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SUMMARY

Selected data, obtained from a conventional household interview survey, conducted 

in 1978 and 1979 as a part of the Glasgow Rail Impact Study, were used to 

study mode choice for journeys to work in the city of Glasgow and to identify 

the most significant factors influencing that choice. A number of disaggregate 

multinomial logit mode choice models with five modes, viz. car driver, car 

passenger, bus, train and walk, were investigated initially. On the basis of 

validation tests and statistical evaluation, two of the models, one simple and one 

complex, were identified as being the best— specified and were then used for 

aggregate prediction and policy change analyses.

In general, the study has demonstrated the feasibility of using the multinomial 

logit approach to the development of multi— modal disaggregate travel demand 

models and that such models can be calibrated using data from a traditional 

household interview survey. More particularly, the major influencing factors on 

the mode choice decision were identified: travel time was found to be more 

significant than travel cost, which was also found to have the wrong (i.e. positive) 

sign; the central business district was found to affect significantly the choice of 

public transport modes; distance was found to have a significant effect on the 

choice of the walk mode; and car availability and the position in a household 

were found to be significant influences on the use of a car.

The aggregate prediction analysis revealed the feasibility and desirability of using 

disaggregate models for such analyses and confirmed the superiority of the simple 

model over the complex one. It was concluded from the policy change analysis



that changes in travel times would affect mode choice significantly but that 

changes in travel costs would not.
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CHAPTER ONE

INTRODUCTION

1.1 GENERAL

Since the mid— 1960s there has been increasing interest in mathematical models of 

urban transportation systems. Such models can assist transportation planners and 

decision— makers in understanding existing travel patterns and predicting future 

transportation needs. Within the sphere of travel demand modelling the specific 

problem of modal split or mode choice is of particular interest; mode choice 

modelling is of the utmost importance when deciding among alternative 

transportation proposals and, as yet, universally accepted mode choice models have 

not been developed. Throughout the transportation modelling process the need 

for understanding of travel behaviour at the level of the individual traveller is 

paramount.

1.2 STUDY OBJECTIVES

The city of Glasgow is the focus of industrial, commercial and retail activity for 

the associated conurbation with its population of around 1.7 million; this study is 

an examination of mode choice for journeys to work in Glasgow. The principal 

objective of the study is the identification of the most significant factors 

influencing the choice of transportation mode through the development of mode 

choice models. To achieve this objective the study employs recently developed

2



disaggregate behavioural probabilistic choice models of the multinomial logit 

(MNL) type. The models have been calibrated using disaggregated data obtained 

from the Glasgow Rail Impact Study (GRIS) survey in 1978—1979. This survey 

was carried out independently of the present study which has consequently been 

constrained, to a degree, by the quality of the available data. Nevertheless, this 

study illustrates that disaggregate probabilistic choice models can be successfully 

developed from data obtained by traditional survey methods and can provide 

useful analyses of travel demand. This confirms the feasibility of using such 

models in the transportation planning process.

The present study also examines the issues involved in using disaggregate 

probabilistic choice models for the prediction of aggregate travel behaviour and 

the estimation of the sensitivity of transport mode choice to various changes in 

policy—controllable variables. The results may assist urban transportation planners 

and decision— makers to shape their pricing and investment policies, effecting 

more efficient utilization of transportation resources, and to anticipate future 

transportation needs.

1.3 STUDY OUTLINE

A general review, together with a discussion of the conventional urban 

transportation model system (UTMS) and the various alternative approaches to 

travel demand modelling are presented in Chapter 2. These provide an

introduction to the understanding of urban travel demand modelling and emphasise 

the usefulness of analysing travel behaviour at the individual level. The 

theoretical framework for modelling individual travel behaviour with respect to the 

choice of transportation mode is outlined in Chapter 3. This involves the

3



presentation of the deterministic and the probabilistic choice theories; the 

generation of two important choice models, the MNL and the multinomial probit 

(MNP) models; statistical techniques for the estimation of the unknown parameters 

of the various MNL model specifications; and statistical goodness—of—fit measures 

for assessing the validity of the various calibrated models. Finally, the specific 

issues of the specification of variables in the utility function and choice set 

generation are discussed.

Having provided the general form of the MNL model, the next stage of the study 

is concerned with the empirical analysis of the journey to work in the city of 

Glasgow. In Chapter 4 a brief description of the GRIS survey data and the 

study area are presented. Descriptions of the sample preparation and the

investigation of the practical limitations of and problems inherent with the use of 

the GRIS data are also given. The chapter concludes with the selection of the 

most important explanatory variables for inclusion in the various model 

specifications and an explanation of how the variables are represented in the 

model formulations. In Chapter 5 various model specifications are calibrated and 

evaluated statistically and the final model forms are selected. The results 

obtained are then compared with previous analyses of journeys to work.

The following two chapters are concerned with the use of the selected models in

the prediction of aggregate travel behaviour and with policy change analysis. 

Chapter 6 presents and discusses the aggregation problem; the available

aggregation procedures; and the various sources and types of aggregation errors. 

Finally, the empirical results of using the naive, classification, and enumeration 

procedures are presented and a comparative assessment of their desirability in 

terms of their aggregation error values is made. Chapter 7 then deals with the 

prediction of the effects of a wide range of policy decisions on the choice of

4



transport mode. The properties of a policy— sensitive model and the various 

techniques available for analysing different policy decisions are also presented. 

Lastly, the impacts of various policy changes on the aggregation error values of 

different aggregation procedures are examined. The final chapter presents the 

general conclusions of the study and the suggested directions for further research.

5
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CHAPTER TWO 

TRAVEL DEMAND MODELLING: AN OVERVIEW

2.1 INTRODUCTION

The objective of this chapter is to put in perspective what has been done over 

the past three decades in the area of travel demand modelling. Without claiming 

to be exhaustive, the chapter reviews and discusses that work which is considered 

to contribute to the understanding of the specific problem of modal split or mode 

choice modelling.

The topics covered in this chapter are organised into three major areas: the 

conventional Urban Transportation Model System (UTMS) and the aggregate and 

disaggregate travel demand modelling approaches.

The first section presents a brief description of UTMS. The second section 

focuses on the earlier modelling approaches concerned with the development of 

UTMS and based on the prediction of travel demand at an aggregate level using 

zonal or city characteristics. These techniques are often called "aggregate 

modelling approaches". The last section is concerned with recent developments in 

modelling and analysing individual traveller behaviour. These procedures are 

usually called "disaggregate behavioural modelling approaches".
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2.2 THE URBAN TRANSPORTATION MODEL SYSTEM

The general approach to forecasting travel demand in transportation studies has 

traditionally been through the well known sequence of the prediction of trip

generation, trip distribution, modal split and traffic assignment. This set of four

models, which is collectively called UTMS, has been the most widely used 

technique for the prediction of future travel demand.

Figure 2.1 presents the most typical UTMS structure. As may be seen from this 

figure, UTMS consist of a series of models which are executed sequentially, with 

the output of one model comprising the input for the next. Each model predicts 

one aspect of transportation demand viz. total trips leaving and entering each 

zone; the proportion of trips leaving a zone going to each possible destination; 

the proportion of these trips using each available mode of transport; and finally, 

the routes taken by these trips through the transport network. The serial model 

shown in Figure 2.1 is a simplification of a more complex recursive process.

Outputs from later stages of the model are used as inputs to earlier stages

(feedbacks) in the iterative process required in the solution of a more realistic

model.

UTMS is discussed at length in virtually every transportation planning text1 and is

also well documented in the literature2. Nevertheless, a brief exposition of the

constituent models is essential, since they form the conceptual framework within

which transportation demand theory and practice have evolved.

1 See for example: Oi and Shuldiner (1962); Overgaard (1966); Hutchinson
(1974); Burton (1975); Stopher and Meyburg (1975); Salter (1976); Morlok (1978).
2 See for example: Stopher and Lisco (1970); Hartgen and Tanner (1971) 
Reichman and Stopher (1971); Charles River Associates (CRA) (1972, 1976); 
Ruiter (1973); Wilson (1974); Domencich and McFadden (1975).



TRIP GENERATION MODEL

MODAL SPLIT MODEL

UTMS

POLICY
CHANGE

TRANSPORT NETWORK 
VOLUME (V)

TRIP PRODUCTION 
MODEL 

nq = f ( s e q , LU0 )

TRIP ATTRACTION 
MODEL 

Nd = f ( E d ,LUd )

TRIP DISTRIBUTION MODEL 
Nod = f ( SE0 , LUd , To d )

Nom = f ( S E 0 , LUq )

TRIP-END MODEL TRIP-INTERCHANGE 
MODEL 

^odm = f ( S E 0 ,LUd , 
^odm)

NETWORK ASSIGNMENT 
(ROUTE CHOICE MODEL) 

Nodmr= f (M in .  Time P a th )

SOCIO-ECONOMIC CHARACTERISTICS (SE) 
LAND-USE CHARACTERISTICS (LU) 

TRANSPORTATION SYSTEM CHARACTERISTICS (T)

where,
0 i s t h e o r i g i n  z o n e .
d i s t h e d e s t i n a t i o n  z o n e .
m i s t h e t r a v e  1 m ode.
r i s t h e r o u t e  c h o s e n .
Ed i s t h e em ploym ent o f  t h e  d e s t i n a t i o n  z o n e .
^o d i s t h e d i s t a n c e  b e tw e e n  t h e  o r i g i n  an d  d e s t i n a t i o n  z o n e s ,  and
^odm i s t h e t r a v e l  t im e  b e tw e e n  t h e  o r i g i n  an d  d e s t i n a t i o n  z o n e s .

FIGURE 2.1 The urban transportation planning process.
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2.2.1 THE TRIP GENERATION MODEL

The trip generation model predicts the total number of trips starting and finishing 

in each zone in the study area; that is, for each zone, the total number of trip

productions (i.e. trips originating in the zone, regardless of their destinations) and

trip attractions (i.e. trips destined for the zone, regardless of their origins). All 

models of trip generation assume that the trip generation rate is a function only 

of the spatial and socio— economic characteristics of the generating zone and not 

the characteristics of the zone at the other end of the trip, or of the level of 

service provided by the transportation system connecting the two zones. The 

output from these models are zonal trip productions and attractions, typically 

disaggregated by trip purpose (e.g. work or shopping) and by trip type (e.g. 

home— based or non home— based). Regression and category analyses are the most 

commonly used techniques in the evaluation of trip generation1.

2.2.2 THE TRIP DISTRIBUTION MODEL

The trip distribution model takes the zonal trip productions and attractions 

predicted by the trip generation model and links them together to predict the

total flow between each production zone and each attraction zone. The 

distributed flow is a function of the socio— economic characteristics of the origin 

zone, the land— use characteristics of the destination zone and the time and 

distance between these zones. While many techniques exist for estimating trip

distribution, the overwhelmingly dominant one is the gravity model2.

1 See for example: Shuldiner (1962); Federal Highway Administration (1967); 
Wotton and Pick (1967); Kassoff and Deutschman (1969); Douglas and Lewis 
(1970); Kannel and Heathington (1973); Tardiff (1977); Mohamad (1978).
2 See for example: Wilson (1967, 1969); Phibrick (1971); Cochrane (1975).
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2.2.3 THE MODAL SPLIT MODEL

The modal split or mode choice model is concerned primarily with the allocation 

of the various trips which have been predicted among all the available modes of 

transport (e.g. car, public transport, walking). A modal split model is classified 

as being either a trip— end model (if it follows immediately after the trip

generation model in the UTMS sequence) or a trip— interchange model (if it 

follows the trip distribution stage). As shown in Figure 2.1, trip—end models, 

since they precede the trip distribution phase (and hence destinations and possible 

routes are not known), cannot utilise the transportation system characteristics in 

their predictions and must depend upon the same set of socio— economic 

characteristics as are used in trip generation. This approach is clearly most

reliable where a high proportion of public transport users are captive. The trip

distribution model which follows the trip— end model involves the construction of 

separate distribution models for each mode of transport [Stopher and

Meyburg(1975)].

Since the trip— interchange model follows the trip distribution phase, the

origin— destination flows are already known (i.e. the distribution of total trips

from all origins to all destinations is assumed completed). Then, based on

transport service levels for each zonal interchange (origin— destination pair) as well 

as zonal socio— economic and land— use characteristics, the allocation of total

travel is made among the available transport modes. The trip— interchange model 

permits the best possible reflection of the effects of relative service levels of the 

transport modes that exist between each pair of origin and destination zones.

11



2.2.4 THE TRAFFIC ASSIGNMENT MODEL

The traffic assignment model or, as it is sometimes called, the route choice 

model, takes the flows between each pair of origin and destination zones for a 

given mode and assigns them to one or more specific routes through the transport 

network. Conventionally, flows are assigned by route on the basis of minimum 

time paths and, therefore, the assignment process becomes that of attempting to 

allocate trips to a minimum time path through the network between the zone of 

production and the zone of attraction. The majority of traffic assignment models 

have focused on the car as the main mode of interest given its dominant role in 

causing traffic congestion. Public transport trip assignment is often a relatively 

straightforward task, primarily because there typically exists one dominant path 

between any given origin and destination pair.

2.3 THE AGGREGATE MODELLING APPROACH

Traditionally, travel demand models (i.e. UTMS) have been developed using 

aggregated data, mostly on the basis of traffic zones, and these models have 

generally attempted to predict aggregated traffic flows between pairs of zones. 

The explanatory variables included in these aggregate models represented in most 

cases the mean values of some characteristics that were somehow distributed 

across the zonal populations (e.g. average zonal income, average zonal 

car— ownership, average travel time between zones) and this made the use of the 

models conveniently simple. Prediction then involves the application of these 

zonal averages to each of the travellers in the zone. Thus, an implicit 

assumption made in using aggregated data is that the characteristics of the 

individual travellers and the attributes of the transportation system within each

12



zone are relatively homogeneous, as compared with differences between the zones. 

Hence, each zonal group can be suitably represented by an average value of each 

explanatory variable.

In fact, zones are never homogeneous as the aggregate approach implies, because 

some degree of within— zone variance is inevitable. As has been shown by Fleet 

and Roberston (1968) and McCarthy (1969), the within—group variance that is 

neglected by averaging the data over traffic zones tends to be greater than the 

between— groups variance. This dispersal of the actual values around the mean 

can be great, and it is these actual values that are relevant in analysing and 

predicting travel behaviour. These intra— zonal variations are concealed in 

aggregation.

Thus, aggregation before the model construction phase of the analysis will cloud 

the underlying behavioural relationships and result in a significant loss of 

information. It may in some cases also create ecological fallacies in the statistical 

inferences, whereby factors that coincidentally dominate the behaviour of the 

arbitrary groups of an aggregate analysis are interpreted as affecting the behaviour 

of individuals1.

An aggregate model that is largely based on an associated relationship in the data 

rather than on peoples' behaviour and preferences does not necessarily represent 

an individual traveller's behaviour, nor the average behaviour of the aggregated 

group under a variety of conditions. Therefore, there is no reason to expect that 

the same relationships would hold in other instances or in other locations 

[Richards and Ben—Akiva (1975)].

1 See for example: Robinson (1950); De Neufville and Stafford (1971); 
DeDonnea (1971).
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In addition to the above problems concerning the use of aggregated data, a 

number of other shortcomings in the aggregate modelling approach may be noted. 

Firstly, it is inflexible and static rather than dynamic. That is, it is based upon 

measurements and estimated relationships from a single point in time, with an 

assumption that these relationships and estimates will not change over time except 

in terms of extraneous changes in total population, wealth, etc. Secondly, an 

important failing has been the exclusion of the effects of transport 

system— controllable variables, so that the modelling processes do not respond 

precisely to transport policy changes. Finally, there is the separation of travel 

demand prediction into four stages (trip generation, trip distribution, modal split, 

and traffic assignment) which are assumed to interact in a logical fashion to 

represent a complex travel behavioural process. The individual models were for 

the most part developed and modified independently of each other and the well 

known problem of trip generation being assumed to be independent of the supply 

of transportation is a direct consequence of this separability assumption1.

In response to some of the above shortcomings, a number of strategies have been 

adopted to improve the aggregate approach to travel demand forecasting. Firstly, 

attempts have been made to improve the internal efficiency and applicability of 

the aggregate models by giving them more rigorous theoretical bases, by 

considering more exactly the determination of important variables, and by 

analysing the interactions among demand, cost and pricing2. Secondly, a 

simultaneous travel modelling approach has been used in an attempt to make the

1 See for example: Ben— Akiva (1974); Burnett (1974); Liou and Talvitie
(1974); Domencich and McFadden (1975); Richards and Ben—Akiva (1975); 
Stopher and Meyburg (1974); Dalvi (1978).
2 See for example: Moses and Williamson (1963); Beesley (1965); Meyer, Kain, 
and Wohl (1966); Wilson (1967); Der Serpa (1971); Evans (1972); Cochrane
(1975); Fairhurst (1975); Goodwin (1976); Heggie (1976); Zahavi (1977); Bruzelius 
(1979).
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entire aggregate approach much more interactive and the models themselves more 

plausible and more responsive to policy changes. This development, which

combines the stages of trip generation, modal split, and trip distribution, is called 

the "direct demand model". This model seems to be conceptually more valid 

than the conventional models since it takes into account the effect of changes in 

system characteristics on trip generation1. However, due to the large number of 

alternative trips which a traveller may face and the large number of attributes 

which describe an alternative trip, a simultaneous model can become more 

complex and computationally more difficult. Therefore, this raises some

important issues concerned with the feasibility of a simultaneous model and the 

sensitivity of travel predictions to the simplifying assumption of a recursive 

structure. Thirdly, in order to avoid problems related to the use of the

aggregate modelling approach, researchers have attempted to develop a completely 

new approach explaining travel behaviour at the level of the individual traveller. 

This approach is termed the "disaggregate behavioural modelling approach".

2.4 THE DISAGGREGATE MODELLING APPROACH

Disaggregate travel demand models represent a relatively new development in 

travel demand forecasting, the first models having appeared at the beginning of

the 1960s, and having evolved slowly into the latter part of the decade2. Those 

models were initially developed as research tools, the main objective of the

1 See for example: Kraft (1963); Quandt and Baumal (1966); Kraft and Wohl 
(1967); McLynn and Goldman (1967); Plourde (1968); Hartgen and Tanner 
(1970); Stopher and Lisco (1970); Reichman and Stopher (1971); CRA (1972); 
Shepherd (1974); Richards and Ben—Akiva (1975); Stopher and Meyburg (1975, 
1980); Adler and Ben—Akiva (1976).
2 See for example: Warner (1962); Quarmby (1967); Lave (1967); Lisco 
(1967); Stopher (1969).
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analyses being to improve the understanding of traveller decision— making 

behaviour. Since then, development of the disaggregate modelling technique has 

accelerated markedly as a result of growing disenchantment with the conventional 

aggregate approaches and in the hope that the newer approach has the potential 

to replace the conventional method1.

Interest in disaggregate behavioural models can be justified on several counts. 

Firstly, disaggregate modelling provides a most natural setting for the development 

of causal relations among their components, based on simple assumptions about 

the behaviour of the decision— maker. Secondly, they usually allow a building 

block approach that can be extremely useful as a strategy for the development of 

urban models based on interrelated blocks describing the urban transportation 

system and the housing, educational, and other sectors. Thirdly, they provide 

useful guidance as to the appropriate way to aggregate data in the development 

of more efficient and operational aggregate prediction models [Koppelman (1974)]. 

Fourthly, using disaggregate data directly in disaggregate travel models can bring 

about large savings in the cost of data collection and processing. Since the data 

are used in the original disaggregate form, and are not aggregated to the zonal 

level, a large— scale home interview survey is not essential as is the case with the 

aggregate models [Ben—Akiva (1973)]. Finally, because travel decisions and 

factors that influence them are measured and analysed at the individual 

decision— maker level, using disaggregate data seems more plausible in the sense 

that actual behavioural relationships may be reflected in a more successful model 

rather than in simple exploitation of ecological correlations in the data. This 

provides increased confidence in the process of forecasting future travel demand.

1 See for example: Ben—Akiva (1973); Watson (1973, 1974); Domencich and 
McFadden (1975); Richards and Ben—Akiva (1975); Stopher and Meyburg (1975); 
Brand (1976); Bullen and Boekenkroeger (1979); Burnett and Thrift (1979).

16



The experience of previous work with the disaggregate travel modelling approach 

indicates that it is a feasible approach and the most promising avenue for 

improving future travel forecasting techniques [Stopher, Meyburg, and Brog 

(1981)].
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CHAPTER THREE 

MODE CHOICE MODELLING: THE THEORETICAL FRAMEWORK

3.1 INTRODUCTION

The primary objective of this chapter is to outline the theoretical framework 

which is appropriate in modelling individual choice behaviour and, within this 

framework, to derive a tractable mathematical model of mode choice, namely, the 

MNL model.

The remainder of the chapter is divided into four sections. The first section is a 

survey of some principles of the deterministic and the probabilistic theories of 

individual choice behaviour. In the second section, the regression analysis 

technique and the maximum likelihood method are discussed. The latter has been 

chosen here as the most suitable technique for calibrating the MNL model.

To assess the validity of various calibrated models, different statistical 

goodness— of— fit measures are presented in the third section. These are the 

t— test for assessing the significance of each specified variable, the log likelihood 

ratio test, the log likelihood ratio index test, and the percentage of observations 

correctly predicted. The last three tests are used to assess the statistical 

significance of various models calibrated using the maximum likelihood method.

The last section presents and discusses some specific issues related to the 

development of various discrete choice models. These issues are concerned with
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the various ways of specifying different explanatory variables in the utility function 

of each available alternative and the definition of the set of available alternatives 

for each individual in the sample population.

3.2 THEORIES OF TRAVEL CHOICE BEHAVIOUR

In general, in the transportation planning process, planners and researchers are 

interested in the behaviour of aggregate groups of travellers. However, this 

aggregate behaviour is the result of individual or disaggregate behaviour. Thus, 

the modelling of individual behaviour is either explicitly or implicitly at the core 

of all prediction models of aggregate behaviour.

Although disaggregate behavioural travel demand models offer great promise for 

future travel demand analysis, a fully operational model has still to be developed. 

The reason for this is that there does not exist a single, universally accepted 

behavioural choice theory which adequately explains the observed choice behaviour 

of each individual and predicts their future travel demands1. Therefore this 

section is designed to present the various theories of individual travel choice 

behaviour.

1 See for example: Stoner and Milione (1975); Atiken (1977, 1986); Dalvi
(1978); Kanafini (1983); Supernak (1983, 1984); Supemak and Stevens (1987); 
Ben—Akiva and Lerman (1985).
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3.2.1 THE DETERMINISTIC CHOICE THEORY

Although the earlier disaggregate travel demand models1 have achieved 

considerable success in their applications, their theoretical foundations have 

remained weak and, at times, even shaky. This is mainly the result of the 

inadequacy of the well— known conventional microeconomic consumer theory2 in 

dealing with the problems inherent in transportation demand analysis3. In 

particular, the major difficulties encountered relate to the identification of an

independent set of travel alternatives and the choice decision among them. It is 

widely agreed that travel alternatives are best defined in terms of trip 

characteristics rather than their name or the sort of physical equipment of which 

they are composed. Unfortunately, the conventional microeconomic theory was 

developed without any assumption as to the nature of the alternatives from which 

the consumer has to make a choice. However, the new approach to the

microeconomic theory which has been suggested by Lancaster (1966) has paved

the way for the development of more sound theoretical structures for analysing 

travel decisions behaviour. Lancaster postulated that utility or preference is

derived not from the actual commodities themselves but from the characteristics

which they possess. The most important advantage of this approach to travel 

demand analysis was that the difficulties of identifying independent sets of travel

alternatives were overcome. Alternatives could now be defined by their attributes,

such as travel time and travel cost. Hence, individuals could choose the

alternative which maximised their derived utility; the corresponding vector of

1 See for example: Warner (1962); Beesly (1965); Quarmby (1967); Lisco 
(1967); Lave (1968); Stopher (1969); Blackburn (1970); Golob and Beckmann
(1971).
2 See for example: Lancaster (1966); McFadden and Winter (1970); Henderson 
and Quandt (1971); Green (1978); Layad and Walters (1978); Varian (1978); 
Kanafani (1983); Ben—Akiva and Lerman (1985).
3 See for example: Hanson (1974); Dalvi (1978); Manheim (1979, 1981); 
Kanafani (1983); Ben—Akiva and Lerman (1985).
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characteristics then determined their observed travel choices.

However, travel demand analysis differs from traditional microeconomic theory in 

that the choices of concern in the former field usually are among qualitative and 

discrete sets of alternatives (e.g. destinations, modes, routes), whereas the latter 

field is concerned with choices among continuous sets of alternatives. 

Consequently, the standard mathematical techniques of microeconomics, which rely 

heavily on the assumption of choice among a continuum of alternatives, are no 

longer applicable to travel demand analysis [Horowitz (1985)]. Thus, a discrete 

representation of the alternatives necessitates a different analytical approach which 

is also based on the principle of utility maximization and the rational choice 

behaviour of the decision— maker. The only difference from the conventional 

microeconomic consumer theory is that, instead of deriving demand functions, this 

approach is concerned directly with the comparative utilities of the alternatives as 

the basis for specifying the resulting choice (i.e. a utility value is associated with 

each alternative in the choice set, and is used to compare the alternatives; the 

alternative with the highest utility is chosen). Therefore, modelling of the choice 

decision is formalised as follows:

Assume that an individual (n) faces a set (An) of mutually exclusive (discrete) 

alternatives, and that the utility of an alternative (i) to that individual is denoted 

by Uin. Following the approach of Lancaster, each alternative can be specified 

by a vector (Ẑ ) of characteristics which describes it. Then the utility of 

alternative i to individual n can be expressed in the form:

u in  = un <z i ) .  -V * « *n ( 3 - D
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However, Un( ) is a specific utility function for each individual n. Therefore, to 

specify how tastes, and consequently utility functions, vary from one individual to 

another, an additional vector (Sn) of socio— economic variables describing 

individual n is introduced in the utility function of alternative i. Thus:

Ui n  = U ( Z i f Sn ) ,  -V i ,  i e Ar ( 3 . 2 )

Using the above notation, the deterministic choice theory postulates that an

individual (n) will choose an alternative (i) out of all available alternatives in a 

choice set (Aq), if and only if,

^ i n ^ ^ j n  » ^ J  ^ J 6 ( 3 . 3 )

where,

Ujn is the utility of alternative i to individual n, and

Ujn is the utility of alternative j to individual n.

The above model of choice decision results in behaviour which is perfectly 

deterministic. However, to accept such a model requires the assumption that all 

individuals have perfect and complete information: they know all of the

alternatives open to them, they know all of their characteristics, and they know 

their own preferences so that they behave as if they had well defined utility 

functions. Therefore they would always choose the alternative with the greatest 

utility. This is clearly an unrealistic assumption since empirical evidence shows 

that individuals do not select the same alternatives in repetitions of the same
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choice situations, under the same conditions. Moreover, by changing choice sets, 

violations of the transitive— preferences assumption are also observed. It has also 

been observed that individuals with identical choice sets, attributes, and

socio— economic characteristics, select different alternatives.

Several factors may contribute to these inconsistencies. Firstly, it is usually not 

possible to include in the utility function (Ujn) all the attributes that can possibly 

influence the choice decision. If such a function were possible it would no doubt 

be so complicated as to render it impractical. Secondly, a typical individual is

not likely to have perfect information about the available alternatives. Thus, the 

set of alternatives (An) identified by the analyst may be larger or smaller than 

that encountered in fact by the individual, or the utility function ( U ^  may 

contain variables about which information, as perceived by the individual, may be 

absent or incomplete. Finally, the individual may not always adopt the rational 

choice exactly and so the idiosyncrasies of individual behaviour cannot be 

anticipated in a deterministic model. Therefore, there may be essentially random 

elements in the behaviour of individuals, in that their preferences may vary from 

day to day or be influenced by external events (e.g. weather or availability of the 

household car).

One important way of partially overcoming these limitations of deterministic 

choice theory is to recognise that individuals do not make decisions with certainty. 

That is, there is a random or probabilistic element in the decision— making 

process. The probabilistic analysis of choice decision can be used to capture the 

effects of taste variations among individuals and unobserved characteristics of the

alternatives. It can also take into account pure random behaviour as well as 

errors due to incorrect perceptions of the attributes and choices of suboptima 1

alternatives. Thus, probabilistic choice theory can be more readily adapted to
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formulate travel demand models. This is discussed next.

3.2.2 THE PROBABILISTIC CHOICE THEORY

As noted in the preceding section, the introduction of the probabilistic choice 

theory was the result of the inadequacy of the deterministic choice theory in

explaining the individuals' behavioural inconsistencies that were observed. The 

earliest developments of probabilistic travel choice models1 were founded on

relatively simple postulates of human behaviour. These postulates stated firstly 

that individuals make travel choices on the basis of comparison of alternative

levels of service provided by the travel alternatives, modified by attributes of the 

individual. Secondly, it was asserted that decision— making of individuals was to

be modelled by the use of probabilities of choice, where these probabilities must 

satisfy the basic rules of probability as shown in the following equations:

0 < P ( i  : An) < 1, -V i ( 3 . 4 )

I  P ( i  : A„) -  1, i ( 3 . 5 )
i

where,

P(i : An) is the probability of individual n choosing alternative i, and 

An is the entire choice set of available alternatives for individual 

n.

1 A comprehensive review of these early developments is given in Luce and 
Suppes (1965); Reichman and Stopher (1971).
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The probabilities are assigned to specified choice alternatives on the basis of 

consideration by the individual of the travel alternatives' characteristics, modified 

by the relevant attributes of the individual. This procedure is consistent with 

modern theories of human discrimination and choice. These theories state that 

every human decision is, in essence, probabilistic since there is a minimum 

variance in discrimination and there are dynamic changes in preference [Stopher 

and Meyburg (1974)]. This is an extremely important concept, since it leads to 

two conclusions of considerable importance in attempting to formulate choice 

theoretic models. These conclusions are:

1. Disaggregate probabilistic models can be formulated with a relatively small 

number of variables required to achieve good predictions.

2. Individuals do not have irrational or unquantifiable biases toward specific 

alternative choices.

This statement of hypotheses does not lead directly to any specific model 

formulation, but it does provide a broad framework within which choice models 

can be constructed. A more formal theoretical basis to travel choice modelling 

has been based upon two disciplines dealing with human behaviour; the 

psychological choice theory, through the strict utility approach, and the economic 

choice theory, through the random utility approach. In fact, both approaches, as 

will be seen, lead to similar forms of model [Ben—Akiva (1973)].
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3.2.2.1 THE STRICT UTILITY APPROACH

This approach to the modelling of individual choice behaviour derives its 

theoretical underpinning from the psychological foundation of human behaviour. 

The view of the psychologist is that human decisions are probabilistic in nature, 

but are based upon an evaluation of utilities. These utilities, for each alternative, 

constitute a basis for estimating the probabilities of choice for each alternative. 

The psychological approach to the theory of disaggregate behavioural travel 

demand models is formalised through the application of Luce's Axiom of 

Independence of Irrelevant Alternatives (IIA) which states that, "If a set of 

alternative choices exists, then the relative probability of an individual choosing 

any two alternatives is unaffected by the removal (or introduction) of any set of 

other alternatives". Mathematically, this can be expressed as:

Pn(* • An )

PnCJ : An) Pn ( j  : Bn )
( 3 . 6 )

where,

Pn(i : An) is as defined previously,

An is the choice set of alternatives containing only i and j, and

Bn is the set of all alternatives including i, j, k, etc (i.e. A is

a subset of B).

In other words, if some alternatives are introduced or removed from the set of 

- alternative choices, the relative probabilities among the remaining alternatives are 

unchanged. The choice from the subset An is independent of what other
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alternatives exist in the main set Bn.

As mentioned in the previous section, individuals are assumed to associate a 

utility value with each alternative in the choice set available to them and 

subsequently to draw weighted lots to determine their choices. In other words, 

they know the exact utility of each alternative, but their choices are still 

probabilistic. It is further assumed that there is a direct correlation between the 

probabilities of choice and the levels of utility; the higher the level of utility of 

an alternative the higher the probability of its being chosen. Therefore, it seems 

reasonable to postulate that a ratio of probabilities can be expressed as a ratio of 

utilities. So,

Pn ( i  : An ) Pn ( i  : Bn ) Uin

pn O  • An) pn(J • pn)
( 3 . 7 )

Ujn

Thus, Equation 3.7 implies that the ratio of the probabilities is determined by the 

ratio of the utilities of the only two alternatives under consideration.

It is necessary to define a functional form for the utility. Without loss of

generality, the functional form may be assumed to be exponential. This was 

found to be easy to use for computation and to provide a reasonable fit to 

real-world data [OECD (SEPT. 1980)]. Thus:

u i n  " e x P (v in> ( 3 . 8 )
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where,

Vjn is the linear function of the characteristics of both individual n and 

alternative i.

Thus Equation (3.7) can be written:

pn ( i  : An) exp (Vi n )
------------------------- =   ( 3 . 9 )
pn ( j  : An> exP (v jn)

Application of the probability rule (3.5) for only two alternatives in the choice 

set leads to the following equations:

pn O : An)
exp (Vi n ) 

exp (Vi n ) + exp (Vjn)
( 3 . 10 )

exp (Vjn)
pn (J : A„) -    ( 3 . 11)

exP (v in)  + exP (v jn)

Given an assumption of linearity in Vjn, these equations may be simplified by 

dividing throughout by either exp (Vjn) or exp (Vjn). Thus,

pn ' An) -
exP (Vin -  Vjn)

1 + exp (Vin -  Vj n )
( 3 . 12)
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Pn (J : An ) -  - - - - - - - - - - - - - - - - - - - - - - - - - -
1 + exp (Vin -  Vj n )

( 3 . 13 )

The above two equations define the standard binary logit model [Berkson (1944)]. 

Where there are more than two alternatives, Equation 3.9 leads to the equation 

of the multinomial logit model [Rassam et al (1971); Ben—Akiva (1973); 

McFadden (1973)],

in
exp (Vin )

Zexp (V jn) 
j^An

( 3 . 14 )

Thus, the application of Luce's Axiom, with some reasonable assumptions about 

the form of the utility function, leads to the specification of a model structure 

for the analysis of travel choice behaviour. However, the Independence of 

Irrelevant Alternatives assumption of the strict utility approach is the principal 

strength on the one hand and principal weakness on the other. It is a strength 

in that, firstly, the parameters which determine the choice probabilities, 

conditioned on selection from a subset of alternatives, can be utilized in 

determining the probabilities for the full set. Thus, the dimension of the 

calibration data set can be reduced substantially, particularly with a large full set 

of alternatives. Further, data for the omitted alternatives need not be collected, 

leading to economy in data collection and the possibility of improving detail on 

the examined alternatives. Secondly, the strict utility approach allows quick 

analysis of the effects of introducing new alternatives using the predetermined 

parameters for models containing only generic variables (i.e. variables common to
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all alternatives in the choice set). Finally, sequential or recursive structures of 

travel demand decisions can be modelled based on the separability property of the 

IIA axiom1.

The main weakness of the strict utility approach is the definition of an

alternative. Throughout the theory, distinct alternatives are assumed, but 

classification of alternatives is not a part of the theory. Clearly, inappropriate 

definitions of the alternatives could lead to erroneous probability definition. The 

IIA axiom will not yield accurate forecasts in situations where a new alternative 

competes more heavily with similar alternatives than it does with dissimilar ones. 

This problem is illustrated by the classical example of the red bus/blue bus

anomaly. Consider a situation in which a traveller who is making a choice 

decision between the car mode and a service of red buses is indifferent between

the two modes. Hence, the choice probabilities are equal (i.e. Pcar = 1/2 and

Pred bus =  1/2). Now an additional service of blue buses, which is identical in 

all respects to the red bus service, is introduced. Since the axiom states that the 

ratio of choice probabilities remains unchanged, the new choice probabilities will 

be one—third (1/3) for each of the three modes. This is an unrealistic 

assumption since the individual traveller will treat the two bus services as one in 

spite of the different colours. This example suggests that application of the strict 

utility approach should be limited to multiple choice situations where the 

alternatives can plausibly be assumed by the individual traveller to be distinct and 

independent. Therefore, great care must be taken in choosing the alternatives in 

order that the choice axiom is not too strong for the application.

The final point which it is essential to make in the evaluation of the strict utility 

approach is that, since the IIA property is extremely useful for practical planning,

1 See for example: CRA (1972, 1977); Domencich and McFadden (1975).
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its acceptance or rejection should be based on empirical grounds depending on 

the circumstances1.

3.2.2.2 THE RANDOM UTILITY APPROACH

There is a major difference between the strict utility approach and the random 

utility approach. The former approach assumes that individuals have an exact 

and measurable utility associated with each alternative in their choice sets, but are 

uncertain of their choice decisions even after assessing the comparative utilities. 

Nevertheless, they must still make their choice decisions even when facing such 

uncertainty. In such situations an individual cannot always be expected to choose 

the alternative with the greatest utility. On the other hand, the random utility 

approach assumes that each individual is a deterministic utility maximiser, choosing 

from the available alternatives the one which yields the highest utility. The basic 

hypothesis of the random utility approach is that the individual's utility is 

represented as the sum of two components, a systematic component (Vjn) and a 

random component ( qn) . The systematic component of the utility function 

accounts for the effects of the average tastes of the population and the observable 

characteristics of the alternative and the individual. The random component 

accounts for the effects of the unobservable characteristics of the individual and 

the alternative, individual idiosyncrasies and taste variations over the population. 

So,

Ui n i n + e ( 3 . 15)

1 See for example: CRA (1972); Brand (1974); Hensher and Johnson (1981).
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As stated above, individuals are considered to be deterministic utility maximizers; 

that is, they will always choose the alternative which has the maximum utility. 

However, the analyst can only measure the deterministic part of the utility, and 

must therefore assign a probability to the outcome based on that observation. 

Thus, the random utility model of choice decision can be written:

p in  = Prob t u in  > ° jn  > ^  J * 1 » J 6 An ) ( 3 . 16)

Substituting Equation 3.15 in Equation 3.16, Equation 3.16 becomes:

p in  = Prob ( Vin ein  ^ ^ jn  + ejn  > ^  j  ̂ i > j e  ̂ ( 3 . 17)

Equation 3.17, which is called the choice probability function, is the fundamental 

equation of the random utility models. Rearranging Equation 3.17 gives:

p in  = Prob ( ejn  “ e in  Vjn -  Vjn , JV* j ^ i , j e An } ( 3 . 18)

or,

p in “  Pr°b 1 €j n <' V i n “ Vjn + 6 | n , ‘V’ j & i ,  j e An } (3 . 19)
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Any particular choice model can be derived using Equation 3.18, or equivalently 

Equation 3.19, given specific assumptions on the joint distribution of the random

components. Let f( n» e2n> ••••» ein   eJn) denote the joint density

function of the random components of J alternatives. Then the choice 

probability of an alternative i is given by,

P i n  =

e i n +^ i n  ^ l n  r e i n —1'00 e i n +^ i n “^J n

f  ( el n   e i n * • • • >

el n = “°° e in = "°° €J n = - ro

eJn) d e i n . . .  d e j n . . .  d e j n (3 . 20)

Although Equation 3.20 represents the most direct way of expressing the choice 

probability function, it involves a multiple integration computation which makes it 

an inconvenient way of deriving the choice probability for particular situations 

(e.g. for a large number of alternatives in the choice set or for more complicated 

choice functions such as the probit model function). Therefore, an alternative

and simpler way is to denote F ( e | n, € 2 n .........   q n, ...., e jn) as the cumulative

joint density function of the random components and Fj (e^n, € 2 n , q n, ....,

ejn) as its partial derivative with respect to the i1*1 random component. Then,

' i n  *° Pi  ( € i n +^ i n  ^ l n  e i n  € i n +^ i n  ^ J n ) d € j n

e in — 00

(3 . 21)
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This equation can be interpreted as follows. Set the random component qn to 

some given value. The integral is then the probability that e-m  equals that 

specified value and that all the other random components satisfy the condition 

given by Equation 3.19. Hence, the probability of individual n choosing 

alternative i can be obtained by integrating Fj over all possible values of ejn.

It is possible to obtain a specific operational model from this choice probability 

function by specifying, firstly, the functional form of the systematic component 

(Vin) utility function and, secondly, the joint distribution of the random

components ( qn) for all alternatives in the choice set (An).

The deterministic utility Vjn is a function of the characteristics of alternative i 

(e.g. travel time, cost, convenience, comfort, and safety) and the socio— economic 

characteristics of individual n (e.g. income, sex, age, car— ownership, and 

occupation). Hence the function Vjn can be expressed as,

(3 . 22)

where,

Zjn is a vector of characteristics of alternative i as perceived by 

individual n, and

Sn is a vector of socio— economic characteristics of individual n.

For mathematical convenience, linearity in the unknown parameters' specification 

of the deterministic utility function Vjn is usually assumed. Thus,
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K
Vin = 2 ^ ik  (*ikn)  > ^ k, * £î n ( 3 . 23)

k=l

where,

fk (^ikn) 1S a vector of K functions of attributes of an individual (n)

and characteristics of an alternative (i). These functions 

represent the way in which each explanatory variable can be 

introduced into the utility function (such as linearly or 

logarithmically or exponentially).

/Sjjj is a vector of K unknown parameters reflecting the estimated

influence of variable k on the utility of alternative i. These

are assumed to be constants across individuals.

K is the total number of explanatory variables entered in the

utility function

Once the functional form of the deterministic utility function is specified, the next 

step is the specification of the joint distribution of the random components e-m . 

Different assumptions on the joint distribution of the random components ejn lead 

to different mathematical forms of probabilistic choice model. Clearly, a number 

of distributional assumptions are possible [See for example: Domencich and

McFadden (1975); Ben—Akiva and Lerman (1985)] and among them two special 

cases are of particular interest.

In the first case, if the random components of the utility function are assumed to 

be Independently and Identically Distributed (IID) across individuals and all the 

alternatives in the choice set, then the appropriate statistical distribution is the 

Weibull distribution. The use of the Weibull distribution results in a MNL model
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of the form1,

in
exp  (Vi n )

2  exp  ( Vj n) 
J eAn

( 3 . 2 4 )

Thus, the same model form has resulted from this assumption as was derived 

from the strict utility approach (see Equation 3.14). As was pointed out by CRA

(1972), the assumption that the random components follow the Weibull distribution 

is equivalent to the IIA axiom. This means that for an individual n, the odds 

ratio of the choice probabilities of any two alternatives (i.e. Pjn / P^n) is entirely 

independent of the presence or absence of any other alternatives in the choice 

set. This can be easily shown in the following way:

in

mn

exP (v in) /  I  exP (v in) exP (v in) 
______________3 eAn = ____________
exP (vmn) /  2 exP (v jn) exP (vmn) 

J eAn

( 3 . 2 5 )

The MNL model is both mathematically transparent and computationally tractable. 

It has been applied successfully in a wide variety of travel demand forecasting 

contexts2. However, the assumption that the random components of utilities are 

IID severely restricts the flexibility of the model and can be a source of

1 For complete derivation of the MNL model, see Hensher and Johnson 
(1981); Kanafani (1983); Maddala (1983).
2 See for example: Manski (1973, 1977); Domencich and McFadden (1975); 
Richards and Ben—Akiva (1975); Adler and Ben—Akiva (1976); Ben—Akiva and 
Atherton (1977); Parody (1977); Small (1977); Spear (1977); Horowitz (1979); 
Ortuzar (1980); Dunne (1982).
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substantial forecasting error [see for example: Horowitz (1980, 1981 a & b)]. In 

applications where the utilities of some alternatives are correlated, the logit model 

may overpredict or underpredict substantially the shifts in the choice probabilities 

of those alternatives when the characteristics of one or more alternatives are 

changed1. Therefore, several other exponential models derived from the MNL 

model have been suggested in the literature in order to overcome the problems 

associated with the IIA property when the alternatives concerned are correlated. 

These include the Generalised Extreme Value (GEV) model suggested by 

McFadden (1977, 1978), the Cross Correlated Logit model suggested by Williams 

(1977), and the Dogit model suggested by Gaudary and Dagenais (1979). 

However, their use in actual planning studies has been infrequent.

In the second case, a more general model, the Multinomial Probit (MNP) model, 

permits tastes to vary among individuals with identical observable characteristics, 

and allows effects of unobserved variables to be correlated across alternatives. 

The MNP model can be obtained by assuming that the random component ( e jn )  

of the utility of each alternative has the Multivariate Normal (MVN) distribution 

with zero mean vector and a finite variance—covariance matrix (I). Thus,

e ~ MVN ( 0 , 1 )  ( 3 . 26)

where,

e is the J vector of random components ( e i n, e2n>--> q n, .., e jn), and

J is the number of alternatives in the choice set.

1 See for example: Mayberry (1970), Schneider (1973), Sheffi (1979).
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Note that n is discarded from the expression for simplicity.

e is MVN distributed if its density function f( e) is given by,

f  ( e ) -  MVN <0, I)  -  [ { ( 2 t ) J  1^1 ) - ' / 2

1
exp {---------- ( e . p ' . e T )  } ] ( 3 . 27 )

2

Thus for the MNP model, Equation 3.20 can be written as:

in

e in + v in “v ln

ein=-°°

e in =+0° e in+^in"^Jn

[ { ( 2 x ) J 121 r 1/ 2

6 in — 00 6 Jn=-0°

exp {--------  ( e . 2  1 • eT) } ] d e i n . . . d e i n . deJn ( 3 . 28 )
2

Despite its generality, the MNP model has received little use in travel demand 

analyses because of its computational intractability. Algorithms for computing the 

choice probabilities and statistically estimating the parameters of this model have 

only recently become available1. At the present time, a program exists for the

1 See for example: Albright, Lerman, and Manski (1978); Daganzo and 
Schoenfeld (1978); Hausman and Wise (1978); Daganzo, Bouthelier, and Sheffi
(1979); Daganzo (1979); Sheffi, Hall, and Daganzo (1982); Langdon (1984).
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computation and estimation of the choice probabilities of the MNP model for up 

to 20 alternatives and 20 explanatory variables1. However, the MNP model 

computations with these programs are reported to cost from two to more than 

ten times as much as the equivalent MNL model computations. Moreover, there 

are preliminary indications that obtaining precise statistical estimates of the 

parameters of the MNP models may require samples much larger than those 

needed to estimate the parameters of the MNL models, which would further 

increase the cost of the MNP model computations. Finally, the MNP model has 

the disagreeable property that the functional form of the choice probabilities can 

not be written in closed form.

A MNL model, on the other hand, presents a more efficient tool for providing 

travel demand estimates when many alternatives are considered at the same time. 

In addition, the MNL model can be used to analyse the possible shifts in the 

choice probabilities of the competing alternatives when the characteristics of one 

of the alternatives are altered. Lastly, the MNL model can be used for quick 

analysis of travel demand in other locations2.

As a result of the aforementioned problems in the application of the MNP model 

on the one hand and the tractability of the MNL model on the other hand, the 

logit formulation is more likely to be preferred in many travel demand modelling 

applications provided that the IIA behavioural assumption of logit can be 

accepted. Some limited tests of MNL against MNP in situations where IIA is 

violated have, nevertheless, failed to show distinct differences between the two 

models [Spear (1977)]. Moreover, in cases where the IIA assumption is valid, the

1 Personal communication (late 1988) with Prof. Daganzo of Berkeley 
University who generously supplied a MNP program (CHOMP) capable of handling 
up to 20 alternatives and 20 explanatory variables.
2 See for example: Atherton and Ben—Akiva (1976); Train (1978, 1979); 
Koppelman and Wilmot (1982, 1986).
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two models are generally statistically indistinguishable1.

3.3 STATISTICAL ESTIMATION OF THE PROBABILISTIC CHOICE 

MODELS

Several statistical techniques can be used to calibrate discrete choice models. The 

most commonly used ones are regression analysis and the maximum likelihood 

estimation method. The form and applicability of the techniques depend on the 

structure of the choice model. The calibration process consists of estimating the 

values of the unknown parameters in the model formulation which will give the 

best fit to the data collected.

The data available for the calibration process will typically be a sample of N 

observations. Each observation consists of an observed choice and a vector of 

explanatory variables. The observed choice of each individual can be denoted by 

yjn such that:

y in

1 i f  a l t e r n a t i v e  i i s  chosen  by i nd i v i du a l  n

. 0 o t herwi s e

( 3 . 2 9 )

The following two subsections examine the regression analysis arid the maximum 

likelihood calibration techniques.

1 See for example: Afriat (1972); Amemiya (1976, 1981); Bouthelier and 
Daganzo (1979); Horowitz (1980a, 1981); Maddala (1983).

41



3.3.1 REGRESSION ANALYSIS

The ordinary least squares estimation technique is normally used in the case of 

linear regression, that is

K
y n = £ 0 k ^k n  + en ( 3 . 3 0 )

k = l

where,

yn is the dependent variable for observation n, 

is the kth unknown parameter, 

is the kth explanatory variable, and 

en is the error term which is assumed to be normally distributed with 

zero mean and constant variance.

The least squares technique estimates the values of the unknown parameters (3^  

that minimise the sum of squared differences (Q) between the observed and the 

expected values of the observations. Thus,

min Q = min 
0 k 0k

N K
2 ^ i n  " 2  0k * i k n ) 2 
n = l k = l

( 3 . 3 1 )

In many cases the dependent variable yn can take on a large number of possible 

values (i.e. continuous variables such as the number of individuals choosing a
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particular mode in a given area). For such dependent variables, the standard 

regression technique provides an appropriate statistical model.

Sometimes, however, the dependent variable is dichotomous, such as in mode 

choice where an individual chooses a particular mode or not. For several 

reasons, the standard regression is not an appropriate model for such types of 

variable. Firstly, the error terms are heteroscedastic. To prove this, using 

Equation 3.30, it can be shown that the error term can take only two values:

1 -

ein

K
2 0k x ikn 
k=l

K
I  ^k x ikn 
k=l

i f  Yin = 1

i f  y i n  = 0

( 3 . 3 2 )

where, yjn =  1 indicates that alternative i has been chosen by individual n and 

yin =  0 that it has not.

Therefore, the variance of ejn can be calculated by [See Hensher and Johnson 

(1981) for the complete derivation of this variance]:

K K
Var Mn -  <1 -  I  0k X ,kn) d  0k Xi kn) ( 3 . 33 )

k-1 k-1

This is clearly not constant for all the observations since it depends upon the 

values of i$kx ikn which vary across the observations. This fact is contrary to the
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least squares' property that the error term has zero mean and constant variance. 

Secondly, the predicted values of the observed choice are not necessarily confined 

to the appropriate interval (0, 1) and may fall either below zero or above one in 

some cases (see Figure 3.1). Finally, hypothetical tests of the estimated 

parameters, such as the t— test, rely on the normality assumption of the error 

terms, which is equivalent to assuming that the y-m  are normally distributed. This 

is not the case since yjn is a discrete variable, so the usual t— test is not valid1.

However, an alternative least squares approach which was developed by Berkson 

(1953) has been applied to binary choice models (e.g. logit and probit) in which 

the utility is a linear function of the unknown parameters. Berkson's approach 

involves the transformation of the model to a straight line function. Specifically, 

for the binary logit model, the choice probability of alternative 1 is given by:

P in  =
exp (Vl n ) 

e x P <v l n )  + e x P (v 2n)
( 3 . 34 )

or,

Pin _  -----------------------------------------------------  ( 3 . 35)

1 + exp { -  (Vln  -  V2n))

Hence,

1 See for example: Neville and Kennedy (1964); Draper and Smith (1966); 
Domencich and McFadden (1975); Hensher and Johnson (1981); Ben—Akiva and 
Lerman (1985).
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FIGURE 3.1 Comparison of linear and logistic models
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pln  /  ( i - P l n )  = exP (Vl n  “ V2n) (3 .36)

Taking the natural logarithm of both sides of Equation 3.36, results in:

Log[Pl n  /  ( 1 - P i n)]  -  Vl n  -  V2n ( 3 . 37)

Since  Vln  -  V2n -  0kxkn>

an^ x lkn  “ x 2kn x kn

Equation 3.37 becomes:

Log[Pl n / ( l - P l n )]  = |3kXkn ( 3 . 38)

The problem with applying Equation 3.38 is that the choice probabilities are 

unknown. Therefore, one solution is to divide the observations into homogeneous 

groups with similar characteristics and use the choice share of each alternative for 

each group as an estimate of the choice probability of that alternative. So,

Log[Rl g  /  ( 1 - Ri g )] = 0kXkg + eg ( 3 . 39)

where
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Rlg  is the share of the gth group choosing alternative 1,

Xfcg is the kth explanatory variable for group g, and,

6g is the error term for group g attributed to the use of proportion as

an estimate of the corresponding probabilities.

Since the right-hand side of Equation 3.39 is a simple linear function, the 

unknown parameters can be estimated using the ordinary least squares method. 

This will produce consistent estimates of when the homogeneous groups have 

relatively large sizes [Domencich and McFadden (1975)].

Despite its obvious appeal, Berkson's approach is rarely applied in travel demand 

studies for a number of reasons. Firstly, a large sample of observations is 

required in order to divide it into homogeneous groups. As Domencich and 

McFadden (1976) pointed out, if each independent variable k in the model 

function takes only two values, then 2^ homogeneous groups are required (e.g. 

for k = 8, there would be 256 homogeneous groups). Secondly, by grouping the 

data some information will be lost and this makes the calibration less efficient. 

Finally, for continuous variables an arbitrary categorization is required and this 

can introduce biased estimates1.

Theil (1969) extended Berkson's method to make it applicable to the calibration 

of the MNL model. However, the problems of finding homogeneous groups in 

the multinomial case are more difficult, especially when choice sets are varying 

across the observations. Therefore, application of the Berkson—Theil method to 

the multinomial model is extremely difficult.

1 See for example: Cox (1970); Domencich and McFadden (1975); Hensher and 
Johnson (1981); Ben—Akiva and Lerman (1985).
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It would appear justified, from the above discussion of the applicability of the 

regression technique, to consider more appropriate techniques for calibrating 

discrete choice models. Fortunately, an appealing alternative is available, namely 

the maximum likelihood estimation method. This is discussed next.

3.3.2 MAXIMUM LIKELIHOOD

Maximum likelihood estimation is the most general and straightforward technique 

for calibrating discrete choice models. The idea behind this method is very 

simple. Given a sample of observations and a specified model, the estimated 

parameters are those values that are the most likely to generate the observed 

data.

The general likelihood function for the whole data sample is defined by:

N

l  = TT
n= l

TT
i eA

y in
’in

n
( 3 . 4 0 )

where,

L is the likelihood function of the data sample,

N is the total number of individuals in the sample,

An is the choice set available to individual n,

Yin is the observed choice indicator, and,

Pjn is the calculated choice probability of the n^1 individual choosing 

alternative i. This probability is replaced by the specified model 

function.
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Since the left-hand side of Equation 3.40 is the product of N probabilities, its 

value will usually be too small to be tractable. In addition, it is more 

convenient to work with the logarithm of the likelihood function which is a 

monotonically increasing function whose maximum occurs at the same value. 

Hence,

N
L* -  I  1 y i n  l o S p i n  ( 3 . 4 1 )

n = l  i eAn

where,
•jj

L is the log likelihood function.

For the MNL model, Equation 3.41 becomes,

N
L * - 2

n=l
2
ieA.

Yin l o S
exP (^k x ikn) 

I  exP (0k x jkn>
JeAn

( 3 . 4 2 )

or,

N
^ “ 2  2  y i n  [ 0k x ikn  " 1°S 2  e x P (0k  x jkn) ] ( 3 . 4 3 )

n -1  i eAn j eAn

The maximum likelihood estimation method makes use of the fact that the
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calculated probability of observing the given sample should be highest when the 

unknown parameters k are near to their true values. Hence, the model 

calibration process involves finding the set of estimated values of (3  ̂ which 

maximises the log likelihood function. These values can be found in the ordinary 

way by differentiating Equation 3.43 with respect to each parameter and 

setting each differential equal to zero. The first order condition for the 

maximization of the likelihood function is,

d L* N ?  eXP ^ k  ^ j k n )  ^ j k n
-  S 2 yin I Xikn -  ]“ 0 (3 -44)

d (3k n -1  ieA n £  exp (|3k X jkn)
J eAn

Since yjn is a dichotomous variable, Equation 3.44 can be written in a more 

compact form,

d L N
= S S t  y i n  ” 1 * i k n  = 0

d n=l i eAn
(3 .45 )

The second order condition is,

d^L* N
= ~ S S Pin t *ikn " S *jkn pjn

d0k d/Sj n-1 ieA n j eAn

* i l n  - 2 Xjin Pjn ] < 0
J eAn

(3 .46 )
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Equation 3.46 shows that the second partial derivative of L* is negative definite. 

This implies that L is strictly concave and any estimator of (3̂  which satisfies 

Equation 3.45 is a unique maximizer of the likelihood function [McFadden 

(1973)]. This estimator will, for sufficiently large samples, have an asymptotic 

MVN distribution with the true parameters as means, and variance— covariance 

matrix I given by the inverse of the matrix of the second derivative of L* 

calculated at the true parameter vector multiplied by minus one [Theil (1971)]. 

Thus,

!kl =
d^L* 

d^k d^l

-1

(3 .47 )

The maximization of the likelihood function which is equivalent to the solution of 

the K nonlinear equations in Equation 3.45 can be carried out by several 

numerical optimization techniques. The Newton— Raphson method which is often 

simple to implement and computationally efficient was used in this study1.

3.4 G O O DN ESS-O F-FIT MEASURES

A calibrated discrete choice model provides calculated choice probabilities for any 

specified values of the explanatory variables. It is misleading to compare the 

estimated probabilities with the observed choices since the predicted choice is a 

probability, whereas the observed choice is either 0 or 1 [Hensher and Johnson 

(1981)]. Hence, a goodness—of—fit measure, such as the correlation coefficient

1 For more details of this method, see Broyden (1967); Ben—Akiva and 
Lerman (1985).
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(R2) of the ordinary least squares method, which is based on estimated residuals,

does not make any sense. For the same reason, a comparison of the sum of the

computed probabilities for a given alternative with the total number of individuals 

choosing that alternative is also statistically meaningless.

As a result, several alternative statistical goodness— of— fit measures based on the 

value of the log likelihood function calculated at the mean of the estimated 

parameters have been utilized to assess how well a calibrated model reproduces 

the observed data1.

Statistical tests for assessing the validity of the MNL model which have been used 

in this study are described below.

3.4.1 THE t-T E S T  FOR SIGNIFICANCE OF EACH PARAMETER

The t— test is designed to indicate whether a particular variable in the model 

specification has a meaningful role in the utility function. The test seeks to 

determine if the coefficient associated with a particular variable is significantly 

different from zero (i.e. testing the null hypothesis that 0k = 0). If the

hypothesis is accepted, then the conclusion is that the variable is not making a 

significant contribution in explaining part of the variation in the observed data. 

The rejection of the null hypothesis would indicate otherwise, namely that the 

contribution of the variable is significant. In other words, the greater the

magnitude of the t— value (typically greater than 2 at the 5 %  level of significance 

or, equivalently, for the 95% confidence level), the more important is the

contribution of that variable to the model.

1 See for example: Stopher (1975); Tardiff (1976); Hauser (1978); McFadden 
(1979).
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The simplest form of this test entails the division of the estimated parameter 

value by its estimated standard deviation. Thus,

t -  Ok /  J  IkR ,  ( 3 . 4 8 )

where t is the t— test value for parameter and is normally distributed with 

zero mean and unit variance. Ij^ is the estimated variance of parameter (3^  and 

is obtained from the asymptotic variance— covariance matrix given by Equation 

3.47.

Besides the t— value, the signs of the coefficients should also be reviewed for 

reasonableness.

3.4.2 THE LOG LIKELIHOOD RATIO TEST

The primary objective of this test is to assess the overall statistical significance of 

a particular model calibrated by the maximum likelihood estimation method. This

can be done by comparing the tested model with another model resulting from

imposing a linear restriction on some or all of the parameters of the tested 

model. To test the model as a whole involves testing the null hypothesis that

the dependent variable is independent of the values of the explanatory variables. 

This implies that all the parameters are set equal to zero (i.e.the equal shares 

model). The rejection of the null hypothesis simply indicates that the tested

model is considered better than the equal shares model, or, in other words, that 

the effects due to the parameters are to be regarded as significant [Hensher and 

Johnson (1981)].
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Mathematically, let L^* denote the value of the log likelihood function of the 

tested model evaluated at the optimum values of the estimated parameters, and 

L 0* denote the value of the log likelihood function of the model that assigns 

equal values of the choice probabilities of all alternatives, regardless of the values 

of the explanatory variables. Then, under the null hypothesis that all parameters 

are zero (i.e. =  @2  =  =  0), the log likelihood ratio (LLR0) is

defined as,

and is X2 distributed with K degrees of freedom, where K is the total number of 

parameters in the tested model [Wald (1943); Nerlove and Press (1973)].

However, this test is not very useful because almost always the null hypothesis 

can be rejected at very low levels of significance. Therefore, it is more 

informative to test the null hypothesis that all the parameters, except for the 

alternative—specific constants, are set to zero (i.e. the market share model). In 

this case, the log likelihood ratio (LLRC) is given by,

and is X2 distributed with K— J + 1 degrees of freedom, where J is the total 

number of alternatives in the choice set, and Lc is the log likelihood function 

value of a model with constants only. This value is given by [Sobel (1980)],

LLR0 -  -  2 ( L* -  l £ ) ( 3 . 4 9 )

LLRC ----- 2 ( L* -  ) ( 3 . 5 0 )
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J
Lg = ]> Mj In (Mj /  Nj)

j = l
( 3 . 5 1 )

where,

Mj is the number of individuals actually choosing alternative j, and 

Nj is the total number of individuals having alternative j available 

(including those actually choosing alternative j).

The rejection of the above hypothesis would lead to the conclusion that the 

tested model is better than the market share model.

In general, however, the log likelihood ratio test is a relatively weak test for two 

reasons. Firstly, although the log likelihood ratio test can reject a null hypothesis 

model, it cannot give an indication of how well a calibrated model predicts, nor 

can it compare two models unless one model is a restriction of the other. 

Secondly, the log likelihood ratio test produces values of X 2 that are much larger 

than any tabulated values. Hence, comparison between alternative model 

formulations cannot be made based on log likelihood ratio values [Stopher (1975); 

Tardiff (1976)].

3.4.3 THE LOG LIKELIHOOD RATIO INDEX TEST

As a result of the aforementioned weaknesses in applying the log likelihood ratio 

test (specifically the unlimited values of LLR) and the fact that the observed 

dependent variable is discrete (i.e. 0 or 1), a more meaningful goodness—of—fit 

measure giving values between 0 and 1 is required. Consequently, the log
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likelihood ratio index ( p 02), which is similar in many respects to the correlation 

coefficient (R 2) of the regression analysis, can be utilized in assessing the success 

of a particular choice model or in comparing models in terms of how well each 

model replicates the data from which it has been constructed.

The ratio index p 02 is most often defined when the null hypothesis model is one 

with all parameters equal to zero [Brownstone and Wills (1974)]. In this case, 

the log likelihood ratio index (p02) is given by,

P o 2 “ 1 “ Ljj /  L* ( 3 .5 2 )

The larger the value of p 0 2 for a given model, the better the model fits the 

data. It should be noted that values from 0.2 to 0.4 for p 02 are considered to 

indicate an excellent fit [McFadden (1976b); Hensher and Johnson (1981)].

Although this test is widely used in practice, it has been recognized that it is 

meaningless to compare p 0 2 for different data samples with different market 

shares. The reason is that the value of p 02 varies depending on the proportion 

of individuals choosing each alternative1. However, a more flexible log likelihood 

ratio index test which allows comparison between models estimated with different 

sample sets that have different market shares is given by McFadden (1973):

P c 1 - (3 .53 )

1 For more details of this point see Tardiff (1976).
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3.4.4 PERCENTAGE OF OBSERVATIONS CORRECTLY PREDICTED

This goodness— of— fit measure is based on the accuracy of a given model in 

reproducing the observed data. The simplest form of this measure is given by,

100 N
R i g h t  = ---------- 2 y n ( 3 . 5 4 )

N n=l

where,

yn is 1 if the highest predicted probability of choice corresponds to the 

actually chosen alternative, and 0 otherwise, and 

N is the total number of observations in the data sample.

A higher value of %  right indicates a better fit of the given model. However, 

this test is much less useful for comparing alternative models. The reason is that 

there are no readily available quantitative criteria for determining how large the 

differences between the values of %  right for different models should be in order 

to justify a conclusion that the model with the higher value is more accurate.

3.5 SPECIFIC ISSUES IN THE APPLICATION OF DISCRETE CHOICE 

MODELS

This section presents, briefly, some important issues that are related to the 

application of probabilistic choice models. The first subsection discusses the ways 

in which various attributes enter the utility function of each alternative, in 

particular the distinction between generic and alternative specific variables. The
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next subsection is concerned with the identification of the feasible choice sets 

available to individuals in deciding which alternatives they will choose.

3.5.1 SPECIFICATION OF VARIABLES IN THE UTILITY FUNCTION

Travel demand models are concerned with the definition of the comparative 

utilities of alternatives, as the bases for specifying the resultant choice, and the 

utility is a function of all attributes that describe each alternative. It is,

therefore, essential to present the ways in which these attributes enter the utility

function.

In general, two main types of explanatory variable are used in specifying the

utility function of each available alternative; these are the generic and the

alternative— specific variables. Whether a particular variable is a generic or

alternative— specific variable depends on the way that the variable enters the

utility function. If the variable appears in the utility functions of all the

alternatives with the same coefficient in each, then it is a generic variable. On 

the other hand, if the variable appears in the utility function of one alternative, 

then it is an alternative— specific variable.

To distinguish between generic and alternative— specific variables, consider, for 

example, the variable of travel time in a mode choice model. If the travel times

by different modes are assumed to have a common valuation for all modes (i.e.

a common weighting or coefficient), then travel time should be specified as a

generic variable. However, if this is not considered correct, then the variables

may be specified such that each one appears only in the utility function of one

alternative and is zero otherwise. In this case the variables are specified as
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alternative— specific variables.

If all variables in a model are generic, then the model is termed an "abstract 

alternative" model [Quandt and Baumol (1966); CRA (1972)]. This type of

model has variables relating only to characteristics common to all alternatives and

is therefore highly suited, for forecasting purposes, to situations substantially

different from those used for model estimation, and especially to systems not 

currently in use. Thus generic variables should be used whenever possible

[Richards and Ben—Akiva (1975); Hensher and Johnson (1981)].

Generic variables are used only when there is little correspondence among the

sets of alternatives available to different individuals; otherwise alternative— specific 

variables have to be used. For example, if the set of alternative shopping 

centres at one location is entirely different from the set of shopping centres at 

another location, there is no correspondence among sets of alternatives, and so 

these alternatives can be described only through the use of generic variables. But 

if only one of those shopping centres is common to every individual's set of

alternatives, then alternative— specific variables can be used to describe that 

common shopping centre.

If a variable has the same value for all alternatives to all individuals, then it will 

have no impact on the model. This is because of the linear specification. In 

other words, the same term would appear in the numerator and in each member 

of the sum in the denominator, and thus it would cancel out as a common

factor. In order to maintain the influence of such variables (e.g. socio— economic 

variables), they must be specified in one of the following ways:

1— The variable may be introduced as an alternative—specific variable (or
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alternative— specific dummy variable) which takes the specified value of that 

variable or has a value one for one alternative (or more), and is zero otherwise.

2— The variable may be combined or interacted with another variable (e.g. cost 

/income) so that it has an alternative— specific value and can be used to define 

either a generic or an alternative— specific variable.

An alternative— specific constant which has the value one for a particular 

alternative and zero for all other alternatives can also be included in the 

specification of the model to capture the impact of unobserved attributes affecting 

the choice of an alternative. Such constants cannot be included in the utility of 

all alternatives, since the result would be a condition analogous to perfect 

multicollinearity in regression analysis. Therefore, at least J — 1 constants can 

be identified, where J is the total number of alternatives available to each 

individual in the data sample. It is apparent that this also applies to 

alternative— specific dummy variables (such as sex or occupation) which can be 

regarded as additional alternative— specific constants [Richards and Ben— Akiva 

(1975)].

3.5.2 CHOICE SET DEFINITION

The most fundamental problem that the analyst has to solve is the definition of 

the set of available alternatives for each individual in the data sample. To 

define exactly a choice set for an individual is extremely difficult. However, two 

possibilities are available. These are: to treat all available alternatives as the set 

of relevant choices for all individuals, and let the coefficients and the model 

structure take care that the resulting choice probabilities of the infeasible 

alternatives are very low or even zero; or to select only the important modes,
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that is those modes used in the highest proportions. The former way requires 

additional data measurements and so results in an undesirable model and a high 

computational cost. Furthermore, the inclusion of unrealistic alternatives in the

choice set may considerably reduce the comparative ability of the model, and the

possibility exists that a model capable of dealing with unrealistic alternatives may 

not be able to describe sufficiently the choices between the realistic alternatives 

[Ruijgrok (1979); Ortuzar (1980)]. In the latter way, the reduction of the choice 

set by the exclusion of some alternatives with low choice frequencies will

sometimes result in omission of some important alternatives that are not chosen 

due to the specific sample or sampling technique.

An appropriate alternative method, which neither considers all alternatives nor

eliminates the low choice proportion alternatives, is heavily reliant on a priori 

logical arguments and observations of current behaviour in determining the feasible 

set of relevant alternatives. In this method, the definition of the relevant choice 

set for each individual is carried out by imposing some logical constraints on the 

availability of each alternative to each individual in the data sample. In other 

words, the feasibility of an alternative is defined by a variety of constraints such 

as physical availability (e.g. a bus service is an available alternative only when 

the bus stops are close to the home and place of work of a given individual); 

time availability (e.g. walking is an infeasible alternative for long distance 

travelling); monetary resources (e.g. a taxi is an infeasible alternative for low 

income workers); limited information (e.g. an individual's lack of knowledge about 

bus services, routeing, scheduling and the locations of stops may result in the 

unavailability of bus services to that individual); and so on1

1 See for example: CRA (1972); Stopher (1980); Zahavi and Ryan (1980); 
Goodwin (1981); Gunn (1981); O'Neill and Nelson (1981); Richardson (1982); 
Kitamura and Lam (1984); Ben—Akiva and Swait (1984); Swait and Ben—Akiva 
(1987 a, b).
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CHAPTER FOUR 

GRIS SURVEY AND THE SELECTED DATA BASE

4.1 INTRODUCTION

This chapter briefly describes the data available for the calibration of the set of 

models presented in Chapter 5. Section 4.2 examines the GRIS survey: the study 

area; how the study data were collected; and details of the collected data. In 

Section 4.3 the sample used in this study is described. The division of the total 

sample into two subsamples, one for the calibration of the set of models and the 

other for the validation of the calibrated models, is also explained. Section 4.5

considers the problems inherent in the available data in terms of the requirements 

of this study. The last section deals with the selection of the most important 

level— of— service and socio— economic variables.

4.2 GRIS DATA SURVEY

The Central Clydeside Conurbation is centred on the City of Glasgow and

incorporates a number of surrounding Districts; at the time of the GRIS survey 

the population was approximately 1.7 million. Glasgow itself is an important

administrative, commercial and industrial centre and as such is an important

attractor for people seeking employment. It is also the main focus for the 

conurbation, and much beyond, of shopping, leisure and educational facilities.
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The conurbation has an extensive suburban railway network, much of it electrified

during the 1960s. The Glasgow Underground, originally opened as a cable

railway in 1896, comprises a loop located slightly to the west of the present city 

centre. Major road developments in the 1960s and 1970s resulted in the 

construction of the M8 motorway through the city from west to east and

incorporating the west and north flanks of an intended ring motorway around the 

city centre. The conurbation has long been characterised by lower— than— average 

levels of car— ownership due to a combination of low income, housing density and 

good public transport.

GRIS was set up in 1978 to investigate the effects on part of the conurbation of 

two major rail investments in Glasgow, viz. the construction of the new Argyle

Line which links the north and the south sides of the River Clyde and passes 

beneath the most important shopping centre in Scotland, and the modernisation of 

the Glasgow Underground (see Figure 4.1). GRIS was concerned only with that 

part of the conurbation (the suburban rail corridor between Dumbarton in the

west and Hamilton in the east, via the city centre) likely to be affected by the

investments.

The basic data source for this study is the household interview survey carried out 

by Martin and Voorhees Associates (MVA) in the autumn of 1978 and spring of 

19791 as part of the GRIS study conducted by the Scottish Development

Department (SDD), the Transport and Road Research Laboratory (TRRL) and

MVA.

1 The data used in this study is from the "before" household interview survey, 
and was supplied from tapes held by TRRL together with data from the "after" 
household interview survey which was carried out in the late spring of 1980 after 
the opening of the Argyle Line and the modernised underground. The author is 
indebted in particular to Mr. H. Gentleman of SDD who supplied much helpful 
information on the organisation of the survey.
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The household interview survey was conventional and provided details of one

weekday's travel by all members of a sample of households along the rail

corridor. The area surveyed was that within 1 km of the railway and

underground stations. An additional sample was taken between 1 km and 2 km 

of two stations: Bearsden and Hamilton.

Within this study area addresses were selected randomly from the Regional

Assessor's rating lists and grouped, for convenience of field work, into 55 clusters

of about 60 addresses each. In total, 2598 households were surveyed. In each

household all residents aged over 5 were asked to supply details of their travel

during the previous day, including journeys on foot of more than 5 minutes. A

total of 6944 persons were interviewed, and 17528 daily trips for different

purposes reported. The overall response rate was 84%, although this varied

between 80% and 90% in different parts of the study area [GRIS final report

(1981)].

The questionnaire (see Appendix 1) was divided into three basic parts relating to 

different levels of data, viz. household data, person data and trip data. These

data were stored on magnetic tape containing three files (i.e. household, person, 

and trip files). The data have, therefore, been arranged to allow analysis at 

three levels of detail, considering travel by household or by person, or considering

travel in terms of the trip.
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The household file contains information such as household size, structure, income 

and economic activity. The economic activity of a household is indicated by the 

number of persons employed and by characteristics of the head of the household. 

An indication of the household's theoretical mobility is given by variables such as

car— ownership and the number of persons with driving licences and public

transport seasonal tickets.

The person file includes personal characteristics of the trip— maker, such as age, 

sex, personal economic activity and type of occupation, and, in addition, factors 

affecting personal mobility, such as possession of a driving licence or some form 

of seasonal ticket.

Since the household and person files can consider trip— making only in terms of

the numbers of trips involving particular purposes or modes, their usefulness in

analysing travel behaviour is limited because they tell little about the 

characteristics of the trip itself. For this reason the trip file takes the trip itself,

a whole journey made to achieve a specific purpose, and allows it to be used as

the analysis base.

As shown in the questionnaire (see Appendix 1), the raw data were collected in

terms of the individual stages of each trip and a simplification was made in

linking them to form the whole trip. However, frequencies from the raw data 

indicated some trips of up to six stages. These were relatively few and have, 

therefore, been compressed to retain data on a maximum of three stages. Thus, 

a three—stage trip comprises access, main and egress stages.

The trip file summarises data for the whole trip in terms of the locations of its 

origin and destination, the start time and duration, the purpose at origin and

67



destination, the main mode used in the case of multi— stage trips, the cost if 

using public transport modes, and the total walking time involved. For

multi— stage trips, further details are given on the location of the destination of 

each stage and the mode used in each stage together with, in the case of car 

stages, more information on occupancy and parking and, for public transport 

stages, information on ticket types and costs. In addition, the mode name only 

is given for the best alternative mode which could have been used.

While these data on trip characteristics are rich in themselves, their effectiveness 

is increased by the ability to relate them to the characteristics of the trip— maker. 

Consequently, the trip file includes, for each trip, the same basic data on

personal socio— economic characteristics as forms part of the person file, and also 

the general characteristics of the household from which the individual comes. 

Using combinations of these groups of data within the trip file, a number of 

approaches for analysing this data are possible. Thus, trips may be analysed by

themselves in terms of purpose, mode, duration, origin and destination, peak and

off— peak start time, etc. By any of these, they may be related to the 

socio— economic characteristics of trip makers, such as sex, age, and occupation, 

and may be further related to the characteristics of the household, such as 

car—ownership, income, and family size.

4.3 PREPARATION OF THE DATA BASE

Since the objective of this study is to build mode choice models for the journey 

to work in Glasgow, only work trips have been used. From the 17528 trips for 

various purposes, a total of 2498 work trips have been extracted. These work 

trips are distributed across 12 modes of transport (see Table 4.1).
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Mode c h o s e n Cho sen  by
P r o p o r t  i o n

(%)

H o u s e h o ld  Car  

D r i v e r 559 2 2 . 4

O t h e r  Car  D r i v e r 30 1 . 2

Car  P a s s e n g e r 275 1 1 . 0

M /  C D r i v e r 11 0 . 4

Taxi 19 0 . 8

P e d a l  C y c le 8 0 . 3

Walk 611 2 4 . 4

Goods V e h i c l e  

D r i v e r
4 0 . 2

T r a i n 150 6 . 0

S c h e d u l e d  Bus 759 3 0 . 4

U n s c h e d u l e d  Bus 64 2 . 6

O t h e r  P a s s e n g e r 8 0 . 3

TOTAL 2498 1 0 0 . 0

TABLE 4.1 Distribution of work trips across 

available modes
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As shown in the above table, although twelve modes were used, there are few 

observations for seven of these (viz. other car driver, motor cycle driver, taxi,

pedal cycle, goods vehicle driver, unscheduled bus, and other passenger). These

modes have, therefore, been excluded primarily because of their low frequencies 

of use, but also, in some cases, because of their infeasibility or their lack of 

clear definition in the GRIS questionnaire. The motor cycle and pedal cycle 

modes have been excluded entirely due to their low frequencies of use. Trips by 

goods vehicle have been excluded also because such vehicles may be used at work 

so that their drivers are captive to this trip mode. Trips by unscheduled bus

have been rejected also, since travellers may be captive to this mode where a 

company supplies a bus to collect its workers. The taxi mode has been excluded 

because of its infeasibility as a daily mode. The other car driver and other 

passenger modes have been excluded because there was no clear definition of 

either in the GRIS questionnaire. Generally, in the case of excluded modes, it is 

impossible to assume them as alternative modes since there are no logical reasons 

for their availability and because of the difficulties of measuring the 

level—of—service variables for them. Thus Table 4.2 shows the frequencies of

the modes selected for this study. The work trips shown in Table 4.1 have thus 

been reduced to 2354, representing only the observed choice frequencies of the

five modes shown in Table 4.2. Since journeys to work are normally assumed to 

be similar to journeys from work, it was decided that the analysis should be 

carried out only for morning peak journeys to work, so further reducing the 

number of work trips to 1524, as shown in Table 4.3.

After final checking of all information available on each observation in Table 4.3, 

it was decided to reject the following cases:

1. Trips with incomplete information.

2. Trips of individuals from the same household.
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Mode c h o s e n Chosen  by P r o p o r t i o n  (%)

Car  D r i v e r 559 2 3 . 7

Car  P a s s e n g e r 275 1 1 . 7

Bus 759 3 2 . 2

T r a i n 150 6 . 4

Walk 611 2 6 . 0

TOTAL 2354 1 0 0 . 0

TABLE 4.2 Distribution of work trips across alternative 

modes (peak and off-peak).

Mode c h o s e n Cho sen  by P r o p o r t i o n  (%)

Car  D r i v e r 382 2 5 . 1

Car  P a s s e n g e r 199 1 3 . 1

Bus 483 3 1 . 7

T r a i n 118 7 . 7

Walk 342 2 2 . 4

TOTAL 1524 1 0 0 . 0

TABLE 4.3 Distribution of work trips across alternative 

modes (morning peak).
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3. Trips wrongly coded (e.g. wrongly reported mode or travel time).

4. Trips with origin and destination in the same zone.

5. Trips with more than one mode (e.g. mixed mode such as kiss—and—ride or

park— and— ride).

Table 4.4 shows the amended number of morning peak work trips available from 

the GRIS data survey.

The alternative modes shown in Table 4.4 are defined as follows:

1. Car Driver: drove the household car all the way.

2. Car Passenger: driven all the way by car.

3. Bus: walked from home to the stop, waited, caught a scheduled bus, then 

walked to the work place.

4. Train: walked from home to the station, waited, caught the train, then walked 

to the work place.

5. Walk: walked all the way.

In order to reduce the amount of data preparation, the statistical package SPSSx

(Statistical Package for the Social Sciences) was used to select a reasonably— sized, 

random sample of 650 trips from the 1141 available. The sample was 

subsequently divided randomly into two subsamples: a subsample of 530 trips for 

the calibration of the choice models, and a subsample of 120 trips for the 

validation of these calibrated models. The subsamples are shown in Table 4.5.
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Mode c h o s e n Chosen by P r o p o r t i o n  (%)

C ar  D r i v e r 298 2 6 . 1

Car  P a s s e n g e r 158 1 3 . 8

Bus 320 2 8 . 1

T r a i n 70 6 . 1

Walk 295 2 5 . 9

TOTAL 1141 1 0 0 . 0

TABLE 4.4 Revised distribution of trips to work across 

alternative modes (morning peak).

Mode C a l i b r a t i o n  sam ple V a l i d a t i o n  sam ple

c h o s e n Chos en  by P r o p o r t  i o n
W

Ch osen  by P r o p o r t  i o n
(%)

Car  D r i v e r 144 2 7 . 2 35 2 9 . 2

Car
P a s s e n g e r 64 1 2 .1 15 1 2 . 5

Bus 139 2 6 .2 30 2 5 . 0

T r a i n 45 8 . 5 10 8 . 3

Walk 138 2 6 . 0 30 2 5 . 0

TOTAL 530 1 0 0 . 0 120 1 0 0 . 0

TABLE 4.5 Distribution of trips across alternative modes for the two 

subsamples (calibration and validation).
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In order to test whether the validation sample was correctly chosen, it had to be 

established that there were no significant differences between the characteristics of 

the total sample before division and the two subsamples (i.e. the calibration and 

validation samples). The following tables present some properties of the three

samples. Tables 4.6 to 4.9 present, respectively, the distributions of: the number 

of cars in the household; the individual's position in the household; trips destined 

to the Central Business District (CBD); and the sex of the trip— maker. As can 

be seen from these tables, comparisons of the computed and corresponding

tabulated X 2 values indicate that there is no sign of serious bias in the validation 

sample.

The set of alternative modes available to each individual in the data survey was 

not reported, the only information given being the name of the best alternative 

mode. Thus, the determination of the set of relevant alternatives for each

individual is a difficult problem. As was mentioned in the previous chapter, if

an alternative has zero or very close to zero choice probability, then its inclusion 

or exclusion from the set of alternatives has negligible effect on the estimation 

and prediction results of the calibrated model. However, from practical 

considerations, usually of cost and time saving, the set of alternatives must be 

reduced to include only the feasible alternatives. Unfortunately, there is, at 

present, no specified criterion for determining a priori which alternatives are 

considered available to a particular individual and which not (in essence, the 

analyst does not know exactly the choice sets available to individuals unless the 

individuals are asked about their sets of alternatives during the data collection). 

The only way to define the available choice set is to impose certain constraints 

or rules on the availability of each alternative mode. Then, from the observed 

trip— making pattern, the availability of each mode can be determined.
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Number o f  

c a r s  i n  

h o u s e h o l d

P r o p o r t i o n  (°/o)in

T o t a l C a l i b r a t  i o n V a l i d a t  i o n

0 5 4 . 9 5 4 . 5 5 6 . 6

1 3 5 . 4 3 5 . 1 3 5 . 2

2+ 9 . 7 1 0 . 4 8 . 2

TOTAL 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

Computed X 2 =0.49. Tabulated X 2 at the 95% level = 5.991 

TABLE 4.6 Distribution of number of cars in the household for 

the subsamples.

H o u s e h o l d  

P o s i t  i o n

Coded

V a lu e

P r o p o r t i o n  (% )i n

T o t a l C a l i b r a t  i o n V a l i d a t  i o n

N on-h ead 0 4 9 . 6 5 0 .1 4 8 . 5

Head 1 5 0 . 4 4 9 . 9 5 1 . 5

TOTAL 1 0 0 . 0 1 0 0 . 0 1 0 0 . 0

Computed X 2 =0.132. Tabulated X 2 at the 95% level =  3.841

TABLE 4.7 Distribution of household position for the subsamples.
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Type o f  

Dest in a t ion

Coded

Value

P rop ortion  % in

T otal C a lib ra t ion V a lid a t ion

CBD 1 67.5 68 .8 7 0 .0

Non-CBD 0 32.5 31 .2 30 .0

TOTAL 100 .0 100 .0 100 .0

Computed X 2 =0.059. Tabulated X2 at the 95% level = 3.841 

TABLE 4.8 Distribution of trips across types of destination for the 

subsamples.

Sex o f Coded P rop ortion  °/o in

In d iv id u a l Value Tot al C a lib ra t ion V alid at ion

Female 0 4 0 .5 4 0 .0 37 .3

Male 1 59 .5 6 0 .0 62 .7

TOTAL 100 .0 100 .0 100 .0

Computed X 2 = 0.246. Tabulated X 2 at the 95% level =  3.841

TABLE 4.9 Distribution of trip—maker sex for the subsamples.
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In this study, the following rules have been used in the identification of the valid 

alternatives:

1. Car Driver is available if the individual is a member of a car— owning

household and possesses a valid driving licence.

2. Car Passenger is assumed to be a universally available mode, in the sense that

all individuals can be carried as passengers by their family drivers or friends.

3. Bus is almost universally available except for some short trips when the

required walking distance at both ends of the bus trip is greater than the distance 

walking all the way.

4. Train is available if the access distance to the nearest station is less than 1

km1 or the total distance at both ends of the trip is less than 3 km.

5. Walk is a valid alternative mode if the total distance of the trip is less than

2.75 km2.

Based on the above considerations, the distribution of the choice set sizes for 

each subsample is given in Table 4.10. Table 4.11 shows in more detail the

availability of each mode for each subsample.

1 The value of 1 km was chosen on the basis that the GRIS survey was 
carried out on an area within 1 km of the rail stations, except for only two
areas which were within 1 to 2 km.
2 It was found that, at the 95% confidence level, the farthest people were
prepared to walk was 2.65 km.
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Choice

se t

s iz e

C a lib r a tio n  sample V a lid a tio n  sample

Frequency
Proport ion

(%)
Frequency

Proport ion

(%)

2 41 7 .7 10 8 .3

3 244 4 6 .0 59 4 9 .2

4 207 39.1 38 31 .7

5 38 7 .2 13 10 .8

TOTAL 530 100 .0 120 100 .0

TABLE 4.10 Distribution of choice set sizes for both subsamples 

(calibration and validation).
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4.4 PRACTICAL LIMITATIONS OF THE GRIS DATA

It is clear from the review of the GRIS data survey (see Section 4.2 and 

Appendix 1) that there is a considerable amount of information available on 

household, individual, and trip characteristics. Nevertheless, there are a number

of problems associated with the use of this data in this study.

The first problem is the lack of detailed information about the alternative modes 

available for each individual in the data; the only information available is the 

best alternative mode. Thus, it is difficult to identify the relevant set of 

alternatives. This was discussed in the previous section.

A second problem in using the GRIS data is the omission of all stages with a 

walking time of less than 5 minutes. This produces difficulties in determining

walking times from home to bus stop or train station and vice versa.

The third problem is the lack of information on the costs of travel by the car

driver and car passenger modes; the waiting times for public transport modes (bus

and train); comfort, convenience, and safety of all of the modes; and the routes 

taken by all modes.

The last important problem is that there is no clear definition of the car 

passenger mode. A car passenger may be a passenger in the family or other car 

or may be part of a car— pooling scheme in which car owners travel together 

using the car of each one in turn. This results in difficulties in the allocation of 

costs of travel to car passengers.
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All of the above problems are discussed in the next section.

4.5 SELECTION OF THE EXPLANATORY VARIABLES

Probably the most difficult task for the analyst is the selection of the variables to 

be used in the alternative model specifications. The reason, as was discussed in

Chapter 3, is that the analyst does not know exactly what variables individuals 

considered in making their choice decisions. Individuals, in their choice decisions, 

must evaluate the characteristics of the competing modes. However, the 

perception of the characteristics of the alternatives modes varies from individual to 

individual and may depend on several socio— economic characteristics of the 

individuals and their households, as well as on the characteristics of the mode 

and trip. Therefore, the variables which affect the individual choice decision can 

be classified as:

1. Level—of—service variables (mode and trip characteristics).

2. Socio-economic variables (individual and family characteristics).

4.5.1 LEVEL— OF— SERVICE VARIABLES

To specify each alternative mode in the relevant set of alternatives available for 

each individual in the data sample, a set of level— of— service variables is 

required. For the chosen modes, values of some of these variables were 

reported. These values were used directly in the calibration of each specified 

model since, for journeys to work, the reported values are almost equal to the 

true values. For daily repeated trips, such as work trips, a learning process is 

involved which causes the reported values to converge towards their actual values
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as the journey is continually repeated. Hence, for such journeys there should be 

little difference between the reported and the measured values.

Since there was no information about alternative modes, a set of measured values 

of their variables was required. These measured values were derived by manually 

locating each pair of home and work addresses on large scales maps utilising the 

Ordnance Survey Grid Reference (OSGR) of six digits which was coded with the 

GRIS data. By this means location within an area of 0.01 km 2 can be defined. 

Thus, the values of the level— of— service variables can be more accurately 

measured than by using the ordinary centroid zonal system to represent the 

locations of the trip ends.

The following level— of— service variables were used in the specification of the 

alternative choice models:

Travel time

There is virtually no travel choice situation wherein the influence of travel time is 

absent. Travel time plays an important role in modelling travel choices within a 

transport system. It is a predominant explanatory variable of travel choice 

behaviour and, in addition, it often serves as an evaluation measure for 

transportation systems.

In considering the travel time taken for a particular trip by a particular mode, 

the in— vehicle travel time must be distinguished, where it is available, from the 

time spent outside the mode (walking and waiting times). It is necessary to split 

the travel time into its components and weight them differently.
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For each chosen mode, the in— vehicle travel time used was the reported value 

for that mode. To measure the in— vehicle travel time for car driver and car 

passenger as alternative modes, an average speed of 19 kph was assumed1. Since 

the precise routes taken by car drivers were not known, in order to measure the 

corresponding journey distances, likely routes were selected on the basis of local 

knowledge and judgement. This procedure may result in the adoption of 

erroneous values. To avoid this problem, direct airline distances between home 

and work locations were measured and then multiplied by an average balancing 

factor to convert them to their route distances. In this study a random sample 

of 92 car trips was selected in order to establish an average value of balancing 

factor. For all trips, the lengths of possible alternative routes were measured on 

large scale maps and compared with the corresponding airline distances. This 

yielded an average value of balancing factor of 1.352. The car driver and car 

passenger in— vehicle travel times were then derived from the distance between 

the ends of the trip using the assumed average speed of 19 kph. As regards the 

out— of— vehicle travel times for the two above modes, it was simply assumed that 

there would be no walking and waiting times. This assumption was based on the 

fact that the associated trips were reported as one—stage trips (i.e. the car was 

parked close to or garaged at the house or work place of each individual).

For bus and train trips, in— vehicle travel times were measured from the relevant 

bus and train time tables, the selected times being those of the fastest available 

services. If transfer was required, the total in— vehicle time for the trip was

1 This value was determined statistically from the observations where car driver 
or car passenger were the chosen modes and was also proved empirically during 
the course of the study. The same figure was used by Sobieniak et al (1979).
2 Wilson (1967) used balancing factors of (0.38 -+- 1.15 d) and (0.51 +  1.18 d) 
for Coventry and the London area, respectively, where d is the direct distance. 
DeDonnea (1971) used a balancing factor of 1.4. See also Bock (1968).
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equal to the sum of the in— vehicle times for all of the stages involved1.

The out— of— vehicle time for bus and train trips was divided into walking time 

and waiting time. The walking times to and from bus stops or train stations 

were determined using distances obtained from large scale maps and an assumed 

average walking speed of 5.5 kph2. Locations of home and work places for each 

trip were defined to within 100 metres using the OSGR. Walking times were 

determined from the distance from the centroid of the grid square to the nearest 

stop or station. In the event of transfer between two bus or train services, the 

transfer walking time was also added.

Waiting times for bus or train were computed as half of the scheduled headway, 

up to a maximum of 7 minutes for small headways, or 10 minutes for large 

headways, plus the expected waiting time for transfer when required.

Travel cost

The GRIS survey did not gather any direct information on the travel costs of car

drivers and car passengers, and so it was necessary to estimate them. To do this

required knowledge of the costs to be attributed to the car drivers and car 

passengers and how they could be estimated.

It is not at all certain how car drivers perceive their travel costs; whether they

1 The author is indebted to Mr. B. Longworth of Strathclyde Buses, Mr. B. 
Bryson of Central SMT Buses and to Western SMT Buses for supplying bus
timetables and details of bus fares; to Mr. T. Hart of the Department of 
Economic and Business History at the University of Glasgow for supplying train 
timetables; and to Mr. Birnie of British Rail for supplying details of train fares.
2 This figure was derived from the observed data. The range of walking
speeds used in most previous studies was from 5 to 6 kph.
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consider a total cost comprising standing costs (i.e. car licence, insurance, 

depreciation and garage and parking costs) and running costs (i.e. the costs of 

petrol, oil, tyres, servicing and replacements), or take account only of 

out—of—pocket costs (i.e. petrol, oil and parking costs). If an individual buys a 

car specifically for journeys to and from work, then the total cost is probably the 

more appropriate one. However, in most cases a car is owned for a variety of 

reasons and so it seems more reasonable to consider only out— of— pocket travel 

costs. In this study, car travel costs were calculated, in pence, by multiplying 

the total distance between the origin and destination of a trip by 2.7 pence / 

mile, the estimated cost for an average family car. This estimated figure was 

determined from information kindly supplied by the Automobile Association and 

was based on an average family car of 1000 to 1500 cc engine capacity travelling 

10000 miles per year, and a petrol cost (in 1978) of £ 0.78 per gallon.

In the GRIS survey there was no clear definition of the type of car passenger. 

It was decided, therefore, for a car carrying a passenger, to allocate half of the 

car driver's travel costs to the passenger on the assumption that both driver and 

passenger were car— owning individuals who shared their trips and used their cars 

alternately, or were members of the same family.

Travel costs for bus and train trips were reported where these modes were 

chosen. Travel costs for these modes as alternatives were determined from the 

relevant daily fare table or on the basis of a weekly ticket (Transcard), whichever 

was cheaper.

Zero cost was allocated to the walk mode.
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Travel distance

Distances between the origins and destinations of all trips were measured in order 

to test the effects of distance on the choice of transport mode. It appeared, for 

example, that the car was the preferred mode, if available, for long trips, while 

walking was preferred for relatively short distances, though there were some 

notable examples of long— distance walks.

CBD

This dummy variable was introduced to test the effect on the mode choice 

decision of trips passing through, or destined for, the CBD. For example, such 

trips may not be undertaken by car, where possible, because of the associated 

traffic problems and delays.

4.5.2 SOCIO-ECONOMIC VARIABLES

In order to evaluate the effects of taste variations amongst travellers on their 

mode choice decisions, socio— economic variables were introduced into the 

analysis. The socio-economic variables used in the study were:

Household position

This dummy variable was constructed to differentiate between the head of a 

household and other members of the household, and to test the effect of that
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position on the car driver mode choice decision.

Number of workers in a household

This variable was introduced to test the effect of the number of workers in the

household on the likelihood of their sharing the family car for work trips.

Number of cars per driving licence holder

This variable was used to reflect the competition for available household cars 

amongst household driving licence holders; it was not permitted to have a value 

in excess of one.

Household Income

In the GRIS survey, estimates of gross annual household income were reported. 

These were classified into twenty one ranges as shown and coded in Table 4.12. 

These codes were used in this study to test the association between household 

income and the choice of transport mode.

Sex

This dummy variable was introduced to test the effect of an individual's sex on 

the mode choice decision. It appeared, for example, that females preferred not

to walk all the way to work even where the travel distances were short.
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Household Annual 

Income (£)

Code

used

Household Annual 

Income (£)

Code

used

0 -  499 1 5500 -  5999 12

500 -  999 2 6000 -  6499 13

1000 -  1499 3 6500 - 6999 14

1500 -  1999 4 7000 -  7499 15

2000 -  2499 5 7500 -  7999 16

2500 -  2999 6 8000 -  8499 17

3000 -  3499 7 8500 -  8999 18

3500 -  3999 8 9000 -  9499 19

4000 -  4499 9 9500 -  9999 20

4500 -  4999 10 10000 + 21

5000 -  5499 11

TABLE 4.12 Household annual income coding
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Occupation

This dummy variable was used to test the effect of an individual's occupation on 

the choice of car mode and differentiated between professionals, managers and 

skilled foremen and others.
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CHAPTER FIVE

MULTINOMIAL LOGIT MODELS FOR GLASGOW

5.1 INTRODUCTION

This chapter presents details of the derivation of the best— specified MNL model 

with five transport modes: car driver, car passenger, bus, train, and walk.

The second section describes how a number of alternative specifications of the

model were examined. Backward elimination and stepwise statistical techniques

were used in the refinement process which involved the elimination of those

variables with the wrong signs or whose significance effects on the choice context 

were minimal. This procedure was continued until a set of model specifications 

was left in which all the variables were significant.

In the third section, a statistical comparison is made in order to choose the best 

specified set of models. Almost all the models were found to be strongly 

significant and from them four were chosen for further analysis on the basis of 

the goodness— of— fit statistics and the values of the alternative— specific 

constants.

In the last section, further tests of model validation are carried out on the four 

selected models in order to select the final two models; one simple and one

complex. These models are then used for the aggregate prediction analysis (see 

Chapter 6).
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5.2 MODEL SPECIFICATION AND VARIABLE SELECTION

Having developed the theoretical model for this study, the MNL model (see

Chapter 3), and completed the the data preparation (see Chapter 4), the next 

step was to build a MNL model that describes individuals' mode choice behaviour 

relative to their journeys to work in Glasgow.

One of the advantages of disaggregate behavioural travel demand models over 

conventional aggregate models is the ability of the former models to 

accommodate, in their specifications, a large number of explanatory variables (see 

Chapter 2). On the other hand, this is also a problem since the analyst does 

not know with certainty which variables have significant influences on the model 

performance. This means that the analyst does not know a priori the effects of 

these variables on the individual mode choice decision except in the case of some 

important variables such as travel time and cost which have different values for 

different alternatives. The problem arises in particular with socio— economic 

variables (see Chapter 3), since these variables have the same values for all 

modes and their effects (i.e. coefficient value and sign) vary from mode to mode. 

Therefore, the analyst must try various model specifications until a specification is 

obtained which is consistent with a priori beliefs and fits the data fairly well1.

In this study, a number of preliminary model specifications were tried, each 

restricted to a relatively small number of explanatory variables. The reason

behind these trials was to test where the socio— economic variables had the

highest significance. The results of these initial tests indicated that, for example,

1 See for example: Talvitie (1972); Talvitie and Kirschner (1978); Talvitie and 
Dehghani (1979); Train (1979); Dehghani and Talvitie (1980, 1983); Ortuzar 
(1980).
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the household position variable had little effect when it was specified in the utility 

functions of the public transport modes, while it was more significant when 

specified in the utility function of the car driver mode. Conversely, the CBD 

variable had a relatively low effect on car driver and car passenger choice 

decisions and a high effect on public transport usage. Household income was 

also found to be more significant when specified in the utility functions of all 

modes except walk than when specified in the utility function of car driver only1.

As was discussed in Chapter 4, socio— economic variables are included in order to 

explain the differences in individuals' choice behaviour across available alternative 

modes. Alternative— specific constants have totally different functions from those 

of the socio— economic variables; their inclusion in the model specification is to 

account for the effects of unobserved variables. If the variables used fully 

explain the individuals' choice behaviour then the alternative— specific constants 

should have zero values. Thus, with perfect model specification and perfect data, 

it can be argued that no alternative— specific constants are necessary. However, 

estimating a model without alternative— specific constants is not recommended in 

practice because the estimated values of the coefficients of the variables included 

are seriously affected if those variables do not fully explain the observed choice 

behaviour. Alternative— specific constants, therefore, represent the effect of those 

variables that influence individual choice behaviour but are not included explicitly 

in the model specification. The existence of significant and large values of the 

alternative— specific constants indicates the absence of a good model specification2.

1 Indeed this significance affects the choice of car driver, car passenger, bus, 
and train modes in preference to the walk mode only but cannot discriminate 
between the first four modes. This will be discussed later.
2 See for example: Domencich and McFadden (1975); Richards and Ben—Akiva 
(1975); Dehghani and Talvitie (1980, 1982); Talvitie and Dehghani (1979); 
Supernak (1984).
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For a model with a maximum of five alternatives, only four alternative— specific 

constants can be specified (see Chapter 3). In this study the walk mode was, 

therefore, considered as the base mode and the value of the alternative— specific 

constant for this mode was set to zero. Other values of alternative—specific

constants should be interpreted relative to that of the walk mode [see Richards 

and Ben—Akiva (1975)].

The variables selected for inclusion in the model specification are greatly 

restricted by the limitations of the available data and the possible existence of 

multi— collinearity between the variables.

Based on all of the above considerations, the specifications of the available 

variables which appeared to be the most suitable are shown in Table 5.1.

Backward elimination and stepwise statistical techniques were adopted in order to 

obtain the best specified model [see Draper and Smith (1966)]. Using this 

approach, a more general specified model containing all possible explanatory 

variables was first estimated. The variable that had the least influence on the 

model performance (lowest t— value, see Chapter 3) was then removed and a new 

model specification was tried. This refinement process was continued until all 

remaining variables were significant at the 95% significance level. These trial 

specifications of the model are shown in Table 5.2.
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Car Car
V a r i a b l e  Name D e s i g n a t  i o n

D r i v e r P a s s e n g e r
Bus T r a i n Walk

Mode CODE 1 2 3 4 5

H o u s e h o l d  P o s i t i o n HHPOS X 0 0 0 0

No. o f  P e r s o n s  Working PERW 0 X 0 0 0

No. o f  C a r s  Owned CAOD X X 0 0 0

No. o f  C a r s  p e r  
D r i v i n g  L i c e n c e CAPDL X 0 0 0 0

H o u s e h o l d  Income HINC X X X X 0

Sex SEX 0 X X X 0

Occupat  i on OCC X 0 0 0 0

C e n t r a l  B u s i n e s s  
D i s t r i c t CBD 0 0 X X 0

T o t a l  J o u r n e y  Time TJT X X X X X

I n - V e h i c l e  Time IVT X X X X 0

O u t - o f - V e h i c l e  Time OVT 0 0 X X 0

W alk ing  Time WK 0 0 X X 0

Wai t  i n g  Time WT 0 0 X X 0

Walk mode W a l k i n g 1 
Time WALK 0 0 0 0 X

D i s t a n c e DIST 0 0 0 0 X

T r a v e l  Cost COST X X X X 0

Car  S p e c i f i c  C o n s t a n t CCON 1 0 0 0 0

Car  P a s s e n g e r  S p e c i f i c  
C o n s t a n t PCON 0 1 0 0 0

Bus S p e c i f i c  C o n s t a n t BCON 0 0 1 0 0

T r a i n  S p e c i f i c  
C o n s t a n t TCON 0 0 0 1 0

Note:

x equals the value taken by the specified variables.

1 WALK variable was sometimes treated the same as WK variable in model 

MNL—10 [i.e. alternatives entered (3—5)].

TABLE 5.1 Variables used in the model specification.
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V a r i a b l e  

( A l t e r n a -  

t i v e s  

E n t e r e d ) 1

Coe f  f  i c i e n t  s 

( t - V a l u e s )

MNL-C MNL-1 MNL-2 MNL-3 MNL-4 MNL-5

HHPOS ---- 1 .4 0 1 5 1 .2 2 3 6 1 .2 8 9 9 1 . 4 8 6 8 1 .4 7 7 3
(1) ( 3 . 3 4 ) ( 2 . 6 7 ) ( 2 . 7 1 ) ( 3 . 2 9 ) ( 3 . 2 7 )

PERW . . . 0 .0670* 0 .0 6 7 7 *
(2) ( 0 . 4 5 ) ( 0 . 4 8 )

CAOD ---- 0 .7 8 0 2 0 . 7 8 2 6 0 .7 9 7 2 0 .8 0 8 6 0 .7 9 4 8
( 1 - 2 ) ( 2 . 9 2 ) ( 2 . 9 1 ) ( 2 . 9 5 ) ( 3 . 0 2 ) ( 2 . 9 8 )

CAPDL ---- 4 . 7 6 1 2 4 . 5 5 6 4 4 .5 8 8 8 4 . 6 1 5 4 4 .6 1 5 0
(1 ) ( 7 . 6 4 ) ( 7 . 9 2 ) ( 7 . 6 8 ) ( 4 . 7 1 ) ( 4 . 7 0 )

SEX - 0 .5 3 2 0 * - 0 . 4 6 7 1 * - 0 . 4 6 9 9 *
( 2 - 4 ) ( - 1 . 9 3 ) ( - 1 . 4 1 ) ( - 1 . 4 2 )

occ - 0 . 4 9 4 3 *
(1) ( - 1 . 0 2 )

HINC ---- 0 .0 8 7 5 0 . 0 8 5 4 0 . 0 8 8 4 0 .0 9 1 9 0 .0 9 7 6
( 1 - 4 ) ( 2 . 2 2 ) ( 2 . 1 4 ) ( 2 . 2 5 ) ( 2 . 3 3 ) ( 2 . 4 9 )

CBD ---- 1 .3223 1 .3 2 7 4 1 .3 2 7 0 1 . 3 4 4 0 1 .4127
( 3 - 4 ) ( 4 . 2 8 ) ( 4 . 1 8 ) ( 4 . 1 6 ) ( 4 . 2 4 ) ( 4 . 4 7 )

IVT ---- - 0 . 0 5 1 2 - 0 . 0 5 0 5 - 0 . 0 5 0 8 - 0 . 0 5 1 0 - 0 . 0 4 3 9
( 1 - 4 ) ( - 2 . 8 4 ) ( - 2 . 7 2 ) ( - 2 . 7 2 ) ( - 2 . 7 3 ) ( - 2 . 4 3 )

OVT _____ - 0 . 1 8 5 6 - 0 . 1 8 5 1 - 0 . 1 8 5 1 - 0 . 1 8 5 6 - 0 . 1 8 2 9
( 3 - 4 ) ( - 8 . 2 1 ) ( - 8 . 3 4 ) ( - 8 . 0 1 ) ( - 8 . 0 4 ) ( - 8 . 0 8 )

* * * *
WALK ---- - 0 . 0 5 8 5 - 0 . 0 5 8 6 - 0 . 0 5 8 5 - 0 . 0 6 4 0 - 0 . 1 3 2 7
(5) ( - 1 . 5 4 ) ( - 1 . 5 6 ) ( - 1 . 5 4 ) ( - 1 . 6 8 ) ( - 5 . 5 6 )

1 For codes, see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.2 The elimination of non—significant or wrongly—specified variables.

Continued:
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Variable  

( Al t e r na -  

t i ves  

Entered)  1

C o e f f i c i e n t s

( t - Va l ue s )

MNL-C MNL-1 MNL-2 MNL-3 MNL-4 MNL-5

DIST
(5)

---- -1 . 1539
( - 2 . 5 7 )

- 1 .1213
( - 2 . 50 )

-1 . 1232
( - 2 . 50 )

- 1 . 0113  
( - 2 . 2 8 )

----

COST
( 1-4)

---- 0.0324
(2 .36)

0.0325
(2 .36)

0.0325
( 2 . 35 )

0.0326
( 2 . 35)

0.0329
( 2 . 39)

CCON
(1)

0.9077
( 4 . 62)

-7 .4743
( - 7 . 2 1 )

- 7 . 4834
( - 6 . 94 )

-7 . 5619
( - 6 . 88 )

- 7 . 6156
( - 6 . 9 7 )

-7 . 7205
( - 6 . 9 3 )

PCON
(2)

- 1 .9353  
( - 1 1 . 6 )

-5 .6296
( - 6 . 8 8 )

-5 .5932
( -6 . 87 )

-5 .4851
( - 6 . 8 7 )

- 5 . 7275
( - 7 . 1 3 )

-5 . 8362
( - 7 . 27 )

BCON
(3)

- 1 .1019
( - 7 . 1 1 )

-2 .2921
( - 2 . 6 6 )

-2 .2699
( - 2 . 6 2 )

-2 . 3008
( - 2 . 6 9 )

- 2 . 5389
( - 2 . 9 8 )

- 2 .7529
( - 3 . 2 9 )

TCON
(1)

-1 .9661
( - 9 . 74 )

-1 .9848
( - 2 . 01 )

*
-1 .9556
( - 1 . 98 )

-1 . 9900
( - 2 . 03 )

-2 . 2309
( - 2 . 2 8 )

- 2 .4001
( - 2 . 5 1 )

llr0 375.616 655.399 654.442 654.262 652.300 646.943

d . f . 4 17 16 15 14 13

% Right 67.74 77.55 77.36 77.36 77.74 77.93

1 For codes, see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.2 The elimination of non-significant or wrongly-specified variables.
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Table 5.2 illustrates the set of models resulting from the above elimination 

procedure. The first model, MNL— C, represents the constant or market share 

model. This model is very important in the comparison of different alternative 

models (see Chapter 3). From models MNL—1, MNL—2, MNL—3, and 

MNL—4, the following observations can be made:

1. The PERW variable has no significant effect on the choice of car passenger 

mode. Due to the inconvenience of the relative locations of workplaces or 

different times of starting work, individuals within a household may use public 

transport modes or drive to their work places in their own cars rather than travel 

as car passengers.

2. The SEX variable is also found to have no significant effect on the choice of 

car passenger or public transport modes. This variable has a negative sign which 

is attributed to the fact that male individuals are more likely than females to 

prefer driving their cars if they are car— owners, or that they prefer to walk all 

the way if the distances are relatively short.

3. The OCC variable has no significant impact on the car driver mode choice 

decision and is also found not to have the expected positive sign. This is 

confirmed by the low number of professionals, managers, and skilled foremen in 

the data sample who drive their cars. It may be that those individuals leave

their cars for household use whilst themselves using public transport or

car— pooling arrangements.

4. The WALK variable is found not to be significant. This is, however, not the 

expected result since WALK was a priori expected to have an important effect on

the choice of walk mode. It was found that this variable was specified with the
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DIST variable in the utility function of the walk mode, and since these variables 

were, clearly, highly inter— correlated, their coefficients were wrongly predicted. 

Thus, their inclusion in the same mode utility function should be avoided1.

5. The COST variable is found to be relatively significant, but has an unexpected 

positive sign. The reason for this is that, even in the presence of the car 

passenger alternative which has very low associated travel costs, individuals were 

found to choose other modes with higher travel costs2.

Based on the above observations, variables PERW, SEX, and OCC were 

eliminated from the new model specifications. The WALK and DIST variables 

were used alternatively in different specifications and the COST variable was left 

for further tests due to its importance as a policy—controllable variable. These 

eliminations resulted in model MNL—5 (see Table 5.2). The comparison of 

model MNL— 5 with the previous models (i.e. MNL— 1 to MNL— 4) indicates that 

the elimination process does not alter significantly the coefficient values of the 

remaining variables and, therefore, the null hypothesis that model MNL— 5 is not 

significantly different from model MNL— 1 is strongly accepted3. This indicates 

that the refinement procedure is empirically correct.

All other variables in model MNL— 5 are significant at the 95% level and are 

consistent with a priori expectations. Therefore, model MNL— 5 was adopted as 

the base model against which the new specifications could be compared.

1 See for example: DeDonnea (1971); DeNeufville and Stafford (1971);
Ossenbruggen and Li (1976); Lyles (1979); Stopher and Wilmot (1979); Khasnabis, 
Cynecki, and Flak (1983).
2 Several previous studies found the same positive sign for the cost variable.
See for example: DeDonnia (1971); Richards and Ben—Akiva (1975); Lyles 
(1979).
3 The LLR0 statistic between models MNL—5 and MNL—1 has the value of
8.456 with four degrees of freedom, whereas X 2 at the 95% level is equal to 
9.488.
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Since distance could be appraised more accurately than travel time, and since 

individuals may also be expected to attach more importance to distance travelled 

than to travel time, the DIST variable was substituted for the WALK variable in 

MNL—6 (see Table 5.3). This change resulted in a better specified model, as 

indicated by the decreases in the values of the alternative— specific constants1. 

This means that the utility function of the walk mode was better specified using 

the distance travelled rather than the travel time.

Although the effect of the out— of— vehicle (OVT) variable in models MNL— 5 

and MNL— 6 is highly significant, it seemed logical from the policy viewpoint to 

explore the influence of dividing this variable into its two components, the WK 

and WT variables2. As can be seen from model MNL— 7, this division has 

improved the model specification greatly through further reductions in the values 

and significance of the alternative— specific constants.

Since the travel cost (COST) variable still had a positive sign in all the previous 

models (see Tables 5.2 and 5.3), an attempt was made in model MNL—8 to 

introduce a combined variable describing the travel cost relative to the household 

income (i.e. COST/HINC). This variable, although resulting in a higher positive 

coefficient value (the increase in the coefficient value is attributed to the inclusion 

of household income), is not significant. Also, MNL—8 has lower values of 

alternative—specific constants than model MNL—7. This implies that the model 

specification has been improved. A further attempt was made (model MNL— 9) 

excluding the COST/HINC variable due to its non— significance. This also 

resulted in a significantly better specified model than model MNL—5.

1 See for example: Talvitie and Kirschner (1978); Supernak (1984).
2 See for example: Quarmby (1967); Talvitie (1972); Algers, Hansen, and 
Tenger (1975); Richards and Ben—Akiva (1975); Ortuzar (1980); Matzoros (1982).
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V a r i a b l e  

( A 1 t e r n a -  

t  i v e s  

E n t e r e d ) 1

C o e f f i c i e n t s  

( t - v a l u e s )

MNL-5 MNL-6 MNL-7 MNL-8 MNL-9 MNL-10

HHPOS
(1)

1 . 4 7 7 3
( 3 . 2 7 )

1 .4 8 9 7
( 3 . 3 2 )

1 .4 8 3 0  
( 3 . 3 1 )

1 .4 0 1 3
( 3 . 1 5 )

1 .4 0 9  
( 3 . 1 5 )

1 .5095  
( 3 . 3 9 )

CAOD
( 1 - 2 )

0 . 7 9 4 8
( 2 . 9 9 )

0 . 8 3 2 0
( 3 . 1 0 )

0 .8 0 7 7
( 3 . 0 0 )

0 .8 2 8 9
( 3 . 1 0 )

0 . 8 8 2 4
( 3 . 3 3 )

0 .7 1 6 5
( 2 . 7 3 )

CAPDL
(1)

4 . 6 1 5 0
( 4 . 7 0 )

4 . 6 0 2 2
( 4 . 7 0 )

4 . 6 0 5 4
( 4 . 7 3 )

4 . 5 0 6 9
( 4 . 6 6 )

4 . 4 6 3 1
( 4 . 6 3 )

4 . 6 4 4 8
( 4 . 8 0 )

HINC
( 1 - 4 )

0 . 0 9 7 6
( 2 . 4 9 )

0 .0 8 0 8
( 2 . 1 3 )

0 .0813
( 2 . 1 3 )

---- ---- 0 .0 8 4 7
( 2 . 2 9 )

CBD
( 3 - 4 )

1 . 4 1 2 7  
( 4 . 4 7 )

1 .3351  
( 4 . 2 2 )

1 .2611  
( 3 . 9 4 )

1 .3231
( 4 . 1 8 )

1. 3562 
( 4 . 3 3 )

1 .3 2 0 4
( 4 . 1 3 )

WK2
( 3 - 4 )

---- ---- -0 . 1 7 2 8
( - 7 . 2 0 )

- 0 . 1 6 9 2
( - 7 . 2 6 )

- 0 . 1 7 0 2
( - 7 . 3 4 )

- 0 . 1 5 0 4  
( - 8 . 6 1 )

m
( 3 - 4 )

---- ---- - 0 . 3 2 0 8
( - 4 . 1 9 )

- 0 . 3 1 0 4
( - 4 . 1 5 )

- 0 . 3 1 0 0  
( - 4 . 1 6 )

- 0 . 3 1 7 9
( - 4 . 2 2 )

IVT 
( 1 - 4 )

- 0 . 0 4 3 9
( - 2 . 4 3 )

- 0 . 0 5 0 9
( - 2 . 7 5 )

- 0 . 0 4 4 2
( - 2 . 3 4 )

- 0 . 0 3 2 1
( - 2 . 0 1 )

- 0 . 0 3 2 3
( - 2 . 0 2 )

*
- 0 . 0 2 9 0
( - 1 . 6 8 )

OVT
( 3 - 4 )

- 0 . 1 8 2 9
( - 8 . 0 8 )

- 0 . 1 8 6 2
( - 8 . 0 5 )

---- ---- ---- ----

WALK
(5)

- 0 . 1 3 2 7
( - 5 . 5 6 )

---- ---- ---- ---- ----

1 For codes see Table 5.1.

2 The WK variable was treated the same as WALK variable in model 

MNL—10 [i.e. alternatives entered (3—5)].

* Non— significant variable at the 95% level.

TABLE 5.3 Model specifications and disaggregation of the variables.

Continued:
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Variable  

(A1terna-  

t i ves  

En t e r e d ) 1

C o e f f i c i e n t s  

( t - v a l u e s )

MNL-5 MNL-6 MNL-7 MNL-8 MNL-9 MNL-10

DIST
(5)

---- -1 . 6240
( - 6 . 0 8 )

- 1 . 5853
( - 5 . 8 4 )

- 1 . 4697
( - 5 . 6 8 )

- 1 . 5104
( - 5 . 8 1 )

----

COST
(1-4)

0.0329
( 2 . 39)

0.0328
(2 . 38)

0.0338
( 2 . 39)

------------ ------------ ------------

COST/HINC
( 1-4) ---- ------------ ----

0 . 1324*
( 1 . 20) ---- ----

COST/DI ST 
( 1 -4) ---- ---- ---- ---- ----

- 0 . 0960
( - 2 . 7 0 )

CCON
(1)

-7 . 7205
( - 6 . 9 7 )

- 7 .0448
( - 6 . 93 )

- 7 . 0264
( - 6 . 84 )

- 5 .8899
( - 7 . 0 8 )

- 5 . 9582
( - 7 . 1 2 )

-8 .0361
( - 7 . 68 )

PCON
(1)

-5 . 8362
( - 7 . 2 7 )

-5 . 1536
( - 7 . 4 9 )

-5 . 1433
( - 7 . 3 8 )

-4 . 1908
( - 9 . 3 4 )

- 4 . 3275
( - 9 . 8 5 )

-6 . 3169
( - 8 . 79 )

BCON
(1)

-2 .7529
( - 3 . 2 9 )

-1 .9381
( - 2 . 6 2 )

*
-1 . 1948
( - 1 . 39 )

k
-0 . 0047
( - 0 . 0 1 )

•.I*

0.1307
( 0 . 02 )

-1 . 4772*
( - 1 . 7 9 )

TCON
(1)

-2 .4001
( - 2 . 5 1 )

-1 . 6233*
( - 1 . 8 5 )

*
- 0 . 9812
( - 1 . 0 2 )

0.4526*
( 0 . 58)

0.6727*
( 0 . 88)

- 1 . 0007*
( - 1 . 2 5 )

LLR0 646.943 649.483 653.256 643.839 642.376 652.452

d. f . 13 13 14 13 12 13

% Right 77.93 77.36 76.98 77.36 77.74 76.98

i For codes see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.3 Model specifications and disaggregation of the variables.
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An attempt was made, in model M N L -10, to include the COST/DIST variable. 

This again resulted in a better— specified model than model MNL— 5. As can be 

seen from model MNL—10, the variable COST/DIST possesses a negative sign. 

This negative sign is attributed to the fact that the choice probability of any 

mode decreases as the unit cost per unit distance increases. The only worrying 

factor is the reduction in the coefficient value of the IVT variable and its impact 

on the individual mode choice decision. This decrease might be attributed to the 

interdependence of the IVT and DIST variables.

In order to obtain a relatively simple model with few variables included, all travel 

time components were aggregated into one single variable, namely the total

journey time (TJT). In addition, the effect of excluding the COST variable from 

model MNL—5 was tested. As can be seen from model MNL—11 in Table 5.4, 

the resulting alternative— specific constants were slightly decreased in comparison 

with MNL— 5 except for the train mode which has a slightly higher specific 

constant. Despite this, model MNL—11 seemed to have a better specification

than model MNL—5. In model MNL—12, the HINC variable was excluded, and 

the model specification was considerably improved. Since travel cost is an

important policy variable, and further to confirm that the exclusion of HINC 

would improve the model specification, the HINC and COST/DIST variables were 

then restored to model MNL—13. Although the COST/DIST variable clearly 

seemed to improve the specification, the resulting model was found to have a

poorer specification than model MNL—12 as shown by slightly higher 

alternative— specific constants. Since the HINC variable was specified in the 

utility functions of all modes except walk (car driver, car passenger, bus, and 

train), it can discriminate between the choices of any one of these modes with 

respect to the walk mode only; it does not have the ability to discriminate 

between these modes. Hence, in model MNL—14, the HINC variable was
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excluded, and the model specification was further improved. It should be noted

that the inclusion of the COST/DIST variable does not alter the coefficient value

of the TJT variable (see Table 5.4). Thus the effect of correlation between the 

variables in this particular case was negligible.

In general, examination of Table 5.3 shows that the effects of some

level— of— service variables confirmed a priori expectations. For example, one

would expect the coefficient of the OVT variable to be greater than that of the 

IVT variable. In models MNL— 5 and MNL— 6 the OVT variable was, indeed, 

found to have a greater coefficient than IVT (by a factor of 3— 4). In models 

MNL—5 and MNL—7 to MNL—10, the coefficients of the WALK and WK

variables were approximately equal and 3— 4 times the value of the IVT

coefficient. The coefficient of the WT variable was found to have a value 7—10 

times that of the IVT coefficient and twice that of the coefficient of the WK 

variable.

The differences between the coefficients of the WK and WT variables and that of 

IVT are greater than normally reported. Customary values of the WK and WT 

coefficients are, respectively, 2 and 2.5 times the value of the IVT coefficient1. 

The greater difference in the present study is attributed to the fact that 

individuals tend to be more conscious of the OVT variable components (i.e. WK 

and WT) due to the hilly nature of the topography of Glasgow, to the 

unpredictable weather and also to the effect of the River Clyde, the presence of

which causes some of the trips to be split into more than one stage, resulting in

more transfer (i.e. more walking and waiting times).

1 See for example: Quarmby (1967); Pratt and Deen (1967); McIntosh and 
Quarmby (1970). However, Algers, Hansen, and Tenger (1975) found that the 
waiting time coefficient was 7 to 12 times larger than the in—vehicle time 
coefficient.
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V a r i a b l e  

( A 1 t e r n a t  i v e s

C o e f f i c i e n t s  
( t - v a l u e s )

E n t e r e d ) 1 MNL-11 MNL-12 MNL-13 MNL-14

HHPOS
(1)

1 .5851
( 3 . 5 4 )

1 .5101
( 3 . 5 0 )

1 .6 3 2 2
( 3 . 6 2 )

1 . 5 5 9 9
( 3 . 5 4 )

CAOD
( 1 - 2 )

0 .8673
( 3 . 3 9 )

0 .9 4 4 0
( 3 . 7 1 )

0 . 8 3 9 6
( 3 . 2 8 )

0 . 9 1 3 6
( 3 . 6 3 )

CAPDL
(1)

4 .6 8 9 3
( 4 . 8 2 )

4 . 5 2 8 6  
( 4 . 8 8 )

4 .6 3 9 9
( 4 . 6 5 )

4 . 4 8 6 3
( 4 . 6 5 )

HINC
( 1 - 4 )

0 .0819
( 2 . 2 7 )

---- 0 . 0 7 9 4
( 2 . 1 5 )

----

CBD
( 3 - 4 )

1 .4133  
( 4 . 7 3 )

1 .3817  
( 4 . 7 4 )

1 .2 7 4 3
( 4 . 1 0 )

1 .2 4 5 3  
( 4 . 0 3 )

TJT
( 1 - 5 )

- 0 . 1 0 7 0
( - 8 . 8 3 )

- 0 . 1 0 2 9
( - 8 . 6 8 )

- 0 . 1 0 5 8
( - 8 . 6 6 )

- 0 . 1 0 1 8
( - 8 . 4 5 )

COST/DIST
( 1 - 4 )

---- ---- - 0 . 0 8 2 6
( - 2 . 6 3 )

- 0 . 0 8 4 9
( - 2 . 6 8 )

CCON
(1)

- 6 . 6 8 1 7
( - 7 . 1 6 )

- 5 . 5 6 9 7
( - 7 . 5 7 )

- 6 . 3 0 6 5
( - 6 . 6 8 )

- 5 . 2 2 1 8
( - 6 . 7 6 )

PCON
(1)

- 4 . 8 3 3 9
( - 8 . 9 3 )

- 3 . 8 5 1 3
( - 1 3 . 1 4 )

- 4 . 5 2 4 4
( - 8 . 2 1 )

- 3 . 5 6 5 6
( - 1 1 . 4 9 )

BCON
(1)

- 2 . 0 1 5 3
( - 4 . 4 2 )

- 1 . 0 9 5 0  
( - 5 . 6 3 )

- 1 . 1 5 3 6
( - 2 . 1 0 )

- 0 . 2 4 3 0 *  
( - 0 . 6 9 )

TCON
(1)

- 2 . 8 5 8 1
( - 5 . 8 0 )

- 1 . 9 2 3 6
( - 7 . 5 3 )

- 1 . 9 8 0 5
( - 3 . 3 8 )

- 1 . 0 5 3 9  
( - 2 . 6 6 )

LLR0 599 .505 594 .333 6 0 9 .001 6 0 4 .3 9 3

d . f . 10 9 11 10

% R ig h t 7 4 .53 7 3 .77 7 4 .7 2 7 4 .7 2

1 For codes see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.4 Model specifications and aggregation of the variables.
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5.3 COMPARISON OF ALTERNATIVE SPECIFICATIONS OF THE MODEL

Alternative model specifications were calibrated and presented in the previous 

section. To determine which models provide the most satisfactory specifications 

for use in further analyses, the alternative models should be compared statistically. 

The usual method of comparison is by defining the goodness— of— fit measures for 

the models in question (see Chapter 3) and comparing their values. The model 

with the greatest goodness— of— fit values among the models being compared is 

considered to provide the best explanation of the available data and to have the 

most satisfactory specification.

Goodness— of— fit measures such as LLR and p 2 are shown for all models in 

Table 5.5 and compared with the basic equally—likely and the market—share base 

models. The LLR measures have a X 2 distribution and can be compared with 

the critical 95 percent values shown in the table. Comparison of these values 

reveals the following:

1. All the models have very high values of LLR 0 and p 0 2. Thus the null 

hypothesis that the equally— likely model is not significantly different from these 

tested models at the 95% level is strongly rejected.

2. All the models have excellent values of LLRC and pc 2. Thus the null 

hypothesis that the market-share model is not significantly different from these 

models at the 95% level is also strongly rejected.

3. All the models have very high values of % right. This may also indicate that 

all these models were well specified.
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S t a t  i s t  i c a l A l t e r n a t i v e  Models

M ea s u re s MNL-C MNL-5 MNL-6 MNL-7 MNL-8 MNL-9

LLF0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0

LLFC - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9

LLF|5 - 4 5 6 . 7 9 - 3 2 1 . 1 3 - 3 1 9 . 8 6 - 3 1 7 . 9 7 - 3 2 2 . 6 8 - 3 2 3 . 4 1

l l r q

( d . f . )  

(X2 , 0 . 9 5 )

3 7 5 .6 2

(4)

( 9 . 4 9 )

6 4 6 .9 4

(13)

( 2 2 . 3 6 )

6 4 9 .9 8

(13)

( 2 2 . 3 6 )

6 5 3 .2 6

(14)

( 2 3 . 6 9 )

6 4 3 . 8 4

(13)

( 2 2 . 3 6 )

6 4 2 .3 8

(12)

( 2 1 . 0 3 )

LLRC

( d . f . )

(X2 , 0 . 9 5 )

n . a .

2 7 1 .3 2

(9)

( 1 6 . 9 2 )

27 3 .8 6

(9)

( 1 6 . 9 2 )

2 7 7 .6 4

(10)

( 1 8 . 3 1 )

2 6 8 .2 2

(9)

( 1 6 . 9 2 )

2 6 6 .7 6

(8)

( 1 5 . 5 1 )

P o 2 0 .2 9 1 0 .5 0 2 0 . 5 0 4 0 .5 0 7 0 .4 9 9 0 .5 0 0

P c 2 n . a . 0 .2 9 7 0 .3 0 0 0. 304 0 . 2 9 4 0 .2 9 2

°/o R i g h t 6 7 . 7 4 7 7 .9 3 7 7 .3 6 7 6 .9 8 7 7 .3 6 7 7 . 7 4

TABLE 5.5 Summary of goodness— of— fit measures for all model 

specifications.

Continued:
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S t a t  i s t  i c a l A l t e r n a t i v e  Models

M ea s u r e s MNL-10 MNL-11 MNL-12 MNL-13 MNL-14

LLF0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0 - 6 4 4 . 6 0

LLFC - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9 - 4 5 6 . 7 9

LLFp - 3 1 8 . 3 8 - 3 4 4 . 8 5 - 3 4 7 . 4 4 - 3 4 0 . 1 0 - 3 4 2 . 4 1

l l r 0 

( d . f . )  

(X2 , 0 . 9 5 )

6 5 2 .4 5

(13)

( 2 2 . 3 6 )

599 .51

(10)

( 1 8 . 3 1 )

5 94 .3 3

(9)

( 1 6 . 9 2 )

6 0 9 .0 0

(11)
( 1 9 . 6 8 )

6 0 4 .3 9

(10)

( 1 8 . 3 1 )

LLRC 

( d . f . )

(X2 , 0 . 9 5 )

2 7 6 .8 2

(9)

( 1 6 . 9 2 )

22 3 .8 8

(6)

( 1 2 . 5 9 )

2 1 8 .7 0

(5)

( 1 1 . 0 7 )

23 3 .3 8

(7)

( 1 4 . 0 7 )

2 2 8 .7 6

(6)

( 1 2 . 5 9 )

P o 2 0 .5 0 6 0 .4 6 5 0 .4 6 1 0 .4 7 2 0 .4 6 9

P c 2 0 .3 0 3 0 .2 4 5 0 .2 3 9 0 .2 5 6 0 .2 5 0

°/o R i g h t 7 6 .9 8 7 4 .5 3 7 3 .7 7 7 4 .7 2 7 4 .7 2

TABLE 5.5 Summary of goodness—of—fit measures for all model specifications.
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As can be seen from Table 5.5, models MNL—7 and MNL—9 have sightly higher 

values of all the measures. Therefore, these models could be considered as the 

best specified models. However, Horowtiz (1981, 1982) pointed out that:

"Although it is generally recognised that these procedures (goodness— of— fit tests)

can provide only rough indications of the quality of models, they often are the 

only diagnostic procedures that are carried out during the model estimation"; and, 

"It is easy to show that in comparisons of nested models1, uncritical use of

goodness— of— fit statistics can yield perverse results. For example, the 

well-known likelihood ratio index (McFadden, 1974) will nearly always lead to 

acceptance of the model with the largest number of parameters, even if many of 

these parameters are superfluous". Therefore, it is very difficult to discriminate 

between the tested models on the basis of statistical tests alone, especially when 

the statistical measures are nearly equal.

In this study, two basic criteria were employed to evaluate different model

specifications: the statistical goodness— of— fit measures for the models under

consideration; and the values of the alternative— specific constants which actually 

reflect the explanatory powers of these models. Reinvestigating Tables 5.3, 5.4, 

and 5.5, it can be concluded that models MNL—8, MNL—9, MNL—10, and 

MNL—14 have the best specifications. However, model MNL—8 has an 

unexpected positive COST / HINC coefficient and so was excluded from further 

analysis. Models MNL—9, MNL—10, and MNL—14 will, therefore, be discussed 

next.

1 Nested models are pairs of models based on the same mathematical theory, 
but where the one with the lower number of variables is considered as a linear 
restriction of the other (e.g. a logit model with different specifications). 
Non—nested models such as logit and probit are based on different theories.
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5.4 VALIDATION TESTING OF THE SELECTED MODELS

To assess the predictive validity of the chosen models, the choice probabilities of 

each alternative mode were computed for each individual in the hold— back 

validation subsample. The predicted choice shares of the alternative modes were 

calculated in two different ways. Firstly, the choice probabilities of each mode 

for each individual were summed and averaged to give the expected choice shares 

of each mode. These are described as the expected share in Table 5.6. 

Secondly, the mode choice of each individual was predicted by the highest

probability method and the percentage of individuals predicted to choose each 

mode then computed (i.e. each individual in the subsample was assigned to the

highest— probability mode and the resulting proportion of individuals choosing each 

available mode computed). These are described as the predicted share in Table 

5.6. These two shares are compared with the actual share of each mode in the

validation subsample in Table 5.6. These results reflect the excellent fit of the

tested data and may reflect the potential applicability of the chosen models to 

other locations similar to Glasgow.

As can be seen from Table 5.6, the models appear to provide an excellent match 

between the actual and the expected shares, and also a relatively good match 

between the actual and the predicted shares. Thus, none of these models 

appears to be much superior to the others.
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A1 t e r -  

n a t  iv e  

Model

C ho ice  

Sh a re  

D i s t r i b u t  i o n

P r o p o r t  i o n (%)

Car
D r i v e r

Car
P a s s e n g e r Bus T r a i n Walk

A c tu a l 2 9 .2 1 2 .5 2 5 . 0 8 . 3 2 5 . 0

MNL-9 E x p e c t e d 2 8 .1 1 3 .6 2 4 . 7 8 .3 2 5 .3

P r e d i c t e d 3 2 .5 7 . 5 2 2 .5 5 .8 3 1 .7

A c tu a l 2 9 .2 1 2 .5 2 5 . 0 8 . 3 2 5 . 0

MNL-10 E x p e c t e d 2 7 .8 13.1 2 4 . 9 8 . 2 2 6 . 0

P r e d i c t e d 3 1 .6 5 . 2 2 6 . 5 7 . 5 2 9 . 2

A c tu a l 2 9 .2 1 2 .5 2 5 . 0 8 . 3 2 5 .0

MNL-14 E x p e c t e d 2 7 .6 1 2 .9 2 4 . 3 8 . 5 2 6 .7

P r e d i c t e d 3 5 .8 5 .3 2 2 .1 5 . 2 3 1 .6

TABLE 5.6 Summary of the validation test results for the chosen models.
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For further analyses (i.e. aggregate share prediction and policy change) two 

models, MNL—10 and MNL—14, were chosen as being the best—specified; 

MNL— 9 was not considered further since it did not include the COST variable 

and so was less policy—responsive. The specifications of models MNL—10 and 

MNL—14 are similar and both include the time and cost variables, which are the 

most important policy— controlable variables, with the correct signs. The models 

MNL—10 and MNL—14, indeed, represent the complex and the simple model 

respectively.
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CHAPTER SIX

AGGREGATE PREDICTION ANALYSIS

6.1 INTRODUCTION

In travel demand analysis and forecasting, the prediction of aggregate travel 

behaviour and of the performance of alternative transportation systems are always 

needed by transportation planners and decision— makers in order to determine the 

desirability of possible alternative transportation plans. The analysis of travel 

behaviour at the individual level is always preferred on theoretical grounds

because of its correspondence with the actual behavioural choice process. This

chapter considers aggregate prediction using disaggregate choice models.

The remainder of the chapter is divided into six sections. Section 6.2 presents 

and discusses the problems inherent in the application of disaggregate travel

demand models to the prediction of aggregate behaviour. Section 6.3 describes

the available alternative aggregation approaches. These are the naive, statistical 

differentials, classification, numerical integration, and enumeration procedures. 

Section 6.4 presents the different sources of prediction error in the application of 

these methods. In Section 6.5 the analytical measurement of aggregate prediction 

errors is considered. Section 6.6 presents the empirical results of the use of the 

naive, classification, and enumeration approaches. Finally, the last section 

compares the selected aggregation procedures.
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6.2 THE APPLICATION OF DISAGGREGATE MODELS AT THE 

AGGREGATE LEVEL

The MNL models derived in Chapters 3 and 5 can be utilised to predict directly 

the behaviour of an individual selected randomly from the population. This is 

generally of little use to transportation planners and decision— makers since they 

are always interested in the prediction of aggregate travel behaviour (which is the 

accumulation of individuals' behaviour) in order to evaluate their alternative 

transportation plans and decisions.

Two alternative approaches to the prediction of aggregate travel behaviour are 

available. The first approach, the conventional one, uses an aggregate model 

calibrated with aggregate data to predict directly the aggregate travel behaviour. 

The second approach is to calibrate a disaggregate model using disaggregate data 

and to use this model for aggregate predictions.

There are a number of problems associated with the first approach. Firstly, a 

considerable number of observations is needed to calibrate an aggregate model 

and a direct consequence of this is that aggregate models are expensive and 

time— consuming to produce. Secondly, the loss of information experienced in 

aggregating values of the explanatory variables (i.e. no account is taken of the 

variation across the data observations for a zone) results in an aggregate model 

that has biased coefficients. Finally, the lack of policy— controllable variables in 

the specifications leads to models which are inflexible and less policy— oriented.

The only advantage of aggregate models is that they may be used directly to 

predict aggregate travel behaviour. However, considering the aforementioned 

problems, although these models may be able to simulate adequately the observed
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aggregate situation from which they were derived, their stability in other practical 

transportation situations is doubtful1.

On the other hand, the advantages of using disaggregate models for the prediction 

of aggregate travel behaviour are just the converse of the disadvantages of using 

aggregate models. Firstly, disaggregate models may be calibrated using relatively 

few data points, and therefore, may be relatively quickly and inexpensively 

estimated. Secondly, there is no information loss due to aggregation because no 

aggregation is necessary to calibrate these models. Thirdly, their encompassing 

the policy— relevant variables provides disaggregate models with a potentially more 

useful role in prediction than the descriptive aggregate models. Finally, because 

they do not contain any aggregation scheme, disaggregate models can be used at 

different levels of aggregation, in different places and at different times.

Conceptually, therefore, disaggregate models are likely to be much more useful in 

the prediction of aggregate travel behaviour than the corresponding aggregate 

models. Past studies would seem to support this contention2.

However, the problems of aggregation and possible loss of information, which are 

in fact equally applicable to the use of aggregate models, must be confronted 

when using disaggregate models in aggregate prediction.

While it is desirable to calibrate a model at the disaggregate level, it is not

1 See for example: Watson (1973, 1974); Richards and Ben-Akiva (1975).
2 See for example: DeDonnea (1971); Kanafani (1972); Ben-Akiva (1973); 
Kannel and Heathington (1973); Tahir and Hovind (1973); Talvitie (1973); 
Koppelman (1974, 1975, 1976a); Miller (1974); Watson (1974, 1976); Westin
(1974); Atherton (1975); Difilio and Reed (1975); Liou et al (1975); McFadden 
and Reid (1975); Watson and Westin (1975); Meyburg and Stopher (1975); 
Hensher and Johnson (1977); McFadden et al (1977); Bouthelier and Daganzo 
(1978, 1979); Hensher and Stopher (1978); Parody (1978); Ortuzar (1980) ;Dunne 
(1982).
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always possible to use the same model directly for aggregate predictions, since the 

direct substitution of the average values of the relevant explanatory variables into 

the model formulation (the naive approach) may provide inaccurate predictions. 

For example, if the disaggregate model is non-linear, the disaggregate functional 

specification (with average values of the explanatory variables substituted for the 

individual values) will give a biased prediction of the average of the dependent

variable, except in the special case when the population concerned is

homogeneous with respect to those variables that influence the choice under study 

[ Theil (1955); Green (1964)]. However, when the data are available at the 

disaggregate level, a more accurate aggregate prediction can be obtained directly. 

In this case, the expected choice behaviour can be estimated for each individual 

and then summed or averaged to obtain the aggregate travel predictions (the 

enumeration approach). This approach, however, requires voluminous data and 

exhaustive computation.

Between the extreme procedures for the prediction of aggregate travel behaviour, 

the naive and enumeration procedures, a number of alternative aggregation 

approaches have been proposed [Talvitie (1973); Westin (1974); Koppelman

(1975)]. All of these methods are discussed next.

6.3 AGGREGATION APPROACHES

Koppelman (1975) defines five general types of aggregation procedure, according 

to the method by which the distribution of the explanatory variables is

represented in the aggregate prediction models, though some of the five can be

considered as special cases of the others. The purpose of these methods is to 

transform the disaggregate model and the distribution of the explanatory variables
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into a set of aggregate predictions. Each procedure reduces the problem of 

aggregation by imposing some simplifying assumptions about the choice model, the 

population or both. Each of these approaches is discussed in turn.

6.3.1 THE NAIVE APPROACH

The simplest, and possibly the most obvious, procedure for the prediction of 

aggregate travel behaviour involves the use of the sample average values of the 

explanatory variables together with the coefficients of the disaggregate model.

The general form of the disaggregate model is given by,

p in  " f i <><n) C6.1)

where,

Pjn is the probability of individual n choosing alternative i, 

fj is the choice function for alternative i, and

Xn is the vector of the characteristics of available alternatives and 

individual attributes.

For the MNL model Equation 6.1 becomes,

in
exp (Vi n )

S exp (VJn)
j<An

( 6 . 2 )
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where,

Vin. Vjn are the utility functions of alternatives i and j, respectively.

Thus, the expected aggregate choice share for alternative i in the sample of N 

observations is,

s i N = f i ( * )  ( 6 . 3 )

o r ,

iN
exp (ViN)

( 6 . 4 )
1 exp (VjN) 
j eAN

where,

Sjjsj is the aggregate choice share for alternative i, and

X is a vector of average values of explanatory variables for each

alternative over all the prediction group.

Although this procedure uses the average values of the explanatory variables, it 

still has the advantage over the traditional aggregate prediction approach, which 

uses the aggregate model with the average values, since the coefficients are 

estimated at the disaggregate level. In addition, less data are required for the 

calibration of the disaggregate model. However, this approach implicitly assumes 

that each individual will behave as if represented by the average values of the 

explanatory variables, thus basing the analysis on the representative individual and
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taking no account of the distributions of the values of the variables across the 

prediction group. If this homogeneity of individuals does not hold, and if the 

functional form of the model is non— linear, then this approach will produce a 

biased prediction. However, the naive approach is the most likely to be used in 

the absence of recognition of the aggregation problem.

Prediction by the naive approach can be adjusted to account for differences in 

the choice set availability when such differences exist.

6.3.2 THE STATISTICAL DIFFERENTIALS APPROACH

In this approach, the expected aggregate shares are predicted on the basis of the 

moments of the distribution of the probabilities over the sample population. The

method was first suggested as an approach to aggregate prediction by Talvitie

(1973). He noted that choice probability could be expressed in terms of a 

Taylor series expansion of the disaggregate choice function about the mean

variable values of an aggregate. However, the practical issues associated with

estimating higher order moments and the instability of the series when the

distribution is highly dispersed led the series to be terminated after the second

moment or variance term [Johnson and Kotz (1969)]. Thus, for the binary

choice case, the aggregate choice share of alternative i in a sample of N

observations is given by,

SiN " f iO O  +
1 d2 f j(V)

2 d V2
_ a V  
V

( 6 .5 )

where,

fj(V) is the choice function in terms of the net utility between the
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two alternatives, evaluated at the mean value of the net 

utility,

d2 fi(V) I
------------- _  is the second derivative of the choice function with respect

d V2 V to net utility, evaluated at the mean value of the net 

utility, and

2cry is the variance of the net utility distribution in the prediction 

group.

The corresponding equation for the multinomial choice situation is,

1 J K d 2 f i ( V )
s iN = f i ( v > + -----  2 2 -------------

2 j = l  k= l  dVjdVk
C o v (V | ,V k ) 

V J
( 6 . 6 )

where,

V, V are the vectors of utility and mean utility values for each

alternative, respectively, and 

Cov(Vj,Vk) is the covariance in the distribution of utilities for alternatives j

and k; when j= k it is the variance of the utility distribution.

The advantage of this procedure is that it takes into account the within— group 

variance, through the use of the distribution moments of the explanatory 

variables, to achieve unbiased aggregate predictions, thus making it superior to the 

naive approach. However, Talvitie (1981) suggests that the use of the Taylor 

series approximation in multiple choice cases cannot be recommended due to its 

instability in the binary case [see also McFadden (1981)].
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6.3.3 THE CLASSIFICATION APPROACH

The classification approach was initially developed to overcome the high prediction 

biases which result from the use of the naive approach [Koppelman (1975); Reid

(1978)]. It involves, firstly, dividing the entire prediction group into relatively 

homogeneous groups, or market segments, so as to minimise within— group and 

maximise between—group variances [Ben—Akiva and Lerman (1985)]. The naive 

approach is then used to predict aggregate choice shares for each group or 

segment. Finally, the aggregate share of each alternative in the entire prediction 

group is computed from the weighted sum of all the naive shares of the groups. 

Thus,

G NK
SiN = 2   f i (*g> ( 6 .7 )

g=l N

where,

Xg is the vector of the average values of the explanatory variables for

Ng individuals in group g,

Ng is the total number of individuals in group g, and

N is the total number of individuals in all prediction groups.

The traditional geographical segmentation of a prediction group has been shown 

to be only a fair classifier of the level—of—service variables, and a poor classifier 

of the socio-economic variables, and results in groups which are insufficiently 

homogeneous. This leads to imperfect predictions. However, Koppelman (1975)
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suggests that further classification efforts to obtain more accurate aggregate 

predictions should concentrate on the distribution of the socio— economic variables 

which are not homogeneous within zones. The selection of the socio— economic 

variables for classification should be aimed at reducing the variance of the net 

utility distributions. This can be accomplished by the selection of those variables 

which exhibit the largest variances in the utility function. For example, in mode 

choice prediction, household income, car ownership, and the number of cars per 

driving licence holder are the most commonly used classifier variables.

However, classification by the value of a single explanatory variable sometimes 

gives unacceptable prediction results, especially in large aggregate prediction 

groups. Reid (1978) suggests classifying directly by the value of the utility 

function. The only problem with the use of Reid's approach is that utilities are 

not discrete, and intuition gives no guide as to how to divide the utility values 

into different utility classes [Ben—Akiva and Lerman (1985)].

6.3.4 THE NUMERICAL INTEGRATION APPROACH

This approach attempts to represent the variation of the explanatory variables 

across individuals in the prediction group in terms of their joint probability 

density function. The aggregate choice share of each alternative is then 

computed by integrating the disaggregate choice probability function weighted by 

the joint probability density function of the explanatory variables. Thus,

1
( 6 . 8 )

0
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where,

X is the vector of the explanatory variables, and 

Pj(X) is their joint probability function.

However, Pj(X) is generally unknown, so an approximate theoretical distribution is 

usually assumed. Westin (1974) has shown that, when individual choice can be

represented by the binary logit function,

1
f t ( X ) -------------------------------  (6 .9 )

1 + exp ((3Xj)

and the explanatory variables are normally distributed over the prediction group 

with mean Xj and variance— covariance matrix I , so that (SXj is normally

distributed with mean (3 X [ and variance a 2 =  ( 3 ^  I  (3, then the density function

Pj(X) is shown to have the beta distribution (S g )1 given by Equation 6.10.

1 1
P . ( X ) ----------------- ---------------------

j  2n a \  P i ( i - P i )

1 p i
exp [ ------------{ In ( ------------------ ) -  Xj ) ] (6 .10 )

2<Tj 1 -  P i

No closed form for Equation 6.8 exists, but a table for the Sg distribution

function can be utilised to reduce the computational burden of Equation 6.10.

1 See for example: Johnson (1949); Johnson and Kotz (1972); Westin (1974).
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McFadden and Reid (1975) used the same normal distributional assumption with 

the binary probit model. The aggregate share probit model which they obtained 

is,

0 Xi
S iN = $ ( ......  ..... ...... ) ( 6 .11 )

J  1 + u\

where,

<t> is the standard cumulative normal distribution.

This method was extended to the multinomial case by Bouthelier (1978).

In general, the numerical integration method would be quite cumbersome even for 

the binary cases. Its extension to the multiple cases would be difficult and the 

computational requirement of evaluating their integral may be prohibitive [Talvitie

(1976); Ben—Akiva and Lerman (1985)].

6.3.5 THE ENUMERATION APPROACH

This approach represents the most explicit theoretical relationship between 

aggregate and disaggregate travel demand. The expected aggregate choice share 

for each alternative is obtained simply by averaging all of the estimated individual 

choice probabilities for that alternative. Thus,
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1 N
SiN = - - - - - -  2 f i  (Xn) ( 6 . 12)

N n=l

Although this method requires voluminous data and exhaustive computation due to 

the direct use of the values of the explanatory variables relevant to each

individual in the prediction group, it has been shown, nevertheless, to give precise 

aggregate shares from the disaggregate models. For this reason it can be used as 

an ideal reference for evaluating the predictive performance of the alternative 

approaches [Koppelman (1975); Reid (1978)].

6.4 SOURCES OF PREDICTION ERRORS

Five aggregation approaches were identified and described in the previous section. 

These approaches are differentiated by their computational formulation and their

input data requirements. All of the procedures are approximate and introduce

errors into their aggregate predictions. It is necessary to consider the sources and 

types of these errors and how they are measured in order to evaluate the 

performance of the various aggregation procedures.

The major types of prediction errors associated with the use of disaggregate 

choice models are as follows:

1. Model specification errors: These are the result of applying the choice models 

to areas or situations different from the ones in which the models were calibrated 

(i.e. model transferability errors).

2. Data measurement errors: These comprise measurement errors associated with
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the explanatory variables in both the calibration and prediction stages, and errors 

in estimating parameters1.

Errors in model specification and data measurement may interact to produce 

errors in the prediction of the individual choice probabilities. These errors are 

propagated through the aggregation procedure to produce errors in aggregate 

prediction and may, therefore, be called collectively "propagation errors".

3. Aggregation errors: These result from the use of an approximate aggregate 

prediction approach to replace the most theoretically consistent aggregate

prediction approach, the enumeration approach.

The above errors are determined in different ways. Errors due to model

specification and data measurement (propagation errors) can be isolated by 

comparing the prediction by the enumeration method, which has no aggregation 

error, with the observed shares. The aggregation error from each aggregation

approach can be obtained by comparing the prediction by each aggregation 

approach with the prediction by the enumeration approach. This comparison is 

the most commonly used since, firstly, the enumeration approach is consistent

with relevant theories of individual travel behaviour; secondly, no aggregation 

error is involved; and finally, in most aggregate prediction applications the actual 

shares are unknown [Talvitie et al (1982)]. The total prediction error, which is 

the sum of all the above errors, is normally identified directly by comparing the 

aggregate predictions by each aggregate approach, except the enumeration 

approach, with the observed shares. However, this comparison is clouded due to 

the fact that the observed shares are not truly representative of the actual shares

1 See for example: Manski (1975); Horowitz (1982, 1983); Ben—Akiva and 
Lerman (1985).
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in the entire population because of sampling error [Koppelman (1975)].

6.5 MEASURES OF THE PREDICTION ERRORS

For comparative purposes, it is often desirable to express the error measure as a 

percentage of a reference value derived from an ideal procedure. In the case of 

the aggregate prediction error, two decisions must be made regarding the 

development of this error: how to express the prediction error of a single

prediction unit (e.g. should it be an individual; a zone; a segment; a group of

individuals; the entire sample; etc.?); and how to aggregate the error from the

single prediction unit to some average aggregate prediction error.

In this study, the error measure chosen to describe the error in each single 

prediction unit is given by,

BEM =
p pu " p r u

r u
(6 .13 )

where,

BEM is the basic error measure in prediction per single unit of

prediction,

Pnu is the predicted value for the prediction unit estimated by the tested 

aggregation approach,

Pru is the reference value for the prediction unit estimated by the

enumeration method, or the actual share (if available), and 

u is the unit of prediction.
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In order to allow for an equitable summing of the total amount of prediction 

error for each prediction unit in the entire prediction group (i.e. to reflect the 

relative importance of each prediction unit), the error should be multiplied by a 

weighting value which is simply the reference value of that prediction unit or the 

size of the prediction unit or both. Thus, the average error measure for the

entire prediction group is defined by,

P -  P r pu r ru
AE = J  (-------------------- ) Pru /  I  pru

ueU Pru ucU

2  (P p u  “ P r u )
ueU

2 pru 
ueU

(6 .14)

where,

AE is the average prediction error for all prediction units, and

U is the total number of prediction units in the entire prediction group.

In order to treat the positive and negative errors alike (which is not the case 

with the average error), the entire prediction group error should be expressed as 

the average sum of squares of all prediction unit errors [i.e. the Root Mean 

Square Error (RMSE)], thus:

Ppu “ pru 2 t / 2
RMSE = [ ]> (--------------------- > pru /  I  pru ] (6 .15 )

ueU Pru ueU
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The Standard Deviation of this Error (SDE) is given by,

SDE -  [ I { <
Ppu ~ Pru

) -  AE >2 P r u  /  I  P r u  ] ' / 2  ( 6 . 1 6 )
ueU ueU

The relationship among the three error measures is,

RMSE2 -  AE2 + SDE2 ( 6 . 1 7 )

In measuring the model specification and data measurement errors, PpU and Pru

represent, respectively, the prediction values by the enumeration approach and the

observed shares.

In estimating the aggregation error only, the values of PpU and Pru represent,

respectively, the prediction values by each aggregation approach except the

enumeration approach and the values by the enumeration approach.

In calculating the overall prediction error (which includes all of the types of error 

presented in the previous section), and provided that the actual shares are known, 

the values of PpU and Pru in Equations 6.13 and 6.14 represent, respectively, the 

prediction values by each aggregation approach except the enumeration approach 

and the actual or observed shares.
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6.6 EMPIRICAL APPLICATION

The objectives of this empirical analysis are: firstly, to make a comparative 

evaluation of the performances of the different aggregation procedures through the 

identification of the magnitudes of their aggregation errors; and secondly, to test 

the predictive accuracies of the simple and complex models chosen in this study 

in terms of their aggregate prediction errors.

The choice of an aggregation approach for use in the prediction of aggregate 

travel behaviour depends mainly on the structure of the disaggregate model; the 

form of the available data; the accuracy required; and the economic considerations 

of the application of the chosen approach. In this study, aggregate prediction 

errors were examined for three different aggregation approaches; the naive, 

classification, and enumeration approaches. The naive and classification 

procedures were chosen for their conceptual simplicity and moderate data 

requirements (see Sections 6.3.1 and 6.3.2). The enumeration approach was 

chosen since it is conceptually simple to make aggregate predictions of travel 

behaviour when the data are available at the individual level. The statistical 

differentials and numerical integration procedures were excluded as their high 

computational requirements in multiple choice situations make them infeasible (see 

Sections 6.3.3 and 6.3.4)1.

Unfortunately the data used in this empirical study are the data used also in the 

calibration of the disaggregate choice models. In fact, a true aggregate prediction

1 A personal communication (late 1988) from Prof. F. Koppelman of 
Northwestern University, USA, strongly advised against the use of the statistical 
differentials procedure. See for more details: Reid (1978); Hensher and Stopher
(1979); McFadden (1981); Talvitie (1981); Supemak (1984, 1987); Ben—Akiva and 
Lerman (1985).
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test should be carried out with another data set. However, the intention here is 

to show the ability of the tested models to reproduce the original data. While 

this is only the first step in the assessment of the models to be used in the 

aggregate prediction, if the models were to perform badly at this stage, it would 

certainly not be worthwhile using them with another data set or in another 

location.

The aggregate prediction errors for the three methods employed for the two 

choice models are presented and discussed in the following subsections.

6.6.1 AGGREGATION ERROR FOR THE NAIVE APPROACH

As was discussed earlier, the naive approach uses the average values of the 

explanatory variables for the entire study area in the disaggregate choice models 

and their computed probabilities as the expected choice shares for the entire study 

area.

Table 6.1 shows the aggregate prediction errors of the two models for the entire 

study area. As was expected, the error measures without choice set adjustment, 

shown in Table 6.1—a, have very high values. These are not surprising results 

since the higher error values for the entire study area as a single group are 

consistent with the increase in the average variance of the net utility distributions 

which results from aggregation over the wide range of individuals and 

level— of— service variables which are included in the entire study area. In 

addition, the use of one set of average values of all explanatory variables applied 

to all individuals in the study area implies that all alternative modes have 

effectively been available to all individuals for whom, in fact, some are not
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available. This will lead to an additional increase in the data variability which 

will in turn result in large aggregation errors.

It is also seen from Table 6.1— a that the complex model has lower error 

measures (8% lower) than the simple model. This indicates that the complex 

model is a better predictor when using the direct naive approach (i.e. the naive 

approach without choice set adjustment). However, since the error measures for 

the entire study area are based on a single representative observation, they are 

not reliable. On the other hand, when choice set variability is considered (see 

Table 6.1—b), the values of the error measures are reduced drastically, reflecting 

the importance of considering choice set variation across the individuals in the 

entire study area. In addition, the simple model has lower error values (3% 

lower) than the complex one. This indicates that the simple model predicts just 

as accurately as the complex model when considering choice set variation.

The naive error measures shown in Table 6.1—b are slightly larger than the 

values obtained in a previous study by Koppelman (1975) (e.g. naive RMSE =  

10.2%) and substantially smaller than those in a study by Reid (1978) (e.g. naive 

RMSE = 40.0%). The errors obtained in this study are greater than might have 

been, since no account was taken of sample heterogeneity, and could have been 

further reduced by using a more consistent approach such as the classification 

approach.
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E r r o r

M easu re

S i mp1e 

Mode 1

Complex 

Mode 1

AE 1 2 6 . 8 2 1 1 8 . 4 0

SDE 0 0

RMSE 1 2 6 . 8 2 1 1 8 . 4 0

a. Without choice set adjustment

E r r o r

M easu re

S i mp1e 

Mode 1

Complex

Model

AE 3 . 5 7 5 . 0 1

SDE 9 . 1 9 1 1 . 6 6

RMSE 9 . 8 6 1 2 . 6 9

b. With choice set adjustment

TABLE 6.1 Naive aggregation errors (percent) for the two 

models for the entire study area with and 

without choice set adjustment.
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6.6.2 AGGREGATION ERROR FOR THE CLASSIFICATION APPROACH

In order to improve the predictive powers of the chosen disaggregate models (i.e. 

minimise their prediction error values), two classification methods have been used. 

These are:

6.6.2.1 GEOGRAPHICAL CLASSIFICATION

Aggregate predictions are traditionally made at the zonal level. However, in this 

study, aggregate predictions based on zonal average values of the explanatory 

variables seemed to be infeasible due to the small sample size (530 observations) 

and the large number of zones available (more than 600; see Figure 6.1). Thus, 

the aggregate predictions were carried out at three geographical levels. These 

were: the entire study area, six bands (Figure 6.2), and ten sectorgroups1 (Figure

6.3). These bands and sectorgroups were originally defined by the GRIS study 

group in order to present the survey results in terms of simple statistical values 

at area levels. To be consistent with the GRIS study, the same divisions were 

used here.

Table 6.2 shows the variation in the aggregate prediction errors with the 

geographical scales of classification for the two disaggregate models.

1 A trial was undertaken grouping the data into 42 sectors (see Figure 6.4), 
but it was found that most of these sectors were of small size, and so it was 
thought infeasible to consider them as aggregate groups.
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FIGURE 6.1 The GRIS study area (Zones).
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FIGURE 6.3 The GRIS study area (Sectorgroups).
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FIGURE 6.4 The GRIS study area (Sectors).

139





Ty pes  

o f  

Mode 1

T yp es

o f

E r r o r

C l a s s i f i c a t i o n  by

S tu d y  a r e a  
*

(1)

Bands

(6)

S e c t o r g r o u p s

(1 0)

S i mp1e 

Mode 1

AE 3 .5 7 0 . 7 7 0 . 7 1

SDE 9 . 1 9 4 . 9 4 4 . 8 8

RMSE 9 . 8 6 5 . 0 0 4 . 9 3

Complex 

Mode 1

AE 5 . 0 1 1 . 1 5 0 . 9 7

SDE 1 1 . 6 6 6 . 2 8 5 . 8 1

RMSE 1 2 .6 9 6 . 3 8 5 . 8 9

* Note: the numbers in parentheses represent the numbers 

of groups at the different geographical levels.

TABLE 6.2 Percentage aggregation error for the three geographical 

levels for the two models.
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It is clear from the table that the error measures increase with increasing 

geographical level. In other words, the whole study area as a single group has 

the highest error values, while the bands have smaller errors than the entire study 

area but larger errors than the sectorgroups. This is, indeed, consistent with the 

statistical notion that the aggregation error increases with increasing within— group 

variance [Fleet and Robertson (1968); DeNeufville and Stafford (1971)]. It is also 

apparent from Table 6.2 that the simple model is a slightly better predictor than 

the complex model at all three levels of geographical classification.

6.6.2.2 B Y - VARIABLES CLASSIFICATION

An alternative to geographical classification is to divide the data sample into 

relatively homogeneous groups of individuals according to their attributes so as to

minimise the within— group and maximise the between— group variances. In this

approach the classification should be based on the important explanatory variables,

that is, as Koppelman and Ben—Akiva (1977) point out, the variables with the 

highest variances.

In this study the classification was done in three ways. The data were classified:

firstly, into three groups according to the number of cars per household (CAOD

variable; CAOD = 0, CAOD = 1, and CAOD = 2 + ); secondly, into three

groups based on the number of cars per driving licence (CAPDL variable;

(CAPDL =  0, 0 <  CAPDL <  1, and CAPDL =  1); and finally, into eight

groups by different combinations of the variables HHPOS, CAOD, and CBD. The 

results of this classification approach are shown in Table 6.3.
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Ty pes Types C l a s s i f i c a t i o n  by

o f o f CAOD CAPDL HHPOS, CAOD,

Mode 1 E r r o r (3) (3) an d  CBD (8)

S i mp1e 

Mode 1

AE 2 . 9 9 2 . 4 5 0 . 7 1

SDE 8 . 5 9 6 . 8 7 4 . 2 0

RMSE 9 . 1 0 7 . 2 9 4 . 2 6

Complex 

Mode 1

AE 4 . 2 9 3 . 6 5 1 . 3 4

SDE 1 1 .0 5 9 . 6 1 6 . 3 2

RMSE 1 1 .8 5 1 0 .2 8 6 . 4 6

* Note: the numbers in parentheses represent the number 

of classes for each variable.

TABLE 6.3 Percentage aggregation error for the three by—variables 

classifications for the two models.
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As can be seen from Table 6.3, the error measures for the classification by 

combination of the three variables have the lowest values. This indicates that as 

the number of classifying variables increases the predictive powers of the 

disaggregate models also increase. This is consistent with the results obtained by 

Koppelman (1975) and Reid (1978). The results in Table 6.3 also show that the 

simple model has slightly lower errors than the complex one.

6.6.3 PREDICTION ERROR FOR THE ENUMERATION APPROACH

There are two basic objectives of using the enumeration approach in aggregate 

prediction. The first is to define a reference value for assessing the predictive 

performance of different aggregation approaches, since in most situations the 

actual shares are not known. The second, since the enumeration approach does 

not include any form of data aggregation errors, is to define other sources of 

prediction error such as model specification, transferability, or data measurement 

errors (i.e. errors in variable and parameter estimation).

In this study the same data were used for the calibration of the models and so 

there is no specification error and the only errors left are the data measurement 

errors. The identification of these errors is carried out by comparing the 

aggregate shares predicted by the enumeration approach with the observed or 

actual shares. The errors are shown in Table 6.4.

As was expected, the results in Table 6.4 show that error measures SDE and 

RMSE increase with decreasing geographical level [Koppelman (1975)].
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Ty pes  

o f  

Mode 1

Types

o f

E r r o r

C l a s s i f i c a t i o n  by

S t u d y  a r e a
*

( 1 )

Bands

(6 )

S e c t o r g r o u p s

( 1 0 )

S i mp1e 

Mode 1

AE 0 . 0 2 0 . 0 0 0 . 4 6

SDE 0 7 . 2 3 8 . 5 2

RMSE 0 . 0 2 7 . 2 3 8 . 5 3

Complex 

Mode 1

AE 0 . 0 3 0 . 0 1 0 . 3 2

SDE 0 9 . 5 9 1 1 . 2 0

RMSE 0 . 0 3 9 . 5 9 1 1 . 2 0

* Note: the numbers in parentheses represent the numbers 

of zones at the different geographical levels.

TABLE 6.4 Percentage prediction errors for the two models for the 

three geographical levels by the enumeration approach.
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That is, the errors in the share prediction for the entire study area are much 

less than the errors for the bands which are also less than the errors for the 

sectorgroups. It is also clear from Table 6.4 that the values of AE are small for 

the three classification groups.

Once again, the predictive power of the simple model is slightly greater than that 

of the complex one.

6.7 COMPARISON OF THE PREDICTION ERRORS OF THE DIFFERENT 

AGGREGATION APPROACHES

In order to evaluate the desirability of the different aggregation methods to be 

used in the prediction of aggregate travel behaviour, the values of their prediction 

errors should be compared. Table 6.5 shows the prediction errors for the three 

aggregation procedures.

The enumeration approach leads to the smallest prediction errors. This is 

attributed to the exclusion of specification (or transferability) errors due to the 

use of the same calibration data set and also because the chosen disaggregate 

models appear to be well— specified.

The naive approach has substantially higher aggregation errors than those of the 

classification approaches for both models; the naive aggregation errors are, in 

fact, approximately twice those of the classification methods.
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T yp es

o f

Model

Typ es

o f

E r r o r

Na ive

(1)

Enumera­

t i o n

(1)

C l a s s i  f i c a t  i o n

G e o g ra p h i  c a l  

( S e c t o r g r o u p s )  

(10)

B y - v a r i a b l e s  

(HHPOS,CAOD, an d  

CBD) (8)

S i mp1e 

Mode 1

AE 3 . 5 7 0 . 0 2 0 . 7 1 0 . 7 1

SDE 9 .19 0 4 . 8 8 4 . 2 0

RMSE 9 . 8 6 0 . 0 2 4 . 9 3 4 . 2 6

Complex 

Mode 1

AE 5 . 0 1 0 . 0 3 0 . 9 7 1 . 3 4

SDE 1 1 . 6 6 0 5 . 8 1 6 . 3 2

RMSE 1 2 .6 9 0 . 0 3 5 . 8 9 6 . 4 6

* Note: the numbers in parentheses represent the numbers of zones and variable 

groups.

TABLE 6.5 Percentage prediction errors for the two models by the three 

aggregation approaches.

146



The error measures by the geographical classification method are slightly higher 

than those obtained by the by— variables classification method for the simple 

model, while the opposite is true for the complex model. This variation may be 

attributed to the different specifications of the two disaggregate models. Since 

the complex model includes a slightly larger number of variables ( i.e. more 

level— of— service variables) the by— variables classification method, using the 

combination of some of these variables, may not improve the homogeneity of the 

remaining variables in each group (i.e. may result in imperfectly homogeneous 

groups).

Additional insight into the structure of the prediction errors for different

aggregation procedures is obtained by disaggregating the error measures by 

alternative mode. The resulting errors are shown in Tables 6.6 and 6.7 for the 

simple and the complex models, respectively.

The prediction error measure for all alternative modes is simply equal to the

square root of the average sum of the squared values of the corresponding

prediction errors for each mode [Koppelman (1975)].

As can be seen from Tables 6.6 and 6.7, both models slightly overpredict the car 

driver and bus mode choice shares, while they underpredict the car passenger

(slightly) and train mode choice shares. The error in the prediction of train 

travel may result from the small proportion of train travellers in the data sample.
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A l t e r n a -

t i v e  

Mode

Typ es

o f

E r r o r

Na ive

k
( i )

En um era­

t i o n

(1)

Cl a s s  i f  i c a t  i o n

G e o g r a p h i  c a l  

( S e c t o r g r o u p s )

(1 0)

B y - v a r i a b l e s  

(HHPOS, CAOD, and 

CBD) (8)

Car

D r i v e r

AE 1 . 3 5 0 . 0 1 0 . 4 4 0 . 4 6

SDE 4 . 1 6 0 2 . 5 5 1 . 9 8

RMSE 4 . 3 7 0 . 0 1 2 . 5 9 2 . 0 3

Car

P a s s e n g e r

AE - 2 . 0 3 - 0 . 0 5

VOo1 - 0 . 2 9

SDE 6 . 8 7 0 5 . 0 4 3 . 0 3

RMSE 7 . 1 6 0 . 0 5 5 . 0 8 3 . 0 4

Bus

AE 0 . 8 6 0 . 0 2 0 . 1 4 0 . 1 4

SDE 1 0 .3 1 0 5 . 6 8 5 . 4 1

RMSE 1 0 . 3 5 0 . 0 2 5 . 6 8 5 . 4 1

* Note: the numbers in parentheses represent the numbers of zones and variable 

groups.

TABLE 6.6 Percentage prediction error by the three aggregation approaches for

each mode for the simple model.

Continued:
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A 1 t e r n a -

t i v e  

Mode

Types

o f

E r r o r

N a ive

*
(1)

E nu mera -

t i o n

(1)

C l a s s i f i c a t  i o n

G e o g r a p h i c a l

( S e c t o r g r o u p s )

(10)

B y - v a r i a b l e s  

(HHPOS, CAOD, an d  

CBD) (8)

T r a i n

AE - 7 . 5 6 - 0 . 0 1 - 1 . 3 6 - 1 . 5 1

SDE 1 5 .7 1 0 7 . 3 1 6 . 5 8

RMSE 1 7 .4 3 0 . 0 1 7 . 4 4 6 . 7 5

Walk

AE - 0 . 1 5

i—iooi - 0 . 0 5 - 0 . 06

SDE 2.14 0 1.16 1.55

RMSE 2.15 0.01 1. 16 1 .55

TOTAL

AE 3 . 5 7 0 . 0 2 0 . 7 1 0 . 7 1

SDE 9 . 1 9 0 4 . 8 8 4 . 2 0

RMSE 9 . 8 6 0 . 0 2 4 . 9 3 4 . 2 6

* Note: the numbers in parentheses represent the numbers of zones and variable 

groups.

TABLE 6.6 Percentage prediction error by the three aggregation approaches for

each mode for the simple model.
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A1 t e r n a -

t i ve 

Mode

Types

o f

E r r o r

Na ive

(1)

Enum era -

t i on

(1)

C l a s s i f i c a t  i o n

G e o g r a p h i c a l  

( S e c t  o r g r o u p s ) 

(1 0)

B y - v a r  i a b l e s  

(HHPOS, CAOD, and 

CBD) (8)

Car

D r i v e r

AE 1 . 4 5 0 . 0 1 0 . 4 6 0 . 5 4

SDE 4 . 4 8 0 2. 76 2 . 4 3

RMSE 4 . 7 1 0 . 0 1 2 . 8 0 2 . 4 9

Car

P a s s e n g e r

AE - 1 . 6 9

oo1 - 0 . 4 1 - 0 . 0 5

SDE 7 . 2 2 0 3 . 7 3 3 . 8 1

RMSE 7 . 4 1 0 . 0 4 3 . 7 5 3 . 8 1

Bus

AE 1 . 0 0 0 . 0 1 0 . 3 0 0 . 0 0

SDE 1 1 . 5 4 0 5 . 9 7 6 . 2 8

RMSE 1 1 .5 8 0 . 0 1 5 . 9 8 6 . 2 8

* Note: the numbers in parentheses represent the numbers of zones and variable 

groups.

TABLE 6.7 Percentage prediction error by the three aggregation approaches for

each mode for the complex model.

Continued:
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A1 t e r n a -

t i v e  

Mode

Types

o f

E r r o r

Na ive

(1)

En um era -

t i on

(1)

C l a s s i  f i c a t  i o n

G e o g r a p h i  c a l  

( S e c t o r g r o u p s )  

(10 )

B y - v a r i a b l e s  

(HHPOS, CAOD, and  

CBD) (8)

T r a i n

AE - 1 0 . 9 4 - 0 . 0 5 - 2 . 0 5 - 2 . 9 5

SDE 2 1 . 6 0 0 1 0 . 3 8 1 1 . 6 5

RMSE 2 4 .2 1 0 . 0 5 1 0 . 5 8 1 2 . 0 2

Walk

AE 0 . 0 0 0 . 0 2 0 . 0 2 0 . 2 4

SDE 2 . 8 2 0 1 . 9 2 2 . 0 5

RMSE 2 . 8 2 0 . 0 2 1 . 9 2 2 . 0 6

TOTAL

AE 5 . 0 1 0 . 0 3 0 . 9 7 1 . 3 4

SDE 1 1 .6 6 0 5 . 8 1 6 . 3 2

RMSE 1 2 .6 9 0 . 0 3 5 . 8 9 6 . 4 6

* Note: the numbers in parentheses represent the numbers of zones and variable 

groups.

TABLE 6.7 Percentage prediction error by the three aggregation approaches for

each mode for the complex model.
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The choice shares for the walk mode are predicted differently by the two models; 

the simple model underpredicts while the complex one overpredicts. This may 

result from differences in the representation of the WALK variable in the utility 

function of the walk mode, as well as the difference in the specifications of the 

two models.

In general, both models have relatively low prediction error values. However, the 

simple model appears to be more desirable for use in the prediction of aggregate 

travel behaviour, since it has lower error values than the complex model and is 

much cheaper to use, both in terms of computational requirements and data 

collection. Therefore, the simple model was chosen for the analysis of policy 

changes. This will be discussed in the next chapter.
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CHAPTER SEVEN 

POLICY CHANGE ANALYSIS

7.1 INTRODUCTION

The development over the past three decades of disaggregate travel demand 

models has increased considerably the range and power of the tools available to 

the transportation analyst concerned with the prediction of future travel demand. 

It has been widely stated in the literature that disaggregate travel demand 

modelling techniques appear to hold the greater potential for providing the basis 

for accurate methods of estimating and predicting travel demand1.

In addition to the use of these models for predicting aggregate travel behaviour 

(see Chapter 6), they can be used for assessing the effects of a wide range of 

policy decisions. This assessment is clearly an important aspect of travel demand 

prediction since it allows transportation planners and decision— makers to evaluate 

the effect of different proposed policy changes in the transportation system. This 

application of the models is examined in this chapter.

In Section 7.2, the general properties of policy—sensitive models are presented. 

Section 7.3 considers the various methods available for analysing different policy 

change decisions. Section 7.4 presents the various elasticity measures appropriate 

to the individual traveller and the aggregate group; these involve the analysis of

1 See for example: Watson (1973, 1974); DeDonnea (1971); Richards and 
Ben— Akiva (1975); Domencich and McFadden (1975); Koppelman (1974, 1975); 
Supemak (1983, 1984); Ben—Akiva and Lerman (1985).
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small and large changes in the various policy— relevant variables. The last section

examines the use of the MNL model in predicting aggregate travel behaviour

under different policy changes. It presents the impact of these policy changes on

the aggregation error for various methods of aggregation.

7.2 POLICY-SENSITIVE MODELS

One of the most important aspects of any travel demand model is its sensitivity 

to changes in transportation system characteristics. It is essential to develop a

model which can accurately reflect the possible effects of changes in the 

transportation system associated with a new alternative. The model must be able 

to test new transportation strategies that are of concern to the transportation 

planners and decision— makers.

In recent years the range of the policy alternatives analysed and policy questions 

considered has greatly expanded. Emphasis has shifted from long— term 

transportation planning to short— term planning. These shifts have placed a 

considerable strain on conventional aggregate prediction tools, which were 

originally developed to address problems of highway network design [McFadden

(1976b)]. Thus, demand prediction methods have been sought which are 

especially capable of incorporating the behavioural forces linking individual 

transportation decisions and the relationships between individual travel choice and 

aggregate flow. The resulting behavioural disaggregate methods expand the policy 

sensitivity of travel prediction. Tests and practical experience with these 

approaches indicate that they are superior to the conventional aggregate prediction 

techniques in terms of data collection and computational requirements (see 

Chapters 2 and 6).

155



Some typical policy issues that the transportation planners would like to be able 

to address with disaggregate models include the following1:

1. What effects will changes in travel times and costs have on total travel 

demand and on the demands for alternative modes?

2. How can public transport modes be made more attractive alternatives, in the 

peak periods, for those who are currently travelling by car?

3. What are the effects of introducing new or substantially redesigned alternative

transport modes on the distribution of trips across available modes?

In fact, disaggregate behavioural choice models are particularly well— suited for 

analysing such short— term transportation policy questions. They translate the

questions into quantitative descriptions of their effects on the predetermined

models in order to predict their consequences for future travel demands. This is 

discussed next.

7.3 POLICY CHANGE ANALYSIS TECHNIQUES

The basic concern of transportation planners and decision— makers is to be able 

to anticipate the consequences of any proposed changes in the transportation 

system. This can be done by using an estimated model for the analysis of these 

proposed changes. In general, demand models can only reflect the effects of

1 See for example : Domencich and McFadden (1975); Gwilliam and Mackie 
(1975); McFadden (1976); Nash (1976); Ssherret (1979); Hottler (1981); Richards 
(1981); Spear (1981).
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changes in some policy— relevant variables that are of interest to the 

transportation planners and decision— makers if such changes are expressed as 

changes in relevant explanatory variables in the model.

In recent years a number of simplified techniques have been developed for 

analysing policy changes. Most of these techniques rely either on transferring or 

borrowing a model developed in one area to another area, or on simple methods 

which relate proportional changes in policy— dependent variables (e.g. travel time 

and travel cost) directly to proportional changes in a particular transport mode 

choice. These techniques are:

1. Development of a simplified model from locally— available data.

2. The use of borrowed or base year models with adjustments to the local data.

3. The use of borrowed or base year models without adjustments to the local 

data.

4. The use of elasticity models (i.e. simple models which relate policy— relevant 

variables directly to a transport mode choice probability or choice share).

The first technique requires that the transportation planners and decision— makers 

understand the econometric techniques involved in specifying and calibrating the 

demand model. In addition it requires an appropriate set of data for use in the 

model development. However, the development of the required model is an 

expensive task in terms of data collection and computational requirements.
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Often, particularly for small scale studies involving minor policy decisions, there is 

neither the time nor the money to develop a new travel demand model. 

Consequently it seems more desirable to borrow a predetermined model for use in 

analysing such policy decisions.

Two alternative techniques which use borrowed or base year models in policy 

change analysis are available (listed as 2 and 3 above). The first technique 

updates a model using data available in the borrowing area to adjust the model 

parameters so that the model better replicates the current situation. The extent 

to which a borrowed model can be updated depends largely on the structure of 

the model together with the type of data available in the borrowing area [OECD 

(Sept. 1980); Supernak (1984)]. The other technique requires that the 

transportation planners and decision— makers assume that both the structure and 

the parameters of the borrowed model are representative of the borrowing area. 

This is clearly a considerable assumption, although it may sometimes be correct. 

If the policy alternatives are substantially different from the base year conditions, 

the use of the base year parameter values may be equivalent to extrapolation 

outside the range of the data. In this case, the use of the borrowed model will 

produce biased results. Nevertheless, in the absence of major policy changes 

(such as the introduction of important new transportation modes) this technique 

seems to be more desirable than the updating one due to its simplicity and 

straightforwardness of use, all of which make it a more economical approach to 

policy change analysis.

The use of elasticity models, widely applied in the United Kingdom for policy 

change analyses [OECD (Sept. 1980)], requires a good knowledge of both the 

modelling technique and the transport system being studied. Such models can be 

used to provide quick estimates of the effects of small scale policy changes in the
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transportation system1.

7.4 ELASTICITY MEASURES

Travel demand elasticities can be considered in disaggregate or aggregate terms as 

defined below.

7.4.1 DISAGGREGATE ELASTICITIES

Since disaggregate choice models are concerned with the individual traveller and 

with the fact that the impact of any proposed changes in the transportation 

system varies across individuals, the disaggregate elasticities are of great 

importance since they reflect the true behaviour of each individual in response to 

policy changes.

The various types of disaggregate elasticities are:

7.4.1.1 POINT ELASTICITIES

These measures are often used to assess the responsiveness of the individual 

choice probability of a particular alternative with respect to changes in some 

explanatory variables relevant to that alternative or to other competing 

alternatives. Thus, direct and cross (indirect) point elasticities can be defined. 

Direct point elasticity is the percentage change in the individual choice probability

1 For more details of these methods see OECD (Sept. 1980).
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of a particular alternative with respect to a given percentage change in an

explanatory variable which relates directly to that alternative. Cross point

elasticity, on the other hand, is defined as the percentage change in the

individual choice probability of a particular alternative with respect to a given

percentage change in an explanatory variable which is related directly to some 

other competing alternative. Thus the mathematical definition of these elasticities 

can be written as:

in dP in * ik n

* ik n  ^ i k n  p in
(D ire c t  p o in t e l a s t i c i t y )  ( 7 . 1 )

and,

P in  dPin  Xjkn

jkn dXjkn p in
(C ross p o in t e l a s t i c i t y )  ( 7 . 2 )

where,

Pjn is the probability of individual n choosing alternative i, and 

^ikn and are the explanatory variables relating to alternatives i

and j respectively.

For the logit model given by Equation 3.24, it is possible to derive the above 

point elasticities as follows1:

For complete derivation of the elasticities see Hensher and Johnson (1981).
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E ■" p in)  0k x ikn (D irec t  po int  e l a s t i c i t y )  ( 7 . 3 )
x ikn

and,

E “  “ pjn  0k x jkn (C ross p o in t  e l a s t i c i t y )  ( 7 . 4 )
Xjkn

Equation 7.4 shows that the cross point elasticity depends only on the variables 

associated with alternative j. Thus, the cross elasticities with respect to change in 

a variable related to alternative j are equal for all alternatives i * j. However, 

this constraint of equal elasticity (i.e. equal substitutability) can be considered as a 

limitation of the logit model since it is not necessarily logical in all cases and is 

therefore considered as another aspect of the IIA property limitation [Richards 

and Ben—Akiva (1975)].

In general, Equations 7.3 and 7.4 can be combined to yield a single point 

elasticity formula for the logit model,

E
Xjkn

-  ( 5 i j -  p jn)  ^k x jkn ( 7 . 5 )

where,

1 i f  i -  j (D irec t  po int  e l a s t i c i t y )

0 i f  i ^ j  ( C r o s s  p o i n t  e l a s t i c i t y )
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As can be seen from Equation 7.5, the direct point elasticity approaches zero as 

the choice probability Pjn approaches one, and approaches (3 ^  as Pjn

approaches zero. This clearly implies that the direct point elasticity is greatest 

when the choice probability is lowest and vice versa. On the other hand, cross

point elasticity behaves in precisely the converse manner (i.e. the cross point

elasticity is a minimum when Pjn is a minimum).

Theoretically, it is clear from Equations 7.1 and 7.2 that point elasticities are 

relations between differentials and that they are relevant only for small changes in 

the values of the explanatory variables and indicate only a trend at a particular 

point [Richards and Ben—Akiva (1975)].

7 .4 .1 .2  ARC ELASTICITIES

Arc elasticities are similar to point elasticities except that they are well suited for 

measuring the sensitivity of individual travellers to large changes in the 

policy— relevant variables. These elasticities represent the effect of moving from 

one situation to another (for example, before and after a travel cost increase or 

travel time decrease for a particular transport mode). To assess the effect of

these changes, the before and after choice probabilities of any particular mode

must be recalculated, and so arc elasticities must be determined using differences 

rather than differentials. Thus:

p in  ^p in  *ikn
E — ----------  .   (D irec t  arc  e l a s t i c i t y )  ( 7 . 6 )

x ikn ^x ikn p in
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^in  ^ i n  x jkn
E ---------------- .-----------

x jkn ^x jkn p in
(Cross arc e l a s t i c i t y ) ( 7 . 7 )

where,

*pin is the difference between the after and before choice

probabilities of mode i, and 

^Xjfcn, ^x jkn are the differences in the values of the explanatory

variables and X j^ , respectively.

The problem inherent in the above definitions (i.e. Equations 7.6 and 7.7) is that 

inconsistent results can be obtained when a change in a given explanatory variable 

is reversed [Kanafani (1983)].

A number of alternative forms can be used to calculate arc elasticity measures 

(considering only the direct arc elasticity; for cross arc elasticity the subscript of 

the explanatory variable is simply changed to another competing mode index). A 

very simple way is to define arc elasticity as the ratio of the change in the 

choice probability to the change in the value of the explanatory variable in 

question. Thus:

p in  * p in

x ikn * x ikn

This can, alternatively, be expressed in a logarithmic form [Kemp (1973)]:

( 7 . 8 )
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p in  A lo S p in
E -------------------------  ( 7 . 9 )

* ik n  A 1°§ * ikn

The only problem with the use of Equations 7.8 and 7.9 is that the resulting

elasticities are not dimensionless measures, and so are of little use in comparing

the effects of different explanatory variables.

Another simple method of determining arc elasticity is to assume a linear

relationship between the choice probability and the explanatory variables. This is

often done in conventional travel demand studies. In this case the arc elasticity

is defined in terms of the average values of the parameters. Thus:

p in  APin  * ikn
E ------------------ .     ( 7 .1 0 )

x ikn ^x ikn p in

where the bar sign on Pjn and Xj^n is used to represent the average values for 

the before and after situations [OECD (Sept. 1980)].

Using the above definitions (i.e. Equations 7.8, 7.9 and 7.10), the problem of 

inconsistency does not occur when reversing changes in any of the explanatory 

variables [Kanafani (1983)].

To calculate the arc elasticities for the logit model, the probabilities for the 

before and after situations are computed and then substituted, together with the
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variable values for both situations, in any of the above elasticity forms.

7.4 .2  AGGREGATE ELASTICITIES

Although disaggregate elasticities are more appropriate in reflecting the effect of 

any policy decision, in practice they are of little use since transportation planners 

and decision— makers are always interested in the responsiveness of the demand at 

an aggregate level to any proposed policy changes. Thus, some form of 

aggregation is required. The simplest way to derive the aggregate elasticities is to 

substitute the average probability and explanatory variable values into the 

disaggregate elasticity measures. Thus, for small changes in the explanatory 

variable, the aggregate point elasticity is simply expressed as:

Pi
AE -  (1 -  P i)  0k Xik  (7 .1 1 )

* i k

where,

1 N
P j  I  Pin  (7-12)

N n=*l

is the average choice probability or the expected choice share of alternative i in 

a sample of N observations, and,

1 N
Xik. = ^  Xfkn (7 .13 )

N n=l
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is the average value of the relevant explanatory variable in the data sample.

This approach was used by Richards and Ben—Akiva (1975) for evaluating point 

elasticities based on the observed average probability (choice share) and the

average values of the relevant explanatory variables. The results of using the 

same approach in this study are given in Table 7.1.

Table 7.1 shows the aggregate direct point elasticities for a specific group of

individuals. This group was chosen on the basis that each individual belonged to 

a car— owning household and had all modes available. By this means, a 

relatively homogeneous group of individuals was produced.

The most important results shown in the table are the elasticities of public

transport mode choice probabilities with respect to TJT (total journey time). 

These values were calculated to be —3.004 and —3.810 for bus and train, 

respectively. These large values indicate that any reductions in total journey

time, which rely heavily on decreases in out— of— vehicle time (through increasing 

numbers of stops or stations or increasing public transport frequencies), would be 

highly effective ways of making these public transport modes more desirable to

individuals not at present using them.

In general, Table 7.1 also shows that, for each mode, the elasticities with respect 

to travel time are higher than the elasticities with respect to the COST/DIST 

variable. This indicates that the travel time variable has more influence on the 

mode choice decision than has the cost variable.
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A l t e r n a -  
t i ve 
Mode

Var iab le
Average  

Probabi1i -
t y

C o e f f i -  
c i ent  
Value

Var iab le
Value

Point  
E las t  i c i -

t y

Car

Driver

TJT 0 . 6 5 3 6 - 0 . 1 0 1 8 9 . 8 9 - 0 . 3 4 9

COST/DI ST 0 .6 5 3 6 - 0 . 0 8 4 9 1 . 4 0 - 0 . 0 4 1

Car

P assen ger

TJT 0 . 0 5 9 4 - 0 . 1 0 1 8 9 . 8 9 - 0 . 9 4 7

COST/DI ST 0 . 0 5 9 4 - 0 . 0 8 4 9 0 . 7 0 - 0 . 0 5 6

Bus

TJT 0 . 0 4 7 2 - 0 . 1 0 1 8 3 0 . 7 9 - 3 . 0 0 4

COST/DI ST 0 . 0 4 7 2 - 0 . 0 8 4 9 1 1 . 8 2 - 0 . 9 5 6

Train

TJT 0 . 0 0 8 9 - 0 . 1 0 1 8 3 7 . 7 6 - 3 . 8 1 0

COST/DI ST 0 . 0 0 8 9 - 0 . 8 4 9 1 3 . 8 8 - 1 . 1 6 8

Walk TJT 0 . 2 3 0 9 - 0 . 1 0 1 8 2 2 . 1 1 - 1 . 7 3 1

TABLE 7.1 Aggregate direct point elasticities.
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On the other hand, for large changes in the relevant explanatory variable, the 

average choice probabilities need to be recalculated, and the aggregate arc 

elasticity is defined as:

AE
x ik

Xik
( 7 . 1 4 )

in

where,

.̂Pj and are the differences between the after and before average

choice probabilities and explanatory variable values,

respectively, and

Pj and 3 ^  are the average values of the after and before average

choice probabilities and explanatory variable values,

respectively.

Table 7.2 shows the aggregate arc elasticities calculated for different percentage 

changes in the relevant explanatory variables. These elasticities apply to the 

same group of travellers as those given in Table 7.1.

As can be seen from Table 7.2, a twenty percent increase in total travel time 

for the car driver and car passenger modes has lower associated elasticities than 

the same percentage decrease in total travel time for the bus and train modes. 

This indicates that travel time for the public transport modes is more important 

than for the private modes.
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A1terna-

t ive  

Mode

Var iab le Var iab le

Value

Percent

Change

(%)

Choice Shares  
(%)

Arc

E la s t  i -  

c i t yBefore A f ter

Car

Driver

TJT 9.89 +20 0 .6536 0 .6293 - 0 .2 0 8

COST/DI ST 1 .40 +25 0.6536 0 .6499 -0 .0 2 6

Car

P assen ger

TJT 9.89 +20 0 .0594 0.0541 - 0 .5 1 4

COST/DI ST 0 .7 0 +25 0 .0594 0 .0594 0 .000

Bus

TJT 30.97 -20 0.0472 0 .0745 - 2 .0 1 9

COST/DI ST 11 .83 -25 0 .0472 0.0572 - 0 .671

Train

TJT 37.76 -20 0 .0089 0.0235 - 2 .5 5 3

COST/DI ST 13.88 -25 0.0089 0.0117 -0 .951

TABLE 7.2 Aggregate direct arc elasticities.
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It is also clear from the table that changes in travel costs have a higher effect 

for public transport modes, but that such changes have a smaller effect than have 

changes in travel time. This implies that travellers are significantly less sensitive 

to travel cost changes than to travel time changes.

In general, the above approach is based on the use of average values of the

choice probabilities and explanatory variables for evaluating the aggregate point 

and arc elasticities. This will produce biased results if, firstly, the sample is not 

a homogeneous group of individuals and, secondly, the average values of the

choice probabilities and explanatory variables lie beyond the ranges of the

corresponding values for which the model was estimated [Richards and Ben— Akiva 

(1975); Hensher and Johnson (1981)]. A more appropriate procedure is to 

calculate the relevant elasticity of each individual and then sum the elasticities 

over the sample to obtain the required aggregate elasticity1.

7.5 ANALYSIS OF THE AGGREGATION ERRORS FOR POLICY CHANGES

The purpose of this section is to examine the use of the MNL model for the

prediction of aggregate travel behaviour under various policy changes. This can 

be done by comparing the aggregation errors for these policy changes with the 

aggregation error for the base case. For example, three different policy changes 

are considered. These are:

1. A fifty percent increase in the cost of travel for the car driver mode.

1 For more details of these approaches see McFadden (1979); Hensher and 
Johnson (1981).
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2. Zero cost of travel for the car passenger mode.

3. A fifty percent decrease in the out—of—vehicle time for the bus mode.

The objective of these policy decisions was to examine the relative effects of 

different ways of reducing car and increasing bus usage. The expected choice 

shares for the base case and for the three policy changes for the entire study 

area using the complete enumeration method are given in Table 7.3.

As can be seen from Table 7.3, policy changes one and two do not have any 

significant effects on the choice shares of the various modes. Policy change 

three, however, has the effect of increasing the choice share of the bus mode by 

ten percent (i.e. from 26.35% to 36.30%). These policy changes indicate that 

the cost variable has less impact on the mode choice decision for the car driver 

and car passenger modes, whereas out— of— vehicle travel time has more effect on 

the bus mode choice decision.

For three methods of aggregation, the impacts of the above policy changes on 

the aggregation error have been examined and the results, together with the base 

case aggregation errors, are shown in Table 7.4. It is clear from Table 7.4 that 

the aggregation errors for the three policy changes by the three methods of 

aggregation are consistent with the aggregation errors for the base case. The 

by— variables classification method has the least error measure, whereas the naive 

method has the highest.
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A l t e r n a -  

t ive  

Mode

P r e d i c t i o n  S i t u a t i o n

Base Case Change One Change Two Change Three

Car

Driver
27.12 26.69 27 .08 25 .93

Car
P assen ger 12.08 12 .26 12 .59 8 .8 4

Bus 26 .22 26 .35 25 .99 36 .3 0

Train 8 .4 9 8.55 8 .4 4 5 .92

Walk 26 .04 26 .15 25 .90 23 .01

TABLE 7.3 Expected choice shares (percent) for the various modes for

the base case and the three policy change proposals using the 

complete enumeration approach.
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P r e d ic t  ion  

S i t u a t i o n

Naive

Approach
*

(1)

C l a s s i f i c a t i o n  Approach

Geographical  
C l a s s i  f i c a t  ion  
(Sectorgroups)  

(10)

By-V ar iab les  
C l a s s i f i c a t  ion  

(HHPOS, CAOD, and 
CBD) (8 )

Base
Case 9 .86 4 .4 3 4 .2 6

Change
One 9.47 4 .3 6 4 .2 1

Change
Two 9 .8 4 4 .6 0 4 .2 5

Change
Three 11 .46 5 .2 0 4 . 9 4

* Note: the numbers in parentheses represent the number of zones and 

variable groups.

TABLE 7.4 Percent aggregation error (RMSE) for the base case and the 

three policy change situations by three methods of aggregation.
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Although policy change three has the highest aggregation errors for the three 

aggregation methods, the errors can still be considered small. This suggests that 

the MNL model developed here could be used to analyse other policy changes 

and policy changes in areas similar to the study area, provided that the changes 

in the relevant policy variables were within the range of their values for which 

the model was estimated.
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CHAPTER EIGHT 

CONCLUSIONS AND RECOMMENDATIONS

8.1 INTRODUCTION

The objectives of this final chapter are to present the main conclusions of the 

study and to identify possible areas for further research. General conclusions 

regarding the desirability of the approach used in the study are considered first. 

Specific conclusions relating to the model development and applications in 

aggregate prediction and policy change analyses are then drawn. The last section 

considers how the present study might be extended.

8.2 GENERAL CONCLUSIONS

This study has contributed empirical results to the development and application of 

disaggregate behavioural travel demand models in urban transportation planning 

studies in the U.K. context. A better understanding of travel behaviour with 

respect to mode choice for journeys to work in Glasgow has been obtained and 

the most important factors influencing the mode choice decision have been 

identified. The study has also demonstrated the feasibility of using the MNL 

approach to the development of multi— modal disaggregate travel demand models.
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8.3 SPECIFIC CONCLUSIONS

The empirical findings of the study and their implications with respect to model 

development and applications in aggregate prediction and policy change analyses 

have been presented and discussed in the relevant chapters. In this section,

summaries of the most important conclusions relating to the above three aspects 

of the study are outlined in order to show the extent to which the results

obtained may be utilised to improve existing, or develop more advanced, mode 

choice models.

8.3.1 MODEL DEVELOPMENT

The model calibration stage of the study yields the following conclusions.

1. Travel time as a single variable (or its components: walking, waiting, and 

in— vehicle times) is statistically significant. The results confirm general 

assumptions about the relative weights of out— of— vehicle time (or its components) 

and in— vehicle time, and are reasonably consistent with those obtained from

other studies.

2. Travel cost is found to have the wrong sign. This may be attributable to the 

way in which travel costs for the car driver and car passenger modes were

calculated. Unfortunately, this has precluded the determination of any meaningful 

estimate of the value of travel time from the study.

3. The CBD was a dummy variable based upon whether or not a trip was
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destined for, or passed through, the central business district and is found to have 

a significant effect on the choice of public transport modes. This is not 

surprising. The problems of driving and parking within the central business 

district strongly encourage the use of public transport modes and strongly 

discourage the use of the car driver and car passenger modes.

4. The effect of distance on the walk mode choice is found to be significant, as 

would be expected.

5. Car availability was included twice in all models via the CAOD and CAPDL 

variables which reflect, respectively, the effects of the number of cars in a 

household and the number of cars per driving licence holder. The latter is a 

measure of the competition within the household for the use of the car mode for 

the journey to work. Both variables add significant power to the models 

developed and are worthy of inclusion in them.

6. An individual's position in a household is found to be a highly significant 

influence on the choice of the car mode. Car use is much greater among heads 

of households than among other members of the household.

The overall conclusion of this stage of the study is that disaggregate behavioural 

travel demand models can be calibrated successfully using data obtained from a 

traditional home interview survey. Although it may be advantageous to have 

specially— designed data for this type of study, the results confirm the wide 

applicability of data from conventional home interview surveys.
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8.3.2 AGGREGATE PREDICTION

A number of conclusions may be drawn from the aggregate prediction aspect of 

the study.

1. The aggregate prediction performances of the two models were compared. 

Aggregate prediction errors for various aggregation procedures for the simple

model are found to be slightly lower than those for the complex model. This 

implies that the simple model is superior to the complex one, confirming results 

obtained by other investigators.

2. Significant reductions in the aggregation errors of the naive approach are 

obtained when the prediction is adjusted for choice set variation. This suggests 

strongly that if differences in choice set availability exist, these differences should 

be used as a basis for adjusting predictions for various methods of aggregation in 

order to improve their prediction performances.

3. The performance of the enumeration procedure for aggregate share prediction

is found to improve with increasing size of prediction group. This implies that

the enumeration procedure is preferable whenever an adequate data sample is

available, although the associated data and computational requirements may be 

costly.

4. The prediction accuracy of the classification procedure increases with decreasing 

geographical dispersion of the prediction group or with increasing numbers of 

classifying variables, provided that adequate sample sizes are available within the 

classes.
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In summary, this phase of the study shows the feasibility and desirability of using 

disaggregate models to provide aggregate predictions; their flexibility provides more 

appropriate means of data aggregation, which in turn provide more accurate 

aggregate predictions.

8.3.3 POLICY CHANGE ANALYSIS

The application of the model to policy change analysis leads to the following 

conclusions.

1. Although travel cost is one of the most important current policy issues in 

urban transportation planning, the study shows that the sensitivity of mode choice 

to changes in associated travel costs is very low in Glasgow. This may have 

been the case in 1978—79 when the GRIS was carried out, but need not 

necessarily be the case at present.

2. Changes in travel times were found to have a significant effect on mode 

choice, especially in relation to public transport modes. This indicates that travel 

time may play an important part in policy decisions, and that by increasing the 

frequencies of buses or trains, or the number of train stations, public transport 

may be made more accessible and attractive.

3. The aggregate prediction errors for various policy changes for different

aggregation procedures are consistent with the aggregation errors for the base

case. This suggests that the tested model may be used for analysing other policy 

changes provided that the changes in the variables concerned are within the range

of their values in the data from which the model was developed.
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These conclusions indicate that the model can be used for testing various policy 

changes, although it is not sensitive to travel cost policy changes.

The overall conclusion of the study is that the empirical results obtained can be 

considered satisfactory and the approach used both sound and flexible.

8.4 RECOMMENDATIONS

The limited scope of the current study together with the practical limitations of 

the available data mean that the analyses presented here could be expanded in 

numerous directions. The major areas in which the study could be extended are 

suggested below:

1. The specification of the developed models could be improved significantly if 

more information on level— of— service measures such as comfort, convenience, 

and safety were available. The need for more detailed data could have 

implications for the method of data collection.

2. More information about travel costs by the car driver and car passenger modes 

is essential for the improvement of the sensitivity of the developed models to 

changes in the travel costs of various transport modes.

3. The study could be extended to include the development of an aggregate MNL 

model using the GRIS data. This would allow comparison of the aggregate share 

predictions using aggregate and disaggregate models.

4. The prediction performance of the developed models could be checked using
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the GRIS "after" survey data, which are readily available. These data would also 

allow testing of:

1. The temporal stability of the developed models.

2. The effect on the mode choice decisions of individuals of introducing new 

alternatives such as the Glasgow Underground.

5. The developed models could be applied to other areas similar to Glasgow in 

order to test their spatial transferability.

6. The study could be extended to analyse trips for purposes other than working.

7. A  further extension of the study could be the development of more general

models, such as nested logit or MNP models, which avoid the difficulties of the

HA property of the logit model.
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APPENDIX 1

GRIS QUESTIONNAIRE



GREATER GLASGOW PASSENGER TRANSPORT EXECUTIVE

Your R ef: 43 ST. V IN C E N T  STREET, GLASG O W  G2 5TR

Our Ref:

November 1978*

Dear H ouseholder,

GLASGOW RAIL IMPACT STUDY

N ext y ea r  w i l l  s e e  th e com p letion  o f  G lasgow’ s two m ajor ra ilw a y  schem es. In  May 
the A rgyle L ine, which w i l l  l in k  R utherglen  and P a r tic k  v ia  the form er C entral Low 
L evel L ine, w i l l  open to  p assen ger  t r a f f i c .  Then towards the end o f  the year  the  
Glasgow Underground w i l l  reopen a f t e r  com plete m o d ern isa tio n .

The purpose o f  the Glasgow R a il Impact Study i s  to  d isc o v e r  what e f f e c t s  th e se  new 
tra n sp o rt system s have on the Glasgow a rea . The r e s u l t s  w i l l  h e lp  to  d ecid e how 
in vestm en t in  p u b lic  tra n sp o rt can b e s t  meet th e n eeds o f  p eop le  l i v i n g  and working  
in  the area . They w i l l  a ls o  h e lp  to  show, in  d e t a i l ,  how the new C ly d era il and 
Underground s e r v ic e s  them selves can be developed  to g iv e  may-! mum b e n e f it  to  the  
gen era l p u b lic .

Por the study to  be s u c c e s s fu l ,  we need  to know where, how and why p eop le  t r a v e l .
Thi s  means con ducting a b r ie f  in te r v ie w  w ith  p eo p le  in  t h e ir  homes, and a random 
sample o f  household s has been s e le c te d  to h e lp  u s .  Yours i s  one o f  those chosen .
I t  would h elp  us a l o t  i f  you and the members o f  your h ois eh o ld  would agree to  
co -o p era te  in  t h is  su rvey , as everyone we m iss , f o r  w hatever reason , means th a t  
the sample i s  j u s t  th a t b i t  l e s s  r e p r e s e n ta t iv e .

A firm  o f  e x p e r ts , M artin and Yoorhees A s s o c ia te s ,  have been co n tra c ted  by the  
S c o t t is h  Development Department to carry  ou t t h i s  work. One o f  t h e ir  in te r v ie w e r s  
w i l l  c a l l  during the n ex t few  weeks. The in te r v ie w e r  w i l l  f i r s t  ask fo r  a few  
f a c t s  about you and your h ousehold  and w i l l  then  ask fo r  some in form ation  regard in g  
t r ip s  to  work and shopping t r ip s  made by members o f  the h ou seh o ld . A ll the in form ation  
c o l le c t e d  w i l l  rem ain a b s o lu te ly  c o n f id e n t ia l . Your id e n t i t y  i s  n o t req u ired  and 
the r e s u l t s  o f  the Study w i l l  co n ta in  no r e fe r e n c e  to in d iv id u a l persons or h o u seh o ld s.

Each in te r v ie w e r  w i l l  carry  an id e n t i t y  card . P le a se  ask to  see  i t  b efo re  b e ing  
in te rv iew ed . I f  you w ish any fu r th e r  in form ation  p le a se  co n ta c t  the Glasgow R a il  
I n ta c t  Study a t  16 P r in c es  Square, 48 Buchanan S tr e e t ,  Glasgow, G1 3JP (Telephone 
041- 226- 4532).

I  hope I  can count on your f u l l  c o -o p er a tio n  in  t h is  im portant su rvey . I t  i s  v i t a l  
to  i t s  su cc ess  th a t everyone tak es p a r t , in c lu d in g  p eop le  who r a r e ly  go out as w e ll  
as th ose who tr a v e l by ca r , bus or t r a in .  I t s  su c c e ss  w i l l  h e lp  to  improve tr a v e l  
f a c i l i t i e s  both in  Glasgow and elsew h ere in  the cou n try .

Yours s in c e r e ly ,

D irector G eneral; A. F. M cK A Y  ; D irector*: J .  C O Y LE, W. N. S T IR L IN G . H . M. TA Y LO R . N. TO W N  E N D  ; Secretary: E. S. PAYNE
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APPENDIX 2

MULTINOMIAL LOGIT PROGRAM



C THIS PROGRAM WAS WRITTEN BY THANOS MATZOROS

C AT THE INSTITUTE FOR TRANSPORT STUDIES IN THE

C UNIVERSITY OF LEEDS IN SUMMER 1982 AND GENEROUSLY

C MADE AVAILABLE TO THE AUTHOR IN 1987. IT WAS

C AMENDED SLIGHTLY TO COPE WITH THE REQUIREMENTS

C OF THE PRESENT STUDY.

C AT PRESENT IT CAN HANDLE (EASILY EXTENDABLE THOUGH)

C UP TO 20 ATTRIBUTES, CHARACTERISING BOTH INDIVIDUALS

C AND ALTERNATIVES, AND 7 ALTERNATIVES.

C IT USES A QUASI NEWTON- RAPHSON OPTIMISATION

C TECHNIQUE, OBTAINED FROM NAG LIBRARY AS ROUTINE

C E04JBF, AND CAN DETERMINE EITHER AN UNCONSTRAINED

C MINIMUM/MAXIMUM (I.E. WHEN THE PARAMETERS CAN

C TAKE ANY REAL VALUE) OR A CONSTRAINED MINIMUM/

C MAXIMUM WHEN THE PARAMETERS ARE SUBJECT TO FIXED

C UPPER AND/OR LOWER BOUNDS. THIS FEATURE IS USEFUL

C WHEN IT IS NEEDED TO CONSTRAIN THE VALUE OF

C A PARAMETER TO BE WITHIN A PARTICULAR INTERVAL.

C THE OPTIMISATION PROCESS INVOLVES THE EVALUATION

C OF FIRST AND SECOND DERIVATIVES IN ORDER TO FIND

C THE TURNING POINT. THE FUNCTION TO BE OPTIMISED

C MUST HAVE CONTINUOUS FIRST AND SECOND DERIVATIVES

C (ALTHOUGH THE ALGORITHM WILL WORK EVEN IF THE

C DERIVATIVES HAVE OCCASIONAL DISCONTINUITES).
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C NO DERIVATIVES NEED TO BE SUPPLIED ANALYTICALLY.

C THE USER HAS ONLY TO PROVIDE A SUBROUTINE (FUNCT),

C WHICH MUST EVALUATE THE LLF AT ANY POINT OVER THE

C PARAMETER SPACE (SEE ALSO E04JBF MANNUAL), AND

C A SUBROUTINE (MONIT) WHICH MONITORS THE PROGRESSION

C OF THE OPTIMISATION PROCEDURE (SEE SUBROUTINES FUNCT

C AND MONIT AS WELL).

C NLOGIT IS THE MAIN PROGRAM, WHICH CALLS SUBROUTINES

C ATTRB, THIS IS FOR DATA PREPARATION, E04JBF, AND

C E04HBF. AFTER SUCCESSFUL EXIT FROM THE E04JBF ROUTINE

C IT CALCULATES THE PREDICTED PROBABILITIES OF THE

C MODEL, THE LLF AT ZERO FROM WHICH THE RHO SQUARED

C INDEX IS OBTAINED

PROGRAM NLOGIT 

COMMON/DERIV/HESL,HESD 

COMMON/NUMB/N,NOBS ,MXNLT 

COMMON/ACCUR/ETA,XTOL 

COMMON/HBFEVL/J 

CHARACTER ALTR*7,MODE*7

REAL*8 ETA,F,FEST,STEPMX,XTOL,FIINV,FLLO,FLLR,

CCAR1 ,CCAR2,CCAR3,CPAS1 ,CPAS2,CPAS3,CBUS1 ,CBUS2,

+  CBUS3,CTRN1 ,CTRN2,CTRN3,CWLK1 ,CWLK2,CWLK3 

REAL*8 DELTA(20) ,HESD(20) ,HESL(190),W(180),

+  X(20) ,U(7) ,PA(7), A(20,7) ,P(7) ,XC(20) ,G(20),

■+• BU(20) ,BL(20) ,PSUM(7), APSUM(7), WH(180)

INTEGER ISTATE(20) ,IW(2) ,NL0(7) ,IX(7) ,IWH(2)
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LOGICAL LOCSCH

EXTERNAL E04JBQ,FUNCT,MONIT

CALL ATTRB

IFAIL= 1

IFAILH= 1

LIW= 2

LW= 180

LIWH=2

LWH= 180 r >

C LLH= N*(N— l)/2

C LH=MAX(LLH,1)

LH= 190 

IFLAG= 0

C INITIALISE AT ZERO OR SUPPLY INITIAL GUESSES FOR

C THE UNKNOWN PARAMETERS

DO 99 1=1,N 

X(I)=0.

99 CONTINUE

C THIS SUBROUTINE PROVIDES SUITABLE DIFFERENCING

C INTERVALS TO E04JBF

CALL E04HBF(N,FUNCT,X,J,DELTA,HESL,LH,HESD,F,G,

+  IWH,LIWH,WH,LWH,IFAILH)

IF(IFAILH.NE.O)THEN

WRITE(6,*) 'IFAIL FOR E04HBF= ',IFAILH

STOP

ENDIF
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LOCSCH= .TRUE.

IPRINT= 1 

INTYPE=1

MAXCAL= 40*N*(N+ 5)

STEPMX= 100000.

FEST= 0.

IBOUND= 1

C THIS SUBROUTINE DOES THE OPTIMISATION AND CALLS

C FUNCT AND MONIT FOR THAT PURPOSE

CALL E04JBF(N,FUNCT,MONIT ,IPRINT ,LOCSCH,INTYPE,

+ E04JBQ,MAXCAL,ETA,XTOL,STEPMX,FEST,DELTA,IBOUND,

+ BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW,IFAIL) 

IF(IFAIL.NE.0)THEN 

WRITE(6,998)IFAIL 

STOP 

ENDIF

C AFTER SUCCESFUL EXIT PROCEED TO THE CALCULATION

C OF THE PREDICTED PROBABILITIES

IPRD= 0 

PCAR1= 0.

PCAR2= 0.

PCAR3= 0.

PPAS1= 0.

PPAS2= 0.
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PPAS3= 0.

PBUS1=0.

PBUS2= 0.

PBUS3= 0.

PTRN1= 0.

PTRN2= 0.

PTRN3= 0.

PWLK1= 0.

PWLK2= 0.

PWLK3= 0.

DO 92 1= 1 ,MXNLT 

NL0(I)= 0 

PSUM(I)= 0.

APSUM(I)= 0.

92 CONTINUE 

WRITE(6,990)

REWIND 1 

REWIND 4

DO 98 IOBS= 1 ,NOBS

C READ DATA FROM SUBROUTINE ATTRB

READ(1 ,ERR= 43,END= 98)ICH,NSEL,NALT,(IX(I),I= 1 ,MXNLT) 

READ(1 ,ERR= 63)((A(J,I),J= 1 ,N),I= 1 ,NALT)

PD= 0.

DO 96 1= 1 ,NALT 

U(I)= 0.

DO 95 J= 1 ,N
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U(I)= U(I)+ X(J)*A(J,I)

95 CONTINUE 

PA(I)= DEXP(— U(I))

PD= PD+ PA(I)

96 CONTINUE

PMAX= - 1 .

LM= 0

DO 94 1= 1 ,MXNLT 

IF(IX(I).EQ.O)THEN 

P(I)=100.

GO TO 94 

ENDIF 

LM= LM+ 1 

P(I)= PA(LM)/PD 

PSUM(I)= PSUM(I)+ P(I) 

IF(P(I).GT.PMAX)THEN 

PMAX= P(I)

INDMX= I 

ENDIF 

94 CONTINUE

ALTR= '

M O D E='

IF(ICH.EQ.1)ALTR='CAR-1 '

IF(ICH.EQ.2)ALTR='PASS-2 '

IF(ICH.EQ.3)ALTR='BUS-3 '

IF(ICH.EQ.4)ALTR= 'TRAIN-4'
<

IF(ICH.EQ.5)ALTR= 'W ALK-5 '

IF(IOBS.EQ.l)WRITE(6,995)
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IF(INDMX.EQ.ICH)THEN 

IPRD= IPRD+ 1

WRITE(6,994)IOBS,(P(I),I= 1 ,MXNLT), ALTR, ALTR,INDMX.ICH 

ELSE IF (INDMX.EQ.l.AND.INDMX.NE.ICH) THEN 

MODE= ’CAR- 1 ’

WRITE(6,994)IOBS ,(P(I) ,1= 1 ,MXNLT), ALTR,MODE,INDMX.ICH 

ELSE IF (INDMX.EQ.2.AND.INDMX.NE.ICH) THEN 

MODE= ’PASS- 2 ’

WRITE(6,994)IOBS,(P(I),I= 1 ,MXNLT), ALTR,MODE,INDMX,ICH 

ELSE IF (INDMX.EQ.3.AND.INDMX.NE.ICH) THEN 

MODE= 'BUS- 3 ’

WRITE(6,994)IOBS,(P(I),I= 1 .MXNLT), ALTR,MODE,INDMX,ICH 

ELSE IF (INDMX.EQ.4.AND.INDMX.NE.ICH) THEN 

MODE= ’TRAIN- 4 ’

WRITE(6,994)IOBS ,(P(I) ,1= 1,MXNLT), ALTR,MODE,INDMX.ICH 

ELSE IF (INDMX.EQ.5.AND.INDMX.NE.ICH) THEN 

MODE= 'WALK— 5 '

WRITE(6,994)IOBS,(P(I),I= 1,MXNLT), ALTR,MODE,INDMX.ICH 

END IF

NL0(NALT)= NLO(NALT)-)-1 

IF (ICH.EQ.l) THEN 

PCAR1= PCARl-t-1 

END IF

IF (ICHl.EQ.l.AND.INDMX.EQ.l) THEN 

PCAR2= PCAR2+ 1 

END IF

IF (INDMX.EQ.l) THEN 

PCAR3= PCAR3+ 1
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END IF

IF (ICH.EQ.2) THEN 

PPAS1= PPAS1+1 

END IF

IF (ICH.EQ.2.AND.INDMX.EQ.2) THEN 

PPAS2= PPAS2+ 1 

END IF

IF (INDMX.EQ.2) THEN 

PPAS3= PPAS3+ 1 

END IF

IF (ICH.EQ.3) THEN 

PBUS1= PBUS1+1 

END IF

IF (ICH.EQ.3.AND.INDMX.EQ.3) THEN 

PBUS2= PBUS2+ 1 

END IF

IF (INDMX.EQ.3) THEN 

PBUS3= PBUS3+ 1 

END IF

IF (ICH.EQ.4) THEN 

PTRN1= PTRN1+ 1 

END IF

IF (ICH.EQ.4.AND.INDMX.EQ.4) THEN 

PTRN2= PTRN2+ 1 

END IF

IF (INDMX.EQ.4) THEN 

PTRN3= PTRN3+ 1 

END IF
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IF (ICH.EQ.5) THEN 

P WLK1 =  PWLK1+ 1 

END IF

IF (ICH.EQ.5.AND.INDMX.EQ.5) THEN 

PWLK2= PWLK2+ 1 

END IF

IF (INDMX.EQ.5) THEN 

PWLK3= PWLK3+ 1 

END IF 

98 CONTINUE

CCAR1= 100*((PCAR1)/FLOAT(NOBS)) 

CCAR2= 100*((PCAR2)/FLOAT(IPRD)) 

CCAR3= 100*((PCAR3)/FLO AT(NOBS)) 

CPAS1= 100*((PPAS1)/FLOAT(NOBS)) 

CPAS2= 100*((PPAS2)/FLOAT(IPRD)) 

CPAS3= 100*((PPAS3)/FLOAT(NOBS)) 

CBUS1= 100*((PBUS1)/FLOAT(NOBS)) 

CBUS2= 100*((PBUS2)/FLOAT(IPRD)) 

CBUS3= 100*((PBUS3)/FLOAT(NOBS)) 

CTRN1= 100*((PTRN1)/FLOAT(NOBS)) 

CTRN2= 100*((PTRN2)/FLOAT(IPRD)) 

CTRN3= 100*((PTRN3)/FLOAT(NOBS)) 

C WLK1 = 100*((PWLK1)/FLOAT(NOBS)) 

CWLK2= 100*((PWLK2)/FLOAT(IPRD)) 

CWLK3= 100*((PWLK3)/FLO AT(NOBS)) 

DO 93 1=1,MXNLT

APSUM(I)= 100*(PSUM(I)/FLO AT(NOBS))

93 CONTINUE
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FLLO= 0.

DO 91 1=2,MXNLT 

FIINV= 1 ./FLOAT(I)

FLL0= FLL0+ NLO(I)*DLOG(FIINV)

91 CONTINUE

FLLR= -  2*(FLL0+ F)

W RITE(6,993)FLL0F  

WRITE(6,992)FLLR,N 

WRITE(6,989)(- X(J),J= 1 ,N)

WRITE(6,777)( APSUM(I) ,1= 1, MXNLT)

WRITE(6,555)

WRITE(6,666)CCAR1 ,CPAS1 ,CBUS1 ,CTRN1 ,CWLK1 

WRITE(6,333)

WRITE(6,666)CCAR2,CPAS2,CBUS2,CTRN2,CWLK2

WRITE(6,1U)

WRITE(6,666)CCAR3 ,CP AS3 ,CBUS3 ,CTRN3 ,CWLK3 

CPRD= (FLOAT(IPRD)/FLOAT(NOBS))*100.

WRITE(6,991)CPRD 

43 WRITE(6,*)’ERR IN READ DATA IN NLOGIT:ICH,NSEL,ETC...'

63 WRITE(6,*)'ERR IN DATA RE AD. NLOGIT :A'

STOP

990 FORMAT(///lX,'CONVERGENCE HAS BEEN COMPLETED')

998 FORMAT(///lX,'CONVERGENCE MAY NOT BE SUCEEDED.

+  IFAIL= \I3 ,' SEE E04JBF MANUAL')

666 FORMAT(/15X,5F10.5)

777 FORMAT(///15X, 'EXPECTED SHARE (PERCENT) FOR EACH 

+  MODE',//15X,5F10.5)

555 FORMAT(///15X,'OBSERVED SHARES (PERCENT) FOR EACH MODE')
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333 FORMAT(///15X,'PER. OF OBSERVATIONS CORRECTLY PREDICTED 

-+• FOR EACH MODE')

111 FORMAT(///15X,'PREDICTED SHARE (PERCENT) FOR EACH MODE') 

995 FORMAT(lHI///5X,'OBSERVATION',1 OX,'CHOICE PROBABILITIES’

+  ,9X,'CHOSEN MODE',4X,'ALTERNATIVE MODE',4X,TNDMX\5X,TCH') 

994 FORMAT(7X,I5,5X,5(2X,F5.3),5X,A,10X,A,10X,I2,7X,I2)

993 FORMAT(lHI/////• LOG LIKELIHOOD AT ZERO \F9.3,5X,

+  'FINAL LOG LIKELIHOOD \F9.3)

992 FORMAT(////' L-LIKELIHOOD RATIO ',F9.3,5X,

+  'DEGREES OF FREEDOM ',13)

991 FORMAT(////' PERCENTAGE OF OBSERVATIONS CORRECTLY 

+  PREDICTED\F9.3)

989 FORMAT(/////' FINAL VALUES OF COEFFICIENTS'/(13(2X,Dll .5)))

END

SUBROUTINE FUNCT(IFLAG ,N,XC,FC,GC,1 W,LIW,W,LW)

REAL*8 XC,FC,GC,W,U,PA,PD,FFC,DA 

INTEGER IFLAG,LIW,LW,IW,N 

C DIMENSION XC(20) ,GC(20) ,IW(2),W(180) ,DA(120)

COMMON/NUMB/NQ,NOBS,MXNLT 

FFC= 0.

REWIND 4 

DO 99,IOBS= 1 ,NOBS 

PD= 0.

READ(4,ERR= 33)NX,(DA(I),I= 1 ,NX)

DO 97,1= 1 ,NX/N 

U= 0.

DO 96 J=1,N
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U= U+ XC(J)*DA(J+ N*(I— 1))

96 CONTINUE

IF (U.LT.—170.)GO TO 97 

IF (U.GT.170.)GO TO 99 

PD= PD+ DEXP(U)

97 CONTINUE 

PD= PD +1.

FFC= FFC+ DLOG(l ./PD)

99 CONTINUE 

FC= -  FFC 

RETURN

33 WRITE(6,*)'ERR IN DATA RE AD. FUNCT :NALT,DA...'

STOP

END

SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND, 

+  POSDEF,NITER,NF,IW,LIW,W,LW)

COMMON/NUMB/NQ ,NOBS,MXNLT

COMMON/DERIV/HESL,HESD

COMMON/HBFEVL/NFH

REAL*8 COND ,FC,GPJNRM ,GC(20),W(180) ,XC(20) ,HESD(20), 

+  HESL(190), A(21,20),B(20,20),Z(20),X02AAF,STD(20),

+  TRAT(20),RL(13,13)

INTEGER 1ST ATE( 20), I W( 2)

LOGICAL POSDEF,FREE,POSIT 

NFUN= NF+ NFH 

WRITE(6 ,999)NITER ,NFUN 

FREE= .TRUE.
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DO 99,J= 1 ,N

IF(ISTATE(J) .LE.0)THEN 

FREE= .FALSE. 

WRITE(6,998)J,ISTATE(J) 

ENDIF 

99 CONTINUE

IF(.NOT.FREE)STOP

WRITE(6,997)(— XC(J),J= 1 ,N)

IA= 21

IB= 20

IFAIL= 1

DO 13 1=1,N

DO 13 J= 1 ,N

RL(I,J)= 0.

13 CONTINUE 

DO 23 J= 1 ,N  

RL(J,J)=1.
) i

23 CONTINUE 

K= 0

DO 34 I=2,N  

DO 34 J= 1 ,1-1  

K =K +1  

RL(I,J)= HESL(K)

34 CONTINUE 

DO 44 1=1,N 

DO 44 J= 1 ,N 

SUM= 0 

DO 55 K= 1 ,N
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SUM = SUM+ RL(I,K)*RL(J,K)*HESD(K)

55 CONTINUE
%

A(I,J)= SUM 

44 CONTINUE

IF( ,NOT.POSDEF)THEN 

WRITE(6,996)

STOP

ENDIF

CALL F01 ACF(N,X02AAF(IT), A,IA,B,IB,Z,L,IFAIL) 

IF(IFAIL.NE.O)THEN 

WRITE(6,995)IFAIL 

STOP 

ENDIF

DO 93,1= 1,N

STD(I)= DSQRT(A(I+ 1,1))

TRAT(I)= — (XC(I)/STD(I))

93 CONTINUE

WRITE(6,994)(STD(I),I= 1 ,N)

WRITE(6,993)(TRAT(I),I= 1 ,N)

WRITE(6,992)(GC(I),I= 1 ,N)

WRITE(6,990)

DO 94,1= 1 ,N

WRITE(6,991)(A(I+1 ,J),J= 1,1)

94 CONTINUE

WRITE(6,989)~ FC 

WRITE(6,988)GPJNRM,COND 

999 FORMAT(lHI//IX,'ITERATION NR \I3,10X ,’NR OF L-LIKELIHOOD 

+ FUNCTION EVALS SO FAR *,18)
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998 FORMAT(//lX,'COEFFICIENT NR',13,IX ,’HAS REACHED -+ 10**6 ’,

+ /IX ,’1STATE VALUE IS ',13,' PROCESS TERMINATED')

997 FORMAT(/lX,'COEFFICIENTS IN THIS ITERATION ',/,

+  (13(3X,D11.5)))

996 FORMAT(/lX,'MATRIX FOR INVERSION NOT POSITIVE DEFINITE') 

995 FORMAT(/lX,'MATRIX OF SECOND DERIV CANNOT BE 

+  INVERTED.IFAIL= ’,12)

994 FORMAT(/lX,'STANDARD DEVIATION ESTIMATES',/

+  ,(13(3X,D11.5)))

993 FORMAT(/lX,'T—RATIOS(ON ZERO)= COEFF/STD DEV',/,

+  (13(3X,D11.5)))

992 FORMAT(/lX,'FIRST DERIVATIVES ESTIM ATES'/(l3(3X,Dll.5)))

990 FORMAT(/lX,'ESTIMATED VAR-CO VAR MATRIX')

991 FORMAT(13(3X,Dll .5))

989 FORMAT(/lX,'L-LIKELIHOOD FUNCTION VALUE',F10.4)

988 FORMAT(///lX,'GRAD.PROJ.NORM ',F10.3,6X,'COND NR OF 

+ PROJ HESSIAN MATRIX ’,F10.3)

RETURN

END

SUBROUTINE ATTRB

REAL*8 AVC,AVB,AVT,AVW,A(20,7),DA(120),ETA,XTOL,

+ PER,PERW,PERDL,HHPOS,SEX,OCC,HINC,HINCP,CBD,

+  C AOD, C APDL, C AP W, WKB, WKT, WTB, WTT, IVTB, IVTT,

+  IVTCP, WALK,O VTB ,0  VTT ,TTB ,TTT ,DIST ,CSTB ,CSTT,

+  CSCP1 ,CSCP2 ,CSCP3 ,CSC1 ,CSC2,CSC3,CPIPB,CPIPT,

+  CPICP1 ,CPICP2 ,CPICP3 ,CPIC1 ,CPIC2,CPIC3 

INTEGER IX(7)
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COMMON/ACCUR/ETA,XTOL 

COMMON/NUMB/N,NOBS,MXNLT 

REWIND 4 

REWIND 1 

NXS=0

READ(5,999)N,NOBS,MXNLT,ETA,XTOL 

IF(N.EQ.1)ETA= 0.

DO 99 IOBS= 1 ,NOBS 

READ(5,998)ICH

READ(5,997)PER,PERW,PERDL,HHPOS,SEX,OCC,HINC,HINCP,CBD, 

+ C AOD,C APDL,CAPW 

RE AD(5,997) WKB, WKT, WTB, WTT ,IVTB,IVTT,IVTCP, WALK,O VTB,

+  OVTT,TTB,TTT,DIST 

READ(5,997)CSTB,CSTT,CSCP1 ,CSCP2,CSCP3,CSC1 ,CSC2,CSC3 

READ(5,997)CPIPB ,CPIPT ,CPICP1 ,CPICP2,CPICP3,CPIC1 ,CPIC2,CPIC3 

READ(5,997) AVC, AVB, AVT.AVW

11=0

KK= 0

KK= KK+ 1

IF(AVC.EQ.1.)THEN

11= II+ 1

IX(KK)= 1

IF(ICH.EQ.KK)NSEL= II

C*****---------------- ■---------------------------- C A R ----------------------------------------------

A(l,n)=H H POS  

A(2,II)= CAPDL 

A(3,II)= CAOD
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A(4,II)= 0 

A(5,II)= IVTCP 

A(6,II)= CSC1/DIST 

A(7,II)= 1 

A(8,II)=0 

A(9,II)= 0 

A(10,II)= 0

C A (ll,n )=

C A(12,II)=

C A(13,II)=

C A(14,n)=

ELSE 

IX(KK)= 0 

ENDIF 

KK=KK+1 

IX(KK)= 1

n= n+1

IF(ICH.EQ.KK)NSEL= II

£******--------------   p ^  g g

A(1,II)=0 

A(2,II)= 0 

A(3,II)= CAOD 

A(4,II)= 0 

A(5,II)= IVTCP 

A(6,II)= CSCP1/DIST 

A(7,II)= 0
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A(8,II)= 1

A(9,n)= 0

A(10,II)= 0

c

C M  I2,n)=

c A(i3,n)=

c A (i4,n )=

KK=KK+1

IF(AVB.EQ.1.)THEN

ii=  n + 1

IX(KK)= 1

IF(ICH.EQ.KK)NSEL= n

--------------------------------------g u  s

A(1 ,II)= 0 

A(2,II)= 0 

A(3,II)=0 

A(4,n)= CBD 

A(5,II)= TTB 

A(6,II)= CSTB/DIST 

A(7,n)=0 

A(8,II)= 0 

A(9,II)= 1 

A(10,II)= 0

C A (ii,n )=

c A(12,II)=

C A(13,II)=
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C A(14,II)=

ELSE

IX(KK)= 0

ENDIF

KK= KK+ 1

IF(AVT.EQ.l .)THEN

11= 11+1

IX(KK)= 1

IF(ICH.EQ.KK)NSEL= II 

C******------------------------------------------ T R A I N

A(i,n)=o 

A(2,n)=0 

A(3,n)= o 

A(4,II)= CBD 

A(5,II)= TTT 

A(6,II)= CSTT/DIST 

A(7,II)=0 

A(8,n)=0 

A(9,II)= 0 

A(10,II)=1

c A(11,II)=

C A(12,II)=

C A(13,II)=

C A(14,II)=
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ELSE

IX(KK)=0

ENDIF

KK=KK+1

IF(AVW.EQ.1.)THEN

11=  n + 1

IX(KK)= 1

IF(ICH.EQ.KK)NSEL= II

C******------------------------------------------ W A L K

A(1 ,II)= 0 

A(2,n)= 0 

A(3,n)= 0 

A(4,II)= 0 

A(5,II)= WALK 

A(6,II)= 0 

A(7,II)—0 

A(8,H)=0 

A(9,II)= 0 

A(10,II)=0 

C A(11,II)=

C A(12,II)=

C A(13,II)=

C A(14,II)=

ELSE 

IX(KK)= 0
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ENDIF 

NALT= II

WRITE(1)ICH,NSEL,NALT,(IX(I),I= 1,MXNLT) 

WRITE(1)((A(J,I),J= 1 ,N),I= 1 ,NALT)

KKK= 0

DO 397,1= 1,NALT 

IF(I.EQ.NSEL)GO TO 397 

KKK= KKK+ 1 

DO 97 J= 1 ,N

DA(J+ N*(KKK— 1))= A(J,NSEL)— A(J,I)

97 CONTINUE 

397 CONTINUE

NX= N*(NALT— 1)

NXS= NXS+ NX 

WRITE(4)NX,(DA(I),I= 1 ,NX)

99 CONTINUE

W R I T E ( 6 , * ) O F  NX= ',NXS 

RETURN 

999 FORMAT(3I4,2F10.6)

998 FORMAT(Il)

997 FORMAT(13F8.4)

222 FORMAT(9I4)

223 FORMAT(7Fll .5)

224 FORMAT(I3,(7Fl 1.5))

END
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APPENDIX 3

AGGREGATE PREDICTION ERROR PROGRAM



C THIS SIMPLE PROGRAM WAS WRITTEN BY A.K. MOHAMAD AT THE

C DEPARTMENT OF CIVIL ENGINEERING IN THE UNIVERSITY OF

C GLASGOW IN 1988.

C IT IS DESIGNED TO COMPUTE AGGREGATE PREDICTION ERRORS

C IN TERMS OF THE AVERAGE, ROOT MEAN SQUARE AND STANDARD

C DEVIATION ERRORS.

C THE ERRORS CALCULATED IN THIS PROGRAM ARE WEIGHTED ERRORS

C AND THE WEIGHTING IS GIVEN BY THE PROPORTION OF INDIVIDUALS

C CHOOSING EACH MODE.

PROGRAM PDTERR

REAL*8 GS,TGS,SSAVE,SSAVGE,SSRMSE,SSRMSGE,SSSDE,SSSDGE,

+  GAVE ,G AVGE ,GRMSE,GRMSGE ,SS AVET ,SS AVGET ,SSRMST ,SSGRMST,

+  SS AVST ,SS AVGST ,T AVE ,T AVGE ,TRMSE,TRMSGE,TSDE ,TSDGE ,CS(100),

+  AVP(5,100) ,ENP(5,100), ACP(5,100) ,SENP(5) ,S ACP(5) ,TENP(5),

+  TACP(5) ,E(5) ,GE(5) ,DFE(5) ,DFGE(5) ,SDFE(5) ,SDFGE(5) ,TDE(5),

+  TDGE(5) ,SE(5) ,SGE(5), WSE(5), WSGE(5) ,S WSE(5) ,S WSGE(5) ,TWSE(5),

+  TWSGE(5), AVE(5), AVGE(5) ,S AVE(5) ,S AVGE(5) ,RMSE(5) ,RMSGE(5),

+  SRMSE(5) ,SRMSGE(5) ,D(5) ,GD(5), WD(5), WGD(5) ,S WD(5) ,S WGD(5),

+  SDE(5) ,SDGE(5) ,SSDE(5) ,SSDGE(5), AVET(5) ,AVGET(5) ,S AVET(5),

+  SAVGET(5) ,RMST(5) ,GRMST(5) ,TD(5) ,SRMST(5) ,SGRMST(5) ,TGD(5),

+  WTD(5), WTGD(5) ,S WTD(5) ,S WTGD(5), AVST(5), AVGST(5) ,S AVST(5),

+  SAVGST(5) ,EI(5,100) ,GEI(5,100)

INTEGER NM,NGRP,NGOBS(100)

READ(5,*)TGS,NM,NGRP,(NGOBS(I),I= 1 ,NGRP)

C INATIALISE TO ZERO
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SSAVET= 0. 

SSAVGET=0. 

SSRMST= 0. 

SSGRMST= 0. 

SSAVST= 0. 

SSAVGST= 0.

DO 101 1=1, NM 

TDE(I)= 0. 

TDGE(I)= 0. 

TWSE(I)= 0. 

TWSGE(I)= 0. 

TENP(I)= 0. 

TACP(I)= 0. 

SWTD(I)= 0. 

SWTGD(I)= 0. 

CONTINUE

DO 100 IGRP= 1 ,NGRP 

SSAVE= 0. 

SSAVGE= 0. 

SSRMSE= 0. 

SSRMSGE= 0. 

SSSDE= 0. 

SSSDGE= 0.

DO 99 1=1,NM 

SDFE(I)= 0. 

SDFGE(I)= 0. 

SWSE(I)= 0. 

SWSGE(I)= 0. 

SWD(I)= 0.



SWGD(I)= 0.

SACP(I)= 0.

SENP(I)= 0.

CONTINUE 

GS= 0.

ISTRT= 1

IFNSH= NGOBS(IGRP)

READ THE AV. PROB. VALUES FOR EACH MODE FOR EACH GROUP 

DO 98 IOBS=ISTRT,IFNSH 

READ(5,998)CS(IOBS)

READ(5,997)(AVP(I,IOBS) ,1= 1 ,NM)

READ(5,997)(ENP(I,IOBS),I= 1 ,NM)

READ(5,997)(ACP(I,IOBS),I= 1 ,NM)

GS= GS+ CS(IOBS)

SET TO ZERO IF THE ENUMERATION PROB. EQUAL ZERO 

OTHERWISE CALCULATE THE VALUES OF ERRORS 

DO 97 1=1,NM

IF(ACP(I,IOBS).EQ.O.)THEN 

E(I)= 0.

ELSE

E(I)= (ENP(I,IOBS)— ACP(I,IOBS))/ACP(I,IOBS)

ENDIF

IF(ENP(I,IOBS) .EQ .0 .)THEN 

GE(I)= 0.

ELSE

GE(I)= (AVP(I.IOBS)- ENP(I,IOBS))/ENP(I,IOBS)

ENDIF

DFE(I)= E(I)*ACP(I,IOBS)

DFGE(I)= GE(I)*ENP(I,IOBS)



C SDFE(I)= SDFE(I)+ DFE(I)*CS(IOBS)

SDFGE(I)= SDFGE(I)+ DFGE(I)*CS(IOBS)

C TDE(I)= TDE(I)+ DFE(I)*CS(IOBS)

TDGE(I)= TDGE(I)+ DFGE(I)*CS(IOBS)

SENP(I)= SENP(I)+ ENP(I,IOBS)

C SACP(I)= SACP(I)+ ACP(I,IOBS)

TENP(I)= TENP(I)+ ENP(I,IOBS)

C TACP(I)= TACP(I)+ ACP(I,IOBS)

C SE(I)= E(I)**2

SGE(I)= GE(I)**2 

C WSE(I)= SE(I)*ACP(I,IOBS)*CS(IOBS)

WSGE(I)= SGE(I)*ENP(I,IOBS)*CS(IOBS)

I C SWSE(I)= SWSE(I)+WSE(I)

SWSGE(I)= SWSGE(I)+ WSGE(I)

C TWSE(I)= TWSE(I)+ WSE(I)

TWSGE(I)= TWSGE(I)+ WSGE(I)

C EI(I,IOBS)= E(I)

GEI(I,IOBS)= GE(I)

97 CONTINUE

C WRITE THE CALCULATED VALUES OF ERRORS

C WRITE(6,996)

C WRITE(6,995)10BS ,(E(I) ,1= 1 ,NM)

C WRITE(6,995)IOBS,(GE(I),I= 1 ,NM)

C WRITE(l)IGRP,CS(IOBS) ,(E(I) ,1= 1 ,NM)

WRITE(4)IGRP,CS(IOBS),(GE(I),I= 1 ,NM)

98 CONTINUE

C WRITE(6,777)

C FIND THE AV.VALUES OF :ERRORS ,RMSE FOR EACH MODE FOR EACH

C GROUP AND THEN WRITE THEM
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DO 96 1=1,NM

C IF(SACP(I).EQ.O.)THEN

C AVE(I)= 0.

C RMSE(I)= 0.

C ELSE

C AVE(I)= SDFE(I)/(SACP(I)*GS)

C RMSE(I)= SQRT(SWSE(I)/(SACP(I)*GS))

C END IF

IF(SENP(I) .EQ.0.)THEN 

AVGE(I)= 0.

RMSGE(I)= 0.

ELSE

AVGE(I)= SDFGE(I)/(SENP(I)*GS)

RMSGE(I)= SQRT(SWSGE(I)/(SENP(I)*GS))

ENDIF

C SAVE(I)= AVE(I)**2

SAVGE(I)= AVGE(I)**2 

C SSAVE= SSAVE+ SAVE(I)

SSAVGE= SSAVGE+ SAVGE(I)

C SRMSE(I)= RMSE(I)**2

SRMSGE(I)= RMSGE(I)**2 

C SSRMSE= SSRMSE+ SRMSE(I)

SSRMSGE= SSRMSGE+ SRMSGE(I)

96 CONTINUE

C FIND THE SDE FOR EACH MODE FOR EACH GROUP THEN WRITE THEM 

DO 95 IOBS=ISTRT,IFNSH 

DO 95 1=1,NM 

C D(I)= (EI(I,IOBS)— AVE(I))**2

GD(I)= (GEI(I,IOBS)— AVGE(I))**2
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C WD(I)= D(I)*ACP(I,IOBS)*CS(IOBS)

WGD(I)= GD(I)*ENP(I,IOBS)*CS(IOBS) 

C SWD(I)= SWD(I)+ WD(I)

SWGD(I)= SWGD(I)+ WGD(I)

95 CONTINUE

DO 94 1= 1 ,NM 

C IF(SACP(I).EQ.O.)THEN

C SDE(I)= 0.

C ELSE

C SDE(I)= SQRT(SWD(I)/(SACP(I)*GS))

C END IF

IF(SENP(I) .EQ .0.)THEN 

SDGE(I)= 0.

ELSE

SDGE(I)= SQRT(SWGD(I)/(SENP(I)*GS)) 

END IF

C SSDE(I)= SDE(I)**2

SSDGE(I)= SDGE(I)**2 

C SSSDE= SSSDE+ SSDE(I)

SSSDGE= SSSDGE+ SSDGE(I)

94 CONTINUE 

C GAVE= SQRT(SSAVE/NM)

GAVGE= SQRT(SSAVGE/NM)

C GRMSE= SQRT(SSRMSE/NM)

GRMSGE= SQRT(SSRMSGE/NM)

C GSDE= SQRT(SSSDE/NM)

GSDGE= SQRT(SSSDGE/NM)

C WRITE(6,666)

CC WRITE(6,994) (AVE( I), 1= 1 ,NM),GAVE
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C WRITE(6,994)( AVGE(I) ,1= 1 ,NM) ,GAVGE

C WRITE(6,555)

C WRITE(6,994)(RMSE(I) ,1= 1 ,NM) ,GRMSE

C WRITE(6,994)(RMSGE(I) ,1= 1 ,NM) ,GRMSGE

C WRITE(6,444)

C WRITE(6,994)(SDE(I) ,1= 1 ,NM) ,GSDE

C WRITE(6,994)(SDGE(I),I= 1 ,NM),GSDGE

100 CONTINUE

DO 93 1=1,NM 

C IF(TACP(I).EQ.O.)THEN

C AVET(I)= 0.

C RMST(I)= 0.

C ELSE

C AVET(I)= TDE(I)/(TACP(I)*TGS)

C RMST(I)= SQRT(TWSE(I)/(TACP(I)*TGS))

C ENDIF

IF(TENP(I).EQ.O.)THEN 

AVGET(I)= 0.

GRMST(I)= 0.

ELSE

AVGET(I)= TDGE(I)/(TENP(I)*TGS) 

GRMST(I)= SQRT(TWSGE(I)/(TENP(I)*TGS)) 

ENDIF

C SAVET(I)= AVET(I)**2

SAVGET(I)= AVGET(I)**2 

C SSAVET= SSAVET+ SAVET(I)

SSAVGET= SSAVGET+ SAVGET(I) 

C SRMST(I)= RMST(I)**2

SGRMST(I)= GRMST(I)**2
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SSRMST= SSRMST+ SRMST(I) 

SSGRMST= SSGRMST+ SGRMST(I) 

CONTINUE 

REWIND 1 

REWIND 4

DO 92 IGRP= 1 ,NGRP 

ISTRT= 1

IFNSH= NGOBS(IGRP)

DO 92 IOBS= ISTRT.IFNSH

READ(l)IGRP,CS(IOBS),(E(I),I= 1 ,NM) 

READ(4)IGRP,CS(IOBS) ,(GE(I) ,1= 1 ,NM)

DO 92 1=1,NM

TD(I)= (E(I)— AVET(I))**2 

TGD(I)= (GE(I)— AVGET(I))**2 

WTD(I)= TD(I)*ACP(I,IOBS)*CS(IOBS) 

WTGD(I)= TGD(I)*ENP(I,IOBS)*CS(IOBS) 

SWTD(I)= SWTD(I)+ WTD(I)

SWTGD(I)= SWTGD(I)+ WTGD(I) 

CONTINUE 

DO 91 1=1,NM

IF(TACP(I).EQ.O.)THEN 

AVST(I)= 0.

ELSE

AVST(I)= SQRT(SWTD(I)/(TACP(I)*TGS)) 

ENDIF

IF(TENP(I).EQ.O.)THEN 

AVGST(I)= 0.

ELSE

AVGST(I)= SQRT(SWTGD(I)/(TENP(I)*TGS))



ENDIF

C SAVST(I)= AVST(I)**2

SAVGST(I)= AVGST(I)**2 

C SSAVST= SSAVST+ SAVST(I)

SSAVGST= SSAVGST+ SAVGST(I)

91 CONTINUE 

C TAVE= SQRT(SSAVET/NM)

TAVGE= SQRT(SSAVGET/NM) > ; -

C TRMSE= SQRT(SSRMST/NM)

TRMSGE= SQRT(SSGRMST/NM)

C TSDE= SQRT(SSAVST/NM)

TSDGE= SQRT(SSAVGST/NM)

WRITE(6,333)

C WRITE(6,994) (AVET (I) ,1= 1 ,NM) ,TAVE

WRITE(6,994)( AVGET(I) ,1= 1 ,NM) ,T AVGE 

WRITE(6,222)

C WRITE(6,994)(RMST(I),I= 1 ,NM) ,TRMSE

WRITE(6,994)(GRMST(I),I= 1 ,NM) ,TRMSGE 

WRITE(6,111)

C WRITE(6,994)( AVST(I) ,1= 1 ,NM) ,TSDE

WRITE(6,994)(AVGST(I),I= 1 ,NM),TSDGE 

STOP

999 FORMAT(F4.0,314)

998 FORMAT(6X,F4.0)

997 FORMAT(14X,5Fll .5)

996 FORMAT(////3X,' ’)

995 FORMAT(4X,I10,5F11.5)

994 FORMAT(l 4X,6F11.5)

777 FORMAT(/l OX, 'THE ABOVE VALUES ARE :FOR EACH OBS. THERE ARE

227



+ TWO VALUES. THESE ARE: 1 - ERRORS MEASURE. 2 - AGGREGATE 

+ ERROR.’,///)

666 FORMAT(///lOX, 'THE BELOW VALUES ARE : 1 -A V . ERROR. 2 -A G G . AV. 

+  ERROR',//)

555 FORMAT(///lOX,'THE BELOW VALUES ARE: 1-RM SE. 2 -A G G . RMSE',//) 

444 FORMAT(///lOX,'THE BELOW VALUES ARE: 1 -S T D  ERROR. 2— AGG.STD 

+ ERROR',//)

333 FORMAT(///lOX,'THE BELOW VALUES ARE: 1 - TOTAL AV. ERRORS.

+  2 - TOTAL AGG. ERROR’,//)

222 FORMAT(///lOX,'THESE ERRORS ARE: 1 - TOTAL RMSE. 2 - TOTAL AGG.

+  RMSE.’,//)

I l l  FORMAT(///lOX,'THESE ERRORS ARE: 1 - TOTAL SDE. 2 - TOTAL AGG.

+  SDE.',//)

END
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