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V II I

P r e f a c e

The o rig ina l p ro jec t w as defined  as "G rav ita tiona l and Seism ic 

Investigations in the Southern Uplands of Scotland". That was to develop a new 

terrain correction method, reprocess and model gravity data, and to conduct a 

seism ic refraction survey to derive crustal structure in the Southern Uplands 

o f S cotland . H ow ever, the seism ic refraction  survey was obstructed  by 

infrequent quarry blasts and the lack of cooperation o f quarry m anagers on 

notification o f times o f blasting, so that the research had to be redirected to 

another field .

In February 1988, it was agreed that my research could be redirected 

towards the new field as "New Methods in Gravitational and Seismic Reflection 

E xploration", which then forms the present thesis.
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Summary

For the purpose o f regional gravity survey, a com pletely autom atic

terrain  correction m ethod has been developed. The advantages o f previous

m ethods developed by others have been taken over with some m odifications, 

also a new idea for the inner zone correction has been presented. At first, the 

whole area under investigation is divided into a grid o f equal squares of 

convenient size for the autom atic com putation. The terrain effect o f the far 

d istant zone (r>50 km) is neglected. The terrain effect of the distant zone 

(3 0 < r^ 5 0  km) is evaluated by approximating the prism as a vertical line with 

all mass centred on it, so, the line mass formula is used for this compulation. 

The terrain correction o f the interm ediate zone (2 < r^ 3 0  km) is estimated by

approxim ating prism  as a segment of a hollow  cylinder o f d ifferent sizes.

Specifically, the side of the prism is treated as 4 km in the zone (20<r^30  km), 2 

km in the zone (15<r^20  km) and 1 km in the zone (2<r<15 km). The terrain 

effect of near zone 2 (0 .5< r^2  km) is calculated by approxim ating the terrain 

as a vertical prism with a horizontal lower face and an upper face constantly

sloping towards the station. A simplified formula is used for this computation. 

The terrain effect of near zone 1 ( r^ 0 .5  km), that is, the square with the

gravity  station inside, is obtained by triangu la ting  that square with an 

additional four elevation values provided at the four corners of the square.

Since these four heights are read directly from four points on the Ordnance

Survey map, they are relatively accurate, so that the triangulated prisms will

more approach the real terrain. The gravitational effect of individual prism s

in near zone 1 is obtained by integrating gravity over the volume. As a result,

the rather complicated form ulae are derived. The software M ATERRAIN has 

been developed on the VAX/UNIX operating system not only to make terrain 

corrections, but to make the free-air and Bouguer corrections. The output from

the program is a Bouguer anomaly. The method is tested by the gravity data in 

the Southern Uplands of Scotland and the results are satisfactory. It is found
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th a t som e of the orig inal terrain  corrections provided by the BGS are 

underestim ated and need to be m odified. The method is entirely automatic and 

easy to use.

W ith respect to reflection seismology, a new experim ent was conducted 

aim ed at understanding the wave propagation in volcanic rocks, finding new

m eans o f obtain ing conventional reflection seism ic data, and extracting the

weak signals in the presence o f noise. To accom modate this, a new areal 

'RAZOR' array was designed. Three-com ponent geophones lie on one of two 

concentric circles o f radii 75 and 130 m. The determ ination of the array 

dim ension is based on several factors such as the wavelength o f signal, the 

true dip o f deep reflectors. Three-com ponent seismic data were acquired over 

the basalt in the Midland Valley of Scotland using an MDS-10 Data System. The 

SEG-Y data were transformed into an ASCII-coded format and then rotated onto 

a new coordinate system. The study of characteristics of field data shows that 

3-com ponent seism ogram s are characterised  by strong reverberations lasting 

as long as 500 ms. The reverberation patterns vary from station to station. The 

horizon tal com ponents exhibit larger am plitudes and low er frequency than 

the vertica l com ponent. Furtherm ore, the data from the inner stations are 

believed to be more affected by surface conditions than the data from the outer 

stations. The display of the vertical and radial components from the outer 

stations shows a line of reflection events at about 420 ms; there are no clear

events on the transverse section. By applying a spatial directional filter to

each component of seismic data, it is shown that there is more information in 

the h o rizo n ta l com ponent passing  through  the f ilte r  than  the vertical 

com ponent. This is attributed to the far larger amplitudes o f the horizontal 

com ponents, w hich may dom inate the p o larisa tion  d irec tion  o f partic le  

m otions. The energy variation diagram of each shot shows quantitatively that 

the radial com ponent receives much more energy than the others.

In order to extract weak signals in the presence o f noise, a bandpass 

frequency filter with a low cut-off of 20 Hz and a slope of 30 dB/octave, and a 

high cut-off o f 60 Hz and a slope of 70 dB/octave is applied. The filtered data 

reveal that the filter can reject part of the low frequency reverberations (<20
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Hz) and high frequency noise. For m ost of high reverberations within the 

bandw idth, the filter does little  to improve the data. Predictive deconvolution 

f ilte rin g  show s that it is very good at com pressing  the w avelets and 

a tten u a tin g  the  am plitude o f rev erb era tio n s . S ince both  m u ltip les  and 

reflections are not clear on the sections, the predictive deconvolution filter 

has to be used with great care, otherwise it degrades the useful signals. A 

signal enhancem ent polarisation filte r was developed, based on a covariance 

m atrix method. Both random noise and field data tests demonstrate that it can 

be used to rem ove the random noise and part of the surface waves arriving 

from  different directions. From the interpretation point of view, the base of 

the Clyde Plateau Lavas in the area investigated is found to be at about 930 m 

below the surface.

To test the newly developed signal enhancem ent polarisation filter and 

the optim isation o f array designing, synthetic 3-com ponent seism ic data were 

generated  in both isotropic and anisotropic m edia. The application of the 

signal enhancem ent polarisation filter to those data is successful in terms of 

suppressing random  noise and enhancing signals. In addition, stacking the 

filtered  data based on the areal 'RAZOR' array provides a highly resolved

seism ic section. The study o f effect of added random noise on filtering shows 

that, if  the  noise  en tirely  changes the po larisa tion  d irection  o f particle  

m otions of reflection wavelets. The filter may thus not be able to extract very 

weak signals from noise, however, by reducing the root mean square variance 

o f random noise to a certain degree such that the noise mixed data exhibit a 

better polarisation, the filter can then extract very weak signals.

A new approach of using slan t-slack  processing to im age structure

based on the areal array has been dem onstrated using synthetic data from a 

sim ple geological model. The result further proves that the dim ension of the 

aerial array is appropriate for receiving the reflected plane waves from deep 

interfaces. The true dip and dip direction of a reflector can possibly be derived 

from x-p images and x-x images respectively, supposing that the velocity of the 

upper layer is known. This m ethod can additionally be used to optim ise the

po larisa tion  filte rin g , which keeps and enhances com pressional waves of 

interest according to the polarisation directions of waves.
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PART ONE: GRAVITY 

Chapter 1 Automatic Terrain Correction Method for 

Regional Gravity Survey

1.1 Introduction

In general, the Bouguer anomaly is determined by

& b a ~  & 0b ~ 8 o + & f ~ & b + %t  (1* 1)

w h e r e  gba is Bouguer anomaly,

g0 b is observed gravity value,

g0 is normal gravity calculated by an international formula,

g f  is free-air correction, 

g b is Bouguer correction, 

g t is terrain correction.

The values g , gf, gb can easily be determined, if all gravity station data such as

coordinates, elevations and rock densities are available. However, determ ining

the terrain correction gt is the most tedious task and is a very important part

of the Bouguer anomaly, especially in rugged terrain. Because of that, many 

au thors have placed m ore em phasis on developing various m ethods to

calculate the terrain correction since the 1950's.

Bott pioneered m ethods o f terrain  correction  using the electronic

d igital com puter [Bott, 1958]. His method was to divide the region under

investiga tion  into a grid o f equal squares o f convenient size, take the

elevations at the centres of the squares as the average heights of these prisms, 

determ ine the gravity attraction o f a prism at a station by calculating the
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gravity value produced by a segment of a hollow vertical cylinder, sum the

increm ental contributions from all squares except those less than 1 km from 

the station. The corrections from the inner squares are calculated using the 

Ham m er zone chart m ethod and finally added to the com puter correction

value. This method was a milestone for calculations made by computer, which 

not only increased  accuracy but also saved tim e. H ow ever, the m ain 

disadvantage is the tim e-consuming terrain correction for the inner squares.

Karlemo [1963] developed a similar method mainly used for local gravity 

investigation on the condition that the points o f observation are regularly 

d istribu ted  in a definite system and the distance betw een points is rather 

sm all. He used a sym m etrical pattern  of radial elevation  p ro files , each 

representing a sector of the terrain. The gravity attraction in the inner zone 

(r<250 m ) is estimated by calculating the value produced by 68 segments. The

terrain  corrections for the interm ediate and distant zones are estim ated in a

sim ilar way, but the spacing of points in these zones is increased in order to 

reduce the calculation time. The form ulae used for calcu lation  are very 

com plicated. Such a m ethod seems very accurate and reliable for small scale 

prospecting. However, it is rather im practical for regional gravity surveys; 

here stations are irregularly  and sparsely d istributed, because o f logistical

problem s which make data collection in a regular grid difficult.

Blais and Ferland [1983] approximated a distant prism as a vertical line 

with the total mass of the prism, so the line mass formula is used to give the 

gravim etric terrain correction. The intermediate zones are treated in the same

way as the distant zones, except for using the rigorous rectangular prism  

form ula for regular flat-top prisms centred at the grid points. The inner zones 

with regular elevation data are treated as a. num ber of sm aller prism s with 

horizontal low er faces and sloping upper faces. The zones w ith irregular 

elevation data have to be triangulated, the corresponding boundary definition

for triangulation  is determ ined using contribution levels o f the individual 

flat-top  rectangular prism s. The gravim etric terrain corrections are obtained 

by calcu lating  the effects from the triangular prism s with sloping upper
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faces. This method uses a rigorous rectangular prism form ula which increases 

accuracy for the interm ediate zone contributions. However, the com putation 

time will be increased by the 24-term  formula. Above all, the boundary for 

triangulation  defined by the con tribu tion  levels of the individual flat-top 

rectangular prisms is not accurate enough since the heights o f the prism s are 

often read from contour maps, for instance, the Ordnance Survey map with a 

scale o f 1:25000 in Britain, and are average values partly depending on a

person's subjective judgm ent. The maximum height difference in a hilly area 

read by different persons can som etim es reach 30 m, which o f course will 

affect the total correction value.

Lagios [1978] approxim ated the inner zones by fitting  m ultiquadric 

surfaces or paraboloids to additional heights read from a map and height of a 

station taken as control. The more heights that are provided, the more closely

does the fitting  surface approach the real topography. He calcu lated  the 

terrain correction for a 100x100 m block with a horizontal upper face using

the approximated formula for a segment of a hollow cylinder whose height is 

decided by fitting surface equations to the station at the centre. The accuracy 

of this com putation largely depends on the number of heights provided for 

fitting the surfaces. In practice, however, it is difficult to give a large number 

o f elevation data for the neighborhood of stations, especially  in regional 

gravity surveys, in which there may be thousands of stations to process.

In this chapter, an autom atic terrain  correction m ethod is presented 

which is partly based on the previous methods, with more refined calculations 

for the inner zone corrections.

1.2 New approach to an automatic terrain correction method

The advantages of previous m ethods developed by others have been

taken over with some m odifications, with a new contribution for the inner 

zone correction being presented. The basic procedures are sim ilar to the 

others. That is, the whole area under investigation is divided into a grid of 

equal squares o f convenient size for the autom atic com putation. The terrain
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effect of the far distant zone (r>50 km) is neglected. The terrain effect of the

distant zone (30 < r^5 0  km) is evaluated by approxim ating the prism  as a

vertical line with all mass centred on it, so, the line mass formula is used for

this com putation. The terrain correction of the intermediate zone (2 < r^ 3 0  km) 

is estim ated by approxim ating a prism as a segment of a hollow  cylinder of

different sizes. Specifically, the size of the prism is treated as 4 km in the zone

where 2 0 < r^ 3 0  km, 2 km in the zone where 15<r^20 km and 1 km in the zone

where 2 < r ^ l5  km. The terrain effect of near zone 2 (0 .5< r^2  km) is calculated 

by approxim ating the terrain as a vertical prism with a horizontal lower face 

and an upper face constantly sloping towards the station. A sim plified formula

is used for this computation. The terrain effect of near zone 1 (r^ 0 .5  km), that

is, the square with the gravity station inside, is obtained by triangulating that

square with an additional four elevation values provided at the four comers of 

the square. Since these fo u r . heights are read directly from four points on the

O rdnance Survey m ap, the values are rela tively  accurate, so that the

triangulated prisms will more closely approach the real terrain.

1.3 D istant zone contribution

To achieve the terrain correction by computer, the terrain  has to be

divided into a grid of equal squares of convenient size. For instance, in Great 

Britain, the size of a square for the computation is usually adapted the same as 

the N ational Grid square, which is one square kilom etre. The g rav ita tio n a l

effect is usually obtained by summing the incremental contributions from the 

individual prism s. W ith respect to the computation time and accuracy, the 

terra in  is again divided by d ifferen t zones, w ithin each zone d ifferen t

approxim ations of terrain and formulae are applied (see Fig. 1.3.1).

The definition of the distant zone given by the author means the area 

which is 30 km or further from a station. For regional gravity surveys, the

terrain effect caused by this large area is certainly significant. On the other 

hand, according to Newton's gravitational law, the gravity attraction of any 

mass to a certain point is inversely proportional to the square o f the distance
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from the mass to the point, in other words, the further the mass from the 

point, the less gravity attraction it will exert. So, we investigate what kind of 

formula is acceptable for the corrections in this distant zone. Let us suppose 

that the distant zone consists o f a number of vertical flat-top prisms, in order 

to choose the appropriate form ula for shortening the calculation tim e, but 

without losing much accuracy, the vertical line mass form ula (1.2) and the 

rigorous form ula o f a right rectangular prism given by Nagy [1966], which 

contains 24-term m athem atical expressions, are studied.

4 km 
^  ►

0

Fig. 1.3.1 Division of topography for the computerized terrain correction. The station is at the 

centre (o).

A g = G p A j  ! 1 ^ = G p A ( T ~ -  I ) .......r > (1' 2 )
7 + h

W h e re  r is distance from station to centre of square,

h is height difference between square and station,

A is area of square,

P  is density of the rocks.

We calculate the gravitational effect of a height-fixed, vertical prism as
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a function of the distance from the station. The results given by the rigorous 

prism  form ula are p lotted  in Fig. 1.3.2 (curve 1). Those given by the 

approxim ated line mass formula are shown in the same figure (curve 2). The 

approximation is so made that the height and mass of the line are the same as 

the prism's. We can see that the gravity attraction produced by the line mass at 

any location is always sm aller than that produced by the prism. Furtherm ore, 

the difference between them decreases with increasing distance from the line 

mass or prism to the station. Quantitatively, Fig. 1.3.3 shows that the relative 

difference approaches zero when the distance between line mass or prism and 

a station reaches 12 km. Therefore, the line mass form ula is an acceptable 

approxim ation for this distant area (r>30 km).

mGal
6

5 curve 1- prism

4

3

curve 2- line mass2

1

4.0 km3.0 3.52.0 2.5

Fig. 1.3.2 Diagram showing gravity in mGal of a prism and a line mass. Both have the same 

mass.
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%
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4

2

3

5

6

0

Fig. 1.3.3 Comparison of the terrain effect of a prism and a line mass, g l is the effect of a prism, 

g3 is the effect of a line mass. The computation is made by [(gl-g3)/gl] x 100.

1.4 In term ediate zone contribution

This zone covers the area at a radius of 2 km to 30 km. Bott [1959] showed 

that s u b s ti tu te  a prism  with a segment o f hollow cylinder is an excellent 

approxim ation . The grav itational attraction  from  a segm ent o f a hollow  

cylinder (a )  with an inner radius r^ and an outer radius ^  is given by

The above form ula is further approximated. That is, the square root is 

expanded in a power series and the terms with high power are neglected,

If we now replace r2  and r j  by r+p and r-p, a  by A/2rp (A is area of the 

square, r is distance from station to centre o f square and p is half length of

A g = Gp
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square side), the terrain correction for a prism can be approximated as

G p A h
A g = — | --------- - 5 ------K  (1 .3 )

z r ( r  -  p )

where definitions of G, P , A, h, are the same as those given in formula (1.2).

A considerable amount o f com putation tim e will be saved if  many 

squares which are beyond a certain distance from a station are grouped and 

treated as a single square. In the area where 20< r^30  km, sixteen squares are 

treated as one square. In the area where 15<r^20 km, four squares are treated 

as a single square (here p = l km). In the area where 2 < r^ l5  km, a single 

square with 1 km sides is used to calculate the terrain correction.

1.5 Near zone 2 contribution

The term 'near zone' is sometimes called the inner zone, and may mean 

different sizes of an area to different authors. The near zone is defined here as

the area whose radius is less than or equal to 2 km. This zone is sub-divided 

into two zones named near zone 1 (0.0<r<0.5 km) and near zone 2 (0 .5<r^2  km).

\Ap can see from Fig. 1.3.3 that an error will reach more than 6%

when a line mass is used to approxim ate a prism  w ithin near zone 2. 

Substitution of a prism by a segment of a hollow cylinder will also introduce 

an error. Furtherm ore, when the upper face of a prism is sloping, an even

bigger error will be introduced. Hence not only a rigorous form ula like the

prism  form ula is required, but the slope of terrain must also be taken into 

c o n s id e ra t io n .
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Z
A

Y

X

Fig. 1.5.1 (a) Presentation of the terrain in near zone 2. (b) Diagram to show one prism with an 

upper face constantly sloping towards the station.

To solve this problem , the terrain  is d iv ided  into a num ber of 

rectangular prisms with the horizontal low er faces and sloping upper faces 

which are determined by the heights at the centres of prisms and heights of 

neighbouring locations. The gravitational effect of a rectangular prism  with 

the horizontal upper and lower faces and vertical sides has already been 

derived by Nagy [1966]. The modification is made to include a sloping top given 

by an equation of form: z=ax+by+c, where a and b are the slope coefficients in 

x and y respectively. Hence the terrain correction for a single prism can be 

given as

If the lower face of the prism is horizontal at the level o f origin, the 

upper face slopes with a constant slope towards the origin, the sides o f prism

y  2 x 2 ax + by + c

(1 .4 )
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have a unit length D, the gravitational attraction at the origin (0, 0) of the 

volume element dv, can be integrated over the volume of the prism, which has 

its vertical axis at x=iD and y=jD (see Fig. 1.5.1. (b)), the integers i and j are the

indexes along the x-axis and the y-axis. The result from integrating (1.4) is

given as [Ketelaar, 1976]

A g = G p  = G p ( l  -  cos a) D K ( i  , j )  (1. 5)

w h e r e  G is gravitational constant,

P  is density of the rocks,

D is unit length,

K(i, j) is position matrix,

a  is a rctg(h/r).

In order to give a quantitative idea, the terrain effect of a prism in the 

vicinity of a station is calculated using three different formulae assuming that 

the prism is at the fixed location (2 . 1 2  km from the station) with different 

heights (A g | is for a prism with the horizontal upper and lower faces, Ag 2  f o r

a prism with a horizontal lower face and a sloping upper face constantly 

towards the station and Agg for a line mass). The gravitational effects of a 

prism computed by three formulae are listed in Table 1.5.1, from which we can 

see that, no matter how variable the height of the prism, the formula for the 

prism with the horizontal upper and lower faces always gives the biggest 

values. The result from the line mass formula is always underestimated. The 

relative difference between A gj and Ag 2  decreases with the increasing height. 

We also calculate the terrain effect of a prism with a fixed height (1.0 km) as a 

function of the distance from the station. The results are listed in Table 1.5.2, 

which indicates that the relative difference between A g j  and A g 2  decreases 

with the increasing distance from the station. It is assumed that topography in

near zone 2  would be better represented by a prism with a sloping upper face.

Table 1.5.1 demonstrates that a flat top prism will systematically overestimate

gravity correction, and a line mass would be an underestimate. It is better to
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use a prism with a sloping upper face to approximate real terrain in near zone 

2 , although problems may arise for areas of very rapid changes of topography.

h 0.5 0 . 8 1 . 0 1.5 2 . 0 3.0 km

A g 
_ * 1 .... 0.246 0.589 0 . 8 6 8 1.643 2.411 3.689

A g 
6 2

0.228 0.552 0.819 1.574 2.336 3.626

0.226 0.546 0.811 1.558 2.313 3.589

% 7.100 6.300 5.700 4.200 3.100 1.700

Table 1.5.1 Terrain corrections for prisms of 1 x i  km^ with different heights by three different 

formulae. The prism is located at r=2.12 km. %=100 x(Agi-Ag2 )/Agp

r 1.41 2 . 1 2 2.83 3.54 4.24 6.36 km

A * 1
2.657 0 . 8 6 8 0.380 0.198 0.116 0.003

A ^ 2
2.396 0.819 0.366 0.193 0.113 0.003

A * 3 2.337 0.811 0.364 0.192 0.113 0.003

% 9.800 5.700 3.600 2.400 1.700 0.900

Table 1.5.2 Terrain corrections for prisms of 1 x i  km^ with a fixed height (1.0 km) at different 

distances from the station. % = 1 0 0  x(Ag^-Ag2 )/Ag^.

1.6 Near zone 1 contribution

This zone covers the area with a radius of less than or equal to 0.5 km. 

The gravity effect of this near zone is extremely important. Table 1.6.1 lists the 

gravity contributions o f  4 stations from 3 different zones in the Southern 

Uplands of Scotland. We can see that although it occupies a small area, its 

gravity effect is significant. Station 55 shows that the gravity effect of near 

zone 1 contributes up to 48 % of the total terrain correction.



No. gtl gt2 gt3 gt %

55 1.39 1.15 0.35 2.89 48

107 3.98 4.35 5.11 3.44 29

164 2.77 1 . 8 6 1.05 5.69 48

494 1.31 1.36 0.76 3.41 38

Table 1.6.1 Gravity contributions from different zones. N- station number, gtl- mGal from Near 

zone 1, gt2  - mGal from near zone 2 , gt3- mGal from rest of area, gt- mGal, total terrain 

correction. % = 1 0 0  x(gt-gtl )/gt.

It is obviously time-consuming to use the Hammer zone chart for the

terrain correction in this area. We develop a new method which not only

achieves the correction automatically but provides higher accuracy. The basic 

idea is to establish a new coordinate system whose origin is at the station 

location, then to triangulate the station-contained square with an additional 

four elevation values at the four comers of the square, and the elevation of

the station itself taken as control. Fig. 1.6.1 (a) shows four triangular prisms

with horizontal lower faces and sloping upper faces. The gravitational 

attraction of individual prisms can be obtained by integrating gravity over 

the volume of the triangular prism. The effects of the four prisms are summed

together, and the result is eventually added to the total terrain correction for 

that station.

Suppose that four elevations at the four corners of the square are all

higher than the station elevation. Based on this assumption, the terrain effects 

of the four triangular prisms are considered individually as follows.

Let us take the first triangular prism OP 1 P 2 Z 2 Z 1 as an example to show 

how the terrain effect is obtained. The basic formula for the calculation is a

simple integration over volume v:-



Fig. 1.6.1 (a) Triangulation of near zone 1 in perspective view when P1Z1, P2Z2, P3Z3 and P4Z4 

are positive, (b) Projection of (a) onto the X-Y plane.

The integration limits are shown in Fig. 1.6.1 (a) and (b). The equations 

of line O P | and line OP2  and plane O Z jZ 2  are y=k^x and y=k2 X and z = a ^ x + b |y  

respectively. Therefore, the integration can be written as

X k 2X ax + by

(1 .7)

Since we already know the coordinates at P j  and P2 , the heights Z j P j  

and Z2 P 2 * the line and plane equations can exclusively be determined by the 

fo llowing coefficients,



1 4

*i =

Z 1 ? 1 X l z i

Z 2 ^ 2 h X 2 z  2

* 1 ? 1 X l

* 2 ? 2 X  2 y 2
> 1

* 1
k 2 = -

y 2 
X 2

Hence the gravitational effect o f  the triangular volume OP 1 P 2 Z 2 Z 1 

by integrating (1.7). We get

k x  a x  +  6  y  
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« , =  G p |  d x  j d y  J
z d z

k x  
1

x  k x

°7
= G p J d x  j d y i - j - l

0 k X

x  k  x
1 2

V  x 2 -t-y 2 2 2x  + y  + ( a xx  + b xy )
k x

= G p j d x (  J d y

7. 2 20 k W  X + y

- G p  J
d y

2 2
k ix J  x + ( a l x  + b xy )

= G p j d x  ( I n  k l  ^ j  2

0 k i + J 1 + k i

Gp

7 i + 6 1:

Q , b . I a b 2 I + a a b
k 2 + — L-L? +  l ( . k ,  + -d -L )  + 1

1 + 6
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< 2 6  2  1 + a  < 2 61/1 1 1 V 1 1 1

+ / ( k  1 +  $■) +    -
1 + 6  1 + 6  (1 + 6 )

is obtained

)



Formula (1.8) is used to calculate the terrain effect for the first 

triangular prism O P J P 2 Z 2 Z ^ . The other three triangular prisms can be treated 

in the same way, that is, suppose the equations of planes O Z 2 Z 3 , O Z 3 Z 4 , and 

O Z 4 Z 1 are z=a2 X+b2 y, z=a3 X+b3 y and z=a4 X+b4 y respectively, the coefficients a2 , 

^ 2 ’ a3* ^ 3 ’ a4 ’ anc* ^4 can a*so obtained in a similar way. For simplicity,

below are given only three results, obtained from integrating (1.7) over three 

d iffe ren t tr iangular  prisms.
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Where and k - ^ l / k g .

The terrain correction of near zone 1 is obtained by summing 4 incremental 

contributions for the 4 triangular prisms. Thus we get

g=gl+g2+S3+S4 (1.12)

As stated before, the value g is based on an assumption that the four elevation 

values Z j P j ,  Z2 P 2 » Z3 P 3 , an(l Z4 P 4  are a^  positive. However, in reality, these 

four positions in the square can be either higher or lower than the gravity 

station. One example is shown in Fig. 1.6.2 in which Z j P j  is negative, the 

others remain positive. Here, if  (1.8) is taken as the terrain effect of 

triangular prism 1, the correction will be overestimated. Specifically, the real 

terrain being considered should be the triangular prism O Q j P j Z j '  and OQ 1 P 2 Z 2



instead of O P 1 P 2 Z 2 Z J. Because of symmetry, the volume of the prism O Q j P ^ Z j '  is 

equal to that of the prism O Q j P j Z ^ ,  that is, integrating over the volume 

O Q j P j Z j '  is equivalent to integrating over the volume O Q j P j Z | .  Therefore, the 

terrain effect of two triangular prisms O Q j P j Z j '  and OQ 1 P 2 Z 2  can be obtained 

by subtracting the effect produced by the central prism O Q j Z j Z 2  from the 

overall effect produced by the triangular prism OP 1 P 2 Z 2 Z 1 .

Z

72

P2

04

ZV

Y

Y=K2 P2

=L1 X

Y=K1 X

Fig. 1.6.2 (a) Triangulation of near zone 1 when P1Z1 is negative, (b) Projection of (a) onto the 

X-Y plane.

To calculate  the gravitational effect (F^)  of the triangular prism 

O Q J Z 2 ZJ ,  the equations of plane OZ j Q j  and OZ2 Qi  must be known. Let z=C!X+d2y 

and z=C2 X + d 2 Y be equations of planes O Z j Q j  and OZ2 Q 1 respectively. The 

coefficients c j ,  d j ,  C2  and d2  can easily be determined. We get



1 8

c i =

zi y i x i z i

~ zi  y 2 d. -
x 2 - z 2

* 1  ? i  

* 2  ? 2

* 1  ? 1  

* 2  * 2

~ z i y  i X  — Z 
1 1

z 2 y  2 A  -

X  z 
2  2

2
*i

2
* 1  ? !

-

* 2  

c i> d x

* 2  y  2
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Formula (1.13) gives a final result for evaluating the terrain effect 

caused by the prism O Q j Z 2 Z j .  We can also calculate the terrain effects (F2 , F3 , 

F 4 ) produced by other three triangular prisms OQ2 Z 2 Z 3 , OQ3 Z 3 Z 4  and OQ4 Z 4 Z j  

(these three triangular prisms are not shown in Fig. 1.6.2). Therefore, the 

terrain effect of near zone 1 can be expressed as

In a practical situation, any of the four elevations can be either positive 

or negative. In order to calculate the terrain correction automatically by 

computer, all the cases must be considered. Fig. 1.6.3 illustrates 16 cases which 

may happen in reality. Up-lines indicate the terrain is h igher than the 

station, down-lines indicate the terrain is lower than the station. The formula 

corresponding to each case is listed below the diagram. A computer program 

can determine where it goes, and which formula therefore to be applied. For

g = ( g l - F l ) + g 2 + S3+ (g 4-F4)

=gl+g2+g3+g4-F r F4

=g-Fr F4 (1.14)
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example, if, Z1<0, Z2>0, Z3<0, Z4 >0, the program will read four heights and judge 

the signs and search for a formula from the flow chart as shown in Fig. 1.6.4, 

which is formula 1 0 .

g-F1-F2-F3-F4 g-F1-F2 g-F1-F3 g-F1-F4

g-F1-F3 g-F1-F2-F3-F4 g-F1-F2 g-F1-F4

g-F2-F3 g-F2-F4 g-F3-F4 g

Fig. 1.6.3 16 cases of possible terrain near the station in near zone 1 and their corresponding 

formulae.
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z 1 > 0

z 1 < 0

z 2 < 0 z 2 > 0 z 2 < 0 z 2 > 0

z3<0 kz3>0 z3< z3>0 z3<0 3>0 z3<0 z3>0

z4>0 z4>0 z4>0 z4>0 z4>0 z4>0 z4>0 z4>0

6 15 13 14 1 1 10 9 1 2  8 7 6  35 2 1 4

Fig. 1.6.4 Flow chart of possible terrain for the computer to choose appropriate formulae.

1.7 Fortran-77 program MATERRAIN

A  Fortran-77 program (see Appendices; Fortran-77 program 1) was 

written by the author for the evaluation of the gravimetric terrain correction, 

free-air correction and Bouguer correction. The general flow chart of the 

program is illustrated in Fig. 1.7.1. The explanation of the various boxes are as 

fo llows.

Box 1 is a station file, consisting of station number (No.), latitude (LATI 

in degrees), coordinates in National Grid (X, Y in metres), elevation of the 

station (H in metres), elevations at the four comers of a square ( Z I, Z2, Z3 and
'i

Z4 in metres), rock density (DEN in g/cmJ ) and observed gravity value (gob in  

m G al). The data format is shown in Table 1.7.1.

Box 2 is an elevation file, consisting of block numbers (No.), coordinates 

of block centres (X, Y), densities (DEN), 16 elevation values of individual 

squares (16 squares are grouped as one block). The format of block data is 

shown in Table 1.7.2.
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2 < r < 3 0  kmr>30km

r < 0 .5km
,dJ< r< 2 km

N zone 2N zone 1

OUTPUT

( 1 0 )

STD ATA (1)

Judge r

BLDATA (2)

Distant zone intermediate 

zone (7)

F ree -a ir  
Bouguer (®)

Add them together

Fig. 1.7.1 Flow chart of Fortran-77 program MATERRAIN.

No LATI X Y H Z1 Z2 Z3 Z4 DEN gob

50 55.5175 2 9 2 2 2 0 6 2 6 1 0 0 259.7 234.7 320.0 274.3 236.2 2.72 151 3 .1 3

65 55.5328 2 9 6 9 9 0 6 2 7 7 8 0 439.5 3 2 7 .7 414.5 313.9 304.8 2.72 1476 .3 0

132 55.6225 3 0 1 7 4 0 6 3 7 6 6 0 269.1 2 2 8 .6 304.8 274.3 251.5 2.72 151 6 .70

197 5 5 .5 6 0 7 305290 641820 270.6 243.8 259.1 281.9 274.3 2.72 1516.96

329 5 5 .7 3 7 0 316410 650090 225.6 292.6 219.5 237.7 2 2 1 . 0 2.72 1529.09

461 55.3673 256050 610500 ! 240.2 304 .8 2 2 1 . 0 222.5 335.3 2.72 1500.21

Table 1.7.1 The station data file format. The actual observed gravity value is (980000+Sot,) 

mGal.
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No X Y Den hi h2 h3 h4 hi 6

99 2 2 2 0 0 0 560000 2 .7 3 2 2 5 225 375 280 3 0 0

133 238000 584000 2 .7 2 6 0 0 580 650 825 1250

198 240000 566000 2.73 140 50 175 60 460

330 270000 590000 2.72 850 970 1 0 0 0 900 800

430 286000 586000 2 .7 5 3 0 0 3 0 0 4 0 0 2 6 5 475

514 306000 570000 2 .3 3 43 3 7 46 5 0 47

Table 1.7.2 Block file data format.

Box 3 reads the station data and block data from Box 1 and Box 2 and 

calculates the distance from the station for every block. If r>30 km, it goes to 

Box 4. If 2<r^30  km, it goes to Box 7. If r^0 .5  km, it goes to Box 5, and so on.

Box 4 calculates the terrain effect for the distant zone, where a line

mass formula ( 1 .2 ) is used.

Box 5 evaluates the terrain effect for near zone 1 which involves many 

calculations. Since the formulae (1.8), (1.9), (1.10), (1.11) and (1.13) are similar 

in pattern, subroutines NEARZONE 1 and NEARZONE2 are used so that the main 

program can call them many times, each with different coefficient values.

Box 6  evaluates the terrain effect for near zone 2, where formula (1.5) is

used.

Box 7 evaluates the terrain effect for the intermediate zone, where

formula (1.3) is used.

Box 8  evaluates the free-air and Bouguer corrections.

Box 9 adds the contributions from different zones together to give the 

total terrain correction.

Box 10 produces an output file showing station number, coordinate,

elevation, total terrain correction, free-air correction, Bouguer correction,

normal gravity, observed gravity and finally Bouguer anomaly. The output  

format is shown in Table 1.7.3.

Box 11 produces a file showing the contributions of terrain corrections
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from different zones. The output format is illustrated in Table 1.7.4, where gtl 

is from near zone 1, gt2 is from near zone 2, gt3 is from the distant and 

intermediate zones, and gt is the total terrain correction for that station.

No X Y H gt gt gb go gob gba

1 273350 6 2 5 4 6 0 516.9 2 .3 5 159.52 58.95 1460.00 1549.63 13.31

64 297960 6 2 9 0 6 0 384.7 1.89 118.72 43.87 1488.40 1552.81 12.25

196 305290 6 4 1 8 2 0 270.6 0 . 1 2 83.51 30.86 1516.96 1562.56 7.13

328 316410 6 5 0 0 9 0 225.6 0 .37 6 9 .6 2 25.73 1529.09 1569.13 4.19

1131 319750 6 1 3 8 7 0 677.9 5 .5 2 2 .9 .2 0 77.31 1406.86 1541.63 2.63

Table 1.7.3 Format of output file OUTPUT. The actual normal gravity is (980000+go) mGal. The 

actual observed gravity value is (980000+go^) mGal.

No gt\(r <0. 5 km) gt2(0.  5 < r < 2 km) gt3(r>2 km) gt (total)

1 0.6531 0.7503 0 .9 4 7 3 2 .3 5 1 2

131 0.0723 0.2457 0 .1 0 3 0 0 .4 2 1 0

2 0 8 2.8616 3.3325 1 .9163 8 .1 1 0 4

2 6 3 1.3266 1.5234 0 .9 4 6 9 3 .7 9 6 9

3 9 5 0.0014 0.0693 0 .2 0 0 3 0 .2 7 1 0

5 0 0 0.3674 0.7596 0 .4 5 2 0 1 .5 7 8 0

Table 1.7.4 Format of output file CONTBN.

This software has been run on the VAX11/750 computer with the Unix 

opera ting  system at the Department o f  Geology and Applied Geology, 

University of Glasgow. The time for processing one station is about five 

seconds. It will certainly be reduced if the software is run on the more modem 

workstations and/or mainframes which have replaced it.

1.8 Real gravity data test and accuracy consideration

The British Geological Survey, Nottinghamshire, kindly gave us gravity 

data for the areas of the Southern Uplands, Midland Valley and Grampian
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Highlands. For the purpose of testing the new method, 4526 gravity station in

the western Southern Uplands, which occupies 11,000 km2 , were read from the

magnetic tape. The area was digitized for the terrain correction. There are in

total 11,328 elevation data read from the Ordnance Survey (OS) map for 708 

blocks, each block having 16 squares inside. In addition, 18,104 more elevation 

data were also read from the OS map in order to calculate the terrain 

correction for near zone 1. The organisation of elevation data is shown in

Table 1.7.1 and Table 1.7.2.

In creating block file BLDATA, the densities in the fourth column are 

adapted from previous papers by Mansfield [1963], Bott [1960] and Parslow & 

Randall [1973]. Specifically, the density for lower Palaeozoic rocks is 2.72-2.73 

g / c m^ ,  2.33 g/cm^ for New Red Sandstone rocks, 2.62 g/cm^ for granite, 1.03 

g / c m ^  for sea water. In order to check these densities determined by the 

sample measurement, Nettleton's method [1939] is used here for three areas in 

the Southern Uplands where there are simple rock types and low relief 

topography. According to Nettleton's theory, the correct density is measured 

simply by making a special t r a - v e r s e  of  gravimetric stations across the 

topographic feature, reducing these stations for several densities and finding 

the density value for which the reduced curve has a minimum correlation 

with the topography. A Fortran-77 program was written by the author to pick 

up those stations which have to be not only along a short straight profile line, 

but also in places where the geology is simple. The first density profile, 

passing through the National Grid NX39 (see Fig. 1.8.1, line a), lies in the 

northern belt of the Southern Uplands. The area is composed of greywackes 

and shales (Ordovician). The second and third profile lines, passing through 

NX77, NX87, NX8 8 , and NX76, NX87 respectively. Both trend NE-SW and lie in the 

central belt of the Southern Uplands (see Fig. 1.8.1, lines b and c). Rock 

exposures are greywackes, shales and sandstone (Silurian). The relief of the 

topography along three lines is in the region of 60-190 m. The correct 

densities from three figures seem to be in the region of 2.70-2.73 g/cm^ 

because the curves reduced by those densities are nearly horizontal,
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in other words, they have the minimum correlation with topography (see Fig.

1 .8 . 2  (a), (b), (c)).

However, densities determined by the Nettleton's method have not been

used for the terrain correction, but are taken as the tests. To obtain more

prec ise  density  values, many short-length profiles along which gravity

stations have to be densely located are required.

mGal

35

density=1.60
30

2.00
1  2.7:25

2.50
20

2.80

240 km238236234232230

Fig. 1.8.2 (a) Density profile 1 in the Southern Uplands of Scotland.
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Fig. 1.8.2 (b) Density profile 2 in the Southern Uplands of Scotland.
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Fig. 1.8.2 (c) Density profile 3 in the Southern Uplands of Scotland.
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The error in terrain correction can arise from many factors, such as 

inaccurate elevations of the stations and squares read from the OS map and 

inexact determination of rock densities. The method is tested by comparing the 

new corrections with those made by the BGS for the same station. We 

arbitrarily pick up 10 stations for the test. It has been found that most of the 

new terra in  correc tions  are near to the original values, the relative 

difference is about 2-9% (see Table 1.8.1). On the other hand, there are some 

stations whose new terrain corrections are very different from the original 

ones, the relative difference being up to 50%. To examine the problem, the 

Hammer zone chart method is used to perform the corrections. The Hammer 

zone chart available  in the department has the zones from D to K, 

corresponding to the area with a radius from 53.3 to 9902.5 m. Three stations 

(2444, 2657 and 2659) are checked. Station 2444 on the National Grid NX48 is

located at the top of a hill ( 808 m). On either side of the hill, 1 km away, is the

valley with elevation of about 300 m. This large difference in topography 

should give rise to a great terrain correction. The old correction by the BGS,

however, was 6.29 mGal compared to the new correction of 15.74 mGal by the 

above software. The value by the Hammer zone chart method, on the other

hand, is 14.90 mGal (see Table 1.8.2). The minor difference between the new 

and Hammer's values is because of the neglect of the terrain effects from 

zones A-D and L-M. The other two stations are also located at the top of a hill on 

the National Grid NX 56. From Table 1.8.2, we see that the old corrections by the 

BGS are also underestimated. Therefore, some original data at stations, where 

the topography changes dramatically, need to be modified.
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l\D X Y gt (old) gt (new) e rro r%

1 07 2 9 5 2 8 0 6 3 4 3 8 0 13.25 1 3 .60 2.6
1 68 3 0 6 5 3 0 6 3 1 4 8 0 10.07 10 .09 2.0
4 8 7 2 6 4 2 4 0 6 0 1 0 4 0 5.61 5 .9 9 6.8
8 2 5 2 8 9 0 2 0 6 1 0 7 1 0 5 .9 5 7 .1 8 3 .3

1061 3 1 4 1 6 0 6 0 8 9 4 0 5 .18 5 .2 8 1.9

1122 3 1 4 6 9 0 6 1 1 1 0 0 7.41 7 .6 5 3 .2

1888 2 2 7 4 2 0 5 9 6 8 6 0 2 .3 4
;

2.12 9 .0

2159 2 3 3 5 2 0 5 9 1 0 8 0 5 .2 4 5 .6 8 8 .4

Table 1.8.1 Comparison of new corrections with old ones, gt (old) is provided by the BGS, 

gt (new) is produced by the new terrain computation method.

Station

No.

X

(m)

Y

(m)

H

(m)

Old

(mGal)

Hammer
(D-K)

(mGal)

NEW

(mGal)

2 4 4 4 2 4 9 6 8 0 5 8 8 3 6 0 80 8 6 .29 14.90 15 .7 4

2 6 5 7 2 5 0 1 0 0 5 6 6 4 6 0 655 5 .52 6 .7 6 8.21

2 6 5 9 2 5 0 9 4 0 5 6 5 3 9 0 65 7 8 .43 10.15 12.81

Table 1.8.2 Comparison of terrain correction among the old, Hammer and new values.

In order to show overall influence of terrain correction upon the 

Bouguer anomaly, Bouguer anomaly contour maps from the original data and 

new data are drawn in Fig. 1.8.3 (a) and (b). They show that the general 

patterns of two contour maps are quite similar to each other. Specifically, they 

both show gravity lows over the Loch Doon Pluton, Cairnsmore of Fleet 

Granite, Criffell Granodiorite, Stranraer Sedimentary Basin and the New Red 

Sandstone deposits near Dumfries. The data by the new method appears to 

provide somewhat better resolution.

1.9 Summary

A new method of terrain correction has been developed for regional 

gravity survey. The basic idea is to divide the terrain into different zones,
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within each zone, different formulae with certain approximations are applied. 

The main contributions to the old methods are made particularly for the near 

zone 1 correction, where new formulae are derived from integrations. The 

software MATERRAIN is tested by the gravity data in the Southern Uplands of 

Scotland. It has been found that some of the old corrections by the BGS are 

likely to be underestimated. The new method is entirely automatic and easy to 

use .
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Fig. 1.8.3 (a) The original Bouguer anomaly map for the Southern Uplands of Scotland 

provided by the BGS.
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Fig. 1.8.3 (b) New Bouguer anomaly map for the Southern Uplands of Scotland, produced using 

the new terrain correction computation method.
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PART TWO: REFLECTION SEISMOLOGY

Chapter 2 Methodology and Approach of New Seismic 

Reflection Experiment

2.1. In troduction

The conventional seismic survey is usually conducted by placing a

number of vertical geophones along a profile line. After a shot is fired, the

whole array is successively moved forward. This is the most widely used

seismic data acquisition technique to cancel multiples and random noise. 

However, in areas characterised by high velocity volcanic rocks (about 5.0

km/s) sandwiched between low velocity surface materials at the top and 

sedim ents at the bottom, many problems such as high level noise and 

reverberations are encountered. In such a setting, the conventional method

usually fails in terms of data quality and results derived from it. In this 

chapter, we describe a new approach of collecting seismic data using a special 

areal array and 3 -component geophones specifically designed for basalt- 

covered areas.

2.2 Review o f  noise problems on basalt-covered areas studied by previous

a u th o r s

The University of Wyoming Volcanic Reflection Research Group (UW

VRRG) has carried out an integrated approach to understand wave propagation 

in volcanic rocks and to find means of obtaining usable seismic reflection data

in areas covered by volcanic rocks overlying sedimentary rocks [Smithson, 

1986]. In order to reach the target, VSP (Vertical Seismic Profile) and CDP
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(Common Depth Point) data have been acquired in different areas covered by 

volcanic rocks where boreholes were available. The CDP line data in such 

areas show that practically all P-wave energy at take-off angles greater than 

several degrees (5-10°, depending on the area) from the source is trapped in

the surface layer and contributes to the organised noise. In other words, most 

of the P-wave energy is returned to the surface as organised noise rather than 

passing into the earth to interfaces of interest. This noise problem in the CDP

field records is caused by reverberating first arrivals. These reverberations 

represent the worst kind of organised noise because of their long duration and 

high horizontal velocity. Wave tests show that the amplitude of reverberations 

in correlated surface seismic data do not decay significantly with time at a 

fixed distance from the source, but with increasing distance from the source. 

In areas where basalts are near the surface, there are several important

phenomena affecting the seismic wavelets. One is that the input signal in such 

areas is really a train of wavelets lasting as long as a second instead of a single 

wavelet, i.e., the downgoing wavefield is long and complicated. This is 

probably caused by reverberations in the near surface where low velocity

material overlies basalt. The other phenomenon is that the basic wavelet and 

its reverberations change dramatically as the source location is changed, 

which will severely degrade the continuity of reflections.

Attenuation in basalt has been studied by a spectral ratio method applied 

to the first break [Smithson, 1986]. The ratio of amplitude of the first break at 

specific  depth to the reference amplitude has been calculated, and the 

p rocedure  is repeated for several frequencies. The results  show that  

attenuation in volcanic rocks is not unusually large or very different from 

those in sedimentary rocks, demonstrating that volcanic rocks do not attenuate 

the energy of seismic wave propagating through them at a higher rate than

sedim entary  rocks.

Apart from the conventional processing techniques applied to the data 

such as frequency filtering, inverse filtering and velocity filtering, some new 

techniques have been developed by the UW VRRG group, with the aim of
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extracting weak signals in the presence of noise. One is the x-p transform , 

which is based on the theory that the linear reverberations in the x-p domain 

are well separated from the zone in which the reflections are located. The x-p

transform does diminish the amplitude of reverberations, but artifacts are still

a problem. Another technique is that before cross-correlation, the synthetic 

reflection record is summed with field record. The summed record is then 

compared to the synthetic record, so as to suppress the contribution of samples 

with low signal-to-noise ratio in the summed record. The summed record is

then cross-correlated with the appropriate sweep.

Although much effort has been made to acquire high quality data and to 

develop new processing techniques, the noise problem in basalt-covered areas 

has not yet fully been solved.

2.3 Array design

A  new shot-receiver array was designed by D. K. Smythe for a proposed 

BIRPS piggy-back experiment to accompany the WISPA line in 1988. This 

section is based on Smythe's note [Smythe, 1988]. An array pattern is chosen as

shown in Fig. 2.3.1, with the shot point at the centre. Three-component

geophones lie on one of two concentric circles of radii 75 and 130 m. The shot

point spacing is 75 m.

The determination of array dimension is based on several factors. They

are described in detail as follows:-

(1 )  For a maximum phase shift of half a wavelength, the radius of the array

for events of interest should be of the order 200-300 m. Let us consider a

normal-incidence ray leaving a reflector, which dips at an angle 6  in the 

lower crust (see Fig. 2.3.2). If the P-wave velocity of the crust is V, the 

horizontal slowness p is

p = sin 6  /  V
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75 m

175 m65 m

260 m

— ________ f.....

Fig. 2.3.1 Field areal 'RAZOR1 array pattern for seismic survey.

Surface velocity Vo

plane wavefront

velocity v

reflector

Fig. 2.3.2 Geometry of a normal-incidence ray from a lower crustal reflector dipping at 0. Plane 

wavefront is incident across an array of receivers of horizontal dimension x.
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The ray emerges at an angle of incidence CC, corresponding to a planar

wavefront dipping at the same a .  We require a suitable dimension of x, the

width of the array, over which the phase difference of a planar arrival will 

not differ by more than half a wavelength. The path difference across the

array is

AX = V0  A t

where VQ is the velocity at the surface, and At  is the time delay. Snell's law

says that the quantity sin0 /v, which is the inverse of the horizontal phase 

velocity, is constant along any raypath in a horizontally stratified medium. 

Thus the same horizontal slowness p applies at the surface. We get

P = sin a  /V0  = AX/(x Vq).

Substituting and re-arranging, we get

x = V At  /sin  6  .

For a half-cycle of a 25 Hz wavelet, Af = 40/2 =20 ms. Taking a lower crustal

velocity of Y = 6.5 km/s, and a typical dip of an event of 30°, we get

x = 20 x 6 . 5 /  sin 30 = 260 m.

(2 )  The station spacing of 75 m is big enough so that different near surface 

ground conditions will be sampled. Rogue stations can be identified by

comparison with other stations, and rejected from the beam-steered stack.

(3 )  The 75 m radius of the inner circle is large enough so that the stations 

will not interfere with the firing of the shots; there  is no station at the shot 

po i n t .

( 4)  Sum m ation of 12 stations produces a respectable  s ignal-to-noise  

increase of 3.5, after polarisation filtering of each 3-com ponent station 

separa te ly .  This  provides ze ro -o ffse t  (co inc iden t s o u rc e - re c e iv e r)  3- 

component 1 2  fold reflection sections.

(5 )  During shooting, only 6  of the 12 stations have to be shifted between 

each shot point, two stations (9, 11) are used 4 times, another two stations (8 ,

12) are used 3 times, three stations (2, 6 , 10) are used twice and only 3 stations 

(1, 4, 7) are used once. Thus the preparation of sites for planting the

geophones is minimised.
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( 6 ) This particular array allows slant-stack processing to be carried out

along a straight line of a varied azimuth through the shot point, after 1 2  

stations are projected on it. The transformed-sections can be "turned" to 

maximise the amplitude of reflections from any directions, both in-line and 

cross-line, and supply 3-dimensional information.

(7) Geophones with small offsets to a shot point will record good shear

waves with near-vertical incidence.

The array has subsequently been given the acronym "RAZOR", for Roll- 

Along Zero Offset Receiver array [Smythe, pers. comm., 1989].

2.4 Three-component seismic data acquisition

2.4.1 Area chosen fo r  the investigation

Interpretation of gravity data in terms of gradual lateral variations by 

McLean and others is largely unsuccessful in the Greenock-Strathaven area, 

SW of Glasgow, because of the lack of surface geological control and the

m ultiplicity  of  density and magnetic susceptibility contrasts present in the 

area. A particularly frustrating ambiguity is caused by the low density (2.3-2 . 6

x l O^  k g / m ^ )  of Old Red Sandstone sediments sandwiched between the lavas 

(2.7 x 1 0^ k g / m^ )  and the lower Palaeozoic rocks (2.7 x l O^ kg/m^). Hall [1974] 

had carried out a detailed seismic survey in an attempt to detect the depth to 

the base of the Clyde Plateau Lavas. A contour map and an isopach map of the 

Clyde Plateau Lavas were constructed.

We chose this area (hard volcanic rocks nearly at the surface), SW of 

Glasgow, as a site for the experiment to try to develop an alternative or 

auxiliary new method for seismic survey and to solve the reflection problems 

in basalt-covered areas. However, in retrospect it was a risk to select such an 

area for the experiment at the early stage.

2.4.2 Instrum entation

Initially we intended to use the analogue FM cassette type recorders 

available in the department for this experiment. After a 2 day survey in the
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Fig. 2.4.1 Geological map of part of the Midland Valley, showing the site of the 
seismic experiment in the rectangle to the South-west of Glasgow. Inset map with 
national grid coordinates shows the precise location of seismic line.

Fig. 2.4.2 MDS-10 Data System Units, Rack-mounted.
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area, we collected data from two shots with different sizes of explosive using 

these recorders in early June, 1988. Twelve vertical component traces were 

recorded from each shot.

The recordings obtained from the seismometers were played back using 

an analogue facility and converted to digital form. Arrivals were picked up 

from the analogue playbacks and arrival times were calculated using the MSF 

pulses as a time scale. By inspecting the collected data carefully, we found that 

the seismic signals were overloaded, and the time error of up to 2 0  ms was 

unacceptable if the data are to be stacked. In fact, to image structure from the 

time difference introduced by the dipping of reflectors, we require that the 

error brought by the equipment should be less than 5 ms, otherw ise this 

experim ent would lose its significance.

The departm ent subsequently acquired a second-hand MDS-10 (see Fig. 

2.4.2) in 1988. This equipment can meet our requirements. The basic electronic 

modules of the MDS-10 Seismic Data System are the printed circuit plug-in 

cards containing an assemblage of linear and digital integrated circuits. These 

cards are housed in modular card racks which may be mounted in several 

different configurations depending on the type o f exploration work required. 

The basic modules of Preamp, IFP Amplifier, Digital Controller, Power Supply, 

and Tape Transport form the core of a Seismic Data Acquisition System. System 

capabilities are expandable to 96 data channels by the addition of a second 

Preamp module, and to field data stacking by the addition of a Mass Memory 

Unit and card modules in the Digital Control Unit (Service Manual, 1977).

The Preamp Unit (see Fig. 2.4.3) is the analog input to the system. It is 

capable of handling up to 96 seismic inputs. The seismic input is normally 

channelled to the Preamp Unit by an input switching unit to allow for needed 

functions such as geophone testing, leakage testing, CDP switching, etc. In the 

operating mode of this Input Unit, the Preamps are connected directly to the 

g eophones. The functions perform ed by the P ream p U nit in c lu d e , 

am plification of the signal, low-cut filtering, 50/60 Hz notch filtering, an ti­

aliasing filtering, and multiplexing of the data channels to the IFP Unit.



The IFP Amplifier Unit contains: the Track & Hold circuit which samples 

the m ultiplexed signals from the Preamp, the IFP Amplifier which raises the 

held sample to an analog level near full scale of the converter, and the

A nalog-to-D igital Converter which converts the analog signal to 14 bits plus 

s ig n .

The Digital Control Unit contains the system master clock and associated 

logic for system tim ing and control functions. Primary data flow concerns 

movement of the converted data bits from the A/D converter and gain bits

from the IFP C ontroller Logic to the Tape Form atter. Data are arranged 

according to the SEG-B Format and written to tape under the control of the 

Tape Controller Logic in the Digital Unit. Other functions performed by the 

D igital C ontroller include I/O signals for operation of remote firing system, 

defloating and conversion circuits for driving a M onitor Camera, form atting 

and con tro lling  a D igital . C orrela tor for display of v ibroseis data, and

form atting and controlling a Mass Memory device for data stacking, when the

optional stacking features are ordered with the system.

The geophones used here have a natural frequency of 7.5 Hz. The coil 

resistance is 600 ohms. To obtain uniform coupling, the 3 geophones (two 

horizon tal and one vertica l) were fixed in one cluster, the horizontal 

geophones being oriented towards North and East respectively. Twelve such 

clusters were used.
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Fig. 2.4.3 MDS-10 data system block diagram.

2.4.3 F ield survey

The area we chose for this experiment is relatively flat and covered by a 

close netw ork of roads or tracks, along which the rapid laying of cables is

possible. It idas also thought to be easier for drilling because the surface is

covered by drift several metres deep.

The areoo/ field pattern was surveyed by taping and levelling  in

Septem ber, 1988. It was found tedious and tim e-consuming to m easure 12

different azim uths for each array pattern, hence we surveyed 5 parallel lines

with a distance gap of 65 m between two adjacent lines, with an increment of

75 m between adjacent stations along a line (see Fig. 2.3.1). The accuracy for

setting up the aerial array was within ± 2  m.
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2.4.4 F ield work preparation

To carry out the experiment, the following equipment was needed:-

V e h ic le 2

MDS-10 seismic data system 1

12 V Batteries 6

V ertica l geophones 1 2

H orizon ta l geophones 24

150 m DIO cables 15

2 0 0  m extension cables 6

Junction  boxes 2

D rilling  equipm ent 1

F iring  system 1

female connectors 
to geophones

Box A

male connector to the 
MDS-10 ______

Fig. 2.4.4 Junction Box designed for connecting geophones to the MDS-10.

The p lan  fo r the connection  betw een geophones and the input 

sw itching board on the MDS-10 was in two phases. Firstly, the 18 channels 

from 6  stations (1-6) are connected to the Junction Box A located at station 4, 

another 18 channels from 6  stations (7-12) are connected to the Junction Box B 

located at station 10 (see Fig. 2.4.5). This connection was supposed to save 6  150
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m DIO cables; that is, the 3 channels from station 4 and another 3 channels 

from station 10 are directly connected to the Junction Box A and Box B 

resp e c tiv e ly  w ithou t using  ex tra cables for the connections betw een 

geophones to the Junction Boxes. Secondly, the Junction Boxes were connected 

to the input switching board by the extension cables which can be extended up 

to 600 m (see Fig. 2.4.5).

The MDS-10 Data System testing was in two phases. First, it was tested by 

writing pulses and sine waves with different frequencies to tape in the SEG-B 

format and then displaying the demultiplexed data to see if they are as

expected. In addition, we tested the system by completing the circuits from 

geophones to the input switching board. The geophones were set on supports 

in the corridor, and a hammer was used as a seismic source. By inspecting the 

playback from .the m onitor camera, we could isolate the dead traces, identify 

problem s e ither in the MDS-10 recorder, cables or geophones. Secondly, 

testing o f the blaster was carried out in the field.
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1

3 DIO cables
station

f  shot point 

^Junction Box A
►Main Line 

Junction Box B

Extension Cables

Data System Truck

Fig. 2.4.5 Field lay-out and connections of the areal array experiment.

2.4.5 F ield work procedures

To carry out field work, all the equipment had to be checked and loaded 

one day before  the experim ent, and field  crew kept well inform ed and 

prepared. In the field, four people drilled shot holes, two planted geophones 

and a further two laid out cables and made all the connections.

Shot-hole drilling was the most difficult and time-consuming business. 

We used a pointed bulb-head hand drill which was made in the department 20 

years ago. The drill is rhythmically plunged to the base of the drift, or to 2 m
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length o f the drill shaft by means of a hand percussion bore and filled, after

loading, with mud and water. The 4 cm diameter drill head makes a hole wide 

enough to take the 3 cm wide gelignite inserting device which comprises an

opcn-bottom ed sleeve to hold the stick, within which there is a plunger to

push the stick out at the bottom of the shot hole. Four holes in a polygonal 

pattern about 1 m apart are drilled and made ready for loading dynamite.

Sticks or part sticks of I.C.I polar ammon gelignite, about 20 cm in

length and 3 cm in diameter, are placed individually in holes drilled to the

base o f the drift at the depth of about 2 m. The test was first conducted at the

same location by different sizes of explosive, say 4 half sticks in 4 holes and 2

half sticks in 2 holes. By comparison of the seismograms from the two shots, it

was found the first shot did not look any better than the second shot (see the

details in chapter 3). Therefore, two half sticks were used in the majority of 

sh o ts .

The HS-200 blaster was used as a remote firing system which is

connected to the Digital Control Unit on the MDS-10 system. The firing signal

comes from the main system after pressing the "start" button, the blaster then 

generates a 150-V firing pulse, which is conducted along a firing cable to the

series-connected detonators. Two 200 m-long twin core steel cables with a total 

resistance of 40 ohms were used to complete the circuit. The blast creates a 

cavity  around the shot which is filled  and flattened im m ediately after

s h o o tin g .

Two people planted the geophones. A shallow hole of about 50 cm in

depth was dug, and one geophone cluster was planted in the hole. A compass

was used to orient one of the horizontal geophones towards North, and the

other towards East. The holes were usually filled with soft clay afterwards.

The D10 cables were divided into two groups according to their length 

(100 m or 150 m) having been tested and marked in the laboratory. Therefore,

six long cables could be used to connect stations 1 and 7 at the far ends, 30

short cables could be used t o connect other 10 stations around ihe stations 4

and 10 where the two Junction Boxes were placed. The person who
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made all the connections had to be sure that all the stations had been 

connected to the proper channels marked on the Junction Boxes. If one of the

connections was found to be faulty, he had to either swap the channels on the 

Junction Box or take down the m is-connected channels for later change by

software. It was found that channel 24 did not work properly, so that this

channel had to be jumped over. In the field, channels 6-23 and channels 25-42 

were used.

The MDS-10 operator is the key person in charge of the field work. He is 

responsible for directing the field crew, testing the connections, giving the

signals to the firing system operator and to an observer who is stationed in the 

vicinity o f the shot to warn the shooter of any hazard. Generally speaking, if 

everything went all right in the field, it would take at least 3  hours to finish 

one shot. In fact, we never succeeded in firing two shots in one day at the

beginning o f the experiment, although the second shot would only take half

the time of the first. The work was slowed down by many factors; for instance, 

checking the dead channels again and again, and repairing the tape transport

and firing systems. These unexpected problems had to be sorted out in the 

field. Som etimes, the weather before Christmas was too bad to proceed the

w o rk .

2.5 Interaction with the seismic data processing package SKS

2.5.1 Introduction to the SKS package

The collected seismic data were processed partly with the SKS (Seismic 

Kernel System) package, so that it is necessary to give a brief introduction to 

the package.

The Merlin SKS system consists of over 60 standard seismic processors, 

which are called using MGL, Merlin Geophysical Language. MGL is a seismic 

data processing language in which the geophysicist codes requests for seismic 

data processes to be performed on seismic data. It has sophisticated plain- 

English definition and comprehensive error reporting facilities, and includes 

fac ilities to recognize the various kinds of block processing which are
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required in seism ic data processing.

A seismic job coded in MGL is translated into the ESSR, Execution Stage 

Seism ic Run, by MGLTRAN, the M erlin Geophysical Language Translator. 

MGLTRAN is a four pass compiler which is able to recognize a wide number of 

incorrect setups as well as optimize inefficient ones, and convert the requests 

in the seism ic job into a Fortran-77 program which is then compiled and run 

in the normal way.

A seism ic processor in SKS consists of two subroutines: (a) PPS (Pre­

processing  Subroutine), which is loaded by the translator, M GLTRAN, in 

response to the appearance of the corresponding processor name in seismic 

job coded in MGL. Each processor has a number of verbs which define the 

various functions of the processor. The PPS checks for the presence of the 

verbs and the values of their arguments given in the seismic job. The PPS then 

defines the system requirements for the SPS, and sets or resets variables in the 

process comm on blocks, (b) SPS (Seismic Processing Subroutine) which does 

the actual processing of the seismic data is executed as a subroutine call from 

within the Fortran-77 program produced as the output of MGLTRAN.

The SKS package used was that installed in the Signal Processing 

D ivision, D epartm ent o f Electrical & Electronic Engineering, U niversity of 

Strathclyde, by kind permission of Professor T. Durrani.

2.5.2 Change o f  SEG-Y form at into free ASCII-coded form at

A m ajor problem is dealing with various tape formats. Seismic field

tapes are recorded in a number of standard formats, SEG-A, SEG-B, SEG-C, and

SEG-D, corresponding to the A, B, C and D formats of the Society of Exploration

Geophysicist's (SEG). Different machines with different software use different 

formats. However, all formats are simple if the computer on which the tape is 

being read is an IBM machine, as both the characters and numeric formats are 

based on IBM  standards. A SEG-Y file, which is commonly used in the

exp lora tion  industry  is a file that contains a num ber o f traces stored 

sequentially . Each trace contains a number of data samples. A SEG-Y file
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always begins with an identification header of 3600 bytes, followed by trace 

data blocks which also contain a trace header area and a data area (see Fig. 

2.5.1).

file t r a c e trace tra c e trace t r a c e trace
id e n t if ic a t io n h e a d e r da ta h e a d e r da ta h e a d e r d a ta

header b lo c k b lo ck b lo ck b lo ck b lo c k b lo c k
1 2 n

Fig. 2.5.1 SEG-Y tape format.

As described in Section 2.4.2, the recording equipment used is the 

Geosource MDS-10 Data System which c a n ' record up to 96 channels although 

only 48 channels were used in our experiment. The time-ordered m ultiplexed

seism ic data were written to tape in the SEG-B format. The dem ultiplexing 

package we used, by courtesy of Britoil pic (now BP E xploration pic),

demultiplexes seismic data and produces output as a SEG-Y file.

The SKS package was designed to process demultiplexed CDP marine and 

land seism ic data collected in the normal way. However, the purpose o f our 

experiment is to detect structure using 3-component seismic data collected in a 

novel way, in terms of the field array and the types of geophones. Therefore, it 

requ ires d iffe ren t p rocessing  techniques like po larisa tion  filte rin g , and

slant-stack processing, which are not available in the SKS package. In spite of 

that, we still need to use the SKS package to do the basic processing like data 

editing, application of automatic gain control, bandpass frequency filtering, 

predictive deconvolution filtering and so on.

In order to apply a polarisation filter and a spatial directional filter to 

the data, we firstly had to interact with the SKS system, that is, to read SEG-Y

data files into a buffer which can then be read and processed by a Fortran-77

program under the VAX/VMS operating system. A new program called MASEGY

to do this job is based on Hansen's program [1988] which has been modified to

suit our case.
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The program MASEGY uses the SKS subroutines to open, read, decode and 

close SEG-Y files. The subroutines are as follows:-

DDKOPN opens the SEGY file in such way as to guarantee being able to

read the reel number, but not necessarily be able to read the data traces.

DSKHED reads the reel header, decodes it into a work common block and 

then determines the required number of traces and record length for this file. 

The file is autom atically closed and reopened with the correct record length 

p a ra m e te r s .

DSKTIN reads the trace headers and traces into arrays in the required 

fo rm a ts .

DSKFMT decodes the trace from tape into an array HOST(K).

MASEGY sets the data in the HOST(K) into another array BUFFER(I, J) and

then writes them into a new file in a required format.

The program  MASEGY (see Appendices; Fortran-77 program  2) has 

several advantages over ISAN (an interactive program with facilities for the 

m anipulation and analysis o f time series and frequency dom ain data) and 

other packages, in that it can read any number of traces in any part of a data 

file and read any number of samples in any part of a trace. When we run the 

program, it shows the length of header, number of traces in the file, and 

number o f samples in one trace. Several questions then have to be answered, 

as shown by the following example. Program prompts follow the $ sign.

$ INPUT QUALIFIER 

MA

$ INPUT FILE NAME 

RAGCDT

$ TRACE COMMON LENGTH (UIRCLN) = 160

$ LENGTH OF TRACE HEADER (RHWTHL)= 100

$ SAMPLES PER TRACE = 501

$ NUMBER OF TRACES IN FILE (RHWNRC)=192
$ INPUT FIRST TRACE YOU WANT TO READ

45
$ INPUT LAST TRACE YOU WANT TO READ
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96

$ INPUT FILE NAME FOR OUTPUT 

RESMPDT 

$ NO. OF TRACES TO READ = 48 

$ TRACE 1 COMPLETED

$ TRACE 48 COMPLETED

$ FORTRAN STOP

As shown in Table 2.5.1, the data have finally been written into a file 

that contains three columns: trace number, sample number and sample data.

In order to get 10 separate output files, we had to run the program 10 

times, each file corresponding to a single shot. Part of the output data have 

been checked using the processor IMEG in the ISAN package, which reads the 

SEG-Y file into a workfile. The data from both outputs are identical.

channel no. sample no. samples

1 1 -0.31208420E+04

1 2 -0.23770420E+04

1 3 0.72183459E+03

. . . . . . . .
2 1 0.4.940039E+03

2 2 -0.24473999E+02

2 3 -0.12872484E+04

. . . . . . . .
3 1 -0.33545245E+03

3 2 0.53580952E+04

3 3 -0.79183521E+04

. • * . . .
48 1 0.73537378E+03

Table 2.5.1. Output data format from the program MASEGY.
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2.6 Three-component data transformation

2.6.1 Theory and method o f transformation

For recording 3-component seismograms, it is always ideal to point one 

o f the horizontal geophones towards the radial direction (R) which is located

on the line containing both shot point and sta tion , another horizon tal 

geophone towards the transverse direction (T) which is perpendicular to the

radial direction, the third vertical geophone points downw ards (V). Thus,

three geophones are supposed to record source-generated and m ode-converted 

SH, SV and P-waves with the highest response.

In the field, the 12 3-component geophones were set on two circles with 

an inner radius of 75 m and an outer radius of 130 m. Two adjacent stations are 

separated by an azimuth of 30°. To keep 36 geophones in the ideal orientations

(R, T, V) with error less than 0.5° in the wet, muddy field was difficult and 

tim e-consum ing . It was very convenient, how ever, to o rien t geophones 

towards magnetic North, East and vertical direction with a compass. Field crew

in this case would be able to set up one station in 2-3 minutes. In order to

satisfy ideal orientations, we can perform the vector transform ation in the lab

by computer.

Suppose that we now have two coordinate systems Oj and 0 2 , here Oj is a

field system (N, E, V), N standing for North, E standing for East, V for vertical.

O 2  is a required coordinate system (R, T, V), R standing for radial, T for 

transverse, V for vertical. If the origins of two systems are at the same point

with coinciding vertical axis V, it is more efficient to do a rotation on the

plane. For a vector F = (XQ, YQ), where XQ is its component in N axis, YQ is the

com ponent in E axis. The projections of that vector on the new coordinate

system obtained by rotating the field system with an angle of & to the N axis

clockwise have X and Y components. (3 is an angle of the vector F to the N axis

(see Fig. 2.6.1), so we get:- 

X0  = Fcos(P)

Y 0  = F sin(P)

X = F cos(p-a) = F cos(p) cos(a) + F sin(P) sin(a)
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= x 0 cos( cc) + Y0  sin( a )

Y =F sin(P- a )  = F sin(P) cos(cc) - F cos(P) sin(a)

= -XQ sin( a ) + Y0  cos( a )

Seism ic energy travels down as a wave from a source, strikes various 

in terfaces and reflects upwards to the surface. The wave received at one 

station at tim e T can be expressed by a vector in space which has not only 

quantity but direction. For a 3 second seismic trace with the sampling interval 

of 4 ms, the seismic wave can be represented by 751 vectors. Using the above 

formula, 3 components of a vector taken from 3 seismograms at one time in the 

field coordinate system (N, E, V) can exactly be represented by 3 components of 

the vector in the new coordinate system (R, T, V).

N

Xo

►  E
Yo

Fig. 2.6.1 Two coordinate systems with origins at the same point.

The orientation of the main profile in our seismic reflection experiment 

has been surveyed and is at an angle of 76.5° from North towards East. The 

sym m etry o f the array makes it easy to evaluate the 1 2  angles o f radial 

directions from North. Table 2.6.1 below gives the values. The first row shows 

1 2  station num bers, the second row gives the angles of 1 2  radial directions 

from North.
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No. l 2 3 4 5 6 7 8 9 1 0 11 1 2

a 346.5 316.5 286.5 256.5 226.5 196.5 166.5 136.5 106.5 76.5 46.5 16.5

Table 2.6.1 The angles of 12 radial directions from North.

To demonstrate how the transformation is performed, let us take station 

11 (refer to Fig. 2.3.1 on page 37) as an example. We already know the 

orientation o f the main line relative to North, 76.5°, and we can then derive 

the angle o f the radial direction from North, 46.5°, which is the value o f angle 

cc in Table. 2.6.1. We also know the values of XQ and YQ so that the values of X 

and Y in the new coordinate system can easily be calculated using the above 

fo rm u la .

2.6.2. Fortran-77 program MATRAN

A Fortran-77 program called MATRAN (see A ppendices; Fortran-77 

program  3) was written by the author to perform these transform ations. As 

shown in Fig. 2.6.2 below, the program firstly reads 3-component data into an 

array XYZ(I, J) after a user inputs data file name, number of traces, and so on. 

Successively, it carries out the transformation for every station by calling a 

subroutine TRANLT. The transformed results are written into a new file with 

different order ( see Table 2.6.2).

W hen the program is run under VAX/VMS, the user has to answer the

fo llow ing  questions:-

$ INPUT FILE NAME TO BE TRANSFORMED 

SHOT09

$ INPUT FILE NAME FOR OUTPUT 

TRST09
$ INPUT NO. OF TRACES IN THE FILE 

48
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$ START READING DATA INTO ARRAY 

$ INPUT STATION NUMBER TO START(TYPE 0 TO STOP)

1

$ INPUT STATION NUMBER TO START(TYPE 0 TO STOP)

0

$ START WRITING TRANSFORMED DATA INTO NEW FILE 

$ FORTRAN STOP

Data from 10 shots have been transformed by running the program 10 

tim es. Part of the results from this program have been checked both by 

m anual calculation and map drawing.

yesinput station number (nstn) 
and channels nstn = 0?

no

no
nstn > 12

yes

input file names,size of data

• read data into array xyz(I,J)

compute new x,y values by 
calling subroutine TRANLT

write transformed data into file

Fig. 2.6.2 How diagram of Fortran-77 program M ATR AN.
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I J R T V

2 30 0.43721714E+04 -0.24265833E+04 -0.66208169E+04
2 31 0.20342482E+04 -0.86845978E+03 -0.31671978E+04
2 32 -0.89819867E+03 0.12185277E+04 0.18010933E+04
2 33 -0.17012490E+04 0.17980367E+04 0.51663369E+04
2 34 0.16894063E+03 0.21042696E+03 0.51132510E+04
2 35 0.22622275E+04 -0.10723242E+04 0.38682339E+04
2 36 0.21623433E+04 0.22828473E+03 0.38494138E+04
2 37 0.75670850E+03 0.21057329E+04 0.40104707E+04
2 38 0.26581714E+03 0.13405616E+04 0.26566113E+04
2 39 0.30066162E+02 -0.72609741E+03 0.73537378E+03
2 40 -0.21853218E+04 -0.46790924E+03 -0.49363110E+03
2 41 -0.59391719E+04 0.13882744E+04 -0.40073503E+04
2 42 -0.36328962E+04 -0.17063904E+03 -0.46824844E+04

Table 2.6.2 Transformed data format from the program MATRAN.

2.7 Seismic data display using the UNIRAS package

2.7.1 Introduction to the UNIRAS package

The original SEG-Y data were edited and resampled using the SKS 

package in the Signal Processing D ivision, Departm ent o f E lec trica l & 

E lectron ic  E ngineering , U niversity of S trathclyde. A fter the data  were 

reform atted using the MASEGY program into ASCII coded decimal data, they 

were transferred through the computer network from the VAX 11/750 at the 

U niversity  o f Strathclyde to the VAX cluster at the Glasgow U niversity  

Com puter Centre for the reasons of accessibility and higher computing speed. 

To obtain the seism ic trace plots, the UNIRAS package was used to display 

seism ic traces on the screen, which are then dumped to a laser printer. 

Therefore, it is worthwhile m entioning how the seismic wiggle traces are

produced outside the SKS environment.

UNIRAS, standing for Universal Raster software, is a m ultipart package 

com prising in teractive, m enu-driven programs and also subroutine lib raries 

for inclusion in programs. It will analyse data and produce a wide range of 

graphics display, including line charts, piecharts, histograms, 2D, 3D and 4D

surface, solid modelling, and seismic data.

UNIRAS is a graphics package which is composed of two basic parts, the
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first being the interactive programs. These provide facilities to draw charts 

and maps of all kinds without the need to write your own program. UNIGRAPH 

is for draw ing charts and graphs, while UNIMAP is for contour maps and 

surface view s etc. The third interactive is UNIEDIT which allows pictures 

drawn by the other two to be modified. The second main section of UNIRAS is 

the subroutine libraries which are routines which can be called from a user's 

own program in the similar manner to the NAG Graphics Library. Two levels 

of subroutine library exist, one for high level routines which correspond to 

the interactive programs, and a low level library. SEISPAK is a subroutine 

library for the display of seismic data.

SEISPAK consists of many library subroutines which can be called in a 

user's own program to display many kinds of seismic record sections. It can

display seism ic traces, variable area traces in vertical or horizontal direction

as a user requires. It can drive many kinds of term inals and plotters. 

Furtherm ore, the seismic data can also be displayed in colour if  a colour 

terminal and a colour plotter are available. The package itself can enhance a 

seism ic section either by reprocessing data or by using colours. F inally, 

SEISPAK can also display seismic data in 3 dimensions.

2.7.2 Plotting seismic traces in the normal way

In order to make use of available packages for our own purposes, the 

author has w ritten a Fortran-77 program called MAPLOT (see Appendices; 

Fortran - 7 7  program 4 ) to display 3 -component seismic data in various kinds of 

ways. The program permits the display of any one trace of 3-component data

which exists as one of 3 columns in a data file. It can display traces or variable

area wiggle traces and filled wiggle variable area without wiggle lines.

2.7.3 Combination o f a gain control program with the plotting package 

Seism ic reflection data collected in our experim ent exhibit different

characteristics, as we deliberately selected the complex area with the intention



of solving problems associated with basalts. The recorded seismic traces show 

large am plitudes at the beginning of the traces (see the detailed description in 

Chapter 3). In contrast, the later parts of the traces are scaled down to a nearly 

invisible level. This makes it difficult to recognise any reflection events at the 

later part o f the traces.

The general method of solving the above problem is to apply a gain to

each trace. The gain itself should have small amplitudes at the beginning and 

large am plitudes at the later part. Furthermore, it has to change with the 

variation of the trace amplitudes. A program called MAGNPL (see Appendices; 

Fortran-77 program  5) was written by the author for the purpose of solving 

the above problem . The program calculates a gain function for each trace 

separately. At first, it computes a mean amplitude A for the time window 

L | x At  (where L j is the number of samples and At is the sampling interval),

all amplitudes o f the gain function in that window are now taken as the same

as the mean value A, the time window moves down for the next computation 

until the end of the trace (windows are not overlapped). In order to get a

smooth gain function, we set another time window L2  x A/ (for instance, 160 

ms), and sum all the calculated mean amplitudes (these am plitudes can be

different) over the window L2  x Af and then divide it by the window length

L 2 , the final value is used as the amplitude for the centre point of the window. 

The window then moves one sample down for the next computation until whole 

trace has been finished. The scaled gain function exhibits large amplitudes at 

the beginning and small amplitudes towards the end ( see Fig. 2.7.1 (c) ). To 

scale down the large amplitudes and scale up the small am plitudes in the 

traces, we have to multiply the original traces by the inversed gain functions;

i.e., we divide the original traces by the gain functions. Fig. 2.7.1 (a) shows the 

original unsealed seismic traces ( 1 2  vertical traces from shot 2 ), (b) shows the 

scaled seism ic traces, and (c) shows the gain functions for the same data. By

comparing Fig. 2.7.1 (a) with (b), we see that the frequency characteristics in 

the original traces are retained in the gain-applied traces, for instance, the 

large amplitudes appearing at 1100 and 1650 ms in (a) can still be seen in (b).
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The window lengths are empirically determined to produce the optimum 

coherence o f seism ic events.

The combination of the gain-control program with the plotting package 

saves m uch com puter memory, since there are no temporary files needed for 

output from the gain-control program. This program reads the data, scales and 

plots the data in one program run, which makes it possible for the user 

quickly to examine the data. The program can also display seism ic data in 

various ways, such as wiggle line display, variable area plus wiggle line 

display or variable area display without wiggle lines.

2.8 Static correction

In order to obtain a seismic section which shows seism ic reflectors 

representing the actual geological structure, reflection times must be reduced 

to a defined reference datum. This is normally taken to correspond to a 

horizon tal plane fixed at a certain known elevation. Static correction is 

essen tia lly  a tim e-sh ift introduced to each trace, reducing the observed 

reflection time to the chosen datum plane.

The value of total static correction ( At ) depends on the following 

factors [Al-Sadi, 1980]:-

(1) The vertical distance of the source from the datum plane.

(2) The surface topography, that is the vertical distance of the detector 

from the datum.

(3) The velocity variation of the surface layer along the seismic line.

(4) Thickness variation of the surface layer.

The total static correction Af (Fig. 2.8.1) is made up of two parts, the

source correction At  and the receiver correction At  f , where
ds + d r - 2 d r d  2  ̂

At = A t s + At r = y  + -p ~
o 1

^  s Source static correction,

^  r R eceiver static correction,

dg D istance between the source location at the surface and datum
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p la n e ,

d r D istance between the receiver location at the surface and the 

datum  plane,

d j  Thickness of the second consolidated layer,

d Depth of a shot hole,

VQ Velocity of the weathered layer,

V | Velocity of the consolidated layer,

receiver

Source Surface Topography

Surface layer

Datum

Reflector

Fig. 2.8.1 Definitions of source and receiver static corrections.

The area chosen for this experiment is relatively flat - the elevation 

d ifference betw een adjacent shot points is less than 1 0  m, the biggest 

difference between the lowest and highest shot points along the profile line is 

about 15 m. The relief of the terrain along the line is illustrated in Fig. 2.8.2. To 

apply the. static corrections to the data, the principle is the same as described 

above, that is, to introduce a time shift to each trace using the above formula. 

A local datum was chosen as a horizontal plane 5 m beneath the lowest shot 

point ( shot point 1 ) along the profile line, above which is the surface layer 

with a constant velocity of VQ. Therefore, all observed reflection times are 

reduced to this local datum.



The relative elevations of 12 stations to each shot point and relative 

elevations o f adjacent shot points were surveyed. To calculate the time shift for 

each trace, the depth of source (d) is approximated as 2  m, which is the depth 

of the shot hole. The effect of the depth of receivers, about 50 cm, is neglected 

because it introduces less than 1 ms time reduction. The velocity  VQ of 

weathered layer (boutder clay), about 2100 m/s, is taken from Hall [1971].

Elevation

7.5-

Shot Point

750600 675 825 m450 525300 375150 22575
Main Profile Line

Fig. 2.8.2 The topography along the main profile line (elevation value is exaggerated).

It was found that we cannot easily access the processors in the SKS 

package to apply the static corrections to such data, because the package 

mainly deals with the CDP data. Therefore, we made manual calculations which 

proved to be easier for the 9 shot records. The time shifts are obtained using 

the following simplified formula,
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in which the velocity of the surface layer VQ is equal to the velocity of the 

second layer V j. In fact, this assumption is valid because the local datum is just 

15 m beneath the surface, within this layer the materials can be considered to 

be the same. The distances (dr) between the various stations to the local datum 

are listed in Table 2.8.1, the time shifts (t) applied to the stations are also listed 

in the table. From the table, we can see that the variation in time shift between 

adjacent stations is less than 5 ms, but the variation between shots can reach 

up to 13 ms, which would introduce a large phase shift for reflection signals. 

In practice, these tim e shifts were first converted to the nearest number 

divisible by 4 because of the sampling interval 4 ms, and lastly were subtracted 

from the orientation-transform ed data.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

1
dr 2.4 4.3 4.6 5.8 7.0 6 . 6 1 2 . 2 7.1 9.0 6 . 1 5.0 4.9

t 2 . 6 3.5 3.6 4.2 4.8 4.6 7.2 4.8 5.7 4.3 3.8 3.7

2
dr 3.2 4.4 5.0 5.2 6.5 6.4 11.7 9.3 8.5 9.1 7.2 5.7

t 3.5 4.1 4.3 4.4 5.1 5.0 7.5 6.4 6 . 0 6.3 5.4 4.7

3
dr 4.2 5.2 5.0 6 . 1 8 . 0 7.9 1 1 . 2 8.7 9.3 6 . 8 4.4 4.7

t 5.4 5.9 5.8 6.3 7.2 7.2 8.7 7.5 7.8 6 . 6 5.5 5.6

4
dr 3.4 4.1 4.4 6.9 9.2 1 0 . 0 1 0 . 6 8.7 1 0 . 2 9.6 6 . 0 5.0

t 4.7 5.1 5.2 5.4 7.5 7.9 8 . 2 7.3 8 . 0 7.7 6 . 0 5.5

5
dr 4.7 6 . 1 5.1 9.0 1 0 . 0 1 0 . 0 1 2 . 1 10.5 12.7 10.4 9.2 5.6

t 5.9 6.5 6 . 0 7.9 8.4 8.3 9.4 8 . 6 9.7 8 . 6 8 . 0 6.3

6
dr 6 . 1 7.5 6.7 9.8 1 0 . 1 1 0 . 6 13.1 13.1 13.5 11.7 13.1 9.3

t 6.9 7.6 7.2 8.7

oo 
oo 9.1 1 0 . 2 1 0 . 2 10.4 9.6 1 0 . 2 8.4

7
dr 9.2 9.2 6 . 8 10.7 1 0 . 1 13.2 14.8 14.1 14.6 14.7 15.6 14.1

t 9.0 9.0 7.8 9.7 9.4 10.9 11.7 11.3 1 1 . 6 1 1 . 6 1 2 . 0 11.3

8
dr 13.4 13.9 9.4 11.4 13.6 13.9 15.9 15.2 17.1 16.3 16.7 16.1

t 12.4 1 2 . 6 10.5 11.5 12.5 1 2 . 6 13.6 13.3 14.2 13.8 14.0 13.7

9
dr 15.5 16.6 14.0 14.9 14.1 14.9 16.7 17.6 18.4 18.1 17.0 17.5

t 14.2 14.7 13.5 13.9 13.5 13.9 14.8 15.2 15.6 15.4 14.9 15.1

Table 2.8.1 Static corrections applied to all the stations (st- station number, sp shot number, dr- 

distance between receiver and the datum in metres, t- time shift in milliseconds).
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Chapter 3 Characterization of 3-component Seismic Data 

from a Basalt-covered Area

3.1 Introduction

Seism ic reflection CDP and VSP data are often of poor quality when 

recorded in areas where volcanic rocks are present at or near the surface. 

They are bo th  characterised  by large-am plitude reverberations caused by 

seism ic energy trapped in the upper layers [Pujol, 1989]. In this chapter, we 

present the m ajor characteristics of seismic reflection data recorded using the 

areal array and 3-com ponent geophones in a basalt-covered area o f the 

M idland V alley o f Scotland. We then investigate the energy distribution on 

geophones at different orientations by applying a specially designed filter.

3.2. Correlation between the penetration o f seismic energy and charge size

As it is the first trial of shooting in a basalt-covered area, we had to

carry out some tests before the real experiment started. One of the tests was to

find out the correlation between the penetration of seismic energy and size of

explosive. This test aims at determining the minimum size of explosive without 

substantial signal degradation. As described in Section 2.4.5, there is a limit to

the num ber of shots that can be fired together due to the properties of the 

blaster and firing lines. The size of a cavity produced by a blast which is 

proportional to size of explosive, and therefore has to be minimised. The total 

resistance of the firing circuit should be kept to below 75 ohms to maintain the 

current of about 2 A to fire seismic detonators. Therefore, it is advised to shoot 

fewer than five charges together.

Four half-sticks of dynamite (each weighing 1/8 kg), in four holes,
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were used for the first shot, and two half-sticks of dynamite, in two holes, were 

used for the second shot at the same location. A comparison is made by

displaying six vertical traces from 6  stations ( 1 , 2 , 6 , 8 , 9 , 1 0 ) at shot 1 and also 6

vertical traces at the same location at shot 2. As shown in Fig. 3.2.1 (a), 2 traces

from 2  shots are plotted together; that is, trace 1 is from station 1 at shot 1 , 

trace 2 is from station 1 at shot 2, and so on. From the amplitude and frequency 

characteristics o f 6  pairs of traces, we can see that they are comparable down 

to 500 ms. To make a detailed comparison, these 12 traces are scaled using the 

program MAGNPL (refer to Section 2.7.3) and then are plotted in Fig. 3.2.1 (b), 

here we can see that any pair of traces are comparable down to 1600 ms.

For the purpose of this experiment; that is to detect reflectors beneath 

the basalt (about 500-1500 m beneath the surface), 2 s two-way travel time 

(TWT) is a long enough record. Since a doubled charge size does not improve

the data, two half-sticks of dynamite in two separate holes were used in the

m ajority of shots.

3.3 Characteristics o f  seismic reflection data in a basalt-covered area

Fig. 3.3.1 (a) shows 3-component seismograms (vertical, north and east)

from station 8  at shot 6 , 3  traces are all dominated by strong r e v e r b e r a t io n s  

with large amplitudes and low frequencies, lasting up to 600 ms. The maximum

difference between amplitudes in a trace can be up to 80 dB. Fig. 3.3.1 (b)

shows the amplitude spectra of the V and N component time series. We see that 

the maximum of the horizontal component versus frequency (dashed curve) is 

much larger than the maximum of the vertical component (plain curve). Two 

amplitude peaks for the horizontal component are at 17 and 25 Hz. In contrast, 

two peaks for the vertical component are at 23 and 33 Hz. The lowest amplitudes 

of both components at 50 Hz is due to the use of a notch filter in the MDS-10, 

which removes the 50 Hz component. The amplitudes beyond 45 Hz arc very 

small. Thus reflection signals with higher frequency are masked and difficult 

to extract. M oreover, the reverberation patterns vary from trace to trace and 

from station to station. In order to show the general features of
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Fig. 3.3.1 (a) Three component seismic traces from station 8  at shot 6  (V - vertical, N - 
North, E - East).

Amplitude

Horizontal Component

1 0 0 . 0
,Vertical Component

70-0 80-0
Frequency (Hz)

60-050-030-02 0 - 0

Fig. 3.3.1 (b) The amplitude spectra of two time series- vertical (V) and horizontal (N) 
components as shown in (a).
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such data, several traces from different shots are plotted together (Fig. 3.3.2). 

H alf o f them are from the stations in the inner circles and half are from the 

stations in the outer circles (refer to Fig. 2.3.1). It was found that the data from 

the inner circles all have much larger amplitudes than those from the outer 

circles in the same time region. It is likely that the data from the inner circles 

are m uch m ore affected by organised noise than those from the outer circles. 

In fact, the attenuation difference by spherical divergence and absorption in 

seismic energy reflected from the deep layers, say 2  km, is m inor between the 

stations with small distance (say 65 m). Thus the great attenuation between two 

offsets cannot be attributed to spherical divergence and absorption. It is, 

how ever, caused by surface conditions in the area where basalt is near the 

surface. S trong reverberations, as trapped modes in the upper layer, are 

generated . The reverberations are attenuated dram atically w ith increase of 

the d istance from  a shot point. In other words, the data from small offset 

sta tions (75 m) are obscured more severely than those from long offset 

sta tions. A dditionally , two horizontal components are m ore noisy  than the 

vertica l com ponent, and their reverberation duration lasts longer than the

vertical component. In fact, the basalt at the shallow depth gives rise to a 

critical angle o f less than 2 0 ° , and a corresponding distance at the surface is

less than 50 m. Therefore, stations in this area are all located beyond the 

critical distance from a shot point, which may cause the data degradation.

S e i s m i c  re f l ec t io n  s igna ls  are be l ieved  to be ran d o m .  T h e  o r g a n i s e d

n o i s e - r e v e r b e r a t i o n s ,  h ow eve r ,  m ig h t  be periodic.  A u t o - c o r r e l a t i o n  o f  se i s m ic  

t races  is u s e d  he re  to invest igate the periodici ty o f  o rganised  noise.  Therefore ,  

a n u m b e r  o f  s e i s m i c  t r a c e s  in c l u d i n g  both the  v e r t i c a l  an d  h o r i z o n t a l  

c o m p o n e n t s  a re  a u t o - c o r r e l a t e d .  T h e  a u t o - c o r r e l a t i o n  f u n c t i o n s  s h o w  a 

s t r ik in g  c h a n g e  in s t rength and per iod of  reverberat ions ,  thi s m u s t  be  related 

to su r f a c e  e f f ec t s  at the source.  Fig. 3.3.3 shows one o f  the au to -cor re la t i on

f u n c t i o n s  w h i c h  mos t ly  repre sen ts  the per iod ic i ty  (40 ms)  or  the  f r equency  

(25 Hz)  of  such  organised  noise  in such a basal t -covered  area.  T h e  f requency  

of  such noise  var ies  with traces and stations; the general  band is at 15-30 Hz.
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Suppression o f such noise will be discussed in detail in Chapter 4.

4 . 0 -

3 . 2 -

2 . 4 -

0 . 8 -

0 . 0

6 0 0 . 0

Time (ms)- 0 . 8 -

- 1  . 6 -

-2.4-

- 3 . 2 -

Fig. 3.3.3 Auto-correlation of the horizontal component (North) from station 6  at shot 4. It 

shows the periodicity of organised noise.

It is hard to see any features of interest from the display of unprocessed 

seismic data because the later part of a trace is scaled down to such degree that 

it is nearly invisible. To overcome the problem, before displaying, all the data 

are coordinate-system  transform ed, bandpass frequency filtered (20-60 Hz) 

and finally scaled using the program MAGNPL (refer to Section 2.7.3). Fig. 3.3.4

(a), (b) and (c) show the data from the radial, transverse and vertical

components respectively. The data are organised such that the traces from the 

inner stations are plotted on the left-hand side of the figure (channels 1-60),
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those from the outer stations are plotted on the right-hand side of the figure 

(channels 61-120). The data from the test shot (we name it shot 0) are also 

plotted together with the rest (channels 1-6, 61-66). It can be seen that the 

early part o f the traces, down to 1400 ms, is dominated by relatively low 

frequency content, and the later part of the traces, after 1400 ms, is dominated 

by high frequency content. Fig. 3.3.4 (a) for the radial component shows some 

reflections at 420 ms (channels 61-120), which are believed to be P-waves, (b) 

for the transverse  com ponent shows little of interest, (c) for the vertical 

component shows a line of reflection events at 420 ms from the outer stations 

(channels 61-120) characterised by the higher frequency. In addition, there 

are a series of low frequency (about 10 Hz) events at 850, 1100, 1620 ms on 

channels 73 - 78 at shot 2. These events, however, are not shown at other shots. 

A detailed analysis and interpretation of the data are given in Chapter 4.

3.4 Detection o f  seismic source energy distribution using spatial directional 

f i l t e r i n g

3.4.1 Introduction to the spatial directional filter (SDF)

Seismic recordings contain signals and undesired noise. A direct trace to 

trace display hardly shows any source and receiver characteristics, although 

it does tell us roughly about the frequency and shape of the traces. However, 

3-com ponent record ings make it possible to analyse the po larisa tion  o f 

particle m otions over a time window in three dimensions. Compressional and 

shear waves (body waves) are well polarised. The trajectories o f particle 

motions have higher rectilinearity and directionality. In contrast, noise shows 

less polarisation. If  we design a filter which preserves the data which are well 

polarised and rejects the data which are poorly polarised, with a threshold 

angles from  0 ° to 9 0 ° , the corresponding energy d istribu ted  on three 

geophones can be estimated [Cliet, 1987].
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3.4.2 Design o f  the spatial directional filter

The polarisation direction of particle motions over a time window can be 

determ ined in several ways. One way is simply to construct a covariance 

m atrix and then determ ine the principal axis of the matrix. M athem atically, 

we define the mean for each coordinate as

1 V

i = l

1 N

i= 1 

N

•=i

where x j, yj and z\ are observation values, N is the number o f observations. 

The covariance o f  any two coordinates are:-

1 N 2 v ar ( x)  = —  ^ ( x . - m j
=  1 
N

var( y  ) = - ^  £  (y m y )
N  r . i

N

N t . i
1 Ncov ( x , y )  = j j - l , ( x r  m x ) (y  m y )

=  1 
N

N t . i
N

cov(y  , x )  = 4 r  £ ( y  r m y)(-x r m *)
N t . i

N

cov (y , z) = ^ ( y  { -  rny) ( z i
N

N
cov ( z ,  x)  = i ~ m X) ( x .  m X)

N
N
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The covariance matrix is defined by

cov ( x , z) 
cov (y , z) 

var ( z )

Suppose three eigenvalues of the matrix V are X j, X2  and X3 , o f which Xj 

is the largest eigenvalue. Its corresponding eigenvector is given by E = { e j, e2 , 

6 3 } which represents the direction of the principal axis. As we defined, the 

direction o f the vector E is the polarisation direction of particle motions over 

the time window N x At  (where At  is the sampling interval).

H aving computed the polarisation direction vector E = {e j, e2 , 0 3 ) which 

has an angle a  to the horizontal axis R, an angle p to the horizontal axis T and 

an angle y to the vertical axis V, we define a threshold angle <{>. When any one 

of the angles a ,  p and y is less than or equal to the threshold angle <p, the 

corresponding sam ple is kept. Fig. 3.4.1 illustrates the principle o f spatial 

directional filtering  along the V-direction. The polarisation axis E ^ b  ° f  the 

response AB is near the V-direction, therefore, part AB will be kept. Part BC 

will be rejected since its polarisation axis Eg q is almost perpendicular to the V- 

d ire c tio n .

var (x ) cov (x , y )
cov (y  , x) var {y )

_cov (z , x) cov ( z, y )
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part AB conserved 

part BC rejected
V

Fig. 3.4.1 Principle of spatial directional filtering along the V-direction. The polarisation axis 

EAB of the response AB is near the V-direction, therefore, part AB will be kept. Part BC will be 

rejected since its polarisation axis EBC is almost perpendicular to the V-direction (From Cliet, 

1987).

3.4.3 Fortran-77 program MASDF

A F ortran-77  program  called MASDF (see A ppendices; Fortran-77

program 6 ) was written by the author to perform the function of the filter. 

The system -independent program contains a main program and a subroutine. 

The main program  reads the 3 -component data into an array, computes the 

mean value o f each variable and covariance of any two variables, and 

constructs a covariance matrix V. The subroutine EIGEN computes the largest

eigenvalue and the corresponding eigenvector of the matrix by the Power

method [Churchhouse, 1981]. The program allows the user to define a time 

window length and a threshold angle <|>. To run the program  under the
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VAX/VMS operating system, the program (see Fig. 3.4.2) is modified to call a 

NAG library routine for calculating the largest eigenvalue and corresponding 

eigenvector. The data from 12 stations can be processed for each run. A user 

has to reply to several questions:-

$ INPUT FILE NAME FOR FILTERING 

TRST02

$ INPUT NUMBER OF STATIONS IN THE FILE 

12

$ INPUT NUMBER OF SAMPLES IN ONE TRACE 

501

$ INPUT FILE NAME FOR OUTPUT 

EOUT02

$ START READING DATA INTO ARRAY

$ INPUT THRESHOLD ANGLE IN DEGREE 

45

$ INPUT STATION NUMBER TO START (TYPE 0 TO STOP)

1

0

$ START WRITING FILTERED DATA INTO OUTPUT FILE

$ FORTRAN STOP

For the purpose of a clearer display of the filtered data, we set 0 as a 

result w ithin the window in which angles oc, P and y are greater than a given 

threshold angle <j), but set a constant 1 for the window in which angles a ,  P and 

y are less than a given threshold angle <|>.
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Yes

No

r is it last sample? 
M+L > NSAMPL?

no

yes

no
is it last station? 
stnumb > 1 2  ?

STOP
END

compare angle of direction witl 
threshold angle to filter data

compute the largest eigenvalue 
and eigenvector

compute covariance matrix 
over time window L

input station no. to start 
stnumb > 1 2 , or = 0  ?

input file name,no. of traces 
no. of samples, no.t»f stations

write filtered data into file

Fig. 3.4.2 Flow diagram of Fortran-77 program MASDF.

3.4.4 Application o f  the MASDF filter fo r  analysis o f 3-component data

A pplying the MASDF filter to 3 -component seism ic data provides a 

means o f analysing the polarisation of seismic events, and also enables one to 

evaluate the energy distribution along the radial, transverse and vertical
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d ire c tio n s .

The particle  motion of seismic waves is never rectilinear, but is always 

more e llip tica l. An ellip tical trajectory can be proved by investigating the 

filtered data. W ith a threshold angle approaching 0°, which is an extreme case 

such that all p a rtic le  m otions are absolutely rectilinear, the three filtered  

sections show  no events passing through the filter. A ccordingly , m ore 

information appears on the sections as the threshold angle is increased. For a 

threshold angle o f 9 0 ° , which is the case that no polarisation direction is 

specified, all the events pass through the filter. Fig. 3.4.3. shows the filtered 

radial, transverse and vertical sections with the threshold angle through 15°, 

30°, 45°, 60°, to 75°. The data used for processing are from shot 6  on the profile

line. By studying 15 diagrams, we are able to see that, for a fixed window

length (e.g. 84 ms, see Section 4.5.5) and a fixed threshold angle, the horizontal 

sections alw ays show m ore events than the vertical section, m oreover, the 

radial-section exhib its more information passing through the filte r than the 

transverse  sec tio n . These characteristics may be related  to the  larger 

amplitudes on the horizontal components than the vertical component, so that 

the polarisation  direction o f particle motions are inclined more tow ards the 

horizontal axes. A nother feature from the diagrams is that, with a threshold 

angle o f less than  6 0 ° , alm ost no events pass through the filte r on the 

transverse section at a time down to 300 ms. The absence of events on the first 

trace for the transverse component is due to a dead trace in this shot record.

The patterns on three sections are varied from shot to shot.

By slightly m odifying the program MASDF, we can use it to investigate 

the directionality o f particle motions. After a series of threshold angles being

input (0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 60°, 65°, 70°, 75°, 80°, 85°, 

9 0 °) , for a specified threshold angle, the program constructs the covariance 

matrix and com putes the eigenvector corresponding to the largest eigenvalue 

and then filters the data within the window in 3 directions. The number of the 

windows on one section which pass through the filter is summed and is divided 

by the total number of windows, finally the result is multiplied by 1 0 0  and is



radial transverse vertical

Fig. 3.4.3 Continued (see the next page)
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transverse vertical

Fig. 3.4.3 The three-component sections of shot 6  after application of the spatial 
directional filter. The time window for filtering is 84 ms, threshold angles are 15°, 
30°, 45°, 60°, and 75°.
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Fig. 3.4.4 The relationship of each component between the number of windows within 
which the data have passed through the filter and threshold angles. The number of 
windows is expressed in percent. The data from 9 shots are presented.
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8

Fig. 3.4.5 Energy variation of each component expressed in percent as a function of 
threshold angle. The data from 9 shots are presented.
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expressed in percent. We plot the results for each shot against the threshold 

angle. Three different curves for the radial, transverse and vertical sections 

are shown in Fig. 3.4.4, front which we can see that, with a threshold angle of 

0 ° , no data pass through the filter, however, with the threshold angle of 90°, 

all the data pass through the filter, so the three curves in each plot jo in  

together at both ends. The 9 plots all show that the vertical section has the 

smallest num ber o f windows passing through the filter, so that the curve for 

the vertical section are all lower than the others. In contrast, seven out of

nine p lots show that the radial sections indicating the radial direction of 

particle m otions are dominant in the plots at any threshold angles.

Next is an analysis of the energy distribution on different geophones at 

each shot. The energy density for a harmonic wave is proportional to the

density o f the medium and to the second power of the frequency and amplitude 

of the wave. The ratio of energy density, however, only varies with the square 

of the amplitude [Sheriff & Geldart, 1982]. The program MASDF (see appendices; 

Fortran-77 program  7) is modified again to calculate the energy density E of 

seismic waves for 3 sections from one shot and the energy density of 

seismic waves for one section whose polarisation directions are within the a 

specified threshold 4>. The ratio E^/E is evaluated for each component (12 traces 

for each shot). As shown in Fig. 3.4.5, the relative energy of each component 

as a percentage is plotted against the threshold angle in degrees. We can see 

that although there are some similarities to those in Fig. 3.4.4, the implication 

is different. The general phenomena are that three curves in each diagram all

increase m ono ton ica lly  w ith the threshold angles, of which the radial

components dom inate except for shot 3, and the energy distributed on the 

radial com ponent increases rapidly when the threshold angle is less than 25 • 

In contrast, the energy curves for the transverse and vertical components are 

much low er than the radial component. This indicates that the energy is 

greatest on the radial component. In spite of that, it cannot be said that these 

events on the horizontal components are definitely shear waves, as they may 

be highly organised-noise (for example, multiples) with far larger amplitudes,
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which may dom inate the polarisation direction.

3.5. Summary

The test shot shows that a doubled size of dynamite in our experiment 

does not produce better data, indicating that the correlation between the

penetration o f seism ic energy and charge size is not simply linear. Three- 

component seismic data recorded in a basalt-covered area are characterised by

strong reverberations lasting as long as 500 ms. The reverberation patterns

vary from  sta tion  to station. The horizontal com ponents exhibit larger

amplitudes and lower frequency than the vertical component. By performing

auto-correlations of seismic traces, the frequency of such organised noise is

evaluated as about 15-30 Hz. Furthermore, the data from the inner stations are

believed to be more affected by surface conditions than the data from the outer 

stations. The display of the vertical components from the outer stations shows 

a line of reflection events at about 420 ms. There are no clear events on the

transverse  section.

By applying the spatial directional filter to each component of seismic

data, it is shown that there are more events in the horizontal components

passing through the filter than the vertical component. This is attributed to 

the far larger amplitudes o f the horizontal components, which may dominate 

the polarisation direction of particle motions. The energy variation diagram of 

each shot shows quantitatively that the radial component receives much more

energy than the others.
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Chapter 4 Data Processing and Interpretation

4.1 In troduction

Seism ic reflection data are usually contaminated with various kinds of 

noise such as coherent noise (direct wave, refracted wave, diffracted wave and 

m ultip les) and random  noise. Those data recorded in basalt-covered areas 

exhib it a very  special behaviour, being mixed with high reverberations 

lasting as long as a second or so. As a result, the reflection signals are severely 

masked by such organized noise. In order to extract the weak signals from the 

data in the p resence o f noise, special processing techniques have to be 

developed in addition to the existing conventional methods. In this chapter, we 

firstly attem pt to apply the standard processing methods such as frequency 

filtering  and p red ic tive  deconvolution filtering to the data, and then we 

design and apply a signal enhancement polarisation filter. Lastly we present 

the results o f filtering, and give an interpretation.

4.2 Pre-editing 3 -component seismic data

On recording 3-component seismic data in the field, some channels were 

improperly m ixed up. For instance, the vertical component was connected to 

the channel for the horizontal component. Some channels were open-circuit, 

which caused the dead traces. The electrical connections of some traces were 

inverted by m istake so that the peak-trough sense of such traces comes out 

reversed in comparison with the rest of the recording. The SKS package (refer 

to Section 2 .5 . 1 ) is used here to zero dead traces and to reverse the polarity of 

some traces.

The original record length is 5 s with the sampling interval of 1 ms. To
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save the storage, the data were re-sampled to 4 ms and data length is reduced to 

2  s.

4.3 Frequency fil tering

An explosive source also generates unwanted noise. Ground-roll has a 

frequency low er than 20-25 Hz and its amplitude is very high especially on 

short-offset records. The air-wave usually has a frequency higher than 50 Hz. 

A constan t zero-phase bandpass frequency filter is used here to attenuate

ground-roll and other high-frequency random noise.

The seism ic spectrum is subject to absorption along the propagation 

path because o f the intrinsic attenuation of the earth. The higher frequency 

com ponents are usually  attenuated faster by absorption and other natural 

filtering, so that higher frequency bands of useful signals are confined to the

shallow part o f the section. In contrast, the lower frequency band of useful 

signals is confined to the later part of the section. In the exploration industry, 

a tim e-variant bandpass filter is commonly used to obtain a cleaner section. 

However, for our shallow seismic recordings, a constant bandpass filter (20/30 

- 60/70) with a low cut-off of 20 Hz and a slope of 30 dB/octave, and a high cut­

off o f 60 Hz and a slope of 70 dB/octave is used to avoid the difficulties of 

correlation from  record to record induced by varying frequency and phase 

changes o f different filters. Most importantly, the application of a polarisation 

filter (refer to Section 4.5) to the data requires that frequency filtering 3 

co m p o n en ts  from  one s ta tio n  should  not change the p o la risa tio n

characteristics o f particle motions of useful signals.

We take the data from shots 5 and 6  as an example, and perform 

frequency filtering to see how the data are affected. Fig. 4.3.1 (a) shows the 

unfiltered data (channels 1-3) and filtered data (channels 4-6) from station 7 

at shot 6 , and Fig. 4.3.1 (b) shows the data from station 10 at shot 5. We can see 

that high frequency noise, say at 100-200 ms on channel 3 in (a) has been

removed. The filte red  traces have become smooth. Additionally, the lower 

frequency components (<20 Hz) have also been removed. Hence the amplitudes
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of filtered data, say channel 5 in (a), have been suppressed. However, for those 

components w ithin the frequency bandwidth, the filter does little to the data. 

The unfiltered data (channels 1-3) and filtered data (channels 4-6 in Fig. 4.3.1

(b)) look rather the  same because the frequencies of reverberation at this

station are higher than 20 Hz.

4.4 Predictive deconvolution filtering

D econvolution is a general term for data processing methods designed to 

im prove the tem poral resolution of seismic data by com pressing the basic 

seism ic w avelet (spiking deconvolution) and to remove effects which tend to 

m ask the p rim ary  reflected  events on a seism ogram  such as absorption,

reverbera tion , ghosting  and m ultiple reflections (pred ictive deconvolu tion). 

The form er process is based on W iener optimality which states that the seismic 

w avele t can  be res to red  to any pre-defined  shape. The p red ic tiv e  

deconvolution is particularly based on the assumption that the reflectivity is a 

random uncorrelated  series, but that the reverberation has a fixed periodicity. 

Hence the autocorrelation of seismic data is the same as the autocorrelation of 

the reverbera tion  w aveform . From the autocorrelation o f the reverberation

w aveform , a p red ic tio n  operator can be com puted. This opera to r w ith

prediction d istance d will closely predict the reverberation com ponent o f the

waveform. Therefore, by subtracting the delayed predicted waveform from the 

received w aveform , we can eliminate the reverberation com ponent. However, 

the above two processes are limited in practical use unless the follow ing

conditions are met (Yilmaz, 1988):-

(1 ) The earth is made up of horizontal layers of constant velocity.

(2 ) The source generates a compressional plane wave that im pinges on 

layer boundaries at normal incidence. Under such circum stances, no shear 

waves are generated.

(3) The source waveform does not change as it travels in the subsurface.

(4) The noise component is zero.

(5) Reflectivity is a random process.
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(6 ) The seism ic wavelet is minimum phase. Therefore, it has a minimum 

phase inverse .

The seism ic data recorded in our experiment tend to be minimum phase. 

A dditionally, the offset is relatively small. Therefore, we apply a predictive 

deconvolution filter to the data from shot 6  as an example to show how the 

predictive deconvolution filter affects the data. When the maximum operator 

length L, which is sum of a prediction lag and length of operator, is 150 ms and 

a p red ic tion  lag  d is 4 ms (sampling interval), the seismic w avelets are 

com pressed, which is usually called spiking deconvolution. M eanw hile, the 

amplitudes of high reverberation are also suppressed. When d= 8  or 16 ms, the 

filtering does not make additional improvement. When d=24 ms, the filter best 

attenuates reverberations. With a further increase of the prediction lag d, the

vertical reso lu tion  is decreased. When d > 60 ms, the filtered data seem

untouched. Next, we use a fixed prediction lag d=24 ms, and change the L as 100,

125, 150, 175, 200 ms. The results show that shorter length of L such as 100 and 

125 ms introduce "ringing" into the data, and the high reverberations are not 

adequately suppressed. When the L is too long (> 250 ms), there is no additional 

im provem ent. Fig. 4.4.1 (a) and (b) illustrate  the orig inal 6  vertica l

com ponents and deconvolved components respectively. The maximum operator 

length is chosen to be 150 ms, and the prediction lag 24 ms. We can see that the 

high am plitudes at early part of the traces are suppressed in addition to the 

com pressed w avelets. However, whether the filtering degrades the useful 

signal is unknown because the reflections are not clear on the section. In 

practice, we should test the autocorrelation of each component to choose

appropriate  param eters. The deconvolution filtering for the vertica l and 

horizontal com ponents should be applied separately.

4.5 Signal enhancement polarisation filtering (SEPF)

4.5.1 Introduction to the SEPF filter

As stated in Section 4.2 and 4.3, a frequency filter can be used to 

suppress the noise outside the required frequency band. Deconvolution can be
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used to compress a seismic wavelet and also to attenuate multiples. However, its 

usage is lim ited by several assumptions, and in practice, field seismic data do 

not always meet the requirements. Therefore, a predictive deconvolution filter 

has to be used with great care, otherwise, filtering will have a deleterious 

effect on data. Velocity filtering has been successfully used to discrim inate 

between prim ary reflection and multiple reflection or ground-roll. As a result,

the low velocity component can be excluded by applying a velocity filter. 

H ow ever, ve locity  filte ring  requires the data to be recorded from an 

appropriate number of stations with different offsets from a shot point. This is

because m ultiples and prim aries have no significant m oveout difference at 

near o ffse ts . R egarding the 3-com ponent seism ic data recorded in our 

experiment, it is impossible to apply the velocity filter to such near offset data. 

In order to suppress the noise which exhibits sim ilar spectral characteristics 

and sim ilar velocity band to primary reflections, other processing techniques 

have to be developed. In this section, a signal enhancement polarisation filter 

is designed and implemented for that purpose.

S ignal enhancem ent polarisation filtering is based on the m ultiple

com ponent reco rd ings o f ground m otions. The theory  is that both 

compressional and shear waves (body waves) exhibit a high degree of linear 

polarisation. Noise may also be polarised, but the direction of polarisation is

random in nature. Furthermore, surface waves consist of mutually interfering 

propagation m odes arriving from different directions which are also poorly 

polarised. Three-component recording of ground motions makes it possible to

represent the direction of polarisation by the amplitudes of 3 components - 

vertical, radial and transverse- over a specified time window N At  , (where N is

number o f samples and A/ is the sampling interval). Hence by using various

characteristics o f polarised particle trajectories, a polarisation filter can be

designed to preserve or enhance the data when they are linearly polarised, 

and to attenuate the data when they are randomly polarised [Kanasewich, 

1975].
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4.5.2 Design o f  the SEPF filter

In order to m easure the rectilinearity and directionality  o f particle 

motions, we construct a covariance matrix of N points taken from each of the 3 

components o f ground m otions and then compute the largest eigenvalue, the 

second largest eigenvalue and the eigenvector corresponding to the largest 

eigenvalue o f the matrix.

The construction of a covariance matrix follows the same procedures asv 

stated in Chapter 3. We firstly define the mean values of N observations of the 

random variables x and y,

! N

i = 1

m y = j j - ' L y i
i= l

The covariance between N observations of two variables x and y is given by
N

( * .  > 0  = 4 - £ ( * , • -  m x) (y  m )C0V  N i ,I = 1

The autocovariance between N observations of the same variable is defined as
N  2

v a r (x )  = c o v ( x ,  x) = 4 r  2 / * , -  “  m J
N t . i

The three variables x, y and z correspond to the amplitudes of the radial, 

transverse  and vertica l com ponents respectively. From the autocovariance 

and covariance o f above variables, we can construct a covariance m atrix V 

given by

V = —  N

var (x ) cov (x , y )  cov ( * ,  z) 
cov ( y  , x) var (y  ) cov (y , z) 

.cov (z , x) cov ( z, y )  var (z ) .

If the tim e window N Af and the amplitudes of 3 traces are given, the 

covariance m atrix  V can be found. Thereafter, the rectilinearity  of the 

particle m otion trajectory over the specified time window can be estim ated 

from the ratio of principal axes of this matrix, and the direction of polarisation
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can be m easured by considering the eigenvector of the largest principal axis.

S uppose  X l is the largest eigenvalue and X2 is the second largest 

eigenvalue, then a function F is defined by

F (X V X2) = l -

where n is an experimental value. This function would be close to unity when 

rectilinearity is high (A,j>>A,2 ) and close to zero when rectilinearity is low ( 

and X2 approach one another in magnitudes). The rectilinearity function for 

the time tQ is given by

RL( tQ) = [ F ( X v  A2) ] '

where j is an experim ental value. If  we present the eigenvalue o f the 

principal axis w ith respect to the radial, transverse and vertical coordinate 

system  by E = (ex , ey , ez ), then the direction functions for the tim e tQ are 

represented  by

D x (t0) = ( e x )

0 7<ro)-(*,)

where k is an experimental value. The eigenvector is normalized IEI=1, so 0<D^< 1 

(i=x, y, z).

To illustrate rectilinearity, Fig. 4.5.1 shows some computations for sets of 

data in two dim ensions. The data in Fig. 4.5.1 (a) comprise artificial 3- 

component random noise generated by the ISAN package with a mean of 0 and 

a root mean square variance of 1000. Forty samples from the radial and 

transverse components are plotted. We can see that the trajectories of particle 

motions are random, in other words, the particle motions are poorly polarised. 

Fig. 4 .5 . 1  (b) shows the polarisation diagram of field 3 -component data, the 

trajectories of particle motions are well polarised. We use the program MASEPF
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(refer to Section 4.5.3) to construct a covariance matrix and to compute the 

largest eigenvalue and the second largest eigenvalue for both noise and field 

data. As a result, the computation for the random noise gives the largest 

eigenvalue o f 1098211, the second largest eigenvalue of 906572.8 and the 

rectilinearity function value RL of 0.1745004, the computation for the field 

data gives the largest eigenvalue of 1148760.4, the second largest eigenvalue of

920788.2 and the rectilinearity  function value of 0.9198450. Therefore, the 

rectilinearity function does tell us about the degree of polarisation of particle 

m otions.

To subdue the con tribu tions due to any anom alous sp ike, the 

rectilinearity and directionality  functions are both averaged over a window 

equal to about half the original window length. If this time window consists of 

M points (M =N/2), the smooth rectilinearity and directionality functions are 

given by

0

0

( a )
0

(b )

Fig. 4.5.1 (a) Polarisation diagram of random noise RL=0.1745.

(b) Polarisation diagram of field data RL=0.9198.

D \ t ) = - L  £  D X t +  t)  i = x ,  y , z 
« M  W  , 1
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where L, t, and z are in ms, but in a program they are sample numbers L=(M- 

l)/2 . Finally we have the filter operators as follows :-

F x = RL*(t). D x \ t )

F y -  RL*(t) • D y *(t)

F z = RL*(t) ■ D *{t)

The filtered three seismograms are obtained by multiplying the filter 

operators by the original seismograms, so we get

N x = x ( t ) - F x (t)

N y = y ( t ) - F y (t )

N z = z ( t ) - F z (t )

4.5.3 Fortran-77 program MASEPF

A Fortran-77 program called MASEPF was written by the author. As 

shown in Fig. 4.5.2 below, the program reads 3-component seismic data into 

arrays XX(I), YY(I) and ZZ(I), computes the covariance and autocovariance for 

various variables over a specified time window, and constructs a covariance 

m atrix V. The largest eigenvalue and a corresponding norm alized eigenvector 

are com puted by calling the subroutine EIGEN1 which uses a Power method 

[Churchhouse, 1981]. The Power method is actually an iterative m ethod in 

which an arbitrary  first approxim ation to the eigenvector corresponding to 

the dom inan t e igenvalue is successively  im proved until some requ ired  

precision is reached. The second largest eigenvalue of the matrix is obtained 

using the same Power method applied to a new m atrix B(2, 2) which is 

construc ted  from  the original m atrix, its dom inant e igenvalue and the 

corresponding eigenvector in such a way that it essentially contains only the 

rem aining unknown eigenvalues of the original matrix. A system dependent 

program  (see Appendices; Fortran-77 program 8 ) was also w ritten by the
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author which is run on the VAX/VMS operating system. Here a NAG routine 

F02A BF is used to calcu la te  the largest eigenvalue, the second largest 

eigenvalue and the corresponding eigenvectors.

Having found the eigenvalues and the eigenvectors of the matrix V, the 

program  then constructs the rectilinearity  and d irectionality  functions for 

the specified time window. The time window now moves one sample down for 

the next window until the last sample is reached. However, for the first (N -l)/2 

samples and last (N -l)/2  samples, (where N is the num ber of samples within 

the w indow), there are no computed rectilinearity  and directionality values, 

thus the values are taken as the same as those at (N -l)/2  point, and NSAMPL- 

(N -l)/2  point (NSAMPL is the total number of samples in one trace). The filter 

operators are obtained by m ultip ly ing  the rec tilinearity  functions by the 

directionality functions. A fter finishing one station, the program turns to the 

next station and repeats the com putation until the last station has been 

finished. The final filtered data are obtained by m ultiplying the original data 

by the filte r  operators and are w ritten into a new file. M eanwhile, the 

operator functions can also be written into a file at the user's request.

To run the program , we have to answ er several questions at the 

beginning (The $ is the command level prompt)

$ INPUT FILE NAME FOR FILTERING 

DATA

$ INPUT NUMBER OF STATIONS 

12
$ INPUT NUMBER OF SAMPLES IN ONE TRACE 

501

$ INPUT FILE NAME FOR OUTPUT 

OUT

$ START READING DATA INTO ARRAY

$ INPUT TIME WINDOW FOR FILTERING(NO. OF SAMPLES)

21
$ INPUT STATION NUMBER TO START (INPUT 0 TO STOP)

1
$ INPUT STATION NUMBER TO START (INPUT 0 TO STOP)
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0

$ START WRITING FILTERED DATA INTO A FILE 

$ DO YOU WANT TO KEEP OPERATOR FUNCTIONS(Y/N) 
Y

$ INPUT FILE NAME FOR OPERATOR FUNCTIONS 

OPER

$ START WRITING OPERATOR FUNCTIONS INTO A FILE 

$ FORTRAN STOP

yes

no

no

yes

no
NSTN > 1 2  ?

yes

STOP

compute largest and seond 
largest egenvalues L1,L2

input station no. (NSTN) 
NSTN > 12 or = 0  ?

set time window length L and 
construct covariance matrix

input file names, no. of traces 
no. of samples, no. of stations

construct filter operators 
FN=RL * Dl M> nsampl ?

perform filtering 3 traces 
NX= XX * FX

write filtered data into 
a new file

Fig. 4.5.2 Flow Diagram of Fortran-77 program MASEPF.
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4.5.4 Program test using noise and fie ld  3-component seismic data

The program test here is based on random noise and field 3-component 

data. The extensive and sophisticated test on synthetic 3-com ponent data will 

be discussed in Chapter 5.

The polarisation of noise is random in nature, thus the polarisation 

filte r should suppress it. We firstly generate Gaussian noise by the ISAN

package with a mean of 0 and a root mean square variance o f 50. The three 

noise traces are not identical (channels 1-3 in Fig. 4.5.3 (a)). They are then 

processed by the program MASEPF with a time window of 84 ms (21 samples). 

We can see from operator functions that the gain values are never higher

than 1.00, 80% of them are in the region of 0.10-0.40, which means that the 

filter does attenuate noise with a degree of nearly 70%. By plotting the filtered 

traces (channels 4-6) beside the original traces, it confirms that the original

unpolarised data have been attenuated from beginning to end.

Secondly, we select 3-component field data to test the filter. The 3- 

component traces are taken from station 2 at shot 2 which have been edited,

bandpass frequency filtered and coordinate system transform ed (channels 1-3 

in Fig. 4.5.3 (b)). The polarisation filter is now applied to these data and the 

filtered data are plotted in Fig. 4.5.3 (b) (channels 4-6). To make a comparison, 

three random noise traces are added into the field data to produce noise-

enhanced data which are shown in Fig. 4.5.3 (c) (channels 1-3). After the

noise-enhanced field data are filtered by the MASEPF, we can see that the 

noise, especially  in the later part o f the traces, has been a ttenuated

significantly, thus the signal to noise ratio has been increased. Furtherm ore, 

by com paring the filtered field data with the filtered noise-enhanced field 

data, we can see that they are still comparable. Therefore the filtered traces 

have been essentially freed from random noise.
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4.5.5 Selection o f  an appropriate window length fo r  filtering

Selection  o f an appropriate time window 'length for the polarisation

filter is o f equivalent importance to the selection of the operator length and a

prediction lag for the predictive deconvolution filter. Improper choice of the 

time w indow length can also lead to two extremes - the data are either

untouched or the useful signals are degraded after filtering. The general

phenom ena concerning the window length are as follows: the narrow er the 

time window is, the less the filter will affect the data, thus the use of*very

short tim e w indow  length  w ill not properly perform  the function of

attenuating random  noise. In contrast, the wider the tim e window is, the

greater will be the suppression o f arbitrarily polarised noise, but the risk in 

choosing a' w ider time window is that it might also suppress useful signals. 

Trial and error procedures are used to establish a reasonable compromise for

the window length such that random noise is attenuated but the useful signals 

are still kept and not degraded.

We use noise-m ixed synthetic 3-component data to test the effect of 

different tim e window lengths on the filtered data. The data (channels 1-3 in 

Fig. 4 .5.4) are generated by a m odelling package ANISEIS (refer to Section

5.3.1) for an isotropic medium. An explosive source is used. We can see that 

there are 2 clear reflection events at 0.67 s and 1.50 s on the vertical 

component and a P-converted S event at 0.93 s on the radial component. The 

polarisation  filte r is applied to these 3-components with the varied time 

window length (12, 36, 60, 84, 124, 180, 244, 324, 404 ms), and the original and 

the filtered seismograms are plotted together with the same scale in Fig. 4.5.4. 

This figure indicates that when the time window length L is very small, say 12 

ms, the filter does not change the data much; more noise is still contained in 

the data (see channels 4-6). When L=60 ms, the filtered data give the highest 

signal to noise ratio. With a further increase of the window length, more and 

more noise is attenuated, but reflection signals are also degraded. When L=404 

ms, the reflection event at 1.5 s is invisible (channels 28-30). In conclusion, 

the window length of 60-124 ms is appropriate for filtering such data.
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4.5.6 Application o f  the SEPF filter to the data from the basalt-covered area

The signal enhancem ent polarisation filter is used here to attenuate 

surface waves and random noise contained in the data. The tim e window 

length is set to 68 ms (17 samples). Ten shot data including the test shot are all 

processed by the SEPF filter. To illustrate how the filter works on field data, we 

select 4 vertical traces from the outer stations (3, 5, 7, 9) at shot 5 as an 

example. Fig. 4.5.5 (a) shows the unfiltered vertical traces. They exhibit not 

only large amplitudes but complexity in wavelets. Fig. 4.5.5 (b) shows the same 

data as the above after the application of the polarisation filter. The plotting

scale for the filtered data is smaller than for the unfiltered data. We can see 

that the amplitudes of the filtered data are smaller than the unfiltered data at 

the sam e tim e, i.e ., the strong  reverberations have been a ttenuated .

Furtherm ore, the wavelets of filtered data become sim ple and clear, which 

indicates that random noise has also been attenuated.

Fig. 4.5.6 (a) shows the processed and scaled radial com ponents. All 

radial components from the inner circles are plotted on the left-hand side of 

the figure (channels 1-60), those from the outer circles are plotted on the 

right-hand side of the figure (channels 61-120). Fig. 4.5.6 (b) and (c) show the 

processed and scaled transverse and vertical components respectively. We can 

see from 3 figures that random noise has been attenuated significantly , the 

processed sections are clearer than the unprocessed sections (refer to Fig. 

3.4.4). A line o f reflection events at about 420 ms on the vertical section 

(channels 61-120) are more conspicuous, so are the reflection events on the 

radial section (channels 61-120). Why the reflections are not in phase may be 

because o f velocity  com plexity, low-frequency geophones, inaccurate static 

corrections and m ost im portantly dipping reflectors (refer to Section 6.3

which states that a dipping layer at a great depth will introduce enormous time

delays among 12 vertical traces). As stated in Section 3.4, appearance of 

reflection events on the radial section at the same time as on the vertical 

section indicates that they are actually P-waves which are projected on the 

radial components. The reflection event is not a single wavelet but a train of
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w avelets , its shape and phase vary  from  sta tion  to  s ta tion . The transverse

section show s little  o f in terest.

4.6 O ther data processing

In addition to the techniques stated in the above sections, o ther m ethods 

w ere also  d eve loped  and p rogram m ed. One o f them  is to use  only  two 

com ponen ts (R  and V) to iden tify  the P-w aves by co n stru c tin g  the cross-

product o f  two com ponents over a tim e window. The theory  is that, for a P-

wave, the horizon tal and vertical com ponents would be exactly  in phase i f  the 

earth  w ere a un ifo rm  h a lf-sp ace , the cross-p roduct w ill have  a b ig  value

w hich gives a m easure o f the rectilinearity  and the total signal pow er. F or S- 

w aves and random  noise, the signs o f two com ponents are irregu lar, so the 

cross-product w ill be near to zero or have a small value [Shim shoni, 1964]. The 

filte red  seism ogram s are ob tained  by m ultiplying the o rig inal seism ogram s by

the c ro ss-p roduct functions. This m ethod how ever is not im plem ented here.

A fter the various o f filtering , the 12 vertical com ponents from  a single

shot are supposed to be stacked together so as to obtain a signal-to-noise ratio

im provem ent o f  3.5. The resu lt o f  sum m ation is not show n here because the

num ber o f  shots is not adequate enough to draw  any conclusions on geological

s tru c tu re . To o b ta in  the s tru c tu re  inform ation , m any m ore sho ts w ould  be 

required . N evertheless, this sm all-scale  shooting is only an experim ent m ostly  

for develop ing  new techniques. The large-scale field work can be conducted in

the fu tu re .

4 .7  In terpreta tion

The m ost in teresting param eters to be obtained from a seism ic survey in

this area are velocities o f form ations and the depth of the base o f the Clyde

Plateau Lavas (CPL). The present techniques based on this areal 'RAZOR' array 

how ever cannot derive the interval velocity although it may be possib le to do 

so in the fu ture with the developm ent of this experim ent. From  the velocity  

survey conducted by Hall [1974] in the adjacent area, the in terval velocity  of
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the CPL was given as 4420 m/s. We identify a line of events at 420 ms in Fig.

4.5.6 (c) as the primary reflections from the base of the CPL based on the

higher frequency of the wavelets compared with those upper and below the 

wavelets o f interest, together with the inverse polarities of wavelets related to 

the reflections from the top of the CPL (nearly at the surface). This may also 

indicate an inverse velocity contrast between the CPL and the Old Red 

S an d sto n e .

From the two-way travel time 420 ms, we can calculate the depth (or

thickness in this case) of the CPL HCPL=928 m below the surface, which is near 

to 915 m (depth) from the contour map of the base of the CPL and to 900 m 

(thickness) from the isopach map of the CPL provided by Hall [1974].

4.8 Summary

A bandpass frequency filter is tested and reveals that it can reject part

of the low frequency reverberations (<20 Hz) and high frequency noise. For

most o f high reverberations within the bandwidth, the filte r does little to 

improve the data. Predictive deconvolution filtering test shows that it is very

good at com pressing  the w avelets and attenuating  the am plitude  of 

reverberations. Since both m ultiples and reflections are not clear on the 

section, the predictive deconvolution filter has to be used with great care,

otherwise, it degrades the useful signals. The newly developed polarisation

Filter can be used to remove the random noise and part of the surface waves 

arriving from  different directions. This filter can also be used to process

conventional CDP data, if they are multi-components.

From the interval velocity and the two way travel time, the base of the 

CPL is found to be at about 928 m below the surface.
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Chapter 5 Further Testing of the Polarisation Filter and 

Optimisation of Array Designing Using Synthetic 3- 

component Seismic Data

5.1 In troduction

The signal enhancem ent polarisation filter (SEPF) has been developed 

and simply tested using the field data as described in chapter 4. To test the

filter more thoroughly, there is a need for good quality seismic data in an area

w ith sim ple geology. In this chapter, we generate synthetic 3-com ponent 

seism ic data in isotropic and anisotropic media by two m odelling packages. 

Random noise has been added to the synthetic data and the noise-m ixed data 

are then filtered by the SEPF filter. We will see how the signal to noise ratio is

increased after filtering and stacking.

5.2 F ilter testing using the data in an isotropic medium

5.2.1 Introduction to the modelling package "SEIS83"

The program  SEIS83 was designed by Vlastislav Cerveny and Ivan 

Psencik in Charles University, Czechoslovakia for the computation of rays of 

seism ic waves which arrive at a system of receivers distributed regularly or 

irregu larly  along the earth 's surface. The generation o f waves is sem i­

au tom atic . At rece ivers , corresponding  travel tim es are au to m atica lly

determ ined. Optionally, amplitudes and phase shifts may be evaluated (effects 

of slight absorption may also be considered). All these quantities are stored 

and may be optionally  plotted or used for the com putation o f synthetic

se ism o g ra m s.

The m odel is 2D, with laterally inhom ogenous, curved in terfaces.
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In te rfaces are specified  by points read from the input data. They are

approx im ated  by cubic spine in terpolation . Thus m odels w ith vanish ing

layers, b lock  structures, fractures, isolated bodies may be handled by the

program . W ithin individual layers, the velocity may vary both vertically and

horizontally . The source may be situated at any point in the medium. The 

radiation pattern  o f the source may be specified independently for P and S

waves either from tables or analytically.

A ll the d irect and prim ary reflected waves P and S, including the

converted  w aves PS and SP at the point of reflection, can be generated

a u to m a tic a lly . M u ltip le  re flec tio n s  are o p tiona lly  g enera ted  m anually .

R efracted  w aves are considered as special cases o f reflected  waves with

com pound ray elem ents.

The determ ination of rays which arrive at specified receiver positions

along the earth 's surface is performed by the m odified shooting method. For 

ite rations to  the receiver considered, the m ethod of halving of intervals, 

(REGULA FA LSI), or the combination of these methods may be used. The

iteration to a receiver continues unless a ray within a distance "REPS" of the 

receiver is found. The arrival time at the receiver is then obtained by a linear 

interpolation from arrival times of the ray closest to the ray situated to both 

sides from the receiver. The amplitude corresponding to the ray closest to 

receiver is attributed to the receiver.

Two programs called MAVHPL and MAPLOT (see Appendices; Fortran-77 

program s 9 and 4) were written by the author to compute and plot synthetic

seism ogram s. The program MAVHPL generates a file which may contain either

the vertical displacem ent component or horizontal displacem ent com ponent as

r e q u i r e d .

5.2.2 Geological model in an isotropic medium

As one of the initial objectives of this experiment is to investigate new

m ethods o f seism ic reflection exploration, we firstly construct a model as 

shown in Fig. 5.2.1. The medium is hom ogeneously iso tropic, the third
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interface dips towards East with an angle of 14.5°. The P velocity, S velocity and 

density of individual layers are given in Table 5.2.1 below.

W est East

5.2.1 Geological model of an isotropic medium.

Layer No.
Thickness

(km)

P-velocity

(k m /s )

S-velocity

(km /s )

Density 

( $  Icm^ )

1 0 .5 0 2 . 0 0 1 . 1 2 2 . 1 0

2 0.5 0 2.50 1.40 2 . 2 0

3 1 .50 3.50 1.97 2 .4 0

4 half space 5.50 3.09 2 .8 0

Table 5.2.1 The parameters of a model in an isotropic medium.

5.2.3 G enerating and filtering "one shot - one receiver" data along a profile  

l i n e

In order to show what the synthetic seismograms from the SEIS83 look 

like and to test whether the polarisation filter works, we generate synthetic 

seism ogram s based on a 2D model. After preparing the input data file which 

contains param eters needed for constructing the model, we then run the main 

program  SEIS83. The first output file from this program shows how the 

program works and gives several results, e.g. geometry of interfaces, digitized
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velocities, elem entary modes, travel times and phases. The second output file

from this program , which corresponds to either the vertical com ponent or 

horizontal com ponent, gives wave modes, travel tim es, am plitudes, phase 

shifts, initial angles and so on. This data file is an input file for the program 

MAVHPL, which generates synthetic seism ogram s. One shot produces two 

seismograms (vertical and horizontal) from one station with an offset o f 75 m

from the shot point. The shot spacing is 75 m. Data for 20 shots along the

profile line eastwards have been generated corresponding to a distance o f 1.5

km at the surface. The main parameters for a synthetic seismogram are as 

fo llo w s:-

Seismic source type: explosive source

Frequency o f source signal: 35 Hz

Length o f recording: 4 s

Sam pling in terval: 4 ms

Due to the explosive source used in generating synthetic seismograms, 

there are P-waves, S-waves and P-S converted waves on the vertical and radial 

components. Let us take the data from shot 1 as an example to inspect the

characteristics of the data. As shown on the left-hand sides of Fig. 5.2.2 (a) and

Fig. 5.2.2 (b), we can see that there are three P-reflections at 0.50 s, 1.07 s and

1.81 s on the vertical component (channel 1 in Fig. 5 .2 .2 .(a)), and three S- 

reflections at 0.89 s, 1.91 s and 3.22 s, and three P-S converted waves at 0.70 s, 

1.49 s and 2.52 s on the radial component (channel 1 in Fig. 5 .2 .2 .(b)). 

M eanwhile, the signals on both components are projected on each other but 

with relatively small amplitudes. Looking at the 20 horizontal and 20 vertical 

seismograms together, we see clear images of 3 layers in the time and distance 

domain, with the middle one dipping towards East.

To apply the polarisation filter to the data, there have to be 3-

component seism ogram s at one station which are received at three different 

orientations. The present package however can generate only one o f the 

horizontal components. To satisfy the conditions, the transverse component is 

constructed by filling pure random noise.
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Fig. 5.2.2 (a) The original (channels 1-20), noise-mixed (channels 21-40) and 
polarisation filtered (channels 41-60) seismograms for the vertical components. The 
synthetic seismograms are for the model (2D) in an isotropic medium.
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Fig. 5.2.2 (b) The original (channels 1-20), noise-mixed (channels 21-40) and 
polarisation filtered (channels 41-60) seismograms for the horizontal components. The 
synthetic seismograms are for the model (2D) in an isotropic medium.
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Pure random noise with a mean of 0 and a root mean square variance of 

120, generated  by the package ISAN, is added to the vertical and radial 

components, producing noise-mixed data. We can see from the middle panels of 

Fig. 5.2.2 (a) and Fig. 5.2.2 (b) (channels 21-40) that the signal to noise ratio 

has been decreased considerably.

The SEPF filter is applied to the 3-component data, the time window for 

filtering is set to 23 samples (92 ms). The filtered seismograms are plotted on 

the right-hand sides of Fig. 5.2.2 (a) and Fig. 5.2.2 (b) (channels 41-60). For the 

horizontal com ponent section, two S-wave and one P-S converted images have 

been kept, and the P-wave image at 0.50 s has been removed after filtering. 

However, the S-waves at 3.20-3.40 s are not well separated from noise. It may be 

because a large scale is used to produce the figure, the S-wave events are then 

scaled down to an invisible level. Another possibility is that the added noise 

en tirely  changes the polarisation direction of particle m otions o f reflection  

w avelets, which makes the polarisation filter unable to extract the S-waves ( 

see Section 5.4). For the vertical section, three P wave images have been kept, 

all the S-wave and P-S converted images are removed because the polarisation 

directions o f these waves are horizontal. By comparing 3 different data - the

original, noise-m ixed and filtered - in both figures, we can see that the added 

noise has been attenuated remarkably. The signal, on the other hand, has not

been degraded after filtering.

5.2.4 Generating the data based on the areal 'RAZOR' array in an isotropic

m e d i u m

The areal 'RAZOR' array pattern and its dimensions were described in

Chapter 2. For the convenience, the array pattern is shown again in Fig. 5.2.3. 

We generate synthetic seismograms based on this 3D model to test both the 

SEPF filter and the optimisation of designing of such an array.
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75 m North
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Fig. 5.2.3 Array pattern for generating synthetic seismograms.

The program  SEIS83 can only deal with 2D models. I f  the medium is

isotropic and three interfaces are all horizontal, the results calculated by the

program  SEIS83 would be the same for either the inner or outer stations.

However, the dipping layer in the middle medium makes 12 stations receive 

different responses in terms of travel time and phase shifts. To accommodate

this, we decompose one 3D model into six 2D models (or six short profile lines),

each line having two stations on both sides of a shot point. The first profile

line is set in a north-south direction, the second line is 30° off North (stations 

6, 12) clockwise, the third line is 60° off (stations 5, 11), the fourth line is in a

west-east direction, and so on. Due to the symmetry of the array, i.e., the lower

part of the array is a mirror image of the upper part of the array, we need to

calculate for only 4 profile lines. Fig. 5.2.4 shows the geometries of a dipping

plane (the second reflector in our 3D model) associated with different profile

lines. For profile line 1 in (a), which is in a north-south direction, the vertical
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distance of the line to the plane is hz , the normal distance is h. Thus a new 2D

model in (b) is constructed such that the vertical distance to a planar reflector

is h. For profile line 4 in (c), which is in a west-east direction, a new 2D model

is shown in (d), here y  is the true dip of the reflector. For profile line 2 and 3

in (e), the geometry of the new models is complicated. The plane OO'N, which is 

the incident plane o f seismic waves, is normal to the dipping plane R, the 

apparent dip <J> changes from y  -0° (\\r is the true dip of the plane R in the 3D 

model) when the azimuth a  of a profile line X changes from 0 °-9 0 °  (an azimuth 

of a line is defined as an angle measured clockwise from the west-east line). 

Hence a new model in (f) for either line 2 or 3 is constructed such that the true

dip o f a reflector is <j> and the vertical distance of the line from a shot point at

the surface to the reflector is hx , the normal distance being h. Therefore, by 

running the program  SEIS83 4 times based on different input files, while 

keeping the source condition untouched, the synthetic data for the 3D model 

can be generated. Fig. 5.2.5 shows 12 horizontal traces and 12 vertical traces 

for a shot. We can see a small fluctuation of seismic wavelets between adjacent

traces which is introduced by the dipping reflector.

5.2.5 Processing the data based on the areal 'RAZOR' array in the isotropic

m e d i u m

In this section, we will show how the polarisation filter works on noise- 

mixed 3-com ponent data based on the areal 'RAZOR' array and how such an 

array pattern is optimally chosen. At the first stage, we generate the synthetic 

seismograms in the way described above. The data for 20 shots are generated 

corresponding to a distance of 1.5 km at the surface. We then add the pure 

random noise to the data and filter them by the polarisation filter. These 

original, noise-m ixed and filtered data are not presented here, but they look 

like the data shown in Fig. 5.2.5. At the second stage, we add the filtered 

seismograms from each shot together so as to increase the signal to noise ratio 

by 3.5. Specifically , 12 vertical components are stacked together and 12 

horizontal components are stacked together for each shot, this stacking will
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O

Fig. 5.2.4 The geometries of a dipping reflector related to a line of different azimuths 
and the new 2D models constructed, (a), (c) and (e) are 3D models, (b), (d) and (f) are 
new 2D models constructed for the modelling program SEIS83.
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Fig. 5.2.5 The synthetic seismograms based on the array of 3 dimensions. The 
horizontal components are on the left-hand side. The vertical components are on the 
right-hand side. The centre of the "RAZOR" array lies at the middle point of 
the model shown in Fig. 5.2.1, i.e. it is 2.5 km away from west along the profile line. 
Channel numbers correspond to the station numbers marked in Fig. 5.2.3.
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produce two final composite traces. By carrying out the same process, 20 

composite vertical and 20 composite horizontal traces are obtained. They are 

plotted in Fig. 5.2.6. From this figure, we can see that the residual random noise 

has been cancelled out after stacking. In contrast, the reflection events from 

the first horizontal interface are remarkably enhanced; not only because they 

have large am plitudes but because they are in phase. The later reflections 

from interfaces 2 and 3 are also revealed and show a better resolution than the

section in Fig. 5.2.2.

5.3 Filter testing using the data in an anisotropic medium

5.3.1 Introduction to the modelling package "ANISEIS"

AN ISEIS is a flexible com puter m odelling system  for calcu la ting  

synthetic seism ogram s from point sources in anisotropic and cracked plane- 

layers. V ertical seismic profiles, surface to surface reflections, and cross-hole 

shooting are some of the model geometries that can be accommodated.

The m ethods used in ANISEIS are based on plane wave analysis and 

involve use o f the reflectivity  method or propagator m atrix m ethod and 

accum ulation of plane waves along summation paths in both the complex 

horizontal slowness and complex PHI planes ( slowness is the inverse of phase 

velocity and PHI is an angle in the horizontal plane, m easured from the 

vertical plane which contains the source and geophones). This plane, the (X, 

Z) plane in a system of right-handed co-ordinates with the Z-axis downwards, 

will be referred to as the sagittal plane.

The calculation is performed for each of a range of frequencies and the

results recorded in the table which the user can update or extend if  he wishes 

to improve the results or add higher frequencies. It is also possible to run 

frequencies one at a time and to compare results for successive calculations. It 

is facilities such as this which make interactive use of ANISEIS valuable. While 

a whole run of 50 to 200 frequencies through a model may be a major computer 

exerc ise , the  runn ing  o f one frequency  through a s im p lif ie d  but

representative model is quickly performed. This feature allows the user to test
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the accuracy o f sam ple frequencies before com m itting him self to a m ajor 

com puter cost. The update facilities allow insufficiently accurate answers to be

subsequently replaced without having to re-run other values.

The selection o f type of source and a choice of a time window and the 

num ber of time sampling points must be made before the displacements at the 

geophones for the range o f frequencies are calculated. The form of the source

signal, the shape o f a tim e dependent pulse, can be decided afterwards and 

synthetic  seism ogram s for a variety of pulse shapes can be generated at

norm al cost.

5.3.2 Geological model 1 in an anisotropic medium

The synthetic 3-com ponent seismic data from an anisotropic medium 

are not used to investigate shear wave splitting, but to test the polarisation 

f i l t e r .

Since the modelling package "ANISEIS" cannot deal with a medium with 

dipping layers, the geological model has to be constructed as one containing 

horizontal layers with aligned filled cracks within two middle layers (see Fig.

5.3.1). The strike of the aligned cracks is a constant with an angle of 30° from 

North towards W est. The filling of the cracks in the isotropic medium which 

sim ulates an anisotropic medium will produce shear wave splitting (one fast S 

wave, another slow S wave). If the crack parameters in the infinite medium 

are kept the same, only one shot record is enough to determine the data along 

the whole profile line. The velocities and densities for this model are given in

the table 5.3.1.
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Fig. 5.3.1 The geological model 1 in an anisotropic medium.

No.
Depth

(km )

Vp

(km /s )

Vs

(k m /s )

Density 

( Km ^

Thickness

(km)

Cracks

1 0 .5 0 1.50 0 .84 1 .60 0 .5 0 no

2 1 .2 5 1 .80 1.00 2.00 0 .7 5 yes

3 2 .2 5 3 .0 0 1 .73 2 .5 4 1.00 yes

4 half space 5 .55 3 .1 3 2 .7 8 half space no

Table 5.3.1 The parameters of model 1 in an anisotropic medium.

The param eters o f cracks are given as follows:- 

Type: Hudson's crack

Fluid: W ate r

R ad ius: 0.001 m

ASP Ratio: 0.01

D ensity : 0.05

Strike: N30°W

Due to the symmetry of the array (see Fig. 5.2.3), there are four stations 

(1, 7, 3, and 9) which will receive identical signals. Therefore, data for only 4 

stations (1, 2, 4 and 5) need to be generated.
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5.3.3 Processing the data based on model 1 in the anisotropic medium

To give various types o f data, explosive and SH sources are used for 

m odel 1. In theory, an explosive source generates strong P-waves on the 

vertica l com ponent, and S-waves and P-converted S waves on the radial 

com ponent and weak signals on the transverse component. In contrast, an SH 

source w ill produce strong S-waves on the transverse com ponent but weak 

signals on the vertical and radial components. In Fig. 5.3.2, we can see that 

there are 3 reflection events at 0.66 s, 1.50 s and 2.16 s on the vertical 

com ponent. M ultiples, S-wave and P-S converted waves also appear on the 

vertical com ponent. The two big events at 0.93 s and 2.14 s on the radial 

com ponent ind icate  the P-S converted waves from the first and second 

interfaces. The appearance of events on the transverse components is due to S 

wave phase shifting  caused by the anisotropic medium. The original data 

excited by an SH source in Fig. 5.3.3 shows that the transmitted S waves at 2.70 s 

are a superposition of two pulses which clearly split the arrivals. Both quasi- 

tran sverse  w aves are transm itted  strongly except fo r incident planes o f 

symmetry where the particle motions of transverse wave is pure SH [Keith & 

Crampin, 1976]. The variation of amplitudes and phase shifts on the horizontal 

com ponents at different receivers is due to the variation of orientations of

d ifferen t receivers with respect to the crack plane and to the polarisation 

direction of the SH source.

The data are processed in the same way as described in Section 5.2.

Specifically, they are firstly mixed with pure random noise with a mean value 

of 0 and a root mean square variance of 120. Secondly, the noise mixed data 

(channels 13-24 in Fig. 5.3.2) are filtered by the SEPF filter, the window length 

set for the filter is 23 samples (92 ms). Finally, the original, noise-mixed and 

the filte red  seism ogram s are all plotted together so as to m ake a clear

com parison. From Fig. 5.3.2 (channels 25-36), we see that the random noise 

m ixed in the  syn thetic  seism ogram s has been attenuated  sign ifican tly .

M eanwhile, the reflection events at 0.60 s and 1.50 s on the vertical component 

have been extracted. However, the weak arrival at 2.16 s on the vertical
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Fig. 5.3.2 The original (channels 1-12), noise-mixed (channels 13-24) and polarisation 
filtered (channels 25-36) seismograms (explosive source) at 4 stations (1, 2, 4, 5) for 
model 1 in an anisotropic medium. The order of the traces is the radial, transverse and 
vertical.
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Fig. 5.3.3 The original (channels 1-12), noise-mixed (channels 13-24) and polarisation 
filtered (channels 25-36) seismograms (SH source) at 4 stations (1, 2, 4, 5) for model 1 in 
an anisotropic medium. The order of the traces is the radial, transverse and vertical.
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com ponent is not clearly  shown on the filtered data. This problem  is

considered in the next section. Fig. 5.3.3 shows the sim ilar data for the SH 

source. The arrival at 1.19 s for the transverse component corresponds to an

SH-SH reflection event propagated through isotropic layer 1, it has been 

enhanced after filtering. Two arrivals at 2.70 s on the transverse com ponent 

are the superposed SH and SV waves which have a time delay from one to

a n o th e r . T he f i l te re d  tra n sv e rse  co m p o n en ts  e x h ib i t  u n co m m o n

charac te ris tics  varying with stations. For station 1, the firs t w avelet is

rem oved, the second wavelet is kept (channel 26). For station 3, the first

wavelet is kept, the second wavelet is removed (channel 29). We do not know 

which wavelet is SH or SV, but what we know is that the enhanced wavelet is 

the one whose polarisation direction is in the transverse direction.

5.3.4 Geological model 2 in an anisotropic medium

In this section, a new geological model is introduced to suit a special 

case, that is, the second layer is formed by volcanic rocks which have a high 

velocity of 5.5 km/s. Beneath it is sandstone with a velocity of 3.3 km/s. The 

characteristics of such seismic data have been described in Section 2.2. The 

synthetic 3-component seismic data are used here to show whether or not the

weak signals beneath hard rocks can be extracted after filtering. Such an

exercise is of a great significance in solving many problems in areas covered 

by volcanic rocks. The velocity and density values for this model in an 

anisotropic medium are given in Table 5.3.2.

No. D ep th Vp Vs D ensity T h ic k n e ss C racks

1 0.50km 2.50 km/s 1.40 1.87 0.50km n o

2 1.25km 5.50 3.13 2.78 0.75 y e s

3 2.25km 3.50 1.96 2.54 1.00 y e s

4 half space 4.00 2.24 2.60 half space n o

Table 5.3.2 The parameters of model 2 in an anisotropic medium.
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5.3.5 Processing the data based on model 2 in the anisotropic medium

Explosive and SH source are used to generate two sets of synthetic data.

The data excited by the explosive source (channels 1-12 in Fig. 5.3.4) show a

big reflection event at 0.40 s which is the two-way travel time between the

surface and first reflector. The second event at 0.50 s is the component of P-S 

converted  wave which has large amplitudes on the radial com ponent. The

third event at 0.67 s is the reflection from the second reflector. Event 4 and 5 at 

0.80 s and 1.20 s respectively are multiples in the first layer. In addition, there 

should be another reflection wavelet at 1.24 s from the third reflector. This

w avelet is nearly invisible. As predicted, the first reflection and m ultiples in

th is m odel have m uch larger amplitudes than the later reflection  signals, 

w hich adds considerable difficulties in processing and interpreting. The data 

exc ited  by the SH source (channels 1-12 in Fig. 5 .3 .5) show sim ilar 

characteristics, that is, the reflections and m ultiples from the first interface 

have large amplitudes, the reflections from the third interfaces are invisible.

A fter the synthetic data are mixed with random noise with a mean of 0

and a root mean square variance of 60, the first and second reflection events 

are entirely  hidden in noise. The polarisation filter is again applied to the 

noise-m ixed data. We can see from Fig. 5.3.4 that the first reflection at 0.40 s 

and later m ultiples at 0.80 s and 1.20 s after filtering have been revealed, and

the P-S converted waves at 0.55 s and 0.92 s on the vertical component are

entirely removed. In addition, the P-waves on the radial component have also 

been removed. However, the second reflection event at 0.67 s is not very clear 

although it can still be identified. This problem is investigated in the next 

section. The filtered data from the SH source in Fig. 5.3.5 show that the weak

reflections at 1.19 s from the second interface are revealed.

5.4 E ffect o f  the characteristics o f noise on filtering

It is qu ite  understandable that m ultip les can be p reserved  after

filtering. This is because m ultiples themselves are also kinds of body waves 

which are linearly polarised, and they will pass through the polarisation
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Fig. 5.3.4 The original (channels 1-12), noise-mixed (channels 13-24) and polarisation 
filtered (channels 25-36) seismograms (explosive source) at 4 stations (1, 2, 4, 5) for 
model 2 in an anisotropic medium. The order of the traces is the radial, transverse and 
vertical.
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Fig. 5.3.5 The original (channels 1-12), noise-mixed (channels 13-24) and polarisation 
filtered (channels 25-36) seismograms (SH source) at 4 stations (1, 2,4, 5) for model 2 in 
an anisotropic medium. The order of the traces is the radial, transverse and vertical.
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filter. To determine why reflection event 2 in model 1, (see Fig. 5.3.1) from the 

explosive source, has not fully been extracted, we start from the polarisation of 

particle motions of the original data and noise-mixed data. The particle motions 

o f both the horizontal and vertical components from samples 150-190 (which 

covers whole reflection event 2 at 0.67 s in Fig. 5.3.4) are plotted. The 

polarisation diagram for the original data in Fig. 6.3.6 (a) shows the linear 

polarisation of particle motions in the vertical direction, but the polarisation 

diagram for noise-mixed data (root mean square variance o f noise is 60) in (b) 

shows random polarisation. The addition of random noise with a big root mean

sq u a re  v a ria n ce  to the data  has to ta lly  changed  the  p o la r isa tio n  

characteristics of the original data. As a result, this noise-m ixed data will 

provide low er values of rectilinearity and directionality , and they will be

attenuated rather than enhanced as hoped for (see channel 3 in Fig 5.3.7).

As we reduce the root mean square variance of random noise to 60%, i.e., 

the new root mean square variance is 36, in which case the reflection event 2 

is still not clearly visible, but this noise-mixed data (channel 4 in Fig. 5.3.7)

shows a better polarisation on the vertical direction. The event (channel 5 in

Fig. 5.3.7) is clearly revealed after filtering. Therefore, we may conclude that 

the polarisation filter does extract weaker signals on the condition that the 

contam inating noise does not entirely change the polarisation o f the original 

d a ta .

The bandwidth of the noise may also affect filtering because the random 

noise as we use here to contaminate the synthetic data has a very wide range 

of frequencies, which will strongly change the characteristics o f synthetic 

data. This problem is not investigated further.

5.6 Summary

The m odelling package SEIS83 has been used to generate synthetic 3- 

component seismic data in an isotropic medium. The application o f the signal 

enhancem ent polarisation  filte r to these data is successfu l in term s o f 

suppressing random noise and enhancing signals. In addition, stacking the
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Fig. 5.3.6 (a) The polarisation diagram of the original data from channel 3 in Fig. 5.3.4.
(b) The polarisation diagram of the noise-mixed data (root mean square variance of 
noise is 60). (c) The polarisation diagram of the noise-mixed data (root mean square 
variance of noise is 36).

0 . a 0

Fig. 5.3.7 Noise-mixed and filtered seismograms. Channel 1 is for the original data, 
channel 2 is for the noise-mixed data (root mean square variance of noise is 60), channel 
3 is for the filtered trace 2, channel 4 is for the noise-mixed data (root mean square 
variance of noise is 36), channel 5 for filtered trace 4.
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filtered data based on the RAZOR array provides a highly resolved

section.

To generate 3-com ponent seismograms in an anisotropic medium by the 

ANISEIS, two geological models are constructed for both a normal case (no 

reversed  v e loc ity  con tras t) and a special case (low velocity  sedim ents 

sandwiched between lava at the top and hard rock beneath). The application of 

the polarisation filter to data based on model 1 gives a good result. However, 

filtering the data based on model 2 indicates a problem which is investigated 

by changing amount o f noise in the data. The study shows that if  the added 

noise en tire ly  changes the polarisation  direction of particle  m otions of 

reflection w avelets, the filter may not be able to extract very weak signals 

from noise, and by reducing the root mean square variance of random noise to 

a certain  degree such that the noise-mixed data exhibit a better polarisation, 

the filtering w ill extract the weaker signals.
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Chapter 6 Imaging Structure by Slant-stack Processing

6.1 Introduction

At the later stage of conventional seismic data processing, the data are 

m igrated so as to determine the true reflection point. As a result, structural 

im ages in the tim e-offset dom ain are obtained by d isp lay ing  zero-offset 

seism ic traces. In this chapter, we present a new idea of imaging structure in 

3-dim ensions using synthetic data based on the areal 'RAZOR' array. The 

method can in theory be used to determine the true dip and dip direction of a 

deep reflec to r.

6.2 In troduction  to conventional slant-stack processing

The s la n t-s ta ck , also called  the x -p  tra n s fo rm , p lan e  w ave 

decom position, beam-steering etc, is based on the model o f a downward moving 

plane wave. A plane wave propagating at an angle from the vertical can be 

generated by placing a line of point sources on the surface, exciting the point 

sources in succession with a time delay and superimposing the responses that 

are in the form of spherical wavefronts. The transformation of the tim e-offset 

domain into the x-p domain and its usages have been discussed extensively by 

many authors [Bessonova et al 1974, Stoffa & Buhl 1981, Diebold & stoffa 1981, 

Treitel el al 1982, Biswell & Konty 1984, Brysk & McCowan 1986, Hake 1986, 

M ithal & Vera 1987]. Here is a generalized description of how the x-p transform  

is performed. As shown in Fig. 6.2.1, a plane wave with an angle 0 from the 

vertical comes up from an interface. The time delay associated with the plane 

wave is given by
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Ar = ( s i n  6 /  v )  •A x

Snell's law says that the quantity sin0/v, which is the inverse of the horizontal 

phase velocity, is constant along a raypath in a layered medium. This constant 

is called the ray parameter. Rewriting above equation gives

At = p  • A x

For a single p value, the signal is recorded at many offsets. In general, 

receivers at all offsets record plane waves o f many p values. To decompose the 

offset gather into plane wave com ponents, all the trace am plitudes in the 

gather must be summed along several slanted paths, each with a unique time 

delay defined by At = p  ■ A x

To construct a slant-stack, a linear moveout correction has to be applied 

to the data through a coordinate transform ation

x = t - px

where p is the ray parameter, x is the offset, t is the two-way travel time,

Ax

h  H
x2x1

VA'
t+A t w avefront

t w avefrontray

Fig. 6.2.1 The geometry of a plane wavefront and a time delay associated with 2 receivers on 

the surface

and x is the linear moveout time (or intercept time). Then, the data are summed
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over the offset axis to obtain:-
N

U( P> t)  = ^  P (x . , X + px  .)
1 =  1 1

Here, P(x, t) are the observed seismic recordings, and U(p, x) represents a 

plane wave with a ray param eter p=sin0/v. By repeating the linear m oveout 

co rrec tion  fo r various values of p and perform ing the sum m ation, the 

complete slant-stack gather is constructed. Fig. 6.2.2 shows how a hyperbola in

the x-t domain is transformed into an ellipse in the x-p domain.

The x-p transform ation has successfully been used to suppress m ultiples

based on different characteristics of multiples in two domains. Various filters 

are found to be more effective if applied to the data in the x-p dom ain [Yilmaz, 

1988]. In addition, based on downward continuation of a slant stack gather, a

technique has been developed to estimate interval velocity [Schultz, 1982].

CDP gather in t-x domain p gather in x -p domain

 1 ”
A

ellipsehyperbola

Fig. 6.2.2 A hyperbola in the t-x domain maps onto an ellipse in the x-p domaindomainP

6.3 Im aging structure by slant-stack processing

As stated in Section 2.3, the dimension of the RAZOR array is

chosen such that the phase difference of a planar arrival will not d iffer by
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more than half a wavelength. It has been found that for a horizontal reflector 

at a great depth, say 3 km, the time delay introduced by two different offsets 

(75 m and 130 m in our experiment) is only 0.23 ms assuming that the average 

velocity o f the upper layers is 4.0 km/s. Hence the reflection events from 12 

vertical components (refer to Fig. 5 .2 3 ) will almost be located on a horizontal 

line. This also shows that the assumption that the seismic wavefront behaves 

as a plane wave across the aerial array is a valid approximation. However, a 

dipping reflector at a great depth will introduce long time delays between the 

12 vertical traces, depending on the true dip of the reflector and the velocities 

of the upper layers. In other words, the variation of reflection wavelet arrival 

times on the t-x section is almost entirely due to the dipping of the reflector or 

structure rather than to the different offsets on the surface [D. K. Smythe, 

pers. comm., 1989].

West East

0.0 6.0 Km
0.0

(km)

4.5

3.0

6.0

7.0

Fig. 6.3.1 Geological model for generating synthetic seismograms. (Horizontal scale is 

exaggerated, the true dip \\f=26.6°)
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We generate synthetic seism ic data based on a m odel shown in Fig. 6.3.1 

using  a seism ic m odelling package SEIS83 (refer to Section 5.2.1). The m odel 

com prises only one in terface  which dips tow ards East. The true dip o f  the 

in terface is 26 .6°. The vertical depth from shot point O on the surface to a point 

P on the dipping interface is 4.5 km. The upper and low er layers have constant 

velocities o f 2.5 km /s and 4.0 km/s, and constant densities o f 2.2 g/cm^ and 2.5 

g /c m ^  respectively. This model is used to generate 12 vertical com ponents. The 

m ethod used to decom pose such a 3D model into 6 2D models is the same as that 

described  in Section 5.2.4. The 12 vertical com ponents are p lo tted  in Fig. 6.3.2 

in the o rder o f station  num bers m arked in Fig. 5.2.3. W e can see from  the

figure that the reflection events behave like a cosine wave on the section due

to the c irc u la r  c o n fig u ra tio n  o f the  array . A d d itio n a lly , the  tim e  delay 

betw een two stations, say, stations 3 and 9, reaches up to 40.6 m s, which is more 

than tw ice as much as the 20 ms period of a reflection signal (50 Hz). A contour 

m ap o f tw o-w ay travel tim e associated w ith 12 station  positions is m ade and

show n in F ig . 6 .3 .3 . T his figure  ind ica tes  th a t the  tw o-w ay  trav e l tim e

increases tow ards the dip direction.

W e arb itra rily  select a stra igh t line L through the shot po in t at the

centre o f the array, say, a west-east line, and define the azim uth o f  a line as an

angle m easured anticlockw ise from  x axis (or from  East). Here the azim uth of

line L is 0 ° . Then, we "project" 12 stations onto the line L. "Projection" here 

m eans tha t the  order o f 12 sta tions is reorganised  and th e ir o ffsets are re ­

c a lc u la te d , bu t the  12 seism ic traces  them selves are kep t un touched . F or

exam ple, sta tions 3 and 5 are projected  onto the line L, th e ir new  offsets are 

g iven  by

x 3  = x 5  = 130 • cos 30° = 112. 12 m

likew ise, the new  offsets for station 2 and 6 are given by

x 2 = x 6  = 75 ■ cos 60° = 37. 50 m

T herefore, a new  "profile line" (or projection line) is constructed w ith 12
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Fig. 6.3.2 Twelve vertical components generated by SEIS83. The data are based on the 
model in Fig. 6.3.1. Channel numbers correspond to station numbers.
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Fig. 6.3.3 The contour map of two way travel time associated with the array.
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Fig. 6.3.4 Construction of a projection line L with an azimuth a=0°.
Two concentric circles indicate that 2 stations are projected at the same point.
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Fig. 6.3.5 Seven seismograms from stations 3,4,2,1,12,10,11 on the projection line L .
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stations but only 7 different offsets, this is illustrated in Fig. 6.3.4. By changing 

the azimuth from 0 ° -1 8 0 °  anticlockwise, we can obtain a number of projection 

lines. To demonstrate what seismic events look like on the t-x section, seven 

seismic traces from stations 3, 4, 2, 1, 12, 10, and 11 along the projection line L 

are plotted in Fig. 6.3.5. We can see that they form a dipping line.

Conventional slant-stack processing is usually conducted on common- 

depth point or common-shot point data so that a hyperbola in the t-x domain is 

transform ed into an ellipse in the x-p domain. How ever, the transform ation 

requires that the CDP data should have an appropriate number of offsets, so as 

to reduce the end effects to a minimum. Here, we use the slant-stack technique 

in an attempt to determine the phase velocity of the upper layer and the true 

dip and dip direction of a reflector. In other words, we try to image structure 

in 3 dimensions. If we perform the slant-stack based on the line L shown in 

Fig. 6.3.4, for a particular intercept time x and a ray parameter p, which is the 

slope o f the slanted line through peaks of reflection wavelets, the amplitude of 

the p trace in the x-p domain will be enhanced, because the reflection events 

from the dipping layer form a dipping line (see Fig. 6.3.5). By repeating the 

procedures on different lines, we will be able to obtain a num ber o f x- p 

sections. Therefore, p traces with large peak am plitudes on different x- p 

sections can be identified.

6.4 Fortran-77 program MASSP

A Fortran-77 program called MASSP was written by the author to carry 

out the slant-stack processing (see Appendices; Fortran-77 program  10). As 

shown in the flow diagram in Fig. 6.4.1, the program firstly reads seismic data 

into arrays U(I, J), and asks the user to input the minimum and maximum 

values of ray parameters (p) and number of p traces. The increment o f p is 

calculated autom atically. The program then performs station projections onto 

a user-defined line. The new offsets will have both positive and negative 

values depending on the azimuth c l . The slant-stack is carried out using 3 DO
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loops and the results are saved in a new file. To run the program on the 

VAX/VMS operating system, a user has to reply to several questions as shown 

in the following example.

$ INPUT FILE NAME FOR SLANT-STACK 

SHOTDT1

$ INPUT A FILE NAME FOR OUTPUT

TPOUT

$ INPUT THE MINIMUM AND MAXIMUM RAY PARAMETERS 

-6.6667E-04 +6.667E-04

$ INPUT THE NUMBER OF THE RAY PARAMETERS 

3

$ INPUT AN AZIMUTH FOR PROJECTIONS (IN DEGREES)

30

$ START SLANT-STACK PROCESSING 

$ RAY PARAMETER 1 COMPLETED

$ RAY PARAMETER 2 COMPLETED

$ RAY PARAMETER 3 COMPLETED

$ FORTRAN STOP



146

no

yes

stop

write results into a new file

project 12 stations on a line L 
calculate 12 new offsets

input file names, No. of p, pmin 
pmax, azimuths

apply moveout corrections to 
all the traces and sum them 

p = pmax ?

Based on p & intercept time, 
compute linear moveouts for 
different tracces

Fig. 6.4.1 Flow diagram of Fortran-77 program MASSP

6.5 The implementation o f  slant-stack processing on synthetic data to image

s tr u c tu r e

6.5.1 Determining the true dip o f  a reflector

To process the synthetic data based on the model in Fig. 6.3.1, we choose

the minimum ray param eter pm j n= -l/1500= -6 .667x lO  4 s/m and the maximum 

ray param eter pm ax =l/1500=6.667 x l  O'4 s/m. The study o f the sampling along 

the p-axis in constructing a slant-stack gather by Yilmaz [1988] shows that
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the p-axis in constructing a slant-stack gather by Yilmaz [1988] shows that 

undersam pling the p value introduces some noise into the reconstructed CDP 

gather, w hereas oversam pling in the p-axis does no harm but yields nothing 

extra either. As a compromise, we choose 60 as the number o f p traces. The 

increment o f p will be 2.222x1 O '5 s/m. The azimuths of a line L are chosen as 

0 ° ,  30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°. As a result, nine x-p sections 

corresponding to each azimuth are produced and shown in Fig. 6.5.1 (a) - (i). 

W e can see from  these figures that the events in the x -p  dom ain are 

concentrated tow ards the centre. The end effect is strong at both ends when 

the ray param eter tends to be either a minimum or a maximum. Fig. 6.5.1 (a) 

( a = 0 ° )  shows that a single wavelet with large peak am plitude by in-phase 

sum m ation  appears on channel 38 corresponding to the  ray param eter 

p = 1 .7 7 8 x l0 " 4  s/m. This trace is of great interest to us because it indicates the 

phase velocity  o f the upper layer. That is, the dip o f a reflector can be 

determ ined if  the velocity of the upper layer is known. Fig. 6.5.1 (b) (c), (d) 

also show the positions o f the p traces with large peak am plitudes on the 

sections. They tend to move towards the centre (p=0), this is because when the 

azim uth increases towards 90°, the apparent dip associated with the projection 

line L becom es sm aller and smaller, which gives a small ray param eter or 

large phase velocity. By comparing the single wavelet o f interest on different 

sections, we can see that the peak amplitude decreases when the azim uth 

increases. W hen a  = 9 0 ° , the single wavelet with large am plitude disappears 

because the projection line is parallel to the strike of the dipping layer, and

the reflections are no longer in phase, so they do not fill on a dipping line. For 

the rest of x-p sections in fig. 6.5.1 when a  > 90° and p<0, it is found that the p 

trace with large peak amplitude on a section is the mirror image of the trace 

formed when the azimuth is ( a - 90° )  and p is positive. For example, for the

section when ot = 1 8 0 ° ,  the trace of interest is found to be on channel 22,

corresponding to the ray parameter p = -l.778 x10 ^ s /m.

In practice, the dip direction is unknown, but we can produce a number
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(c) a=45°

Fig. 6.5.1 Continued (see the next page).
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Fig. 6.5.1 Continued (see the next page).
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Fig. 6.5.1 Nine x-p images based on nine projection lines with different azimuths.
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of x-p sections with a small increment of azimuth a  (0°< a<  180°). Hence a p trace 

with a large peak amplitude on each section can be identified. In theory, the 

biggest ray param eter among the selected p traces of interest on all sections 

will indicate the largest phase velocity along the projected line. We assume

that there is no lateral change in velocity; in fact, the lateral change in 

velocity  will be very small across such a small aerial array. The reflection 

angle 0 from  p=sin0 /v  associated with the projected  line m ay closely  

approxim ate the true dip of the reflector. If the average velocity of the upper 

layers is known, the true dip 0 can be determined. Let us take the above nine x- 

p sections as an example. We can see that section 1 (a  = 0 ° )  shows not only the 

rightm ost p trace (channel 38) but also the largest peak amplitude o f interest

among nine sections. Therefore, the angle 0 from phase velocity p = sin0/v = 

1 .778x10"^  s/m may be calculated as 0= 26 .4° which is near to the true dip of the 

reflector \j/=25.6°.

6.5.2 Determining the dip direction o f a reflector by constructing x -x images

Above we described how the t-x images can be transformed into the x -p  

images as a function of azimuth a .  As a result, a striking point (the largest

peak amplitude on one p trace) in the x-p domain, rather than an ellipse as 

what the conventional slant-stack method shows, is identified by its peak

amplitude instead of the time difference. In this section, we try to construct a 

new image- x-x section- to derive the dip direction of a deep reflector.

In the field, we usually shoot along a line, say, 50 shots which

correspond in our geometry to a distance of 3.75 km on the earth 's surface 

(shot spacing 75 m). After the x-p sections like those in Fig. 6.5.1 have been

constructed as a function of azimuth ocj for a particular shot xj, a p trace which

shows the largest peak amplitude on a x-p section for each shot is found. We

can now plot p traces against xj while the azimuth ocj is kept constant. The ray 

parameters in the x-x domain do not have to be the same, but, if the reflector is
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a z i m u t h  a .,

a z i m u t h  a„

o x

a z i m u t h  a«

Fig. 6.5.2 Illustration of x-x images with 3 different azimuths. The ray parameter in 
each diagram is constant.
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Xl X2 X3 X4 X5 X6

Fig. 6.5.3 A x-x image constructed by synthetic data based on the model in Fig. 6.3.1. Six 
shots are presented. The ray parameter p is 1.778 x itH  s/m.
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absolutely planar, the p values will be identical. Fig. 6.5.2 illustrates what the 

final t -x  images look like. Three t-x  sections associated with azimuths a j ,  ot2  

and oc ^ are produced, each showing a line of events with dips at different 

amounts. The largest dip, as shown in Fig. 6.5.2 (c) is most likely to be the true 

dip o f the reflector assuming that the velocity effect has been corrected.

Based on the model in Fig. 6.3.1, we generate 6-shot data and perform the 

slan t-stack  processing individually . A azimuth 0° is used as an example to

produce 6 T-p images. The first image for shot 1 is shown in Fig. 6.5.1 (a),

others are not shown here, but they look rather similar, except for the time 

difference of the p gather. The p traces from 6 T-p sections are all on channel

38 which corresponds to a ray param eter p = 1 .7 7 8 x l0 " 4 s/m so that they are 

picked up and plotted against offsets. Fig. 6.5.3 tells us about the dip direction 

of the reflector which is towards East.

6.5.3 Determining the angle o f  a ray path to optimise polarisation filtering

For a simple geological model with only one layer, the reflection angle 0 

of a ray can be determined by the method described in Section 6.5.1. If the 

angle is near to the true dip of a reflector, the polarisation direction P o f a

compressive wave can be derived as illustrated in Fig. 6.5.4 (a). On the other 

hand, by constructing a covariance matrix over a time window and calculating 

the e igenvalues and eigenvectors of the m atrix, we can determ ine the

p o la risa tio n  d irec tion  E o f partic le  m otions recorded by 3-com ponent

geophones (refer to Section 3.4). Fig. 6.5.4 (b) shows the polarisation directions 

P and E. The vector E is constructed by 3-component recordings. It can

represent the polarisation direction either of a shear wave or a compressional 

wave, depending on seismic source type and geological conditions.

To preserve those trajectory parts whose polarisation direction is the

same as or near to the vector P, we define a fixed cone around the vector P. 

Thus P is the cone's axis and the desired filtering direction. The vertex half
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angle o f the cone is the criterion of filtering sharpness. If this angle is small,

the cone is narrow and the filter is very selective, since only those events that 

are well polarised along the cone's axis are preserved [Benhama & Cliet, 1988].

In practice, we can use the matrix method to determine the polarisation 

direction E over a time window. If the E lies inside the defined cone, the

particle m otions are kept or enhanced, otherwise they are rejected. Therefore, 

we will be able to get a section on which the reflection events present only

those whose polarisation directions are along the vector P.

X
(b )

Fig. 6.5.4 (a) Geometry of a ray path showing the polarisation of a compressional wave P. (b) 

Polarisation direction P of a compressional wave obtained by the slant-slack method and 

polarisation direction E of particle motions obtained by the matrix method.

6.6 Summary and discussion

In above sections, the conventional s lan t-stack  m ethod used to

transform  t-x data into x-p data has been reviewed. A new approach o f using 

the slant-slack processing to image 3D structure, based on the RAZOR



156

array, has been demonstrated by synthetic data. The result further proves that 

the dimension of the array is appropriate for receiving reflected plane

waves from deep interfaces. The true dip and dip direction of a reflector may

be derived from x-p images and x-x images respectively, assum ing that the 

velocity  of the upper layer is known. The com puter program MASSP was 

designed to perform the slant-stack processing from the original t-x data. The 

plotting program can display either T-p images or x-x images in various ways. 

This m ethod can additionally be used to optim ise the polarisation filtering, 

which keeps and enhances the compressional waves o f interest according to

the polarisation directions of waves.

In reality, the geological conditions are com plicated. There will be 

many reflectors, with dips in different directions, and the velocities of layers 

are no longer constant but are a function of depth. Nevertheless, we can treat 

the geology as a model consisting of several layers, within each layer the 

velocity can be considered as constant. Thus the slant-stack processing will

produce more than one line of events on both x-p image and x-x image. The

angle 0 derived from the phase velocity can no longer represent the true dip 

or apparent dip of an individual layer but a contribution of several layers. The 

true dip of individual layers can also be determined, if  corrections are made. 

T herefo re , this s lan t-stack  m ethod, d iffe ren t from  the conven tional, is 

potentially of great importance for imaging complex structure.
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Chapter 7 The RAZOR Array, General Discussion 

and Future Work

The RAZOR array, a new array for acquiring seismic reflection data, has 

been tested  in a basalt-covered area. The radius of the outer circle is an

appropriate  dim ension for recording the weak reflection events from below

basalts because Ground-roll and reverberations can be suppressed. The study 

o f the characteristics of seismic reflection data from a basalt-covered area not 

only confirm s with the results by other workers, but also reveals additional 

c h a rac te ris tic s . The horizontal com ponents exhib it larger am plitudes and 

low er frequency  than the vertical com ponent. A pplica tion  o f a new ly

designed spatial directional filter to the three component of seismic data shows 

that m ore inform ation passes through the filter on the horizontal component.

The energy variation diagram for each shot shows that the radial component 

receives m uch m ore energy than the others. The newly developed signal 

enhancem ent polarisation filter can be used to suppress random noise and a

portion o f reverberations. The synthetic data based on this array demonstrates 

that seism ic wavefronts can reasonably be considered as planes, which allows

slant-stacking to be carried out. As a result, the true dip and dipping direction

of a deep reflector can possibly derived. This method can also be used to

op tim ise  the po larisa tion  filtering , which passes com pressional w aves of 

interest according to the polarisation directions of the waves.

However, the field data from the inner stations were very poor. One 

explanation could be that these data are more severely affected by the surface 

m aterials than the data from the outer stations. Other possibilities are that the 

radius o f the inner circle is too small, the inner stations interfere with the 

firing  o f the  shots, or the MDS-10 channels are overloaded because of 

explosive charges close to geophones. From the data processing point of view, 

the  co n v en tio n a l m ethods such as frequency f ilte rin g  and p red ic tive
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deconvolution filtering  cannot be applied with the same degree o f success 

com pared  to conventional seism ic reflection  data. The po larisa tion  filte r 

cannot com pletely cancel all reverberations, especially when the data quality 

is so poor that the the polarisation of the useful signals is lost in the presence 

o f noise. Apart from the above, it is dangerous to stack the data across the

array , because  problem s may arise by sum m ing reflec tion  events w ith 

d ifferen t phases when reflectors are very deep and the dipping angles are

large. The technique of imaging geological structure in 3 dimensions is only 

based on the synthetic data of a simple model. To test the method thoroughly, 

there is a need to use the data from a more com plicated m odel, and more

sophisticated processing methods need to be developed.

W ith the further development of techniques, the areal RAZOR array will

have its great potential in im aging geological structure. Below are listed

several areas for future work:

(a )  We need to modify the dimensions of the RAZOR array and to test the 

developed techniques for commercial use. We should em pirically  determ ine 

the appropriate radius of the inner circle of the array and acquire seismic 

reflection data in an area of simple geology (a normal case). The shot hole 

should be drilled as deep as possible into bedrock. The size of explosive charge 

for each hole should also be determined em pirically. It is hoped that good 

shear waves can be received from an explosive source, so that some lithology

information of the crust can be obtained as it is indicated by Vp/Vs.

( b )  Instead of stacking data across the array, we can fire a number of shots, 

say 10, at one location, and then stack the individual channels. Thus, we face

no danger o f stacking reflection signals with different phases. Random noise 

will be greatly attenuated.

( c )  We can generate the synthetic data based on a more complicated model 

to test the new techniques stated in Chapter 6, using more than one interface, 

with different layer velocities. Software can be produced to determine the true 

dips and dipping directions of reflectors after correction are made. Various 

kinds of images such as x-t, x-p, x-x and offset-depth can be displayed on
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m odern Sun W orkstations.

( d )  H aving been fully tested by the field data from an area o f simple 

geology, this m ethod can then be applied to the area covered by volcanic 

rocks. In addition to the existing processing m ethods (frequency filtering , 

d eco n v o lu tio n  filte rin g , po larisa tion  filte rin g , x-p transform , e tc .), m ore 

advanced processing techniques need to be developed for extracting the weak 

signals in the presence of noise.

( e )  It is well known that the study of shear wave splitting is o f great 

potential in exploration geophysics. With the further development, we can use 

3 -com ponent geophones and an S source to record very good shear waves. The 

an iso trop ic  characteristics of the crust can system atically  be analysed by 

study ing  shear wave splitting. In addition to using po larisa tion  diagram s 

which are the main tools at present to characterise the data, we can develop a 

new m eans o f processing 3-component data to identify the orientations of 

aligned cracks in the crust. One possibility is to study the energy distribution 

on the 3-com ponents as a function o f o rien tation  o f geophones. The 

co rre la tio n  betw een them  may help us to derive the crack orien tations. 

Another possibility is to construct a new domain in which shear wave splitting 

shows a great anomaly, from which further information may be obtained.

The RAZOR array, with further m odification and development, will have 

a prom ising  future.
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A p p e n d i c e s

FORTRAN-77 PROGRAM  1 - M ATERRAIN

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
c
c

c
c
c

c Bougeur anormaly calculation program on VAX/UNIX: MATERRAIN 
Designed and written by 
XIN-QUAN MA

at the Department of Geology & Applied Geology,
University of Glasgow Glasgow G12 8QQ ( in 1987).
This program is used for automatic Bougeor anomaly calculation. 
The distinctive advantage is its automatic terrain correction.
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

param eter(m = 708 ,n= 4528 ) 
integer N ,L,K ,I,Q ,J(m ),W (n)

real E (n ),F (n ),d en (n ),H (n ),z l(n ),z2 (n ),z3 (n ),z4 (n ),X X (m ),Y Y (m ), 
z d (m ) ,h l(m ) ,h 2 (m ) ,h 3 (m ) ,h 4 (m ) ,h 5 (m ) ,h 6 (m ) ,h 7 (m ) ,h 8 (m ) ,la t i (n ) ,  
z h 9 (m ) ,h l0 (m ) ,h l  I (m ) ,h l2 ( m ) ,h l3 ( m ) ,h l4 (m ) ,h l5 ( m ) ,h l6 ( m ) ,x ( 1 6 ) ,  
z y (1 6 ) ,r (1 6 ) ,b ( l6 ) ,G (4 ) ,rO ,la ti(n ) ,g O (n ) ,g b (n ) ,g a (n ) ,g t(n ) , 
z g f(n ) ,g o (n ) ,a l,a 2 ,a 3 ,a 4 ,b l,b 2 ,b 3 ,b 4 ,c l,c2 ,c 3 ,c 4 ,c 5 ,c6 ,R T , 
z C 7 ,c 8 ,d l,d 2 ,d 3 ,d 4 ,d 5 ,d 6 ,d 7 ,d 8 ,tlI(n ),t2 2 (n ),h tl,h t2 ,h t3 ,u , 
z h t4 ,zll(n),z22(n),z33(n),z44(n),G G ,G G l,G G 2,G G 3,G G 4,t33(n), 
z k l,k 2 ,k 3 ,k 4 ,k lI ,k 2 2 ,k 3 3,k44,l 1,12,13,14,111,122,133,144, 
z 0,01,02,03,04,P,P1,P2,P3,P4,S,S1,S2,S3,S4,T,T1,T2,T3,T4, 
z x l,x2 ,x3,x4,yl,y2,y3,y4,TD K  

o p e n (u n it= l ,f i le = ,s td a ta 5 ',fo rm = 'fo rm a tte d ',a c c e ss= 'se q u e n tia r , 

z s ta tus= 'o ld )
o p e n (u n it= 2 ,f ile = ,b ld a ta 2 ,,fo rm = ,fo rm a tted ,,a c c e s s= 'se q u e n tia r , 

z s ta tu s= 'o ld ')
o p e n (u n it= 3 ,f ile = 'o u tp u t ',fo rm = ,fo rm a tted ,,a c c e s s= 'se q u e n tia r , 

z s ta tu s= 'n e w ')
o p e n (u n it= 4 ,f ile = ,c o rre c t,,fo rm = lfo rm a tte d ',a c c e ss= ,se q u e n tia l ', 

z s ta tu s= 'n e w ')
c read station discription data and block discription data into

c related  arrays
do 20 K=l,n
read(unit= l,fm t= 10) W (K ),lati(K ),E(K ),F(K ),H (K ),zl l(K ),z22(K ), 

z z33(K ),z44(K),den(K ),go(K)
10 form at(I5,F9.4,F8,F8,F7.1,4(F7.1),F5.2,F8.2)
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20 c o n t in u e
do 50 1=1,m

read(un it= 2 ,fm t= 30) J (I) ,X X (I),Y Y (I),d (I) ,h l(I),h 2 (I) ,h 3 (I) , 
z h 4 ( I ) ,h 5 ( I ) ,h 6 ( I )  

read (u n it= 2 ,fm t= 4 0 ) h 7 (I) ,h 8 (I) ,h 9 (I) ,h lO (I) ,h l 1 ( I ) ,h l2 ( I ) ,  
z h l 3 ( I ) ,h l 4 ( I ) ,h l5 ( I ) ,h l 6 ( I )

30 format(I5,2X,F7,2X,F7,2X,F4.2,6(2X,F6.1 ))
40 fo rm at(10(2X ,F 6 .1))
50 c o n t in u e

w rite(unit=3 ,fm t= 55) 'no .’. 'E '. 'F '/g t '. 'g f /g b ',  
z 'goV gO V ga '

55 format(2X,A3,4X,Al,8X,Al,9X,A2,6X,A2,7X,A2,7X,A2,8X,A2,9X,A2) 
do 300 K =l,n
do 200 1=1,m
b (1 )= h  1 (I)
b (2 )= h 2 (I)
b (3 )= h 3 (I)
b (4 )= h 4 (I)
b (5 )= h 5 (I)
b (6 )= h 6 (I)
b (7 )= h 7 (I)
b (8 )= h 8 (I)
b (9 )= h 9 (I)
b( 10 )= h  10(1)
b ( l  l ) = h l  1(1)
b( 12 )= h  12(1)
b( 13 )=h 13(1)
b (1 4 )= h l4 (I )
b( 15)=h 15(1)
b (1 6 )= h l6 (I )

c dividing terrain into 7 zones: 1. r0<0.5km; 2. 0.5<r0<2km;
c 3. 2<r0<15km; 4. 15<r0<20km; 5. 20<r0<30km; 6. 30<i0<50km;

c 7. r0>50km.
rO =sqrt((X X (I)-E (K ))**2+ (Y Y (I)-F (K ))**2)

if(rO.LE. 15000) go to 60
if(rO.LE.20000) go to 100
if(rO.LT.30000) go to 58
if(r0.LT.50000) go to 56
go to 200

c approxim ating terrain(prism) as a line with all mass centraled
c on it. formula: gt=G*D*A*h**2/2*r**3.
56 u = (h l( I )+ h 2 (I )+ h 3 (I)+ h 4 (I )+ h 5 (I )+ h 6 (I)+ h 7 (I )+ h 8 (I)+ h 9 (I )+  

z h 1 0 (I)+ h l l ( I ) + h l2 ( I ) + h l  3(I)+ h  14(I)+h  1 5 (I)+ h l 6 ( I ) ) /1 6
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T D K = ab s(3 3 3 6 * 1 6 * d (I)* (u -H (K ))* * 2 /r0 * * 3 ) 
t3 3 (K)=t3 3 (K)+TDK 

gt(K)=gt(K)+TDK 
go to 200

c approxim ating terrain as prism with 4km long sides,
c form ula: g t=G *D *A *h**2/2*r**3-r*4E 06).

58 u = (h l( I )+ h 2 (I )+ h 3 ( I )+ h 4 (I )+ h 5 ( I )+ h 6 ( I )+ h 7 (I )+ h 8 ( I )+ h 9 (I )+
z h lO ( I)+ h l  I ( l ) + h l2 ( l ) + h l3 ( l ) + h l4 ( l ) + h l5 ( l ) + h l6 ( l ) ) /1 6  

T D K = ab s(3 3 3 6 * 1 6 * d (I)* (u -H (K ))* * 2 /(r0 * * 3 -r0 * 4 E 6 )) 
t3 3 (K)=t3 3 (K)+TDK 
gt(K)=gt(K)+TDK 
go to 200 

60 x(l)=X X (I)-1500
y (l)= Y Y (I)-1 5 0 0
r ( l )= s q r t( (x ( l) -E (K ))* * 2 + (y ( l) -F (K ) )* * 2 )
x(2)=XX(I)-500
y(2)=Y Y (I)-1500
r(2 )= sq r t((x (2 )-E (K ))* * 2 + (y (2 )-F (K ))* * 2 )
x(3)=XX(I)-1500
y(3)= Y Y (I)-500
r(3 )= sq r t((x (3 )-E (K ))* * 2 + (y (3 )-F (K ))* * 2 )
x(4)=XX(I)-500
y(4)= Y Y (I)-500
r(4 )= sq rt((x (4 )-E (K ))* * 2 + (y (4 )-F (K ))* * 2 )
x(5)=XX(I)+500
y(5)=Y Y (I)-1500
r(5 )= sq rt((x (5 )-E (K ))* * 2 + (y (5 )-F (K ))* * 2 )
x(6)=XX(I)+1500
y(6)=Y Y (I)-1500
r(6 )= sq rt((x (6 )-E (K ))* * 2 + (y (6 )-F (K ))* * 2 )
x(7)=XX(I)+500
y(7)= Y Y (I)-500
r(7 )= sq rt((x (7 )-E (K ))* * 2 + (y (7 )-F (K ))* * 2 )

x(8)=XX(I)+1500
y(8)= Y Y (I)-500
r(8 )= sq rt((x (8 )-E (K ))* * 2 + (y (8 )-F (K ))* * 2 )

x(9)=XX(I)-1500
y(9)=Y Y (I)+500
r(9 )= sq rt((x (9 )-E (K ))* * 2 + (y (9 )-F (K ))* * 2 )

x(10)=XX(I)-500
y(10)=Y Y (I)+500
r(1 0 )= sq rt((x (1 0 )-E (K ))* * 2 + (y (1 0 )-F (K ))* * 2 )
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x(ll)= X X (I)-1500
y (ll)= Y Y (I)+ 1 5 0 0

r ( l l )= s q r t ( ( x ( l l ) - E ( K ) ) * * 2 + ( y ( l l ) - F ( K ) ) * * 2 )
x(12)=XX(I)-500
y(12)=Y Y (I)+1500

r (1 2 )= sq r t((x (1 2 )-E (K ))* * 2 + (y (1 2 )-F (K ))* * 2 )
x(13)=XX(I)+500
y(13)=Y Y (I)+500

r (1 3 )= sq r t((x (1 3 )-E (K ))* * 2 + (y (1 3 )-F (K ))* * 2 )
x( 14)=XX(I)+1500
y(14)=Y Y (I)+500

r(1 4 )= sq rt((x (1 4 )-E (K ))* * 2 + (y (1 4 )-F (K ))* * 2 )
x(15)=XX(I)+500
y(15)=Y Y (I)+1500
r(1 5 )= sq rt((x (1 5 )-E (K ))* * 2 + (y (1 5 )-F (K ))* * 2 )
x( 16)=XX(I)+1500
y(16)=Y Y (I)+1500
r(1 6 )= sq rt((x (1 6 )-E (K ))* * 2 + (y (1 6 )-F (K ))* * 2 ) 
do 80 Q=l,16
if(E(K).GT.(x(Q)-500).AND.E(K).LT.(x(Q)+500).AND. 

z F(K).GT.(y(Q)-500).AND.F(K).LT.(y(Q)+500)) go to 85 
if(r(Q).GE.2000) go to 83 

c calculating terrain correction in the inner zone(0.5<r0<2 km)
c approximate terrain to a vertical prism with horizontal lower
c face and slopping upper surface whose slop is constant toward
c the station point,
c form ula: g=G *p*(l-cosa)*D *K (i,j)
c 1 -co sa= 0 .5 * tan (a)* * 2

T D K = 6672*d(I)* ( l/r (Q )-l/sq rt((b (Q )-H (K ))* * 2 + r(Q )* * 2 ))
t22(K)=t22(K)+TDK
gt(K)=gt(K)+TDK
go to 80

83 T D K =3336*d(I)*(b(Q )-H (K ))**2/(r(Q )**3-r(Q )*2.5E 05)
t33(K)=t33(K)+TDK 
gt(K)=gt(K)+TDK 
go to 80

c calculating terrain correction for the most inner zone(r0<0.5km ) by 
c dividing square into four triangle prisms.
85 z l(K )= a b s(z l 1(K)-H(K))

z2(K )=abs(z22(K )-H (K )) 
z3(K )=abs(z33(K )-H (K )) 
z4(K )=abs(z44(K )-H (K )) 
x l=x(Q)-E(K)+500
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y l=y(Q )-F(K )-500 
x2=xl
y2=500+y(Q )-F(K)
x3=x(Q)-E(K)-500
y3=y2
x4=x3

y4=y i
a l= (z l(K )* y 2 -z 2 (K )* y  l ) / (x l* y 2 -x 2 * y  1)
b l= (x l* z 2 (K )-x 2 * z l(K )) /(x l* y 2 -x 2 * y  1)
a2 = (z2 (K )* y 3 -z3 (K )* y 2 )/(x 2 * y 3 -x 3 * y 2 )
b2= (x 2 * z3 (K )-x 3 * z2 (K ))/(x 2 * y 3 -x 3 * y 2 )
a3 = (z3 (K )* y 4 -z4 (K )* y 3 )/(x 3 * y 4 -x 4 * y 3 )
b3= (x 3 * z4 (K )-x 4 * z3 (K ))/(x 3 * y 4 -x 4 * y 3 )
a4= (z4 (K ) * y 1- z 1 (K )*y4)/(x4*y  1 -x 1 *y4)
b 4 = (x 4 * z l(K )-x l  *z4(K ))/(x4*y  l -x l* y 4 )
c l= (z l(K )* y 2 + z 2 (K )* y  l) / (x l* y 2 -x 2 * y  1)
d l= ( - x l  * z 2 (K )-x 2 * z l(K ))/(x l* y 2 -x 2 * y  1)
c 2 = (-z l(K )* y 2 -z 2 (K )* y  l ) / ( x l  *y2-x2*y  1)
d 2 = (x l* z 2 (K )+ x 2 * z l(K )) /(x l* y 2 -x 2 * y  1)
c3 = (z2 (K )*y3+ z3 (K )*y2 )/(x2*y3 -x3*y2 )
d3 = (-x2*z3 (K )-x3*z2 (K ))/(x2*y3 -x3*y2 )
c4 = (-z2 (K )* y 3 -z3 (K )* y 2 )/(x 2 * y 3 -x 3 * y 2 )
d4= (x2*z3(K )+ x3*z2(K ))/(x2*y3-x3*y2)
c5 = (z3 (K )*y4+ z4 (K )*y3 )/(x3*y4 -x4*y3 )
d 5= (-x3*z4 (K )-x4*z3 (K ))/(x3*y4 -x4*y3 )
c6 = (-z3 (K )* y 4 -z4 (K )* y 3 )/(x 3 * y 4 -x 4 * y 3 )
d6= (x3*z4(K )+ x4*z3(K ))/(x3*y4-x4*y3)
c 7 = (z 4 (K )* y l+ z l(K )* y 4 )/(x 4 * y 1 -x l* y 4 )
d 7 = (-x 4 * z l(K )-x  1 *z4(K ))/(x4*y l -x l* y 4 )
c8 = (-z4 (K )* y  l-z l(K )* y 4 ) /(x 4 * y  l -x l* y 4 )
d 8 = (x 4 * z l(K )+ x l *z4(K ))/(x4*y l -x l* y 4 )

k l= y  1 /x l
k 2 = y 2 /x l
k3= y2/x3
k4= y4/x3
k 11 = 1 /k  1
k 2 2 = l/k 2
k33 = l/k 3
k 4 4 = l/k 4
l l = - c l / d l
12=-c3/d3
13=-c5/d5
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14=-c7/d7 
111 =  1/11 

122= 1/12 

133 = 1/13
144=1/14

c using subroutines to calculate terrain correction produced by
c four triangle prisms
c triangle prism 1.

call IN N E R Z O N E l(al,b l,k2 ,kl,x l,G G l) 
c triangle prism 2.

call INNERZONEl(b2,a2,k22,k33,y2,GG2) 
c triangle prism 3.

call INNERZONEl(a3,b3,k3,k4,x3,GG3) 
c triangle prism 4.

call INNERZONE1 (b4,a4,k 11 ,k44,y 1 ,GG4)
GG=GG1+GG2+GG3+GG4 

c considering symboles of four height values in the four conners
c o f that square,overestim ated terrain correction must be substracted
c by the values resulting from central triangle prisms,
c central triangle prism 1.

call INNERZONE2 (c l ,d l ,l l ,k l,x l ,P l)  
call INNERZONE2 (a l,b l,ll ,k l,x l,P 2 ) 
call INNERZONE2 (c2,d2,k2,ll,xl,P3) 
call INNERZONE2 (a l,b l,k2 ,ll,x l,P 4 )
P=P1-P2+P3-P4 

c central triangle prism 2.
call INNERZONE2 (d4,c4,122,k33,y2,01) 
call INNERZONE2 (b2,a2,122,k33,y2,02) 
call INNERZONE2 (d3,c3,k22,122,y2,03) 
call INNERZONE2 (b2,a2,K22,122,y2,04)
0=01-02+03-04 

c central triangle prism 3.
call INNERZ0NE2 (c6,d6,13,k4,x3,Sl) 
call INNERZ0NE2 (a3,b3,13,k4,x3,S2) 
call INNERZ0NE2 (c5,d5,k3,13,x3,S3) 
call INNERZ0NE2 (a3,b3,k3,13,x3,S4)
S=S1-S2+S3-S4 

c central triangle prism 4.
call INNERZ0NE2 (d7,c7,144,k44,yl,Tl) 
call INNERZ0NE2 (b4,a4,144,k44,yl,T2) 
call INNERZ0NE2 (d8,c8,kll,144,yl,T3) 
call INNERZ0NE2 (b4.a4.kl 1,144,yl,T4)

T=T1-T2+T3-T4
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c com paring the four heights of prism corners with station
c height,deciding the exact correction value for the inner zone.

h t l= z l  1(K)-H(K) 
ht2=z22(K )-H (K ) 
ht3=z33(K )-H (K ) 
ht4=z44(K )-H (K ) 
if(htl.gt.O) go to 500
if(ht2.gt.O) go to 480
if(ht3.gt.0) go to 450
if(ht4.gt.0) go to 430
RT=GG 
go to 900 

430 RT=GG-S-T
go to 900 

450 if(ht4.gt.0) go to 460
RT=GG-0-S 
go to 900 

460 RT=GG-0-T
go to 900

480 if(ht3.gt.0) go to 490 /
if(ht4.gt.0) go to 485
RT=GG-P-0 
go to 900 

485 RT=GG-P-0-S-T 
go to 900 

490 if(ht4.gt.0) go to 495
RT=GG-P-S 
go to 900 

495 RT=GG-P-T
go to 900 

500 if(ht2.gt.O) go to 600
if(ht3.gt.O) go to 550
if(ht4.gt.0) go to 530
RT=GG-P-T 
go to 900 

530 RT=GG-P-S
go to 900 

550 if(ht4.gt.0) go to 580
RT=GG-P-S-0-T 

go to 900 
580 RT=GG-P-0

go to 900
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600 if(ht3.gt.0) go to 700
if(ht4.gt.0) go to 650 
RT=GG-0-T 
go to 900 

650 RT=GG-0-S
go to 900 

700 if(ht4.gt.0) go to 800
RT=GG-S-T 
go to 900 

800 RT=GG

900 TD K =abs(0.006672*d(I)*RT)
t i l  (K )=tl 1 (K)+TDK 
gt(K)=gt(K)+TDK 

80 c o n t in u e
go to 200

c approxim ating terrain as prisms with 2km long sides,
c form ula: g t= G *D *A *h**2/2*(r**3-r* lE 06).

100 r (l)= sq rt((X X (I)-1 0 0 0 -E (K ))* * 2 + (Y Y (I)-1 0 0 0 -F (K ))* * 2 )
r(2 )= sq rt((X X (I)+ 1 0 0 0 -E (K ))* * 2 + (Y Y (I)-1 0 0 0 -F (K ))* * 2 )  

r(3 )= sq rt((X X (I)-1 0 0 0 -E (K ))* * 2 + (Y Y (I)+ 1 0 0 0 -F (K ))* * 2 )  
r(4 )= sq rt((X X (I)+ 1 0 0 0 -E (K ))* * 2 + (Y Y (I)+ 1 0 0 0 -F (K ))* * 2 )  
G (l)= ( h l( I ) + h 2 (I )+ h 3 (I )+ h 4 ( I ) ) /4  
G (2 )= (h 5 (I )+ h 6 (I )+ h 7 (I )+ h 8 (I ) ) /4  
G (3 )= (h 9 (I )+ h lO (I )+ h l l ( I )+ h l2 ( I ) ) /4  
G (4 ) = ( h l3 ( I ) + h l4 ( I ) + h l5 ( I ) + h l6 ( I ) ) /4  
do 110 L =l,4

T D K = ab s(3 3 3 6 * 4 * d (I)* (G (L )-H (K ))* * 2 /(r(L )* * 3 -r(L )* lE 6 )) 
t33(K)=t33(K)+TDK 
gt(K)=gt(K)+TDK 

110 c o n t in u e
200 c o n t in u e

w rite(4,220) W (K ),tl l(K ),t22(K ),t33(K ),gt(K )
220 form at(I5,5X ,4(F8.4,5X ))

c calculating normal gravity by using international form ula
g0 (K )= 978031.85 *(1+0.0053 024* (sin (la ti(K ) *3.1416/180))*  *2 

z -0 .0 0 0 0 0 5 9 * (s in (la ti(K )* 3 .1 4 1 6 /9 0 ))* * 2 ) 

c F ree -a ir  correction
gf(K )=0.3086*H (K ) 

c B ouguer correction
gb(K )= 0.04193*den(K )*H (K ) 

c calcu lating  Bouguer anomaly
ga(K )= (go(K )+ 980000)+ g t(K )+ gf(K )-gb(K )-g0(K )
prin t  250, W (K ),E (K ),F (K ),H (K ),g t(K ),g f(K ),gb(K ),go(K ),gO (K ),ga(K )
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w rite(3 ,250) W (K ),E (K ),F(K ),H (K ),gt(K ),gf(K ),gb(K ),go(K ),gO (K ),ga(K ) 
250 format(I4>lX ,2(lX ,F7),F7.1,3(2X ,F6.2),2X ,F7.2,2X ,F9.2,2X ,F6.2)
300 c o n t in u e

c lo se (u n it= 3 )
c lo se (u n it= 4 )
s to p
e n d

c
q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c subprogram  for calculating the terrain correction o f triangle volume
c with the horizontal lower face and the sloping upper face,

subroutine INNERZO NEl(aa,bb,kk,ll,ss,FF) 
real aa ,bb ,gg ,hh ,kk ,ll,oo ,pp ,qq ,rr,ss ,tt,F F  
oo= aa*aa+ l 
p p = b b * b b + l 
t t= l / s q r t ( p p )  
g g = k k + sq r t( l+ k k * k k )  
h h = ll+ s q r t ( l+ ll* ll )
q q = s q r t( (k k + a a * b b /p p )* * 2 + o o /p p -a a * a a * b b * b b /(p p * p p ))
r r= s q r t ( ( l l+ a a * b b /p p )* * 2 + o o /p p -a a * a a * b b * b b /(p p * p p ) )
F F = s s * ( lo g (g g /h h ) - t t* lo g ( (k k + a a * b b /p p  + q q ) / ( l l+ a a * b b /p p + r r ) ) )
r e t u r n
e n d

q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

subroutine INNERZONE2(aa,bb,kk,ll,ss,FF)
real aa ,bb ,kk ,ll,oo ,pp ,qq ,rr,ss,tt,FF

oo= aa*aa+ l
p p = b b * b b + l
t t= l / s q r t ( p p )
q q = s q r t( (k k + a a * b b /p p )* * 2 + o o /p p -a a * a a * b b * b b /p p * * 2 )
r r= s q r t( ( l l+ a a * b b /p p )* * 2 + o o /p p -a a * a a * b b * b b /p p * * 2 )
F F = s s * tt* lo g ((k k + a a * b b /p p + q q )/( l l+ a a * b b /p p + rr) )

r e t u r n
e n d
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FORTRAN-77 PROGRAM  2 - MASEGY

C CHANGING SEGY FORMAT PROGRAM ON VAX/VMS SYSTEM, MASEGY *
C ORIGINALLY WRITTEN BY *
C OVE HANSEN, IN 1988. *
C MODIFIED BY *
C XIN-QUAN MA *

C AT THE DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY, *
C UNIVERSITY OF GLASGOW GLASGOW Q12 8QQ (IN 1989) *
C THIS PROGRAM IS TO CHANGE SEGY FORMAT INTO ANY REQUIRED ASCII *
C CODED FORMAT BY CALLING SKS SUBROUTINES. *
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INCLUDE PROCCOM.FOR’
INCLUDE'CONSTANTS.FOR'
INCLUDE 'RHWCOM.FOR'
CHARACTER * ( 30 ) QUAL 
CHARACTER * ( 30 ) FILE 
CHARACTER * ( 10 ) STATUS 
CHARACTER * (7) FELEOUT 
CHARACTER * ( ULNPTH ) PATH
INTEGER LFC, IOTABL( 18 ), ITRACE, NSAMPL, HEADER(200), LHEAD,

: IEOF, IERR, IASG1, IASG2, NREC, LRECL, IMODE, TRACE 
INTEGER LTRACE.STRACE
REAL BUFFER( 800, 800 ), HOST( 5000 ), TAPE( 5000 )
EXTERNAL DEFLFC,UDEFIN,DSKINQ,DSKOPN,DSKHED 

C INITIALIZE THE INPUT & OUTPUT TABLES TO ZERO

DO 101=1,18 
IOTABL(I)=0 

10 CONTINUE
WRITE(*,*) '-F IL E  QUALIFIER 
READ (*,’( A )') QUAL 
write (*,*) '-F IL E  NAME : '
READ (*, '( A )’) FILE 
UTRCLN = 160 
CALL DEFLFC( LFC)
CALL UDEFIN ( LFC, NREC, LRECL, IMODE, IOTABL )
CALL DSKINQ ( QUAL, FILE, IERR, IASG1, IASG2 )

IF ( IERR .NE. 1 ) THEN
WRITE (*,*) '*** INPUT FILE NOT FOUND ***'

END IF
CALL DSKOPN ( LFC, IOTABL, QUAL, FILE)
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CALL DSKHED ( LFC, IOTABL, QUAL, FILE, HEADER, RHWLEN ) 
WRITE(*,*) 'TRACE COMMON LENGTH (UTRCLN)=',UTRCLN 
WRITE(*,*) 'LENGTH OF TRACE HEADER(RHWTHL)=',RHWTHL 

WRITE(*,*) 'SAMPLES PER TRACE(RHWNSM) = ',RHWNSM 
WRITE(*,*) 'NUMBER OF TRACES IN FILE(RHWNRC) = ',RHWNRC 
IF ( RHWTHL .GT. 160 ) THEN

WRITE(*,*) 'NON-STANDARD HEADER LENGTH(>160) ’
ERROR = .TRUE.
END IF

WRITE(*,*) ’-INPU T FIRST TRACE NUMBER YOU WANT TO READ’
READ ( * * ) ITRACE

NTRACE = RHWNRC - ITRACE + 1
STRACE -  ITRACE

WRITE(*,*) '-INPUT LAST TRACE NUMBER YOU WANT TO READ ’ 
READ(*, *) LTRACE

WRITE(*,*) ' -INPU T FIRST SAMPLE YOU WANT TO READ 1 
READ ( *, * ) ISAMPL 
NSAMPL = RHWNSM - ISAMPL + 1 
JTRACE = ITRACE - 1 
ITRACE = ITRACE - 1 

100 ITRACE = ITRACE + 1
CALL DSKTIN ( LFC, IOTABL, ITRACE, HOST, TAPE, RHWNSM,

: IEOF, HEADER)
CALL DSKFMT ( HOST, TAPE, RHWNSM )

DO 200 I = 1, NSAMPL 
BUFFER ( ITRACE - JTRACE, I ) =

: HOST ( I + ISAMPL - 1)

200  CONTINUE
IF ( IEOF .EQ. 0 .AND. ITRACE .GE. LTRACE) GO TO 999 

GO TO 100
C WRITE DATA IN THE BUFFER INTO FILE
999  WRITE(*,*) ’-INPU T FILE NAME FOR OUTPUT'

READ(*,'(A)') FILEOUT
OPEN( 1 ,FTLE=FILEOUT,FORM='FORMATTED',ST ATUS='NEW')

PRINT*,'NO. OF TRACES TO WRITE=',LTRACE-STRACE+1 

PRINT*,'NSAMPL=',NSAMPL  

DO 888 1= 1 ,LTRACE-STRACE+1 

DO 777 J=l,NSAMPL 
W RITE(1,889) I,J,BUFFER(I,J)

889 FORMAT( 215,E l8.8)

777  CONTINUE
PRINT*,’ THE TRACE ', I, ' COMPLETED'
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888 CONTINUE 
CLOSE( 1 )  
STOP 
END
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FORTRAN-77 PROGRAM 3 - MATRAN

£2 5lesl«sjes(esl«>l=s4«3(«5j«9(=s(«9(e9ies}esies(eajes(esfeajes4es(!:^es(e9(es(esfesjesfes}esjes(es|e9(e9(esjes(esleslc»fe9(es4es(eslesje9(es(e9jea(es(es(es(cs(e34es(esie

C THREE-COMPONENT SEISMIC DATA ROTATION PROGRAM ON *
C THE VAX/VM S  SYSTEM: MATRAN *
C DESIGNED AND WRITTEN BY *
C XIN-QUAN MA *

C AT THE DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY *

C UNIVERSITY OF GLASGOW GLASGOW G12 8QQ (IN 1989) *
C THE PURPOSE OF THIS PROGRAM IS TO TRANSFORM FEILD COORDINATE *
C SYSTEM (VERT, NORTH, EAST) INTO A REQUIRED SYSTEM (VERTICAL, *
C RADIAL,TRANSVERSE). VERTICAL TRACE IS KEPT INTACT. THE OTHER *
C TRACES AS A VECTOR AT A SPECIFIC TIME HAVE BEEN PROJECTED *
C ONTO NEW SYSTEM. FOR ONE SHOTPOINT, 12 ANGLES OF RADIAL LINES *
C TO MAGNETIC NORTH ARE SET IN THE PROGRAM. AFTER THE OLD DATA *
C HAVE BEEN INPUT, THE NEW DATA IN THE DIFFERENT ORDER ARE THE *

C OUTPUTS. *

REAL XYZ(100,800),XX(20,800),YY(20,800),ZZ(20,800)
REAL ALPHA,PI
INTEGER STNUMB ,NORTHCH,EASTCH,VERTCH,NSAMPL,NTRACE 

INTEGER III
CHARACTER * 8 INFILE,OUTFELE
PRINT*,'-INPUT RLE NAME TO BE TRANSLATED'
READ(*,'(A)') INFILE 

NTRACE = 48 
NSAMPL = 501
OPEN(l,HLE=INFILE,STATUS='OLD’)
PRINT*,'-INPUT FILE NAME FOR OUTPUT'

READ(*,’(A)’) OUTFILE 
OPEN(2,FILE=OUTHLE,STATUS-NEW')
PRINT*,’-STAR T READING DATA INTO ARRAY '

C READ THE 3-COMPONENT DATA INTO ARRAY XYZ(I,J)
C THE DATA IN THE ARRAY XYZ(I,J) ARE PRODUCED BY PROGRAM

C MARDDISK.FOR, I IS CHANNEL, J IS SAMPLE

DO 2001=1, NTRACE 

DO 100 J=l, NSAMPL 

READ(1,50) M, N, XYZ(I,J)
50 FORMAT(2I5,E18.8)

100 CONTINUE
200  CONTINUE



178

P I= 3 .14159/180  
C INPUT STATION NUMBER 

111=0

99 PRINT*,'-INPUT STATION NUMBER(TYPE "0" TO STOP) '
READ*, STNUMB 

111= 111+  1
EF(STNUMBJEQ.l) GO TO 300 

IF(STNUMB .EQ.2) GO TO 400 

LF(STNUMB.EQ.3) GO TO 500 
EF(STNUMB .EQ.4) GO TO 600 

IF(STNUMB .EQ.5) GO TO 700 

IF(STNUMB .EQ. 6) GO TO 800 

IF(STNUMB.EQ.7) GO TO 900 

EF(STNUMB.EQ.8) GO TO 1000 

IF(STNUMB.EQ.9) GO TO 1100 
IF(STNUMB.EQ.IO) GO TO 1200 

IF(STNUMB.EQ.ll) GO TO 1300 
IF(STNUMB.EQ. 12) GO TO 1400 

IF(STNUMB .EQ.0) GO TO 9999
300 PRINT*,'-INPUT VERTICAL,NORTH,EAST TRACE NUMBERS'
C THE ORIGINAL DATA HAVE SEQUENCES FROM VERTICAL,NORTHJEAST
C WHICH ARE CORRESPONDING FIELD CHANNEL SEQUENCES.
C REMEMBER INPUTING DATA IN CORRECT ORDER.

READ*, VERTCH,NORTHCH,EASTCH 
C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION

ALPH A=346.5*PI 
DO 350 J=l,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 

Z YY(STNUMB.J))
ZZ(STNUMB,J)=XYZ(VERTCH,J)

350 CONTINUE

GO TO 99
400  PRINT*,’-INPU T VERTICAL NORTH AND EAST TRACE NUMBER’

READ*, VERTCH,NORTHCH,EASTCH 
C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION

ALPHA = 316.5*PI 
DO 450 J = l,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 

Z YY(STNUMB,J))
ZZ(STNUMB, J)=XYZ(VERTCH, J)

450  CONTINUE

GO TO 99
500 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER'
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READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION 
ALPHA = 286.5*PI 

DO 550 J=l,NSAMPL

CALL TRANSLT( ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 
Z YY(STNUMB,J))

ZZ(STNUMB ,J)=XYZ(VERTCH,J)
550 CONTINUE 

GO TO 99

600 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER'
READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION
ALPHA = 256.5*PI 

DO 650 J=l,NSAMPL

CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 
Z YY(STNUMB,J))

ZZ(STNUMB,J)=XYZ(VERTCH,J)
650 CONTINUE 

GO TO 99
700 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER’

READ*, VERTCH,NORTHCH,EASTCH 
C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION

ALPHA = 226.5*PI 

DO 750 J=l,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 

Z YY(STNUMB,J))
ZZ(STNUMB,J)=XYZ(VERTCH,J)

750 CONTINUE 

GO TO 99
800 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER'

READ*, VERTCH,NORTHCH,EASTCH 
C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION

ALPHA = 196.5*PI 

DO 850 J=l,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 

Z YY(STNUMB,J))
ZZ(STNUMB, J)=XYZ(VERTCH, J)

850 CONTINUE 

GO TO 99
900 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER'

READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION
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ALPHA = 166.5*PI 

DO 950 J=1,NSAMPL

CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 
Z YY(STNUMBJ))

ZZ(STNUMB ,J)=X YZ(VERTCH, J)
950 CONTINUE 

GO TO 99

1000 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER’
READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION
ALPHA = 136.5*PI 

DO 1050 J=1,NSAMPL

CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 
Z YY(STNUMB,J))

ZZ(STNUMB ,J)=XYZ( VERTCH, J)
1050 CONTINUE 

GO TO 99

1100 PRINT*,’-INPU T VERTICAL NORTH AND EAST TRACE NUMBER’
READ*, VERTCH, NORTHCH.EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION
ALPHA = 106.5*PI 

DO 1150 J=1,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 

Z YY(STNUMB,J))
ZZ(STNUMB, J)=X YZ(VERTCH, J)

1150 CONTINUE 

GO TO 99
1200 PRINT*,’-INPUT VERTICAL NORTH AND EAST TRACE NUMBER’

READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION

ALPH A=76.5*PI 
DO 1250 J=1,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J), 

Z YY(STNUMB,J))
ZZ(STNUMB,J)=XYZ(VERTCH,J)

1250 CONTINUE 
GO TO 99

1300 PRINT*,’-INPUT VERTICAL NORTH AND EAST TRACE NUMBER’
READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION

ALPH A=46.5*PI 
DO 1350 J=1,NSAMPL
CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J),
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Z YY(STNUMB,J))
ZZ(STNUMB ,J)=XYZ(VERTCH,J)

1350 CONTINUE 

GO TO 99

1400 PRINT*,'-INPUT VERTICAL NORTH AND EAST TRACE NUMBER'
READ*, VERTCH,NORTHCH,EASTCH 

C A IS ANGLE OF ROTATION IN THE POSITIVE DIRECTION
ALPHA = 16.5*PI 

DO 1450 J=1,NSAMPL

CALL TRANSLT(ALPHA,XYZ(NORTHCH,J),XYZ(EASTCH,J),XX(STNUMB,J),
Z YY(STNUMB,J))

ZZ(STNUMB, J)=XYZ( VERT CH, J)
1450 CONTINUE 

GO TO 99

9999 PRINT*,'-START WRITING DATA INTO FILE ’
C THE SEQUENCES OF OUTPUT DATA HAVE BEEN CHANGED INTO XX.YY/Z 
C WHICH ARE IMPORTANT FOR NEXT PROGRAM TO KEEP THEM SAME.

DO 8888 1=1, III-l
DO 8888 J=1,NSAMPL
W RITE(2,7777) I,J,XX(I,J),YY(I,J),ZZ(I,J)

7777 FORMAT(2I5,E18.8,E18.8,E18.8)
8888 CONTINUE 

STOP 
END

C
^p  ^  ^ p  ^  <4^ ̂  4 )  ^  4 )  4 )  ^  *4^ «4> «4> «4> «}> «4> «4> ^  *4) <4) 1^ *4̂  *4̂  »4  ̂ ^  ^  ^  *4̂  ^

C @@@@@@@@2^^

C THE NEW COORDINATE SYSTEM IS THAT X AXIS POINTS TO THE
C RADICAL DIRECTION FROM THE SHOT POINT, Y AXIS IS
C PERPENDICULAR TO THE X AXIS 90 DEGREE ANTICLOCKWISE FROM IT 

C THE ROTATING FORMULA IS 

C X=XO COS A + YO SIN A
C Y=-XO SIN A + YO COS A

SUBROUTINE TRANSLT ( A, XXO,YYO,XXN,YYN)
REAL A,XXO,YYO,XXN,YYN,B,C 
XXN=XXO*COS(A)+YYO*SIN(A)
YYN=-XXO*SIN(A)+YY 0*COS(A)

RETURN

END

(§
)(§

) 
(§

>(
§>

(§
) 

(§
)
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FORTRAN-77 PROGRAM 4 - MAPLOT

^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C SEISMIC DATA DISPLAY PROGRAM ON VAX/VMS: MAPLOT *
C DESIGNED AND WDRRTEN BY *
C XIN-QUAN MA *

C AT THE DEPARTMENT OF GEOLOGY & APPLIED GELOGY, *
C UNIVERSITY OF GLASGOW GLASGOW G12 8QQ(IN 1989) *
C THIS PROGRAM IS TO PLOT SEISMIC DATA AS VAIABLE AREA WIGGLE *
C TRACES USING POWERFUL UNIRAS GRAPHICS FLIBRARYN ROUTINES *
C WHICH IC MOUNTED ON VAX/VMS  AT THE COMPUTER CENTRE, *
C UNVERSITY OF GLASGOW. *
C THE PROGRAM IS DESIGNED TO DISPLAY 3-COMPONENT SEISMIC DATA *

C WHICH ARE STORED IN FREE ASCII-CODED FORMAT. THE CHOICE FOR *
C X, Y, Z DATA DISPLAY IS DETERMINED BY THE USER. *
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * s ( e ^ « ^ c * * ^ e * *

REAL TRACD,X(501),Y(501),Z(501)
CHARACTER* 8 COMP,INFILE 
INTEGER KTYPE,KSLINE
PRINT*,’-IN PU T DATA FILE NAME FOR DISPLAY'
READ(*,’(A)’) INFILE 
OPEN(l,FILE=INFILE,STATUS='OLD')

11 PRINT*,’-D O  YOU WANT TO PLOT WIGGLE LINE WITH VAIABLE '
PRINT*,’ AREA, INPUT 0 FOR YES, 1 FOR JUST LINE ’

READ*, KTYPE 

IF(KTYPE.EQ.O) GO TO 18 
IF(KTYPE.EQ.l) GO TO 21
PRINT*,’-Y O U  INPUT A WRONG INTEGER, TRY AGAIN!’

GOTO 11
18 PRINT*,'-DO YOU WANT TO KEEP LINE AND VAIABLE AREA,'

PRINT*,’ INPUT 0 FOR LINE & AREA, 1 FOR ONLY AREA, NO LINE' 

READ*, KSLINE
IF((KSLINE.EQ.l).OR.(KSLINE.EQ.O)) GO TO 21 

PRINT*,'-YOU INPUT A WRONG INTEGER, TRY AGAIN!'

GOTO 18
21 PRINT*,'-INPUT SCALLING VALUE E.G 999.999'

READ*, TRACD
C DATA FILE CONSISTS OF 4 COLUMNS I,X,Y,Z
22 PRINT*,'-INPUT DATA COMPONENT FOR DISPLAY(X,Y.OP Z)'

READ(*,'(A)') COMP
IF(COMP.EQ.'X) GO TO 156 
EF(COMP.EQ.'Y') GO TO 250
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IF(COMP.EQ.'Z') GO TO 350

PRINT*,'-YOU INPUT A WRONG CHARACTER, TRY IT AGAIN!' 
GOTO 22 

156 CALL GROUTE ('S VT4014;E')
CALL GMSLEV(T,’ ',' ’)

CALLGOPEN 

CALL SPRIM A(l)
CALL SDIR(1,-1)

CALL SSMPSI( 10.0,0.40,TRACD)
CALL STYPEW(KTYPE, 1 ,KSLINE)
DO 200 1=1, 12 

READ(1,100) X 
100 FORMAT(5X,E12.4)

CALL SWIGG(X,501)
CALL STRNMB(I)

200 CONTINUE

CALL SWIGG(X,9999)
CALL SNUM BS(-l)
GO TO 999 

250 CALL GROUTE ('S VT4014;E’)
CALL GMSLEV(T,’ ’,' ',' ’)
CALLGOPEN 
CALL SPRIMA(l)
CALL SDIR(1,-1)
CALL SSMPSI(10.0,0.40,TRACD)
CALL STYPEW(KTYPE, 1 ,KSLINE)

DO 2101= 1,12  

READ(1,190) Y 
190 FORMAT(17X,E12.4)

CALL SWIGG(Y,501)
CALL STRNMB(I)

210 CONTINUE
CALL SWIGG(Y,9999)

GO TO 999 
350 CALL GROUTE ('S VT4014;E')

CALL GMSLEVCI',' ',' ')

CALLGOPEN 
CALL SPRIMA(l)

CALL SDIR(1,-1)
CALL SSMPSI(10.0,0.40,TRACD)
CALL STYPEW(KTYPE,1,KSLINE)

DO 310 1=1, 12
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READ(1,180) Z 

180 FORM AT(29X,E 12.4)
CALL SWIGG(Z,501)
CALL STRNMB(I)

310 CONTINUE

CALL SWIGG(Z,9999)
999 CALL STIMEE(l.O.l.O) 

CALL GDASH(4)

CALL STIMEL(0.0,0.2,50,2)
CALLGCLOSE

STOP

END
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FORTRAN-77 PROGRAM 5 - M AGNPL

+ s |e s(« >|e s |<sk 5(t 5 |« ^«5| j  +  +  5 | c s |c ^ t^ c ^ < ^ c } |c ^ c s |c ^{ ^c jjc ^t )jc ^c 5(c ))e 5jc jjc jjc jje j|c ^c jjc ^c jj( j(c j jc jjc j |e j jc jjc j|e j je j|c jje jj5 j |e j jc j je j |c j jc j je j |{

C SCALLING SEISMIC TRACE PROGRAM ON THE VAX/VMS: MAGNPL *
C DESIGNED AND WRIITEN BY *
C XIN-QUAN MA *

C AT THE DEPERTMENT OF GEOLOGY & APPLIED GEOLOGY, *

C UNIVERSITY OF GLASGOW GLASGOW G12 8QQ (IN 1989) *

C THIS PROGRAM IS TO DESIGN A GAIN FUNCTION FOR EACH TRACE, *
C WHICH VARIES WITH THE AMPLITUDES IN A TRACE. THE SCALED TRACE *
C IS OBTAINED BY MULTIPLYING THE ORIGINAL TRACE BY THE GAIN *
C FUNCTIONS. THE NUMBER OF TRACES FOR PROCESSING CAN BE DEFINED *
C AS REQUIRED. *

c
INTEGER T,II,JJ,NSTN,NSAMPL 

PARAMETER(NSTN=12, NSAMPL=501)

REAL X(7000),Y(7000),Z(7000)
REAL XX(NSTN,NSAMPL),YY(NSTN,NSAMPL),ZZ(NSTN,NSAMPL) 
REAL DX(NSTN,NSAMPL),DY(NSTN,NSAMPL),DZ(NSTN,NSAMPL) 
REAL FX(NSTN,NSAMPL),FY(NSTN,NSAMPL),FZ(NSTN,NSAMPL) 
REAL MX,MY,MZ
CHARACTER* 8 INFILE,OUTFILE,COMP 

INTEGER KTYPE,KSLINE
PRINT*,'-INPUT THE FILE NAME TO BE PLOTTED'

READ (*,'(A)') INFILE 
OPEN(l,FILE=INFILE,STATUS='OLD')

L = 21
C READ 3- COMPONENT DATA INTO ARRAY
C THE DATA ARE OUTPUT FROM PROGRAM MATRSFM.FOR WHICH ARE

C IN ORDER OF XX,YY,ZZ

DO 15 I=1,NSTN 
DO 25 J=1,NSAMPL 
RE AD (1,222) XX(I,J),YY(I,J),ZZ(I,J)

222 FORMAT(5X,3E12.4)

25 CONTINUE
15 CONTINUE

PRINT*,'-START SCALLING TRACES'

DO 991 I=1,NSTN,2 

M=0 

100 M=M+L
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MX=0

MY=0
MZ=0
DO 150 J=M-L+1, M 
MX=MX+AB S (XX(I, J))

M Y=M Y+ AB S( Y Y (I, J))

MZ=MZ+ABS(ZZ(I,J))
150 CONTINUE

DO 160 J=M-L+1, M 
FX(I,J)=MX/L  

FY (I,J)=M Y /L  

FZ(I,J)=M Z/L  
160 CONTINUE

IF(M.LE.(NSAMPL-L)) GO TO 100 

C COMPUTE MEAN VALUES FOR LAST (NSAMPL-M) SAMPLES 
MX=0 

MY=0 

MZ=0
DO 250 J=M+1, NSAMPL 

MX=MX+AB S (XX(I, J))
M Y=M Y+ABS (Y Y (I, J))
MZ=MZ+ABS(ZZ(I,J))

250 CONTINUE

DO 350 J=M+1, NSAMPL 
FX(I,J)=MX/L  

FY (I,J)=M Y /L  

FZ(I,J)=M Z/L  

350 CONTINUE 

991 CONTINUE
C TO WEIGHT OPERATOR FUNCTION

DO 666 I=1,NSTN,2 

DO 555 J=l,NSAMPL 

DX(I,J)=0 
DY(I,J)=0 

DZ(I,J)=0 
555 CONTINUE 

N = (4 1 - l) /2
DO 434 J= l+ (41-l)/2 , NSAM PL-(41-l)/2 

DO 433 T=-N,N 
DX(I,J)=DX(I,J)+FX(I,J+T)

D Y (I, J)=D Y (I, J)+FY (I, J+T)
DZ(I,J)=DZ(I,J)+FZ(I,J+T)

433 CONTINUE
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DX(I,J)=DX(I,J)/41 
D Y (I,J)=D Y (I,J)/41 
DZ(I,J)=DZ(I,J)/41 

434 CONTINUE 
666 CONTINUE

DO 567 I=1,NSTN,2 

DO 567 J= l,(41-l)/2  
DX(I,J)=FX(I,J)/1 

D Y (I,J)=FY (I,J)/1  

DZ(I,J)=FZ(I,J)/1
567 CONTINUE

DO 568 I=1,NSTN,2

DO 568 J=NS AMPL-(41 -1 )/2 , NSAMPL 
DX(I,J)=FX(I,J)/1 

D Y (I, J)=FY (I, J )/l 
DZ(I,J)=FZ(I,J)/1

568 CONTINUE 

K = 0
DO 700 I=1,NSTN,2 

DO 700 J=l,NSAMPL 

K = K + 1

X(K)=XX(I,J)/DX(I,J)
Y (K )=Y Y  (I, J)/D Y (I, J)

Z(K)=ZZ(I,J)/DZ(I,J)
700 CONTINUE 

PRINT*,’ '

PRINT*,’-START PLOTTING TRACES’
PRINT*, ’ ’
PRINT*,’-INPU T GAIN FOR SCALLING(E.G.999.999)‘
READ*, TRACD

11 PRINT*,’-D O  YOU WANT TO PLOT WIGGLE LINE WITH VAIABLE"
PRINT*,’ AREA, INPUT 0 FOR YES, 1 FOR JUST LINE *

READ*, KTYPE 

IF(KTYPE.EQ.O) GO TO 18 
IF(KTYPE.EQ.l) GO TO 22
PRINT*,’-Y O U  INPUT A WRONG INTEGER, TRY AGAIN!"

GOTO 11
18 PRINT*,-DO  YOU WANT TO KEEP LINE AND VAIABLE AREA,"

PRINT*,’ INPUT 0 FOR LINE & AREA, 1 FOR ONLY AREA, NO LINE" 

READ*, KSLINE
IF((KSLINE.EQ. 1).OR,(KSLINE.EQ.O)) GO TO 22 

PRINT*,’-Y O U  INPUT A WRONG INTEGER, TRY AGAIN!"
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GOTO 18
C DATA FILE CONSISTS OF 4 COLUMNS I,X,Y,Z
22 PRINT*,'-INPUT DATA COMPONENT FOR DISPLAY(X,Y,OR Z)'

READ(*,'(A)') COMP 

IF(COMP.EQ.'X’) GO TO 156 

IF(COMP.EQ.'Y') GO TO 251 
EF(COMP.EQ.'Z') GO TO 351

PRINT*,’-Y O U  INPUT A WRONG CHARACTER, TRY IT AGAIN!’ 
GOTO 22 

156 CALL GROUTE (’S VT4014;E’)
CALL GMSLEV(T,' ’,' ')
CALLGOPEN 
CALL SPRIM A(l)
CALL S D IR (l.-l)
CALL SSMPSI(12.0,0.45,TRACD)
CALL STYPEW(KTYPE, 1 ,KSLINE)

K = 0
DO 200 1=1, NSTN.2 
IF(I.GT.l) K=K+501 

CALL SWIGG(X(K),501)
CALL STRNMB(I)

200 CONTINUE
CALL SWIGG(X,9999)

GO TO 999 
251 CALL GROUTE (’S VT4014;E')

CALL GMSLEV(T,’ ’,’ ’,’ ')

CALLGOPEN 
CALL SPRIM A(l)

CALL SDIR(1,-1)
CALL SSMPSI(12.0,0.45,TRACD)
CALL STYPEW(KTYPE,1,KSLINE)

K = 0
DO 210 1=1, NSTN,2 
IF(I.GT.l) K=K+501 
CALL SWIGG(Y(K),501)

CALL STRNMB(I)

210 CONTINUE
CALL SWIGG(Y,9999)

GO TO 999 
351 CALL GROUTE (’S VT4014;E')

CALL GMSLEV(T,' ’,' ')
CALLGOPEN 
CALL SPRIMA(O)
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CALL GVPORT(32.0, 5.0, 200.0,200.0) 
CALL SNTRAC(12)

CALL SDIR(1,1)
CALL SSMPSI(10.0,0.40,TRACD) 

CALL STYPEW(KTYPE,-1,KSLINE)
K = 0
DO 310 1=1, NSTN,2 
IF(I.GT.l) K=K+501 

CALL SWIGG(Z(K),501)
CALL SNUM BS(-l)
CALL STRNMB(I)

310 CONTINUE
CALL SWIGG(Z,9999)
CALL SNUM BS(l)

999 CALL GDASH(2)
CALL STIMEL(0.0,0.2,50,2)
CALL GDASH(O)
CALL STIMEL(0.0,1.0,250,2)
CALLGCLOSE

STOP
END
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FORTRAN-77 PROGRAM  6 - MASDF

^  3ie3ie3j<:{c9fc9|ci)c:{c9|c;je9|ci{c3|c :{c3{c3|e9je 3 |c:jc;|c 3|e9fe9{c ; | ' 9jc ;{c9fc9jc ,|c j|c ; | ' }|c9| ' 9jc : jc3 |c9jc ,j(3 |e i jc9|e9 |e9jc9jc3 je} |e3 |e9|e9 |e9|e9 | ' 9|c : je9j ' ijc9 j'

C SPATIAL DIRECTION FILTER ON VAX/VMS: MASDF *
C DEDSIGNED AND WRITTEN BY *
C XIN-QUAN MA, *
C DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY, *
C UNIVERSITY OF GLASGOW.(IN 1988) *
C THIS PROGRAM IS TO FILTER THE DATA WHICH POLARIZE IN THE *
C DEFINED DIRECTIONS BY EVALUATING THE LARGEST EIGENVECOTOR OF *
C A MATRIX OVER A TIME WINDOW. *
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INTEGER NN,CHANN1,CHANN2.CHANN3,IF AIL,IV,NSTN,NTRACE,NSAMPL 
DOUBLE PRECISION XX(20,1500),YY(20,1500),ZZ(20,1500),X(1500),

Z Y(1500),Z(1500),AL,BL,CL,DL,RR,R(3),V(3,3),T(3),MX,MY,
Z M Z,A(3,3)

CHARACTER * 8 INFILE, OUTFILE 
EXTERNAL F02ABF 
PRINT*,' '
PRINT* '
PRINT* 1 * * 1
PR IN T*,' * SPATIAL DIRECTIONAL FILTERING * '
PR IN T *,’ * * ’
PRINT* '
PRINT*,’ '
PRINT*,’-IN PU T THE FILE NAME TO BE FILTERED’
READ (*,’(A)’) INFILE
OPEN(l ,FILE=INFILE,ST ATUS-OLD’)
PRINT*,’-IN PU T FILE NAME FOR OUTPUT’
READ(*,'(A)’) OUTFILE 
OPEN(2,FILE=OUTFILE,STATUS-NEW’)
PRINT*,’-IN PUT NUMBER OF STATIONS IN THE FILE’

READ*, NSTN
PRINT*,’-IN PU T NUMBER OF SAMPLES PER TRACE'

READ*, NSAMPL
PRINT*,’-IN PUT THE LENGTH OF TIME WINDOW(NO.OF SAMPLES)’

READ*, L
PRINT*,’-START READING DATA INTO ARRAY’

C READ 3- COMPONENT DATA INTO ARRAY
C THE DATA ARE OUTPUT FROM PROGRAM MATRSFM.FOR WHICH ARE

C ORDER OF XX,YY,ZZ
DO 151=1,NSTN
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DO 25 J=l,NSAMPL
READ( 1,222) IU J,X X (U ),Y Y (I,J),ZZ(I,J)

222 FORMAT(2I5,3E18.8)
25 CONTINUE
15 CONTINUE
C INPUT A THRESHOLD ANGLE IN DEGREE

PRINT*,'-INPUT A THRESHOLD ANGLE IN DEGREE' 
READ*, DL 

DL=D L*3.1416/180 
999 PRINT*,’-INPUT THE STATION NUMBER TO START'

READ*, I
IF(I.EQ.O .OR. I.GT.NSTN) GO TO 9999 

C TO CREATE A MATRIX A(3,3)
M=0

100 NN=M/L + 1 
M=M+L

C SET MX,MY,MZ INTO ZEROS
MX=0 
MY=0 
MZ=0
DO 45 J=M-L+1,M 
MX=MX+XX(I,J)
MY=MY+YY (I, J)
MZ=MZ+ZZ(I,J)

45 CONTINUE
MX=MX/L 
MY=MY/L 
M L-M LfL  

C SET MATRIX A INTO ZERO

DO 455 J=l,3 
DO 455 K=l,3 
A(J,K)=0 

455 CONTINUE
DO 60 J=M-L+1,M
A (1, 1)=A(1,1)+(XX(I,J)-MX)**2
A( 1,2)=A( 1,2)+(XX(I,J)-M X)*(YY(I,J)-M Y)
A(1,3)=A(1,3)+(XX(I,J)-MX)*(ZZ(I,J)-MZ) 
A(2,1)=A(2,1)+(YY(I,J)-MY)*(XX(I,J)-MX)

A (2,2)=A (2,2)+(Y Y  (I,J)-M Y )**2
A(2,3)=A(2,3)+(YY(I,J)-MY)*(ZZ(I,J)-MZ) 
A(3,1 )=A(3,1 )+(ZZ(I, J)-MZ)*(XX(I, J)-MX) 
A(3,2)=A(3,2)+(ZZ(I,J)-MZ)*(YY(I,J)-MY)
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A (3,3)=A (3,3)+(ZZ(I,J)-M Z)**2 
60 CONTINUE

DO 70 J=l,3 
DO 70 K=l,3 
A (J,K )=A (J,K )/L  

70 CONTINUE
C £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £

C AFTER CREATING A MATRIX A, THEN COMPUTE THE EIGENVECTOR £
C CORRESPONDING TO THE LARGEST EIGENVALUE OF MATRIX A(3,3) £
C THAT VECTOR IN THEORY IS CONSIDERED AS A DIRECTIONAL VECTOR £
C OF MAIN POLARIZATION AXIS DURING A PERIOD OF TIME. £
C £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £
C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
C NAG ROUTINE F02ABF CALCULATES EIGENVALUES AND EIGENVECTORS
C OF SYMMETRIC MATRIX. HERE
C A(3,3) STANDING FOR SYMMETRIC MATRIC
C R(3) STANDING FOR 3 EIGENVALUES
C V(3,3) STANDING FOR 3 EIGENVECTORS

IA = 3 
N = 3  
IFAIL = 1 
IV = 3
CALL F02ABF(A,IA,N,R,V,IV,E,IFAIL)
R (l) = ABS(R(1))
R(3) = ABS(R(3))

C TO FIND OUT THE LARGEST EIGENVALUE AMONG 3 AND EIGENVECTOR
C CORRESPONDING TO THE LARGEST EIGENVALUE.

IF(R(3).LT.R(1)) THEN 
T (l) = ABS(V(1,1))
T(2) = ABS(V(2,1))
T(3) = ABS(V(3,1))
ELSE
T (l) = ABS(V(1,3))
T(2) = ABS(V(2,3))
T(3) = ABS(V(3,3))
END IF

C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C AFTER THE DIRECTIONAL VECTOR OF MAIN POLARIZATION AXIS *
C {T(1),T(2),T(3)} HAS BEEN FOUND, WE CALCULATE THE ANGLES *
C OF POLARIZATION AXIS WITH THREE AXISES, MATHEMATICALLY *

C (COSAL)**2 + (COSBL)**2 + (COSCL)**2 = 1 *
C CO SAL=T(l)/SQ RT(T(l)**2+T(2)**2+T(3)**2) *
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C COSBL=T(2)/SQRT(T(l)**2+T(2)**2+T(3)**2) *
C COSCL=T(3)/SQRT(T(l)**2+T(2)**2+T(3)**2) *

RR=SQRT(T(1)**2+T(2)**2+T(3)**2)
AL=ACO S (AB S (T( 1 ))/RR)
BL=ACOS(ABS(T(2))/RR)
CL=ACOS(ABS(T(3))/RR)

Q A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

C IF WE SELECT THE FILTERING DIRECTIONS AS X,Y,Z AXIAL A
C DIRECTIONS(THIS IS GENERAL CASE AND COMMONLY USED),THEN A
C WE HAVE TO GIVE A THRESHOLD ANGLE. THE FILTERING THEORY A
C IS THAT IF THIS ANGLE IS LESS THAN THE GIVEN THRESHOLD A
C ANGLE,THE CORRESPONDING PART OF THE TRAJECTORY IS KEPT, A
C OTHERWISE, IT IS REJECTED. A
Q A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

C FILTERING IN X DIRECTION
IF (AL.GT.DL) go to 250 

C KEEPING THIS PART OF TRAJECTORY.
DO 232 K=M-L+1, M 
X(K)=1000

232 CONTINUE 
GO TO 255

250 DO 233 K=M-L+1,M
233 X(K)=0
C FILTERING IN Y DIRECTION
255 IF(BL.GT.DL) go to 300

DO 258 K=M-L+1,M 
258 Y(K)=1000

GO TO 310 
300 DO 311 K=M-L+1,M
311 Y(K)=0
C FILTERING IN Z DIRECTION
310 IF(CL.GT.DL) GO TO 560

DO 350 K=M-L+1,M 
350 Z(K)=1000

GO TO 660 
560 DO 570 K=M-L+1,M
570 Z(K)=0
660 IF((M+L).GT.NSAMPL) GO TO 661 

GOTO 100
C WRITE FILTERED DATA INTO A FILE

661 DO 550 K=l,NSAMPL
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WRITE(2,500) K,X(K),Y(K),Z(K) 
500 FORMAT(I5,3E12.4)
550 CONTINUE 

GO TO 999 
9999 STOP 

END
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FORTRAN-77 PROGRAM  7 - M AENERGY

C SEISMIC SOURCE ENERGY EVALUATION PROGRAM: MAENERGY *
C ON THE VAX/VMS SYSTEM. *
C DEDSIGNED AND WRITTEN BY *
C XIN-QUAN MA *
C AT THE DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY, *
C UNIVERSITY OF GLASGOW. GLASGOW G12 8QQ (IN 1988) *
C THIS PROGRAM IS TO CALCULATE THE TOTAL ENERGY FROM SINGLE SHOT *
C AND THE ENERGY ON EACH COMPONENT OF INDIVIDUAL STATIONS. THE *
C GIVES THE RATIO OF THEM. *
Q s i c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
INTEGER NN,THRESH,IFAIL,IV,NSTN,NTRACE,NSAMPL 
DOUBLE PRECISION XX(20,1500),YY(20,1500),ZZ(20,1500),X(1500),

Z Y(1500),Z(1500),AL,BL,CL,DL,RR,R(3),V(3,3),T(3),MX,MY,
Z MZ,NWX,NWY,NWZ,LL(20),ENX,ENY,ENZ,A(3,3)

CHARACTER * 8 INFILE,OUTFILE
DATA LL/0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,

Z 75,80,85,90,999/
EXTERNAL F02ABF
PRINT*,'-INPUT THE FILE NAME TO BE PROCESSED’
READ (*,'(A)') INFILE
OPEN( 1 ,FILE=INFILE,STATU S-OLD')
PRINT*,'-INPUT FILE NAME FOR OUTPUT'
READ(*,'(A)') OUTFILE 
OPEN(2,FILE=OUTFILE,STATUS-NEW')
PRINT*,'-INPUT NUMBER OF STATIONS IN THE FILE’

NSTN =12
PRINT*,’-IN PUT NUMBER OF SAMPLES PER TRACE'

NSAMPL = 501
PRINT*,'-INPUT THE LENGTH OF TIME WINDOW(NO.OF SAMPLES)'

READ*, L
C COMPUTE TOTAL NUMBER OF WINDOWS IN ONE SECTIONS(12 TRACES)

PRINT*,'-START READING DATA INTO ARRAY'
C READ 3- COMPONENT DATA INTO ARRAY
C THE DATA ARE OUTPUT FROM PROGRAM MATRSFM.FOR WHICH ARE

C IN ORDER OF XX,YY,ZZ
DO 15 1=1,NSTN 
DO 25 J=l,NSAMPL
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READ( 1,222) II,JJ,XX(I,J),YY(I,J),ZZ(I,J) 
NWX = NWX + XX(I,J)**2 
NWY = NWY + YY(I,J)**2 
NWZ = NWZ + ZZ(I,J)**2 

222 FORMAT(I3,I5,3E12.4)
25 CONTINUE
15 CONTINUE
1111 THRESH = THRESH+1 

ENX = 0 
ENY = 0 
ENZ = 0 
KK = 0 
1 =  0
IF(LL(THRESH).EQ.999) GO TO 9999 
KK = KK + 1
DL=LL(THRESH)*3.1416/180 

999 1 = 1 + 1
IF(I.GT.NSTN) GO TO 661 

C TO CREATE A MATRIX A(3,3)
M=0

100 NN=M/L + 1 
M=M+L

C SET MX,MY,MZ INTO ZEROS
MX=0 
MY=0 
MZ=0
DO 45 J=M-L+1,M 
MX=MX+XX(IJ)
MY=M Y+YY (I, J)
MZ=MZ+ZZ(I,J)

45 CONTINUE
MX=MX/L 
MY=MY/L 
MZ=MZ/L 

C SET MATRIX A INTO ZERO

DO 455 J=l,3 
DO 455 K=l,3 
A(J,K)=0 

455 CONTINUE
DO 60 J=M-L+1,M 
A(1,1)=A(1,1)+(XX(I,J)-M X)**2 
A( 1,2)=A( 1,2)+(XX(I, J)-MX)*(YY (I, J)-MY) 
A( 1,3)=A( 1,3)+(XX(I, J)-MX)*(ZZ(I, J)-MZ)
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A(2,1)=A (2,1)+(Y Y(I,J)-M Y )*(XX (I,J)-M X)
A (2,2)=A (2,2)+(Y Y (I,J)-M Y )**2
A (2,3)=A (2,3)+(Y Y (I,J)-M Y )*(ZZ(I,J)-M Z)
A(3,1)=A(3,1)+(ZZ(I,J)-M Z)*(XX(I,J)-M X)
A(3,2)=A (3,2)+(ZZ(I,J)-M Z)*(Y Y (I,J)-M Y )
A(3,3)=A (3,3)+(ZZ(I,J)-M Z)**2 

60 CONTINUE 
DO 70 J=l,3 
DO 70 K=l,3 
A (J,K )=A (J,K )/L  

70 CONTINUE
C
C &&&<S
C AFTER CREATING A MATRIX A, THEN COMPUTE THE EIGENVECTOR &
C CORRESPONDING TO THE LARGEST EIGENVALUE OF MATRIX A(3,3) &
C THAT VECTOR IN THEORY IS CONSIDERED AS A DIRECTIONAL VECTOR &
C OF MAIN POLARIZATION AXIS DURING A PERIOD OF TIME. &
C # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
c %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C NAG ROUTINE F02ABF CALCULATES EIGENVALUES AND EIGENVECTORS
C OF SYMMETRIC MATRIX. HERE
C A(3,3) STANDING FOR SYMMETRIC MATRIC
C R(3) STANDING FOR 3 EIGENVALUES
C V(3,3) STANDING FOR 3 EIGENVECTORS

IA = 3 
N = 3  
IFAIL = 1 
IV = 3
CALL F02ABF(A,IA,N,R,V,IV,E»IFAIL)

R (l) = ABS(R(1))
R(3) = ABS(R(3))

C TO FIND OUT THE LARGEST EIGENVALUE AMONG 3 AND EIGENVECTOR
C CORRESPONDING TO THE LARGEST EIGENVALUE.

IF(R(3).LT.R(1)) THEN 
T (l) = ABS(V(1,1))
T(2) = ABS(V(2,1))
T(3) = ABS(V(3,1))
ELSE
T (l) = ABS(V(1,3))
T(2) = ABS(V(2,3))
T(3) = ABS(V(3,3))
END IF
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C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
c

C AFTER THE DIRECTIONAL VECTOR OF MAIN POLARIZATION AXIS *
C {T(1),T(2),T(3)} HAS BEEN FOUND, WE CALCULATE THE ANGLES *
C OF POLARIZATION AXIS WITH THREE AXISES, MATHEMATICALLY *
C (COSAL)**2 + (COSBL)**2 + (COSCL)**2 = 1 *
C CO SAL=T(l)/SQ RT(T(l)**2+T(2)**2+T(3)**2) *
C COSBL=T(2)/SQRT(T(l)**2+T(2)**2+T(3)**2) *
C COSCL=T(3)/SQRT(T(l)**2+T(2)**2+T(3)**2) *

RR=SQRT(T(1)**2+T(2)**2+T(3)**2)
AL=ACO S (AB S (T( 1 ))/RR)
BL=ACOS (AB S (T(2))/RR)
CL=ACOS(ABS(T(3))/RR)

Q  A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

C IF WE SELECT THE FILTERING DIRECTIONS ASX, Y,Z AXIAL A
C DIRECTIONS(THIS IS GENERAL CASE AND COMMONLY USED),THEN A
C WE HAVE TO GIVE A THRESHOLD ANGLE. THE FILTERING THEORY A
C IS THAT IF THIS ANGLE IS LESS THAN THE GIVEN THRESHOLD A
C ANGLE,THE CORRESPONDING PART OF THE TRAJECTORY IS KEPT, A
C OTHERWISE, IT IS REJECTED. A
Q  A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

C FILTERING IN X DIRECTION
IF (AL.GT.DL) go to 255 

C KEEPING THIS PART OF TRAJECTORY.
DO 232 K=M-L+1, M 
ENX = ENX + XX(I,K)**2 

232 CONTINUE
C FILTERING IN Y DIRECTION
255 IF(BL.GT.DL) go to 300

DO 258 K=M-L+1, M 
ENY = ENY +YY(I,K)**2 

258 CONTINUE
C FILTERING IN Z DIRECTION
300 IF(CL.GT.DL) GO TO 660

DO 350 K=M-L+1, M 
ENZ = ENZ + ZZ(I,K)**2 

350 CONTINUE
660 IF((M+L).GT.NSAMPL) GO TO 999 

GOTO 100
C WRITE FILTERED DATA INTO A FILE
661 E N X  =  100*EN X /(N W X +N W Y +NW Z )
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ENY = 100 *EN Y/(NWX+N W Y+NWZ)
ENZ = 100*ENZ/(NWX+NWY+NWZ)
WRITE(2,500) THRESH,LL(THRESH),ENX,ENY,ENZ 

500 FORMAT(I5,F6.2,3E12.4)
GOTO 1111 

9999 STOP 
END
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FORTRAN-77 PROGRAM  8 - M ASEPF

£  * * * * * * * * *  * * * * * * * s | e i i c s ) < * * * * s f e s | c s | e J ( c 5 ) « * s f e > | c 5 ( t s | e s | e s ) « s f e : l t s J c j ( c s | t s | t j | e s ( e : f c j | c : | c s ) c s | e s ( t a ( e 3 | c : | < j | c s | e : J « j | e

C SIGNAL ENHANCEMENT POLARISATION FILTER: MASEPF *
C ON THE VAX/VMS SYSEM *
C DESIGNED AND WRITTEN BY *
C XIN-QUAN MA *
C AT THE DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY, *
C UNIVERSITY OF GLASGOW GLASGOW G12 8QQ (IN 1988) *
C THIS S OFTWARE COMPUTES THE COVARIANCE MATRIX OVER A TIME *
C WINDOW AND THEN CALCULATES THE LARGEST AND THE SECOND *
C LARGEST EIGENVALUES OF THIS MATRIX AND THE EIGENVECTOR *
C CORRESPONDING THE LARGEST EIGENVALUE BY CALLING NAG ROUTINE *
C F02ABF. THE REACTILINEARITY AND DIRECTIONALITY FUNCTIONS *
C ARE CONSTRUCTED, WHICH FORMS THE FILTER OPERATORS. THE *
C FILTERED SEISMOGRAMS ARE OBTAINED BY MULTIPLYING THE *
C ORIGINAL SEISMOGRAMS BY FILTER OPERATORS. *
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C
INTEGER MN,LL,T,L,II,IJK,III,NN,KK,JJ,JJJ,WW,NSTN,NSAMPL,

Z MM,LTH,RN,CN,IFAIL,IV,N,IA,QQ 
PARAMETER (RN=15,CN=1500)
DOUBLE PRECISION A(3,3),F(2),G(3),MX,MY,MZ,V(3,3),E(3),R(3), 

ZP(3),FTN(RN,CN),RLL(RN,CN),XX(RN,CN),YY(RN,CN),ZZ(RN,CN),
Z FF,FNT(RN,CN),RL(RN,CN),DX(RN,CN),DY (RN,CN),DZ(RN,CN),
Z FX(RN,CN),FY(RN,CN),FZ(RN,CN),NX(RN,CN),NY(RN,CN), 
ZNZ(RN,CN),DXX(RN,CN),DYY(RN,CN),DZZ(RN,CN)

CHARACTER*8 INFILE,OUTFILE,OPHLE.YORN 

EXTERNAL F02ABF 
PRINT*,' '
PRINT*,' ’
PRIN T* ' ******************************************

PRINT*,' * * '
PRINT*,' * SIGNAL ENHANCEMENT POLARISATION FILTER * '

PRINT*,' * * '
PRINT* ' ******************************************

PRINT*,' '
PRINT*,' '
PRINT*,'--INPUT DATA FILE NAME FOR FILTERING '

READ(*,'(A)') INFILE
OPEN( 1 ,FILE=INFILE,STATUS-OLD')
PRINT*,'--INPUT NUMBER OF STATIONS IN THE FILE'



201

NSTN = 1

PRINT*,'-INPUT THE NUMBER OF SAMPLES IN ONE TRACE '
NSAMPL = 1001
PRINT*,'-INPUT THE FILE NAME FOR OUTPUT '
READ(*,'(A)') OUTFILE 
OPEN(2,FILE=OUTFILE,STATUS='NEW')

C INPUT THE TIME WINDOW ( NO OF SAMPLES )
555 PRINT*,'-INPUT TIME WINDOW(NO.OF SAMPLES) '

READ*, L
PRINT*,'-START READING DATA INTO ARRAY '

C READ THE 3-COMPONENT DATA INTO ARRAY XX(I,J),YY(I,J),ZZ(I,J)
C THE DATA ARE OUTPUT FROM PROGRAM MATRSFM.FOR WHICH HAS ORDER
C OFX,Y,Z.

DO 333 1=1, NSTN
DO 222 J= l, NSAMPL
READ(1,111) QQ, XX(I,J),YY(I,J), ZZ(I,J)

111 FORMAT(I5,3E12.4)
222 CONTINUE 
333 CONTINUE
7777 PRINT*,'-INPUT STATION NUMBER FOR FTLTERING(TYPE 0 TO STOP) ' 

READ*, I 
IJK=IJK+1
IF((I.EQ.O) .OR. (I.GT.NSTN)) GO TO 8888 

C TO CREATE COVARIANCE MATRIX A OVER THE TIME L*DT.

LL=L 
27 LL=LL+1 

MX=0 
MY=0 
MZ=0
DO 33 J= LL-L, LL-1 
MX=MX+XX(I,J)
MY=M Y+YY (I, J)
MZ=MZ+ZZ(I,J)

33 CONTINUE
MX=MX/L 
MY=MY/L 
MZ=MZ/L

C SET ELEMENTS OF MATRIX INTO ZEROS

DO 6112 J=l,3 
DO 6112 K=l,3 
A(J,K) = 0 

6112 CONTINUE
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DO 44 J=LL-L,LL-1

A(1,1)=A(1,1)+(XX(I,J)-M X)**2
A( 1,2)=A( 1,2)+(XX (I,J)-M X)*( YY(I, J)-M Y)
A(1,3)=A(1,3)+(XX(I,J)-MX)*(ZZ(I,J)-MZ)
A(2,1)=A(2,1)+(YY(I,J)-M Y)*(XX(I,J)-M X)
A (2,2)=A (2,2)+(Y Y (I,J)-M Y )**2
A(2,3)=A(2,3)+(YY(I,J)-M Y)*(ZZ(I,J)-M Z)
A (3,1 )=A (3,1 )+(ZZ(I,J)-M Z) *(XX(I,J)-MX) 
A (3,2)=A (3,2)+(ZZ(I,J)-M Z)*(Y Y (I,J)-M Y )
A (3,3)=A (3,3)+(ZZ(I,J)-M Z)**2 

44 CONTINUE 
DO 55 J=l,3 
DO 55 K=l,3 
A (J,K )=A (J,K )/L  

55 CONTINUE
C !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Q s|* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C AFTER CREATING MATRIX A(3,3), THE NAG ROUTINE F02ABF IS *
C USED TO CALCULATE THREE EIGENVALUES AND CORRESPONDING THREE *
C EIGENVECTORS .HOWEVER, ONLY THE LARGEST AND THE SECOND *
C LARGEST EIGENVALUES ARE USED IN THIS PROGRAM. SO IS THE *
C EIGENVECTOR CORRESPONDING THE LARGEST EIGENVALUE. *
C NAG ROUTINE F02ABF CALCULATES EIGENVALUES AND EIGENVECTORS *
C OF SYMMETRIC MATRIX. HERE *
C A(3,3) STANDING FOR SYMMETRIC MATRIX *
C R(3) STANDING FOR 3 EIGENVALUES *
C V(3,3) STANDING FOR 3 EIGENVECTORS *
£  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IA = 3 
N = 3  
IFAIL = 1 
IV = 3
CALL F02ABF(A,IA,N,R,V,IV,E,IFAIL)
R (l) = ABS(R(1))
R(2) = ABS(R(2))
R(3) = ABS(R(3))

C TO FIND OUT THE LARGEST EIGENVALUE AMONG 3 AND EIGENVECTOR
C CORRESPONDING TO THE LARGEST EIGENVALUE.

IF(R(3).LT.R(1)) THEN 

F (l) = R (l)
G (l) = ABS(V(1,1))
G(2) = ABS(V(2,1))
G(3) = ABS(V(3,1))
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F(R(2).LT.R(3)) GO TO 6109 
F(2) = R(2)
GO TO 7009 

6109 F(2) = R(3)
7009 CONTINUE 

ELSE
F (l) = R(3)
G (l) = ABS(V(1,3))
G(2) = ABS(V(2,3))
G(3) = ABS(V(3,3))
IF(R(2).LT.R( 1)) GO TO 7109 
F(2) = R(2)
GOTO 7209 

7109 F(2) = R (l)
7209 ENDIF

C !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
C AFTER FINDING THE LARGEST AND SECOND LARGEST EIGENVALUES
C WE NOW CONSTRUCT A FUNCTION CALLED FTN.

I I= L L - l- (L - l ) /2
NN=1
JJ=1
KK=1
F T N (I,II)= 1-(F (2)/F (1))**N N  

C TO MEASURE THE RECTILINEARITY AT TIME To, A NEW FUNC-
C TION CALLED RL IS NOW CONSTRUCTED.

R L (I,II)= F T N (I,II)**JJ 
C TO CREATE THE DIRECTION FUNCTIONS AT TIME To, WE CONS-
C TRUCT DX,DY AND DZ.

DX(I,II) = G(1)**KK 
DY(I,II) = G(2)**KK 
DZ(I,II) = G(3)**KK 
IF(II.LE.(NSAMPL-(L-l)/2)) GO TO 27 

C NOTICE THAT WE CAN NOT OBTAIN THE FILTER OPERATORS FOR
C FIRST (L/2 -1) POINTS, BUT TAKEN THEM AS SAME AT THAT OF

C POINT L/2.
III= 1+ (L -1 )/2  
DO 888 N =l,(L-l)/2 
R L (I,N )= R L (I,III)
DX(I,N)=DX(I,III)
D Y (I,N )=DY (I,III)
DZ(I,N)=DZ(I,III)

888 CONTINUE



2 0 4

C NOTICE THAT WE CAN NOT OBTAIN THE FILTER OPERATORS FOR
C THE LAST (L-l)/2 POINTS, BUT TAKEN THEM AS SAME AS THAT
C OF POINT (MN-(L-l)/2).
C JJJ IS LT CENTRE POINT IN ABOVE LOOP

JJJ=II-1
DO 950 MM=II,NSAMPL 
R L(I,M M )=R L(I,JJJ)
DX(I,MM)=DX(I,JJJ)
DY(I,M M )=DY(I,JJJ)
DZ(I,MM)=DZ(I,JJJ)

950 CONTINUE
C TO WEIGHT OPERATOR FUNCTIONS
C TO SET WINDOW LENGTH FOR SMOOTHING THE FUCTIONS.

LTH =11 
M = (L T H -l)/2
DO 434 J=l+(LTH-l)/2, NSAMPL-(LTH-l)/2 
DO 433 T=-M,M 
R LL(I,J)=R LL(I,J)+R L(I,J+T)
DXX(I,J)=DXX(I,J)+DX(I,J+T)
D YY (I, J)=DY Y (I, J)+D Y (I, J+T)
DZZ(I,J)=DZZ(I,J)+DZ(I,J+T)

433 CONTINUE 
R L (I,J)=R L L(I,J)/LTH  
DX(I,J)=DXX(I,J)/LTH 
DY(I,J)=DYY(I,J)/LTH 
DZ(I,J)=DZZ(I,J)/LTH

434 CONTINUE
C OPERATOR FUNCTIONS FX,FY,FZ

DO 553 J=l,NSAMPL 
FX(I,J)=RL(I,J)*DX(I,J)
FY (I,J)=R L (I,J)*D Y (I,J)
FZ(I,J)=RL(I,J)*D Z(I,J)

553 CONTINUE
C THE GAIN FUNCTIONS FX,FY AND FZ ARE CONSIDERED AS THE
C FILTER OPERATORS. THE FILTERED SEISMOGRAMS ARE OBTAINED
C BY MULTIPLYING THE ORIGINAL SEISMIGRAMS BY FILTER OPERATORS.

DO 890 J= 1, NSAMPL 
NX(I,J)=XX(I,J)*FX(I,J)
N Y (I,J)=Y Y (I,J)*FY (I,J)
NZ(I,J)=ZZ(I,J)*FZ(I,J)

890 CONTINUE
C SO FAR, THE 3 TRACES FOR ONE STATION HAVE BEEN FILTERED
C NEXT IS IF COMMAND ASKING FOR NEXT TRACES TRACES TO BE
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C FILTERED.
GO TO 7777

C AFTER NSTRN STATIONS HAVE BEEN FINISHED, THIS PROGRAM IS TO
C WIRIT FILTERED DATA INTO FILE
8888 PRINT*,'-START WRITING FILTERED DATA INTO FILE '

DO 8890 J = 1, UK-1
DO 8890 K = 1, NSAMPL 
WRITE(2,8889) K, NX(J,K),NY(J,K),NZ(J,K)

8889 FORMAT( 15, )
8890 CONTINUE
444 PRINT*,'-DO YOU WANT TO KEEP OPERATOR FUNCTIONS(Y/N)’

READ(*,’(A)') YORN 
EF(YORN.EQ.’N') GO TO 9999 
IF(YORN.EQ.'Y') GO TO 666
PRINT*,’-Y O U  INPUT A WRONG LETTER,TRY AGAIN!’
GO TO 444

666 PRINT*,’-IN PUT FILE NAME FOR OPERATOR FUNCTIONS '
READ(*,’(A)') OPFILE 
OPEN(3,FILE=OPFILE,STATUS-NEW')
PRINT*,'-START WRITING FILTER FUNCTIONS INTO FILE '
DO 7790 J = 1, UK-1
DO 7790 K = l ,  NSAMPL
WRITE(3,7789) K, FX(J,K),FY(J,K),FZ(J,K)

7789 FORMAT( 15, 3E12.4)
7790 CONTINUE 
9999 CLOSE(2)

CLOSE(3)
STOP
END
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FORTRAN-77 PROGRAM  9 - M AVHPL

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C GENERATION SYNTHETIC SEISMOGRAM PROGRAM: MAVHPL *
C ON THE VAX/VMS SYSTEM. *
C DESIGNED AND WRIITEN BY *
C XIN-QUAN MA *
C AT THE DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY, *
C UNIVERSITY OF GLASGOW GLASGOW G12 8QQ (IN 1989) *
C THIS PROGRAM IS USED IN CONJUNCTION WITH MODELLING PACKAGE *
C SEIS83 AND VERTPL. TRACE LENGTH IS 4 SEC, SAMPLING RATE IS 4 MS. *
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C
REAL TO,LI ,L2,NP,Y(200,20)
INTEGER LO,NN,NO,X(200,20)
CHARACTER* 10 INFILE,OUTFELE 
CHARACTER* 70 B
OPEN(l,FILE='SEISGRAM',STATUS-OLD')
OPEN (2 ,FILE='VMA' ,ST ATUS-NEW')
DO 30 1=1,3 
READ(1,89),B

89 FORMAT(A70)
30 CONTINUE

NN = 0 
333 NN = NN +1

IF(NN.EQ.3) STOP
C TO IS THE TIME OF THE FIRST POINT IN SYNTHETIC SEISMOGRAM.
C NP IS NUMBER OF POINTS IN SYNTHETIC SEISMOGRAM.

READ(1,90) TO.NP
90 FORMAT(25X, F10.5, F5.0)

NO = NINT(TO/0.004)
LI = NP/18
L2 = ANINT(NP/18)
IF((L1-L2).GT.0.0) THEN 
LO = NINT(L2) + 1 
ELSE
LO = NINT(L2)
END IF 

5 DO 1001=1 J^O
READ(1,10) X(I,1),X(I,2),X(I,3),X(I,4),X(I,5),

Z X(I,6),X(I,7),X(I,8),X(I,9),X(I,10),
Z X(I,n),X(I,12),X(I,13),X(I,14),X(I,15),
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Z X(1,16),X(1,17),X(1,18)
Y (1,1) = X(I,1)
Y(I,2) = X(I,2)

Y(I,3) = X(I,3)
Y(I,4) = X(I,4)
Y(I,5) = X(I,5)
Y(I,6) = X(I,6)
Y(I,7) = X(I,7)
Y(I,8) = X(I,8)
Y(I,9) = X(I,9)
Y(I,10) = X(I,10)
Y(I,11) = X(I,11)
Y(I,12) = X(I,12)
Y(I,13) = X(I,13)
Y(I,14) = X(I,14)
Y(I,15) = X(I,15)
Y(I,16) = X(I,16)
Y(I,17) = X(I,17)
Y(I,18) = X(I,18)

10 FORMAT(18I4)
100 CONTINUE

DO 260 1 = 1, NO-1 
WRITE(2,200) I, 0.0 

260 CONTINUE 
K = NO-1 
DO 3001=14.0 
DO 300 J=l,18 
K=K+1
WRITE(2,200) K,Y(I,J)

200 FORMAT(I5,E12.4)
300 CONTINUE

DO 3601 = NO+LO*18, 1001 
WRITE(2,200) I, 0.0 

360 CONTINUE 
GO TO 333 

99 CLOSE(UNIT=2)

STOP
END
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FORTRAN-77 PROGRAM  10 - MASSP

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C SLANT-STACK PROCESSING PROGRAM ON THE VAX/VMS SYSTEM: MASSP *
C DESIGNED AND WRITTEN BY *
C XIN-QUAN MA *
C AT THE DEPARTMENT OF GEOLOGY & APPLIED GEOLOGY, *
C UNIVERSITY OF GLASGOW, GLASGOW G12 8QQ (IN 1989) *
C THIS PROGRAM IS TO PROJECT ALL THE 12 STATIONS TO A *
C SPECIFIED LINE WITH CERTAIN ANGLE TO THE EAST DEFINED *
C BY THE USER AND THEN TO CALCULATE THE NEW OFFSETS OF *
C DIFFERET STATIONS ACCORDING TO ARRAY GEOMETRY.FINALLY, *
C TO CARRY OUT SLANT STACKING OR BEAM STEERING PROCESS. *
C THE ARRAY CONSISTS OF 12 3-CONPONENT GEOPHONES WITH *
C UNIT DIMENSION D. *

C

REAL D,RATE,UPDJLOD,ALPHA,U(100,5000),Z(20,5000)
REAL B(12),DT(12),P(100),UPP,PIC,TAU,LOP,PI
INTEGER NP,TA,NSAMPL
CHARACTER* 8 FILEOUT.FILEIN,YON
DATA B /90 ,120,150,180,210,240,270,300,330,0,30,60/
PRINT*,' '
PRINT*,' ’
PR IN T* ' ******************************************** '

PRINT*,' * * ’
PRINT*,' * SLANT STACKING FORTRAN PROGRAM * '

PRINT* ' * * '
PR IN T* ' *********************************************

PRINT*,’ '
PRINT*,’ '
DO 789 1= 1,12 
DO 789 J=2002,3000 
Z(I,J) = 0.00000 

789 CONTINUE
PRINT*,'-INPUT FILE NAME FOR PROCESS PLEASE!'

READ(*,'(A)') FILEIN
OPEN(l,FILE=FILEIN,FORM='FORMATTED',STATUS-OLD')

C INPUT THE ALL PARAMETERS 
NSAMPL = 2001 
LOP =-6.66667E-4 
UPP = 6.66667E-4
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PRINT*,'-INPUT NUMBER OF RAY PARAMETERS YOU NEED PLEASE!’ 
READ*,NP

C CALCULATE THE RAY PARAMETER INCREMENT PIC
PIC=(UPP-LO P)/N P 
D = 75

C DEFINE A 2-DIMENSION ARRAY,INPUT 12 TRACE SEISMIC DATA
C INTO THIS ARRAY-Z(I,J)

PRINT*,' '

PRINT*, '-START READING 12-TRACE DATA INTO ARRAY U(I,J)' 
PRINT*,' ’
DO 1001= 1, 12 
DO 100 J = 1, 2001 
READ(1,50) Z(I,J)

50 FORMAT(5X,E12.4)
100 CONTINUE

GO TO 889
776 PRINT*,’-DO YOU WANT TO TRY MORE ALPHA(Y/N)EG."Y" OR "N T
777 READ(*,’(A)’),Y ON 

EF(YON.EQ.’N’) GO TO 999 
EF(YON.EQ.’Y') GO TO 889
PRINT*,'-YOU INPUT A WRONG CHARACTER,TRY AGAIN!'
GO TO 777

889 PRINT*, '-INPUT ARIMUTH ALPHA PLEASE!'
READ*, ALPHA
PRINT*,'-INPUT FILE NAME FOR OUTPUT PLEASE! ' 
READ(*,'(A)'),FILEOUT
OPEN(2,FELE=FlLEOUT,FORM='FORMATTED',STATUS='NEW')

C CALCULATE THE OFFSET DISTANCE OF THE FIRST GEOPHONE

PRINT*,’ '
PRINT*,’-START COMPUTE OFFSET DISTANCES(PROJECTION)’

PRINT*,' '
LOD=D 
UPD = 130 
PI = 3.1416/180
DT(1) = UPD*COS((ALPHA-B(l))*PI)
DT(2) = LOD*COS((ALPHA-B(2))*PI)
DT(3) = UPD*COS((ALPHA-B(3))*PI)
DT(4) = LOD*COS((ALPHA-B(4))*PI)
DT(5) = UPD*COS((ALPHA-B(5))*PI)
DT(6) = LOD*COS((ALPHA-B(6))*PI)
DT(7) = UPD*COS((ALPHA-B(7))*PI)
DT(8) = LOD*COS((ALPHA-B(8))*PI)
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DT(9) = UPD*COS((ALPHA-B(9))*PI)
DT(10) = LOD*COS((ALPHA-B(10))*PI)
D T (ll)  = UPD*C0S((ALPHA-B(11))*PI)
DT(12) = LOD*COS((ALPHA-B( 12))*PI)

C FOR THIS SHOT POINT, 12 STATIONS HAVE BEEN PROJECTED INTO
C A LINE WITH ANGLE ALPHA DEFINED BY USER. THE 12 OFFSET
C DISTANCES HAVE BEEN OBTAINED X01.X02.X03.......X11.X12.
C TO CARRY OUT BEAM STEERING WE NEED RAY PARAMETER p.AND OFFSET
C TIME TAU.IT MEANS THAT WE SUM ALL WAVE APLITUDE WITH SLOPE P
C OFFSET TIME TA U -A  DECLINED LINE.
C THE FORMULA IS AS FOLLOWING:
C U(P,TAU)= SIGMA (U(Xj,T=TAU+P*Xj))
C IN THIS PROGRAM WE USE THREE LOOPS TO SUM THE VALUES.

PRINT*,' '
PRINT*,'-START SLANT STACKING PROCESS'
PRINT*,' '
P(0)=LOP

C THE FIRST LOOP DEFINES NUMBER OF P TRACES,IT ALSO MEANS
C NO. OF DIFFERENT SLOPES GIVEN.

DO 500 1=1,NP 
P (I)= P (I-1 )+ P IC

C THIS LOOP DEFINES INTERCEPT TIME VALUES-TAU FOR PROCESSING.
TAU = 0.0
DO 300 J=l,NSAMPL 
TAU=TAU+2*0.001 
TA = TAU/(2*0.001)

C TO INITIALIZE COUNTERM

M=0
DO 200 K=l,12
N =T A U /(2*0.001)+N IN T((P(I)*D T(K ))/(2*0.001))

M=M+1
96 U(I,TA)=U(I,TA)+Z(K,N)
200 CONTINUE
C TO NORMOLIZE STACKED DATA— THE SUMMED DATA DIVIDED BY

C NUMBER OF TRACES(M)
97 U(I,TA )=U (I,TA )/M
300 CONTINUE

DO 101 J =  1301, 1801
98 W RITE(2,99) J.U(I.J)
99 FORMAT(I5,E12.4)

101 CONTINUE
PRINT*,'-RAY PARAMETER',I,' COMPLETED'

500 CONTINUE
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PRINT*,' '
GO TO 776

999 PRINT*,’-CALCULATION COMPLETED'
CLOSE(2)
STOP
END



FORTRAN-77 PROGRAM  11 - M APRISM

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Computing the gravity effect of a prism, a line mass and sylinder on 
VAX/UNIX: MAPRISM 
W ritten by 
XIN-QUAN MA
at the Department of Geology & Applied Geology,
Univrsity of Glasgow, Glasgow G12 8QQ (in 1987)
This program calculates the gravity effect from a vertical prism with 
horizontal upper and lower faces, expressed by a 24-term formula; 
from a prism with a horizontal lower face and a sloping upper face; 
from a line mass; and from a sector o f a hollow sylinder. 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

real x l,x 2 ,y I,y 2 ,h ,tl,t2 ,t3 ,t4 ,t5 ,t6 ,t7 ,t8 ,t9 ,
1 0 ,tll ,tl2 ,F z ,i,j ,K ,g l,g 2 ,g 3 ,c ,c o sa ,r ,P ,g 4
p rin t* ,'in p u t x l ,y l ,h '
r e a d * ,x l ,y l ,h
x2=x1+1000
y2=yl+1000
tl= lo g ((y 2 + sq rt(x 2 * x 2 + y 2 * y 2 )) /(y 2 + sq rt(x 2 * x 2 + y 2 * y 2 + h * h )))  
t2 = lo g ((y  l+ sq r t(x 2 * * 2 + y  1 * *2 ))/(y  l+ sq rt(x 2 * * 2 + y  1 **2+ h**2))) 
t3 = lo g ((y 2 + sq rt(x  1 * * 2 + y 2 * * 2 ))/(y 2 + sq rt(x l* * 2 + y 2 * * 2 + h * * 2 )))  
t4 = lo g ((y  l+ s q r t ( x l  **2+y 1 **2 ))/(y  l+ s q r t(x l* * 2 + y  1 **2+ h**2))) 
t5 = lo g ((x 2 + sq rt(x 2 * * 2 + y 2 * * 2 ))/(x 2 + sq rt(x 2 * * 2 + y 2 * * 2 + h * * 2 )))  
t6 = lo g ((x  l+ sq r t(x  1 * * 2 + y 2 * * 2 ))/(x l+ sq rt(x  1 **2+ y2**2+ h**2))) 
t7 = lo g ((x 2 + sq rt(x 2 * * 2 + y  1 * * 2 ))/(x2+ sq rt(x2**2+ y  1 **2+ h**2))) 
t8 = lo g ((x  l+ s q r t(x  1 **2+y 1 * * 2 ) ) /(x l+ s q r t(x l  **2+y 1 **2+ h**2))) 
t9 = a s in ((y 2 * * 2 + h * * 2 + y 2 * sq rt(x 2 * * 2 + y 2 * * 2 + h * * 2 ))/((y 2 +  
s q r t(x 2 * * 2 + y 2 * * 2 + h * * 2 ))* sq r t(y 2 * * 2 + h * * 2 )))
1 1 0 = a sin ((y 2 * * 2 + h * * 2 + y 2 * sq rt(x l* * 2 + y 2 * * 2 + h * * 2 ))/((y 2 +  
s q r t ( x l  * * 2 + y 2 * * 2 + h * * 2 ))* sq rt(y 2 * * 2 + h * * 2 )))  
t l  l= a s in ((y  1 **2+ h**2+ y  1 * sq rt(x2**2+ y  1 * * 2 + h * * 2 ))/((y  1 + 
sq rt(x 2 * * 2 + y  1 * * 2 + h * * 2 ))* sq rt(y  l* * 2 + h * * 2 )))  
t l 2 = asin ((y  1 ** 2 + h * * 2 +y 1 * s q rt(x l* * 2 + y  l* * 2 + h * * 2 )) /( (y  1 + 

s q rt(x  1 **2+y 1 * * 2 + h * * 2 ))* sq rt(y  1 * * 2 + h * * 2 ))) 
F z = x 2 * (tl- t2 )-x l* ( t3 -t4 )+ y 2 * (t5 - t6 )-y l* ( t7 - t8 )+

h * ( t9 - t l0 - t l  l+ t l2 )  
p rin t* ,'F z= ',F z  
i= (x l+ 500)/1000  
j= (y l+ 5 0 0 )/1 0 0 0
r= sq rt((x l+ 500)**2+(y  l+ 500)**2)
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c = sq r t( r* * 2 + h * * 2 )
c o s a = r /c

K = (i+ 0 .5 )* log ((j+ 0 .5 )+ sq rt((i+ 0 .5 )**2+ (j+ 0 .5 )**2 )) 
z - ( i-0 .5 )* lo g (( j+ 0 .5 )+ sq rt(( i-0 .5 )* * 2 + (j+ 0 .5 )* * 2 ))  
z + (j+ 0 .5 )* lo g ((i+ 0 .5 )+ sq rt((i+ 0 .5 )* * 2 + (j+ 0 .5 )* * 2 )) 
z - ( j+ 0 .5 )* lo g (( i-0 .5 )+ sq rt(( i-0 .5 )* * 2 + (j+ 0 .5 )* * 2 ))  
z - ( i+ 0 .5 )* lo g (( j-0 .5 )+ sq rt(( i+ 0 .5 )* * 2 + (j-0 .5 )* * 2 ))  
z + ( i-0 .5 )* lo g (( j-0 .5 )+ sq r t( ( i-0 .5 )* * 2 + (j-0 .5 )* * 2 ))  
z - ( j-0 .5 )* lo g (( i+ 0 .5 )+ sq rt(( i+ 0 .5 )* * 2 + (j-0 .5 )* * 2 ))  
z + G -0 .5 )* lo g ((i-0 .5 )+ sq rt(( i-0 .5 )* * 2 + (j-0 .5 )* * 2 ))  

P = l/s q r t( i* * 2 + j* * 2 )  
p rin t* , 'K = \K  
p r in t* , ’P = ',P  
print*,1 '
g l= a b s (0 .006672*2.70*Fz)
g2= 6 .672*2 .7 0 * (l-co sa )* K
g3 = 6 6 7 2 * 2 .7 0 * ( l / r - l /c )
g 4 = 3 3 3 6 * 2 .7 0 * h * * 2 /(r* * 3 -r* 2 .5 E 0 5 )
p r in t* , 'r = ’,r
p r in t* , 'p r i s m = ',g l
p rin t* ,'s lo p p in g  p rism = ',g2
p rin t* ,'lin e  m ass= ',g3
p r in t* , 's y l in d e r= ’,g4
s top
e n d
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FORTRAN-77 PROPGRAM 12 - MAEIGEN

Q  H e * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C THE FOLLOWING TWO SUNROUTINES ARE USED TO CALCULATE THE *
C EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX. THE *
C EIGENVALUES ARE, ON OUPUT, IN DECEANT ORDER.C *
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)
PARAMETER (NMAX=100)
DIMENSION A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX)
DO 12 IP=1,N 
DO 11 IQ=1,N 
V(IP,IQ)=0.

11 CONTINUE 
V (IP ,IP )= 1.

12 CONTINUE 
DO 13 IP=1,N 
B (IP )= A (IP ,IP )
D (IP)=B (IP)
Z(IP)=0.

13 CONTINUE 
NROT=0 
DO 24 1=1,50 
SM=0.
DO 15 IP=1,N-1 
DO 14 IQ=IP+1,N 
SM=SM+ABS(A(IP,IQ))

14 CONTINUE
15 CONTINUE 

IF(SM.EQ.O.)RETURN 
IF(I.LT.4) THEN 
THRESH=0.2*SM /N**2 
ELSE
THRESH=0.
ENDIF
DO 22 IP=1,N-1 
DO 21 IQ=IP+1,N 
G=100.*ABS(A(IP,IQ))
IF((I.GT.4) .AND. (ABS(D(IP))+G .EQ.ABS(D(IP)))
* .AND. (ABS(D(IQ))+G .EQ. ABS(D(IQ)))) THEN 

A(IP,IQ)=0.
ELSE IF(ABS(A(IP,IQ)).GT.THRESH)THEN
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H=D(IQ)-D(IP)
IF(ABS(H)+G .EQ. ABS(H))THEN
T=A(IP,IQ)/H
ELSE
THETA=0.5*H/A(IP,IQ)
T= 1./(AB S (THET A)+S QRT( 1. +THET A* *2))
IF(THETA.LT.O.)T=-T
END IF

C=1./SQRT(1+T**2)
S=T*C
TAU=S/(1.+C)
H=T*A(IP,IQ)
Z(IP)=Z(IP)-H
Z(IQ)=Z(IQ)+H
D(IP)=D(IP)-H
D(IQ)=D(IQ)+H
A(IP,IQ)=0.
DO 16 J=1,IP-1 
G=A(J,IP)
H=A(J ,IQ)
A(J,IP)=G-S*(H+G*TAU)
A(J,IQ)=H+S * (G-H*TAU)

16 CONTINUE
DO 17 J=IP+1,IQ-1 
G=A(IP,J)
H=A(J,IQ)
A(IP,J)=G-S*(H+G*TAU)
A(J JQ)=H+S *(G-H*TAU)

17 CONTINUE 
DO 18 J=IQ+1,N 
G=A(IP,J)
H=A(IQ,J)
A(IP,J)=G-S*(H+G*TAU)
A(IQ,J)=H+S*(G-H*TAU)

18 CONTINUE 
DO 19 J=1,N 
G=V(J,IP)
H=V(J,IQ)
V(J,IP)=G-S*(H+G*TAU)
V(J,IQ)=H+S*(G-H*TAU)

19 CONTINUE 
NROT=NROT+l
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ENDIF
21 CONTINUE
22 CONTINUE 

DO 23 IP-1,N
B (IP)=B (IP)+Z(IP)
D(IP)=B(IP)
Z(IP)=0.

23 CONTINUE
24 CONTINUE

PAUSE '50 ITERATIONS SHOULD NEVER HAPPEN'
RETURN
END

c
SUBROUTINE EIGSRT(D,V,N,NP)
DIMENSION D(NP),V(NP,NP)
DO 13 1=1, N-l
K=I
P=D(I)
DO 11 J=I+1,N 
IF(D(J).GE.P) THEN 
K=J 
P=D(J)
ENDIF

11 CONTINUE 
IF(K.NE.I)THEN 
D(K)=D(I)
D(I)=P
DO 12 J=1,N 
P=V(J,I)
V(J,I)=V(J,K)
V(J,K)=P

12 CONTINUE 
ENDIF

13 CONTINUE 
RETURN 
END


