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Abstract

Using the magnetohydrodynamic description, the evolution o f a resistive 

plasma can be represented as a relaxation through a sequence of 

force-free equilibrium states. We consider laboratory based plasmas 

confined in closed vessels and numerically simulate this evolution pro­

cess using the finite difference method. The work is motivated by the 

nuclear fusion project.

We proceed by showing that the force-free problem can be reduced, in 

2D, to solving a non-trivial ID diffusion equation subject to the force- 

free constraint. Next, the diffusion o f magnetic field lines is considered 

in a stationary ’mathematical’ solid in which the magnetic field lines 

evolve such that the ratio o f the conductivity perpendicular to the field 

lines to that parallel is much smaller than unity. The two processes are 

shown to be equivalent. Solutions to the latter problem are much easier 

to obtain and will be considered in chapters which follow.

We initially consider 2D and 3D cylindrical containment devices pos­

sessing rectangular cross-sections and develop algorithms to mocJe-L 

nume/ucnLLj the evolution o f a plasma until it reaches a relaxed state. 

The relaxed or equilibrium profile is the most suitable state for ther­

monuclear fusion to proceed.

A 2D code for obtaining solutions over arbitrary cross-sections is also
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developed. This can be used to make comparisons with experimental 

results fo r  devices which have circular, D-shape and the more ela­

borate multipinch cross-sections.

The 2D and 3D rectangular cross-section cases are generalised to take 

account o f  toroidal effects.

In the fin a l chapter we present the results predicted by the suite o f  

codes which total ~ 20,000 lines o f  source written in standard FO R­

TRAN 77. We make comparisons with experimental data, Taylor’s 

theory and any relevant simulations. Initially we consider a square 

cross-section and a variety o f  universal curves are fo u n d  which are 

qualitatively similar to Taylor s theory and experiment. One o f  these is 

the well known F  0 profile. The fie ld  reversal value  0 is fo u n d  to be a 

fa c to r  o f  two greater than that predicted by Taylor’s theory but is in 

good agreement with a recent simulation. The universal curves predict 

that the fin a l equilibrium state is completely defined once the axial flux  

and driving fie ld  are prescribed. These are ju st initial conditions and 

correspond to the axial f lu x  and global helicity which are the only two 

quantities that need to be prescribed in Taylor’s theory.

Another universal curve predicts that at a critical axial f lu x  there are 

states which are inaccessible by the plasma. About this critical value 

there are two modes at which the plasm a can be driven, one at high 

current and the other at low current. This corresponds to the stable 

high and low current mode o f  operation arising in Tokamaks.
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We have also found  the existence o f  degenerate relaxed states and 

equilibria which carry the same current but different axial flux . Choos­

ing a particular energy or current profile to obtain an equilibrium state 

may not therefore give a unique solution.

Changing the dimensions o f  the rectangular cross-section is fo u n d  to 

have little effect on the universal F  0 profdes.

The boundary conditions, obtained using O hm ’s Law, are fo u n d  to play 

a critical role in defining relaxed states. I f  we allow tangential 

currents to flo w  at a boundary, we fin d  that the results correspond to 

the force-free paramagnetic model. The model where currents are 

rem oved is able to yield equilibrium states in which the fie ld  is reversed  

at the boundary. These are the states which arise in reversed fie ld  

pinches.

Toroidal effects are found  to have very little effect on F  0 profiles. 

O ther profiles do differ and from  these we have fo u n d  a critical 

aspect-ratio at which toroidal devices should be built. A t this value, the 

maximum current can be generated fo r  a fixed  driving field .

The 3D code gives rise to axisymmetric relaxed states and docs not 

predict current limitation fo r  any  0 . The curved boundary code is found  

to be numerically unstable fo r  curved but non-circular cross-sections.



Chapter 1

Introduction

1.1 M otivation

The realisation of producing vast amounts of energy by the phenomenon of ther­

monuclear fusion [1.1] in an economically viable and environmentally friendly 

m anner is the motivation behind this project. The process involves fusing light 

nuclei to form heavier ones which results in large amounts of thermal energy being 

liberated. The reaction which occurs at the lowest ignition temperature and hence 

easiest to achieve is that between the two hydrogen isotopes deuterium D ( 2H ) 

and tritium T ( 3H ) :

D + T —» ( 4He + ?>.5MeV ) + (n  + 14.1 M eV )

Deuterium is a naturally and abundantly occurring elem ent in water which can 

easily be isolated. The disadvantage of this reaction is that tritium does not occur 

naturally ( half life = 12.5 years ) and so has be manufactured. This can be accom­

plished, using lithium, through the reactions :

6Li + n -> (T  + 2.1 MeV ) + ( 4He + 2.7 M eV  )

7Li + n —» T + 4He -I- n -  2.5 MeV
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Such possibilities are being investigated by experimentalists using a variety of 

methods and devices. One of the most promising involves the use of toroidal 

chambers known as TOKAMAKS [1.2]. The method essentially involves heating 

the hydrogen isotopes to a temperature greater than one hundred million degrees
t j

centigrade, the  resulting ionised gas or plasma being contained by the use; mag­

netic fields. Once the ignition temperature is reached the fusion reactions would 

begin. The containment vessel is to be surrounded by a blanket of lithium which 

would capture the neutrons breeding the required tritium and generating additional 

heat. The only waste product that would remain is the helium gas.

Trying to achieve the necessary conditions for thermonuclear fusion to proceed has 

given rise to numerous problems. The most obvious one is trying to reach the enor­

mous temperatures that are necessary for fusion. Another problem is containing the 

plasma in a suitable manner. This is important because the plasma is capable of 

vapourising the containing vessel and thus cooling the plasma. It is therefore impor­

tant to have the plasma in a dynamically stable configuration. Another problem to 

overcome is containing the plasma for a long enough time, the confinement time, 

for reactions to yield a net output of energy. This involves making up for energy 

losses which are lost mainly as electromagnetic radiation. The necessary condition 

can be expressed as a product of the plasma confinement time x and density -t. This 

condition, called the Lawson criterion [1.3 ], requires OiX= 10 m sec for a plasma 

at temperatures mentioned. Overcoming such problems are being investigated by 

theorists and experimentalists [1.2].

There are several approaches to the understanding of plasma physics. We consider 

here the fluid based model [1.4] which has proven to be very successful in relation 

to fusion studies.
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The magnetohydrodynamic ( MHD ) model describes the interaction of a conduct­

ing fluid with electromagnetic fields. The closed set of evolution equations consist 

of the energy, momentum and mass constraints of conducting-fluid dynamics 

including M axwell’s electromagnetic equations together with a generalised O hm ’s 

Law. A simplified version of these evolution equations can be written [1.5] in the 

following form :

M axw ell’s equations

V B  = 0 ( 1 . 1 )

V-E =
e0

( 1.2 )

(1.3)

VxB = j (1.4)

Continuity equation

(1.5)
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D V
p — -  + VP = jxB  
K Dt  J

( 1.6 )

Energy equation

jjj(P p -5/3) = | l l P “5/3>2 (1-7)

O hm ’s Law

E + VxB = r| j ( 1 . 8 )

where B, E, V, j, p, P ,  and r| are the magnetic field, electric field, fluid velocity, 

current density, plasma density, plasma pressure and plasma resistivity respectively.

In the derivation of most of these equations a large number of approximations are 

made [1.5]. A lot of these approximations are difficult to justify but nevertheless 

MHD theory has yielded an enormous amount of useful information consistent with 

experiment [1.6].
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1.3 2D-resistive force-free evolution

The non-linear nature of the MHD equations inevitably involves the use of numeri­

cal methods when seeking realistic solutions especially in two and three dimen­

sional problems. Unfortunately, finding numerical solutions even to the simplified 

evolution equations is immensely difficult due mainly to the two disparate time 

scales, the Alfven time ( = lCr7 secs. ) and the resistive diffusion time ( =10 secs. ). 

These are typical JET ( Joint European Torus ) parameters.

It was therefore proposed by Taylor et al [1.7] that the m omentum equation should 

be replaced by the force-free equilibrium constraint jxB  = 0. This corresponds to 

neglecting high velocity Alfven phenomena. If B is written as (\\fy , -\\fx , B z ), 

where the subscript implies a partial derivative, then B z is necessarily a functional 

of \|/, the z -co m p o n en t of the vector potential A, where B = VxA.

The introduction of the vector potential allows (1.3) to be integrated to give the 

evolution equation for A z :

= 2%. = - E ;  + C ( t )  (1.9)
31 31

C ( t ) is a time dependent function arising from the integration and will be inter­

preted later.

From (1.4) and (1.8)

E z = (V-V)y -  r| V V



Substitution then gives

+ (V-V)y = ri V fy  + C ( t ) (1.10)
ot

Also from (1.3), (1.4) and (1.8)

dBz
- f -  = (B-V)VZ -  V-(flzV) + q V 2Bz (1.11)

ot

This evolution equation gives the time development of B z at fixed point in space. It 

is convenient to know the evolution of B z on a particular \|/ contour. This can be 

obtained using :

dBz _  dBz dBz I

dt d y  a t +  dr

But

dBz _  dBz d y

dx d\\f dx
=> V B Z = B z V\|/

U • 3where the pnm e represents —— .
d\\f

Taking the divergence of V B Z results in
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V2fiz = Bz ( V y ) 2 + B z V2̂ /

Using these two results and substituting from (1.10) and (1.11) gives the following 

evolution equation at fixed \j/ contour :

It should be noted that :

1) only the component of V perpendicular to B is relevant.

2) V is a single valued function of position.

3) since (B-V)\j/ = 0, the projection in the x , y  plane of the B-lines coincide with 

closed \|/-contours.

Equations (1.10) and (1.13) can now be used to to eliminate V to give an evolution 

equation involving terms in A and / ,  where :

—L + Bz V V = T |f l ." (V y )2 + (B'V)Vj -  BZC
Ot

(1.13)

A = d t
I V\\f I



From (1.10)

X 9 ^  dl = < dvL>  
v  dt  IVvj/l dt

= V '  + c a  - | ( y v ) V l | L

and from (1.13)

d/
Or I V\|/ 1 = A ^ = nSz 7 _  ^  " Sz t v v  w r

since

f (BV)^ w =f <Wz)x(Vv)kw r =f
= cp VV, dl = 0

Using these two results :

dBz

“ aT
- B , < -

8/
> = (r|flz /  -  Bz C/\)  -  Bz (CA + ti/ )



But

(V-V)\|/ _
I V\|/1 d\\f

and

V-V
I V\|/1 d\\f

+ d_
di

v,

V\j/I

where the subscripts / and \j/ denote values along and perpendicular to \\/ respec­

tively.

Since V is single valued it follows that :

dBz , , , dyif
A —  = [ r| ( I  Bz -  I B z ) -  C A B z } + Bz < — iL

dt dt
(1.14)

This is effectively a one dimensional diffusion equation involving averages on \\f 

contours. It is subject to the force-free constraint V2̂  + B z Bz = 0 .

Although this has eliminated the presence of the two disparate time scales we still 

have a formidable non-standard problem, involving coefficients in the diffusion 

equation defined by contour integrals defined by a function \ \ f (x ,y  \ t )  which is 

itself a solution ( with suitable boundary conditions ) of the non-linear force-free 

constraint. In this constraint B z (\\t) is an unknown function obtained by solving the 

diffusion equation. This represents a self-consistent problem of considerable
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difficulty. We next present an alternative representation of the same evolution prob­

lem.

1.4 Anisotropic diffusion in a static rigid conductor

We extend the work of Hobbs [1.8] on anisotropic diffusion and consider the diffu­

sion of magnetic field lines in a stationary rigid conductor in which the electrical 

conductivity a M along field lines is much greater than the cross-field conductivity 

ct± . In the limit e = / a , , -> 0, the magnetic field diffuses through a sequence of

force-free equilibrium states. We show that in this limit the equations which deter­

mine magnetic field diffusion in the stationary conductor are identical to the equa­

tions which describe the evolution of force-free magnetic fields in a resistive 

plasma.

The magnetic field evolves according to

(1.15)

O hm ’s Law can be written as

(1.16)

. . .  . (j B ) B
where j  = J, + j ,, and j n = ------- —
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(1.16) can then be expressed as E = a F B  + /? j

where :

F =
j B _ B z v y  -  V \j/V £;

B (Vy/)2 + B 2
(1.17)

a =
a±

and b =
°L

Now introduce a stream function \\f = \j/ ( jc , y ; t ) defined by

B =
dy ' dx ' 1

is again the z -com ponen t of the vector potential.

Substituting into (1.15) and integrating the \\f equation leads to the following pair of 

coupled diffusion equations :

dBz

dt
(1.18)

= b V 2y  -  a F B, + C ( t ) (1.19)



- 12 -

where C ( r ) can be interpreted as a driving externally applied axial electric field, 

w'hich may be time-dependent.

Due to the two different values of the conductivities there exist two time scales t | , 

and x, , the first characterised by cj( t and the second by a L. If £ = / a , , <c 1 then

t, <^t m. In such a case a rapid diffusion and equilibration takes place on the 

time scale accompanied by a much slower diffusion on the x, | time scale.

The diffusion equations describing evolution on the short time scale can be written 

as :

where t —» t / g ( and a  = a n C .

W e next allow the system to be in an arbitrary state and show that it must relax to 

some force-free stationary state in the limit e —> 0. Consider the stationary states of

rr^~ = V2#  + ( 1 -  e ) V- ( F  V \|0  
dt

( 1.2 0 )

= v V -  (1 - e ) F  Bz + e a
ot

( 1 .2 1 )

(1.20) and (1.21) :

V-( F  V\|/ + V B Z ) = 0 ( 1 . 2 2 )

V V  -  F B z = 0 (1.23)
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From (1.22)

F V\|/ + Vfiz = VxG (1.24)

where G is an arbitrary vector.

The LHS of (1.24) has no z-component and so G = G z . 

From (1.23) and (1.24) :

F ( V¥  )2 = VxG V y  -  Vfiz -V\j/

F ( B z )2 = Bz V V

Adding the above two and comparing with (1.17) gives :

VxG V\|/ = 0 => G = G (\\f)

But

VxG =  V y x  z
d\\f

then



Dividing by I V\|/1, integrating around a \j/ contour and noting that B z must be 

single-valued, gives :

Bt dl  = 0 = -  —
d\\f f IVv/l dl = - /  —  

d\\f

If I  ( \ |/)  * 0, then we must h a v e   = 0 . That is G must be a constant.
d\\f

It then follows that V 5Z is parallel to V\j/ which means that B z is necessarily a 

functional of \|/ .

Now the force-free constraint can be written as

jxB  = B z V B Z + -(- VfizxV\|/

After substituting from the stationary states and using the above result, this is 

shown to be zero.

This does not tell us which force-free state the system relaxes to. To consider this 

question we look at the evolution of the axial flux d> on the long time scale for fin­

ite e .

By d ef in i t ion  O  =  J B z dS is the axial f lux  en c lo sed  by a \\f contour , w here S is

the area bounded by the contour.



The long time scale evolution equation can be written as

e = Vnj/ -  ( 1 - e ) /7 Bz + e a

dB
e —r— = V-( ( 1 - e ) F  V\|/ + V/L )

ot

Now is made up of two contributions

a) for a fixed \\t contour ;

a o
dt

= f  Bz ds
a S

=  J V-( ( 1 -  8 ) F  V y  + V B Z ) ds

= ^  ( (1 - e ) F  I V\|/12 + Vfiz -Vy )

b) for \\f sweeping out axial flux, with velocity |
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dl
= -  9  ( B ZV \  -  ( l - e ) F  Bz + e a B z )

I V\j/

Adding both contributions and substituting for F  results in

= -  <f> ( Bz V V  -  V\|i-VB: + <xBz ) dl

Thus, the system ultimately relaxes to a force-free field satisfying the constraint

^  ( B z V V  -  V\|r V B z + a  B z ) = 0

For force-free fields this reduces to

dB z $
I — L -  5 ,  —  a f i ,  A = 0

d\\f d\\f

where :

I  ( v ; t )  = ^  I Vvj/1 dl

which represent the axial current enclosed by a \j/ contour and the differential area
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enclosed by neighbouring vj/ contours respectively.

Since we have shown that in the limit e —» 0 there is rapid equilibration to force- 

free fields the equation of motion for the axial flux can then be written as

3 0
dt

dBz 
---------d\\f d \ f

/  —  -  B, —  -  a B ,  A

and it can be shown that

3 0  
3 \\r =  ~ B Z  V

d v 3 <6 i m . dl
31 v 3 y X  31 1 V\|/l

It then follows that

3Bz | 

3r
_3_ 
3\J!

dl
V\|/1

dBz

d\\f
dl  

d\\f
(1.25)

This is identical to (1.14) the equation of force-free evolution in a resistive pres- 

sureless plasma.

W hen obtaining solutions to the force-free evolution problem we do not of course 

solve the evolution equation (1.25) but the two much simpler diffusion equations

(1.20) and (1.21) with a suitable choice for e and a . This will be considered in the
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1.5 Taylor-W oltjer theory of relaxed states

The evolution of an ideal plasma bounded by a perfectly conducting vessel has 

been considered by W oltjer [1.9]. He was able to show that the helicity K defined 

by

K  = J A B d x  I  = volume o f  vessel
T

was an invariant of motion of the system. The perfectly conducting boundary intro­

duces an additional constraint namely that the axial flux also remains an invariant 

o f motion. Then by minimising the magnetic energy, subject to the helicity and 

axial flux constraints, he was able to show that the stationary or equilibrium profile 

reached by the plasma would be the force-free state VxB = |iB , \i being a constant. 

The helicity invariant is in fact an infinity of invariants, one for each field line.

The same problem was considered by Taylor [1.10] who proposed that for a plasma 

with infinitesimal but finite resistivity, the infinity of invariants introduced by 

W oltjer’s theory could be approximated by a single global invariant, the global heli­

city. Taylor was then able to find a minimum magnetic energy state subject to the 

global helicity and axial flux constraints. He also found the relaxed state to be 

force-free.

For a circular cross-section toroidal device of large aspect ratio the cylindrically 

symmetric solutions to the force-free constraint can be written as
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B r = 0 , B Q= B o J 0 ( \ i r )  and Bz = B 0 J x ( ^ r  )

which for obvious reasons is referred to as the Bessel Function Model ( BFM ).

Experimental data is sometimes represented by F - Q  diagrams, where F  and 0 are 

the ratios of the toroidal and poloidal fields at the boundary to the mean toroidal 

field across the cross-section, they are usually referred to as the field reversal 

parameter and the pinch ratio respectively.

Figure 1.1 ( end of first Chapter ) shows several points on the F - Q  diagram 

obtained by experiment and the corresponding results predicted by the BFM [1.11, 

1.12]. As can be seen, there is remarkable agreement between theory and experi­

ment. The predicted field profiles are also shown, again there is very good agree­

ment. Taylor’s theory will then be very useful for comparison purposes especially 

when experimental data is unavailable.

It should be pointed out that Taylor’s theory can only be used to determine equili­

brium profiles and in no way describes the mechanism of relaxation.

It should also be mentioned that there are several other remarkable features of 

toroidal discharges predicted by Taylor’s theory; and will be referred to in later 

chapters.

1.6 The finite difference method

This method represents a very powerful approach for obtaining numerical solutions 

to differential equations which may be simple or very difficult to solve [ 1.13]. It 

involves replacing continua and derivatives by discrete approximations. For



example, consider obtaining the solution of the following very simple diffusion 

equation :

dU = d2U 

dt d x 2

along the region ab ( figure 1.2 ) and subject to the boundary conditions 

U ( x = a ; t )  = Ua and U ( x  -  b\  t ) = Ub with initial condition U {x\  t = 0 )  = U Q. 

The region ab can then be discretised by assuming that information Ul only along 

the mesh points i is available. Approximations to derivatives can then be obtained 

using Taylor expansions. Replacing the spatial derivative by a second order and the 

temporal derivative by a first order approximation gives the difference equation

At 2 Ax

where the superscript n refers to temporal discretisation.

iNow, U is known initially ( n = 0  ) so the updated value, at n = 1, can be obtained 

at all mesh points from i =2  to i - m - 1. The value of U on the boundary is fixed 

by the boundary conditions. The solution at n = 1 can then be used to obtain values 

at n =2.  The procedure is repeated as long as is necessary.

The PDE could also be written as
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and could then be replaced by the difference equation

UP+2 ~ 2 U ? + U t 2 

4 A x 2
+ 0 ( A r 2 )

At
+ 0 ( A t ) =

which can also be used to update U but would involve using information at two 

neighbouring mesh points when updating a point. It also requires extrapolations 

across the boundary in order to update interior boundary neighbours ( points adja­

cent to boundary where a solution is required ). The choice of difference equation 

will usually depend on the problem at hand.

The above methods work for the Dirichlet boundary conditions being considered. 

For Neumann boundary conditions fictitious exterior boundary points can be intro­

duced. Consider the above problem but with the boundary conditions

This difference equation then defines the unknown exterior boundary neighbour 

U_i  which can be used for updating the boundary value.

r) r)
- 2 - U ( x = a ; t )  = U 0 and U (x  =b \  t ) = - U  0
dx

The condition at a can be replaced by

U ] -  U_{ = 2 Ax U Q

A simpler but less accurate method, first order, would be to use the forward differ­

ence formula
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U\  ~ U 0 = Ax U Q

then instead of using the evolution equation the boundary condition would be used 

to update the boundary value. Once again the method used usually depends on the 

nature of the problem.

Updated values obtained using the above difference equations depend only on infor­

mation at the preceding time. Such methods are referred to as explicit schemes. 

Other schemes requiring information at the advanced time are called implicit 

schemes. The unfortunate problem with explicit schemes is that they place a restric­

tion on the time step. If the time step is too large the solution becomes numerically 

unstable. The restriction known as the CFL ( Courant-Friedrichs-Levy ) condition 

can be written, for the above equivalent of a 3D problem, as

Ar <

A r
+

Ay
+

Az'

This condition will obviously lead to computational problems if solutions over long 

times are required. The above stability condition arises when considering the simple 

diffusion equation. For non-linear problems it is usually too difficult to find the sta­

bility criterion and the only way to see if the numerical algorithm works is to try it 

out. When deriving the CFL condition no account is taken of the nature of the 

boundary condition. In fact the stability of a numerical scheme has a strong depen­

dence on the form of the boundary condition. Consider obtaining a solution of the 

simple diffusion equation

du_ = £u_
dt d x 2
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with the time dependent boundary conditions

d  r )
—  U ( x  = a; t ) = U (x  = a; t )  and —  U ( x  —b \ t ) = - U  ( x  = b : t ) 
ox dx

Replacing by second order difference formulae gives

l / " +1 = Up + - Q -  ( [ / » ,  -  2 u p  + U U  )

f / j  -  = 2 Ax ( / 0

For this problem the stability condition would not be the CFL condition but 11.14]

At <

Ax'
+

2 Ax

so the time step limit is further reduced.

When considering long time simulations it is essential to ensure that the solution 

remains accurate in time. It is therefore necessary to use algorithms which are 

second order accurate in time rather than first order as above. To see how second 

order accuracy can be obtained [1.15] consider the solution to

4 - U ( x ;  t ) = / ( * ;  t )



- 24 -

Taking forward differences and advancing by half a time step results in

l
u n^  = u n + ^ - A r  f n + O (A /2 )

With central differences, centering mid-way between a time step gives

l
j j n + \  = U n +  A t j r n  2  +  q  ( A / 3 }

1 1
n -\—  n H —

Once U 2 has been calculated it can be used to obtain /  2 . The data U n and

ln -\—

/  2 is then used to obtain the required U n+l values. This method is usually

referred to as a predictor-corrector scheme.

Implicit schemes do not have the CFL time step restriction but these schemes are 

usually very difficult to implement and involve time consuming iterations in obtain­

ing a solution. Such schemes will not be considered.

The finite difference method has been used extensively in the study of the MHD 

equations and has been successful in numerous simulations [1.16].
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Figure 1.1

Universal F versus 0 profile predicted by Taylor’s theory ( top ) together with experi­

mental results ( from Bodin and Newton, 1980 ). Also shown ( bottom ) are the 

toroidal and poloidal field profiles ( from Bodin, 1984 ).



Figure 1.2

Continuum ab ( top ) over which solution is to be obtained is replaced by the discrete 

mesh of points i separated by a mesh spacing of A x. When updating a boundary value 

U 0 ( bottom ), the exterior boundary neighbour U _[ is used.
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Chapter 2

Rectangular Boundaries

The finite difference method as described in section 1.6 will be used to obtain 

numerical solutions to the short time scale evolution equations (1.20) and (1.21). A 

variety of methods solving the same problem will be presented. This is essential for 

cross-referencing purposes since numerically there is usually more than one 

approach in obtaining a solution. As a first step rectangular boundaries will be con­

sidered as this ensures that the finite difference representations remain relatively 

simple at an interface. The task of implementing Neumann type boundary condi­

tions then becomes straight forward. To simplify matters further it is assumed that 

the solutions are independent of the z co-ordinate.

2.1 2D-Solutions

2.1.1 Stream function method

The use of the stream function y  simplifies matters in two ways. Firstly, it reduces 

the number of evolution equations by one and so less effort is needed in coding and 

numerical solutions are obtained more rapidly. Secondly, the stream function is 

defined such that the divergence-free constraint is satisfied automatically.

Consider the solid to be in the form of an infinitely long rectangular cylinder and 

surrounded by a perfectly conducting shell. The evolution equations (1.20) and 

(1.21) are then to be solved subject to the boundary conditions imposed by the



perfectly conducting shell.
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2.1.2 Boundary conditions and their implementation

Before seeking solutions, the boundary conditions must be obtained for B z and \\f . 

Since the solid is assumed to be surrounded by a perfectly conducting shell the nor­

mal component of the magnetic field and the tangential component of the electric 

field must vanish at the interface. It also introduces an additional global constraint 

namely that the axial flux be an invariant of motion.

At an interface n B = 0 \j/ = \jf(t)  only.

Equation (1.19) can be written as :

^ ■ = - E , + C ( 0
dt

In general, the term C is a function of time and corresponds to an electric field. If 

\|/ on the boundary is then kept constant throughout the evolution it can be inter­

preted as a time and space independent axial electric driving field applied at the 

rim. We take this to be constant. This means that a  in (1.21) is then just a driving 

term.

The axial driving field is tangential to the surface of the solid which is of course 

inconsistent with the boundary conditions. In practice the driving field would be 

applied across a poloidal gap in the perfectly conducting shell. But this allows axial 

flux to leave through the gap and hence violate the flux constraint. The incon­

sistency is to be considered as an approximation as we are considering only a
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model. How realistic the model is to an experimental device can only be deter­

mined by the results it produces. This model has also been considered, looking at 

sim ilar evolutions, by others [2.1, 2.2] and has given realistic results and so will be 

used here.

Consider figure 2.1. Using Ohm ’s Law, it can be shown that { Appendix C }, 

nxE  = 0 =>

dBz a  (1 -e )  B z \\f.j
where

dx y /  + Bz 2

a y  ( e v ^2 + s 22 )
 T  — — 0t ---------- ---------- -—
d x 2 + Bz 2

on ad, be and :

dBz a  ( 1 - e )  Bz \j/.y

dy y  2 + B z 2

a y  _ _ n  ( e v ^ c 2 + b 22

on ab and cd.

There are then three boundary conditions to be satisfied at an interface. This was 

to be expected as originally there were three evolution equations, one for each
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component of B. These required a boundary condition to fix each component at an 

interface.

The above conditions define the normal derivatives of the components of B at the 

interface. They can be implemented by introducing fictitious exterior boundary 

neighbours. It should be noted that these boundary conditions allow for currents to 

flow at an interface, ie nxj * 0 on the boundary. Setting e equal to unity in these 

conditions is equivalent to having a current-free interface.

Consider the replacement of the derivatives by central differences. Then at the 

interface ab the difference equations become:

4 a A r 2 ( l - e . ) Bz ( y , +1 -  y , , ,  ) 

( Vi+1 -  y ,_ i )2 + B z2

V;+i - 2 V  + V i-i =
- a A x 2 ( t  ( y i+1 -  V,_! )2 + ( 2 Ax Bz )2 ) 

( (V .+ i -  V i-i )2 + ( 2 A x B z )2 )

from which follows the cubic + P  V,_ [ “ + Q Vi - 1 + -  0

where :

P = e a  Ajc2 - 2  y  -  y,-+1

Q = 2 A x 2 ( 2 B z 2 -  e a V i + i ) + V i+i< 4 ¥  -  V .+ i)
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R = Ax2 ( 4 £ z2 (a A x 2 -  \j/ + \\fi+l) + a e \j //+12 ) + y 1+12 (\|/I+i -  2 \|/)

The subscript i , j  has been dropped for convenience and will be done so where 

necessary.

A real solution of this cubic then gives the unknown exterior boundary neighbour.

A second approach is to replace the second order derivatives by central differences 

and first order ones by forward differences which then gives a much simpler 

expression for the unknown :

a A x 2 ( e P  + Bz 2 )
V i-i = 2 v  -  v , +i -

( P + B  2 )

„ ( 4 V i + i - 3 v - V i + 2 >
where P = --------------------------------

2 Ax

Once the values at exterior boundary neighbours have been calculated, updated 

values can be obtained at all mesh points.

2.1.3 Axial flux conservation

The above method of solution relies on the difference equations being a dose 

enough approximation to the differential equations to ensure axial flux conservation. 

Unfortunately the long time scale nature of the problem causes any small amount 

flux lost after each time step to eventually build to an unacceptable level. We use 

two approaches to overcome the problem.
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The first method involves writing the B z evolution equation in a conservative type 

form as :

dBz a d2B,
d x :

+
3y

+ ( l - e )

where :

U = F & -
OX

V = F ^ -
dy

Then using central differences the evolution equation reduces to :

B n +1 = B z + At
(Bz)m  - ( B z ) + {Bz \ _  i (Bz )J+l - ( B z ) + (Bz ) . 

 .  + ------
A r Ay'

+ ( 1 - e )
Uu\  ~ Ui 

2 Ax
+

V- , -  V-./ + ! )■

2 Ay

Define the flux locally as

A £ A v ( (g^  + ( b 2)i+] j + (B, , )

The total axial flux is then
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nx- 1 ny- l
o= x  E

i = l  7=1

where /ix and /iy are the number of mesh points along x  and y  respectively.

Summing the B z difference equation as defined by the total axial flux gives an 

expression { Appendix B } for the flux at the advanced time :

0 „ +1 = At At  Ay  

4

I  - T I  i  - ( ( S Z)2  -  ( S z ) o )  +  ( B z ) m + 1 -  ( B z ) m - l
l  a x  j=1

o m- 1
+ - h  X  -  ( (Bz h  -  (Bz )o ) + (Bz )n +1 -  (*z )„-! 

Ayz i=i

+ E  _ (U2 + 2 ( J 1 +(yf0 ) + (Um + 1 + + U m-1 )
^  7 = 1

+  s ’ ^  +  2 v ,  +  V0 ) + ( V„+1 + 2 V„ + l / „ _ , )
A* ;=l

These terms can be interpreted as the excess flux, incurred by discretisation, cross­

ing the boundary as interior to the boundary all excess flux has cancelled between 

pairs o f adjacent mesh points.
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Now consider the solution of the following PDE :

bU  = bHj_ bU_
31 d x 2 dx

satisfying U (x  = 0 )  = U (x  =L  ) = 0 for all t.

The boundary condition can be implemented simply by setting U equal to zero at 

the interface at each time step.

A second method is to use exterior boundary neighbours. When calculating the 

first term the exterior value of U is chosen such that the first term vanishes. Simi­

larly for the second term. This approach provides the difference equation with the 

correct boundary information and takes the form of gradients.

With this in mind Bz on the boundary is calculated such that the above terms, aris­

ing from summation of the Bz difference equation, vanish. The axial flux then 

remains an invariant of motion.

Here the Bz difference equation is being input the correct information, namely that 

the net flux across the interface is zero, and takes the form of gradients. This is of 

course consistent with the boundary conditions.

The second method is a much simpler approach than the first and involves a simple 

scaling. Consider the Bz equation in the form

3B f - dw d f  b\if bF 1

i r  = VB‘ +( , ^ T vV + ^ a T + *  3 7 /
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At the advanced time the new flux will be slightly different from the preceding 

time. To obtain the correct flux the values of B z at each mesh point are incre­

mented by the same amount (3 say. If there are nx and ny mesh points along the 

horizontal and vertical mesh lines respectively then we must have :

O n + l _ Ax Av n x -1 nv-1
£  £  ( ( * z ) , /  + (*z) i+1/  + ^ z ) i J + l n +  {Bz ) l+hj  + ln + 4 ( 3 )
i=i j =l

Therefore scaling by :

= Q"+i -  <y

Ax Ay ( n x - l ) ( n y - l )

will ensure flux conservation. Since this method scales all mesh points, including 

the exterior boundary neighbours, the gradients in B z are in no way altered and so 

the scaling can be considered as a correction to the difference equation incurred by 

discretisation. Both of the above methods will be implemented.

Solutions to the short time scale evolution equations can now be obtained for differ­

ing values of a  and a suitable choice of e. The most desirable value to choose for e 

is the smallest, but non-zero to ensure evolution on the long time scale, that is pos­

sible. The accuracy of the numerical algorithm then determines the minimum choice 

of e.



We next present a few simple solutions, equilibrium profiles, in order to compare 

the various methods discussed so far. Consider a square cross-section represented 

by 1 0 x 1 0  mesh-points. The values chosen for e and a  are lO-2 and 1.0 respec­

tively.

Figures 2.2 and 2.3 show the B z and \|/ profiles when axial flux conservation is 

achieved using a conservative scheme. Figure 2.2 is the solution obtained when 

solving a cubic for the exterior boundary neighbour as opposed to the simple 

method of using forward or backward difference formulae as is represented in fig­

ure 2.3. There is of course complete agreement. This then justifies the use of the 

simple approach over the cubic method. Using the simple method, a relaxed state 

has been obtained when a simple scaling is used to conserve flux. The profiles are 

presented in figure 2.4 and they show a slight disagreement. The conservative 

scheme is then to be preferred over the simple scaling.

2.1.4 Solution in terms of the components of B

Solutions in 3D will incorporate all three components of the magnetic field and so 

it is worth seeking solutions using the components in 2D. Such solutions can then 

be compared to those obtained using the stream function and if agreement exists the 

methods involved will hopefully be extendable to 3D.

The short time scale evolution equations to be solved are
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^By I dF ^ B z

2.1.5 Boundary conditions

The boundary conditions written in terms of the components rather than \\f become :

dBz - a ( l - e )  By B z

dx By 2 + B: 2

dBy

dx

a  ( e By 2 + Bz 2 ) 

By 2 + Bz 2

on ad, be and :

dBz a  (1-e) Bx Bz 

dy ~ Bx 2 + Bz 2
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dBx - a  ( e Bx 2 + 5 Z2 )

d y  b x 2 +  b 2

on ab and dc.

These can be implemented by replacing derivatives with central differences giving 

expressions for the unknown values at exterior boundary neighbours. Axial flux 

conservation can be achieved as in the stream function case and the only problem is 

ensuring that B remains divergence-free.

2.1.6 Satisfying the divergence-free constraint

In the analytic solutions of problems involving the divergence-free constraint, the 

initial state of B is chosen to be divergence-free and the induction equation (1.3) 

ensures that B remains so for subsequent times. The discretisation errors associated 

with the finite difference method cannot ensure that B remains divergence-free for 

all time steps. The constraint is no longer an initial condition and has to be imposed 

at each time step.

Two methods of ensuring that the constraint remains satisfied are presented.

The first method involves the use V B = 0 itself. Initially Bx , By and B z are 

known at all mesh points from the initial conditions. At the advanced time step Bx 

and B z are updated using the evolution equations but By is obtained using V B = 0 

in the following way. We want



dBx dB

dx dy
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     +
Av

Consider point p ( figure 2.5 ). At the new time step Bx has been calculated at all 

mesh points and on ab the normal component of B, B y , is zero. Therefore Bv at 

point q can be calculated using the divergence-free constraint. Once B y at q is 

known it can be used, by considering point p2, to update By at q2. Similarly By at 

all alternate mesh points can be calculated. This process can then be repeated from 

dc to ab assuming an even number of mesh points. The updated By values are then 

known at all mesh points except the two boundaries ad and be. These can be 

obtained using the By evolution equation.

At the next time step Bx is then obtained using V B = 0 and By and B z are 

obtained using the evolution equations. If this cycle is then repeated the magnetic 

field remains divergence-free.

Here one of the difference equations is being compromised in favour of the 

divergence-free constraint. The process can be considered as a correction to the 

discretisation error, inherent in the evolution equation, by the divergence-free con­

straint.

The second and much simpler method uses the symmetry properties of the differ­

ence form of mixed derivatives and involves writing the Bx and By evolution equa­

tions as :

dBx a dBx d2B y 3

“ a T = 37 ^ ~ d i  , "  a ^ “ (1" e) ~f y( F B z }



We then want to ensure

3B*
dx

+
dBy

dy
= 0

in difference form use the following representations

dB_ ( B i+1 -  )

dx  2Ax

_d_
dx

dB
dx

( Bj+ 2 ~ + Bj-2 )

4 Ax 2

d2B ( Bj+i.j+i ~ ~ + B j - l.y-i )
5a: 5y 4 Ax Ay

It can then be shown { Appendix D ) that irrespective of discretisation errors V B

is always zero, provided the evolution equations are used to update values at the

four nearest neighbours. This will lead to problems at interior boundary neighbours

as n B is used to assign values on the boundary. For the above case, and in general 

when Cartesian co-ordinates are used, it can be shown { Appendix D } that the 

problem does not arise.
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Both of the above methods have been considered and as before we present a few 

simple relaxed profiles.

Figures 2.6 and 2.7 show the results obtained when a conservative scheme is used. 

Figure 2.6 is that obtained when V B  = 0 itself is used to satisfy the V B = 0 con­

straint. They show good agreement with each other and when compared to the \|/ 

case there is complete agreement between figure 2.3 and 2.7. W riting the evolution 

equations such that V-B = 0 is satisfied automatically is then the most accurate way 

of satisfying the divergence-free constraint. Using this method and achieving flux 

conservation using a scaling gives the results shown in figure 2.8. This method also 

gives very similar results.

All results presented so far have assumed finite currents flow at an interface. When 

considering a current-free surface, all codes except one become numerically 

unstable. The only code to acceptable is that incorporating all the components of 

the magnetic field and where the divergence-free constraint is used to satisfy the 

constraint itself. This then highlights the importance of considering as many 

approaches as possible when obtaining numerical solutions.

2,2 3D-Solutions

Consider the solid to be in the form of a rectangular cylinder of axial length L and 

surrounded by a perfectly conducting shell. In 3D there are several ways of driv­

ing the system. The simplest is to apply the axial driving field across the full length 

of the rim. In such a case, the initial state of B must be chosen to have a z depen­

dence ( non-axisymmetric ). Otherwise the solution at all time steps will be axially 

independent ( axisymmetric ) and the final solution will always be the same as that 

obtained in the 2D case.
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A second and more realistic model would involve the introduction of one or more 

poloidal gaps at suitable points on the boundary. The driving field would then be 

applied across these gaps. The variation along the axial length of the boundary 

then allows the system to seek out non-axisymmetric solutions. A simple axisym- 

metric B state can then be chosen as an initial condition.

Both of these models will be considered.

The derivative boundary conditions turn out to be the same as the 2D case for 

boundaries normal to the cross section. This is hardly surprising as the geometry of 

the boundary is independent of z. Along the length of the cylinder periodic boun­

dary conditions will be used :

K( z0 - d z )  = B ( L - d z )

The methods used to ensure V B = 0 in 2D are directly extendable to 3D.

For the first method the evolution equations are written as :



- 41 -

dBz _  d2B z d2Bx d2B,

dt d x 2 d y 2 dxdz dydz

_  ( i _ e) { A  ( FBy j _ j _  ( F B x )

The V B = 0 constraint is satisfied using the constraint itself.

It should be noted that the term d2Bz I d z 2 has been replaced by mixed derivatives, 

using V B  = 0, in the B z evolution equation. This is necessary to ensure axial flux 

conservation as the term d2B z I d z 2 would give contributions to the flux interior to 

the boundary.

In the second method the evolution equations are written as :

dBx _  d_ dBx d dBx d2Bz

dt dy dz dz fix  d y dxdz

-  ( i - e )  i  < FB>

d B y _a_
dx

dBy

dx
+

dz

dBy

dz

d2B r d2B ,

dx dy dy dz
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dBz _  _a_ ' dBz d dBz dZBx d2Bv
dt dx dx dy f dx dz dy dz

-  ( 1 - e )  {
If the difference representations are chosen as in the 2D case then again it can be 

shown { Appendix D } that irrespective of discretisation errors V B = 0 is always 

satisfied.
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Figure 2.1

Co-ordinate system used when the rectangular region abed is discretised.
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Figure 2.2

Contours of Bz and y  when axial flux is conserved using a conservative scheme. Exte­

rior boundary neighbours were obtained by using forward or backward difference for­

mulae.
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Figure 2.3

Contours of Bz and y  when axial flux is conserved using a conservative scheme. Exte­

rior boundary neighbours were obtained by solving a cubic.
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Contours of Bz and \\f when axial flux is conserved by a simple scaling of Bz
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Figure 2.5

The divergence-frce constraint is used to update By at the alternate mesh points q 

since By on ab is zero. The process is repeated from dc to a b . The value of By is 

then known at all mesh points except along ad and be which are obtained using the 

By evolution equation.



Contours o f B t Bx and By when the divergence-free constraint is used to satisfy the 

constraint itself. Flux is conserved using a conservative scheme.
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Contours o f B t Bx and By when the divergence-free constraint is satisfied automati­

cally. Flux is conserved using a conservative scheme.
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Contours o f B z Bx and By when the divergence-free constraint is satisfied automati­

cally. Flux is conserved by a simple scaling o f B t .
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Chapter 3

2D-Curved Boundaries

All existing plasm a containm ent devices possess a non-rectangular cross-section. 

These include the sim ple circle, the D-shape and the m ore elaborate m ultipinch. So 

it is essential to develop a code which will obtain solutions across an arbitrary 

cross-section.

There are tw o approaches to finding solutions to PD E ’s w hen arbitrary curved 

boundaries are involved. One approach is to use a co-ordinate system  in which the 

co-ordinate curves conform  to the boundary. In this case the difference formulae 

interior to the boundary can be imm ensely com plicated and m ay give rise to singu­

larity problem s but N eum ann type boundary conditions are very sim ple to im ple­

ment. The second approach is to use Cartesians w hich ensure that the difference 

form ulae in terior to the boundary rem ain relatively sim ple but the boundary condi­

tions are m uch m ore difficult to implement. The latter approach w ill be used here.

In w hat fo llow s all the com ponents o f the m agnetic field will be used and solutions 

using the stream  function will not be considered. This is because going into 3D will 

involve all the com ponents o f B and so it w ill m erely be a problem  o f extending 

the 2D Code. As in the rectangular boundary case the solutions are assum ed to be 

independent in the z co-ordinate.
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C onsider the solid to be in the form  o f an infinitely long cylinder possessing a 

non-rectangular cross-section and surrounded by a perfectly conducting shell ( fig­

ure 3.1 ). The system  is driven as previously and the boundary conditions are 

obtained as before i.e. by dem anding that n-B and n x E  vanish at the boundary.

C onsider figure 3.1. At the interface :

B„ = 0

E, = 0

E z =  CONSTANT = C

or :

B x cosp  + By sinp = 0 

Ex sinP -  Ey cosp =  0 

E z -  C

A fter substituting for the com ponents o f E , using O hm ’s Law, the follow ing condi­

tions { A ppendix C } are obtained

dBz dB z a  B y B z ( e -1 ) (1+T2)

dx  + T  dy B y 2 (1+T 2) + B Z2
(3.1)



w here T  = tanp

The first condition expresses the norm al derivative o f B z and the second takes the 

form  o f the norm al derivative o f the tangential com ponent.

3.2 Im plem entation o f the boundary conditions

In the case o f curved boundaries then, the derivatives o f Bx and B y at the interface 

are coupled and the m ethod o f using exterior boundary neighbours becom es 

im m ensely difficult as this introduces two unknowns. One way o f overcom ing such 

a problem  involves taking forw ard or backw ard derivatives into the solid with 

respect to the boundary. This then gives difference form ulae in term s o f the unk­

now n boundary values and the know n values interior to the boundary w hich can be 

obtained using the evolution equations.

C onsider point p ( figure 3.2 ). The derivatives, at p, can be replaced by second 

order difference form ulae which can be w ritten in term s o f values on and interior to 

the boundary, as :

d U  _ h i  (URV- U p ) - h l  (UQX- U p ) 

dx h lh 2( h i - h 2)
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dU  _  8 \  ( U r 2~ U p ) ~ 8 2  ( U q i~ U p )
dy g i g i ( g  1S 2)

M aking such replacem ents in (3.1) and (3.2) and substituting for B x from  (3.3) 

leads to :

where B z and B y are the unknow n boundary values and

a = ( h l - h 2 ) ( g i  + g 2 ) [ g i 8 2 ( h i + h 2 ) + h i h 2 T  ( S 2 “ £ i ) ]  + D E N

b = [ g \ g i ( g \ - g i ) ( b x Y R l - h l Y Q l )

p  = a

Q = I g l g 2 ( g l ~ g 2 '>(f l \ Z R i ~ h 2 Z q 0

p  B z +<i =
a  B y B2 (e -1 ) (1+r2) 

B y 2 (1+ T 2) + B 2

a B v +  b =
a  ( e  B y 2 (1 +T2) + B z2 ) 

B y 2 ( l+ T 2) + B 2
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+ h l h 2 T  ( h l - h 2 ) ( g ? Z R2 - g l Z Q2 )] + D E N

D E N  = h l h 2 g l g 2 ( h l - h 2 ) ( g l - g 2 )

Now set B y = m  B z to give

„  ^  m ( e - l ) ( l + r 2)p  B z +  q = a
( l+m2(l+r2) )

a m B z + b = a ( ± * n h h I h ±  
( l+m2(l+r2) )

Elim inating B z results in the rem arkably simple expression

b - a  
m  = ---------

Q

This solution o f m  then gives the com ponents o f B on the boundary. Such a choice 

will ensure that the boundary conditions are satisfied at each tim e-step.
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For the rectangular cross section case, the Bz  difference equation was written such 

that its sum , as defined by the total axial flux, produced a zero excess flux interior 

to the boundary. The summ ation was straight forw ard along the boundaries and 

sim ple expressions for the excess flux crossing the interface were obtained. In the 

case o f curved boundaries the problem  is m ade difficult due to the varying sum m a­

tion lim its and a summ ation along the boundary is in general impossible. The fo l­

low ing is a generalisation o f the m ethod used for the rectangular case to arbitrary 

cross-sections.

C onsider the solution o f the following PDE :

du

given the follow ing global constraint :

f u d s  = CONSTANT
S

Then referring to figure 3.3 :

. n + 1 _= +  dt  g " j

m £ +1 = ug + dt gg
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The flux for the elem ents of area can be written as

= 7  A* ( « r ‘ + + ug$ + u rju  >

On +  1 _  _L A (  u n +  l  . j«+l  i , . n  + 1 , j . n  +  l  \l + l/n ~ K Ui,j + Ui+\,j +  Ui,j+\ +  ui+l,j+l )

® / + l l » i + l  “  ( u/!/+l +  “ i + l j ’+ l  + uPj+2 +  “ iv ij+ 2  )

Substituting for the advanced time step values gives :

^ " m 1 =  +  7  A t *  ( g s  + Si.j + 8b* 1 +  s f j+ i  )

+  7 - 4  *  ( * /" > !  +  S i V l  +  « / j + l  +  ' >

® / S h  = + 7 -4 *  dt  ( t f +1 +  ft"J+I +  gS*2 +  gi,j*2 )

<̂ >/+ i lm  + l ~ (t >/ + l , m + l  +  7 -4 dt  ( SiJ+l  +  8MJ+1  +  8i,j+ 2 +  g i + l , y + 2  )
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Now sum  these four fluxes and consider only terms arising along the bk+i horizon­

tal m esh line.

Suppose the net flux after sum m ation over points interior to the interior boundary 

neighbours along the m esh line being considered is :

— dt A f n 4

The total excess flux obtained for the LHS o f the boundary at the advanced time 

step will then be :

A f n +  2 A ( g*j+i +  g*+\j+\ ) +  ( A k +  A k+i ) ( gb+i +  gij+i  )

If this is set equal to zero, sim ilarly for the RHS, the axial flux w ill rem ain an 

invariant o f m otion.

R eferring to figure 3.4 the above term  can be written as :

2 A  ( f  +  £ i  +  g 2 ) +  ( / i i + / * o ) ( £ i  +  £& )
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Substituting for gb into the evolution equation then gives the updated boundary 

value :

u g +l = ug -  ( g l  ( A l + A 0 + 2 A )  + 2 A  + g $ ) )
A  j + A q

choosing such a value will ensure axial flux conservation.

The divergence-free constraint can be satisfied as in the previous chapter.

A code incorporating the above m ethods can be used to find solutions over a 

variety  o f well known cross-sections.



Figure 3.1

Section of arbitrary boundary showing how the direction of the normal and tangential 
components of B are defined.



h i

-R2-

Figure 3.2

Derivatives at point p are replaced by difference formulae involving values on and 
interior to the boundary. This is useful when the boundary conditions couple the 
derivatives of B at the interface as it involves only one unknown-the boundary value.



b+ r

Figure 3.3

The conservative scheme used to ensure axial flux conservation in the rectangular case 
is generalised to arbitrary cross-sections.

b

Figure 3.4

The unknown boundary value of Bt at b is updated in such a way that ensures flux 
conservation.
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Chapter 4

Toroidal Effects

The m ost prom ising type o f plasm a containm ent devices have toroidal geometries. 

It is therefore essential to consider solutions in toroids and to see what difference 

the curvature m akes on solutions obtained in the rectangular case.

4.1 2D Solutions

C onsider the solid to be in the form  o f a toroid whose cross-section is rectangular. 

The solid is surrounded by a perfectly conducting shell and is driven by a constant 

toroidal electric field  applied at the rim.

Solutions using the stream  function and com ponents w ill be sought when there is 

no $ dependence.

4.1.1 Stream  function m ethod

R eferring to figure 4.1 the toroidal co-ordinate system , ( x, y, <(> ) can be defined, 

using the C artesians ( X , Y, Z ), by the follow ing transform ations :
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Y = ( R 0 + y  )cos({) = R cos(j)

Z  = ( R 0 + \ f ) sin<J) = R  sin({)

A sim ple calculation yields the following scale factors

hx = hy = 1 and h ()= R

The divergence-free constraint can be written as

This suggests defining the stream  function as :

In term s o f \|/ and B  a the evolution equations reduce to :



where

F  =

1 - 2 B  - 2 ^  J 2 B * dx

(VV)2 + (R B r f

The B ^ evolution equation has been written in a conservative type form  in order to 

ensure flux conservation.

4.1.2 B oundary conditions and their im plem entation

The boundary conditions for toroidal boundaries are altered due to the curvature as 

are the evolution equations. It has been shown that they can be written in terms of 

\|/ as :

dx  [ R dx  J xj/2 +  ( R  b ^ 2

on ad, be and
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dy
= a  R  ( 1 - e )

V;* + (R B(,Y

(ev|/.^ + ( R  B 6 )2 )
— = - a  R ------- ^ ------------------
d y 2 V 2 + ( R B<I)2

on ab and cd.

T hese can be im plem ented as previously by using central and forw ard or backward 

difference representations. Flux conservation is assured as in previous m ethods.

4.1.3 Solution Using C om ponents

The evolution equations in term s o f the com ponents o f B take on the form  :

dB Bx
= v  - T T - O - e J lR Ldt

a f
dy

+ F
d B t

dy

dBy

“ a ?
= V *5v + i i - i i  «

R

dF dB t
f b ^ + f b , - + r f  —

^  = v *s 0 + l -  4rdt  v dx R

, n* _  a 2 a2 i aw here V = — -  + — -  +  —  —  
dx dy R dx



- 56 -

To satisfy the divergence-free condition autom atically, they can be written as

dBx

dt
d_

dy

dBx

dy

d2B 0

dBy

“ a ?
_L _a_
R dx

R
dBy

dx
± J L
R dx

R
dBx

dy

dB (■

“ a7
d2B^ d2B , 6_ a
d x 2 d y 2 dx

4.1.4 B oundary conditions

In term s o f com ponents the boundary conditions take on the form

dBy _  ( z B y + B% )

dx ( B y2 + B $  )

a b  b ^
- f i R B ^ ^ a R  ( e - 1 ) ,  .
dx ( B ?  +  B i  )

Bx =  0
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9B x ( e B x +  B% )
——  = -  a   -------  —

dB  (D

dy

By = 0

on ab and cd.

These can be im plem ented using central difference form ulae and axial flux conser­

vation is achieved as previously.

The evolution equations have been written such that V B  = 0  is satisfied autom ati­

cally. As stated previously this will be true provided points adjacent to the point 

being considered are calculated using the evolution equations. This is not the case 

when calculating updated values at interior boundary neighbours as the boundary 

condition n-B = 0 is used to assign values at the boundary. It has been shown that 

such a problem  does not arise when considering Cartesian co-ordinates but in 

toroidal co-ordinates a non vanishing term  arises { A ppendix D }. The problem  can 

be overcom e by using the divergence-free constraint itse lf as in section 2.1.6.
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C onsider a toroidal container whose cross-section is rectangular and is surrounded 

by a perfectly  conducting shell. The system  is driven by a constant toroidal electric 

field  applied throughout the rim  as a first case and across poloidal gaps in the 

second. The evolution equations can be written as :

dB Bx 2 d B .

dt R 2 R 2 3<})

dF B

dy dy
dF
3<j)

F_
R

dBy

d§

dBy

~ d t
= V*B,

+ ( 1-e)
R

dF
F B * + F B >irx

+ R F
d B t

dx
dF
3(})

-  F
dBx

3(j>

d B {)

“ aT

d2B t

d x 2

d2B {j, 3 _ _a_ dBx _1_
+  ----- +  T ”

3y dx dx R 3<J) R

d2B ,

R d y d§



A lternatively, to satisfy V B = 0 autom atically, they can be written as

a dBx d2By 1 a dBx i P m  6)
dt  dy

> dy dydx + R 2 3(t) 3(J> 2 a^a*

-  (1-e) {

a By

17
_L A
r 2 a<j>

dB,

 ̂ 3(f)
1 ^ 1  + -L A
5  dtydy + R  dx

R-
dBy

dx

i t>2m x ) 

R dx d y

(1-e)
R

d B t

17
_a_
dx

*
i a „  „ x a 35 6 _ _ a _ 1 35x

+ ay V 3.x R  3(j)

d2B ,1
5  dyd( j)

-  ( 1 “ e )  1 T x { F B > )  -  t * ( F B *  ]

The problem  o f axial flux conservation can be overcom e as in previous sections.
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The boundary condidons are no different to the 2D case and are im plem ented as 

before.

A t in terior boundary neighbours the m agnetic field  is not divergence-free and the 

problem  can be overcom e as in the previous section.

In the next chapter we present some o f the interesting results obtained using the 

suite o f  codes written.



Y

Figure 4.1

Co-ordinate system used for toroidal calculations.
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Chapter 5

Results and Conclusions

In this chapter we com pare results produced by the present theory with experim en­

tal data, T ay lo r’s theory and sim ulations carried out by others.

As w as m entioned in in chapter (2) a suitable e m ust be chosen. This is the sm al­

lest possible e and is therefore determ ined by the accuracy o f the num erical 

scheme. F igure 5.1 shows the time developm ent o f I jxB lmax for dim inishing values 

o f epsilon. In each run the same initial configuration is chosen which is far from 

force-free i.e. I jx B  lmax( f  = 0 )  = 513.3. The relaxation tim e i.e. the time taken to 

reach a stationary state has been norm alised to unity and the results are presented 

ju st after I jxB I max falls below  unity. The results correspond to a square cross- 

section represented by 10x10 m esh points. The two time scales associated with the 

parallel and perpendicular conductivities are clearly visible. In each case there is a 

rapid equilibration to a force-free field, I jxB I —» O ( e ) ,  after which there is a 

m uch slow er evolution through a sequence o f force-free equilibria. In each case the 

final state is force-free to O (8) .

Before presenting any results, a few  im portant points should be highlighted about 

the value o f jx B  at a boundary. This is im portant as we have considered boundary 

conditions w hich do not allow tangential electric fields and yet we have an exter­

nally applied tangential driving field. H aving a tangential electric field is incon­

sistent with the force-free constraint and we m ust therefore understand the effect the 

inconsistency has on the constraint. Consider a rectangular cross-section and a 

boundary w here Bx =  0 as in chapter (2). On this boundary :
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dBz _  a ( t - \ ) B y Bz dBy a ( e B y 2 + B 2 )

5x B 2 + B 2 ' dx  ~ B 2 +  B 2

and

jx B  = - B ,
dx

- B
dBy

y dx

dBz

dy
, B

dBz 

y dx

Substitution then gives :

jx B  = - a z B y B z , - B ,
dBz

dy
, B y

dBz

dy

B ecause B z = B z ( \j /) and \\f is constant on the boundary, all the above term s are 

O ( e ). The force-free constraint is thus satisfied, to the required order, at an in ter­

face. This is assum ing that currents are allow ed to flow at the boundary. If 

n x j = 0, then :

jx B  = - a By , - B 2
dBz

dy

dBz

dy

From  the first com ponent it is clear that the driving term  must be chosen suffi­

ciently  sm all in order to ensure that the force-free constraint rem ains satisfied, to 

the requ ired  order, at an interface.

The inconsistency introduced by the driving field is therefore seen to have little 

effect on the force-free nature o f the evolution. This is essentially because the
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force-free condition needs to be zero only to order e and having a suitably chosen 

driving field  does not violate this condition. For high values o f driving field 

I jxB lmax, at the boundary, is found to drift from  O ( e )  as expected.

The inconsistency has im portant consequences when considering force-free solu­

tions to the M HD equations directly. Since the solutions m ust be exactly force-free, 

rather than to a certain order, no solutions can be obtained. The problem  can only 

be overcom e by relaxing the force-free constraint or by using a different set of 

boundary conditions.

W e next present som e results obtained for the 2D case.

2D-Solutions

Consider a square cross-section represented by 10 x 10 m esh points. The value o f 8 

is chosen to be 10-2 , unless stated, for every result. The results are for the case 

w hen there are no surface currents.

As stated in (1.5), experim ental data is sometim es represented by F - 0  diagrams, 

where :

B 2 o  IZ
F  = — and 0 =

< B Z> < B Z>GL

Iz is the total axial current, 3 Z0 is the value o f the axial field at the boundary,

< B Z> is the average axial field across the cross-section and 0. is ju st the total

length o f the boundary. The 0 param eter is defined such that it reduces to the one

which is usually  considered for circular cross-sections involving the value o f the
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poloidal field at the boundary. It should be noted that F <0 indicates a field reversal 

at the boundary.

Since there are no experim ental devices possessing square cross-sections a quantita­

tive com parison with experim ent cannot be m ade. But results can be com pared with 

T ay lo r’s theory and qualitative features o f experim ental data. Figure 5.2 shows the 

locus o f relaxed states obtained by varying the axial flux and by considering three 

different values o f driving field ( a  = 0.1, 0.3 and 0.5 ) as indicated by the three 

d ifferent sym bols. The result predicted by T ay lor’s theory [5.1] is also shown. As 

can be seen all relaxed states lie on a single universal curve which is in agreem ent 

w ith T ay lo r’s theory. This universal nature is also found experim entally ( figure 1.1 

) [1.11] albeit for circular cross-section devices. A nother im portant result predicted 

by the experim ental F - Q  diagram  is the point at which the m agnetic field direction 

at the boundary reverses. Field reversal is predicted, by the present theory, to take 

place at 0 = 2.0 which can be com pared w ith that predicted by T ay lor’s [5.1] 

theory o f  0 = 1.2. The results can also be com pared with a recent sim ulation per­

form ed by K irby [5.2] shown in figure 5.2b. This result agrees well with the 

present theory though the results are for circular cross-sections. The discrepancy 

with experim ental data has been attributed [5.2] to the unrealistic approxim ation o f 

constant resistivity. Choosing a structured resistivity, consistent with experim ental 

data, gives a m uch m ore accurate profile as is also shown in figure 5.2b. The 

present theory is, o f course, only , valid  for a constant resistivity and so results 

predicted  by a structured resistivity cannot be generated.

The relaxed  profiles corresponding to F  < 0 are those arising in Reversed Field 

Pinches ( RFP ) [1.2] and the others arise in Tokam aks [1.2]. Since RFP states are 

obtained, the generation o f field reversal can thus be attributed purely to a non­

linear diffusive process.
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In T ay lor’s theory the solution to VxB = pB  gives the relaxed profile for m inim um  

p. which corresponds to m inim um  energy. There is in fact a sim ple relation between 

p and 0. For rectangular cross-sections, o f dim ension a b , it is easy to show that

The pinch param eter is thus proportional to (I. This then im plies a universal relation 

for a 0 versus  p. and thus F  versus p  plot. In the present theory \i is not a con­

stant, over the cross-section S, and can be defined as an average <|J>y (Adhere

Typical profiles o f p. are shown in figure 5 . Z c  and should be com pared to those 

obtained by K irby [5.2] and experim ent as shown in figure 5.2d.

Figures 5.3 and 5.4 show a plot o f F  versus <p> and 0 versus  <p> together with 

the results predicted by T ay lor’s theory. Once again universal profiles are gen­

erated. It should be noted that 0 varies linearly with <p> only for small 0. It can 

also be seen that there is an upper lim it on <p>. This is also the case in Taylor’s 

theory [5.1] where p ^  = 6.8 and 0max = 1.7. The present theory does not predict 

an upper lim it on 0.

A nother pair o f universal curves can be obtained by plotting <jz >/a versus  0 or p 

as in figures 5.5 and 5.6. They show that the toroidal current, at constant 0 or <p>, 

is proportional to the externally applied driving field. They also predict a lim it on 

the toroidal current for a fixed value o f a .

e = iL s A
2 a +b
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It can be seen from  m ost plots that there appears to be a region along which no 

data points have been obtained. W hy this is so can be seen by plotting < j z > /a  

versus <b/a, ( d> = axial flux ), as in Figure 5.7. For a fixed driving field, the 

toroidal current initially rises for an increase in axial flux, reaches a m axim um  and 

then begins to decrease. The toroidal flux then reaches a critical value at which 

there is a sudden drop in toroidal current. This then reveals equilibrium  states 

which are inaccessible by the plasma. In other words there exists a value o f toroidal 

flux, for a fixed a ,  at which the final states are unstable and which may result in a 

sudden drop or sudden rise in the toroidal current. The plot also shows the 

existence o f states which have a different axial flux but the same amount o f toroidal 

current. It can also be concluded that about the critical value o f flux the are two 

m odes at w hich the system  can operate. The first corresponding to the low current 

and the second to the high one. This low er and upper stable current operation is 

also found in Tokam ak experim ents [5.3] where a disruptive instability causes a 

rapid  drop in the toroidal current. Figure 5.7b shows the time developm ent o f the 

axial current, F  and 0 for a case where the current actually rises. Initially, the driv­

ing field  gives rise to an axial current which increases until it reaches a constant 

value. It rem ains constant and then rapidly rises. It should be noted that we have 

been considering the toroidal current rather than the total current. This is because it 

is the toroidal com ponent that yields universal profiles. Although it appears that it 

is only the toroidal current which m ay rapidly rise or fall it is in fact true that the 

total current behaves in the same way. In figure 5.7c we have shown how the total 

current varies with the axial flux. The plot is virtually identical to figure 5.7 except 

that here there is a contribution from  the poloidal current. The poloidal current is, 

o f course, not large enough to cause a vertical shift which could rem ove the ’sud­

den d ro p ’ region.

An im portant param eter in instability theory is the q  value. W e initially considered 

an average defined by
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W e have placed the axial com ponent as the denom inator because both B x and By 

being zero at the com ers w ould cause singularity problem s. A plot of 

< q >  versus  O /a  is found to give a universal curve as is shown in figure 5.7d. W e 

next defined it the traditional way as

The rapid rise or fall o f the toroidal current is feature o f toroidal discharges that is 

not predicted by T ay lo r’s theory. Here j z = |i B z and so I z = p<X>. The axial current, 

at fixed axial flux, is thus proportional to p  which is assum ed to be continuous. In 

the present theory p. is not a constant. The axial current is then, after integrating by 

parts,

w here r 1 = x 2 + y 2 . This definition also gives a universal curve as is shown in fig­

ure 5.7e.

5 = 0

s - A

This result, for non-constant p , is clearly different from  T aylor’s case.
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A nother pair o f interesting curves are obtained by plotting the plasm a m agnetic 

energy E  versus  O  and <jz > versus E  as in figures 5.9 and 5.10. From figure 5.9 

it can be concluded that the energy is not a continuous function o f axial flux. A bout 

the critical value o f axial flux there exist different states having the same energy i.e. 

there ex ist degenerate states.

It can also be seen from  the universal curves that if a value o f one plotted param e­

ter is given then the equilibrium  state is com pletely defined. From  Figure 5.7 it can 

be concluded that if the toroidal flux and the driving field are given then the final 

state is uniquely determ ined. These two quantities are prescribed as an initial condi­

tion and so the final state depends only on the initial values of O  and a . In 

T ay lo r’s theory the final state o f a plasm a is uniquely determ ined once the toroidal 

flux and the global helicity are given. But the helicity, at constant toroidal flux, is 

p roportional to the volt-seconds stored in the discharge [5.4]. So once the volt- 

seconds, w hich is the driving term, and the toroidal flux are given the final state 

can be determ ined. The present theory agrees well w ith this prediction.

In figures 5.10 and 5.11 we show the tim e developm ent o f F  and 0 for which the 

relaxed state corresponds to a tokam ak and RFP profile. The corresponding equili­

brium  profiles are shown in figures 5.12 and 5.13. These should be com pared with 

those show n in figure 1.1. The time developm ent o f F  and 0 as obtained by Kirby 

[5.2] are show n in figure 5.11b.

The results presented so far are those for a square cross-section. For a 1x2 rectan­

gle, sim ilar results are obtained. Figure 5.14 shows the F - 0  plot together with the 

result predicted  by T ay lor’s theory. As can be seen, the profile is very sim ilar to the 

square case and there is only a slight difference in the field reversal values. This 

insignificant dependence agrees well w ith T ay lor’s theory.
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W hen considering the m odel where surface currents are allow ed to flow, there is a 

considerable difference in the results. Figure 5.15 shows the F  —0 profile for a 

square cross-section. Once again, a universal curve is produced and for small 0 the 

profile is very sim ilar to that predicted by T aylor’s theory. But the im portant differ­

ence is that no reversed field configurations are generated. This m odel is very sim i­

lar to the force-free param agnetic m odel ( FFPM  ) [5.5, 1.11], the results o f which 

are shown in figure 5.16.

In the first m odel the derivative boundary conditions were obtained by dem anding 

that n x E  vanish and O hm ’s Law  was used to achieve this. No constraint was 

placed on the currents at the boundary. Consider O hm ’s Law  :

E = a F B  + b j

then, for force-free fields

jx E  -  a F  jx B  = 0 => E  ^  j

It then follows that if  n x E  vanishes at an interface then so does n x j. W e would 

then expect equilibrium  profiles to be sim ilar to the case where we im pose n x j = 0 

directly rather than n x E  = 0. This is clearly not the case. The reason why this is 

not so can be seen by noting that jx B  is zero only to order e. But this term  contains 

the contribution from  the driving field. Therefore, a change in the driving field may 

only cause variations in n x E  and n x j o f order 8 but the global solution changes 

considerably.

In the current-free case a constant j z was used as the driver and Ey and Ez were 

able to exist ( order e ). In the other case a constant Ez was the driver and j y and 

j z w ere able to exist ( again order e ). It is also possible to have j y vanish and have
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a constant E2 as the driver. The boundary conditions, where Bx vanishes, then turn 

out to be :

dBy a. (By + S z2 )  9B Z
—  =  r  —  and — —  = 0 where a  = a, C

ox B y2 + z B 2 dx 1

This m odel is found to give unacceptable results. No universal profiles are

generated for instance. Results for this m odel will thus not be presented. It does, 

how ever, highlight the fact that the boundary conditions im posed on B, arising from 

O hm ’s Law , play a critical role in defining equilibrium  profiles. This was also real­

ised after considering the current and current-free surface m odels. If this is so, then 

it has im portant im plications for the well know n m ethod [5.6] o f obtaining axisym- 

m etric equilibria which involves finding solutions to the Grad-Shafranov equation. 

There, the boundary condition n-B = 0 im plies that \j/ be constant on the boundary 

and no account o f  O hm ’s law is taken. O hm ’s Law can be written as

E + VxB = rj j

In ideal M H D , E at a perfectly conducting boundary is not coupled to B, provided 

n-V = 0. N ow , for finite resistivity problem s, we m ust ensure that nxE = 0. This 

m eans that, if  we have n-V = 0, we m ust ensure that nxj = 0. This constrains the 

norm al derivatives o f the tangential com ponents B z and B y , where Bx = 0, which 

m eans that there is an additional constraint on \|/  at the boundary. It should also be 

noted that the G rad-Shafranov equation is solved after a current profile is 

prescribed. This assum es that such a profile is dynam ically  accessible. W e have 

shown that som e states are not possible to relax to and so care m ust be taken when 

prescribing a current profile.
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A nother interesting feature o f relaxed states predicted by T ay lor’s theory is that 

w hen toroidal effects are taken into account the curvature has very little effect on 

the F - 0  profile [5.7].

The F - 0  param eters can be defined in toroidal co-ordinates as :

F  = — ———  and 0 = -------------- —
< R B (?> <R B ^ > C

The coefficient R  has appeared in these definitions due to RB   ̂ having a functional 

dependence on \\f rather than ju st the toroidal com ponent as in the cylindrical case. 

In the lim it o f large-aspect-ratio, these definitions reduce to the cylindrical case as 

is required.

The predicted field reversal values for a unit and infinite aspect ratio  device are 

1.24 and 1.11 respectively. The insignificant dependence on the curvature is also 

found experim entally where m any devices o f differing aspect ratio  yield very sim i­

lar F  -  0 profiles. The results predicted by the present theory are presented in figure 

5.17. Once again there is very good agreem ent with T aylor’s theory.

It should be noted that it is the F - 0  profile which varies insignificantly. The pro­

files o f j z ,Y± etc are o f course significantly different. Figure 5.18 shows three 

<jz > versus  O  profiles for the aspect ratios being considered. It should be noted 

that the critical flux value, at w hich there m ay be a rapid fall or rise in axial 

current, is low est for the sm allest aspect ratio but the critical value is higher for 

aspect ratio 4.0 than 10.0. The critical flux value thus increases with aspect ratio, 

reaches a m axim um  and then begins to fall. There is therefore a critical aspect ratio 

at w hich the critical flux value is m axim um . Figure 5.18b shows a p lot o f critical 

flux O c  versus  aspect-ratio. The critical aspect-ratio can seen to be —3.0. This is



the m ost desirable value to build a device since at this aspect-ratio, the device can 

be operated at highest toroidal current before reaching the critical flux value.

Upto now we have concentrated on understanding equilibrium  profiles and have 

m entioned very little about the global evolution o f the plasm a. The nature o f the 

evolution w ill for obvious reasons depend on the initial configuration. W e consider 

an initial state w hich consist o f several island form ations. Consider a 1x2 rectangu­

lar cross-section represented by 10x20 mesh points. The initial configuration, figure 

5.19, consists o f four islands which represent four helices all o f which have the 

sam e handedness. As can be seen, the helices whose axis are the closest reconnect 

first to give ju st tw o islands. These in turn reconnect to give a simple single island 

as the final relaxed state. In ideal M HD the four initial islands would o f course 

retain th e t r  structure and reconnection w ould not take place.

As a second run, consider a 1x3 rectangle and single island structure as an initial 

condition ( figure 5.19b ). The axial electric field inside the plasm a is opposite to 

that o f the driving field. Reconnection gives rise to m ultiple island form ation which 

subsequently form  a single island as a final equilibrium  state.

3D-Solutions

In 3D it is inform ative to view  the structure o f m agnetic field lines. The equations 

o f the field  lines can be obtained using d rx B  = 0.
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The line elem ent is given by d l 2 = d x 2 + d y 2 + d z 2.

From  these two it follows that :

dx  _  £x_ dy_ _  By dz_ _  B z
dl ~ B dl ~ B  “  ~dl ~ ~ B

These equations can be integrated, to give the co-ordinates ( x , y , z  ) o f B, using the 

fourth order predictor-corrector Adam s-M oulton m ethod [5.8]. This requires three 

know n values to get started which can be obtained using the Runge-K utta method.

A s a test run consider a 1x1x2 rectangular cylinder represented by 10x10x20 mesh 

points. An initial configuration is chosen to be far from  the relaxed state ( figure 

5 .20 (i), T=0 ). T  is proportional to the num ber o f time steps. Here, the handedness 

o f the initial he lical structure is chosen to be opposite to that o f the relaxed state. 

The initial state is also given an axial dependence as the driving field is applied 

throughout the rim.

Figures 5.20 (i), 5.20 (ii) and 5.20 (iii) show the time developm ent o f the m agnetic 

field  lines. D uring the first few tim e steps the initial configuration rapidly looses its 

axial dependence. The system  then becom es very active towards the boundaries ( 

T =100 ). The handedness o f  the helices is still the same as that o f the initial state. 

T he activity seems to die away after this stage ( T=110 ) but the system  soon 

becom es very active again ( T=170 ). A t T=200 the helices have begun to change 

handedness. This seem s to have first originated at the ends o f the cylinder. The 

helices continue to change handedness until reaching the central region o f the 

cy linder ( T=240 ). Here reconnection has given rise to field reversal. The field 

reversal begins to disappear as the configuration approaches an axisym m etric state (
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T=245 ). As can be seen, the final relaxed state is a very sim ple axisym m etric pro­

file ( T=500 ). The final state is in fact an RFP configuration and the field reversal 

has not been shown. The code is therefore able to handle highly active phenomena 

and possible reconnection.

In T ay lo r’s theory, solutions to VxB = |iB  gives the relaxed profile. O f all the 

eigenvalues allow ed, the m inim um  is to be chosen as this corresponds to m inim um  

energy. The general solutions to this equation have been obtained by Chandrasekhar 

and K endal [5.9]. For a large-aspect-ratio toroidal device, they can be written [5.4] 

as :

B' A = , 2 ,^ 1 /2  1 + f  s in (m )
( p . - & z ) l y

B*>>‘ = 2_ 2̂n1/2 \ kJ*(y'> + ~ J’n(y'> rCOS(m(H*z)
v M- * ) l  y  j

gmk  = cos(m ty+kz)

where y  =  r ( j i 2 - £ 2 )1/2

The above solution is subject to the boundary condition B r ( r  =a  ) = 0 and m ust 

correspond to a given toroidal flux and total helicity. It should be noted that the 

m  =  0, k  =  0 term  ( axisym m etric solution ) satisfies the boundary condition for all 

p. and gives rise to a finite toroidal flux. All other term s contribute zero toroidal 

flux and satisfy the boundary condition for discrete |i. There are then two distinct 

types o f solution. The first is the axisym m etric ( m  = 0 , k  = 0  ) state which exists
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for a p. defined by the toroidal flux and total helicity. The second solution consists 

o f the axisym m etric state, to give the required toroidal flux, plus contributions from 

the helical components. In this case the role o f p. is to determ ine the am plitude of 

the helical deform ation. It has been shown [5.4] that a m inim um  p. arises for 

m - 1, £<2=1.25 and is given by fitf=3.11. It then follows that for p.<2<3.11, an 

axisym m etric profile is the relaxed state. Once this value is reached, the state will 

becom e helically deform ed since the axisym m etric states give rise to a higher p.. In 

this helical state, p. is independent o f the total helicity for a given toroidal flux. At 

this critical value o f p. the toroidal current reaches a lim iting value. Any further 

increase in volt-seconds increases the helical deform ation rather than the toroidal 

current. This rem arkable feature o f toroidal discharges is also found experim entally 

[1.11]. Figure 5.21 shows the results o f two discharges where the system  is driven 

to a high 0. The high 0 soon drops to a stable 0 and rem ains there during the rest 

o f the discharge.

The present theory can now be used to m ake com parisons with this rem arkable 

result. For a square cross-section cylinder it can be shown [5.4] that the m inim um  

value o f p. corresponding to the onset o f he lical deform ation is 5.6 ( 0 = 1.4 ). The 

present theory disagrees with T ay lor’s theory by approxim ately a factor o f two. A 

helical deform ation is thus expected at 0 = 3.0.

C onsider a 1x1x2 rectangular cylinder represented by 10x10x20 m esh points. An 

initial configuration which has an axial dependence is chosen, as in the test run 

case. Figures 5.22 (i) and 5.22 (ii) show the relaxed profiles obtained for an 

increase in driving field. As can be seen there is no helical deform ation at the 

p redicted  0, in fact the toroidal current increases indefin itely . A plot of 

I jx B  lmax versus a  ( figure 5.23 ) shows that, for high 0, the force-free constraint 

is violated. A higher resolution m ay thus be required to observe the possibility o f 

current lim itation and helical deform ation. In figure 5.24 the sam e cylinder is
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represented by 20x20x40 m esh points. Here, the force-free constraint is satisfied to 

the required order. Once again there is no helical deform ation. There is the possi­

bility that the system  is rapidly seeking out an axisym m etric state and thus is 

unable to reach its low est energy state. One way of overcom ing this problem  is to 

consider an axially dependent driving field. The results are shown in figures 5.25 (i) 

and 5.25 (ii). As can be seen, there is no current lim itation and in fact there is little 

axial dependence. A second m ethod is to consider a configuration which the axial 

flux has an axial dependence. This then forces the system  to seek an axially depen­

dent relaxed profile. It can be seen from  figures 5.26 (i) and 5.26 (ii) that once 

again the results are disappointing. Figure 5.27 gives a high resolution result ( 

20x20x40 m esh points ) for the case where the axial flux is given an axial depen­

dence. Figure 5.28 gives the the high resolution equilibrium  profile for a 1x 1x 2ti 

rectangle. Once again there is no current lim itation.

The non-appearance o f a helical deform ation could be due to a variety o f reasons. 

The m ost obvious one is that theory developed for the 2D case is not extendable to 

3D since the equivalence o f anisotropic diffusion and resistive force-free evolution 

was proven only for the 2D case. A second reason could be due to the geometry 

being considered. It m ay be possible, but very unlikely, that the inclusion of 

toroidal effects could yield better results. A more likely reason could be the simple 

rectangular cross-section being considered. A circular cross-section m ay give more 

prom ising results.

Hitherto we have considered only rectangular cross-sections. If  we consider solu­

tions over a circu lar cross-section and which have only a radial dependence, the 

equilibrium  state described by (1.14) can be w ritten in sim plified form as 

j-B = a B z . This should be com pared with j-B  = [iB  B from  T aylor’s theory. The 

above constrain t and the force-free constraint can be written as :
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J qB z + J zB q = a  B z

J qB z ~ j zB Q = 0

For the boundary conditions being considered, B q vanishes at the boundary and 

j z =  a .  It is therefore clear that the above two equations can only be satisfied, 

sim ultaneously, if  a  = 0. This leads to trivial equilibrium  profiles. Now  consider 

relaxing the force-free constraint and suppose that it zero only to order 8. Also, sup­

pose that a  is also o f order e. The equations, by choice, can then be written as :

j&Bz + J zB q =  e cxBz 

JqBz ~ JZB q  -  -ECLBq

This pair give the correct value o f j z at the boundary. It is easy to show that they 

predict that j z = e a  and j Q = 0. In other words, we can obtain solutions where B Q 

is proportional to the radial distance and is order e on the boundary, and where B z 

is everyw here constant. A lthough this solution satisfies both boundary conditions, to 

order e, it is very sim ilar to the solution when a  is set to zero for the exact force- 

free case.

W e have obtained solutions over a circular cross-section and this is exactly w hat we 

get. It should be noted that there is considerable difference to the square cross- 

section case. W e have also considered an elliptical cross-section. For this case we 

get a num erical instability w hich grow s with time.
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In the introduction we considered the evolution o f a resistive plasm a subject to 

force-free constraint. The evolution was considered in 2D which allowed the use of 

a stream  function y .  A diffusion equation was derivable, having no explicit velocity 

dependence, in term s o f \j/ and B z . Any solutions o f this evolution equation was 

subject to the force-free constraint. W e next considered the evolution o f magnetic 

fields in an anisotropic static conductor and found that the resulting evolution equa­

tion was identical to that describing the diffusion o f m agnetic field lines in a resis­

tive plasm a. D escribing the anisotropic diffusion process is a m uch simpler 

m athem atical problem  and it was therefore considered in subsequent chapters.

In the second chapter we considered the num erical solution o f  the evolution equa­

tions using the explicit finite difference method. W e found that the boundary condi­

tions on \j/  could  be im plem ented in a variety o f w ays and we considered two. W e 

also found two m ethods o f im plem enting the axial flux constraint. The first 

involved w riting the difference equation in a conservative type form  and the second 

involved a sim ple scaling. All the above m ethods were im plem ented and the codes 

were found to give very good agreement. W e next considered solving the problem 

using all the com ponents o f B with the hope that the m ethods w ould be extendable 

to 3D. W e found two m ethods o f im plem enting the divergence-free constraint. The 

first involved using V-B = 0. Here, an evolution equation was com prom ised in 

favour o f the constrain t and the updating was done using V-B = 0 itself. The second 

m ethod used the sym m etry properties o f m ixed derivatives. The difference equa­

tions were chosen such that the constraint was satisfied autom atically. The above 

m ethods were im plem ented and the codes once again gave very good agreement. 

The m ethods w ere extendable to 3D and two codes were w ritten incorporating the 

two m ethods o f ensuring V-B = 0. Initially we considered a m odel which allowed 

tangential currents to flow  at a boundary and it w as this m odel which gave good
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agreem ent betw een the codes. W e next insisted on the vanishing o f the surface 

currents and found that all codes, except one, failed. This was ujhere the 

d ivergence-free constraint was used to ensure that the constraint rem ains satisfied. 

This h ighlighted the im portance o f considering as m any approaches as possible in 

obtaining num erical solutions.

In the third chapter we considered obtaining solutions o f arbitrary cross-sections. 

W e found that O hm ’s^gave a boundary condition for the normal derivative o f B z 

and a boundary condition which coupled the derivatives o f B x and By . W e found 

that by taking forw ard / backw ard difference approxim ations into the solid we could 

obtain a rem arkably simple equation which w ould give the unknown boundary 

values o f B. The flux-conservation schem e em ployed in the rectangular cross- 

section case w as found to be extendable to arbitrary cross-sections.

In chapter 4 we were able to generalise the rectangular cross-section codes to incor­

porate toroidal effects. Once again a stream  function and also all the com ponents of 

B w as used for obtaining the required solutions. The m ethods were extendable to 

3D.

A ltogether then, the suite o f codes totaled approxim ately 20,000 lines o f source. 

The variety  o f geom etries used justified  the use o f explicit schemes. The im plicit 

schem es w ould have ju st taken too long to incorporate in each code due to the 

num ber o f codes written. The explicit nature did how ever restrict the size o f time 

step used. A ll codes were run on a CR A Y  X M P/416 which has four processors ( 

250 M flops each ) and which supports vector processing. A single processor was 

used for all runs as otherw ise each code had to be m ultitasked which w ould have 

been tim e consum ing. All codes have been vectorised with a typical increase in 

speed o f a factor o f two or three. For the square cross-section case, represented by 

10x10 m esh points, we used a m esh spacing o f 1.0/9.0 and tim e step A t =  2.5 3.
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The com pilation ( ~ 1,500 lines o f source ) took 14.3 secs, and the execution ( 

CPU ) time being only 3.6 secs. For 20x20 m esh points, the execution time 

increased to 40.6 secs.

In the final chapter we presented a variety of results. W e initially observed the two 

time scales associated with the two very different conductivities. By considering 

the value o f jx B  at a boundary, the inconsistency, introduced by the driving field 

was found to have little effect on the force-free evolution o f the plasm a provided its 

m agnitude was chosen w ith care.

W e next obtained a selection o f F - 0  co-ordinates, for the 2D square cross-section 

case, for a variety  o f axial fluxes and three different values o f driving field. All the 

points were found to lie on a single curve. This w as in agreem ent with Taylor’s 

theory and experim ental data. The field reversal value w as found to be 0 = 2.0. This 

was nearly a factor o f tw o out com pared with T ay lo r’s theory which predicts a 

value o f 0 = 1 .1 . The profile w as com pared with that o f another sim ulation and 

better agreem ent w as found. The discrepancy was attributed to the unrealistic 

approxim ation o f constant resistivity. A variety o f other universal curves were gen­

erated and from  these it could be concluded that the final relaxed state is com ­

pletely defined once the axial flux and driving term  are specified. In Taylor’s 

theory, the driving term  is proportional to the global helicity, at constant axial flux, 

and the final state is com pletely defined once the global helicity and axial flux are 

prescribed. The present theory thus agrees well w ith T ay lo r’s theory on this point.

A nother interesting profile w as obtained for a axial current versus axial flux plot. 

W e found that at a certain value o f axial flux there exist states which are inaccessi­

ble by the plasm a. A bout this critical value there are tw o m odes at which the 

plasm a can be driven, one at high current and one at low  current. These m odes are 

also found to exist experim entally. The existence o f degenerate states were also
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found by plotting magnetic energy curves.

By considering a 1x2 rectangle, we were able to show that the corresponding F  0 

profile w as only slightly different to the square cross-section case. This also agrees 

well w ith T ay lo r’s theory.

W e in itially  considered a m odel < ^ re  surface currents were allowed to flow and 

this gave field  reversed states. W hen no boundary currents were allowed to flow, no 

field  reversal was obtained and the F - 0  profile was very sim ilar to that predicted 

by the force-free param agnetic model.

O nce toroidal effects were taken into account we obtained three F - 0  profiles for 

aspect-ratio  2.0, 4.0 and 10.0. The curvature was seen to have very little effect on 

the profile, once again agreeing with T ay lo r’s theory and experiment. The critical 

flux  value w as found to be sm allest for the sm allest aspect-ratio but was higher for 

4.0  than 10.0. The critical value was therefore found to increase with aspect-ratio, 

reach a m axim um  and then fall to a finite value. The m axim um  occurred at an 

aspect-ratio  o f = 3.0. This is the m ost suitable value to build toroidal devices since 

this gives the highest current before reaching the critical flux value, beyond which 

the m axim um  current is m uch lower.

The results generated by the 3D code were found to be very disappointing for high 

0 as only axisym m etric solutions were generated. Although the 3D code should 

generate axisym m etric profiles, it should also show the onset o f helical deform ation 

at a critical 0. This was not observed. A full 3D toroidal code has also been 

developed. H ere, the divergence-free constrain t was satisfied using the sym m etry 

properties o f  m ixed derivatives. This m ethod fails when considering a current free 

surface m odel and so no results were presented.
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W e finally considered solutions over a circular cross-section. The only solutions we 

could obtain were very trivial which did not possess any real structure. W hen an 

elliptical cross-section was considered, the solution was found to becom e unstable. 

The instability was found to grow in time and so was explosive in nature.

Future work

If  we use the M H D  equations, solutions to the force-free problem  could only be 

obtained b y  c a n s  \AejruiOj non-ideal boundary conditions or by relaxing the force- 

free constraint by, for exam ple, including a pressure term. It w ould be interesting to 

see if such changes yielded results different to those presented. The inclusion of a 

structured resistivity w ould eventually have to be considered as experim entally it is 

found not to be constant.

The 3D solutions did not predict helically deform ed states and so it m ust be 

decided if the equivalence that was proven is extendable to 3D. W hat could be 

done is to consider a non-rectangular cross-section and see if  results are any 

prom ising. This m eans that the curved boundary code has to be considered and the 

num erical instability that arises has first got to be rem oved. Toroidal effects could 

also be taken into account then.
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Figure 5.1

Time development o f I jxB  I max for varying values of e. The time taken to reach a 

relaxed state has been normalised to unity. By noting the rapid drop in gradients the 

two time scales associated with the conductivities parallel and perpendicular to the 

magnetic field are clearly visible.
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Figure 5.2

Universal F versus 0 profile obtained by varying the axial flux and using three dif­

ferent values o f  driving field ( a  = 0.1, 0.3, and 0.5 ). All points are clearly seen to lie 

on a single curve. A lso shown is the result predicted by Taylor’s theory.
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Universal F versus 0 profile ( from Kirby, 1988 ) generated using the MHD equations 

for a circular cross-section. Choosing a structured resistivity ( T| = shaped  ) can be 

seen to give a profile in better agreement with experiment.



Three typical profiles of \i = j - B / f l2 across the center of a square cross-section.

Profile o f  ji obtained by Kirby ( 1988 ) together with an experimental result, 

results are for a circular cross-section.
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Figure 5.3

Universal F versus < |i>  profile together with the result predicted by Taylor’s theory.
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Figure 5.4

Universal 0 versus <  }i> profile reveals linear relationship only for small 0.



< J z >

0

II6

Figure 5.5

Universal profile showing the toroidal current is proportional to the driving field. A 
limit on the toroidal current, for fixed a, can also be seen.
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Figure 5.6

A plot o f <j z> / a  versus <p> reveals upper limits on both the current density and 

<p>.



Figure 5.7

At a critical axial flux there exist inaccessible states. About this value the system can 

be driven at high or low current mode.



Time development o f  j lt 0 and F  for a case where there is a rapid rise in toroidal 

current.
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Figure 5.7c

A plot o f total current against axial flux reveals that it is not only the axial current but 

the total current that may rise or fall significantly.
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One choice o f  definition o f the safety factor q  reveals a universal profile.
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Second choice of definition of the safety factor q reveals a universal profile although 
only one set o f  data is shown.
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Figure 5.8

Energy curve showing the existence of degenerate states and discontinuous relation­
ship with axial flux.
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Toroidal current curve showing the existence of degenerate states and discontinuous 
relationship with magnetic energy.
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Time development of F and 9 for the case where the final state has no field reversal.
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Time development of F  and 0 for the case where the final slate has field reversal.
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Time development o f F and 0 for the case where the final state has field reversal 
obtained by Kirby ( 1988 ).
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Figure 5.12

Typical profiles o f B z and Bx for the square cross-section case and where there is no 
field reversal.



Figure 5.13

Typical profiles o f Bz and Bx for the square cross-section case and where there is field 
reversal.
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Figure 5.14

F versus 0 profile for a 1x2 rectangle indicates that the dimensions of the rectangle 

has little effect on the field reversal value. A lso shown is the result predicted by 
Taylor’s theory.
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F versus 0 profile for a square cross-section and where tangential currents at the 

boundary are allowed to flow. N o field reversed states are obtained.
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Figure 5.16

F versus 0 profile predicted by the FFPM and the BFM together with typical profiles 

o f Bz and B % ( from Bodin and Newton, 1980 and Whiteman, 1965 ).
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Figure 5.17

F versus 0 profiles for three different values o f aspect-ratio ( 2.0, 4.0 and 10.0 ) 

shows an insignificant dependence on curvature.
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Figure 5.18

A plot o f  < / >  versus *  shows that the critical flux value is higher for aspect-ralio 
.0 than 2.0 but lies in between the two for aspect-ratio 10.0.
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Figure 5.18b

A plot o f critical axial flux <t>c  versus aspect-ratio shows that the critical flux 

increases, reaches a maximum and then decreases. The critical flux is seen to peek at 

aspect-ratio = 3 .0 .
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Figure 5.19

Time development o f Bt in a 1x2 rectangular cylinder. An initial configuration con­

sisting o f four helices evolves in such a way that the two nearest islands reconnect 

first to give just the two. These in turn reconnect to give just a single island as the 

final relaxed state.



( (—  —
\ f u

y
y y((<Y|)
v— 1I ° \ 1 V >« S \ 4l\ i

Q
l Lj © 4

3

«

II

Figure 5.19b

The time development o f B t in a 1x3 rectangular cylinder. The driving field is 

applied opposite to that already existing in the plasma. As the field in the plasma 

changes direction a series o f reconnections follow. The initial single island reconnects 

to form multiple islands which subsequently go on to form just the single island as the 

relaxed state.



A test run showing the evolution o f the magnetic field lines in a 1x1x2 rectangular 

cylinder. A helical type structure whose handedness is opposite to that o f the relaxed 

state is chosen as the initial configuration. The evolution shows how the code is able 

to handle the complex evolution which takes place. The final state can seen to be an 

axisymmetric profile.
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Figure 5.20 (i)



Figure 5.20 (ii)



Figure 5.20 (iii)
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Figure 5.21

Plots showing limitation on 0 ( from Bodin and Newton, 1980 ).



Equilibrium profiles fo increasing values o f driving field to see the possibility o f heli­

cal deformation. As can be seen, the toroidal current increases indefinitely with no 

sign of deformation.
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Figure 5.22 (ii)
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Figure 5.23

Plot shows how the force-free nature o f the field is violated for large values o f driving 

field. A higher resolution is thus required.
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A high resolution result shows no sign o f deformation.



Magnetic field line structure for increasing values o f driving field. Although the driv­

ing field has been given an axial dependence there is no sign o f helical deformation.
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Figure 5 .25 (i)
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Figure 5.25 (ii)



Magnetic field lines for the case where the axial flux has been given an axial depen­

dence in order to generate non-axisymmetric relaxed states. Again there is no sign of 

helical deformation.
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Figure 5.26 (i)
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Figure 5.26 (ii)
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Magnetic field lines for a high resolution case where the axial flux has an axial depen­
dence. Again there is no helical deformation.

I /' xB  I max
 ------- —  = 3.0, 0 = 50.0

F ig u re  5.28

High resolution result shows no helical deformation if the axial length o f the cylinder 

is increased.
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Appendix A

1. Evolution equations in terms of curvilinear co-ordinates

The evolution equation

OB
Or

= -  VxE

can be written in com ponent form , using curvilinear co-ordinates, as

dB
1 1

Or h 2hi  \ du2
3 ( h 2E 2) - ^ - ( h 3E 3)

du.'

dB 2  1

dt  /z 1/2 3

0#  3 1 f  3 3
V -  = T I T  \ ~ T~<<h2E2)

O hm ’s Law, E  = a F B  + ft VxB, can be written as

2n 3 uu3

En = a F  Bn +
h \ h 3 du du-

E 3 = a F  B 3 + \  -  - j^— ( h 2B 2)
i  h \ h 2 1 9m 2
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Substituting into the evolution equations and rearranging leads to

hoh2n 3
9 s i a 3̂ 9 , a
at a« 2 (, fc a1 2  ^ 2 aw2

a h2 a /f „ N a
+ 3«3 [ a , a 3 9m3 1 1 J aw3

*3 d  
h \ h 2 du

h i  d

• ( M 2 )

h ^ h 3 du ■ ( M s )

- d

h 1 /z1 "3
a ^1 a a

aw 3 [ m 3 ^ {hlBl) \ 3w3

a
r *

h 3 a
/

a
' 3wi U U a,/ ( *̂2® 2) 3wj

^2^3 ^w2
( M s )

M 2

( M l )

1

^ 3  a
»■ * 

^2 a „  „ x a
/Zl/Z2 ^ - 1 = ^ -3t 3w! — = - - r r - ( M 3) M 3  3w! 3wj

a
»- - 

^1 a a
+ aw 2 , ■; a,; ( M s )h'jh'i c/W2 aw 2

h i  d
h 1 /z 3  3

( M O

^2^3 ^W3
( M O



Cartesian co-ordinates
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setting u l = x ,  u 2 = y ,  u 3  = z ,  and h 1 - h  2 = h 3 = 1 gives :

dBx d
+ dz

dBx d2B y d 2 B z

. dy  , dz dxdy dx dz

- { l - e U ± { F B z ) - ± i F B y )

dBy

dt
d_
dx

dBy

dx
+

dz

dBy

dz

d2Bx d2B z

3jc 3y dz

dBz

dt
d_
dx

dBz

dx
+

dy

dBz

dy

d2Bx d2B y 

dx dz dy dz

Toroidal co-ordinates

setting u l = x ,  u 2 = y , u 3  = §, h 1 = /z 2 =  1 and h 3 - R  gives

dBx a 'dBx ' d2By 1 d dBx

iiro

. dy . d y d x R 1 9<t> d§

1 d2( R B 6) 

R 2 dtydx



2. Alternative representation of evolution equations

The m ixed derivatives arising in the above evolution equations can be elim inated 

using V B  = 0 .

Cartesians



Toroidal co-ordinates
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dBx d2Bx d2B x i d2Bx i dBx B x 2 dB
+  — + + —

dt d x 2 d y 2 R 2 d§2 R dx R 2 R 2 3(j)

dF „ d B  6  B  3 /r p  dB+
dy dy R  3(j) R  3<j)

dBy d2B y d2B y 1 d2B y 1 dBy

dt  d x 2 d y 2 R 2 3(j) 2  R dx

, , Bx d F  F dBx „ dF - d B 0 F R a 
( 6 ) 1  R  3(> +  R  3<)) ® 9.x: 9 *  R

9R 0 {F B  * d ~ B  6 j d ~ B  q a
+  — +

dt  d x 2 d y 2 R 2 9<(>2  dx
£ i
R

+
2 dB,

R 2 9<t>

3 /r dB  0 /r
-  (1  -  £ ) 1 B  „ -  Bx -  F-

y dx dx x dy dy

Stream Function

D efine the stream  function \|f by

R B X = & -
dy

R B y = ~ l h



then in term s o f \|/ the evolution equations can be written as

- ^ . = v 2y - —  - ( i - e ) f l  F B  +
dt R dx

a  R

dB

1 7
= V 25 a +

dx
h
R

+ ( l - e ) « _a_
dx

F_ dx\f 
R dx

+
dy

F_
R

where
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Appendix B

Summation of difference terms

The local axial flux has been defined as :

Ar Av
A O  =  ( B ; j  +  B i+i j  + Bf J + , +  B i+h]+1 )

The total axial flux is then :

Ar Av m ~ l  n ~ l  0  =  ^ y _  2  2  ( +  + ^  + f l _+^

4  t = l > = 1

where 5  is the axial com ponent o f the m agnetic field. The num ber o f m esh points 

along x  and y  is given by m  and n respectively.

Now consider various derivatives.

3 B =  3 B

■ at a x

In terms o f differences approxim ations : 

B n+l = B  + ( B i+i,j  -  B i _ i j  )

and :

AO ” + 1  = AO + y  
8

where
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¥  =  ( B i + \ , j  -  B i - \ , j  +  B i + 2 , j  -  B i , j  +  B i + \ , j + \  ~  B i - \ , j + l  +  B i + 2 , j + l  ~  B i , j + 1 )

The total axial flux is then :

i A t  A v  m ~ x n ~ x
o  = O  + 2 L M .  2  s  V

S i=l ;=1

0 +  A£Av T l
i = 1

n - 1

2 2  V  + Vy=i +  Y/=n 
;=2

but :

m - 2

£  v =
i = l

B 0 + B l ~  B 2 ~ B 3

+ b 2 + B 3 ~  B 4 ~ B  5

+ B 2 + B 4 ~ B 5 ~ B 6

B m - 5  4  B m - 4  B m - 3 B m - 2

+  # m - 4  +  B m - 3  ~  B m - 2 ~  B m - 1

+  B m - 3  +  B m - 2  ~  B m - 1
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+  B m - 2  +  B m - 1 ~  B m  ~ B m

-  ( B o + 2B x +  B 2 ) -  ( +  2B m + Bm+l

th ere fo r.:

n + 1 _ o  +
Ar Ay *-i

2 2  ^  + V y .!  + y ;=n
J= 2

w here :

, a^B

' 3 x 2

In term s o f difference form ulae

B n + 1 _= B +
Ar

(Ax)‘
( B i + \ J  ~  2 8 i , j  +  B i - \ J  )

The total axial flux is then :

o n + . = * +
4 Ax j=i

/i-i
2 £  + Y,-=i + V/=»

y=2

w here :

¥  =  ( £ /+ l ,7  -  2 B i J  +  B i - h j  +  B i + 2 J  -  2 B i + \ J  +  3
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4  ^ t  + 1,7 + 1 — 2 B i , j + l  4  B i - l , j  +  l 4  +2,7 + 1 — 2 B i + \ , j  +  \ 4  B i , j + l  )

But :

n - 1

X  ¥  =
i = l

B Q - B ^ B 2 + B Z 

4- B  i — B  2 ~  B  ^ B  ^

+ B 2 ~ B 3 ~ B 4 + B 5

+ b 3 - b a ~ b 5 + b 6

+  B m - 5 “  B m - 4  ~  B m - 3 +  B m - 2 

+  B m - 4 “  5 m -3  “  5 m -2  +  B m - 1 

+  # m - 3  “  B m - 2 ~  B m - 1 +

4  B m - 2  ~  B m - 1 —

=  (  B 0  -  S 2 )  +  (  B m + 1 _  B m —\  )

Then :
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O n+1 _=  <D + A t Ay 
4 Ax

2 "f; y  + + ^ =B
j =2

where :

V  = ( B 0 - B 2 ) + ( B m + l - B in. I )



- 94 - 

Appendix C

1. Boundary Conditions For Rectangular Cross-Sections

The requirem ent that the tangential com ponent o f the electric field vanish at the 

perfectly conducting interface yields N eum ann type boundary conditions. Using 

O hm ’s Law :

E i = a F B l + ~r~r~ i - £ - ( h 2Bj) -  - ^ - ( h 3B 3)
^ 2 ^ 3  0 W 3  d u 2

0 )

(2)

E<x = a F +
h\h\n 2 d u2 d u 1

(3)

F =

+ w A - k w - ^ ( h i B i )

-h ( B ,2 + B 22 + B 32) (4)



C onsider boundaries where

- 9 5  -

- ^ - ( h 2B 2) = 0 “ ( ^ 2 f i 2 ) = B 2 = E \ = 0 and £ 3  = C

( 1 ) gives :

3  h { ( ( a - b  ) B  2 -  b B 32 ) 3

(Mi) = —-------------- ------— ^ ~ ( h 3B 3) (4)
d u 2  fl h 3 B ^ B 3 d u 2

from  (3) :

A l | a B l B 3 ^ - ( M 3 )  + ^ 3 C ( B 12+ B32 )

a ( M i )  = ------' -------------------------------- 5 ----------- 5 -------------------   (5)
^ 2  h 3 ( ( a - b ) B 32 -  b B  2 )

(4) and (5) then give :

3 2 ^ 3 ^  & B  \ B 3
* (A3 B 3 ) =

B ( a - b ) ( B 2 + B 2 )

9 - h 1h2C ( ( a - b ) B 12 - b B 32 )
du2{h'B l ) ~ b( .a-b) (Bl2 + B32 )

Substituting for a, b and redefining C yields :

3  / i 2 /i 3 a ( l - e ) M 3

3w2 3 3 B i 2 + B 32

3  - h \ h 2 a (  e f l i  +  5 3 2  )

d u 2 B f  + B 32
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N ow  consider boundaries where :

r) r)
- ^ - ( h lB 2) = - f - ( h lB 2) = B l = E 2 = 0 and E 3 = C 
d u 2  d u 3

(2 ) gives :

0  h l ( ( a - b ) B l2 ~ b B 32 ) a
( h 2B 2) = — ------ — J —  ----------------- (/z3£ 3) (6 )

du  j a h 3B \ B 3 d u 2

from  (3) :

a •(M 2 ) = ------  5----------- 5-------------------  (?)
3 ^  h J ( ( a - b ) B 32 -  b B 22 )

(6 ) and (7) then yields :

3  h i h 3 C a B 2B 3
0  ( h 2B 3 ) =

d « l  B ( a - b ) ( B 2 + B 2 )

3  „  _  h l h 2 C  ( ( a - b ) B 2 -  b B 2 )
—---- (/i 2 ^  2 ) — 0  0

d « l b ( a - b ) (  B 2 + S 3  )

substituting for a and b :

a -/i ,  ft3a(l-e)i?2ff 3
d u x ( B 22 + B 32

3 „  „ . M 2 « ( e 5 22 +  f i 32 )—— ( h2B 2) -  —-  ~ 9

j B 2 + B 3



C a rte s ian s
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Set :

h i = h 2 = h 3 = 1 and u 1 = x  , u l - y  and u 3

then on boundaries where

dBv d B ,

a f  =  1 7 = f i > = £ * = 0  and £ ’ = c

the follow ing m ust be satisfied 

dBz a ( l  - e ) B x B y

dy b x 2 + b z 2

dBx - o l ( e B x 2 + B z 2 ) 

dy b x 2 + b 2

on boundaries w here : 

dB dB
- r 1  =  - r * -  = B X = E =  0 and E z = C  

dy dz x y

the follow ing m ust be satisfied :

dBz - a ( l  - e ) B y B z 

dx ~  by 2 + B z 2

dB a  ( z B y 2 + B 2 )



T o ro id a l c o -o rd in a te s
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Set :

h \  = h 2 = I , h 3 = R = R 0 + x  and u l  = x  , u.2 -  y  and u 3 = <j)

then on boundaries w here :

3B y 

dx

dBy

~3<jr
= By =  Ex =  0 and E 0 = C

the follow ing m ust be satisfied :

3  a R ( l - e ) B x B
-2 - W o )  =  i  -T
dy v b 2 + b . 2

y

3Bx _  - a (  e B x 2 + B 2̂ ) 

dy b x 2 + b J

on boundaries w here :

dB.  3B x
=  -rr*-  = B X = E =  0  and E 6 = C 

dy  3<|> x y «

the follow ing m ust be satisfied :

3  - a R ( l - e ) B y B {

bv + B.

dBy _  q (  £ By 2 +  )

~ d T ~  by 2 +  B ( 2
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2. Boundary Conditions for Arbitrary Cross-sections

C onsider a boundary which does not necessarily conform  to any particular co­

ordinate curve. In such cases the boundary conditions m ust be obtained in a particu­

lar co-ordinate system  as the scale factors are in general incalculable. Cartesians 

co-ordinates w ill be used throughout.

The requirem ent that the normal com ponent o f the m agnetic field and the tangential 

com ponent o f the electric field vanish at the boundary can be written as :

Bx cosp  + By sinp = 0 

Ex sinp -  Ey cosP = 0

Substituting from  O ’hms Law and assum ing a constant driving field leads to:

Bx + By tanP = 0 (1)

dBz 3 fl. n
a F B y - b > = i a F B x + b - ^ -  h an P (2)

, 3By  3B x .
a F B z + b  -i \ = C  (3)

dx  3y

from  (2 )

3Bz By B z <1 + r  > J ^  3Bx

dx  dy B 2 ( l + T 2 ) ( a - b )  -  b B 2 [  dx dy

from  (3)

a B y B z
dB^

dx
+ T

dBz

dy
= ( b B y 2 ( l + T 2 ) - B z 2 ( a - b ) )

$B x
dy

dB}

I x l



- 1 0 0  -

+  C ( B 2 ( \ + T 2 ) + B 2 )

from  w hich follow  :

dBy dBx C ( B y 2 ( l + T 2 ) ( a - b ) - b B 2 ) 

dx  dy b ( a - b  ) (  By 2 ( \ + T 2 ) + B 2 )

dBz dBz a C  B y B z ( \ + T 2 )

dx dy b ( a - b ) ( B y 2 ( \ + T 2 ) + B 2 )

after substituting for a and b :

dBv d B ,  (eBv2( l+r2) + 5z2 )
 L- -  ------- +  a  1--------------------------

dx  dy ( B y 2 ( \ + T 2 ) + B z 2 )

dBz dBz BvBz ( e - l ) ( l + r 2)
^ -  + r ^ -  =  a _ ^ -------- 5----------T ~dx dy  ( f i  2( l+r2) + B Z2 )
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Appendix D

Numerical value of V B in curvilinear co-ordinates

C onsider the evolution equations in the following form

1 dB i d
* «

d , ̂  „ d
a \  dt d u 2 [ “  w " ' 1 j d u 2

d
+ *

d , ̂  x d f
+  d u 3 '  ^ d u 3

OU j

a 2 dt
3

* *
d /n a

d u 3
3 3

d
* *» 

d , ̂  x a
du  j dw ! 9m !

b

-P du
d ( C l )  -  - r ~ ( C 3)

du

1 1 a
c 'a /n a

a  3 3r a^j ,c a “ > . a^!

a a
/•

a
4

du  2
& ^ 3 ) d u 2 d u 2

b - £ - ( B 2)
dU'i



- 1 0 2  -

- P  j - ~ — ( C 2 )  -  — ( C 1)  1  
[ d u 2 J

W here :

a l  =  t A — ; a 2 = - T ^ — ; a l  = 1
h 2 h 3 * 1 * 3  * 1 * 2

a = a 3 / 2 3; Z? =al/z1; and c = a l h 2

Then in term s o f curvilinear co-ordinates the divergence-free constraint can be w rit­

ten as :

V B  =
1

h i h 2h'
d Bx a b 2 d * 3 '

du i CL 1 ^ d u 2 d l  " d u 3 a  3 ^
= 0

1
h \ h 2h-

( D  i +  D 2 +  D 2 )

Now use the follow ing difference representations

d U  _  Uj+1 ~ Uj -1 
dx 2 Ax

_d_
dx

dU
dx

Pi+l ( U j +2 - U i ) - P i - l ( U i - 2 - U i )  

4 A x 2

_d_
dx

d U
dy

Pi +\ ( Wi +\ j +i £/ ,-_iy_i)

4 Ax Ay
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The evolution equations can then be written as :

B i” +1 -  B  [ 

a 1 Ar

[ aJ+1 ( (B 0 J+2 -  (B i)j ) -  ay-, ( (B ,),• -  ( B , ) , _2 ) ] +  4 A22

-  [tfy+i ( ( B 2 )1 + 1  j+ i  _  (B 2)1-1 j + i ) ~ a j - i  ( 2 )1 +1 ,1 - 1  _  (B 2) ;- i ,y _ i) 1 + 4 ^ i a 2  

+ f c*+i ( (B , ) t+2-  (B ,)* ) -  ct - , ( (B 1 )* -  (B !)*_2 ) ] + 4 A32

-  [Ct +i ( (B 2 )1 + 1  jt+i -  2 ) i- i.* + l) “  ck- l  ( (-®2 )1 +1 , * — 1 -  ( B 2) i - i ,k- \  )1 + 4 At A3 

- P ( C 3 >+1- C 3 ; - 1) + 2 A 2

+ fHC2M - C 2 k_l ) + 2&3

D rt + 1 D& 2 ~ 2 _
a 2 At

[ bk+l ((5 2)*+2 ”  2)*) “ bk_ 1 ((B 2)k -  (B 2)k_2) ] + 4 A32

”  [fyfc+l ( ( f i  2) ; + l ,*+1 ”  (5 2);'- l ,*+l ) "  ^*-1 2)7+ 1, *-1 ~  2)7- 1, *- !  ) ]  ^  4 A 2 A 3

+  K + l  ( ( B 2) i+2-  (S 2>i ) -  a i - l  ( ( f i 2)i -  ( B 2) 1-2 ) ] +  4 V

-  Ia ,+i  ( ( B2)j+i j +i -  (B 2)(+i,y- 1 ) -  fli - i  ( (B 2)i-i,y+i “  Cs 2> i-i,> -i) 1 + 4 A, A2
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-  P ( c  U +i -  C  l t _ ! ) +  2 A 3 

+ P ( C 3i+1 -  C 3 , _ , ) + 2 Ax

V +1 - B 3 = 

a 3 At

[Ci+l ( ( S 3)i+2 -  (»3) i  ) "  C i - i ( ( f l 3)i -  ( S 3) i - 2 ) ]  +  4 A 22

-  [ c i+1 ( (B ili+ i.t+ i -  (B ( ( B i ) ;_, t+1 -  (B ) ] + 4 Aj A2

+ [ bj  + l ( (B 3) ;+2_ (B 3)y ) -  i>j_! ( (B j); -  (B 3)y_2 ) ] + 4 A j2

_  [fy+1 ( (®2);'+l,t+l -  (®2)2+l ,* - l )  -  b j - l d B d j - l M l  ~ (s 2)>- l , t- l  ) ]  +  4 A[ A3

- P ( C 2 i +1 - C 2 i_ 1) + 2Ai

+ P ( C 1 , + 1 - C 1 , _ 1) + 2 A 2 

The V-B term s then become :

£>?+1 = D X +

l , j + l ( ( B  lX '+ l,; '+ 2  — 1 ^ + 1 ,; ) — ^ i + 1  l X + l , j  ~  ( B  1 ,y —2)
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[ ( 1a i +1 , j +1 ('( B  2) 1 +2, j +1 -  ( B  2) i ,j +1) “  ( 1fli -1 ,/+ 1  ( ( B  2) i +2,7 -1  -  2) t - 1 )

“  J+ l((^2 )i't;'+l ”  ( B2)1- 2,j +0  ~  (&i-\ , j-\ ((B 2 ) / —1 ~ (^ 2 ) /-2 J - l) l  + 8 A 2 A2

+ + l)j+l,*+2 “  (P l)i+l,/k ) ”  + l)i+l,/k ~  (B l)i+l,k-2)

~  (a i - l ,k+l((B \)i-l ,k+2 ~ ( B  l)t-l,jk ) “  (a ,-1^ -1 ((5 -  (B  i ) t_i^_2)] +  8 A32 Aj

[(a i+ \ , k + \ ( ( B  2, ) i+2,k+\ -  ( B  l ) i  , k+\ )  ~  (a i - l , k + l ( ( B  3)1+2,k - \ ~  ( B  l ) i  ,k- 0

“  ( a i - \ , k + \ ( ( B  3 ) / M l  ~  (B  3 ) i - 2 , A : + l )  ~  ( a i - l , k - \ ( ( B  3 ) / ^ - !  ~  3 ) 4-2.A:- 1 ) ]  ^  8  A 2 A 3

-  (3 [C 3t-+ii;'+i -  C  3 i + i j - i  ~  C  3 i - i j + i  + C  3{_1 ;_1] -5- 4 A { A2 

+ P [C 2i+i,*+i -  C 2 (+1>*_1 -  C 2,-_lt*+1 + C 2 {_1*_1] + 4 Ai A3 

D 2 +1 =  £>2 +

[ ( ^ j + U + l ( ( 5  l ) / + l , f c + 2  — ( B  i ) i + i , i k )  ~  ( ^ + l , / k - l ( ( ^  1 ) t + U  _  l ) /+ l ,J k —2 )

” (fy-l,Jk+l((^ l)/-l,*+2~ lX-l.k ) + (fy-l,Jk-l((^ l)i'-l,ik ” (B i)/-i^_2)] + 8 A2 A2

[ ( ^ • + l , i k + l ( ( ^ 2 ) >/ + 2 ,ik+1 “ ( ^ 2 ) y , i k + i ) _ ( ^ ; - 1,ik+1( ( ^ 2 ) y + 2 ,Jk-1 ” ( ^ 2 ) y , / k - 1)

-  { b j - \ >k+ \ { { B  2 ) j j k + \  ~  (B  2 ) ; - 2 , * + l )  “  ( ^ ; - l , i k - l ( ( ^ 2 ) y  , ik - l  ”  ( B  2 ) j - 2 , k - \ ) ]  +  8  A  2 A 3
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+ i(a i+\,j+i((B \)i+2, j+\~(B \ ) i , j+ i ) - (^ i - \ , j + i ( (B\ ) i j+ i  ~{B  i)i_2,y+i)

-  (a /+ i,y -i((^  i)»+2 ,7 - 1  ~ (B -  (fli-i,y -i((5  i ) / ,y- i -  (B i)j —2,j—1 )1+ 8 A 2 A2

[(flt+1 ,y+1 ((B + 2  “  (B 3)1 +1 j  ) -  (tf; _1 J +1 i(B 3 )/_! j + 2  -  (fi 3)1 - 1  ,y )

”  0 +1,y - i ( ( ^ 3)4+1.; ~ ( B 3)1+1 j - 2) ~ ( a i - i , j - i ( ( B 3) i - \ j  - ( B 3)i_i  j _ 2)] + 8 A 2 A t

“  P [C  ly+l.ik+1 ~  C  ly+l.ik—1 “  C  1 y-l,jfc+l +  ^  *y—l.Jk—ll  +  4  A2 A3 

+ P 1 C 3 »+i.y'+i “ ^ , 3 i+ i >y-_i - C 3 t- _ i j +i +  C 3 t-_l y _ 1] +  4 A 1 A2

D ? +1 = Z ) 3 +

[(c j+ l ,y t+ l((^3)t+2^ + 2 - (5 3) i ,k + l ) _ (c j-l,)k+l((5 3)j,k+l ~ ( 5 3) / - 2,yk+l)

- (c < + l ^ - l ( ( ^ 3)i+2,A:-l“ ( ^ 3)j,)k-l) +  (Ci+l,A:-l((5 3)z,A:-l- ( ^ 3) i - 2,lk-l)]*i'  8 A 2 A3

[(^/+l,£+l(C® l)j+l,&+2 — (B  l ) /+ l tfc ) — (^t-l,jfe+l((^ 1)x—1 ,/t +2 — (B  )

-  (c i+i tk_ i d B  -  (B  i ) ,+ i t*_2) -  (c i - \ , k - \ ( ( B  i ) « - u  “  ( B 1)*—i,ik—2)] 8 A3 

+  \-(Bj+l j c+l( ( B 3) j +2</c+i -  (B 3,)jjt+i) -  (Bj_i  k+l ((B 3)j,k+l -  (f i 3) ; - 2,ik+l)

- ( / ? ;> l ^ - l ( ( ^ 3 ) y + 2 , ik - l_ (5 3) ; , )k - l)“ (^;- l ,A :- l( (5 3); ,)k -l- (5 3 ) ; - 2 ^ - l ) ] " h 8 A |  A3
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2) j + \ ' k + 2 -  ( B  2 ) j + \ , k )  -  ( b j - \ ' k + l ( ( B  2) j - l , k + 2  ~  2) y — 1 ,/t )

( b j + 1 , 2 ) j + l , k  ~  2 ) y - l , i t - 2)] 8 A 3 ^ 2

+ (3 [C Ij+i'k+i -  C  l ;-_itjfc+i -  C  1 j +itk - i + C  + 4 A2 A3

Adding these show s that V-B at the advanced tim e-step is the the same as that at 

the preceding tim e-step. If  V-B is zero initially it w ill then rem ain so for subsequent 

times. This is only true provided the adjacent points to that being considered are 

updated using the evolution equations. This w ill obviously cause problem s at points 

which are interior boundary neighbours as the requirem ent that the normal com ­

ponent o f the m agnetic field vanish at the interface are used to assign values at the 

boundary.

The divergence of B at interior boundary neighbours

Consider the interior boundary neighbours to the top-m ost boundary. The value of 

B y is set to zero at the boundary and so the non-vanishing term  is :

dB  3 *+1

b +  ( l - e ) C l
OU 2

+ 4 A 2 A3
*-1

dB j i + 1
+  a — - - ( l - e ) C 3  

0 U2 i - i

On the boundary :

d B ! (e fl 12 + B 32)

( B i2 +  B 32 )
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d B 3 ( 1 - 8 ) B XB 3
— -  h 2 h 3 a ------- --------- —
du 2 ( B x2 + B 32 )

h x a B xB 3
C \  = h l F  B x = -

( B f  + B i 2 )

h 3 a B 3
C 3  = h-xF 5 , = -

( V  + * 3  ) 

Substituting into the above term  yields only

- cle r  l*’+ i _  a e
4 A! A2 L 3 J i - l  “  2 Ai

Now consider interior boundary neighbours to the LHS boundary. The value o f B} 

is set to zero at the boundary and so the non-vanishing term  is :

a
dB

du
+  ( 1 - £ ) C 3

;+ i

j -1
+ 4 Aj A2

+
dB  3

x
-  ( 1 - £ ) C 2

*+i

*-1
4 Ai A3

On the boundary :

d B 2  ( e B 2  “I" B 3 )
=  h x h 2 OL

du i ( B 2z + B S )

d B 3 f f _ ( E - l ) * 2* 3
—-----  — h x h 3 (X " ”
9 m 2 ( B 22 +  f l 32 )
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h i t t  B 2 B  -i
C 2 = h 2 F B 2 = -------— = - ^ -

( B 22 + B 32 )

h 3 a B 3
C 3  = h 3 F  B 3 = -

( B 22 + B 32 )

Substituting into the above term  yields only

k l ‘+1
4 A, A2 L 3 J i - i

In Cartesian co-ordinates these are zero and so V B = 0 at the advanced tim e is true 

everyw here. In Toroidal co-ordinates h 3 = R  = R 0 + x  and so the non vanishing 

term  is zero for the top-m ost interior boundary neighbours but is finite for the LHS 

ones.
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