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SUMMARY



1. Two cyclic nucleotide phosphodiesterase (PDE) activities were 
identified in pig aortic endothelial cell (PAEC) homogenates , a 
cyclic GMP- stimulated PDE (Type II) which hydrolyses both cyclic 

AMP and cyclic GMP and a cyclic AMP- specific PDE (Type IV). The 

role of these PDE isozymes pres e n t  in PAEC was evaluated by 

examining the effects of selective PDE inhibitors on cyclic AMP 

and cyclic GMP content.
2. Inhibitors of the calcium/ calmodulin- dependent PDE (Type I) 

and of the cyclic GMP- inhibited PDE (Type III), M & B 22948 and 

SK & F 94120, respectively, only weakly inhibited the two PDE 
isozymes. In contrast, dipyridamole and trequinsin, two non- 

selective PDE inhibitors, p o t e n t l y  inhibited both isozymes, 

whereas rolipram, selectively inhibited the cyclic AMP- specific 
PDE .

3. Incubation of intact cells with the non- selective PDE inhibi­
tors , dipyridamole (25pM) and trequinsin (25pM), induced large 

i n c r eases in i n t r a c e l l u l a r  c y c l i c  GMP content, w h i c h  were 
completely blocked by the addition of haemoglobin (lOpM). The 

selective cyclic AMP PDE inhibitor, rolipram (25pM), was without 

effect on the cyclic GMP content.
4. D i p y r i d a m o l e  (25pM) e n h a n c e d  the increase in cyclic GMP 

content induced by the nitrovasodilator and stimulant of soluble 

guanylate cyclase, sodium nitroprusside (lpM).

5. Atriopeptin II (0.1-100nM), which activates particulate guany­

late cyclase, i n c r e a s e d  the c y c l i c  GMP c o n t e n t  in a 

c o n c e n t r a t i o n -  d e p e n d e n t  m anner. D i p y r i d a m o l e  (25pM) and 

trequinsin (25pM), but not rolipram (25pM), enhanced the increase
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in cyclic GMP content induced by atriopeptin II (lOnM).
6. The non- selective PDE inhibitor, d i p y r i d a m o l e  increased 
cyclic AMP content at lOOpM but not at 25pM. The selective cyclic 
AMP PDE inhibitor, rolipram (25pM) induced, a large increase in 
cyclic AMP content.

7. Dipyridamole (25pM and lOOpM) enhanced the increase in cyclic 

AMP c o n t e n t  s t i m u l a t e d  by the p- a d r e n o c e p t o r  agonist, 

isoprenaline (25pM), or the a c t i v a t o r  of adenylate cyclase, 

forskolin (lOpM). Furthermore, rolipram (25pM) enhanced the 
increase in cyclic AMP content induced by forskolin (30pM).
8. These results suggest that the cyclic GMP- stimulated PDE 

present in PAEC regulates the cyclic GMP content and the cyclic 
AMP PDE regulates the cyclic AMP c o n t e n t . Whether or not the 

cyclic GMP- stimulated PDE also contributes to the regulation of 

the cyclic AMP content could not be determined.

9. The effects of stimulation of protein kinase C and of cyclic 

nucleotides on proliferation of PAEC in culture was investigated.
10. Phorbol 12- myristate 13- acetate (P M A . O.lnM-lpM), which 

activates protein kinase C, inhibited proliferation in a concen­

tration- dependent manner. No early stimulation of proliferation 

was seen with PMA (0.3pM). The inactive phorbol ester, 4a- phor­

bol- 12,13- didecanoate (0.3pM), lacked the ability of PMA to 

inhibit proliferation of PAEC.

11. S t a u r o s p o r i n e  (lOnM and lOOnM) inhibited serum- induced 

proliferation of PAEC but had no effect on the antiproliferative 

effects of PMA (0.3pM).
12. PMA- induced inhibition of proliferation appeared not to be
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due to stimulated production of destructive oxygen- derived free 

radicals since it was u n a f f e c t e d  by the radical scavangers, 

superoxide dismutase (30 units/ ml) and catalase (30 units/ ml), 
vitamin E (30pM), or butylated hydroxytoluene (30pM). The anti­
proliferative actions of paraquat (lOpM), an agent which gener­

ates free radicals intracellularly, was, in contrast, inhibited 
by vitamin E (30pM) or butylated hydroxytoluene (30pM) but not by 

the extracellular radical scavangers, superoxide dismutase (30 

units/ ml) and catalase (30 units/ ml).
13. Neither dibutyryl cyclic AMP (30pM), nor 8 bromo cyclic GMP 

(30pM) had any effect on the ability of PMA (0.3pM) to inhibit 

proliferation of PAEC.
14. Dibutyryl cyclic AMP (30pM) inhibited proliferation, but 8 

bromo cyclic GMP (30pM) had no effect. Four other stimuli known 

to increase PAEC cyclic GMP content by stimulating particulate or 

soluble guanylate cyclase, atriopeptin II (lOnM), bradykinin 

(O.lpM), sodium n i t r o p r u s s i d e  (lpM) and glyceryl trinitrate 

(lpM), were also without effect on proliferation.
15 . Two agents known to inhibit soluble guanylate cyclase and 

lower intracellular cyclic GMP content, haemoglobin (lOpM) and 

methylene blue (lOpM), each inhibited proliferation of PAEC.
16. The inhibitory effect of haemoglobin (lOpM) was mediated by 

inhibition of soluble guanylate cyclase since it was reversed by 

agents known to increase cyclic GMP content i.e. atriopeptin II 

(lOnM), 8 bromo cyclic GMP (30pM) and sodium nitroprusside (lpM). 

The inhibitory effect of methylene blue (lOpM) was not reversed 

by these agents.
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17. L- NMMA (300pM), which blocks the synthesis of nitric oxide 

by inhibiting nitric oxide synthase, inhibited proliferation of 

PAEC. This appeared to be a non- specific effect, however, since 
the inactive D- enantiomer, D- NMMA (300pM) also inhibited 

proliferation.

18. The non- selective PDE inhibitor, dipyridamole (25pM), inhib­
ited p r o l i f e r a t i o n  of PAEC. The a n t i p r o l i f e r a t i v e  effect of 

d i pyridamole was not b l o c k e d  by the addition of haemoglobin 
(lOpM) and therefore probably resulted from elevation of cyclic 

AMP and not cyclic GMP content.

19. These results suggest that protein kinase C, cyclic AMP and 

cyclic GMP have powerful effects on the proliferation of PAEC.

20. The role of protein kinase C and cyclic nucleotides in con­

trolling the proliferation of rat aortic smooth muscle cells (rat 

A S M C ) in culture was investigated.
21. Serum (2-20%) s t i m u l a t e d  p r o l i f e r a t i o n  of rat ASMC in a 

concentration- dependent manner.
22. PMA (0.3pM), which activates protein kinase C, had no effect 

on the p r o l i f e r a t i o n  of rat ASMC grown in a range of serum 

concentrations (4-20%).
23. Phenylephrine (O.lpM-lmM), a x- adrenoceptor agonist, stimu­

lated proliferation in a concentration- dependent manner, whereas 

the selective - and p 2- a d r e n o c e p t o r  agonist, dobutamine 

(lOpM) and salbutamol (lOpM), respectively, inhibited prolifera­

tion .

24.Dibutyryl cyclic AMP (30pM-lmM) inhibited proliferation in a
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concentration- dependent manner. Furthermore, forskolin (lpM- 
lOOpM), which activates adenylate cyclase, inhibited prolifera­

tion in a concentration- dependent manner. The inactive isomer, 

dideoxy forskolin (lpM-30pM), lacked the ability of forskolin to 
inhibit proliferation of rat ASMC.

25. Forskolin- induced inhibiton of proliferation appeared to be 

media t e d  via an increase in cyclic AMP content since it was 

potentiated by the selective cyclic AMP PDE inhibitor, rolipram 
(3 0pM).

26. Histamine (lpM-lmM) inhibited proliferation in a concentra­
tion- dependent manner. The histamine (lOpM)- induced inhibition 

of proliferation appeared to be mediated via H 2~ receptors since 

the H 2- antagonist, cimetidine (lOpM), blocked its antiprolifera­
tive effects.

27. 8 bromo cyclic GMP (I m M ), glyceryl trin i t r a t e  (ImM) and 

sodium nitroprussside (0.ImM-ImM) inhibited proliferation of rat 
ASMC in a c o n c e n t r a t i o n -  d e p e n d e n t  manner. In contrast, 

atriopeptin II (O.lpM) had no effect on proliferation.
28. The sodium nitroprusside- induced inhibiton of proliferation 

appeared to be mediated by a mechanism independent of the activa­

tion of soluble guanylate cyclase, since haemoglobin (20pM) was 

w i t h o u t  effect. F u r t h e r m o r e ,  M & B 22948 (30pM) f a i l e d  to 

potentiate the antiproliferative effect of sodium nitroprusside 

(O.lmM-lmM). It is likely that the inhibition of proliferation 

resulted from a cytotoxic actions since sodium nitroprusside 

(O.lmM-lmM) stimulated uptake of trypan blue.
29. The inhibitory effect of sodium nitroprusside (O.lmM-lmM) was 

not mediated through the production of cyanide since
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me t h a e m o g l o b i n  (5pM), w h ich binds cyanide avidly, failed to 

reverse the antiproliferative effect.
30. These results suggest that cyclic AMP powerfully inhibits the 
p r o l i f e r a t i o n  of rat ASMC. This inhibition of pr o l i f e r a t i o n  

induced by n i t r o v a s o d i l a t o r s  appears to reflect a cytotoxic 
action w h i c h  oc c u r s  i n d e p e n d e n t l y  of g u a n y l a t e  cycl a s e  

stimulation.
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INTRODUCTION



.1. VASCULAR CELL BIOLOGY

dentification of the hormonal factors and intracellular pathways 

hat control the migration and proliferation of vascular endothe- 

ial and smooth muscle cells is important since dysfunction of 
oth cell types is observed in several cardiovascular diseases 

Hansson & Bonjers, 1986; Nilsson, 1986; Ross, 1986b; Schwartz et 
1. , 1986). A example of such a disease is atherosclerosis.

.2. ATHEROSCLEROSIS

he term atherosclerosis was originally devised to describe a 

egenerative process involving the progressive hardening of the 
lood vessel wall. Today's description of this disease is more 

omplex: a fatty streak is observed to be present in the early
evelopment of atherosclerosis. Furthermore, these lesions are 

onsidered to be the precursor for the more advanced state of 

his disease. The fatty streak is characterized by the presence 

f smooth muscle cells, T- lymphocytes and macrophages. These 

ells are located at a subendothelial level upon an extracellular 

atrix composed of lipids, collagen, elastin and proteoglycans, 

he predominant cell type found here is the macrophage which 

eadily accumulates lipids and takes on the appearance of foam 

ells .

he fibrous plaque represents the more advanced state of the 

isease. These plaques are found to have a cellular core 

ontaining smooth muscle cells, macrophages and T- lymphocytes, 

hich is capped by a layer of smooth muscle cells, macrophages 

nd T- lymphocytes in a dense m atrix of connective tissue, 

urther d e g e n e r a t i o n  of the plaque can occur as the disease 
rogresses and this includes calcification and ulceration (Bocun
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et a l . , 1986; Small, 1986; Munro et al., 1987; Munro & Cotran,
1988).

1.2.1. Pathogenesis of atherosclerosis
In 1976, Ross & Glomset proposed the 'response-to-injury' model 

which stated that injury (mechanical, LDL, homocysteine, immuno­

logical) to and subsequent denudation of the endothelium was the 

initiating event for the disease. Injury to the endothelium may 

involve the loss of either individual cells or in extreme damage, 
loss of large areas of the endothelium. The endothelial cells 

respond by either spreading, or by the proliferation and migra­
tion of neighbouring endothelial cells to re- endothelialize the 

denuded area.

formally the e n d o t h e l i u m  is an intact m o n o l a y e r  w h i c h  is 

lonthrombogenic and secretes various antithrombotic substances, 
Eor example, e n d o t h e l i u m -  d e r i v e d  r e l a x i n g  f a c t o r  and 

prostacyclin, which prevent the adhesion of platelets to the 

arterial wall. Damage to the endothelial cell monolayer may 

promote the adhesion and aggregation of platelets to the arterial 

fall thereby allowing the platelets to release the contents of 

iheir a- granules. This includes several factors which are chemo- 

:actic and mitogenic for the underlying smooth muscle cells.

lodification of this earlier 'response-to-injury' model is neces­

sary since several studies have indicated that endothelial denu- 

lation or platelet adhesion is neither necessary nor sufficient 

:o explain a t h e r o s c l e r o s i s  (Schwartz & Reidy, 1987; Munro & 

'otran, 1988; Hansson & Bondjers, 1986). Recently, the involve­
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ment of other cells of the immune system, in particular mono­

cytes/ macrophages has been proposed (reviewed in Hansson et a l .,
1989) .

The revised hypothesis is that formation of the fatty streak and 
the more advanced fibrous plaque can occur via two pathways: the 

first h i g h l i g h t e d  in m o d e l s  of e x p e r i m e n t a l l y  indu c e d  

hypercholesterolemia. In animals which have been fed a high fat 

diet it was demonstrated that alterations in the viscosity of the 

plasma m e m b r a n e  o ccurs . This i n c r e a s e s  the a t t a c h m e n t  of 

monocytes to the endothelium (Alderson et a l ., 1986). Further­

more, macrophages enhance this process of adhesion of monocytes 
to the arterial wall by the localised release of interleukin-1 
(Bevilacqua et a l . , 1985 ). After attachment, these cells move

between the endothelial cells and become localized in the suben­

dothelium. This is obser v e d  to be the earliest event in the 
formation of a fatty streak. The monocytes become activated and 

secrete numerous chemoattractants and mitogens, such as trans­

forming growth factor p, tumour necrosis factor a and interleu- 

kin-1, which maybe sufficient for stimulation of smooth muscle 

accumulation in the arterial intima (Libby et a l . , 1988; Raines

at a l ., 1989; Majack et a l ., 1990). The opportunity for platelets 

zo attach to the endothelium increases thereby allowing the loca­

lised release of the contents of the a- granules. Furthermore, it 

las been shown that macrophages can damage neighbouring endothe- 

Lial cells by the formation of toxic free radicals. Thus, en- 

lothelial injury could result from any or all of three sources, 
lamely, the endothelial cells themselves, macrophages or plate­

lets .
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The second revised hypothesis for development of atherosclerosis 

involves stimulation of the endothelium to release growth fac­

tors. This too is an example of a non- denud i n g  injury. The 

release of these factors induces smooth muscle migration and 

proliferation, and further growth factor release by the stimu­

lated smooth muscle cells themselves. Figure 1 describes the 

development of an advanced intimal lesion of atherosclerosis by 
the different pathways outlined above.

1.2.2. P r o d u c t i o n  of growth factors by cells implicated in 

atherosclerosis

There is a multidude of different growth promoting and growth 

inhibitory factors secreted by the various cell types present in 

the atherosclerotic lesion (endothelial cells, smooth muscle 

cells, monocytes-macrophages and platelets) (Bowen-Pope et a l . , 
1985; Ross, 1986a; Klagburn & Edelman, 1989). The effects of 

these growth factors upon the cells located within the arterial 

wall is important in the development of atherosclerosis. Table 1 

summarizes only four of these growth factors secreted by the 

different cell types: platelet- derived growth factor, fibroblast 

growth factor, transforming growth factor p and epidermal growth 

factor. All of these growth factors are present in serum. Fibro­

blast growth factor is the primary mitogen responsible for the 

migration and proliferation of endothelial cells whereas all four 

of the growth factors have been observed to be mitogenic for 

smooth muscle cells in culture.

The following introductory chapters will discuss the effect of 

these growth factors upon the migration and proliferation of
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"Injury"
(mechanical, LDL,
homocysteine,
immunological)
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Figure 1: S c h e m a t i c  d i a g r a m  of the R e s p o n s e s  to I n j u r y

Hypothesis. Advanced intimal lesions of atherosclerosis may occur 

by at least two p a t h w a y s . Th e  p a t h w a y  d e m o n s t r a t e d  by the 

clockwise arrows to the right has been observed in experimentally 

induced hypercholesterolemia. Injury to the endothelium (A) may 

induce growth factor release (short arrow). Monocytes attach to 

endothelium (B) and release growth factors. Subendothelial cell 

migration of monocytes (C) occurs and this leads to the formation 

of the fatty streak and release of growth factors such as PDGF 

(short arrow). The appearance of fibrous plaque occurs through 

the release of growth factors from macrophages or endothelial 

cells or both (long arrow from C to F). M a c r o p h a g e s  m a y  also 

stimulate or injure surrounding endothelial cells. The loss of 

endothelial cells a l l o w s  the a t t a c h m e n t  of p l a t e l e t s  to the 

arterial wall (D). This allows the localised release of growth 

factors from platelets. Some of the smooth muscle cells in the 

lesion (F) m a y  r e l e a s e  g r o w t h  f a c t o r s  s u c h  as P D G F  ( s h o r t 

arrows). An alternative pathway for the development of advanced 

lesions of atherosclerosis is shown by the arrows from A to E to 

F. In this case, the e n d o t h e l i u m  m a y  be i n j u r e d  but r e m a i n s  

intact. Increased proliferation of endothelial cells may result 

in i n c r e a s e d  g r o w t h  f a c t o r  r e l e a s e  by the e n d o t h e l i a l  cells 

them s e l v e s  (A). T h i s  m a y  s t i m u l a t e  the m i g r a t i o n  an d  

proliferation of the u n d e r l y i n g  smooth mu s c l e  cells from the 

media into the intimal. This is accompanied by the endogenous 

p r o d u c t i o n  of P D G F  by the s m o o t h  m u s c l e  c e l l s  (E) . T h e s e  

interactions could then lead to the for m a t i o n  of the fibrous 

plaque and f u r t h e r  l e s i o n  p r o g r e s s i o n  (F). This d i a g r a m  is 

reproduced from New Eng. J. Med., 314, 488-500, 1986.



vascular cells. T h e y  w i l l  a l s o  h i g h l i g h t  the i n t r a c e l l u l a r  

messengers and pathways that are utilised to commit these cells 

to intiate DNA synthesis.

Table 1: Production of growth factors by cells associated with 

atherosclerosis.

CELL PDGF FGF TGFft EGF

Platelets + - + +

Monocytes-Macrophages + + + +

Endothelial cells + + + +

Smooth muscle cells + + + -

1.3. PLATELET- DERIVED GROWTH FACTOR (PDGF)

PDGF is a dimeric polypeptide with a relative molecular mass of 

32000 daltons and was initially purified from platelets (Anton- 

iades, 1981). The predominant form of PDGF released by a- gran­

ules in platelets is a heterodimer consisting of an A chain and a 

B chain, but A-A and B-B homodimers are also produced by other 

cell types (Antoniades, 1981). There is about a 60% sequence 

homology between A and B chains (Heldin & Westermark, 1987). PDGF 

is the main mitogenic component found in serum and is known to be 

a potent mitogen for a diverse array of cells including cells of 

mesenchymal origin (Kohler & Lipton, 1974; Ross et a l . , 1974;

Seppa et a l ., 1982; Diliberto et a l . , 1990).

PDGF has been implicated in the abnormal proliferation of vascu­

lar cells that o c c u r s  in the d e v e l o p m e n t  of a t h e r o s c l e r o s i s  

(Ross, 1986b). The effect of PDGF is discussed below.
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1.3.1. Effect of PDGF on endothelial cell proliferation

With the exception of cells from the microvasculature (Bar et 

al., 1989), endothelial cells exhibit a growth independence from 

PDGF by being able to grow e q u a l l y  well in serum- or plasma- 

supplemented medium (Kazlauskas & DiCorleto, 1985). Even though 

vascular endothelial cells do not respond mitogenically to PDGF, 

they synthesize and secrete PDGF or a PDGF- like material (Di­

Corleto & Bowen-Pope, 1983; Vlodavsky et a l ., 1987). It is possi­

ble, therefore, that the endothelial cell layer is involved in 

the m o d ulation of events (migration and pro l i f e r a t i o n )  via a 

paracrine action on adjacent smooth muscle cells in the vascular 
w al l .

1.3.2. Effect of PDGF on smooth muscle cell proliferation

Unlike endothelial cells which exhibit a growth- independence

from PDGF in culture, smooth muscle cell growth depends upon the

presence of platelet factors as observed by Fager et al. (1988).

In this study, human aortic smooth muscle cells were observed not

to grow in the absence of PDGF or when an antiserum to PDGF was

added to the culture medium. PDGF is a potent mitogen for the

vascular smooth muscle cells derived from aortas of many other

species including bovine (Banskota et al., 1989), rat (Tomita et

al . , 1987; Takagi et a l . , 1988; Abell et a l . , 1989; Kihara et

a l . , 1989; M a j a c k  et a l ., 1990), and r a b b i t  ( Kariya et al.,
1987a).

PDGF is produced and secreted not only by platelets, activated 

monocytes and endothelial cells, but by the smooth muscle cells 

themselves (Sjolund et a l . , 1988). The production and secretion
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of a PDGF- like material was observed in cultured aortic smooth 

muscle cells d e r i v e d  fro m  rat pups but not f r o m  3 m o n t h  old 

animals (Seifert et a l . , 1984). Even though these latter cells

did not produce or secrete PDGF, they were found to possess cell 

surface r e c e p t o r s  for it thus m a k i n g  t h e m  r e s p o n s i v e  to the 

mitogen. Furthermore, Walker et a l . (1986) reported that smooth

muscle cells from the arterial intima produced higher levels of 

PDGF in cul t u r e  w h e n  c o m p a r e d  to m e d i a l  s m o o t h  m u s c l e  cells 

cultured from control uninjured a r t e r i e s .

1.3.3. Mechanism of PDGF- induced signal transduction 

The mechanism of PDGF induced signal transduction has been inves­

tigated in several cell types. After binding, PDGF is rapidly 

internalized and degraded (Bowen-Pope & Ross, 1982). This trig­

gers several biochemical changes that lead individually or col­

lectively to various changes in cellular physiology and to commit 

the cell to the initiation of DNA synthesis.

These r e s p o n s e s  i n c l u d e  r e c e p t o r -  m e d i a t e d  t y r o s i n e  k i n a s e  

phosphorylation of cellular and nuclear proteins (Cooper et a l . , 

1982; Fields et al., 1990 ), increases in i n t r a c e l l u l a r  pH by 

activation of N a +/ H + e x c h a n g e  and i n c r e a s e  in c y t o s o l i c  C a 2+ 

(Ives & Daniel, 1987; T ucker et a l ., 1989; D i l i b e r t o  et al.,

1990). On this last point, in rat aortic smooth muscle cells it 

was found that calcium a n t a g o n i s t s  and c a l m o d u l i n  inhibitors 

blocked the PDGF- induced m i t o g e n i c  response (Tomita et a l . ,

1987). F u r t h e r m o r e ,  a c t i v a t i o n  by P D G F  i n d u c e s  c y t o s k e l e t a l  

changes (Bo c k u s  & S t i l e s ,  1984) a n d  h y d r o l y s i s  of 

p h o s p h a t i d y i n o s i t o l  thus g e n e r a t i n g  the s e c o n d  m e s s e n g e r s
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diacyglycerol and inositol trisphosphate (Tsuda et al. , 1986).

Addition of phorbol esters or a PKC inhibitor, H7 , to rabbit and 

rat aortic s m o o t h  m u s c l e  c e lls r e p o r t e d l y  b l o c k s  the PDoF- 

induced mitogenic response (Kariya et a l . , 1987a; Takagi et a l . ,

1988), whereas another investigation found that inhibition of PKC 

failed to suppress the DNA synthesis induced by PDGF in rat aorta 

smooth muscle cells (Kihara et a l ., 1989).

Increased intracellular cyclic AMP concentrations and expression 

of the proto- oncogenes, c-fos and c-myc (Kelly et a l . , 1983;

Rozengurt et al., 1983a; Armelin et a l . , 1984; Kruijer et a l . , 

1984; Coughlin et a l . , 1985; Banskota et a l . , 1989; Williams,

1989; Diliberto et a l ., 1990) have also been observed in response 

to PDGF.

1.4. HEPARIN- BINDING GROWTH FACTOR (H B G F )
The main member of this family is the fibroblast growth factors 

(F G F ) . Acidic and basic FGF share a strong sequence h o m o l o g y  

(55%) and have similiar molecular mass (18000 daltons) but differ 

on isoelectric points and chromosome position (G o s p o d a r o w i c z ,

1989) .

1.4.1. Effect of HBGF on endothelial cells

HBGF are the best characterized and most potent of the endotheli­

al cell mitogens and depending on type, a difference in potency 

can be observed: acidic FGF is approximately 30- to 100- fold 

less potent than that of basic FGF (G o s p a d o r o w i c z , 1989). Both

factors induce en d o t h e l i a l  cell p r o l i feration, m i g r a t i o n  and 

increased production of the enzyme, protease, in culture and are
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found to be angiogenic in v i v o .

1.4.2. Effect of HBGF-I on endothelial cell proliferation

HBGF-I is a family of acidic p o l y p e p t i d e s  that stimulate the 

proliferation of endothelial cells in vitro (Schreiber et a l . / 

1985; Gospodarowicz et a l . , 1986; Herbert et a l . y 1988; Hoshi et

al., 1988a; 1988b). The main member of this family is acidic FGF 

but others include endothelial cell growth factor, brain- derived 

growth fa c t o r  I and eye- d e r i v e d  g r o w t h  f a c t o r  II. V a s c u l a r  

e n d othelial cells have been shown not to e x p r e s s  or p r o d u c e  

active HBGF-I (Schweigerer et a l . , 1987b; Winkles et a l . , 1987;

Bikfalvi et al., 1990).

All these growth factors share similiar chemical and physical 

characteristics: molecular mass, amino acid composition, isoelec­

tric point (pi 5-6) and possess the ability to strongly bind to 
heparin.

1.4.3. Effect of HBGF-I on smooth muscle cell proliferation 

Unlike vascular e n dothelial cells w h i c h  were o b s e r v e d  not to 

actively produce or secrete HBGF-I, human aortic and umbilical 

vein smooth muscle cells were seen to express the HBGF-I mRNA 

transcipt (Winkles et a l . , 1987 ). HBGF-I has been found to be 

mitogenic for smooth muscle cells (Mioh & Chen, 1987; Winkles et 

al., 1987; Hoshi et a l ., 1988a).

1.4.4. Mechanism of HBGF-I- induced signal transduction

It has been shown that in capillary endothelial cells the binding 

of HBGF-I to its receptor is followed by rapid internalization
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(Friesel & Macaig, 1988). Upon internalization, HBGF-I induces 

several cellular responses.

In m u r i n e  3T3 f i b r o b l a s t s ,  the r e s p o n s e  i n c l u d e s  t y r o s i n e  

p h o s p h o r y l a t i o n  of c e l l u l a r  p r o t e i n s  (Huang & Huang, 1986). 

Addition of purified HBGF-I to quiescent Chinese hamster lung 

fibroblasts leads to the reinitiation of DNA synthesis without 

activation of p h o s p h a t i d y l i n o s i t o l  h y d r o l y s i s  or i n c r e a s e d  

cytosolic calcium concentrations (Magnaldo et a l . , 1986). This

report is in agreement with Tucker et al (1989) who showed that 

an increase in c y t o s o l i c  c a l c i u m  was not n e c e s s a r y  for FGF- 

induced mitogenesis in Balb/ c3T3 cells.

In human aortic endothelial and smooth muscle cells, HBGF-I was 

found to s t i m u l a t e  the a c t i v i t y  of a d e n y l a t e  cycla s e ,  and a 

concurrent rise in cyclic AMP content was observed (Mioh & Chen, 

1987; 1989). Recent reports indicate that HBGF-I increases the 

cellular levels of several proto- oncogenes: c-fos, c-jun amd c- 

myc in human umbilical vein endothelial cells (Gay & Winkles, 

1990 ; Lampugnoni et a l . , 1990 ). These ce l l u l a r  onc o g e n e s  are

known to e n c o d e  for D N A  b i n d i n g  p r o t e i n s  w h i c h  f u n c t i o n  as 

transcriptional activators and therefore maybe involved in the 

mitogenic response to HBGF-I.

1-4.5. HBGF-II

The main growth factor in this group is basic FGF. As discussed 

earlier, basic FGF possesses 55% sequence homology with acidic 

FGF but differs on isoelectric point and position on chromosomes 

(G o s p o d a r o w i c z , 1989 ). B a s i c  FGF was i n i t i a l l y  i s o l a t e d  and
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purified from s e v e r a l  d i s t i n c t  tissues, i n c l u d i n g  c u l t u r e d  

pituitary follicular cells, brain, and placenta (Ferrara et a l . , 

1987; Moscatelli et a l ., 1986).

1.4.6. Effect of HBGF-II on endothelial cell proliferation 

Basic FGF is a potent mitogen for vascular endothelial cells. 

This mitogenic activity is not species dependent nor is it d e ­

pendent upon vascular origin of endothelial cells unlike PDGF 

which is mitogenic only for microvascular endothelial cells (Bar 

et a l ., 1989). Bovine aortic and c a p i l l a r y  e n d o t h e l i a l  cells

(Gospodarowizc et a l .,1978; 1986; S c h w e i g e r e r  et a l ., 1987a;

1987b; Herbert et al., 1988; Sato & Rifkin, 1988; Presta et a l . , 

1989a, 1989b; De Cristan et a l . , 1990 ), human u m b i l i c a l  vein

endothelial cells (Gospodarowizc et a l . , 1978; Hasegawa et a l . ,

1988; Herbert et a l . , 1988) and rat carotid artery endothelial

cells (Lindner et a l . , 1990) are known to respond mitogenically

to basic FGF.

In contrast to HBGF-I, it is known that v a s c u l a r  e n d o t h e l i a l  

cells e x p r e s s ,  s y n t h e s i z e  a n d  s e c r e t e  t h e i r  ow n  b a s i c  FG F 

(Schweigerer et a l ., 1987b; Vlodavsky et al., 1987; Winkles et

al. , 1987 ; Sato & Rifkin, 1988; Presta et a l ., 1989b; Bikfalvi et 

al. , 1990) and are capable of responding to basic FGF through the 

interaction of the m i t o g e n  w i t h  hig h  a f f i n i t y  cell s u r f a c e  

receptors (Ne u f i e l d  & G o s p o d a r o w i c z , 1988; B i k f a l v i  et al.,
1989).

1.4.7. Effect of HBGF-II on smooth muscle cell proliferation 

Basic FGF is a mitogen for vascular smooth muscle cells and this
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mitogenic activity has been observed in bovine aortic (Gospoda- 

rowicz et a l . , 1981) and rat aortic smooth muscle cells (Kihara

et a l ., 1989; Majack et a l ., 1990).

1.4.8. M e c h a n i s m  of s e c r e t i o n  of H B G F - I  and b a s i c  FGF fro m  

vascular cells
It is proposed that HBGF-I and basic FGF act in an aut o c r i n e  

manner to control smooth m u s c l e  and e n d o t h e l i a l  cell growth, 

respectively, despite both HBGF-I and basic FGF lacking the 

classical signal sequences required for secretion (Abraham et 

a l . , 1986a; 1986b). This is consi s t e n t  wit h  the f inding that

cultured endothelial cells that synthesize basic FGF appear to 

release little or none into the s u r r o u n d i n g  b a t h i n g  m e d i u m  

(Vlodavsky et a l ., 1987).

Whether or not basic FGF was s e c r e t e d  remai n e d  u n k n o w n  until 

recently when it was shown that it binds to the endothelial cell- 

derived glycosaminoglycan, heparan sulphate, a major structural 

component of the underlying basement membrane, and is secreted as 

a complex. These complexes of basic FGF and heparan sulphates 

then become integrated into the extracellular matrix (Saksela & 

Rifkin, 1990; B a i r d  & Ling, 1987). F u r t h e r m o r e ,  at a r e a s  of 

r egro w t h  a f t e r  e n d o t h e l i a l  c e l l  i n j u r y ,  s e c r e t i o n  of the 

p r o teolytic enzymes, p r o t e a s e  and c o l l a g e n a s e ,  d e g r a d e s  the 

basement m e m b r a n e  t h e r e b y  r e l e a s i n g  the c o m p l e x e d  b a s i c  FGF 

(Saksela & Rifkin, 1990). The released basic FGF induces growth 

and migration of surrounding endothelial cells thereby promoting 

the restoration of the endothelial cell layer.
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This scheme may indicate that basic FGF has a potential role as a 

growth r e g u l a t o r  of e n d o t h e l i a l  cells in the a r t e r i a l  w a l l  

(reviewed by K l a g s b r u n  & E d e l m a n ,  1989). It is p o s s i b l e ,  

therefore, that the release of HBGF-I from smooth muscle cells 

occurs through a similiar mechanism by complexing with heparan- 

related glycosaminoglycans.

1.4.9. Mechanism of HBGF-II- induced signal transduction 

Basic FGF has been shown to interact with specific cell- surface 

receptors in human capillary and umbilical vein endothelial cells 

and this is followed by rapid internalization (Neufeld & Gospoda- 

rowicz, 1988; B i k f a l v i  et a l ., 1989). This t r i g g e r s  s e v e r a l

biochemical cha n g e s  l e a d i n g  i n d i v i d u a l l y  or c o l l e c t i v e l y  to 

commit the cell to initiation of DNA synthesis.

The signal transduction pathway utilised by basic FGF has been 

investigated in a number of cell systems. There is, however, no 

clear u n d e r s t a n d i n g  of the p r i m a r y  t r a n s d u c i n g  m e c h a n i s m  

involved. Unlike with PDGF, increases in cytosolic calcium are 

not n e c e s s a r y  for m i t o g e n e s i s  in B a l b /  c3T3 f i b r o b l a s t s  

stimulated with basic FGF (Tucker et al., 1989). Activation of 

the calcium, p h o s p h o l i p i d  d e p e n d e n t  kinase, p r o t e i n  kinase C 

(PKC) and increases in cyclic AMP are not consistently observed. 

In Swiss 3T3 fibroblasts, basic FGF at mitogenic concentrations 

activates protein kinase C (Blackshear et a l . , 1985; Moscatelli

et a l ■i 1986), whereas as in hamster fibroblasts the basic FGF- 

receptor s i g n a l l i n g  p a t h w a y  was f o u n d  to be i n d e p e n d e n t  of 

phospholipase C- activated phosphatidylinositol hydrolysis or 

protein kinase C activation (Magnaldo et al., 1986).
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in rat a o r t i c  s m o o t h  m u s c l e  c ells, b o v i n e  c e r e b r a l  c o r t e x  

capillary endothelial cells, normal and transformed foetal bovine 

aortic e n d o t h e l i a l  cells, a c t i v a t i o n  of p r o t e i n  k i n a s e  C is 

likely to be responsible for the chemotactic and mitogenic activ­

ity of basic FGF. This is suggested since pretreatment of the 

cells with H7 or staurosporine (protein kinase C inhibitors) or 

prolonged pretreatment with phorbol esters, abolishes the chemo 

tactic and mitogenic activity of basic FGF in these cells (Kihara 

et a l . , 1989; Presta et a l ., 1989a; 1989b; Daviet et a l . , 1990). 

Increased expression of the proto-oncogenes, c-fos and c-myc, 

have been observed in response to basic FGF (Lampugnani et ■ #

1990) .

1.4.10. Additional members of FGF family
Additional members of the FGF family have recently been identi­

fied: int-2, hst/k53 and FGF-5 ( Yoshida et a l . , 1987 ; Zhan et

a l ., 1988). All three proteins share considerable sequence homol­

ogy (between 35 and 55%) with acidic and basic FGF. One major 

structural difference is the presence of a hydrophobic leader 

sequence that facilitates secretion (Delli- Bovi et a l ., 1988)

and therefore permits access of to the plasma membrane receptors 

thus closing the autocrine loop. The targets of these gr o w t h  

factors are not yet fully characterized.

1.5. EPIDERMAL GROWTH FACTOR (E G F )

EGF is a p o l y p e p t i d e  w i t h  a r e l a t i v e  m o l e c u l a r  m a s s  of 6000 

daltons and was first discovered because of its presence in high 

concentrations within the submaxilary glands of mice (Savage & 

Cohen, 1972). It is n o w  k n o w n  t h a t  p l a t e l e t s ,  m o n o c y t e s -
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macrophages and endothelial cells produce and release EGF (Bowen 

Pope et a l ., 1985 ; Assoian et a l . , 1984).

1.5.1. Effect of EGF on endothelial cell proliferation

EGF has been shown to have differing effects upon the prolifera­

tion of endothelial cells in culture: stimulation of prolifera­

tion was observed in human aortic and umbilical vein endothelial 

cells (Gospodarowicz et a l . , 1978; Hoshi et a l . , 1988a) and in a 

transformed foetal bovine aortic endothelial cell line (Presta et 

al., 1989a). In contrast, no effect was observed in bovine aor­

tic, bovine umbilical vein or foetal bovine aortic endothelial 

cells. These cells w e r e  s h o w n  to lack the r e c e p t o r s  for EGF 

(Gospodarowicz et a l ., 1978).

1.5.2. Effect of EGF on smooth muscle cell proliferation

EGF is a mitogen for vascular smooth muscle cells including those 

from bovine aorta, human aorta and umbilical vein, and rat aorta 

(Gospodarowicz et a l . , 1981; Owen, 1985; Tomita et a l . , 1987 ;

Hoshi et a l ., 1988a; Takagi et a l ., 1988).

1-5.3. Mechanism of EGF- induced signal transduction 

The signal transduction pathway utilised by EGF has been investi­

gated in a number of cell types. There is, however, no clear 

understanding of the primary transducing mechanisms involved.

After binding EGF triggers receptor- mediated tyrosine kinase 

phosphorylation of cellular substrates including its own receptor 

(Cooper et a l . , 1982; Margolis et a l ., 1989). Pretreatment of NIH 

3T3 cells with a protein tyrosine kinase inhibitor abolished the
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mitogenic activity of EGF (Margolis et a l . , 1989). Stimulation of 

Na+/ H + antiport activity, of amino acid and glucose transport 

and of increased c-myc e x p r e s s i o n  have also been o b s e r v e d  in 

response to EGF (Tsuda et a l . , 1986 ). Phosphatidylinositol h y ­

drolysis is not consistently observed upon stimulation by E G F . In 

human foreskin fibroblasts and A431 human epidermoid cells, a 

phosphatidylinositol hydrolysis was observed (Sawyer & Cohen, 

1981; M e i s e n h e l d e r  et a l ., 1989; T h o m p s o n  et a l ., 1989). In

contrast in Swiss 3T3 cells there was no hydrolysis of phosphat­

idylinositol in response to EGF (Tsuda et a l . , 1986). F u r t h e r ­

more, addition of calcium antagonists, calmodulin inhibitors, 

phorbol esters, or a PKC inh i b i t o r  b l o c k e d  the EGF- i nduced 

stimulation of D N A  s y t h e s i s  in rat and b o v i n e  a o r t i c  s m o o t h  

muscle cells (Owen, 1985 ; Tomita et a l . , 1987; Takagi et a l . ,
1988).

1.6. INTERACTIONS OF GROWTH FACTORS AND VASCULAR CELL PROLIFERA­
TION

It is apparent that the control of vascular cell proliferation

requires complex interactions between growth factors. Control

may be mainly under the influence of a specific growth factor

whose actions is then modified by others. Several substances have

been i d e n t i f i e d  that are k n o w n  to m o d u l a t e  p r o l i f e r a t i o n  of

endothelial cells in response to FGF, or of smooth muscle cells

in response to serum. These include heparin, transforming growth

factor p, tumour necrosis factor and interleukin-1. Several of

these factors are released by the numerous cell types present

within the atherosclerotic lesions (Table 2), and are discussed 
below.
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Table 2: Production of heparin, transforming growth factor p,

tumour necrosis factor a and interleukin- 1 by cells associated 

with atherosclerosis.
CELL HEPARIN TGFfi TNFa IL-1

Platelets +

Monocytes- Macrophages - + + +

Endothelial cells + + - +

Smooth Muscle cells + + +

1.6.1. Effect of heparin on endothelial cell prolferation 

Heparin and its related glycosaminoglycan, heparan sulphate, have 

been shown to have differing effects on endothelial cell growth: 

stimulation of growth was observed in human umbilical vein e n ­

dothelial cells, inhibition of growth was o b s e r v e d  in b ovine 

capillary and human omental microvascular endothelial cells, and 

no effect was observed in human umbilical vein endothelial cells 

(Gospodarowicz et a l . , 1986; Gospodarowicz & Cheng, 1986; Bik- 

falvi et a l . , 1988; Herbert et al., 1988 ). In b ovine aortic,

human capillary and umbilical vein endothelial cells, HBGF-I was 

seen to b e c o m e  mor e  p o t e n t  in the p r e s e n c e  of hepar i n ,  thus 

making it as potent as basic F G F . It was s u g g e s t e d  that this 

reflected the ability of heparin to stabilize the tertiary struc­

ture of acidic FGF (Schreiber et al., 1985; Gospodarowicz et al., 

1986; Herbert et a l ., 1988). In contrast, in the p r e s e n c e  of

heparin, basic FGF had an either an antiproliferative effect or 

no effect on human umbilical vein endothelial cell growth (Her­
bert et a l . , 1988; Hasegawa et al., 1988).
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1.6.2. Effect of heparin on smooth muscle cell proliferation

Heparin and its related glycosaminoglycan, heparan sulphate, have 

been shown to have an inhibitory effect on the proliferation of 

vascular smooth muscle c e l l s . This inhibition is not species 

dependent nor is it dependent upon vascular origin of the smooth 

muscle cells: heparin i n h ibited the serum-, P D G F - , HBGF- and

phorbol ester- induced growth of bovine and human aortic (Clowes 

& Karnowsky, 1977; R eilly et a l . , 1988; Hoshi et a l . , 1988a;

Castellot et a l ., 1989), rat aortic (Hoover et a l . , 1980; Guyton 

et_al., 1980; Castellot et a l . , 1989), rabbit aortic (Herbert & 

Maffrand, 1989) and human saphenous vein smooth m u s c l e  cells 
(Castellot et a l ., 1989).

Heparin was found to inhibit the mitogenic response to growth

factors which utilise the activation of protein kinase C as a

m e c h a n i s m  of s i g n a l  t r a n s d u c t i o n .  T h e  s t i m u l a t i o n  of

P^olifera tion by EGF is indepe n d e n t  of a c t i v a t i o n  of p r o t e i n

kinase C and is therefore insensitive to heparin (Castellot et

al. , 1989). A possible mechanism by which heparin inhibits growth

of smooth muscle cells is by its ability to selectively inhibit

the e x p r e s s i o n  of the p r o t o -  o n c o c g e n e s ,  c- fos and c- xnyc,

induced by a protein kinase C dependent pathway (Castellot et 
al., 1989).

Furthermore, production of an antiproliferative heparan sulphate 

y bovine a o r t i c  s m o o t h  m u s c l e  cells has b e e n  d e m o n s t r a t e d  

(Fritze et a l . , 1985 ). This suggests that smooth muscle cells
themselves can control their own growth.

18



1.6.3. Effect of transforming growth factor p (TGFp) on endothe­

lial cell proliferation
TGFp is a polypeptide with a relative molecular mass of 25000 

daltons which is secreted by platelets, monocytes- macrophages, 

endothelial cells and medial smooth muscle cells (Assoian et a l ., 

1984; Sarzani et a l . , 1989; A n t o n e l l i -  O rlidge et a l . , 1989;

Assoian & Sporn, 1986).

TGFp has b e e n  s h o w n  to act as a b i f u n c t i o n a l  r e g u l a t o r  of 

endothelial cell growth. TGF p  i n h i b i t s  the g r o w t h  of b o v i n e  

aortic and a d r e n a l  c o r t e x  c a p i l l a r y  a n d  h u m a n  a r t e r i a l  

endothelial cells i n d u c e d  by s e r u m  and b a s i c  or a c i d i c  FGF 

(Frater-Schroder et a l . , 1986; Baird & Durkin, 1986; Hoshi et

al., 1988a; Bell & Madri, 1989; Mioh & Chen, 1989). In contrast 

to bovine aortic and adrenal cortex capillary endothelial cells, 

TGFp is mitogenic for bovine corneal endothelial cells and has a 

synergistic effect on the mitogenic action of basic FGF (Plouet & 
Gospodarowizc, 1989).

1.6.4. Effect of TGFp on smooth muscle cell proliferation 

TGFp has been shown to act as a bifunctional regulator of smooth 

muscle cell growth. TGFp potentiated the mitogenicity of serum, 

PDGF-BB and basic FGF in cultures of quiescent, confluent smooth 

muscle cells, whereas in sparse, p r o l i f e r a t i n g  s mooth m u s c l e  

cells, it inhibited growth induced by these stimuli (Hoshi et 
al. , 1988a; Majack et a l ., 1990).

jLL615_. Mechanism of TGFp- induced signal transduction

TGFp has been shown to display a variety of activities: decreased
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synthesis of the proteases, collagenase and plasminogen activa­

tor, elevated synthesis of inhibitors of both collagenase and 

plasminogen activator, and the induction of matrix macromolecule 

synthesis (Saksela & Rifkin, 1990). These actions would tend to 

decrease the amount of com p l e x e d  basic FGF re l e a s e d  from the 

subendothelium extracellular matrix, but in bovine corneal e n ­

dothelial cells TGFp exerted its mitogenic effect via the i n ­

creased intracellular content of basic FGF (Plouet & Gospodaro­

wicz , 1989).

TGFp has been observed to decrease the migration of bovine aortic 

endothelial cells, whereas it stimulates the migration of bovine 

aortic smooth muscle cells (Bell & Madri, 1989).

Addition of TGFp to HBGF-I stimulated human adult endothelial 

cells induced a reduction in the intracellular cyclic AMP content 

by decreasing adenylate cyclase activity (Mioh & Chen, 1989). It 

is l i k e l y  tha t  t h e r e f o r e  t h a t  T G F p  e x e r t s  its e f f e c t s  on 

proliferation at least partially through modulation of cyclic 
AMP content.

1.6.6. Tumour necrosis factor a (TN F a )

TNFa is released from monocytes- macrophages and smooth muscle 

cells (Warner & Libby, 1989) and has been reported to have sever­

al actions on endothelial cells: increased neutrophil adhesion,

induction of pro-coaggulant activity, cytoskeletal rearrangement, 

and stimulated production of PDGF, prostacyclin, interleukin-1 

and granulocyte- monocyte- colony stimulating factor (GM-CSF) 

(Bevilacqua et a l . , 1986; Nawroth et a l . , 1986; Hajjar et al.,
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1987; Endo et a l ., 1988; Cotran & Pober, 1989). Furthermore, TNFa 

induces the expression of interleukin-1 by smooth muscle cells 

(Warner & Libby, 1989). TNFa is known to inhibit the prolifera­

tion of human umbilical vein endothelial cells grown in serum and 

of capillary endothelial cells stimulated to grow with basic FGF 

(Schweigerer et a l ., 1987a; Shimada et a l ., 1990).

1.6.7. Effect of Interleukin-1 (IL-1) on endothelial cell p rolif­

eration

IL-1 is a cytokine which is involved in enabling endothelial 

cells to partic i p a t e  a c t i v e l y  in immune and i n f l a m m a t o r y  r e ­

sponses (Cotran & Pober, 1989; Martin et a l ., 1988a).

IL-1 was found to inhibit thy m i d i n e  i n c o r p o r a t i o n  into human 

umbilical vein endothelial cells (Cozzolino et a l . , 1990). IL-1

is secreted not only by activated macrophages, but by endothelial 

cells themselves. Endothelial cells respond following the binding 

of IL-1 to cell- surface receptors, thus indicating that IL-1 

may have an autocrine role in controlling endothelial cell growth 

(Cozzolino et a l . , 1990). IL-1 inhibits endothelial growth in

response to basic FGF (Cozzolino et a l ., 1990).

1.6.8. Effect of IL-1 on smooth muscle cell proliferation

IL-1 has been shown to act as a growth factor for vascular smooth 

muscle cells (Libby et a l ., 1988; R a i n e s  et a 1 ., 1989). The

mitogenic activity of IL-1 was found to be associated with in­

creased expression and secretion of PDGF from the smooth muscle 

cells themselves. This was demonstrated by the observation that 

addition of antibodies against PDGF completely blocked the mito-
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genic response to IL-1 (Raines et a l . , 1989).

1.7.1. INTERACTIONS BETWEEN ENDOTHELIAL CELLS AND SMOOTH MUSCLE 

CELLS

As introduced earlier, smooth muscle cell migration and prolifer­

ation plays an important role in the formation of an atheroscle­

rotic lesion. Upon re- endothelialization of the endothelial cell 

monolayer there is some indication that regression of the intimal 

thickening occurs (Ross, 1986b). This would suggest that vascular 

endothelial cells produce and secrete growth inhibitors for the 

underlying smooth muscle cells. Several studies have indicated 

that endothelial cells not only produce growth inhibitory s u b ­

stances, but under certain conditions also growth stimulatory 

substances, and chemotactic factors for smooth muscle cells.

Endothelial cells are known to produce and secrete a PDGF or a 

PDGF- like substance which is a potent mitogen for smooth muscle 

cells (DiCorleto & Bowen- Pope, 1983; Vlodavsky et al., 1987; 

Staiano- Coico et a l . , 1988). Other growth promoting substances 

have been detected in the conditioned medium of bovine aortic 

endothelial cells (Wang et a l ., 1981).

On the o t h e r  hand, the c o n d i t i o n e d  m e d i u m  f r o m  c o n f l u e n t  

monolayers of e i t h e r  b o v i n e  a o r t i c  or h u m a n  u m b l i l i c a l  v e i n  

endothelial cells have been found to contain a growth inhibitory 

substance for actively dividing smooth muscle cells (Castellot et 

al-/ 1981; 1982; Willems et a l . , 1982; Herbert & Maffrand, 1989).

is possible that endothelial cells secrete factors which are 

not only mitogenic but are chemotactic for the underlying smooth
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muscle cells. A c h e m o t a c t i c  f a c t o r  has bee n  d e t e c t e d  in the 

conditioned medium from confluent monolayers of bovine aortic 

endothelial cells (Autio et a l . , 1989).

Such interactions between endothelial cells and smooth muscle 

cells might contribute to the p r o l i f e r a t i o n  and m i g r a t i o n  of 

smooth muscle cells into the intima during the development of 

atherosclerosis.

1.7.2. Endothelin

Recently it has been demonstrated that various endothelial cells 

possess the ability to synthesize and release a vasoconstrictor 

peptide now r e c ognised as e n d o t h e l i n  (ET). These include pig 

aortic (Yanagisawa et al., 1988) and bovine adrenal cortex capil­

lary and aortic (Hexum et al., 1990; Vigne et al., 1990) endothe­

lial cells. It has been shown, however, that not all endothelial 

cells possess the ability to produce E T . One such cell type is 

bovine brain capillary endothelial cells (Vigne et a l ., 1990).

The release of ET by endothelial cells in culture occurs sponta­

neously, but can also be stimulated by a variety of substances 

including IL-1 ( Y o s h i z u m i  et a l ., 1990), TGFp, P D G F  an d  EG F

(Resink et a l ., 1990a), t h r o m b i n  and the p h o r b o l  ester, T P A

(Emori et a l . , 1989). The primary sources of IL-1 and thrombin in 

the arterial wall are monocytes and platelets, respectively. It 

has been demonstrated that an important complication in athero­

sclerosis is the increased v a s o c o n s t r i c t e d  state of a f f e c t e d  

arteries• A recent study indicated that the ET- induced vasocon­

strictor response was potentiated in atherosclerotic arteries
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(Lopez et al., 1990). Furthermore, a recent report has d e m o n ­

strated that cyclic GMP- elevating agents such as atrial natriu­

retic peptide and the n i t r o v a s o d i l a t o r , sodium n i t r o p r u s s i d e , 

reduce basal and stimulated ET production from human umbilical 

vein endothelial cells (Saijunmaa et a l ., 1990).

Several studies have suggested a possible role for ET in vascular 

endothelial cell proliferation. ET was observed to stimulate DNA 

synthesis in bovine brain capillary endothelial cells with great­

er potency than basic FGF. These cells were found to possess a 

large n u m b e r  of hig h  a f f i n i t y  cell s u r f a c e  r e c e p t o r s  for ET 

(Vigne et a l . , 1990). A second study confirmed the growth promot­

ing action of ET (Takagi et a l ., 1990). Here it was reported that 

serum- induced proliferation of human umbilcal vein endothelial 

cells was inhibited by anti- ET antibodies. Furthermore, ET has 

been shown to stimulate proliferation of rat aortic smooth muscle 

cells in culture (Komuro et al., 1988; Bobik et al., 1990).

1.7.3. Mechanism of ET- induced signal transduction 

The m e c h a n i s m  by w h i c h  ET i n d u c e s  v a s o c o n s t r i c t i o n  and DN A  

synthesis has been investigated in vascular cells . ET has been 

shown to i n t e r a c t  w i t h  hig h  a f f i n i t y  s p e c i f i c  cell- s u r f a c e  

receptors on endothelial (Vigne et al., 1990) and smooth muscle 

cells (Hirata et a l ., 1988; Resink et al., 1990c). The signalling 

pathways involved include intracellular alkalinization, activa­

tion of S6- kinase, activation of phopsholipase C, which stimu­

lates the formation of the second messengers, inositol trisphos- 

phate and diacyglycerol, and mobilization of intracellular calci­

um (Komuro et a l ., 1988; Resink et a l . , 1988; 1990b; Griendling
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et al., 1989; Vigne et a l ., 1990). Increased expression of the

proto-oncogenes, c-fos and c-myc, have been observed in response 

to ET (Komuro et a l ., 1988; Bobik et a l . , 1990 ).

1.8. NEW ANGIOGENIC FACTORS
Acidic and basic FGF are known to be angiogenic in v i v o , that is 

they stimulate the migration and proliferation of endothelial 

cells, but evidence suggests that other factors may have a role 

in triggering a n g i o g e n e s i s . Firstly, FGF lacks the hydrophobic 

signal sequence that governs secretion, but if a factor is to be 

angiogenic, it must be able to diffuse freely. Secondly, basic 

FGF is synthesized by the endothelial cells themselves, so if 

oasic FGF is present in and around the endothelial cells at all 

times but in spite of this the cells are quiescent, then the 

possibility exists that other factors may initiate angiogenesis. 

Recent work has identified and characterized several new angio­

genic factors. These include

1.8.1. Platelet-derived endothelial cell growth factor (PD-ECGF) 

This is a platelet- derived endothelial cell mitogen, distinct 

from PDGF that has recently been identified and characterized 

(Miyazano et a l ., 1987; Miyazano & Heldin, 1989). PD-ECGF is a 

single polypeptide with a relative molecular mass of 45000 dal- 
tons.

It has been shown to stimulate migration and proliferation of 

porcine aortic endothelial cells in culture and angiogenesis in 

(Ishikawa et a l . , 1989). The mitogenic activity of PD-ECGF

has been examined on a diverse array of cell types and was found

25



to be m i t o g e n i c  o n l y  for v a s c u l a r  e n d o t h e l i a l  cells. T h i s  

mitogenic activity was not species dependent nor dependent upon 

the vascular origin of the cells (Ishikawa et a l ., 1989).

1.8.2. Vascular endothelial cell growth factor(VEGF)

This is a family of mitogens recently characterized from the 

conditioned culture media of either rat glioma cells (Conn et 

a l ., 1990a), or of bovine folliculo stellate cells (Ferrara &

Henzel, 1989; Gospodarowicz et a l . , 1989; Plouet et a l . , 1989).

These m i t o g e n s  a p p e a r  to be m e m b e r s  of a d i s t i n c t  f a m i l y  of 

growth factors which have been characterized as dimeric polypep­

tides with a relative m o l e c u l a r  mass of 45-46000 d altons and 

exhibit s e q u e n c e  h o m o l o g y  to the h u m a n  P D G F  A and B c h a i n s  

(Tischer et a l . , 1989; Conn et a l ., 1990b).

VEGF possesses the ability to bind to heparin and like basic FGF, 

is complexed with heparan sulphates in the basement membrane. The 

mitogenic activity of VEGF has been examined on a diverse array 

of cell types and was found to be mitogenic only for vascular 

endothelial cells (Plouet et a l . , 1989; Gospodarowicz et a l . ,

1989; Ferrara & Henzel, 1989). This mitogenic activity is not 

dependent on species nor is it dependent upon the vascular origin 

of the endothelial cells. This is in contrast to PDGF which is 

mitogenic o n l y  for e n d o t h e l i a l  c e l l s  d e r i v e d  f r o m  the 

microvasculature (Bar et a l ., 1989).

Although P D-ECGF and VEGF have the same appar e n t  u nique cell 

specificity and similiar molecular mass, the two mitogens differ 

by a 20- fold d i f f e r e n c e  in p o t e n c y  (VEGF is the mor e  p otent
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mitogen) and by their secondary structure (PD-ECGF is a single 

polypeptide whereas VEGF is a dimer).

1.8.3. Vascular permeability fact o r (V P F )
VPF was isolated and purified from the conditioned medium of a 

guinea pig line 10 tumour cells (Senger et a l ., 1990). VPF has

been c h a r a c t e r i z e d  as a d i m e r i c  p o l y p e p t i d e  w i t h  a r e l a t i v e  

molecular mass of 40000 daltons and was originally described as a 

p e rmeability f a c t o r  since it p r o m o t e d  the l e a k a g e  of pl asm a  

fluids and proteins across the endothelial cell layer (Senger et 

al., 1990).

R ecently V P F  w a s  f o u n d  to be a n g i o g e n i c  w h e n  i n j e c t e d  

intradermally into guinea pigs and to be m i t o g e n i c  for human 

umbilical vein endothelial cells and bovine aortic and adrenal 

capillary endothelial cells in culture (Connolly et a l . , 1989;

Ferrara & Henzel, 1989).

Recent w o r k  has i n d i c a t e d  that VP F  p o s s e s s e s  i d e n t i c a l  N H 2~ 

terminal sequences to VEGF. Therefore, VPF might be considered to 

be an additional member of the mitogenic family of VEGF (Connolly 

et a l . , 1989; Ferrara & Henzel, 1989).

1.9. PROTEIN KINASE C (PKC) AND CELLULAR PROLIFERATION 

PKC was first reported in 1977 as a proteolytically- activated 

protein kinase located in many tissues with no obvious role in 

signal transduction (Inoue et al., 1977). Later it was shown that 

it was a calcium- activated, phospholipid- dependent enzyme which 

was firmly linked to signal transduction (Nishizuka, 1984). PKC
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is widely distributed in many tissues and organs of mammals and 

is involved in mediating an intracellular signal that triggers 

various cellular responses including those elicited by the growth 

factors PDGF and basic FGF.

PKC is transiently activated by diacylglycerol, which is one of 

two s e c o n d  m e s s e n g e r s  p r o d u c e d  by the d e g r a d a t i o n  of 

phosphatidylinositol bisphosphate in response to stimulation of 

ph ospholipase C (Bell, 1986). The o t h e r  m e s s e n g e r ,  i n o s i t o l  

trisphosphate, activates the release of calcium stored in the 

endoplasmic reticulum (Putney, 1987; Rana & Hokin, 1990). More 

recent w o r k  has d i s c o v e r e d  an a l t e r n a t i v e  s o u r c e  of 

uiacylglycerol. This occurs via the degradation of phosphatidy- 

choline by phospholipase C or D to yield phosphatidic acid which 

is further degraded to diacyglycerol by phosphatidic acid phosp- 

hohydrolase (Pelech & Vance, 1989).

1.9.1. Molecular Heterogenity and Structure

PKC is a single polypeptide chain with an approximate molecular 

mass of 77000 daltons and is composed of two functionally differ­

ent domains: a hydrophobic domain that binds to the plasma m e m ­

brane and h y drophilic domain that contains the c a t a l y t i c a l l y  
active centre.

Initially four species emerged from the screening of a variety of 

complementary DNA libraries: a, pi, pil and gamma. The enzymes 

with pi- and pil -  s e q u e n c e s  are d e r i v e d  f r o m  a s i n g l e  R N A  

transcript by a l t e r n a t i v e  s p l i c i n g ,  w i t h  pil b e i n g  the m o s t  

abundant. Each of the four PKC subspecies consists of a single
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polypeptide with four conserved (Cl- C4) and five variable (VI- 

V 5 ) regions. The amino- terminal containing the Cl and C2 regions 

is the regulatory domain and interacts with calcium, phospholipid 

and either endogenous diacyglycerol or exogenous phorbol e s t e r s . 

The Cl region consists of a tandem repeat of cysteine- rich zinc- 

finger like sequences which seem to be essential for binding of 

phorbol esters implying its involv e m e n t  in the m e m b r a n e -  PKC 

interaction (Ono et a l . , 1989b). C2 m a y  be n e c e s s a r y  for the

calcium sensitivity of the enzyme (Ono et a l . , 1988; 1989a). The

carboxyl- terminal containing the C3 and C4 regions show sequence 

homology with many other protein kinases (reviewed in Nishizuka, 

1988). C3 c o n t a i n s  the c a t a l y t i c  s i t e  of the e n z y m e .  M o r e  

recently at least three other subspecies have been identified: 6 , 
g and £. These subspecies have a common structure closely related 

to, but c l e a r l y  d i s t i n c t  f r o m  the four s u b s p e c i e s  d e s c r i b e d  

above. T h e s e  a d d i t i o n a l  m e m b e r s  l a c k  the C2 r e g i o n  of the 

regulatory domain and the requirement of calcium for enzymatic 

activity. It has been suggested that these subspecies of PKC may 

be responsible for the large diversity of responses observed upon 

activation of these enzymes (Coussens et al., 1986; Nishizuka, 

1988; Farago & Nishizuka, 1990).

1-9.2. Phorbol esters

Phorbol esters are potent tumour promoters that were originally 

isolated from the oil of Euphorbiacea Croton tiglium and identi­

fied by Van Duuren & Orris (1965) and H e c k e r  (1968). Phor b o l  

esters are now known to activ a t e  PKC by i n t e r a c t i n g  w i t h  the 

enzyme at the same site as diacyglycerol (Ashendel, 1985).
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Structural analysis indicates that the phorbol ester, phorbol 12- 

myristate 13-acetate, has a diacyglycerol- like structure which 

enables it to substitute for the endogenous activator at extreme­

ly low c o n c e n trations. There is an approximate correlation b e ­

tween the ability of the i n d ividual phor b o l  ester to p r o m o t e  

tumours and to activate the enzyme (Castagna et a l ., 1982).

1.9.3. Function of PKC
Upon a c t i v a t i o n  of PK C  by e i t h e r  p h o r b o l  e s t e r s  or by 

diacyglycerol, a rapid translocation of the enzyme occurs from 

the soluble to the particulate fraction without any change in PKC 

activity. This is a s s o c i a t e d  wit h  their role in c e l l u l a r  r e ­

sponses (Blackshear, 1988). P r o l o n g e d  t r e a t m e n t  w i t h  p h o r b o l  

esters leads to a decrease or a down- regulation in PKC activity 

which is dist i n g u i s h a b l e  from the rapid t r a n s l o c a t i o n  of the 

enzyme.

Activation of PKC and s u b s e q u e n t  p h o s p h o r y l a t i o n  of p r o t e i n s  

(Takai et a l . , 1985; Kuroki & Chida, 1988) has been found to be 

involved in s e v e r a l  c e l l u l a r  r e s p o n s e s :  m o d u l a t i o n  of ion

conductance (Nishizuka, 1986); down- r e g u l a t i o n  of r e c eptors 

(Hoshi et a l . , 1988b); stimulation of gene expression (Colotta et 

al. , 1988; Murphy et a l ., 1988; Reuse et a l . , 1990); stimulation 

of protein synthesis (Brostrom et a l . , 1987); stimulated release 

of enzymes and growth factors (Nishizuka, 1986; M urphy et a l . ,

1988) and interference in progression of the cell cycle (Fukumoto 

£t_al. # 1988). These diverse functions may well involve activaion 

of the different PKC subspecies as described earlier (Coussens et 

^1. , 1986; Nishizuka, 1988; Farago & Nishizuka, 1990).
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In a d d i t i o n  to t h e s e  s t i m u l a t o r y  a c t i o n s  of P K C  t h e r e  is 

accumulating evidence to indicate that PKC provides an inhibitory 

control of cell s i g n a l l i n g .  It has b e e n  r e p o r t e d  t h a t  PKC 

inhibits calcium mobilization by blocking the receptor- mediated 

hydrolysis of inositol phospholipid and hence the production of 

diacyglycerol and inositol trisphosphate (Nishizuka, 1988). This 

inhibitory role of PKC m a y  be e x t e n d e d  to i n c l u d e  c e l l u l a r  

proliferation.

1.9.4. Effect of phorbol esters on cellular proliferation 

Phorbol esters, through activation of PKC have been shown to have 

a dualistic effect on DNA synthesis and proliferation in a varie­

ty of cell types examined. A stimulation of proliferation was 

observed in Swiss 3T3 cells (Collins & Rozengurt, 1982), lympho­

cytes (Kaibuchi et a l . , 1985 ), thyroid cells (Bachrach et a l . ,

1985 ), primary adrenocortical cells (Menapace et a l . , 1987 ) and

an interleukin-1 dependent T cell line (Goto et a l . , 1988).

In contrast, an inhibition of proliferation was observed in human 

lung carcinoma (Gescher & Reed, 1985), human melanoma (Huberman 

et a l . , 1979 ), human epithelial (Mckay et al., 1983 ) and human 

breast cancer cells (Osborne et al., 1981).

1-9.5. Effect of phorbol esters on endothelial cell proliferation 

Activation of PKC by phorbol esters has been shown to have di f ­

fering actions on the proliferation of endothelial cells from 

identical or from different sources in culture: inhibition of

proliferation of human aortic endothelial cells (Hoshi et al., 

1988b) and bovine adrenal capillary endothelial cells (Doctrow &
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Folkman, 1987); stimulation of proliferation of bovine cerebral 

cortex capillary endothelial cells (Daviet et__al. , 1989; 1990),

human umbilical vein endothelial cells (Dupuy et a l . , 1989), and

of a t r a n s f o r m e d  f oetal b o v i n e  a o r t i c  e n d o t h e l i a l  cell line 

(Presta et al., 1989a) and had no effect on p r o l i f e r a t i o n  of 

foetal bovine aortic endothelial cells (Presta e t a l . , 1989a),

human omental m i c r o v a s c u l a r  e n d o t h e l i a l  cells (Dupuy et a l . ,

1989), bovine aortic endothelial cells (Doctrow & Folkman, 1987) 

and bovine adrenal capillary endothelial cells (Morris et a l . , 

1988) .

In pig a o r t i c  e n d o t h e l i a l  ce l l s ,  p h o r b o l  e s t e r s  h a v e  b e e n  

reported to p r o d u c e  an i n i t i a l  s t i m u l a t i o n  of p r o l i f e r a t i o n  

followed within hours by an inhibition (Uratsuji & DiCorleto,

1988). In this latter study the presence of multiple subspecies 

of PKC was demonstrated in endothelial cells. It is possible that 

each of these subspecies of PKC has a different role in regulat­

ing the proliferation of endothelial cells.

1.9.6. Effect of phorbol esters on smooth muscle cell prolifera­
tion

Activation of PKC by phorbol esters has been shown to have d i f ­

fering actions on the proliferation of smooth muscle cells from 

identical or from different sources in culture. A stimulation of 

proliferation has been reported for smooth muscle cells obtained 

from bovine pulmonary artery and aorta (Dempsey et a l . , 1990;

Doctrow & Folkman, 1987), rat aorta (Owen, 1985) and rabbit aorta 
(Kariya et a l ., 1987a).
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In contrast, an inhibition of proliferation has been observed for 

smooth muscle cells obtained from rat aorta (Kihara et a l ., 1989) 

and in rabbit a o rta (Kariya et a l ., 1987b; F u k u m o t o  et a l .,

1988) .

One study demonstrated the ability of PMA to stimulate or inhibit 

the proliferation of rabbit aortic smooth muscle cells when the 

cells were either grown in plasma- derived serum or whole blood 

serum, respectively (Kawahara et a l ., 1988). The dualistic action 

of PMA on rabbit aortic smooth mu s c l e  cells was s u g g e s t e d  to 

reflect the ability of phorbol esters to either down- regulate 

growth f a c t o r  r e c e p t o r s  (Owen, 1985), or to r e f l e c t  the 

activation of the numerous PKC isozymes present in smooth muscle 

cells (Kawahara et al., 1988).

1.9.7. Inhibitors of PKC

Much of our knowledge of the actions of PKC has been obtained by 

the use of activators of this enzyme such as phorbol esters. The 

role of PKC in cellular physiology has been further elucidated, 

however, by the recent development of potent inhibitors of PKC 

such as, s t a u r o s p o r i n e , a microbial alkaloid (Tamaoki et a l . , 
1986) .

Staurosporine b l o c k s  p h o r b o l  e s t e r -  and b a s i c  FGF- i n d u c e d  

growth of bovine cerebral c ortex c a p i l l a r y  e n d o t h e l i a l  cells 

(Daviet et a l , 1989; 1990) and serum- and phorbol ester- induced 

growth of rabbit and rat aortic smooth muscle cells (Matsumato & 

Sasaki, 1989; Takagi et a l . , 1988),and, phorbol ester- and PDGF- 

induced growth of NIH/3T3 fibroblasts (Fields et al. , 1990).
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Inhibitiors of protein kinase C are therefore powerful tools with 

which to investigate the role of this e n z y m e  in c e l l u l a r 

responses.

1.10. CYCLIC NUCLEOTIDES AND CELLULAR PROLIFERATION 

Prior to 1968, there was little interest in the possibility that 

cyclic nucleotides were involved in cell proliferation. This lack 

of interest was altered following the observations of several 

groups (Burk, 1968; Ryan & Heidrick, 1968; MacManus & Whitfield, 

1969). These studies demonstrated that addition of either cyclic 

AMP itself or cyclic AMP phosphodiesterase inhibitors inhibited 

the growth of BHK 21/13 hamster cells, HeLa cells and rat thymic 

lymphocytes. This led to extensive research into the possibility 

that cyclic AMP, and s u b s e q u e n t l y  c y c l i c  G M P , had a role in 

cellular proliferation.

1.10.1. Role of cyclic AMP in cellular proliferation 

Early observations indicated that cultu r e d  f i b r o b l a s t s  made 

quiescent by serum d e p r i v a t i o n  p o s s e s s e d  a m a r k e d l y  e l e v a t e d  

cyclic AMP c o n t e n t  w h i c h  fell u p o n  r e l e a s e  f r o m  q u i e s c e n c e  

(Anderson et a l . , 1973; Kram et a l . , 1973; Moens et a l . , 1975).

In other extensive studies cyclic AMP analogues or agents that 

cause an elevation in intracellular cyclic AMP content were found 

to have either a growth inhibitory or stimulatory effect (re­

viewed in Pastan et a l ., 1975): stimulation of proliferation was 

observed in mammary epithelial cells (Yang et a l ., 1980), hepato- 

cytes (McGowan et a l . , 1981) and Swiss 3T3 fibroblasts (Rozengurt 

®t__al. f 1983b; O'Neill et a l . , 1985 ) whereas an antiproliferative
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effect was observed in normal fibroblasts (Hollenberg & Cuatreca- 

sas, 1975) and B-lymphocytes (Muraguchi et a l . , 1984). A recent

study indicates that forskolin, which stimulates adenylate c y ­

clase (Seaman & Daly, 1981) inhibits the growth- promoting effect 

of PDGF in cultures of human foreskin fibroblasts (Heldin et a l .,

1989) .

1.10.2. Role of cyclic GMP in cellular proliferation

In contrast to cyclic AMP described above, cultured 3T3 f i b r o ­

blasts made quiescent by serum deprivation contained low levels 

of cyclic GMP which rose drammatically when the cells were r e ­

leased from q u i e s c e n c e  (Moens et al., 1975; R u d l a n d  et a l ., 

1974). More recently, atrial natruretic factor which elevates 

cyclic GMP content has been observed to have inhibit rat glomeru­

lar mesangial cell growth in culture (Johnson et a l . , 1988).

1.10.3. Cyclic n u c leotide g e n e r a t i o n  in v a s c u l a r  e n d o t h e l i a l  
cells

In several studies, atrial natriuretic peptides and nitrovasodi- 

lators, which stimulate particulate and soluble guanylate c y ­

clase, respectively, have been shown to elevate cyclic GMP con­

tent in endothelial cells cultured from bovine and pig aorta and 

human umbilical vein (Brotherton, 1986; Leitman & Murad, 1986; 

Schini et a l . , 1988; Martin et a l ., 1988b). The vasoactive agents 

histamine, angiotensin II, acetylcholine and phenylephrine have 

been shown to elevate cyclic GMP content in endothelial cells 

cultured from rabbit aorta (Buonassi & Venter, 1976).

Adenosine and its analogues, forskolin, p- adrenoceptor agonists
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and v a s o a c t i v e  ag e n t s  w h i c h  are k n o w n  to a c t i v a t e  a d e n y l a t e  

cyclase have been o b s e r v e d  to e l e v a t e  c y c l i c  A M P  c o n t e n t  in 

endothelial cells cultured from bovine pulmonary artery , bovine, 

rabbit, and pig aorta (Buonassi & Venter, 1976; Goldman et__al. , 

1983; Makarski , 1981; Brotherton & Hoak, 1982; Legrand et a l . ,

1989; 1990; Martin et a l . , 1988b).

All these studies indicate that adenylate cyclase and particulate 

and soluble guanylate cyclase are present in vascular endothelial 

cells.

1.10.4. Role of cyclic nucleotides in endothelial cell prolifera­

tion

It has been reported that cyclic AMP has differing actions on the 

proliferation of e n d o t h e l i a l  cells from d i f f e r e n t  sources in 

culture: adenosine, w h i c h  is known to increase i n t r a c e l l u l a r  

cyclic AMP content (Goldman et a l ., 1983), was found to stimulate 

proliferation of bovine aortic and coronary micro v a s c u l a r  e n ­

dothelial cells (Meininger et a l . , 1988; Meininger & Granger,

1990), foetal bovine aortic endothelial cells (Presta et a l . , 

1989a), and human dermal microvascular endothelial cells (Davison 

& Karasek, 1981). In contrast, an inhibition of growth was r e ­

ported for bovine aortic and rat cerebrovascular endothelial 

cells (Leitman et a l ., 1986; Kempski et a l ., 1987).

In contrast to cyclic AMP, the role of cyclic GMP in endothelial 

cell proliferation has not been extensively investigated. One 

study indicated that a slight inhibition of proliferation was 

observed when bovine aortic endothelial cells were treated with
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membrane permeant analogues of cyclic GMP (Leitman et a l . , 1986).

1.10.5. Role of cyclic nucleotides in smooth muscle cell prolif­

eration

There is a c c u m u l a t i n g  e v i d e n c e  t h a t  c y c l i c  A M P  is the 

intracellular mediator of vasorelaxation induced by prostacyclin 

and adenosine, w h e r e a s ,  c y c l i c  GMP is the m e d i a t o r  for 

endothelium- derived relaxing factor (EDRF), atrial natriuretic 

factor and sodium nitroprusside (Rapoport & Murad, 1983; Lincoln 

& Fisher-Simpson, 1984; Itoh et al., 1985; Kurtz, 1987; Grace et 

al., 1988).
Recent reports indicate that as well as possessing vasorelaxant 

properties, aden o s i n e ,  a t r i a l  n a t r i u r e t i c  f a c t o r  and s o d i u m  

nitroprusside inhibit the proliferation of smooth muscle cell in 

culture. Elevation of cyclic AMP content by various treatments 

(adenosine and its analogues, forskolin, cyclic AMP phosphodies­

terase (PDE) inhibitors, p- adrenoceptor agonists and cyclic AMP 

analogues) has an inhibitory action on proliferation of smooth 

muscle cells from d i f f e r e n t  sources in culture i n c l u d i n g  rat 

cerebrovascular (Kempski et a l . , 1987), rat aortic, human aortic 

and rabbit aortic (Nilsson & Olsson, 1984; Jonzon et a l . , 1985; 

Tertov et a l . , 1984; Fukumoto et a l ., 1988; Nakaki et a l ., 1990).

Elevation of cyclic GMP content by various treatments (nitrova- 

sodilators, atrial natriuretic factor and the cyclic GMP a n a ­

logue, 8 bromo cyclic GMP) inhibits the proliferation of rat and 

rabbit aortic smooth muscle cells stimulated to grow by serum and 

PDGF (Abell et a l . , 1989; Kariya et al., 1989; Garg & Hassid,

1989). Garg & Hassid (1989) proposed that nitric oxide (NO), the
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active principle generated by nitrovasodilators, is the ultimate 

effector of the i n h i b i t i o n  of g r o w t h  obs e r v e d .  T h e y  f u r t h e r  

proposed that EDRF, now identified as nitric oxide (Palmer et 

a l . , 1987 ), is an e n d o genous r e g u l a t o r  of smooth m u s c l e  cell 

growth within the arterial wall.

1.11. ENDOTHELIUM- DERIVED RELAXING FACTOR (EDRF)

The vascular endothelium is important in controlling vascular 

homeostasis by secreting a variety of substances such as endothe­

lin and p r o s t a c y c l i n .  It als o  p r o d u c e s  and s e c r e t e s  a n o t h e r  

powerful v a s o d i l a t o r ,  e n d o t h e l i u m -  d e r i v e d  r e l a x i n g  f a c t o r  

(EDRF)(Furchgott & Zawadzki, 1980).

The actions of EDRF were first described by Furchgott & Zawadzki 

(1980) who reported that a c e t y l c h o l i n e  induced r e l a x a t i o n  of 

rabbit aortic preparations only when the endothelium was present. 

Further studies showed that endothelial cells release this factor 

spontaneously or in response to a variety of stimuli including 

vasoactive agents or increased blood flow or shear stress (Pohl 

et_al., 1986; Rubanyi et al., 1986; Buga et al., 1991). Recent 

research has shown that s mooth mus c l e  cells grown in c ulture 

synthesize a v a s oactive substance(s) that interacts w i t h  the 

endothelium to stimulate the production of EDRF (Warren et a l . ,
1990) .

It was not until 1987 that Palmer et a l . (1987 ) identified EDRF

as nitric oxide (NO) by a chemiluminescence techniques. Nitric 

oxide is a small lipophilic molecule that can readily permeate 
biological m e m branes.

38



1.11.1. Biosynthesis of EDRF
In the last few years the biosynthetic pathway of EDRF has been 

elucidated. L- arginine was found to be the physiological precur­

sor for basal and stimulated nitric oxide formation (Palmer et 

al., 1988b; Schmidt et a l . , 1988). Nitric oxide is formed from

the terminal guanidino group(s) of L- arginine by the enzyme 

nitric oxide synthase. This r e a c t i o n  is s t e r e o s e l e c t i v e  and 

specific since D- arginine and other basic amino acids cannot act 

as a substrate for this enzyme (Palmer et a l . , 1988a). Figure 2

illustrates the biosynthetic pathway of EDRF.

The nitric oxide synthesized by vascular endothelial cells rapid­

ly diffuses out to the underlying smooth muscle cells or nearby 

platelets in the lumen of the blood vessel where its actions are 

mediated by stimulation of soluble guanylate cyclase. Stimulation 

of this enzyme results from the b i n d i n g  of nit r i c  oxide to a 

ferrous haem moiety (Craven & De Rubertis, 1978). The associated 

rise in cellular cyclic GMP content mediates the actions of EDRF 

(Rapoport & Murad, 1983; Miilsch et al . , 1987; M a r t i n  et a l . ,
1988b).

Endothelial c e l l s  c o n t a i n  s o l u b l e  g u a n y l a t e  c y c l a s e  a n d  a 

consequence of this is that they are themselves sensitive to the 

EDRF they produce (Martin et a l . , 1988b). The effects of EDRF on 

endothelial function are, however, unknown. It has been shown 

recently that the endothelial cell is not the only cell with the 

capacity to produce and release nitric oxide (NO): macro p h a g e s , 

neutrophils, smooth muscle cells, central and peripheral neurons 

have all been shown to release this sub s t a n c e  (Hibbs et a l . ,
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Figure 2: Schematic diagram of the biosynthesis of EDRF. EDRF, 

now identified as nitric oxide (NO) (Palmer e ^ _ a l . , 1987),

formed from the terminal guanidino nitrogen(s) of L 9 
the enzyme nitric oxide synthase (NO synthase). This reaction 
be inhibited by NG- monomethyl L- arginine (L-NMMA) or N 
L- arginine (NG- NOARG) . NO is readily degraded to nitrite (N02 ) 
and nitrate (N03‘) ions by superoxide radicals (02 ). Superoxide 

dismutase (SOD) inhibits this breakdown.



1987a; Gillespie et a l . , 1989; Mehta et a l . , 1990; Wood et a l • /

1990; Garthwaite, 1990). These findings suggest that nitric  

oxide is a widespread messenger molecule in intercellular commu­

nication .

1.11.2. Role of EDRF in atherosclerosis

The endothelial cell layer lining the vascular wall is normally 

confluent and possesses both anticoagulant and antithrombotic 

properties. It has been found that EDRF can influence platelet 

function; for example, it inhibits platelet aggregation, induces 

platelet disaggregation and inhibits platelet adhesion to the 

vascular e n d o t h e l i u m  ( R a d o m s k i  et al . , 1987a; 1987b; 1987c;

Hawkins et a l . , 1988; Sneddon & Vane, 1988).

Since EDRF has these antithrombotic properties, its loss might 

aggravate the atherosclerotic process by allowing the adhesion of 

platelets to the vessel wall. This could promote the localised 

release of platelet- derived mitogens such as PDGF.

In aortas from humans and animals with atherosclerosis, it has 

been found that endo t h e l i u m -  d e p e n d e n t  v a s o d i l a t i o n  m e d i a t e d  

through EDRF is impaired (Cox et a l ., 1989; Freiman et a l ., 1986; 

Guerra et a l . , 1989; Nabel et a l ., 1990 ). It was proposed that

this early state of atherosclerosis may be associated with an 

impaired ability of the endothelial cells to produce EDRF. In 

e x p e r i m e n t a l l y  i n d u c e d  a t h e r o s c l e r o s i s  r e s u l t i n g  f r o m  

hypercholesterolemia, high levels of low density lipoproteins 

(LDL) are p r o d u c e d .  T h i s  no t  o n l y  p r o m o t e s  a t t a c h m e n t  of 

monocytes to the endothelium (Alderson et a l ., 1986) but leads to
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inactivation of EDRF after its release from the endothelial cells 

(Galle et a l ., 1991).

Furthermore, EDRF, n o w  i d e n t i f i e d  as n i t r i c  oxide, has bee n  

proposed to be an endogenous growth regulator for smooth muscle 

cells present within the arterial wall (Garg & Hassid, 1989). The 

impaired release of nitric oxide could, therefore, promote the 

abnormal proliferation of smooth muscle cells which is observed 

during the development of atherosclerosis.

1.12. Aim

The aim of this part of the study was to investigate the effects 

of cyclic nucleotides and the activation of protein kinase C on 

proliferation of pig aortic e n d o t h e l i a l  cells and rat aortic  

smooth muscle cells in culture.

2.1. CYCLIC NUCLEOTIDE PHOSPHODIESTERASES

The transdu c t i o n  s i g n a l s  in r e s p o n s e  to a c t i v a t i o n  of cell-

surface receptors by an extracellular stimulus involves a series

of rapid i n t r a c e l l u l a r  e v e n t s  w h i c h  t r a n s l a t e s  the e x t e r n a l

signal into specific cellular responses. One exception is the

activation of soluble guanylate cyclase where the receptor is not

on the cell surface but on the soluble enzyme itself (Craven & De

Rubertis, 1978). The extracellularly generated signals give rise

to intracellularly generated second messengers such as calcium,

diacyglycerol, cyclic AMP and cyclic GMP which then change cell

function through p h o s p h o r y l a t i o n  of di s t i n c t  target p r o t e i n s

(Lincoln & Corbin, 1983; Corbin et a l ., 1988; Tremblay et a l ., 
1988) .
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Cyclic nucleotide activity is terminated by degradation and this 

was originally thought to occur by a single enzymatic activity. 

It was the o b s e r v a t i o n s  of T h o m p s o n  & A p p l e m a n  (1971) w h i c h  

showed that degradation and therefore inactivation of cyclic AMP 

and cyclic GMP is c a t a l y s e d  by not one but a large g r o u p  of 

different cyclic nu c l e o t i d e -  p h o s p h o d i e s t e r a s e s  (PDEs). PDEs 

terminate the actions of cyclic nucleotides by catalysing their 

hydrolysis to the respective nucleoside 5 '-monophosphate.

2.1.1. Nomenclature of PDE families

Many groups have defined different forms of PDE on the basis of 

the order of elution from a DEAE- Trisacyl chromatography column, 

utilising names such as peak I, II, III, or IV, often modified 

with regard to their substrate specificity (cyclic AMP or cyclic 

GMP), kinetic properties (KM and V MAX), sensitivity to calcium/ 

calmodulin and response to selective PDE inhibitors. Unfortunate­

ly many of these peaks of activity contain multiple activites and 

the order of elution of isozymes from DEAE varies with species, 

tissue, pH and eluting salt (reviewed in Beavo, 1988).

Beavo & Reifsnyder (1990) recently proposed a new classification 

of PDE isozymes b a s e d  upo n  the p r i m a r y  p r o t e i n  and its c D N A 

sequence information. They identified at least five distinct but 

related families coding for cyclic nucleotide PDE in m a m m a l s . 

Table 3 indicates the nomenclature of the PDE isozymes.
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Table 3 : Nomenclature of PDE- isozymes 

Family

I Ca2+-- calmodulin- dependent family PDE 

II cGMP- stimulated family PDE 

III cGMP- inhibited family PDE 

IV cAMP- specific family PDE

V cGMP- specific family PDE

Moreover most of t hese f a m i l i e s  c o n t a i n  two or m o r e  c l o s e l y  

related subspecies. Members of one family share between 20 and 

2b% sequence h o m o l o g y  w i t h  m e m b e r s  of another. M u c h  of this 

homology is found to occur in the C- terminal part of the PDE 

which is known to be par t  of the c a t a l y t i c  domain. The d a t a  

currently available suggest that most of the individual subfamily

members are encoded by different but highly homologous genes (70-

90% sequence homology). Many of these subfamilies have multiple 

members that are likely to be products of alternative mRNA splic­
ing .

2_-1.2. Identification and localization of PDE isozymes 

It is likely that identification of the cellular and subcellular 

distribution of each PDE isozyme will aid the d e v e l o p m e n t  of 

selective inhibitors as therapeutic agents for specific diseases. 

From extensive studies, it is becoming apparent that there is a 

variation in the distribution and substrate specificity of PDE 

isozymes in numerous tissues and c e l l s .

From the use of a n t i b o d i e s  a g a i n s t  the c a l c i u m /  c a l m o d u l i n  

dependent PDE, it was found that this isozyme is present in high
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concentrations in the dendrites of the Purkinje cells and in the 

cortical pyramidal cells in rat brains (Kincaid et a l . , 1987 ).

The substrate s p e c i f i c i t y  was h igher for cyclic AMP than for 

cyclic GMP. Human blood platelets were found to contain three PDE 

activities: a c a l m o d u l i n -  i n d e p e n d e n t  PD E  (I) w h i c h

preferentially hydrolyses cyclic GMP, a cyclic GMP-stimulated PDE 

(II), and a cyclic AMP PDE (IV) (Hidaka & Asano, 1976; Weishaar 

et al., 1986). In c o n t r a s t ,  h u m a n  b l o o d  m o n o c y t e s  w e r e  

demonstrated to contain only a soluble high affinity cyclic AMP 

PDE (IV) (Thompson et a l . , 1980). In adipocytes the predominant

isozyme is the c y c l i c  G M P -  i n h i b i t e d  P D E  (III) (Elks & 

Manganiello, 1984). The distribution of the cyclic GMP- specific 

PDE (V) is b e s t  c h a r a c t e r i z e d  in the r e t i n a .  The h i g h e s t  

concentrations are found in the outer s e g m e n t s . Recent research 

has indicated that there are separate isozymes in the rod and cone 

photoreceptor outer segments (Hurwitz et a l . , 1985 ).

2.1.3. Selective inhibitors

The development of drugs which have the ability to inhibit selec­

tively individual PDE isozymes could provide valuable tools with 

which to examine cyclic nucleotide regulated cellular processes. 

Butcher & Sutherland (1962) indicated that methylxanthines such 

as caffeine and theoph y l i n e  i n h i b i t e d  cyclic AMP hydrolysis. 

Further research has led to the development of a number of selec­

tive inhibitors. These inhibitors have proven useful in charac­

terizing the intracellular roles of the different molecular forms 

°f PDE, but there is no inhibitor known to distinguish between 

members of the same isozyme family. The inhibitory profile of 

several of these selective PDE inhibitors as well as several non-
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selective inhibitors is summarized in Table 4

Table 4: Selective and non- s 

PDE isozyme families.

INHIBITOR

Selective Inhibitors 

M & B 22948 

SK & F 94120 

IBMX

ROLIPRAM

Non- Selective Inhibitors 

DIPYRIDAMOLE

TREQUINSIN

lective inhibitors of the different

PDE- ISOZYME FAMILY

Ca2+/ CaM dependent PDE (I)

Cyclic GMP- inhibited PDE (III) 

Ca2+/ CaM dependent PDE (I)

Cyclic AMP- specific PDE (IV)

Cyclic GMP- syimulated PDE (II) 

Cyclic AMP- specific PDE (IV) 

Cyclic GMP- stimulated PDE (II) 

Cyclic AMP- specific PDE (IV)

There is substantial interest in the use of selective PDE inhibi­

tors as therapeutic agents in diseases. In one such study, selec­

tive PDE inhibitors were proposed to represent a new approach to 

the treatment of asthma. In this scheme bronchodilatation can be 

brought about through selective inhibitors of the PDE isozymes 

present in bronchial smooth muscle thus avoiding the side effects 

encountered with non- selective PDE inhibitors (Torphy, 1988).

2.2. AIM

The aim of this part of the project was to investigate the e f ­

fects of selective and non- selective inhibitors of PDE isozymes 

on accumulation of cyclic AMP and cyclic GMP in intact pig aortic 
endothelial cells.
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MATERIALS AND METHODS



3.1. ENDOTHELIAL CELLS
3 .1 .1. Endothelial cell culture
Pig aortae were o b t a i n e d  fro m  a local aba t t o i r .  Less tha n  5 

minutes after removal from animal, the aorta was flushed with 

sterile saline (0.9% w/v, Baxter, UK) containing benzyl penicil­

lin (100U/ ml) and streptomycin (lOOpg/ ml) to remove any remain­

ing blood. The aortae were then tied off at the larger thoracic 

end using string and cannulated at the smaller abdominal end with 

a 60 ml syringe containing the same saline solution. Saline was 

infused into the lumen before the vessels were transported to the 

laboratory, which took 30 minutes.

In a laminar flow hood (Flow), the in t e r c o s t a l  a rteries were 

cleared of remaining connective and fatty tissues and ligated 

ensuring that no fluid leakage occured. Any remaining saline was 

removed and 10-15 ml of sterile collagenase solution (Type II, 

Sigma, 0.2% in Dulbecco's modified Eagle's M edium (DM E M ) ) was 

introduced into the lumen. The aorta was then incubated at 3 7 °C 

for 25 minutes. After incubation, the collagenase solution now 

containing detached endothelial cells was removed and the aorta 

gently massaged to loosen any remaining endothelial cells from 

their basement mem b r a n e .  The c o l l a g e n a s e  s o l u t i o n  was t h e n  

H u s h e d  in and out several times to d i s l o d g e  these r e m a i n i n g  

cells from the vessel wall. The resultant cell suspension was 

Placed in a sterile centrifuge tube (50 ml, Falcon). 20 ml of 

sterile saline was then introduced into the aorta to remove any 

remaining cells and this suspension was combined with the first.

The cell suspension was then centrifuged at 200 g for 4
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minutes at 10°C (IEC Centra 8R centrifuge) , the supernatant was 

discarded and the cell pellet resuspended in 20 ml of DMEM sup­

plemented with foetal calf serum (10%), newborn calf serum (10%), 
glutamine (4 mM) , benzyl penicillin (100U/ ml) and streptomycin 

(lOOpg/ ml): this is subsequently referred to as normal serum- 

supplemented DMEM in the text. The cell suspension was centrifuged 

as before, the supernatant was d i s c a r d e d  and the cell pellet  

resuspended in 5 ml of normal serum- supplemented DMEM. Cells 

were seeded initially into 80 c m 2 tissue culture flasks (Nunc) 

and normal serum- supplemented DMEM was added to give a final 

volume of 20 ml.

The cells were then grown at 37 °C under an atmosphere of 5% C02 
in air in an incubator (Flow C 02 incubator model 220). The normal 

serum- supplemented DMEM was aspirated off every 2 or 3 days, the 

cells were then was h e d  wit h  2 x 20 ml of sterile saline, and 

fresh culture medium was added. Cells normally grew to confluence 

within 6-8 days. F i g u r e  3 s h o w s  the m o r p h o l o g y  of f r e s h l y  

isolated and confluent pig aortic endothelial cells in culture.

3.1.2. Characterization of pig aortic endothelial cells

Cells were characterized as endothelial cells by their growth as

a strict monolayer with a typical cobblestone morphology.

Furthermore, we have previously reported their ability to secrete 

prostacyclin and endothelium-derived relaxing factor (Martin et 

• / 1988b), and fluoresce w h e n  inc u b a t e d  w i t h  the sel e c t i v e  

marker, acetylated low- density lipoprotein labelled with 1 ,1 ' 

dioctadecyl-3,3,3' ,3'-tetramethyl-indocarbocyanine perchorate
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Figure 3: Phase contrast micrographs of pig aortic endothelial 

cells. 24 hours and 4 days a f t e r  i s o l a t i o n  fro m  pi g  a o r t a  by 

collagenase treatment. Endothelial cells were isolated as small 

clumps, but divided and multiplied to form a strict monolayer of 

cobblestone morphology.



(Voyta et a l . , 1984)

3.2 PROLIFERATION STUDIES 

3.2.1. Haemocytometric Studies

Once the pig aortic endothelial cells (PAEC) reached confluence, 

the normal serum- supplemented DMEM was removed by aspiration and 

the cells washed with 2 x 10 ml of sterile saline. 10 ml trypsin 
(0.05%)/ EDTA (0.02%) solution (Flow) was then added, and the 

flask incubated at 3 7 °C until the cells became detached (usually 

around 5 minutes). 2-3 ml of n e w b o r n  calf serum was added to 

inactivate the trypsin/ EDTA solution. The resultant cell suspen­

sion was placed in a sterile centrifuge tube (50 ml, Falcon) and 

centrifuged, at 200 g for 4 minutes at 10 °C (IEC Centra 8R
centrifuge ) . The supernatant was discarded and the cell pellet 

resuspended in 20 ml of normal serum- supplemented DMEM. The cell 

suspension was then centrifuged as before, but this time the cell 

pellet was resuspended in 10 ml of normal serum- supplemented 

DMEM. A 1 ml aliquot of the cell suspension was removed and cell 

density d e t e r m i n e d  by the use of a h a e m o c y t o m e t e r . The cell 

suspension was subsequently diluted to a final density of 4.5 - 

6.0 x 105 cells/ ml with normal serum- supplemented DMEM.

^0r Pr°liferation studies , PAEC were seeded at a d e n s i t y  of 

aPproximately l - 1.5 x 104 cells / c m2 in 2 ml of normal serum-
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supplemented DMEM in six- well plates (9.6 c m2,Nunc). The effects 

of various drug treatments on proliferation were examined with 

time. All drugs were added twice d a ily with the e x c e ption of 

methylene blue w h i c h  was added once daily. The normal serum- 

supplemented DMEM was removed by aspiration every 2 or 3 days, 

the cells were washed with 2 x 2 ml of sterile saline, and fresh 

culture medium added.

At various time points as indicated in the Results, the culture 

medium was removed by aspiration and cells washed with 2 x 2 ml 

of sterile saline. 1 ml of trypsin (0.05%)/ EDTA (0.02%) solution 

(Flow) was added. Cells were incubated at 3 7 °C until they became 

detached (usually around 5 minutes). 0.5 ml of newborn calf serum 

was added to inactivate the trypsin/ EDTA solution. The resultant 

cell suspension was transferred to eppendorf tubes and the cell 

density determined by haemocytometry .

3.2.2. [3h]-Thymidine Incorporation Studies

These were conducted in some experiments to hopefully obtain a 

more sensitive index of proliferation than could be obtained by 

haemocytometry .

Once the primary cultures of PAEC had grown to confluence in a 80 

cm flask, the normal serum- supplemented DMEM was removed by 

aspiration and the cells washed with 2 x 10 ml of sterile saline. 

iO ml of trypsin (0.05%)/ EDTA (0.02%) solution (Flow) was added. 

Ihe flask was then i n c u b a t e d  at 37°C u n til the cells b e c a m e  

^tached (usually around 5 minutes). 2-3 ml of newborn calf serum 

Was ai3ded to inactivate the trypsin/ EDTA solution and the re-
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sultant cell suspension was transferred to a sterile centrifuge 

tube (50 ml, Falcon) and centrifuged at 200 g for 4 minutes

at 10°C (IEC Centra 8R centrifuge] . The supernatant was discarded 

and the cell pellet resuspended in 20 ml of normal serum- supple­

mented DMEM. The cell suspension was then centrifuged as before, 

the supernatant was discarded and the cell pellet resuspended in 

10 ml of normal serum- s u p p l e m e n t e d  DMEM. A 1 ml aliquot was

removed and cell density determined by haemocytometry . The cell

suspension was diluted to a final density of 6-8 x 105 cells/ ml 

with normal serum- supplemented DMEM.

PAEC were seeded at a d e n s i t y  of a p p r o x i m a t e l y  1. 5-2.0 x 1 04 
cells/ cm2 in six- well plates (9.6 c m 2 , Nunc). The cells were 

grown in normal serum- supplemented DMEM for 24 hours. The normal 

serum- supplemented DMEM was removed by aspiration, the cells 

washed with 2 x 2 ml of sterile saline, and 2 ml of serum- free 

DMEM supplemented with glutamine (4 m M ) , benzyl penicillin (100U/ 

ml) and streptomycin (100pg/ ml) was added: this is subsequently 

referred to as ser u m -  free D M E M  in the text. The cells w e r e  

incubated for a further 24 hours and at the end of this period, 

the serum- free DMEM was removed by aspiration. Cells were then 

challenged with drugs in DMEM supplemented with various concen­

trations of s e r u m  a n d  t h e n  p u l s e d  w i t h  a m i x t u r e  of [3H]-  
thymidine (2pCi/ well) and unlabelled thymidine (lpM) at 3 7 °C for

various times as indicated in the R e s u l t s .

the end of the incubation period, the cells were washed with 3 

x 2 ml of 5% ice-cold trichloroacetic acid and solubilized in 0.5 

^  of 0.25M ice-cold NaOH. The cells were then scraped off the
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multiwell plates and h a r v e s t e d  into s c i n t i l l a t i o n  vials. Any 

remaining cells were recovered by the addition of a second volume 

of 0.5 ml of NaOH and this extract was combined with the first. 5 

ml of Ecoscint (Natural Diagnostics) was added to each vial fol­

lowed by vortex mixing. The radioactivity in each vial was count­

ed for 5 minutes using a Liquid Scintillation Counter (Packard 

2000CA) . The results were converted from c.p.m. to d.p.m. using 

an external standard.

3.3. SMOOTH MUSCLE CELLS

3.3.1. Smooth muscle cell culture

Vascular smooth muscle cells were harvested from the enzymatical­

ly dissociated aortae of Sprague- Dawley rats using a modifica­

tion of the method described by Chamley- Campbell et a l . (1979).

Briefly, Sprague-Dawley rats (200-300g) were killed, and under 

sterile conditions, the aorta was dissected out and placed in a 

petri dish containing 2-3 ml of DMEM. The aorta was cleared of 

fat, adventitial tissue and any remaining blood. The aorta was 

incubated for 5 minutes at 3 7 °C in a sterile tube (15 ml, Falcon) 

containing 5 ml of DMEM containing collagenase (Type II, Sigma, 

0.125%) and elastase (Type II, Sigma, 0.025%). The aorta was then 

transferred to fresh DMEM and any remaining fat and adventitia 

was removed. The aorta was then cut into 1-2 mm sections with 

scissors and incubated at 37 °C in fresh DMEM-enzyme solution for 

2 3 hours. The mixture was drawn through a sterile glass pipette 

to aid dispersal of cells.

Ths resultant cell suspension of rat aortic smooth muscle cells
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was then centrifuged at 200 g for 4 minutes at 10°C (IEC

Centra 8Rcentrifuge) . The supernatant was discarded and the cell 

pellet resuspended in 10 ml of normal serum- supplemented DMEM. 

The cell suspension was centrifuged as before, the supernatant 

discarded and the cell pe l l e t  r e s u s p e n d e d  in 10 ml of normal 

serum- supplemented DMEM. The rat aortic smooth muscle cells (Rat 

ASMC) were seeded initially into a 25 c m2 tissue culture flasks 

(Nunc) and grown at 3 7 °C under an atmosphere of 5% C 0 2 in air. 

The normal serum- supplemented DMEM was removed by aspiration 

every 2 or 3 days. The cells were then washed with 2 x 10 ml of 

sterile saline and fresh culture medium added.

When primary cultures of rat A S M C  a t t a i n e d  confl u e n c e  (10-14 

days), the c u l t u r e  m e d i u m  was a s p i r a t e d  off, the cells w e r e  

washed with 2 x 2 ml of s t e r i l e  s a l i n e  and 5 ml of t r y p s i n  

(0.05%)/ EDTA (0.02%) solution (Flow) was added. The flask of rat 

ASMC was i n c u b a t e d  at 37 °C u n t i l  the cells b e c a m e  d e t a c h e d  

(usually around 5 minutes). 1 ml of newborn calf serum was added 

to inactivate the trypsin/ EDTA solution and the resultant cell 

suspension was p l a c e d  in a sterile' centrifuge t u b e  (15 ml, 

Falcon). The cell suspension was then centrifuged at 200 g 

for 4 minutes at 10°C (IEC Centra 8R Centrifuge)i the supernatant 

was discarded and the cell pellet resuspended in 10 ml of normal 

serum- supplemented DMEM. The cell suspension was centrifuged as 

before, the supernatant was discarded, and the cell pellet resus- 

pended once again in 10 ml of nomal serum- supplemented DMEM. The 

Cell suspension was seeded into 80 c m 2 tissue culture flasks 

(Nunc) . Normal serum- supplemented DMEM was added to give a final 

volume of 20 ml pe r  flask. F i g u r e  4 shows the m o r p h o l o g y  of
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Figure 4: Phase contrast micr o g r a p h  of subcultured rat aortic 
smooth muscle cells.



subconfluent secondary cultures of ASMC in culture.

3.3.2. Characterization of rat aortic smooth muscle cells 

Characterization of the cells as smooth muscle cells was estab­

lished by the following criteria: the cells grew in the typical 

'hill and valley' pattern and were shown to fluoresce with antis­

mooth muscle actin antibodies (Chamley et a l . , 1977).

3.4. PROLIFERATION STUDIES

3.4.1. Haemocytometeric Studies

When secondary cultures of rat ASMC grew to confluence in 80 c m2 
flasks, the normal serum- supplemented DMEM was removed by aspi­

ration and the cells washed with 2 x 20 ml of sterile saline. 10 
ml of trypsin (0.05%)/ EDTA (0.02%) solution (Flow) was added and 

the flasks were incubated at 3 7 °C until the cells became detached 

(usually around 5 minutes). 2-3 ml of n ewborn calf serum was 

added to inactivate the trypsin/ EDTA solution and the resultant 

cell suspension was placed in a sterile centrifuge tube (50 ml, 

Falcon) . The cell suspension was then centrifuged at 200 g 

for 4 minutes at 1 0 °C (IEC Centra 8R Centrifuge), the supernatant 

discarded and the cell pel l e t  r e s u s p e n d e d  in 20 ml of normal 

serum- supplemented DMEM. The cell suspension was then centrifuged 

as before, the su p e r n a t a n t  was d i s c a r d e d  and the cell p ellet 

resuspended once again in 10 ml of normal serum- supplemented 

DMEM. A 1 ml aliquot of cell s u s p e n s i o n  was r emoved and cell 

density counted by h a e m o c y t o m e t e r y . The cell s u s p e n s i o n  was 

diluted to a final density of 4 .5-6 x 105 cells/ ml with normal 

serum- supplemented DMEM.

53



For proliferation studies, rat ASMC were seeded at a density of 

approximately 1.25-1.5 x 104 cells/ c m2 in six- well plates (9.6 

cm2, Nunc). The rat A S M C  w e r e  e i t h e r  g r o w n  in n o r m a l  s erum-  

supplemented DMEM or DMEM supplemented with foetal calf serum 

(5%), newborn calf serum (5%), glutamine (4 mM) , benzyl penicil­

lin (100U/ ml) and streptomycin (lOOpg/ ml): this is subsequently 

referred to as 10% serum- supplemented DMEM in the text. The ef­

fects of various drug treatments on proliferation were examined 

with time. All drugs were added twice daily after an initial 

period of 24 hours to a l l o w  the rat A S M C  to p l a t e  down. The 

normal serum- supplemented DMEM, or the 10% serum- supplemented 

DMEM was removed by aspiration every 2 or 3 d a y s . The cells were 

then washed with 2 x 2 ml of sterile saline, and fresh culture 
medium added.

At the various time points indicated in the Results, the culture 

medium was removed by aspiration, cells were washed with 2 x 2 ml 
of sterile s aline and 1 ml of t r y p s i n  (0.05%)/ E D T A  (0.02%) 

solution (Flow) was added. Cells were incubated at 3 7 °C until the 

cells became detached (usually around 5 minutes). 0.5 ml of new­

born calf serum was added to inactivate the trypsin/ EDTA solu­

tion. The resultant cell suspension was transferred to eppendorf 

tubes. A lOpl aliquot of cell suspension was removed and counted 

ky haemocytometry • Rat ASMC between the 3rd and 15th passage 

were used in experiments described in the R e s u l t s .

 ̂ r
tj_il__MEASUREMENT OF ENDOTHELIAL CELL CYCLIC NUCLEOTIDE CONTENT

j-ijjĵ P r e p a r a t i o n  of endothelial cell monolayers

Primary cultures of PAEC were isolated as described in 3.1.1.
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except that all the cells harvested from each aorta were resus­

pended in 30 ml of normal serum- supplemented DMEM. 1 ml of cell 

suspension was then added into 5 multiwell dishes, each contain­

ing 6 wells (9.6 c m 2 , Nunc). A further 1 ml of normal serum- 

supplemented DMEM was added to give a final volume of 2 ml per 

well.

Cells were then grown at 3 7 °C under an atmosphere of 5% C 02 in 

air in an incubator (Flow C02 incubator model 220). The culture 

medium was removed every 2-3 days by aspiration, the cells were 

washed with 2 x 2 ml of sterile saline and then fresh culture 

medium added. Cells were used for experimentation when confluent 

(attained within 7 days).

3.5.2. Experimental procedure

Following removal of the tissue culture medium by aspiration, the 

endothelial cells were washed with 2 x 2 ml of warmed (37°C) and 

gassed Kreb's solution containing (mM) : NaCl 118, KCl 4.8, CaCl2
2.5, MgS04 1.2, K H2P 04 1.2, N a H C 03 24 and glucose 11; and then 

incubated in 2 ml of Kreb's solution at 3 7 °C under an atmosphere 

of 5% C02 in air for at least 60 minutes.

At the appropriate time, drugs were added, the Kreb's bathing 

solution was q u i c k l y  removed, and the cells were i m m e d i a t e l y  

extracted with 0.5 ml of ice cold 6% trichloroacetic acid (TCA). 

The cells w e r e  t h e n  s c r a p e d  off the m u l t i w e l l  p l a t e s  a n d  

harvested. Any remaining cells were recovered by the addition of 

a second volume of 0.5 ml TCA, and this extract was combined with 

the first. The e x t r a c t  w a s  centrifuged at 10000 g

55



(MicroCentaur MSE) for 2 minutes and the pellet and supernatant 

were separated.

The supernatant, and in some e x p e r i m e n t s  w h e n  i n d i c a t e d  the 

Kreb's bathing solution, were stored for subsequent measurement 

of cyclic nucleotide content. The DNA content of the pellet was 

determined so tha t  the c y c l i c  n u c l e o t i d e  c o n t e n t  c o u l d  be 

expressed in pmol or fmol pg DNA-1.

3.5.3. Preparation of trichloroacetic acid extracts for radioim- 

munoassay

The TCA extracts were neutralised to pH 5.5-6.0 by adding 2 ml of 

0.5M tri-n-octylamine in freon (1,1,2,t r i c h l o r o t r i f l u r o e t h a n e ) 

and vortex mixing for 90 seconds. The upper aqueous layer was 

removed using a glass Pasteur pipette ensuring that no contamina­

tion from the lower layer occured. The pH of the aqueous layer 

was checked with Whatman pH paper. The cyclic AMP and cyclic GMP 

content of the aqueous layer was determined by radioimmunoassay 

using New England Nuclear kits (Dupont).

3.6. RADIOIMMUNOASSAY

jj-j.l. Principles of the cyclic AMP and cyclic GMP radioimmunoas­
say

The radioimmunoassays (RIA) for cyclic AMP and cyclic GMP were 

based on the basic principle of RIA first described by Yalow and 

Berson (I960): this consists of competition between radioactive 

and non-radioactive antigen for a fixed number of antibody bind-

lng sites. This i n t e r a c t i o n  is r e p r e s e n t e d  s c h e m a t i c a l l y  in
Figure 5 .
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Figure 5: S c h e m a t i c  r e p r e s e n t a t i o n  of the p n n c i p

radioimmunoassay (R IA ). RIA is  based on the competition between 

radiolabelled a n d  u n l a b e l l e d  a n t i g e n  for a f i x e d  n u m b e r  

antibody binding sites. Increasing amounts of unlabelled antigen
4- antibody and radiolabelled

in the presence of fixed amounts o
antigen, produce a decreasing amount of radiolabelled antigen 

bound to antibody. T h i s  r e l a t i o n s h i p  can be e x p r e s  

standard curve after seperation of bound from free rad 

antigen, and a m o u n t s  of u n l a b e l l e d  a n t i g e n  d e t e r m

interpolation from the curve.



If increasing amounts of unlabelled antigen (i.e. in standards or 

unknown samples) and a fixed amount of labelled antigen (i.e. 

tracer) are allowed to react with a constant amount of antibody, 

a decreasing amount of labelled antigen is bound to the antibody. 

This relationship can be expressed as a standard curve and the 

amount of unlabelled antigen in a sample can be determined by 

interpolation from this curve.

3.6.2. RIA for cyclic GMP

Determination of cyclic GMP was adapted from the procedure of 

Steiner et a l . (1972), using New England Nuclear RIA kits (Du­

pont). Steiner et a l . ( 1972 ) reported that cyclic nucleotides

substituted at the 2 '-a-position had a higher affinity for the 

antibody and thus displaced the [ 125I ]-labelled derivative better 

than the u n s u b s t i t u t e d  cyclic nucleotide. Thus standards and 

samples were acetylated with acetic anhydride to give 2 '-a-acetyl 

cyclic GMP t h e r e b y  i n c r e a s i n g  the s e n s i t i v i t y  of the a s s a y  

(Harper & Brooker, 1975). The labelled antigen was a succinyl 

tyrosine-[ 125i ]-methyl ester derivative of cyclic GMP.

separation of bound from free antigen was achieved by the use of 

a pre-reacted primary and secondary antibody complex. The primary 

antibody was prepared in rabbits against a succinyl cyclic GMP 

albumin conjugate, w h ile the s econd a n t i b o d y  was p r e p a r e d  in 

sheep against rabbit globulin. W i t h  this p r e - r e a c t e d  system, 

pipetting and incubation times were reduced compared to the usual 

sequential double antibody assay and no second incubation was 

inquired. After a single overnight incubation at 4°C, 1 ml of 

Propan-l-ol was added to aid precipitation, the tubes were centi-
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fuged, the supernatants discarded, and the radioactivity in the 

precipitates counted.

3.6.3. Chemicals for RIA 

3 .6.3.1. Cyclic GMP antiserum complex

One vial of lyophilized pre-reacted ,first and second antibody was 

supplied. It was reconstituted with 21 ml of distilled water. The 

resulting solution, in 0.1M sodium phosphate buffer with 0.05% 

thimerosal, pH 6.2, contained sufficient antibody to bind approx­

imately 50-60% of the labelled antigen in the absence of u n l a ­

belled antigen when used as directed later. The reconstituted 

antiserum complex was stable for at least two months when stored 

at 2-8°C.

3.6.3.2. Succinyl cyclic GMP tyrosine methyl ester-[125I] 
(ScGMP-TME-[125I] )
Two vials of concentrated tracer were supplied. Each vial con­

tained approximately 28KBq (0.7 5pCi) on the calibration date in 1 

ml of p r o p a n - l - o l :w a t e r  s o l u t i o n  (1:1). The c o n c e n t r a t e  was 

stable for at least 2 months when stored at 2- 8 °C.

j_-6.3. 3. Normal rabbit serum

The normal rabbit serum was used to m e a s u r e  the n o n - s p e c i f i c  

binding obtained using non-immune serum. Two vials of lyphilized 

normal rabbit serum were supplied. 5 ml of distilled water was 

added to one vial of S c G M P - T M E - [ 125I ] concentrate, and to one 

Vlal lyophilised normal rabbit serum. The entire contents of 

the reconstituted n o r m a l  r a b b i t  s e r u m  via l  was a d d e d  to the 

diluted ScGMP-TME-[ 125I ] vial and the resulting solution mixed
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well. The resulting solution (appro x i m a t e l y  11 ml) c o n t ained 

ScGMP-TME-[ 125I ] (0.068pCi/ ml), 1.0% normal rabbit serum, and

0.05M sodium acetate buffer, p H 6 .2.

3 .6 . 3.4. Acetic anhydride and triethylamine
A mixture of these two solutions was used to acetylate cyclic GMP 

in the samples in order to increase the sensitivity of the assay. 

One vial of acetic anhydride and triethylamine was supplied. They 

were allowed to equilibrate to room temperature before use. When 

protected from moisture these chemicals were stable for at least 

two months. Immediately prior to use, one volume of acetic anhy­

dride was mixed wit h  two vol u m e s  of triethylamine; the exact 

volume of each was dependent upon the number of samples to be 

acetylated.

3.6. 3. 5. Cyclic GMP standard

This was the unlabelled antigen. One vial of lyophilized standard 

was supplied. It was reconstituted with exactly 20 ml of d i s ­

tilled water and contained 2000 pmol/ ml in 0.05M sodium acetate 

buffer, pH 6.2. The cyclic GMP standard had been calibrated spec- 

trophotometrically by the manufacturer using the molar absorption 

coefficient for GMP, e = 13.7 x l 0 3/mol/cm at 252 nm, pH 7.0. The 

reconstituted standard was stable for at least two months when 

stored at 2-8°C.

3̂ 6.4. Preparation of standard curve and assay of neutralized

£^ll__extracts

A series of 3.5 cm p l a s t i c  tubes (Sarstedt) was n u m b e r e d  for 

identification and the standard cyclic GMP stock solution (2000
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pmol/ ml) diluted with sodium acetate buffer, pH 6.2 to a concen­

tration of 100 pmol/ ml. Further serial dilutions with sodium 

acetate buffer were made to p r e p a r e  the fo l l o w i n g  cyclic GMP 

standards for assay: 0.025. 0.05, 0.1, 0.25, 0.5, 1.0, 2.5 and

5.0 pmol/ ml. All standards were run in duplicate.

Tubes 1 and 2 were used to measure "total counts", tubes 3 and 4 

were "blanks" and tubes 5 and 6 were used to measure the " ’O'

standard". 50pl of e a c h  s t a n d a r d  s o l u t i o n  (in d u p l i c a t e )  or

sample was added to the appropriately labelled tube. All tubes

except for "total counts" and "blank" received 5pl of the acety- 

lation mixture ensuring that the reagents were added directly to 

the solution and were immediately vortex mixed for 2 seconds. All 

tubes received 50pl of [125I] tracer solution, and 50pl of anti­

serum complex was added to all tubes except for "total counts" 

and "blanks". All tubes were vortex mixed for 5 seconds, covered 

with aluminium foil and equilibrated overnight (16-18 hours) at 
4°C.

Following overnight incubation at 4°C, 1 ml of ice cold propan-1- 
ol was added to each tube except for "total counts". This aided 

the precipitation of the antigen-antibody complex. The tubes were

vortex mixed and spun at 2000 g for 30 minutes at 4°C (Damon IEC

Centrifuge). The supernatants were removed by aspiration (except 

tor the "total counts"). All tubes were counted for 1 minute in a 

gamma counter (Packard Cobra Auto g a m m a ) .

Analysis of radioactivity 

Analysis of the radioactivity in tubes (counting and background
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reduction) was performed by an IBM-compatible computer with a 

defined RIA protocol. This allowed the user to define the nature 

of the sample (i.e.total counts, blanks, standards, unknowns and 

the number of replicates) and the count time. The standard curve 

was plotted with the charcteristics of a Bound Fraction RIA curve 

with a negative slope (spline f i t t e d ) . The concentration for each 

unknown sample was calculated by interpolation from the standard 

curve and the value printed. Table 5 and Figure 6 represents a 

typical standard curve obtained for an acetylated cyclic GMP RIA.

3.6.6. RIA for cyclic AMP

Determination of cyclic AMP, like that of cyclic GMP, was adapted 

from the procedure of Steiner et a l . ( 1972 ), using New England

Nuclear RIA kits (Dupont). The standards and samples were not 

acetylated since high concentrations of cyclic AMP are found in 

endothelial cells and enhanced sensitivity is not required. The 

labelled antigen was a succi n y l  t y r o s i n e - [ 125I ]-methyl ester 

derivative of cyclic AMP. Separation of bound from free antigen 

was achieved by the use of a pre-reacted primary and secondary 

antibody complex. The primary antibody was prepared in rabbits 

against a succinyl cyclic AMP albumin conjugate, while the second 

antibody was prepared in sheep against rabbit globulin.

Chemicals for RIA

1. Cyclic AMP antiserum complex 

One vial of lyophilized pre-reacted, first and second antibody 

was supplied, it was reconstituted with 21 ml of distilled water.
Th G resulting solution, in 0 . 1M sodium p h o s p h a t e  bu f f e r  w i t h  

0-05% thimerosal, pH 6.2, contained sufficient antibody to bind
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TOTAL COUNTS

BLANK

'0’ STANDARD

0.025 pmol/ ml

0.05 pmol/ ml

0.1 pmol/ ml

0.25 pmol/ ml

0 .5 pmol/ ml

1.0 pmol/ ml

2 .5 pmol/ ml

5 .0 pmol/ ml

CPM

6267

5761

98

107

3594

3316

2951

3219

2762

2727

2340

2223

1485

1488

1012
1098

757

741

469

514

325

328

AVERAGE CPM 

6014 

103 

3455 

3085 

2745 

2282 

1487 

1055 

749 

492 

327



Table 5: Typical standard curve for acetylated RIA of cyclic GMP, 

showing d e c r e a s e d  b i n d i n g  of [125I ] - S c G M P  TME t r a c e r  to the 

antibody and therefore decreasing counts as the concentration of 

unlabelled cyclic GMP standard increases. "Total counts" measures 

total activity of [125I]-ScGMP TME tracer, "Blank" measures non­

specific binding, and "0 standard" m e a s u r e s  total b i n d i n g  of 

[ 125I]-ScGMP TME tracer to antibody.



3085 f=̂ r

"3k

CPM

327
0.025 pmol cyclic GMP 5.0

Figure 6: Typical computer printout of an acetylated cycli 

RIA standard curve. U n k n o w n  c y c l i c  GMP c o n c e n t r a t i o n  

calculated from this curve by the computer.



approximately 50-60% of the labelled antigen in the absence of 

unlabelled antigen when used as directed later. The reconstituted 

antiserum complex was stable for at least two months when stored 

at 2-8 C.

3.6.7.2. Succinyl cyclic AMP tyrosine methyl ester-[125I] 
(ScAMP-TME-[125I] )
Two vials of concentrated tracer were supplied. Each vial con­

tained approximately 1.5pCi on the calibration date in 1 ml of 

propanol: water solution (1:1). The concentrate was stable for at 

least two months when stored at 2 - 8 °C.

3.6.7.3. Cyclic AMP carrier serum

Two vials of lyophilized carrier serum were supplied. 5 ml of 

distilled water was added to one vial of ScAMP-TME-[ 125I ] concen­

trate, and to one vial of lyophilized cyclic AMP carrier serum. 

The entire contents of the reconstituted cyclic AMP carrier serum 

was added to the d i l u t e d  S c A M P - T M E - [ 125I ] and the r e s u l t i n g  

solution mixed well. The resulting solution (approximately 11 ml) 

contained S c A M P - T M E - [ 125I ] (0.14pCi/ ml), 1% carrier serum, and

0.1% sodium azide in sodium acetate buffer, pH 6.2.

j_:6.7.4. Cyclic AMP standard

This is the unlabelled antigen. One vial of lyophilized standard 

was supplied. It was reconstituted with exactly 2 ml of distilled 
water and contained 5000 pmol/ ml in 0.05M sodium acetate buffer, 

PH 6.2 and 0.1% sodium azide. The cyclic AMP standard had been 

calibrated spectrophotometrically by the manufacturer using the 

m°lar absorption coefficient for AMP, e=14.6 xl03/mol/cm at 259
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nm, pH 6.9. The reconstituted standard was stable for at least 

two months when stored at 2-8°c.

3.6.8. Preparation of standard curve and assay of neutralized 

cell extracts

A series of 3.5 cm p l a s t i c  tubes (Sarstedt) was n u m b e r e d  for 

identification and the standard cyclic AMP stock solution (5000 

pmol/ ml) diluted with sodium acetate buffer, pH 6.2 to obtain 

the following cyclic AMP standards for assay: 0.5, 1.0, 2.5, 5.0, 

10.0, 25.0 and 50.0 pmol/ ml. All standards were run in d u p l i ­

cate .

Tubes 1 end 2 were used to measure "total counts", tubes 3 and 4 

were "blanks" and tubes 5 and 6 were used to measure the" 'O' 

standard". 50pl of e a c h  s t a n d a r d  s o l u t i o n  (in d u p l i c a t e )  or 

sample was added to the appropriately labelled tube. All tubes 

received 50pl of [1251 ] t racer s olution and 50pl of a n t i s e r u m  

complex except for "total counts" and "blanks". All tubes were 

vortex mixed for 5 seconds, c o v e r e d  w i t h  a l u m i n i u m  foil and 

equilibrated overnight (16-18 hours) at 4°C.

Following overnight incubation at 4 °C, 1 ml of ice cold propan-1- 
°1 was added to each tube except for "total c o u n t s " . This aided 

the precipitation of the antigen-antibody complex. The tubes were 

vortex mixed and spun at 2000 g for 30 minutes at 4°C (Damon IEC 

Centrifuge). The supernatants were removed by aspiration (except 

tor the "total counts"). All tubes were counted for 5 minutes in 

a gamma counter (Packard Cobra Auto g a m m a ) .
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3.6.9. Analysis of radioactivity
Analysis of the radioactivity in tubes (counting and background 

r e d u c t i o n )  was performed by an IBM-compatible computer with a 

defined RIA protocol. This allowed the user to define the nature 

of the sample (i.e. total counts, blanks, standards, unknowns and 

the number of replicates) and the count time. The standard curve 

was plotted wit h  the c h a r a c t e r i s t i c s  of a Bound Fraction RIA 

curve with a negative slope (spline fitted). The concentration 

for each unknown was calculated by interpolation from the stand­

ard curve and the value printed. Table 6 and Figure 7 represents 

a typical standard curve obtained for a cyclic AMP RIA.

3.7. MEASUREMENT OF DNA CONTENT OF SAMPLES

3.7.1 Principles of DNA Assay

The DNA content of the samples was measured by the fluorescence

technique as previously described by Kissane and Robins (1958). 

Briefly, the DNA content of the samples can be quantified fluoro- 

metrically by the reaction of 3,5, diaminobenzoic acid (DABA, 

Sigma) with the deoxyribose liberated from DNA.

3.7.2. Preparation of 3,5,diaminobenzoic acid

A 2M solution was prepared by dissolving 12g of DABA in 40 ml of 

4M Hci acid. The resulting dark brown solution was decolourized 

by extraction with activated charcoal. 100 mg of activated char- 

C°1 (Sigma) was added, the solution was vortex mixed then spun at 

2000 9 for 5 minutes at 4°C (IEC Centra 8R Centrifuge). The super­

natant was decanted and re-extracted with a further 100 mg of 

activated charcoal w i t h  v o r t e x  m i x i n g  and c e n t r i f u g a t i o n  as 

before. This procedure was repeated until the resulting solution
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TOTAL COUNTS

BLANK

'0' STANDARD

0 .5 pmol/ ml

1.0 pmol/ ml

2 .5 pmol/ ml

5 .0 pmol/ ml

10.0 pmol/ ml

25.0 pmol/ ml

50.0 pmol/ ml

AVERAGE CPM 

12556 

186 

7154 

6271 

6102 

5236 

4183 

3175 

2042 

1396

CPM

13180

11931

180

191

6809

7489

6247

6295

6118

6085

5290

5182

4197

4168

2928

3422

2061

2022
1425

1367



Table 6: Typical curve for RIA of cyclic AMP, showing decreased 

binding of [125I]-ScGMP TME tracer to the antibody and therefore 

decreasing counts as the concentration of unlabelled cyclic GMP 

standard increases. "Total counts" measures total activity of 

[125I]-ScGMP TME tracer, "Blank" measures non- specific binding, 

and "0 standard" m e a s u r e s  t o t a l  b i n d i n g  of [125I ] - S c G M P  TME 

tracer to antibody.



0.5 pmol cyclic AMP 50.0

Figure 7: Typical computer printout of a cyclic AMP RIA standard 

curve. Unknown cyclic AMP concentrations were calculated from 
this curve by the computer.



was a pale straw colour. The solution was used immediately or 

s t o r e d  at -20 °C in 1 ml aliquots.

3.7 .3 Preparation of DNA standards

A 500 pg/ ml solution of DNA was prepared by dissolving 5 mg DNA 

(Salmon-testes, Sigma) in 10 ml of 1M N H 40 H . An aliquot of the 

solution was d i l u t e d  f urther w i t h  d i s t i l l e d  w a t e r  to p repare 

another stock solution of 50pg DNA/ ml. The DNA standards for 

preparation of a stand a r d  curve were 1.0, 2.5, 5.0, 10.0 and

20.0pg DNA/ ml prepared in duplicate from the stock DNA sol u ­

tions. Duplicate blanks were also prepared by adding 20pl of 1M 

NH40H to two eppendorf t u b e s . The DNA standards and blanks were 

evaporated to dryness in drying oven.

3.7.4. Preparation of cell pellets for analysis

Before the DNA content of the cell pellets could be determined, 

an extraction procedure had to be carried out to remove other 

materials, for example lipids, which yield fluorescent products 

with DABA, and therefore interfere with the accuracy of the DNA 

measurement. This was as follows: 200pl of 0.1M potassium acetate 

was added to the cell p e l l e t s . The samples were vortex mixed and 

then centrifuged at 10000 g for 5 minutes at room tem p e r a ­

ture. The supernatants were removed by aspiration and discarded. 

200pl of ethanol was added to the pellets followed by an incuba­

tion at 60 c for 30 minutes. The samples were left to cool then 

centifuged at 10000 g for 5 minutes and the supernatants

discarded, a further 200pl of ethanol was added to the pellets, 

f°llowed by v o r t e x  mixi n g ,  centrifugation and r e m o v a l  of the 

Supernatants as before. The extracted pellets were evaporated to
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dryness overnight

After allowing the extracted pellets and DNA standards to evapo­

rate to dryness, 120pl of 2M D A B A  was a d d e d  and the s a m p l e s  

incubated at 60°C for 30 minutes. In this step, the purine deoxy- 

nucleotides are hydrolysed by the strongly acidic DABA, and a 

fluoroscent p roduct is f ormed between D AB A  and the liberated 

deoxyribose. After cooling, 720pl of 0. 6M perchloric acid was 

added to each sample followed by centrifugation at 10000 g

for 5 minutes at room temperature.

The Fluorimeter (A m i n c o - B o w m a n ) was c a l i b r a t e d  using the DNA 

standards and blanks. Excitation was at a wavelength of 406 nm 

and fluorescence was measured at 520 nm. The fluorescence of each 

sample was m e a s u r e d  and the D N A  c o n t e n t  d e t e r m i n e d  f r o m  the 

standard curve. The fluorescence obtained was linearly p r o p o r ­

tional to the amount of DNA present in the sample. Figure 8 shows 

a typical standard c u r v e .

3.8. DRUGS AND REAGENTS

3.8.1. Tissue culture

Dulbecco's modified Eagle's me d i u m  (DMEM), benzyl penicillin, 

streptomycin, glutamine, foetal calf serum and newborn calf serum 

were purchased from Gibco Ltd (Paisley, Scotland). Trypsin/ EDTA 

was purchased from Flow Laboratories (Irvine, Scotland).

Tissue culture flasks (25 c m2 and 80 c m 2 ), six-well multidishes 

cm2) were supplied from Nunc (Denmark) and sterile centifuge 
tubes (15 m i an£ 5Q  ̂ were supplied by Falcon (UK). Sterile
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Figure 8: Typical standard curve for DNA determination. The D N A
c o n t e n t  of the u n k n o w n  s a m p l e s  w e r e  o b t a i n e d  by 
interpolation from the standard curve by the computer.
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normal saline (0.9% w/v) was purchased from Baxter (UK)

3.8.2. Reagents

Freon (1,1,2,t r i c h l o r o t r i f l u o r e t h a n e ), NaOH pellets, trisodium 

citrate and trichloroacetic acid were supplied from AnalaR (UK). 

Potassium acetate and sodium dithionite were obtained from BDH 

(Glasgow, S c o t l a n d ) . Perchloric acid was obtained from Searle 

Company Ltd (UK). Methyl [3H]-thymidine was supplied from Amer- 

sham (UK). Ecoscint was supplied from National Diagnostics (UK)„

3.8.3. Drugs

Atriopeptin II, Brij- 35 s o l u t i o n  (p o l y o x y e t h y l e n e  23 lauryl 

ether), 8 bromo guanosine 3' :5’-cyclic monophosphate, butylated 

hydroxytoluene, L- canavanine, clonidine, collagenase (Type II) , 

catalase (bovine liver), diaminobenzoic acid, dimethyl sulphox- 

ide, deoxyribonucleic acid (DNA, salmon testes), dipyridamole, 

dibutyryl adenosine 3 ':5'-cyclic monophosphate, drabkins reagent, 

elastase (Type I, porcine pancreas), haemoglobin (bovine erythro­

cytes), haemoglobin (human), histamine diphosphate, (f)isoprena- 

line hydrochloride, , m e t h y l e n e  blue, L - N G- n i t r o  a r g inine, 

phorbol 12- myristate 13-acetate, 4a- phorbol 12,13- didecanoate, 

paraquat (1,1'- d i m e t h y l - 4 ,4'-bipyridinium dichloride), L-phe- 

nylephrine h y d r c h l o r i d e , p o t a s s i u m  f e r r i c y a n i d e , salbutamol, 

sodium nitroprusside, superoxide dismutase (bovine erythrocytes), 

thymidine, t r i - n - o c t y l a m i n e , and v i t a m i n  E (D L - a - t o c o p h e r o l  

dcetate) were p u r c h a s e d  f r o m  the S i g m a  C h e m i c a l  C o m p a n y  L t d  
(Poole,U K ) .

Dideoxyforskolin, forskolin and staurosporine were purchased from
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C a lb io c h e m  (Nottingham, UK) . Dobutamine was obtained from Eli 

Lilly Company Ltd (UK), glyceryl trinitrate (10% w/w lactose) was 

o b t a i n e d  from Napp Laboratories (UK) and cimetidine was obtained 

from SmithKline Beecham (UK).

NG-monomethyl L- arginine and N G-monomethyl D- arginine were a 

generous gift from D r .R .M .J .Palmer of Wellcome Laboratories (UK).

M & B 22948 (2-0-propoxyphenyl-8-azapurin-6-one), rolipram (4-[3- 

cyclopentyloxy-4-methoxyphenyl]- 2- p y r r o l i d o n e ) and trequinsin 

(9,10-dimethoxy-2-mesitylimino-3-methyl-3,4,6,7,-tetrahydro-2H- 

pyrimido[6 ,1 - a ] i s o q u i n o l i n - 4 - o n e )  w e r e  a g e n e r o u s  gift f r o m 

Dr.J.E . Scuncess of Rhone-Poulenc Ltd (UK).

All drugs in an aqueous solution were sterilised by filtration 

through a Millipore filter (0.2pM pore size). Some drugs did not 

require sterilisation i.e. butylated hydroxytoluene, phorbol 12- 
nyristate 13~acetate, 4a-phorbol 12,12- d i d e c a n o a t e , trequinsin 

and vitamin E s i n c e  t h e y  w e r e  d i s s o l v e d  in 100% e t h a n o l  and 

dideoxyforskolin, forskolin and rolipram since they were d i s ­

solved in D M S O . At the dilutions used, the maximum concentrations 

°f ethanol (0.1% v/v) and DMSO (0.1% v/v) had no effect on pr o ­

liferation of e n d o t h e l i a l  or s m o o t h  m u s c l e  cells (data not 
shown).

The Kreb's solution was made from a lOx concentrate which co n ­

tained the following (mM) : NaCl 1180, KCl 48, MgS 04 12, KH2P04 12 

and CaCl2 25. The solution was diluted 1:10 with distilled water
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when required and glucose and N a H C 03 added to achieve final 

concentrations 11 mM and 24 mM, respectively. The working Kreb's 

solution was incubated at 3 7 °C and gassed with 5% C02 in air for 

an hour before use.

3.8.5. Preparation of oxyhaemoglobin

Bovine haemoglobin type 1 (Sigma) contains a mixture of oxyhaemo­

globin and its oxidized form, methaemoglobin. Pure reduced haemo­

globin (oxyhaemoglobin) was prepared by adding to a 1 mM solution 

of Sigma haemoglobin in distilled water, a 20- fold molar excess 

of the reducing agent, sodium dithionite. The sodium dithionite 

was then removed by dialysis against 100 volumes of distilled 

water for 2-3 hours at 4°C. The resulting solution of oxyhaemo­

globin was used immediately or stored frozen in aliquots at -20°C 

for up to 14 d a y s .

3.8.6. Preparation of methaemoglobin

50 ml of whole blood was removed from a volunteer and placed in 

two sterile centifuge tubes (50 ml, Falcon). Tri sodium citrate 

(3.8%) was added to prevent the blood from clotting. The blood 

was then centrifuged at 200 g for 5 minutes at room tempera­

ture (IEC Centra 8R Centrifuge). The clear supernatant was d i s ­

carded and the red blood cells were resuspended with 10 ml of 

sterile saline (0.9% w/v, Baxter, UK), centrifugeas before, and 

^en, discard clear supernatant and the cells were resuspended 

with 10 ml of s t e r i l e  saline. This p r o c e d u r e  was r e p e a t e d  3 

times. 5 mi Qf sterile distilled water was added to lyse the red 

blood cells. This solution was then centrifuged at 1100 g. for

15 minutes to remove cellular d e b r i s . Pure oxidised haemogloblin

69



(methaemoglobin) was p r e p a r e d  by adding 2 ml of the oxidant, 

potassium ferricyanide (0.06M). The potassium ferricyanide was 

then removed by dialysis against 100 volumes of sterile distilled 

water for 2 to 3 hours at room temperature.

3.8.6.1. Quantification of methaemoglobin

3.8.6.2. Principles of assay
Determination of the concentration of methaemoglobin is based on 

the principle first proposed by Stadie (1920) with several mod i ­

fications (Drabkin & Austin, 1935). Briefly, the methaemoglobin 

content in a sample can be q u a n t i f i e d  s p e c t r o p h o t o m e t r i c a l l y  

following the r e a c t i o n  b e t w e e n  m e t h a e m o g l o b i n  and p o t a s s i u m  

cyanide. The product cyanmethaemoglobin has an absorption maximum 

at 540 nm. The colour intensity at this wavelength is proportion­

al to total methaemoglobin concentration.

3.8.6.3. Chemicals for assay

3.8.6.3.1. Drabkin's Solution

One vial of d r y  m i x t u r e  c o n s i s t i n g  of s o d i u m  b i c a r b o n a t e ,  

potassium ferricyanide and potassium cyanide (100: 20: 5 ) was

supplied. This was reconstituted with 1000 ml of distilled water. 

The resulting solut i o n  was m i x e d  w i t h  0.5 ml of 30% Brij- 35 

solution (polyoxyethylene 23 lauryl ether). When protected from 

llSfht, this solution was stable for at least 6 months.

Ijjj .3 . 2 . Cyanmethaemoglobin Standard

The cyanmethaemoglobin standard was prepared as follows: one vial 

of lyophilized haemoglobulin (human) was added to 50 ml of Drab- 

s solution. The resulting solution is mixed well and allowed
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to stand for at least 30 minutes before use. The cyanmethaemoglo­

bin standard had been calibrated spectrophotometrically by the 

manufacturer at 540 nm and the molecular weight of haemoglobin 

was taken as 64458 d a l t o n s . The c y a n m e t h a e m o g l o b i n  s o l u t i o n  

gives an absorbance equivalent to that of a whole blood sample 

containing 18 grams haemoglobin per 100 ml. This solution was 

stable for at least 6 months when stored at 0-5 °C.

3.8.6.3.3. Preparation of standard curve and assay of samples 

A series of tubes was numbered for identification. The cyanme­

thaemoglobin standard solution was diluted with Drabkin's solu­

tion to p r e p a r e  the f o l l o w i n g  s t a n d a r d s :  0 , 6 , 12 , 18 g r ams

haemoglobin per 100 ml. All standards were run in duplicate. The 

tubes containing the "0 standard" are referred to as the "refer­

ence". For measurement of unknowns, 20pl of sample was added to 5 

ml of Drabkin's solution. Allow to stand for 15 minutes at room 

temperature. The a b s o r b a n c e  of the standards and samples was 

determined against the "reference" at a wavelength at 540 nm in 

an UV- visible recording spectrophotometer (UV- 240, Shimadzu). 

The same cuvette was used for each recording.

j-8.6.3.4. Analysis of methaemoglobin content

Analysis of methaemoglobin content was determined by plotting a 

standard curve, this was found to be linear and passed through 

the origin. The concentration for each sample (grams of methaemo- 

9lobin per 100 ml) was c a l c u l a t e d  by i n t e r p o l a t i o n  f r o m  the 

standard curve. Figure 9 repr e s e n t s  a typical st a n d a r d  curve 

Stained for a methaemoglobin assay.
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Figure 9: Typical standard curve for methaemoglobin determina­

tion.
The methaemglobin concentration of the samples were obtained by 

interpolation from the standard curve by the spectrophotometer 
(UV- 240, Shimadzu) .
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3.8.7 Statistical analysis

R e s u l t s  are expressed as the mean ± s.e. mean and comparisons 

were made by the use of Student's t-test or by the non-parametric 

Mann Whitney test when there was unequal variance between s a m ­

ples. A probability of 0.05 or less was considered to be signifi­

cant. In the Results, n represents the number of observations.
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RESULTS



4.1. PIG AORTIC ENDOTHELIAL PHOSPHODIESTERASES

Little is k n o w n  a b o u t  the p r o c e s s e s  in e n d o t h e l i a l  c e l l s  

responsible for the catabolism of cyclic AMP and cyclic GMP. In 

this study, we a t t e m p t e d  to e v a l u a t e  the role of the 

phosphodiesterase (PDE) enzymes present in endothelial cells by 

isolating the v a r i o u s  s u b t y p e s  and s t u d y i n g  the e f f e c t s  of 

selective inhibitors on cyclic AMP and cyclic GMP accumulation.

4.1.1. Isolation of PDE isozymes from PAEC

This part of the project was carried out in collaboration with 

Dr. J. E. S o u n e s s ,  R h o n e -  P o u l e n c  Ltd., in his D a g e n h a m  

laboratory.

Two peaks of c y t o s o l i c  PDE a c t i v i t y  w e r e  r e s o l v e d  by D E A E -  

Trisacryl chromatography (Figure 10). The first peak, eluted at 

0.12M NaCl, exhibited activity against both cyclic AMP and cyclic 

GMP, and the addition of lpM cyclic GMP stimulated cyclic AMP 

hydrolysis 2- fold. The ability of this first enzyme to hydrolyse 

cyclic GMP was not augmented in the presence of calcium (2 mM) 

and calmodulin (0.5 unit/ml). The second peak of activity was 

eluted with 0.19M NaCl and selectively hydrolysed cyclic AMP, 

displaying little or no activity against cyclic GMP (Figure 10, 

Souness et a l . , 1990 ).
The method for purification of the PDE isozymes is described m  
Appendix I .
These results indicate the presence of two PDE isozymes in pig 

aortic endothelial cells, a cyclic GMP- stimulated PDE (Type II) 

and a cyclic A M P  PDE (Type IV). It was f o u n d  t h a t  e q u a l  

hydrolytic a c t i v i t y  w a s  a s s o c i a t e d  w i t h  the c y t o s o l i c  an d 

Particulate fraction of pig aortic endothelial cell homogenates.
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Figure 10: DEAE- Trisacryl chromatography of PDE activity of the 

lOOOOOg supernatant fraction from the pig aortic endothelial 

cells. Preparation of a cytosolic fraction from the pig aortic 

endothelial cells and its chromatography on DEAE- Trisacryl is 

described in Souness et a l . (1990). Fractions were assayed for 

cyclic AMP PDE activity (2pM substrate) in the absence (♦) and 

presence (y) of lpM- cyclic GMP, and for cyclic GMP PDE activity 

(lpM substrate) in the absence (■) and presence (•) of 2mM- CaCl2 
pdus 0.5 unit of calmodulin. All assays were performed in the 

presence of 200pM- EGTA.
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4,1.2. Selective inhibitors

The activity of s e l e c t i v e  c y c l i c  n u c l e o t i d e  PDE i n h i b i t o r s  

against endothelial cell cyclic GMP- stimulated and cyclic AM? 

PDEs are shown in Table 7 (Souness et al. , 1990 ).

The method for this is described in Appendix II.

M & B 22948, a selective inhibitor of cyclic GMP PDEs (Type I) in 

smooth muscle was only weakly effective in inhibiting the two 

PDE- isozymes p r e s e n t  in P A E C  . SK & F 94120, a s e l e c t i v e  

inhibitor of cyclic GMP- inhibited PDE (Type III) also exhibited 

weak a c t i v i t y  a g a i n s t  the two PDE i s o z y m e s .  In c o n t r a s t ,  

dipyridamole and trequinsin, two non- selective PDE inhibitors, 

potently inhibit both isozymes, whereas rolipram, a selective 

cyclic AMP PDE (Type IV) inhibitor, selectively inhibited the 

cyclic AMP PDE present in PAEC.

We next examined the effects of dipyridamole, t r e q u i n s i n  and 

rolipram to det e r m i n e  w h e t h e r  the PDE isozymes found in cell 

homogenates had any role in regulating cyclic AMP and cyclic GMP 

levels in intact pig aortic e n d o t h e l i a l  cells. All these and 

subsequent experiments were carried out in Glasgow.

jj2. CYCLIC GMP CONTENT IN ENDOTHELIAL CELLS

2 .1. E f f e ct of s p o n t a n e o u s l y -  r e l e a s e d  E D R F  on c y c l i c  GMP 

gontent in pig aortic endothelial cells

^  has been s u g g e s t e d  that s p o n t a n e o u s l y -  r e l e a s e d  E D R F  is 

responsible for the resting level of cyclic GMP in endothelial 

cells through the activation of soluble guanylate cyclase (Martin 

/ 1988b).
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Cyclic GMP-stimulated PDE Cyclic AMP PDE

Inhibitor Cyclic AMP Cyclic AMP 
(+ cyclic GMP)

Cyclic GMP

M & B 22948 708 45 50 93
Trequinsin 4 0.6 0.6 0.2
Dipyridamole 17 5 3 6
SK&F 94120 643 485 558 >1000
Rolipram 435 448 417 3

Table 7: Inhibition of seperate PDE activities by various com­

pounds. IC50 values (expressed as pM) were determined on cyclic 

GMP- stimulated PDE with 2pM- cyclic AMP as substrate in the 

presence or absence of lpM- cyclic GMP, or with lpM- cyclic GMP 

as substrate. Cyclic AMP PDE was assayed with lpM- cyclic AMP as 

substrate. The results represent the means of duplicate 

determinations performed on two different batches of the e n z y m e s .



When primary cultures of P A E C  were pretreated with haemoglobin 

(lOpM) which binds to and inactivates E D R F , the resting level of 

c y c l i c  GMP was reduced from 6 7  ± 6 to 9 . 9  ± 2 . 8  fmol pg' D N A -1 

(n=6). Bradykinin (O.lpM) induced an increase in intracellular 

c y c l i c  GMP content after a 1.5 minute exposure, from 67 ± 6 to

650.8 ± 92.2 fmol pg D N A “ 1 ( n = 6 ) ,  a 9 . 7 -  fold increase. This 

increase was b l o c k e d  by p r e t r e a t m e n t  with h a e m o g l o b i n  (lOpM, 

Figure 11) .

4.2.2. Effects of L- NMMA and L- canavanine

EDRF has been identified as nitric oxide and endothelial cells 

are known to synthesize nitric oxide from L- arginine. There is 

general agreement that the converting enzyme, N O -  synthase can be 

inhibited by N G- monomethyl L- arginine (L- NMMA) and some but. 

not all reports suggest that L- canavanine can also inhibit this 

enzyme in endothelial cells (Palmer et al., 1988b; Schmidt et

al., 1988; Rees et a l ., 1988; 1990).

Untreated cells had a resting intracellular cyclic GMP content of 

77 - 17 fmol pg D N A -1 ( n = 6 ) . F o l l o w i n g  p r e t r e a t m e n t  fo r  20 

Minutes, L- NMMA ( 300pM) reduced the intracellular cyclic GMP 

content to 17 ± 2 . 5  fmol pg D N A"1 (n=6 ), a 4.5- fold decrease, 

whereas L- c a n a v a n i n e  ( 3 0 0 p M )  had no e f f e c t  ( F i g u r e  12). 

Bradykinin (O.lpM), a stimulant of endothelial EDRF production, 

induced an increase in intracellular cyclic GMP content after a

■̂5 minute exposure to 342.9 ± 74.6 fmol pg DNA~X (n=6), a 4.5-

fold increase. This increase was blocked following 20 minutes 

P r e t r e a tm e n t  of P A E C  w i t h  L- N M M A  ( 3 00pM) but not w i t h  L- 

Canavanine (300pM, Figure 12).
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Figure 11: Effects of haemoglobin on the cyclic GMP content of 

PAEC in the presence and absence of bradykinin. Cells were ex 

posed either to no drugs (C) or haemoglobin (10pM, Hb) for 18.5 

minutes before being incubated with or without bradykinin (O.lpM, 

BK) for a further 1.5 minutes. The incubation was terminated by 

removal of Krebs and addition of 6% trichloroacetic acid (TCA) 

and cyclic GMP quantified by radioimmunoassay. Bars represent 

mean t s.e. mean content of cyclic GMP (fmol pg DNA , n -6). * P< 

0.05; ** p< 0.005; denotes a difference from untreated cells, or 

Between two groups joined with a bracket.
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Figure 12: Effects of N G- monomethyl L- arginine (L- NMMA) and L- 

canavanine on cyclic GMP content of PAEC in the presence and 

absence of bradykinin. Cells were exposed to either no drugs (C) , 

L-NMMA (300pM) or L- canavanine (300pM) for 18.5 minutes before 

being incubated with or without bradykinin (O.lpM, BK) for a 

further 1.5 minutes. The incubation was terminated by removal of 

fcebs and addition of 6% TCA and cyclic GMP quantified by ra­
dioimmunoassay. Bars represent mean ± s.e. mean content of cyclic 

(fmol pg DNA-1, n =6 ). * P< 0.05; ** P< 0.005; denotes a 

difference from untreated cells, or, between two groups joined 
with a bracket.
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4.2.3. Effects of dipyridamole
Although dipyridamole is a potent inhibitor of both the cyclic 

GMP- stimulated PDE and the cyclic AMP PDE present in homogenates 

of PAEC, only the former hydrolyses cyclic GMP (Table 7, Figure 

10). The effects of dipyridamole were investigated on the cyclic 

GMP content to d e t e r m i n e  if thi s  e n z y m e  p l a y e d  a r o l e  in 

regulating the cellular content of this cyclic nucleotide.

The intracellular cyclic GMP content in untreated cells remained

constant over a period of 60 minutes (Figure 13A) . Dipyridamole

(25pM) induced an increase in intracellular cyclic GMP content

which peaked at 5 minutes: it rose from 40.1 ± 4.2 to 379.5 ±

80.1 fmol pg DNA-1 (n=6-18), a 9.5- fold increase, then declined

rapidly to a level 2- 3 fold above the original resting level and

subsequently r e m a i n e d  c o n s t a n t  for up to 60 m i n u t e s .  T h i s

increase was b l o c k e d  c o m p l e t e l y  f o l l o w i n g  p r e t r e a t m e n t  w i t h

haemoglobin (lOpM, Figure 1 3 A ) . At this point it was not certain

that the elevation of cyclic GMP induced by dipyridamole resulted

from inhibition of the cyclic GMP- stimulated PDE isozyme. It is

known that dipyridamole blocks the nucleoside transporter protein
in several cell types (Pearson et al., 1978; Cabral et a l ., 1984;

Plagermann & Woffendin, 1988). The nucleoside transporter is a

simple carrier with a broad substrate specificity which includes

cyclic nucleotides. Therefore, dipyridamole may have elevated

cyclic GMP content by inhibiting the efflux of this molecule

from the cell. This possibility was investigated by measuring the

leakage of cyclic GMP into the Kreb's bat h i n g  m e d i u m  (Figure 
13B).
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Figure 13A: Time course of the effects of dipyridamole on the 

intracellular cyclic GMP content of PAEC. Cells were exposed 

either to no drugs (o), dipyridamole (25pM, •), or a combination 

of dipyridamole (25pM) and haemoglobin ( 1 0 p M , A ). The cells were 

then incubated for 60 minutes at 3 7 °C. At the time points indi­

cated the incubation was terminated by removal of the krebs and 

addition of 6% TCA and the intracellular cyclic GMP content 

quantified by radioimmunoassay. Points represent mean ± s.e. mean 

content of cyclic GMP (fmol pg DNA-1, n =6) . When error bars are 

n°t seen they are contained within the symbols. * P<0.05; **

P<0.005 ; denotes a significant difference from untreated cells.
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Figure 13B: Time course of the effects of dipyridamole on the 

extracellular accumulation of cyclic GMP. These data were obtained 

from the same experiment shown in Figure 13A. Cells were exposed 

either to no drugs (o), dipyridamole (25pm, •) or a combination 

of dipyridamole (25pM) and haemoglobin (lOpM, A). The cells were 

then incubated for 50 minutes at 3 7 “ c. At the time points indi­

cated the Krebs was removed and the extracellular content of 

cyclic GMP quantified by radioimmunoassay. Points represent mean 

- s-e. mean content of cyclic GMP (fmol pg DNA-1, n =6). When 

' error bars are not seen, they are contained within the symbols, 

i 0.05; ** p< 0.005;  denotes a significant difference from
' ^treated cells.
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The c y c l i c  GMP content of the K r e b 's bath i n g  u n t r e a t e d  cells 

1 i n c r e a s e d  during the 60 minutes incubation, indicating leakage 

does occur: it rose from 2.8 ± 0.3 to 67.4 ± 11.0 fmol pg DNA-1
I
i (n=18) at 60 minutes (Figure 13B). Dipyridamole (25 pM) increased 

! the leakage of cyclic GMP into the Kreb's bath i n g  medium: it

| reached a plateau after 15 minutes of 241.7 ± 38.0 fmol pg DNA-1 
I (n=6), a 9.5- f o l d  i n c r e a s e ,  an d  t h e n  r e m a i n e d  r e l a t i v e l y  

| constant for the remainder of the 60 minutes incubation period.

1 This i n c reased a c c u m u l a t i o n  of c y c l i c  GMP s t i m u l a t e d  by 

i dipyridamole was blocked following pretreatment with haemoglobin 

j (10pM, Figure 13B) .

[ From these results it is likely that dipyridamole (25pM) elevates 

intracellular cyclic GMP content, not by blocking the efflux of 

this molecule from the cell, but by inhibiting the cyclic GMP-

I stimulated PDE isozyme.
!
i

j 4-2.4. Effects of trequinsin

- Trequinsin is a p o t e n t  i n h i b i t o r  of b o t h  the c y c l i c  GMP -  

stimulated PDE and the cyclic AMP PDE (Table 7). The effects of

I trequinsin on the c y c l i c  GMP c o n t e n t  of PAE C  w e r e  t h e r e f o r e
I examined.

intracellular cyclic GMP content of untreated cells remained

telatively constant during 60 minute incubation period (Figure 
[ .
| i4)- Trequinsin (lOpM) i n d u c e d  an i n c r e a s e  in i n t r a c e l l u l a r  

I cyclic GMP content which peaked at 30 minutes exposure: it rose 

, from 98.0 ± 14.9 to 454.4 ± 69.7 fmol pg D N A"1 (n=6-7), a 4.5- 

( c^ctease, and then remained relatively constant during the
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I Figure 14: Time course of the effect of trequinsin on intracel- 

j iular cyclic GMP content in PAEC. Cells were preincubated for 15 

1 minutes in the absence or presence of haemoglobin (lOpM, o) . Then j received no drugs (o), or trequinsin (lOpM) in the presence (•)

! °r absence (a) of haemoglobin and were incubated at 37 C for a 

i further 60 minutes. At the time points indicated, the incubation 

Was terminated by the removal of the Krebs and addition of 6% TCA 
and cyclic GMP content quantified by radioimmunoassay. Points 

represent mean ± s.e. mean content of cyclic GMP (fmol pg DNA , 

when error bars are not seen they are contained within 

I s y m b o l s. * p< 0.05; ** P< 0.005; denotes a significant difference 
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60 minute incubation. The increased accumulation of cyclic GMP 

was blocked following pretreatment with haemoglobin (lOpM, Figure 

14).

4.2.5. Effects of sodium nitroprusside

Having established that inhibitors of the cyclic GMP- stimulated 

PDE could elevate the cyclic GMP content of PAEC by inhibiting 

the hydrolysis of cyclic GMP formed f o l lowing st i m u l a t i o n  of 

soluble guanylate cyclase by spontaneously produced EDRF, the 

ability of d i p y r i d a m o l e  to p o t e n t i a t e  the actions of a nother  

stimulant of soluble guanylate cyclase, sodium nitroprusside was 

examined.

Untreated cells had a resting intracellular cyclic GMP content of

48.7 + 11.7 fmol pg DNA-1 (n=6 , Figure 1 5 A ) . Dipyridamole (25uM) 

induced a rapid rise in intracellular cyclic GMP content after 5 

minutes exposure: the maximum increase was 6.4- fold and then

diminished to 2.3- fold above control after 35 minutes (Figure 

ISA). Sodium n i t r o p r u s s i d e  (lpM) was a d d e d  for 2 m i n u t e s  to 

untreated cells or to cells pretreated with dipyridamole (25uM) 

for 33 minutes. In untreated cells, sodium nitroprusside (luM) 

increased the intracellular cyclic GMP content from 48.7 ± 11.7 

to 504.5 ± 172.7 fmol pg D N A -1 (n=5-6), a 10.9- fold increase 

(Figure 15A). In d i p y r i d a m o l e  p r e t r e a t e d  cells, the s o d i u m  

nitroprusside- s t i m u l a t e d  increase in cyclic GMP content was 

enhanced 3.25- fold (Figure 15A) .

leakage of cyclic GMP into the Kreb's bathing medium was also 

examined. The cyclic GMP content of the Kreb's bathing untreated
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Figure 15: E f f e c t s  of dipyridamole and sodium nitroprusside on 

i n t r a c e l l u l a r  and extracellular accumulation of cyclic GMP. PAEC 

were incubated for 35 minutes with or without dipyridamole (25pM, 

DiP) during which time the rapid rise in intracellular cyclic GMP 

content had diminished from the peak value obtained at 5 minutes 

to th e  value indicated after 35 minutes. Untreated cells or cells 

p re tre a te d  with dipyridamole (25pM, DiP) for 33 minutes were then 

exposed to sodium nitroprusside (lpM, SNP) for a further 2 

minutes. The incubation was terminated by removal of the Krebs 

bathing solution and addition of 6% TCA. The cyclic GMP content 

of th e  cells and the Krebs bathing solution was then measured by 

r a d io im m u n o a s s a y. The cyclic GMP content of the cells is shown on 

the top panel (A) and that of the Krebs bathing solution is shown 

rn th e  bottom panel (B). Bars represent mean ± s.e. mean content 

°£ cyclic GMP (fmol pg DNA"1, n=5-6). * P< 0.05; ** P< 0.005; de- 

n°tes a significant difference from untreated cells, or, between 

tw° groups joined by a bracket.



cells after 35 minutes incubation was 89.9 ± 11.1 fmol pg DNA-1 
(n=6). D i p y r i d a m o l e  (25pM) i n d u c e d  a rise in the c y c l i c  GMP 

content of the Kreb's: after 5 minutes it rose to 277.4 ± 64.6 

fmol pg DNA-1 (n=6), a 3- fold increase and remained constant for 

the re m a i n d e r  of the 35 m i n u t e  i n c u b a t i o n .  W h e n  a d d e d  to 

untreated cells, s odium n i t r o p r u s s i d e  (lpM) induced a m a r k e d  

increase in the cyclic GMP content of the Kreb's after 2 minutes 

exposure to 594.3 ± 189.0 fmol pg D N A -1 ( n =6 ), a 6 .6- fold

increase. In cells pretreated with dipyridamole (25pM) for 35 

minutes, the sodium nitroprusside (lpM)- induced accumulation of 

cyclic GMP in the kreb's was enhanced by 1.7- fold (Figure 1 5 B ) .

4.2.6. Effects of atriopeptin II

Having established that inhibition of the cyclic GMP- stimulated 

PDE could potentiate the increase in cyclic GMP content induced 

by two stimulants of soluble guanylate cyclase, namely EDRF and 

sodium nitroprusside, the ability of PDE inhibitors to potentiate 

the actions of a t r i o p e p t i n  II, a s t i m u l a n t  of p a r t i c u l a t e  

guanylate cyclase, was investigated. In these experiments, the 

cells were pretreated for 20 minutes with haemoglobin (lOpM). 

This abolished any activation of soluble guanylate cyclase by 

spontaneously- released EDRF, thereby allowing a clearer investi­

gation of the e f f e c t s  of a c t i v a t i n g  p a r t i c u l a t e  g u a n y l a t e
cyclase.

When cells were exposed to haemoglobin (lOpM) the resting content 

of cyclic GMP was 10.5 ± 1.6 fmol pg D N A -1 (n = 12). In t h e s e  

ceUs, atriopeptin II (lOnM) induced an increase in intracellular 

cYclic GMP content which peaked after 5 minutes exposure, rising
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to 53.8 ± 8.5 fmol pg D N A -1 ( n =6 ), a 5.1- fold increase. It 

subsequently stayed relatively constant for the remainder of the 

30 minute incubation (Figure 16). The ability of atriopeptin II 

to induce increases in intracellular cyclic GMP content in haeno- 

globulin (lOpM) pretreated cells was observed over the concentra­

tion range of 0.1 to 100 nM and the maximum obtained was 485.9 ± 

44.0 fmol pg DNA-1 (n=8 , Figure 17).

4.2.7. Effect of d i p y r i d a m o l e , t r e q u i n s in and rolipram on the 

atriopeptin II- induced elevation of cyclic GMP

In these experiments all cells were pretreated with haemoglobin 

(lOpM) to inhibit stimulation of soluble guanylate cyclase, and 

under these conditions the resting level of cyclic GMP was 14.8 ± 

1.8 fmol pg DNA-1 (n=29). Subsequent treatment with atriopeptin 

II (lOnM) for 15 minutes induced an increase in intracellular 

cyclic GMP content to 92.8 ± 8.2 fmol pg D N A '1 (n = 12), a 6.3- 

fold increase ( F i g u r e  18) . T r e a t m e n t  for 35 m i n u t e s  w i t h  

dipyridamole (25pM) had no effect on the resting level of cyclic 

GMP but trequinsin (25pM), induced a 5.3- fold increase (Figure 

18). The s e l e c t i v e  i n h i b i t o r  of the c y c l i c  A M P  PDE isozyme, 

rolipram (25pM) had no effect on the resting level of cyclic GMP 

following a 35 minute incubation. Furthermore, pretreatment with 

dipyridamole (25pM) and t r e q u i n s i n  (25pM) eac h  e n h a n c e d  the 

elevation of cyclic GMP content induced by atriopeptin II (IQnM, 

Figure 18). in contrast, rolipram (25pM) had no effect on the 

atriopeptin II (10nM)- induced increase in cyclic GMP content 
(Figure 18) .
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I Figure 16: Effects of atriopeptin II on the cyclic GMP content of 

|PAEC in the presence of haemoglobin. All cells were pretreated 

-or 20 minutes with haemoglobin (lOpM) to inhibit stimulation of 

j soluble guanylate cyclase before being incubated with (•) or 

I without (o) atriopeptin II (lOnM). At the time points indicated 

, "he incubation was terminated by removal of Krebs and addition of 

^TCA and the cyclic GMP content measured by radioimmunoassay.

Points represent mean ± s.e. mean content of cyclic GMP (fmol pg 

1, n=6-12). When error bars are not seen they are contained 
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| Figure 17: Concentration- effect relationship showing the ability 

| of atriopeptin II to elevate the cyclic GMP content of PAEC in 

the presence of haemoglobin. All cells were pretreated for 20 j minutes with haemoglobin (lOpM) to block any stimulation of 

| soluble guanylate cyclase. Cells then received either no drugs 

| (C) or were treated for a further 15 minutes with atriopeptin II 

I (0-1- lOOnM) . The incubation was then terminated by removal of 

Sebs and addition of 6% TCA and the cyclic GMP content quanti­

sed by radioimmunoassay. Bars represent mean ± s.e. mean content 

of cyclic GMP (fmol pg DNA'1, n=6-29). ** P< 0.0005 denotes a

significant difference from cells which did not receive atriopep- 
Sn II.
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Figure 18: Effect of dipyridamole, rolipram and trequinsin on the 

atriopeptin II- induced increase in cyclic GMP content in PAEC.

All cells were pretreated for 20 minutes with haemoglobin (lOpM). 

Khere indicated cells received either no drugs (C), or received 

dipyridamole (25pM, DiP), rolipram (25pM, ROL). or trequinsin 

(lOpM, TREQ) during the 20 minute pre- incubated period. The 

cells were then incubated with or without atriopeptin II (lOnM,

for a further 15 minutes. The incubation was terminated by 

removal of Krebs and addition of 6% TCA and cyclic GMP content 
was quantified by radioimmunoassay. Bars represent mean ± s.e.

“ean cyclic GMP content (fmol pg DNA 1, n=6-29).

** p< 0.0005; denotes a significant difference from untreated 

êlls/ or, between groups joined by a bracket.



4.3. CYCLIC AMP CONTENT IN ENDOTHELIAL CELLS
It was clear from the preceding section (4.2) that drugs which 

had been s hown to i n h i b i t  the c y c l i c  GMP- s t i m u l a t e d  PDE in 

endothelial cell homogenates had the ability to elevate cyclic 

GMP levels in in t a c t  cells. It is l i k e l y  t h e r e f o r e  that the 

cyclic GMP- stimulated PDE has an important role in regulating
I

the cyclic GMP content of endothelial cells. In this section an 

I attempt was made to d e t e r m i n e  if the cyclic AMP PDE found in 

endothelial cel l  h o m o g e n a t e s  had a rol e  in r e g u l a t i n g  the 

intracellular content of cyclic AMP in intact cells by examining 

| the effects of inhibitors of this e n z y m e .

4.3.1. Effects of dipyridamole and isoprenaline

The resting level of cyclic AMP in primary cultures of PAEC was

256.7 ± 39.5 f m o l  pg D N A -1 (n = 4, F i g u r e  19). A d d i t i o n  of
!

isoprenaline (lOpM), a p- adrenoceptor agonist, for 5 minutes had 

no effect on the resting content of cyclic AMP (Figure 19). The 

non- selective inhibitor, dipyridamole (25pM), had no effect on 

the resting level of cyclic AMP after a 35 m i n u t e  incubation 

period, but e n h a n c e d  the a b i l i t y  of i s o p r e n a l i n e  (lOpM) to 

increase c y c l i c  A M P  c o n t e n t :  in the c o m b i n e d  p r e s e n c e  of

isoprenaline and dipyridamole the cyclic AMP content rose 1.7- 

fold (Figure 19).

iij-2. Effects of dipyridamole and forskolin

Untreated cells had a rest i n g  cyclic AMP content of 1080.0 ± 

130-0 fmol pg DNA-1 (n = 1 0 ) . Forskolin (lOpM), a direct activator 

the catalytic subunit of adenylate cyclase (Seamon & Daly, 

had no e f f e c t  u p o n  the r e s t i n g  l e v e l  of c y c l i c  A.MP
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Figure 19: Effects of dipyridamole and isoprenaline on the cyclic 

MP content of PAEC. Cells were treated with either no drugs (C), 

or with dipyridamole (25pM, DiP) for 30 minutes before being 

incubated with or without isoprenaline (lOpM. IPR) for a further

5 minutes. The incubation was then terminated by the removal of 

Krebs and addition of 6% TCA and cyclic AMP content quantified by 
râ ioimmunoassay. Bars represent mean ± s.e. mean content of

cyclic AMP (fmol pg DNA-1, n =6). * P< 0.05; ** P< 0.005; denotes

6 significant difference from untreated cells, or, between two 

5rouPs joined by a b r a c k e t .



following a 2 minute exposure (Figure 20). Pretreatment for 10 

minutes with dipyridamole (lOOpM) induced an increase in cyclic 

AMP content from 1080.0 ± 130.0 to 1640.0 ± 200.0 fmol ug DNA'1 
(n=10). When forskolin (lOpM) was added subsequently, the cyclic 

AMP content rose to 3880.0 ± 850.0 fmol ug DNA ' L (n = 5 ) # a 2.8- 

fold rise (Figure 20).

4.3.3 Effects of rolipram and forskolin

Untreated cells had a resting cyclic AMP content of 230.5 ± 10.3 

fmol pg D N A -1 (n=7). T r e a t m e n t  w i t h  f o r s k o l i n  (30uM) for 5 

minutes induced an increase in the cyclic AMP content: it rose to

811.9 ± 84.6 fmol pg D N A'1 (n=7), a 3.5- fold increase (Figure 

21). Pretreatment for 30 minutes with the selective inhibitor of 

the cyclic AMP PDE, r o l i p r a m  (25pM), i n d u c e d  an i n c r e a s e  in 

cyclic AMP content: it rose to 296.4 ± 10.7 fmol pg DNA-1 (n=6 )/ 
a 1.3- fold increase, and enhanced the forskolin (30pM)- induced 

increase in cyclic AMP content to 2232.0 ± 386.0 fmol pg D N A'1 
(n=7), a 2.7- fold enhancement (Figure 21).

From this section it is clear that the cyclic AMP PDE found in 

endothelial homogenates has a role in regulating the cyclic AMP 

content in intact c e l l s .
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| Figure 20: Effects of dipyridamole and forskolin on the cyclic 

jMPcontent of PAEC. Cells were treated with either no drugs (C), 

| or with dipyridamole (lOOpM, DiP) for 10 minutes before beingi
| incubated with or without forskolin (lOpM, FOR) for a further 2I
minutes. The incubation was terminated by removal of Krebs and 

addition of 6% TCA and cyclic AMP content quantified by radioim­
munoassay. Bars represent mean ± s.e. mean content of cyclic AMP 

1 (fmol pg DNA-1, n =6 ) . * P< 0.05; denotes a significant difference 

| from untreated cells, or, between two groups joined by a bracket.
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Figure 21: Effects of rolipram and forskolin on the cyclic AMP 

content of PAEC. Cells were treated with either no drugs (C), or 

with rolipram (25pM, ROL) for 30 minutes before being incubated 

with or without forskolin (30pM, FOR) for a further 5 minutes.

The incubation was terminated by removal of Krebs and addition of 

^ TCA and cyclic AMP content quantified by radioimmunoassay.

Sars represent mean ± s.e. mean content of cyclic AMP (fmol pg 

^'l, n=6-7). ** p< 0.005 denotes a significant difference from 

^treated cells, or, between two groups joined by a bracket.



5.1. PROLIFERATION OF P I G AORTIC ENDOTHELIAL CELLS

5.1.1. Effects of phorbol 12-myristate 13-acetate on prolifera­

tion of PAEC

To determine whether stimulation of protein kinase C (PKC) mod u ­

lates the a b i l i t y  of pi g  a o r t i c  e n d o t h e l i a l  cells (PAEC) to 

proliferate in normal serum-supplemented DMEM, the effects of an 

activator of PKC, phorbol 12-myristate 13-acetate (PMA)(Ashendel, 

1985 ), were examined.

PAEC seeded at a d e n s i t y  of 1 0 4 c e l l s /  c m 2 in n o r m a l  s erum-  

supplemented DMEM ( 10% foetal calf and 10% newborn calf serum)

grew to confluence within 6-8 days (Figure 22). PMA (0.3pM), when 

added twice daily, produced a marked reduction in cell numbers 

compared with untreated cells: 86 ± 2% (n = 6 ) reduction was o b ­

served at day 8 (Figure 22). The ability of PMA to reduce cell 

numbers was observed over the concentration range of 0. InM to 

lpM: the maximum reduction obtained after 4 days growth was 63 ± 

2% (n=6, Figure 23). The ability of PMA (0.3pM) to reduce cell 

numbers was not associated with the accumulation of the vital 

stain, trypan blue, but a small increase in cell detachment was 

observed (Figure 24).

The inactive p h o r b o l  ester, 4a- p h o r b o l  12,13- d i d e c a n o a t e  

(0.3pM), lacked the ability of PMA (0.3pM) to reduce cell numbers 

when assessed t h r o u g h o u t  an 8 d a y  p e r i o d  (Figure 22). It is 

likely therefore that the ability of PMA to reduce cell numbers 

results from the activation of PKC.

IlL A- Effects of staurosporine

Gffects of s t a u r o s p o r i n e ,  a m i c r o b i a l  a l k a l o i d  k n o w n  to
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Figure 22: Effects of the active phorbol ester, phorbol 12- 

myristate 13- acetate (PMA) and the inactive phorbol ester, 4a- 

phorbol didecanoate (4a- PDD) , on the proliferation of PAEC. PAEC 

were seeded at a density of 104 cells/ c m2 in normal serum- 

supplemented DMEM and received either no drug (o), PMA (0.3pM,A) 

or 4a- PDD (0.3pM, •) twice daily. At the points indicated, cells 

were counted by haemocytometry. Points show mean cell numbers 

(n=6); all s.e. means are contained within the symbols.

* P< 0.05; ** p< 0.0005; denotes a significant difference from 

^treated cells on that day.
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Figure 23: Concentration- effect curve showing the ability of PMA 

to inhibit proliferation of PAEC. PAEC were seeded at a density 

of 104 cells/ c m2 in normal serum- supplemented DMEM. PMA (0. lnM- 

ipM) was added twice daily. The cells were allowed to grow for 4 

foys and then counted by haemocytometry . The results are ex­

pressed as the mean ± s.e. mean reduction (%) of cell number when 

compared with untreated cells (n=6 ); when error bars are not seen 

they are contained within symbols. * P< 0.005; ** P< 0.0005; 

denotes a significant difference from untreated cells.



X T
RY
PA
N 

BLU
E 

UP
TA
KE
 

CEL
L 

NU
MB
ER
 
(X
10

5)
5 n (A)

4-

2 -

1 -

*

**

SD CONTROL PMA

15i (B)

1 0 -

5-

PMA



I

Figure 24: Effects of PMA and paraquat on proliferation, attach­

ment a n d  on trypan blue uptake by PAEC. PAEC were seeded at a 

density (SD) of 1.25 x 104 cells / c m 2 in normal serum- supple­

mented DMEM and received either no drug (CONTROL), PMA (0.3pM) or 

paraquat (ImM, PAR), added twice daily. The cells were allowed to 

grow for 4 days. (A) The cells attached ( □  ) and cells floating 

in m e d i u m  ( |  ) were counted by haemocytometry • Bars show the 

mean cell number ± s.e. mean (n=6). (B) Cells were treated with

trypan blue (0.1% v/v in 0.9% NaCl) for 30 minutes. Bars show 

mean + s.e. mean percentage of cells taking up trypan blue (n=6). 

* P< 0.05; ** p< 0.005; denotes a significant difference from 

untreated cells.



inhibit the activation of PKC (Tamaoki et a l . , 1986), was there­

fore examined on PAEC grown in normal serum- supplemented DMEM in 

the absence and presence of PMA.

Staurosporine (lOnM), when added twice daily, produced a slight 

inhibition of cell numbers by itself (15 ± 1% at day 8) but had 

no effect on the ability of PMA (0.3pM) to reduce cell numbers 

(Figure 25) .

5.1.3. Effects of PMA assessed by [3H]-thymidine incorporation 

Phorbol esters have been reported to initially stimulate then 

inhibit proliferation of pig aortic endothelial cells through 

activation then down- regulation of PKC (Uratsuji & DiCorleto,
1988 ).

My studies count i n g  cells by h a e m o c y t o m e t e r y  showed that PMA 

(0.3pM) induced only a reduction in cell numbers with no early 

stimulatory phase. By employing a more sensitive index of prolif­

eration, i . e .[3H]-thymidine incorporation, it was expected that 

any early stimulation of proliferation would be measured with 
ease.

?AEC were seeded at a density of 1.5 x 104 cells/ c m 2 in 6 well 

Wishes and allowed to grow for 24 hours in normal serum- supple­

mented DMEM. The cells were incubated for a further 24 hours in 

serum- free DMEM in order to slow growth. The cells were then 

^allenged with PMA (0.3pM) in DMEM containing a range of serum 

-oncentrations and pulsed with a mixture of [3H]-thymidine (2pCi/ 

and thymidine (lpM).
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Figure 25: Effects of staurosporine on the antiproliferative a c ­

tion o f PMA on PAEC. PAEC were seeded at a density of 1.3 x 104

tells / cm2 in normal serum- supplemented DMEM and received

either no drug (o), PMA (0.3pM, A ) ,  staurosporine (10nM, • ), or a

tombination of PMA and STAUR (A), added twice daily. At the time

points indicated, cells were counted by haemocytometry • Points 

show mean cell number ± s.e. mean (n=6); all s.e. means are 

contained within the symbols. * P< 0.01; ** P< 0.005; denotes a 

% i f leant difference from untreated cells on that day.



The concentration d e p e n d e n c e  of s e r u m  in s t i m u l a t i n g  [ 3H ] — 

thymidine incorporation by PAEC in an 18 hour period was observed 

over the range 0 to 20%: the i n c o r p o r a t i o n  of [ 3H ] - t h y m i d i n e

observed with normal serum- supplemented DMEM (10% foetal calf 

and 10% n e w b o r n  calf serum) was 3.1- fold g r e a t e r  that that 

obtained in serum- free DME M  (Figure 26). Tre a t m e n t  wit h  PMA 

(0.3pM) was found to inhibit incorporation of [3H]-thymidine by 

PAEC grown in 0% serum-, 4% serum-, and normal serum- s u pple­

mented DMEM during the 18 hour incubation (Figure 26): the inhi­

bitions were 43.5 ± 3.5% (n=12) for 0% serum-, 42.1 ± 4% (n=12) 

for 4% s e r u m -  a n d  43.7 ± 4.0 %  (n = 12) for n o r m a l  s e r u m -

supplemented D M E M .

5.1.4. Time Course of action of PMA on [3H]~ thymidine incorpora­
tion

PAEC were seeded at a density of 1.5 x 104 cells/ c m 2 in 6 well 

dishes and allowed to grow for 24 hours in normal serum- supple­

mented DMEM and then for a further 24 hours in serum- free DMEM 

in order to slow growth. The cells were then c h a l l e n g e d  w i t h  

either serum- free DMEM, 4% serum- supplemented DMEM, or, PMA 

(0-3pM) in 4% serum- supplemented DMEM. [3H]- thymidine was added 

at time zero and incorporation measured after 4, 8, 12, and 24 
hours.

Even PAEC incubated in serum- free DMEM continued to incorporate 

[ ii]“thymidine over the 24 hour pulse period (Figure 27). The 

ability of 4% serum to stimulate incorporation of [3H]-thymidine 

Was observed at 4, 8, 12, and 24 hours (Figure 27). As observed
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Figure 26: Effects of PMA and staurosporine on [3H]-thymidine 

incorporation by PAEC grown in a range of serum concentrations.

PAEC were seeded at a density of 1.5 x 104 cells/ c m 2 and

flowed to grow for 24 hours in normal serum- supplemented DMEM. 

After a further 24 hours incubation in serum- free DMEM, the 

cells were challenged with either no drugs ( Q ) ,  PMA ( 0 . 3pM,H),  

staurosporine (lOnM, S3 ), or a combination of PMA and staurospo- 

rine ( 0  ) in serum- free, 1%, 4% and 20% serum- supplemented

and pulsed with a mixture of [3H]-thymidine (2pCi/ well) and 

%iidine (lpM) for 18 hours. Bars show the mean ± s.e. mean 

“thymidine incorporation (n=6-12). * P< 0.05; ** P< 0.005, 

n̂otes a significant difference from untreated cells at that 

articular serum concentration.
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Figure 27: Effects of PMA on [3H]-thymidine incorporation by 

PAEC. PAEC were seeded at a density of 1.5 x 104 cells/ c m 2 and 

allowed to grow for 24 hours in normal serum- supplemented DMEM. 

After a further 24 hour incubation in serum- free DMEM* the cells 

were challenged with no drugs in either 4% serum- supplemented 

DMEM (o), or serum- free DMEM (•), or PMA (0.3pM) in 4% serum- 

supplemented DMEM (A) and [3H]-thymidine incorporation measured 

4, 8, 12 and 24 hours. Points show the mean ± s.e. mean [ H]- 

thymidine incorporation (n=6); when error bars are not seen they 

are contained within s y m b o l s „ * P ; 0.05; ** P< 0.005; denotes a 

significant difference from untreated cells grown in 4% serum- 

SuPplemented DMEM.



in e x p e r i m e n t s  w h e r e  p r o l i f e r a t i o n  was a s s e s s e d  by 

haemocytometery, PMA (0.3pM) inhibited proliferation as assessed 

by [3H ] - t h y m i d i n e  i n c o r p o r a t i o n  by cells g r o w n  in 4% serum- 

supplemented DMEM. Inhibition was observed at 4, 8, 12, and 24

hours with no stimulation at any time point (Figure 27).

The inhibitor of protein kinase C, staurosporine (lOnM) had no 

effect upon the a b i l i t y  of s e r u m  (1-20%) to s t i m u l a t e  [3H]- 

thymidine incorporation by PAEC (Figure 26). At a higher concen­

tration of lOOnM, however, staurosporine decreased [3H]-thymidine 

incorporation by PAEC grown in 4% serum- supplemented DMEM by 

34.1 ± 5.5% (n=6, Figure 28). At neither concentration (10 or

lOOnM) did staurosporine have any effect upon the ability of PMA 

(0.3pM) to decrease [3H]-thymidine incorporation in response to 

serum (1-20%, Figures 26 and 28).

5.1.5. Role of Oxygen- Derived Free Radicals

It is known that p h o r b o l  e s t e r s  s t i m u l a t e  the p r o d u c t i o n  of 

oxygen- derived free radicals in endothelial cells (Matsubara & 

Ziff, 1986). To determine whether the inhibitory actions of PMA 

were due to the e x t r a c e l l u l a r  actions of d e s t r u c t i v e  oxygen- 

derived free radicals , the effects of the superoxide scavanger, 

superoxide dismutase (SOD) were examined. SOD (30U/ ml), when 

added twice daily, produced a slight inhibition of cell numbers 

bY itself (29 ± 2%, n=6, at day 5, but no significant inhibition 

was observed at day 8), and had no effect on the ability of PMA 

(0• 3pM) to inhibit cell numbers (Figure 29).

If PMA reduces cell numbers by generating free radicals intracel-

86



E
Q.
V

z0
HI
0 S'11 n O' °
00 xz w
kJ
Z
Q
2
>■Xh

10

20

15

10

5

0
C PMA STAUR PMA

•f
STAUR

Figure 28: Effects of PMA and staurosporine on [3H]-thymidine 

incorporation by PAEC. PAEC were seeded at a density of 1.5 x 104 

cells/ cm2 and allowed to grow for 24 hours in normal serum- 

supplemented DMEM. After a further incubation in serum- free 

DMEM, the cells were grown in 4% serum- supplemented DMEM, chal­

lenged with either no drugs (C), PMA (0.3pM), staurosporine 

(O.lpM, STAUR) , or a combination of PMA and STAUR and pulsed with 

a mixture of [3H]- thymidine (2pCi/ well) and thymidine (lpM) for 

18 hours. Bars show the mean ± s.e. mean [3H]-thymidine incorpo- 

ration (n=6). ** P< 0.005; denotes a significant difference from

untreated c e l l s .
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Figure 29: Effects of superoxide dismutase on the antiprolifera

hve action of PMA on PAEC. PAEC were seeded at a density of 1.4

x 104 cells / c m 2 in normal serum- supplemented DMEM and received

either no drug (o), PMA (0.3pM, A ) ,  superoxide dismutase (30U/

:1, SOD, •)/ or a combination of PMA and SOD (A), added twice

uaily. At the time points indicated cells were counted by haemo-

'-y tom etry  . Points show mean cell number ± s.e. mean (n=6); all

means are contained within the symbols. * P< 0.005; ** P<

“ 0005 ; denotes a significant difference from untreated cells on 
“hat day.
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lularly it might be expected that paraquat, an agent known to 

generate oxygen derived free radicals intracellularly (Minakami 

et al., 1990) would share this property. Paraquat (IpM-lmM), when 

added twice daily, produced a concentration- dependent reduction 

in cell numbers (Figure 30): the maximum reduction obtained after 

4 days growth was 91 ± 2% (n=6). This reduction in cell number, 

unlike that induced by PMA, was associated with accumulation of 

trypan blue and a significant increase in the detachment of cells 

(Figure 24) .

Superoxide dismutase converts superoxide dismutase to hydrogen 

peroxide and this can be removed subsequently by catalase. The 

effects of combined treatment with SOD and catalase (CAT) on the 

ability of PMA and paraquat to reduce cell numbers were examined. 

When a combination of SOD (30U /ml) and CAT (30U /ml) was added 

twice daily, no r e d u c t i o n  in c e l l  n u m b e r s  w a s  o b s e r v e d  in 

contrast to the i n h i b i t o r y  effects of SOD alone (Figure 31). 

Furthermore, this combination of SOD and CAT had no effect on the 

ability of PMA (0.3pM) or paraquat (lOpM) to reduce cell numbers 

(Figure 31) .

Vitamin E and butylated hydroxytoluene (BHT), two lipid soluble 

agents known to act as intracellular radical scavangers (Ruch & 

Klaunig, 1988; Hennig et a l . , 1990) were examined on the ability 

PMA and paraquat to reduce cell numbers. Vitamin E (30uM) and 

BHT (30pM) when added twice daily, each had no effect on cell 

numbers by t h e m s e l v e s ,  had no e f f e c t  on the a b i l i t y  of P M A  

(0.3pM) to r e d u c e  cell n u m b e r s ,  but r e v e r s e d  the a b i l i t y  of 

Paraquat (lOpM) to reduce cell numbers (Figure 32). It is likely
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Figure 30: Concentration- effect curve showing the ability of 

paraquat to inhibit proliferation of PAEC. PAEC were seeded at a 

density of 1.5 x 104 cells / c m 2 in normal serum- supplemented 

DMEM. Paraquat (lpM- ImM) was added twice daily. The cells were 

allowed to grow for 4 days and then counted by haemocytometry •

Ihe results are expressed as the mean ± s.e. mean reduction (%)

°f cell number when compared with untreated cells (n=6); when 

shor bars are not seen they are contained within the sym b o l s .

* p< 0.05; ** p< 0.005; denotes a significant difference from

'̂ treated cells.
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| Figure 31: Effects of combined treatment with superoxide 

J  dismutase and catalase on the antiproliferative actions of PMA 

| and paraquat on PAEC. PAEC were seeded at a density (SD) of 1.25- 

J  1.5 x 104 cells/ c m 2 in normal serum- suppplemented DMEM.

J  (A) Cells received either no drug (C) , PMA (0.3pM), a combination 

'of superoxide dismutase (30U / ml, SOD) and catalase (30U / ml, 

CAT), or a combination of PMA, SOD and CAT.

(B) Cells received either no drug (C) , paraquat (lOpM, PAR), a 

combination of SOD (30U / ml) and CAT (30U / ml), or a combina­

tion of PAR, SOD and CAT.

| Drugs were added twice daily. The cells were allowed to grow for 

J  4 days and then counted by haemocytometry • Bars show the mean 

J  cell number ± s.e. mean (n=6). * P< 0.05; ** P< 0.005; *** P<

J 0.0005 ; denotes a significant difference from untreated cells.
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Figure 32: Effects of vitamin E and butylated hydroxytoluene on 

the antiproliferative actions of PMA and paraquat on PAEC. PAEC 

were seeded at a density of 1.3- 1.5 x 104 cells/ c m 2 in normal 

serum- supplemented DMEM.
(A) Cells received either no drug (C), paraquat (lOpM, PAR), 

vitamin E (30pM, VitE), butylated hydroxytoluene (30pM, BHT), a 

combination of PAR and vitamin E, or a combination of PAR and

BHT.

(B) Cells received either no drug (C), PMA (0.3pM), vitamin E 

(30pM, VitE), BHT (30pM), a combination of PMA and vitamin E, or 

a combination of PMA and BHT.

-rugs were added twice daily. The cells were allowed to grow for 

4 days and then counted by haemocytometry . Bars show the mean 

"ell number ± s.e. mean (n=6). * PC0.005; ** P< 0.0005; denotes a 

significant difference from untreated cells.



therefore that the reduction in cell numbers produced by superox-
!
I ide dismutase, paraquat and PMA result from increased generation 

I of hydrogen peroxide extracellularly, intracellular generation of 

| radicals, and a mechanism unrelated to radical generation, re- 

I spectively.

, 5.2. EFFECTS OF CYCLIC NUCLEOTIDES ON PROLIFERATION OF PAEC 

, Cyclic nucleotides have been shown to modulate the proliferation 

| of many diverse cell types (Friedman, 1981). Furthermore, it has 

■ been r e p o r t e d  t h a t  c y c l i c  A M P  has d i f f e r i n g  a c t i o n s  on 

| proliferation of e n d o t h e l i a l  cells from d i f f e r e n t  sources in 

I culture: stimulation of proliferation in foetal bovine aortic, 

bovine a o r t i c  c o r o n a r y ,  a n d  h u m a n  d e r m a l  m i c r o v a s c u l a r  

i endothelial cells (Davison & Karasek, 1981; Presta et a l . , 1989a;

I Meininger et al . , 1988; M e i n i n g e r  & G r a n g e r ,  1990 ) a n d

| inhibition of p r o l i f e r a t i o n  in b o v i n e  a o r t i c  a n d  rat 

I cerebrovascular endothelial cells (Leitman et a l . , 1986; Kempski 
I et al., 1987) .

i In contrast to cyclic AMP, the effects of cyclic GMP on endothe- 

I lial cell proliferation has not been extensively investigated.

I One report on b o v i n e  a o r t i c  e n d o t h e l i a l  c e l l s  s h o w e d  t h a t  

j elevation of c y c l i c  G M P  c o n t e n t  i n h i b i t e d  g r o w t h  s l i g h t l y  

I (hitman et a l . , 1986).

I The objects of this p a r t  of the s t u d y  w e r e  to d e t e r m i n e  the 

j effects of cyclic AMP and cyclic GMP on proliferation of PAEC in 

I culture and to investigate any possible interactions between PMA 

| an̂  the cyclic nucleotides on proliferation.
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5,2.1. Effects of dibutyryl cyclic AMP

The membrane permeant analogue of cyclic AMP, dibutyryl cyclic 

AMP (30pM), w h e n  a d d e d  t w i c e  d a i l y  to cells g r o w n  in n o r m a l  

serum- s u p p l e m e n t e d  DMEM induced a reduction in cell numbers 

throughout an 8 day period: 35 ± 2% (n=6) reduction was observed

at day 8. In addition dibutyryl cyclic AMP (30pM) had no effect 

on the ability of PMA (0.3pM) to reduce cell numbers at any time 

during the 8 day period (Figure 33).

The effects of dibutyryl cyclic AMP (30pM) were further studied 

on proliferation using an alternative index i.e. [3H]-thymidine 

incorporation. PAEC were seeded at a density of 1.5 x 104 cells/ 

cm2 in 6 well dishes and allowed to grow for 24 hours in normal 

serum- s u p p l e m e n t e d  D M E M  and then for a f u r t h e r  24 h o urs in 

serum- free DMEM in order to slow growth. The cells were then 

challenged with dibutyryl cyclic AMP (30pM) in DMEM containing a 

range of serum concentrations and pulsed with a mixture of [3H]- 

thymidine (2pCi/well) and thymidine (IpM). Treatment with dibuty­

ryl cyclic AMP (30pM) was found to have no effect on PAEC grown 

in 1% serum-, 4% serum- and 20% serum- supplemented DMEM during 

the 18 hour incubation (Figure 34). Dibutyryl cyclic A*MP (30pM) 

was found to have no effect upon the ability of PMA (0.3pM) to 

decrease [3H]-thymidine incorporation in response to serum (1- 

20%, Figure 34).

^possible explanation for the difference observed between [3H]- 

thymidine incorporation and haemocytometery studies (no effect 

and inhibiton, respectively) might be attributed to the different
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Figure 33: Effects of dibutyryl cyclic AMP on the antiprolifera­

tive action of PMA on PAEC. PAEC were seeded at a density of 1.3 

x 104 cells/ c m 2 and grown in normal serum- supplemented DMEM and 

received either no drug (o), dibutyryl cyclic AMP (30pM, •), PMA 

(0.3 pM, A  ), or a combination of PMA and dibutyryl cyclic AMP (A), 

sdded twice daily. At the points indicated the cells were counted 

DY haemo cytometry ■ Points show mean ± s.e. mean cell numbers 

'n=6); all s.e. means are contained within the symbols.

‘ p< 0.005; ** P< 0.0005; denotes a significant difference from 

^treated cells on t h a t  day.
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Figure 34: Effects of PMA and dibutyryl cyclic AMP on [3H] 

thymidine incorporation by PAEC grown in a range of serum 

concentrations. PAEC were seeded at a density of 1.5 x 104 cells/ 

cit2 and allowed to grow for 24 hours in normal serum- supplement­

ed DMEM. After a further 24 hour incubation in serum- free DMEM 

the cells were challenged with either no drugs ( □  ), PMA (0.3pM, 

I), dibutyryl cyclic AMP ( 3 0 p M , ^  )/ or a combination of PMA 

end dibutyryl cyclic AMP ( EH) in serum- free, 1%, 4% and 20% 

Senim- supplemented DMEM and pulsed with a mixture of [ H]- 

thymidine (2pCi/ well) and thymidine (lpM) for 18 hours. Bars 

show the mean ± s.e. mean [3H]-thymidine incorporation (n=6-12).

* 0 . 0 5 ;  ** p< 0.005; denotes a significant difference from the 

^treated cells at that particular serum concentration.



time course employed in the two m e t h o d s : 18 hours in thymidine

j incorporation but 48 hours in the haemocytometeric experiments.

j 5.2.2. Effects of 8 bromo cyclic GMP

■ The membrane permeant analogue of cyclic GMP, 8 bromo cyclic GMP 

| (30pM) , when added twice daily to cells grown in normal serum-

| supplemented DMEM had no effect upon cell numbers throughout an 8 

J  day period and had no effect on the ability of PMA (0.3pM) to 

reduce cell numbers at any time during the 8 day period (Figure
i
I 35).

j 5.2.3. Effects of glyceryl trinitrate and bradykinin

The effects of cyclic GMP on p r o l i f e r a t i o n  were inve s t i g a t e d  

further by examining the effects of drugs which alter cyclic GMP 

content of PAEC.
!
I
, Glyceryl t r i n i t r a t e  (lpM), w h i c h  activates soluble g u a n ylate 

' cyclase through the formation of nitric oxide , and the stimula- 

tor of EDRF production, b r a d y k i n i n  (O.lpM), when added twice 

i daily to cells grown in normal serum- supplemented DMEM had no 

, effect on cell numbers when examined throughout a 6 day period 

I (Figure 36). T h e s e  r e s u l t s  s u g g e s t e d  that c y c l i c  GMP had no 

I effect on proliferation of PAEC in culture.
I
j
| Effects of haemoglobin and methylene blue

I effects of two agents which lower intracellular cyclic GMP 

j content by inhibiting the ability of spontanoeously- released 

I EDRf to s t i m u l a t e  s o l u b l e  g a u n y l a t e  c y c l a s e  (Martin et a l .,

| T988b) , m e t h y l e n e  b l u e  and h a e m o g l o b i n  w e r e  e x a m i n e d  on the
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Figure 35: Effects of 8 bromo cyclic GMP on the antiproliferative

action of PMA on PAEC. PAEC were seeded at a density of 1.3 x 104

cells/ cm2 in normal serum- supplemented DMEM and received either

no drugs (o), 8 bromo cyclic GMP (30pM,«), PMA (0.3pM,A), or a

combination of PMA and 8 bromo cyclic GMP (A), added twice daily.

Atthe time points indicated the cells were counted by haemocy-

tometry • Points show mean ± s.e. mean cell numbers (n=6); all

s'e- means are contained within the symbols. * P< 0.005; ** P<

0-0005 ; denotes a significant difference from untreated cells on 
that day.
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Figure 36: Effects of glyceryl trinitrate and bradykinin on the 

proliferation of PAEC. PAEC were seeded at a density (SD) equiva­

lent to 0.04 pg DNA/ c m 2 in normal serum- supplemented DMEM and 

received either no drugs (C), bradykinin (O.lpM, BK) , or glyceryl 

trinitrate (lpM, GTN). Drugs were added twice daily. The cells 

were allowed to grow for 6 days and the DNA content assessed 

Huorimetrically. Bars show the mean ± s.e. mean content of DNA 

(P9) (n=6) .



proliferation of PAEC. Methylene blue (lOpM), when added once 

daily, and haemoglobin (lOpM), when added twice daily, to cells 

grown in n o r m a l  s e r u m -  s u p p l e m e n t e d  D M E M  e a c h  i n d u c e d  a 

reduction in cell numbers throughout a 10 day period: methylene 

blue caused a c o m p l e t e  i n h i b i t i o n  of p r o l i f e r a t i o n  w h e r e a s  

haemoglobin r e d u c e d  cell n u m b e r s  by 44 ± 4% (n=6) at d a y  10

(Figure 37) .

The p o s s i b i l i t y  that t h e s e  r e d u c t i o n s  in cell n u m b e r s  w e r e  

mediated via a d e c r e a s e  in c e l l u l a r  c y c l i c  GMP c o n t e n t  was

investigated by examining the effects of agents which elevate

endothelial cyclic GMP content.

8 bromo cyclic GMP (30pM), when added twice daily to cells grown 

in normal serum- supplemented DMEM had no effect on cell numbers,

or on the ability of methylene 

blue (lOpM) to reduce cell numbers, but blocked the ability of 

haemoglobin (lOpM) to reduce cell numbers throughout a 10 day 

period (Figure 37).

The atrial natriuretic factor, atriopeptin II (lOnM), when added 

twice daily to cells grown in normal serum- supplemented DMEM had 

no effect on cell n u m b e r s ,  h a d  no e f f e c t  on the a b i l i t y  of 

ethylene blue (lOpM) to reduce cell numbers, but blocked the 

ability of haemoglobin (lOpM) to reduce cell numbers after a 4 

âY period (Figure 38).

n i t r o v a s o d i l a t o r , so d i u m  n i t r o p r u s s i d e  (lpM), when added 

twice daily to cells grown in normal serum- supplemented DMEM had
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| Figure 37: 8 bromo cyclic GMP reverses the inhibitory effect of 

j haemoglobin but not of methylene blue on proliferation of PAEC.

I PAEC were seeded at a density of 104 cells/ c m 2 in normal serum- 

| supplemented DMEM.

|(A) Cells received either no drug (o), methylene blue (lOpM, A ) ,

! 8 bromo cyclic GMP (30pM, • ), or a combination of methylene blue 

and 8 bromo cyclic GMP (a ) . 

j (B) Cells received either no drug (o), haemoglobin (lOpM, A), 8 

I bromo cyclic GMP (30pM, • ), or a combination of haemoglobin and 8 

| bromo cyclic GMP ( A  ) . Drugs were added twice daily with the 

j exception of methylene blue which was added once daily. At the 

| time points indicated, the cells were counted by haemocytometry •

| Points show the mean ± s.e. mean cell numbers (n=6); all s.e.I
| ®eans are contained within the symbols. * P< 0.05; ** P< 0.005;

,*** P< 0.0005; denotes a significant difference from untreated
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Figure 38: The ability of atriopeptin II to reverse the inhibito­

ry action of haemoglobin but not of methylene blue on prolifera­

tion of PAEC. PAEC were seeded at a density of 1.7 x 104 cells/ 

and grown in normal serum- supplemented DMEM and received 

either no drug (C), atriopeptin II (lOnM, AP II) , haemoglobin 

(10pM; Hb), methylene blue (lOpM, MB), a combination of AP II and 

Hkf or a combination of AP II and MB. Drugs were added twice 

daily with the exception of methylene blue which was added once 

daily. The cells were allowed to grow for 4 days and then counted 

haemocytometry • Bars show mean cell number ± s.e. mean (n-6). 

* P< 0.05; ** p< 0.005; denotes a significant difference from 

^treated cells, or, between groups joined with a bracket.



no effect on cell numbe r s ,  had no e f f e c t  on the a b i l i t y  of 

methylene blue (lOpM) to reduce cell numbers but bloc k e d  the 

ability of haemoglobin (lOpM) to reduce cell numbers after a 4
i

I d a y  period (Figure 39).
i

1 5,2.5. Effects of L-NMMA 

EDRF has been identified as nitric oxide and vascular endothelial 

| cells are known to s y n t h e s i z e  n itric oxide from the terminal 

guanidino nitrogen atom(s) of L-arginine( Palmer et a l . , 1988b;

Schmidt et a l . , 1988). The L-arginine analogue, N G-monomethyl L-

I arginine (L-NMMA), but not its D- e n a n t i o m e r ,  i n h i b i t s  the
J

j synthesis of nitric oxide by inhibiting the converting enzyme, 

nitric oxide synthase (Rees et al., 1989; 1990). The effects of 

L-NMMA and D-NMMA were examined on the proliferation of PAEC.
I

I L-NMMA (300pM) and D-NMMA (300pM) when added twice daily to cells 

j  grown in normal serum- s u p p l e m e n t e d  DMEM each induced slight 

! eductions in cell numbers in a 4 day period: 6 ± 1% (n=6) and 9 

| - 1% (n=6), respectively (Figure 40). Since both enantiomers had 

1 equal activity, it is unlikely that the reduction in cell numbers
i
resulted from loss of EDRF activity. 

jj.6. Effects of dipyridamole

lo evaluate the effects of phosphodiesterase inhibition on pr o ­

liferation of PAEC in culture the effects of dipyridamole were
examined.

As shown in Section 4.1.1. (Figure 10), PAEC contain two phospho­

diesterase isozymes (Souness et a l ., 1990), and dipyridamole is a
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I Figure 39: The ability of sodium nitroprusside to reverse thel!
I inhibitory action of haemoglobin but not of methylene blue on 

'proliferation of PAEC. PAEC were seeded at a density of 1.7 x 104 

cells/ cm2 and grown in normal serum- supplemented DMEM. Cells 

! received either no drug (C), sodium nitroprusside (lpM, SNP), 

haemoglobin (lOpM, H b ) , methylene blue (lOpM, MB), a combination 

of SNP and Hb, or a combination of SNP and MB. Drugs were added 

twice daily with the exception of methylene blue which was added 

°hce daily. The cells were allowed to grow for 4 days and thenI
bunted by haemocytometry . Bars show the mean cell number — s.e. 

^an (n=6). * p< 0.05; ** P< 0.005; denotes a significant differ- 

i ̂ Ce from untreated cells, or, between groups joined with a
1 Jacket.
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Figure 40: Effects of N G- monomethyl L- arginine (L-NMMA) and N G- 

monomethyl D- arginine (D-NMMA) on the proliferation of PAEC.

PAEC were seeded at a density (SD) of 1.5 x 104 cells/ c m 2 in 

normal serum- supplemented DMEM and received either no drug (C), 

1-NMMA (300pM), or D-NMMA (300pM). Drugs were added twice daily. 

Cells were allowed to grow for 6 days and then counted by haemo- 

cytome,try . Bars show mean cell number ± s.e. mean (n=6).

* 0.05 denotes a significant difference from untreated cells.



potent inhibitor of both. Dipyridamole (25pM) when added twice 

daily to cells grown in serum- supplemented DMEM produced a 53 1 

1% (n=6) reduction in cell numbers in a 6 day period. Haemoglobin 

(lOpM) , w h i c h  i n h i b i t s  the s t i m u l a t i o n  of s o l u b l e  g u a n y l a t e  

cyclase, when added twice daily, produced a slight inhibiton of 

proliferation by itself of 10 ± 2% (n=6) but had no effect upon 

the ability of d i p y r i d a m o l e  (25pM) to i n h i b i t  p r o l i f e r a t i o n  

(Figure 41). It is likely therefore that the reduction in ceil 

numbers i n d u c e d  by d i p y r i d a m o l e  r e s u l t e d  f r o m  the r e d u c e d  

hydrolysis of cyclic AMP.
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Figure 41: Effects of haemoglobin on the antiproliferative action 

of dipyridamole on PAEC. PAEC were seeded at a density (SD) of 

1.5 x 104 cells/ c m 2 in normal serum- supplemented DMEM and 

received either no drug (C), dipyridamole (25pM, DiP) f • haemoglo­

bin (lOpM, H b ) , or, a combination of DiP and Hb. Drugs were added 

twice daily. The cells were allowed to grow for 6 days and then 

counted by haemocytometry . Bars show mean cell number ± s.e. 

aean (n=6). * P< 0.005; *** P< 0.0005; denotes a significant 

difference from untreated c e l l s .



6.1. PROLIFERATION OF RAT AORTIC SMOOTH MUSCLE CELLS

6.1.1. Effects of serum on the proliferation of rat ASMC 

Since vascular smooth muscle cell proliferation plays a key role 

in the p a t h o g e n e s i s  of a t h e r o s c l e r o s i s ,  i d e n t i f i c a t i o n  of 

intracellular messenger pathways utilised in controlling prolif­

eration is important. Smooth muscle cells are known to exhibit 

growth dependence upon platelet- derived mitogens (Fager et al., 

1988 ). The e f f e c t s  of g r o w i n g  rat A S M C  in a range of serum, 

concentrations was therefore examined.

Rat ASMC were seeded at a density of 1.4 x 104 cells/ c m 2 and the 

concentration d e p e n d e n c e  of s e r u m  (2 to 20%) in s t i m u l a t i n g  

growth was observed throughout an 11 day period: growth in serum- 

supplemented DMEM was clearly concentration- dependent (Figure

! 42). Cell numbers remained constant in 2% serum- supplemented

DMEM but increased in higher concentrations. Unlike pig aortic 

endothelial c e lls, w h i c h  w h e n  c o n f l u e n t  b e c o m e  d e n s i t y -
I
, inhibited, rat ASMC even in the highest concentrations of serum

I continued to proliferate when confluent. Serum therefore contains 

foitogens that stimulate growth of rat ASMC.

I
1-1-2. Effects of phorbol 12-myristate 13- acetate on prolifera­

tion of rat ASMC

There are conflicting reports on the actions of protein kinase C 

(PKC) on the proliferation of smooth muscle cell obtained from 

identical or different s o u r c e s . A stimulation of proliferation 

has been reported for smooth muscle cells obtained from bovine 

Pulmonary a r t e r y  and a o r t a  ( D e m p s e y  et al . , 1990; D o c t r o w  & 

F°lkman, 1987); rat aorta (Owen, 1985 ) and rabbit aorta (Kariya
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| Figure 42: The serum- dependent growth of rat ASMC in vitro. Rat 

j ASMC were seeded at a density of 1.4 x 104 cells/ c m 2 and grown 

| in either normal serum- supplemented (20% CS, o), 10% serum- 

I supplemented (10% CS, •), 4% serum- supplemented (4% CS, A ) # or
i
| 2S serum- supplemented (2% CS, ■  ) DMEM. At the time points indi-
!
I cated, the cells were counted by haemocytometry • Points show 

I flean cell number (n=6); all s.e. mean are contained within the 

j symbols . ** P< 0.005 denotes a significant difference from 20% CS 

1 treated cells on that day.



et al - # 1987a). In contrast, inhibition of proliferation has been 

observed for smooth muscle cells obtained from rat aorta (Kihara 

etal., 1989) and rabbit aorta (Kariya et a l . , 1987b; Fukumoto et 

al., 1988 ). O n e  s t u d y  d e m o n s t r a t e d  the a b i l i t y  of P M A  to 

stimulate or inhibit the proliferation of rabbit aortic smooth 

muscle cells when the cells were either grown in plasma- derived 

serum or w h o l e  b l o o d  serum, r e s p e c t i v e l y .  In v i e w  of t h e s e 

conflicting r e p o r t s ,  an a t t e m p t  w a s  m a d e  to d e t e r m i n e  if 

stimulation of P K C  m o d u l a t e s  the a b i l i t y  of rat A S M C  to 

proliferate in serum- supplemented DMEM by examining the effects 

of phorbol 12-myristate 13- acetate (PMA).
i

| Rat ASMC were seeded at a d e n s i t y  of 1.5 x l O 4 cells/ c m 2 and

I grown in DMEM in a range of serum concentrations (4, 10 and 20%).

I PMA (0.3pM), added twice daily after an initial 24 hour plating

| down per i o d  h a d  no e f f e c t  u p o n  c e l l s  g r o w n  at a n y  s e r u m

| concentration throughout a 12 day period (Figure 43).

i
6.1.3. Effects of adrenoceptor stimulation on proliferation ofI

, rat ASMC

I Recent reports i n d i c a t e  tha t  an i n c r e a s e  in p l a s m a  level of 

catecholamines is a m a j o r  risk factor in the development of 

atherosclerosis (Helin et a l . , 1970; Kones, 1979; Kukreja et a l . , 

9̂81) and that this a c o n s e q u e n c e  of a d r e n o c e p t o r  - m e d i a t e d  

stimulation of vascular smooth muscle cell growth (Nakaki et a l . , 

1989). The e f f e c t s  of a d r e n o c e p t o r  a g o n i s t s  u p o n  rat A S M C  

Proliferation was therefore examined. To study the effects of the 

various d r u g  t r e a t m e n t s  on g r o w t h  of rat A S M C ,  the s e r u m  

c°ncentration was reduced to a sub- maximal level of 10%. This
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Figure 43: Effects of phorbol myristate acetate (PMA) on the pr o ­

liferation of rat ASMC grown in serum- containing DMEM. Rat ASMC 

were seeded at a density of 1.5 x 104 cells/ c m 2 and grown in 

either normal serum- supplemented (20% CS), 10% serum- supple­

mented (10% CS) or 4% serum- supplemented (4% CS) DMEM. Cells 

received either no drug (o) or PMA (0.3pM, •) which was added 

twice daily after an initial 24 hour plating down period. At the 

time points indicated the cells were counted by haemocytometry . 

Joints show mean cell number ± s.e. mean (n=6); when error bars 

ire not seen thay are contained within symbols. * P< 0.05 denotes 

5 significant difference from untreated cells on that day.



theoretically should permit examination of the effects of drugs 

j which inhibit or stimulate growth and prevent the possibility of 

I a mitogenic effect being masked through maximal stimulation of 

, growth growth in 20% serum- supplemented DMEM.

I
The a1- a d r e n o c e p t o r  agonist, p h e n y l e p h r i n e  (O.lpM-lmM), was 

added twice daily after an initial 24 hour plating down period to 

cells grown in 10% serum- supplemented DMEM. No effect on cell 

numbers wa s  o b s e r v e d  a f t e r  4 d a y s  g r o w t h  at the l o w e r  

concentrations of phenylephrine (0.1-10pM) but cell numbers were

I increased at the h i g h e r  c o n c e n t r a t i o n s  (0.1 an d  ImM): the
|

increases in cell number were 17 ± 4% (n = 6) and 30 ± 6% (n=6), 

respectively (Figure 44) .

J  The a2- adrenoceptor agonist , clonidine (O.lpM-lmM), was added 

j twice daily after an initial 24 hour plating down period to cells 

I grown in 10% serum- supplemented DMEM. No effect on cell numbers 

| was observed after 4 days growth in clonidine concentrations of 

O.lpM to O.lmM, but at a concentration of ImM, cell numbers were 

, reduced by 73 ± 2% (n=6, Figure 45).
i

The unstable and non-selective p- adrenoceptor agonist, isoprena- 

line (30pM), was a d d e d  t w i c e  d a i l y  a f t e r  an i n i t i a l  24 h o u r  

Plating down period to cells grown in 10% serum- supplemented 

! DMEM but had no effect upon cell numbers after 4 days gr o w t hi
! (Figure 46).

The effects of stable p- adrenoceptor agonists were then exam- 

lned- The selective p - adrenoceptor agonist, dobutamine (lOuM)
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Figure 44: Concentration- effect relationship showing the effects 

of phenylephrine on proliferation of rat ASMC. Rat ASMC were 

seeded at a density (SD) of 1.3 x 104 cells/ c m 2 in 10% serum- 

supplemented DMEM. Cells received either no drug (C) or phenyle­

phrine (O.lpM- ImM) added twice daily after an initial 24 hour 

plating down period. The cells were allowed to grow for 4 days 

aud then counted by haemocytometry . Bars show mean cell number ± 

se. mean (n=6). * P< 0.05; ** P< 0.005; denotes a significant 

difference from untreated cells.
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Figure 45: Concentration- effect relationship showing the effects 

of clonidine on proliferation of rat ASMC. Rat ASMC were seeded 

at a density (SD) of 1.4 x 104 cells/ c m 2 in 10% serum- supple­

mented DMEM. Clonidine (O.lpM- ImM) was added twice daily after 

an initial 24 hour plating down period. The cells were allowed to 

Srow for 4 days and then counted by haemocytometry • Bars show 

mean cell numbers ± s.e. mean (n=6). *** P< 0.005 denotes a 

significant difference from untreated cells.
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Figure 46: Effects of isoprenaline, dobutamine, and salbutamol on 

the proliferation of rat ASMC. Rat ASMC were seeded at a density 

i (SD) of 1.4 x 104 cells/ c m 2 in 10% serum- supplemented DMEM and 

received either isoprenaline (30pM, IPR) r dobutamine (lOpM, DOB), 

or salbutamol (lOpM, SAL) added twice daily after an initial 24 

hour plating down period. The cells were allowed to grow for 4 

hays and then counted by haemocytometry . Bars show the mean cell 

number ± s.e. mean (n=6). ** P< 0.005 denotes a significant 

hifference from untreated cells.



and the selective p 2- adrenoceptor agonist, salbutamol (lOpM), 

were added twice d a ily after an initial 24 hour p l a t i n g  down 

period to cells g r o w n  in 10% s e r u m - s u p p l e m e n t e d  DMEM. T h e s e  

analogues reduced cell numbers after 4 days growth by 13 ± 3%

(n=6) and 21 ± 4% (n=6), respectively (Figure 46). It is likely 

therefore that activation of a - adrenoceptors stimulates and p- 

adrenoceptors inhibits proliferation of rat ASMC.

6.2. EFFECTS OF CYCLIC AMP ON PROLIFERATION OF RAT ASMC 

It is known that the effector pathway for p- adrenoceptor activa­

tion is via activation of adenylate cyclase (Watson & Abbott, 

1989 ). It was possible that the reduction in cell numbers induced 

by dobutamine and s a l b u t a m o l  was m e d i a t e d  by an i n c r e a s e  in 

cellular cyclic AMP content. In keeping with this, increasing 

cellular c y c l i c  A M P  c o n t e n t  has b e e n  r e p o r t e d  to red u c e  DN A  

synthesis by human ASMC cultured from atherosclerotic lesions 

(Tertov et a l . , 1984). This suggests that cyclic AMP may have a

role in regulating the growth of vascular smooth muscle c e l l s . 

The effects of various agents which increase cyclic AMP content 

by activation of adenylate cyclase or by inhibiton of the cyclic 

AMP specific phosphodiesterase were therefore examined on the 

Proliferation of rat ASMC.

jjjl. Effects of dibutyryl cyclic AMP

membrane permeant analogue of cyclic AMP, dibutyryl cyclic 

AMP (30pM-lmM) , was added twice daily after an initial 24 hour 

Plating down period to cells grown in 10% serum- supplemented 

M̂EM. This analogue had no effect on cell numbers after 4 days 

9r°wth at a lower concentration of 30pM, but reduced cell numbers
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at the higher concentrations of lOOpM and ImM by 29 ± 3% (n=6) 

and 66 ± 2% (n=6)# respectively (Figure 47). Even at the highest 

! concentration (ImM), dibutyryl cyclic AMP failed to stimulate 

trypan blue uptake (Figure 48).

6.2.2. Effects of forskolin

The activator of adenylate cyclase, forskolin (30pM), when added 

twice daily after an initial 24 hour plating down period to cells 

grown in 20% serum- supplemented DMEM, produced a marked reduc­

tion in cell numbers compared with untreated cells throughout an 

8 day period: an inhibition of 57 ± 2% (n=6) was observed at day 

8 (Figure 49). The ability of forskolin to reduce cell numbers 

was observed over the c o n c e n t r a t i o n  range lpM to lOOpM: the

maximum reduction obtained after 4 days growth at lOOpM was 90 ± 

1% (n=6, Figure 50). The inactive analogue, dideoxy forskolin 

(lpM-30pM) lacked the ability of forskolin to reduce cell numbers 

I when assessed after 4 days growth (Figure 50). The solvent for 

forskolin and d i d e o x y  f o r s k o l i n ,  DMS O  (0.1%), r e d u c e d  cell 

numbers by i t s e l f  but o n l y  b y  less t h a n  10%. It is l i k e l y  

therefore that the ability of forskolin to reduce cell numbers 

results from activation of adenylate cyclase and the subsequent 

increase in cellular cyclic AMP c o n t e n t .

jj-3. Effects of M & B 22948 and rolipram

Oscular smooth muscle is known to contain three phosphodiester­

ase isozymes: two cyclic GMP phosphodiesterases, one continuously 

active (Type V) a n d  the o t h e r  s t i m u l a t e d  by the c a l c i u m -  

calmodulin complex (Type I), and a cyclic AMP phosphodiesterases 

(Type iv) (Lugnier et al., 1986; Schoeffter et a l . , 1987 ). The
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Figure 47: Concentration- effect relationship showing the ability 

of dibutyryl cyclic AMP (DBcAMP) to inhibit proliferation of rat 

ASMC. Rat ASMC were seeded at a density (d D  ) of 1.3- 1.6 x 10A 

cells/ cm2 in 10% serum- supplemented DMEM.

, (A) Cells received either no drugs ( ■ ■  ) or DBcAMP (30pM,E5H).

(3) Cells received either no drugs ( H I )  or DBcAMP (1 0 0 p M f E S  ).

(c) Cells received either no drugs ( ) or DBcAMP (ImM,GOB )•

Drugs were added twice daily after an initial 24 hour plating

fown period. Cells were allowed to grow for 4 days and then

counted by haemocytometry • Bars show mean cell number ± s.e.

tofian (n=6). *** p< 0.0005 denotes a significant difference from

^treated c e l l s .
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Figure 48: Effects of forskolin (FOR), dibutyryl cyclic AMP 

(DBcAMP) and 8 bromo cyclic GMP (8Br cGMP) on trypan blue uptake 

by rat ASMC. Rat ASMC were seeded at a density of 1.2 x 104 

cells/ cm2 in 10% serum- supplemented DMEM with the exception of 

forskolin- treated cells which were grown in 20% normal serum- 

supplemented DMEM. Cells received either no drugs (C), FOR 

UOyM), DBcAMP (ImM) and 8Br cGMP (ImM), added twice daily after 

an initial 24 hour plating down period. The cells were allowed to 

Srow for 4 days and then treated with trypan blue solution (0.1% 

v/v in 0.9% N a C l ) for 30 minutes. Bars show mean ± s.e. mean 

Percentage of cells taking up trypan blue (n=6).
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Figure 49: Effects of forskolin (FOR) on the proliferation of rat 

ASMC. Rat ASMC were seeded at a density of 1.4 x 104 cells/ cm 

in 20% serum- supplemented DMEM and received either no drug (o) 

or forskolin (30pM, • ), added twice daily after an initial 24 

hour plating down period. At the time points indicated, the cells 

were counted by haemocytometry . Points show mean cell numbers 

(t=6); all s.e. means are contained within the symbols.

** P< 0.005 denotes a significant difference from untreated cells 
that d a y .
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Figure 50: Concentration- effect curves showing the ability of 

forskolin but not of the inactive dideoxy forskolin to inhibit 

proliferation of rat ASMC. Rat ASMC were seeded at a density of 

1.2 x 104 cells/ c m 2 in 20% serum- supplemented DMEM. Forskolin 

(l[iM- lOOpM, •), dideoxy forskolin (lpM- 30pM, o) and DMSO (0.1% 

v/v, ■) were added twice daily after an initial 24 hour plating 

fown period. The cells were allowed to grow for 4 days and then 

counted by haemocytometry . Results are expressed as the mean ± 

s-e. mean reduction (%) in cell numbers when compared with 

^treated cells (n=6); when error bars are not seen they are 

contained within symbols. * P< 0.05; ** P< 0.005; denotes a 

sflgnificant difference from untreated cells.



cyclic GMP phosphodiesterases are inhibited by M & B 22948 and 

the cyclic A M P  p h o s p h o d i s t e r a s e  is i n h i b i t e d  s e l e c t i v e l y  by 

rolipram.

To examine further the possibility that forskolin reduced cell 

numbers via an increase in cellular cyclic AMP, the effects of 

rolipram and M & B 22948 were examined alone and in the combina­

tion with forskolin.

Rolipram (30pM), when added twice daily after an initial 24 hour 

plating down period to cells grown in 20% serum- supplemented 

DMEM, produced a reduction 37 ± 2% (n=6) in cell numbers after 4 

days growth and potentiated the inhibitory effect of forskolin 

(lOpM) from 32 ± 4% to 57 ± 4% (n=6, Figure 51).

M & B 22948 (30pM), when added twice daily after an initial 24 

hours plating down period to cells grown in 20% serum- s u p p l e ­

mented DMEM produced a reduction in cell numbers after 4 days 

growth of 26 ± 5% and 48 ± 5% (n=6) in two seperate experiments 

(Figure 52), but did not p o t e n t i a t e  the a b i l i t y  of f o r s kolin 

(lOpM) to reduce cell numbers after 4 days growth. In fact , M & 

B 22948 appeared to reverse the ability of forskolin to reduce 

cell numbers (Figure 52).

The potentiating action of rolipram further supports the concept 

°f cyclic AMP being an inhibitor of proliferation of rat ASMC.

Effects of histamine 

V  receptor activation normally results in the activation of
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Figure 51: Effects of rolipram on the antiproliferative action of 

forskolin on rat ASMC. Rat ASMC were seeded at a density (SD) of 

14 x 104 cells/ c m 2 in 20% serum- supplemented DMEM and received 

either no drug (C), forskolin (lOpM, FOR), rolipram (30pM, ROL), 

ora combination of FOR and ROL. Drugs were added twice daily 

after an initial 24 hour plating down period. The cells were 

allowed to grow for 4 days and then- counted by haemocytometry .

Bars show the mean cell numbers ± s.e. mean (n=6).

** 0.005 denotes a significant difference from untreated

Cells, or, between groups joined with a bracket.
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Figure 52: Effects of M & B 22948 on the ability of forskolin to 

inhibit proliferation of rat ASMC. Rat ASMC were seeded (SD) at a 

density of 1.4 x 104 cells/ c m 2 (top panel) or 1.2 x 104 cells/ 

cm2 (bottom panel) in 20% serum- supplemented DMEM and received 

either no drugs (C), forskolin (lOpM, FOR), M & B  22948 (30pM), 

ora combination of FOR and M & B  22948. Drugs were added twice 

daily after an initial 24 hour plating down period. The cells 

were allowed to grow for 4 days and then counted by haemocytome- 

tty\ Bars show mean cell numbers ± s.e. mean (n=6).

* P< 0.05; ** P< 0.005; denotes a significant difference from 

untreated cells, or, between groups joined with a bracket.



a d e n y l a t e  cyclase (Hill, 1990 ). The possibility that histamine 

night inhibit proliferation of rat ASMC in culture through eleva­

tion of cyclic AMP content was therefore examined.

Histamine (lpM-lmM), when added twice daily after an initial 24 

hour plating down period to cells grown in 10% serum- supplement­

ed DMEM, r e d u c e d  cell n u m b e r s  in a c o n c e n t r a t i o n -  d e p e n d e n t  

manner: the maximum reduction after 4 days growth in ImM hista­

mine was 44 ± 2% (n=6, Figure 53).

The possibility that histamine inhibited proliferation of rat 

ASMC through activation of H 2- receptors was examined by investi­

gating the effect of cimetidine, an H 2- antagonist. Cimetidine 

(lOpM), when added twice daily after an initial 24 hour plating 

down period to cells grown in 10% serum- supplemented DMEM had no 

effect by itself on cell numbers after 4 days growth, but blocked 

the ability of histamine (lOpM) to reduce cell numbers (Figure 

54 ) .

5.3. EFFECTS OF CYCLIC GMP ON PROLIFERATION OF RAT ASMC 

It has recently been reported that nitrovasodilators, which ele­

vate levels of cyclic GMP, inhibit rat aortic smooth muscle cell 

growth in culture (Garg & Hassid, 1989). These workers further 

suggested that EDRF (identified as nitric oxide), the active 

Principle generated by the nitrovasodilators, might be an endoge­

nous regulator of smooth muscle cell proliferation in the arteri- 
al wall.

Ihe effects of the v a r i o u s  a g e n t s  w h i c h  i n c r e a s e  c y c l i c  GMP
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Figure 53: Concentration- effect curve showing the ability of 

histamine to inhibit proliferation of rat A S M C . Rat ASMC were 

seeded at a density of 1.2 x 104 cells/ c m 2 in 10% serum- supple­

mented DMEM. Histamine (lpM- ImM) was added twice daily after an 

initial 24 hour plating down period. The cells were allowed to 

?row for 4 days and then counted by haemocytometry . The results 

expressed as the mean ± s.e. mean reduction (%) of cell 

numbers compared with untreated cells (n=6). *** P< 0.0005 d e ­

notes a significant difference from untreated cells.
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Figure 54: The ability of cimetidine to reverse the inhibitory 

action of histamine on rat ASMC proliferation. Rat ASMC were 

seeded at a density (SD) of 1.4 x 104 cells/ cm2 in 10% serum- 

supplemented DMEM and received either no drug (C), histamine 

(10pM, HIS), cimetidine (10pM, CIM), or a combination of HIS and 

CIM. Drugs were added twice daily after an initial 24 hour plat­

ing down period. The cells were allowed to grow for 4 days and 

than counted by haemocytometry • Bsirs show mean cell numbers i 

s'6- mean (n=6). * P < >0.05; ** P< 0.005; denotes a significant 

difference from untreated cells, or, between groups joined with a
bracket.



content were therefore examined on the proliferation of rat ASMC. 

These age n t s  i n c l u d e d  s t i m u l a n t s  of s o l u b l e  and p a r t i c u l a t e  

guanylate cyclase and an inhibitor of the cyclic GM? phosphodies­
terases .

6.3.1. Effects of 8 bromo cyclic GMP and atriopeptin II 

The membrane permeant analogue of cyclic GMP, 8 bromo cyclic GMP 

(O.lpM-lmM) was added twice daily after an initial 24 hour plat­

ing down period to cells grown in 10% serum- supplemented DMEM. 

It had no effect on cell numbers after 4 days growth at the 

lower concentrations of 0 . lpM and O.lmM, but reduced cell n u m ­

bers by 17 ± 3% (n=6, Figure 55) at the higher concentration of 

ImM. Even at the concentration of ImM, however, 8 bromo cyclic 

GMP failed to increase trypan blue uptake (Figure 48). The atrial 

natriuretic factor, a t r i o p e p t i n  II (O.lpM), w h i c h  a c t i v a t e s  

particulate guanylate cyclase, was added twice daily after an 

initial 24 hour plating down period to cells grown in 20% serum- 

supplemented DMEM. It had no effect on cell numbers when assessed 

throughout an 8 day growth period (Figure 56).

6-3.2. Effects of glyceryl trinitrate and sodium nitroprusside 

The nitrovasodilators, glyceryl trinitrate (O.luM-lmM) and sodium 

nitroprusside ( l p M - l m M ) ,  w h i c h  a c t i v a t e  s o l u b l e  g u a n y l a t e  

cyclase, were added twice daily after an initial 24 hours plating 

hown p eriod to cells g r o w n  in 10% se r u m -  s u p p l e m e n t e d  DMEM. 

Glyceryl trinitrate had no effect on cell numbers after 4 days 

Growth in concentrations up to O.lmM, but at ImM, cell numbers 

Were reduced by 17 ± 1% (n = 6, Figure 57). Sodium nitroprusside 

tad no effect on cell numbers at concentrations of luM to O.lmM,
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Figure 55: Concentration- effect relationship showing the ability 

of 8 bromo cyclic GMP to inhibit proliferation of rat ASMC. Rat 

ASMC were seeded at a density ( I— I) of 1.3- 1.6 x 104 cells/ c m 2 

in 10% serum- supplemented DMEM.

(A) Cells received either no drug ), or 8 bromo cyclic GMP

(FOpM, E S  ). (B) Cells received either no drug ( )  , or 8 bromo 

cyclic GMP (lOOpM, ESI ) . (C) Cells received either no drug ( H  )/ 

or 8 bromo cyclic GMP (ImM, E H  ) .

Orugs were added twice daily after an initial 24 hour plating 

iown period. Cells were allowed to grow for 4 days and then 

'•ounted by haemocytometry • Bars show mean cell numbers i s.e. 

®ean (n=6). *** p< 0.0005 denotes a significant difference from 

^treated c e l l s .



2.0 n

o 1.6-

E  1.4-
£
W  1-2 “OQ
I- 1.0-
J 0.8-
o 0.6- 

0 .4 -

°*2n
o.ol

0 1 2 3 4 5 6 7 8
TIME ( DAYS )

Figure 56: Effects of atriopeptin II on the proliferation of rat 

ASMC. Rat ASMC were seeded at a density of 1.4 x 104 cells/ c m 2 

in 20% serum- supplemented DMEM and received either no drug (o), 

or, atriopeptin II (O.lpM, A). Drugs were added twice daily after 

an initial 24 hour plating down period. At the time points indi­

cated, the cells were counted by haemocytometry. Points show mean 

ceU  numbers ± s.e. mean (n=6); when error bars are not seen they 

are contained within s y m b o l s .
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Figure 57: Concentration- effect relationship showing the effects 

of glyceryl trinitrate on proliferation of rat ASMC. Rat ASMC 

were seeded at a density (SD) of 1.4 x 104 cells/ c m 2 (A) and 1.4 

X 104 cells/ c m 2 (B) in 10% serum- supplemented DMEM and received 

either no drug (C), glyceryl trinitrate (0.lpM- lOOpM, GTN, A) or 

GTN (ImM, B) . Drugs were added twice daily after an initial 24 

hour plating down period. The cells were allowed to grow for 4 

days and then counted by haemocytometry • Bars show mean cell 

numbers ± s.e. mean (n=6). ** P< 0.005 denotes a significant 

difference from untreated cells.



but reduced cell numbers at concentrations between O.lmM and ImM: 

the maximum r e d u ction after 4 days growth was 107 ± 1% (n=6,

Figure 58) .

6.3.3. Effects of haemoglobin and M & B 22948 on the ability of 

sodium nitroprusside to inhibit proliferation of rat ASMC 

In an attempt to determine if the ability of sodium nitroprusside 

to inhibit smooth m uscle cell p r o l i f e r a t i o n  was m e d i a t e d  by 

nitric oxide- induced activation of soluble guanylate cyclase, 

the effects of haemoglobin and M & B 22948 were examined. Haemo­

globin binds nitric oxide with high affinity thereby preventing 

it from activating soluble guanylate cyclase, and M & B 22948 

inhibits cyclic GMP phosphodiesterase isozymes.

Haemoglobin (20pM) when added twice daily after an initial 24 

hours plating down period to cells grown in 10% serum- su p p l e ­

mented DMEM had no effect on cell numbers after 4 days growth 

(data not shown). Furthermore, the sodium nitroprusside (0.lmM- 

lmM) induced reduction in cell numbers was not inhibited by the 

addition of haemoglobin (20pM, Figure 59).

M & B 22948 (30pM), when added twice daily after an initial 24 

hours plating down period to cells grown in 10% serum- s u p p l e ­

mented DMEM r educed cell numbers by 33 ± 2% (n = 6, Figure 59) 

after 4 days growth. The sodium nitroprusside (O.lmM-ImM) induced 

Eduction in cell numbers was not, however, potentiated following 

the addition of M & B 22948 (30pM, Figure 59).

These results suggested that the reduction in cell numbers m -
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Figure 58: Concentration- effect curve showing the ability of 

sodium nitroprusside to inhibit proliferation of rat ASMC. Rat 

ASMC were seeded at a density of 1.5 x 104 cells/ c m 2 in 10% 

serum- supplemented DMEM. Sodium nitroprusside (lpM- ImM) was 

added twice daily after an initial 24 hour plating down period.

The cells were allowed to grow for 4 days and then counted by 

haemocytometry The results are expressed as the mean ± s.e.

Nean reduction (%) of cell number when compared with untreated 

cells (n=6-12); when error bars are not seen they are contained 

within symbols. **-p< 0.005 denotes a significant difference from

entreated cells.
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Figure 59: Effects of M & B 22948 and haemoglobin on the antipro­

liferative action of sodium nitroprusside on rat ASMC. Rat ASMC 

were seeded at a density of 1.4 x 104 cells/ c m 2 in 10% serum- 

supplemented DMEM and received either no drug, haemoglobin (20pM, 

lata not shown), M  & B 22948 (30pM, A), sodium nitroprusside 

(lOOpM- ImM, o), a combination of sodium nitroprusside and haemo­

globin (•), or a combination of sodium nitroprusside and M  & B 

22948 ( A ) .  Drugs were added twice daily after an initial 24 hour 

Plating down period. Cells were allowed to grow for 4 days and 

then counted by haemocytometry • The results are expressed as 

^an + s.e. mean reduction (%) of cell numbers compared with 

untreated cells (n=6); when error bars are not seen they are 

contained within the symbols. ** P< 0.005 denotes a significant 

difference from sodium nitroprusside treated cells.



duced by sodium nitroprusside was unrelated to stimulation of 

soluble gua n y l a t e  cyclase, and resulted from a non- specific 

action. The possibility that the ability of sodium nitroprusside 

inhibited proliferation by a cytotoxic action was investigated by 

examining the a c c u m u l a t i o n  of the v i tal stain, t r y p a n  blue. 

Sodium nitroprusside (0.I m M - l m M ), over the same concentration 

range that inhibits proliferation, increased the accumulation of 

trypan blue in a c o n c e n t r a t i o n  effect manner: at the highest

concentration dose (ImM) almost all the cells accumulated trypan 

blue (Figure 60).

6.3.4. Effect of methaemoglobin on the ability of sodium nitro­

prusside to inhibit proliferation of rat ASMC

An alternative m e c h a n i s m  by w h i c h  sodium n i t r o p r u s s i d e  could 

produce its antiproliferative actions on rat ASMC is through the 

production of c y a n i d e .  The e f f e c t  of the o x i d i s e d  f o r m  of 

haemoglobin, methaemoglobin, which binds to cyanide was therefore 

examined.

Methaemoglobin (5pM) was added twice daily after an initial 24 

hour plating down period to cells grown in 10% serum- supplement­

ed DMEM, had no effect by itself on cell numbers after 4 days 

9^owth. F u r t h e r m o r e ,  the s o d i u m  n i t r o p r u s s i d e  ( 0 . I m M - l m M ) - 

induced r e d u c t i o n  in cell n u m b e r s  was not i n h i b i t e d  by the 

addition of m e t h a e m o g l o b i n  (5pM, F i g u r e  61). G e n e r a t i o n  of 

cyanide from the hydrolysis of sodium nitroprusside is unlikely 

therefore to contribute to the antiproliferative action.
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Figure 60: Effects of sodium nitroprusside on trypan blue uptake 

by rat ASM C . Rat ASMC were seeded at a density of 1.2 X 104 

cells/ cm2 in 10% serum- supplemented DMEM. Cells received either 

no drug (C), or sodium nitroprusside (O.lmM- ImM), added twice 

daily after an initial 2 4  hour plating down period. The cells 

w&re allowed to grow for 4  days and then treated with trypan blue 

solution (0.1% v/v in 0.9% NaCl) for 30 minutes. Bars show mean ± 

s-e. mean percentage of cells taking up trypan blue (n=6). ** P < 

0.005 denotes a significant difference from untreated cells.
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Figure 61: Effects of methaemoglobin on the antiproliferative 

action of sodium nitroprusside on rat ASMC. Rat ASMC were seeded 

at a density of 1.3 x 104 cells/ c m 2 in 10% serum- supplemented 

DMEM and received either no drug, methaemoglobin (5 p M , A  ), sodium 

nitroprusside (lOOpM- ImM, o), or a combination of sodium nitro­

prusside and methaemoglobin (•). Drugs were added twice daily 

after an initial 24 hour plating down period. Cells were allowed 

to grow for 4 days and then counted by haemocytometry • '̂̂ ie 

results are expressed as mean ± s.e. mean reduction (%) of cell 

numbers compared with untreated cells (n=6); when error bars are 

tot seen they are contained within the s y m b o l s .



6.3.5. Effects of N G-Nitro L- arginine

It has recently been reported that vascular smooth muscle cells 

generate low but m e a s u r a b l e  q u a n t i t i e s  of a l abile r e l a x i n g  

factor which possesses pharmacological and chemical properties 

similiar to those of EDRF (Wood et a l ., 1990). The possibility

that this endogenous factor has a role in controlling the prolif­

eration of rat ASMC in culture was investigated by examining the 

effects of N G-nitro L- arginine (L-NOARG). L-NOARG is a potent 

competitive inhibitor of the synthesis of nitric oxide from L- 

arginine and acts by inhibiting the converting enzyme, nitric 

oxide synthase (Rees et a l . , 1989; 1990).

L-NOARG (50pM) when added twice daily after an initial 24 hour 

plating down period to cells grown in 10% serum- supplemented 

DMEM, increased cell numbers by 17 ± 4% (n=6, Figure 62) after 4 

days growth. It is possible therefore that L-NOARG increases cell 

numbers by inactivation of nitric oxide synthase.

104



10-1

10o

LxJm
2
D
Z
_l
UO

8 -

2 - i

SD L-NOARG

■igure 62: Effects of N G- nitro L- arginine on the proliferation 
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DISCUSSION



7.1. PHOSPHODIESTERASE SUBTYPES IN PIG AORTIC ENDOTHELIAL CELLS
It is likely that as in other cells, cyclic nucleotides play a 

role as second messengers in endothelial cells. Several early 

studies demonstrated that the endothelium responded to certain 

vasoactive s u b s t a n c e s  i n c l u d i n g  c a t e c h o l a m i n e s ,  h i s t a m i n e ,  

acetylcholine, prostaglandins and angiotensin II by the elevation 

of either c y c l i c  A M P  or c y c l i c  GMP content. This o c c u r e d  in 

endothelial cells cultured from a variety of sources including 

rabbit and bovine aortae and human umbilical vein (Buonassisi & 

Venter, 1976; S c h a f e r  et a 1 ., 1980; M a k a r s k i ,  1981). M o r e

recently, atrial n a t r i u r e t i c  peptides, n i t r o v a s o d i l a t o r s  and 

adenosine have been shown to elevate cyclic AMP or cyclic GMP 

content in endothelial cells cultured from bovine and pig aortae 

and human umbilical vein (Goldman et al., 1983; Brotherton, 1986; 

Leitman & Murad, 1986; Martin et al., 1988b; Schini et a l ., 1988; 

Legrand et a l ., 1989; 1990). T h e s e  s t u d i e s  d e m o n s t r a t e  that

soluble and particulate guanylate cyclase and adenylate cyclase 

are present in vascular endothelial cells.

Several v a s c u l a r  r e s p o n s e s  have been s hown to be u n d e r  the 

influence of cyclic nucleotides, for example, elevation of cyclic 

AMP and cyclic GMP content may stimulate angiotensin converting 

enzyme activity (Krulewitz & Fanburg, 1986), and thromboxane A 2 

synthesis (Fuller & Worthington, 1984), respectively. An early 

report described inhibition of prostacyclin production resulting 

from elevation of cyclic AMP content following treatment with the 

Phosphodiesterase inhibitor, IBMX (Brotherton & Hoak, 1982). This 

inclusion has bee n  revised, however, s ince s u b s e q u e n t  w o r k  

indicated that the IBMX- i n d u c e d  i n h i b i t i o n  of p r o s t a c y c l i n
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production was the result of a cyclic AMP- independent action of 

the inhibitor (Brotherton et a l ., 1982). The elevation of cyclic 

AMP content induced by prostacyclin in endothelial cells has been 

demonstrated to inhibit the release of EDRF (Shimokawa et al.,

1988) .

Furthermore, the e l e v a t i o n  of c y c l i c  GMP c o n t e n t  by a t r i a l  

natriuretic factor or by the membrane permeant analogue of cyclic 

GMP, 8 b r o m o  c y c l i c  GMP, has b e e n  d e m o n s t r a t e d  to i n h i b i t  

agonist- induced release of EDRF from rabbit aorta (Evans et a l ., 

1988 ; H o g a n  e t a 1 . , 1989 ) an d  f r o m  c u l t u r e d  b o v i n e  a o r t i c

endothelial cells (Busse et a l . , 1988). Recent studies indicate

that the inhibitory effect of cyclic GMP on EDRF release may be 

mediated through inhibition of calcium fluxes and IP3 formation 

in response to EDRF rel e a s i n g  agents (Rapoport, 1986; Lang & 

Lewis, 1991).

The control of vascular permeability has also been demonstrated 

to be under the influence of cyclic nucleotides. Elevation of 

cyclic AMP content has an inhibitory action on the transfer of 

albumin across monolayers of endothelial cells cultured from pig 

aortic (Gudgeon & Martin, 1989), human umbilical vein (Yamada et 

il-, 1990) and bovine pulmonary artery (Stelzner et a l . , 1989).

There are, however, conflicting reports on the ability of cyclic 

GMP to i n h i b i t  p e r m e a b i l i t y .  E l e v a t i o n  of c y c l i c  GMP has no 

effect on a l b u m i n  t r a n s f e r  a c r o s s  m o n o l a y e r s  of p i g  a o r t i c  

endothelial cells (Gudgeon & Martin, 1989), but inhibits transfer 

across human umbilical vein endothelial cells (Yamada et a l . , 

^90), respectively. It has been suggested that cyclic AMP and
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cyclic GMP m e d i a t e  t h e i r  e f f e c t s  by the p h o s p h o r y l a t i o n  of 

cytoskeletal proteins via cyclic AMP- or cyclic GMP- dependent 

protein kinases (Stelzner et a l ., 1989; Yamada et a l ., 1990).

In view of t hese i m p o r t a n t  i n t r a c e l l u l a r  a c t i o n s  of cyc l i c  

nucleotides, it is essential to understand how their activities 

are regulated. Cyclic nucleotides are known to be inactivated by 

phosphodiesterase (P D E ) enzymes (Thompson & Appleman, 1971), but 

until recently little was known of the properties of PDE subtypes 

in vascular endothelial cells.

7.1.1. Purification and characterization of PDE activities in pig 

aortic endothelial cell homogenates

The inactivation of cyclic AMP and cyclic GMP is catalysed by 

cyclic nucleotide PDE. At least five distinct isozyme families

exist with more than 20 different enzymes now recognised (Beavo &

Reifsnyder, 1990). The five families are as follows: calcium/

calmodulin- dependent PDE (Type I), cyclic GMP- stimulated PDE 

(Type II), cyclic GMP- i n h i b i t e d  PDE (Type III), cyclic AMP- 

specific PDE (Type IV) and a cyclic GMP- specific PDE (Type V). 

These i s o z y m e s  are f o u n d  to be d i f f e r e n t i a l l y  e x p r e s s e d  and 

regulated in different tissues and cell types. For example, the 

calcium/ calmodulin- dependent PDE (Type I) is located at high 

concentrations in the dendrites of Purkinje cells and cortical

Pyramidal cells of the rat brain (Kincaid et a l . , 1987 ), whereas

the cyclic G M P - . specific PDE (Type V) is most abundant form in 

the retina (Hurwitz et a l . , 1985).

The following study of the PDE subtypes in pig aortic endothelial
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cell homogenates was carried out in collaboration with Dr. J. E. 

Souness, Rhone- Poulenc Ltd., in his Dagenham laboratory.

The hydrolytic activity of the particulate and soluble fraction 

from PAEC h o m o g e n a t e s  was exa m i n e d .  It was f o u n d  that b o t h  

contained equal hydrolytic activity for cyclic AMP and cyclic 

GMP. Furthermore, their activities were not influenced by the 

addition of c a l c i u m  (2mM)/ c a l m o d u l i n  (10 u n i t s /  ml). This 

indicates that the calcium/ calmodulin- dependent PDE (Type I) is 

absent f r o m  e n d o t h e l i a l  cells. The p u r i f i c a t i o n  a n d 

characterization of the PDE subtypes present in PAEC was carried 

out by a p p l y i n g  the s u p e r n a n t a n t  (soluble) f r a c t i o n  of P A E C 

homogenates to a DEAE- Trisacyl chromatography.

The first peak of PDE activity eluted hydrolysed both cyclic AMP 

and cyclic GMP. Upon addition of cyclic GMP (lpM), the hydrolysis 

of cyclic AMP was stimulated two- fold, thus indicating that this 

first i s o z y m e  is a l l o s t e r i c a l l y  r e g u l a t e d  by c y c l i c  GMP. 

Furthermore, as obser v e d  w i t h  crude homogenates, addit i o n  of 

calcium (2mM) and calmodulin (0.5 unit/ ml) did not augment the 

hydrolysis of c y c l i c  GMP. The f i r s t  p e a k  w a s  t h e r e f o r e  

characterized as Type II according to the criteria of Beavo & 

Feifsnyder (1990).

The second peak eluted was a PDE which selectively hydrolysed 

cyclic AMP and v/as neither stimulated nor inhibited by cyclic 

Again addition of calcium (2mM) and calmodulin (0.5 units/ 

did not augment the hydrolysis of cyclic AMP. This enzyme 

was therefore characterized as Type IV PDE according to Beavo &
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Reif snyder ( 1990 )

PAEC therefore contain two PDE isozymes, a cyclic AMP- specific 

PDE (Type IV) and a cyclic GMP- stimulated PDE (Type II). These 

findings are in agreement with those of Lugnier & Schini (1990) 

who demonstrated the presence of the same two PDE activites in 

cultured bovine aortic endothelial cells. One small difference 

between these two studies was that for bovine aortic endothelial 

cell homogenates, the majority of the hydrolytic activity for 

both cyclic nucleotides was found in the cytosolic fraction (more 

than 80%), whereas in our study, the percentages for soluble and 

particulate were 58% and 42%, respectively.

7.1.2. Selectivity of phosphodiesterase inhibitors on the cyclic 

GMP- stimulated PDE and on the cyclic AMP- specific PDE 

An examination of the selectivity of various inhibitors on the 

isozymes p r e s e n t  in PAEC h o m o g e n a t e s  was also carr i e d  out in 

collaboration with Dr. J. E. Souness, Rhone- Poulenc Ltd., in his 

Dagenham laboratory.

It was found that M & B 22948, a selective inhibitor of Type 1 

DDE in smooth muscle, was a weak inhibitor of both PDE isozymes. 

Similiarly, SK & F 94120, a selective inhibitor of the cylic GMP- 

inhibited PDE (Type III), also exhibited only weak inhibitory 

activity against the two PDE isozymes. It was found, however, 

that dipyridamole and trequinsin, two non- selective inhibitors, 

Potently inhibited both isozymes whereas, rolipram was found to 

selectively inhibit the cyclic AMP- specific PDE. These observa­

tions were similiar to those reported in cultured bovine aortic
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endothelial cells homogenates (Lugnier & Schini, 1990). In there, 

M & B 22948 was a weak inhibitor of both isozymes, trequinsin and 

dipyridamole potently inhibited both isozymes, and rolipram was 

found a selective inhibitor of the cyclic AMP- specific PDE.

The first o b j e c t i v e  of this p r o j e c t  was to i n v e s t i g a t e  the 

functional roles of each of the two PDE isozymes in regulating 

the c e l l u l a r  c y c l i c  A M P  an d  c y c l i c  GMP c o n t e n t .  T h i s  was

attempted b y  e x a m i n i n g  the e f f e c t s  of the i n h i b i t o r s ,  

dipyridamole, t r e q u i n s i n  and rolipram, on b a s a l  and a g o n i s t  

stimulated content of cyclic AMP and cyclic GMP. All these and 

subsequent experiments were carried out in Glasgow.

7.1.3. Cyclic GMP content of PAEC

It was found that p r i m a r y  cultures of pig aortic en d o t h e l i a l  

cells had a basal cyclic GMP content of 59.1 ± 5.7 fmol pg DNA'1 

(n=34). Furthermore, haemoglobin and L- NMMA, which selectively 

block the activation of soluble guanylate cyclase by binding to 

EDRF (Martin e;t al . , 1985 ) and by i n h i b i t i n g  E D R F  s y n t h e s i s

(Palmer et a l . , 1988a; Rees et a l . , 1989; 1990 ), respectively,

were found to reduce the basal intracellular level of cyclic GMP.

canavanine, w h i c h  i n h i b i t s  n i t r i c  o x ide s y n t h a s e  in the

macrophage (Hibbs et a l . , 1987a) has been proposed to inhibit the 

synthesis of EDRF in rabbit aorta (Schmidt et a l . , 1988), but

this has been disputed (Rees et a l . , 1989). L- canavanine did

n°t, however, reduce the basal intracellular level of cyclic GMP 

content of PAEC. T h e s e  o b s e r v a t i o n s  s u g g e s t  that the b a s a l  

lntracel l u l a r  l e v e l  of c y c l i c  GMP is d e t e r m i n e d  by the

sPontaneous p r o d u c t i o n  of E D R F  by the e n d o t h e l i a l  c e l l s
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themselves. This finding is consi s t e n t  with previous studies 

demonstrating that in the isolated aorta of the rat and rabbit, 

the b a s a l  l e v e l  of c y c l i c  GMP is r e l a t e d  to s p o n t a n e o u s  

production of EDRF by the endothelial cells (Rapoport & Murad, 

1983 ; Martin et a l . , 1986a; 1986b).

In PAEC bradykinin increased the intracellular cyclic GMP content 

through stimulation of EDRF production as previously described 

(Martin et a 1 . , 1988b) . T h i s  i n c r e a s e  w a s  a b o l i s h e d  by

pretreating the cells with either haemoglobin or L- NMMA, but L- 

canavanine had no effect. From these findings it is clear that 

synthesis of EDRF determines the cyclic GMP content of PAEC, and 

this is inhibited by L-NMMA but not L- canavanine.

7.1.4. Role of the cyclic GMP- stimulated PDE in PAEC 

It was likely that the cyclic GMP- stimulated PDE present in PAEC 

played an important regulatory role in c o n t r o l l i n g  cyclic GMP 

content, since it was the one capable of hydrolysing this cyclic 

nucleotide.

In keeping with this, the non- selective inhibitor, dipyridamole, 

which had p r e v i o u s l y  bee n  f o u n d  to i n h i b i t  the c y c l i c  GMP- 

stimulated PDE in cell homogenates, induced a large increase in 

intracellular cyclic GMP content. This pe a k e d  w i t h i n  5 to 10 

ninutes and then declined rapidly but remained elevated above 

control levels for a prolonged period. Several recent studies 

have indicated that efflux of cyclic nucleotides from cells might 

act together with phosphodiesterase enzymes to regulate cellular 

cyclic nucleotide content (Goldman e t a l . , 1983; Schini e t a l .  ,
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1989). D i p y r i d a m o l e  is k n o w n  to b l o c k  the a c t i o n s  of the 

nucleoside transporter protein in numerous cell types, including 

erythrocytes (Plagemann & Waffendin, 1988), endothelial cells 

(Pearson et a l . , 1978 ) and sarcoma 180 cells (Cabral et a l . ,

1984). It was p o s s i b l e  t h e r e f o r e  that d i p y r i d a m o l e  caused an 

elevation of cyclic GMP content in PAEC by blocking the efflux of 

this molecule from the cell and not by inhibiting the cyclic GMP- 

stimulated PDE. This was not the case, however. In u n t r e a t e d  

cells there was a small steady leakage of cyclic GMP into the 

bathing m e d i u m  w i t h  time. Ra t h e r  than b l o c k i n g  this leak, as 

would have b e e n  e x p e c t e d  if the n u c l e o s i d e  t r a n s p o r t e r  was 

blocked, d i p y r i d a m o l e  e l e v a t e d  the cyclic GMP content of the 

bathing medium. Furthermore, this increase occured only after the 

intracellular increase had been established.

Thus, it is a l m o s t  c e r t a i n  t h a t  d i p y r i d a m o l e  i n c r e a s e s  

intracellular cyclic GMP content by inhibiting the cyclic GMP- 

stimulated PDE and not the efflux of the cyclic nucleotide from 

the cells. The m a g n i t u d e  of the rise in c y c l i c  GMP c o n t e n t  

stimulated by d i p y r i d a m o l e  s u g g e s t s  a r a p i d  i n t r a c e l l u l a r  

hydrolysis of this cyclic nucleotide in PAEC. The elevation of 

cyclic G M P  c o n t e n t  wa s  l i k e l y  to h a v e  r e s u l t e d  f r o m  the 

activation of soluble guanylate cyclase by EDRF since both the 

rises in intracellular and extracellular content were abolished 

following pretreatment with haemoglobin.

Trequinsin, which had previously been found to inhibit the cyclic 

GMP- stimulated PDE in cell homogenates was also observed to 

eievate intracellular cyclic GMP content. This peaked after 15
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minutes, fell t h e r e a f t e r ,  but r e m a i n e d  e l e v a t e d  a b o v e  b a sal 

levels for a prolonged period. This increase, like that induced 

by d i p y r i d a m o l e ,  wa s  a b o l i s h e d  by p r e t r e a t m e n t  w i t h  

haemoglobin.

It is c l e a r  t h e r e f o r e  that in P A E C  the rises in c y c l i c  GMP 

content following treatment with the PDE inhibitors, dipyridamole 

and trequinsin, were dependent upon the activation of soluble 

guanylate cyclase by EDRF synthesised by the endothelial cells 

themselves. Rolipram, which in cell homogenates had previously 

been found to inhibit only the cyclic AMP- specific PDE, had no 

effect on the i n t r a c e l l u l a r  c y c l i c  GMP c o n t e n t .  This, as 

expected, confirms that the cyclic AMP- specific PDE has no role 

in regulating the intracellular cyclic GMP content of PAEC.

The time course of the rise in cyclic GMP content stimulated by 

dipyridamole or trequinsin was complex: it reached a peak then 

fell to a plateau after roughly 15 minutes. It was possible that 

the inhibitors, dipyridamole and trequinsin, had a short duration 

of action, but as will be seen later, this was not the case. An 

alternative explanation, however, is that high intracellular 

concentrations of c y c l i c  GMP m i g h t  p o t e n t i a l l y  i n h i b i t  the 

production of EDRF. Recent studies have demonstrated that atrial 

natriuretic factor and 8 bromo cyclic GMP,each reduce agonist- 

induced release of EDRF in the rabbit aorta and ear artery (Busse 

?t__al. , 1988; E v a n s  et al., 1988; H o g a n  et a l , 1989 ). T h e s e  

observations s u g g e s t  the p r e s e n c e  of a n e g a t i v e  f e e d b a c k  

Mechanism controlling the production of EDRF.

IlL-5- Role of the c y c l i c  GMP- s t i m u l a t e d  PDE in r e g u l a t i n g
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agonist- induced increases in cyclic GMP content in PAEC

Nitrovasodilators stimulate soluble guanylate cyclase through 

production of nitric oxide (Arnold et a l . , 1977 ; Katsuki et a l . , 

1977 ; Craven & De Rubertis, 1978 ). These agents induce increases 

in the i n t r a c e l l u l a r  cyclic GMP content of en d o t h e l i a l  cells 

cultured from a variety of sources including pig aorta and human 

umbilical vein (Brotherton, 1986 ; Ma r t i n  et a l . , 1988b). The

increases in i n t r a c e l l u l a r  c y c l i c  GMP c o n t e n t  s t i m u l a t e d  by 

glyceryl t r i n i t r a t e  and s o d i u m  a z ide are b l o c k e d  f o l l o w i n g  

pretreatment w i t h  e i t h e r  m e t h y l e n e  blue or h a e m o g l o b i n ,  two 

agents k n o w n  to i n h i b i t  the s t i m u l a t i o n  of s o l u b l e  but not 

particulate guanylate cyclase by EDRF (Martin et al., 1988b). In 

contrast, in b o v i n e  a o r t i c  e n d o t h e l i a l  c ells, s o d i u m  

nitroprusside induced only a small increase in cyclic GMP content 

(Schini et a l . , 1988). These workers suggested that the observed 

differences may be related to species variation, vascular origin 

of cells or t i m e  s p e n t  in c u l t u r e .  It has b e e n  s h o w n  t h a t  

endothelial cells r e s p o n s i v e n e s s  declines wit h  time spent in 

culture (Ager & Martin, 1983; Pearson et a l . , 1983; Needham et 

al-, 1987 ) .

In the present study, sodium nitroprusside was found to increase 

both the intracellular and extracellular (i.e. the Kreb's bathing 

®edium) c o n t e n t  of c y c l i c  GMP. E x a m i n i n g  the e f f e c t s  of 

Inhibiting the cyclic GMP- stimulated PDE with dipyridamole on 

the sodium nitroprusside- induced rise in cyclic GMP content was 

complicated b y  the f i n d i n g  t h a t  the PDE i n h i b i t o r  i t s e l f  

Simulated an increase. This, as described previously, peaked 

within a few minutes then fell to a lower sustained level after
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around 35 m i n u t e s , p o s s i b l y  t h r o u g h  a n e g a t i v e  f e e d b a c k  

inhibition of EDRF production. After this time, however, the PDE 

still appeared to be inhibited since subsequent stimulation with 

sodium nitroprusside resulted in augmented increases in cyclic 

GMP content.

The effects of inhibiting the cyclic GMP stimulated PDE were also 

examined on the increase in cyclic GMP content s t i m u l a t e d  by 

activation of particulate guanylate cyclase. In these experiments 

the PAEC were pretreated with haemoglobin to prevent activation 

of soluble guanylate cyclase by the spontaneous produced EDRF. It 

was found that the atrial natriuretic factor, atriopeptin II, 

which a c t i v a t e s  p a r t i c u l a t e  g u a n y l a t e  cyclase, e l e v a t e d  the 

intracellular cyclic GMP content in PAEC. The effect of atriopep­

tin II wa s  c o n c e n t r a t i o n  d e p e n d e n t .  T h e s e  f i n d i n g s  are in 

agreement with those of several earlier studies describing the 

ability of atrial natriuretic peptides to increase the cyclic GMP 

content of bovine aortic, human umbilical vein and pig aortic 

endothelial ceils (Leitman & Murad, 1986; Schini et a l . , 1988;

Brotherton, 1986; Martin et a l ., 1988b). In one of these studies, 

it was o b s e r v e d  that the a t r i o p e p t i n  II- induced increase in 

intracellular c y c l i c  GMP c o n t e n t  was a s s o c i a t e d  w i t h  a time 

dependent effJ.ux of this c y c l i c  n u c l e o t i d e  into the b a t h i n g  

tedium (Schini et al., 1988). This reinforces the suggestion that 

regulation of cyclic nucleotide content of endothelial cells is 

controlled by a' combination of hydrolysis and efflux (Schini et 

, 1989) .

was f o u n d  t h a t  the n o n -  s e l e c t i v e  PD E  i n h i b i t o r s ,
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dipyridamole an d  t r e q u i n s i n ,  e a c h  e n h a n c e d  the a b i l i t y  of 

atriopeptin II to increase the intracellular cyclic GMP content 

of PAEC. In contrast, the selective inhibitor of the cyclic AMP- 

specific PDE, rolipram, had no effect on the a t r i o p e p t i n  II- 

induced increase in intracellular cyclic GMP content.

These findings show that in PAEC the cyclic GMP- stimulated PDE 

controls basal cyclic GMP content and following stimulation of 

either soluble or particulate guanylate cyclase. They further 

show that the o t h e r  e n z y m e  p r e s e n t  in PAEC, the c y c l i c  AMP - 

specific PDE has no role in r e g u l a t i n g  e i t h e r  the b a s a l  or 

agonist- stimulated increases in cyclic GMP content.

7.1.6. Role of the cyclic AMP- specific PDE in PAEC 

Our e x p e r i m e n t s  w i t h  cell h o m o g e n a t e s  s h o w e d  that b o t h  PDE 

isozymes present in PAEC, the cyclic AMP- specific PDE and the 

cyclic GMP- stimulated PDE, had the ability to hydrolyse cyclic 

AMP (Souness et al., 1990). The importance of the cyclic AMP- 

specific PDE (Type IV) in regulating the cyclic AMP content of 

intact PAEC was i n v e s t i g a t e d  by e x a m i n i n g  the effects of the 

selective inhibitor of this enzyme, rolipram.

The activator of adenylate cyclase, forskolin (Seaman & Daly, 

1981) , was found to have no effect on the intracellular cyclic 

AMP content at a concentration of lOpM but at 30pM, an elevation 

ŵ s o b s e r v e d .'R o l i p r a m  e l e v a t e d  the i n t r a c e l l u l a r  cyclic AMP 

content by itself and enhanced the forskolin- induced increase. 

This result is in agreement with previous studies reporting the 

ahility of for s k o l i n  and p r o s t a c y c l i n  to elevate e n d o t h e l i a l
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cyclic AMP concent and of cyclic AMP PDE inhibitors to enhance 

these rises (Leitman et a l . , 1986; Martin et a l . , 1988b). These

findings show that the cyclic AMP- specific PDE regulates basal 

and agonist- stimulated cyclic AMP content in PAEC.

7.1.7. Role of the c y c l i c  GMP- s t i m u l a t e d  PDE in r e g u l a t i n g  

cyclic AMP content in PAEC

Our studies with cell homogenates showed that cyclic AMP could be 

hydrolysed by the cyclic GMP- stimulated PDE (Souness et a l ., 

1990). It was possible, therefore, that this PDE acted together 

with the c y c l i c  A M P -  s p e c i f i c  PDE to c o n t r o l  c y c l i c  A M P  

hydrolysis in PAEC. This was difficult to determine, however, 

since no selective inhibitor of this PDE isozyme was available.

The non- selective inhibitor, dipyridamole, which inhibits both 

the cyclic GMP- stimulated PDE and cyclic AMP- specific PDE in 

cell h o m o g e n a t e s ,  wa s  f o u n d  to h a v e  no e f f e c t  on the 

intracellular cyclic AMP content at a concentration of 25pM, but 

at lOOpM, an elevation was observed. Furthermore, dipyridamole 

(25pM and lOOpM) was found to enhance isoprenaline- (a p- adreno­

ceptor agonist) and forskolin- induced increases in intracellular 

cyclic AMP content. Whether these rises occurred by inhibition of 

the cyclic GMP- stimulated PDE, the cyclic AMP- specific PDE, or 

both could not be determined.

Ij. 8. Conclusion

conclusion, p i g  a o r t i c  e n d o t h e l i a l  cells c o n t a i n  two PDE 

activities, a cyclic GMP- stimulated PDE (Type II) and a cyclic 

s p e c i f i c  PDE (Type IV). The c y c l i c  GMP- s t i m u l a t e d  PDE
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isozyme actively participates in the regulation of the intracel­

lular content of cyclic GMP under basal conditions and following 

stimulation of both soluble and particulate guanylate cyclase. 

The cyclic AMP- specific PDE participates only in the regulation 

of the i n t r a c e l l u l a r  c y c l i c  A M P  content, since it lacks the 

ability to hydrolyse cyclic GMP. The cyclic GMP- stimulated PDE 

might have an a d d i t i o n a l  role in r e g u l a t i n g  the c y c l i c  AM P  

content, but definite proof of this must await the development of 

a selective inhibitor of this enzyme.
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8.1. PROLIFERATION OF PAEC IN CULTURE

The objective of this part of the study were to investigate the 

effects of PKC activation by phorbol esters and of cyclic nucleo­

tides on the proliferation of pig aortic endothelial cells in 

culture.

8.1.1. Effects of PKC activation on the proliferation of endothe- 

lial cells

The calcium- phospholipid dependent protein kinase, PKC, has been 

shown to play a role in signal transduction during several cellu­

lar responses including proliferation (Nishizuka, 1986). Basic 

FGF is a potent mitogen for endothelial cells and its ability to 

activate PKC has been previously demonstrated in many cell types. 

In Swiss 3T3 fibroblasts, induction of diacylgycerol formation 

and PKC activation was observed during the mitogenic response to 

basic FGF (Tsuda et a l . , 1985 ). In contrast, basic FGF was found 

'o be mitogenic via a PKC- independent pathway in hamster fibro­

blasts (Magnaldo et a l . , 1986 ). This was shown to be the case

since basic FGF lacked the a b i l i t y  to induce a c c u m u l a t i o n  of 

inositol trisphosphate and activate PKC.

Recently, however, it has been reported that the mitogenic activ- 

:tY of basic FGF and of a structurally related mitogen, human 

•lepatoma- derived growth factor (Klagsbrun et a l . , 1986; Presta

i!_al. , 1986), in endothelial cells is, at least in part, related 

bo their ability to activate PKC. The response to these growth 

fectors was blocked following pretreatment either with phorbol 

ssters, which initially stimulate then down- regulate PKC, or a 

inhib itor. This was seen in several endothelial cell types
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including bovine cerebral cortex capillary (Daviet et a l ., 1990), 

bovine a d r e n a l  c a p i l l a r y  ( D o c t r o w  & Folkman, 1987) and in a 

transformed foetal bovine aortic endothelial cell line (Presta et 

al., 1989a) .

The importance of PKC activation in the proliferation of endothe­

lial cells has been further e l u c i d a t e d  by the use of p horbol 

esters. They have been shown to have differing actions on the 

proliferation of endothelial cells from different species and 

vascular origin. An inhibition of proliferation has been reported 

for endothelial cells obtained from human aorta (Hoshi et a l ., 

1988b) and bovine adrenal capillary (Doctrow & Folkman, 1987). In 

contrast, a stimulation of proliferation has been observed in 

endothelial cells obtained from bovine cerebral cortex capillary 

(Daviet et a l . , 1989; 1990) and in a transformed foetal bovine

aortic cell line (Presta et al., 1989a). No effect was observed 

on p r o l i f e r a t i o n  of e n d o t h e l i a l  cells o b t a i n e d  f r o m  f o e t a l  

bovine aorta (Presta et a l . , 1989a), human omental microvascula­

ture (Dupuy et a l ., 1989), bovine aorta (Doctrow & Folkman, 1987) 

and bovine adrenal capillary (Morris et a l ., 1988). Activation of 

pKC, therefore, plays an important role in the mitogenic response 

of endothelial cells .

iil-2. Effect of PKC activation by PMA on the proliferation of 

î EC as assessed by haemocytometry

In view of the above conflicting reports on the effects of phor- 

bol esters on proliferation of endothelial cells, the effects of 

phorbol 12-myristate 13-acetate (PMA) was examined on PAEC. It 

found that PMA significantly inhibited the proliferation of
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PAEC in serum- containing medium over a period of 1 to 8 days . 

This finding is therefore in agreement with those of Hoshi et al. 

(1988b) and Doctrow & Folkman (1987 ). The inhibition of growth is 

unlikely to have resulted from a non- selective cytotoxic action 

since p l a t i n g  e f f i c i e n c y  and cell v i a b i l i t y ,  as a s s e s s e d  by 

uptake of the vital stain trypan blue was unaffected by PMA. This 

is in agreement with previous reports demonstrating that phorbol 

esters have no effect on either plating efficiency or viability 

of endothelial cells (Doctrow & Folkman, 1987; Hoshi et a l . , 

1988b) . The inhibition of proliferation by PMA was observed to be 

concentration- dependent and appeared to be due to the activation 

of PKC since the inactive p h o r b o l  ester, 4a- p h o r b o l -  12,13- 

didecanoate, lacked antiproliferative activity.

The activation of PKC by PMA was further investiagted by examin­

ing the effects of a PKC inhibitor, staurosporine (Tamaoki et 

al. , 1986 ). It was found that s t a u r o s p o r i n e  inh i b i t e d  serum- 

induced proliferation of PAEC throughout a 8 day period, but, 

failed to block the antiproliferative effects of PMA.

Recent studies have indicated the presence of multiple PKC iso­

zymes in many cell types (Coussens et a l ., 1986; Nishizuka, 1988; 

Rarago & Nishizuka, 1990). Different PKC isozymes have also been 

identified in PAEC (Uratsuji & DiCorleto, 1988). Why staurospo- 

hne blocks the se r u m -  i n d u c e d  p r o l i f e r a t i o n  of P A E C  is not 

clear. it is possible that it inhibits proliferation of PAEC by 

locking the a c t i v a t i o n  of a PKC i s o z y m e ( s )  i n v o l v e d  in the 

s&rum- induced mitogenic response. Alternatively, as staurospo- 

rine has been shown to be a non- selective inhibitor it may be
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acting by a PKC- independent mechanism. For example, staurospo­

rine inhibits not only PKC but also several other protein k i ­

nases, including tyrosine protein kinase, cyclic AMP- dependent 

protein kinase and calcium/ calmodulin- dependent protein kinase 

(Riiegg & Burgess, 1989).

The failure of s t a u r o s p o r i n e  to b l o c k  the a n t i p r o l i f e r a t i v e  

activity of PMA in PAEC is surprising. If PMA does act by stimu­

lating PKC, as seems likely from the lack of effect of the inac­

tive phorbol ester, 4a- phorbol- 12,13- didecanoate, it is neces­

sary to propose that PMA activates PKC isozyme(s) that is insen­

sitive to blockade by staurosporine. There are, however, no other 

reports of the effects of PKC inhibitors on the antiproliferative

effects of PMA on endothelial cells.

It has been shown, however, that in endothelial cell types where 

phorbol esters stimulate proliferation that staurosporine and 

another inhibitor, H-7, each block this stimulation. This has 

been seen in transformed foetal bovine aortic (Presta et a l . , 

1989a) and bovine cerebral cortex capillary (Daviet et a l . , 1989;

1990) endothelial cells. It is possible, therefore, that where 

phorbol esters inhibit proliferation, this occurs by stimulation 

°f a subt y p e ( s )  of PKC that is i n s e n s i t i v e  to s t a u r o s p o r i n e  

whereas when stimulation of proliferation is seen, this occurs by 

stimulation of an isozyme(s) that is sensitive to inhibition.

Lie 3 • Effect of PMA on p r o l i f e ration of PAEC as a s s e s s e d  by

[iOcthymidine incorporation

a study of the effects of PMA on the proliferation of PAEC, as
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assessed by [ JH ] - t h y m i d i n e  i n c o r p o r a t i o n  into DNA, an e a r l y  

stimulation of proliferation was observed followed by an inhibi­

tion (Uratsuji & DiCorleto, 1988). This d u a l i s t i c  action was 

considered by these authors to reflect the ability of phorbol 

esters to stimulate then down- regulate PKC. In the experiments 

discussed thus far where cell numbers was the index of prolifera­

tion, no early stimulation of proliferation was observed follow­

ing treatment of PAEC with PMA. This lack of an early stimulation 

might have resulted because within the first time point examined, 

(48 hours), there had been a complete down- regulation and there­

fore disappearance of PKC activity. Uratsuji & DiCorleto (1988) 

had p r e v i o u s l y  d e m o n s t r a t e d  a c o m p l e t e  d i s a p p e a r a n c e  of PKC 

activity f o l l o w i n g  t r e a t m e n t  of PAE C  for 24 h o urs w i t h  PM A 

(200nM) . Measurement of [3H]-thymidine incorporation represents a 

more sensitive index of proliferation, so experiments were r e ­

peated using this technique to see if an early stimulation was 

observed with PMA in PAEC.

It was found that serum- induced stimulation of [ 3H]-thymidine 

incorporation by PAEC was concentration- dependent. Moreover, it 

was demonstrated that PMA significantly reduced [3H]-thymidine 

incorporation in 0%, 4% and 20% serum- containing medium after an 

18 hour incubation period. Even at the earlier time points exam­

ined (4, 8 and 12 hours), PMA was found to induce only inhibition 

[3H]-thymidine incorporation into PAEC with no stimulatory 
Phase.

The p k c  inhibitor, staurosporine (lOnM), was found to have no 

effect on serum- induced incorporation of [3H]-thymidine into
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PAEC after an 18 hour incubation period, but at the higher con­

centration of lOOnM, an inhibition of incorporation was observed. 

This contrasts slightly with the results from the haemocytometric 

experiments where staurosporine (lOnM) inhibited serum- induced 

proliferation of PAEC over a period of 4 to 8 days. The possibil­

ity that this discrepancy resulted from the different incubation 

periods employed in the two experiments is supported by a recent 

report demonstrating that staurosporine inhibits the prolifera­

tion of rabbit aortic smooth muscle cells only after a 24 hour 

incubation period (Matsumoto et a l . , 1989).

In agreement with the earlier haemocytometric experiments, stau­

rosporine at b o t h  c o n c e n t r a t i o n s  (10 and lOOnM) was w i t h o u t  

effect on the PMA- induced inhibition of [3H]-thymidine incorpo­

ration by PAEC over the range of serum concentrations (1%, 4% and 

20%). This as has already been discussed, may be explained by PMA 

inhibiting proliferation by activating an isozyme of PKC that is 

insenstive to blockade by staurosporine. It is not clear why the 

early stimulation of [3H]-thymidine incorporation reported previ­

ously (Uratsuji & DiCorleto, 1988) could not be reproduced in 

this study despite experimental conditions being similiar. In 

this study, passage 1 PAEC only were used, whereas in the earlier 

study, PAEC between passage 4 and 13 were used. No other explana­

tion for the di f f e r e n c e s  r e p o r t e d  in the two studies appears 

obvious.

These results, utilising two independent methods ( haemocytometry 

and [3H]-thymidine incorporation), suggest that activation of PKC 

Powerfully inhibits the proliferation of PAEC.
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3.1.4. Possible mechanisms by which phorbol esters mediate their

antiproliferative action on PAEC

;t is g e n e r a l l y  a c c e p t e d  t h a t  PKC e x e r t s  its a c t i o n s  on 

proliferation through changes in the phosphorylation state of 

proteins (reviewed in Takai et a l . , 1985 ; Nishizuka, 1986). This 

leads subsequently to altered expression of growth factors and 

oncogenes (Bikfalvi et a l . , 1990; Murphy et a l . f 1988; Black-

shear, 1988; Colotta et a l . , 1988; Reuse et a l . , 1990 ) and the

down- r e g u l a t i o n  of g r o w t h  f a c t o r  r e c e p t o r s  (Hoshi et al . , 

1988b) . The possibility that PMA inhibits proliferation of PAEC 

by alternative mechanisms was considered.

3.1.5. Oxygen- derived free radicals

PMA is known to stimulate the production of destructive, oxygen- 

derived free radicals by endothelial cells (Matsubara & Ziff, 

1986 ), and these could potentially contribute to the antiprolif­

erative action. In k e e p i n g  w i t h  this p o s s i b i l i t y ,  p a r a q u a t ,  

another agent known to generate free radicals (Minakami et a l . , 

1990 ) was found to inhibit proliferation of PAEC in a concentra­

tion- dependent manner. At the highest concentration examined of 

1®M, the antiproliferative effect was associated with detachment 

rf cells and uptake of the vital stain, trypan blue. This is in 

:ontrast to the actions of PMA where inhibition of proliferation 

occurred with no evidence of cytotoxicity.

furthermore, combined treatment with two agents which act extra- 

:eUularly to remove superoxide anions and hydrogen peroxide, 

^peroxide dismutase and catalase, respectively, had no effect 

3n prol i f e r a t i o n  or the a n t i p r o l i f e r a t i v e  a c t i o n s  of P M A  or
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paraquat. The p o s s i b i l i t y  that both PMA and pa r a q u a t  medi a t e 

their actions by the intracellular generation of radicals which 

cannot be removed by exogenous superoxide dismutase and catalase 

vas considered. An earlier study had already indicated that the 

antiproliferative action of paraquat on E. coli was mediated via 

intracellular generation and this was unaffected by superoxide 

dismutase and catalase (Minakami et a l . , 1990). It was found in

PAEC that two lipid soluble agents known to act as intracellular 

radical scavangers, vitamin E and B H T , each had no effect by 

themselves on proliferation or on the antiproliferative action of 

PMA, but both reversed the antiproliferative action of paraquat. 

This demonstrates that the intracellular production of oxygen- 

derived free radicals is responsible for the antiproliferative 

actions of paraquat in PAEC. In contrast, it is unlikely that the 

generation of oxygen- derived free radicals contributes signifi­

cantly to the ability of PMA to inhibit proliferation of PAEC.

3.1.6. Cyclic nucleotides

An interaction between phorbol esters and cyclic nucleotides has 

ceen previously reported. In an interleukin- dependent T cell 

une, age n t s  w h i c h  e l e v a t e  the c e l l u l a r  c y c l i c  A M P  c o n t e n t  

inhibit phorbol 12,13- dibutyrate- induced growth (Goto et a l . , 

*988). Furthermore, PMA- induced contraction of vascular smooth 

muscle in the r a b b i t  ear a r t e r y  is r e v e r s e d  by e l e v a t i o n  of 

:yclic AMP content (Rasmussen et a l . , 1984). However, it was

'Ound that neither of the membrane permeant analogues, dibutyryl 

:yclic AMP and 8 bromo cyclic GMP, had any effect on the ability 

PMA to i n h i b i t  the p r o l i f e r a t i o n  of PAEC. U s i n g  the m o r e  

Ssnsitive index of proliferation, dibutyryl cyclic AMP had no
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effect by itself, and was found to be without effect on the PMA- 

induced i n h i b i t i o n  of [ 3H ] - t h y m i d i n e  i n c o r p o r a t i o n  in t h ese 

cells.

These findings show that neither the production of oxygen- d e ­

rived free radicals nor an interaction with cyclic nucleotides is 

likely to contribute to the antiproliferative actions of PMA on 

PAEC. It is likely that the antiproliferative action of PMA on 

PAEC is mediated by the phosphorylation of unidentified proteins.

8.2. EFFECTS OF CYCLIC NUCLEOTIDES ON CELLULAR PROLIFERATION 

Cyclic nucleotides have been shown to act as intracellular m e s ­

sengers in the regulation of proliferation of a variety of cell 

types (Friedman, 1981). Cyclic AMP has been found to have either 

a growth inhibitory or growth stimulatory action: inhibition of

proliferation was observed with BHK 21/13 hamster cells, HeLa 

cells, human normal fibroblasts, rat thymic- and B- lymphocytes 

(Burk, 1968; Ryan & Heidrick, 1968; MacManus & Whitfield, 1969; 

Hollenburg & Cuatrecasas, 1975 ; Muraguchi et a l . , 1984), whereas 

stimulation of proliferation was observed in mammary epithelial 

cells, hepatocytes and Swiss 3T3 fibroblasts (Yang et a l . , 1980; 

McGowan et a l ., 1981; Rozengurt et a l ., 1983b; O'Neill et a l .,

1985). The effects of cyclic AMP on cellular proliferation are 

therefore strictly dependent on the cell type being examined.

jj_»2.1. Effect of elevated cyclic AMP content on the proliferation 

of_PAEC

This study showed that when cell numbers were counted, the m e m ­

brane p e r m e a n t  analogue of cyclic AMP, d i b u t y r y l  cyclic AMP,
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orofoundly inhibited the proliferation of PAEC in serum- contain­

ing medium du r i n g  an e x t e n d e d  p e r i o d  in culture (8 days). In 

contrast, in shorter experiments (18 hours) where [3H]-thymidine 

incorporation was m e a s u r e d ,  d i b u t y r y l  c y c l i c  A M P  a p p a r e n t l y  

failed to inhibit proliferation. It is possible that this d i s ­

crepancy results from the different incubation periods employed 

in the two experiments .

The finding that dibutyryl cyclic AMP inhibits proliferation is 

in agreement w i t h  Lei t m a n  et al. ( 1986 ) who found a similiar  

inhibition of proliferation on bovine aortic endothelial cells. 

Furthermore, Leitman et al. (1986) demonstrated that the inhibi­

tion of proliferation of bovine aortic endothelial cells did not 

result from a cytotoxic action since treatment with forskolin, 

cyclic AMP PDE inhibitors or dibutyryl cyclic AMP did not in­

crease the release of lactate dehydrogenase.

Slevation of c y c l i c  AMP c o n t e n t  does not, howev e r ,  i n h i b i t  

proliferation of all endothelial cell types. In bovine coronary 

cicrovascular (Meininger & Granger, 1990), foetal bovine aortic 

(Presta et a l . , 1989a) and human dermal microvascular (Davidson & 

forasek, 1981) endothelial cells, elevation of cyclic AMP content 

has been shown to stimulate proliferation.

^2-2. Effect of elevated cyclic GMP content on the proliferation 

of_pAEC

Jnlike for cyclic AMP, the effects of cyclic GMP on cellu l a r  

proliferation are less well documented. It has been reported, 

however, that elevated levels of cyclic GMP inhibit the prolif­
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e ra t io n  of rat glomerular mesangial cells in culture (Johnson et 

al., 1988 ). Furthermore, one previous study found that membrane 

oermeant analogues of cyclic GMP have only a slight inhibitory 

effect on the proliferation of bovine aortic endothelial cells 

(Leitman et a l . , 1986).

Endothelial cells contain both soluble and particulate forms of 

guanylate c y c l a s e  (Brothe r t o n ,  1986; L e i t m a n  & Murad, 1986 ; 

Martin et a l . , 1988b; Schini et al., 1988). In endothelial cells, 

as in other cell types (Arnold et a l ., 1977; K atsuki et a l .,

1977 ), the soluble form of gua n y l a t e  cyclase is a c t i v a t e d  by

nitrovasodilators, such as s odium n i t r o p r u s s i d e  (Brotherton,

1986 ; Schini et a l . , 1988) or glyceryl trinitrate (Martin et a l . , 

1988b) or even by the endothelial cell's own EDRF (Martin et a l . , 

1988b) and the p a r t i c u l a t e  f o r m  can be s t i m u l a t e d  by a t r i a l  

natriuretic factors (Brotherton, 1986; Leitman & Murad, 1986; 

Martin et a l . , 1988b; Schini et a l . , 1988).

h this study it was found that stimulation of soluble guanylate 

nyclase by glyceryl trinitrate, sodium nitroprusside or bradyki- 

tin, which stimulates EDRF production, had no effect on prolif- 

®nation of PAEC in culture. Activation of particulate guanylate 

:yclase by the atrial natriuretic peptide, atriopeptin II also 

nad no effect on the p r o l i f e r a t i o n  of PAEC. Furthermore, the 

^ibrane permeant analogue of cyclic GMP, 8 bromo cyclic GMP, was 

also without effect on proliferation of PAEC. These observations

:nitially suggested that cyclic GMP had no effect on the prolif-

9ration of P A E C .
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:his turned out, however, not to be the case, since haemoglobin 

and methylene blue, two agents known to lower endothelial cell 

cyclic GMP content by inhibiting the ability of spontaneously 

released EDRF to stimulate soluble guanylate cyclase (Martin et 

al., 1985; 1988b), each inhibited the proliferation of PAEC in

serum- containing medium in c u l t u r e .

;n the case of haemoglobin, the inhibition was of the order of 

20 - 40 % and was specific, since it was reversed by the addition 

of agents which elevate intracellular cyclic GMP content i.e. 

sodium nitroprusside, atriopeptin II or the membrane permeant 

analogue, 8 bromo cyclic GMP. The a b i l i t y  of these agents to 

reverse the antiproliferative effect of haemoglobin, but to have 

no stimulating effects in the absence of haemoglobin is difficult 

to explain. One possible explanation is that a certain level of 

cyclic GMP, generated by the endogenous production of EDRF, is 

required to e x e r t  an a l l - o r - n o n e  p e r m i s s i v e  a c t i o n  on cell 

growth. According to this scheme, elevating cyclic GMP content 

further cannot increase the permissive action. Only by reducing 

the cyclic GMP content e.g. by using haemoglobin can the permis­

sive action be inferred. Further work is required, however, to 

test this hypothesis.

to contrast to haemoglobin, the inhibitory effect of methylene 

slue on proliferation was not reversed by sodium nitroprusside, 

toriopeptin II or 8 bromo cyclic GMP. It is likely, therefore, to 

seflect an action unrelated to guanylate cyclase inhibition. It 

:s possible that the antiproliferative action of methylene blue 

3n PAEC is due to its ability to produce oxygen- derived free
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radicals ( M a r s h a l l  et a l . , 1988 ). This e x p l a n a t i o n  w o u l d  be

consistent w i t h  the e a r l i e r  o b s e r v a t i o n s  in this s t u d y  that 

paraquat, an agent known to generate free radicals, p o t e n t l y  

inhibits the proliferation of PAEC.

EDRF is now recognised to be nitric oxide (Palmer et al., 1987), 

and its biosynthetic pathway has been identified. L- arginine is 

the physiological precursor from which EDRF is produced by the 

action of the enzyme, n i t r i c  o x i d e  s y n t h a s e  ( Palmer et al . , 

1988a; Schmidt et a l . , 1988; Rees et a l . , 1989). The L- arginine 

analogue, N G- m o n o m e t h y l  L- a r g i n i n e  (L- N M M A ) i n h i b i t s  the 

synthesis of nitric oxide by inhibiting the enzyme, nitric oxide 

synthase, but its enantiomer, D- N M M A  is c o m p l e t e l y  inactive 

(Rees et a l . , 1989; 1990).

In this study the possibility that EDRF exerts a permissive role 

in controlling proliferation of PAEC was investigated by examin­

ing the actions of L- NMMA on proliferation. It was found, howev­

er, that although L- NMMA did inhibit proliferation of PAEC in 

culture, this property was one shared with the inactive D- iso- 

merf D- NMMA. This would suggest that both L- NMMA and D- NMMA 

exerts their antiproliferative actions on PAEC via a mechanism 

independent of EDRF.

In conclusion, the i n h i b i t o r y  e f f e c t  of h a e m o g l o b i n  and its 

reversal following elevation of cyclic GMP content suggests that 

SDrf exerts a permissive action in regulating the proliferation 

of PAEC in c u l t u r e  t h r o u g h  s t i m u l a t i o n  of s o l u b l e  g u a n y l a t e  

cyclase. It remains to be determined whether or not EDRF exerts
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such a permissive effect on proliferation of endothelial cells 

from all species and vascular sites.

It has been observed that there is reduced release of EDRF by 

aortas from humans and animals in atherosclerosis (Guerra et a l . , 

1989 ). This impaired release of EDRF may augment the development 

of the atherosclerotic lesion by several mechanisms. Firstly, 

EDRF has b e e n  s h o w n  to p o s s e s s  anti- t h r o m b o t i c  p r o p e r t i e s  

(Radomski et a 1 ., 1987a; 1987b; 1987c; H awkins et a l ., 1988;

Sneddon & Vane, 1988). Its loss might, therefore, promote the 

aggregation and adhesion of platelets to the vessel wall. The 

localised release of platelet mitogens, including PDGF, could 

therefore stimulate the migration and proliferation of the under­

lying smooth muscle cells. Secondly, EDRF has been proposed to 

inhibit smooth muscle proliferation (Garg & Hassid, 1989), and so 

reduced production of this agent might lead to enhanced prolifer­

ation. Thirdly, as already discussed, EDRF may play a permissive 

role in c o n t r o l l i n g  e n d o t h e l i a l  cell p r o l i f e r a t i o n .  R e d u c e d  

production of EDRF in atherosclerosis might reduce the rate of 

re- endothelialization of denuded or damaged areas. This would 

permit greater adhesion of platelets to the exposed underlying 

collagen.

jjj-3. Role of PDE isozymes in regulating proliferation of PAEC 

Two p d e isozymes, a cyclic GMP- stimulated PDE (Type II) and a 

^clic AMP -  s p e c i f i c  PDE (Type IV), are f o u n d  in p i g  a o r t i c  

endothelial cells and have been demonstrated to play a role in 

re?ulating the intracellular cyclic AMP and cyclic GMP content 

'Souness et a l . , 1990; this study). The effects of inhibitors of
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these PDE isozymes on cyclic nucleotide content has been d i s ­

cussed earlier (Chapter 7). The effects of these inhibitors were 

examined on the proliferation of PAEC in culture.

It was found that the non- selective PDE inhibitor, dipyridamole, 

which elevates the intracellular cyclic AMP and cyclic GMP con­

tent (this study), i n h i bited the p r o l i f e r a t i o n  of pig aortic 

endothelial cells in s e r u m -  c o n t a i n i n g  medium. H a e m o g l o b i n  

blocked the a b i l i t y  of d i p y r i d a m o l e  to raise the c y c l i c  GMP 

content by blocking the actions of EDRF (Figure 13) but did not 

inhibit the reduction in proliferation. It is likely, therefore, 

that the antiproliferative action of dipyridamole is mediated by 

the increase in i n t r a c e l l u l a r  c o n t e n t  of c y c l i c  A M P  and not 

cyclic GMP. This result is in agreement with an earlier study 

demonstrating that elevation of cyclic AMP content by cyclic AMP 

PDE inhibitors inhibits the proliferation of bovine aortic e n ­

dothelial cells in culture (Leitman et a l ., 1986).

Since dipyridamole inhibits the two PDE isozymes located in PAEC 

it is not possible to conclude if one or both of these enzymes 

has the ability to regulate the cell's growth by controlling the 

cyclic AMP content. To answer this definitely requires the devel­

opment of selective inhibitors of each of the PDE isozymes.

Ill-4. Conclusion

to conclusion, this part of the study shows that pho r b o l  12- 

ayristate 13- acetate (PMA) powerfully inhibits the proliferation 

of Pig aortic endothelial cells in serum- containing medium. This 

totiproiiferative action of PMA was not mediated by the stimulat­
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ed production of oxygen- derived free radicals or an interaction 

with cyclic nucleotides, and is likely to have resulted from PKC- 
stimulated p h o s p h o r y l a t i o n  of as yet u n i d e n t i f i e d  pro t e i n s .  

Furthermore, c y c l i c  AMP was f o u n d  to i n h i b i t  p r o l i f e r a t i o n ,  

whereas cyclic GMP was found to have a permissive role on the 

proliferation of pig aortic endothelial cells.
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9.1. PROLIFERATION OF RAT AORTIC SMOOTH MUSCLE CELLS IN CULTURE

The objectives of this part of the study were to investigate the 

effects of PKC activation by phorbol esters, and of cyclic n u ­

cleotides on the proliferation of rat aortic smooth muscle cells 

in culture.

Smooth m u s c l e  cells located w i t h i n  the blood vessel wall are 

responsible for maintaining the vascular tone via contraction and 

relaxation. These cells upon examination are found to contain 

large amounts of thick and thin myofilaments and are described to 

be in the contractile phenotype (Chamley- Campbell et a l ., 1979). 

As well as maintaining vascular tone, smooth muscle cells play a 

role in wound repair, but abnormal migration and proliferation 

can lead to the development of several vascular diseases, for 

example, atherosclerosis. In this condition, the cells are o b ­

served to undergo a phenotypic transformation: they lose their 

contractile machinery and the ability to contract, and now con­

tain large amounts of rough endoplasmic reticulum, free ribosomes 

and Golgi a p p a r t u s . Furthermore, the cells b ecome capable of 

synthesizing and secreting an extracellular matrix. All of these 

changes prepare the cells for proliferation. This state is d e ­

scribed as the synthetic phenotype (Chamley- Campbell et a l . , 

1979 ) .

Freshly isolated smooth muscle cells are observed to undergo this 

phenotypic transformation after 5 to 6 days in culture before 

they proliferate in response to serum. Cells that have undergone 

tess than five cell d o u blings will return to the c o n t r a c t i l e  

Phenotype upon reaching confluency, but if they have undergone
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more than five, the cells will remain permanently in the synthet­

ic phenotype (Chamley- Campbell et a l ., 1981).

9.1.1. Serum- dependent proliferation of rat ASMC in culture 

Adult smooth muscle cells have been shown to secrete a PDGF- like 

growth factor and possess cell surface receptors to this mitogen 

thus making them responsive to it (Walker et a l . , 1986; Seifert

et a l ., 1984; S j o l a n d  et a l ., 1988). P r o l i f e r a t i o n  of h u m a n

aortic smooth muscle cells has been found to be dependent on the 

presence of PDGF (Fager et a l . , 1988). These cells did not grow

in plasma- derived serum or serum- supplemented medium in the 

presence of an antiserum to PDGF (Fager et al., 1988). Further­

more, PDGF has been observed to be a potent mitogen for bovine 

aortic (Banskota et al., 1989 ) and rat aortic (Tomita et al., 

1987 ; Takagi e t a l . , 1988; Abell et al., 1989; Kihara et a l . ,

1989; M a j a c k  et a l ., 1990) s m o o t h  m u s c l e  cells. P D G F  is no w

regarded as the main m i t o g e n  pres e n t  in serum (Seppa et a l . , 
1982 ) .

Upon examining the effects of serum on proliferation of rat ASMC 

in this study, it was found that proliferation was stimulated in 

a concentration- dependent manner over a period of 11 days. This 

result is in agreement with previous studies where an increase in 

serum concentration produced a corresponding increase in either 

Cell numbers or [3H]-thymidine incorporation in bovine aortic 

(Uonzon et a l . , 1985) and rat aortic (Kihara et a l . , 1989) smooth 

muscle cells. Furthermore, monkey and rat ASMC maintained in the 

absence of serum or in a low concentrations of serum (0.5 - 2%) 

will survive for a p e r i o d  of days but p r o l i f e r a t e  only at a
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greatly reduced rate (Chamley- Campbell et a l . , 1979; Jonzon et

al., 1985; this study). The growth dependence of smooth muscle 

cells on the presence of PDGF is further demonstrated by the fact 

that cultured smooth muscle cells lack the ability to grow in 

plasma- supplemented medium (Ross et a l . , 1974; Fager et a l . ,

1988). This is in contrast to cultured endothelial cells which 

can proliferate equally well in either serum- or plasma- supple­

mented m e d i u m  ( K a z l a u s k a s  & D i C o r l e t o ,  1985). It is l i k e l y  

therefore that serum contains growth factors which are mitogenic 

for rat ASMC in culture. This not only includes PDGF (Tomita et 

al. , 1987; Takagi et a l . , 1988; Abell et a l . , 1989; Majack et

al. , 1990 ), but other p l a t e l e t -  d e r i v e d  m i t o g e n s  such as EGF

(Owen, 1985; Tomita et a l ., 1987; Takagi et al., 1988) and TFG0 

(Majack et a l . , 1990).

9.1.2. Effects of PKC activation on proliferation of rat ASMC 

The mitogenic response to PDGF in rat and rabbit aortic smooth 

muscle cells was r e d u c e d  s i g n i f i c a n t l y  by p r e t r e a t m e n t  w i t h  

either phorbol esters, or a PKC inhibitor, H-7 (Kariya et a l . , 

1987a; Tagaki et a l . , 1988). This suggests that PKC may play a 

regulatory role in the response of smooth muscle cells to PDGF. 

Not all findings are c o n s i s t e n t  wit h  this, however, since no 

reduction in PDGF- induced mitogenesis was observed in rat ASMC 

Pretreated with another PKC inhibitor, polymixin B (Kihara et 

!!•, 1989) .

The role of PKC a c t i v a t i o n  in the p r o l i f e r a t i o n  of vascular 

smooth muscle cells has been further investigated by examining
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the effects of phorbol esters. An inhibition of proliferation has 

been reported for smooth muscle cells obtained from rat aorta 

(Kihara et a l . , 1989 ) and rabbit aorta (Kariya et a l . , 1987b;

Fukumoto et a l ., 1988). In contrast, a stimulation of prolifera­

tion has been o b s e r v e d  for s mooth m u scle cells o b t a i n e d  from 

bovine pulmonary artery and aorta (Dempsey et a l ., 1990; Doctrow 

& Folkman, 1987 ), rat aorta (Owen, 1985 ; Takagi et a l . , 1988), 

and rabbit aortic (Kariya et a l . , 1987a). The ability of PMA to

either stimulate or inhibit the proliferation of rat and rabbit 

ASMC was found to be dependent on the culture conditions employed 

(Owen, 1985; Takagi et a l . , 1988; Kihara et al., 1989; Kawahara 

et a l ., 1988). Inhibition of proliferation was observed when the 

cells were cultured in 10% whole blood serum, whereas, stimula­

tion was observed in serum- free or plasma- derived serum- sup­

plemented medium.

It was found in this study, however, PMA had no effect on proli­

feration of rat ASMC grown in either low or high concentrations 

of serum throughout a twelve day period. At this moment, there 

is no clear explanation why PMA lacked activity on rat ASMC grown 

in conditions that favou r e d  inhibiton of p r o l i f e r a t i o n  (high 

serum concentrations) or stimulation of proliferation (low serum 

concentrations) .

jjl.3. Effects of adrenoceptor activation on proliferation of rat 

ASMC

Circulating' catecholamines have been reported to be a major risk 

factor in the d e v e l o p m e n t  of a t h e r o s c l e r o s i s  in a n i m a l s  and 

humans (Helin et al., 1970; Kones, 1979; Kukreja et a l . , 1981).
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Abnormal migration and proliferation of vascular smooth muscle 

cells are early events occurring during the development of an 

atherosclerotic lesion and catecholamines are known to modulate 

the proliferation of vascular smooth muscle cells through inter­

actions with specific adrenergic receptors.

Blaes & Boissel (1983), Bauch et a l . (1987) and Bell & Madri

(1989) reported that catecholamines had a stimulatory effect on 

smooth m u s c l e  cell p r o l i feration, and that this requi r e d  the 

presence of serum. It has been proposed that adrenoceptor activa­

tion acts synergistically with growth factors present in serum to 

stimulate proliferation of smooth muscle cells (Nakaki et a l . , 

1989). Furthermore, it was reported that noradrenaline, an adre­

noceptor agonist, produced a biphasic effect on proliferation of 

rat aortic smooth muscle cells in 10% serum- containing medium  

(Nakaki et a l ., 1989). These workers proposed that the stimulato­

ry and inhibitory effects of noradrenaline on proliferation were 

mediated through different receptors, with stimulation through 

ĉ - and inhibition through P 2- adrenoceptors. Furthermore, it was 

proposed that expression of the adrenergic signal- transduction 

systems depended on cell density and number of cell doublings: in 

smooth m u s c l e  cells seeded at low density, a 1- a d r e n o c e p t o r  

stimulation predominated resulting in stimulation of prolifera­

tion, whereas in cells seeded at a higher density or in cells of 

high passage number, p - adrenoceptor stimulation predominated 

resulting in inhibition of proliferation. These findings may be 

evidence of' the existence of a subtle negative feedback m echa­

nism regu l a t i n g  the growth of smooth mus c l e  cells w i t h i n  the 

S e r i a l  wall.
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ĉ - adrenoceptor activation has been demonstrated to stimulate 

the proliferation of several other cells types in culture, in­

cluding 3T3 cells, b o v i n e  a o r t i c  e n d o t h e l i a l  cells and rat 

hepatocytes (Sherline & Mascardo, 1984; Cruise et a l ., 1985). It 

was found in the present study that the a x- adrenoceptor agonist, 

phenylephrine, stimulated the proliferation of rat ASMC in 10% 

serum- supplemented medium. This stimulation was observed to be 

concentration dependent over the range of 0. ImM to ImM and p r o ­

duced a maximum increase in cell numbers of 30 ± 6%. It is known 

that a 1- adrenergic receptor activation induces phosphatidylino- 

sitol h y d r o l y s i s  (Watson & Abbott, 1989). This results in an 

accumulation of two second messengers, diacylglycerol, which is 

the endogenous activator of protein kinase C (Bell, 1986) and 

inositol t r i s p h o s p h a t e , which stimulates the release of stored 

calcium (Putney, 1987; Rana & Hokin, 1990). Calcium influx is 

also stimulated through receptor- operated and voltage operated 

channels (Benham & Tsien, 1987). From the present study, it is 

impossible to state which o n e (s ) of the second messengers are 

involved in the mitogenic response of phenylephrine.

Although the a - adrenoceptor agonist, phenylephrine, stimulated 

proliferation in serum- containing medium the a 2- adrenoceptor 

agonist, clonidine had no such effect. It is likely, therefore, 

that the action of phenyephrine found in this study did indeed 

result from activation of a 1- adrenceptors.

in this study, it was found that the non- selective p- adrenocep­

tor agonist, isoprenaline, was without effect on the prolifera­

tion of rat ASMC whereas the selective p :- and p 2- adrenoceptor
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agonists, dobutamine and salbutamol, respectively, both inhibited 

proliferation. Nakaki et a l . (1989) found, however, that isopren- 

aline was more potent than dobutamine and salbutamol. A possible 

explaination for the difference in effects of isoprenaline b e ­

tween this study and that of Nakaki et a l . (1989) may be related

to the e x p e r i m e n t a l  p r o t o c o l  emp l o y e d .  N a k a k i  et a l . (1989)

examined the effect of isoprenaline on rat ASMC in serum- free 

medium by measuring [3H]-thymidine incorporation over a 24 hour 

incubation period. In the present study, the effect of isoprena­

line was examined over a period of 4 days by counting cell num­

bers grown in serum- supplemented medium. It is possible that 

within this time the inhibitory effect of isoprenaline had been 

masked by the growth stimulatory action of serum. Alternatively, 

the lack of effect of isoprenaline could have reflected its short 

half- life. Nevertheless, both studies agree that p 2- adrenocep­

tor stimulation inhibits the proliferation of rat ASMC in c u l ­

ture .

It is known that p- adrenoceptor activation leads to stimulation 

of adenylate cyclase and increases in cellular cyclic AMP content 

(Watson & Abbott, 1989). It is likely therefore that dobutamine 

and salbutamol inhibited proliferation of rat ASMC by elevating 

cyclic AMP content. Further evidence that cyclic AMP inhibits the 

Proliferation of vascular smooth muscle cells is suggested by the 

effects of adenosine and prostaglandins.

Wenosine and certain of its analogues acting via A 1 or A 2 recep- 

tQrs have been shown to have a dualistic effect on the prolifera- 

lion of rat aortic smooth muscle cells (Jonzon et a l . , 1985). It
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was p r o p o s e d  that the s t i m u l a t o r y  and i n h i b i t o r y  e f f e c t s  of 

adenosine and its a n a l o g u e s  w e r e  m e d i a t e d  t h r o u g h  d i f f e r e n t  

receptors, with stimulation through A x~ and inhibition through 

I- receptors, respectively (Jonzon et a l . , 1985). A 2- receptor

activation is known to involve activation of adenylate cyclase 

and elevation of cyclic AMP content (Watson & Abbott, 1989), 

whereas A :- r e c e p t o r  a c t i v a t i o n  i n h i b i t s  the s t i m u l a t i o n  of 

adenylate cyclase (Watson & Abbott, 1989). It is possible that 

adenosine, which is present in plasma following metabolism of ATP 

by many cell types (Gordon, 1986), could prevent proliferation of 

smooth muscle cells in the arterial wall by activation of A 2- 

receptors, and therefore prevent or inhibit the development of 

atherosclerosis .

Furthermore, several prostaglandins (PGEi; P G D 2 and P G I 2) have 

been shown to inhibit serum- induced DNA synthesis in smooth 

muscle cells obtained from rat aorta (Nilsson & Olsson, 1984) and 

human aorta (Tertov et a l . , 1984). This inhibitory effect may be 

related to the ability of prostaglandins to elevate cyclic AMP 

content (Nilsson & Olsson, 1984). p- adrenoceptor agonists might 

also hav e  p o t e n t i a l  a n t i -  a t h e r o s c l e r o t i c  a c t i o n s  t h r o u g h  

inhibition of smooth muscle proliferation.

jj. EFFECTS OF CYCLIC NUCLEOTIDES ON PROLIFERATION OF RAT ASMC 

9j.l. Effects of cyclic AMP on proliferation of rat ASMC 

in keeping with the concept of an inhibitory effect of cyclic 

AMP, it was found in the present study that the membrane permeant 

analogue of this cyclic nucleotide, dibuytryl cyclic AMP, and the 

stimulator of adenylate cyclase, forskolin (Seaman & Daly, 1981),
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both profoundly inhibited the proliferation of rat ASMC in serum- 

containing medium. The inhibitions of proliferation induced by 

dibutyryl cyclic AMP or forskolin were observed to be concentra­

tion- dependent. These results are in a g r e ement wit h  several 

studies demonstrating that membrane permeant analogues of cyclic 

AMP, or forskolin or cyclic AMP PDE blockers inhibit the prolif­

eration of rat brain microvascular (Kempski et a l ., 1987), rabbit 

aortic (Fukumoto et a l . , 1988) and human aortic (Tertov et a l . , 

1984) smooth muscle cells in culture. The antiproliferative ac­

tions of dibutyryl cyclic AMP and forskolin in this study were 

found not to result from a cytotoxic effect as assessed by the 

vital stain, trypan blue. Furthermore, the antiproliferative 

action of forskolin was clearly due to activation of adenylate 

cyclase since the inactive forskolin analogue, dideoxy forskolin 

and the solvent, DMSO, both lacked the antiproliferative action 

of forskolin.

To further examine if the forskolin- induced inhibiton of prolif­

eration was m e d i a t e d  via an e l e v a t i o n  of ce l l u l a r  cyclic AMP 

content, the effects of two PDE inhibitors were examined. Smooth 

muscle cells f r o m  rat, b o v i n e  and h u m a n  a o r t a s  are k n o w n  to 

contain three PDE activities, two cyclic GMP PDEs (one continu­

ously active [Type V ] , the other stimulated in the presence of 

calmodulin and calcium [Type I]), and a cyclic AMP- specific PDE 

(Type IV)(Lugnier et al., 1986; Schoeffter et a l ., 1987). Inhibi­

tion of the cyclic GMP PDE isozymes by M & B 22948 and of the 

cyclic AMP PDE by rolipram has been previously shown to result in 

increases in smooth muscle cell cyclic GMP and cyclic AMP c o n ­

tent , r e s p e c t i v e l y  (Lugnier et a l . , 1986; S c h o e f f t e r  et a l . ,
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1987 )

In this study, the selective cyclic AMP PDE inhibitor, rolipram, 

was f o und to i n h i b i t  p r o l i f e r a t i o n  of rat A S M C  by itself in 

serum- containing medium and to potentiate the forskolin- induced 

inhibition of proliferation. This strengthens the concept that 

forskolin mediates its antiproliferative actions via an elevation 

of intracellular cyclic AMP content. Furthermore, M & B 22948, 

the selective cyclic GMP PDE inhibitor, was found to inhibit the 

proliferation of rat ASMC by itself in serum- containing medium. 

Whether this inhibition of proliferation resulted from an accumu­

lation of c y c l i c  GMP is not clear. H o w e v e r ,  in two s e p e r a t e  

experiments M & B 22948 was observed to reverse the antiprolifer­

ative actions of forskolin on rat ASMC. There is no clear expla­

nation for this action at the present time.

Histamine, an important mediator of inflammation (Killackey et 

al., 1986; M o v a t , 1987 ) is primarily secreted from mast cells,

basophils and the platelets of certain species, and possibly from 

endothelial cells (Riley & West, 1966; G r a h a m  et al . , 1955;

Saxena et a l . , 1989). Histamine is known to produce relaxation of 

smooth muscle through H 2- receptor- linked activation of adeny­

late cyclase and resultant increases in intracellular cyclic AMP 

intent (reviewed by Hill, 1990). The possibility that histamine 

well as possessing vasodilator activity might have a role in 

tissue gr o w t h  and repair has been reported. Support for this 

suggest ion c omes f r o m  s e v e r a l  s t u d i e s  w h e r e  the a c t i v i t y  of 

bistidine decarboxylase, the enzyme which synthesizes histamine 

‘rom histadine, was elevated in a number of rapidly proliferating
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tissues (Ishikawa et a l ., 1970; Watenabe et a l ., 1981; Barthol- 

eyns & Fozard, 1985). Furthermore, histamine has been reported 

to stimulate the proliferation of human microvascular endothelium 

(Marks et a l . , 1986) and bovine aortic endothelium (Bell & Madri,

1989). The growth stimulatory effect was mediated via H x- recep­

tors as the H 3~ antagonist, c l e m a s t i n e  fumarate, s e l e c t i v e l y  

blocked this mitogenic response (Marks et a l ., 1986).

In the present study, it was found that histamine inhibited the 

proliferation of rat A S M C  in s e r u m -  c o n t a i n i n g  m edium. This 

antiproliferative action of histamine was observed to be concen­

tration- dependent and appeared due to activation of H 2- recep­

tors since it was blocked by the H 2~ antagonist, cimetidine. It 

is therefore possible that histamine (secreted by mast cells, 

basophils, platelets or endothelial cells) could play a role in 

inhibiting the proliferation of smooth muscle cells in the arte­

rial wall thus preventing the development of atherosclerosis.

In summary, it is likely that the inhibiton of proliferation of 

rat ASMC produced by forskolin, cyclic AMP PDE inhibitors, hista­

mine and p- a d r e n o c e p t o r  agoni s t s  resulted from e l e v a t i o n  of 

cyclic AMP c o n t e n t .

jj2.2. Effects of cyclic GMP on proliferation of rat ASMC 

Recent evidence has been accumulating that cyclic GMP acts as the 

intracellular mediator generated by several vasodilators. These 

include EDRF, recently identified as nitric oxide (Palmer et a l .,

1987), atrial natriuretic peptides and the n i t r o v a s o d i l a t o r s , 

stch as sodium nitroprusside and glyceryl trinitrate (Rapoport &
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Murad, 1983; L i n c o l n  & F i s h e r -  Simpson, 1984; G r a c e  et a l .,

1988). As discussed earlier, histamine (this study), adenosine 

(Jonzon et a l . , 1985 ), p- a d r e n o c e p t o r  agonists (this study;

Nakaki et a l ., 1989) and prostaglandins (Nilsson & Olssen, 1984; 

Tertov et a l . , 1984) possess not only vasodilator properties,

but have also been shown to inhibit the proliferation of smooth 

muscle cells in culture by elevating the intracellular cyclic AMP 

content. By analogy, therefore, it was possible that agents which 

relaxed vascular smooth muscle by elevating cyclic GMP content 

might also be able to inhibit the p r o l i f e r a t i o n  of v a s c u l a r  

smooth muscle cells.

It was found in the pres e n t  s t udy that a t r i o p e p t i n  II, w h i c h  

activates particulate guanylate cyclase (Leitman & Murad, 1986), 

had no effect on the proliferation of rat ASMC in serum- contain­

ing medium. This is in contrast to earlier studies indicating 

that atrial natriuretic factor inhibits the proliferation of rat 

and ra b b i t  A S M C  i n d u c e d  by e i t h e r  P D G F  or w h o l e  b l o o d  s e r u m  

(Abell et a l ., 1989; Kariya et a l ., 1989). The d i f f e r e n c e  in

results may be related to the experimental procedure used. In the 

studies of Abell et al. (1989) and Kariya et a l . (1989), [3H ]—

thymidine incorporation after 24 hours was used as the index of 

proliferation. In this study, however, cell numbers throughout a 

8 day period were counted with 48 hours as the first time point 

examined. It is p o s s i b l e  that w i t h i n  the 48 hours the g rowth 

inhibitory effects of AP II had been m a s k e d  by the m i t o g e n i c  

actions of serum.

Nitrovasosdilators stimulate soluble guanylate cyclase through
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production of nitric oxide (Arnold et al., 1977; Katsuki et a l ., 

1977; Craven & De Rubertis, 1978). In this study, the two nitro- 

vasodilators, glyceryl trinitrate and sodium nitroprusside were 

each found to inhibit the proliferation of rat ASMC in serum- 

containing medium. The i n h i b i t o r y  effect of these agents was 

observed only at high concentrations i.e. ImM for glyceryl trini­

trate and 0.1 - ImM for sodium nitroprusside. These concentra­

tions are 100-1000 times greater than those required for relaxa­

tion of vascular smooth muscle (Lincoln & Fisher-Simpson, 1984;

Martin et a l . , 1986b; Grace et al., 1988). The antiproliferative 

effect of sodium nitroprusside and glyceryl trinitrate, t h e r e ­

fore, may be unrelated to the ability of these agents to elevate 

cyclic GMP c o n t e n t .

The effector molecule generated from the nitrovasodilators is 

nitric oxide (Arnold et al., 1977 ; Katsuki et a l . , 1977: Craven & 

De Rubertis, 1978). Nitrovasodilators can mimic therefore the 

actions of endogenously produced EDRF, which has been identified 

as nitric oxide (Palmer et al., 1987). It had been previously 

shown t h a t  s e v e r a l  n i t r o v a s o d i l a t o r s  i n c l u d i n g  s o d i u m  

nitroprusside, S- nitroso- N- acetylpenicillamine and isosorbide 

dinitrate, inhibited the proliferation of rat and rabbit aortic 

smooth muscle cells in culture (Garg & Hassid, 1989; Kariya et 

si., 1989). On the basis of the actions of nitrovasodilators it 

was suggested by Garg & Hassid (1989) that EDRF released from 

sndothelial cells may act as an endogenous regulator of smooth 

Muscle cell growth within the arterial wall.

 ̂ recent s t u d y  d e m o n s t r a t e d  t h a t  s m o o t h  m u s c l e  c e l l s  of
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endothelium- d e n u d e d  rings of bovine i n t r a p u l m o n a r y  arterial 

produce low but measurable quantities of a labile relaxing factor 

possessing pharmacological and chemical properties similiar to 

those of EDRF (Wood et a l ., 1990). On the scheme of Garg & Hassid 

(1989), it was possible that this smooth muscle- derived EDRF 

also had a regulatory role in controlling proliferation of smooth 

muscle cells w i t h i n  the a r t e r i a l  wall. In k e e p i n g  w i t h  this 

hypothesis, it was found in the present study that N G- nitro L- 

arginine, a competitive inhibitor of nitric oxide synthase, the 

enzyme that forms nitric oxide from L- arginine, stimulated the 

proliferation of rat A S M C  by 17 ± 4% in se r u m -  c o n t a i n i n g  

medium. The stimulation is more likely to have resulted from a 

non- s e l e ctive action, however, since as will be seen later, 

haemoglobin, which inhibits the action of nitric oxide, did not 

share this property.

Recently, a t h i r d  p o t e n t i a l  s o u r c e  of n i t r i c  o x i d e  has b e e n  

identified that could regulate smooth muscle proliferation in the 

arterial wall. It has been demonstrated that macrophages have the 

ability to generate nitric oxide from the terminal guanidino 

nitrogen atom(s) of L- arginine (Hibbs et a l ., 1987b; Stuehr et 

al. , 1989; Kwon et a l . , 1990; Tayeh & Marietta, 1990). M a c r o ­

phages secrete much higher quantities of nitric oxide than en- 

dothel ial cells, and such quantities are clearly cytotoxic for 

foany cell types (Hibbs et a l ., 1987a; D r a p i e r  & Hibbs, 1988; 

KrOncke et a l . , 1991). It is possible, therefore, that nitric 

oxide inhibits the proliferation of smooth muscle cells not by 

Simulating soluble guanylate cyclase, but by a cytotoxic action, 

^is is supported by the observation made in the present study
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that s o d i u m  n i t r o p r u s s i d e  i n d u c e d  a c c u m u l a t i o n  of the v i tal  

stain, trypan blue, in the same concentration range over which it 

inhibited proliferation: at the highest concentration examined

i.e. ImM almost all the smooth muscle cells accumulated trypan 

blue. In sharp contrast to the present study Garg & Hassid (1989) 

reported that the antiproliferative actions of the nitrovasodila­

tors on rat ASMC were not due to cytotoxicity assessed by release 

of l a c t a t e  d e h y d r o g e n a s e ,  s t a i n i n g  w i t h  t r y p a n  blu e  or cell 

detachment. These work e r s  a s s e s s e d  c y t o t o x i c i t y  only after a 

short incubation time (20 hours) whereas in the present study the 

cytotoxic effects were evident after 24 hours.

A p o s s i b l e  e x p l a n a t i o n  for the c y t o t o x i c  a c t i o n s  of s o d i u m  

nitroprusside is that one of its d e g r a d a t i o n  p r o d u c t s  is the 

metabolic poison, cyanide. This a p p e a r e d  not to be the case, 

however, since in this study, it was found that the addition of 

methae m o g l o b i n , w h i c h  binds cyanide (Stadie, 1920; Drab k i n  & 

Austin, 1935) did not reverse the antiproliferative action of 

sodium nitroprusside.

Haemoglobin has been shown to bind nitric oxide avidly (Martin et 

al. , 1985). However, in this study, the antiproliferative action 

of sodium nitroprusside was not reversed by haemoglobin at con­

centrations up to 20pM. Garg & Hassid (1989), however, showed 

that at 50pM, inhibition was reversed. It is likely that a high 

concentration of h a e m o g l o b i n  was r e q u i r e d  to b i n d  the large 

quantities’of nitric oxide generated by the high concentration of 

sodium nitroprusside. Furthermore, the a b i l i t y  of s u p e roxide 

dismutase to potentiate the actions of the nitrovasodilator in
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inhibiting proliferation of smooth muscle (Garg & Hassid, 1989) 

is consistent with inhibition being mediated by nitric oxide. 

Superoxide anions have previously been shown to destroy nitric 

oxide ( G r y g l e w s k i  et a l ., 1986; R u b a n y i  & V a n h o u t t e ,  1986a;

1986b) .

Although it is likely that nitric oxide is responsible for the 

nitrovasodilator- induced inhibition of smooth muscle prolifera­

tion, it is not clear if stimulation of soluble guanylate cyclase 

is involved. In the present study, 8 bromo cyclic GMP at a high 

concentration of ImM did inhibit proliferation of rat ASMC wit h ­

out increasing uptake of trypan blue , thus confirming a previous 

report on rabbit ASMC (Kariya et al., 1989) It is not certain, 

however, if the inhibiton was m e d i a t e d  by cyclic GMP p r o t e i n  

kinase, or a non- specific action.

Other e v i d e n c e  s u g g e s t i n g  that sodium n i t r o p r u s s i d e  inhibits 

proliferation by a cyclic GMP- independent mechanism is that the 

cyclic GMP PDE inhibitor, M & B 22948, did not potentiate the 

action of sodium nitroprusside. A recent study reported that the 

antiproliferative action of several nitrovasodilators, including 

sodium nitroprusside in Balb/ c3T3 fibroblasts is mediated by a 

cyclic GMP- independent m e c hanism (Garg & Hassid, 1990). These 

cells are known to lack soluble guanylate cyclase. Furthermore, 

citric oxide has recently been shown to induce several cyclic 

GMP- independent responses, including decreased cytosolic free 

calcium in Balb c/3T3 cells (Garg & Hassid, 1991) and ADP- ri- 

kosylation of a 39 kDa protein in platelets (Briine & Lapetina,

1989). These effects suggest the exi s t e n c e  of an a l t e r n a t i v e
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signalling transduction pathway for nitric oxide. In the study of 

Garg & Hassid (1990), the antiproliferative action of the nitro­

vasodilators appeared not to be due to cytotoxicity as assessed 

by release of lactate dehydrogenase, staining with trypan blue or 

cell detachment. These workers assessed cytotoxicity after 24 

hours, but after 4 days treatment with the nitrovasodilator, S- 

nitroso- N- acetylpenicillamine, increased cell detachment was, 

clearly e v i d e n t .

It is possible, therefore, that high concentrations of nitric 

oxide can inhibit p r o l i f e r a t i o n  by a cyclic GMP- independent 

transduction m e c h a n i s m ,  bu t  the m a r g i n  for s a f e t y  b e f o r e  

cytotoxicity is seen is very small. It is unlikely, therefore, 

that EDRF acts as an endogenous regulator of smooth muscle cell 

growth in the arterial wall.

9.2.3. Conclusion

In conclusion, this part of the study shows that activation of 

protein kinase C by phorbol esters has no effect on the prolifer­

ation of rat aortic smooth muscle cells in culture. Furthermore, 

elevation of cyclic AMP content inhibits the proliferation of 

these cells w i t h o u t  evide n c e  of cytotoxicity. The effects of 

elevating cyclic GMP were less clear. 8 bromo cyclic GMP does 

inhibit smooth muscle proliferation at high concentrations but 

the inhibition of proliferation induced by sodium nitroprusside 

was p r o b a b l y  m e d i a t e d  by a cyclic GMP- in d e p e n d e n t  c y t otoxic

a c t i o n .
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Appendix I. Purification of Endothelial Cell PDEs

PAEC (100- 150 million) grown in 250 ml culture flasks (Nunclon) 

were washed three times with ice- cold phosphate- buffered saline 

b e f o r e  b e i n g  s c r a p p e d  f r o m  the s u r f a c e  an d  r e m o v e d  to a 

centrifuge tube (50 ml). The cells were then centrifuged at 2000 

g for 5 minutes and, after the phosphate- buffered saline had 

been removed, the pellet was stored at - 7 0 °C until required.

The cell pellet was homogenized in 6 vol. of Tris/ HCl 20 mM, pH 

7.5 containing magnesium acetate 2 mM, dithiothreitol 1 mM, EDTA' 

5 mM and aprotinin (2000 units/ ml) with a Dounce h o m o g e n i z e r .; 

The homogenate was then centrifuged at 105000 g for 60 m i n u t e s 5 

and the supernatant (20 ml) applied to a DEAE- Trisacryl column 

(7 cm X 0.9 cm) pre- equilibrated with column buffer (Tris/ HCl 

20 mM, magnesium acetate 2 mM, dithiothreitol 1 mM, N a- tosyl- L- 

lysychloromethane hydrochloride 20pM, pH 7.5). The column was 

washed with two successive linear gradients of NaCl (0- 150 mM in 

80 ml and 150- 400 mM in 70 ml) in column buffer; 2 ml fractions 

were collected, assayed, and for short term storage at -20°C, 

ethylene glycol was added to a final concentration of 30% (v/v). 

Assays on the pooled peak fractions were performed within 48 hr 

after homogenization of the c e l l s .



Appendix II. Measurement of PDE Activity

PDE activity was determined by the two- step radioisotope method

p r e v i o u s l y  d e s c r i b e d  by T h o m p s o n  et al . ( 1979 ). The reaction

m i x t u r e  c o n t a i n e d  T r i s /  HCl 20 mM, pH 8.0, M g C l 2 10 mM, 2- 

mercaptoethanol 4 mM and bovine serum albumin 0.05 mg/ ml. The 

concentration of substrate (cyclic [3H] AMP or cyclic [3H] GMP) 

was lpM.

IC 50 v a l u e s  ( c o n c e n t r a t i o n  w h i c h  p r o d u c e d  50% i n h i b i t i o n  of 

substrate hydrolysis) for the compounds examined were determined 

from c o n c e n t r a t i o n -  response curves, in w h i c h  concen t r a t i o n s  

ranged from 0 . lpM to 1 m M . Three concentration responses were

generated for each inhibitor examined.


