarovic 
(1988) have already reported a relevant investigation. They tried to 
establish some rules and efficient procedures for the selection of 
feature-specific points and feature-specific lines in composite 
sampling and to study the effects of different decision models for the 
densification of grids in progressive sampling. However, only limited 
results have been published as yet since their investigations were 
still in progress at the time when they produced their report. 
Therefore, some further investigations into the optimization of 
different (existing) sampling strategies would undoubtedly be of value.

The idea of using varying sizes of grid cell for terrain with different 
roughness employed in progressive sampling suggested by Makarovic 
(1973) is potentially very beneficial. However, as has been discussed 
previously in Chapter 14, this sampling strategy still cannot solve the 
whole problem of defining optimum data density. Therefore, it would 
also be of value to seek an alternative solution.

By borrowing the idea of measuring the DTM source data with varying 
densities for different areas with different roughness of the terrain 
topography, an alternative to progressive sampling - going from a fine 
mesh to coarse one - may be used. Actually, the compressive approach 
comprising two stages of sampling discussed in Chapter 14 belongs to 
this alternative. Of course, for the post-measurement filtering, 
various procedures based on different criteria may be used. For 
example, the comprehensive curvature scheme used by Dikau (see Chapter 
3) could well be an alternative to the second derivative which has been 
used in this project. Therefore, an intensive investigation into the 
possible alternatives for compressing or reducing the amount of data 
which needs to be measured might also be an interesting topic.
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For the time being, in the discussions carried out by various investi­
gators including the present author, only the accuracy of the final 
DTMs has been taken into consideration in the design of a photogram­
metric sampling strategy. However, two other factors, i.e. efficiency 
and cost, should also be taken into account. Only in this way, can an 
overall optimization of sampling strategy be reached. For the modelling 
of a small area, this might not appear to be very important. However, 
when a national DTM data bank is considered, this overall optimization 
is indeed a very important concern. In this respect, the experiences 
gained by those people who have been involved in the production of DTMs 
at a regional or provincial scale will be extremely important. As an 
example, the experience gained in the modelling of Alberta province 
(see Toomey, 1988) and that being gained by the Mapping and Charting 
Establishment here in the UK (Ley, 1990) will be of great value.

15.4 Final remarks

In the previous sections, some discussions related to this project have 
been conducted. Indeed, sane of then may be regarded as comments; some 
as notices; some as observations; while others may be considered as 
being merely the author's thoughts or opinions. However, no matter what 
they really belong to, the English word "remarks" covers all these 
meanings (see the Collins English Dictionary, p719). Therefore, this 
chapter is entitled "concluding remarks".

Up to this stage, the author has already said what he would like to say 
about his research project. As a final remark, the author would like to 
apologise for the non-standard mathematical annotations that have been 
used throughout this thesis, which may be an inconvenience in reading, 
and for the possible mistakes which have inevitably been left in this 
thesis. The author also hopes that some useful information may be 
obtained from this thesis.
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