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Summary

M any astrophysical plasm as, such as are found in the sun, nebulae and, 

supernova rem nants etc are often analysed spectroscopically assuming in a first 

approximation that they are homogeneous in nature. However, when several different 

diagnostics are applied, different plasm a param eters, e.g. electron density and 

temperature, are usually inferred from  each diagnostic. This is consistent with imaged 

observations of the solar atmosphere, for instance, which show that it is, in fact, highly 

inhom ogeneous, and of non-isothermal structure, so that a range of temperatures and 

densities contribute to the line intensities used in the spectroscopy. Such inhomogeneity 

can severely affect accurate determ ination o f plasm a param eters, such as electron 

densities.

In this thesis, Chapters 1 and 2 are designed to introduce and review the relevant 

topics considered in the later Chapters. Chapter 1 considers the use of solar plasma 

spectroscopy for the determination of the electron temperature and density in the solar 

atm osphere, discussing the different techniques developed for this purpose. Our 

discussion is restricted to plasm a diagnostics inferred from the high temperature solar 

spectrum , which produces lines mainly in the UV, EUV, and X-ray regions of the 

electrom agnetic spectrum. The necessary atomic physics involved, which is closely 

related to solar physics diagnostics, is also discussed in detail. In Chapter 2 we review 

the present status of observational knowledge of the solar atmosphere at UV, EUV and 

X-ray wavelengths, paying special attention to plasma electron density inhomogeneities.

The main body o f this thesis is contained in Chapters 3-6. In Chapter 3, we 

present a simple, but accurate, analytical, representation which describes line ratios as a 

function o f electron density. This representation is found to lead to an extremely good 

representation of actual line ratio curves, obtained by numerical methods that require 

much theoretical effort and very accurate atomic data. This representation is shown to be 

an excellent method for electron density determination in solar plasmas, and to provide a 

more flexible treatment of the effect of plasma inhomogeneities on density sensitive line



IV

ratios.

Chapter 4 discusses the problem of interpreting density sensitive line strengths 

from an isothermal plasma of inhomogeneous density. We show that the problem can be 

expressed in terms of deriving an emission measure function £(ne) per unit density from 

a set o f line strengths and that any particular line ratio yields a spectroscopic 'mean 

density' <ne>. The value o f <ne> will differ for different line pairs, and differ from both 

the volumetric mean n and emissivity mean n unless the plasm a is homogeneous. For a 

single line ratio and total emission measure, the homogeneous solution ne(r)=<ne> yields 

the m inim um  possible plasm a volume which is found to fall below the true plasma 

volum e to an extent which increases with the inhomogeneity o f the real plasma. This 

result, explains, in terms of plasma inhomogeneity, the small filling factors commonly 

found when em itting volum es, inferred using <ne> together with the total emission 

measure, are compared with spatially resolved total volumes.

In Chapter 5 the problem  o f interpreting densities in inhom ogeneous non- 

isothermal plasmas from density sensitive line ratios is discussed. It is shown how the 

concepts o f em ission m easure differential in density £(ne) and em ission measure 

differential in temperature ^(T) can be generalised to analyse arbitrary plasmas. In the 

special case (pressure stratification) where surfaces o f constant temperature St and of 

constant density Sn coincide it is proven that it is possible in principle, if  £(T) is known 

from resonance lines, to derive information about the density (or pressure) distribution as 

a function of temperature, i.e. ne(T), using density sensitive lines.

It is then investigated whether and when the predicted line strengths of a set of 

sources with different ne(T) but with the same ^(T) would in practice be distinguishable 

using measurements of density sensitive lines, for the empirical model ne(T) a  noT'5- It is 

found that the inferred value of 5 and of the base density no from two density sensitive 

line ratios is sensitive to the data, thus demonstrating the possibility of deducing rie(T) for 

the plasma in question. The approach is tested on data from an emission region observed 

above the limb of the quiet sun, using the only two line ratios for ions in a temperature



range 2 x l0 5-1 .6x l06 K for which the atomic parameters were available. The values of 8 

and the electron pressure (base density) obtained were in a good agreement with the 

theoretical model of the quiet sun transition region. This technique can be extended, and 

the m odel form for ne(T) tested, by comparing for consistency the value o f 8 and no 

obtained from three or more ratios.

In Chapter 6 we discuss another reason for deducing incorrect electron densities 

in the solar atmosphere, namely the noise in the observed line intensities and in the atomic 

data. The resultant bias in the estimated densities, as well as the confidence interval, is 

determined for some examples. A fairly brief discussion is given o f how the noise on line 

ratios can affect the estimated densities and, therefore, the required accuracy for obtaining 

reasonable values of ne.

Finally, Chapter 7 discusses possible future work inspired by, or related to, the 

considerations of this thesis. In particular, the investigation of the effect o f the plasma 

inhomogeneity on different models of the solar atmosphere as well as on different solar 

phenom ena is considered. In addition, the effect o f noise on the different atomic 

parameters present in our representation (Chapter 3), and a comparison with that of the 

line ratio’s are shown to be important.

Some parts of this thesis have already been published or submitted for publication 

and others have appeared in different conferences. The contents o f Chapter 3 and 4 have 

been published in the Astronomy and Astrophysics (1989), Chapter 5 has been submitted 

to the above journal, as well as appeared in the Royal Astronomical Society meeting at the 

University o f Glasgow, 1990 April 4-6 and in the COSPAR Symposium No. 9 at The 

Hague, Netherlands, 27-29 June 1990. Chapter 6 is currently being developed for 

publication.
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CHAPTER 1

SOLAR PLASMA SPECTROSCOPIC DIAGNOSTICS

1.1 Solar Spectroscopy

1.1.1 Introduction

1.1.2 The UV, EUV,and X-ray Spectrum

1.2 Theory o f Spectral Line Formation

1.3 Electron Temperature Determination

1.4 Electron Density Diagnostics

1.4.1 Metastable Level Effect

1.4.2 Electron Density Determination

1.5 Emission Measure Analysis

1.6 Summary
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1.1 Solar Spectroscopy

1.1.1 Introduction

Solar spectroscopy is a field  o f study that covers a wide area, o f physics 

including investigations o f atomic structure and basic plasma physics diagnostics as well 

as the physics o f the sun itself. During the first quarter o f this century, solar spectroscopy 

occupied a central role in physical research. The high quality o f this field improved 

dramatically after World W ar II, with the advent of space research, and some of the most 

interesting spectroscopic and plasm a diagnostic results were achieved in the 1950's and 

60's. In this chapter we will review some spectroscopic concepts and atomic results 

which are closely related to solar physics plasma diagnostics. The discussion will deal 

m erely with the final results o f the extensive work carried out on the theoretical 

determinations of energy levels, transition probabilities, and calculations of excitation and 

ionisation rate coefficients. In other words we shall discuss line intensities, their 

form ations and interpretations and their changes as a result o f the properties o f the 

emitting plasma. Different kinds o f spectral lines observed in the sun will be mentioned 

and defined later in the glossary.

A large amount of literature exists on solar spectroscopy and plasma diagnostics. 

Recent examples include Gabriel and Jordan (1969, 1972), Culhane and Acton (1974), 

Dupree (1978), M cW hirter (1978), Jordan (1979), Dere and Mason (1981), Feldman 

(1981), Gabriel and M ason (1982), M cW hirer and Summers (1984), and Doschek 

(1985,1988)

A wealth o f information, providing diagnostic tools for determining physical 

param eters, crucial to the understanding o f the physics o f the solar atmosphere, is 

obtained by investigating the radiation emitted. The radiation, emitted from different 

temperature regimes (or different depths for a stratified structure) in the solar atmosphere, 

has various forms which may be distinguished according to their wavelength (or energy). 

The spectrum ranges from radio waves of very long wavelength (low energy) to X-ray



and gamma rays at very short wavelengths (high energy). In between fall infrared (IR), 

visible UV and EUV (Extreme Ultraviolet) light' Table 1.1 summarises the different 

wavelengths and energies available for observations. Although we shall be concerned 

mainly with the solar plasm a, the results may also be applied to other types of plasma 

with a sim ilar temperature and density, and for which the processes o f ionization, 

recombination, excitation and deexcitation are similar.

In this thesis we shall restrict our discussion to the interpretation o f optically thin 

spectral line intensities obtained from  the so-called high temperature solar spectrum 

(HTSS), this spectrum being produced in the upper part o f the chromosphere, the 

transition region and the corona. These regions span a temperature range from 2x1c)4 K to 

about 10x10 6 K. The high tem perature regions o f the solar atmosphere produce 

interesting spectra mostly at wavelengths shorter than visible, i.e. UV, EUV, and X-ray 

wavelengths. These spectra are usually absorbed by the atmosphere of the earth making it 

difficult to study from ground based instruments, and the investigation of these spectra 

could not begin in earnest before the advent o f solar space research. Since the early to 

mid 1960s X-ray and UV spectrometers and spectrographs have been flown on rockets 

and unmanned and manned spacecraft, obtaining a large amount o f data and providing 

interesting spectroscopic and plasm a diagnostic results. High tem perature solar 

spectroscopy is, therefore, a relatively young field. Because o f its proximity, the high 

temperature solar atmosphere is the only astrophysical plasma source that can be studied 

in great detail both because it can be to some extent spatially resolved, and because the 

high photon flux allows very high spectral resolution. The main source for our 

understanding o f stellar atm ospheres and even of low density collisionally excited 

plasmas, such as supemovae, and their remnants is based on our knowledge concerning 

the plasma radiation processes in the solar atmosphere. Although some of these processes 

can be studied by high resolution images of the atmosphere, much of our knowledge 

concerning tem perature, density and dynam ics of different regions o f the solar 

atmosphere is obtainable through the technique of high resolution spectroscopy in UV, 

EUV, and X-ray spectral regions. In addition, this pan of the solar spectrum has shed



Table 1 The Spectrum ranges

Band Wavelength range (A) Energy range (eV)

Radio X ^ io 7A 0.00124 eV > E

Infrared (IR) 106A > X >7500A 1.65eV > E > 0.00124eV

Visible 7500A > X >3(XX)A 4.13 e V > E >  1.65 eV

UV 3000A > X > 1500A 8.24 eV >  E >4.13 eV

EUV 1500A >X >100A .124 keV > E > 8.24 eV

Soft X-ray
iooA > X > i A 12.4 k e V > E >  0.124 keV

Hard X-ray lA  > X >0.025A 500keV >  E > 12.4 keV

Gamma-ray .0 2 5 A > X E >  5 0 0 keV
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light on certain problem s of atomic physics and has been useful in understanding 

laboratory plasm a spectra, such as those obtained from  laser produced and tokamak 

plasmas.

1.1.2 The UV. EUV. and X-rav spectrum

It is well known that visible spectroscopy is very important for optical astronomy. 

However, it is obvious that the much larger spectral range covered by the UV down to X- 

rays should be far more fruitful for diagnosing High Temperature Plasmas (HTP) simply 

because o f the much larger spectral range involved. M ost o f the plasma diagnostics for 

these different spectral regions have been determined over the last three decades, with 

solar spectra providing the primary data base. The application of these diagnostics to non

solar spectra is enormous, and already considerable work has been done with spectra 

from  the In ternational U ltrav io let Explorer (IU E). By only considering short 

wavelengths, we will be restricted to data obtained from space observations. In what 

follows we will divide the spectral range into several sections according to the typical 

wavelength ranges covered by different spectrometers. Due to properties of materials 

used in the construction  o f short w avelength instrum ents and o ther sim ilar 

considerations, the same wavelength divisions will be approximately maintained in future 

space experiments. Therefore, it is preferable to find lines that fall in one or another of 

these ranges because of the problems involved in applying diagnostics to spectra obtained 

from different instruments.

The spectral range between 2000-3000 A contains many lines, formed mostly in 

the photosphere and cooler parts of the chromosphere. Some of the more important lines
p ’

for both solar and stellar atmospheres are the Mg II h and k lines near 2800 A. These 

lines have been investigated in detail by Doschek (1985) and Feldman and Doschek 

(1977). This wavelength range also contains other interesting chromospheric lines such 

as the C II lines and the Si II lines near 2325 A and 2340 A respectively which have been 

used to determine electron density in stars with atmospheres less dense than that of the 

Sun (Stencel et al 1981). A small number of ions which are of particular interest to high



temperature plasma diagnostics are the coronal forbidden lines such as Fe IX , Fe XI-Fe 

x n i ,  Ni XIII-Ni XV and some silicon lines. Atomic data have been calculated fo rF e  XU 

by Flow er (1977) showing that the lines o f this ion can be used as an electron density 

diagnostic.

The spectral range between 1100-2000 A have been investigated in great detail 

since the start of space-borne observations particularly since the data from Skylab became 

available, after 1973. This range is very important for the lower transition region plasma 

and also for certain astrophysical sources. Several wavelength lists whithin this range 

have been published by many authors such as Burton and Ridgely (1970) who published 

the first extensive wavelength list with sufficient accuracy obtained from the Sun; the list 

included a num ber of new identifications o f intersystem  and forbidden transitions, 

Doschek et al (1976), Sandlin et al (1977), Feldman and Doschek (1977) who published 

lists o f lines recorded above an active region, and a list of lines recorded during a flare 

have been published by Cohen et al (1978). The most outstanding lines in this region are 

the 1548 and 1550 A lines of C IV. There are also a number of strong lines that appear 

with significant intensity such as N V, AL III and Si IV. These lines show a special 

im portance in determ ining the differential em ission m easure (cf section 1.5) in 

temperature in the lower transition region where they have been formed (Feldman 1981). 

A num ber of intersystem  lines which are im portant for the lower density plasm a 

diagnostics (108 - 1013 cm-3), e.g. N III, N IV, O III, Si III, S IV and S V have been 

identified in this range. Ions of Beryllium isoelectronic sequences, in particular, C III and 

O V, have also proved to be a rich resource for studying this region. C III has been 

extensively studied in the quiet sun and active regions. W ork on this ion has been 

reviewed by Gabriel and Jordan (1972), Dupree (1978) and Jordan (1979), and Doschek 

(1985). The other ion in the Beryllium isoelectronic sequence that is useful for density 

diagnostics is OV. Atomic calculations for this ion have been carried out by Malinovsky 

(1975). However, more recently, interest has focused on O IV transitions that fall around 

1401 A, a more detailed explanation concerning this ion and its utilities in electron density 

diagnostics will be discussed later in Chapter 3. The intensity ratio of the spectral lines of



this ion within the multiplet or the ratio of one of these lines to an allowed line, are very 

useful as a density diagnostic tool, as will be seen shortly.

The importance of many o f these lines arises because of the small radiative decay 

rate (cf. next section). Some of these lines can be utilised in one of two ways: (i) by 

taking the strongest intersystem line and comparing it with an allowed line formed at a 

similar temperature, e.g. O IV and S IV can be compared to one of the Si IV lines (this 

method can serve as a useful technique for the electron density determination Feldman et 

al (1977), and will be discussed in Section 2.3.2). (ii) by comparing lines within each 

multiplet (Flower and Nussbaumer 1975c), since the intensity ratios within the multiplet 

are sensitive to a relatively narrow range o f densities. The range 1100-2000 A also 

contains some coronal forbidden lines such as Si VIII, Fe IX-Fe XIII. In addition to 

these lines, some forbidden high temperature flare ion lines, Fe XVII, Fe XIX and Fe 

XXI, are located in this wavelength range.

The wavelength range 170-1100 A contains very important lines for the HTP 

diagnostics. This region contains intense spectral lines spanning a very wide range of 

temperatures from the lower transition region, e.g., the resonance lines He II (304 A), O 

IV (554 A), O V (629 A) and Ne VII (465 A), up to flare temperatures, e.g., the lithium 

like lines of Fe XXIV at 192 and 225 A, the intersystem line Fe XXIII (263 A), the Ca 

XVH (193 A), and Ca XVI at (209 A) and (225 A). There also exist many other strong 

lines that are useful for coronal diagnostics in this range, e.g., Mg IX (368 A), Fe XV 

(284 A) and Fe XVI (365 A). The outstanding chromospheric line in this range is He I 

(584 A). Many authors have published different lists o f emission lines in this region. 

Behring et al (1976) have published one of the most accurate emission line lists obtained 

in the 160-770 A range, while Dere et al (1979) have carried out an extensive study for 

the range 170-630 A; this study includes a group of very strong coronal lines due to Fe 

VIII-Fe XIII, Ni XI-Ni XVII and other different lines of the beryllium, boron, carbon, 

and nitrogen isoelectronic sequences. There are many other lists of interesting lines in this 

range, but because of space limitation they will not be considered in detail here.
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The spectral range 30-170 A contains lines important for flare physics. This EUV 

reg ion  has so far been insufficien tly  explored w ith high spectral resolution 

instrumentation. This very interesting group o f resonance lines are due to Fe XVIII-Fe 

XXIII, the Fe XVIII lines appearing with a significant intensity during solar activity 

(Behring et al 1972-it should be mentioned that this reference also contains the most 

accurate wavelengths). There are also weaker lines from Ca and Ni ions, with similar 

transitions to iron's. Extensive theoretical work has been done in calculating collision 

strengths and radiative decay rates for the above mentioned ions. Calculating the spectra 

is now possible, with a fair degree of accuracy.

Finally we discuss the wavelength range between about 1.5-30 A. This range is 

dominated by two types of lines. One of them includes transitions that occur in He-like 

ions, which are a good density diagnostic for solar plasmas (Gabriel and Jordan 1969) as 

will be shown in section 2.4.2., H-like ions, and ions in lower ionisation stages, which 

are very important for the determination of plasma properties. The second type include 

transitions in Ca, Fe and Ni ions. The most intense lines of this type belong to Fe ions 

particularly for lines which fall between 10-20 A. These lines can also be used for the 

determination of plasma properties such as emission measures. They are not very useful 

for the electron density determination in solar plasmas.

1.2 Theory of Spectral Line Formation.

The main aim o f spectroscopists is to determine characteristics o f and physical 

conditions within an emitting plasma. Different parameters may be inferred from line 

intensities. These include the chem ical abundance o f the elem ents, the density, 

tem perature and velocity fields and size o f the em itting volume in the gas. Such 

parameters must be evaluated in order to understand fully the mass flow and energy 

balance in the solar atmosphere. To interpret the spectrum of the emission lines in the 

solar UV, EUV and X-ray, it is necessary to combine both theoretical atomic physics, the 

production of analogous spectra in laboratory experiments, and an understanding of the 

physical conditions likely to be present in the solar atmosphere. In this chapter we focus



on the determination of temperature (Section 3) and density (Section 4) ffom line intensity 

ratios.

The purpose of this Section is to explain the principle of the formation of spectral 

lines, their properties and how we utilise them to diagnose solar plasmas. It is not 

designed to be an extensive review, since a complete explanation of different lines formed 

in different plasmas with the involved atomic data would need a separate chapter, but 

rather it will concentrate on the main points explaining line formation in certain plasmas 

with the required atomic data.

The identification of astrophysical spectral lines in the visible region has been 

dealt with, for most sources, many years ago and m ost recently the concentration has 

been on the EUV and X-ray regions or, at the other end of the spectrum, with radio 

wavelengths. Even below 2000 A the progress over the past two decades has been so 

rapid that the strongest lines in solar and stellar spectra have been identified. Most o f our 

discussion will be mainly related to solar emission lines which have clearly become a 

specialised technique for studying spectra of distinctive parts o f the solar atmosphere, 

such as active regions, sunspots, and flares.

Interpretation o f the intensities of emission and absorption lines observed in 

astrophysical sources require a wide variety of accurate atomic data. Accurate collision 

strengths, radiative transition probabilities, and wavelengths are needed for allowed and 

forbidden transitions for almost all the ions under consideration. For some of the solar 

observations, which are of very high quality, accuracies of 20% or even better in atomic 

data are desirable. Errors on line ratios and atomic data, and the effect of these noises on 

the inferred densities will be discussed in Chapter 6. Spontaneous radiative transition 

probabilities are essential in interpreting the intensities of emission lines. However, their 

calculation is a fairly simple process and consequently good agreement is usually found 

with experiment. The cross-section for collisional excitation by electrons is the most 

im portant atomic parameter. During the last two decades there has been a dramatic 

increase in the high quality electron collision excitation data available for astrophysical
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applications. This is largely due to the development o f sophisticated, computer codes, 

which have as their objective the calculation of rate coefficients with accuracies better than 

±20% , som etim es considerably better. M any theoretical methods used for electron 

co llisional excitation w ere review ed by Seaton (1975) and m ore recently  by 

Henry(1981). W e attempt here to show how the atomic data are used to calculate spectral 

line intensities and how this information is related to properties of the emitting gas, such 

as temperature, density, and atmospheric structure and dynamics.

It was only during the last few decades that the interpretation o f the line 

intensities, although straightforward to measure, has become well understood.

In our discussion we should note that most o f the plasmas depart significantly 

from local thermodynamic equilibrium (LTE), are often known as non-LTE plasmas. 

However, it is usually better to refer to them as low density plasmas. Also we consider 

an optically thin plasma so that photoexcitation and photoionisation are negligible and that 

the electrons are the only particles capable of collisionally exciting the ions. For most 

cases discussed here, the dominant line formation process for allowed (electric dipole) 

and intersystem transitions is electron collisional excitation.

For optically thin plasmas the line emission Iy (ergs cm*3 sec*1 sr-i) formed in a 

volume AV=1 cm3 is given by

I . . = - r - A - h v . . n .  (1.1)y 4 k j* »j j

= - r - A . .  E . . n .  (1 .2 )4 7t j» y j

where Ey is the energy o f the transition between upper level j and lower level i, Aji is the 

spontaneous radiative transition probability, nj is the number density o f the upper 

emitting level. The flux Fy (erg cm*2 sec*1) at the earth in an optically thin spectral line is

then given by
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E f
F.. = -----------A.. n . d V  (1 .3 )

« 4 k R 2 11 I  ‘ ’

where R  is the earth-to-object distance and the integral is over the volume o f the plasma in 

which the line is formed. The number density (nj) can be found by using detailed balance 

between excitation and radiative processes alone, neglecting ionisation and recombination 

processes since collisional excitation and radiative decay within an ion is much faster than 

ionisation and recombination time scale, viz.

n j( l A ,  +  n .  X c ;  +  n .  X c ;  ) =  n .  X ^  +  n .  X " , C '  +  X “ , A # t t  4 )
i < j  i > j  i < j i < j i > j i > j

where O  is the collisional excitation and O 1 is the collisional deexcitation rate coefficients 

(cm3 sec*1) for electron collisions. Collisional excitation and deexcitation rates are related 

simply, so that if one is known the other can easily be derived from

A 0 0

c ii =  C Ij co 7 exP ^ i j  /

In equation (1.5) C0i and C0j are the statistical weight of the lower and of the upper levels 

respectively, T  is the electron temperature, and k is Boltzmann's constant. The electron 

collisional excitation rate is obtained by integrating the collision cross section Cty over a 

M axwellian velocity distribution, as will be seen in the glossary. Usually the collisional 

strength Qjj, a dimensionless quantity, is used in preference to the cross section

n..
rca? (1-6)

2where ao is Bohr radius, and K t is the energy o f the incident electron. Assuming the 

collision strength to be independent o f incident electron energy, the collisional rate is then

c u =  K 7 ^ - exp ( -  i f )  (1- 7)

where K= constant. When Qj in cm3 sec-1, Ey in eV, and T  is in Kelvin degrees we have 

k=8.6x 1 (R
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By considering allowed transitions, we find that the excited levels are populated 

by electron collisions and depopulated by radiative decay. The populations of the excited 

levels are negligible compared to that of the ground level. Then the statistical equilibrium 

equations can be solved as a two-level system for each transition, viz

ne ni Cejj= nj Aji (1.8)

and

=  njon (1*9)

By combining equations (1.3) and (1.8) we get

E.. r
F.. =  I n . n .  C°. dV (1 .10)

,J 4 k  R  j* v  “  «

It is necessary to determ ine nj in order to evaluate equation (1.3). This quantity is

conveniently expressed as

_  n j n  ion n  el 11H /■* -i -i \
n j “ n.  n n „ n  n e (1* H )

* ion d  H e

where nion is the ion number density under consideration, ne[ is the element number

density, nH is the hydrogen number density and r^ is the electron number density.

The ratio nj/njon is the population of level j relative to the total number density of 

the ion, and is a function o f the electron density and temperature.

The ratio nion/nei= f(T), the ionisation ratio of the ion, has been calculated by 

several authors assuming ionisation equilibrium for all abundant elements in the solar 

atmosphere, e.g., Amaud et al (1985), Jordan (1969, 1970), Jacobs et al (1977a, 1977b, 

1979, and 1980) and it is a function of electron temperature only.

The quantity nei/nH =AH is the element abundance relative to the hydrogen. This 

ratio is well known for most of the abundant elements in the solar atmosphere, and has



been reviewed by many authors, e.g., Pagel (1973), Lambert (1978) and Lam bert and 

Luck (1978).

In regions o f the solar atm osphere where hydrogen is mostly ionised, the

abundance o f 0.1, is nH/ne=0.8.

For a simple case, with no metastable levels and the ion population almost 

completely in the ground state, combining equations (1.10) and (1.11) the flux can also 

be written approximately as,

Here the square of the density integrated over the volume, is called the volume emission

desirable to determine this property from spectral line intensities. However, the emission

independently either the density or the volume of the plasma. By determining one of these 

quantities, the emission measure then gives the other. This property will be investigated 

further in Section 1.5.

Im plicit in the above discussion is the assumption that the emitting volume is 

homogeneous and isothermal. This assumption is not realistic for most of the plasmas of 

interest. We will discuss this in more detail in chapters 4 and 5.

1.3.Electron Temperature Determination

Before we explain the basic method of electron temperature determination one 

should keep in mind that most often the plasma along the line of sight is inhomogeneous

hydrogen density relative to the electron density, corresponding to a relative helium

(1- 12)

In many analysis of solar and stellar spectra ionisation equilibrium is assumed, and if the 

volume contains an isothermal plasma then equation (1.12) can be rewritten as

(1 .13)

m easure which is a property o f the solar atmosphere. For optically thin lines it is

measure is not a physical quantity in itself, and it is thus desirable also to determine
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and non-isothermal. Therefore the contribution to line intensities come from  a range of 

temperatures and densities. In addition, determining temperature in a particular solar 

region is meaningless unless the problem has been defined more precisely. For example, 

consider the case of temperature in a flaring regions. It is well known from observations 

that flaring regions are bright in almost any spectral line emitted from the first degree of 

ionisation up to and including helium -like iron (Fe XXV), the highest degree of 

ionisation observed with significant intensity. A better way of stating the problem is to 

define the temperature distribution as a function o f emission measure (Craig and Brown 

1976 and 1986). The scope of this problem  will be the main thrust o f Chapter 5. 

However, we will consider firstly the commonly used methods for determining plasma 

electron temperature in an isothermal plasma.

The most commonly used method for the determination of electron temperature in 

a plasma is by using two optically thin allowed lines from the same ion with significantly 

different excitation energies. Consider an isothermal plasm a o f electron density ne and 

volume V. The flux ratio of two lines originating in level 3 and 2 and decaying to the 

lower level 1, is given by

F E C j3
T r ^ T T 1 - - r  (1- 14)

12 E 12 C ‘n

where the quantities have been detailed above. Using the expressions for the collisional 

excitation rate (Equation 1.7), we obtain

F 13 E 13 ^13 / E 13 E 12 i „
a l 5 )

It is clear from this equation that the flux ratio is density independent, and that the 

temperature dependence is almost entirely given by the exponential term, particularly 

when (E n  - E i2) / k T » l .  In deriving Equation (1.15) we assumed an isothermal plasma 

of homogeneous density. However, in most physically realistic situations, the solar 

atmosphere is inhomogeneous in density and multithermal. For this reason the excitation 

rate inside the integral of equation (1.10) cannot be removed, and the flux ratio depends
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on the atmospheric structure in addition to the temperature. A disadvantage of this method 

is that the large wavelength separation of these lines, a consequence o f the requirement 

(Ei3 - E i2) / k T » l ,  makes temperature determination very difficult in practice. A further 

drawback is that most o f the ions produce lines in EUV that are formed over a narrow 

range o f temperature.

A second and rather elegant method for electron temperature determination in low- 

density high temperature plasmas was developed by different authors, e.g. Gabriel and 

Jordan (1972). This method uses the ratios of satellite lines, formed only by dielectronic 

recom bination, to resonance lines of helium-like and hydrogen-like ions, formed by 

electron collisional excitation. These lines are im portant features in X-ray spectra of 

flares, and they fall in the wavelength region between 1.6 and 30 A. The flux ratio o f the 

dielectronic line (Fd ) to the resonance line (F r) is given by

F d  E d  a o
^ • =  ° - r  (1 .1 6 )
f r e r c ;

where a dD (cm3 s*1) is the dielectronic rate coefficient, and E d  and E r are the energies of 

the dielectronic and the resonance lines. In X-ray regions, these energies are usually 

alm ost equal in value. H owever, the flux ratio is proportional to the ratio o f the 

dielectronic recombination rate to the electron collisional excitation rate. By using the 

expressions for cc^ a n d  C ^ given by Gabriel and Jordan (1972) , Equation (1.16) can 

be rewritten as

P D {exp ( E r -  E ) /  kT }
p -  =  R---------------- r ---------------- ( L 1 7 )

R

where |i  is a constant containing atomic factors. It is clear from this equation that the flux 

ratio is primarily sensitive to electron temperature, proportional to 1/T. It has been shown

that this technique is very useful for flare plasmas. Different authors have extended the

theory to include different satellites, e.g. Bely-Dubau et al 1979. Doschek et al (1981) 

used dielectronic recombination and innershell excitation for Fe XXII and Fe XXI for the 

derivation of electron temperature in flare plasmas.
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1.4 Electron Density Diagnostics

The electron density is an essential parameter in theoretical models that describe 

solar phenom ena. The emission measure (cf. Chapter 1.5) can be utilised in deriving 

electron density, by assum ing an em itting volume. This volum e is estim ated from 

spatially resolved images. This assumption is questionable even with high resolution 

images, as we will see in Section 1.4.2. The importance of determining electron densities 

has led to the developm ent of electron density techniques that are independent of 

assumptions about the size of the em itting region. The different methods o f electron 

density determination are discussed below in more detail with some specific examples.

1.4.1 The effect of metastable levels:-

Because the upper levels of some intersystem and forbidden lines are metastable 

levels, in which the collisional deexcitation processes are comparable to the radiative 

decay rates or long lifetime levels, then the population o f these levels become comparable 

with that of the ground level. The essence of the metastable level is that it begin to build 

up to a much higher population than similar levels with an allowed decay, and thus 

provides a density diagnostic line ratio. In more physical terms, these levels having an 

excess population begins to transfer to other excited states rather than decaying to the 

ground level, and this affects their populations. The intensities o f transitions from the 

metastable level become weak compared to the intensities from other levels in the excited 

configurations.

Emission lines can be classified into three groups, according to the way in which 

their upper level is populated (Dere and Mason 1981):

(a) Allowed lines that are collisionally excited from the ground level. The emissivities of 

these lines are proportional to ne2.

(b) Forbidden or intersystem lines that originate from metastable levels. The radiative 

decay rates o f these lines are so small that the electron collisions com pete as a
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depopulating mechanism. The population of the metastable levels from which these lines 

originate and their intensity behaviour fall into three stages, depending on the electron 

density. For low electron density, the radiative decay dominates and the intensity o f the 

line has a similar behaviour to that o f an allowed line ( a  ne2). For intermediate electron 

densities, the collisional deexcitation processes are com parable with the radiative 

processes. The population of the metastable level becomes significant, and the intensity 

o f the line is proportional to ne5 (1<8<2). For high electron densities, collisional 

processes dominate, and the metastable level is in Boltzmann equilibrium. In this stage 

the line intensity varies as ne. These ranges of electron densities are dependent on atomic 

parameters and differ for individual ions and transitions.

(C) Allowed lines that are excited from metastable levels. Their intensities are dependent 

on the population of the metastable level from which they are excited. W hen these levels 

attain a non-negligible population, but not its Boltzmann value, the line intensity will vary 

as ne5 (2<8<3). When the metastable levels reach a Boltzmann equilibrium, the intensities 

o f these lines vary as ne2.

The ratio of lines with different electron density dependence has been extensively 

used as an electron density diagnostic for the solar atmosphere. Ideally, lines from the 

same ions should be used, and their ratio should be independent o f electron temperature. 

Unfortunately, this situation cannot always be achieved, and additional uncertainties are 

introduced into the analysis. Line intensity ratios can be classified into three categories:

(1)There is the ratio of two allowed lines, in which one of them arises from a metastable 

level, such as in beryllium, boron and aluminium sequences. The high density limit is 

reached when the metastable level reaches pseudo-Boltzmann equilibrium; the intensity 

ratio is then proportional to the ratio of the collisional excitation rates. Since the two lines 

are allowed lines, this ratio can be calculated reasonably accurately.

(2)The second category is the ratio of intersystem to allowed lines. The intensity 

behaviour for the low, intermediate, and high density regions was discussed above. The 

uncertainty in the low density limit is due to uncertainties in the collisional excitation
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rates. M eanwhile, in the high density limit, the uncertainties will reflect inaccuracies in 

the radiative transition probability as well as in the collisional excitation rate. The greatest 

uncertainties in these atomic parameters is likely to be the electron collisional excitation 

rate for the intersystem line.

(3) The final category o f line intensity ratio is the ratio o f two intersystem lines from the 

same ion. In the low density limit, the intensity ratio is proportional to the the ratio o f the 

collision rates, and in the high density lim it it is proportional to the transition 

probabilities. Examples in this category includes the intersystem  transitions for N III 

(Nussbaumer and Storey, 1979) and O IV (Flower and Nussbaumer, 1975c).

1.4.2 Electron density determination

There are two different mechanisms in which electron densities can affect spectral 

lines . Firstly, they can influence ionic populations o f the various levels within the ion 

and thus influence the intensity of the line relative to other line intensities. These other 

lines can be emitted by the same ion, or by other different ions. This is the case which 

will be mostly considered in this thesis. Secondly, the widths of the lines can be affected 

by electron densities as a result of the Stark effect. The latter will not be discussed here, 

and for further details other references should be consulted e.g. Feldm an (1981), 

Kurochka (1969) and Kurochka and Maslennikova 1975.

The determination o f electron density utilising line intensities is not a new subject 

and has been used by many astronomers working in the optical spectral region for some 

time (e.g. Aller et al 1949), this method of electron density diagnostics will be mainly 

considered in this thesis. The fam iliar density diagnostic used by m any optical 

astronomers is that of the O II lines at 3726 and 3729 A, which is one of nitrogen 

isoelectronic sequences (Osterbrock 1974). The density sensitivity to the intensity ratio of 

O II lines arises because at nebular densities (103 cm-3 ) the upper levels of the lines 

begin to be depopulated by electron collisions as well as spontaneous radiative decay. It 

is possible to find density sensitive line ratios form ed at higher temperatures and 

densities, that emit lines at UV, EUV, and X-ray wavelengths. This can be achieved by
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exploring the density sensitive properties of particular atomic configurations along an 

isoelectronic sequence. For example the above O II  transitions in the visible occur at 1196 

A and 1213 A for S X, which are useful as coronal electron density diagnostics.

Electron densities can thus be determined by various methods: A commonly used 

m ethod is to divide the em ission measure, J n j  A V , by the derived volume, from

spatially resolved images. This technique assumes that the observed features are fully

resolved spatially. However, this is not necessarily true in many plasmas of interest

which exist in different sources (Chap.2) and so this technique is fairly unreliable, since

for m any plasm as, such as X-ray flares in which their exact shape is not known, all

estimates o f the volume V in the corona are only rough approximations. In addition, even

if it was possible to estimate the total V from X-ray pictures considering the fact that most

o f these plasm as are highly inhom ogeneous, there still m ay exist unresolved

condensations within this volum e with ne much higher than the volumetric density, 

  . 1 r ,  . . .  .1/2
n e-  ( y -  J n e av  ) . The effect of the inhomogeneity of plasmas will be discussed in

more detail in Chapters 4 and 5.

The most straightforward method for electron density determination utilising line 

intensities is through the use o f appropriately chosen line ratios from the same ion 

although this may not always be possible as mentioned earlier. If lines from the same ion 

are available, the uncertainties in the abundance of the ion species are eliminated, and the 

problem is reduced to a determination of the ratio of population densities in two levels.

M ost density sensitive line ratios fall into one of the two general cases discussed 

below (cf. Doschek 1985). The principle behind these two cases is the presence of the 

m etastable levels which makes the relative level population density dependent, as 

discussed in the previous section, so that the intensity ratio of two collisionally excited 

lines become a function of density.

The first case is a three level hypothetical atom. Figure 1.1 shows an illustration 

of this case as well as a schematic representation of the line ratio against electron density.



We consider level 3 as a metastable level, and level 1 as the ground level. The two 

transitions to be considered are 3 —»1 and 2 -» 1 .  The transition 3 -> 1 might typically 

be an intersystem  line, while the transition 2 —> 1 m ight be an allowed one. A t all 

electron densities o f interest, collisional excitation and deexcitation out of level 2  can be 

neglected com pared with the radiative decay A 21 (cf. category 2 in Sec 2.3.1). At low 

densities, the ion is mostly in the ground level, and levels 2  and 3 are excited by electron 

collisions from level 1. Every upward excitation is followed by a downward radiative 

decay. The line ratio (3  —> 1 )/(2  -> 1), in this situation, is roughly proportional to the 

statistical weights of the upper levels which is o f order unity. As the electron density is 

increased, the metastable level 3 begins to be depopulated by collisional deexcitation into 

e ith er leve l 1 or 2  because o f its sm all decay  ra tes A 31 and A 32  (i.e. 

ne( C ^  + C 31 )= A 3 i). This results in decreasing the intensity ratio (3  —» 1 )/(2  —»1). At 

very high densities, where collisional excitation and deexcitation out of level 2  are larger 

than A 21 , the relative populations o f levels 3 and 2  are in the ratio of their statistical 

wieghts, and the line ratio (3  —»1 ) / ( 2  —> 1 ) is nearly proportional to A31/A 21, which is 

« 1 .  An example similar to the three level case can be found in beryllium isoelectronic 

sequences.

The above discussion concerning the three level case can be explained more 

quantitatively in order to see the behaviour of the line ratio against the electron densities 

o f interest, assum ing an isothermal plasma. By using the detailed balance equation 

(Equation 1.4) to calculate the two population densities n2 and n3 we can obtain
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Fig. 1.1 Schematic energy level diagrams illustrating electron density plasma 

diagnostics (the three level hypothetical atom) Doschek 1985.
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Hence using Equation (1.3) and considering the following assumptions A 2 i » n e C 21 

and ne , A 3 i « A 2 i> and also AE1 2 -A E 13 and A E ^ /  k T  < < 1 , we have

F 31 A  21

^  =  c  c m------------------------c ' ------------c E E "  (1- 20)
(1  +  7 # )  + A „  ( - f ) +  n eC d32 (1 +  - H . ) +

13 13 13 13

For the case when n e —>0, with the additional condition A 32« A 3 i, Equation ( 1 .7 ) 

becomes

F C e
31 -^ -T T  (L 2 1 )

F 21 C 12

For large values of electron density ne, in which A 31 and A32 are much smaller than the 

collisional processes considered, but not as large as A 21< n eC 21 and , then

Equation (1.20) becomes

_F„ A .̂CDjT1'2
31 31 3 (1. 2 2 )

^ 2 3 ^  + + ^12
13

It is clear from this equation that F31/F 21 depends only weakly on electron temperature, 

and is inversely proportional to the electron density.

The second case is that of the four level hypothetical atom which is illustrated in 

Figure 1.2. Here, level 2 is the metastable level, and we neglect collisional processes, 

which, for the electron densities o f interest, are unimportant relative to the radiative decay 

in depopulating levels 3 and 4. In this situation , level 3 is easily excited from level 1. 

However , the excitation rate from level 1 to level 4 is much less than that from level 

1 - » 3 . The intensity ratio (4—>2)/(3 —> 1) is proportional to the collisional excitation rates 

from the ground level 1 into both levels 3 and 4, i.e .a  Ce14/C e13, which is of the order

1/10. As the density increases, the collisional mixing between the ground and the 

metastable level results in level 2 attaining a non-negligible population. Therefore the 

excitation rate 2—>4, becomes strong and comparable to, or even greater than , 1—>3, 

resulting in the increase of the line ratio (4—>2)/(3 —> 1). At very high densities, level 1 and
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Fig. 1.2 Schematic energy level diagrams illustrating electron density plasma 

diagnostics (the four level hypothetical atom). Doschek 1985.
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level 2  reach a statistical population distribution and the ratio 4 —>2 / 3 —> 1 is no longer

sensitive to the electron density. W e should m ention that the m ost useful density 

sensitivity region is roughly where ne Ce12 =A21.

As far as the above discussion is concerned, the four level case can also be 

explained more quantitatively. In order to calculate the relative populations in the four 

levels, we use the detailed balance equation (Equation 1.4),.and obtain:

n = (n i C '4+ n 2 C'M) 
n 4= --------L- ^ -------------------------------------------------------- (1 .23 )

4 2

for level 3

n c(n i ^ i 3 +  n 2^ 23̂  n
n 3 =  a T + X ---------------------------------------------  ( L 2 4 )31 32

and for level 2

n 1n e C “2+  n 3 A 32 + n 4 A 42 =  n 2 n e C 21 + n 2 A 21 +  n 2 n eC ^  + n 2 n eC *  (1 -25 ) 

From equations (1.23)-(1.25), the quantity n /̂rii can be obtained, viz

q + c  --------  —  + C^ 1 2  13 A  +  A  14
2  _  ____________________  31 32_______________

n‘ _ A„ d . A, C* 
— 2L+  r  + c  -------   +  — —n 2 1 2 3  + A Ac 31 1- i-k 32

Therefore the flux ratio for the two lines F42/F 31 can be written as

F 42 ( n e n t C !4 +  n e n 2 C 24)

F 3i B 31( n e n jC j3 +  n c n 2C e23)

where

(1. 26)

(1. 27 )

b » = a " T X -  ( L 2 8 )31 3 2

Equation (1.27) can also be written in the form
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n.
F  (C ;4 + ( 1 T ) C 24)

—  = --------- ;— n "  .  ( 1 - 2 9 )
31 b 31c ;3 +  ( ^ ) c ; )

i

from which it is clear that as ne—>0 the flux ratio becomes

F ~ f  r c ^
31 31 13

since A 3 i » A 32 , from equation (1.28), B3 i* l .  Therefore equation (1.30) , as ne-»0 , 

approaches

F  C c4 2  14
(1.31)

f 3, c ;3

For large electron densities, F42/F 31 becomes independent o f ne, since A 2 i/ne Equation 

(1.26) becomes very small compared to the other terms in the denominator.

It should be mentioned that if the density at the temperature of the line formation 

is either much below or above the range of optimal density sensitivity, the line ratios will 

not be useful density indicators.

The two general cases discussed above can be summarised in a simpler way. In 

both cases the sensitivity arises when the collisional processes can compete with the 

radiative decay in determining the metastable level population. The first case can be 

considered as the one in which the metastable level is in the ground configuration and the 

second where the metastable level arises in an excited configuration. The intensity of a 

line which is excited from a lower metastable level increases relative to a line unaffected 

by collisional processes. The second case is where the intensity o f a line arising from a 

metastable level decreases relative to the intensity o f a line that arises from a level 

unaffected by collisional depopulation. If there are several metastable levels with different 

decay rates, the ratios o f lines arising from these different levels are also density 

sensitive.
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Another line ratio technique for determining electron densities has been developed 

by Feldm an et al (1977). In this technique the electron densities are determined by 

calculating the ratio of an intersystem line to an allowed line of another ion, formed at the 

same temperature. In this method there is no upper lim it in density, and therefore it is 

particularly useful for active regions and flares, where the density tends to have higher 

values. A sum m ary o f this technique can be described simply by considering a 

hypothetical two-level atom in which the excited level (level 2) is metastable. The 

statistical equilibrium equation (Equation 1.4) reduces to

n ^ e C j j  =  n 2 A 21+ n 2 C 21n e (1 .32)

By using the expression for C 21, and writing n i+ n 2=niom Equation (1.32) can be

reexpressed as

n 2 C ,2
2 ------------------  (1 .33)n„n . . co-e ion

A  2i + n  +  exp ^  121 kT)2

n 2 C 12 exp ( -  E 21 /  kT)
w hen n c - » 0 , — --------->-r—  w hich is p ropo rtiona l t o --------------------  , s e e

11 e “ ion 21 T

Equation (1.7), and this quantity is temperature dependent only. As the density becomes 

n 2 i
very high -------— oc—  as in Fig. 1.3. In this Figure the ratio is plotted o f the

c 1 on e

population o f the metastable levels to the product of the electron density and the density 

of the ion in which the line arises, as a function of electron density. The above discussion 

showed the density sensitivity to some excited levels o f ions that can be utilised in the 

1 1 0 0 - 2 0 0 0  A region and lower transition region. The quantity n2/ne nion is proportional 

to the flux ratio of the intersystem line to an allowed line formed at the same temperature. 

This can be seen clearly, following Equation (1.3) for the expression of the flux in the 

intersystem line, assuming a two-level ion,viz

F‘2 ~ n '2 AV (1 .34 )
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and the flux in the allowed line can be expressed, via Equation (1.10), viz

F * - n « n A AV12 c ion (1. 35)

If ionisation equilibrium is assum ed , the ion abundance n ^  can be related  to the 

intersystem's ion abundance n1.^ by a factor p, which is a constant containing the relative 

abundance factors, i.e. n ^  = p n 1.^ . By taking the ratio of the intersystem line to the

allowed tine we get

density as well as its relative insensitivity to errors in atomic data.

The upper limit of the electron density that can be obtained by this technique is 

determ ined by the instrument sensitivity. As an example for this technique, O IV line

It should be m entioned that because of the lim ited spectral range o f the 

instrument, it was not possible to observe simultaneously an allowed line o f the same ion 

in order to determine the emission measure. Therefore, the appropriate emission measure 

for O IV was taken as the average of C IV  and N V emission measures. The advantage of 

this here is that the ratios using these kinds of lines are much more sensitive to electron 

density than other line ratios involving only intersystem lines, and in some cases such 

lines provide the only available diagnostics. Fig. 1.3 includes a summary of some of the 

useful density sensitive lines in the 1100-2000 A range and lower transition region.

(1. 36)

It is clear from  the above equation that the line ratio, which is a function of electron 

density, can be obtained if  is known for a particular ion and p is determined from a 

suitable allowed line. This technique has the advantage of being strongly sensitive to the

(1401 A) can be used as the intersystem line, and C IV and N V lines at 1550 A and 1238 

A respectively can be used as the allowed lines.
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A nother technique which is very useful for plasm a diagnostic purposes at X-ray 

wavelengths (<25 A) has been developed by Gabriel and Jordan (1969), who were the 

first to explore the X-ray region for plasma diagnostics useful for solar applications.

At high temperatures (> 5x l0 6 K) most of the light elements are ionised to their 

He-like and H-like ionisation stages. Fig. 1.4 shows the term diagram for the relevant 

transitions in the He-like ions in which, for elements such as Ca and Fe, four lines can be 

seen. These lines are the resonance line (W), the quadrupole line (X), the intersystem line 

(Y) and the forbidden line (Z). For light elements, such as O, the quadrupole line (X) is 

too w eak to be observed. Gabriel and Jordan w ere also the first to recognize, an 

im portant property of the He-like ions; that the ratio  o f the forbidden line to the 

intersystem  line, Z/Y, is density dependent. They expressed the line ratio, o f the 

forbidden line to the intersystem line, in the form

A 21
R =  R „  - r - -----------  (1 .37 )

° (l +  F ) C 'n e+ A 21

where A21 is 3S i-’So the transition probability and Ce.is the collisional excitation rate of 

3S-3P. F  is the ratio o f the collisional excitation rates, namely

C ‘ ( 1S — 3 S )
f = - A — H -  (L 3 8 >

C ( S -  P )

and

(1 + F)
R« = - 1  (1 .39)

where b is the effective branching ratio, which is a function of the transition probabilities 

from the 3P state to the ground state.

A t low electron densities, when (1+F) Ce ne «  A21 , R in Equation (1.37) is 

approxim ately equal to Ra * As the electron density is increased the excitation rate 

becomes comparable to A21, and the ratio decreases. Fig. 1.5 shows the line ratio against 

the electron density for three He-like ions, O VII, Ne IX and Mg XI. The heaviest ion
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Fig. 1.4 Energy level diagram for ions of the He isoelectronic sequence.
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M g X I provides useful diagnostics for solar flare densities which, as far as we know, do 

not exceed about 1 0 13 cm-3.

Many useful reviews and discussions for solar atmosphere diagnostics can be 

found, e.g. Feldman (1981), Doschek (1985), Dere and Mason (1981), Feldman et al 

(1978), Dere et al (1979), Jordan (1979), Gabriel and Jordan (1972), and Feldman et al 

(1977). Some of the useful electron density diagnostics in the UV wavelength region 

have been summarized by D ere and Mason (1981), shown in F ig.6 , also in Table 2 

Doschek (1985), in which the densities are expressed in terms of the electron pressure.
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Table 1.2

Electron pressures

Region Log(ne(cm-3)T(K))

Quiet sun (chromosphere) 15.2

Quiet sun (transition region) 15.1

Quiet sun (corona) 15.0(h>20 arc-sec)

Coronal hole (transition region) 15.1 (14.8)

Active region (chromosphere) 15.2

Active region (transition region) 15.9

Active region (corona) 15.2-16.0

Prominence (transition region) 14.9

Sunspot (transition region) 15.0

Surges (flare-related activity)

(transition region) 15.0-16.2

Flares (transition region) 16.0-18.0

Flares (coronas, 106K <T < 6xl06) 16.8-18.7
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1.5. Emission Measure Analysis

It is clear from the previous sections (section 2.3 and section 2.4) that the spectral 

diagnostic techniques require only relative line intensities, namely line ratios. However, 

the absolute line intensity o f a spectral line contains very im portant inform ation 

concerning the emitting region, namely, the quantity o f the plasma present that is in the 

appropriate physical state for emitting that line.

Following equation (1.12), in which the flux o f a spectral line can be obtained, 

and by utilizing the expression of C -j we find

Q.. E..
F . .=

0.8
E ii A  H  I  K  J l / 2  e X P  ( W )  f < T )  "  > d V  A '  4 1 >J  a  \ /  A \  T  A v  X1J 4 t: R 2 1J " jav co T

E..

0 .8  ^  4 f exP ( KT }^  O . o  r  A „  ii f  r / r T , N 2 / i  \F =  j E  A K — J -------—— f(T ) n e dV (l. 42 )
J AnR J i av T

= P . j G ( T ) n ^ d V  (l. 43)
A V

where the dependence on density and temperature is explicit, and the integral is carried 

out over the plasma volume falling within the field of view of the spectrometer. It should 

be mentioned that however good the spatial resolution o f the telescope/spectrometer 

system, the observations will always be unable to resolve along the line of sight 

direction. Therefore the integral will in general include a range of different plasma 

conditions. In equation ( l .43) the function G(T) contains all the temperature dependent 

terms o f the line considered, and has been defined by Pottash (1963) and is strongly 

peaked in temperature. This function is often referred to as the contribution function. If 

the volume contains isothermal plasma at temperature T, the observed flux becomes

F.. = P .G ( T )  j  n2e dV (l. 4 4 )
A V
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If the temperature T is known, then the emission measure Jn \ dV can be derived from
A V

the observed line. For sharply peaked G functions, the temperature is often assumed to 

be that which maximizes G which will be denoted here as Tm. It is possible, therefore to 

obtain "isotherm al" em ission measures as a function of tem perature from  a set of 

observed line intensities.

It is clear, Equation (1.44), that the em ission measure may be defined as the 

square o f the electron density integrated over the volum e o f the em itting plasma. 

However, the simple assumption of an emitting plasm a of a single temperature is often 

inadequate, and a concept o f a collection o f sources with different temperatures and 

em ission measures m ust be introduced. Craig and Brown (1976), by assum ing a 

continous distribution o f source tem peratures, have introduced the concept o f a 

differential emission measure. This is done by converting the integral over volume into an 

integral over surfaces of constant temperature and an integral over temperature, viz.

Fjj =  P J J J G ( T )  n2J V T f 'd s d T  (1. 45 )

or F y = P . / G ( T ) | ( T ) d T  (1 .4 6 )

where £(T) is called the differential emission measure and is given by

S ( T ) = f J  n i l V l T d S  (1-47)
T

and the integration is performed over all surfaces St at temperature T.

1.6 Summary

In this Chapter we have considered the importance of solar spectroscopy for the 

determ ination o f the various parameters in solar plasm as (electron temperature and 

density) with particular reference to the techniques applied. We concentrated solely on the 

EUV and X-ray region o f the electromagnetic spectrum , and discussed in detail the
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atomic physics involved. In what follows we shall see how much we can learn about 

solar plasma from analysing these wavelengths regions.
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2.1 Introduction

Astrophysical spectroscopy in the UV, EUV, and X-ray spectral regions is a rich 

and extensive field of study which covers a diverse range o f phenomena. Much o f the 

material in the universe exists under highly varied physical conditions and is in a form 

suitable for study by spectroscopic means. The observable atmospheres of the sun and 

other stars display a large diversity in temperature and density. For example, transient 

phenom ena such as solar flares may reflect temperatures of the order of ~107 K, while 

compact sources of hard X-ray emission may produce even higher temperatures. A t high 

temperatures EUV and X-ray emission lines are produced due to the high levels of 

ionisations and excitations of the atoms. Space observations are, therefore, required to 

study these regions. By contrast to these discrete sources, interstellar space contains very 

much cooler and more diffuse material. Information from HTSS radiation, therefore, 

provides a unique diagnostic tool for the study of stars and interstellar material that is 

unobtainable in other wavelengths. In particular, the sun, due to its proximity, has been 

the subject of many investigations and provides an ideal laboratory for spectroscopic 

studies.

D uring the past ten years intense activity has been directed tow ard the 

determination of electron density in the solar atmosphere using diagnostic line ratios, as 

shown in the preceeding Chapter. These techniques have contributed to the desired goals 

of a better understanding o f physical conditions in flares, active regions, sunspots, 

coronal holes, solar winds, and the quiet sun. The use of these techniques has led to 

some fundamental discoveries about the nature of the solar atmosphere. The transition 

region was conventionally envisaged as a hom ogeneous layer between the low 

tem perature chromosphere and the high temperature corona. It is now commonly 

accepted that it has unknown filamentary structures with very small "filling factors" at 

low temperatures.

Space observations of the sun have been performed by NASA's Orbiting Solar 

Observatory (OSO) satellites, during the 1960's and early 1970's, the Apollo Telescope
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M ount (ATM) on Skylab during 1972 and 1973, and the Solar M aximum M ission 

(SM M ) during the 1980's. The basis o f our current understanding o f the outer 

atmosphere has been obtained through observations made by the OSO's and ATM, while 

the SMM observations were mainly, restricted to studies o f solar flares. Observations in 

the EU V  range are, as yet, inadequate. Skylab, for exam ple, had very lim ited 

spectroscopic capabilities at such wavelengths, whilst OSO and SMM lacked any suitable 

instrum entation. However, Solar Heliospheric O bservatory (SOHO), which will be 

launched in M arch 1995, is a solar observatory devoted to increasing our understanding 

o f the solar atm osphere and the solar wind. This satellite aims to address three 

fundamental goals, namely to understand: the acceleration o f solar wind, the nature of 

solar corona, and the interior of the sun.

The main purpose of this chapter is to outline the present status o f solar physics 

o f the outer solar atmosphere and to discuss some exam ples of the commonly used 

density diagnostics in the different regions o f the atm osphere. The limitations and 

accuracies o f various methods used to analyse the X-ray and UV spectra will be 

mentioned, with particular focus on the effect of the high degree of inhomogeneity found 

in most plasma structures.

2.2 The Solar Atmosphere and UV. EUV. X-rav observations.

The temperature and density structure of the different solar regions are illustrated 

in Figure 2.1 which shows a simplified stratified model o f the outer layers of the sun, 

from 1000 km below the visible surface (photosphere) to 3000 km  above. It should be 

emphasised, however, that the different solar regions are better classified in terms of their 

temperature and density structure than by some arbitrarly determined height above some 

suitably chosen reference level (see discussion in section 2.2.2.). The photosphere of the 

sun has a characteristic temperature of around 6000 K, while the corona refers to 

temperature regions at and above 106 K. There exists a very steep temperature gradient in 

a region between chromospheric temperature and coronal temperatures, known as the 

transition region. Note also that atmospheric regions with higher temperatures tend on
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Fig. 2.1 Schem atic representation o f the variation with height of the mean values of 

temperature and density in the outer layers of the sun. Gabriel and Mason (1982).
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average to have lower densities. In what follows we shall concentrate on the high 

temperature regions of the solar atmosphere. For a detailed discussion o f the photosphere 

and chromosphere other references should be consulted, e.g. Zirin (1988) and Durrant 

(1987).

2.2.1.Solar corona

D uring a total eclipse of the sun, a fascinating view o f a white halo appears 

beyond the edge o f the moon, stretching for large distances out into space. The 

occultation of the sun is very important in order to observe the outer atmosphere, or solar 

corona, since the visible light from this region is about a m illion times fainter than the 

radiation from the solar disc. This may be done artificially using a special telescope 

known as choronograph. The coronal visible light is actually solar disc radiation scattered 

towards us by the free electrons in the corona (Thomson scattering) Doschek (1985), and 

Zirin (1988). These electrons are produced by the high coronal temperature, which under 

quiet conditions, i.e. no flares or any other activity, is about 1 .5 x l0 6 K. A t this 

temperature, the major constituent of the coronal gas, hydrogen, is almost completely 

ionised. Other elements present, such as C, O, Si, and Fe, are also highly ionised.

The discovery of very high temperatures in the solar corona was mainly based on 

the spectroscopic identification of emission lines appearing in the visible spectrum of the 

solar corona. The existence of a very high temperature in the solar corona means that 

coronal emission is concentrated in the EUV and X-ray regions of the spectrum. At these 

wavelengths there is almost no continuous emission from the photosphere and bound- 

bound transitions in the corona produce line radiation of greater intensity than the 

continuum. The result is the appearance of bright emission lines rather than the dark 

absorption lines which exist at visible wavelengths.

The density of the corona can be obtained from coronal observations and is found 

to be quite low. Unlike the temperature, which rises by approximately 100 times greater 

than the photosphere's, just where the density drops by nearly an amount of the same
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order. The electron density in the low corona ranges between 108 and 109 cm '3 in quiet 

regions.

Photographs of the corona in visible and X-ray wavelengths are shown in Fig.

2.2. The X-ray photograph has been overlaid on the white light photograph o f the outer 

corona. The X-ray photograph was obtained on 30 June 1973 at 1145 U T using the 

Am erican Science and Engineering (AS&E) X*ray telescope on Skylab. A t about the 

same time the white light photograph was obtained by the High Altitude Observatory 

(HAO).

It is clear from these photographs that the nature o f the corona is inhomogeneous 

and highly structured. It is rather difficult to find any region o f the corona that could be 

called typical or average, and furtherm ore images from  Skylab show that the basic 

structural component of the solar corona is in the form of loops or arches. These loops 

and arches are the outlines of magnetic field lines. In addition, these structures can be 

quite small, only a few arc seconds across, or can be very long and extended across a 

significant fraction of the solar disc.

Loop like structures do not occur uniformly throughout the corona. In coronal 

hole regions, where the magnetic field is much weaker, the field lines are not closed but 

open (they close at enormous distances from the sun, but are considered as open near the 

surface). The X-ray emission from these regions is negligible compared to the closed 

field regions (cf. the large dark areas in the X-ray image in Fig.2.2). It is now known 

that the coronal gas temperature is less in the holes than in the closed loops and the 

density is less than the quiet sun regions (Doschek and Feldman 1977). These differences 

in physical conditions are the result of the differences in the magnetic structure of loops 

and holes. The plasma is contained in the loops because the magnetic pressure B2/Stt 

equals or is greater than the gas pressure 2nckT (B is the magnetic field strength) which 

can therefore build up, whereas in open field regions material can flow freely along the 

field lines and escape into the interplanetary medium, where they can be detected 

streaming past the earth. The high speed solar wind therefore arises almost exclusively
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Fig.2.2 Soft X-ray and white light photographs of the sun. The solar disc is dark in X- 

ray but so bright at visible wavelengths that it must be occulated in order to observe the 

faint solar corona. Doschek (1985).
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from coronal holes.

Opposite in character to the coronal holes are the regions above sunspots, known 

as active regions. The term "active region" is used to signify an area o f enhanced 

magnetic field. The hot dense plasma regions associated with this intense field may often 

take the form of a loop or loop segments, i.e. closed field lines. These loops last longer 

than expected from their known radiative losses, suggesting that a source of local heating 

is responsible for the observed emissions. (The form of the heating mechanism in such 

sources is o f general interest since it is assumed to be related to the mechanisms 

producing flares and sustaining the solar corona. It should be mentioned that the exact 

m echanism  of heating the corona is not known and remains one of the fundamental 

problems of solar physics). We regard an active region as the totality o f all phenomena 

accompanying the birth and early development of a solar magnetic region. Typically, this 

phase includes the continuous presence of sunspots, plages, and hot coronal plasma as 

well as the occurrence of those energetic phenomena that give the active region its name 

(i.e., flares bombs, surges, eruptive prominences, and coronal transients). However, it is 

interesting to note that these energetic phenomena occupy only part of even the early 

phase of a magnetic region, and that during intervening times an active region may be 

relatively quiet. In active regions the chromosphere and the transition region are very 

bright in UV and X-ray lines, mainly because of the greater electron density. Here the 

magnetic field can be much stronger and more complex than the quiet sun or coronal 

holes. It should be noted that when solar activity is near maximum, the coronal holes are 

nearly absent, and instead we see prominences, a large number o f active regions and 

sunspots, together with a dramatic rise in the number and size of solar flares. In images 

obtained with the Naval Research Laboratory (NRL) slitless spectrograph on Skylab, 

active regions can be seen com posed of com plicated sets o f loops at different 

temperatures. Improvements in the techniques of EUV and X-ray observations with good 

spatial resolution, e.g. the instruments on the ATM have made it possible to study active 

regions and associated flares using lines in spectral regions where previously only quiet 

sun emission had been observed. Although some excellent rocket spectra in the EUV
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region have been obtained (e.g., Brown et al. 1986), work in this region has been 

ham pered by low fluxes and the need for high precision in the developm ent of 

instrum entation. Until recently only the NASA OSO-5 spacecraft had obtained a 

substantial data set near 100 A, which included quiet sun, active regions, and flares. 

However, for this instrument neither the time resolution (on the order o f minutes) nor the 

spectral resolution (~ 0.1 A) was very high. Thus the wavelength region between about 

25 and 150 A still needs much exploration.

The SOHO mission offers some im provem ent in the study o f active region 

plasm as having instruments with better spatial and temporal resolution than previous 

satellites. M easurem ents will be made by a com bination o f norm al and grazing 

spectrometers (Solar Ultraviolet Measurements of Emitted Radiation (SUMER), and the 

Coronal Diagnostics Spectrometer (CDS) which cover a wavelength range in EUV and 

X-ray, containing a large number of emission lines useful for investigating the desired 

plasm a diagnostics in the chromosphere, transition region and corona. The CDS is 

designed for observations in EUV region of 150-800 A, where emission lines of highly 

stripped ions of characteristic temperature 104-2x l06 K may be detected. SUMER has an 

operational wavelength range of 500-1600 A corresponding to ions within a temperature 

range T=104-2 x l0 6 K. These instrum ents will provide inform ation on the plasma 

diagnostics of the solar atmosphere, with high spatial (~2 arc seconds), spectral (a few 

x lO 4), and temporal (down to 1 second) observations of the solar atmosphere. In 

addition, some fundamental questions about the heating mechanism for the solar corona 

and the origin of the solar wind will be investigated. Other instruments on board SOHO, 

such as UV Coronograph Spectrometer (UVCS) and the White Light and Spectrometric 

Coronograph (LASCO), will investigate the plasma diagnostics of the solar wind and the 

outer corona from a few solar radii up to 30 solar radii. For more complete details and 

technical descriptions, the reader should be refered to the papers by Wilhem et al. ( 1988) 

and Patchett et al. (1988).

SOHO will cover a temperature range with a maximum of~ 2x l06 K. However, 

the coronal temperature in active region loops can be as high as 4 -5 x l0 6 K, while in
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flares the temperatures reach 25x106 K or even higher. The flux tubes that contain these 

high temperatures range from a few tens of arcseconds to a few arcminutes in length. The 

electron density also becomes quite high, reaching values in some cases greater than 1012 

cm '3 and being typically about 1011 cm '3. Material at chromospheric temperatures enters 

the low corona to form long and low, almost horizontal structures, usually with one end 

rooted to a nearby sunspot. On the solar disc these structures are seen as dark filaments, 

w hereas at the limb they appear as bright prom inences extending above the 

chromosphere. The different appearance is because they emit less visible radiation than 

the underlying disc but more than the surrounding corona.

Prominences are cool plasmas (<105 K) of complex magnetic flux loops that can 

extend fairly high into the corona. They can sometimes explode (eruptive prominences), 

spraying cold hydrogen into the corona to distances of many solar radii, producing a so 

called coronal transient. The eruption does not consist only of prominence material but 

also o f the material and field of the coronal active region loops overlaying and enclosing 

the prominence before it erupts. In addition to prominences, there exist many other active 

solar phenomena, such as surges, sprays, coronal mass ejections and flares.

2.2.2.The Transition Region

The atmosphere at temperatures between 2 x l0 4 K and 106 K is known as the 

transition region. This region separates the warm  material o f the chrom osphere 

(T ^ x lO ^ K ) from the very hot corona (T>106). The only satisfactory way to study the 

hotter regions of the sun's atmosphere, the transition region and the corona, is by 

investigating UV, EUV and X-ray emission lines. Photographs o f the sun obtained in 

spectral lines formed at transition region temperatures reveal highly inhomogeneous 

structures. However, as yet the detailed physical structure o f the transition region is 

unknown.

During the last few decades models of the solar atmosphere have generally 

assumed a decomposition into spherically symmetrical layers, proceeding from the cold 

chromosphere through the transition region and into the hot corona. Such an atmosphere
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could be described as one dimensional, with the temperature and density uniquely defined 

as a function o f the solar radius (Athay 1976). Because o f the strong temperature 

dependence of the thermal conduction coefficient (T5/2), the transition region is extremely 

thin in classical models. The region around 105 K is predicted to be only a few kilometres 

thick. In these models energy is conducted from the corona through this extremely thin 

layer into the chromosphere, from where it radiates away. Observations with improved 

spectral and spatial resolution indicated that the actual structure o f the transition region is 

very complicated and extremely inhomogeneous (Feldman 1983), and that the classical 

model is oversimplified. Perhaps the most outstanding observations are images of the sun 

in spectral lines formed near 105 K such as from C IV  and He II which indicate that the 

transition region is composed of extended structures, although with very small filling 

factors, that appear quite similar to the spicules seen in hydrogen light. In order to 

overcome such difficulties, the classical plane parallel model had to be modified.

A number of models have been constructed, over many years, with one property 

common to all. The lower temperature limits of the structure were taken to be about 104 

K and the upper temperature limit at about 106 K. The plasma at 105 K is assumed to 

com e from  structures in which energy is supplied by therm al conduction, and 

consequently the transition region between the cold and hot limits is very thin. The width 

o f the layers between 4X104 K and 2 .2x l05 K is a very small fraction of 1" (1"= 725 

Km).

Feldman (1983) discussed the implications of the transition region observations. 

He suggested that the transition region emission comes from two em itting regions: 

emission from "classical" transition region between the chromosphere and the corona and 

em ission from unresolved filam entary structures extending into the corona, with 

properties that are largely unknown at present. For the above reasons, as well as others, 

the classical model is a gross over simplification, and in particular, the name "transition 

region" is a misnomer because in many cases transition region plasma does not form a 

physical region between chromospheric and coronal plasmas. The different atmospheric 

regions on the sun are defined by the emission lines they produce and an increase in
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tem perature does not necessarily correspond to an increase in height above the 

photosphere.

2.2.3.Transition Region Diagnostics

In this thesis we will be concerned mainly with electron density diagnostics, but 

we will briefly mention some o f the temperature sensitive line ratios. The transition 

region electron density diagnostics which lie in the 1100-2000 A wavelength range can be 

divided into two types: the ratio of two intersystem lines from the same ion or the ratio of 

an intersystem line to an allowed line of different ions formed over a similar temperature 

range. These two methods have been explained in a more detailed manner in the previous 

Chapter.

In the first method, the intensity ratio changes very little over a large density 

range. For example, the ratio of O IV intersystem lines (1407/1404.8) increases only by a 

factor o f 3 correspond to a density range between 1010 and 1011 cm-3 (Hayes, 1982, 

1983), and betw een 1011-1 0 12 cm '3, the increase is only a factor o f 1.6. Thus 

uncertainties in the atomic data or in the observed intensities can lead to large errors in the 

derived electron densities. The effect of these uncertainties, due to atomic data as well as 

line measurements, on the inferred densities will be considered in Chapter 6, where 

statistical calculations will be introduced. Examples o f this method occur for O IV , Si m , 

N III and S IV lines between 1100 and 2000 A.

The ratio of the intersystem to the allowed line varies rapidly and provides a 

sensitive method for determining electron density. This method has the advantage of 

much greater density sensitivity because the high density limit is reached only at densities 

much higher than found in a astrophysical plasmas. In this technique uncertainties can 

also arise in the analysis due to the difference in the emission functions for the different 

lines and the fact that some of the line ratios are temperature dependent. The intersystem 

to allowed line technique can be applied to the line ratio O IV/Si IV, (cf. Chapter 1). 

High time resolution observations of this line ratio indicate an enhancement in the electron 

density of more than an order of magnitude, in correlation with hard X-ray bursts during
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solar flares (Cheng et al. 1986). These bursts are not confined to solar flares. Hayes and 

Shine (1987), have demonstrated the existence of continual small scale activity, bursts. 

They also com pared the two techniques used for the electron density determination 

discussed above. Fig. 2.3 shows a comparison of the electron densities derived from the 

O IV multiplet with those from the Si IV/O IV ratio taken from Hayes and Shine. It is 

clear from this figure that the inferred densities from the two methods are inconsistent. 

The discrepancy could be due to the effect of the inhomogeneities of the emitting plasma, 

i.e. small dense structures embedded in a background transition region as predicted by 

Doschek (1984). The effect of plasm a inhomogeneities on electron density diagnostics 

will be discussed in a more detailed and general treatment in Chapters 4 and 5.

It is rather difficult to find suitable density diagnostics for the lower part o f the 

transition region (2X104 K -2xl0^ K). The energy difference between allowed lines and 

intersystem lines are of comparable values to kT. Thus many line ratios are temperature 

as well as density sensitive. There are, however, some ions for which density sensitive 

line ratios can be found that are independent of temperature. These ions, mentioned 

earlier, are N III and O IV (boron isoelectronic sequence), Si III (M agnesium  

isoelectronic sequence) and S IV (Aluminium isoelectronic sequence). The 2s2p 4P levels 

in N III and O IV are metastable for electron density appropriate to the transition region 

(energy levels of B-like ions are shown in Fig. 2.4 ). The transitions involved are the 

2s22p 2P°-2s2p2 4P lines near 1750 A for N III and 1400 A for O IV; The 3s3p 3P°-3p2 

2P lines o f Si HI near 1300 A, and the 3s23p2 Po-3s3p2 4P lines of S IV, also near 1400 

A making them ideal transition region lines. The density sensitivity of O IV lines have 

been considered by Flower and Nussbaumer (1975c), and for N III by Nussbaumer and 

Storey (1967). More recently O IV has been investigated by Nussbaumer and Storey 

(1982) and Hayes (1983). The advantage of using the ratios o f lines between the 2s2p2 

4P and 2s22p 2P levels as electron density diagnostics is that these ratios are insensitive to 

electron temperature. One problem with this method is that the theoretical ratios are 

sensitive to changes in atomic parameters and it has been shown by Doschek and 

Feldman (1979) that 20 % changes in the radiative transition probability can lead to an
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Fig. 2.4 Energy level scheme for boron-like io n s :----------- Collisional transitions,

radiative transitions.
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order o f magnitude error in the inferred density.

Si III (T=3.5xl04 K) lines have been studied by Nicolas et al (1979) and Dufton 

et al (1983). The levels 3s3p 3P are found to be metastable for the electron density range 

5 x l0 9-1012 cm '3. The most useful line ratios for diagnostic purposes are (1301 A)/(1312 

A) and (1301 A)/ (1296 A). The former varies by about a factor of 20 over three orders 

o f magnitude change in electron density, but is electron temperature dependent, while the 

latter, although less sensitive to electron density, has the advantage of being insensitive to 

electron temperature.

Probably the most extensively studied ion in the solar transition region is C III. 

This ion was the first to be considered for applications in this region by Jordan (1971, 

1974) and independently by Munro et al (1971). Figure 1.3 shows that C HI at 1909 A is 

the only good line for density diagnostics below 1010 cm-3. However, other C HI lines 

are also very useful. For example, the triplet transition group of lines label gi in Fig. 2.5 

fall near 1176 A (2s2p 3P- 2p2 3P), and the resonance line at 977 A (2s2 1So-2s2p ^ i ) ,  

line c in Fig.2.5.The ratio o f these lines to the intersystem 1909 A line (2s2 1So-2s2p 

3Pi), line a, is both density and temperature sensitive, but all the lines can be observed by 

a single instrument and have been observed in solar and stellar spectra. Similarly, line e 

(2s2p !P i-2p2 'S0) in Fig. 2.5 falling near 1247 A, has been observed in solar spectra. 

The ratio of this line to the intersystem line at 1909 A is also both density and temperature 

sensitive. Results are shown in Fig.2.6 from Dufton et al (1978) in which, if the 1176 A 

line and 1247 A and 1909 A lines can be observed simultaneously the temperature and the 

density can be obtained. In most solar features, the 997 A and 1176 A lines are 

predominantly excited by electron collisions from their respective lower levels. The levels 

2s2p 3P are metastable, making the ratio (1176 A)/(977 A) a possible electron density 

diagnostics for solar conditions.

The electron density inferred from this line ratio has been a matter of some debate. 

The value of the line ratio that determines the electron density depends critically on atomic 

d a ta . It has been emphasised by Jordan (1974) that errors in the electron excitation rates
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Fig. 2.5 Energy level diagram for Be I isoelectronic sequence. Doschek (1985).
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of 25% can lead to orders of magnitude difference in the electron density deduced.

A nother useful ion in the beryllium sequence which can be used as a density 

diagnostic tool for active regions is O V (T ~ 2 .5x l05 K). Atomic data were originally

obtained by M alinovesky (1975) and later by Dufton et al. (1978). The resonance 

transition at 629 A (2s2 1S-2s2p 1P), see Fig. 2.5, has been used with the m ultiplet at 

760 A (2s2p 3P-2p2 3P) arising from the metastable level as a density diagnostic for the 

transition region. Because of the larger radiative transition value for the transition 

in O V than in C III, the region of density sensitivity occurs at higher densities than for 

the C III ion. It can be seen from Fig. 2.7 that the ratio (760 A/ 629 A) is best used for 

density determ ination about 4 x l0 9 cm-3. The observed variation of this line ratio is 

similar to that measured for C III.

For a summary of the electron density diagnostics in the UV wavelength region, 

Fig. 1.6 should be consulted. It should be mentioned that several intersystem lines in the 

lower transition region become density sensitive at densities above ~ 5 x l0 10 cm-3, and 

these lines have been utilised in diagnosing densities in active regions, flares and surges. 

Electron densities derived using different line pairs formed at similar temperatures are 

found to be different by a factor of two or three. This may, in part, reflect the structure of 

the atmosphere, i.e. the lines are not formed in regions of the same mean density; this 

effect w ill be the main objective o f Chapters 4 and 5. However, uncertainties in atomic 

data and in instrumental calibration may also be a cause of this discrepancy, as will be 

seen in Chapter 6.

The sizes of structures within the transition region are very small. From a flare 

observed from Skylab, it has been shown that a surge observed at lower transition region 

temperatures during flare onset had a characteristic length of about 60 km, <0.1". It is 

also evident that the high density transition region plasma coexists with nearby low 

density plasmas. This result was achieved by obtaining density ne from intensity of 

intersystem lines and volume emission measure n^ V from allowed lines (Doschek et al
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1978)
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(1977). Photographs made in He 304 A radiation taken on Skylab, and spectra obtained 

from  rockets and Spacelab 2, e.g. Dere et al (1987), showed that the transition region 

structures are o f very small sizes. The volume of the emitting plasm a can be calculated 

using density diagnostics such as O IV lines near 1400 A and the em ission measure 

calculated from allowed lines. By comparing this volume, calculated using spectroscopic 

diagnostics (spectroscopic volume), with the apparent volume as deduced from images, it 

has been calculated that the spectroscopic volume was much smaller than the apparent 

volume Dere et al (1987). M ost density-emission measure analyses indicate that "filling 

factors" for the transition region emission are extremely small (0.1-0.001) (Dere 1982). 

In other words the transition region emission arises from very small structures that are 

distributed over a much larger volume.

2.3.1 Solar Flares

The solar atmosphere is often wracked by tremendous explosions, releasing huge 

amounts of energy and accelerating particles to extremely large velocities (<1000 km s*1). 

These phenom ena are known as solar flares, and they are intrinsically fascinating, 

particularly from the diagnostic point of view. Astronomers are now studying these 

complex explosions with a range of instruments from radio telescope arrays to gamma 

ray spectrometers in order to obtain a better idea about how they work. Solar flares are 

extremely complex and inhomogeneous in nature (see Sturrock, 1980, Svestka, 1976, 

and Tandberg-Hanssen and Em slie, 1988) which makes a thorough spectroscopic 

analysis necessary.

During maximum solar activity a dramatic increase in the number and size of solar 

flares is noticeable. Many flares each day can occur at the time of peak solar activity. A 

flare occupies only a small region of the solar surface, usually <2 arcminute square in 

area, but over its lifetime it can release energy ranging from 1028-1033 ergs. Although the 

energy released in a single flare is negligible compared to the total energy output of the 

sun in the same time, flares are sufficiently localised that they show up as very intense 

regions in H-alpha, UV light and X-ray, and even occasionally in white light.
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Unfortunately most of the radiation produced during a solar flare is blocked by 

the atm osphere o f the earth, which mainly absorbs the high energy UV, X-ray and 

gamma radiation, allowing only visible light, including H-alpha, and some radio waves 

to reach the surface. In order to get an understanding o f the physical process taking place 

within solar flares, all the emitted radiation should be studied.

The causes of the flaring process are still unknown, although we do know that the 

only energy source capable of producing the violent outbursts observed must be magnetic 

in nature. As the number of strong magnetic field regions appearing on the sun increases, 

all the energy may be released in a flash of X-ray, UV and optical radiation together with 

a burst o f energetic electrons and protons. One of the models that explains solar flares 

requires the released magnetic energy to accelerate a large number o f particles, which 

stream through the solar atmosphere, resulting in heating by frictional processes and 

producing X-rays by collisional bremsstrahlung. Gamma radiation may also be produced 

when accelerated protons collide with the ambient nuclei in the atmosphere.

Soft X-ray emission from flares, which arises in plasma at temperatures between 

about 2 x l0 6 K and 2 0 x l0 6 K, is considered to be particularly interesting for 

spectroscopy. The plasma responsible for this emission is also quite important from the 

flare energetics point of view, since a significant fraction o f the total flare energy released 

results in soft X-ray plasm a and its corresponding radiation. A flare is usually 

accompanied by a rapid rise in X-ray emission followed by a slower decline (impulsive 

and gradual phase respectively).

In flares the temperature routinely reaches 25x106 K. These high temperatures are 

attained in flux tubes o f a length ranging from a few tens of arcseconds to a few 

arcminutes. The electron density also becomes quite high, in some cases reaching values 

greater than 1012 cm '3 and being typically about 1011 cm '3. In addition to this so called 

thermal flare, there is a nonthermal component characterised by an electron "temperature" 

of 100-200xl06 K, which is evidenced mainly by hard X-ray bursts during the rise phase 

of flares. The impulsive bursts are caused by a rapid acceleration of particles to very high
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energies (Kev-Mev). Because of the large temperature range covered by flares their 

spectra are extremely important to astrophysics.

2.3.2 Solar Flare Diagnostics

Some o f the most exciting results, particularly concerning flare plasmas, have 

been obtained in the EUV range. There are many excellent electron density diagnostics in 

this region. Some of the more interesting and important examples are Fe IX, Ca XVI, Ca 

XVH, and Fe XXI. A more detailed discussion regarding other density diagnostics can 

be found in Dere et al. (1979). Fe IX, is one of the most sensitive ratios for temperatures 

T=106 K near 240 A and has many excellent lines for deriving densities in flares. The Fe 

IX lines are unblended and fairly intense and will be discussed in more detail in the 

following Chapter. The other ions mentioned above are formed at higher temperatures. 

Unfortunately, diagnostic analysis become more difficult at higher temperatures because 

the decay rates from metastable levels increase faster than the collisional deexcitation rates 

as atomic number and temperature of formation increase. The highest temperature ions 

that are useful are Ca XVI, Ca XVII (T = 6x l06 K), and Fe XXI (T = 10x l06 K). It is 

evident from the presently available observations that the density in the high temperature 

flare plasm a does not appear to exceed 1013 cm*3. This implies, based on the atoms 

physics and solar abundances, that only three ions formed at temperatures greater than 

about 5 x l0 6 K will be useful density diagnostics, i.e. Ca XVI, Ca XVII, and Fe XXL 

Fig. 2.8 shows a flare spectrum over the wavelength region 200-250 A, obtained from 

the S082A  spectroheliograph, the two Ca XVI lines at 208.6 and 224.5 A are distinctly 

noticeable.

Ca XVI is a member of the Boron-like ions formed at about 5x l06 K, and density 

sensitivity occurs as for the four-level case discussed in Chapter 1 (Fig. 1.2). The 

theoretical line ratio as a function o f electron density has been calculated by Dere et al 

(1979) and is shown in Fig. 2.9. The atomic data for Ca XVI used for the calculation of 

this curve are given in the above reference. The ground state is 2s22p 2P i/2 (see Fig. 2.4 

for energy level scheme in Boron-like ions), and the first excited state is 2s22p 2P3/2- At
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Fig. 2.8 Solar flare spectrum recorded by the NRJL spectroheliograph on Skylab, of the 

1973 December flare for the wavelength region 200-225 A. (Dere et al. 1979).
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Fig. 2.9 Emission ratios as a function of electron density for the lines and ions indicated. 

The Ca XVI is formed at a temperature of about 6x l0 6 K, and it is useful as a density 

diagnostic in flare plasmas. (Dere et al 1979).
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low densities Ca XVI produce a strong line at 208.57 A due to the transition, 2p 2Pi/2-3d 

2D 3/2 . The 2p 2P3/2-3d 2D 5/2 line at 224.54 A is weak because at low densities it can 

only be excited from  the 2p 1/2 level, and the collisional rate coefficient is small. 

However, at high densities the 2Ds/2 level can be excited from the 2p3/2 level, and the rate 

coefficient is large. The line ratio increases as the density increases and eventually reaches 

a high density lim it when the populations o f 2p i /2 and 2p 3/2 are in the ratio of their 

statistical weights.

The Ca XVI lines are useful for density diagnostics in compact flares. The values 

of electron densities inferred from this line ratio are generally between 1011 and 4 x l0 n  

cm '3.

The Ca XVII ion is Be-like, and is formed at slighdy higher temperatures than Ca 

XVI. The ground state is 2s2 ^ 0 , and the first excited states are 2s2p 3Po,i,2- The 

density sensitive diagnostic is provided by the triplet states. The 3Po state cannot decay to 

the ground state, while the decay rate from 3P2 state to the ground is of negligible value 

com pared with that o f the 3Pi level. The 3P i level can decay to the ground at a rate 

unaffected by collisions at solar densities. As a result, lines due to transitions of the type, 

2s2p 3P-2p 3P, are density sensitive relative to the singlet transition ^ o ^ P i  at 192.82 A. 

This ion was first suggested as a useful density diagnostic by Doschek et al (1977), who 

calculated various line ratios using available atomic data. The obtained density was about 

5 X 1 0 11 cm '3 for the intensity ratio of the transition 2s2p 3P3-2p2 3P2 at 232.83 A to the 

line 192.82 A. These lines are included in the spectral region of Fig. 2.8 discussed 

above. The densities derived from Ca XVII lines are not in satisfactory agreement with 

densities deduced from other ions such as Ca XVI. Uncertainties in observational data 

may cause part of this contradiction.

The Fe XXI ion is a C-like ion and is formed at a temperature of lOxlO6 K. This 

ion is considered to be one of the highest ions useful as a density diagnostic in solar 

flares. The ground state levels are 2s22p3 3Po,i,2 and !D 2, ^ q . The energy level diagram 

showing transitions for C-like ions is shown in Fig. 2.10, taken from Raju and Dwivedi
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(1979). The 3P 2 level is the most useful level for density sensitive lines at flare densities, 

because higher levels such as 2s2p3 3D 3 can be excited from this level, whereas they 

cannot be strongly excited from other ground state levels. Therefore a good density 

sensitive ratio would be the line (2s22p2 3P 2-2 s2 p 3 3D 3) at 145.66 A to (2s22p2 3Po- 

2s2p3 3D i) at 128.73 A, and the density dependence will be qualitatively similar to Ca 

XVI. The Fe XXI lines are discussed by Mason et al (1979), who give the necessary 

atomic data, and suggest the use o f Fe XXI lines for solar flare density measurements. 

The Ca XVI, Ca XVII, and Fe XXI lines also produce density sensitive line ratios in the 

X -ray region, but again there are not many high spectral resolution observations 

available.

Electron density diagnostics for solar flares in the EUV wavelength region were 

reviewed by Dere et al. (1979) and Doschek (1985, 1988). Dere et al. have considered 

the w avelength region covered by the ATM -NRL-S082A spectroheliograph aboard 

Skylab (171-630 A).

An interesting result (Dere et al. 1979) has been found from EUV density 

measurements over a very broad temperature range. The electron density in flares appears 

to increase with temperature, indicating that the gas pressure is not constant throughout 

the flare volume. The reason for this behaviour is not yet understood but presumably due 

to the presence of strong magnetic pressure.

A nother interesting result from EUV diagnostics concerns the differential 

em ission measure (DEM) for compact flares. Most theoretical calculations predict a 

temperature dependence of the DEM as approximately <*= T3/2. However, investigations 

indicate an emission measure dependence of about T3, e.g. W iding and Spicer (1980), 

W iding and Heiei (1984). The reason for this large difference between theory and 

observation is still not known. A recent paper by Widing and Cook (1987) combines 

electron density diagnostic ratios from this wavelength region and those from a longer 

w avelength region (1100-2000 A) to provide an electron density profile for the 

temperature range 4 x l0 M 0 x l0 6 K., Fig 2.11. They pointed out that the emission from
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the transition region (T<106 K) in compact flares actually arises in entire loop structures, 

rather than from the footpoints o f high temperature regions o f hotter loops. The cool 

loops have lower densities than the hot loops, which would explain the increase of 

density with temperature. The flare emission of higher temperature was emitted by a 

small intense kernel, while low er temperature em ission was associated with a more 

diffuse region, with the kernel embedded at its base. The low temperature emission does 

not seem to be confined to the footpoints o f high temperature loops as some models 

predicted.

W iding (1982) has pointed out that a group of lower transition region ions that 

emit lines in the EUV have been identified. He mentioned that new density diagnostics 

for the O V 192, 215, 220 A lines have been developed and applied. It has been found 

that strong enhancements of these types of lines during the impulsive phase o f some 

flares is observable , apparently during the time of hard X-ray bursts, Widing and Hiei 

(1984) and W iding (1982). They find that the transition region emission measure 

function shows an unusual flat slope a T0-6, while being o f the form T3 for hot loops.

There also exist some other lines that have formed in the X-ray solar spectrum. In 

recent years SMM, P78-1 and Hinotori have provided a wealth of solar flare spectra in 

this wavelength region. In high temperature flares some iron lines fall between about 90 

and 150 A, such as Fe XVIH-Fe XXIII, which are interesting and important lines from 

the diagnostics point o f view. Other groups o f lines form in the range from about 1.7 to 

25 A. This wavelength range contains very useful inform ation concerning plasma 

conditions in solar flares.

W e discussed in the previous Chapter the im portance and the possibility of 

utilising some of the He-like and H-like ions as density diagnostics, pointing out that they 

are useful for solar flare plasmas. The best examples o f He-like line ratios, that are 

density dependent, have been observed by Aerospace Corp. SOLEX spectrometers. The 

first observations of a large variation in the line ratios R were from solar flare and active 

region observations of the He-like O VII lines recorded by these instruments (McKenzie
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et al. 1980). An example of such observations is shown in Figure 2.12. It is evident in 

the active region spectrum that the ratio R (Z/Y) is about 2.8, indicating a value of 

electron density o f l . lx lO 10 cm-3, cf. Fig. 1.5. However, in the two flare spectra 

observed the ratio implied densities of 3 .7x l010 and 1.2xlOn  cm-3. High time resolution 

spectra o f other flares show a strong, short lived density enhancement (ne>1012 cm’3) 

coincident with the peak in the hard X-ray emission (Doschek 1981). Figs. 2.13 shows 

the electron density as a function of time as well as the intensity o f the Ca XIX and Fe 

XXV resonance lines derived for the 9 May 1980 and for another flare that occurred on 8 

April 1980. In both flares there was a rather rapid rise in density followed by a nearly 

equally rapid fall, near the time of peak fluxes in the resonance lines. In both flares the 

maximum density was around 1012 cm*3. Several He-like lines and other electron density 

sensitive line ratios which fall into the wavelength region (10-100 A) were reviewed by 

Brown et al. (1986). Fig. 2.14 shows results for spectra obtained during the decay phase 

of a flare. Constant electron density rather than constant pressure indicates the complexity 

of the structure of the flare.

Finally it should be mentioned that satellite lines are very useful for electron 

temperature diagnostics, which will be obtained by taking the ratio of a dielectronic 

satellite (e.g., line g of Fe XXIV) to a He-like or H-like resonance line (e.g., line w of Fe 

XXV). Some o f the most important conclusions that have been obtained by applying 

these lines to flare spectra, have been obtained from SMM (Acton et al 1981), the P78-1
r

Spacecraft (Doschek et al. 1979, and Culhane 1989) and the Japanese Hinotori spacecraft 

(Tanaka et al. 1982).Some of the main conclusions are:

(1) The temperature for the bulk of the thermal flare plasma does not exceed about 

2 5x l06 K during a flare, and for smaller flares can be much less.

(2) For nearly half of the large flares, there is also a super-hot component, with a 

temperature o f about 35x l06 K. The emission measure of this component is much less 

than for the bulk of the thermal component.
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(3) The temperature deduced from calcium lines (k/w ratio) averages about 

3 .8 x l0 6 K lower than the temperature deduced from the j/w  iron lines, confirming the 

existence of a multithermal plasma, for most flares. However, the functional dependence 

o f the em ission measure with temperature near 2 0 x l0 6 K is more com plicated than 

expected from theoretical calculations, in which the relationship is not o f a power law 

formula, i.e. T b.
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2.4 Summary

A lthough much about the structure and physical conditions o f the solar 

atm osphere is presently known, many basic problem s, such as its origin and the 

mechanisms by which it is maintained, need to be resolved. In addition, certain problems 

concerning the structure of the atmosphere are still largely unsolved. O f particular 

importance is the fact that the atmospheric regions can not be regarded as having plane- 

parallel structure. The solar atmosphere is highly inhomogeneous, and it is not valid to 

specify a unique temperature or density at a given height above the photosphere. The 

exact nature and shape of the transition region structures cannot be determined with the 

presently obtainable spatial resolution. For example the High Resolution Telescope 

Spectrograph (HRTS) observations discussed by Dere et al (1987) have a spatial 

resolution of about 0.8"-3” covering a spectral range of 1150-1700 A. A spatial 

resolution of about 0.1" is therefore required in order to unravel the true nature of the 

transition region, and its relationship to the chromospheric and coronal plasma.

There are several problems that can effect the determination of very accurate 

electron densities in the UV region. One of these problem s is the existence of 

inhomogeneous plasmas of non-isothermal structure. Doschek et al (1977) and Widing 

(1982) have found that in solar flares there exist inhomogeneous plasm a in which a 

relatively low density plasma in embedded with small high density knots, as has been 

shown above. Also in laboratory plasmas such as Tokamak, inhomogeneities are induced 

by plasm a instabilities and may give a similar situation to the one mentioned above. The 

plasma inhomogeneity may be the main reason of producing large differences in derived 

densities. This fact, as well as the question of what the effect of these types of plasmas 

on line ratios can be, will be the main objective of Chapter 4.

Therefore, the density structure of the source should be taken into consideration 

when analysing solar, stellar, and laboratory spectra. These effects are particularly 

important in the case of analysing spectra where spatial resolution cannot be achieved, 

such as in stellar spectra.
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3.1.Introduction

The electron density in the solar atmosphere may be derived by several different 

methods (cf. Chapter 1). One method which has been used extensively is that o f the 

analysis o f UV, EUV and X-ray line intensity ratios with different density dependence. 

The importance o f electron density determination has led to the rapid development of 

density diagnostic techniques and also a great improvement in the efficiency and accuracy 

of the observational instruments. These techniques have been discussed in detail in the 

preceding chapters with a few specific examples given as illustration.

It should be emphasised that in these analyses it is usually assumed that the 

plasm a under consideration is isothermal and of homogeneous structure. However, 

images of different plasmas of interest display a great deal of inhomogeneous structure, 

(cf. Chapter 2). Recent observations have revealed that the transition region, solar 

corona, and solar flares are extremely inhomogeneous in nature and may, in fact, be 

com posed o f many unreso lved  filam entary structures. The effects o f such 

inhomogeneities of an atmosphere on the density distribution inferred from an observed 

line ratio must be examined. In order to do this we will derive an analytical representation 

of the emission rate in a spectrum line in terms of a spectroscopic mean density, <ne>, 

discussed fully in Chapter 4, for an arbitrary distribution o f electron density.

In the present chapter, we consider an approximate, analytical, representation that 

describes line ratios as functions o f electron density, and which is found to be a good 

approximation to line ratios of interest. This representation is compared with some of the 

more commonly used specific density diagnostic examples.

3.2.General Formulation

In order to determine atomic line ratios theoretically it is generally necessary to 

solve the equations of statistical equilibrium for the different atomic levels in each ion, 

taking into account all of the important atomic processes such as collisional excitation/de

excitation and radiative decay. This non-trivial calculation involves large quantities of
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atom ic data and much com puter time. In this section we will show how a simple 

analytical expression, to represent the various diagnostic line ratios, can be derived for 

im portant simple cases and that the same functional form is a good empirical parametric 

fit to more complex cases.

The general form of the power p emitted per unit volume in a particular line 

(denoted by a ), from an optically thin plasma of volume V, is given by,

where hV2 i is the energy of the transition between the upper level 2 and the lower level 1,

In the case of a two level atom for which the excited level is metastable, we can 

write the detailed balance equation (Equation 1.4) to find n2 as

Let njon be the total number density of the ion, then

P a( n c) =  h v 21n 2A 21 (3 .1 )

A 21 is the spontaneous radiative decay rate, and n2 is the number density in the excited 

level.

^ion- ^1 + tl2 (3.3)

therefore equation (3.2) may be rewritten as

(3 .4 )

From equations (3.1) and (3.4) the power in a spectral line can be expressed as

(3. 5)

nion may conveniently parametrised as n.o = n‘°~ “j p “-jj— n c, then (3.5) becomes
l0n el H c



On denoting

xr — n j°" n a  n  h  ,  0
“  n d n H n e ^ v 2 1 ^ 1 2  ( 3 . 7 )

and

A

n “  ( c 1 2 + ' c 21)  ( 3 - 8 )

equation (3.5) takes the form

n 2
P 0(n e) = K a  Sj—  (3 .9 )

0  + TT-)

where Ka  is a measure of the power emitted at low density where the radiative decay is 

dominant, and is a known constant for any given line. The value o f K« depends on the 

atomic data, the temperature adopted and the element abundance, but is independent of 

the electron density, ne. In equation (3.9), na is a measure of the density sensitivity range 

of ne at which collisional deexcitation becomes important.

The line ratio of the emissivity of two lines (a i,  (X2), at an electron density ne can 

then be given as

p  , P q .O O  _  K o  l + n . / n , ,  
P „ ,(n .)  K , l + n c / n

(3. 10)

W hich, on writing Ra=K ai/K a2> na=na l , and Aa=na2/n a i, becomes

l  +  n e / n a A a
R u ( n . ) = R a 1 + n , n - (3 .11 )

We will denote this expression for R 12 as 'the reciprocal representation'. The parameters 

(Ra , A a , na ) are constants which characterise the line ratio curve. W hether Aa > l or 

Aa < l indicates which of the two cases, mentioned in Chapter 1, is being considered, 

since most of the density sensitive line ratios fall into one or the other o f the two general
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cases. (In either case density sensitivity arises because at sufficiently high densities 

collisional de-excitations can compete with the radiative decay in depopulating the 

metastable level). The first case is the one for which the metastable level is in an excited 

configuration. The intensity of the line arising from this level decreases relative to a line 

which is unaffected by collisional processes (cf. Fig. 1.1), this situation being represented 

by equation 3.11 with A<x>l. The second case is the one in which the line excited from a 

m etastable level in the ground configuration increases relative to a collisionally 

independent line (cf. Fig. 1.2) and corresponds to Aa < l in equation 3.11.

In what follows, we will represent the behaviour of the line ratio R, as a function 

o f electron density, by equation (3.11) and discuss the comparison o f this analytical 

representation with the more complex multi-level calculations for each of the cases 

discussed above.

3.3 Application 1: Ions for which R decreases with n^(Arv>l)

As an illustrative example, Fe IX, which is one of the Ar-like ions, has been 

adopted to demonstrate this case. Fe IX is a very im portant ion for diagnosing EUV 

spectra, which are formed in the quiet sun corona, and has been discussed in detail by 

Feldm an et al. (1978). This ion is formed in the temperature region of the low solar 

corona (T ^ x lO 5 K), the region where Fe EX is of maximum abundance. Atomic data for 

Fe IX have been obtained by Flower (1977).

The ground state of this ion is 3s23p6 !So and the first three excited states are 

3p53d 3Po,i,2 as shown in Fig.3.1. The pertinent transitions for our discussion are 3P2- 

iSo at 241.911 A, and 3P i-1S0 at 244.739 A, since the density sensitivity o f the ratio of 

these lines is caused by metastable levels in the excited configuration. The transition from 

3Pi to ^So is an electric dipole with a radiative decay rate of 9 .3 x l0 6 s_1. While the 

transition of 3P 2 into the ground state is a magnetic quadrupole with a very small 

radiative decay rate, only 71 s_1. Note that the 3P2 can also decay to 3Pi level (a magnetic 

dipole transition) with a rate of 2.1 s*1, which is not significant compared to the 

quadrupole rate. Other transitions include the j=0 to j=0 which is strictly forbidden and
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therefore not be included in our discussion. At low densities both excited levels, 3P2 and 

3P i, are populated primarily from the ground state, and collisional deexcitation is not 

effective at this stage. The calculated intensity ratio 241.911 A/244.739 A is about 5:3, 

approximately the ratio o f the excitation rate coefficients, which is proportional to the 

ratio o f the statistical weights of the levels. However, at higher densities collisional de

excitations from 3P2 to the 3Pi and !So levels begin to compete with the spontaneous 

radiative decay in depopulating the level 3P2. As a result the ratio 241.911 A/244.739 A 

starts to decrease.

In order that our representation may be com pared with the higher level 

theoretical calculations we require to best fit values for the parameters (Aa , R«> na)* For 

a given line ratio curve, produced numerically, we can find the relevant values of Ra and 

A a from  the asymptotic line ratios as the electron density tends to zero and infinity 

respectively (cf. 3.11). The determination of the final param eter, na , is a little more 

complicated. By using a best fit procedure to the published line ratios ('weighted least 

square', wle) we find the optimum value of na which reproduces the line ratio curves. 

Our best fit criterion is governed by minimising the parameter

R - R  ■ „
wle = X (  " r ~ ' )  (3 ' 12)

j CJ

where Rt is the true line ratio, obtained from Fig. 3.1, Rc is the calculated line ratio and j 

runs over all ne values.

As an example we use the results o f Feldman et al. (1978). The appropriate 

representation parameters are shown in Table 3.1. na is obtained with a minimum wle of

0.07 where wle is governed by equation (3.12). This is shown graphically in Fig. 3.2. 

This procedure has been applied to many different density sensitive line ratios and we 

find that it is always possible to reproduce the numerical curves very well.

Some examples and applications of our representation to an observed value for 

Fe IX lines can be given. For example, the observation of Fe IX in the flare loop of 21
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Fig. 3.1 Density sensitive line ratio forFe IX (Feldman 1978).
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Table 3.1

Representation parameters (Feldman et al. 1978)

Parameters For Fe IX (X 241.739A/A. 244.91A)

T (K ) '  9.0xl05

na(cnr3) 1.312xl010

Ra !-76

Aa 176
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Fig. 3 2  Intensity ratio R as a function of density nc for the line pair 241.911 A/244.739 

A o f  Fe IX. The solid curve is taken from Feldman et al. 1987 while the dashed curve is 

the fit o f the reciprocal form of equation (3.11) for the parameters given in table (3.1).
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January 1974 produced a line ratio of 0.125 (Feldman et al. 1978). This line ratio 

corresponds to a density which can be inferred utilising our representation, viz

0 .1 2 5

n e =  1 .3 12x1 d° —^ = 1. 8 6x1 d 1 c m ' 3

176 “  1 .7 6

3.4.Application 2: A„<1

In the preceding section we discussed the possibility o f utilizing a simple 

analytical approximation in order to represent the numerically calculated line ratio curves. 

The application o f this representation to the cases where R decreases with increasing 

density (Aa> l) , was very encouraging and shows very good results. In this section we 

investigate the other situation in which the line ratio increases with increasing density, 

A a< l-

For this case we have chosen one of the boron like ions. O IV (1400 A) is 

considered to be one of the ions that has most accurate atomic data and most accurate 

observational data and has been studied more intensively than any ion in the sequence. 

(Doschek 1984). The O IV  intersystem lines are density sensitive because they arise from 

metastable levels, as has been shown in the two previous sections. This ion is one of the 

ions in 1100-2000 A region which is particularly important for plasma diagnostics of the 

lower transition region. The atomic data were obtained from Flower and Nussbaumer 

(1975c), and Hayes (1982, 1983).

The density diagnostic in this ion arises due to the dependence of the fine 

structure levels of the ground 2s22p 2P term and the metastable level 2s2p2 4P (see Fig. 

3.3). The intersystem line between 2s22p 2P3/2 and 2s2p2 4P5/2 occurs at 1401.156 A, 

2s22p 2P 3/2 and 2s2p2 4P3/2 at 1404.81 A, 2s22p 2P3/2 and 2 s2 p24P i /2 at 1407.386, 

and 2s22p 2P i /2 and 2s2p2 4P i /2 at 1399.77 A.

The density sensitivity in this case is similar to the 4-level atom explained in 

Chapter 1, in which two intersystem lines have been considered. In the low density limit,
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the ratio of the two lines is proportional to the ratio o f the collision rates. At the high 

density limit the intensity ratio is proportional to the ratio of the transition probabilities. 

Note that A21 for the transition that produces the line 1407 A is greater than that o f 1405 

A, therefore the ratio of the above lines does increase with increasing density. The 

variation of R with density for the O IV 1407 A/ 1405 A ratio is shown in Figure (3.4).

The empirical reciprocal representation R 12 (Equation 3.11), is shown in Fig.

3.4 and we see that it agrees very well with the actual values obtained from the more 

detailed spectroscopic calculations. The values of the different parameters required in 

(3.11) are indicated in Table 3.2.

As an example o f the accuracy of this representation in obtaining electron 

density from an observed line ratios for O IV  1407A/1405A can be given as follow. The 

observation o f the above O IV line ratio from a surge observed above the limb was o f the 

order o f 0.9 (Doschek 1984). This line ratio corresponds to a density, obtained from our 

representation, of

0 ^ _ !  
ne= 8.738x10'° t - g -9  = 3 .06x l0 '°cm -3 

0.115 “ 073
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Fig. 3.4 Intensity ratio R as a function of density n^ for the line pair 1407.39 A/1404.81 

A o f O  IV. The solid curve is taken from Doschek. 1984 while the dashed curve is the fit 

o f the reciprocal form of equation (3.11) for the parameters given in table (3.2).
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Table 3.2

_________Representation parameters (Doschek et al 1984)_______

Parameters For O IV  (1 1407.39/11404.81)

T (K ) 1 .3xl05

na (cn r3) 8 .738x l010 ■

Ra  0.3

Aa '  0.115
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3.5.Conclusion

In this Chapter we have presented a simple but accurate analytical representation 

that can be utilised in studying solar plasmas and investigating the structure o f the 

different sources. It has been shown (Figs. 3.2, 3.4) that the ratio of a pair of spectral 

lines which is a function of electron density can be represented closely by a simple 

analytical expression (Equation 3.11). This simple form  is found to lead to extremely 

good representations of actual line ratio curves, obtained by numerical methods which 

require very accurate atomic data and much theoretical effort. The use of our analytical 

representation reduces considerably the effort involved while still retaining a large degree 

of accuracy. It is therefore an excellent method for electron density determination in solar 

plasm as allowing a more flexible treatment of the effects of the inhomogeneities on 

density sensitive line ratios. This will be discussed in great detail in the following 

Chapters.
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4.1. Introduction

The inference of plasma temperature T and density ne structure from spectral line 

ratios is a problem of universal importance for both laboratory and astrophysical plasmas. 

In the preceding Chapters we have discussed the basic principles behind the density and 

temperature diagnostic analysis of line ratios and reviewed the many investigations made 

in this field.

In many of these studies the emitting plasma is assumed to be homogeneous. 

However, in practice, almost all plasmas o f interest are inhomogeneous, at least in the 

sense o f possessing large scale T and ne gradients (e.g. the solar transition region and 

corona and solar flares as discussed in Chapter 2). Furthermore, spectral observations are 

alm ost always, by necessity, o f extended plasm a volumes, whether over the entire 

plasm a or over the line of sight volume in an image pixel. It is therefore necessary to 

understand how to interpret single spectral line ratio measurements of T or ne in terms of 

'm ean' plasm a values and ideally to develop a m ethodology to extract maximal 

information, from a series of line ratios, on the spatial distribution of T and ne which 

directly govern, for example, energy transport in the plasma. In the case of temperature 

diagnostics from, for example, pairs of resonance lines, this methodology has been quite 

thoroughly developed, particularly in the case o f solar plasm as (cf. Chapter 2). 

Specifically, the ratios of such line pairs with different temperature sensitive ranges 

permits inference of the plasma emission measure ( Jn* dV ) per unit T range (e.g. Dere

and Mason 1981, Craig and Brown 1976, 1986). These analyses are usually based on 

the assumption of steadystate ionisation balance where the temperature varies relatively 

slowly with time. Since this differential emission measure function involves the 

distribution of both ne and T, the spatial distributions of T, ne separately can only be 

arrived at via some assumed relationship between T and ne, such as constant pressure. 

Ideally what is wanted is a means of separately inferring the distribution using density 

sensitive line ratios (e.g. intersystem lines or intersystem to allowed lines).
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The m ethodology for in terpreting  density  sensitive line ra tio s from  

inhomogeneous plasmas has received comparatively little attention to date, compared to 

the tem perature distribution problem . The fact that solar plasm as are certainly 

inhomogeneous in density has been clearly demonstrated by the fact that different line 

ratios lead to different values of the 'mean' density from the same solar source as shown 

in Chapter 2, (e.g. Doschek 1984, Doschek et al. 1977, W iding 1982, Feldman et al. 

1977, Nussbaumer et al. 1982 and Feldman and Doschek 1978). Doschek (1984) has 

investigated this effect for the special case of a plasma which is isothermal but which 

comprises two distinct spatial regions one of low and one of high density (both uniform). 

The main conclusion of his work is that the presence of a small fraction of the plasma, by 

mass or volume, at high density can (because of its large emission measure ) lead to a 

'spectroscopic mean' density, inferred from a single density sensitive line ratio, much 

higher than the volumetric mean density (total Nc/total volume).

In this Chapter we consider the basic problem of interpreting density sensitive line 

intensities from an inhomogeneous plasma in more general terms than Doschek, by 

considering arbitrary density distributions but still restricting the analysis to isothermal 

situations. We first (Section 4.2) show how the problem can be considered as that of 

determining a plasma emission measure £(ne) differential in density ne, and how any 

single line ratio yields a 'spectroscopic mean' (equivalent homogeneous) density <ne>; 

this is a single weighted moment of £(ne) and differs from one line pair to another and 

also from the volumetric mean density. We then utilise the derived representation of the 

density sensitivity of line strengths (cf. Chapter 3), and illustrate some aspects of the 

problem for a specific (exponential atmosphere) plasma model (section 4.4). In section

4.5, we return to the general problem showing that for a single line ratio, a homogeneous 

ne(r) solution yields a minimum possible plasma volume, consistent with the ratio. We 

then discuss how the use of more and more line ratios leads, in principle, to an ever 

closer estimate of the true inhomogeneous structure of the plasma in terms of £(ne), and

of its true total volume.
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4.2. Definition of the problem

For an optically thin plasma of electron density ne(r), temperature T(r) at 

position r  in a volume V, the total power Pa  emitted in a spectrum line a  (derivable from 

the observed line flux) can be written

Pa = J J J n 2e( r ) F 0(n e, T ) d 3r (4 .1 )
v

w here Fa (ne,T) incorporates an element abundance factor as well as details o f the 

transition processes determining the level populations and emission rate. In this Chapter 

we will concern ourselves only with volumes V in which T is uniform but with ne(r) 

varying, in order to isolate the effect of the latter. In the plasma as a whole, such a 

situation can exist only if gravity or a magnetic pressure gradient exists to balance the gas 

pressure gradient or if the plasma is in a transient hydrodynamic state. (We consider an 

example of the case of gravitational balance in Section 4.4). In practice the situation may 

also be approximated diagnostically by chosing to study only lines formed over a narrow 

temperature range in which case our analysis will only refer to the subvolumes V o f the 

plasm a in that range. We will also assume that T is known either by choice of lines, or 

from resonance line intensity ratios. The effect of a non-uniform T will be discussed in 

the following Chapter.

With these assumptions we can set Fa(ne,T)=Ga(ne) in (4.1) and write

P a = n / n 2c (- r )G 0( n c) d i  ( 4 .2 )
V

In this Chapter we will be concerned with what can be learnt about the function ne(r) 

from data on Pa for different lines a . Clearly to provide any distinct information the 

functions Ga (nc) must differ in functional form and not just by a scale factor. On the 

other hand, even data on Pa for an infinite series of distinct lines a  can never, even in 

principle, allow recovery of the function nc(r) of three spatial coordinates without any 

geometric information or assumption. In this regard the problem is precisely analogous to 

that o f studying temperature structure by means of resonance line temperature sensitivity
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(for which Fa in (4.1) depends on T only). Following the discussion of that problem by 

Craig and Brown (1976), it can be seen that the essence of the density problem can be 

expressed as that of determining, from a series of P a 's, the emission measure £(ne) 

differential in density. C(ne) is then defined by partitioning V into surfaces Sne of constant 

density and by writing

The central issue is then the inverse problem of determining how much we can 

learn about £(ne) from measurements Pa . Clearly a single line flux depends on the 

absolute magnitude of £ so that to learn anything about the ne distribution o f £ requires at 

least two lines (1,2). Let R 12 be the ratio of the observed intensities of a pair of lines (1, 

2). Then

in the case o f a plasma of uniform density no (C(ne) —Co S(ne-no) with 8 the delta- 

function), (4.6) implies

(4 .3 )

and

(4 .4 )

so that (4.2) becomes

(4 .5 )

(4 .6 )

(4 .7 )

from which no can be inferred from

n0 = S l l  (R 12} (4 .8 )
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w here g 12_1 is the inverse function of g 12, no being unique provided g 12(no) is 

monotonic, as is the case for all density sensitive lir^  ratios of interest.

In the case o f a non-uniform density plasma, (4.8) can still be applied (and 

com monly is applied) to a line ratio measurement, to yield an effective spectroscopic 

mean density o f the plasma for that line pair, viz.

This is the density of a homogeneous plasma which would give the same line 

ratio R i2 as the realplasm a, for that particular line pair. Obviously the value of <ne> i2

measurements will in general give a series of differing <ne>i2 values unless the plasma is 

in fact homogeneous. Qualitatively, the spread in <ne> i2 values found between line pairs 

will be an indication of the degree of inhomogeneity in the plasma density. In this 

Chapter we explore the extent to which this inform ation on inhomogeneity can be 

quantified, i.e. what can be determined about £(ne). In some of our analysis it is feasible 

to establish results for general forms of the Gi, G2 functions but for some purposes we 

require a specific representation of the G's, which we discussed in the previous Chapter. 

W e then illustrate the effect of inhomogeneity on <ne> i2 for this representation by 

considering the particular case of an exponential atmosphere (Section 4.4). In doing so 

we will com pare the <ne>i2 values with other mean density values o f physical 

importance viz the volumetric mean density (related to the plasma mass) given by

(4 .9 )

will depend not only on £(ne) but on the forms of G i, G2 so that a series of line pair

(4 .1 0 )
v

and the emission mean density (related to resonance line intensities) given by

1 / 2

(4 .1 1 )
v
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Comparison o f (4.9), and (4.11) shows that use of <ne> or of ne will always tend to give 

a 'm ean' density weighted toward higher values than due to the proportionately 

larger contribution of higher densities to emission measure per unit volume. This was

Follow ing our discussion of the exponential atmosphere in terms o f the

constraints and information are obtainable on £(ne) from one or more line ratios.

4.3.Representation of the density sensitivity

Spectral line intensities can be used to determine the physical parameters of the 

plasma, e.g. electron density. These diagnostic lines has been discussed in Chapter 1 and 

illustrated by some specific examples.

In Chapter 3 we presented an approximate analytical representation, (Equation 

3.11), which may be used for the analysis of electron density diagnostics. Some 

examples were shown which approximated very well to some published curves. In terms 

o f this representation an analytic expression is obtainable for the spectroscopic mean 

density as follows:

In general, for a pair of lines (1, 2) we have, from (4.6), (3.6) and (3.10)

Equating these two expressions, we can thus solve for the spectroscopic mean <nc> for 

this line pair for any specific £(nc), viz.

indeed found by Doschek (1984) in his discussion of a plasma comprising two uniform 

regions, one o f high and one of low density.

'forward' predictive approach we will then consider the inverse problem in terms of what

while for a homogeneous plasma at density <ne>

R 12= R o(1 + < n e > /  Aa n a) / ( 1 +  < n c > /  n a ) (4 .1 3 )
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r00 £ (ne) d n e ~ ^ (n e) d n e 
> 1 + n e / n a

< n e > = n a
,0 l + n e/ A on o J0

r  £ (n e) d n e __ 1 r' 

/ o 1 + n . / n 0 A a 4

£ (n e) d n e (4 .1 4 )

1 +  n c /  A a n a

It is convenient to express this in dimensionless form by defining dimensionless densities

which depends only on Aa . It should be noted, however, that in determining <v> from 

an observed line ratio R 12, the values of Ra and na must also be known.

•4.4 Illustrative diagnosis of an exponential atmosphere model

A particularly simple case of density inhomogeneity in a radiating source is that 

o f a plane stratified slab of horizontal area S and total height H (hence volume V=SH), in 

which the density varies with height z according to

v = n e/ n a , < v >  = < n e > / n a (4 .1 5 )

and a dimensionless (fractional) emission measure rj(v) per unit v, such that

0
viz:

(4. 16)
0

then (4.14) becomes.

ri(v )d v

Tl(v)dv 1 ri(v )d v (4 .1 7 )

n e(z )=  n0 e~z/h ,0  < z < H (4. 18)

where h is a constant scale height. This description approximates well to the distribution 

of an isothermal gas column in hydrostatic equilibrium under gravity, such as the limb of 

a hot solar loop. If ni = a  n0 is the density at the top o f the slab (z=H) then
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h= H /(ln (l/a )) and we can parametrise the density distribution by (S, H, n0, a ). In terms 

o f these, the differential emission measure is, by (4.4)

^( n ‘) =  b t f o O  > a  -  n . / n0 -  1 ( 4 .1 9 )

while the total emission measure is

S H n J
“  2 1 n ( l / a )  (1-<X ) (4 .20)

and the volumetric and emission mean density are, using(4.10), and (4.11)

_  n ( 1 - a )
n = - h r w  ( 4 - 2 1 )

and

/i ~2xl/2n 0 ( l - a  )
n = — ®-------------- ttj (4 .2 2 )

(2 In (1 /  a ) )

For observations o f a particular line pair from  a structure o f this form, 

(satisfying the representation of Section 4.3), with density sensitivity parameters na , Ra 

and Aa , we write (4.20) as (cf. (4.15))

■n(v) = T 1 - r - T  <4 -2 3 )1 - a

where v=njna and v0= no/na . Thus by (4.16) the inferred spectroscopic mean density 

for this pair is,

< n c > 
< v > = —=-----

( A „ -  1) (1 -  a )  v 0+ In [ (1 +  v 0) /  (1 + a v 0)] -  A„ ln [ (A a + v 0) / ( A „  + a v 0)] 
A a In [ (A 0 + v 0) /  (A a +  a v 0)] -  In [(1 + v 0) /  (1 + a v  „)]

(4 .2 4 )

and, in the same units,
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-  v , ( l - a )  - v 0( l - a 2)W2
I n ( l / a )  ’ [2 1 n ( l /  a ) ] ' /2 (4 -2 5 )

In Fig.4.1 we show v and v as functions o f Vo for various a  values, while in 

F igs.4 .2  we show <v> versus v 0, for a range of a  values, for two values o f A a 

corresponding to the O IV  and Fe IX lines of Tables 3.1 and 3.2 respectively. Inspection 

o f these figures shows that application of such spectroscopic density diagnostics to an 

exponential atmosphere structure leads, as expected physically, to spectroscopic mean 

densities <v> lying between the upper (vo) and lower (avo) bounds o f density in the 

atmosphere, but that <v> can differ greatly from v or v when there is substantial 

inhom ogeneity (a  « 1 ).This is seen more clearly in Figs 4.3 where we have plotted 

<v>/ v  as a function of Vo for various a , for the same Aa values as above. It can be seen 

that the discrepancy between <v> and the physically important value v also depends on 

the matching of the density sensitivity parameter na to the values of ne actually present in 

the atmosphere. Specifically, values of <ne> agree best with n^ when na « n o a n d

disagree badly when na »no, the extent depending on a  and on Aa . In all cases the 

spectroscopic mean density errs on the high side of ne because of its emission measure 

weighting toward high density regions as anticipated in Section 4.2.

The above results confirm that use of a single line ratio alone can, without other 

information, give very misleading results concerning the mean density o f a plasma. In 

practice, such observations will, however, usually be obtained simultaneously with 

measurement of the total emission measure of the plasma (from resonance line flux) and 

sometimes an estimate of the source volume from images. When this is the case, further 

im portant insight into the density diagnostic problem and into solving for the true 

atmosphere density is gained, as follows.

Firstly we suppose that observations are made only of the total emission 

measure £tot and of the spectroscopic mean density <ne> for a single line pair (i.e. fluxes 

of one resonance line and one density sensitive line). Secondly we suppose that this 

radiation in fact comes from an exponential atmosphere as described above, though this
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Fig. 4.1 Volumetric mean density n  and emission mean density fi, in units o f base 

density no, as functions o f the density range (inhom ogeneity) param eter a  for the 

isothermal atmosphere model of Eq. 4.18.
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Fig. 4 .2a. Spectroscopic mean density <ne> inferred for the isothermal atmosphere 

model o f  Eq. (4.18), as a function o f base density n0 and of inhomogeneity parameter a , 

for the value o f Aa =0.115 (corresponding to the O IV line pair ot Table 3.1). Both 

<ne> and n0 are shown in units o f  the density sensitivity param eter na . These curves 

therefore apply to any line pair with the same Aa value as the O IV pair, even if their na 

value is quite different from that of O IV.
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Fig. 4.2b. As Fig. 4.2a but for the value Aa=176 (corresponding to the Fe IX line pair of 

Table 3.2).
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Fig. 4.3a. Inferred spectroscopic mean density <ne>, com pared to volum etric mean 

density n ,  in the exponential atmosphere model of Eq. (4.18), as a function o f base 

density no and of inhomogeneous parameter a ,  for a line pair with ^ = 0 .1 1 5 .
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104

structure is unknown to the observer. A common procedure in such cases is to infer an 

effective or 'spectroscopic' volume (Dere and Mason 1981)

<V >=C tot/<ne>2 (4.26)

In the case of one resonance line we find, using (4.17) with rj(v) given by (4.23),

< n c> v q (1 -  a 2) /  2 -  v 0(l  -  a )  + In [(1 + v 0) /  (1+ a v 0 )] 
n “ "  v 0(l  -  a) -  In [(1 + v 0) /  (1 +  a v 0 )] ( 4 - 27)

while by (4.20), the true volume V= S H is related to £tot-by

2 In (1 /  ot) Ctot 1 
1 - a 2 n I vV =  - 7 T - - T  (4 -2 8 )

Hence by (4.26) and (4.28) the ratio of spectroscopic to true volume for an exponential 

atmosphere is

< V >f  = V
l - a 2 v t  r v 0( l - a ) - l n [ ( l  + v 0) / ( l  +  a v 0)]0
21n(l /  a ) L v 2(l -  a  ) /  2 — v 0(l -  a )  + In [(1 + v 0) /  (1 + a v 0)] _

( 4 . 2 9 )

which we plot in Fig.4.4 as a function of a  and Vq.

It is clear that f« l for all (a , v0) and that for any given v0, f  only approaches 

unity as a  tends to one (homogeneous source); the approach being slowest when v0« l

i.e. n0«na . This means that if an observer of £tot and <ne> interprets these data on the 

assumption that the plasma is homogeneous -i.e. ne(r) = <ne> (or £(ne) ~ 5(ne-<ne>)), 

when it is in fact inhomogeneous, then the volume <V> given by (4.26) will always be 

less than the actual spatially resolved emitting volum e Y, the more so when the 

inhomogeneity is large. In other words the homogeneous interpretation of spectroscopic 

density will always yield small Tilling factors' when applied to an inhomogeneous source 

as is often found observationally-e.g Dere (1982) finds f=0 .1-0.001. In the next section, 

we will demonstrate that this result is universally true, irrespective of the form (apart 

from monotonicity) of the G(ne) functions for the lines concerned. This result explains
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Fig. 4.4. Inferred spectroscopic volume <V>= Ctot/<ne>» relative to true volume V, 

('filling factor'), for an exponential atmosphere, as a function of base density no (in units 

of line density sensitive parameter na ) and of atmospheric inhomogeneity expressed in 

terms o f  number of scale heights (H /h=ln(l/a)).
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the apparent paradox that even when numerous line pairs are observed, formed in 

different regions of both density and temperature, their 'filling factors' f  inferred as above 

do not sum to unity. W hat these results imply is that the source volumes of all the 

observed lines contain substantial density inhomogeneity within them so that their true 

volum es are much larger than the estimates <V> - there is then no question of any 

'unfilled' volume. Indeed, observations yielding < V x V  are an important measure of 

source inhom ogeneity such as may be present due to unstable filam entation or 

fragmentation of the plasma on a small scale, especially in solar flares, as well as to the 

large scale gravitational density stratification discussed above. To illustrate this explicitly 

in this last case, suppose we infer <v> for some given line pair ratio, together with the 

total emission measure £tot and the total volume V. Then for the particular parametrisation 

of this model we have by (4.20)

v20d - a 2) C,
21n(l /  a) n2a V

and by (4.24)

= \L ( 4 . 30 )

a q ( v 0, a) = < v > (4 .31)

where the right hand sides are observed, and d>Aa represents the right hand side of

(4.24). These two equations can then be solved numerically to find a  (for a description 

o f this numerical method Appendix (A .l) should be consulted), which measures the 

inhom ogeneity, and for no=Vo na , from which we can determine n e by (4.21) and 

hence the mass of the source plasma from n c V . Results for v and a are shown in Figs.

4.5 and 4.6 for our usual two Aa values.
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Fig. 4.5a. Volumetric mean density n  (in units of r^ )  inferrable, for an assumed

exponential form of atmosphere structure, from observations of the intensities o f one 

allowed line (i.e. of total emission measure £tot)» one density sensitive line ratio (i.e. of 

atmospheric mean density <ne>) and of volume V. Each solid curve corresponds to a 

specific observed value o f  the param eter |l= ? t0t/(na 2 V). The dashed boundary 

corresponds to the homogeneous (maximum mean density/minimum volume) solution. 

Results are given for a density sensitivity parameter A=0.115.
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Fig. 4.5b. As Fig. 4.5a except for density sensitivity parameter Aa=176.
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Fig. 4.6a. Inhomogeneity param eter a(=ni/no) inferrable, for an assumed exponential 

form o f atmospheric structure, from the same set of observations as described for Fig. 

4.5a, for A a=0.115. The vertical asymptotes for each^U value correspond to the fact that 

the inferred spectroscopic <ne> can never be less than the homogeneous solution value 

ne=(Ctot/V)1/2.
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4.5. The inverse problem and minimum volume solutions for a set of prescribed line 

strengths

The result suggested in Section 4.4 that a hom ogeneous source minimises the 

volume needed to fit a prescribed pair of line strengths, can be generalised to more than 

two lines by using the spatial integral form o f the problem  (4.2), rather than its 

expression in (4.5) in terms of £(ne). Consider, therefore, a situation where the strengths 

o f two distinct lines are prescribed by observations, viz

J  n 2 (r) G L(n c) dV = P 1 (4 .3 2 )
v

J n 2e(x) G 2( n e)d V  = P 2 (4 .3 3 )
V

where G\! G2 is monotonic in nc. If we have some solution ne(r) for these equations, 

then we can consider any other solution in terms of a perturbation 5ne(r) with associated 

perturbation 8 V in V. In order to comply with the observations (4.32) and (4.33), this 

perturbation must satisfy

f [ n 2eG 1' + 2 n eG 1] 5 n ed V +  f n 2 G 1d V = 0  (4 .3 4 )
v  6 5 V

f [ n 2 G ' + 2 n G 2] 5 n cdV + f n 2 G 2d V = 0  (4 .3 5 )
J v  0 V

To obtain the distribution nc(r) which gives an extremum in V we require that 5V= 0 and 

that (4.34) and (4.35) be satisfied for all perturbations 5nc(r) about that distribution. That

is

f  [ n ^ '  + l n . G j Sn .d V  =0  
v

f [ n 2G 2 ' + 2 n e G j S n c dV = 0  (4 .3 6 )
J V

and for all 5 nc(r)

The simultaneous solution of which, for all Snc, requires
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(2G j + n CG 2) +  \ ( 2 G 2+ n eG 2) =  0, for all r (4.37)

where X is a Lagrange undetermined multiplier. Since G i, G2 are functions o f ne only, 

(4.37) shows that the extremum solution has n(r) =no independent o f r, no being the 

solution o f (4.37), and X being found from the original equations (4.32) and (4 .3 3 ) 

namely

which determines no uniquely since g is monotonic. Then

To dem onstrate that this extremum is a minimum, it is only necessary to show that some 

other specific solution nc(r) has a larger associated V. Consider for example a solution 

com prising  two uniform  regions of densities and volum es (nA, Va ), (nB ,V e) 

respectively. Then to satisfy (4.32) and (4.33) we must have

V extremum

( 4 .4 0 )

(4 .4 1 )

from which we can deduce, using (4.38) and (4.39) that

G 2 K )  g ( n o )  -  g ( n B >

v 7 " n 2A G 2( n A) g (n A) -  g (n B) ( 4 .4 2 )

and

G ;(n o) g ( n A) - g ( n 0) ~ 

V p  “  n 20 G j ( n B) [ g ( n A) - g ( n e ) .
(4 .4 3 )

the total volume V satisfying

( 4 . 4 4 )
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Now for V a and Vb both to be > 0, (4.42) and (4.43) require that g(no) lies between 

g(nA) and g(nB) or, since g is monotonic, that no lie between nA and ns. Suppose, 

without loss of generality, that g is monotonically increasing and that nA > no > ne. Then, 

in the particular case where nA» no » ns, Vb will be » V a and V/Vo “  Vb/Vo as 

ns/no —> 0  (provided n2G 2(ne) —>0  as ne —>0  and ne2G 2 (ne) ->°° as ne -> °°), thus 

showing (4.39) to be a minimum.

Physically the fact that the homogeneous solution yields a minimum volume can 

be understood by noting that as nA increases and ns decreases the amount by which the 

volume o f the nB plasma has to be increased is more than that by which the volume of the 

nA plasm a has to be reduced, in order to retain the observed values of Pi and P 2, because 

o f the n  e weighting of the emissivity per unit volume. The sharpness o f the minimum 

(4.39) depends on the G functions and on the particular value o f P 1/P 2 . W e illustrate

expressions (4.42)-(4.44) here by considering the special case where line 2 is a 

resonance line (G2 independent of nc or Aa - ^ 0 0 ), line 1 has Gi of the form (3.6) and

the observed line ratio corresponds to a homogeneous solution no= p na . Then if  we

consider an inhomogeneous solution with nA= Y no, nB=no/y, (4.42)-(4.44) with (3.6)-

(3.10) give

V A _ 1  (1 + Py) v b _  y2(t + P) . .  . . .
v 0 f  (1 + P) (1 + Y)’ V 0 ( i  +  p ) ( i + r )

Figure 4.7 shows Va, Vb , V as functions of y for the case p = l. Other p values give 

sim ilar results though the sharpness of the m inim um  does depend on p. Having 

established that a homogeneous solution always exists for any pair of line strengths, and 

that this is a minimum volume solution, it is next natural to consider situations when three 

or m ore line strengths are specified. Consider then the situation where Pi, P2, P3 are 

prescribed for three lines of distinct G(ne). It is at once clear that the homogeneous 

density solution say no1’2 , V0 1>2 for any single line p a i r P 1 }P2 will not in general
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Fig. 4.7. Total volume V, and separate volumes (VA, VB) of two distinct homogeneous 

high density regions of density ratio y2, needed to produce the same total em ission 

measure and the same forbidden/allowed line ratio as a single homogeneous region (y=l), 

o f density ne=na and volume V0. This volume V minimises sharply at the homogeneous 

solution.
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reproduce the third line strength P3 unless the plasma is in fact homogeneous. Thus any 

solution reproducing arbitrary P iJ ?2 and P3 must in general be inhom ogeneous, and 

from the above analysis applied to each line pair, it also follows that any solution for 

three general line strengths must necessarily have a volum e V 1-2’3 >max {Vo1-2 Vo1-3, 

Vo2,3}. By generalisation of the variational method applied in (4.36)-(4.39), it can in fact 

be shown that the minimum volume solution ne(r) for three prescribed line strengths 

com prises a pair o f hom ogeneous regions of distinct densities, their total volum e 

exceeding that o f the homogeneous solutions for each line pair taken separately, unless 

the plasm a is in fact homogeneous. It is also clear qualitatively that the greater the 

inhom ogeneity o f the real plasma, the greater will be the total volume o f the two 

component plasm a needed to fit a third line strength com pared to that required for any 

two line strengths considered alone. Furtherm ore, as the num ber o f specified line 

strengths is increased beyond three ,the number and total volume o f regions o f distinctly 

needed for a minimum volume solution may be anticipated as increasing. We may also 

anticipate that, in principle, prescription o f an infinite set of distinct Pa values will 

asymptotically yield a complete solution of the inverse problem

for £(ne) represented in terms of an infinite series of piecewise homogeneous elementary

representation o f Section 3, the specific inverse problem  amounts to solution o f the 

Fredholm equation of the form.

( 4 . 4 6 )

volumes, the total of which will be the true plasma volume. For the density sensitivity

0
(4 .4 7 )

with

Q(m) = Pa (m) /mK« (m)

and kernel

K(nc,m) = l/(m +nc) (4.48)
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The analytic and numerical properties o f  this equation, and the serious 

im plications o f the instability of its inversion (cf. Craig and Brown 1986), for such 

problem s as density structure analysis are discussed by Thompson and Sweet (1988).

4.6 Summary and Conclusions

W e have addressed the problem of interpreting density line strengths from  an 

isothermal plasma of inhomogeneous density ne(i). In the case of two observed lines, we 

have shown that the results may be expressed in terms o f a spectroscopic mean density 

<ne> which is the density of a homogeneous plasma which would produce the same line 

ratio. The value o f <ne> will differ for different line pairs, and differ from both the 

volumetric mean n  and emissivity mean n  unless the plasm a is actually homogeneous. 

This effect was illustrated, using a simple but accurate representation o f density 

sensitivity, by means of an exponential atmosphere model which showed how large a 

variation in <nc>/ n  (Figs 4.3) can occur and how this variation serves to measure the 

plasma inhomogeneity. This effect explains the different densities commonly inferred for 

the same source by application of different diagnostic line pairs.

More generally we have shown that the values o f a set o f density dependent line 

strengths are related by an integral equation to the inhomogeneous plasma structure in 

terms o f an emission measure function £(ne), differential in density ne. For a finite 

num ber o f line strengths, £(ne) can never be determined completely, even in principle. 

However, for a finite set o f N such measurements, there does exist a unique solution for 

£(n<.) which minimises the total source volume V consistent with the data, namely a set of 

N -l delta functions, corresponding to a set of N -l spatial regions, each o f uniform, but 

different, density. In particular, for a single line ratio, the volume V inferred will be 

minimal when the plasma is assumed to have uniform density <ne> (i.e.£(ne) is a delta 

function of nc=<nc>), this volume being always less than the true volume if the plasma is 

inhomogeneous. This effect must contribute to the commonly observed and puzzling 

'phenom enon' of small 'filling factors' when spectroscopically deduced volumes are
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com pared with spatially resolved volumes. We have illustrated this effect again using the 

exponential atmosphere model as an example.

As the number of observed lines is increased, the minimum volume solution for 

£(ne) progressively approaches the true inhom ogeneous structure and its volum e 

approaches the true volume. For our chosen representation of density sensitivity we have 

briefly discussed the form of the integral equation the solution of which in principle 

yields this true £(ne). W e emphasise, however, that instability o f the inversion process 

will necessarily limit the possibility of recovery in the same way as occurs in inference of 

em ission measure differential in temperature, from temperature sensitive allowed line 

ratios from  non-isothermal plasma.

This problem of recovering £(ne) from spectral information alone, combined 

with the extreme inhomogeneity o f solar plasmas indicated by their small inferred filling 

factors, shows that high spatial resolution will be needed for much further progress in 

this problem.
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„ CHAPTER 5

M U LTITH ER M A L PLASMAS OF INH O M O G EN EO U S STRUCTURE

5.1 Introduction

5.2  General Formulation

5.3 Formal Solution for Density Distribution neT 

in a Pressure Stratified Plasma

5 .4  Predictions of Density Line Intensity from 

Different Density Distributions n<,T

5.5 Application to an Observed Emission Region

5.6  Discussion
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5.1. Introduction

In the preceeding chapter we have reviewed and discussed the problems and the 

importance of determining the density, as well as the temperature, structure o f inhomoge

neous plasmas. In chapter 4 we restricted ourselves to the detailed treatment of how to 

interpret one or more density sensitive line intensity ratios for plasm as which are 

isothermal but of non-uniform density. We concluded t h a t : observations of a single line 

ratio from such a plasma will in general yield an overestimate of the mean plasma density, 

to an extent increasing with plasm a inhomogeneity; observations of more and more 

distinct line ratios in principle can lead to derivation o f the emission measure £(ne) per 

unit density ne; in practice such derivation of £(ne) will be sharply limited by data noise, 

but can certainly give a valuable quantitative m easure o f the degree o f density 

inhomogeneity.

In this chapter, we generalise the formulation o f the problem to cases where both 

the density ne and temperature T are inhomogeneous, showing how the concepts of 

emission measure differential in temperature ^(T), utilised in resonance line analysis of 

temperature structure, and of ^(ne), utilised in density structure analysis in the isothermal 

case, can be extended for arbitrary plasmas. We then show how in the special, 

degenerate, case where surfaces o f constant T and o f constant ne coincide, it is possible 

to utilise jointly data on temperature and density sensitive line ratios to draw conclusions 

concerning the plasma pressure distribution P(T)=2ne(T)kT.

As our starting point we take the expression for the power emitted in a particular 

line, denoted by a ,  which is a function of electron tem perature, density, and volume 

from an optically thin plasma of volume V, which in the notation used in chapter 4 is

P„ = J J J n? a ) F a ( n =(- r ) ,T (£) )dV ( 5 . 1 )
V

where ne(l), T(r) are values at position r. The function Fa  is determined by ionisation and 

excitation balance calculations based on atomic coefficients (assumed known). While



some o f  our discussion will deal with arbitrary form s o f  Fa  we will also utilise the 

expression used in chapter 4, which approximates well to all line ratios of interest, viz.

x: ,  ^  K a(T ) , x
F ° ( n ^ = r + n e / n g(T) (5 .2 )

but where we now allow for the variation of Ka and na  with temperature (and hence 

position) whereas they were considered constant in the isothermal case treated in  the 

previous chapter. In expression (5.2) Ka is a measure o f the power em itted at low ne, 

w here radiative de-excitation dominates, and na is a m easure o f the density sensitive 

range o f ne at which collisional de-excitation becomes im portant for the line concerned. 

( n a —> 00 for resonance lines). W e would em phasise, as discussed in Chapter 4 that 

although (5.2) is a precise physically based description for '2-level' systems (cf. Section 

5.3) the same functional form is also a num erically ,good description o f the ne, T 

dependence in more complex atomic situations provided the atomic constants occuring in 

IQx and n« are empirically adjusted to give the best fit.

5.2. General formulation

It is useful first to recall the formulation for the special case o f resonance lines 

where Fa  is independent of ne and the proper choice o f  volume element dV is based on 

constant temperature surfaces S t, leading to (Craig and Brown 1976)

is the em ission measure differential in T which can, in principle, be derived from the 

integral equation (5 .3 ) using measurements of sufficiently many temperature sensitive 

resonance line strengths (of different a  values). Likewise the special case o f density 

sensitive line analysis for an isothermal plasma of known temperature T0 has a natural 

formulation (chapter 4 ) in terms of the emission measure £(nc) differential in density

T = 0
( 5 . 3 )

where

(5 .4 )

T
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defined in terms of a volume element dV related to constant density surfaces Sne »viz.

(In the case o f both (5.4), (5.6) the m ost general definitions include sum m ations

sim plicity).

Consideration of these two cases then indicates that for the general case (equation 

5.1) we must deal with a volume element dV related to elements on which both ne and T 

are constants. There are two situations. In one (degenerate), surfaces o f constant ne and 

o f constant T  are coincident. This is in fact the case which proves most tractable in terms 

o f an inversion of the problem and which is probably o f the greatest practical relevance. 

W e return to it shortly but first we consider the second (and more general) case where 

and St  are not coincident but intersect on a line Lne,T. Then the natural formulation of 

equation (5.1) into an integral expression over the variables ne, T  on which the line 

strength depends, is in terms of the volume element (see Fig 5 .1).

where 0  is the local angle between the vectors Z n  e and norm al to surfaces
n , T

Sne> St  respectively and dL^/T is an element o f length on Lne/r. ^  we then define an 

emission measure function differential in both density and temperature by

(5 .5 )

where

( 5 . 6 )

T

respectively over all disjoint surfaces ST or Sne but we omit these here for

dV = dL
d n c dT

(5 .7 )■vT |£ n e||Y T | sin 0 n T

( 5 . 8 )

we have for any line
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Figure 5.1.Tw o surfaces o f constant tem perature S j  and o f  constant density Sn<, 

intersecting on a line Ln^T. ®ne,T is the angle between the vectors Z T  and Z n e normal 

to the surfaces S t, respectively.
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P ° = I . .  X  - o V(n •’ T) Fo( n •' T ) 'dn • 1dT (5.9)

The general diagnostic problem is then seen as that o f determ ining y (n e, T) by 

inversion o f the double integral equation (5.9) for a set o f measurements Pa , o f various 

a ,  noting that a  is not a single param eter but a label indicating the set o f  param eters 

arising in the density and temperature sensitivities o f the different lines; for example Ka 

and na  in representation (5.2) for which (5.9) becomes

The rather convoluted functional \j/(ne,T) of ne( l ) ,  and T ( i )  is thus the m ost we

can ever learn spectroscopically about the plasm a structure in the general case w ithout 

m aking further assumptions. In the form (5.10) it is clear that as n a — (resonance

density analysis problem for the isothermal case discussed in chapter 4.

It is important to note that resonance line analysis in principle always admits a

solution o f (5.10) for density sensitive lines.-a property we will use below in analysis of 

the first case cited above.

W hen the surfaces St and Sne coincide, as they will in constant pressure or 

pressure-stratified  structures for exam ple, defin ition (5.8) fails because 0 ne,T is

everyw here zero. However, in this case we have the im portant property that the two 

surface integral functions ^(T) and £(nc) both exist and are inter-related by

(5 .1 0 )

lines) the inner integral becomes ^(T) and the problem is the standard one o f temperature 

analysis while in the isothermal case y  is a delta function in T and (5.10) reduces to the

solution for the inner integral o f (5.10) with n a —»°o which can then be utilised in

dn c
s e n  =  G e o  ^ (5.11)

Thus if we can determine £(T) from resonance line analysis (5.3) we then know 

£(ne) m ultiplied by an unknown function |dn c /  dT | , and by use o f density sensitive

lines we can integrate to find the form of nc(T) using (5.5). That is we can write (5.5) as
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P ” = J  S ( T ) F ° ( n . ( T ) ,T ) ) d T  ( 5 .1 2 )
T = o

in which (given ^(T)) the single unknown is the function ne(T), in principle determinable 

by solution o f (5.12) from a set o f density sensitive line strengths p °  # To illustrate this 

further we investigate (in Sections 5.3 and 5.4) the particular case when p °  is given by

the form  (5.2) used in chapter 4. Before doing so, however, we consider what will be the 

meaning o f the ne(T) function so inferred when the source is assum ed to be pressure 

stratified (ne=ne(T) only), although in reality this situation is extremely unlikely. Clearly 

the result o f solving (5.12) in such a case will be some kind of mean n (T ) o f ne over

the surface Sj  weighted with respect to the density sensitivity function F „ ( n e, T) on that 

surface. To see the form o f this mean we equate (5.12), with ne replaced by n ( T ) , to

the general expression (5.9), in the form

J  [ f  y ( n „ T ) F > ,  T ) d n l d T  = f £ (T )F °(n ' (T ) ,  T )dT  (5 .1 3 )
T = 0 |_ n. =0 J JT = 0 7

so that, by definition (5.8) of lF(ne,T), n c(T) is the solution of

1 r  r d n e dL

<°"-<T)'T > ■ I f )  <»• ,4 >

where the equality holds for all a .

5.3.Formal Solution for Density Distribution n 4T) in a Pressure Stratified Plasma

For the density sensitive representation (5.2), equation (5.12) becomes 
f-  f;(T) K 0 (T )dT  
J„ l + n e( T ) / n a(T)

which, if  ^(T) is known from resonance line analysis, is an integral equation for ne(T), 

given p °  j which describes the pressure distribution. As it stands, this integral equation 

is non-linear in the unknown ne(T) (and also in the known na (T)), and so not soluble, for 

general Ka , na , by any standard inversion techniques. When this is the case it will be 

most practicable to use (5.15) to explore the compatibility of different models ne(T) with 

data P D . as we will illustrate further in section 5.4. However, we first show that, for an1 n '
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em ission region in which neT "1/r2 decreases m onotonically, with increasing T, it is

possible to transform (5.15) to a standard linear integral equation. The form o f this sheds 

light on the inverse problem and thus on the limitation in the possibility o f deriving ne(T)

from  noisy data. As in the case o f determining £(T) from resonance lines (Craig and

Brown 1986), the recognition of this limitation allows a systematic evaluation of the level 

o f precision needed in the line flux measurements p °  , and in the calculation o f the

atomic parameters K^, na , to obtain a desired precision in ne(T).

The transformation will be illustrated for a set, a ,  o f lines in which the upper 

levels (level 2) are metastable and the lower level is the (single) ground state of an ion. It 

was shown in the preceeding chapter that, provided there are no strong interactions 

between the excited states, the function na(T) can be expressed as

n«(T ) = A 21(cc) /  (C 21(a , T) + C 12 (a , T ) )  (5 . 16)

where A 21 is the radiative transition probability rate between the upper level 2  and lower 

level 1. The collisional deexcitation rate C21 can be expressed as

c « ( a ’ T ) = ' i ^ a n ( a )  <5 - 17>

where k =  constant and Q. 12(a ) is a dimensionless quantity referred to as the collision 

strength. W hen C21 in cm3 sec-1, and T is in Kelvin degrees we have k = 8 . 6 x 1 0 -6 . 

Collisional excitation and deexcitation rates satisfy the thermodynamic relation

c * = - ^ exp ( - h v * / k T )  c “  ( 5 - 18)

where C0 i f2 are the statistical weights o f the levels 1 and 2 , hV2i=E2 i is the energy o f the 

transition between the upper level 2  and the lower level 1 and k is Boltzmann's constant.

co?(a )
Since — exp ( -  E /  kT ) < < 1 for values o f T at which the ionisation

C0 j ( a )  r  21

equilibrium contributes significantly to Pa , equation (5.16) can be written approximately 

as
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na (T)=A2 i(a )/C 2 i(a ,T ) (5.19)

The function Ka (T) can be expressed as (chapter 4)

K ° ( T) =  T T 7  1S75T7 T ) • E 2. ( 5 .2 0 )

w here n^n is the ion number density under consideration, nei is the elem ent num ber 

density, nn is the hydrogen number density and ne is the electron number density.

W e emphasise again that, although the above is only physically based for 2-level 

systems, expressions (5.2), (5.16) and (5.22) give a good numerical description o f the 

n e, T  dependence o f more com plex systems where the 'constants' are em pirically 

adjusted to give the best fit.

n Jon
The ratio ~p[ = f  ion (T) has been calculated by several authors assum ing

el

ionisation equilibrium for all abundant elements in the solar atmosphere, e.g., A m aud et 

al(1985), Jordan( 1969,1970) and Jacobs et al (1977,1980). It will be convenient here to 

represent it by an empirical Gaussian function for the ions under consideration viz.

fion(T)=B exp(-2((T/Tm)- l)2) (5.21)

(Another, logarithmic, empirical function has been investigated and this is described in 

more detail in chapter 7). In (5.21) Tm is the temperature at which fion(T) is a maximum, 

and B is the value o f fion at this tem perature, the width o f  the function being

-  — T m. It is evident from Fig.5.2 that formula (5.21) provides a good fit to the 
V 2

real curves especially over the temperature range where there is a significant contribution 

tO fion (T ) .

n .
The quantity —  = A „  in (5.20) is the elem ent abundance, and this ratio is

H

known quite well for most of the abundant elements in the solar atmosphere, cf. Chapter 

1. In regions of the solar atmosphere in which hydrogen is mostly ionised, the hydrogen
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.001

T em peratu re

Figure 5.2.The ionisation equilibrium (nion/n ei) o f FeLX as a function o f  temperature. 

The solid curve is taken from Jordan (1969) while the doted curve is the em pirical 

representation of equation (5.21).
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n,
density relative to the electron density, — * 0 . 8 -n e

On using the expressions for na (T) and Ka (T) given by (5.19) and (5.20), 

equation (5.15) can be written

^  ^  a  J1 h e  f- ? ( T ) f i0„ T - 1/ 2 e x p ( - E 21 /k T )d T  
•  2l( «,(<*) ' A » A 21( a )  co2( a )  _ _ 1/2  ( 5 ‘ 2 2 )

 k Q 12« x)  + n - ( T ) T

In treating (5.22) we first define a new variable x, replacing a , to specify the line 

in the series, where

A (a) co (a)
x (a )  = ~ k Q ,2(« )  (5 -2 3 >

and measure p °  for a set o f lines covering the range x > 0. We also write

y(T)=nc(T )T I/2 (5.24)

In practice the density sensitive lines used have a relatively small range o f wavelengths, 

hence in (5.22) we can take E 21 ~ E 21 and rewrite it as

7 h (T )d T
G«=l  TTTm ( 5 - 2 5 )

where

h(T ) = £ (T) f _  (T ) r '1 /2 exp ( - E  21 /  kT) ( 5 . 2 6 )

and

D co. ( a )  n H
G(x)  = P a /  A 21( a ) .  ^  . A ir  n c E 2i ( 5 . 2 7 )

In order to reduce equation (5.25) to standard linear form, we assume an 

emission region in which ncT ' 1/2 decreases monotonically as the temperature increases. 

This in fact is the case for most of the model emission regions discussed in Section 5.4. 

Then in equation (5.25) T can be replaced uniquely by y as the variable of the integration.
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Let neT 1/2 -»  ymax as T  -»0 , and neT ‘1/2 ymin as T - » ° ° .  H ence (5.27) can be 

written

y,

G (x) = J
F (y ) dy
~~x + y ( 5 . 2 8 )

y_,.

where

F ( y ) = - h ( T ) g -  (5 .2 9 )

W e assume further that as T  —»©o , nT 1/2 - > 0 ,  hence ymin=0. Therefore 

y7 F ( y ) d y
G ( x ) =  J - x + y (5 .3 0 )

o

The formal procedure for finding ne(T) from equation (5.30) is as follows:

(I) D eterm ine ^(T) from resonance line m easurem ents, and then derive h(T) from 

equation (5.25).

(II) Take a trial ymax = y0 and solve (5.30) (in principle ) for F(y) in 0 < y  < y 0 where 

the function G(x) is given by equation (5.27) in terms o f the observed density sensitive 

line strengths Pa .

(HI) Solve (5.29) for y(T) with the boundary condition y  —»0 as T  —><» .

(TV) Calculate y : = y  (0) .

(V) Repeat the cycle (II)--(IV) with different trial values of y 0 unt i l  y t =  y Q .

The required variation of ne with T throughout the emission region is then given by

nc(T)=TI/2y(T) (5.31)

This procedure shows that, in the case considered, if  §(T) is known and 

sufficiently many lines are observed with sufficient precision, then in principle nc(T) is 

determinable from density sensitive line fluxes. In practice the (severe) limitations on
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achieving such a solution are set by the following factors :

(a) The differential emission measure function ^(T) cannot be well determ ined from  

resonance line data (Craig and Brown 1976,1986) w ithout im position o f a strong 

smoothness constraint. This factor is, however, not likely to be too prohibitive because 

^(T) is only involved in the above procedure in the integration o f (5.29) in the course of 

which the errors in ^(T) will be smoothed out.

(b) Uncertainties in atomic coefficients entering (5.23), (5.26), and (5.27) and errors in 

the measurements of Pa (hence in G(x)). These will be magnified by

(c)The severely ill-posed nature of inverting integral equation (5.30) which is in fact a 

double inverse Laplace transform L(cf. chapter 4 and Thompson and Sweet 1989) as can 

be seen by considering

G (x) = L {g(s); x } =  J  g(s)exp ( - s x ) d s
o

OO M  DO j  ^  y  ^

= J  J F ( y )e x p  ( -  sy)dy exp ( -  sx)ds = j  (5 .3 2 )
0 0 0 J

where F(y) is the inverse Laplace transform L-1 o f g(s) which is in turn the inverse 

Laplace transform of G(x). Since the single Laplace transform acts as a strongly filtering 

kernel, the double transform is much worse. (Quantitatively the ratio of the maximum to 

minimum eigenvalues, which measures error magnification in the inversion, in the double 

transform will be the square of that in the single transform). For these reasons we can 

anticipate that the solution of (5.15) in more general cases than we have analysed, will at 

best yield very limited information on ne(T). The best that can be hoped for is to use the 

data P „ to put limits on the possible form o f nc(T). To explore this further we examine 

in Section 5.4, for several real density sensitive lines, the extent to which widely 

differing models of ne(T) predict different P° . This will show whether the differences 

will be distinguishable in practice.

5.4. Predictions o f P° from Different Density Distributions n^ T )

It is well known that resonance line data can at best yield the differential emission 

measure £(T) which, in 1-D, defines only nc2/(dT/dz) as a function o f temperature
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(w ithin a scaling factor dependent on source area). Thus infinitely m any density 

distributions nc(T) are consistent with a prescribed £(T) for a corresponding variation of 

dT/dz with T. Here we consider the specific question as to whether a set o f sources with 

d ifferent ne(T) but the same £(T) are distinguishable using m easurem ents o f density 

sensitive lines. W e do so for the specific illustrative case where the varying ne(T) is 

parameterised by

In this expression p= 0 corresponds to a constant pressure structure, p>0 to a structure in 

w hich pressure decreases with increasing tem perature and P < 0 to one in which it 

increases with temperature. To exemplify the £(T) function we adopt a pow er law £(T) 

oc t i /2. This form is adopted since it corresponds to a theoretical model o f the upper 

transition region, in which the pressure is constant (p=0), and which has a constant 

conductive flux. This power law is in rough agreement with the function £(T) in the 

upper tem perature range (2 x l0 5-1 .6 x l0 6K) as derived from observations o f the solar 

transition region. It thus provides a convenient benchmark with which to investigate the 

value o f p in an observed emission region. In terms of the lower and upper temperatures

(To, T i) o f the above range, and of the emission measure ^ T0T = J  ^ dT , the explicit
^ i

expression is
, ^ TnT ( T / T . ) 1' 2

^(T ) = i - ^ -------------^ -------  for T 0 < T < T,  ( 5 . 3 4 )
T o (T , /  T 0) — 1

For future purposes the spatial distribution T(z) may be obtained from (5.4) in the case 

where T(r) is a function of £ only. In this case (5.4) can be written

dT/dz= Sne2(T)/5(T) (5.35)

where S is the area of the emission region. On substituting for nc(T) and £(T) in terms of 

T from (5.33) and (5.34), (5.35) can be written
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dT
dz = } [ ( T 1/ T 0)3,2- i] - ^

n2S T20 + 7 / 2

TO T T
2p + 5 / 2 (5 .3 6 )

It is noted that when p=0, (5.36) reduces to T5/2dT/dz=constant i.e. constant conductive 

flux as expected. Equation (5.36) can be solved for z giving

i

T (z) = T.
2 (2p + 7 /  2 )  /  3 n 20S 

1 H-----------------— --------- t -------z

20 + 7 /  2

( ( T , / T 0)3' 2 -  l ) - ‘ %TO T

( 5 .3 7 )

where the base o f region is defined as z=0. On putting z=L in (5.37), and noting that 

L=z(Ti) by definition, we have

L =
2 ( 2 p + ^ )

(-^L) 3/2- l

- 1 T,  2P + 2-
(nr"~ )

%TO T

n 02S
(5 .3 8 )

W ith £(T) given by (5.34), and ne(T) parameterised by (5.33), the density sensitive line 

strength (5.15) becomes

p D  _  3 ^ T O T  f 1 ' f ' 2K a ( tT0)d t  

2 t y 2 - l J! 1 + r p_1[ n 0 / n „ ( t T 0)]
( 5 . 3 9 )

where t=T/To. The factor ^ t o t  is a constant of the em ission region, and hence is not a 

function o f a . It can therefore be eliminated by considering the line ratio o f a pair ( a i ,  

CC2). Thus

t1/2K a ( tT 0) dt

'1
D —  _______

I2 pD 
r  a

f -
P ° t Ji 1 + t [n0 / na (tT0)]

t l/2 K a (tT ) dt 
f ----------------->— i
1 1+ t" rn„ / n.

( 5 . 4 0 )

[n0/n Oi(tT0)]

where ti=Ti/To. On using the expressions (5.16)-(5.21) for Ka, na  (and remembering 

that the two members of the pair are chosen from the same ion) (5.40) can be expressed 

in the form



where
_  n ( g ,)  a>(ct2) hv^a,)  

H_ f l(a2) co(a,) hv21(a2) (5 .42)

and

J(a)=K Q(a) /(A2i(a)co2(a)) (5.43)

For the temperatures (To,TO adopted we have ti=8. Thus, for a given line pair, (5.41) 

expresses the line ratio as a function o f no and p.

As a typical example we consider an emission region with temperature range To 

= 2x105 K to Ti = 1 .6 x l0 6 K, within which the above expression for ^(T) adopted is 

applicable, and examine the ratio for a range o f base densities no and parameters p. A 

num ber o f ions are selected with peak populations at temperatures spread across, and 

somewhat beyond, this temperature range and which have well studied density sensitive 

line pairs around the range of base densities no to be considered. The details of the ions 

and lines chosen are given in Table 5.1 with the values o f the relevant parameters.

In Figs.5.3-5.6 we show the line ratio R as a function o f one o f the m odel 

parameters, viz the electron density no at To, for various values o f the second parameter 

p. W e have chosen some EUV emission lines which have been used extensively as 

electron density diagnostics for solar plasmas. These density sensitive line ratios, for a 

num ber o f ions along different isoelectronic sequences, are OIV (Boron-like ions)- 

D oschek (1984), SiX (Boron-like ions)-Saha et al. (1982) and Flower et al. (1975), 

MgVI (Nitrogen-like ions) -Dwivedi (1989) and Bhatia et al. (1980), and FelX (Argon-



Table 5.1

Atomic data for calculation of line ratios in equation f5.41)

Ion X A Q Tm

(A) (sec 'l) (K)

O IV 1407.39 2 .1 3 x l0 3 0.038 1 .26x l05

1404.81 4 .4 1 x l0 2 0.109

Mg VI 387.9 l . l x l O 9 0.5103 5 x l0 5

403.31 3 .5 2 x l0 9 3.0794

Fe IX 241.739 .7 1 x l0 2 0.068 9 x l0 5

244.911 9 .3 x l0 6 0.041

S iX 347.43 2.07x109 0.71 1 .6 x l0 6

356.07 2 .2 x l0 9 1.23

1 Flow er and Nussbaumer (1975). 2.Flower (1977). 3.Flow erand 

Nussbaumer (1975). 4.Vernazza and Mason(1977). 5.Bhatia et al. (1980).
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Figure 5.3. Line intensity ratio R as a function o f base density n0 for the line pair 

(1407.39/1404.81) of OIV.
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Figure 5.4. Line intensity ratio R as a function o f  base density no for the line pair 

(387.9/403.31) o f MgVI.
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like ions)-Feldm an et al. (1981) and Dere et al.(1978). These lines span a temperature 

range o f  1 .3x l05 to 1 .6x l06 i.e., 13:1. Figures 5.3-5.6 show that the line ratios are 

sensitive to p and to no. Thus sources with different ne(T) and the same ^(T) will in fact 

be distinguishable using density sensitive line ratios, though not from temperature sen

sitive ratios alone, as speculated at the beginning of this Section.

From  Figs.5.3-5.6 it follows that, in terms o f the observed line ratio for a given 

density sensitive line pair, it is possible to infer the value o f no as a function of p. Thus 

if, fo r a given emission region, the (no, p) curves for the observed line ratios o f two 

different ions are found to intersect, this will determine the values of no and p for that 

em ission region. This will be tested for a real emission region in Section 5.5. Further, if 

three or more such curves intersect in the same place (within errors) then strong support 

will be provided for the model forms used for, ^(T), say (if not, the whole analysis can 

be tried for different ^(T)).

5.5 Application: determination of nn and p in the upper Temperature range T>2xlQLK of 

an observed emission region.

W e examine an emission region observed by Skylark SL 1004 rocket launched 

from W oom era at 04-15 UT on 1973 March 14. The source in question was above the 

solar limb over a quiet region. The line intensities, in the range 150-870A, have been 

taken from  Firth et al. (1974). Table 5.2 contains the wavelengths of the lines and their 

relative intensities.

The (no;p) plots for the two ratios, R0bs(FeIX)=1.4 and RObs(SiX)=1.0, are 

given in Figs. 5.7 and 5.8. As already mentioned in Section 5.4 these ions are active in 

the temperature range 9 x l0 5-1 .6xl06 K.

The curves are superposed in Fig.5.9, showing an intersection (albeit at a rather 

shallower angle than would be preferred). As mentioned this intersection provides a 

unique value for no and for p for the emission region in question. The resulting values 

(no=1.3xl010 cm '3, P=0) specify the base density and the model parameter of that region
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Table 5.2

Observed line intensities fSkvlark SL 1004 .1973.March 14") 

X(observed)A Identification Intensity

241.73 Fe IX 241.739 7

244.86 ~ Fe IX 244.912 5

347.39 Si X 347.43 3

356.07 Si X 356.07 3
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Figure 5.7. The base density no as a function o f the model param eter p, for an observed 

line ratio RobS.=1.4 of FelX.
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Figure 5.8. The base density no as a function o f the m odel param eter p, for an observed 

line ratio Robs-=l-0 of SiX.
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Figure 5.9. Intersection o f the two curves, FelX  and SiX, indicating a unique value o f no 

and P for the chosen emission region (see text).
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respectively . no= 1 .3x1010 cm -3 is the electron density in this em ission region at 

tem perature T o=2xl05 K. This corresponds to Pe=knoTo=0.35 dynes/cm 2. This value 

can be com pared with a typical value for the quiet sun (Dere and M ason 1981) of 

P e= 0 .17 dynes/cm 2. This agreement is very encouraging. It is noted further that the 

value, (3=0, obtained is also consistent with the theoretical constant pressure model.

5.6 Discussion

W e have explored the sensitivity of a density distribution ne(T) in an emission 

region as inferred from different line ratios, using a pow er law model o f the form  

ne(T)=no(To/T)P+1. It has been shown that the parameters involved are very sensitive to 

the line ratios, thereby demonstrating the possibility of inferring ne(T) from  actual data. 

The m odel was tested using the only two line ratios for which the atomic parameters and 

data on the same source were available. The values of (3 and the electron pressure were in 

good agreement with the standard theoretical model of the quiet sun transition region 

using constant conductive flux. The method would be finally justified if  a third observed 

line ratio  intersected reasonably well with the ones discussed above, cf. Fig 5.10. The 

effectiveness of the method will depend on the size of the AABC.
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Figure 5.10. The intersection o f FelX , SiX and an assumed (dashed) curve o f a third 

observed line ratio at AABC.
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CHAPTER 6

BIAS IN PLASM A DENSITY ESTIM ATES FROM  NO ISY  

LINE RATIO DATA

6.1 Introduction

6.2  Representation and General Formulation

6.3 Estimator o f Plasma Density and Bias

6 .4  Confidence interval

6.5 Conclusions
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6.1. Introduction

The main reason for studying the solar spectrum, as discussed in Chapters 1 and 

2, is that it tells us much about the characteristics and physical parameters in the solar 

atmosphere. Electron temperature (T), density (ne), size o f the emitting volume, mass 

motions and element abundances can all be determined from spectral analysis. Electron 

density determination in the solar atmosphere using density sensitive line ratios has been 

one o f  the m ost active fields for spectroscopists during the last two decades. These 

spectroscopic techniques have shed light on the physical conditions o f diverse 

phenom ena such as sunspots, flares, active regions, coronal holes and the quiet sun. 

Unfortunately, density diagnostic techniques are subject to errors affecting the inference 

o f accurate electron densities. These problems may arise owing to uncertainties in atomic 

data coefficients, to errors in the line intensity measurements, and to lack o f high spatial 

and spectral resolution, as well as to some instrumental errors.

It has been shown by various investigations that using different density sensitive 

line ratios, for the same source, gives different values for the density. This is due in part 

to plasm a inhomogeneity, which has been dealt with in a detailed manner in Chapter 4, 

but also to the sensitivity o f inferred densities to changes in atomic param eters as 

discussed by various authors e.g. Dere and Mason (1981), Jordan (1972 and 1974), 

and D oschek (1984). Jordan (1974), for exam ple, has investigated the effect o f 

uncertainties in atomic data for CIII XI176/7.977 where errors in electron excitation rate 

of only 25% can lead to orders of magnitude difference in the electron density deduced. 

A nother example is in the case of the line ratio of two intersystem lines, e.g. O IV, in 

which an error of 20% in atomic parameters could lead to order of magnitude errors in 

the electron density (Feldman and Doschek 1979). Therefore, to develop comprehensive 

density diagnostics we require accurate calculations of atomic data, such as excitation rate 

coefficients (cm-3 S'1), collision strengths, and spontaneous radiative decay rates for all 

the different lines under consideration. In addition, of course, instruments with better 

spatial, spectral, and temporal resolution must continue to be developed. In this Chapter
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we w ill be discussing some o f the serious effects o f  atomic and data noise on the 

inference o f spectroscopic mean densities <ne>. -i.e. on the determ ination o f ne for a 

hom ogeneous plasma. Clearly the effects on determ ining the distribution o f ne ( i.e. 

£(ne)) in an inhom ogeneous case will be even m ore serious, (cf. Craig and Brown 

1986).

Obtaining very accurate electron densities in the EUV range has many problems. 

For example, some lines which are claimed to have the most accurate atomic data as well 

as the most accurate observational data, such as O IV and S IV around 1400A and Si HI 

around 1300A, suffer from instrumental problems, appearing close in wavelength, and 

have several lines which may be used for density determination. In addition the actual 

density sensitivity to line ratios is not very large. For example in the case of the two 

intersystem  lines discussed in Chapter 3, O IV 1407A/1405A, the line ratio increases 

only by a factor of 3 for a density range between 1010-1011 cm-3, and by only 1.6 for the 

range 1011-1012 cm '3 (cf. Fig 3.3). On the other hand some sources of errors are found 

even in the case of much greater density sensitivity -such as the ratio of an intersystem to 

an allowed line in a different ion (e.g. OIV/C IV) in the technique developed by Feldman 

et al. (1977). Sources of error include inaccuracies of relative element abundances and 

instrumental calibration problems (Doschek 1984).

For these reasons and others, not only are very accurate atomic data important but 

so also are very accurate line intensity m easurem ents. O therw ise plasm a electron 

densities may be obtained which differ greatly from the real values, because o f statistical 

biasing and the like.

In order to introduce the topic of this chapter, we will first define some o f the 

statistical terminology that will be used: An estimator can be defined as a rule whereby 

the value of a parameter is inferred from the data. The estimator o f a parameter ne, say, is 

defined by ne, and its mean or expectation value by E(he). If there is a difference between 

the expectation value of the estimator and the true value of the parameter then it is said to 

be a biased estimator, e.g. if the true value of electron density is no, in this example the
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bias = E(nc)-n0. The bias in an estimator of any m odel param eter, which will usually

depend on its true value, i.e.no, can be found by investigating the probability density 

distribution of the estimator, which is dependent on the true parameter values and on the 

data noise level (and distribution).

Our problem can be seen more clearly in the schematic figure (Fig. 6.1), where if 

a uniform  error in the line ratio Ro is introduced, then ne is found to be nonuniform ly 

distributed about no, and the inferred electron densities would tend to be biased toward 

higher density values. The opposite would be true for very low R values, and only in the 

narrow central part of the R(ne) curve is no bias expected.

It is the main purpose of this Chapter to discuss systematically how noise in 

atomic data and in line intensity measurements can affect the electron densities inferred. 

We first investigate the biased estimator of the electron density inferred from noisy line 

ratios by establishing the distribution of inferred ne values for prescribed line ratios and 

noise levels of these line ratios. We will utilise the analytic line ratio representation used 

in Chapter 3, which approximates well to the line ratios under consideration. The study 

of the bias of the electron density estimator, which depends on the true values of no and 

on the error distribution of the data, can be achieved by constructing the distribution 

function of electron density estimated from noisy data, using a numerical simulation. For 

sim plicity we choose the error distribution in line ratio to be a normal (Gaussian) 

distribution about the true line ratio value (in reality the distribution of errors in R will be 

more com plicated, being the ratio of two photon counts with Poisson noise and 

systematic errors). We can show (Sec. 6.3), from random  sampling of noisy line ratio, 

the dependence of the inferred mean density on the signal to noise ratio, and hence the 

resultant bias of the density estimator. We can therefore study what observational (and 

similarly atomic data) accuracy is required to determine the value for electron densities, 

with prescribed precision.

The procedure, then, is to simulate uncertain atomic param eter values and 

intensity line ratio data for different electron densities. This can be done by generating a
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Fig. 6.1 An illustration describing how a uniform error in R may result in a non-uniform

error in ne.
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G aussian distribution of values around the 'true' line ratio Ro and around true values of 

the different atomic parameters (na , Aa , and Ra) cf. Section 6.3. In this Chapter, we 

will only consider the case of noise in the line ratio parameter Ro, and defer discussion of 

the effects of noise in the other atomic parameters to a future work.

In section 6.4 we will investigate how to construct 90% confidence interval for 

the inferred electron density values. In addition, we will show how, from the resultant 

curves, the bias of the estimated density occurs and the amount of accuracy required in 

the observed line ratios, in order to obtain reasonable density values.

6.2.Representation and general formulation

If  we assume an isothermal situation, the ratio o f the intensity o f  two density 

sensitive lines formed in an optically thin plasma of uniform electron density ne can be 

written as

l + n e / n aA a
R u ( n J = R - — 'f r n . T n r  (6 ‘ X)

This representation has been adopted in Chapter 3, and the definitions o f the various 

param eters can be found there. Most of the density sensitive line ratios fall into one o f 

two general cases discussed in a detailed m anner in C hapter 3. A s far as our 

representation (Equation 6.1) is concerned, these two cases can be simply described as 

follows. Firstly the case where the electron density increases with the line ratio, Aa < l. 

As an example for this case we shall adopt O IV, discussed in Chapter 3. Secondly 

where the electron density decreases with R, Aa> l, and Fe IX has been adopted for this 

case (cf. Chapter 3). For a detailed physical explanation of these two behaviours, the 

above Chapter 3 should be consulted. The parameter Aa can be expressed as follows

A „ = - r f  ( 6 .2 )
al
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W e note that the uncertainties due to the atomic coefficients arise in the three 

param eters; Ra , na  and Aa . By measuring ne in units o f  na , a dim ensionless quantity v  

will be obtained, viz

Taking into consideration that 0<v<°°, Equation (6.7) can be shown graphically for the 

two common cases of either X>1 in which l<r<X as in the O IV ion (Fig.6.2a), or 

X<1 where l>r>X, as in Fe IX (Fig.6.2b).

It is the main purpose of this Chapter to find the best estimate o f no, given the 

observation r, by choosing an estimator

It is clear that this estim ator gives non-physical results for some values o f r.

r values such that l<r<A. or l>r>\ as discussed above for the two cases. So that, the 

inferred value of {> is always physically acceptable. Estimator (6.8), however, is not

V = n j n a (6.3)

Further, by defining the observable line ratio r  as

r (v ) = R 21 /  Ra (6 .4 )

and by setting

(6.5)

then the relation between the observable r  and the inferred v quantities can be rewritten as

_  1 + Xv 
1 + v

(6 . 6 )

o r

(6 .7 )

(6 . 8 )

Therefore it is necessary in some way to require that the estimator, 0 , be applied only to
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6.00000  —  

1 .0 0 0 0 0 r

Fig.6.2a The range that should contain the value o f r  (l< r<8.695) in order to 

give a physically acceptable values of the dimensionless electron density (v), cf. equation 

6.7. This curve applies to any line pair with the sam e X values as O IV pair, where 

>.=8.695.

12.00000

7 .5 0 0 0 0
0.00600 1 .0 0 0 0 0

Fig. 6.2b. The range that should contain the value of r  (l>r>0.006) in order to 

give a physically acceptable values of the dimensionless electron density (v), cf. equation 

6.7. This curve applies to any line pair with the same X values as Fe IX pair, where 

>.=0.006.
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necessarily the best (i.e . it is certainly biased (E( $ )  ^ v 0) see Fig. 6.3. W e will consider 

this further in the following section.

6.3.Estimator of plasma density and bias

In the case of a numerical treatment for the biased estimator of electron densities 

from noisy line ratios we proceed as follows. An approxim ate frequency distribution for 

no can be found by means of a computer program to create a normal distribution about 

the line ratio ro. This has been done for various values o f Vo (vo = 0.01, 1.0,100.0 ) and 

for a X value o f 8.695, using five thousand noise realisations, i.e. the normal distribution 

was discretised for numerical tractability into 5000 'bins'.

The generation of the noise on ro can be achieved by using a standard library 

com puter program . The library (NAG) routine is one that picks a (pseudo) random  

number from a normal distribution whose mean and standard deviation are specified by 

the user. The value of the standard deviation o f the normal distribution is a free parameter 

in the procedure and is given a range of values for each ro value.

For different values of ro we generate a normally distributed noise around each 

value with a mean ro and standard deviation a . For each value o f a  we create 5000 

random  num ber realisations, and then we calculate the mean value o f $ fo r  these 

realisations. By repeating the above procedure for different values o f a  we obtain a curve 

o f the expectation values of Q , E( {)), as a function o f g /R o as in Figs 6.3.

It should be mentioned here that the estimated values of Q which fall outside the 

physical range (i.e. for which the perturbed r values fall outside the range l>r>X), are 

discarded. By doing so the maximum value of nc will not lie outwith the chosen values 

lx lO 7 and 2 x l0 14 cm '3 at the lower and higher ends o f the line ratio/electron density 

curve. This discarding procedure is somewhat arbitrary but some such subjective choice 

must be made in any treatment of noisy data.
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Fig.6.3a Expectation value o f the estimator o f the electron density plotted against a/Ro, 

for Vq =100.0.
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Fig.6.3b Expectation value o f the estimator o f the electron density plotted against o/Ro, 

for vq =1.0.
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Fig.6.3c Expectation value of the estimator o f the electron density plotted against a/Ro, 

for Vq =0.01.
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It is clear from the curves shown in Figs. 6.3, that the expectation value of $  is 

not equal to the true value Vo. Bias is greatest for values o f Vo near the end points o f the 

line ratio-electron density curve (Fig. 6.1), e.g. V o = 0 .0 1 ,  or=100. On the other hand at 

the optim um  density sensitive range o f the curve the bias only becomes significant at 

much higher values of a , since at this part o f the curve (Fig. 6.1) a uniform error in R 

will approximately result in a uniform error in ne, Fig. 6.3b. In the case where V o = 1 0 0 ,  

even for low noise levels the estimator {) is seriously biased toward high density. For 

example, a noise of 5% on R will give us an inferred electron density o f ~ l .x l0 14 cm -3 

instead o f ne= 8 .738x l012 cm*3, (cf. Fig 6.3a). It is evident from this example, that the 

estim ated density is of a factor o f 12 higher than the true value. Therefore, we need a 

very high degree of accuracy in order to obtain reasonable values of inferred electron 

density.

6.4. Confidence intervals

By a 90% confidence interval for Vo we shall mean a rule by which an interval 

can be constructed so that the probability of the interval containing the true value Vo is 

exactly 90%.

A confidence interval can be obtained by constructing a histogram  for the 

frequency o f Q at each value of Vo for fixed a , and then taking the 5% and 95% 

quantiles, as illustrated in the Fig. 6.4 (By constructing a confidence interval of 90% we 

obtain the results presented in Figs. 6.5, for different values o f a  (0.001, 0.003, 

0.006)). A confidence interval for electron density is found by drawing a line from the 

m easured value o f 0 parallel to the Vo-axis. The upper and low er lim its o f the 

confidence interval are then indicated by the Vo coordinates of the points o f intersection 

of this line with the 5% and 95% quantile curves. As an example, in Figs 6.5, the 90% 

confidence interval is shown for =50. In Fig. 6.5a the (o=0.001) confidence interval
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Fig. 6.4. An illustrative curve showing how confidence interval can be constructed, for 

each value of Vq and a.
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Fig. 6.5a Confidence interval for the inferred electron density Vo at the 90% level, for 

c= 0.001.
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Fig. 6.5b Confidence interval for the inferred electron density Vo at the 90% level, for 

<7=0.003.
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Fig. 6.5c Confidence interval for the inferred electron density Vo at the 90% level, for 

ct=0.006.
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is [48, 55]. In Fig. 6.5b (g=0.003) the confidence interval is [43.5, 59], and for the last 

considered case here (g=0.006) , as in Fig. 6.5c, the confidence interval is [37,66].

The above figures indicate that for larger values o f a , the confidence interval 

curves tend to get broader, indicating that the expectation of the estim ated density is 

certainly more biased. This is can be most conveniently represented in graphical form 

(Figs. 6.6). Here we plot the upper and lower 95 per cent confidence limits as a function 

o f data standard deviation, a ,  for different values of Vo. It is clear from Fig. 6.6 that at 

any given a  the confidence interval for electron density rapidly broadens as Vo increases 

to higher values. Consequently the error on the data has to be very much sm aller at 

higher values o f electron densities to determine Vq with any reasonable accuracy.

1000

100

0.005 0.006 0.0070.0040.0030.002
a

Fig. 6.6a Graphical representation of the confidence interval for a value of Vo=30 (95 per 

cent confidence) as a function of a .
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Fig. 6.6b Graphical representation o f the confidence interval for a value o f Vo=50 (95 per 

cent confidence) as a function o f a .
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Fig. 6.6c Graphical representation of the confidence interval for a value of Vq= 100 (95 

per cent confidence) as a function of a.
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On the other hand the confidence interval has been constructed for larger values 

o f a  (0.01, 0.06, 0.4), shown in Figs. 6.7. It is obvious from  these F igs that the 

confidence interval does not contain the true value (=100). For example, in  Fig. 6.7a the 

( g = 0 . 0 1 )  confidence interval is [33.5, 78.5], in Fig. 6.7b ( g = 0 . 0 6 )  the confidence 

interval is [5.5, 24], and for the last case ( g = 0 . 4 ) ,  Fig. 6.7c, the confidence interval is 

[1 ,9]. Thus indicating the bias at large g  of the estimator .

It is evident from these results that, in addition to uncertainties in the electron 

densities, data errors can lead to a biased estimate o f ne. Therefore, it is necessary to 

consider the accuracy in measuring line ratios and in calculating the related atomic data.
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Fig. 6.7a Confidence interval for the inferred electron density Vo at the 90% level, for 

a=0.01.
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Fig. 6.7b Confidence interval for the inferred electron density Vo at the 90% level, for 

g =0.06.
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Fig. 6.7c Confidence interval for the inferred electron density Vq at the 90% level, for

g =0.4.
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6.5. Conclusion

In this Chapter the im portance of paying particular attention to the accuracy 

needed when observing density sensitive line intensities has been discussed, as well as 

accuracies in atomic data. We concentrated here on the noise on the line ratios, and how 

the inferred electron densities are very sensitive to even very small noise on the line 

ratios. This noise can result in a seriously biased estimator o f electron densities.

Often it is important to establish the accuracy o f a particular inference, in which 

case the confidence interval is appropriate for this purpose. W e, therefore, have 

constructed a confidence interval for Vo, when a  is assumed to be known. A t high values 

o f a , these intervals are both broader and skewed relative to those for smaller a , which 

emphasises that the estimated density is certainly biased. This is also the case for larger 

values o f Vo. Finally it should be emphasised that when data errors are present in line 

ratio measurements (or in atomic data parameters) even the mean o f a very large number 

of measurements does not necessarily result in the true answer, i.e.a biased estimator 

does not converge on the true value.
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7.1.Introduction

In this Chapter we would like to outline the possibilities for future research based on the 

work described in the preceding chapters o f this thesis. Much o f our work has been o f an 

innovative nature and requires further investigation for the full potential o f the methods 

developed to be realised.

The following few pages are an attempt to discuss briefly some o f the possible 

extensions to this thesis, as well as some related points from the different chapters upon 

which we may elaborate.

7.2.N oisv data

The effect o f noise on the line intensity measurements has been discussed in 

detail in Chapter 6. Various sources that may affect the inferred electron densities, apart 

from line ratios, also exist in the different parameters used in the reciprocal representation 

discussed in Chapter 3. These parameters include na , Aa  and Ra, and their effects can be 

investigated in a similar way to that of the noisy line ratio. An investigation of the effect 

o f noise on these parameters and how it biases the inferred electron density would be 

extremely useful. The results obtained could be compared with those of line ratio biasing 

in order to determine which of the above parameters has the most effect on the inferred 

electron density and hence, the necessary accuracy required. The above investigation can 

also be applied to the second case o f line ratio/electron density curves, in which R 

decreases with increasing electron density, i.e. \  > 1.

7.3. Density Sensitivity Representadons

In Chapter 5, we used a power law model o f the form ne(T)=no(To/T)P+1 to 

explore the sensitivity of the density distribution ne(T) in an emission region, as inferred 

from line ratios. The parameters were found to be very sensitive to different line ratios. 

This model was tested using the only two line ratios for which the atomic parameters and 

data on the same source were available and thus the method would be better justified if
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other observed line ratios could be found.

W e have also explored the sensitivity of the density distribution ne(T) to line 

ratios, utilising an exponential form ula to represent the ionisation equilibrium  that 

appeared in equation (5.15). Another, and more accurate representation can be used for 

this purpose. The logarithm ic representation will be investigated shortly, and a 

comparison with the empirical Gaussian function will be rather useful.

The ionisation equilibrium, that has been discussed in Chapter 5, m ay also be 

represented by a logarithmic empirical function, viz.,

fionO>10(A-B(loST-loS Tm)2) (7.1)

where T m is the temperature at which fion(T) is a maximum. A and B are constants 

[obtained from a simple fitting procedure such that 10A is the value o f fionC0 at the 

maxim um  temperature while B is a measure o f the temperature 'width' o f fion(T) such

that when log(T/Tm)= - ^ = -  , f iOn= 0 .1  fion(max)].

In order to proceed with the investigation of the problem addressed in Chapter 5, 

this representation proved to be a convenient function for the purpose of representing the 

real curves o f ionisation equilibrium  which have been discussed by m any authors, 

m entioned in the text of Chapter 5. The fitting of this formula is shown in Fig. 7.1 for 

OIV which provides a good fit to the real curve produced by Jordan (1969). Therefore, it 

would be rather useful to apply this function in equation (5.41) by means o f which we 

can exam ine the sensitivity of the density distribution nc(T) as inferred from line ratios. 

Thus a com parison can be made, utilising the two different ionisation equilibrium  

representations.
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Fig. 7.1 The ionisation equilibrium (nion/nei) o f O IV as a function of temperature. The 

solid curve is produced by Jordan (1969) while the dotted curve is the em pirical 

representation o f equation (7.1).
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A further, interesting possibility o f elaborating the work in Chapter 5 is that of 

determ ining the spatial nature o f an em itting region. Following Equations (5.37) and 

(5.38) we can obtain some very useful information, namely, the spatial distribution T(z) 

o f an observed emission region as well as the length (L) o f that region.

In Section 5.5, the possibility of determining the values of no and P in the upper 

part o f the transition region has been considered. An important extension is to investigate 

the low er part o f the transition region in a similar way to the above.

In the transition region the curve for the variation o f ^(T) with temperature has 

been obtained by a number of authors (e.g., Jordan 1976, Gabriel 1976). This curve, 

shown in Fig. 7.2, has a minimum value at around 105 K and indicates that the transition 

region can be divided into upper (T > 2 x l0 5) and low er (2x l04< T < 2xl05) regions. In 

the higher temperature range the differential emission measure ^(T) a  T 1/2. This form 

has been adopted in Chapter 5 to exemplify the ^(T) function in the upper part o f the 

transition region. The ^(T) function in lower part of the transition region is o f the form

^(T)ocT-4 (7.2)

This form ula can be used and tested for a real emission region and the obtained values 

(no, (3) compared with that of the different theoretical models existing for this part o f the

transition region.

In addition, by combining both formulae of the theoretical models o f the lower 

and the upper parts of the transition region, we can construct a function to exemplify 

^(T) for the whole transition region. Thus we can investigate the values o f P and no in an 

observed em ission region, with tem perature range T o= 2x l04 to T i= 1 .6 x l0 6 K, and 

within which the constructed expression for ^(T) is applicable.
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Fig. 7 .2  Differenrial emission measure derived from absolute intensities o f  observed 

spectra.
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Introduction

This glossary is intended for the benefit of those readers who are new to the field 

o f spectroscopy. It is not m eant to be a com prehensive study but rather a short 

discussion o f the more basic and relevant aspects o f p lasm a radiation and atomic 

processes that occur in high temperature low density plasmas. These different processes 

result in the emission of radiation which provides useful information about the properties 

o f the plasm a under study. A great deal of work has been devoted to the study o f  the 

different aspects o f plasm a spectroscopy. The subject is as broad as plasm a physics 

itself, and we shall make no attempt to cover the entire field here. Our intention is merely 

to give the reader a general idea about some o f the atomic definitions that are often used 

in plasm a physics, and mostly to define some of the spectroscopic terminology used in 

this thesis.

G. 1 .Plasma radiation

The plasm as we consider consist mainly of electrons and protons with atomic 

hydrogen, and atoms and ions o f heavier elements present to a smaller degree. The 

collisions between the minor constituents are neglected, since they are rare compared to 

collisions involving the electrons and protons. Because electrons have much greater 

velocities and since the rate coefficients are the product o f collision cross section with 

velocity, electrons are usually much more effective than protons in causing collisional 

transitions among the states of atoms and ions. When the density is low, a rather simple 

model, which acquires its name from its applicability to the solar corona, may be used. 

In coronal equilibrium the fundamental approximation is that all upward transitions are 

collisional and all downward transitions are radiative.

The interaction of electrons with other particles in the plasma results in the 

emission of radiation. In this thesis, the considered radiation is in the form of discrete 

spectral lines, rather than the continua of free-electron radiation which we will discuss 

shortly. It was the study of these spectral lines that originally led to the formation of the
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quantum theory o f atoms. The emitted radiation gives much useful information about the 

plasm a, such as electron and ion temperature and density, and has been discussed in 

both Chapters 1 and 2. Because o f their high velocity, electron interactions tend to 

dominate the collisional excitation and ionisation processes. Three electron transitions 

may occur during these interactions.

B o u n d -B o u n d  tra n s itio n  (line ra d ia tio n )

If the ions in the plasma are not com pletely ionised, em ission o f energy will 

occur in the form of excitation radiation. This occurs when an electron attached to such 

an ion can absorb energy, e.g. as a result of collision with a free electron, and thus this 

bound electron will be raised to an excited state. W hen this excited electron returns to a 

low er quantum  state it will emit a photon o f a given w avelength determ ined by the 

separation o f the energy levels. This process is known as the spontaneous decay o f an 

excited ion or atom to a lower level.

F re e -b o u n d  tra n s itio n  (R ad ia tiv e  R eco m b in a tio n )

This atomic radiation occurs when an electron in the continuum recombines with 

an ion. Because the radiation corresponds to the radiative capture of a free electron into a 

bound level of an ion or atom this is called free-bound recombination. The upper level is 

continuous so the resulting radiation is continuous. However, there is some structure 

(edges) in the spectrum due to the discrete nature of the lower energy levels.

F re e -F re e  tra n s itio n  (B re m ss tra h lu n g )

Bremsstrahlung is a continuous radiation emitted by charged panicles, mainly by 

electrons as a result o f deflections by the Coulomb fields o f the other charged panicles 

present. Since the electron is free before its encounter with an ion and remains free 

subsequently, the transitions are called free-free, and since the initial and final states are 

continuous, the bremsstrahlung spectrum is also continuous.
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The last two processes give rise to continuum radiation o f intensity given by the 

sum of terms made up o f products of the electron num ber density, the relevant ion 

number density and an atomic coefficient that depends on the structure o f the ion and the 

electron temperature. The calculation of spectral line intensities, on the other hand, is 

more com plicated since consideration should be given to the processes by which the 

upper level of the transition is populated.

G.2. Atomic Processes

In order to determine quantum  state populations it is im portant to consider the 

detailed atomic processes populating and depopulating each state. There are several such 

processes.

C ollisional Ionisation

W hen a free electron with kinetic energy greater than the ionisation potential of 

the target (atom or ion) strikes this target one of the things that may occur is that a bound 

electron can be knocked out and become free (ionisation). The probability is expressed 

numerically by the 'ionisation rate coefficient' S such that the product ne x n x S is the 

num ber of ions suffering ionisation per second per cm -3, where ne is electron density, 

and n is ionic number density. The cross-section for this reaction a , is often used to 

measure the importance of this process for a given plasma. However, it is also possible 

and, in fact, more convenient in plasmas, to use the ionisation rate coefficient S rather 

than cross section. These are related by S= «J.v>  where the average is taken over the 

velocity v distribution of the electrons which is generally assumed to be Maxwellian and 

therefore S is a function o f electron temperature. Rate coefficients are generally 

expressed in cm 3 s_1.

A++e —>A+++2e.
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Collisional excitation

W hen a free electron of kinetic energy less than the potential energy of the target 

strikes the target a bound-bound transition from a level o f low er energy to a level of 

higher energy will occur. A measure of this process is again the rate coefficient for this 

transition. The term collisional deexcitation is used for the inverse process. The rate 

coefficient o f the collisional excitation and its relation to the collisional deexcitation is 

given in section 1.1.2 of this thesis.

For reviews of the electron collisional excitation the relevant references should be 

consulted, such as Gabriel (1972), Van Regemorter (1962). W hen accurate atomic data 

is required reference should be made to one o f the atomic data Banks, e.g. Daresbury 

Laboratory o f the Science Research Council.

D ielectronic recombination

W hen an electron collides with a charged atom with an energy slightly below the 

excitation threshold it may cause excitation and simultaneously be captured into a high 

bound state (since it does not have enough energy to escape from the Coulomb field). 

This occurs when the incident electron excites the parent ion initially in some level, 1 to 

level 2 by giving its energy to an electron in the bound level 1. The free electron then 

enters some high bound level denoted by 3. This is the first step o f dielectronic 

recombination, and may be denoted as

A (z+1, 1) + e -> A (z, 2, 3) 

where A is the ionic species and z is the charge of the ion.

The inverse process to capture is autoionisation where the ion makes a radiationless 

transition back into its ground level and an electron is ejected. Dielectronic recombination 

becomes effective when the excess energy of the ion is removed by a spontaneous 

radiative transition subsequent to the capture (stabilisation), before the system has time to 

autoionise, i.e.



A(z, 2 , 3)->A(z, 1, 3)+hv(l, 2) (stabilisation)

Finally the captured electron cascades down to a lower level emitting a line known as a 

satellite line.

It has been shown by the calculations o f B urgess (1964) that dielectronic 

recom bination is important for solar atmospheric physics and should be considered in 

deducing coronal temperature from  analyses involving ionisation ratios. W ork on 

dielectronic recombination has been reviewed by Seaton and Storey (1976) and Burgess 

(1964, 1965).

Spontaneous radiative decay

Spectral lines arise from the spontaneous radiative decay o f an electron from an 

upper to a lower bound level. The coefficient used to describe the rate o f this process is 

the spontaneous transition probability. It is given by the symbol Ajj and measured in s_1. 

The rate o f spontaneous radiative decay (per cm-3 per sec.) may be used in determining 

the intensity of a spectral line, which is given by the product nj Ajj where nj represents 

the population density of ions with charge z in the excited level j.

The radiative lifetime T is the reciprocal of the sum of all the radiation coefficients 

affecting the level in question, viz.,

The values of the Aji coefficients depend on the details o f the atomic structure o f 

the atom s or ions and their calculation and m easurem ent are im portant for atomic 

physics. Calculations of this coefficient was reviewed at the Bureau o f  Standards in 

W ashington (cf. Fuhr and Wiese 1969, Wiese et al. 1966 )

Radiative Recombination

T 1

n
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Radiative recom bination is a two body process and takes place when a free 

electron in the field of a positive ion makes a radiative transition to a bound level thus 

forming an ion or atom of charge one less than the initial charge, i.e.

n(z)+e —» n(z-l)+hv

The photon carries a way the kinetic energy of the electron before recombination plus the 

ionisation energy o f the final bound level, i.e.

hv=X-Ej-e

where X is the ionisation potential o f the ion in its ground state in eV, Ej is the energy of 

the final bound level j from the ground state and £ is the kinetic energy o f the electron. 

Thus the recombination continuum spectrum is characterised by discontinuities due to the 

ionisation energies of the relevant bound levels.

The inverse process of radiative recombination is photo-ionisation, and the rate 

of the occurrence of this process is proportional to the radiative flux.

G .3.D ifferent Spectroscopic Term inology

M etastable levels:

Metastable levels are also known as long life time levels. They are defined as the 

levels in which the collisional deexcitation processes are comparable to the radiative 

decay rates, and they are more highly populated than the ground levels. The lifetime of a 

metastable excited state is typically greater than 10'6 sec.. A more practical definition in 

terms o f collision phenomena might be a state whose natural lifetime is comparable with 

the mean collision time o f the particle in a specified plasma. For example, the 2 !S state 

of helium, whose natural lifetime is 38 ms, is metastable in a typical helium discharge 

where the mean collision time is of the order of microseconds, but it is not considered 

metastable in the plasma of a planetary nebula, where the mean collision time is about 3
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hours. On the other hand, the 2 3S state o f helium whose natural lifetime is about 106 

seconds, is metastable in both plasmas.

Allowed lines:

Allowed lines are the strongest emission lines, they are known as electric dipole 

transitions w ith AL=±1 and AJ=0, ±1 (without spin change) where L is the orbital 

quantum  num ber and J is the internal quantum num ber, and whose upper levels are 

excited by electron collisions from the ground state. In these sort o f transitions the 

radiative decay rates always greatly exceed the collisional decay rates, therefore 

collisional deexcitation is negligible.

F o rb id d en  lines : These are defined as the lines for which the transition disobeys the 

quantum  selection rules (e.g. j= 0  to j=0). They may also be defined as the lines that 

result from  transitions o f electric quadrupole (and higher) and magnetic dipole (and 

higher). The corresponding transition probabilities Aj’-j are about 105 times smaller than 

for electric dipoles. Fig. G .l shows a forbidden line at 22.1 A for O VII.

In te rsy s te m  o r  in te rco m b in a tio n  lines:

If a decay happens from a metastable level indirectly, by transfer first to another 

level, then the resultant transition is known as an intercom bination transition. 

Intersystem lines usually result from a combination o f singlet and triplet terms, and are 

weak com pared to the electric dipole transitions. As an example, in the case of He-like 

ions (F ig.G .l) the 3S metastable level can decay indirectly, by transfer first to the ls2p 

3Pj level, followed by the intercombination transition to the ground level (M cW hirter 

1984). Fig. G .l , shows energy levels for He-like ions, demonstrating an intersystem 

transition. Following Gabriel (1972), this line and the others (the resonance line, the 

quadrupole line, and the forbidden line) have been designated Y, W, X , and Z, 

respectively. In Fig. G.2. one o f the He-like ions (O VII) spectrum recorded by 

McKenzie et al. (1980) is given showing an intercombination line at 21.8 A.



182

S a te lli te  lines.

Som e excited states o f X -ray transitions are produced not by collisional 

excitation, but instead directly by dielectronic capture. These lines arise prim arily as a 

consequence o f dielectronic recom bination o f H e-like ions but can also be due to 

innershell excitation of the corresponding Li-like ions. They are mainly used as a diag

nostic method for the determination o f electron temperature. As has been shown above, 

the dielectronic recom bination process is made up o f three stages, viz., capture, 

stabilisation, and cascade. It is the stabilisation process that can give rise to the satellites.

S ta tis tica l w e ig h t : The number of electrons that can occupy a level without violating 

Pauli's exclusion principle. (co=2J+l).

S tead y  s ta te  ; The population o f each atomic level is constant in time and hence 

determined by the balance of processes populating or depopulating it. But, in flares and 

prom inences the population of the levels varies with time. The steady state can be 

reached in roughly 1012/nc sec, which is about 1/10 sec. for a typical Tokamak plasma.
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l
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line 2 1 .8A

Fig. G .l .  Energy levels for a helium -like ion (O VII), showing the different lines 

discussed in the text.
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intercombination line and forbidden line respectively (McKenzie 1980).
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APPENDIX A

In Chapter 4, we showed that the plasm a em itting all observed line ratios m ust 

contain substantial density inhomogeneity within them, and that their true mean electron 

densities are less than the spectroscopic mean densities inferred from one line ratio (cf. 

Figures 4.3). W e proceeded further to discuss how in the case of observed spectroscopic 

m ean density and total emission measure, §tot> it is possible to obtain the very useful 

measure of source inhomogeneity, arising for example due to unstable plasmas. This fact 

o f inhom ogeneity is evident in many solar phenom ena such as solar flares, and also in 

laboratory plasmas.

Observations of the inferred values o f <v>, ^ tot and the total volume V, can be 

utilised to illustrate this fact explicitly. For the model we adopted, which approximates 

the distribution o f an isothermal plasma in hydrostatic equilibrium, both the normalised 

em ission measure and the spectroscopic mean density can be rewritten as, cf. equations 

(4.30) and (4.31).

v 2„ ( l - a 2) C,i tot

2 1 n ( l / a )  n„ V

and

ft (A . 1)

( A „ -  1) (1 -  a )  v„+ In [ (1 +  v 0) /  (1 + ctv0)1 -  A„ In [(A„ + v 0) /  (A a + av „ )3  
A a In [ (A„ + v 0) /  (A a + a v 0)] -  In [(1 + v„) /  (1 + av  „)]

= < v >
(A. 2 )

It is our aim in this appendix to find the value of the important inhomogeneity parameter, 

a, employing the above equations. That is, we want to find a solution of (A .l) and (A.2) 

for Vo and a  for a given observed values of both p. and <v>; this was achieved 

numerically utilising a computer program constructed at Glasgow University 3988 ICL 

main frame. The program constructed for this purpose is presented, and a description of 

how it works is given below.
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O bservationally we obtain the two values, j1 and <v>, which com prise the 

R .H .S. o f  (A .l)  and (A.2) respectively, we then have two equations in the two 

unknow ns a  and Vo. By selecting an arbitrary value o f  a ,  lying between zero and one 

since a=ni/no, a value Vq is determined, from equation (A .l), viz

U tilising this equation, (A.2) becomes a function o f a  only and can be expressed as 

follows

in which this equation is a single algebric equation which can be solved by a simple 

num erical method. For this purpose Newton-Raphson has been adopted in order to get 

the correct value of a , which in principle can be of the form;

This process is carried out automatically in a computer program which for completeness 

is presented below. This value o f <v> is plotted against a ,  for different values o f |i ,  

giving the curve shown in Chapter 4, Figs. 4.6.

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 

REAL XPLOT,YPLOT 

CALL PAPER(l)

CALL PSPACE(.2,.9,.3,.8)

CALL M AP(-.1,2.,-.1,1.)

PRINT*,'LAM BDA'

READ*,D

1 / 2

(A . 3 )

T(a)^d)A (a, (
u  a

(A . 4 )

'F(a ) -  < v > )
(A . 5 )

Aa

PROGRAM GAOT6
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9 PRINT*,'INPUT AMTEO'

READ*AMTEO

PRINT*,T=SCALES; BORDER; ANNOTATION;0=CURVE ONLY' 

READ*,II

IF(ILEQ.1)CALL BORDER 

EF(II.EQ.1)CALL SCALSI (.4,.2)

IF(II.LT.l)G O TO  3 

CALL CTRMAG(19)

CALL CTRFNT (2)

CALL PLOTNC(1.7,.9,76)

CALL CTRFNT(O)

CALL CTRMAG(13)

IF(D.GT. 1)CALL PLO TCS(1.75,.9,,=176’)

IF(D.LT. 1)CALL PLO TCS(1.75,.9,’= .l 15’)

CALL CTRMAG(19)

CALL CTRFNT (2)

CALL PLOTNC(. 15,.5,109)

CALL CTRFNT(O)

CALL CTRMAG(12)

CALL PLO TCS(.2,.5,’=0.1')

CALL PLO TC S(.6,.5,'0 .5,)

CA LL PLO TCS(1.3,.5,'2.0')

CALL CTRMAG(13)

IF(D.LT.1)CALL PLO TCS(-.6,-.7,,Fig.7(a),)

IF(D.GT. 1)CALL PLO TCS(-.6,-.7,’Fig.7(b)')

CALL CTRORI (90.0)

CALL CTRMAG (19)

CALL CTRFNT(2)

CALL PLOTNC(-.4,0.5,97)

CALL CTRFNT(O)

CALL CTRORI (0.0)

CALL CTRMAG(17)

CALL PLOTCS(0.8,-0.3,'<n>/n')

CALL SUFFIX 

CALL TYPECS('*’)

CALLNORMAL 

3 DO 10 1=1,200
OBSPMD=(I-1.)**2/40000.*(2-AMTEO**.5)+AMTEO**.5-.001

A M IN =001
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A M A X =999 

5 A= 5*(AMAX+AMIN)

ANUO=(AMTEO*2.*DLOG(1./A)/(1.-A**2))**.5 

X =DLOG(( 1 .+ANUO)/( 1 .+A* ANUO)) 

Y=DLOG((D+ANUO)/(D+A*ANUO)) 

A NU=(P-1.)*(1.-A )*A N U0+X-D **2*Y )/(D *Y-X ) 

EF(ANU.GT.OBSPMD) AMIN=A 

IF(ANU.LT.OBSPMD) AMAX=A 

IF((AMAX-AMIN).GT. 1D -6)G 0T05 

XPLOT=OBSPMD 

YPLOT=A

EF(I.EQ.1)CALL POSITN(XPLOT,YPLOT)

CALL JOIN (XPLOT, YPLOT)

10 CONTINUE

PRINT*,'NEW  AMTEO=6; EXIT=0'

READ*,KK

IF(K K .E Q .6)G 0T 09

CALLGREND

STOP

END
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