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SUMMARY

Selected data, obtained from a conventional household interview survey, conducted
in 1978 and 1979 as a part of the Glasgow Rail Impact Study, were used to
study mode choice for journeys to work in the city of Glasgow and to identify
the most significant factors influencing that choice. @~ A number of disaggregate
multinomial logit mode choice models with five modes, viz. car driver, car
passenger, bus, train and walk, were investigated Iinitially. On the basis of
validation tests and statistical evaluation, two of the models, one simple and one
complex, were identified as being the best—specified and were then used for

aggregate prediction and policy change analyses.

In general, the study has demonstrated the feasibility of using the multinomial
logit approach to the development of multi— modal disaggregate travel demand
models and that such models can be -calibrated using data from a traditional
household interview survey. More particularly, the major influencing factors on
the mode choice decision were identified: travel time was found to be more
significant than travel cost, which was also found to have the wrong (i.e. positive)
sign; the central business district was found to affect significantly the choice of
public transport modes; distance was found to have a significant effect on the
choice of the walk mode; and car availability and the position in a household

were found to be significant influences on the use of a car.

The aggregate prediction analysis revealed the feasibility and desirability of using

disaggregate models for such analyses and confirmed the superiority of the simple

model over the complex one. It was concluded from the policy change analysis

viii



that changes in travel times would affect mode choice significantly but that

changes in travel costs would not.

ix
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CHAPTER ONE

INTRODUCTION

1.1 GENERAL

Since the mid— 1960s there has been increasing interest in mathematical models of
urban transportation systems. Such models can assist transportation planners and
decision— makers in understanding existing travel patterns and predicting future
transportation needs. Within the sphere of travel demand modelling the specific
problem of modal split or mode choice is of particular interest; mode choice
modelling is of the utmost importance when deciding among alternative
transportation proposals and, as yet, universally accepted mode choice models have
not been developed. Throughout the transportation modelling process the need
for understanding of travel behaviour at the level of the individual traveller is

paramount,

1.2 STUDY OBJECTIVES

The city of Glasgow is the focus of industrial, commercial and retail activity for
the associated conurbation with its population of around 1.7 million; this study is
an examination of mode choice for journeys to work in Glasgow. The principal
objective of the study is the identification of the most significant factors
influencing the choice of transportation mode through the development of mode

choice models. To achieve this objective the study employs recently developed



disaggregate behavioural probabilistic choice models of the multinomial logit
(MNL) type. The models have been calibrated using disaggregated data obtained
from the Glasgow Rail Impact Study (GRIS) survey in 1978—1979. This survey
was carried out independently of the present study which has consequently been
constrained, to a degree, by the quality of the available data. Nevertheless, this
study illustrates that disaggregate probabilistic choice models can be successfully
developed from data obtained by traditional survey methods and can provide
useful analyses of travel demand. This confirms the feasibility of using such

models in the transportation planning process.

The present study also examines the issues involved in wusing disaggregate
probabilistic choice models for the prediction of aggregate travel behaviour and
the estimation of the sensitivity of transport mode choice to various changes in
policy— controllable variables. The results may assist urban transportation planners
and decision— makers to shape their pricing and investment policies, effecting
more efficient utilization of transportation resources, and to anticipate future

transportation needs.

1.3 STUDY OUTLINE

A general review, together with a discussion of the conventional wurban
transportation model system (UTMS) and the various alternative approaches to
travel demand modelling are presented in Chapter 2. These provide an
introduction to the understanding of urban travel demand modelling and emphasise
the wusefulness of analysing travel behaviour at the individual level. The
theoretical framework for modelling individual travel behaviour with respect to the

choice of transportation mode is outlined in Chapter 3. This involves the



presentation of the deterministic and the probabilistic choice theories; the
generation of two important choice models, the MNL and the multinomial probit
(MNP) models; statistical techniques for the estimation of the unknown parameters
of the various MNL model specifications; and statistical goodness— of— fit measures
for assessing the validity of the various calibrated models. Finally, the specific
issues of the specification of wvariables in the utility function and choice set

generation are discussed.

Having provided the general form of the MNL model, the next stage of the study
is concerned with the empirical analysis of the journey to work in the city of
Glasgow. In Chapter 4 a brief description of the GRIS survey data and the
study area are presented. Descriptions of the sample preparation and the
investigation of the practical limitations of and problems inherent with the use of
the GRIS data are also given. The chapter concludes with the selection of the
most important explanatory variables for inclusion in the various model
specifications and an explanation of how the variables are represented in the
model formulations. In Chapter 5 various model specifications are calibrated and
evaluated statistically and the final model forms are selected. The results

obtained are then compared with previous analyses of journeys to work.

The following two chapters are concerned with the use of the selected models in
the prediction of aggregate travel behaviour and with policy change analysis.
Chapter 6 presents and discusses the aggregation problem; the available
aggregation procedures; and the various sources and types of aggregation errors.
Finally, the empirical results of using the naive, classification, and enumeration
procedures are presented and a comparative assessment of their desirability in
terms of their aggregation error values is made. Chapter 7 then deals with the

prediction of the effects of a wide range of policy decisions on the choice of



transport mode. The properties of a policy—sensitive model and the various
techniques available for analysing different policy decisions are also presented.
Lastly, the impacts of various policy changes on the aggregation error values of
different aggregation procedures are examined. The final chapter presents the

general conclusions of the study and the suggested directions for further research.
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CHAPTER TWO

TRAVEL DEMAND MODELLING: AN OVERVIEW

2.1 INTRODUCTION

The objective of this chapter is to put in perspective what has been done over
the past three decades in the area of travel demand modelling. Without claiming
to be exhaustive, the chapter reviews and discusses that work which is considered
to contribute to the understanding of the specific problem of modal split or mode

choice modelling.

The topics covered in this chapter are organised into three major areas: the
conventional Urban Transportation Model System (UTMS) and the aggregate and

disaggregate travel demand modelling approaches.

The first section presents a brief description of UTMS. The second section
focuses on the earlier modelling approaches concerned with the development of
UTMS and based on the prediction of travel demand at an aggregate level using
zonal or city characteristics. These techniques are often called "aggregate
modelling approaches". The last section is concerned with recent developments in
modelling and analysing individual traveller behaviour. These procedures are

usually called "disaggregate behavioural modelling approaches".



2.2 THE URBAN TRANSPORTATION MODEL SYSTEM

The general approach to forecasting travel demand in transportation studies has
traditionally been through the well known sequence of the prediction of trip
generation, trip distribution, modal split and traffic assignment. This set of four
models, which is collectively called UTMS, has been the most widely used

technique for the prediction of future travel demand.

Figure 2.1 presents the most typical UTMS structure. As may be seen from this
figure, UTMS consist of a series of models which are executed sequentially, with
the output of one model comprising the input for the next. Each model predicts
one aspect of transportation demand viz. total trips leaving and entering each
zone; the proportion of trips leaving a zone going to each possible destination;
the proportion of these trips using each available mode of transport; and finally,
the routes taken by these trips through the transport network. The serial model
shown in Figure 2.1 is a simplification of a more complex recursive process.
Outputs from later stages of the model are used as inputs to earlier stages
(feedbacks) in the iterative process required in the solution of a more realistic

model.

UTMS is discussed at length in virtually every transportation planning text! and is
also well documented in the literature2. Nevertheless, a brief exposition of the
constituent models is essential, since they form the conceptual framework within

which transportation demand theory and practice have evolved.

! See for example: Oi and Shuldiner (1962); Overgaard (1966); Hutchinson
(1974); Burton (1975); Stopher and Meyburg (1975); Salter (1976); Morlok (1978).
2 See for example: Stopher and Lisco (1970); Hartgen and Tanner (1971)
Reichman and Stopher (1971); Charles River Associates (CRA) (1972, 1976);
Ruiter (1973); Wilson (1974); Domencich and McFadden (1975).
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where,

o is the origin zone.

d is the destination zone.

m is the travel mode.

r is the route chosen.

Eg is the employment of the destination zone.
Toq 1is the distance between the origin and destination zones, and
Todm is the travel time between the origin and destination zones.

FIGURE 2.1 The urban transportation planning process.



2.2.1 THE TRIP GENERATION MODEL

The trip generation model predicts the total number of trips starting and finishing
in each zone in the study area; that is, for each zone, the total number of trip
productions (i.e. trips originating in the zone, regardless of their destinations) and
trip attractions (i.e. trips destined for the zone, regardless of their origins). All
models of trip generation assume that the trip generation rate is a function only
of the spatial and socio— economic characteristics of the generating zone and not
the characteristics of the zone at the other end of the trip, or of the level of
service provided by the transportation system connecting the two zones. The
output from these models are zonal trip productions and attractions, typically
disaggregated by trip purpose (e.g. work or shopping) and by trip type (e.g.
home— based or non home— based). Regression and category analyses are the most

commonly used techniques in the evaluation of trip generation’.

2.2.2 THE TRIP DISTRIBUTION MODEL

The trip distribution model takes the zonal trip productions and attractions
predicted by the trip generation model and links them together to predict the
total flow between each production zone and each attraction zone. The
distributed flow is a function of the socio— economic characteristics of the origin
zone, the land— use characteristics of the destination zone and the time and
distance between these zones. While many techniques exist for estimating trip

distribution, the overwhelmingly dominant one is the gravity model?2.

1 See for example: Shuldiner (1962); Federal Highway Administration (1967);
Wotton and Pick (1967); Kassoff and Deutschman (1969); Douglas and Lewis
(1970); Kannel and Heathington (1973); Tardiff (1977); Mohamad (1978).

2 See for example: Wilson (1967, 1969); Phibrick (1971); Cochrane (1975).

10



2.2.3 THE MODAL SPLIT MODEL

The modal split or mode choice model is concerned primarily with the allocation
of the various trips which have been predicted among all the available modes of
transport (e.g. car, public transport, walking). A modal split model is classified
as being either a trip—end model (if it follows immediately after the trip
generation model in the UTMS sequence) or a trip— interchange model (if it
follows the trip distribution stage). As shown in Figure 2.1, trip—end models,
since they precede the trip distribution phase (and hence destinations and possible
routes are not known), cannot utilise the transportation system characteristics in
their predictions and must depend upon the same set of socio— economic
characteristics as are used in trip generation. This approach is clearly most
reliable where a high proportion of public transport users are captive. The trip
distribution model which follows the trip—end model involves the construction of

separate distribution models for each mode of transport [Stopher and

Meyburg(1975)].

Since the trip—interchange model follows the trip distribution phase, the
origin— destination flows are already known (i.e. the distribution of total trips
from all origins to all destinations is assumed completed). Then, based on
transport service levels for each zonal interchange (origin— destination pair) as well
as zonal socio— economic and land— use characteristics, the allocation of total
travel is made among the available transport modes. The trip— interchange model
permits the best possible reflection of the effects of relative service levels of the

transport modes that exist between each pair of origin and destination zones.

11



2.2.4 THE TRAFFIC ASSIGNMENT MODEL

The traffic assignment model or, as it is sometimes called, the route choice
model, takes the flows between each pair of origin and destination zones for a
given mode and assigns them to one or more specific routes through the transport
network. Conventionally, flows are assigned by route on the basis of minimum
time paths and, therefore, the assignment process becomes that of attempting to
allocate trips to a minimum time path through the network between the zone of
production and the zone of attraction. The majority of traffic assignment models
have focused on the car as the main mode of interest given its dominant role in
causing traffic congestion. Public transport trip assignment is often a relatively
straightforward task, primarily because there typically exists one dominant path

between any given origin and destination pair.

2.3 THE AGGREGATE MODELLING APPROACH

Traditionally, travel demand models (i.e. UTMS) have been developed using
aggregated data, mostly on the basis of traffic zones, and these models have
generally attempted to predict aggregated traffic flows between pairs of zones.
The explanatory variables included in these aggregate models represented in most
cases the mean values of some characteristics that were somehow distributed
across the zonal populations (e.g. average zonal income, average zonal
car— ownership, average travel time between zones) and this made the use of the
models conveniently simple. Prediction then involves the application of these
zonal averages to each of the travellers in the zone. Thus, an implicit
assumption made in using aggregated data is that the characteristics of the

individual travellers and the attributes of the transportation system within each

12



zone are relatively homogeneous, as compared with differences between the zones.
Hence, each zonal group can be suitably represented by an average value of each

explanatory variable.

In fact, zones are never homogeneous as the aggregate approach implies, because
some degree of within— zone variance is inevitable. As has been shown by Fleet
and Roberston (1968) and McCarthy (1969), the within— group variance that is
neglected by averaging the data over traffic zones tends to be greater than the
between— groups variance. This dispersal of the actual values around the mean
can be great, and it is these actual values that are relevant in analysing and
predicting travel behaviour. These intra— zonal variations are concealed in

aggregation.

Thus, aggregation before the model construction phase of the analysis will cloud
the underlying behavioural relationships and result in a significant loss of
information. It may in some cases also create ecological fallacies in the statistical
inferences, whereby factors that coincidentally dominate the behaviour of the
arbitrary groups of an aggregate analysis are interpreted as affecting the behaviour

of individuals?'.

An aggregate model that is largely based on an associated relationship in the data
rather than on peoples' behaviour and preferences does not necessarily represent
an individual traveller's behaviour, nor the average behaviour of the aggregated
group under a variety of conditions. Therefore, there is no reason to expect that
the same relationships would hold in other instances or in other locations

[Richards and Ben— Akiva (1975)].

1 See for example: Robinson (1950); De Neufville and Stafford (1971);
DeDonnea (1971).

13



In addition to the above problems concerning the use of aggregated data, a
number of other shortcomings in the aggregate modelling approach may be noted.
Firstly, it is inflexible and static rather than dynamic. That is, it is based upon
measurements and estimated relationships from a single point in time, with an
assumption that these relationships and estimates will not change over time except
in terms of extraneous changes in total population, wealth, etc. Secondly, an
important failing has been the exclusion of the effects of transport
system— controllable variables, so that the modelling processes do not respond
precisely to transport policy changes. Finally, there is the separation of travel
demand prediction into four stages (trip generation, trip distribution, modal split,
and traffic assignment) which are assumed to interact in a logical fashion to
represent a complex travel behavioural process. The individual models were for
the most part developed and modified independently of each other and the well
known problem of trip generation being assumed to be independent of the supply

of transportation is a direct consequence of this separability assumption’.

In response to some of the above shortcomings, a number of strategies have been
adopted to improve the aggregate approach to travel demand forecasting. Firstly,
attempts have been made to improve the internal efficiency and applicability of
the aggregate models by giving them more rigorous theoretical bases, by
considering more exactly the determination of important variables, and by
analysing the interactions among demand, cost and pricing?2. Secondly, a

simultaneous travel modelling approach has been used in an attempt to make the

1 See for example: Ben— Akiva (1974); Burnett (1974); Liou and Talvitie
(1974); Domencich and McFadden (1975); Richards and Ben— Akiva (1975);
Stopher and Meyburg (1974); Dalvi (1978).

2 See for example: Moses and Williamson (1963); Beesley (1965); Meyer, Kain,
and Wohl (1966); Wilson (1967); Der Serpa (1971); Evans (1972); Cochrane
(1975); Fairhurst (1975); Goodwin (1976); Heggie (1976); Zahavi (1977); Bruzelius
(1979).

14



entire aggregate approach much more interactive and the models themselves more
plausible and more responsive to policy changes. This development, which
combines the stages of trip generation, modal split, and trip distribution, is called
the "direct demand model”. This model seems to be conceptually more valid
than the conventional models since it takes into account the effect of changes in
system characteristics on trip generation'. However, due to the large number of
alternative trips which a traveller may face and the large number of attributes
which describe an alternative trip, a simultaneous model can become more
complex and computationally more difficult. Therefore, this raises some
important issues concerned with the feasibility of a simultaneous model and the
sensitivity of travel predictions to the simplifying assumption of a recursive
structure. Thirdly, in order to avoid problems related to the use of the
aggregate modelling approach, researchers have attempted to develop a completely
new approach explaining travel behaviour at the level of the individual traveller.

This approach is termed the "disaggregate behavioural modelling approach".

2.4 THE DISAGGREGATE MODELLING APPROACH

Disaggregate travel demand models represent a relatively new development in
travel demand forecasting, the first models having appeared at the beginning of
the 1960s, and having evolved slowly into the latter part of the decade2  Those

models were initially developed as research tools, the main objective of the

1 See for example: Kraft (1963); Quandt and Baumal (1966); Kraft and Wohl
(1967); McLynn and Goldman (1967); Plourde (1968); Hartgen and Tanner
(1970); Stopher and Lisco (1970); Reichman and Stopher (1971); CRA (1972);
Shepherd (1974); Richards and Ben— Akiva (1975); Stopher and Meyburg (1975,
1980); Adler and Ben— Akiva (1976).

2 See for example: Warner (1962); Quarmby (1967); Lave (1967); Lisco
(1967); Stopher (1969).

15



analyses being to improve the understanding of traveller decision— making
behaviour. Since then, development of the disaggregate modelling technique has
accelerated markedly as a result of growing disenchantment with the conventional
aggregate approaches and in the hope that the newer approach has the potential

to replace the conventional method?.

Interest in disaggregate behavioural models can be justified on several counts.
Firstly, disaggregate modelling provides a most natural setting for the development
of causal relations among their components, based on simple assumptions about
the behaviour of the decision—maker. Secondly, they usually allow a building
block approach that can be extremely useful as a strategy for the development of
urban models based on interrelated blocks describing the urban transportation
system and the housing, educational, and other sectors. Thirdly, they provide
useful guidance as to the appropriate way to aggregate data in the development
of more efficient and operational aggregate prediction models [Koppelman (1974)].
Fourthly, using disaggregate data directly in disaggregate travel models can bring
about large savings in the cost of data collection and processing. Since the data
are used in the original disaggregate form, and are not aggregated to the zonal
level, a large—scale home interview survey is not essential as is the case with the
aggregate models [Ben— Akiva (1973)]. Finally, because travel decisions and
factors that influence them are measured and analysed at the individual
decision— maker level, using disaggregate data seems more plausible in the sense
that actual behavioural relationships may be reflected in a more successful model
rather than in simple exploitation of ecological correlations in the data. This

provides increased confidence in the process of forecasting future travel demand.

' See for example: Ben— Akiva (1973); Watson (1973, 1974); Domencich and
McFadden (1975); Richards and Ben— Akiva (1975); Stopher and Meyburg (1975);
Brand (1976); Bullen and Boekenkroeger (1979); Burnett and Thrift (1979).

16



The experience of previous work with the disaggregate travel modelling approach
indicates that it is a feasible approach and the most promising avenue for
improving future travel forecasting techniques [Stopher, Meyburg, and Brog

(1981)].
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CHAPTER THREE

MODE CHOICE MODELLING: THE THEORETICAL FRAMEWORK

3.1 INTRODUCTION

The primary objective of this chapter is to outline the theoretical framework
which is appropriate in modelling individual choice behaviour and, within this
framework, to derive a tractable mathematical model of mode choice, namely, the

MNL model.

The remainder of the chapter is divided into four sections. The first section is a
survey of some principles of the deterministic and the probabilistic theories of
individual choice behaviour. In the second section, the regression analysis
technique and the maximum likelihood method are discussed. The latter has been

chosen here as the most suitable technique for calibrating the MNL model.

To assess the validity of various calibrated models, different statistical
goodness— of— fit measures are presented in the third section. These are the
t—test for assessing the significance of each specified variable, the log likelihood
ratio test, the log likelihood ratio index test, and the percentage of observations
correctly predicted. The last three tests are ﬁsed to assess the statistical

significance of various models calibrated using the maximum likelihood method.

The last section presents and discusses some specific issues related to the

development of various discrete choice models. These issues are concerned with
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the various ways of specifying different explanatory variables in the utility function
of each available alternative and the definition of the set of available alternatives

for each individual in the sample population.

3.2 THEORIES OF TRAVEL CHOICE BEHAVIOUR

In general, in the transportation planning process, planners and researchers are
interested in the behaviour of aggregate groups of travellers. However, this
aggregate behaviour is the result of individual or disaggregate behaviour. Thus,
the modelling of individual behaviour is either explicitly or implicitly at the core

of all prediction models of aggregate behaviour.

Although disaggregate behavioural travel demand models offer great promise for
future travel demand analysis, a fully operational model has still to be developed.
The reason for this is that there does not exist a single, universally accepted
behavioural choice theory which adequately explains the observed choice behaviour
of each individual and predicts their future travel demands'. Therefore this
section is designed to present the various theories of individual travel choice

behaviour.

1 See for example: Stoner and Milione (1975); Atiken (1977, 1986); Dalvi
(1978); Kanafini (1983); Supernak (1983, 1984); Supermak and Stevens (1987);
Ben— Akiva and Lerman (1985).
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3.2.1 THE DETERMINISTIC CHOICE THEORY

Although the earlier disaggregate travel demand models? have achieved
considerable success in their applications, their theoretical foundations have
remained weak and, at times, even shaky. This is mainly the result of the
inadequacy of the well—known conventional microeconomic consumer theory? in
dealing with the problems inherent in transportation demand analysis 3. In
particular, the major difficulties encountered relate to the identification of an
independent set of travel alternatives and the choice decision among them. It is
widely agreed that travel alternatives are best defined in terms of trip
characteristics rather than their name or the sort of physical equipment of which
they are composed. Unfortunately, the conventional microeconomic theory was
developed without any assumption as to the nature of the alternatives from which
the consumer has to make a choice. However, the new approach to the
microeconomic theory which has been suggested by Lancaster (1966) has paved
the way for the development of more sound theoretical structures for analysing
travel decisions behaviour. Lancaster postulated that utility or preference is
derived not from the actual commodities themselves but from the characteristics
which they possess. The most important advantage of this approach to travel
demand analysis was that the difficulties of identifying independent sets of travel
alternatives were overcome. Alternatives could now be defined by their attributes,
such as travel time and travel cost. Hence, individuals could choose the

alternative which maximised their derived utility; the corresponding vector of

! See for example: Warner (1962); Beesly (1965); Quarmby (1967); Lisco
(1967); Lave (1968); Stopher (1969); Blackburn (1970); Golob and Beckmann
(1971).

2 See for example: Lancaster (1966); McFadden and Winter (1970); Henderson
and Quandt (1971); Green (1978); Layad and Walters (1978); Varian (1978);
Kanafani (1983); Ben— Akiva and Lerman (1985).

3 See for example: Hanson (1974); Dalvi (1978); Manheim (1979, 1981);
Kanafani (1983); Ben— Akiva and Lerman (198S5).
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characteristics then determined their observed travel choices.

However, travel demand analysis differs from traditional microeconomic theory in
that the choices of concern in the former field usually are among qualitative and
discrete sets of alternatives (e.g. destinations, modes, routes), whereas the latter
field is concerned with choices among continuous sets of alternatives.
Consequently, the standard mathematical techniques of microeconomics, which rely
heavily on the assumption of choice among a continuum of alternatives, are no
longer applicable to travel demand analysis [Horowitz (1985)]. Thus, a discrete
representation of the alternatives necessitates a different analytical approach which
is also based on the principle of utility maximization and the rational choice
behaviour of the decision—maker. The only difference from the conventional
microeconomic consumer theory is that, instead of deriving demand functions, this
approach is concerned directly with the comparative utilities of the alternatives as
the basis for specifying the resulting choice (i.e. a utility value is associated with
each alternative in the choice set, and is used to compare the alternatives; the
alternative with the highest utility is chosen). Therefore, modelling of the choice

decision is formalised as follows:

Assume that an individual (n) faces a set (Ap) of mutually exclusive (discrete)
alternatives, and that the utility of an alternative (i) to that individual is denoted
by Uj,. Following the approach of Lancaster, each alternative can be specified
by a vector (Z;) of characteristics which describes it. Then the utility of

alternative i to individual n can be expressed in the form:

Uin = Up (Z§), ¥ i, i ¢ Ay (3.1)
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However, UL( ) is a specific utility function for each individual n. Therefore, to
specify how tastes, and consequently utility functions, vary from one individual to
another, an additional vector (S,) of socio—economic variables describing

individual n is introduced in the utility function of alternative i. Thus:

Uin = U (Z{,Sp), ¥i, i € Ay (3.2)

Using the above notation, the deterministic choice theory postulates that an
individual (n) will choose an alternative (i) out of all available alternatives in a

choice set (Ay), if and only if,

Uin > Ujn » ¥ j # 1, j € Ay (3.3)

where,
Ujn  is the utility of alternative i to individual n, and

Ujn  is the utility of alternative j to individual n.

The above model of choice decision results in behaviour which is perfectly
deterministic. =However, to accept such a model requires the assumption that all
individuals have perfect and complete information: they know all of the
alternatives open to them, they know all of their characteristics, and they know
their own preferences so that they behave as if they had well defined utility
functions. Therefore they would always choose the alternative with the greatest
utility. This is clearly an unrealistic assumption since empirical evidence shows

that individuals do not select the same alternatives in repetitions of the same
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choice situations, under the same conditions. Moreover, by changing choice sets,
violations of the transitive— preferences assumption are also observed. It has also
been observed that individuals with identical choice sets, attributes, and

socio— economic characteristics, select different alternatives.

Several factors may contribute to these inconsistencies. Firstly, it is usually not
possible to include in the utility function (Uj;,) all the attributes that can possibly
influence the choice decision. If such a function were possible it would no doubt
be so complicated as to render it impractical. Secondly, a typical individual is
not likely to have perfect information about the available alternatives. Thus, the
set of alternatives (Ap) identified by the analyst may be larger or smaller than
that encountered in fact by the individual, or the utility function (Uj,) may
contain variables about which information, as perceived by the individual, may be
absent or incomplete. Finally, the individual may not always adopt the rational
choice exactly and so the idiosyncrasies of individual behaviour cannot be
anticipated in a deterministic model. Therefore, there may be essentially random
elements in the behaviour of individuals, in that their preferences may vary from
day to day or be influenced by external events (e.g. weather or availability of the

household car).

One important way of partially overcoming these limitations of deterministic
choice theory is to recognise that individuals do not make decisions with certainty.
That is, there is a random or probabilistic element in the decision— making
process. The probabilistic analysis of choice decision can be used to capture the
effects of taste variations among individuals and unobserved characteristics of the
alternatives. It can also take into account pure random behaviour as well as
errors due to incorrect perceptions of the attributes and choices of suboptimal

alternatives.  Thus, probabilistic choice theory can be more readily adapted to
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formulate travel demand models. This is discussed next.

3.2.2 THE PROBABILISTIC CHOICE THEORY

As noted in the preceding section, the introduction of the probabilistic choice
theory was the result of the inadequacy of the deterministic choice theory in
explaining the individuals' behavioural inconsistencies that were observed. The
earliest developments of probabilistic travel choice models' were founded on
relatively simple postulates of human behaviour. These postulates stated firstly
that individuals make travel choices on the basis of comparison of alternative
levels of service provided by the travel alternatives, modified by attributes of the
individual. Secondly, it was asserted that decision— making of individuals was to
be modelled by the use of probabilities of choice, where these probabilities must

satisfy the basic rules of probability as shown in the following equations:

0<P(i: Ay <1, i (3.4)
EP(i DA =1, Vi (3.5)
i

where,

P(i : Ay) is the probability of individual n choosing alternative i, and
A, is the entire choice set of available alternatives for individual

n.

' A comprehensive review of these early developments is given in Luce and

Suppes (1965); Reichman and Stopher (1971).
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The probabilities are assigned to specified choice alternatives on the basis of
consideration by the individual of the travel alternatives' characteristics, modified
by the relevant attributes of the individual. @ This procedure is consistent with
modern theories of human discrimination and choice. These theories state that
every human decision is, in essence, probabilistic since there is a minimum
variance in discrimination and there are dynamic changes in preference [Stopher
and Meyburg (1974)]. This is an extremely important concept, since it leads to
two conclusions of considerable importance in attempting to formulate choice

theoretic models. These conclusions are:

1. Disaggregate probabilistic models can be formulated with a relatively small

number of variables required to achieve good predictions.

2. Individuals do not have irrational or unquantifiable biases toward specific

alternative choices.

This statement of hypotheses does not lead directly to any specific model
formulation, but it does provide a broad framework within which choice models
can be constructed. A more formal theoretical basis to travel choice modelling
has been based upon two disciplines dealing with human behaviour; the
psychological choice theory, through the strict utility approach, and the economic
choice theory, through the random utility approach. In fact, both approaches, as

will be seen, lead to similar forms of model [Ben— Akiva (1973)].

26



3.2.2.1 THE STRICT UTILITY APPROACH

This approach to the modelling of individual choice behaviour derives its
theoretical underpinning from the psychological foundation of human behaviour.
The view of the psychologist is that human decisions are probabilistic in nature,
but are based upon an evaluation of utilities. These utilities, for each alternative,
constitute a basis for estimating the probabilities of choice for each alternative.
The psychological approach to the theory of disaggregate behavioural travel
demand models is formalised through the application of Luce's Axiom of
Independence of Irrelevant Alternatives (IIA) which states that, "If a set of
alternative choices exists, then the relative probability of an individual choosing
any two alternatives is unaffected by the removal (or introduction) of any set of

other alternatives”. Mathematically, this can be expressed as:

Ph(i : Ap) Ph(i : Bp)
= (3.6)
Ph(j : Ap) PL(j : Bp)
where,

Pn(i : Ay) is as defined previously,
A, is the choice set of alternatives containing only i and j, and
B, is the set of all alternatives including i, j, k, etc (i.e. A is

a subset of B).

In other words, if some alternatives are introduced or removed from the set of
- alternative choices, the relative probabilities among the remaining alternatives are

unchanged. The choice from the subset A, is independent of what other
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alternatives exist in the main set By.

As mentioned in the previous section, individuals are assumed to associate a
utility value with each alternative in the choice set available to them and
subsequently to draw weighted lots to determine their choices. In other words,
they know the exact utility of each alternative, but their choices are still
probabilistic. It is further assumed that there is a direct correlation between the
probabilities of choice and the levels of utility; the higher the level of utility of
an alternative the higher the probability of its being chosen. Therefore, it seems
reasonable to postulate that a ratio of probabilities can be expressed as a ratio of

utilities. So,

P, (i : Ap) P,(i : Bp) Uin
- - (3.7)
Ph (J : Ay Pp(j : Bp) Ujn

Thus, Equation 3.7 implies that the ratio of the probabilities is determined by the

ratio of the utilities of the only two alternatives under consideration.
It is necessary to define a functional form for the utility.  Without loss of
generality, the functional form may be assumed to be exponential. This was

found to be easy to use for computation and to provide a reasonable fit to

real— world data [OECD (SEPT. 1980)]. Thus:

Uin = exp (Vip) (3.8)
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where,
Vin is the linear function of the characteristics of both individual n and

alternative i.

Thus Equation (3.7) can be written:

P, (i : Ap) exp (Vip)
= (3.9)
Ph (J ¢ Ap) exp (an)

Application of the probability rule (3.5) for only two alternatives in the choice

set leads to the following equations:

exp (Vin)
P, (i : Ap) = : (3.10)
exp (Vip) + exp (an)

exp (an)
P, (j : Ay = (3.11)
exp (Vip) + exp (an)

Given an assumption of linearity in Vj,, these equations may be simplified by

dividing throughout by either exp (Vj,) or exp (an). Thus,

) exp (Vin - Vjn)
P, (i : Ap) = (3.12)
1 + exp (Vi - an)
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1
P, (j : Ap) = (3.13)
1 + exp (Vip- an)

The above two equations define the standard binary logit model [Berkson (1944)].
Where there are more than two alternatives, Equation 3.9 leads to the equation
of the multinomial logit model [Rassam et al (1971); Ben— Akiva (1973);

McFadden (1973)],

exp (Vin)

Pin - (3.14)
Yexp (an)
J€An

Thus, the application of Luce's Axiom, with some reasonable assumptions about
the form of the utility function, leads to the specification of a model structure
for the analysis of travel choice behaviour. However, the Independence of
Irrelevant Alternatives assumption of the strict utility approach is the principal
strength on the one hand and principal weakness on the other. It is a strength
in that, firstly, the parameters which determine the choice probabilities,
conditioned on selection from a subset of alternatives, can be utilized in
determining the probabilities for the full set. Thus, the dimension of the
calibration data set can be reduced substantially, particularly with a large full set
of alternatives. Further, data for the omitted alternatives need not be collected,
leading to economy in data collection and the possibility of improving detail on
the examined alternatives. Secondly, the strict utility approach allows quick
analysis of the effects of introducing new alternatives using the predetermined

parameters for models containing only generic variables (i.e. variables common to
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all alternatives in the choice set). Finally, sequential or recursive structures of
travel demand decisions can be modelled based on the separability property of the

ITA axiom?.

The main weakness of the strict utility approach is the definition of an
alternative. Throughout the theory, distinct alternatives are assumed, but
classification of alternatives is not a part of the theory. Clearly, inappropriate
definitions of the alternatives could lead to erroneous probability definition. The
IIA axiom will not yield accurate forecasts in situations where a new alternative
competes more heavily with similar alternatives than it does with dissimilar ones.
This problem is illustrated by the classical example of the red bus/blue bus
anomaly.  Consider a situation in which a traveller who is making a choice
decision between the car mode and a service of red buses is indifferent between
the two modes. Hence, the choice probabilities are equal (i.e. Pgyr = 1/2 and
Pred bus = 1/2). Now an additional service of blue buses, which is identical in
all respects to the red bus service, is introduced. Since the axiom states that the
ratio of choice probabilities remains unchanged, the new choice probabilities will
be one—third (1/3) for each of the three modes. This is an unrealistic
assumption since the individual traveller will treat the two bus services as one in
spite of the different colours. This example suggests that application of the strict
utility approach should be limited to multiple choice situations where the
alternatives can plausibly be assumed by the individual traveller to be distinct and
independent. Therefore, great care must be taken in choosing the alternatives in

order that the choice axiom is not too strong for the application.

The final point which it is essential to make in the evaluation of the strict utility

approach is that, since the IIA property is extremely useful for practical planning,

1 See for example: CRA (1972, 1977); Domencich and McFadden (1975).
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its acceptance or rejection should be based on empirical grounds depending on

the circumstances?.

3.2.2.2 THE RANDOM UTILITY APPROACH

There is a major difference between the strict utility approach and the random
utility approach. The former approach assumes that individuals have an exact
and measurable utility associated with each alternative in their choice sets, but are
uncertain of their choice decisions even after assessing the comparative utilities.
Nevertheless, they must still make their choice decisions even when facing such
uncertainty. In such situations an individual cannot always be expected to choose
the alternative with the greatest utility. On the other hand, the random utility
approach assumes that each individual is a deterministic utility maximiser, choosing
from the available alternatives the one which yields the highest utility. The basic
hypothesis of the random utility approach is that the individual's utility is
represented as the sum of two components, a systematic component (V;,) and a
random component (e¢jy,). The systematic component of the utility function
accounts for the effects of the average tastes of the population and the observable
characteristics of the alternative and the individual. The random component
accounts for the effects of the unobservable characteristics of the individual and
the alternative, individual idiosyncrasies and taste variations over the population.

So,

Uin = Vin + €in » ¥ 1, i € A (3.15)

' See for example: CRA (1972); Brand (1974); Hensher and Johnson (1981).
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As stated above, individuals are considered to be deterministic utility maximizers;
that is, they will always choose the alternative which has the maximum utility.
However, the analyst can only measure the deterministic part of the utility, and
must therefore assign a probability to the outcome based on that observation.

Thus, the random utility model of choice decision can be written:

Pijn = Prob { Ui, > U; ¥ j#£i, jeAg) (3.16)

Jn >

Substituting Equation 3.15 in Equation 3.16, Equation 3.16 becomes:

Pijn = Prob { Vi, + Gin>an+ ejn,‘V“jFﬁi, J € Ap ) (3.17)

Equation 3.17, which is called the choice probability function, is the fundamental

equation of the random utility models. Rearranging Equation 3.17 gives:

Pin = Prob { Gjn—ein<Vin-an,‘V'j¢i, j e Aqp ) (3.18)

or,

Pin = Prob { ejn<Vin-an+ €in » Y i #1i, j e A, ) (3.19)
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Any particular choice model can be derived using Equation 3.18, or equivalently
Equation 3.19, given specific assumptions on the joint distribution of the random
components. Let f(e1n, €n» .--» €p» ---.» €Jp) denote the joint density
function of the random components of J alternatives. Then the choice

probability of an alternative i is given by,

€intVin~Vin €in=t® €in*Vin-Vin
Pin =1 v ] i, f (€lns+--s €ins--->
€In=- €in=— €Jn=—
€Jn) deln... dejn... degp (3.20)

Although Equation 3.20 represents the most direct way of expressing the choice
probability function, it involves a multiple integration computation which makes it
an inconvenient way of deriving the choice probability for particular situations
(e.g. for a large number of alternatives in the choice set or for more complicated
choice functions such as the probit model function). Therefore, an alternative
and simpler way is to denote F (e1q, €p, -..-» €jp» ---.» €Jp) @S the cumulative
joint density function of the random components and Fj (e1p, €2, ---y €jps --ees

€Jn) as its partial derivative with respect to the ith random component. Then,

[+)

Pin = J Fj (ein+Vin—V1n,...,ein,...,ein+Vin—VJn)d€in (3.21)

€in=—®
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This equation can be interpreted as follows. Set the random component ¢j, to
some given value. The integral is then the probability that e;, equals that
specified value and that all the other random components satisfy the condition
given by Equation 3.19. Hence, the probability of individual n choosing

alternative i can be obtained by integrating F; over all possible values of ;.

It is possible to obtain a specific operational model from this choice probability
function by specifying, firstly, the functional form of the systematic component
(Vin) of the utility function and, secondly, the joint distribution of the random

components (¢jp) for all alternatives in the choice set (Ap).

The deterministic utility Vj, is a function of the characteristics of alternative i
(e.g. travel time, cost, convenience, comfort, and safety) and the socio— economic
characteristics of individual n (e.g. income, sex, age, car—ownership, and

occupation). Hence the function Vj, can be expressed as,

Vin =fi (Zin,Sp) (3.22)

where,

Ziy, is a vector of characteristics of alternative i as perceived by
individual n, and

Sp  is a vector of socio— economic characteristics of individual n.

For mathematical convenience, linearity in the unknown parameters' specification

of the deterministic utility function Vj, is usually assumed. Thus,
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Vin = 2 Bik fx Xjgn), V k, ieAy (3.23)

where,
fx (Xikn) is a vector of K functions of attributes of an individual (n)
and characteristics of an alternative (i). These functions
represent the way in which each explanatory variable can be
introduced into the utility function (such as linearly or
logarithmically or exponentially).

Bik is a vector of K unknown parameters reflecting the estimated
influence of variable k on the utility of alternative i. These
are assumed to be constants across individuals.

K is the total number of explanatory variables entered in the

utility function

Once the functional form of the deterministic utility function is specified, the next
step is the specification of the joint distribution of the random components ¢;y.
Different assumptions on the joint distribution of the random components ¢, lead
to different mathematical forms of probabilistic choice model. Clearly, a number
of distributional assumptions are possible [See for example: Domencich and
McFadden (1975); Ben— Akiva and Lerman (1985)] and among them two special

cases are of particular interest.

In the first case, if the random components of the utility function are assumed to
be Independently and Identically Distributed (IID) across individuals and all the
alternatives in the choice set, then the appropriate statistical distribution is the

Weibull distribution. The use of the Weibull distribution results in a MNL model
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of the form?,

exp (vin)

Pi, = (3.24)
2 exp (Vjn)
JjeAn

Thus, the same model form has resulted from this assumption as was derived
from the strict utility approach (see Equation 3.14). As was pointed out by CRA
(1972), the assumption that the random components follow the Weibull distribution
is equivalent to the IIA axiom. This means that for an individual n, the odds
ratio of the choice probabilities of any two alternatives (i.e. Pj, / Py,) is entirely
independent of the presence or absence of any other alternatives in the choice

set. This can be easily shown in the following way:

Pin exp (Vin) / Z exp (an) exp (Vip)
- J€An - (3.25)
Pun exp (an) / z exp (vjn) exp (an)
jeAn

The MNL model is both mathematically transparent and computationally tractable.
It has been applied successfully in a wide variety of travel demand forecasting
contexts2. However, the assumption that the random components of utilities are

IID severely restricts the flexibility of the model and can be a source of

1 For complete derivation of the MNL model, see Hensher and Johnson
(1981); Kanafani (1983); Maddala (1983).

2 See for example: Manski (1973, 1977); Domencich and McFadden (1975);
Richards and Ben— Akiva (1975); Adler and Ben— Akiva (1976); Ben— Akiva and
Atherton (1977); Parody (1977); Small (1977); Spear (1977); Horowitz (1979);
Ortuzar (1980); Dunne (1982).
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substantial forecasting error [see for example: Horowitz (1980, 1981 a & b)]. In
applications where the utilities of some alternatives are correlated, the logit model
may overpredict or underpredict substantially the shifts in the choice probabilities
of those alternatives when the characteristics of one or more alternatives are
changed!. Therefore, several other exponential models derived from the MNL
model have been suggested in the literature in order to overcome the problems
associated with the IIA property when the alternatives concerned are correlated.
These include the Generalised Extreme Value (GEV) model suggested by
McFadden (1977, 1978), the Cross Correlated Logit model suggested by Williams
(1977), and the Dogit model suggested by Gaudary and Dagenais (1979).

However, their use in actual planning studies has been infrequent.

In the second case, a more general model, the Multinomial Probit (MNP) model,
permits tastes to vary among individuals with identical observable characteristics,
and allows effects of unobserved variables to be correlated across alternatives.
The MNP model can be obtained by assuming that the random component (¢;,)
of the utility of each alternative has the Multivariate Normal (MVN) distribution

with zero mean vector and a finite variance— covariance matrix (¥). Thus,

¢ ~ MVN (0,X%) (3.26)

where,
¢ is the J vector of random components (€1y, €p,.-» €ip» -+» €Jp)» and

J is the number of alternatives in the choice set.

T See for example: Mayberry (1970), Schneider (1973), Sheffi (1979).
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Note that n is discarded from the expression for simplicity.

¢ is MVN distributed if its density function f(e) is given by,

£ (e)=MN(O, S =1[{ @ 3] )-1/2

1
exp {- — (e.z“.eT) } ] (3.27)
2

Thus for the MNP model, Equation 3.20 can be written as:

€intVin~Vin €in=t® €intVin~Vin
Pin = |everenveaanan Jovenennnn. [ { (2md 131 1/2
€1n= €in=—% €In="%
1
exp (- - (e.577.€T) ) 1dejp..-dejn. . degp (3.28)

Despite its generality, the MNP model has received little use in travel demand
analyses because of its computational intractability. Algorithms for computing the
choice probabilities and statistically estimating the parameters of this model have

only recently become available!'. At the present time, a program exists for the

1 See for example: Albright, Lerman, and Manski (1978); Daganzo and
Schoenfeld (1978); Hausman and Wise (1978); Daganzo, Bouthelier, and Sheffi
(1979); Daganzo (1979); Sheffi, Hall, and Daganzo (1982); Langdon (1984).
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computation and estimation of the choice probabilities of the MNP model for up
to 20 alternatives and 20 explanatory wvariables?!. However, the MNP model
computations with these programs are reported to cost from two to more than
ten times as much as the equivalent MNL model computations. Moreover, there
are preliminary indications that obtaining precise statistical estimates of the
parameters of the MNP models may require samples much larger than those
needed to estimate the parameters of the MNL models, which would further
increase the cost of the MNP model computations. Finally, the MNP model has
the disagreeable property that the functional form of the choice probabilities can

not be written in closed form.

A MNL model, on the other hand, presents a more efficient tool for providing
travel demand estimates when many alternatives are considered at the same time.
In addition, the MNL model can be used to analyse the possible shifts in the
choice probabilities of the competing alternatives when the characteristics of one
of the alternatives are altered. Lastly, the MNL model can be used for quick

analysis of travel demand in other locations?2.

As a result of the aforementioned problems in the application of the MNP model
on the one hand and the tractability of the MNL model on the other hand, the
logit formulation is more likely to be preferred in many travel demand modelling
applications provided that the IIA behavioural assumption of logit can be
accepted. Some limited tests of MNL against MNP in situations where IIA is
violated have, nevertheless, failed to show distinct differences between the two

models [Spear (1977)]. Moreover, in cases where the IIA assumption is valid, the

1 Personal communication (late 1988) with Prof. Daganzo of Berkeley
University who generously supplied a MNP program (CHOMP) capable of handling
up to 20 alternatives and 20 explanatory variables.

2 See for example: Atherton and Ben— Akiva (1976); Train (1978, 1979);
Koppelman and Wilmot (1982, 1986).
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two models are generally statistically indistinguishable?.

3.3 STATISTICAL ESTIMATION OF THE PROBABILISTIC CHOICE

MODELS

Several statistical techniques can be used to calibrate discrete choice models. The
most commonly used ones are regression analysis and the maximum likelihood
estimation method. The form and applicability of the techniques depend on the
structure of the choice model. The calibration process consists of estimating the
values of the unknown parameters in the model formulation which will give the

best fit to the data collected.

The data available for the calibration process will typically be a sample of N
observations. Each observation consists of an observed choice and a vector of

explanatory variables. The observed choice of each individual can be denoted by

Yin Such that:

1 if alternative i is chosen by individual n
Yin = (3.29)

0 otherwise

The following two subsections examine the regression analysis and the maximum

likelihood calibration techniques.

! See for example: Afriat (1972); Amemiya (1976, 1981); Bouthelier and

Daganzo (1979); Horowitz (1980a, 1981); Maddala (1983).
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3.3.1 REGRESSION ANALYSIS

The ordinary least squares estimation technique is normally used in the case of

linear regression, that is

Yn =X BiXkn * €n (3.30)
k=1

where,
¥n is the dependent variable for observation n,
Bk is the kth unknown parameter,

Xkn is the kth explanatory variable, and

€n is the error term which is assumed to be normally distributed with

zero mean and constant variance.

The least squares technique estimates the values of the unknown parameters S

that minimise the sum of squared differences (Q) between the observed and the

expected values of the observations. Thus,

N K
min Q = min > Yin - 2 Bk Xjkn)? (3.31)
B By  n-1 k=1

In many cases the dependent variable y, can take on a large number of possible

values (i.e. continuous variables such as the number of individuals choosing a
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particular mode in a given area). For such dependent variables, the standard

regression technique provides an appropriate statistical model.

Sometimes, however, the dependent variable is dichotomous, such as in mode
choice where an individual chooses a particular mode or not. For several
reasons, the standard regression is not an appropriate model for such types of
variable. Firstly, the error terms are heteroscedastic. To prove this, using

Equation 3.30, it can be shown that the error term can take only two values:

K
1 -3 Bk Xikn if yin =1
€in = , (3.32)
K
-2 Bk Xjkn if yin=0
k=1
where, yju = 1 indicates that alternative i has been chosen by individual n and

Yin = O that it has not.

Therefore, the variance of ¢, can be calculated by [See Hensher and Johnson

(1981) for the complete derivation of this variance]:

K K
Var ejp = (1 - 3 Bk Xjkn) . Bk Xikn) (3.33)
k=

This is clearly not constant for all the observations since it depends upon the

values of ByXjk, which vary across the observations. This fact is contrary to the
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least squares' property that the error term has zero mean and constant variance.
Secondly, the predicted values of the observed choice are not necessarily confined
to the appropriate interval (0, 1) and may fall either below zero or above one in
some cases (see Figure 3.1). Finally, hypothetical tests of the estimated
parameters, such as the t—test, rely on the normality assumption of the error
terms, which is equivalent to assuming that the y;, are normally distributed. This

is not the case since y;j, is a discrete variable, so the usual t—test is not valid?.

However, an alternative least squares approach which was developed by Berkson
(1953) has been applied to binary choice models (e.g. logit and probit) in which
the utility is a linear function of the unknown parameters. Berkson's approach
involves the transformation of the model to a straight line function. Specifically,

for the binary logit model, the choice probability of alternative 1 is given by:

exp (Vip)
P, = (3.34)
exp (Vip) + exp Von)

or,

Pin = (3.35)
1 +exp { - (Vi - Von))

Hence,

' See for example: Neville and Kennedy (1964); Draper and Smith (1966);
Domencich and McFadden (1975); Hensher and Johnson (1981); Ben— Akiva and
Lerman (1985).
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Pin / (1-P1p) = exp (Vin - Vop) (3.36)

Taking the natural logarithm of both sides of Equation 3.36, results in:

Log[P1, / (1-P1)] = Vip - Von (3.37)
Since Vin - V2n = BxXkn»
and X1kn ~— X2kn = Xkn

Equation 3.37 becomes:

Log[P1/(1-P1x)] = BrXkn (3.38)

The problem with applying Equation 3.38 is that the choice probabilities are
unknown. Therefore, one solution is to divide the observations into homogeneous
groups with similar characteristics and use the choice share of each alternative for

each group as an estimate of the choice probability of that alternative. So,

Log[ng / (1—ng)] = kakg + €g (3.39)

where
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Ry g is the share of the gth group choosing alternative 1,
ng is the kth explanatory variable for group g, and,
€g is the error term for group g attributed to the use of proportion as

an estimate of the corresponding probabilities.

Since the right—hand side of Equation 3.39 is a simple linear function, the
unknown parameters can be estimated using the ordinary least squares method.
This will produce consistent estimates of By when the homogeneous groups have

relatively large sizes [Domencich and McFadden (1975)].

Despite its obvious appeal, Berkson's approach is rarely applied in travel demand
studies for a number of reasons. Firstly, a large sample of observations is
required in order to divide it into homogeneous groups. As Domencich and
McFadden (1976) pointed out, if each independent variable k in the model
function takes only two values, then 2k homogeneous groups are required (e.g.
for k = 8, there would be 256 homogeneous groups). Secondly, by grouping the
data some information will be lost and this makes the calibration less efficient.
Finally, for continuous variables an arbitrary categorization is required and this

can introduce biased estimates?.

Theil (1969) extended Berkson's method to make it applicable to the calibration
of the MNL model. However, the problems of finding homogeneous groups in
the multinomial case are more difficult, especially when choice sets are varying
across the observations. Therefore, application of the Berkson— Theil method to

the multinomial model is extremely difficult.

' See for example: Cox (1970); Domencich and McFadden (1975); Hensher and
Johnson (1981); Ben— Akiva and Lerman (1985).
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It would appear justified, from the above discussion of the applicability of the
regression technique, to consider more appropriate techniques for calibrating
discrete choice models. Fortunately, an appealing alternative is available, namely

the maximum likelihood estimation method. This is discussed next.

3.3.2 MAXIMUM LIKELIHOOD

Maximum likelihood estimation is the most general and straightforward technique
for calibrating discrete choice models. The idea behind this method is very
simple. Given a sample of observations and a specified model, the estimated

parameters are those values that are the most likely to generate the observed

data.

The general likelihood function for the whole data sample is defined by:

N Vi
in
L=TT TT  Pj, (3.40)
n=1 ieA,

where,
L  is the likelihood function of the data sample,
N is the total number of individuals in the sample,
Ay is the choice set available to individual n,
Yin is the observed choice indicator, and,
P;; is the calculated choice probability of the nth  individual choosing

alternative i. This probability is replaced by the specified model

function.
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Since the left—hand side of Equation 3.40 is the product of N probabilities, its
value will wusually be too small to be tractable. In addition, it is more
convenient to work with the logarithm of the likelihood function which is a

monotonically increasing function whose maximum occurs at the same value.

Hence,
N
L* =3 3 ¥in log Pip ~ - (3.41)
n=1 ieA,
where,

L* s the log likelihood function.

For the MNL model, Equation 3.41 becomes,

« X exp (B Xikn)

L* =3 > Yin log (3.42)
n=1 ieA, S exp (Bx Xjkn)

j€An
or,

N

L* =3 5 ¥in [ Bk Xikn - log 3 exp (B Xjkn) | (3.43)
n=1 ieA, jeAn

The maximum likelihood estimation method makes use of the fact that the
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calculated probability of observing the given sample should be highest when the
unknown parameters k are near to their true values. Hence, the model
calibration process involves finding the set of estimated values of (i which
maximises the log likelihood function. These values can be found in the ordinary
way by differentiating Equation 3.43 with respect to each parameter fyp and
setting each differential equal to zero. The first order condition for the

maximization of the likelihood function is,

dL* N 2 A exp (Bk Xjkn) Xjkn
——— =3 3 ¥in [ Xjxn - o0 1= 0 (3.44)
d B n=1 ieAp S exp (Bk Xjkn)

JjeAp

Since yj, is a dichotomous variable, Equation 3.44 can be written in a more

compact form,

N
———— =3 ¥ [ ¥in-Pin 1 Xjkn=0 (3.45)
d Bk n=1 iEAn

The second order condition is,

d2L* N
—_—=-2 > Pin [ Xikn - 2 XjknPjn]
dBx dBy n=1 1{eAp, JjeAp

[ Xitn - 2 len Pjn ] <0 (3.46)
JeAn
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Equation 3.46 shows that the second partial derivative of L* is negative definite.
This implies that L is strictly concave and any estimator of @y which satisfies
Equation 3.45 is a wunique maximizer of the likelihood function [McFadden
(1973)]. This estimator will, for sufficiently large samples, have an asymptotic
MVN distribution with the true parameters (i as means, and variance— covariance
matrix I given by the inverse of the matrix of the second derivative of L*
calculated at the true parameter vector multiplied by minus one [Theil (1971)].

Thus,

(3.47)

da2rL*
Ix1 = ‘ -

dByk dBy

The maximization of the likelihood function which is equivalent to the solution of
the K nonlinear equations in Equation 3.45 can be carried out by several
numerical optimization techniques. The Newton— Raphson method which is often

simple to implement and computationally efficient was used in this study?.

3.4 GOODNESS— OF~ FIT MEASURES

A calibrated discrete choice model provides calculated choice probabilities for any
specified values of the explanatory variables. It is misleading to compare the
estimated probabilities with the observed choices since the predicted choice is a
probability, whereas the observed choice is either 0 or 1 [Hensher and Johnson

(1981)]. Hence, a goodness— of— fit measure, such as the correlation coefficient

1 For more details of this method, see Broyden (1967); Ben— Akiva and
Lerman (1985).
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(R?) of the ordinary least squares method, which is based on estimated residuals,
does not make any sense. For the same reason, a comparison of the sum of the
computed probabilities for a given alternative with the total number of individuals

choosing that alternative is also statistically meaningless.

As a result, several alternative statistical goodness— of— fit measures based on the
value of the log likelihood function calculated at the mean of the estimated
parameters have been utilized to assess how well a calibrated model reproduces

the observed datal.

Statistical tests for assessing the validity of the MNL model which have been used

in this study are described below.

3.4.1 THE t— TEST FOR SIGNIFICANCE OF EACH PARAMETER

The t—test is designed to indicate whether a particular variable in the model
specification has a meaningful role in the utility function. The test seeks to
determine if the coefficient associated with a particular variable is significantly
different from zero (i.e. testing the null hypothesis that G = 0). If the
hypothesis is accepted, then the conclusion is that the wvariable is not making a
significant contribution in explaining part of the variation in the observed data.
The rejection of the null hypothesis would indicate otherwise, namely that the
contribution of the variable is significant. In other words, the greater the
magnitude of the t— value (typically greater than 2 at the 5% level of significance
or, equivalently, for the 95% confidence level), the more important is the

contribution of that variable to the model.

1 See for example: Stopher (1975); Tardiff (1976); Hauser (1978); McFadden
(1979).
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The simplest form of this test entails the division of the estimated parameter

value by its estimated standard deviation. Thus,

t =6,/ e, ¥k (3.48)

where t is the t—test value for parameter By and is normally distributed with
zero mean and unit variance. Iyj is the estimated variance of parameter () and
is obtained from the asymptotic variance— covariance matrix given by Equation

3.47.

Besides the t— value, the signs of the coefficients should also be reviewed for

reasonableness.

3.4.2 THE LOG LIKELIHOOD RATIO TEST

The primary objective of this test is to assess the overall statistical significance of
a particular model calibrated by the maximum likelihood estimation method. This
can be done by comparing the tested model with another model resulting from
imposing a linear restriction on some or all of the parameters of the tested
model. To test the model as a whole involves testing the null hypothesis that
the dependent variable is independent of the values of the explanatory variables.
This implies that all the parameters are set equal to zero (i.e.the equal shares
model). The rejection of the null hypothesis simply indicates that the tested
model is considered better than the equal shares model, or, in other words, that
the effects due to the parameters are to be regarded as significant [Hensher and

Johnson (1981)].
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Mathematically, let Lﬁ* denote the value of the log likelihood function of the
tested model evaluated at the optimum values of the estimated parameters, and
LO"= denote the value of the log likelihood function of the model that assigns
equal values of the choice probabilities of all alternatives, regardless of the values

of the explanatory variables. Then, under the null hypothesis that all parameters

are zero (i.e. f1 = P = ..= PBx = 0), the log likelihood ratio (LLR ) is
defined as,
* *
LLR, = - 2 ( L, - Lﬁ ) (3.49)

and is X2 distributed with K degrees of freedom, where K is the total number of

parameters in the tested model [Wald (1943); Nerlove and Press (1973)].

However, this test is not very useful because almost always the null hypothesis
can be rejected at very low levels of significance. Therefore, it is more
informative to test the null hypothesis that all the parameters, except for the
alternative— specific constants, are set to zero (i.e. the market share model). In

this case, the log likelihood ratio (LLR.) is given by,

* *
LR, = - 2 ( Lc - Lg ) (3.50)

and is X2 distributed with K—J+1 degrees of freedom, where J is the total
number of alternatives in the choice set, and L. is the log likelihood function

value of a model with constants only. This value is given by [Sobel (1980)],
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J
Lg = §=1M_j In (Mj / Nj) (3.51)

where,
Mj is the number of individuals actually choosing alternative j, and
Nj is the total number of individuals having alternative j available

(including those actually choosing alternative j).

The rejection of the above hypothesis would lead to the conclusion that the

tested model is better than the market share model.

In general, however, the log likelihood ratio test is a relatively weak test for two
reasons. Firstly, although the log likelihood ratio test can reject a null hypothesis
model, it cannot give an indication of how well a calibrated model predicts, nor
can it compare two models unless one model is a restriction of the other.
Secondly, the log likelihood ratio test produces values of X2 that are much larger
than any tabulated values. Hence, comparison between alternative model
formulations cannot be made based on log likelihood ratio values [Stopher (1975);

Tardiff (1976)].

3.4.3 THE LOG LIKELIHOOD RATIO INDEX TEST

As a result of the aforementioned weaknesses in applying the log likelihood ratio
test (specifically the unlimited values of LLR) and the fact that the observed
dependent variable is discrete (i.e. 0 or 1), a more meaningful goodness— of— fit

measure giving values between 0 and 1 is required. Consequently, the log
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likelihood ratio index (p,?), which is similar in many respects to the correlation
coefficient (R2) of the regression analysis, can be utilized in assessing the success
of a particular choice model or in comparing models in terms of how well each

model replicates the data from which it has been constructed.

The ratio index p,? is most often defined when the null hypothesis model is one
with all parameters equal to zero [Brownstone and Wills (1974)]. In this case,

the log likelihood ratio index (p,2) is given by,

pe? =1 -Lg /Ly (3.52)

The larger the value of p,? for a given model, the better the model fits the
data. It should be noted that values from 0.2 to 0.4 for p, 2 are considered to

indicate an excellent fit [McFadden (1976b); Hensher and Johnson (1981)].

Although this test is widely used in practice, it has been recognized that it is
meaningless to compare p,? for different data samples with different market
shares. The reason is that the value of p 2 varies depending on the proportion
of individuals choosing each alternative’. However, a more flexible log likelihood
ratio index test which allows comparison between models estimated with different

sample sets that have different market shares is given by McFadden (1973):

pe? =1-1g /Ly (3.53)

' For more details of this point see Tardiff (1976).
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3.4.4 PERCENTAGE OF OBSERVATIONS CORRECTLY PREDICTED

This goodness— of— fit measure is based on the accuracy of a given model in

reproducing the observed data. The simplest form of this measure is given by,

100

N
% Right = S Yn (3.54)

where,
;’n is 1 if the highest predicted probability of choice corresponds to the
actually chosen alternative, and 0 otherwise, and

N  is the total number of observations in the data sample.

A higher value of % right indicates a better fit of the given model. However,
this test is much less useful for comparing alternative models. The reason is that
there are no readily available quantitative criteria for determining how large the
differences between the values of % right for different models should be in order

to justify a conclusion that the model with the higher value is more accurate.

3.5 SPECIFIC ISSUES IN THE APPLICATION OF DISCRETE CHOICE

MODELS

This section presents, briefly, some important issues that are related to the
application of probabilistic choice models. The first subsection discusses the ways
in which various attributes enter the utility function of each alternative, in

particular the distinction between generic and alternative specific variables. The
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next subsection is concerned with the identification of the feasible choice sets

available to individuals in deciding which alternatives they will choose.

3.5.1 SPECIFICATION OF VARIABLES IN THE UTILITY FUNCTION

Travel demand models are concerned with the definition of the comparative
utilities of alternatives, as the bases for specifying the resultant choice, and the
utility is a function of all attributes that describe each alternative. It is,
therefore, essential to present the ways in which these attributes enter the utility

function.

In general, two main types of explanatory variable are used in specifying the
utility function of each available alternative; these are the generic and the
alternative— specific variables. Whether a particular variable is a generic or
alternative— specific variable depends on the way that the variable enters the
utility function. If the variable appears in the utility functions of all the
alternatives with the same coefficient in each, then it is a generic variable. On
the other hand, if the variable appears in the utility function of one alternative,

then it is an alternative— specific variable.

To distinguish between generic and alternative— specific variables, consider, for
example, the variable of travel time in a mode choice model. If the travel times
by different modes are assumed to have a common valuation for all modes (i.e.
a common weighting or coefficient), then travel time should be specified as a
generic variable. However, if this is not considered correct, then the variables
may be specified such that each one appears only in the utility function of one

alternative and is zero otherwise. In this case the variables are specified as
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alternative— specific variables.

If all variables in a model are generic, then the model is termed an "abstract
alternative” model [Quandt and Baumol (1966); CRA (1972)]. This type of
model has variables relating only to characteristics common to all alternatives and
is therefore highly suited, for forecasting purposes, to situations substantially
different from those used for model estimation, and especially to systems not
currently in use. Thus generic variables should be used whenever possible

[Richards and Ben— Akiva (1975); Hensher and Johnson (1981)].

Generic variables are used only when there is little correspondence among the
sets of alternatives available to different individuals; otherwise alternative— specific
variables have to be used. For example, if the set of alternative shopping
centres at one location is entirely different from the set of shopping centres at
another location, there is no correspondence among sets of alternatives, and so
these alternatives can be described only through the use of generic variables. But
if only one of those shopping centres is common to every individual's set of
alternatives, then alternative— specific variables can be used to describe that

common shopping centre.

If a variable has the same value for all alternatives to all individuals, then it will
have no impact on the model. This is because of the linear specification. In
other words, the same term would appear in the numerator and in each member
of the sum in the denominator, and thus it would cancel out as a common
factor. In order to maintain the influence of such variables (e.g. socio— economic

variables), they must be specified in one of the following ways:

1— The variable may be introduced as an alternative— specific variable (or
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alternative— specific dummy variable) which takes the specified value of that
variable or has a value one for one alternative (or more), and is zero otherwise.

2— The variable may be combined or interacted with another variable (e.g. cost
/income) so that it has an alternative— specific value and can be used to define

either a generic or an alternative— specific variable.

An alternative— specific constant which has the value one for a particular
alternative and zero for all other alternatives can also be included in the
specification of the model to capture the impact of unobserved attributes affecting
the choice of an alternative. Such constants cannot be included in the utility of
all alternatives, since the result would be a condition analogous to perfect
multicollinearity in regression analysis. Therefore, at least J — 1 constants can
be identified, where J is the total number of alternatives available to each
individual in the data sample. It is apparent that this also applies to
alternative— specific dummy variables (such as sex or occupation) which can be
regarded as additional alternative— specific constants [Richards and Ben— Akiva

(1975)].

3.5.2 CHOICE SET DEFINITION

The most fundamental problem that the analyst has to solve is the definition of
the set of available alternatives for each individual in the data sample. To
define exactly a choice set for an individual is extremely difficult. However, two
possibilities are available. These are: to treat all available alternatives as the set
of relevant choices for all individuals, and let the coefficients and the model
structure take care that the resulting choice probabilities of the infeasible

alternatives are very low or even zero; or to select only the important modes,
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that is those modes used in the highest proportions. The former way requires
additional data measurements and so results in an undesirable model and a high
computational cost. Furthermore, the inclusion of unrealistic alternatives in the
choice set may considerably reduce the comparative ability of the model, and the
possibility exists that a model capable of dealing with unrealistic alternatives may
not be able to describe sufficiently the choices between the realistic alternatives
[Ruijgrok (1979); Ortuzar (1980)]. In the latter way, the reduction of the choice
set by the exclusion of some alternatives with low choice frequencies will
sometimes result in omission of some important alternatives that are not chosen

due to the specific sample or sampling technique.

An appropriate alternative method, which neither considers all alternatives nor
eliminates the low choice proportion alternatives, is heavily reliant on a priori
logical arguments and observations of current behaviour in determining the feasible
set of relevant alternatives. In this method, the definition of the relevant choice
set for each individual is carried out by imposing some logical constraints on the
availability of each alternative to each individual in the data sample. In other
words, the feasibility of an alternative is defined by a variety of constraints such
as physical availability (e.g. a bus service is an available alternative only when
the bus stops are close to the home and place of work of a given individual);
time availability (e.g. walking is an infeasible alternative for long distance
travelling); monetary resources (e.g. a taxi is an infeasible alternative for low
income workers); limited information (e.g. an individual's lack of knowledge about
bus services, routeing, scheduling and the locations of stops may result in the

unavailability of bus services to that individual); and so on'

! See for example: CRA (1972); Stopher (1980); Zahavi and Ryan (1980);
Goodwin (1981); Gunn (1981); O'Neill and Nelson (1981); Richardson (1982);
Kitamura and Lam (1984); Ben— Akiva and Swait (1984); Swait and Ben— Akiva
(1987 a, b).

61



4.1
4.2
4.3
4.4

4.5

CHAPTER FOUR

GRIS SURVEY AND THE SELECTED DATA BASE

Introduction

The GRIS Data Survey
Preparation of the Data Base
Practical Limitation of the Data
Selection of Explanatory Variables
4.5.1 Level— of— service variables

4.5.2 Socio— economic variables



CHAPTER FOUR

GRIS SURVEY AND THE SELECTED DATA BASE

4.1 INTRODUCTION

This chapter briefly describes the data available for the calibration of the set of
models presented in Chapter 5. Section 4.2 examines the GRIS survey: the study
area; how the study data were collected; and details of the collected data. In
Section 4.3 the sample used in this study is described. The division of the total
sample into two subsamples, one for the calibration of the set of models and the
other for the validation of the calibrated models, is also explained. Section 4.5
considers the problems inherent in the available data in terms of the requirements
of this study. The last section deals with the selection of the most important

level— of— service and socio— economic variables.

4.2 GRIS DATA SURVEY

The Central Clydeside Conurbation is centred on the City of Glasgow and
incorporates a number of surrounding Districts; at the time of the GRIS survey
the population was approximately 1.7 million. Glasgow itself is an important
administrative, commercial and industrial centre and as such is an important
attractor for people seeking employment. It is also the main focus for the

conurbation, and much beyond, of shopping, leisure and educational facilities.
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The conurbation has an extensive suburban railway network, much of it electrified
during the 1960s. The Glasgow Underground, originally opened as a cable
railway in 1896, comprises a loop located slightly to the west of the present city
centre. Major road developments in the 1960s and 1970s resulted in the
construction of the M8 motorway through the city from west to east and
incorporating the west and north flanks of an intended ring motorway around the
city centre. The conurbation has long been characterised by lower— than— average
levels of car— ownership due to a combination of low income, housing density and

good public transport.

GRIS was set up in 1978 to investigate the effects on part of the conurbation of
two major rail investments in Glasgow, viz. the construction of the new Argyle
Line which links the north and the south sides of the River Clyde and passes
beneath the most important shopping centre in Scotland, and the modernisation of
the Glasgow Underground (see Figure 4.1). GRIS was concerned only with that
part of the conurbation (the suburban rail corridor between Dumbarton in the

west and Hamilton in the east, via the city centre) likely to be affected by the

investments.

The basic data source for this study is the household interview survey carried out
by Martin and Voorhees Associates (MVA) in the autumn of 1978 and spring of
1979 as part of the GRIS study conducted by the Scottish Development
Department (SDD), the Transport and Road Research Laboratory (TRRL) and

MVA.

' The data used in this study is from the "before" household interview survey,
and was supplied from tapes held by TRRL together with data from the "after"
household interview survey which was carried out in the late spring of 1980 after
the opening of the Argyle Line and the modernised underground. The author is
indebted in particular to Mr. H. Gentleman of SDD who supplied much helpful
information on the organisation of the survey.
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The household interview survey was conventional and provided details of one
weekday's travel by all members of a sample of households along the rail
corridor. The area surveyed was that within 1 km of the railway and
underground stations. An additional sample was taken between 1 km and 2 km

of two stations: Bearsden and Hamilton.

Within this study area addresses were selected randomly from the Regional
Assessor's rating lists and grouped, for convenience of field work, into 55 clusters
of about 60 addresses each. In total, 2598 households were surveyed. In each
household all residents aged over 5 were asked to supply details of their travel
during the previous day, including journeys on foot of more than 5 minutes. A
total of 6944 persons were interviewed, and 17528 daily trips for different
purposes reported. The overall response rate was 84%, although this varied
between 80% and 90% in different parts of the study area [GRIS final report

(1981)].

The questionnaire (see Appendix 1) was divided into three basic parts relating to
different levels of data, viz. household data, person data and trip data. These
data were stored on magnetic tape containing three files (i.e. household, person,
and trip files). The data have, therefore, been arranged to allow analysis at
three levels of detail, considering travel by household or by person, or considering

travel in terms of the trip.
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The household file contains information such as household size, structure, income
and economic activity. The economic activity of a household is indicated by the
number of persons employed and by characteristics of the head of the household.
An indication of the household's theoretical mobility is given by variables such as
car— ownership and the number of persons with driving licences and public

transport seasonal tickets.

The person file includes personal characteristics of the trip— maker, such as age,
sex, personal economic activity and type of occupation, and, in addition, factors
affecting personal mobility, such as possession of a driving licence or some form

of seasonal ticket.

Since the household and person files can consider trip— making only in terms of
the numbers of trips involving particular purposes or modes, their usefulness in
analysing travel behaviour is limited because they tell little about the
characteristics of the trip itself. For this reason the trip file takes the trip itself,
a whole journey made to achieve a specific purpose, and allows it to be used as

the analysis base.

As shown in the questionnaire (see Appendix 1), the raw data were collected in
terms of the individual stages of each trip and a simplification was made in
linking them to form the whole trip. However, frequencies from the raw data
indicated some trips of up to six stages. These were relatively few and have,
therefore, been compressed to retain data on a maximum of three stages. Thus,

a three— stage trip comprises access, main and egress stages.

The trip file summarises data for the whole trip in terms of the locations of its

origin and destination, the start time and duration, the purpose at origin and
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destination, the main mode used in the case of multi—stage trips, the cost if
using public transport modes, and the total walking time involved. For
multi— stage trips, further details are given on the location of the destination of
each stage and the mode used in each stage together with, in the case of car
stages, more information on occupancy and parking and, for public transport
stages, information on ticket types and costs. In addition, the mode name only

is given for the best alternative mode which could have been used.

While these data on trip characteristics are rich in themselves, their effectiveness
is increased by the ability to relate them to the characteristics of the trip— maker.
Consequently, the trip file includes, for each trip, the same basic data on
personal socio— economic characteristics as forms part of the person file, and also
the general characteristics of the household from which the individual comes.
Using combinations of these groups of data within the trip file, a number of
approaches for analysing this data are possible. Thus, trips may be analysed by
themselves in terms of purpose, mode, duration, origin and destination, peak and
off— peak start time, etc. By any of these, they may be related to the
socio— economic characteristics of trip makers, such as sex, age, and occupation,
and may be further related to the characteristics of the household, such as

car— ownership, income, and family size.

4.3 PREPARATION OF THE DATA BASE

Since the objective of this study is to build mode choice models for the journey
to work in Glasgow, only work trips have been used. From the 17528 trips for
various purposes, a total of 2498 work trips have been extracted. These work

trips are distributed across 12 modes of transport (see Table 4.1).
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Proportion
Mode chosen Chosen by
(%)
Household Car
. 559 22.4
Driver
Other Car Driver 30 1.2
Car Passenger 275 11.0
M/ C Driver 11 0.4
Taxi 19 0.8
Pedal Cycle 8 0.3
Walk 611 24 .4
Goods Vehicle 4 0.2
Driver
Train 150 6.0
Scheduled Bus 759 30.4
Unscheduled Bus 64 2.6
Other Passenger 8 0.3
TOTAL 2498 100.0

TABLE 4.1 Distribution of work trips across

available modes
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As shown in the above table, although twelve modes were used, there are few
observations for seven of these (viz. other car driver, motor cycle driver, taxi,
pedal cycle, goods vehicle driver, unscheduled bus, and other passenger). These
modes have, therefore, been excluded primarily because of their low frequencies
of use, but also, in some cases, because of their infeasibility or their lack of
clear definition in the GRIS questionnaire. The motor cycle and pedal cycle
modes have been excluded entirely due to their low frequencies of use. Trips by
goods vehicle have been excluded also because such vehicles may be used at work
so that their drivers are captive to this trip mode. Trips by unscheduled bus
have been rejected also, since travellers may be captive to this mode where a
company supplies a bus to collect its workers. The taxi mode has been excluded
because of its infeasibility as a daily mode. The other car driver and other
passenger modes have been excluded because there was no clear definition of
either in the GRIS questionnaire. Generally, in the case of excluded modes, it is
impossible to assume them as alternative modes since there are no logical reasons
for their availability and because of the difficulties of measuring the
level— of— service variables for them. Thus Table 4.2 shows the frequencies of
the modes selected for this study. The work trips shown in Table 4.1 have thus
been reduced to 2354, representing only the observed choice frequencies of the
five modes shown in Table 4.2. Since journeys to work are normally assumed to
be similar to journeys from work, it was decided that the analysis should be
carried out only for morning peak journeys to work, so further reducing the

number of work trips to 1524, as shown in Table 4.3.

After final checking of all information available on each observation in Table 4.3,
it was decided to reject the following cases:
1. Trips with incomplete information.

2. Trips of individuals from the same household.
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Mode chosen Chosen by Proportion (%)
Car Driver 559 23.7
Car Passenger 275 11.7
Bus 759 32.2
Train 150 6.4
Walk 611 26.0
TOTAL 2354 100.0

TABLE 4.2 Distribution of work trips across alternative

modes (peak and off— peak).

Mode chosen Chosen by | Proportion (%)
Car Driver 382 25.1
Car Passenger 199 13.1
Bus 483 31.7
Train 118 7.7
Walk 342 22.4
TOTAL 1524 100.0

TABLE 4.3 Distribution of work trips across alternative

modes (morning peak).
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3. Trips wrongly coded (e.g. wrongly reported mode or travel time).
4. Trips with origin and destination in the same zone.
5. Trips with more than one mode (e.g. mixed mode such as kiss—and—ride or

park— and— ride).

Table 4.4 shows the amended number of morning peak work trips available from

the GRIS data survey.

The alternative modes shown in Table 4.4 are defined as follows:

1. Car Driver: drove the household car all the way.

2. Car Passenger: driven all the way by car.

3. Bus: walked from home to the stop, waited, caught a scheduled bus, then
walked to the work place.

4. Train: walked from home to the station, waited, caught the train, then walked
to the work place.

5. Walk: walked all the way.

In order to reduce the amount of data preparation, the statistical package SPSSx
(Statistical Package for the Social Sciences) was used to select a reasonably— sized,
random sample of 650 trips from the 1141 available. The sample was
subsequently divided randomly into two subsamples: a subsample of 530 trips for
the calibration of the choice models, and a subsample of 120 trips for the

validation of these calibrated models. The subsamples are shown in Table 4.5.
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Mode chosen Chosen by Proportion (%)
Car Driver 298 26.1
Car Passenger 158 13.8
Bus 320 28.
Train 70 6.
Walk 295 25.
TOTAL 1141 100.0

TABLE 4.4 Revised distribution of trips to work across

alternative modes (morning peak).

Mode Calibration sample Validation sample
cho Chosen b Proportion Chosen b Proportion
sen ney (%) v (%)
Car Driver 144 27.2 35 29.2
Car 6 12.1 15 12.5
Passenger
Bus 139 26.2 30 25.0
Train 45 8.5 10 8.3
Walk 138 26.0 30 25.0
TOTAL 530 100.0 120 100.0

TABLE 4.5 Distribution of trips across alternative modes for the two

subsamples (calibration and validation).
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In order to test whether the validation sample was correctly chosen, it had to be
established that there were no significant differences between the characteristics of
the total sample before division and the two subsamples (i.e. the calibration and
validation samples). The following tables present some properties of the three
samples. Tables 4.6 to 4.9 present, respectively, the distributions of: the number
of cars in the household; the individual's position in the household; trips destined
to the Central Business District (CBD); and the sex of the trip—maker. As can
be seen from these tables, comparisons of the computed and corresponding
tabulated X2 values indicate that there is no sign of ‘serious bias in the validation

sample.

The set of alternative modes available to each individual in the data survey was
not reported, the only information given being the name of the best alternative
mode. Thus, the determination of the set of relevant alternatives for each
individual is a difficult problem. As was mentioned in the previous chapter, if
an alternative has zero or very close to zero choice probability, then its inclusion
or exclusion from the set of alternatives has negligible effect on the estimation
and prediction results of the calibrated model. However, from practical
considerations, usually of cost and time saving, the set of alternatives must be
reduced to include only the feasible alternatives. Unfortunately, there is, at
present, no specified criterion for determining a priori which alternatives are
considered available to a particular individual and which not (in essence, the
analyst does not know exactly the choice sets available to individuals unless the
individuals are asked about their sets of alternatives during the data collection).
The only way to define the available choice set is to impose certain constraints
or rules on the availability of each alternative mode. Then, from the observed

trip— making pattern, the availability of each mode can be determined.
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Number of Proportion (%)in
cars in
household Total Calibration| Validation
0 54.9 54.5 56.6
1 35.4 35.1 35.2
2+ 9.7 10.4 8.2
TOTAL 100.0 100.0 100.0

Computed X2 =0.49. Tabulated X2 at the 95% level = 5.991
TABLE 4.6 Distribution of number of cars in the household for

the subsamples.

Household Coded Proportion (%)in

Position Value Total Calibration| Validation

Non-head 0 49.6 50.1 48.5
Head 1 50.4 49.9 51.5
TOTAL 100.0 100.0 100.0

Computed X2 =0.132. Tabulated X2 at the 95% level = 3.841

TABLE 4.7 Distribution of household position for the subsamples.
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Type of Coded Proportion % in
Destination Value Total Calibration| Validation
CBD 1 67.5 68.8 70.0
Non-CBD 0 32.5 31.2 30.0
TOTAL 100.0 100.0 100.0

Computed X2 =0.059. Tabulated X2 at the 95% level = 3.841

TABLE 4.8 Distribution of trips across types of destination for the

subsamples.

Sex of Coded Proportion % in
Individual Value Total Calibration| Validation
Female 0 40.5 40.0 37.3
Male 1 59.5 60.0 62.7
TOTAL 100.0 100.0 100.0

Computed X? =0.246. Tabulated X? at the 95% level = 3.841

TABLE 4.9 Distribution of trip— maker sex for the subsamples.
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In this study, the following rules have been used in the identification of the valid

alternatives:

1. Car Driver is available if the individual is a member of a car—owning

household and possesses a valid driving licence.

2. Car Passenger is assumed to be a universally available mode, in the sense that

all individuals can be carried as passengers by their family drivers or friends.

3. Bus is almost universally available except for some short trips when the
required walking distance at both ends of the bus trip is greater than the distance

walking all the way.

4. Train is available if the access distance to the nearest station is less than 1

km?' or the total distance at both ends of the trip is less than 3 km.

5. Walk is a valid alternative mode if the total distance of the trip is less than

2.75 km?2,

Based on the above considerations, the distribution of the choice set sizes for
each subsample is given in Table 4.10. Table 4.11 shows in more detail the

availability of each mode for each subsample.

! The value of 1 km was chosen on the basis that the GRIS survey was
carried out on an area within 1 km of the rail stations, except for only two
areas which were within 1 to 2 km.

2 It was found that, at the 95% confidence level, the farthest people were
prepared to walk was 2.65 km.
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Choice Calibration sample Validation sample
set
Proportion Proportion
size |Frequency Frequency
(%) (%)

2 41 7.7 10 8.3

3 244 46.0 59 49.2

4 207 39.1 38 31.7

5 38 7.2 13 10.8
TOTAL 530 100.0 120 100.0

TABLE 4.10 Distribution of choice set sizes for both subsamples

(calibration and validation).
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4.4 PRACTICAL LIMITATIONS OF THE GRIS DATA

It is clear from the review of the GRIS data survey (see Section 4.2 and
Appendix 1) that there is a considerable amount of information available on
household, individual, and trip characteristics. @ Nevertheless, there are a number

of problems associated with the use of this data in this study.

The first problem is the lack of detailed information about the alternative modes
available for each individual in the data; the only information available is the
best alternative mode. Thus, it is difficult to identify the relevant set of

alternatives. This was discussed in the previous section.

A second problem in using the GRIS data is the omission of all stages with a
walking time of less than 5 minutes. This produces difficulties in determining

walking times from home to bus stop or train station and vice versa.

The third problem is the lack of information on the costs of travel by the car
driver and car passenger modes; the waiting times for public transport modes (bus
and train); comfort, convenience, and safety of all of the modes; and the routes

taken by all modes.

The last important problem is that there is no clear definition of the car
passenger mode. A car passenger may be a passenger in the family or other car
or may be part of a car— pooling scheme in which car owners travel together
using the car of each one in turn. This results in difficulties in the allocation of

costs of travel to car passengers.
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All of the above problems are discussed in the next section.

4.5 SELECTION OF THE EXPLANATORY VARIABLES

Probably the most difficult task for the analyst is the selection of the variables to
be used in the alternative model specifications. The reason, as was discussed in
Chapter 3, is that the analyst does not know exactly what variables individuals
considered in making their choice decisions. Individuals, in their choice decisions,
must evaluate the characteristics of the competing modes. However, the
perception of the characteristics of the alternatives modes varies from individual to
individual and may depend on several socio— economic characteristics of the
individuals and their households, as well as on the characteristics of the mode
and trip. Therefore, the variables which affect the individual choice decision can
be classified as:

1. Level— of— service variables (mode and trip characteristics).

2. Socio— economic variables (individual and family characteristics).

4.5.1 LEVEL— OF—SERVICE VARIABLES

To specify each alternative mode in the relevant set of alternatives available for
each individual in the data sample, a set of level— of—service variables is
required. For the chosen modes, values of some of these variables were
reported. These values were used directly in the calibration of each specified
model since, for journeys to work, the reported values are almost equal to the
true values. For daily repeated trips, such as work trips, a learning process is

involved which causes the reported values to converge towards their actual values

81



as the journey is continually repeated. Hence, for such journeys there should be

little difference between the reported and the measured values.

Since there was no information about alternative modes, a set of measured values
of their variables was required. These measured values were derived by manually
locating each pair of home and work addresses on large scales maps utilising the
Ordnance Survey Grid Reference (OSGR) of six digits which was coded with the
GRIS data. By this means location within an area of 0.01 km?2 can be defined.
Thus, the values of the level— of—service variables can be more accurately
measured than by using the ordinary centroid zonal system to represent the

locations of the trip ends.

The following level— of— service variables were used in the specification of the

alternative choice models:

Travel time

There is virtually no travel choice situation wherein the influence of travel time is
absent. Travel time plays an important role in modelling travel choices within a
transport system. It is a predominant explanatory variable of travel choice
behaviour and, in addition, it often serves as an evaluation measure for

transportation systems.

In considering the travel time taken for a particular trip by a particular mode,
the in— vehicle travel time must be distinguished, where it is available, from the
time spent outside the mode (walking and waiting times). It is necessary to split

the travel time into its components and weight them differently.
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For each chosen mode, the in— vehicle travel time used was the reported value
for that mode. To measure the in— vehicle travel time for car driver and car
passenger as alternative modes, an average speed of 19 kph was assumed?!. Since
the precise routes taken by car drivers were not known, in order to measure the
corresponding journey distances, likely routes were selected on the basis of local
knowledge and judgement. This procedure may result in the adoption of
erroneous values. To avoid this problem, direct airline distances between home
and work locations were measured and then multiplied by an average balancing
factor to convert them to their route distances. In this study a random sample
of 92 car trips was selected in order to establish an average value of balancing
factor. For all trips, the lengths of possible alternative routes were measured on
large scale maps and compared with the corresponding airline distances.  This
yielded an average value of balancing factor of 1.352. The car driver and car
passenger in— vehicle travel times were then derived from the distance between
the ends of the trip using the assumed average speed of 19 kph. As regards the
out— of— vehicle travel times for the two above modes, it was simply assumed that
there would be no walking and waiting times. This assumption was based on the
fact that the associated trips were reported as one— stage trips (i.e. the car was

parked close to or garaged at the house or work place of each individual).

For bus and train trips, in— vehicle travel times were measured from the relevant
bus and train time tables, the selected times being those of the fastest available

services. If transfer was required, the total in— vehicle time for the trip was

' This value was determined statistically from the observations where car driver
or car passenger were the chosen modes and was also proved empirically during
the course of the study. The same figure was used by Sobieniak et al (1979).

2 Wilson (1967) used balancing factors of (0.38 + 1.15 d) and (0.51 + 1.18 d)
for Coventry and the London area, respectively, where d is the direct distance.
DeDonnea (1971) used a balancing factor of 1.4. See also Bock (1968).
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equal to the sum of the in— vehicle times for all of the stages involved’.

The out— of— vehicle time for bus and train trips was divided into walking time
and waiting time. The walking times to and from bus stops or train stations
were determined using distances obtained from large scale maps and an assumed
average walking speed of 5.5 kph2. Locations of home and work places for each
trip were defined to within 100 metres using the OSGR. Walking times were
determined from the distance from the centroid of the grid square to the nearest
stop or station. In the event of transfer between two bus or train services, the

transfer walking time was also added.

Waiting times for bus or train were computed as half of the scheduled headway,
up to a maximum of 7 minutes for small headways, or 10 minutes for large

headways, plus the expected waiting time for transfer when required.

Travel cost

The GRIS survey did not gather any direct information on the travel costs of car
drivers and car passengers, and so it was necessary to estimate them. To do this
required knowledge of the costs to be attributed to the car drivers and car

passengers and how they could be estimated.

It is not at all certain how car drivers perceive their travel costs; whether they

' The author is indebted to Mr. B. Longworth of Strathclyde Buses, Mr. B.
Bryson of Central SMT Buses and to Western SMT Buses for supplying bus
timetables and details of bus fares; to Mr. T. Hart of the Department of
Economic and Business History at the University of Glasgow for supplying train
timetables; and to Mr. Birnie of British Rail for supplying details of train fares.

2 This figure was derived from the observed data. The range of walking
speeds used in most previous studies was from 5 to 6 kph.
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consider a total cost comprising standing costs (i.e. car licence, insurance,
depreciation and garage and parking costs) and running costs (i.e. the costs of
petrol, oil, tyres, servicing and replacements), or take account only of
out— of— pocket costs (i.e. petrol, oil and parking costs). If an individual buys a
car specifically for journeys to and from work, then the total cost is probably the
more appropriate one. However, in most cases a car is owned for a variety of
reasons and so it seems more reasonable to consider only out— of— pocket travel
costs. In this study, car travel costs were calculated, in pence, by multiplying
the total distance between the origin and destination of a trip by 2.7 pence /
mile, the estimated cost for an average family car. This estimated figure was
determined from information kindly supplied by the Automobile Association and
was based on an average family car of 1000 to 1500 cc engine capacity travelling

10000 miles per year, and a petrol cost (in 1978) of £ 0.78 per gallon.

In the GRIS survey there was no clear definition of the type of car passenger.
It was decided, therefore, for a car carrying a passenger, to allocate half of the
car driver's travel costs to the passenger on the assumption that both driver and
passenger were car— owning individuals who shared their trips and used their cars

alternately, or were members of the same family.

Travel costs for bus and train trips were reported where these modes were
chosen. Travel costs for these modes as alternatives were determined from the
relevant daily fare table or on the basis of a weekly ticket (Transcard), whichever

was cheaper.

Zero cost was allocated to the walk mode.
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Travel distance

Distances between the origins and destinations of all trips were measured in order
to test the effects of distance on the choice of transport mode. It appeared, for
example, that the car was the preferred mode, if available, for long trips, while
walking was preferred for relatively short distances, though there were some

notable examples of long— distance walks.

CBD

This dummy variable was introduced to test the effect on the mode choice

decision of trips passing through, or destined for, the CBD. For example, such

trips may not be undertaken by car, where possible, because of the associated

traffic problems and delays.

4.5.2 SOCIO— ECONOMIC VARIABLES

In order to evaluate the effects of taste variations amongst travellers on their

mode choice decisions, socio— economic variables were introduced into the

analysis. The socio— economic variables used in the study were:

Household position

This dummy variable was constructed to differentiate between the head of a

household and other members of the household, and to test the effect of that
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position on the car driver mode choice decision.

Number of workers in a household

This variable was introduced to test the effect of the number of workers in the

household on the likelihood of their sharing the family car for work trips.

Number of cars per driving licence holder

This variable was used to reflect the competition for available household cars
amongst household driving licence holders; it was not permitted to have a value

in excess of one.

Household Income

In the GRIS survey, estimates of gross annual household income were reported.
These were classified into twenty one ranges as shown and coded in Table 4.12.
These codes were used in this study to test the association between household

income and the choice of transport mode.

Sex

This dummy variable was introduced to test the effect of an individual's sex on

the mode choice decision. It appeared, for example, that females preferred not

to walk all the way to work even where the travel distances were short.
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Household Annual Code Household Annual Code
Income (£) used Income (£) used
0 - 499 1 5500 - 5999 12
500 - 999 2 6000 - 6499 13
1000 - 1499 3 6500 - 6999 14
1500 - 1999 4 7000 - 7499 15
2000 - 2499 5 7500 - 7999 16
2500 - 2999 6 8000 - 8499 17
3000 - 3499 7 8500 - 8999 18
3500 - 3999 8 9000 - 9499 19
4000 - 4499 9 9500 - 9999 20
4500 - 4999 10 10000 + 21
5000 - 5499 11
TABLE 4.12 Household annual income coding
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Occupation

This dummy variable was used to test the effect of an individual's occupation on
the choice of car mode and differentiated between professionals, managers and

skilled foremen and others.
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CHAPTER FIVE

MULTINOMIAL LOGIT MODELS FOR GLASGOW

5.1 INTRODUCTION

This chapter presents details of the derivation of the best— specified MNL model

with five transport modes: car driver, car passenger, bus, train, and walk.

The second section describes how a number of alternative specifications of the
model were examined. Backward elimination and stepwise statistical techniques
were used in the refinement process which involved the elimination of those
variables with the wrong signs or whose significance effects on the choice context
were minimal. This procedure was continued until a set of model specifications

was left in which all the variables were significant.

In the third section, a statistical comparison is made in order to choose the best
specified set of models. Almost all the models were found to be strongly
significant and from them four were chosen for further analysis on the basis of
the goodness— of— fit statistics and the values of the alternative— specific

constants.

In the last section, further tests of model validation are carried out on the four
selected models in order to select the final two models; one simple and one
complex. These models are then used for the aggregate prediction analysis (see

Chapter 6).
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5.2 MODEL SPECIFICATION AND VARIABLE SELECTION

Having developed the theoretical model for this study, the MNL model (see
Chapter 3), and completed the the data preparation (see Chapter 4), the next
step was to build a MNL model that describes individuals’' mode choice behaviour

relative to their journeys to work in Glasgow.

One of the advantages of disaggregate behavioural travel demand models over
conventional aggregate models is the ability of the former models to
accommodate, in their specifications, a large number of explanatory variables (see
Chapter 2). On the other hand, this is also a problem since the analyst does
not know with certainty which variables have significant influences on the model
performance. This means that the analyst does not know a priori the effects of
these variables on the individual mode choice decision except in the case of some
important variables such as travel time and cost which have different values for
different alternatives. The problem arises in particular with socio— economic
variables (see Chapter 3), since these wvariables have the same values for all
modes and their effects (i.e. coefficient value and sign) vary from mode to mode.
Therefore, the analyst must try various model specifications until a specification is

obtained which is consistent with a priori beliefs and fits the data fairly well?.

In this study, a number of preliminary model specifications were tried, each
restricted to a relatively small number of explanatory variables. The reason
behind these trials was to test where the socio— economic variables had the

highest significance. The results of these initial tests indicated that, for example,

1 See for example: Talvitie (1972); Talvitie and Kirschner (1978); Talvitie and
Dehghani (1979); Train (1979); Dehghani and Talvitie (1980, 1983); Ortuzar
(1980).
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the household position variable had little effect when it was specified in the utility
functions of the public transport modes, while it was more significant when
specified in the utility function of the car driver mode. Conversely, the CBD
variable had a relatively low effect on car driver and car passenger choice
decisions and a high effect on public transport usage. Household income was
also found to be more significant when specified in the utility functions of all

modes except walk than when specified in the utility function of car driver only'.

As was discussed in Chapter 4, socio— economic variables are included in order to
explain the differences in individuals' choice behaviour across available alternative
modes.  Alternative— specific constants have totally different functions from those
of the socio— economic variables; their inclusion in the model specification is to
account for the effects of unobserved variables. If the wvariables used fully
explain the individuals' choice behaviour then the alternative— specific constants
should have zero values. Thus, with perfect model specification and perfect data,
it can be argued that no alternative— specific constants are necessary. However,
estimating a model without alternative— specific constants is not recommended in
practice because the estimated values of the coefficients of the wvariables included
are seriously affected if those variables do not fully explain the observed choice
behaviour. Alternative— specific constants, therefore, represent the effect of those
variables that influence individual choice behaviour but are not included explicitly
in the model specification. The existence of significant and large values of the

alternative— specific constants indicates the absence of a good model specification?2.

1 Indeed this significance affects the choice of car driver, car passenger, bus,
and train modes in preference to the walk mode only but cannot discriminate
between the first four modes. This will be discussed later.

2 See for example: Domencich and McFadden (1975); Richards and Ben— Akiva
(1975); Dehghani and Talvitie (1980, 1982); Talvitie and Dehghani (1979);
Supernak (1984).
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For a model with a maximum of five alternatives, only four alternative— specific
constants can be specified (see Chapter 3). In this study the walk mode was,
therefore, considered as the base mode and the value of the alternative— specific
constant for this mode was set to zero. Other values of alternative— specific
constants should be interpreted relative to that of the walk mode [see Richards

and Ben— Akiva (1975)].

The variables selected for inclusion in the model specification are greatly
restricted by the limitations of the available data and the possible existence of

multi— collinearity between the variables.

Based on all of the above considerations, the specifications of the available

variables which appeared to be the most suitable are shown in Table 5.1.

Backward elimination and stepwise statistical techniques were adopted in order to
obtain the best specified model [see Draper and Smith (1966)]. Using this
approach, a more general specified model containing all possible explanatory
variables was first estimated. The variable that - had the least influence on the
model performance (lowest t— value, see Chapter 3) was then removed and a new
model specification was tried. This refinement process was continued until all
remaining variables were significant at the 95% significance level.  These trial

specifications of the model are shown in Table 5.2.
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Car Car
Variable Name Designation Bus|Train{Walk
Driver|Passenger
Mode CODE 1 2 3 4 5
Household Position HHPOS X 0 0 0 0
No. of Persons Working PERW 0 X 0 0 0
No. of Cars Owned CAOD X X 0 0 0
No. of Cars per CAPDL % 0 o] o |o
Driving Licence
Household Income HINC X X X X 0
Sex SEX 0 X X X 0
Occupation occ X 0 0
Centrél B951ness CBD 0 0 < < 0
District
Total Journey Time TJT X X X X X
In-Vehicle Time IVT X X X X 0
Out-of-Vehicle Time ovT 0 0 X X 0
Walking Time WK 0 0 X X 0
Waiting Time wT 0 0 be X 0
. 1
Walk m?de Walking WALK 0 0 0 0 <
Time
Distance DIST 0 0 0 0 X
Travel Cost COST X X X X
Car Specific Constant CCON 0 0 0
Car Passenger Specific PCON 0 1 0 0 0
Constant
Bus Specific Constant BCON 0 0 1 0 0
Train Specific TCON 0 0 0 1 0
Constant
Note:
x equals the value taken by the specified variables.
1 WALK variable was sometimes treated the same as WK variable in model

MNL—10 [i.e. alternatives entered (3— 5)].

TABLE 5.1 Variables used in the model specification.
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Variable Coefficients
(Alterna- (t-Values)
tives
Entered)! | MNL-C | MNL-1 | MNL-2 | MNL-3 | MNL-4 | MNL-5
HHPOS ——— | 1.4015 | 1.2236 | 1.2899 | 1.4868 | 1.4773
(1) (3.34) | (2.67y | (2.71) | (3.29) | (3.27)
PERW -—— | 0.0670 | 0.0677 | --- - -
(2) (0.45) | (0.48)
CAOD —— 1 0.7802 | 0.7826 | 0.7972 | 0.8086 | 0.7948
(1-2) (2.92) | (2.91y | ¢2.95) | (3.02) | (2.98)
CAPDL - 4.7612 | 4.5564 | 4.5888 | 4.6154 | 4.6150
(1) (7.64) | (7.92) | (7.68) | (4.71) | (4.70)
SEX ——= |-0.5320 |-0.4671 |-0.4699 | --- -
(2-4) (<1.93) |(-1.41) |(-1.42)
occ o= |-0.4943F| - - - -
(1) (-1.02)
HINC — 0.0875 | 0.0854 | 0.0884 | 0.0919 | 0.0976
(1-4) (2.22) | (2.14) | (2.25) | (2.33) | (2.49)
CBD == | 1.3223 | 1.3274 | 1.3270 | 1.3440 | 1.4127
(3-4) t.28) | (4.18) | (4.16) | (a.24) | (4.47)
IVT -——  |-0.0512 |-0.0505 |-0.0508 | -0.0510]-0.0439
(1-4) (-2.86) |(=2.72) [(=2.72) |(-2.73) |(-2.43)
OVT == |-0.1856 |-0.1851 |-0.1851 |-0.1856 |-0.1829
(3-4) (-8.21) |(-8.34) |(-8.01) |(-8.04) |(-8.08)
* * * *
WALK ———  |-0.0585 |-0.0586 |-0.0585 |-0.0640 |-0.1327
(5) (-1.54) |(-1.56) |(-1.54) |(-1.68) |(-5.56)

1 For codes, see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.2 The elimination of non— significant or wrongly— specified variables.

Continued:
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Variable Coefficients
(Alterna-~ (t~Values)
tives
Entered)? MNL-C MNL-1 MNL-2 MNL-3 MNL-4 MNL-5
DIST - -1.1539 |-1.1213 |-1.1232 |-1.0113 -
(5) (-2.57) |(-2.50) {(-2.50) [(-2.28)
COST -—— 0.0324 0.0325 0.0325 0.0326 0.0329
(1-4) (2.36) (2.36) (2.35) (2.35) (2.39)
CCON 0.9077 |-7.4743 |-7.4834 (-7.5619 |[-7.6156 |-7.7205
(D) (4.62) |(~-7.21) |(-6.94) |(-6.88) [(-6.97) (-6.93)
PCON -1.9353 [-5.6296 [-5.5932 [-5.4851 |-5.7275 |-5.8362
(2) (-11.6) [(-6.88) {(-6.87) |(-6.87) |((-7.13) |((-7.27)
BCON -1.1019 ([-2.2921 |-2.2699 |-2.3008 |-2.5389 [-2.7529
(3) (-7.11) [(-2.66) |(-2.62) |(-2.69) |(-2.98) |(-3.29)
*
TCON -1.9661 {-1.9848 [-1.9556 |~-1.9900 [-2.2309 {-2.4001
(1) (-9.74) [(-2.01) |(-1.98) [(-2.03) [(-2.28) |(-2.51)
LLR, 375.616 |655.399 |654.442 |654.262 [652.300 [646.943
d.f 4 17 16 15 14 13
% Right 67.74 77.55 77.36 77.36 77.74 77.93

1 For codes, see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.2 The elimination of non— significant or wrongly— specified variables.
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Table 5.2 illustrates the set of models resulting from the above elimination
procedure. The first model, MNL—C, represents the constant or market share
model. This model is very important in the comparison of different alternative
models (see Chapter 3). From models MNL—1, MNL-2, MNL-3, and

MNL~ 4, the following observations can be made:

1. The PERW variable has no significant effect on the choice of car passenger
mode. Due to the inconvenience of the relative locations of workplaces or
different times of starting work, individuals within a household may use public
transport modes or drive to their work places in their own cars rather than travel

as car passengers.

2. The SEX variable is also found to have no significant effect on the choice of
car passenger or public transport modes. This variable has a negative sign which
is attributed to the fact that male individuals are more likely than females to
prefer driving their cars if they are car—owners, or that they prefer to walk all

the way if the distances are relatively short.

3. The OCC variable has no significant impact on the car driver mode choice
decision and is also found not to have the expected positive sign. This is
confirmed by the low number of professionals, managers, and skilled foremen in
the data sample who drive their cars. It may be that those individuals leave
their cars for household use whilst themselves using public transport or

car— pooling arrangements.

4. The WALK variable is found not to be significant. This is, however, not the

expected result since WALK was a priori expected to have an important effect on

the choice of walk mode. It was found that this variable was specified with the
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DIST variable in the utility function of the walk mode, and since these variables
were, clearly, highly inter— correlated, their coefficients were wrongly predicted.

Thus, their inclusion in the same mode utility function should be avoided'.

5. The COST variable is found to be relatively significant, but has an unexpected
positive sign. The reason for this is that, even in the presence of the car
passenger alternative which has very low associated travel costs, individuals were

found to choose other modes with higher travel costs?.

Based on the above observations, variables PERW, SEX, and OCC were
eliminated from the new model specifications. The WALK and DIST variables
were used alternatively in different specifications and the COST variable was left
for further tests due to its importance as a policy— controllable variable. These
eliminations resulted in model MNL—S5 (see Table 5.2). The comparison of
model MNL— 5 with the previous models (i.e. MNL—1 to MNL—4) indicates that
the elimination process does not alter significantly the coefficient values of the
remaining variables and, therefore, the null hypothesis that model MNL—5 is not
significantly different from model MNL—1 is strongly accepted3. This indicates

that the refinement procedure is empirically correct.

All other variables in model MNL—S5 are significant at the 95% level and are
consistent with a priori expectations. Therefore, model MNL—5 was adopted as

the base model against which the new specifications could be compared.

1 See for example: DeDonnea (1971); DeNeufville and Stafford (1971);
Ossenbruggen and Li (1976); Lyles (1979); Stopher and Wilmot (1979); Khasnabis,
Cynecki, and Flak (1983).

2 Several previous studies found the same positive sign for the cost variable.
See for example: DeDonnia (1971); Richards and Ben— Akiva (1975); Lyles
(1979).

3 The LLR, statistic between models MNL—S5 and MNL—1 has the value of
8.456 with four degrees of freedom, whereas X2 at the 95% level is equal to
9.488.
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Since distance could be appraised more accurately than travel time, and since
individuals may also be expected to attach more importance to distance travelled
than to travel time, the DIST variable was substituted for the WALK variable in
MNL— 6 (see Table 5.3). This change resulted in a better specified model, as
indicated by the decreases in the values of the alternative— specific constants?.
This means that the utility function of the walk mode was better specified using

the distance travelled rather than the travel time.

Although the effect of the out— of— vehicle (OVT) variable in models MNL—S5
and MNL—-6 is highly significant, it seemed logical from the policy viewpoint to
explore the influence of dividing this variable into its two components, the WK
and WT wvariables2, As can be seen from model MNL—7, this division has
improved the model specification greatly through further reductions in the values

and significance of the alternative— specific constants.

Since the travel cost (COST) variable still had a positive sign in all the previous
models (see Tables 5.2 and 5.3), an attempt was made in model MNL—-8 to
introduce a combined variable describing the travel cost relative to the household
income (i.e. COST/HINC). This variable, although resulting in a higher positive
coefficient value (the increase in the coefficient value is attributed to the inclusion
of household income), is not significant.  Also, MNL—8 has lower values of
alternative— specific constants than model MNL—7. This implies that the model
specification has been improved. A further attempt was made (model MNL—9)
excluding the COST/HINC variable due to its non— significance. This also

resulted in a significantly better specified model than model MNL-5.

1 See for example: Talvitie and Kirschner (1978); Supernak (1984).
2 See for example: Quarmby (1967); Talvitie (1972); Algers, Hansen, and
Tenger (1975); Richards and Ben— Akiva (1975); Ortuzar (1980); Matzoros (1982).
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Variable Coefficients

(Alterna- (t-values)
tives
Entered)’ MNL-5 MNL-6 MNL-7 MNL-8 MNL-9 MNL-10
HHPOS 1.4773 1.4897 1.4830 1.4013 1.409 1.5095
(1) (3.27) (3.32) (3.31) (3.15) (3.15) (3.39)
CAOD 0.7948 0.8320 0.8077 0.8289 0.8824 0.7165
(1-2) (2.99) (3.10) (3.00) (3.10) (3.33) (2.73)
CAPDL 4.6150 4.6022 4.6054 4.5069 4.4631 4.6448
(1) (4.70) (4.70) (4.73) (4.66) (4.63) (4.80)
HINC 0.0976 0.0808 0.0813 -—- -——- 0.0847
(1-4) (2.49) (2.13) (2.13) (2.29)
CBD 1.4127 1.3351 1.2611 1.3231 1.3562 1.3204
(3-4) (4.47) (4.22) (3.94) (4.18) (4.33) (4.13)
2
WK -— -—- -0.1728 [-0.1692 |-0.1702 |-0.1504
(3-4) (-7.20) |(~=7.26) |(-7.34) |(-8.61)
WT -— ~—- -0.3208 |-0.3104 |-0.3100 |-0.3179
(3-4) (-4.19) |(-4.15) |((~4.16) |(-4.22)
*
IVT -0.0439 [-0.0509 |-0.0442 }-0.0321 }-0.0323 |-0.0290
(1-4) (=2.43) [(-2.75) [(-2.34) [(-2.01) {(-2.02) [(-1.68)
OVT -0.1829 |-0.1862 - -—- ——— -—
(3-4) (-8.08) [(-8.05)
WALK -0.1327 -—- -—- -—- -——- -——-
(5) (-5.56)

1 For codes see Table 5.1.

2 The WK variable was treated the same as WALK wvariable in model
MNL—- 10 [i.e. alternatives entered (3— 5)].

* Non- significant variable at the 95% level.

TABLE 5.3 Model specifications and disaggregation of the variables.

Continued:
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Variable Coefficients
(Alterna- (t-values)
tives
Entered)? MNL-5 MNL-6 MNL-7 MNL-8 MNL-9 MNL-10
DIST -— -1.6240 |-1.5853 |-1.4697 |-1.5104 -
(5) (-6.08) |(-5.84) [(-5.68) |(~-5.81)
COST 0.0329 0.0328 0.0338 -—- -——- -
(1-4) (2.39) (2.38) (2.39)
*
COST/HINC 0.1324
(1-4) — — —-— (1.20) - ——-
COST/DIST -0.0960
(1-4) -— -— -— -— -— (-2.70)
CCON -7.7205 |[-7.0448 |-7.0264 |-5.8899 |-5.9582 }|-8.0361
(1) (-6.97) [(-6.93) |[(-6.84) |(-7.08) [(-7.12) |(-7.68)
PCON -5.8362 [-5.1536 |-5.1433 |[-4.1908 [-4.3275 |-6.3169
1) (=7.27) {(=7.49) |(-7.38) |(-9.34) [(-9.85) [(-8.79)
* % * %*
BCON -2.7529 [-1.9381 |-1.1948 [-0.0047 0.1307 |-1.4772
(1) (-3.29) (-2.62) [(-1.39) |(-0.01) [(0.02) (-1.79)
* * %* % %
TCON -2.4001 |-1.6233 |-0.9812 0.4526 0.6727 [-1.0007
(1) (-2.51) {(-1.85) |(-1.02) (0.58) (0.88) |(-1.25)
LLR, 646.943 [649.483 |653.256 |643.839 |[642.376 |652.452
d.f. 13 13 14 13 12 13
% Right 77.93 77.36 76.98 77 .36 77.74 76.98

1 For codes see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.3 Model specifications and disaggregation of the variables.
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An attempt was made, in model MNL—10, to include the COST/DIST variable.
This again resulted in a better— specified model than model MNL—S. As can be
seen from model MNL—10, the variable COST/DIST possesses a negative sign.
This negative sign is attributed to the fact that the choice probability of any
mode decreases as the unit cost per unit distance increases. The only worrying
factor is the reduction in the coefficient value of the IVT variable and its impact
on the individual mode choice decision. This decrease might be attributed to the

interdependence of the IVT and DIST variables.

In order to obtain a relatively simple model with few variables included, all travel
time components were aggregated into one single variable, namely the total
journey time (TJT). In addition, the effect of excluding the COST variable from
model MNL—5 was tested. As can be seen from model MNL—11 in Table 5.4,
the resulting alternative— specific constants were slightly decreased in comparison
with MNL—5 except for the train mode which has a slightly higher specific
constant.  Despite this, model MNL—11 seemed to have a better specification
than model MNL—5. In model MNL— 12, the HINC variable was excluded, and
the model specification was considerably improved. Since travel cost is an
important policy variable, and further to confirm that the exclusion of HINC
would improve the model specification, the HINC and COST/DIST variables were
then restored to model MNL—13. ’ Although the COST/DIST wvariable clearly
seemed to improve the specification, the resulting model was found to have a
poorer specification than model MNL—12 as shown by slightly higher
alternative— specific constants.  Since the HINC variable was specified in the
utility functions of all modes except walk (car driver, car passenger, bus, and
train), it can discriminate between the choices of any one of these modes with
respect to the walk mode only; it does not have the ability to discriminate

between these modes. Hence, in model MNL—14, the HINC variable was
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excluded, and the model specification was further improved. It should be noted
that the inclusion of the COST/DIST variable does not alter the coefficient value
of the TJT variable (see Table 5.4). Thus the effect of correlation between the

variables in this particular case was negligible.

In general, examination of Table 5.3 shows that the effects of some
level— of—service variables confirmed a priori expectations. @ For example, one
would expect the coefficient of the OVT variable to be greater than that of the
IVT wvariable. In models MNL—5 and MNL—6 the OVT variable was, indeed,
found to have a greater coefficient than IVT (by a factor of 3—4). In models
MNL—S5 and MNL—-7 to MNL-10, the coefficients of the WALK and WK
variables were approximately equal and 3—4 times the value of the IVT
coefficient. The coefficient of the WT wvariable was found to have a value 7—10
times that of the IVT coefficient and twice that of the coefficient of the WK

variable.

The differences between the coefficients of the WK and WT variables and that of
IVT are greater than normally reported. Customary values of the WK and WT
coefficients are, respectively, 2 and 2.5 times the value of the IVT coefficient!.
The greater difference in the present study is attributed to the fact that
individuals tend to be more conscious of the OVT variable components (i.e. WK
and WT) due to the hilly nature of the topography of Glasgow, to the
unpredictable weather and also to the effect of the River Clyde, the presence of
which causes some of the trips to be split into more than one stage, resulting in

more transfer (i.e. more walking and waiting times).

1 See for example: Quarmby (1967); Pratt and Deen (1967); MclIntosh and
Quarmby (1970). However, Algers, Hansen, and Tenger (1975) found that the
waiting time coefficient was 7 to 12 times larger than the in— vehicle time
coefficient.
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Variable Coefficients
(Alternatives (t-values)
Entered)? MNL-11 MNL-12 MNL-13 MNL-14
HHPOS 1.5851 1.5101 1.6322 1.5599
(L (3.54) (3.50) (3.62) (3.54)
CAOD 0.8673 0.9440 0.8396 0.9136
(1-2) (3.39) (3.71) (3.28) (3.63)
CAPDL 4.6893 4.5286 4,.6399 4.4863
(1) (4.82) (4.88) (4.65) (4.65)
HINC 0.0819 —-——— 0.0794 -——
(1-4) (2.27) (2.15)
CBD 1.4133 1.3817 1.2743 1.2453
(3-4) (4.73) (4.74) (4.10) (4.03)
TJT -0.1070 -0.1029 -0.1058 -0.1018
(1-5) (-8.83) (-8.68) (-8.66) (-8.45)
COST/DIST —-——- -——- -0.0826 -0.0849
(1-4) (-2.63) (-2.68)
CCON -6.6817 -5.5697 -6.3065 -5.2218
(@) (-7.16) (-7.57) (-6.68) (-6.76)
PCON -4.8339 -3.8513 -4.5244 -3.5656
(1) (-8.93) [(-13.14) (-8.21) |(-11.49)
BCON -2.0153 -1.0950 -1.1536 —0.2430*
(1) (-4.42) (-5.63) (-2.10) (-0.69)
TCON -2.8581 -1.9236 -1.9805 -1.0539
(1) (-5.80) (-7.53) (-3.38) (-2.66)
LLR, 599.505 594,333 609.001 604.393
d.f. 10 9 11 10
% Right 74.53 73.77 74 .72 74.72

1 For codes see Table 5.1.

* Non— significant variable at the 95% level.

TABLE 5.4 Model specifications and aggregation of the variables.
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5.3 COMPARISON OF ALTERNATIVE SPECIFICATIONS OF THE MODEL

Alternative model specifications were calibrated and presented in the previous
section. To determine which models provide the most satisfactory specifications
for use in further analyses, the alternative models should be compared statistically.
The usual method of comparison is by defining the goodness— of— fit measures for
the models in question (see Chapter 3) and comparing their values. The model
with the greatest goodness— of— fit values among the models being compared is
considered to provide the best explanation of the available data and to have the

most satisfactory specification.

Goodness— of— fit measures such as LLR and p? are shown for all models in
Table 5.5 and compared with the basic equally— likely and the market— share base
models. The LLR measures have a X2 distribution and can be compared with
the critical 95 percent values shown in the table. Comparison of these values

reveals the following:

1. All the models have very high values of LLR, and p,2. Thus the null
hypothesis that the equally— likely model is not significantly different from these

tested models at the 95% level is strongly rejected.
2. All the models have excellent values of LLR; and p¢2. Thus the null
hypothesis that the market—share model is not significantly different from these

models at the 95% level is also strongly rejected.

3. All the models have very high values of % right. This may also indicate that

all these models were well specified.
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Statistical

Alternative Models

Measures MNL-C MNL-5 MNL-6 MNL -7 MNL-8 MNL-9
LLF, -644 .60 |-644.60 |-644.60 |-644.60 |-644.60 |-644.60
LLFo -456.79 |[-456.79 |-456.79 |-456.79 |-456.79 |-456.79
LLFB -456.79 |-321.13 {-319.86 {-317.97 |-322.68 [-323.41
LLR, 375.62 646 .94 649.98 653.26 643 .84 642 .38
(d.f.) (4) (13) (13) (14) (13) (12)

(x2, 0.95)| (9.49) |(22.36) |(22.36) |(23.69) [(22.36) |(21.03)
LLR. 271.32 273.86 277 .64 268.22 266.76
(d.f.) n.a (9) ¢)) (10) (9 (8)

(x2, 0.95) (16.92) [(16.92) [(18.31) |(16.92) {(15.51)

P2 0.291 0.502 0.504 0.507 0.499 0.500
pc? n.a 0.297 0.300 0.304 0.29%4 0.292
% Right 67.74 77.93 77.36 76.98 77 .36 77.74

TABLE 5.5 Summary of goodness— of— fit measures for all model

specifications.

Continued:
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Statistical

Alternative Models

Measures MNL-10 MNL-11 MNL-12 MNL-13 MNL-14
LLF, -644 .60 -644.60 -644 .60 -644.60 -644 .60
LLF, -456.79 -456.79 -456.79 -456.79 -456.79
LLFﬁ -318.38 -344 .85 -347 .44 -340.10 -342 .41
LLR 652 .45 599 .51 594 .33 609.00 604 .39
(d.f.) (13) (10) (9) (1) (10)

(Xz, 0.95) (22.36) (18.31) (16.92) (19.68) (18.31)
LLR, 276.82 223.88 218.70 233.38 228.76
(d.f.) (9 (6) (3) (7 (6)

(Xz, 0.95) (16.92) (12.59) (11.07) (14.07) (12.59)
Pg? 0.506 0.465 0.461 0.472 0.469
pc? 0.303 0.245 0.239 0.256 0.250

% Right 76.98 74.53 73.77 74.72 74.72
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As can be seen from Table 5.5, models MNL—7 and MNL—9 have sightly higher
values of all the measures. Therefore, these models could be considered as the
best specified models. However, Horowtiz (1981, 1982) pointed out that:
"Although it is generally recognised that these procedures (goodness— of— fit tests)
can provide only rough indications of the quality of models, they often are the
only diagnostic procedures that are carried out during the model estimation"; and,
"It is easy to show that in comparisons of nested models?, uncritical use of
goodness— of— fit  statistics can yield perverse results. For example, the
well— known likelihood ratio index (McFadden, 1974) will nearly always lead to
acceptance of the model with the largest number of parameters, even if many of
these parameters are superfluous”. Therefore, it is very difficult to discriminate
between the tested models on the basis of statistical tests alone, especially when

the statistical measures are nearly equal.

In this study, two basic criteria were employed to evaluate different model
specifications: the statistical goodness— of— fit measures for the models under
consideration; and the values of the alternative— specific constants which actually
reflect the explanatory powers of these modeis. Reinvestigating Tables 5.3, 5.4,
and 5.5, it can be concluded that models MNL—8, MNL—9, MNL-10, and
MNL—14 have the best specifications. However, model MNL—8 has an
unexpected positive COST / HINC coefficient and so was excluded from further
analysis. Models MNL—9, MNL—10, and MNL—14 will, therefore, be discussed

next.

1 Nested models are pairs of models based on the same mathematical theory,
but where the one with the lower number of variables is considered as a linear
restriction of the other (e.g. a logit model with different specifications).
Non— nested models such as logit and probit are based on different theories.
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5.4 VALIDATION TESTING OF THE SELECTED MODELS

To assess the predictive validity of the chosen models, the choice probabilities of
each alternative mode were computed for each individual in the hold— back
validation subsample. The predicted choice shares of the alternative modes were
calculated in two different ways. Firstly, the choice probabilities of each mode
for each individual were summed and averaged to give the expected choice shares
of each mode. These are described as the expected share in Table 5.6.
Secondly, the mode choice of each individual was predicted by the highest
probability method and the percentage of individuals predicted to choose each
mode then computed (i.e. each individual in the subsample was assigned to the
highest— probability mode and the resulting proportion of individuals choosing each
available mode computed). These are described as the predicted share in Table
5.6. These two shares are compared with the actual share of each mode in the
validation subsample in Table 5.6. These results reflect the excellent fit of the
tested data and may reflect the potential applicability of the chosen models to

other locations similar to Glasgow.

As can be seen from Table 5.6, the models appear to provide an excellent match
between the actual and the expected shares, and also a relatively good match
between the actual and the predicted shares. Thus, none of these models

appears to be much superior to the others.
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Alter- Choice Proportion (%)
native Share
Model |Distribution C?r Car Bus Train Walk
Driver |Passenger
Actual 29.2 12.5 25. 8.3 25.0
MNL-9 Expected 28.1 13.6 247 8.3 25.3
Predicted 32.5 7.5 22, 5.8 31.7
Actual 29.2 12.5 25. 8.3 25.0
MNL-10 Expected 27.8 13.1 24.9 8.2 26.0
Predicted 31.6 5.2 26. 7.5 29.2
Actual 29.2 12.5 25. 8.3 25.0
MNL-14 Expected 27.6 12.9 24.3 8.5 26.7
Predicted 35.8 5.3 22. 5.2 31.6

TABLE 5.6 Summary of the validation test results for the chosen models.
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For further analyses (i.e. aggregate share prediction and policy change) two
models, MNL—10 and MNL—-14, were chosen as being the Dbest— specified;
MNL—9 was not considered further since it did not include the COST variable
and so was less policy—responsive. The specifications of models MNL—10 and
MNL— 14 are similar and both include the time and cost variables, which are the
most important policy— controlable variables, with the correct signs. The models

MNL—-10 and MNL-14, indeed, represent the complex and the simple model

respectively.
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CHAPTER SIX

AGGREGATE PREDICTION ANALYSIS

6.1 INTRODUCTION

In travel demand analysis and forecasting, the prediction of aggregate travel
behaviour and of the performance of alternative transportation systems are always
needed by transportation planners and decision— makers in order to determine the
desirability of possible alternative transportation plans. The analysis of travel
behaviour at the individual level is always preferred on theoretical grounds
because of its correspondence with the actual behavioural choice process. This

chapter considers aggregate prediction using disaggregate choice models.

The remainder of the chapter is divided into six sections. Section 6.2 presents
and discusses the problems inherent in the application of disaggregate travel
demand models to the prediction of aggregate behaviour. Section 6.3 describes
the available alternative aggregation approaches. These are the naive, statistical
differentials, classification, numerical integration, and enumeration procedures.
Section 6.4 presents the different sources of prediction error in the application of
these methods. In Section 6.5 the analytical measurement of aggregate prediction
errors is considered. Section 6.6 presents the empirical results of the use of the
naive, classification, and enumeration approaches. Finally, the last section

compares the selected aggregation procedures.
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6.2 THE APPLICATION OF DISAGGREGATE MODELS AT THE

AGGREGATE LEVEL

The MNL models derived in Chapters 3 and 5 can be utilised to predict directly
the behaviour of an individual selected randomly from the population. This is
generally of little use to transportation planners and decision— makers since they
are always interested in the prediction of aggregate travel behaviour (which is the
accumulation of individuals' behaviour) in order to evaluate their alternative

transportation plans and decisions.

Two alternative approaches to the prediction of aggregate travel behaviour are
available. = The first approach, the conventional one, uses an aggregate model
calibrated with aggregate data to predict directly the aggregate travel behaviour.
The second approach is to calibrate a disaggregate model using disaggregate data

and to use this model for aggregate predictions.

There are a number of problems associated with the first approach.  Firstly, a
considerable number of observations is needed to calibrate an aggregate model
and a direct consequence of this is that aggregate models are expensive and
time— consuming to produce. Secondly, the loss of information experienced in
aggregating values of the explanatory variables (i.e. no account is taken of the
variation across the data observations for a zone) results in an aggregate model
that has biased coefficients. Finally, the lack of policy— controllable variables in

the specifications leads to models which are inflexible and less policy— oriented.

The only advantage of aggregate models is that they may be used directly to

predict aggregate travel behaviour. However, considering the aforementioned

problems, although these models may be able to simulate adequately the observed
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aggregate situation from which they were derived, their stability in other practical

transportation situations is doubtful?.

On the other hand, the advantages of using disaggregate models for the prediction
of aggregate travel behaviour are just the converse of the disadvantages of using
aggregate models. Firstly, disaggregate models may be calibrated using relatively
few data points, and therefore, may be relatively quickly and inexpensively
estimated. Secondly, there is no information loss due to aggregation because no
aggregation is necessary to calibrate these models. Thirdly, their encompassing
the policy— relevant variables provides disaggregate models with a potentially more
useful role in prediction than the descriptive aggregate models. Finally, because
they do not contain any aggregation scheme, disaggregate models can be used at

different levels of aggregation, in different places and at different times.

Conceptually, therefore, disaggregate models are likely to be much more useful in
the prediction of aggregate travel behaviour than the corresponding aggregate

models. Past studies would seem to support this contention?2.
However, the problems of aggregation and possible loss of information, which are
in fact equally applicable to the use of aggregate models, must be confronted

when using disaggregate models in aggregate prediction.

While it is desirable to calibrate a model at the disaggregate level, it is not

1

See for example: Watson (1973, 1974); Richards and Ben— Akiva (1975).
2

See for example: DeDonnea (1971); Kanafani (1972); Ben— Akiva (1973);
Kannel and Heathington (1973); Tahir and Hovind (1973); Talvitie (1973);
Koppelman (1974, 1975, 1976a); Miller (1974); Watson (1974, 1976); Westin
(1974); Atherton (1975); Difilio and Reed (1975); Liou et al (1975); McFadden
and Reid (1975); Watson and Westin (1975); Meyburg and Stopher (1975);
Hensher and Johnson (1977); McFadden et al (1977); Bouthelier and Daganzo

(1978, 1979); Hensher and Stopher (1978); Parody (1978); Ortuzar (1980) ;Dunne
(1982).
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always possible to use the same model directly for aggregate predictions, since the
direct substitution of the average values of the relevant explanatory variables into
the model formulation (the naive approach) may provide inaccurate predictions.
For example, if the disaggregate model is non— linear, the disaggregate functional
specification (with average values of the explanatory variables substituted for the
individual values) will give a biased prediction of the average of the dependent
variable, except in the special case when the population concerned is
homogeneous with respect to those variables that influence the choice under study
[ Theil (1955); Green (1964)]. However, when the data are available at the
disaggregate level, a more accurate aggregate prediction can be obtained directly.
In this case, the expected choice behaviour can be estimated for each individual
and then summed or averaged to obtain the aggregate travel predictions (the
enumeration approach). This approach, however, requires voluminous data and

exhaustive computation.

Between the extreme procedures for the prediction of aggregate travel behaviour,
the naive and enumeration procedures, a number of alternative aggregation
approaches have been proposed [Talvitie (1973); Westin (1974); Koppelman

(1975)]. All of these methods are discussed next.

6.3 AGGREGATION APPROACHES

Koppelman (1975) defines five general types of aggregation procedure, according
to the method by which the distribution of the explanatory variables is
represented in the aggregate prediction models, though some of the five can be
considered as special cases of the others. The purpose of these methods is to

transform the disaggregate model and the distribution of the explanatory variables
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into a set of aggregate predictions. Each procedure reduces the problem of
aggregation by imposing some simplifying assumptions about the choice model, the

population or both. Each of these approaches is discussed in turn.

6.3.1 THE NAIVE APPROACH

The simplest, and possibly the most obvious, procedure for the prediction of
aggregate travel behaviour involves the use of the sample average values of the

explanatory variables together with the coefficients of the disaggregate model.

The general form of the disaggregate model is given by,

Pin = f; (Xp) (6.1)

where,
P;, is the probability of individual n choosing alternative i,
f; is the choice function for alternative i, and
X, is the vector of the characteristics of available alternatives and

individual attributes.

For the MNL model Equation 6.1 becomes,

exp (Vip) AR
Pin = (6.2)
> exp (Vjn) :
J€An

118



where,

Vin, Vjn  are the utility functions of alternatives i and j, respectively.

Thus, the expected aggregate choice share for alternative i in the sample of N

observations is,

Sin = F1(X) : (6.3)
or,
exp (\_IiN)
SiN = — (6.4)
Z exp (VjN)
JeAN
where,

SiN is the aggregate choice share for alternative i, and

X is a vector of average values of explanatory variables for each

alternative over all the prediction group.

Although this procedure uses the average values of the explanatory variables, it
still has the advantage over the traditional aggregate prediction approach, which
uses the aggregate model with the average values, since the coefficients are
estimated at the disaggregate level. In addition, less data are required for the
calibration of the disaggregate model. However, this approach implicitly assumes
that each individual will behave as if represented by the average values of the

explanatory variables, thus basing the analysis on the representative individual and
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taking no account of the distributions of the values of the variables across the
prediction group. If this homogeneity of individuals does not hold, and if the
functional form of the model is non— linear, then this approach will produce a
biased prediction. However, the naive approach is the most likely to be used in

the absence of recognition of the aggregation problem.

Prediction by the naive approach can be adjusted to account for differences in

the choice set availability when such differences exist.

6.3.2 THE STATISTICAL DIFFERENTIALS APPROACH

In this approach, the expected aggregate shares are predicted on the basis of the
moments of the distribution of the probabilities over the sample population. The
method was first suggested as an approach to aggregate prediction by Talvitie
(1973). He noted that choice probability could be expressed in terms of a
Taylor series expansion of the disaggregate choice function about the mean
variable values of an aggregate. @ However, the practical issues associated with
estimating higher order moments and the instability of the series when the
distribution is highly dispersed led the series to be terminated after the second
moment or variance term [Johnson and Kotz (1969)]. Thus, for the binary
choice case, the aggregate choice share of alternative i in a sample of N

observations is given by,

) 1 d2? £i(V) ,
Sin = f{(V) + — —— | oy (6.5)
2 d v2 Y

where,

fi(v) is the choice function in terms of the net utility between the
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two alternatives, evaluated at the mean value of the net

utility,
& (V)
—  |s is the second derivative of the choice function with respect
d Vv v .
to net utility, evaluated at the mean value of the net
utility, and
0\2/ is the variance of the net utility distribution in the prediction
group.

The corresponding equation for the multinomial choice situation is,

. 1 J K dz fi(v)
Sin = £ (V) + — 3 EEE—— I
2 =1 k=1 avyave [V

Cov(Vj,Vk) (6.6)

where,
v, V  are the vectors of utility and mean utility values for each
alternative, respectively, and
Cov(Vj,Vk) is the covariance in the distribution of utilities for alternatives j

and k; when j=k it is the variance of the utility distribution.

The advantage of this procedure is that it takes into account the within— group
variance, through the use of the distribution moments of the explanatory
variables, to achieve unbiased aggregate predictions, thus making it superior to the
naive approach. However, Talvitie (1981) suggests that the use of the Taylor
series approximation in multiple choice cases cannot be recommended due to its

instability in the binary case [see also McFadden (1981)].
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6.3.3 THE CLASSIFICATION APPROACH

The classification approach was initially developed to overcome the high prediction
biases which result from the use of the naive approach [Koppelman (1975); Reid
(1978)]. It involves, firstly, dividing the entire prediction group into relatively
homogeneous groups, or market segments, so as to minimise within— group and
maximise between— group variances [Ben— Akiva and Lerman (1985)]. The naive
approach is then used to predict aggregate choice shares for each group or
segment. Finally, the aggregate share of each alternative in the entire prediction

group is computed from the weighted sum of all the naive shares of the groups.

Thus,
G Ng _
SiN = f; (Xg) (6.7)
g=1 N
where,

is the vector of the average values of the explanatory variables for

02<I

Ny individuals in group g,
Ng is the total number of individuals in group g, and

N is the total number of individuals in all prediction groups.

The traditional geographical segmentation of a prediction group has been shown
to be only a fair classifier of the level— of—service variables, and a poor classifier
" of the socio— economic variables, and results in groups which are insufficiently

homogeneous. This leads to imperfect predictions. However, Koppelman (1975)
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suggests that further classification efforts to obtain more accurate aggregate
predictions should concentrate on the distribution of the socio— economic variables
which are not homogeneous within zones. The selection of the socio— economic
variables for classification should be aimed at reducing the variance of the net
utility distributions. This can be accomplished by the selection of those variables
which exhibit the largest variances in the utility function. For example, in mode
choice prediction, household income, car ownership, and the number of cars per

driving licence holder are the most commonly used classifier variables.

However, classification by the wvalue of a single explanatory variable sometimes
gives unacceptable prediction results, especially in large aggregate prediction
groups. Reid (1978) suggests classifying directly by the value of the utility
function. The only problem with the use of Reid's approach is that utilities are
not discrete, and intuition gives no guide as to how to divide the utility values

into different utility classes [Ben— Akiva and Lerman (1985)].

6.3.4 THE NUMERICAL INTEGRATION APPROACH

This approach attempts to represent the variation of the explanatory variables
across individuals in the prediction group in terms of their joint probability
density function. The aggregate choice share of each alternative is then
computed by integrating the disaggregate choice probability function weighted by

the joint probability density function of the explanatory variables. Thus,

1
sin- | £100 PLOO ax (6.8)
0
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where,
X  is the vector of the explanatory variables, and

Pi(X) is their joint probability function.

However, Py(X) is generally unknown, so an approximate theoretical distribution is
usually assumed. Westin (1974) has shown that, when individual choice can be

represented by the binary logit function,

1
fi(X) = (6.9)
1 + exp (BXj)

and the explanatory variables are normally distributed over the prediction group
with mean 521 and variance— covariance matrix X, so that @X; is normally
distributed with mean ﬁf(.i and variance ¢2 = BT Y ([, then the density function

Py(X) is shown to have the beta distribution (Sg)' given by Equation 6.10.

1 1

Pi(X) =
J 21 o} P;(1-P;)

{In ( ———— ) - X; }
20i 1 - P;

exp [ -

No closed form for Equation 6.8 exists, but a table for the Spg distribution

function can be utilised to reduce the computational burden of Equation 6.10.

1 See for example: Johnson (1949); Johnson and Kotz (1972); Westin (1974).
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McFadden and Reid (1975) used the same normal distributional assumption with
the binary probit model. The aggregate share probit model which they obtained

is,

SiN = & ( ———— ) (6.11)

where,

¢ is the standard cumulative normal distribution.

This method was extended to the multinomial case by Bouthelier (1978).

In general, the numerical integration method would be quite cumbersome even for
the binary cases. Its extension to the multiple cases would be difficult and the
computational requirement of evaluating their integral may be prohibitive [Talvitie

(1976); Ben— Akiva and Lerman (1985)].

6.3.5 THE ENUMERATION APPROACH

This approach represents the most explicit theoretical relationship between
aggregate and disaggregate travel demand. The expected aggregate choice share

for each alternative is obtained simply by averaging all of the estimated individual

choice probabilities for that alternative. Thus,
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1 N

> i (Xp) (6.12)
N n=1

Although this method requires voluminous data and exhaustive computation due to
the direct use of the values of the explanatory variables relevant to each
individual in the prediction group, it has been shown, nevertheless, to give precise
aggregate shares from the disaggregate models. For this reason it can be used as
an ideal reference for evaluating the predictive performance of ‘the alternative

approaches [Koppelman (1975); Reid (1978)].

6.4 SOURCES OF PREDICTION ERRORS

Five aggregation approaches were identified and described in the previous section.
These approaches are differentiated by their computational formulation and their
input data requirements. All of the procedures are approximate and introduce
errors into their aggregate predictions. It is necessary to consider the sources and
types of these errors and how they are measured in order to evaluate the

performance of the various aggregation procedures.

The major types of prediction errors associated with the use of disaggregate

choice models are as follows:
1. Model specification errors: These are the result of applying the choice models
to areas or situations different from the ones in which the models were calibrated

(i.e. model transferability errors).

2. Data measurement errors: These comprise measurement errors associated with
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the explanatory variables in both the calibration and prediction stages, and errors

in estimating parameters’,

Errors in model specification and data measurement may interact to produce
errors in the prediction of the individual choice probabilities. These errors are
propagated through the aggregation procedure to produce errors in aggregate

prediction and may, therefore, be called collectively "propagation errors".

3. Aggregation errors: These result from the use of an approximate aggregate
prediction approach to replace the most theoretically consistent aggregate

prediction approach, the enumeration approach.

The above errors are determined in different ways. Errors due to model
specification and data measurement (propagation errors) can be isolated by
comparing the prediction by the enumeration method, which has no aggregation
error, with the observed shares. The aggregation error from each aggregation
approach can be obtained by comparing the prediction by each aggregation
approach with the prediction by the enumeration approach. This comparison is
the most commonly used since, firstly, the enumeration approach is consistent
with relevant theories of individual travel behaviour; secondly, no aggregation
error is involved; and finally, in most aggregate prediction applications the actual
shares are unknown [Talvitie et al (1982)]. The total prediction error, which is
the sum of all the above errors, is normally identified directly by comparing the
aggregate predictions by each aggregate approach, except the enumeration
approach, with the observed shares. However, this comparison is clouded due to

the fact that the observed shares are not truly representative of the actual shares

1 See for example: Manski (1975); Horowitz (1982, 1983); Ben— Akiva and
Lerman (1985).
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in the entire population because of sampling error [Koppelman (1975)].

6.5 MEASURES OF THE PREDICTION ERRORS

For comparative purposes, it is often desirable to express the error measure as a
percentage of a reference value derived from an ideal procedure. In the case of
the aggregate prediction error, two decisions must be made regarding the
development of this error: how to express the prediction error of a single
prediction unit (e.g. should it be an individual, a zone; a segment; a group of
individuals; the entire sample; etc.?); and how to aggregate the error from the

single prediction unit to some average aggregate prediction error.

In this study, the error measure chosen to describe the error in each single

prediction unit is given by,

BEM = (6.13)

where,

BEM is the basic error measure in prediction per single unit of

prediction,

Ppu is the predicted value for the prediction unit estimated by the tested
aggregation approach,

Py is the reference value for the prediction unit estimated by the

enumeration method, or the actual share (if available), and

u is the unit of prediction.
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In order to allow for an equitable summing of the total amount of prediction
error for each prediction unit in the entire prediction group (i.e. to reflect the
relative importance of each prediction unit), the error should be multiplied by a
weighting value which is simply the reference value of that prediction unit or the
size of the prediction unit or both. Thus, the average error measure for the

entire prediction group is defined by,

_ (6.14)

where,
AE is the average prediction error for all prediction units, and

U  is the total number of prediction units in the entire prediction group.

In order to treat the positive and negative errors alike (which is not the case
with the average error), the entire prediction group error should be expressed as
the average sum of squares of all prediction unit errors [i.e. the Root Mean

Square Error (RMSE)], thus:

P - P
pu ru 2
RMSE = [ 5 (—o 22 py /S Pey 1V (6.15)
uel Pru uel
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The Standard Deviation of this Error (SDE) is given by,

Py - P
pu ru
SDE =[S ( (———"y ~AE)? Py /S Ppy1'/? (6.16)
uel Pru ue

The relationship among the three error measures is,

RMSEZ? = AE® + SDE? (6.17)

In measuring the model specification and data measurement errors, Ppy and Ppy
represent, respectively, the prediction values by the enumeration approach and the

observed shares.

In estimating the aggregation error only, the values of Ppu and P, represent,
respectively, the prediction values by each aggregation approach except the

enumeration approach and the values by the enumeration approach.

In calculating the overall prediction error (which includes all of the types of error
presented in the previous section), and provided that the actual shares are known,
the values of Ppu and P, in Equations 6.13 and 6.14 represent, respectively, the
prediction values by each aggregation approach except the enumeration approach

and the actual or observed shares.
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6.6 EMPIRICAL APPLICATION

The objectives of this empirical analysis are: firstly, to make a comparative
evaluation of the performances of the different aggregation procedures through the
identification of the magnitudes of their aggregation errors; and secondly, to test
the predictive accuracies of the simple and complex models chosen in this study

in terms of their aggregate prediction errors.

The choice of an aggregation approach for use in the prediction of aggregate
travel behaviour depends mainly on the structure of the disaggregate model; the
form of the available data; the accuracy required; and the economic considerations
of the application of the chosen approach. In this study, aggregate prediction
errors were examined for three different aggregation approaches; the naive,
classification, and enumeration approaches. The naive and classification
procedures were chosen for their conceptual simplicity and moderate data
requirements (see Sections 6.3.1 and 6.3.2). The enumeration approach was
chosen since it is conceptually simple to make aggregate predictions of travel
behaviour when the data are available at the individual level.  The statistical
differentials and numerical integration procedures were excluded as their high
computational requirements in multiple choice situations make them infeasible (see

Sections 6.3.3 and 6.3.4)1.

Unfortunately the data used in this empirical study are the data used also in the

calibration of the disaggregate choice models. In fact, a true aggregate prediction

1 A personal communication (late 1988) from Prof. F. Koppelman of
Northwestern University, USA, strongly advised against the use of the statistical
differentials procedure. See for more details: Reid (1978); Hensher and Stopher
(1979); McFadden (1981); Talvitie (1981); Supernak (1984, 1987); Ben— Akiva and
Lerman (1985).
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test should be carried out with another data set. However, the intention here is
to show the ability of the tested models to reproduce the original data. While
this is only the first step in the assessment of the models to be used in the
aggregate prediction, if the models were to perform badly at this stage, it would
certainly not be worthwhile using them with another data set or in another

location.

The aggregate prediction errors for the three methods employed for the two

choice models are presented and discussed in the following subsections.

6.6.1 AGGREGATION ERROR FOR THE NAIVE APPROACH

As was discussed earlier, the naive approach uses the average values of the
explanatory variables for the entire study area in the disaggregate choice models
and their computed probabilities as the expected choice shares for the entire study

area.

Table 6.1 shows the aggregate prediction errors of the two models for the entire
study area. As was expected, the error measures without choice set adjustment,
shown in Table 6.1—a, have very high values. These are not surprising results
since the higher error values for the entire study area as a single group are
consistent with the increase in the average variance of the net utility distributions
which results from aggregation over the wide range of individuals and
level— of— service variables which are included in the entire study area. In
addition, the use of one set of average values of all explanatory variables applied
to all individuals in the study area implies that all alternative modes have

effectively been available to all individuals for whom, in fact, some are not
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available. This will lead to an additional increase in the data wvariability which

will in turn result in large aggregation errors.

It is also seen from Table 6.1—a that the complex model has lower error
measures (8% lower) than the simple model. This indicates that the complex
model is a better predictor when using the direct naive approach (i.e. the naive
approach without choice set adjustment). However, since the error measures for
the entire study area are based on a single representative observation, they are
not reliable. On the other hand, when choice set variability is considered (see
Table 6.1—b), the values of the error measures are reduced drastically, reflecting
the importance of considering choice set variation across the individuals in the
entire study area. In addition, the simple model has lower error values (3%
lower) than the complex one. This indicates that the simple model predicts just

as accurately as the complex model when considering choice set variation.

The naive error measures shown in Table 6.1—b are slightly larger than the
values obtained in a previous study by Koppelman (1975) (e.g. naive RMSE =
10.2%) and substantially smaller than those in a study by Reid (1978) (e.g. naive
RMSE = 40.0%). The errors obtained in this study are greater than might have
been, since no account was taken of sample heterogeneity, and could have been
further reduced by using a more consistent approach such as the classification

approach.
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Error Simple Complex

Measure Model Model
AE 126.82 118.40
SDE 0 0
RMSE 126.82 118.40

a. Without choice set adjustment

Error Simple Complex

Measure Model Model
AE 3.57 5.01
SDE 9.19 11.66
RMSE 9.86 12.69

b. With choice set adjustment

models for the entire study area with and

TABLE 6.1 Naive aggregation errors (percent) for the two

without choice set adjustment.
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6.6.2 AGGREGATION ERROR FOR THE CLASSIFICATION APPROACH

In order to improve the predictive powers of the chosen disaggregate models (i.e.
minimise their prediction error values), two classification methods have been used.

These are:

6.6.2.1 GEOGRAPHICAL CLASSIFICATION

Aggregate predictions are traditionally made at the zonal level. However, in this
study, aggregate predictions based on zonal average values of the explanatory
variables seemed to be infeasible due to the small sample size (530 observations)
and the large number of zones available (more than 600; see Figure 6.1). Thus,
the aggregate predictions were carried out at three geographical levels. These
were: the entire study area, six bands (Figure 6.2), and ten sectorgroups! (Figure
6.3). These bands and sectorgroups were originally defined by the GRIS study
group in order to present the survey results in terms of simple statistical values
at area levels. To be consistent with the GRIS study, the same divisions were

used here.

Table 6.2 shows the variation in the aggregate prediction errors with the

geographical scales of classification for the two disaggregate models.

1 A trial was undertaken grouping the data into 42 sectors (see Figure 6.4),
but it was found that most of these sectors were of small size, and so it was
thought infeasible to consider them as aggregate groups.
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FIGURE 6.1 The GRIS study area (Zones).
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FIGURE 6.3 The GRIS study area (Sectorgroups).
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FIGURE 6.4 The GRIS study area (Sectors).
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Types Types Classification by
of of Study area Bands Sectorgroups
*
Model Error (1) (6) (10)
AE 3.57 0.77 0.71
Simple
SDE 9.19 4.94 4 .88
Model
RMSE 9.86 5.00 4.93
AE 5.01 1.15 0.97
Complex
SDE 11.66 6.28 5.81
Model
RMSE 12.69 6.38 5.89

* Note: the numbers in parentheses represent the numbers

of groups at the different geographical levels.

TABLE 6.2 Percentage aggregation error for the three geographical

levels for the two models.
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It is clear from the table that the error measures increase with increasing
geographical level. In other words, the whole study area as a single group has
the highest error values, while the bands have smaller errors than the entire study
area but larger errors than the sectorgroups. This is, indeed, consistent with the
statistical notion that the aggregation error increases with increasing within— group
variance [Fleet and Robertson (1968); DeNeufville and Stafford (1971)]. It is also
apparent from Table 6.2 that the simple model is a slightly better predictor than

the complex model at all three levels of geographical classification.

6.6.2.2 BY— VARIABLES CLASSIFICATION

An alternative to geographical classification is to divide the data sample into
relatively homogeneous groups of individuals according to their attributes so as to
minimise the within— group and maximise the between— group variances. In this
approach the classification should be based on the important explanatory variables,
that is, as Koppelman and Ben— Akiva (1977) point out, the variables with the

highest variances.

In this study the classification was done in three ways. The data were classified:
firstly, into three groups according to the number of cars per household (CAOD
variable; CAOD = 0, CAOD = 1, and CAOD = 2+); secondly, into three
groups based on the number of cars per driving licence (CAPDL variable;
(CAPDL = 0, 0 < CAPDL < 1, and CAPDL = 1); and finally, into eight
groups by different combinations of the variables HHPOS, CAOD, and CBD. The

results of this classification approach are shown in Table 6.3.
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Types Types Classification by
of of CAOD CAPDL  |HHPOS,CAOD,

Model Error (3) (3) and CBD (8)

AE 2.99 2.45 0.71
Simple

SDE 8.59 6.87 4.20
Model

RMSE 9.10 7.29 4.26

AE 4.29 3.65 1.34
Complex

SDE 11.05 9.61 6.32
Model

RMSE 11.85 10.28 6.46

* Note: the numbers in parentheses represent the number

of classes for each variable.

TABLE 6.3 Percentage aggregation error for the three by— variables

classifications for the two models.
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As can be seen from Table 6.3, the error measures for the classification by
combination of the three variables have the lowest values. This indicates that as
the number of classifying variables increases the predictive powers of the
disaggregate models also increase. This is consistent with the results obtained by
Koppelman (1975) and Reid (1978). The results in Table 6.3 also show that the

simple model has slightly lower errors than the complex one.

6.6.3 PREDICTION ERROR FOR THE ENUMERATION APPROACH

There are two basic objectives of using the enumeration approach in aggregate
pi‘ediction. The first is to define a reference value for assessing the predictive
performance of different aggregation approaches, since in most situations the
actual shares are not known. The second, since the enumeration approach does
not include any form of data aggregation errors, is to define other sources of
prediction error such as model specification, transferability, or data measurement

errors (i.e. errors in variable and parameter estimation).

In this study the same data were used for the calibration of the models and so
there is no specification error and the only errors left are the data measurement
errors. The identification of these errors is carried out by comparing the
aggregate shares predicted by the enumeration approach with the observed or

actual shares. The errors are shown in Table 6.4.

As was expected, the results in Table 6.4 show that error measures SDE and

RMSE increase with decreasing geographical level [Koppelman (1975)].
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Types Types Classification by
of of Study area Bands Sectorgroups
*
Model Error (@9) (6) (10)
AE 0.02 0.00 0.46
Simple
SDE 0 g 7.23 8.52
Model
RMSE 0.02 7.23 8.53
AE 0.03 0.01 0.32
Complex
SDE 0 9.59 11.20
Model
RMSE 0.03 9.59 11.20

* Note: the numbers in parentheses represent the numbers

of zones at the different geographical levels.

TABLE 6.4 Percentage prediction errors for the two models for the

three geographical levels by the enumeration approach.
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That is, the errors in the share prediction for the entire study area are much
less than the errors for the bands which are also less than the errors for the
sectorgroups. It is also clear from Table 6.4 that the values of AE are small for

the three classification groups.

Once again, the predictive power of the simple model is slightly greater than that

of the complex one.

6.7 COMPARISON OF THE PREDICTION ERRORS OF THE DIFFERENT

AGGREGATION APPROACHES

In order to evaluate the desirability of the different aggregation methods to be
used in the prediction of aggregate travel behaviour, the values of their prediction
errors should be compared. Table 6.5 shows the prediction errors for the three

aggregation procedures.

The enumeration approach leads to the smallest prediction errors. This is
attributed to the exclusion of specification (or transferability) errors due to the
use of the same calibration data set and also because the chosen disaggregate

models appear to be well— specified.

The naive approach has substantially higher aggregation errors than those of the

classification approaches for both models; the naive aggregation errors are, in

fact, approximately twice those of the classification methods.
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Types Types Naive |Enumera- Classification
of of (1) tion Geographical By-variables
(1) (Sectorgroups) | (HHPOS,CAOD, and
Model Error (10) CBD) (8)
AE 3.57 0.02 0.71 0.71
Simple
SDE 9.19 0 4.88 4.20
Model
RMSE 9.86 0.02 4.93 4.26
AE 5.01 0.03 0.97 1.34
Complex
SDE 11.66 0 5.81 6.32
Model
RMSE | 12.69 0.03 5.89 6.46

* Note: the numbers in parentheses represent the numbers of zones

groups.

and variable

TABLE 6.5 Percentage prediction errors for the two models by the three

aggregation approaches.
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The error measures by the geographical classification method are slightly higher
than those obtained by the by— variables classification method for the simple
model, while the opposite is true for the complex model. This variation may be
attributed to the different specifications of the two disaggregate models. Since
the complex model includes a slightly larger number of variables ( i.e. more
level— of— service variables) the by— variables classification method, using the
combination of some of these variables, may not improve the homogeneity of the
remaining variables in each group (i.e. may result in imperfectly homogeneous

groups).

Additional insight into the structure of the prediction errors for different
aggregation procedures is obtained by disaggregating the error measures by
alternative mode. The resulting errors are shown in Tables 6.6 and 6.7 for the

simple and the complex models, respectively.

The prediction error measure for all alternative modes is simply equal to the
square root of the average sum of the squared values of the corresponding

prediction errors for each mode [Koppelman (1975)].

As can be seen from Tables 6.6 and 6.7, both models slightly overpredict the car
driver and bus mode choice shares, while they underpredict the car passenger
(slightly) and train mode choice shares. The error in the prediction of train

travel may result from the small proportion of train travellers in the data sample.

147




Alterna- |[Types Naive [Enumera- Classification
*
tive of (L) tion | Geographical By-variables
(1) (Sectorgroups) { (HHPOS, CAOD, and
Mode Error (10) CBD) (8)
AE 1.35 0.01 0.44 0.46
Car
SDE 4.16 0 2.55 1.98
Driver
RMSE 4.37 0.01 2.59 2.03
AE -2.03 -0.05 -0.64 -0.29
Car
SDE 6.87 0 5.04 3.03
Passenger
RMSE 7.16 0.05 5.08 3.04
AE 0.86 0.02 0.14 0.14
Bus SDE 10.31 0 5.68 5.41
RMSE | 10.35 0.02 5.68 5.41

* Note: the numbers in parentheses represent the numbers of zones and variable

groups.

TABLE 6.6 Percentage prediction error by the three aggregation approaches for

each mode for the simple model.
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Alterna- |Types Naive [Enumera- Classification
*
tive of (1) tion Geographical By-variables
(L (Sectorgroups) | (HHPOS, CAOD, and

Mode Error (10) CBD) (8)
AE -7.56 -0.01 -1.36 -1.51

Train SDE 15.71 0 7.31 6.58
RMSE | 17.43 0.01 7.44 6.75
AE -0.15 -0.01 -0.05 -0.06

Walk SDE 2.14 0 1.16 1.55
RMSE 2.15 0.01 1.16 1.55
AE 3.57 0.02 0.71 0.71

TOTAL SDE 9.19 0 4.88 4.20
RMSE 9.86 0.02 4.93 4.26

* Note: the numbers in parentheses represent the numbers of zones and variable

groups.

TABLE 6.6 Percentage prediction error by the three aggregation approaches for

each mode for the simple model.
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Alterna- |Types Naive |Enumera- Classification
tive of (L) tion | Geographical By-variables
(1) (Sectorgroups) | (HHPOS, CAOD, and
Mode Error (10) CBD) (8)
AE 1.45 0.01 0.46 0.54
Car
SDE 4.48 0 2.76 2.43
Driver
RMSE 4.71 0.01 2.80 2.49
AE -1.69 -0.04 -0.41 -0.05
Car
SDE 7.22 0 3.73 3.81
Passenger
RMSE 7.41 0.04 3.75 3.81
AE 1.00 0.01 0.30 0.00
Bus SDE 11.54 0 5.97 6.28
RMSE | 11.58 0.01 5.98 6.28

* Note: the numbers in parentheses represent the numbers of zones

groups.

and variable

TABLE 6.7 Percentage prediction error by the three aggregation approaches for

each mode for the complex model.

150

Continued:




Alterna- |Types Naive |[Enumera- Classification

tive of (1)# tion | Geographical By-variables

(1) (Sectorgroups) | (HHPOS, CAOD, and
Mode Error (10) CBD) (8)

AE -10.94 | -0.05 -2.05 -2.95
Train SDE 21.60 0 10.38 11.65
RMSE | 24.21 0.05 10.58 12.02
AE 0.00 0.02 0.02 0.24
Walk SDE 2.82 0 1.92 2.05
RMSE 2.82 0.02 1.92 2.06
AE 5.01 0.03 0.97 1.34
TOTAL SDE 11.66 0 5.81 6.32
RMSE | 12.69 0.03 5.89 6.46

* Note: the numbers in parentheses represent the

groups.

numbers of zones

and variable

TABLE 6.7 Percentage prediction error by the three aggregation approaches for

each mode for the complex model.
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The choice shares for the walk mode are predicted differently by the two models;
the simple model underpredicts while the complex one overpredicts. This may
result from differences in the representation of the WALK wvariable in the utility
function of the walk mode, as well as the difference in the specifications of the

two models.

In general, Both models have relatively low prediction error values. However, the
simple model appears to be more desirable for use in the prediction of aggregate
travel behaviour, since it has lower error values than the complex model and is
much cheaper to use, both in terms of computational requirements and data
collection. Therefore, the simple model was chosen for the analysis of policy

changes. This will be discussed in the next chapter.
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CHAPTER SEVEN

POLICY CHANGE ANALYSIS

7.1 INTRODUCTION

The development over the past three decades of disaggregate travel demand
models has increased considerably the range and power of the tools available to
the transportation analyst concerned with the prediction of future travel demand.
It has been widely stated in the literature that disaggregate travel demand
modelling techniques appear to hold the greater potential for providing the basis

for accurate methods of estimating and predicting travel demand?.

In addition to the use of these models for predicting aggregate travel behaviour
(see Chapter 6), they can be used for assessing the effects of a wide range of
policy decisions. This assessment is clearly an important aspect of travel demand
prediction since it allows transportation planners and decision— makers to evaluate
the effect of different proposed policy changes in the transportation system. This

application of the models is examined in this chapter.

In Section 7.2, the general properties of policy— sensitive models are presented.
Section 7.3 considers the various methods available for analysing different policy
change decisions. Section 7.4 presents the various elasticity measures appropriate

to the individual traveller and the aggregate group; these involve the analysis of

! See for example: Watson (1973, 1974); DeDonnea (1971); Richards and
Ben— Akiva (1975); Domencich and McFadden (1975); Koppelman (1974, 1975);
Supernak (1983, 1984); Ben— Akiva and Lerman (1985).
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small and large changes in the various policy— relevant variables. The last section
examines the use of the MNL model in predicting aggregate travel behaviour
under different policy changes. It presents the impact of these policy changes on

the aggregation error for various methods of aggregation.

7.2 POLICY- SENSITIVE MODELS

One of the most important aspects of any travel demand model is its sensitivity
to changes in transportation system characteristics. It is essential to develop a
model which can accurately reflect the possible effects of changes in the
transportation system associated with a new alternative. The model must be able
to test new transportation strategies that are of concern to the transportation

planners and decision— makers.

In recent years the range of the policy alternatives analysed and policy questions
considered has greatly expanded. Emphasis has shifted from long—term
transportation planning to short—term planning. These shifts have placed a
considerable strain on conventional aggregate prediction tools, which were
originally developed to address problems of highway network design [McFadden
(1976b)]. Thus, demand prediction methods have been sought which are
especially capable of incorporating the behavioural forces linking individual
transportation decisions and the relationships between individual travel choice and
aggregate flow. The resulting behavioural disaggregate methods expand the policy
sensitivity of travel prediction. Tests and practical experience with these
approaches indicate that they are superior to the conventional aggregate prediction
techniques in terms of data collection and computational requirements (see

Chapters 2 and 6).

155




Some typical policy issues that the transportation planners would like to be able

to address with disaggregate models include the following':

1. What effects will changes in travel times and costs have on total travel

demand and on the demands for alternative modes?

2. How can public transport modes be made more attractive alternatives, in the

peak periods, for those who are currently travelling by car?

3. What are the effects of introducing new or substantially redesigned alternative

transport modes on the distribution of trips across available modes?

In fact, disaggregate behavioural choice models are particularly well— suited for
analysing such short—term transportation policy questions.  They translate the
questions into quantitative descriptions of their effects on the predetermined
models in order to predict their consequences for future travel demands. This is

discussed next.

7.3 POLICY CHANGE ANALYSIS TECHNIQUES

The basic concern of transportation planners and decision— makers is to be able
to anticipate the consequences of any proposed changes in the transportation
system. This can be done by using an estimated model for the analysis of these

proposed changes. In general, demand models can only reflect the effects of

1 See for example : Domencich and McFadden (1975); Gwilliam and Mackie
(1975); McFadden (1976); Nash (1976); Ssherret (1979); Hottler (1981); Richards
(1981); Spear (1981).

156




changes in some policy—relevant variables that are of interest to the
transportation planners and decision— makers if such changes are expressed as

changes in relevant explanatory variables in the model.

In recent years a number of simplified techniques have been developed for
analysing policy changes. Most of these techniques rely either on transferring or
borrowing a model developed in one area to another area, or on simple methods
which relate proportional changes in policy— dependent variables (e.g. travel time
and travel cost) directly to proportional changes in a particular transport mode

choice. These techniques are:

1. Development of a simplified model from locally— available data.

2. The use of borrowed or base year models with adjustments to the local data.

3. The use of borrowed or base year models without adjustments to the local

data.

4. The use of elasticity models (i.e. simple models which relate policy— relevant

variables directly to a transport mode choice probability or choice share).

The first technique requires that the transportation planners and decision— makers
understand the econometric techniques involved in specifying and calibrating the
demand model. In addition it requires an appropriate set of data for use in the
model development.  However, the development of the required model is an

expensive task in terms of data collection and computational requirements.
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Often, particularly for small scale studies involving minor policy decisions, there is
neither the time nor the money to develop a new travel demand model.
Consequently it seems more desirable to borrow a predetermined model for use in

analysing such policy decisions.

Two alternative techniques which use borrowed or base year models in policy
change analysis are available (listed as 2 and 3 above). The first technique
updates a model using data available in the borrowing area to adjust the model
parameters so that the model better replicates the current situation. The extent
to which a borrowed model can be updated depends largely on the structure of
the model together with the type of data available in the borrowing area [OECD
(Sept. 1980); Supernak (1984)]. The other technique requires that the
transportation planners and decision— makers assume that both the structure and
the parameters of the borrowed model are representative of the borrowing area.
This is clearly a considerable assumption, although it may sometimes be correct.
If the policy alternatives are substantially different from the base year conditions,
the use of the base year parameter values may be equivalent to extrapolation
outside the range of the data. In this case, the use of the borrowed model will
produce biased results.  Nevertheless, in the absence of major policy changes
(such as the introduction of important new transportation modes) this technique
seems to be more desirable than the updating one due to its simplicity and
straightforwardness of use, all of which make it a more economical approach to

policy change analysis.

The use of elasticity models, widely applied in the United Kingdom for policy
change analyses [OECD (Sept. 1980)], requires a good knowledge of both the
modelling technique and the transport system being studied. Such models can be

used to provide quick estimates of the effects of small scale policy changes in the
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transportation system?.

7.4 ELASTICITY MEASURES

Travel demand elasticities can be considered in disaggregate or aggregate terms as

defined below.

7.4.1 DISAGGREGATE ELASTICITIES

Since disaggregate choice models are concerned with the individual traveller and
with the fact that the impact of any proposed changes in the transportation
system varies across individuals, the disaggregate elasticities are of great
importance since they reflect the true behaviour of each individual in response to

policy changes.

The various types of disaggregate elasticities are:

7.4.1.1 POINT ELASTICITIES

These measures are often used to assess the responsiveness of the individual
choice probability of a particular alternative with respect to changes in some
explanatory variables relevant to that alternative or to other competing
alternatives. Thus, direct and cross (indirect) point elasticities can be defined.

Direct point elasticity is the percentage change in the individual choice probability

1 For more details of these methods see OECD (Sept. 1980).
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of a particular alternative with respect to a given percentage change in an

explanatory variable which relates directly to that alternative. Cross point

elasticity, on the other hand, is defined as the percentage change in the

individual choice probability of a particular alternative with respect to a given

percentage change in an explanatory variable which is related directly to some

other competing alternative. Thus the mathematical definition of these elasticities

can be written as:

Pin dPip

Xikn 9Xikn

and,
Pin dPin
E = .
Xjkn  9Xjkn
where,
Pin
xikn and Xjkn

Xikn

(Direct point elasticity) (7.1)
Pin
X jkn . -

(Cross point elasticity) (7.2)
Pin

is the probability of individual n choosing alternative i, and
are the explanatory variables relating to alternatives i

and j respectively.

For the logit model given by Equation 3.24, it is possible to derive the above

point elasticities as follows!:

! For complete derivation of the elasticities see Hensher and Johnson (1981).
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E = (1 - Pijn) Bk Xikn (Direct point ,elasticity) (7.3)
Xikn '

and,
Pin
E - - Pjn 6k Xjkn (Cross point elasticity) (7.4)
Xjkn

Equation 7.4 shows that the cross point elasticity depends only on the variables
associated with alternative j. Thus, the cross elasticities with respect to change in
a variable related to alternative j are equal for all alternatives i # j. However,
this constraint of equal elasticity (i.e. equal substitutability) can be considered as a
limitation of the logit model since it is not necessarily logical in all cases and is
therefore considered as another aspect of the ITA property limitation [Richards

and Ben— Akiva (1975)].

In general, Equations 7.3 and 7.4 can be combined to yield a single point

elasticity formula for the logit model,

Pin
E - (6ij - Pjn) Bk xjkn (7.5)
xjkn
where,
’ 1 if i = j (Direct point elasticity)
611 -

0 if i # j (Cross point elasticity)
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As can be seen from Equation 7.5, the direct point elasticity approaches zero as
the choice probability Pjn approaches one, and approaches g Xjkn as Pjp
approaches zero. This clearly implies that the direct point elasticity is greatest
when the choice probability is lowest and vice versa. On the other hand, cross
point elasticity behaves in precisely the converse manner (i.e. the cross point

elasticity is a minimum when Pj, is a minimum).

Theoretically, it is clear from Equations 7.1 and 7.2 that point elasticities are
relations between differentials and that they are relevant only for small changes in
the values of the explanatory variables and indicate only a trend at a particular

point [Richards and Ben— Akiva (1975)].

7.4.1.2 ARC ELASTICITIES

Arc elasticities are similar to point elasticities except that they are well suited for
measuring the sensitivity of individual travellers to large changes in the
policy— relevant variables. These elasticities represent the effect of moving from
one situation to another (for example, before and after a travel cost increase or
travel time decrease for a particular transport mode). To assess the effect of
these changes, the before and after choice probabilities of any particular mode
must be recalculated, and so arc elasticities must be determined using differences

rather than differentials. Thus:

Pin 2Pin Xikn
E - . (Direct arc elasticity) (7.6)

Xikn  “Xjkn Pin
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Pin aPip Xikn
E = . J (Cross arc elasticity) (7.7)

Xjkn  “Xjkn  Pin

where,
aPjn, is the difference between the after and before choice
probabilities of mode i, and
aXikn» AXjkn are the differences in the values of the explanatory

variables Xjxn and Xk, respectively.

The problem inherent in the above definitions (i.e. Equations 7.6 and 7.7) is that
inconsistent results can be obtained when a change in a given explanatory variable

is reversed [Kanafani (1983)].

A number of alternative forms can be used to calculate arc elasticity measures
(considering only the direct arc elasticity; for cross arc elasticity the subscript of
the explanatory variable is simply changed to another competing mode index). A
very simple way is to define arc elasticity as the ratio of the change in the
choice probability to the change in the value of the explanatory variable in

question. Thus:

gt (7.8)

This can, alternatively, be expressed in a logarithmic form [Kemp -(1973)]:
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Pin s log Pjp
E - — (7.9
Xikn @ log Xjkn

The only problem with the use of Equations 7.8 and 7.9 is that the resulting
elasticities are not dimensionless measures, and so are of little use in comparing

the effects of different explanatory variables.

Another simple method of determining arc elasticity is to assume a linear
relationship between the choice probability and the explanatory wvariables. This is
often done in conventional travel demand studies. In this case the arc elasticity

is defined in terms of the average values of the parameters. Thus:

g P ' (7.10)

where the bar sign on P;j, and Xy, is used to represent the average values for

the before and after situations [OECD (Sept. 1980)].
Using the above definitions (i.e. Equations 7.8, 7.9 and 7.10), the problem of
inconsistency does not occur when reversing changes in any of the explanatory

variables [Kanafani (1983)].

To calculate the arc elasticities for the logit model, the probabilities for the

before and after situations are computed and then substituted, together with the
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variable values for both situations, in any of the above elasticity forms.

7.4.2 AGGREGATE ELASTICITIES

Although disaggregate elasticities are more appropriate in reflecting the effect of
any policy decision, in practice they are of little use since transportation planners
and decision— makers are always interested in the responsiveness of the demand at
an aggregate level to any proposed policy changes. Thus, some form of
aggregation is required. The simplest way to derive the aggregate elasticities is to
substitute the average probability and explanatory variable values into the
disaggregate elasticity measures. Thus, for small changes in the explanatory

variable, the aggregate point elasticity is simply expressed as:

Pj
AE_ = (1 - Py) By Xjk (7.11)
Xik
where,
_ 1 N
Py = — I Py, (7.12)
N n=1

is the average choice probability or the expected choice share of alternative i in

a sample of N observations, and,

1 N :
Xik = b3 Xikn (7.13)
N n=
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is the average value of the relevant explanatory variable Xy, in the data sample.

This approach was used by Richards and Ben— Akiva (1975) for evaluating point
elasticities based on the observed average probability (choice share) and the
average values of the relevant explanatory variables. The results of using the

same approach in this study are given in Table 7.1.

Table 7.1 shows the aggregate direct point elasticities for a specific group of
individuals. This group was chosen on the basis that each individual belonged to
a car—owning household and had all modes available. By this means, a

relatively homogeneous group of individuals was produced.

The most important results shown in the table are the elasticities of public
transport mode choice probabilities with respect to TJT (total journey time).
These values were calculated to be —3.004 and —3.810 for bus and train,
respectively.  These large values indicate that any reductions in total journey
time, which rely heavily on decreases in out— of— vehicle time (through increasing
numbers of stops or stations or increasing public transport frequencies), would be
highly effective ways of making these public transport modes more desirable to

individuals not at present using them.

In general, Table 7.1 also shows that, for each mode, the elasticities with respect
to travel time are higher than the elasticities with respect to the COST/DIST
variable, This indicates that the travel time variable has more influence on the

mode choice decision than has the cost variable.
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Alterna- Average Coeffi- Variable Point
tive Variable [Probabili- cient Elastici-
Value
Mode ty Value ty
Car TJT 0.6536 -0.1018 9.89 -0.349
Driver |COST/DIST 0.6536 -0.0849 1.40 -0.041
Car TJT 0.0594 -0.1018 9.89 -0.947
Passenger| oot pisT | 0.0594 | -0.0849 0.70 -0.056
TJT 0.0472 -0.1018 30.79 -3.004
Bus
COST/DIST 0.0472 -0.0849 11.82 -0.956
TJT 0.0089 -0.1018 37.76 -3.810
Train
COST/DIST 0.0089 -0.849 13.88 -1.168
Walk TJT 0.2309 -0.1018 22.11 -1.731

TABLE 7.1 Aggregate direct point elasticities.
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On the other hand, for large changes in the relevant explanatory variable, the
average choice probabilities need to be recalculated, and the aggregate arc

elasticity is defined as:

Pi APi §ik
AE = — . — (7.14)
Xik 2Xin Pj
where,

Al_’-i and Xy  are the differences between the after and before average
choice probabilities and explanatory variable values,

respectively, and

1§i and Xj,  are the average values of the after and before average
choice probabilities and explanatory variable values,

respectively.

Table 7.2 shows the aggregate arc elasticities calculated for different percentage
changes in the relevant explanatory variables.  These elasticities apply to the

same group of travellers as those given in Table 7.1.

As can be seen from Table 7.2, a twenty percent increase in total travel time
for the car driver and car passenger modes has lower associated elasticities than
the same percentage decrease in total travel time for the bus and train modes.
This indicates that travel time for the public transport modes is more important

than for the private modes.
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Alterna- Percent Choice Shares Arc
Variable|Variable (%)
tive Change Elasti-
Mode Value %) Before After city
Car TIJT 9.89 +20 0.6536 0.6293 -0.208
Driver |COST/DIST 1.40 +25 0.6536 0.6499 -0.026
Car TJT 9.89 +20 0.0594 0.0541 -0.514
Passenger |COST/DIST 0.70 +25 0.0594 0.0594 0.000
TJT 30.97 -20 0.0472 0.0745 -2.019
Bus
COST/DIST 11.83 -25 0.0472 0.0572 -0.671
TJT 37.76 -20 0.0089 0.0235 -2.553
Train
COST/DIST 13.88 -25 0.0089 0.0117 -0.951

TABLE 7.2 Aggregate direct arc elasticities.
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It is also clear from the table that changes in travel costs have a higher effect
for public transport modes, but that such changes have a smaller effect than have
changes in travel time. This implies that travellers are significantly less sensitive

to travel cost changes than to travel time changes.

In general, the above approach is based on the use of average values of the
choice probabilities and explanatory variables for evaluating the aggregate point
and arc elasticities. This will produce biased results if, firstly, the sample is not
a homogeneous group of individuals and, secondly, the average values of the
choice probabilities and explanatory variables lie beyond the ranges of the
corresponding values for which the model was estimated [Richards and Ben— Akiva
(1975); Hensher and Johnson (1981)]. A more appropriate procedure is to
calculate the relevant elasticity of each individual and then sum the elasticities

over the sample to obtain the required aggregate elasticity?.

7.5 ANALYSIS OF THE AGGREGATION ERRORS FOR POLICY CHANGES

The purpose of this section is to examine the use of the MNL model for the
prediction of aggregate travel behaviour under various policy changes. This can
be done by compvaring the aggregation errors for these policy changes with the
aggregation error for the base case. For example, three different policy changes

are considered. These are:

1. A fifty percent increase in the cost of travel for the car driver mode.

1 For more details of these approaches see McFadden (1979); Hensher and
Johnson (1981).
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2. Zero cost of travel for the car passenger mode.

3. A fifty percent decrease in the out— of— vehicle time for the bus mode.

The objective of these policy decisions was to examine the relative effects of
different ways of reducing car and increasing bus usage. The expected choice
shares for the base case and for the three policy changes for the entire study

area using the complete enumeration method are given in Table 7.3.

As can be seen from Table 7.3, policy changes one and two do not have any
significant effects on the choice shares of the various modes. Policy change
three, however, has the effect of increasing the choice share of the bus mode by
ten percent (i.e. from 26.35% to 36.30%). These policy changes indicate that
the cost variable has less impact on the mode choice decision for the car driver
and car passenger modes, whereas out— of— vehicle travel time has more effect on

the bus mode choice decision.

For three methods of aggregation, the impacts of the above policy changes on
the aggregation error have been examined and the results, together with the base
case aggregation errors, are shown in Table 7.4. 1t is clear from Table 7.4 that
the aggregation errors for the three policy changes by the three methods of
aggregation are consistent with the aggregation errors for the base case. The
by— variables classification method has the least error measure, whereas the naive

method has the highest.
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Alterna- Prediction Situation
tive
Mode Base Case|Change One|Change Two|Change Three
Car 27.12 26.69 27.08 25.93
Driver
Car 12.08 12.26 12.59 8.84
Passenger
Bus 26.22 26.35 25.99 36.30
Train 8.49 8.55 8.44 5.92
Walk 26.04 26.15 25.90 23.01

TABLE 7.3 Expecied choice shares (percent) for the various modes for
the base case and the three policy change proposals using the

complete enumeration approach.
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Classification Approach
. Naive
Prediction Geographical By-Variables
Situation Approach |Classification | Classification
a * (Sectorgroups) |(HHPOS, CAOD, and
(1) (10) CBD) (8)
Base
9.86 4,43 4.26
Case
Change 9.47 4.36 4.21
One
Change 9.84 4.60 4.25
Two
Change 11.46 5.20 4.94
Three

* Note: the numbers in parentheses represent the number of zones and

variable groups.

TABLE 7.4 Percent aggregation error (RMSE) for the base case and the

three policy change situations by three methods of aggregation.
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Although policy change three has the highest aggregation errors for the three
aggregation methods, the errors can still be considered small. This suggests that
the MNL model developed here could be used to analyse other policy changes
and policy changes in areas similar to the study area, provided that the changes
in the relevant policy variables were within the range of their values for which

the model was estimated.
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CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS

8.1 INTRODUCTION

The objectives of this final chapter are to present the main conclusions of the
study and to identify possible areas for further research.  General conclusions
regarding the desirability of the approach used in the study are considered first.
Specific conclusions relating to the model development and applications in
aggregate prediction and policy change analyses are then drawn. The last section

considers how the present study might be extended.

8.2 GENERAL CONCLUSIONS

This study has contributed empirical results to the development and application of
disaggregate behavioural travel demand models in urban transportation planning
studies in the U.K. context. A better understanding of travel behaviour with
respect to mode choice for journeys to work in Glasgow has been obtained and
the most important factors influencing the mode choice decision have been
identified. @ The study has also demonstrated the feasibility of using the MNL

approach to the development of multi—~ modal disaggregate travel demand models.
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8.3 SPECIFIC CONCLUSIONS

The empirical findings of the study and their implications with respect to model
development and applications in aggregate prediction and policy change analyses
have been presented and discussed in the relevant chapters. In this section,
summaries of the most important conclusions relating to the above three aspects
of the study are outlined in order to show the extent to which the results
obtained may be utilised to improve existing, or develop more advanced, mode

choice models.

8.3.1 MODEL DEVELOPMENT

The model calibration stage of the study yields the following conclusions.

1. Travel time as a single variable (or its components: walking, waiting, and
in— vehicle times) 1is statistically significant. The results confirm general
assumptions about the relative weights of out— of— vehicle time (or its components)
and in— vehicle time, and are reasonably consistent with those obtained from

other studies.

2. Travel cost is found to have the wrong sign. This may be attributable to the
way in which travel costs for the car driver and car passenger modes were
calculated. Unfortimately, this has precluded the determination of any meaningful

estimate of the value of travel time from the study.

3. The CBD was a dummy variable based upon whether or not a trip was
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destined for, or passed through, the central business district and is found to have
a significant effect on the choice of public transport modes. This is not
surprising.  The problems of driving and parking within the central business
district strongly encourage the use of public transport modes and strongly

discourage the use of the car driver and car passenger modes.

4. The effect of distance on the walk mode choice is found to be significant, as

would be expected.

§. Car availability was included twice in all models via the CAOD and CAPDL
variables which reflect, respectively, the effects of the number of cars in a
household and the number of cars per driving licence holder. The latter is a
measure of the competition within the household for the use of the car mode for
the journey to work. Both variables add significant power to the models

developed and are worthy of inclusion in them.

6. An individual's position in a household is found to be a highly significant
influence on the choice of the car mode. Car use is much greater among heads

of households than among other members of the household.

The overall conclusion of this stage of the study is that disaggregate behavioural
travel demand models can be calibrated successfully using data obtained from a
traditional home interview survey. Although it may be advantageous to have
specially— designed data for this type of study, the results confirm the wide

applicability of data from conventional home interview surveys.
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8.3.2 AGGREGATE PREDICTION

A number of conclusions may be drawn from the aggregate prediction aspect of

the study.

1. The aggregate prediction performances of the two models were compared.
Aggregate prediction errors for various aggregation procedures for the simple
model are found to be slightly lower than those for the complex model. This
implies that the simple model is superior to the complex one, confirming results

obtained by other investigators.

2. Significant reductions in the aggregation errors of the naive approach are
obtained when the prediction is adjusted for choice set variation. This suggests
strongly that if differences in choice set availability exist, these differences should
be used as a basis for adjusting predictions for various methods of aggregation in

order to improve their prediction performances.

3. The performance of the enumeration procedure for aggregate share prediction
is found to improve with increasing size of prediction group. This implies that
the enumeration procedure is preferable whenever an adequate data sample is
available, although the associated data and computational requirements may be

costly.

4. The prediction accuracy of the classification procedure increases with decreasing
geographical dispersion of the prediction group or with increasing numbers of
classifying variables, provided that adequate sample sizes are available within the

classes.
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In summary, this phase of the study shows the feasibility and desirability of using
disaggregate models to provide aggregate predictions; their flexibility provides more
appropriate means of data aggregation, which in turn provide more accurate

aggregate predictions.

8.3.3 POLICY CHANGE ANALYSIS

The application of the model to policy change analysis leads to the following

conclusions.

1. Although travel cost is one of the most important current policy issues in
urban transportation planning, the study shows that the sensitivity of mode choice
to changes in associated travel costs is very low in Glasgow. This may have
been the case in 1978—79 when the GRIS was carried out, but need not

necessarily be the case at present.

2. Changes in travel times were found to have a significant effect on mode
choice, especially in relation to public transport modes. This indicates that travel
time may play an important part in policy decisions, and that by increasing the
frequencies of buses or trains, or the number of train stations, public transport

may be made more accessible and attractive.

3. The aggregate prediction errors for various policy changes for different
aggregation procedures are consistent with the aggregation errors for the base
case. This suggests that the tested model may be used for analysing other policy
changes provided that the changes in the variables concerned are within the range

of their values in the data from which the model was developed.
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These conclusions indicate that the model can be used for testing various policy

changes, although it is not sensitive to travel cost policy changes.

The overall conclusion of the study is that the empirical results obtained can be

considered satisfactory and the approach used both sound and flexible.

8.4 RECOMMENDATIONS

The limited scope of the current study together with the practical limitations of
the available data mean that the analyses presented here could be expanded in
numerous directions. The major areas in which the study could be extended are

suggested below:

1. The specification of the developed models could be improved significantly if
more information on level— of—service measures such as comfort, convenience,
and safety were available. The need for more detailed data could have

implications for the method of data collection.

2. More information about travel costs by the car driver and car passenger modes
is essential for the improvement of the sensitivity of the developed models to
changes in the travel costs of various transport modes.

3. The study could be extended to include the development of an aggregate MNL
model using the GRIS data. This would allow comparison of the aggregate share

predictions using aggregate and disaggregate models.

4. The prediction performance of the developed models could be checked using
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the GRIS "after" survey data, which are readily available. These data would also

allow testing of:

1. The temporal stability of the developed models.

2. The effect on the mode choice decisions of individuals of introducing new

alternatives such as the Glasgow Underground.

5. The developed models could be applied to other areas similar to Glasgow in

order to test their spatial transferability.
6. The study could be extended to analyse trips for purposes other than working.
7. A further extension of the study could be the development of more general

models, such as nested logit or MNP models, which avoid the difficulties of the

ITA property of the logit model.
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APPENDIX 1

GRIS QUESTIONNAIRE




GREATER GLASGOW PASSENGER TRANSPORT EXECUTIVE

Your Ref': +3 ST. VINCENT STREET, GLASGOW G2 :TR

Cur Ref:

November 1978.

Dear Householder,

GLASGOW RATL IMPACT STUDY

Next year will see the completion of Glasgow's two major railway schemes. In May

the Argyle Line, which will link Rutherglen and Partick via the former Central Low
Level Line, will open to passenger traffic. Then towards the end of the year the

Glasgow Underground will reopen after complete modernisation.

The purpose of the Glasgow Rail Impact Study is to discover what effects these new
transport systems have on the Glasgow area. The results will help to decide how
investment in public transport can best meet the needs of people living and working
in the area. They will also help to show, in detail, how the new Clyderail and
Underground services themselves can be developed to give maximum benefit to the
general public.

For the study to be successful, we need to know where, how and why people travel.
This means conducting a brief interview with people in their homes, and a random
sample of households has been selected to help us. Yours is one of those chosen,
It would help us a lot if you and the members of your how ehold would agree to
co-operate in this survey, as everyone we miss, for whatever reason, means that
the sample is just thrat bit less representative.

A firm of experts, Martin and Voorhees Associates, have been contracted by the

Scottish Development Department to carry out this work., One of their interviewers
will call during the next few weeks. The interviewer will first ask for a few

facts about you and your household and will then ask for some information regarding
trips to work and shopping trips made by members of the household. All the information
collected will remain absolutely confidential. Your identity is not required and

the results of the Study will contain no reference to individual persons or households,

Bach interviewer will carry an identity card. DPlease ask to see it before being
interviewed. If you wish any further information please contact the Glasgow Rail
Impact Study at 16 Princes Square, 48 Buchanan Street, Glasgow, G1 3JP (Telephone
041-226-4532).

I hope I can count on your full co-operation in this important survey. It is vital
to its success that everyone takes part, including people who rarely go out as well
as those who travel by car, bus or train. Its success will help to improve travel
facilities both in Glasgow and elsewhere in the country.

Yours sincerely,

i Ny

Director General

Director General; A. F. McKAY ; Directors: J. COYLE, W, N. STIRLING. H. M. TAYLOR. N. TOWNEND ; Secretary: E. S. PAYNE
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THIS PROGRAM WAS WRITTEN BY THANOS MATZOROS
AT THE INSTITUTE FOR TRANSPORT STUDIES IN THE
UNIVERSITY OF LEEDS IN SUMMER 1982 AND GENEROUSLY
MADE AVAILABLE TO THE AUTHOR IN 1987. IT WAS
AMENDED SLIGHTLY TO COPE WITH THE REQUIREMENTS

OF THE PRESENT STUDY.

AT PRESENT IT CAN HANDLE (EASILY EXTENDABLE THOUGH)
UP TO 20 ATTRIBUTES, CHARACTERISING BOTH INDIVIDUALS

AND ALTERNATIVES, AND 7 ALTERNATIVES.

IT USES A QUASI NEWTON— RAPHSON OPTIMISATION
TECHNIQUE, OBTAINED FROM NAG LIBRARY AS ROUTINE
E04JBF, AND CAN DETERMINE EITHER AN UNCONSTRAINED
MINIMUM/MAXIMUM (1.LE. WHEN THE PARAMETERS CAN
TAKE ANY REAL VALUE) OR A CONSTRAINED MINIMUM/
MAXIMUM WHEN THE PARAMETERS ARE SUBJECT TO FIXED
UPPER AND/OR LOWER BOUNDS. THIS FEATURE IS USEFUL
WHEN IT IS NEEDED TO CONSTRAIN THE VALUE OF

A PARAMETER TO BE WITHIN A PARTICULAR INTERVAL.

THE OPTIMISATION PROCESS INVOLVES THE EVALUATION
OF FIRST AND SECOND DERIVATIVES IN ORDER TO FIND
THE TURNING POINT. THE FUNCTION TO BE OPTIMISED
MUST HAVE CONTINUOUS FIRST AND SECOND DERIVATIVES
(ALTHOUGH THE ALGORITHM WILL WORK EVEN IF THE

DERIVATIVES HAVE OCCASIONAL DISCONTINUITES).
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NO DERIVATIVES NEED TO BE SUPPLIED ANALYTICALLY.

THE USER HAS ONLY TO PROVIDE A SUBROUTINE (FUNCT),
WHICH MUST EVALUATE THE LLF AT ANY POINT OVER THE
PARAMETER SPACE (SEE ALSO E04JBF MANNUAL), AND

A SUBROUTINE (MONIT) WHICH MONITORS THE PROGRESSION
OF THE OPTIMISATION PROCEDURE (SEE SUBROUTINES FUNCT

AND MONIT AS WELL).

NLOGIT IS THE MAIN PROGRAM, WHICH CALLS SUBROUTINES
ATTRB, THIS IS FOR DATA PREPARATION, E04JBF, AND
EO04HBF. JAFTER SUCCESSFUL EXIT FROM THE E04JBF ROUTINE
IT CALCULATES THE PREDICTED PROBABILITIES OF THE
MODEL, THE LLF AT ZERO FROM WHICH THE RHO SQUARED

INDEX IS OBTAINED

PROGRAM NLOGIT
COMMON/DERIV/HESL,HESD
COMMON/NUMB/N,NOBS,MXNLT
COMMON/ACCUR/ETA,XTOL
COMMON/HBFEVL/J
CHARACTER ALTR*7,MODE*7
REAL*8 ETA,F,FEST,STEPMX,XTOL,FIINV,FLLO,FLLR,
+ CCAR1,CCAR2,CCAR3,CPAS1,CPAS2,CPAS3,CBUS1,CBUS2,
+ CBUS3,CTRN1,CTRN2,CTRN3,CWLK1,CWLK2,CWLK3
REAL*8 DELTA(20),HESD(20),HESL(190), W(180),
+ X(20),U(7),PA(7),A(20,7),P(7),XC(20),G(20),
-+ BU(20),BL(20),PSUM(7), APSUM(7), WH(180)

INTEGER ISTATE(20),IW(2),NL0(7),IX(7),IWH(2)
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LOGICAL LOCSCH
EXTERNAL E04JBQ,FUNCT,MONIT
CALL ATTRB
IFAIL=1
IFAILH=1
LIW=2
LW=180
LIWH=2
LWH= 180
LLH= N*(N—1)/2
LH= MAX(LLH,I)
LH=190
IFLAG=0
INITIALISE AT ZERO OR SUPPLY INITIAL GUESSES FOR
THE UNKNOWN PARAMETERS
DO 99 I=1,N
X(1)= 0.

CONTINUE

THIS SUBROUTINE PROVIDES SUITABLE DIFFERENCING

INTERVALS TO EO04JBF

CALL E04HBF(N,FUNCT,X,J,DELTA, HESL,LH,HESD,F,G,
+ IWH,LIWH,WH,LWH,IFAILH)

IF(IFAILH.NE.0)THEN

WRITE(6,*)'IFAIL FOR E04HBF="',IFAILH

STOP

ENDIF
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LOCSCH= .TRUE.
IPRINT= 1

INTYPE=1

MAXCAL= ;10*N*(N+ 5)
STEPMX= 100000.
FEST=0.

IBOUND=1

THIS SUBROUTINE DOES THE OPTIMISATION AND CALLS

FUNCT AND MONIT FOR THAT PURPOSE

CALL E04JBF(N,FUNCT,MONIT,IPRINT,LOCSCH,INTYPE,
+ E04JBQ,MAXCAL,ETA,XTOL,STEPMX,FEST,DELTA,IBOUND,
+ BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW,IFAIL)
IF(IFAIL.NE.0)THEN
WRITE(6,998)IFAIL
STOP

ENDIF

AFTER SUCCESFUL EXIT PROCEED TO THE CALCULATION

OF THE PREDICTED PROBABILITIES

IPRD=0
PCARI=0.
PCAR2=0.,
PCAR3=0.
PPAS1=0.

PPAS2=0.
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PPAS3=0.
PBUS1=0. °
PBUS2=0. "
PBUS3=0.
PTRN1=0.
PTRN2= 0.
PTRN3=0.
PWLK1=0.
PWLK2=0.
PWLK3=0.

DO 92 I=1,MXNLT
NLO()=0
PSUM(D)= 0.
APSUM(D)= 0.

CONTINUE
WRITE(6,990)
REWIND 1
REWIND 4

DO 98 10BS=1,NOBS
READ DATA FROM SUBROUTINE ATTRB

READ(1,ERR= 43,END= 98)ICH,NSEL,NALT,(IX(I),I= 1,MXNLT)
READ(1,ERR= 63)((A(J,),J=1,N),I=1,NALT)
PD=0.
DO 96 I=1,NALT
U= 0.

DO 95 J=1,N
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95

96

94

U(I)= U(D)+ X(J)*A(J,T)
CONTINUE
PA(I)= DEXP(— U(I))
PD= PD+ PA(I)
CONTINUE
PMAX=—1.
LM= 0
DO 94 I=1,MXNLT
IF(IX(I).EQ.0)THEN
P(I)=100.
GO TO 9%
ENDIF
LM= LM+ 1
P(I)= PA(LM)/PD
PSUM(I)= PSUM(I)+ P(I)

IF(P(I).GT.PMAX)THEN

PMAX= P(I)
INDMX= I
ENDIF
CONTINUE
ALTR=" '
MODE= "' '

IF(ICH.EQ.1)ALTR= 'CAR—1 °
IF(ICH.EQ.2)ALTR= 'PASS—2 '
IF(ICH.EQ.3)ALTR= 'BUS—3
IF(ICH.EQ.4)ALTR= 'TRAIN- 4'
IF(ICH.EQ.S)ALTR= "WALK-5 °*

IF(IOBS.EQ.1)WRITE(6,995)
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IF(INDMX.EQ.ICH)THEN

IPRD= IPRD+ 1

WRITE(6,994)I0BS (P(1),I= 1, MXNLT),ALTR,ALTR,INDMX,ICH
ELSE IF (INDMX.EQ.1.AND.INDMX.NE.ICH) THEN

MODE: 'CAR—1 '

WRITE(6,994)I0BS,(P(I),I= 1,MXNLT),ALTR ,MODE,INDMX,ICH
ELSE IF (INDMX.EQ.2.AND.INDMX.NE.ICH) THEN

MODE= 'PASS—2

WRITE(6,994)I0BS,(P(1),I= 1,MXNLT),ALTR ,MODE,INDMX,ICH
ELSE IF (INDMX.EQ.3.AND.INDMX.NE.ICH) THEN

MODE= 'BUS—3 '

WRITE(6,994)I0BS,(P(I),I= 1,MXNLT),ALTR,MODE,INDMX,ICH
ELSE IF (INDMX.EQ.4.AND.INDMX.NE.ICH) THEN

MODE: '"TRAIN— 4'

WRITE(6,994)IOBS,(P(I),I= 1,MXNLT),ALTR,MODE,INDMX,ICH
ELSE IF (INDMX.EQ.5.AND.INDMX.NE.ICH) THEN

MODE= 'WALK—5 '

WRITE(6,994)I0BS,(P(I),I= 1,MXNLT),ALTR,MODE,INDMX,ICH
END IF
NLO(NALT)= NLO(NALT)+ 1
IF (ICH.EQ.1) THEN

PCARI1= PCAR1+1
END IF
IF (ICH.EQ.1.AND.INDMX.EQ.1) THEN

PCAR2= PCAR2+ 1
END IF
IF (INDMX.EQ.1) THEN

PCAR3=PCAR3+1
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END IF
IF (ICH.EQ.2) THEN
PPAS1= PPASI+1
END IF
IF (ICH.EQ.2.AND.INDMX.EQ.2) THEN
PPAS2= PPAS2+ 1
END IF
IF (INDMX.EQ.2) THEN
PPAS3= PPAS3+ 1
END IF
IF (ICH.EQ.3) THEN
PBUS1= PBUSI+ 1
END IF
IF (ICH.EQ.3.AND.INDMX.EQ.3) THEN
PBUS2= PBUS2+ 1
END IF
IF (INDMX.EQ.3) THEN
PBUS3= PBUS3+ 1
END IF
IF (ICH.EQ.4) THEN
PTRN1= PTRNI+1
END IF
IF (ICH.EQ.4.AND.INDMX.EQ.4) THEN
PTRN2= PTRN2+ 1
END IF
IF (INDMX.EQ.4) THEN
PTRN3= PTRN3+ 1

END IF
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IF (ICH.EQ.S5) THEN

PWLK1=PWLK1+1

END IF

IF (ICH.EQ.5.AND.INDMX.EQ.5) THEN

PWLK2=PWLK2+ 1

END IF

IF (INDMX.EQ.5) THEN

PWLK3=PWLK3+1

END IF

98 CONTINUE

CCARI1=100*((PCAR1)/FLOAT(NOBS))
CCAR2= 100*((PCAR2)/FLOAT(IPRD))
CCAR3=100*((PCAR3)/FLOAT(NOBS))
CPAS1=100*((PPAS1)/FLOAT(NOBS))
CPAS2= 100*((PPAS2)/FLOAT(IPRD))
CPAS3= 100*((PPAS3)/FLOAT(NOBS))
CBUS1=100*((PBUS1)/FLOAT(NOBS))
CBUS2= 100*((PBUS2)/FLOAT(IPRD))
CBUS3= 100*((PBUS3)/FLOAT(NOBS))
CTRNI1=100*((PTRN1)/FLOAT(NOBS))
CTRN2= 100*((PTRN2)/FLOAT(IPRD))
CTRN3= 100*((PTRN3)/FLOAT(NOBS))
CWLKI1=100*((PWLK1)/FLOAT(NOBS))
CWLK2= 100*((PWLK2)/FLOAT(IPRD))

CWLK3= 100*((PWLK3)/FLOAT(NOBS))

DO 93 I=1 MXNLT

APSUM(I)= 100*(PSUM(I)/FLOAT(NOBS))

93 CONTINUE
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FLLO= 0.
DO 91 I=2,MXNLT
FIINV=1./FLOAT(J)
FLLO= FLLO+ NLO(I)* DLOG(FIINV)
91 CONTINUE
FLLR= — 2*(FLLO+ F)
WRITE(6,993)FLL0,— F
WRITE(6,992)FLLR,N
WRITE(6,989)(— X(J),J=1,N)
WRITE(6,777)(APSUM(I),I= 1, MXNLT)
WRITE(6,555)
WRITE(6,666)CCAR1,CPAS1,CBUS1,CTRN1,CWLK1
WRITE(6,333)
WRITE(6,666)CCAR2,CPAS2,CBUS2,CTRN2,CWLK2
WRITE(6,111)
WRITE(6,666)CCAR3,CPAS3,CBUS3,CTRN3,CWLK3
CPRD= (FLOAT(IPRD)/FLOAT(NOBS))*100.
WRITE(6,991)CPRD
43 WRITE(6,*)'ERR IN READ DATA IN NLOGIT:ICH,NSEL,ETC..."
63 WRITE(6,*)'ERR IN DATA READ.NLOGIT:A'
STOP
990 FORMATY(///1X,"CONVERGENCE HAS BEEN COMPLETED")
998 FORMAT(///1X,"CONVERGENCE MAY NOT BE SUCEEDED.
+IFAIL="13," SEE E04JBF MANUAL')
666 FORMAT(/15X,5F10.5)
777 FORMAT(///15X,'"EXPECTED SHARE (PERCENT) FOR EACH
+ MODE',//15X,5F10.5)

555 FORMAT(///15X,'OBSERVED SHARES (PERCENT) FOR EACH MODE")
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333

111

995

994

993

992

991

989

FORMAT(///15X,'PER. OF OBSERVATIONS CORRECTLY PREDICTED

+FOR EACH MODE")
FORMAT(///15X,'PREDICTED SHARE (PERCENT) FOR EACH MODE')
FORMAT(1H1///5X,"OBSERVATION',10X,'CHOICE PROBABILITIES'

+ ,9X,'CHOSEN MODE',4X,'ALTERNATIVE MODE' 4X,'INDMX"',5X, 'ICH")
FORMAT(7X,15,5X,5(2X,F5.3),5X,A,10X,A,10X,12,7X,12)
FORMAT(1H1/////' LOG LIKELIHOOD AT ZERO ‘,F9.3,5X,

+ 'FINAL LOG LIKELIHOOD ',F9.3)

FORMAT(////' L— LIKELIHOOD RATIO ',F9.3,5X,

+ 'DEGREES OF FREEDOM ',I3)

FORMAT(////' PERCENTAGE OF OBSERVATIONS CORRECTLY

+ PREDICTED',F9.3)

FORMAT(/////' FINAL VALUES OF COEFFICIENTS'/(13(2X,D11.5)))

END

SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW)
REAL*8 XC,FC,GC,W,U,PA,PD,FFC,DA
INTEGER IFLAG,LIW,LW,IW,N
DIMENSION XC(20),GC(20),IW(2), W(180),DA(120)
COMMON/NUMB/NQ,NOBS,MXNLT
FFC=0.
REWIND 4
DO 99,I0BS=1,NOBS

PD=0.

READ(4,ERR= 33)NX,(DA(I),I= 1,NX)
DO 97,I=1,NX/N

U=0.

DO 9 J=1,N
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U= U+ XC(J)*DA(J+ N*(I- 1))
9  CONTINUE
IF (U.LT.—170.)GO TO 97
IF (U.GT.170)GO TO 99
PD= PD-+ DEXP(U)
97 CONTINUE
PD=PD+1.
FFC= FFC+ DLOG(1./PD)
99 CONTINUE
FC=— FFC
RETURN
33 WRITE(6,%)'ERR IN DATA READ.FUNCT:NALT DA..."
stop

END

SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,

+ POSDEF,NITER,NF,IW,LIW, W,LW)
COMMON/NUMB/NQ,NOBS,MXNLT
COMMON/DERIV/HESL, HESD

COMMON/HBFEVL/NFH

REAL*8 COND,FC,GPJNRM,GC(20),W(180),XC(20),HESD(20),

+ HESL(190),A(21,20),B(20,20),Z(20),X02AAF,STD(20),
+ TRAT(20),RL(13,13)

INTEGER ISTATE(20),IW(2)

LOGICAL POSDEF,FREE,POSIT

NFUN= NF+ NFH

WRITE(6,999)NITER,NFUN

FREE= .TRUE.
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99

13

23

34

DO 99,J=1,N

IF(ISTATE(J).LE.0)THEN

FREE= .FALSE.

WRITE(6,998)J,ISTATE(J)

ENDIF

CONTINUE

IF(.NOT.FREE)STOP

WRITE(6,997)(— XC(J),J=1,N)

IA=21

IB=20
IFAIL= 1

DO 13 I=1,N
DO 13 J=1,N
RI(L,J)=0.

CONTINUE
DO 23 J=1,N
RL(J,J)=1.

CONTINUE

K=0

DO 34 I=2,N
DO 34 J=1,]-1
K=K+1
RI(1,J)= HESL(K)

CONTINUE

DO 44 I=1,N
DO 44 J=1,N
SUM=0

DO 55 K=1,N
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SUM = SUM+ RI(I,K)*RL(J,K)*HESD(K)

55 CONTINUE

A(ILJ)=SUM

44 CONTINUE
IF(.NOT.POSDEF)THEN
WRITE(6,996)

STOP
ENDIF
CALL F01ACF(N,X02AAF(IT),A,IA,B,IB,Z,L,IFAIL)
IF(IFAIL.NE.0)THEN
WRITE(6,995)IF AIL
STOP
ENDIF
DO 93,I=1?,N
STD(I)= DSQRT(A(I+ 1,1))
TRAT(I)= — (XC(1)/STD(I))

93 CONTINUE
WRITE(6,994)(STD(I),I=1,N)
WRITE(6,993)(TRAT(I),I=1,N)
WRITE(6,992)(GC(I),I=1,N)
WRITE(6,990)

DO 94,]=1,N
WRITE(6,991)(A(I+ 1,J),J=1,])
94 CONTINUE
WRITE(6,989)~ FC
WRITE(6,988)GPJNRM,COND
999 FORMAT(1H1//1X,'ITERATION NR ',I3,10X,'NR OF L~ LIKELIHOOD

+ FUNCTION EVALS SO FAR ',I8)
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998

997

996

995

994

993

992

990

991

989

988

FORMAT(//1X,'COEFFICIENT NR'13,1X,'"HAS REACHED -+ 10%*6',
+ /1X,'ISTATE VALUE IS ',I3,’ PROCESS TERMINATED")
FORMAT(/1X,'COEFFICIENTS IN THIS ITERATION '/,
+(13(3X,D11.5)))

FORMAT(/1X,'MATRIX FOR INVERSION NOT POSITIVE DEFINITE')
FORMAT(/1X,'"MATRIX OF SECOND DERIV CANNOT BE

+ INVERTED.IFAIL=',12)

FORMAT(/1X,'STANDARD DEVIATION ESTIMATES',/

+ ,(13(3X,D11.5)))

FORMAT(/1X,'T— RATIOS(ON ZERO)= COEFF/STD DEV',/,
+(13(3X,D11.5)))

FORMAT(/1X,'FIRST DERIVATIVES ESTIMATES'/(13(3X,D11.5)))
FORMAT(/1X,'"ESTIMATED VAR— COVAR MATRIX')
FORMAT(13(3X,D11.5))

FORMAT(/1X,'L— LIKELIHOOD FUNCTION VALUE',F10.4)
FORMAT(///1X,'"GRAD.PROJ.NORM ',F10.3,6X,"COND NR OF

+ PROJ HESSIAN MATRIX ',F10.3)

RETURN

END

SUBROUTINE ATTRB

REAL*8 AVC,AVB,AVT,AVW,A(20,7),DA(120),ETA,XTOL,
+ PER,PERW,PERDL,HHPOS,SEX,0CC,HINC,HINCP,CBD,
+ CAOD,CAPDL,CAPW,WKB,WKT ,WTB,WTT,IVIB,IVTT,
+ IVTCP,WALK,OVTB,OVTT,TTB,TTT,DIST,CSTB,CSTT,
+ CSCP1 ,cstz,cscps,csm ,CSC2,CSC3,CPIPB,CPIPT,
+ CPICP1,CPICP2,CPICP3,CPIC1 ,CPIC2,CPIC3

INTEGER IX(7)
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COMMON/ACCUR/ETA,XTOL

COMMON/NUMB/N,NOBS, MXNLT

REWIND 4

REWIND 1

NXS=0

READ(5,999)N,NOBS,MXNLT,ETA,XTOL

IF(N.EQ.1)ETA=0.

DO 99 IOBS=1,NOBS

READ(5,998)ICH

READ(5,997)PER,PERW,PERDL,HHPOS,SEX,0CC,HINC,HINCP,CBD,
+ CAOD,CAPDL,CAPW

READ(5,997)WKB,WKT ,WTB,WTT,IVTB,IVTT,IVTCP,WALK,OVTB,
+OVTT,TTB,TTT,DIST

READ(5,997)CSTB,CSTT,CSCP1,CSCP2,CSCP3,CSC1,CSC2,CSC3

READ(5,99;)CPIPB,CPIPT ,CPICP1,CPICP2,CPICP3,CPIC1,CPIC2,CPIC3

READ(5,997)AVC,AVB,AVT , AVW

1I=0

KK=0

KK= KK+ 1

IF(AVC.EQ.1.)THEN

II=II+1

IX(KK)=1

IF(ICH.EQ.KK)NSEL= II

CHFFRK e e e e o e —————— CAR —~—— e

A(1,I)= HHPOS
A(2,I)= CAPDL

A(3,I)= CAOD
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A(4,ID=0
A(5,I)= IVTCP
A(6,IT)= CSC1/DIST
A(7.ID=1
A(8,IN=0
A(9,I)=0
A(10,ID=0
A(11,ID=
A(12,ID)=
A(13,ID)=
A(14,I)=

a o o O

ELSE

IX(KK)=0

ENDIF

KK=KK+1

IX(KK)=1

n=11+1

IF(ICH.EQ.KK)NSEL= II

CHA** A o e — PASS mm e

A(1,ID=0
A(2,I)=0
A(3,I)= CAOD
A(4,ID=0
A(5,I=IVTCP
A(6,II)= CSCP1/DIST

A(7,ID=0
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A8,ID)=1
A(9,TD)=0
A(10,I)=0
A(11,ID)=
A(12,ID)=
A(13,IN=

A(14,I1)=

aQ O O 0

KK= KK+ 1
IF(AVB.EQ.1.)THEN
II=1I+1
IX(KK)=1
IF(ICH.EQ.KK)NSEL= II
CHkbkdk_ — — — BUS — —————— e —
A(1,ID=0
A(2,ID=0
A(3,ID=0
A(4,I)=CBD
A(5,Il=TTB
A(6,II)= CSTB/DIST
A(7,ID=0
A(8,ID=0
A(9,ID=1
A(10,ID)=0
C A(11,ID=
C A(12,ID)=
C A(13,II)=
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A(14,1T)=

ELSE

IX(KK)=0

ENDIF

KK=KK+1
IF(AVT.EQ.1.)THEN
II=+1

IX(KK)=1
IF(ICH.EQ.KK)NSEL= II

CHhEFEEE— e e e e o e e - — —

a o a O

A(1,I)=0
A2,TD)=0
A(3,ID=0
A(4,I)= CBD
A(5,I)=TTT
A(6,I1)= CSTT/DIST
A(7,I)=0
A(8,ID)=0
A(9,ID=0
A(10,l)=1
A(11,ID=
A(12,1i)=
A(13,ID)=

A(14,ID)=
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ELSE

IX(KK)= 0

ENDIF

KK= KK+ 1

IF(AVW.EQ.1.)THEN

II= I+ 1

IX(KK)=1

IF(ICH.EQ.KK)NSEL= II
Crebttbhe — —
A(1,IN=0
A(2,IN=0
A(3,IN=0
A(4,ID=0
A(5,I)= WALK
A(6,I)=0
A(7,ID=0
A(8,I)=0
A(9,IN=0
A(10,I=0
A(11,In=
A(12,ID)=
A(13,ID)=
A(14,ID)=

a o 0 aQ

ELSE

IX(KK)= 0

216




ENDIF
NALT=1I
WRITE(1)ICH,NSEL,NALT ,(IX(I),I= 1,MXNLT)
WRITE(1)((A(J,I),J=1,N),I=1,NALT)
KKK=0
DO 397,I=1,NALT
IF(I.LEQ.NSEL)GO TO 397
KKK= KKK+ 1
DO 97 J=1,N
DA(J+ N*(KKK— 1))= A(J,NSEL)— A(J,I)
97 CONTINUE

397 CONTINUE
NX= N*(NALT— 1)
NXS= NXS+ NX
WRITE(4)NX,(DA(I),I=1,NX)

99 CONTINUE

WRITE(6,*) #***s4 s+ x4 x5 %54 %+SUM OF NX= ',NXS
RETURN

999 FORMAT(314,2F10.6)

998 FORMAT(I1)

997 FORMAT(13F8.4)

222 FORMAT(914)

223 FORMAT(7F11.5)

224 FORMAT(13,(7F11.5))

END
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APPENDIX 3

AGGREGATE PREDICTION ERROR PROGRAM



C THIS SIMPLE PROGRAM WAS WRITTEN BY A.K. MOHAMAD AT THE

C DEPARTMENT OF CIVIL ENGINEERING IN THE UNIVERSITY OF

C GLASGOW IN 1988.

C IT IS DESIGNED TO COMPUTE AGGREGATE PREDICTION ERRORS

C IN TERMS OF THE AVERAGE, ROOT MEAN SQUARE AND STANDARD

C DEVIATION ERRORS.

C THE ERRORS CALCULATED IN THIS PROGRAM ARE WEIGHTED ERRORS
C AND THE WEIGHTING IS GIVEN BY THE PROPORTION OF INDIVIDUALS
C CHOOSING EACH MODE.

PROGRAM PDTERR
REAL*8 GS,TGS,SSAVE,SSAVGE,SSRMSE,SSRMSGE,SSSDE,SSSDGE,
+ GAVE,GAVGE,GRMSE,GRMSGE,SSAVET,SSAVGET,SSRMST,SSGRMST,
+ SSAVST,SSAVGST, TAVE, TAVGE, TRMSE, TRMSGE,TSDE, TSDGE,CS(100),
+ AVP(5,100),ENP(5,100),ACP(5,100),SENP(5),SACP(5), TENP(S),
+ TACP(5),E(5),GE(5),DFE(5),DFGE(5) ,SDFE(5),SDFGE(5) , TDE(5),
+ TDGE(5),SE(5),SGE(5), WSE(5), WSGE(5) ,SWSE(5) ,SWSGE(5),TWSE(5),
+ TWSGE(5),AVE(5), AVGE(5) ,SAVE(5),SAVGE(5),RMSE(5),RMSGE(S),
+ SRMSE(5),SRMSGE(5),D(5),GD(5), WD(5), WGD(5),SWD(5),SWGD(5),
+ SDE(5),SDGE(5),SSDE(5),SSDGE(5),AVET(5), AVGET(5),SAVET(5),
+ SAVGET(5),RMST(5), GRMST(5),TD(5),SRMST(5),SGRMST(5),TGD(5),
+ WTD(5),WTGD(5),SWTD(5),SWTGD(5),AVST(5),AVGST(5),SAVST(5),
+ SAVGST(5),EI(5,1 06) ,GEI(5,100)
INTEGER NM,NGRP,NGOBS(100)
READ(S,*)TGS,NM,NGRP,(NGOBS(I),I= 1,NGRP)

C INATIALISE TO ZERO

219



SSAVET= 0.
SSAVGET=0.
SSRMST= 0.
SSGRMST= 0.
SSAVST=0.
SSAVGST=0.

DO 101 I=1,NM
TDE(I)=0.
TDGE(I)= 0.
TWSE(I)= 0.
TWSGE(I)=0.
TENP(D= 0.
TACP(I)=0.
SWTD(I)= 0.
SWTGD(I)=0.

101  CONTINUE
DO 100 IGRP=1,NGRP

SSAVE=0.
SSAVGE=0.
SSRMSE= 0.
SSRMSGE= 0.
SSSDE= 0.
SSSDGE=0.

DO 99 I=1,NM
SDFE(I)=0.
SDFGE(I)=0.
SWSE(I)= 0.
SWSGE(I)=0.

SWD(I)= 0.
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SWGD(I)= 0.
SACP(I)=0.
SENP(I)= 0.
99 CONTINUE
GS=0.
ISTRT=1
IFNSH= NGOBS(IGRP)

C READ THE AV. PROB. VALUES FOR EACH MODE FOR EACH GROUP
DO 98 IOBS=ISTRT,IFNSH
READ(5,998)CS(IOBS)

READ(5,997)( AVP(1,IOBS),I= 1,NM)
READ(5,997)(ENP(1,IOBS),I= 1,NM)

C READ(5,997)( ACP(L,IOBS),I= 1,NM)
GS= GS+ CS(IOBS)

C SET TO ZERO IF THE ENUMERATION PROB. EQUAL ZERO

Q

OTHERWISE CALCULATE THE VALUES OF ERRORS

DO 97 I=1,NM

C IF(ACP(1,IOBS).EQ.0.)THEN
C E(D)=0.
C ELSE
C E(I)= (ENP(I,IOBS)— ACP(I,IOBS))/ACP(I,IOBS)
C ENDIF
IF(ENP(1,IOBS).EQ.0.)THEN
GE(I)=0.
ELSE
GE(I)= (AVP(I,IOBS)— ENP(I,IOBS))/ENP(1,IOBS)
ENDIF
C DFE(I)= E(I)* ACP(I,IOBS)

DFGE(I)= GE(I)*ENP(I,JOBS)
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C SDFE(I)= SDFE(I)+ DFE(I)*CS(IOBS)
SDFGE(I)= SDFGE(I)+ DFGE(I)*CS(IOBS)

C TDE(I)= TDE(I)+ DFE(I)*CS(IOBS)
TDGE(I)= TDGE(I)+ DFGE(I)*CS(IOBS)
SENP(I)= SENP(I)+ ENP(I,IOBS)

C SACP(I)= SACP(I)+ ACP(I,IOBS)
TENP(I)= TENP(I)+ ENP(I,IOBS)

C TACP(I)= TACP(I)+ ACP(1,IOBS)

C SE(I)= E(I)**2
SGE(I)= GE(I)**2

c WSE(I)% SE(I)* ACP(1,IOBS)*CS(IOBS)

WSGE(I)= SGE(I)*ENP(1,IOBS)*CS(1I0BS)

C SWSE(T)= SWSE(I)+ WSE(I)
SWSGE(I)= SWSGE(I)+ WSGE(I)
C TWSE(I)= TWSE(I)+ WSE(I)
TWSGE(I)= TWSGE(I)+ WSGE(I)
C EI(1,IOBS)= E(I)
GEI(I,IOBS)= GE(I)
97 CONTINUE
WRITE THE CALCULATED VALUES OF ERRORS
WRITE(6,996)
WRITE(6,995)I0BS (E(I),I= 1,NM)

WRITE(6,995)I0BS,(GE(I),I=1,NM)

O o O O O

WRITE(1)IGRP,CS(IOBS),(E(I),I= 1,NM)
WRITE(4)IGRP,CS(IOBS),(GE(I),I= 1,NM)

98 CONTINUE

C WRITE(6,777)
C FIND THE AV.VALUES OF:ERRORS,RMSE FOR EACH MODE FOR EACH
C GROUP AND THEN WRITE THEM
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DO 96 I=1,NM
IF(SACP(I).EQ.0.)THEN
AVE(I)="0.
RMSE()=0.
ELSE
AVE(I)= SDFE(I)/(SACP(I)*GS)

RMSE(I)= SQRT(SWSE(I)/(SACP(I)*GS))

a o o o a a0 O

END IF

IF(SENP(I).EQ.0.)THEN
AVGE(D)=0.
RMSGE(I)= 0.

ELSE

AVGE(T)= SDFGE(I)/(SENP(I)*GS)

RMSGE(I)= SQRT(SWSGE(I)/(SENP(I)*GS))
ENDIF
c SAVE(I)= AVE(I)**2
SAVGE(I)= AVGE(I)**2
C SSAVE= SSAVE+ SAVE(I)
SSAVGE= SSAVGE+ SAVGE(])
C SRMSE(I)= RMSE(I)**2
SRMSGE(I)= RMSGE(I)**2
C SSRMSE= SSRMSE+ SRMSE(I)
SSRMSGE= SSRMSGE~+ SRMSGE(I)
96  CONTINUE
C FIND THE SDE FOR EACH MODE FOR EACH GROUP THEN WRITE THEM
DO 95 IOBS= ISTRT,IFNSH
DO 95 I=1,NM
C D(I)= (EI(I,IOBS)— AVE(I))**2

GD(I)= (GEI(I,JOBS)— AVGE(I))**2
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95

QO o o a 0

94

CcC

WD(I)= D(I)* ACP(I,I0BS)*CS(IOBS)
WGD(I)= GD(I)*ENP(1,IOBS)*CS(IOBS)
SWD(I)= SWD(I)+ WD(I)

SWGD(I)= SWGD(I)+ WGD(I)

CONTINUE

DO 94 I=1,NM

IF(SACP(I).EQ.0.)THEN
SDE(D)= 0.
ELSE
SDE(I)= SQRT(SWD(I)/(SACP(I)*GS))
END IF
IF(SENP(I).EQ.0.)THEN
SDGE(I)= 0.
ELSE
SDGE(I)= SQRT(SWGD(I)/(SENP()*GS))
END IF
SSDE(I)= SDE(I)**2
SSDGE(I)= SDGE(I)**2
SSSDE= SSSDE~+ SSDE(I)

SSSDGE= SSSDGE+ SSDGE(I)

CONTINUE

GAVE= SQRT(SSAVE/NM)
GAVGE= SQRT(SSAVGE/NM)
GRMSE= SQRT(SSRMSE/NM)
GRMSGE= SQRT(SSRMSGE/NM)
GSDE= SQRT(SSSDE/NM)
GSDGE= SQRT(SSSDGE/NM)
WRITE(6,666)

WRITE(6,994)(AVE(I),I= 1,NM),GAVE
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O o o o a a O

100

QO o o o o o O

WRITE(6,994)(AVGE(I),I= 1,NM),GAVGE
WRITE(6,555)
WRITE(6,994)(RMSE(I),I= 1,NM),GRMSE
WRITE(6,994)(RMSGE(I),I= 1,NM), GRMSGE
WRITE(6,444)
WRITE(6,994)(SDE(I),I= 1,NM),GSDE
WRITE(6,994)(SDGE(I),I= 1,NM),GSDGE
CONTINUE
DO 93 I=1,NM
IF(TACP(I).EQ.0.)THEN
AVET(I)=0.
RMST(I)=0.
ELSE
AVET(I)= TDE(I)/(TACP(I)*TGS)
RMST(I)= SQRT(TWSE(I)/(TACP(I)*TGS))
ENDIF
IF(TENP(I).EQ.0.)THEN
AVGET(I)=0.
GRMST(I)= 0.
ELSE
AVGET(I)= TDGE(I)/(TENP(I)*TGS)
GRMST(I)= SQRT(TWSGE(I)/(TENP(I)*TGS))
ENDIF
SAVET(I)= AVET(I)**2
SAVGET(I)= AVGET(I)**2
SSAVET= SSAVET+ SAVET(])
SSAVGET= SSAVGET+ SAVGET(I)
SRMST(I)= RMST(I)**2

SGRMST(I)= GRMST(I)**2
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o SSRMST= SSRMST+ SRMST(I)
SSGRMST= SSGRMST++ SGRMST(I)
93  CONTINUE I
C  REWIND 1
REWIND 4
DO 92 IGRP=1,NGRP
ISTRT=1
IFNSH= NGOBS(IGRP)
DO 92 IOBS= ISTRT,IFNSH
o READ(1)IGRP,CS(IOBS),(E(I),I= 1,NM)
READ(4)IGRP,CS(IOBS),(GE(I),I= 1,NM)
DO 92 I=1,NM
o TD(I)= (E(— AVET(I))**2
TGD(I)= (GE(I)— AVGET(I))**2
o WTD(I)= TD(I)* ACP(I,IOBS)*CS(IOBS)
WTGD(I)= TGD(I)*ENP(I,IOBS)*CS(IOBS)
C SWTD(I)= SWTD(I)+ WTD(I)
SWTGD(I)= SWTGD(I)+ WTGD(I)
92  CONTINUE
DO 91 I=1,NM
IF(TACP(I).EQ.0.)THEN
AVST(D)=0.
ELSE

AVST(I)= SQRT(SWTD(1)/(TACP(I)*TGS))

a o o o O

ENDIF

IF(TENP(I).EQ.0.)THEN

AVGST(I)=0.
ELSE

AVGST(I)= SQRT(SWTGD(I)/(TENP(I)*TGS))

226



91

999
998
997
996
995
994

777

ENDIF
SAVST(I)= AVST(I)**2
SAVGST(I)= AVGST(I)**2
SSAVST= SSAVST+ SAVST(I)
SSAVGST= SSAVGST+ SAVGST(])
CONTINUE
TAVE= SQRT(SSAVET/NM)
TAVGE= SQRT(SSAVGET/NM)
TRMSE= SQRT(SSRMST/NM)
TRMSGE= SQRT(SSGRMST/NM)
TSDE= SQRT(SSAVST/NM)
TSDGE= SQRT(SSAVGST/NM)
WRITE(6,333)
WRITE(6,994)(AVET(I),I= 1,NM), TAVE
WRITE(6,994)(AVGET(I),I= 1,NM), TAVGE
WRITE(6,222)
WRITE(6,994)(RMST(I),I= 1,NM), TRMSE
WRITE(6,994)(GRMST(I),I= 1,NM), TRMSGE
WRITE(6,111)
WRITE(6,994)(AVST(I),I= 1,NM), TSDE
WRITE(6,994)(AVGST(I),I= 1,NM), TSDGE
STOP
FORMAT(F4.0,314)
FORMAT(6X,F4.0)
FORMAT(14X,5F11.5)
FORMAT(////3X," )
FORMAT(4X,110,5F11.5)
FORMAT(14X,6F11.5)

FORMAT(/10X,'THE ABOVE VALUES ARE :FOR EACH OBS. THERE ARE
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666

555

444

333

222

111

+ TWO VALUES. THESE ARE: 1- ERRORS MEASURE. 2— AGGREGATE

+ ERROR.',///)

FORMAT(///10X,'THE BELOW VALUES ARE
+ ERROR',//)

FORMAT(///10X,'THE BELOW VALUES ARE:
FORMAT(///10X,'THE BELOW VALUES ARE:
+ ERROR',//)

FORMAT(///10X,'THE BELOW VALUES ARE:

+ 2—TOTAL AGG. ERROR'//)

: 1— AV. ERROR. 2— AGG. AV.

1— RMSE. 2— AGG. RMSE',//)

1-STD ERROR. 2- AGG.STD

1- TOTAL AV. ERRORS.

FORMAT(///10X,'THESE ERRORS ARE: 1- TOTAL RMSE. 2— TOTAL AGG.

+ RMSE.",//)

FORMAT(///10X,'THESE ERRORS ARE: 1- TOTAL SDE. 2— TOTAL AGG.

+ SDE.'J))

END
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