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SUMMARY

This thesis concentrates on the nonlinear finite element modelling of two
dimensional reinforced concrete structures including bond—slip effects. It deals with
three aspects of the numerical computation, i. e. modelling techniques, material

behaviour and solution techniques.

The modelling techniques concerned the reinforcement and bond—slip. Two
embedded reinforcement formulations and one embedded bond—slip model have been
developed and implemented, leading to a general model for embedded reinforcement
including bond—slip effects. An automatic mesh generation scheme for both concrete
and embedded steel bar has been implemented in conjunction with the proposed

models.

For the material behaviour of structural concrete, the study reviews concrete,
bond—slip and reinforcing steel properties. Particular attention is given to the
bond—slip mechanism and its experimental observation. Tension— stiffening and shear
retention are also studied along with cracking mechanism. Concrete behaviour is
reviewed, including failure rules and constitutive relationships. The constitutive

relationships used in this study are summarized.

The cracking behaviour is modelled using smeared approximations. Particularly,
fixed cracking model, strain— decomposed cracking model and swing cracking model

have been examined and compared.

The nonlinear solution techniques used in this study are modified Newton— Raphson

and arc— length procedures along with a line search scheme.

A stock of numerical examples are presented, including studies on both

fundamental issues in the modelling techniques, and application to practical



engineering structures.

In this study, it has been shown that finite element representation of structural
concrete has become sophisticated. Not only can the reinforcement be modelled
properly by using embedded isoparametric reinforced concrete elements including
bond—slip effects, but also the material behaviour can be traced properly, usually
without great difficulty. The results presented in this study have compared
satisfactorily with the experimental results and suggest that the proposed modelling

are successful.
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CHAPTER ONE

INTRODUCTION

1.1 Preamble

In the nineteenth century, silicate cement came out as a great development in
civil engineering practice. It was immediately used to produce the so— called
"man— made rock" together with aggregate and water in a proper ratio. The
"rock"” was termed concrete and has been widely adopted in both building and

construction engineering, from shells, slabs, beams to dams and road/river bridges.

The mechanical properties of concrete are similar to rock. It can be subjected
to high pressure but little tension because the adhesive capability of cement is not
large. Concrete is hence mainly used in compressive structural regions. If it is
used in tension or flexible regions, a quite large cross— section has to be chosen.
Alternatively, steel bars/cables are added in the regions of the structure to resist

tension deformation and give several advantages. Particularly

1. Concrete provides adhesion and mechanical resistance, and prevents the steel
from slipping. The steel is able to carry tension forces transferred to it by

shearing mechanisms between the concrete and reinforcement.

2. Since reinforcing steel is buried inside the concrete, it will not be corroded

and effected by environmental incursion.

3. Steel bars can resist high tensile stress, which greatly improves the reinforced

concrete members' loading— carrying capability.



Introduction -2-

4. Concrete and steel have almost the same temperature coefficient of expansion
(steel: 1.2 x 10~ S/9C, concrete: 1.0 to 1.5 x 10~ 5/9C). When a structural
member is subjected to temperature change, there will be no internal stress
created due to the restriction between the combined materials. Neither will the

mechanism between them be destroyed.

5. Due to the close cooperation between these two materials and the wide
application of reinforced concrete structures, it has become important to
understand the mechanical behaviour of such material when it is subjected to
external loading as an engineering structure. This has been carried out both
experimentally and theoretically. For theoretical study, principles of mechanics
have been applied in the analysis of reinforced concrete structures by assuming
that the materiali is continuous, homogenous and isotropic. The theories of
elasticity based on these assumptions have been accepted in engineering design

and are still adopted in current design for usual structures.

However, if the mechanism of reinforced concrete is required to be studied in
detail, or if the structure is large, a more comprehensive approach must be
adopted. This is now possible due to recent numerical approximation
developments. Especially due to the appearance of supercomputers, very detailed
calculations can be carried out. Among these numerical methods, the finite
element method has received a great deal of attention and has gained a

prominent niche since the middle of the present century.

In a general sense, the objective of an analysis using this method is: given the
joint loading, the geometry of the structure (location of the joints) and the
material properties; find the resulting joint displacements, and the internal strains,
stresses and other responses in the structural element. The basic procedure for

the finite element method is now well established and is given in Appendix 1 for
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completeness.

This method was first applied to aeronautical and marine structural analysis,
while application to reinforced concrete structures was later. This was because the
former structures are more readily assumed to be homogenous, isotropic and

continuous, while the latter structures are anisotropic with complex properties.

For particular situations, the reinforced concrete structure can be represented by
large structural elements such as beams, columns or panel type elements taken
from an assumed rigid frame structure if the analytical objective is global as
shown in Fig.1.1 (a) and (b). When a regional or local analysis is needed the
structure will then be discretized as a plane stress, plane strain, plate bending,

shell, axisymmetric solid or three dimensional solid system (see Fig.1.1 (c to g)).

Early application of finite element methods to reinforced concrete structures
was carried out by the Berkeley group during the 1950's and early 1960's in the
analysis of large mass concrete dams designed and built in North America (see
[Scordelis 1985]). In their analysis, cracking, time dependent, thermal and
sequence of construction effects were traced in the analysis of these plain
concrete structures. The earliest published report on the analysis of reinforced
concrete was in March 1967 by Ngo and Scordelis[Ngo and Scordelis 1967] They
analysed a beam as a plane stress problem. Cracking were represented by sets of
predefined "discrete cracks". Concrete and reinforcement were modelled separately
by two— dimensional triangular elements and axial bar elements. Special linkage
elements were wused to connect concrete and reinforcement. This typical
discretisation of a reinforced concrete system is shown in Fig.1.2. The stress

concentration at the tip of the cracks was not considered in the analysis.

From there on, it has been clear that when a reinforced concrete structure is
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analysed, three aspects need to be considered, i. e. concrete, reinforcement and

the interface between them.

For concrete, the standard finite element procedure can be followed assuming
that the material is homogeneous, continuous and isotropic within the element.
Comprehensive theories are summarized by various researchers, e. g. [Zienkiewicz
1981 and Bathe 1982}. Different types of element can be chosen (e. g.
isoparametric triangular elements and quadrilateral elements). However, the
investigation of the material properties of structural concrete is still incomplete. In
particular, more experimental investigation of concrete properties with reference to
the reinforcement influence is still needed for analytical requirements. A
systematic description of the material properties of structural concrete can be

found in [Chen 1982].

While concrete can be modelled by any appropriate element in the usual
manner the representation for reinforcement is often cumbersome. The difficulty
arises from the fact that the reinforcement behaves quite differently from the
concrete and makes the structure non— homogeneous and non— isotropic. To date,
three types of reinforcement approach have been developed and adopted in
reinforced concrete structure analysis. These are distributed models, discrete

models and embedded models.

In the distributed representation of reinforcement, the steel is assumed to be
smeared over the concrete element with reference to the steel bars' angle. The
steel is expected to resist stress in the original direction of the bar. In this
representation, perfect bond between concrete and reinforcement must be assumed.
The steel is modelled by evaluating a concrete— reinforcement constitutive
relationship coupled with the concrete element ones, and by assuming that the

steel has the same displacement fields as those of concrete.
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The discrete representation has the form of either bar elements or beam
elements. Bond effects can be take into account by adding some artificial
interface or linkage elements along the concrete—steel interface. This however

significantly increases the computational effort.

The embedded modelling of reinforcement is usually used in conjunction with
higher order isoparametric concrete elements. The reinforcement bar is considered
to be an uniaxial member built into the parent concrete element. This approach
places less restriction on the layout of reinforcement and the computational cost
will not increase much since the stiffness matrix of the reinforcement is assembled
into the global system at element level together with the concrete stiffnesses.

However, in most models of this type perfect bond is assumed.

The interface between concrete and reinforcing steel is characterised by a
complex mechanism. This aspect, along with the concrete cracking behaviour,
contributes significantly to the nonlinearity of reinforced concrete structures and
hence has been the subject of wvarious research studies in the finite element

modelling of reinforced concrete.

There are two main types of interface elements. One is the lumped interface
element and the other is the continuous interface element. Both of them are used
only with the discrete reinforcement representation. They are hence applicable but

not sufficient.

When cracking occurs in a reinforced concrete structure, the behaviour becomes
highly nonlinear. Hence the modelling of cracking behaviour has received much
attention. Up to now, various simulation techniques have been developed to

approximate cracking in a structure. These are discrete cracking models and
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smeared cracking models. The first one is used when there exist some dominant
cracks known in advance. The main drawbacks are that it suffers from a
continuous change in nodal connection and the crack is constrained to follow a
predefined path only. This latter objection does not fit the nature of concrete

behaviour.

The second approach is widely used and has developed into fixed and swinging
subtypes. The fixed crack model assumes orthotropy of the material after
cracking, which is not true in some situations, especially where the reinforcement
is arranged in a skew direction. In order to overcome this conflict, a strain
decomposed approach has been proposed. However, the procedure is complex.
The swinging crack allows for changes in the crack direction. This fits the nature

of the cracking mechanism but confuses the crack pattern in the loading process.

After the initiation of a crack, aggregate interlock, dowel action and bond— slip
mechanisms contribute a lot to the nonlinearity of the structure. Even concrete
alone exhibits significant nonlinear stress— strain property. Therefore, in order to
closely trace the loading response of a structure, a comprehensive nonlinear

solution scheme is needed.

Up to date, various techniques have been proposed. The commonly used
Newton— Raphson method is easy to implement into a program but is less
effective in critical— stages. When there is snap through or snap back phenomena,
the method meets particular difficulty. Recently, improvements have been made in

this area, the arc—length method in particular has given effective performance.

This thesis is generally concerned with the modelling of two dimensional
reinforced concrete structures including bond—slip effects. It deals with three

aspects of the numerical computation, i. e. modelling techniques, material
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behaviour and solution techniques. Particular attention is given to the improvement
of embedded reinforcement bar modelling. This is because previous embedded bar
models still place restrictions on the layout of steel bars as well as assuming
perfect bond. On the other hand, the embedded bar approach has advantages
over other reinforcement representations (discrete and smeared) in the construction
of finite element mesh as well as the computation effort. These become evidently
true when a structure with curved reinforcement or prestressing tendons needs to
be analysed. In fact, ever since the embedded bar formulation was
proposed[ Phillips and Zienkiewicz 1976] 5 general embedded bar model including

bond—slip effects has been a potentially powerful development.

1.2 Scope and Aims

In this study, attention is paid to the following aspects of reinforced concrete

modelling by finite element methods:

1) To eliminate the restrictions on the embedded bar model and develop a
general embedded bar formulation which can be applied to plane structure

analysis.

2) To develop a general bond—slip model to be used in conjunction with

embedded reinforcement bars within a concrete element.

3) To study bond—slip relationships, and to select a proper constitutive relation

for use in bond—slip modelling.

4) To implement strain decomposed crack models and swinging crack models, and

compare them with the fixed crack approach.
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5) To implement advanced nonlinear solution technique in order to trace post

cracking behaviour properly.

6) To develop a method for automatically generating an embedded reinforcement
mesh independent of the finite element mesh in order to define the geometry and

material properties for each bar element in each concrete element.

7) To examine the implemented modelling techniques, by analysing a stock of
numerical examples. Fundamental behaviour is studied by analysing a variety of
reinforced concrete panels under different stress states and specimens of
bond—slip tests. Perforated deep beams and beam— column junctions are also

analysed as examples of more complex engineering structures.

1.3 Layout of Thesis

A literature review on the finite element modelling of structural concrete is
given in Chapter two including failure rules and constitutive relationships of
concrete. The constitutive relationships used in this study are summarized at the

end of the chapter.

Chapter three studies the finite element discretisation of reinforcement. The
material properties of structural reinforcing steel are also given. Attention is
focused on the embedded reinforcement modelling techniques. Two new models
have been developed in this chapter for representing steel bars within a concrete

element.

Chapter four deals with cracking behaviour and cracking simulation. In
particular, the fixed crack and swinging crack models are studied. The mechanical

characteristics of these cracking models are also discussed.
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Chapter five focuses on bond—slip behaviour and simulation techniques.
Bond—slip mechanisms and bond stress—slip relationships are studied. The
discretised modelling of bond—slip behaviour is reviewed. A general embedded

bond element is presented at the end of the chapter.

In Chapter six, nonlinear solution techniques are studied. Attention is paid to

arc— length procedures and line search schemes.

Having presented the finite element modelling, Chapter seven and eight then
lead on to numerical studies of fundamental modelling problems and application to

some engineering structures.

Finally, in Chapter nine conclusions have been brought together. Suggestions for

further research are also presented.
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CHAPTER TWO
REVIEW OF CONCRETE BEHAVIOUR

AND ITS MODELLING

2.1 Introduction

This Chapter contains a brief review of plain concrete material behaviour and
its modelling under multiaxial states of stress. Failure criteria and constitutive
relationships under predominantly compressive stress states will be described in
fairly general terms since this was not an important aspect of this study.
Cracking, however, will be dealt with separately in the next Chapter because this

was of major interest.

The main features of the multiaxial constitutive model and compressive failure
criteria adopted in this study are explained. This model is straightforward and
convenient to use and was selected because it captures the essential aspects of

compressive nonlinear behaviour sufficient for the purpose of this investigation.

2.2 Concrete Behaviour

It has been generally observed that concrete can behave as either a linear or a
nonlinear material depending on the level and the nature of the stress conditions
to which it is subjected. Under low levels of stress, concrete behaves as a linear
elastic material. For higher values of stress and for sustained loading it exhibits
highly nonlinear properties, which have a considerable effect on the behaviour of
reinforced concrete structures. Under multiaxial loading, concrete shows strength
and stiffness properties quite different from those displayed under uniaxial loading

conditions.
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2.2.1 Uniaxial

A typical complete stress— strain relationship under monotonic uniaxial
compressive load is shown in Fig.2.1. Up to about 30% of its uniaxial
compressive strength f(':, concrete behaves as a linear elastic material. For stresses
above O.3f(':, concrete begins to soften until it reaches the peak stress. The curve
shows a gradual increase in curvature up to about 0.75fc' to O.Qfé, whereupon it
bends more sharply. Concrete microscopic cracks (or microcracks) begin to form
at the mortar— coarse aggregate interface. At about 0.7f(': microcracks begin to
propagate through the mortar. The onset of mortar cracking occurs at the
“discontinuity stress"[Newman 1968] and coincides with an increase in the
Poisson's ratio of concrete. Beyond the peak point, damage continues to
accumulate and concrete follows a descending curve, i. e. a region marked by the
appearance of macroscopic cracks. Finally the concrete crushes at an ultimate
strain ¢,.

The volumetric strain ¢, = €, + €, + ¢, is plotted against stress in
Fig.2.1(b). The volume change is almost linear up to about 0.75f(; to O.Qfé. At
this point the direction of the volume change is reversed resulting in "a volumetric

expansion near or at fé. The stress at this point is termed the critical

stress[Richart et al 1929]

The shape of the stress— strain curves in Fig.2.1 are closely associated with the
mechanism of internal progressive microcracking. For a stress in the region up to
about 0.3fc' the micro cracks existing in concrete before loading remain
unchanged. This indicates that the available internal energy is less than the
energy required to create new microcrack surfaces. The stress level of about 0.3fc'

has been termed "onset of localized cracking" and has been proposed as a limit
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of elasticitylKotsovos and Newman 1977]

For a stress between 0.3f, to 0.5f,, the bond cracks start to extend due to
stress concentrations at the crack tips. Mortar cracks remains negligible until a
later stress stage. For this stress range, the available internal energy is
approximately balanced by the required crack— release energy. At this stage, crack
propagation is stable in the sense that crack lengths rapidly reach their final

values if the applied stress is kept constant.

When the stress ranges from O.Sfc' to O.75fc', some cracks at nearby aggregate
surfaces start to bridge in the form of mortar cracks. At the same time other
bond cracks continue to grow slowly. If the load is kept constant, the cracks
continue to propagate with a decreasing rate to their final Ilengths. For
compressive stresses above about 0‘75fc" the largest cracks reach their critical
lengths. The available internal energy is now larger than the required
crack— release energy. Thus, the rate of crack propagation increases and the
system is unstable, since complete disruption can occur even if the load is kept
constant. The stress level of O.75fé is termed ‘"onset of unstable fracture
propagation or critical stress" because it corresponds to the minimum value of

volumetric strain.

If concrete undergoes cyclic compressive loading, it exhibits some nonlinearities
at stress above 0.6f(':. It degrades in both stiffness and strength[Karsan and Jirsa
1969, Sinha et al 1964] (see Fig.2.2). If reloading takes place, a small
characteristic hysteresis loop is formed. On the average, the unloading— reloading
curve is almost parallel to the initial tangent of the initial curve. However, for
unloading from stresses about 0.75fé, the unloading— reloading curves show strong
nonlinearities, and a significant degradation of stiffness can also be observed.

Reloading shows that the material stiffness properties have changed drastically.
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Experimental work also indicates that the monotonic uniaxial stress—strain curve
serves as a reasonable envelope for the peak values of stress for concrete under
cyclic loading. The area enclosed by each unloading— reloading curve represents

the energy dissipated during that cycle.

2.2.2 Biaxial

Early attempts on tests of concrete under biaxial loading was focused on the
strength of concrete. Later, experimental work turned to study strength,
deformation characteristics and microcracking behaviour. Comprehensive reviews

were given by Neilissen[Neilissen 1972] and Tasuji et allTasuji et al 1978] and the

state— of— the— art by Nilson and others[Nilson1982]

The typical experimental stress— strain curves for concrete under biaxial
compression, combined tension and compression, and biaxial tension are shown in

Fig.2.3 to 2.5. From these curves, the following characteristics can be seen.

1. the maximum compressive strength increases for the biaxial— compression state.
A maximum strength increase of approximately 25% is achieved at a stress ratio
of o,/o, = 0.5, reducing to about 16% at equal biaxial compression state.
Under biaxial compression— tension, the compressive strength decreases almost
linearly as the applied tensile stress is increased. Under biaxial tension, the

strength is almost the same as that of uniaxial tensile strength.

2. Concrete ductility under biaxial stresses has different values depending on
whether the stress states are compressive or tensile. For uniaxial and biaxial
compression, the average maximum compressive microstrain is about 3000 and the
average maximum tensile microstrain varies from approximately 2000 to 4000. The

tensile ductility is greater under biaxial compression than under uniaxial
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compression. In biaxial compression— tension, the magnitude‘at failure of both the
principal compressive strain and the principal tensile strain decreases as the tensile
stress increases. In uniaxial and biaxial tension, the average value of the
maximum principal tensile microstrain is about 80. Although the existence of a
descending branch under biaxial stress states has not generally been observed, by
using a constant rate of straining, Nelissen[Nelissen 1972] g5 able to achieve the

descending portions of stress— strain curves in biaxial— loading tests.

3. As the failure point is approached, an increase in volume occurs as the
compressive stress continues to increase as shown in Fig.2.6. This inelastic volume
increase termed "dilatancy" is usually attributed to progressive growth of major

microcracks in concrete.

4. Failure of concrete occurs by tensile splitting with the fractured surface
orthogonal to the direction of the maximum tensile stress or strain. Tensile strains
are of crucial importance in the failure criterion and failure mechanism of

concrete. Failure modes of biaxially loaded concrete are shown in Fig.2.7.

5. The maximum strength envelope seems to be largely independent of the load
path[Nelissen 1972] although there is some indication that nonproportional loading
produces a lower strength than proportional loading for lightweight concrete[ Taylor
et al 1972]  For proportional loading, the failure of concrete under all

combinations of biaxial loading appears to be based on a maximum tensile— strain

criterion[Newman 1968 and Tasuji et al 1978]

2.2.3 Triaxial

As shown in Fig.2.8, concrete can act as a quasi— brittle, plastic— softening or

plastic— hardening material under triaxial loading. This is because the possibility of
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bond cracking is greatly reduced and the failure mode shifts from cleavage to
crushing of cement paste. Fig.2.8 and Fig.2.9 show that the axial strength
increases with increasing confining pressure. Under very high confining stresses,

extremely high strengths have been recorded (see Fig.2.9).

Contrary to popular belief, concrete shows nonlinear stress— strain behaviour
under hydrostatic compressive loading. The hydrostatic pressure versus volumetric
strain curve in Fig.2.10 shows a reversal in curvature on loading. On unloading,
the slope is almost constant and is very close to the slope during initial loading,
except for a sharp tail in the low—stress range, which is similar to that of the
uniaxial case (Fig.2.2). Analysis of test data by Kotsovos and Newman (1977)
indicates that when it is subjected to a constant hydrostatic stress (or constant
Ooct) and an increasing shear or deviatoric stress (or 740, concrete undergoes
not only octahedral shear strain +y.; but also consolidation in the form of

compressive octahedral normal strain egcq.

Under triaxial loading, experiments indicate that concrete has a fairly consistent
failure surface which is a function of the three principal stresses. If isotropy is
assumed, the elastic limit (onset of crack propagation), onset of unstable crack
propagation, and the failure limit can all be represented as surfaces in
three— dimensional principal stress space. Figs.2.11 and 2.12 shows systematically
the elastic— limit surface and failure. For large hydrostatic compressions (along the
0,=0,=0, axis), the deviatoric sections (planes perpendicular to the axis
0,=0,=0,) of the failure surface are more or less circular, which indicates that
the failure in this region is independent of the third stress invariant. For smaller
hydrostatic pressures, these deviatoric cross sections are curved but more triangular
in shape with 3— way symmetry about the principal axes. The failure surface can

be represented by three stress invariants. Within the present limits of reported

experimental work, this failure surface appears to be independent of load
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path[Gerstle et al 1978 and Kotsovos 1979]

2.3 Failure Criteria

In defining failure for concrete under combined states of stress, criteria such as
yielding, load— capacity, initiation of crack and extent of deformation have been
used. In this study, failure is represented by the stress and/or strain states at
which concrete cannot maintain its load carrying capacity. Increasing increments of

strain result in a decrease in the stress carried by the concrete after peak stress.

In general, the failure of concrete can be divided into two types:
cleavage— type tensile failure and shear—type compressive failure. These are
characterized by brittleness and ductility, respectively. Tensile types of failure are
caused by the formation of major cracks and the concrete loses its tensile
strength normal to the direction of the crack. Compressive failure occurs when
many small cracks develop with a loss in strength of concrete in all directions.

Tensile failure criteria will be discussed in the next Chapter on cracking.

Under multiaxial compression, two types of peak stress failure criteria have

been widely accepted: i) Mohr's theory and ii) octahedral shearing stress theory.
Mohr's theory is based on the concept that failure takes place as sliding along
planes of least resistance. The theory states that the shearing stress r, on the

most vulnerable plane is a function of the normal stress o, on this plane at

failure, i.e.

Th » flop) (2.1)

It is illustrated in Fig.2.13(a). This is expressed in terms of principal stresses as
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(0, - 0y) » f(o,+ 0y) (2.2)

where it is apparent that the failure criteria is independent of the intermediate
principal stress o,. This further implies that the biaxial strength equals the
uniaxial strength. Moreover, this theory assumes that there is a unique failure
envelope for any material. These points conflict with experimental evidence.

However, the error is not great and the theory is quite commonly accepted.
Several works[Cowan 1953, Goode and Helmy 1967] have been used to support

Mohr's theory.

The most common form of Mohr's theory is Coulomb's internal friction theory.
It approximates eq.(2.1) by a straight line. Failure is assumed to occur when the
shear stress on the failure plane exceeds the sum of a constant shearing strength,
termed cohesion, and a frictional resistance which is proportional to the normal

stress on the plane, i. e.

Th > C - Op tany (2.3)

where c is the cohesion factor, and ¢ is the angle of internal friction, and

tension is positive. Fig.2.13(b) illustrates this law.

In Fig.2.14, the above law can be expressed in terms of principal stresses as

(0, - 03) > 2 c cosp - (0, + 0,) siny (2.4)

If the law is only applied in the pure compressive zones i. e. I, < —f(': (I, is
the first stress invariant, see Appendix II), then Coulomb's failure surface is a

right hexagonal pyramid with an axis 0, = o, = ¢

2 truncated at the plane o,

3
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+ 0, + 04 = —fé in principal stress space. This is shown against a typical
failure envelope in Fig.2.15, where it can seen that it under— estimates failure. A

disadvantage of this law is that ¢ and ¢ have to be estimated in some manner.

If failure is based on the octahedral shearing stress, 7ot (see Appendix II) is

a function of the octahedral normal stress aoct[Bresler and Pister 1958, Mills and

Zimmerman 1970] guch that

Toct » f(0gcy) (2.5)

Good fits have been found by assuming a linear relationship. If the law is only
applicable in pure compressive zones, the linear form of the above equation is

given by

Toct + N0ger + € 3 0 (2.6)

where n and c are evaluated directly from a plot of 7, against ooy of

available test data.

Alternatively n and ¢ can be determined by substituting known compressive
strength data in above equation (2.6). As shown in Fig.2.16, for uniaxial

compressive tests:

c, =0, =0 (2.7a)
o, = -f¢ (2.7b)
fe > 0 (2.7¢)

for biaxial compressive tests:
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g, =0 (2.8a)
g, =0, = —mfé (2.8b)
m>O0 (2.8¢c)
which gives
/2 (m-1) 0gct /2 m -
Toct + Oget - —— fc > 0 (2.9a)
(2m-1) 3(2m-1)
Toct < -fe/3 (2.9b)

In principal stress space, this equation represents a circular cone with axis o,
= o0, = 0, and truncated at the plane o, + o, + 0, = —fé. The cone
intersects the biaxial plane to give an ellipse which passes through the uniaxial
and equal biaxial compressive strength points as shown in Fig.2.17. The ellipse is

a very reasonable fit to the actual failure envelope.

However, there are objections to the use of this theory. One is that it is
apparently insensitive to large changes in the third principal stress, which can
have significant influence on the mode of behaviour. Another is that different
relationships are obtained for biaxial compressive stress states and triaxial
compressive states. To overcome this latter objection[B"eSler and Pister 1958] pe

third stress invariant, i. e.

I, = 0,0,0, (2.10)

can be included into the failure law, noticing I, is equal to zero in biaxial

situations.

The octahedral shearing stress criteria has been interpreted as a natural
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extension of Mohr's criterion. On the other hand, as the octahedral quantities are
directly related to the stress invariants, it is a particular case of the general

invariant law

£(L,, 1,, 1,) » 0 (2.11)

On the whole, both octahedral theory and Mohr's theory approximately agree

with experimental evidence, even though both have various weaknesses.

Apart from the simple models described above, there are various more
sophisticated ones. The generalized Drucker— Prager surface proposed by Bresler
and Pister{Bresler and Pister 1958] assumes a parabolic relation between 7o and
Ooct and the deviatoric sections are independent of ¢ (6 is a angle of similarity),
whilst Willam and WarnkelWillam and Warnke 1975] used a linear 7qc— 0get
relation with deviatoric sections exhibiting 6 independence. Ottosen[Ottosen 1975
and 1977] proposed a parabolic Toct— Uoct relation and 6 dependent surface.
These refined models contain all the stress invariants, reflect all the required
characteristics concerning smoothness, convexity, symmetry, curved meridians and
include the simple models as special cases. They hence give a closer estimate of
relevant experimental data. However they often require more material parameters

for their definition which is a definite disadvantage in many practical situations.

2.4 Constitutive Relationships

Constitutive laws for concrete are the analytical formulations to approximate
numerically the complicated stress— strain behaviour of concrete. A large number
of numerical models have been developed and the literature abounds with their
descriptions. Most of the constitutive models can be classified into one of the

following models[Nilson 1982]
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(a) Elasticity based models
(b) Plasticity based models
(c) Plastic— Fracturing models, and

(d) Endochronic models

In the following, these models will be briefly described. The model used in this

study will then be explained in detail.

2.4.1 Elasticity Based Models

The elasticity based model is the simplest one deduced directly by intuition or
approximate considerations which avoid the use of more sophisticated concepts
such as loading functions (surface), flow rules and intrinsic time. The elasticity
based models can be subdivided into uniaxial, biaxial and triaxial models in terms
of stress state or subdivided into incremental and total stress— strain models in
terms of the constitutive relationships. These are usually of the nonlinear elastic
type and are used primarily to represent concrete behaviour under monotonic or
proportional loading only. However, there are some uniaxial and biaxial models

developed to represent the behaviour of concrete under cyclic loading.

In general, two different approaches are employed:

i) Finite (or total) description, and

ii) Incremental (differential) description

The former is in the form of secant stress— strain formulation while the latter
is used in the form of tangential stress— strain models. These are usually in the

form of Hookean formulation, i. e.
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{0} = [D] (e} (2.12)

or

(do) = [D] {de) (2.13)

where [D ] represents either the secant or tangential constitutive matrix. (o} and

{ ¢} are the stress and strain vectors, respectively.

In the total (secant) stress— strain models, the current state of stress {a} is
assumed to be uniquely determined as a function of the current state of strain
{ €}, or vice versa. Clearly, this behaviour description is path— independent, which
is not true in general for concrete. Thus, the application of such a model is
restricted to monotonic or proportional loading regimes, and difficulty arises if it
is extended to include general stress histories involving unloading. However, this
model has been extensively utilized in describing the nonlinear deformation of
concrete under biaxial and triaxial compressive stresses due to its simplicity. In
general, most of the secant constitutive models for concrete have been formulated
basically as a simple extension of isotropic linear elastic stress— strain relations by
replacing two constant modulii (Young' modulus E and Poisson's ratio », or bulk
modulus K and shear modulus G) with secant modulii (E¢ and rg, or K¢ and

Gg), which are assumed to be functions of the stress and/or strain invariants.

The incremental elasticity based formulations are hypoelastic, i. e. they can
describe the path— dependent stress—strain state. In this material model, the
stress— strain is related linearly by material response modulii given in terms of
either (¢} or {e} or both, i. e. the tangential material matrix [D ] depends on

the current stress and/or strain state.

Due to their path— dependent behaviour characteristic, incremental (hypoelastic)
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models provide a more realistic description for concrete than the total
stress— strain models. However, under general stress histories involving reloading

from unloading, the formulation fails at or near neutral loading[Nelson and Baron

1971]

Various simplified forms of the tangential formulations have been used in the
finite element analysis of concrete material. In the simplest one, the constitutive
relations are restricted to be incremental isotropic and the tangential stiffness
matrix [D] is then expressed in an isotropic form in which the tangential modulii

are taken as functions of the stress and strain invariants.

2.4.2 Plasticity Based Models

From experimental results, it is clear that the concrete nonlinear deformations
are basically inelastic. Upon unloading, only a portion of the total strain can be
recovered. The total strain of concrete can hence be separated into recoverable
and irrecoverable components. Plasticity based models attempt to treat each
component individually. In general, models based on the theory of plasticity
describe concrete as an elastic— perfectly plastic material or account for some
hardening as an elasto— plastic hardening material. The former assumes that under
triaxial compression, concrete can flow like a ductile material on the yield or
failure surface before reaching its crushing strains. After crushing, the concrete is
assumed to lose its resistance completely against further deformations and the
current stresses (upon crushing) decrease to zero. The stress—strain relationships
include three parts: i) before yielding; ii) during plastic flow; iii) after crushing

(failure).

For the elastic— perfectly plastic models, the plastic stress— strain relations can

be formulated by defining the yield condition that marks the beginning of plastic
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flow and the failure condition that marks the beginning of crushing.

Elastic— plastic hardening models make use of the strain— hardening theory of
plasticity in establishing the constitutive relationships for concretel Buyukoztur 1977,
Chen 1981]  The primary characteristic of this model is the introduction of the
pressure sensitivity of inelastic behaviour. The initial discontinuity surface is
defined as the limiting surface for elastic and is located at a certain distance

from the crushing (failure) surface.

To form constitutive relations for a strain— hardening plastic material, three

fundamental assumptions have to be made. These are:

i) a shape of the initial yield surface,
ii) a subsequent loading surface (i. e. hardening rule), and

iif) an appropriate flow rule.

The yield condition specifies the state of multiaxial stress corresponding to the
start of plastic flow. It is assumed that yielding occurs only if the stress { o }
satisfies the general yield criterion of the form:

F({c}, k) =0 (2.14)

where k is a hardening parameter.

During an infinitesimal increment of stress, changes of strain are assumed to be

divisible into elastic recoverable and plastic irrecoverable components, thus:

{de} = {dep} + (dee) (2.15)
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A flow rule is assumed to relate the plastic strain increments {dep} to the
stress subsequent to yielding through a plastic potential function Q ({c}, k) as

follows:

{dep) = {3Q / 3{0}) (2.16)

The elastic strain and stress increments are related by the elasticity matrix [D ]

(deg) = [D] (do} (2.17)

Substituting egs.(2.16) and (2.17) into eq.(2.15), the total incremental strains

are given by

(de} = [D]" {do} + (3Q / 3{c}) (2.18)

When plastic yield is occurring, the stresses are on the yield surface given by

eq.(2.14). Differentiating this equation gives:

dF = (3F/3{c)}} (do} + dF/3k dk = 0 (2.19)

The work hardening material parameter k is taken to be represented by the

amount of work done during plastic deformation, thus:

dk = {0} {dep) (2.20)

The theory of plasticity with an associated flow rule (F = Q) has been used
extensively in early studies to describe the behaviour of concrete. Cervenka and
Gerstle[Cervenka and Gerstle 1972] ysed Von— Mises criterion to study reinforced

concrete panels, Suidan and Shnobrich[Suidan and Shnobrich 1973] ysed the same

criterion for beams.
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In the field of concrete research in relation to the theory of plasticity, attempts
have been made to alter some of the classical failure theories such as
Von— Mises, in order to overcome some disadvantages or otherwise improve their
agreement with the phenomenological behaviour of concrete. New failure theories
were therefore developed with specific application to concrete.
Buyukozturk| Buyukozturk 1977] generalized Mohr— Coulomb theory based on the
biaxial experimental data of Kupfer et allKupfer et al 1969] and Liu et al [Liu et
al 1972], However, the need for a non associated flow rule (F # Q), i. e.
formulation based on the plastic potential function Q, has been demonstrated by
Vermeer and de Borst Yermeer and de Borst 1984] j5 order to take into account
the plastic deformation in a direction different from that of loading. The
application of a non associated flow rule has been introduced by Han and
Chen[Han and Chen 1986] which has succeeded in controlling the major
deviations observed in the volumetric strains using an associated flow rule.
Recently, Famiyesin proposed a non— associated flow rule, which was applied to
material and geometric nonlinear analysis[Fal'ni)'esin 1990] However, much more
computational effort is required due to the lack of symmetry in the stiffness

matrices

2.4.3 Plastic— Fracturing Models

The study of Andernaes{Andernaes, Gerstle and Ko 1977] on the post fracture
behaviour of concrete under biaxial compression indicated that the normality flow
rule used for plastic flow of concrete is not strictly observed in the case of
fractured concrete. The inelastic behaviour was attributed to two sources: plastic
slip and micro cracking. This led to the development of constitutive models based
on the plastic— fracturing theory[Bazant and Kim 1979]  In contrast to plastic

phenomena characterized in terms of loading surfaces that depend on stresses,
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{o}, the fracturing phenomena are better described in terms of loading surfaces
or potential functions/Dougill 1975 and 1976] that depend on strains, {¢)}. Thus,

the plastic— fracturing theory requires two loading surfacesBazant and Kim 1979]

F({o}, H) =0 (2.21)

®({e}, H) =0 (2.22)

where, H and H', are some hardening and fracturing parameters, respectively.
The functions F and ¢ are chosen to depend on the first and second invariants
and take into account both plastic and fracturing deformations. In this theory the

incremental stress— strain relations are given by:

d{c} = [D] d{e} (2.23a)

where

[D] = [pel] - [DP!] - [Dfr] (2.23b)

in which [Del] is the elastic stiffness matrix, and [DPl] and [fo], introduce
the decrease is the stiffness [D] due to plastic strain increments and fracturing
stress decrements respectively. [D] is non—symmetric and generally not

orthotropic.

The theory combines plastic stress increments and fracturing stress decrements,
which reflect microcracking and takes account of internal friction, inelastic
dilatancy due to microcracking, strain softening, degradation of elastic modulii,
etc. The model requires six inelastic material parameters which have been
obtained by Bazant and Kim by fitting a large set of various types of test data

for concrete, available from the literature.
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The plastic fracturing model was originally evolved for modelling the behaviour
of metals based on the mechanisms of plastic slip in crystals (and dislocation
theory). It is therefore less effective for describing concrete. An advantage of this
model is that it gives an inelastic response for stress increments tangent to the
current loading surface, whereas the classical plasticity theory gives a perfect

elastic response for such stress increments, which is not true for concrete.

2.4.4 Endochronic Based Models

The models described so far are incrementally linear. The endochronic based
models are not, which makes little difference for proportional loading, but a great
difference for significantly nonproportional loading with rotating principal stress

directions.

The endochronic based models[Bazant and Bhat 1976] represent a special type
of viscoplasticity. The material behaviour is defined in terms of several internal
state parameters. The central key in the endochronic theory is that the stress
state is considered to be a function of the strain rate and the strain history,
defined with respect to an intrinsic time measure, which is an internal state
variable of the material. This intrinsic time is a non— decreasing scalar variable
used to measure the extent of the irreversible damage of the internal structure of
the concrete material when subjected to deformation histories. A simple form of
the theory was suggested by Schapery[SChaPer)’ 1968] and later was called

endochronic by Valanis Valanis 1971]

The most extensive developments for concrete have been carried out by Bazant

and his coworkers/Bazant 1978 and 1980, Bazant and Shieh 1980] who extended

the theory, originally developed for metals, to concrete. This extension comprises
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several important nonlinear effects expressed analytically with an extensive set of
functions which fit experimentally observed behaviour of plain concrete; inelastic
volume dilatancy, strain softening range, strain rate effects..etc. It should be
mentioned that this increase of scope is achieved at the expense of greater
complexity and several material parameters. In general this type of formulation
appears to have remarkable potential for special practical applications. However,
further research is needed in order to simplify and reduce the number of material

constants without sacrificing accuracy.

Due to the complexity of the model and that many parameters are needed for
its application, the endochronic based models are not widely used in the finite
element analysis of reinforced concrete structures. More details of this model can

be found elsewhere, e. g. [Nilson 1982] and [Chen and Yamaguchi 1985}

2.5 Constitutive Model Used In This Study

The model adopted in this study is an incremental elasticity based formulation,

(i. e. hypoelastic type) developed by PhillipslPhillips 1972] Thjs is summarized in

the following.

Before any nonlinearity has occurred (including cracking) the concrete is
assumed to be an isotropic, homogeneous material, so that the incremental
constitutive relationships are given in the global directions by the following well

known expression:

(A€} = [D] {4€) (2.24)

For plane stress
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[ Aoy ] (1 » 0 1 [Aex ]
E
Aay - — v 1 0 Aey (2.25a)
1 - »2
L A-rxyA L O 0 G(l-v»2)/El ‘A'ny‘
and
Ae, = - v (Aoy + Aoy)/E (2.26b)

For plane strain

Aoy (1-») v 0 Aey
E
boy | = ——(1_,;)(1_2,;) v (1-») 0 Aey
A7 xy 0 0 G(l+vr)(1-2»)/El (Ayyy
(2.26a)
and
Ao, = v (Aoy + Aay)' (2.26b)

where E, » and G are the initial elasticity modulus, Poisson's ratio and shear

modulus, respectively.

Once nonlinear behaviour starts to develop, the elasticity matrix [D] becomes

a tangential material matrix [DT ] so that

(40} = [Dr] (4e) (2.27)

in which E, » and G become functions of the state of stress.

If cracks occur, several options are applicable and [Dt] is modified

accordingly, to be discussed in Chapter 3.
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The model simulates nonlinear behaviour in compressive regions and was
developed on the basis of deviatoric and hydrostatic components of stress and
strain. Experimental evidence suggests that for monotonically increasing load
approximately unique relationships exist between hydrostatic stress o, and
volumetric strain ey, and between deviatoric stress and strain (conveniently
represented by octahedral stress and strain 7,0, Yocy) until fairly close to
ultimate/peak stress conditions. The deformation response can then be represented
by unique relationships up to peak stresses. Using an incremental formulation, the
bulk modulus Kt and the tangent shear modulus Gt are assumed to be functions

of the first and the second stress invariants I, and J,, respectively, i. e.

Kr = £,(I,) (2.28a)

Cr = £,(J,) (2.28b)

The above assumptions imply that the concrete remains isotropic under

multiaxial stress, in the absence of cracking, up to ultimate conditions.

The invariant relationships can be obtained directly from experimental curves of
om against ¢, and 7oc¢ against ygcr. In cases where the data is insufficient, it
can be reasonably assumed that Kt is constant and the deviatoric relationship
obtained from this starting point. In this study, Kt was always assumed to be

constant such that

Ec
Kp = _ (2.29)
3 (1-2v)

where E is the initial elastic modulus of concrete and » is Poisson's ratio.

Using this assumption, the tangent shear modulus G was derived[Phillips 1972]
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from experimental curves[Kupfer 1969 and Richart 1928] a5 shown in Fig.2.18. A
permanent table of constants defining this curve is used in this study, which is
accessed in a linear piecewise manner. An alternative relationship can be used as

follows:

Gt ./J2
— = 0.0536 (
G

y=1.8448 (2.30)
0 fe

where G, is the initial elastic shear modulus.

Ultimate stress conditions are predicted by the octahedral shear stress theory,
described earlier in section 2.3 and defined by equations (2.6) to (2.9). The equal
biaxial strength to uniaxial strength ratio, m = fbcl/fév was normally set to 1.2
unless experimental data for a specific concrete was otherwise available (which is

very rare).

After peak stress, the material disintegrates considerably because of internal
microcracking. The existence of a stress—strain curve beyond peak stress allows
the load to be redistributed to adjacent material after maximum strength is
exceeded. This is modelled in a fairly crude manner. The values of GT and Kt
are simultaneously reduced to relatively small values and the state of stress is

held constant at a proportion of its peak values {op} for increasing strain, i. e.

{0} = ¢ {op} (2.31)

where 0 < ¢ < 1.0.

This allows local stress redistribution to occur until a maximum strain condition
is reached indicating crushing, after which all stress is reduced to zero. This is

given by an octahedral shear strain criterion
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Yoct ¥ N €ger Y ¢ 50 (2.32)

where 7yt and e€pop are octahedral shear strain and octahedral normal strain (see
definition in Appendix II). a and c¢ are constants evaluated directly from the
experimental uniaxial crushing strain e, and biaxial crushing strain meg, in a

similar manner to that for the octahedral shear stress criterion, eq.(2.7) to (2.9).



Lateral
strain >

0.3 Proporuonality
iimit

¢rineal stress

Volumetric strain

Axial strain
€L TE TE YEs

ta

th)

Fig.2.1 Typical Stress— strain Curves Under Monotonic Loading

Compression
-
2
2
2
A
Tension , Compression
-
S
Strain
Tension

Fig.2.2 Uniaxial Compressive Cyclic Loading



S =328 MP

. ! | : : €. €1.€;3

(9
t

2z | 0 -1 -2 -3 10-3
Tensile strain Compressive

Fig.2.3 Stress— strain Curves Under Biaxial— compression (Kupfer et al 1969)

LS

| 0 -1 -2

Strain. in.in X [0~}

Fig.2.4 Stress—strain Curves for Biaxial Tension— compression (Kupfer et al 1969)



2 =a0).0s
— =0.00/1.0 =0.00
— = =0.55/1.0=0.55
=1.00/1.0 =1.00

1 :
-0.04 -0.02 000 0.02
Strain. in.an & 1077

0.04 V.06 0.08 J.10

Fig.2.5 Stress— strain Curves for Biaxial Tension (Kupfer 1969)

0.001 0.002

0.001 0
Volume reduction

Volume tncrease
AV

Fig.2.6 Volume Change Under Biaxial Compression



Fig.2.7 Failure Modes of Concrete Under Biaxial Loading (Nelissen 1972)

-120 0, =0, = -28.2MPa

-100

MPu

4y,

Fig.2.8 Triaxial Compression Test (Richart et al 1928)



Akl stress oy M

Axial strain

Fig.2.9 Triaxial Stress— strain Curves (Balmer 1949)

.
¢

um I/,

Fig.2.10 Behaviour of Concrete in Hydrostatic Compression

(A= Palaniswamy 1973; B= Green and Swanson 1973)



"l

Iarture
surtace

Elastic
limnit
surtace

o

Fig.2.11 Failure Surface of Concrete in 3— D Stress Space

—-ay/f¢

Fig.2.12 Failure Surface for Concrete on Deviatoric Planes



failure envelope

(a) Generalised Mohr's Failure Enveiope

Coulomb's law

tension cut-off proposed
by Cowan 1953

(b) Internal Friction Theories
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CHAPTER THREE
CRACKING BEHAVIOUR AND NUMERICAL MODELLING
OF

CRACKS IN REINFORCED CONCRETE

3.1. Introduction

Due to the tensile weakness of concrete, concrete behaves in a brittle manner.
When the tensile stress of the concrete exceeds its strength a crack will occur,
after which the mechanism becomes complicated. In the presence of
reinforcement, force transfer at and between cracks is effected not only by
aggregate interlock, but also by dowel action, bond—slip interaction, and tension
stiffening. In the concrete itself, some tensile capability still exists due to

softening behaviour.

There is no doubt that the formation of cracks is one of the most important
nonlinear phenomena which govern the behaviour of reinforced concrete
structures. Consequently, any numerical approach used for the analysis of such
structures should embody a sound numerical procedure for dealing with the
formation of cracks, including not only opening but also closing and reopening.
The force transfer between cracks and at the crack surface also needs to be
taken into account. In fact, ever since the finite element method has been
applied to reinforced concrete structures, the formation of cracks and post

cracking behaviour have received much attention.

Ngo and Scordelis]Ngo and Scordelis 1967] presented the first published
procedure to allow cracks to form in a finite element mesh, in which cracks

propagate along predefined inter— element boundaries. This became well— known as
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the discrete crack model. An alternative approach known the smeared crack
concept was introduced by Rashid[Rashid 1968] This simulates the formation of
cracks by replacing the isotropic stiffness matrix by an orthotropic or
non— orthotropic stiffness matrix upon crack initiation. This approach effectively
smears cracked concrete properties over an appropriate zone of interest (usually
an element or volume represented by an integration point). Since these works,
there have been numerous developments which are comprehensively summarized
elsewhere[Nilson(ed.) 1982 and Chen 1982] However, of the two approaches, the
smeared crack concept has become by far the most popular because it can be

readily incorporated into finite element procedures.

In this chapter, cracking behaviour will be firstly reviewed. Secondly, crack
simulation techniques are discussed with smeared crack approaches being examined
in detail, including the fixed orthogonal crack model, the multi— directional strain
decomposed crack model and the rotating crack model. Finally, discussion on the

relation between these crack models will be given.

3.2. Behaviour of Cracked Concrete

In a reinforced concrete element, when a crack occurs at a point where the
tension stress exceeds the tensile strength of the concrete, the behaviour of the
cracked reinforced concrete will depend not only on the overall state of the stress
but also on the direction of the reinforcement in relation to that of cracking.
Phenomena such as tension stiffening, dowel action and aggregate interlock across
the crack surface will arise therefrom. These accumulated factors will characterise

the nonlinearity of the structure locally and on the whole.

In finite element analysis, the concrete in tension is usually considered to be a

linear— elastic and isotropic material before cracking. In the two dimensional plane



Chapter Three -36-

stress configuration, the incremental constitutive relationship is simply given by

AT s, 1 7 0 Aeyy
EC
AO'yy = v 1 0 Aeyy (3.1)
1 - »2
Agxy 0 0 (1 - wv)/2 Afxy

where E. is Young's modulus, » is Poisson ratio.

After cracking has occurred, the material constitutive relationship must be
modified. In the "smeared crack approach"”, the elastic modulus associated with
the direction of the maximum principal tensile stress o, is reduced. In the local

crack system, a common stress— strain relationship is given by

[ Aot ] [ pRE. v uE . 0 11 Aeg,
l-pur? 1-pr?
Ao, = v puE E. 0 Ae, (3.2)
l-pv? 1-pp?
L A7, , | L 0 0 gCl L Ay, ,

where p is elastic modulus reduction factor depending on the tension stiffening
law, 8 is a shear retention factor, and where it is assumed no interaction exists

between normal and shear stresses and strains.

3.2.1 Tension Stiffening/Strain Softening

Up to cracking, the strain— stress response of concrete in tension is practically
linear. Soon after cracking, plain concrete's ability to resist tension drops to zero.
Gopalaratnam and Shah[CGopalaratnam and Shah 1985] yere able to obtain the
post peak response of plain concrete in tension. In their rectangular prism
specimen, they obtained the local strains and average crack widths using optical
measurements. They proposed an expression in which the tensile stress in concrete

decreases asymptotically to zero as the width of the crack increases. The
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post— cracking resistance of concrete was attributed to the hypothesis that the
cracked surface is connected and/or bridged by aggregates or crystals and the
observed crack width is only a measure of the average separation of these

surfaces.

In reinforced concrete structures, the cracked concrete can resist average tensile
stresses by virtue of the tensile strength capacity of the uncracked portions of
concrete between two adjacent cracks, and between which the bond transfers the
forces from concrete to reinforcement. This phenomenon is termed tension
stiffening. Many researchers have proposed expressions to model the tension
stiffening effect which relate the average tensile stress in cracked concrete to the

average tensile strain.

As shown in Fig.3.1, when the concrete reaches its tensile strength, primary
cracks form. The number and extent of the cracks are controlled by the size and
the placement of the reinforcing steel. The concrete stress does not drop to zero
but remains at a certain amount due to the tension stiffening effect. The change
of the stress distribution in concrete and reinforcement is related to the bond

effect.

In order to improve the numerical representation of cracking and to some
extent ensure the numerical stability of the solution, tension stift’ening[SQanlcm

1971} needs to be added.

In this study, the following tension stiffening laws have been examined.

— the stiffness of the concrete is neglected after cracking, i. e. the tension stress

drops to nearly zero right after cracking, see Fig.3.2(a);
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— the concrete modulus is reduced gradually in a bilinear manner with a
discontinuity upon crack initiation, see Fig.3.2(b)[Yamag“Chi 1985]  in which «
and ¢ are assumed to be 0.5 and 20e.,, respectively. This type of curve is

commonly used in the finite element analysis of reinforced concrete structures.

— a recent experimental study on plain concrete by Phillips and Zhang[1990],
indicating a steep portion in the strain softening curve at cracking. Afterwards,
the concrete stiffness reduces gradually. Therefore, concrete behaves in a trilinear
manner, as shown in Fig.3.2(c). Based on their experimental results, a derivation

using fracture energy theory gave the relationship

bgsc = 66 - Sbep (3.3a)

where 6. = f{/E., E. is the concrete modulus,
fy is the concrete tension strength,

6f, 8ggc and b, are denoted in Fig.3.2(c).

This curve overcomes the sudden discontinuity at the crack point, which is
preferable in computation. However, since it was obtained from pure concrete

specimens it dose not include the influence of tension stiffening effects.

— based on a systematic experimental study of the cracking mechanism, Bhide
and Collins{Bhide and Collins 1987] considered that tension stiffening is affected
to a certain extent by the angle between the cracking direction and the

reinforcing direction, and proposed the following equation:

o, = E. ¢, (e, £ €cp) (3.3b)
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fe
pm (e N eop) (3.3¢)
1 + 1000¢, /o

where E. is the initial Young's modulus of concrete, and ¢, and fy are the
cracking strain and stress, respectively. The factor « accounts for the influence of

the reinforcing bar orientation and is given by

a = (90/] 6 [|)'-5 (3.3d)

where 6 is the angle between the crack direction and the reinforcement,
measured in degrees. If a radian measure is used, the term 90 should be replaced
by =/2. In the case of unequal reinforcement in two orthogonal directions, the
direction of the stronger reinforcement is taken as the axis of reinforcement.
Fig.3.2(d) shows the strain— stress relations for different values of 6 ranging from

90 degrees to 20 degrees.

According to the results of Bhide and Collins, good agreement was obtained
when comparing their own experimental data with those of Kollegger et
allKollegger1986] ' 1n fact, this relation has quite often been adopted in recent

research studies.

With tension stiffening introduced into the finite element modelling of
reinforced concrete, the analysis becomes more close to the real behavior.
However, the inclusion of tension stiffening in the material constitutive relationship
means that such modified stress—strain relations do not any more match the
properties of plain concrete or steel. The resulting constitutive matrix is actually
an anistropic relationship. Furthermore, the steep descending part of the tension

stiffening curve can sometimes cause computational divergence.

A further difficulty is that softening behaviour is related to the energy release
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rate over a given area or crack length. This means that it will depend on the
volume of material represented by a finite element or integration point, thus
causing mesh dependency. This can be partially overcome by noting that the
fracture energy of concrete Gg is related to a characteristic length 1. of the
crack which in turn can be related to the volume of material. The fracture
energy Gg can be deduced from the area under the softening branch of the
prescribed stress— strain curve. This allows the parameters defining the curve (e.
g o, 0G» OF, € in Fig.3.2) to be determined according to element size.
However, this concept dose not account for tension stiffening, only softening, and
therefore it is difficult in practice to set realistic values to the parameters

involved. Furthermore Gy is not usually available, nor easy to measure.
3.2.2 Shear Retention

In general, cracks in concrete are rough. Shear force can then be transferred
on the faces of the crack due to the aggregate interlock. The amount of the
shear stress transmitted by the interlock is dependent upon the average width of
the crack, compressive strength of the concrete, maximum aggregate size and
local compressive stress due to riding of one face of the crack over the other.

The mechanism is shown in Fig.3.3.

The shear stress and normal stresses transmitted by reinforcing steel due to
dowel action across the crack is dependent upon the crack width, diameter of the
reinforcing bar and the relative displacement of one face of the crack with
respect to the other in the direction at right angles to the reinforcing bar, see

Fig. 3.4.

In reinforced concrete, the mechanism of dowel action is in fact an interaction

between reinforcement and concrete. Many experimental investigations[Fenwick
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1966 and Millard and Johnson 1985] have been carried out since late 1960's.
Park and Paulay[Park and Paulay 1975] have identified the three mechanisms of
dowel action, i. e. the direct shear, kinking and flexure of the reinforcing bar. A
formulation to calculate the maximum dowel shear for a reinforcing bar was
derived as well. They concluded that if the concrete supporting the reinforcing
bar is considered to be rigid, the first two mechanisms would predominate.
However, Mills[Mills  1975] recognized that significant deformation does occur in
the concrete supporting the reinforcing bar, so that flexure of the steel is a

principle action.

Recently, in the study of Bhide and CollindBhide and Collins 1987] ; peam
model was suggested for the dowel action and interlock simulation, in which the
effective length of the beam was assumed to be the component of the crack
width in the direction of the reinforcing bar plus four times the diameter of the
bar under consideration. If the concrete layer in the direction of the dowel

displacement is weakened, the effective length of the dowel action will be longer.

In finite element analysis, the overall shear transfer effects are represented by

a shear retention factor, (. This was first introduced independently by

Phillips Phillips 1972] and Suidan and Schnobrich[Suidan and Schnobrich 1973]

Normally one of the following methods is adopted.

— the shear stiffness of the uncracked state is kept unchanged after the first

crack appears (i. e. the shear retention factor 8§ = 1.0);

— the shear stiffness is set to a constant value after cracking (for instance ( =

0.5 as shown in Fig.3.5(a));

— the shear modulus is reduced linearly (Cedolin/Dei Poli[1977]) or hyperbolically
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(Al—- Mahaidil1979] ) as a function of the actual strain normal to the crack, see

Fig.3.5(b) and (c).

— recently, Mehlhorn[Mehlhorn 1990] proposed a approximation based on their

experimental investigation, which takes account of the reinforcement ratio p, i. e.

In(ecy/cy)

f - (3.4a)

where

c,=7+5: (p-0.005)/0.015 (p &« 0.02) (3.4b)

c, =10 -2.5 - (p -0.005)/0.015 (3.4c)

If the reinforcement ratio is greater than 0.02, p = 0.02 is suggested.

If two directions are cracked, the reciprocal of the retention factor (8 is given
by the addition of reciprocals B, and (3, determined separately from both

directions using the above equation.

= — 4+ — (3.4d)

All these alternative relationships are have been examined and compared in this

study.

A more comprehensive scheme for calculating the shear modulus of cracked
reinforced concrete has been suggested by Bazant and Gambarovall980] and
Walraven[1980] based on experimental data. They decomposed the average strains
of the cracked reinforced concrete element into the strains of the uncracked

concrete between the cracks and the strains due to the cracks. Each of these
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obeys different constitutive laws obtained from experiments. The incremental
material law of cracked reinforced concrete is given by combining the constitutive
relations of reinforcement with that of concrete which includes the cracking
effects. The resuiting equation describes the relation between stresses and strains

in a cracked reinforced concrete element in the ‘'smeared manner'.

If a crack closes during unloading or reloading, the shear retention factor is
usually set back to 1.0, which in fact implies that the crack closes perfectly

which is an approximation to real behaviour, although the error is reasonable.

3.3. Simulation Techniques of Reinforced Concrete Cracking

As mentioned earlier, crack representation in reinforced concrete can be
classified into discrete and smeared models in finite element analysis. The former
approach simulates a crack as a geometrical discontinuity, whereas the latter
imagines a cracked solid to be a continuum. In the following sections, the
discrete crack model will be briefly described and the smeared crack model will
be discussed in detail. In particular, the orthogonal fixed crack, non— orthogonal
strain decomposed fixed crack and rotating crack models are derived and
examined. The smeared models have all been programmed and compared

numerically, some results of which are reported later.

3.3.1 Discrete Crack Model

As shown in Fig.3.6 Ngo and ScordelisI]Ng0 1967] and Nilson[Nilson 1968]
analysed a particular crack configuration of the beam. The cracks were modelled
by the separation of the predetermined nodal points. Special spring or linkage
elements were placed across the crack to simulate aggregate interlock (see

Fig.3.7). Nilson allowed the finite element model to generate the location of the
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cracks. In this representation, cracking is based on the average stress in two
adjacent elements. When the average stress exceeds the tensile strength of the

concrete, the elements were disconnected.

Later, this method of representing discrete cracks was further improved by
partially automating the generation of crack patterns by Mufti et allMufti 1970
and 1972] and Al— MahaidilAl— Mahaidi 1979] The former author incorporated a
predefined crack utilizing two nodes at one point connected by a linkage element
which had no physical dimension before cracking. When the stress in the adjacent
elements exceeded the concrete strength, the linkage element was softened to
allow the crack to open. The remaining stiffness represented interlock. The latter
author followed a similar routine by defining either two or four nodes at a single
point, tied together by stiff linkage elements until cracking occurs. In his model,
aggregate interlock was also represented by varying the stiffness of the linkage
elements. Two nodal points allow cracking in one direction while four nodal

points at each boundary intersection allow cracking in two directions (Fig.3.7).

However, all the approaches above suffer from two drawbacks. First, it implies
a continuous change in nodal connection, which dose not fit the nature of the
finite element method. Second, the the crack is constrained to follow a predefined
path along the element edges, which puts doubts on the fidelity of the approach

compared to reality.

The drawbacks are generally considered to be serious and attempts to eliminate
them have been reported only sporadically. Prominent amongst these are the
introduction of graphics—aided algorithms of automatic remeshing and of

techniques which permit discrete cracks to extend through finite

elements[ Blaauwendraad 1981 and 1985].
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On the other hand, a class of problems do exist where the exact orientation of
the discrete crack is not necessarily the prime subject of interest, for example
mode I fracture at a crack tip in the form of a straight separation band, the
location of which is known in advance, or in some engineering problems in which
cracking is dominant in a particular position only. For such cases, the above
drawbacks vanish and a simple form of discrete cracks with a predefined

orientation can be used.

3.3.2 Smeared Crack Models

The smeared crack modelling is based on the assumption that the concrete
element is a continuum. The approach, introduced by Rashid[Rashid 1968]  starts
from the notion of stress and the strain permitting a description of cracking in
terms of a stress—strain relationship. It is sufficient to switch from the initial
isotropic stress—strain law to an orthotropic law upon crack formation, with the
axes of orthotropy being determined according to the condition of crack initiation.
The procedure is attractive not only because it preserves the topology of the
finite element mesh, but also because it does not impose restrictions with respect
to the orientation of crack directions. It is for these two reasons that smeared
models quickly replaced the early discrete ones and came into widespread use

during the 1970s.

In fact, ever since cracking has been modelled, the discrete concept and the
smeared concept have been the subject of much controversy. The discrete concept
fits our natural conception of fracture since we generally accept fracture as a true
geometrical discontinuity. Conversely, it has been stated that a smeared
representation might be a more realistic consideration for the "band of
micro— cracks” that blunt fracture in matrix— aggregate composites like concrete.

The width of such a band which occurs at the tip of a visible crack has even
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been claimed to be a material property. At present, however, it is difficult to
judge these arguments since experimental detections are scarce and contradictory
as far as whether these processes occur in a discrete manner or not[Diam 85,
Tait 86]. Furthermore, it is indeed correct that the cracking distributions vary
from structure to structure due to the arrangement of the reinforcement and the

steel— concrete ratio.

The arguments change when a distributed fracture is considered. Examples are
the diffuse crack patterns in large—scale shear walls or panels due to the
presence of densely distributed reinforcement. Such cases provide a true physical
basis for the smeared concept, at least if the scale of the representative
continuum is large compared to the crack spacing. Therefore, the smeared
concept is a rational approach towards distributed fracture while the use of the
discrete concept, which considers each individual crack as if "under a magnifying

glass", clearly becomes unwieldy.

3.3.3 Failure Criteria

The cracking failure criteria to predict crack initiation can be used with any
crack modelling concept. Two types of cracking critera are commonly employed.
In maximum stress theory, it is assumed that cracking occurs when the maximum
tensile stress in a direction exceeds the limiting value of tensile stress, while the
maximum strain theory assumes that the crack appears when a maximum tensile
strain reaches a limiting value. These two criteria are in fact the same if » =
0.0. A crack is normally assumed to occur in a plane normal to the direction of

the principal stress or strain.

The two criteria are compared against a typical two dimensional failure

envélope of concrete in tensile regions in Fig.3.8. The stress theory overestimates
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the fracture stress whilst the strain theory underestimates it.

In this study, the maximum stress criterion is used.

3.4 Smeared Crack Models

Smeared crack concepts can be categorized into fixed and rotating crack
concepts. With a fixed concept, the orientation of the crack is fixed during the
entire computation process, whereas a rotating concept allows the orientation of

the crack to co—rotate with the axes of principal strain and stress.

In all methods, the initial crack at a point is determined by the appropriate
failure criteria. However, if this crack is caused by stresses or strains higher than
the allowed maximum stress/strain value due to the increment step size, the
resulting crack angle will be different from that if sufficient incremental quantities
had been added. Therefore, the effect of increment size can be minimized by

calculating the correct angle. The formulation used in this study is

1 Ty T AT
ae = — tan-! [ Y Y ] (3.5a)
2 (o + Aoy) - (0y + Aoy)
where {AU"} = F - (Ao}, F is a correction factor, {Ac} is the stress

incremental vector obtained in the solution and {Aa"} is the proportion of

incremental stress sufficient to cause cracking.

F is calculated on the assumption of proportionality of stress and is given by

-8B+ J(B? - 4 o))
F = (3.5b)
2o
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where

o = (Ar2yy - 4 Aoy Agy)

ke
1

2 [Txy Arxy + 2(oer - cry)Aax + 2(0qy - o'x)Ag'y]

A= [72xy = b4(ocr - 0y)(Or - Uy)]

For maximum strain criterion, a similar procedure can be followed by replacing

(o} with {¢}, and {Ac} with {Ae}.
3.4.1 Fixed Crack Models

In fixed crack models, the crack direction is fixed during subsequent loading
and the next crack can only occur at a right angle or at a predefined angle to

the previous one. These are modelled by orthogonal and non— orthogonal

strain— decomposed crack models, respectively.

3.4.1.1 Orthogonal Fixed Crack Model

When the first crack occurs, the material properties associated with o, are
modified. In the local crack system, the adopted relationship adopted in this study

is given by

[ Aoy ] [ Eg 0 0] [ ae, 1
bo, | = 0 E. 0 Ae, (3.6)
L A7, L 0 0 BG 1 L Ay,, |

where E.' denotes the reduced elastic modulus and B is a shear retention factor.

This is a special case of eq.(3.2) in which the Poisson effect is ignored after

cracking.



Cracking Behaviour and Numerical Modelling of Cracks in RC =49~

A second crack is allowed to form at a right angle to the first one and the
constitutive relationship in the local crack system is then modified accordingly.
Crack closing and reopening are checked by examing the normal strain e., across

the crack, i. e. a crack closes if

€cr € €R (3.7a)

and re— opens if

€cr > €R (3.7b)

where eg is a residual strain. In this study eg = O.

3.4.1.2 Strain Decomposed Model

Basic Concept

The strains in the above equations represent an overall incremental strain of
the cracked concrete which includes the strain due to cracking as well as the
strain of the concrete between the cracks which represents uncracked concrete.
Consequently, the stress—strain laws correspond to a smeared— out relation for the
cracked concrete, without making any distinction between the crack and the solid
material between cracks. However, a particular crack law usually starts from the
notion of crack strain rather than total strain, which can not be incorporated in a
transparent manner. A disadvantage therefore arises. Indeed, a gap has tended to
develop between the sophisticated crack models developed by material scientists
and the coarse smeared crack concepts employed by structural analysts. For

instance, the choice of the shear retention factors was often made arbitrarily
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without reference to aggregate— interlock models, and the stress— strain relations

were employed regardless to the coincidence of their directions.

A solution to this deficiency is to decompose the total strain Ae of the cracked
concrete into a part Ae’T of the crack and a part Ae€O of the solid material
between the cracks (superscript €T and €O refer to the crack and solid concrete

respectively), i.e.
Ae = AeCT + AeCO (3.8a)

The importance of the decomposition has been recognized by a number of
researcherg Litton 1974, Bazant 1980, de Borst 1985, Rots 1985a, Riggs 1986] 14
is in essence an attempt to come closer to the discrete crack concept which
completely separates the solid material from the crack by using separate finite
elements, and in which the concrete element and the linkage element models the

cracking mechanism using different constitutive laws.

The strain vectors in eq.(3.7) relate to the global axes and for a three
dimensional configuration they have six components. The global crack strain vector
is given by

cr ]T

AeST = [ Aely Aeyy Aegy Avgy Myyy  Aygy (3.8b)
yy y Ay

where x, y and z refer to the global coordinate axes and the superscript T
indicates a transpose. When incorporating crack traction— crack strain laws it is
convenient to set up a local n, s, t—coordinate system which is aligned with the
crack, as shown in Fig.3.9. In the local system, a local crack strain Ae€T is

defined as
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cr cr r 1T
4eCT = [ Aepn  Avps Avne ] (3.9)

where the components in the brackets are the mode I crack normal strain and
the mode II and III shear strains respectively. The other three remaining crack
components in the local system do not have a physical meaning and can be

omitted.
The relation between local and the global crack strain is then obtained by
AeCr = T AeCr (3.10)
where T is a transformation matrix reflecting the orientation of the crack.
A fundamental feature of the present concept is that the orientation of the

crack is assumed to be fixed upon crack formation, so that the concept belongs

to the class of fixed crack concepts. For a three dimensional configuration T is

given by

i
12 Ix 1y 1, 1y
2
lTIx lTlx my mz mx
2
nx nx ny nz nx

21ymy  Iymy + Iymy  lpmy + lymy

2mxnx myny + myny myny + myn,

L 2ny 1y nxly + nylx nyly + ngl, |
(3.11)

where ly, my and ny form a vector which indicates the direction of the local

normal axis expressed in global coordinates. In accordance with this convention,

the direction cosines with subscript y indicates the local s—axis and those with
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subscript z indicate the local t—axis. For a plane stress configuration the third
column and third, fifth and sixth rows of eq(3.11) vanish, rendering a 3 by 2
matrix, while for axi—symmetric and plane strain configurations the third column
and the fifth and sixth rows of eq.(3.11) vanish, leading to a 4 by 2 matrix. In
other words, the reduced number of rows corresponds to the reduced number of
global strain components, while the reduction from three to two columns arises

from the fact that the mode II component vanishes.

In the local coordinate system, we define a vector At¢f of incremental tractions

across the crack

AE" — [ afh L Af T (3.12)

cr. . cr cr
where At in the mode I normal traction and Atg and Aty are mode

II and mode III shear traction increments as shown in Fig.3.9. The relation

between stress increment Ac and the local traction increment can be derived as

AtST =TT Ag (3.13)

In order to complete the system of equations, a constitutive model for intact
concrete and a traction— strain relation for the smeared cracks is needed. For the

concrete between the cracks a relationship is given by

Ac = DO A€S° (3.14)

where the matrix DCC contains the instantaneous modulus of the uncracked
concrete. In a similar way, a relation is inserted between the local crack strain

and the local tractions

AFT - BT asT (3.15)
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where DCT is a constitutive matrix incorporating the crack properties of the mode

I, the mode II and the mode III. This will be discussed in detail later.

The overall stress—strain relation for the cracked concrete with respect to the
global coordinate system can now be developed. Substituting eq.(3.8) into (3.7),

and subsequently (3.7) into (3.14), yields

Ac = D°° [ Ae - T 2e°" ) (3. 16)

Pre— multiplying eq.(3.16) by TT and substituting eq.(3.15) and (3.13) into the
resulting left side of eq.(3.16) gives the relation between the local crack strain

and the global strain, i. e.

2" = [ o 1T p°° 1 771 1T p°° 4 (3.17)

The overall relation between global stress and global strain is therefore obtained

by substituting eq.(3.17) into eq.(3.16),

a0 = [ D =D 1[0+ 1 0T 11T 0 ] ac

crco

=D Ae (3.18)

where DCTCO  indicates the expression between the brackets, referring to the

cracked concrete.

In this relation, it is noticed that as long as the the constitutive matrices DCO
and D€ remain symmetric, symmetry is also preserved with regard to the

constitutive relation eq.(3.18) for the cracked concrete.

In the incremental expression of eq.(3.18) two points need to be addressed for
proper cracked concrete modelling. First, the relation implies a linearization

around the current state, which means that the stress increment computed holds
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exactly only if DO and DT remain constant during the current strain increment.
If either of these matrices is not constant, which occurs for instance if the
concrete model involves plasticity or if the crack model involves nonlinear fracture
functions, eq.(3.18) serves as a first order approximation. A corrective procedure
is then provided by an inner iteration loop that repeatedly evaluates eq.(3.17) and
eq.(3.16). However, in the case of strong discontinuities (e. g. very steep

softening), the method may sometimes fail, as pointed out by Rots[Rots 1986]

Secondly, in this incremental expression the state change of the concrete stress
due to crack initiation, closing and re— opening should be involved. The criteria
are generally defined in terms of total local crack stress or crack strain, which
can be obtained from the global stress or strain at the sampling point. In this

study, strains are used as described for the orthogonal fixed crack model.

3.4.1.3 Multi— directional Fixed Crack Model

An advantage of the decomposition of the total strain into the concrete strain
and crack strain is that it allows for a sub— decomposition of the concrete strain
and crack strain individually. In this study, a sub— decomposition of the concrete
strain[de Borst 1986] will not be considered, only a sub— decomposition of the
crack strain. This then will allow for the separate contributions from a number of
multi— directional cracks which occur at a sampling point simultaneously. The

crack strain is given by

F AT+ AST o+ L (3.19)

Ae 2

cr s . .
where Ae, is the global crack strain increment owing to a primary

cr . L .
crack, Ae, is the global crack strain increment owing to a

secondary crack and so on.
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In fact, the idea of such sub— decomposition of the crack strain is not new. It
was advocated by Littonllitton 1974]  The essence of the approach is that each
fixed crack is assigned its own local crack strain vector €;{®’ and its own traction
vector t°f and its own transformation matrix T;, according to egs.(3.9), (3.12)
and (3.11), respectively. Furthermore, it is convenient to assemble these
single— crack vectors and matrices into

cr cr

de °F — [ 4eST 4T ... T (3.20)
at °f - atSt oAt L T (3.21)
AT °7 = [ ar$T ArSt ] (3.22)

In these formulae above, ~ indicates an assembly of multi— directional cracks.

Similar to eq.(3.10), eq.(3.19) becomes

~cr

acr
Ae

-T cr

Ae (3.23)

In a similar way, the single— crack traction— strain relations can be expanded

into a multi— crack equivalent of eq.(3.15)

at ¥ -~ D T pe °T (3.24a)
or in matrix form
cr cr cr
At D,, D,, ... de,
Atz | = | Dy, D,, ... le, (3.24b)

From this expression, it is seen that the relation is very general since it allows

for interaction between the cracks via the off— diagonal submatrices.
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In the similar way to the single crack strain decomposition concept described in
the previous section, an analogous expression for multi— directionally cracked

concrete is obtained.

scr + %T Dco :I‘. ]—1 :l:T Dco ] Ae

(3.25)

Ac = [ D° -D°T[ D
in which the assembled matrices T and DCT are inserted instead of the single
crack matrices T and DCf. By using eq.(3.25), the cracking state at a point can
be represented by cracks in different directions at the same time, i. e. a
multi— directional cracking state. However, if this occurs it does cause some

difficulties in computation.

After an initial crack direction has been established potential subsequent crack
directions are defined by a ‘threshold angle' o4 in relation to the original crack
direction. These are checked in turn through 180°. e. g. if oy = 30.0, then 5

directions are examined for potential cracks.

Cracking States

A state change for one of the cracks promotes state changes in the others. For
instance, the initiation of a new crack encourages existing cracks to close. If such
multiple state changes occur during the current strain increment, the ‘'most
critical' state changes should be traced and handled first, while subsequent state
changes should be  treated by splitting Ae‘f in its turn. Depending on the
particular crack closing condition, this procedure may become elusive and it may
be more convenient to allow only one crack to change its state during the
incremental simulation. In the latter case, inconsistencies can not entirely be

avoided, since postponing crack closing involves the crack normal strain to
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temporarily become negative, which is physically meaningless.

Constitutive Relationships

As pointed out above, the material constitutive relationship DO are the
properties of the uncracked concrete, in which the initial value of the Young's
modulus E is used. But the structure of the material matrix DCT is slightly more
complicated than that of the stress—strain matrix DO due to that the size DCT is
dependent on the number of the opening cracks in an integration point. For one
crack, it is a 2 x 2 matrix while for two cracks it is a 4 x 4 matrix and so on.

For n open cracks, a reasonable approximation is given by

R D Lo
|
|

Der - o Dby’ |, 0 (3.26)

I

______________ —
|

0o 0 | Dn’

where all the off— diagonal terms are zero. This indicates that no coupling effects
between different cracks are considered. The stress increment in crack n is
assumed to depend on the crack strain increment of the same crack only. The
relation is given by the two by two submatrix DpL®T. This is actually a
simplification of reality since the amount of damage which has already been done
in an existing crack reduces the energy that can be released in subsequent cracks.
Furthermore, the off— diagonal terms of the submatrices in the constitutive matrix
DpCF are zero. This assumption implies that no coupling is taken into account

between the normal stress increment in a crack and the shear strain increment.

Based on the above assumptions, we can put simple material models into

practice. From Fig.3.10, it is seen that in the case of one crack the relation
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between the normal stress increment At,*f and the normal strain increment Ae,
of the cracked concrete is given by E,, the modulus of the descending portion.
By the virtue of the decomposition of eq.(3.7), the concrete and crack act like

springs connected in series, which gives

e (3.27)

where ECr represents the modulus of the cracked concrete.

E is the Young's modulus of the uncracked concrete.

The relation between the normal stress Atncr of the cracked concrete and the

normal strain of crack Ae,®T can be worked out to be

EST = EE/(E-E;) (3.28)

For shear stress—strain relation, it is assumed that the shear strain increment
Ae,, of the crack and the shear increment Ac,, of that crack are related
through 3 BE/[(I—B)(H- v)], where » is Poisson's ratio and @ is the shear
retention factor. This derives from the decomposition of the total shear strain

increment into a concrete and into a crack shear strain increment.

With the above relations, the decomposed crack approach can be connected
with the more traditional approaches which assume the relation 3 QGE/(1+ »)
between the total shear strain increment and the shear stress increment. The

following expression can therefore be obtained for a crack:

HE
1 - pn 0
De" _ (3.29)
0 8 E

1 - B8 2(1+r)
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where pu = E{/E, indicates the reduction of Young's modulus.

The magnitude of E; mainly depends on the ultimate normal strain ¢, of the
descending portion, which has to be adjusted in accordance with the element size
as to obtain objective results with regards to the finite element mesh. The
fundamental parameter which governs crack propagation is then the fracture

energy.

In the decomposed multi— directional cracking model, a simple descending
portion of the concrete stress— strain curve is usually adopted for cracking strain
since more complex relations (for example trilinear or curved) will make the
procedure difficult. However, it is noticed that the existing strain— stress law
governs overall behaviour with regard to total strain and stress while the crack
strain should be distinguished from overall concrete strain since these two strain
concepts are physically not the same. In order to obtain a better understanding,
more experimental investigation is needed regarding the two different strain

concepts.

3.4.1.4 Relation Between Different Fixed Crack Models

Having studied the strain decomposition concepts for both single crack and
multi— directional cracks, it is important to investigate the relation between the
multi— directional decomposed crack model and other crack models which are
usually employed in the finite element analysis of reinforced concrete structures.
Particularly, the relation with the fixed single crack model and fixed two

directional orthogonal cracking models are of primary interest.

Single Directional Crack
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If there is a crack in the y— direction with its normal aligned with the x—

axis, the transformation matrix T is then given by

1 0
T = 0 0 (3.30)
0 1

The constitutive relation of the concrete is well known and is given by the

following equation

D = — v 1 0 (3.3D

0 0 (1 - »)/2

T co E
T D T = —onu-— (3.32)

1 -2 0 (1 - »)/2

Adding the stress—strain matrix DS for the crack and inverting the resulting

matrix yields:

Fl-#
0
E 1l -p »?
[Dcr_ TT DcoT ]—1=
1 - »2
2.(1 -p)
1 - ]

(3.33)

Premultiplying with DS T and postmultiplying with TT DCO and subtracting from

D0 gives
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p® _ p° T [ p°f & .rT p°°T ]-1 TT pc° -
[ E, v UE,
0
1 - p»? 1l - pw»?
VﬂEt E
0 (3.34)
1 - p»2 1 - p»?
0 0 BG
E
where G = T the shear modulus of the concrete.

This was obtained by Bazant and Oh[1983] when they investigated cracked
concrete. The only difference is that the shear term is included in the above
equation, while Bazant and Oh expressed their equation in terms of the principal

stress directions, i. e. in the local system.

If a crack is at an arbitrary inclined angle, exactly the same conclusion will be

reached.
Two—directional Orthogonal Cracks
If two cracks open in two directions x— and y— at a point, the transformation

matrix will be

T=(0 0 1 O (3.35)

Following a similiar procedure to that of the single crack gives:

Dco _ Dco T [ Dcr + TT DCOT ]—1 TT I)co _
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[ o 0 0
0 0 0 (3.36)
B
0 0 - ¢
(2 - B) J
E

again G = the shear modulus of the concrete.

2 (1 +v»)’

From this expression, it is noticed that the shear retention factor is not the
commonly used value @ but G/(2— (). This is because the factor which has been
adopted in the constitutive relation DCT for the crack is @/(1— (), which is
derived on the assumption that there is only one crack existing. Indeed, if two
direction cracks are taken into account, it may assumed that the total strain is
composed of the concrete strain and strain of the two cracks, and the reduction
factor should be equal to 2p3/(1—f3) for each crack. Having assumed this, the
shear retention factor would be {3, which becomes exactly the same as that in the
conventional two— direction orthogonal crack model. However, there is not much

difference whether or not the above assumption is made, as shown in Fig.3.11.

Using the same procedure, the relation with other non— orthogonal models can

be derived although the algebraic manipulation is more tedious and

cumbersomel Litton 1976 and de Borst and Nauta 1985]

3.4.2 Rotating Crack Model

Basic Concept

In order to overcome the misalignment of principal stress and strain directions
and crack directions in fixed crack modelling, Cope et allCope 1980] co— rotated
the axes of material orthotropy with the axes of principal strain. The approach

immediately led to the concept of the "rotating crack". The concept is attractive
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from an engineering point of view, since the nonlinear stress— strain relationship
for the principal direction can be specified without having to set up complex

theories.

In fact, Bazant[Bazant 19830] (sised a number of objections to the earliest
versions of the concept. One of them relates to the fact that the assumption of
material orthotropy generally implies that the rotation of principal stress deviates
from the rotation of principal strain. Consequently, when the axes of material
orthotropy co—rotate with the axes of principal strain, they will cease to coincide
with the axes of principal stress. The direct use of principal stress— strain curves
then becomes inconsistent, unless transformation rules are included in the

derivation of the tangential stiffness modulii.

Procedures

To illustrate the concept, consider a two— dimensional configuration of initial
coaxiality, with the principal 1 and 2 directions of stress, strain and material
orthotropy being aligned. By virtue of Mohr's strain circle, a small increment of
shear strain causes the direction of principal strain to rotate by an angle A4,

according to

A&y, , .
tan246, = (3.37)

2 (eyy - €335)

if [Ay,,| << | €,, — €,, |. Ay,, is the shear strain increment in the 1, 2
reference axes. ¢,, and €,, are the initial principal strains. In a similar manner,

Mohr's stress circle indicates that a small increment of shear stress causes a

principal stress rotation by an angle Af, according to
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Ao, ,
tan246, = (3.38)

(0 = 033)

if 1A0,,l << lo,, — 0,,]. Ag,, is the shear increment in the reference axes

1 and 2, 0,, and 0,, are initial principal stresses.

Preserving coaxiality between principal stress and strain requires

A0, = Abg (3.39)

Using the orthotropic law of the principal stress—strain in reference axes 1 and

2, this condition is satisfied if and only if the tangential shear modulus G,, is

given by

049 = 03,
G,; = (3.40)
2(e,, - €33)

The linearized form of the tangential stress—strain law for a consistent rotating

crack then becomes

]

[ 40,y 40,, Aoy, A0,, Aoy, Aoy,
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[ 90,, 90,, 90,,
de,, 9de,, 3633
d0,, 90,, 9d0,,
d€,, O9€,, O€,,
00,, 9055 90,,
de,, Ode,, Oe€,,

0 0 0
0 0 0
0 0 0

04,

2(e,,

Ae, ]
Ae,,

A€,

- 03,

- €33)

011 ~ O3

2(e,, - €35)

2(e,, - €,5) |

(3.41)

where the derivatives dc0,,/d0,, etc. can be inserted directly since the shear

terms guarantee coaxiality between principal stress and strain.

Eq.(3.41 ) was developed in a more elegant way by Willam et allWillam 1987]

An alternative formulation was derived by Gupta and Akbar[Gupta 1984] ,pq

Crisfield[Crisfield 1987]  They started from a description in a fixed x and y

coordinate system.

Since eq.(3.41) is given in incremental form, a corrective procedure must be

added in order to suppress drifting from the coaxiality condition. To do so, a

inner iteration loop is employed in which eq.(3.40) is repeatedly evaluated using

the initial tangential shear term in the first iteration (predictor) and updated

tangential shear terms in subsequent iterations (corrector).

As far as the concrete constitutive relationship for the rotating crack approach
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is concerned, all the tension stiffening laws can be used directly. The shear
modulus is no longer reduced by the retention factor but determined using
eq.(3.40). Crack closing and re—opening procedures are identical to those

described primarily in Section 3.4.1.1.

It is intriguing to examine the parallels between the fixed smeared
multi— directional crack concept and the rotating crack concept. While the fixed
muiti— directionally decomposed concept controls the formulation of subsequent
cracks using the threshold angle, the rotating concept assumes the crack
orientation to change continuously. Assuming the threshold angle for
multi— directional cracks to vanish, a new fixed crack arises at the beginning of
each stage of the incremental process. In doing so, it is observed that the fixed

multi— directional concept reduces to the rotating concept, provided that

— the condition of a vanishing threshold angle is the only condition which
controls the orientation of subsequent cracks, i. e. it is not supplemental by a

maximum stress state as was done in a previous study done by de Borst and

Nautalde Borst and Nauta 85]

— in smeared rotating crack modelling, previous cracks are rigorously made
inactive and erased from memory upon activation of the new crack, so that we

invariably have only one active crack which is unique to the loading condition.

— the local traction— strain law eq.(3.41) of the active crack is filled in such a
way that the memory of the previous effects is accounted for, and the overall
shear modulus ensures coaxiality according to eq(3.40), which is iterated in its

inner loop.

To be strict, the term "rotating crack" swings the crack direction continuously
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while the load increases. When the swinging angle exceeds the "threshold angle"
in the fixed crack model, a new fixed crack occurs. This means that the fixed
cracks occurs always later than in a continuing rotating crack model. The larger
the threshold angle, the later will the crack occur. From this point of view the
rotating crack has an advantage over the fixed crack concept since it does not
postpone the appearance of the crack corresponding to a certain loading level.
Furthermore, the rotating crack uses a shear modulus to enforce the stress and
strain directions to coincide with each other. This avoids defects which would
otherwise exist in the rotating model, which are unacceptable from a physical
point of view due to the tensorially invariant condition of the materiall Bazant
1983]  For these reasons, the rotating crack concept gives an acceptable approach

to reinforced concrete structural response after cracking.

In addition, it is necessary to point out that in the swinging crack approach,
the shear modulus is no longer dependent upon the force transfer mechanism but
is determined by the normal strains and stresses in the crack normal surface and
its tangential surface in order to force the stress and strain directions to rotate

together.
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CHAPTER FOUR

FINITE ELEMENT DISCRETISATION OF REINFORCEMENT

4.1 Introduction

Special problems are introduced when the finite element method is applied to
reinforced concrete members and structures. These difficulties are mainly due to
the combination of the materials, concrete and reinforcement. Acting together
they do not satisfy isotropic conditions because they have vastly different material
properties, nor do they satisfy compatibility conditions due to bond—slip
phenomena. From a mechanical point of view, concrete is generally in a biaxial
or even triaxial state of stress while the reinforcement is usually considered to

carry uniaxial stress only.

Since the late 1960's, some general agreement has been reached in the
modelling techniques of concrete and reinforcement. The concrete can be well
represented by selecting a suitable conventional finite element while the
reinforcement can be discretised in various alternative ways, depending on the
purpose of a particular analysis. Bond—slip effects between concrete and
reinforcement can be taken into account if proper choice of reinforcement

representation is made.

In this chapter, finite element constitutive relationships for reinforcement are
described after briefly presenting the basic characteristics of engineering steel
reinforcing bars. Finite element discretisation of reinforcement is also discussed
and two new embedded bar models are proposed. Bond—slip modelling is
discussed in Chapter 5. Finally, a mesh generation scheme for both concrete and

reinforcement is presented. This scheme allows the finite element mesh to be
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constructed independently of the reinforcement layout, removing a restriction
which has often hindered finite element modelling of reinforced concrete

structures.

4.2 Characteristic Properties of Reinforcing Steel

Reinforcing or prestressing steel in a reinforced concrete structure is usually in
the form of slender bars or cables. They are, therefore, usually considered to be
direct tension or compression members. Behaviour can be adequately approximated
by uniaxial stress— strain curves. However, in some cases, especially where a crack
occurs and dowel action arises, the steel is not only subjected to uniaxial forces
but also to shear and bending forces, behaving like a beam. This effect needs to
be taken into account in the detailed analysis of reinforced concrete structures
where crack directions are inclined to the reinforcement. However these shear
effects are outside the scope of this study, and only the uniaxial behaviour of

reinforcing steel bars will be discussed in the following.

Protrusions or deformations, called ribs or lugs, are commonly rolled onto the
surface of a reinforcing bar. The deformed lugs restrict the relative longitudinal
movement and establish better bond characteristics between the bar and the
surrounding concrete. For a smooth bar, a curved anchorage is usually required in

the end of the bar in order to properly transfer force from concrete to steel.

The commonly used carbon steel bars[BS 4449] in the U. K. are plain round
steel bars in grade 250 and deformed high yield steel bars in grade 460. The
nominal sizes of bars in both grades range from 6mm to SOmm. If a bar smaller

than 8mm is required the recommended size is 6mm while 50mm is recommended

for the use of a bar larger than 40mm.
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Typical stress—strain curves for steel reinforcing bars subjected to monotonic
loading in tension are shown in Fig.4.1. These are characterized by the following

features:

(i) an initial elastic region up the yield strain, ey

(i) a yield plateau from €y to the strain hardening strain, ep;

(iii) a strain hardening region from ¢y to the ultimate strain ¢, and a softening

region to the fracture strain eg;

(iv) Corresponding yield and ultimate stresses are oy and oy, respectively.

The mechanical properties of reinforcing steel bars vary in a probabilistic
manned ASCE 1982]  The variations in measured mechanical characteristics result
from the variability of the steel, variability in the cross— section area of the bar,

the rate of loading, and the definition used to specify the property.

As the strength of the reinforcement increases, the capacity to undertake
inelastic deformation, or its ductility, decreases. In engineering, ductility is
however a most important attribute of reinforcement since it is necessary to
ensure the ductile behaviour of concrete structures and hence prevent brittle
failure. The steel strength may be increased by changing the chemical composition

of the steel, cold working, heat treating, or some combination of such techniques.

For simplicity in design calculations, it is often necessary to idealize the steel
stress— strain curve. Three types of idealizations are commonly adopted, as shown
in Fig.4.2. For each idealization, it is necessary experimentally to determine the

stresses and strains at the onset of the yield, strain hardening and/or ultimate
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tensile strength.

If the load is released before failure, the response curve for unloading from
any stress state is approximately a straight line parallel to the initial elastic
response. Reloading results in a response path approximately the same as the
original elastic shape, with perhaps a small hysteresis and/or a strain hardening
effect. Then it continues closely on the remainder of the virgin stress— strain
curve as if unloading had not occurred. When subjected to stress reversal after
initial yielding the reloading retraces the unloading path with very minor deviation
until the previous initial yielding point is reached again, where plastic flow occurs
again. The previous initial yielding point is then interpreted as a subsequent yield
point in a strain hardened material. However, if the material first hardened in
tension, and is subsequently loaded in compression, the yield point in compression
will be less than in tension. This is the well known "Bauschinger Effect". It

complicates practical application a lot and is often neglected.

A typical stress— strain response curve with reversed loading is illustrated in

Fig.4.3

4.3 Constitutive Relationships for Reinforcement

In the implementation of the steel constitutive relationship into a finite element
program, the degree of the sophistication is dependent to a large extent on the
special purposes of the program. The most general relationship should include
stress, strain, temperature and time for arbitrary histories of these quantities.
However, it is usually true that only some of these variables are involved. For
instance, for seismic response, loading is rapid, therefore it is essential to cover
inelastic  strain reversal effects, while temperature and time dependent

characteristics are generally not significant. On the other hand, for primary
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nuclear containments subjected to severe thermal cycling, it may be necessary to
include time and temperature dependent stress relations for the prestressing
tendons, but stress reversal will not occur. Generally, it is advantageous to use
the simplest constitutive relationship which models the essential behaviour for the

particular application.

Since the steel in concrete construction is mainly one— dimensional and although
it can be subjected to shear force due to the dowel action, it is rarely necessary
to introduce the complexities of a multiaxial constitutive relationship. In finite

element modelling, therefore, a uniaxial relationship is widely adopted.

In the purely elastic region, the steel stress is determined by the standard

linear— elastic relation.

0g = Eg (eg - €¢) (4.1)

where ¢g if the total strain, ¢ is the thermal strain and Eg is the initial

modulus of steel.

For the consideration of plastic deformation, it is common to idealize the
behaviour into a bilinear or trilinear stress—strain curve. In this study, a bilinear
curve with simple isotropic strain hardening rules has been adopted, based on the

following simplifications:

i) The actual stress—strain curve is approximated by an elastic—linear strain
hardening curve, as shown in Fig.4.4. Elastic— perfect plastic behaviour is

represented by the hardening angle Ep = 0.

i) Unloading after yielding follows a path parallel to the initial elastic slope. The
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Bauschinger effect is ignored.

iii) The total strain eg is decomposed into elastic and inelastic components and

the stress og is given by

0g = Eg (€5 = €p = €¢) (4.2)

in which €p represents the plastic strain.

In this study, strain and stress calculations are carried out using an

incremental— interation procedure. In particular, the following operations are made:

1. Enter with initial stress ¢j, initial strain ¢; and current yield stress Oyi and the

incremental strain Ag;.

2. Calculate the total strain

€Ei41 = €§ + Aei (4.3)

3. Calculate the first approximation to the total stress.

Oi+1 = i + Eo A€ (4.4)

where E is the initial elasticity modulus of steel

4. If the magnitude of the stress is less than the current yield stress |oy;l

Tit, < loyil (4.3)
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then the plastic flow does not occur. The value of the stress is correct and the

procedure is terminated.

5. If the stress is greater than the current yield stress, the stress needs to be

corrected by

c En
[Ti4s] = Hojyl + = [ 044,01 - loiy) ] (4.6)
0

where Eyp is the strain hardening modulus of the steel, and 0¢%4 , is the

corrected value of the stress. This procedure is shown in Fig.4.5.
6. The current yield stress is then updated by

c
Tigr = 105441 (4.7)

The modulus is consequently set to Ep in the calculation of the stiffness.
7. If A¢; £ 0.0, i. e. the steel is unloading, the stress should be

c c
Oitr = ~10j4y1 (4.8)

8. Updated values oj4+ 1, €i+ 1 Oj+ , are stored into memory for use in the

next cycle, in which the steps 1 to 8 are repeated.

When using variable stiffness nonlinear solution algorithms (see Chapter 6), this
procedure can encounter difficulties if unloading from the yield surface occurs. If
a solution is based on a stiffness using Ep, then it is probable that Ae; will be
considerably larger than that based on the elastic unloading curve. This large
reversal of strain could possibly cause a reversal in sign of the yield surface that

should not occur. Furthermore, a new modulus would then be selected on the
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basis that plastic flow was still occurring, causing automatic reversals of load

which increase in size as iterations continue. This is illustrated in Fig.4.6.

Thus it is necessary to suppress the yielding routine so that the correct level of
stress and strain can be obtained by normal iteration with the correct modulus as
shown in Fig.4.7. This is accomplished by checking whether the sign of the

yielding surface should actually occur within one iteration. If the stress given by

OR = 0o + Ep Aey (4.9

is less than the current yield stress then reverse yielding should not occur. Then,
steps 5 to 7 are suppressed and the elastic modulus is retained for the subsequent

stiffness calculation.

Clearly, this problem does not arise with a constant stiffness algorithm, as
incremental strains are always calculated on the basis of the initial elastic
modulus. However, this solution procedure does not satisfy cyclic loading

conditions.

4.4 Finite Element Representations for Reinforcement

In the past, at least three types of finite element model have been developed
for reinforcement in the analysis of reinforced concrete structures. These are (see

Fig.4.8):

i) Distributed
ii) Discrete

and iii) Embedded
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4.4.1 Distributed Layer Approach

In the distributed representation, as shown in Fig.4.8(a), the steel is assumed to
be distributed over the concrete element, with a particular orientation angle 6.
The steel is expected to resist stress in the original direction of the bar. In this
representation, perfect bond must be assumed between the concrete and steel in
order to derive a composite concrete— reinforcement constitutive relationship and
to obtain the displacement field of reinforcement. Sometimes, bond—slip is
represented by reducing the modulus of steellSinisalo, Tuomala and Mikkola 1979]
or increasing it when load is transferred from steel to concrete. The distributed
reinforcement model can be further classified into smeared representation and

layered representation.

Layered representation is widely used in reinforced concrete plate and shell
structures, in which the plate or shell element is divided into layers. This
approach was first adopted by Wegmullerl Wegmuller 1974]  He used a rectangular
element with three degrees of freedom (6, by and w). The element ignores
in— plane effects, and thus assumes a fixed position for the middle plane of the
plate. This assumption would be restricted only to problems in which membrane
forces are negligible or there is little shift in the neutral axis position. In order
to overcome this difficulty, the layered approach has been improved by
Wegmuller himselfl Wegmuller 1974] ,n4 othersJohanarry 1979, Cope and Rao
1977], In the improved procedure, the effect of membrane stresses was taken into
consideration for bending problems where the neutral axis shifts from its initial
position towards the compressive face as the cracking progresses deeper into the
slab depth. Consequently, it is possible to reduce computational effort. This has

been achieved by Rahman[Rahmanl981] by using a selective integration rule.

In plane stress type problems, the distributed representation is used as a special
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case of this approach, in which the displacement (u,v) at any point in the plane

with coordinates (x,y) can be expressed as:

u(x,y) u;

- [N] (4.10)

v(x,y) Vi

where uj, vij are the nodal displacements of the concrete element and [N] is

the shape function matrix.

Using the standard finite element procedure, the strain expression is therefore

given by
[ BN
€x EL 0 uj
n
e | =T 0 g_;’i (4.11)
i=1
oN oN;
‘xy 3371 > v
. . . L vy

where n is the number of the nodes. ey, €y and Txy are the normal and shear

strains, see Fig.4.9.

Rewriting the equation gives

[ B I 81 ) (6.12)
1

1™MB3

where

{81 ) = [ M ] (4.13)
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Consequently, the stress—strain relationship for each layer is given by

(o)y=[D ](e) (4.14)

where D' is the constitutive relationship. For the steel layer, the behaviour is first
described in the local coordinate direction of the steel so that the bar can be
orientated at any angle to the global x—y axes. Then the constitutive relationship
is transferred from the local to the global. The transformation matrix is derived

in terms of the angle 6 between the local axes (X, ¥ ) and the global axes (x,y)

[D']=Eg [T] (4.15)

where Eg is Young's modulus of elasticity of steel and [T] is a transformation

matrix.

Noticing that steel reinforcement is uniaxial in contrast to concrete, the

transformation matrix reads

[T] = s? c s (4.16)

sym. cs

where c=cosf, s=sinf and 6 is the inclination angle shown in Fig.4.10

After the stiffness matrix is calculated for each steel and concrete layer, the

summation for all the layers is given by
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where dz; is the thickness of the i—th layer, n is the total number of the layers,
[B] is the strain matrix and [D'] is the constitutive matix depending on the

type of the material and the state of the stress in respect to each layer.

4.4.2 Discrete

The discrete representation uses one— dimensional bar elements and beam
elements. The bar element model has been widely used due to the fact that it is
easy to incorporate it into a usual finite element program. In this representation,
it is assumed that the bar is pin connected with two degrees of freedom at nodal
points. Only an uniaxial force will be carried by the element. Alternatively,
discrete beam elements can be used, in which the steel is assumed to be capable
of resisting axial force, shear force and bending moment. Three degrees of
freedom are hence assigned at each node of the element. The beam element
representation is also simple and easily superimposed on a two— dimensional finite
element mesh such as those employed for concrete. Furthermore, another
significant advantage is that they can take account of possible displacement of
reinforcement with respect to the surrounding concrete, i.e. the possible
bond—slip is allowed between reinforcement and concrete by using linkage
elements, However, the computation cost of doing this is usually large. The

discrete representation of reinforcement is illustrated in Fig.4.8(b) and 4.11

The discrete reinforcement model was first used by Ngo and Scordelis(Ngo and
Scordelis 1968] iy the analysis of a beam. In their analysis, the reinforcement
steel in the bottom of the beam was simulated by a number of bar elements.
The stiffness of the bar was calculated at the element level and then assembled
into the structural system. The connection between the bar and concrete elements

is made by linkage elements at each nodes, which was used to take into account
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dowel action and bond slip.

As shown in Fig.4.11, a local coordinate system ¢ is set up for the bar. Let
xi and y; be the nodal coordinates, while u; and v; be the nodal displacements.
Following the standard finite element procedure, the coordinate and displacement

for an arbitrary point are given by

n
x = L Nj xi (4.18a)
i=1
n
y= IZNjyj (4.18b)
i=]1
n .
u= I N; uj (4.19a)
i=1
n 0]
v= X Nj vj (4.19b)
i=1
where i = 1, 2, ..., n, the total number of the nodes for each bar.

The strain is given by

a_g 0 du
¢p = [ cos?6 sin?2¢ ] Zx ot g_f
3y 3t
=[ cos?6 sin?f ] X [ uj Vi ]
of 0 ON;
3y 3T
gN 0 uj
=[J] 3
0 Ny
F1 i I
- [ B ] [ uj ] (4.20)

Vi
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where [J] is the Jacobian matrix and [Bi] is the strain matrix.

Following the standard finite element procedure, the stiffness matrix of the bar

is given by

k- | [B] [D][B] av (4.21)

where [D] = Eg, the elastic Young's modulus of the reinforcement.
Integration is carried out over the volume of the bar. The stiffness matrix of the

bar is assembled into the global system at the structural level after it is formed.
4.4.3 Embedded

Embedded modelling of reinforcement is usually used in conjunction with higher
order isoparametric concrete elements. The reinforcement bar is considered to be
a uniaxial member built into the parent concrete element. The displacement field
is assumed to be consistent with those of its parent element. Normally perfect
bond is assumed. The embedded representation of reinforcement is shown in
Fig.4.8(c). Recently, Balakrishnan and Murray[BalakriShrlan and Murray 1985] have
developed a method of simulating the relative displacement between reinforcement
and concrete using the embedded representation. This thesis addresses this

problem further, as discussed in Chapter 5.

The embedded model was first proposed by Phillips and Zienkiewicz[ Phillips and
Zienkiewicz 1976] In their formulation, the element was restricted to lie along
the local coordinate axes, { or n of the basic element of concrete. As shown in
Fig.4.12, a bar lying along a direction of constant n = 7 is considered. The
position of the bar was then defined using the same shape function as its parent

element. The compatibility between the bar and the concrete was obtained by
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assuming full bond between them.
Based on the above assumption, the displacement field of the bar is given by

u

(£} - { ] =[N J[e8T° (4.22)

v

The uniaxial strain, which is the only component contributing to the strain
energy, is given in the local system by
ep = du' /ax’ (4.23)
where x' and y' are the local coordinate system at point P with y' being normal

to the line of the bar while u' and v' are the corresponding displacements.

The distortion matrix of the bar strain is defined as

du dv oN uy vi
9x 9% ax
[i] - - uj v (4.24)
du dv ﬂ
3y 3y 3y
and the Jacobian matrix [J] by
ox dy oN uj Vi
3f of ot
[J]= = uj vj (4.25)
o ay [ | ow
on 91 9%
Therefore, from the relation
=L oN
oF 9x
=[J] (4.26)
oN oN
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it follows that

[]-[31"

ON

ot

oN

i

|

Vi

Ui Vi

(4.27)

[i] is a second order tensor and transforms on coordinate rotation from x, y

to x', y' according to

ou'

g;v
(i*1~-

Ju'

5;1

where [R] is the rotation matrix of direction cosines at point P.

av'

TX'

ov'
Tyl

- [R][J][R]

(4.28)

Since x' and ¢' coincide and differ only in magnitude, we have

ox 9y ox

ox' dx' 1 of
(%] - -

dy 9y [ oX | 2 + (ay )2 ]% dy

3y Jy Gg) * Gy 3%

From eqs.(4.23, 28 and 29), it follows that

1 aN; aN;
¢ = “h [(°1 = t 25y

SORR

where

)

(e,

%

N; ON;
—1 —1
X * 3 ay

M

(4.29)

{ Ui

Vi

] vj

Vi
(4.30)
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] ] ]
ey = (517 n- [t &)

Again following the standard finite element procedure, the element stiffness

matrix can be set up as

k= [[B] [D][B] av (4.31)

The integration is carried out over the volume of the bar.
Matix [ Dg ] is given by [ Dg ] = Eg, the elastic Young's modulus of steel.

In the application of the above equations, inconvenience is caused by the
restriction that the bar has to coincide with the coordinate system of the basic
element, which limits the direction of the bars. In a typical analysis, mesh

generation is restricted by the direction of the reinforcement.

In order to remove the above restrictions, two new embedded models have

been developed in this study.
4.5. Two New Embedded Bar Models

4.5.1 Introduction

The previous embedded reinforcement formulation does not expand the
bandwidth of the stiffness matrix due to existence of the steel bar. This means
that if the restriction on the bar's position can be removed the embedded

model would become a more powerful approach for finite element analysis of

reinforced concrete structures.
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In this section, two computational formulations will be presented. The first
model developed allows a straight bar to be generally orientated across the
element, the sides of which are also assumed to be straight. This is a very
common situation and consequently it was thought worthwhile to develop the
formulation which represents this situation, reducing computational effort. The
second reinforcement formulation is a general embedded reinforcement approach.
This allows a bar layout at any arbitrary position within the parent element or
along the sides. Both the reinforcement element and the sides of the concrete

element can be either straight or curved.

In these two derivations, the basic assumptions made are:

i) The reinforcement is a uniaxial member so that only the strain component

in the direction of the bar contributes to the strain energy;

ii) Perfect bond exists so that the strain in the bar at an arbitary point is

similar to that of the concrete at that point. Extension for bond—slip effects will

be considered in detail in Chapter S.

4.5.2 An Orientated Embedded Straight Bar Model

In order to derive this formulation, two more assumptions are made in addition
to the above basic assumptions: i) the reinforcement bar is straight across
opposite sides of the concrete element and, ii) the concrete element sides are also

straight, see Fig.4.13.

Since there is no slip between reinforcement and concrete, the position of the

bar can be defined by the same shape functions as those used for the main
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element. The displacement field of the reinforcement can then be given by a

function of the nodal displacements of the main element.

Thus the coordinates are given by:

[ " l - [ NG, ] l . } | (4.32)
y Yi

and the displacement field by:

u

{(fs )= [ ] =[ NE,m ] {88 (4.33)

v

In the bar direction, the strain is given by

> =2 -
€s = €x egx t €y egy

> > > 3
= (exx ex + €xy €y) egx + (eyx €x +eyyey)eSy

(4.34)

- > . . : ;
where ¢, and €y are the strain vectors in x- and y- directions,

respectively, and

=2 > : : s s "

ey and ey are the unit strain vectors in x- and y- directions,
respectively.

Therefore the steel strain is given by

2 2
€g = €xx €gx t 2 €xy ©€sx esy + eyy esy

2 i in2
€xx COs?a + 2 eyy cosa sina + éyy sin‘a

ou v v du
= — cosza + — sinza + —_—+ — sina coso
ox oy ox 9y
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n aNi o¢ n aNi on
= Y — —uj+ I — — uyy cos’a +
i=1 o8¢ ox i=1 97 ox
n oN; o¢ n ON; 97
I — —vj+ £ — — v sin‘a +
[ i=1 3t ay i=1 3y a8y |
ON; of n ONj dn
Yy — — vy + Yy — — vi +
| i=1 3F  ax i=1 37 ax
n oN; ¢ n ONj 9y
I — —uj + L — — yj sina cosa
i=1l 9% oy i=1 on 9dy

(4.35)

where n is the total number of the parent element nodes and o is the angle

between the global x— axis and the bar direction.

In matrix form

[ ONj 9t  ON; a¢ ] , [ 3N; 3¢  ANj 97 ] .
—_— et —_— — cos o —_— e —_— sinacoso
¢ 9x of Jx 3t ox on Ox uj
n
2
i
[ ONj 3¢  ANj 9y ] { 3Nj 3 n ANj a7 } , Vi
_—t — — sinacoso _—— — — sin o
¢t dy dn 9y dn dy dn 9y |
(4.36)

Since the bar is subject only to uniaxial forces, only uniaxial deformation
contributes to the strain energy and the shear deformation at the point has no
effect on the bar's elongation (which only rotates the bar). Therefore, the
subdiagonal terms are then equal to zero (see Ref. [Timoshenko and Goodier

1951]).
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Equation (4.36) then becomes

1 01.

= [Bs] (5e ¥

ol A e}

(4.37)

where A; and B; read

[ aNi 1 aNi 3t ]
Af o | — — + — — | cos ‘o
[ 3§ odx 3% x|

[ aNi o ANi I ]
By . | — — + — — | sin’a
[ dn dy 9y 9y

Following the standard finite element method, the stiffness matrix is then given

by:

=
0
I

fV[B]F [D]s [Blav

Iv [B]T Eg [B]dv (due to the uniaxial assumption)

Es Jy [B]T [Bldv

Eq Ag f1 [B]T[B] dr (4.38)

where Eg is the elasticity modulus of the reinforcement bar

A. is cross-section area of the bar.

S

Moreover, since the reinforcement bar is assumed to be straight across the
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sides of the concrete element whose sides are also straight, the terms in the
diagonal positions are therefore only functions of either £ or 7, which makes the
integration over the volume of the bar easy to carry out using a conventional

Gauss integration rule.

Integration is carried out along the bar's direction in the local system of the
concrete element. If the bar crosses the element from sides § = £ 1 of the
concrete element local coordinate system, the integration is carried out over the £
direction from —1 to +1, otherwise, the integration is over 7 direction from —1

to +1.

As shown in Fig.4.13, the position of the bar can be defined by a function of

¢ and 7, by
£ - £, 52 - &,
—_—F (4.39a)
n-mn N - M
1.e.
1
E=ky ()G, < )] gy, (4.39D)

where (£, 7,) and (£, 7,) are the local coordinates at the end of the bar on

each side of the concrete element.

Therefore, the expression for dr is given by

dr = [ 1+ (

dn

(4.40)

In the other case where the bar is arranged across the concrete element in the
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direction of §, the expression of dr should be given by df in order to integrate

over £:(—1, +1).

Finally, the stiffness K is assembled into the stiffness of the parent element.

4.5.3 A General Embedded Model

A fully general reinforcing or prestressing embedded bar element is presented
in the following. The displacement field of the bar is obtained using the
displacements at a set of ‘'characteristic' points of the concrete element (these
concrete points are termed ‘'characteristic' because they are attributed to the bar
element nodes), and a local system for bar is then employed to achieve the strain

expression and to integrate the virtual work of the bar element.

Displacement Field

In terms of the nodal displacements of the reinforcements bar, the

reinforcement displacement field is obtained using shape functions, see Fig.4.14, as

{fg} = u cosa + v sina (4.41)

or in matrix form

u
{(fg) = [ cosa sina ] ] (4.42)
v
and
Y- ~ ujb | 4.43
[ v ] ( HJ ] [ ij ] ( )
where
Hj are the shape functions of the bar element,

ujp and vjp are the nodal displacements of the bar element,
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and j =1, 2, ... p, the total number of bar element nodes.

The bar nodal displacements can be expressed in terms of the nodal

displacements of the parent concrete by

Yib Ujc
=[ NG ] (4.44)
Vib Vie
where (& j"?j) are the nodal coordinates of the bar element in the local system of
the parent element, uj. and vj. are the displacements of the parent element

nodes. N; are the shape functions of the parent element, i=1, 2, ..., n, the

total number of the parent element nodes.

Therefore, substituting eq.(4.44) into eq.(4.43), the displacement field of the

bar is expressed as,

ic
= [Hj][NiCE mp ] (4.45a)

ic

In detail, this can be written as

[H1 0 ] [ Nj(¢¢r,m) O

u 0 H» 0 N;j(gr,m) ...
= |: = : : {b}e

v Hp 0 Nj(§p,mp) O

o H,l Lo NiCEp.mp) ... 1 (4.45b)

where
us

{3} =[ lc] (4.46)
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The Steel Strain

The only steel strain contributing to the virtual work is the component in the

steel's direction, i. e.

dfg

€ —
s dr

Substituting eq.(4.42) and eq.(4.45) into eq.(4.47)

daf
0
dx
{es) = [ cos’a sin’a ]
0o &
dy
dH1 T
a0 .
: [ Ni(fj, ﬂj) ] (&)
0 dHp
at

= [Bs] (8)°

The virtual work done by steel is

Vo = [o1° [ ry[Bs ] [Ds] [Bs] Ag dr ] (8)°

(4.47)

(4.48)

(4.49)

in which [Dg] is the constitutive matrix of steel. In this case [Dg}=Eg, the

Young's modulus of steel. Ay is the cross section area of the steel bar, and dr is

expressed as

dr = / [(-g—’g— )2 + (_3%'_ )2]as

(4.50)

The term in the square bracket in eq.(4.49) is the stiffness matrix of the steel

bar. It is assembled into the global stiffness matrix in the conventional manner.

The shape functions Hj and N; in the above equations are used for the bar
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element and the parent eiement, respectively. Mathematically, they are
independent of each other; however from physical considerations the two element
systems should be kept compatible and hence be related. In this study, a

parabolic bar function Hj is assumed in the parabolic concrete element.

To set up the relation between the displacement fields of a bar and the main
element, it is necessary to determine the local coordinates of an arbitrary
global— system's point in the local system of the parent element, and this requires

inverse mapping procedures.

Loca rdinates of an Arbitrary Point in the Parent Element

In the derivation, it is shown that after the centre point of the parent element
is defined, the local coordinates of an arbitrary point in the element can be
obtained linearly with reference to the local coordinates of a point on the

boundary, and that the solution is singular.

Linearity

In Fig.4.15(a), P is an arbitrary point in the element. In order to define its
local coordinates, a straight line in global coordinates is drawn from the centre
point, C, to the boundary through point P. The coordinates of point Q are
(¢0,m0) and the coordinate ¢ (or 7) for a point on this line changes from zero
to £, (or 7p). Fig.4.15(b) describes the relation between the local coordinate &

and the distance | from the central point C, in which lo is the global length CQ.

It is seen that the relation between & and | can be either linear, along OPQ, or

nonlinear, along OP'Q.

Now consider a situation where the element is under a constant stress— strain
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(00,€0) state and then calculate the potential work done on a infinitesimal area
dxdy at two adjacent points P1 and P2 on the line CQ, see Fig.4.15(c). If local
coordinates £ and 7 change nonlinearly (along curve OP'Q) the same area dxdy
will map onto a different amount of d¢dn. As a result, the potential work would
be denser at one point than that at another point, which is not true. Therefore,
the relation between the distance from the central point and the local coordinates

is linear.

Singularity

Singularity exists when a pair of global coordinates has only one unique pair of
local coordinates corresponding to it both within the element and on the

boundary.

On the boundary, using the linear relation and basing the centre in the middle

of the side, the singularity is easily proved.

Investigating within the element, let points P1 and P2 be in the parent
element and Q1 and Q:2 be points on the boundary crossed by the lines OP:
and OP2, respectively, See Fig.4.16.

The local coordinates are given by

Q, &y, ny) Q,(§,, m,)

P, (5iy, Miy) P,(§i,, Mia)

The length from the central point is given by

oP, = 1, 0Q,
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OP, = 1, 0Q, = 1,

The expressions of the local coordinates of the two points are, using the

linearity relationship,

11 11

Ei‘l = 21 Ny, = — 7, (4.513)
101 101
12 12

£, = £, Ny, = —— M, (4.51b)
1lfl2 102

If not singular, i. e. one pair of the local coordinates correspond to two points
in the global system, or one point in global system corresponds to two pairs of

local coordinates, then referring to Fig.4.16

£i, = &, and Miv = Mi2 (4.52)
and
11 12
— 0, - £, =0 (4.53a)
101 102
1, I,
n, - n, =0 (4.53b)
1O‘I l02
or in matrix form
1y 0
E] 'Ez 1
101 - (4.53¢)
mome || TR 0
02

A solution of these equations is given by
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1, 1

2

-0 (4.54)

1 1

01 02

This violates eq.(4.52) and therefore, the relation from the global system to the

local system is singular.

4.6 Mesh Generation of Isoparametric Concrete Element and Embedded Bar

Introduction

The basic philosophy for mesh generation is that a mesh should be established
by the computer from a minimum amount of input. Schemes for such automatic
generation range from simple but effective ones[Bridge...1968] pased on the
structure geometry to ones based on mapping between local curvi— linear and
global Cartesian coordinates. The former is straightforward but specific for a given
structure whilst the latter is designed with flexibility and is capable of generating
general meshes. Zienkiewicz and Phillips{Zienkiewicz and Phillips 1971] have fully
described a theory employed to generate meshes for both plane and curved
surfaces defined in three dimensions (shells). Since then, many developments have

taken place, see [Baldwin (ed.) 1986].

For finite element analysis of reinforced concrete structures, the mesh for both
concrete and reinforcement needs to be taken into account. If the reinforcement
is considered as a smeared layer over concrete then separate reinforcement mesh
generation is not necessary. If bars are bar placed along the concrete sides (e. g.
discrete bar model), a bar element generating scheme would reduce mesh
preparation, but is rarely used. However one of the advantages of the embedded
reinforcement model is that the finite element mesh and the reinforcement layout
can be independent of each other. To make full use of this advantage, it is

desirable to include a reinforcement generation scheme which allocates reinforcing
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bars to each element through which it passes and to correctly apportion each bar
and its fictitious nodes within the concrete element. In such a scheme, only a
minimum definition of each reinforcing bar is necessary, thereby reducing tedious

data preparation.

In this study, a simple geometric based mesh generation scheme is adopted for

concrete, emphasis being placed on the mesh generation of reinforcement elements

for the embedded formulation.

However, it is straightforward to include the reinforcement generating scheme

into a more sophisticated concrete element mesh generation procedure.

Concrete Mesh Generation

A program generating a mesh for eight nodal elements has been implemented.
The input data consists of specifying a total number of generating lines. For each
generating line the total number of intervals n, together with the coordinates of
the two terminal points (X,, Y,, Xp Yp) and a weighting factor k are also

defined.

The number of divisions in adjacent generating lines need not be equal to each

other, as shown in Fig.4.17.

For banded solution schemes, the generating lines should cross the shorter

direction of the structure to minimize the bandwidth.

The weighting factor k is based on a geometric progression so that intervals

along a generating line can be progressively shorter (0 < k < 1.0), equal (k =

1.0) or progressively longer (k > 1.0). Referring to Fig.4.18, the coordinates of
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point i along a generating line ab are given by

i
s kI
- j=1
Xp = (xp - X —L—— v xy (4.55)
5 k7
j=1
1.e.
- 1
Xj = (Xp -Xa ) - + X, (4.56)
-1
with similar definitions for Y;
For K=1.0
Xi = X + (Xp -Xg) — (4.57)
n

In addition, when k = 1.0, the line can be further divided into sublines where

the intervals are equal in each subline

The nodal numbers are labelled

Element definitions are then established afterwards.

Reinforcement Mesh Generation

The mesh for

total number of steel bars and their terminal

in increasing sequence from

line to line.

reinforcement bars is automatically generated by specifying the

coordinates. In addition, the

concrete elements through which a particular steel bar passes also need to be

specified although

searching scheme to define mutual element

boundaries.

this restriction could be removed if necessary by employing a

For a curved bar, a

circular arc is employed to approximate the curvature. This requires the two end

points of the arc to be defined, with an additional point on the arc or the
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centre of the circle.

Straight Reinforcement Bars

In the simplest situation where the bar is contained within one element only,
the bar element nodal coordinates, nodal number and element number are straight
forward, i. e. the bar fictitious nodal coordinates are simply equal to the bar's
terminal ones and the nodal numbers and the bar element numbers are set

without any difficulty.

If a bar crosses more than one concrete element, as shown in Fig.4.19(a), the
intersection points for each concrete element are given by solving the line
function of the bar with the line function of the concrete element side. Each side
is considered in turn until a solution is obtained. It is then necessary to decide
whether or not the solution is true. For instance, in Fig.4.19(b), solution giving
P, and P, are false whilst P, and P, are not. This is checked by ensuring the
point lies within the interval of the element side. To reduce computational effort,
only those concrete elements through which a particular bar crosses are used to
search for intersection points, e. g. elements 1, 2, 5, 6, 9 in Fig.4.20. Concrete
element numbers need to be specified in sequential order along the bar, for
example, in Fig.4.20, the elements can be specified either as 9, 6, 5, 2, 1 or 1,

2,5, 6,09.

If one or two ends of bar are terminated inside the concrete element, only
one true solution can be found during the intersection point calculation, as shown
in Fig.4.21. The terminal of the bar will then be automatically used as a
intersection point. In this situation, the concrete element specification needs to be
in an order which begins with the one containing the beginning point of the steel

bar, or ends with the one containing the end point.
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Curved Reinforcement Bars

For a curved steel bar, three points are used to define a circular curve
function. The intersections of the bar with the sides of a concrete element are
then easily calculated in the same way as for straight bars. Now, however, there
are two roots in solving these functions. True or false solution checks are

therefore needed twice.

Connection Between the Reinforcement Bars

Often reinforcing bars are not purely straight or curved over its whole length,
and made of different curved parts and different straight parts. The scheme
allows for this situation by considering each portion of the bar as a separate bar

with its own terminal coordinates.

The connection between the bars is then automatic because the coordinates of
the first point of the bar under computation will be the same as the coordinates
of the last point of the bar previously calculated. However, this needs to borne

in mind when constructing the data for such 'connected’ bars.

A flow chart of the above scheme is given in the following, in which k is the

weighting factor used in concrete mesh generation.
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CHAPTER FIVE
BOND- SLIP BEHAVIOUR
AND

SIMULATION TECHNIQUES

5.1. Introduction

It has been recognized for some time that there is a close relationship between
bond behaviour and crack formation in reinforced concrete. Therefore, much
interest has been shown in the mechanism of stress transfer between steel and
concrete, and it has been found that the carrying capacity of reinforced concrete
structures depends on this bond between steel reinforcement and concrete. Over
the years, both numerical and experimental investigations have been done in this
field. For example, Watstein[Watstein 1941] measured the distribution of bond
stress by wusing mechanical gauges, Mains[Mains  1951]  and  Bresler and
Bertero[Bresler and Bertero 1968] py using electrical strain gauges. Broms[Broms
1965] studied the relationships between bond slip, crack spacing and width, and
Rehm[Rehm 1961] and Lutz and GergelylLutz and Gergely 1967] jnvestigated the

mechanics of bond, bond—slip and bond splitting of deformed reinforcing bars.

In the early application of the finite element method to reinforced concrete

structures, Ngo and Scordelisi!Ngo Scordelis 1967] used a idealized linear— elastic

bond— slip relationship to model bond behaviour in 1967. Their pioneering work
confirmed the degree to which member behaviour is affected by bond—slip, giving

impetus to a surge of studies to formulate reasonable bond-—slip relationships for

use in finite element analysis.

In 1968, Nilson[Nilson 1968] ysed the results of Bresler and Bertero to



Bond-slip Behaviour and Simulation Techniques -103-

formulate a high—order polynomial bond—slip relationship for use with bond
links. Later, various experimental techniques were developed for measuring local
bond stress and bond—slip in order to construct a constitutive relationship, for
example, Nilson and Tanner[Nilson and Tanner 1971], Dorr{Dorr 1978], Nies[ Nies
1979) and others. In the 1970's, Mirz and Houde[Houde 1973, Mirz and Houde
1973] derived an empirical bond stress—slip relationship from the results of tests
on sixty two axial reinforced tension specimens and thirty two beam end

specimens.

Khouzam([Khouzam 1977] analyzed four of Houde's tension test specimens using
a nonlinear finite element program and an incremental load approach. It was seen
that the load— displacement response could be predicted with reasonable accuracy

by using the bond-—slip relation derived by Houde.

Studies have also focused on the effects of concrete cover and end
distances[Hungspreug 1981] and joad history effectslMorita 1973] Byt there is still
no general agreement. Some researchers[Nilson 1972, Pochanart and Harmon 1989]
believe that the shear stress—slip relationship is of a local nature, i. e the

relationship is not unique but depends on the location. Edwards and

YannopoulosEdwards and Yannopoulos 1979] and Nammur and Naaman[Nammur

and Naaman 1989] powever concluded that the bond—slip relationship is a

material property and hence location— independent.

Currently, Pochanart and Harmon[Pochanart and Harmon 1989] jnterpreted
general behaviour of bond—slip under monotonic and cyclic loading, and
presented a model for the local bond—slip relationship in well— confined concrete
(i.e. no splitting effect considered). The model was suggested as applicable to
monotonic, cyclic and fatigue— type loading conditions. The model's parameters

are all related to the bar deformation pattern quantified directly from the physical
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dimensions of the bar, and the concrete strength. Further work is needed to

generalize the model for it to be applicable to any scale.

In finite element analysis, two types of bond element models have been

developed, i. e.

i). Interface element, and

if). Embedded bond element.

The first type of bond elements can be further divided into a lumped form
and a continuous form. The former was proposed by Ngo and ScodelisiNgo and
Scodelis 1967] in the discretization of a beam. The latter was proposed by
Goodman, Taylor and Brekke[Goodman, Taylor and Brekke 1968] i, solving
problems in rock mechanics. The continuous form was based on the notion of a
continuous relative displacement field, while the lumped interface element lumps
the relative displacement to the nodes. Both of these elements connect one node
of a concrete element with one node of an adjacent steel element. They have no
physical dimension so that the two nodes have the same coordinates before
loading. The two elements are used in finite element analysis usually in

conjunction with discrete reinforcement elements.

The continuous interface element is potentially more powerful and has been
further investigated. HoshinolHoshino 1974 '] introduced the continuous interface
element into modelling bond problems by utilizing a linear bond—slip relationship.
It was then developed and generalized by Schafer[Schafer 1975] 1n  their
contributions, the relative displacement between concrete and reinforcement was

considered only in the direction of reinforcing bar, whereas in the direction

normal to the bar complete compatibility was assumed.
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It has been suggested[NﬂSOn 1982] that the continuous interface element is
superior to the lumped form, but this was not accompanied by a comparative

study. It is still questionable which type of element is preferable.

More recently, a modified and more general version of the continuous interface
element has been developed by Mehlhorn and Keuser[Mehlhorn and Keuser 1985]
in two and three dimensional structural analysis and shell structure analysis using
layered shell elements, which takes into account the normal stress between
concrete and reinforcement. Application of this continuous element to pull—out

test analysis showed satisfactory agreement with their experimental results,

A variation of the interface element is the so— called "bonds zone element",
proposed by de Groot, Kusters and Monnier{Groot, Kusters and Monnier 1981]. 1,
their model, not only was the contact surface between the steel and concrete
modelled, but also the concrete in the immediate vicinity of reinforcing bar was
modelled by an adopted material law which considered the special properties of
the bond zone. Since these properties are difficult to obtain, this bond zone

element is not often adopted.

An embedded bond element was proposed by Balakrishnan and
MurrylBalakrishana and  Murry 1987] ysing the embedded reinforcing bar
model[Phillips and Zienkiewicz 1976] by introducing artificial "nodes" along the
reinforcing bar. These authors intended to utilize the independence of the steel
mesh layout from that of concrete finite element mesh. The virtual work of the
bond element was taken into account and the stiffness matrix of the bond- slip
element was assembled with its parent concrete element's stiffness matrix and
embedded reinforcement bar matrix in a standard manner. However, this increases
the total number of degrees of freedom and hence increases the computational

cost in solving the consequent equations for the whole structure. Phillips and
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wulPhillips and Wu 1990} also proposed an embedded bond element for straight
bars generally orientated across opposite sides of the concrete element. This
approach also utilised artificial "bond" nodes along the steel bar, but the extra
degrees of freedom associated with the bond—slip at these nodes were condensed
out so that there was no increase in the global stiffness matrix. This will be
described in more detail later, along with several enhancements which improve its
performance and make it applicable to curved bars in a generally curved side

parent element.

Allwood and Bajarwan[Allwood and Bajarwan 1989] proposed a  different
approach which required a separate analysis of the steel and concrete. The
combined response was obtained by using the concept of "interforces" to represent
bond forces between the concrete and steel. The technique requires an iterative
procedure to avoid any additional increase in the number of equations to be
solved. However, their method did not take advantage of the embedded

formulation, the reinforcing bars being discretized separately.

In the remainder of this chapter, bond—slip behaviour and its constitutive
relationships under monotonic and repeated/cyclic loading will be first discussed.
Attention will then be focused on the bond—slip modelling techniques. Finally the
new general embedded bond element will be presented with detailed derivation

and interpretation.

5.2, Bond—Slip Behaviour

5.2.1 Bond Mechanism and Basic Concepts

Bond can be thought of as the shear stress or force between a bar and the

surrounding concrete. It comprises i) chemical adhesion, ii) friction and, iii)
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mechanical interaction between concrete and steel. The force in the bar is

transmitted to the concrete by this bond, or vice versa.

As shown in Fig.5.1, assuming the effects of the discrete ribs and internal
cracks are 'smeared" so as to cause continuous action along the bar, the
longitudinal force equilibrium of an infinitesimal bar element requires that the

bond stress is proportional to the change of the bar tension, which gives

OF

s
Fp dr = — dr (5.1)
or

where Fp is the bond force distribution, Fg is the steel force distribution, and r

represents the bar direction.
Letting 7y, be the bond stress and ¢ the bar perimeter, we obtain

Eg Ag deg

Th = (5.2)
¢ dr

where Eg is the elasticity modulus of steel Ag is the bar's cross section, and deg

is the strain change rate of the steel.

This indicates that the bond stress is proportional to the slope of the bar force
distribution, and that the area between any two points of the bond stress curves

is equal to the change of bar force between these two points.

In order to determine bond stress, the average bond force over a length Ar is

calculated first based on the difference of the forces in a steel bar between two

successive gauges I and II, i. e.

AFS = FIIS— FIS (5-3)
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where AFg is the difference in steel force between cross sections I and II,

and Fig and Fppg are the steel forces at section I and II, respectively.

The average bond stress is then given by

Fris - Fis
—_— (5.4)

Tave =

¢ Al

Bond—slip is defined as a relative displacement between concrete and steel
along their interface. Early attempts(Mains 1951] (5 obtain bond—slip made use of
miniaturized differential transducer gauges, and specially— adapted electrical
resistance strain gauges. A practical method is to calculate the displacement
difference between concrete and steel at specific locations along the interface. The
steel displacement is found by numerical integration of steel strains, as given by
the interval gauges. The concrete displacement is obtained by integrating the
concrete displacements measured by special electrical resistance strain gauges
embedded in concrete a short distance from the steel— concrete interface (see
Fig.5.2). The technique is imperfect since concrete strain is obtained not at the
interface, but a short distance from it, and the effect of concrete cracking is
averaged out over the length of each concrete gauge. However, analyses based on

stress— slip curves found in this way indicate that results are quite good.

Referring to the measurement, it should be pointed out that the bond slip
obtained is a total slip over the length between the two adjacent strain gauges
rather than the local bond—slip, which contrasts to the constitutive relationship
used for "slip" in finite element analysis. The former is the displacement of the
bar relative to an imaginary cross section of concrete over which the transferred

stress is distributed. The slip in this sense is denoted as “apparent slip”. The

latter is the total slip at a particular position.
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5.2.2 Under Monotonic Increasing Loading

Many investigations have been carried out to determine the bond stress— slip
relationship under monotonic increasing loading{Mains 1951, Somayaji and Shah
1979 and Houde 1973] Most of them used one bar size while Houde reinforced
the specimens with #8, #6 and #4 bars. The tests conducted are usually
anchorage tests and force transfer tests as shown in Fig.5.3. The former simluates
the anchorage effect of a reinforcement bar end while the latter models the

condition in the tension zone of a concrete beam between flexural cracks.

From the experimental results presented so far, the following points can be

concluded.

1). Deformed bars develop relatively higher bond stress over a shorter length of

bar than plain bars.

2). Plain straight—bar specimens fail mostly by slip, while deformed bar

specimens fail by yielding of the bar with no bond failures.

3). The maximum local bond stress of a plain straight bar occurs near the
unloaded end. The maximum value is not reached until maximum total load is
applied. The maximum local bond stress occurs near the loaded end at relatively

low loads. It then moves towards the unloaded end as the load is increased.

4). For a deformed straight bar, the maximum local bond stress occurs near the

loaded end of the bar, while the part of the bar near the unloaded end never

develops a large bond stress.
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5). A hook on a deformed bar increases the bond effectiveness along the parts of
the bar ahead of the hook. A hook on a plain bar changes the failure mode

from slip failure to fracture failure of the bar.

8). Local cracks govern the magnitude and distribution of both tensile stress in
the reinforcing bar and bond stresses. Crack locations are coincident with lumps
of the bar force curve and the positive and negative peaks of the bond-— stress

curve.
5.2.3 Under Repeated and Cyclic Loading

For repeated and cyclic loading behaviour, the bond at any stress level is
influenced by the previous loading history. The effectiveness depends mainly on
the given strc;ss level and previous peak stress and less on the number of the
cycles. The bond stress—slip curves are characterized by residual slip at zero load

level and hysteresis loops. Particularly, the following experimental phenomena have

been observed[Shipman and Gerstle1979 and Rehm and Eligeausen 1979]

1). There is no evidence of a significant difference between the curves of small

and those of large specimens subjected to the same amplitude of cycles.

2). Under repeated and cyclic loading, a residual slip exists at zero load level,

the loading and unloading paths are not coincident, and thereby form hysteresis

loops.

3). Under very low amplitude of applied load, no residual slip or significant

hysteresis loop occurs, which indicates that there is a linear elastic region in the

bond stress— slip relation curve.
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4). As loading is applied, the hystersis loops shift by a small amount to the
right, producing additional residual slip at zero load, as well as additional slip at
any other load level. These additional bond stress and slip tend to diminish as

the number of load cycles is increased, and the hystersis loops become congested.

5). The amount of the bond destruction in the first repeated loading increases
with increasing load. The trend is that the higher the load amplitude, the larger
the additional slip, i.e. the rate of bond deterioration is larger at higher load

amplitudes than at lower ones

6). Although every subsequent loading produces additional slip at all load levels in
a repeating cycle, this slip is small in comparison with the slip produced during

the first cycle.

5.3 Bond-slip Constitutive Relationships

General Remarks

When the constitutive relationship is derived, the bond slip is defined as a

local slip, rather than a total interface slip. The bond stress represents the force

transfer from concrete to reinforcement or the decreasing/increasing ratio of

concrete force and steel force.

Under Monotonic _Increasing Loading

Various formulations have been derived from experimental results to represent
the bond stress—slip relationships. An early formula was obtained by Nilson[Nilson

1968] using the results of Bresler and Bertero. He obtained the third— order

polynomial,
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Tp = 3606 (10° s) - 5356 (10° s)2 + 1986 (10° s)° (5.5)

in which 7y, is the bond stress in psi and s is the slip in inches.

Based on the experimental results from tests on sixty two tension specimens
reinforced with a #8, #6 or #4 deformed bar, and thirty two pull—out tests on
beam end specimens reinforced with #8 deformed bars, Houde[Houde 1973]

derived the following general fourth order relationship:

12 3 15 4

7p = 1.95 x 10° s -2.35 x 10° s’+ 1.39 x 10'% s°- 0.33 x 10'%s

(5.6a)

where Tp and s are the same as defined above. In this derivation, the author
considered the load level, the thickness of the concrete cover and the concrete

strength.

In contrast to the early studies, Nilson[Nilson 1972] investigated the end
distance effects on the bond—slip constitutive relationships. He concluded that the
end distance effect was significant, as shown in Fig.5.4, with the initial modulus
of all these bond—slip curves being 2 x 108 psi/inch. However, there is some
doubt since his bond slip was the total slip at a particular point, rather than a
local slip at that point. Therefore, it is reasonable that the slip could be larger
under a lower bond stress at a position nearer to the loaded end, i.e. no matter
where the point is taken into consideration, bond stress may have a unique

relation with local bond slip.

In fact, in selecting a bond stress—slip curve in finite element analysis it is

usually best to keep it as simple as possible based on reasonable agreements with
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experimental phenomena. The relationship derived by Houde in 1973 (eq.5.6) has
been examined in this study with appropriate conversion to S.I. units, because it

is generally accepted as being reliable. Thus the relationship is given by

Th = 5.29 x 10° s - 6.38 x 10° s+ 3.77 x 10° s- 8.96 x 10'°s*

(5.6b)
in which 7p is in N/mm?2 and s is in mm, and is shown in Fig.5.5.

Under Repeated and Cyclic Loading

As far as repeated and cyclic loading is concerned, the bond stress— slip
relationship becomes very complex. Not only does the bar geometry and concrete
confinement need to be considered, but also the loading history should be taken
into account, which produces a hysteresis response. Due to bond deterioration
effects, the bond—slip increases in subsequent loading cycles. An empirical
formulation to deal with this situation was given by Rehm and Eligehausen[Rehm

and Eligehausen 1979] who tested 308 pull— out specimens. The parameters
studied were the loading amplitude, bar diameter, concrete quality and bond
length. They calculated the slip S, from the initial slip S, after a certain number

of load reversals n by the equation

Sy = S, (1 +Kp) (5.7)

where K, is the deterioration coefficient determined from the experimental data

by

Kg= ( 1+ n)% "7 -1 (5.8)

It was also concluded that the relation eq.(5.8) was not significantly influenced

by the various other parameters.
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Recently, Pochanart and Hatmon[Pochanart and Harmon 1989] presented
bond— slip relationships for well— confined concrete based on a damage rule (see
appendix III). The parameters studied could be determined directly from the bar's
deformation pattern and concrete strength. They related the bond stress— slip
curve of repeated/cyclic loading with monotonic response by a reduction factor,

and termed the curve a "reduced monotonic envelope".

As shown in Fig.5.6, four parameters are needed to define the monotonic

curve as follows

7, =4.2 -0.06 ( l1g/1p ) (5.9)
s, = 0.003 oy, (5.10)
7, =0.80 - 0.01 ( 1/l ) (5.11)
sy = lg (5.12)

where Ig is the spacing between steel lugs, Iy is the lug height, and o}, is the lug

bearing pressure at maximum bond strength, i. e. splitting strength of concrete.

The ascending branch follows the cubic relationship given in the figure. The
descending branch follows a straight line to a point defined by the frictional bond

stress 7, and the corresponding slip s,. The horizontal frictional branch

3

represents the remaining frictional stress after the bond strength is eliminated.

Having obtained the monotonic bond stress—slip curve, the reduced monotonic

envelope can be constructed as shown in Fig.5.7. It is defined by (73, s;, 73, s}
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and 7¢), where

7, and s; are new peak bond stress and corresponding slip.
75 is the new residual frictional stress.

st =1

3 3 = Iy — ex, is the undamaged length of the concrete key.

T¢ is the current value of the developed frictional stress.

In addition, an offset value of 1/4 ex is suggested which identifies where the

strength component of the reduced envelope begins.

These relationships can be extended to include hysteresis rules for bond

behaviour. Referring to Fig.5.8, these can be summarized as follows:

1. Under monotonic loading, the bond stress—slip relationship follows the

monotonic envelope.

2. The unloading path is very stiff.

3. As long as there is no slip in the opposite direction, reloading will be on the
same path as unloading. When the stress reaches the point where the unloading

took place, the bond stress—slip relation will follow the previous envelope.

4. If the reversed load is higher than the developed frictional bond stress, there
will be slip in the opposite direction, and the reduced envelope based on the

remaining concrete key will be used for the new envelope.

5. If loading takes place after there is slip in the opposite direction, the

reloading path follows the unloading stiffness relationship until either a reduced

envelope or frictional envelope is crossed.
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6. If loading continues in the opposite direction, the loading path will follow the
frictional stress path until it crosses the new envelope and then will follow the

new envelope.

The monotonic version of this relationship has also been examined in this

study.
5.4 Bond— Slip Modelling Techniques
5.4.1 Lumped Interface Element

The so— called "lumped element" shown in Fig.5.9 is a lumped interface
element and in concept consists of two linear springs K; and K, parallel to a set
of orthogonal axes. It has mechanical properties but no physical dimensions. The
element stiffness of the bond link, Ky, is then given in its local coordinate

system by

Fb - Ky - s (5.13)

where K, = 7 ¢ 1o E;, 1o is the length of the bond element.
& is the diameter of the reinforcement bar,

E, is the bond modulus in direction t, and
F? is the bond force in direction t.

Similar definitions apply in direction 7.
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This linkage element can be used to connect steel with concrete, or connect

steel with steel if such necessity arises.

The element stiffness matrix is then transformed from local to global

coordinates and the relative displacements are related to the nodal displacements,

which gives

Fb - K - 5 (5.14)
i.e.
Fl K i
¥ k11 k12 B | k12 5y
1
Fﬁ - 12 kzz ‘k12 'kzz 5;
FK ‘k11 'k12 k11 k12 5{
I'.z 'k12 ’kzz k12 22 62
where
k,, = K{ cos?a + K, sin?a
Ky, = (K¢ - Kp) sina cosx

in2 2
k,, Ky sin?a + K, cos?«

i
Fy is the nodal force in the global system, at node i in

direction y.

6§, is the nodal displacement in the global system, at node i in

direction y,

a is the angle between the local t-axis and the global y-axis, as
shown in Fig.5.9.

Having obtained this final form, the element stiffness matrix K can be inserted

into the global stiffness matrix.
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The stiffness K; known as a "slip modulus" can be estimated based on
experimental results. The stiffness K, in the normal direction to the reinforcing
bar represents the normal force causing dowel action or a "press down" effect of
reinforcement in resisting shear. It is needed when large crack openings take
place. In this situation, the bond depends not only on the chemical adhesion and
mechanical interlocking between the steel and concrete, but also on how well the
surrounding concrete holds the steel from vertical separation. This is, of course, a
three dimensional problem. Despite these complexities, it is reasonable that in the
range when dowel action can be neglected, a very large value of K, can be
chosen, thereby assuming that steel and concrete are nearly rigidly connected.
However, if the movement of the steel is needed to be considered to represent
the dowel action in the calculation, a realistic value of the spring stiffness, K, is
demanded. At present, it is open to question and requires further investigation on

how to find out a realistic calculation of K, to simulate the dowel action.

The lumped interface bond element has been extended to three dimensional
structural analysis by Ahmad and Bangah in 1987[Ahmad and Bangah 1987] Tpe
authors adopted three idealized forms of the bond stress—slip relationships for the

modulii in the three directions.

5.4.2 Continuous Interface Elements

1. 1— D Continuous Interface Element

The one dimensional continuous interface element has no physical dimension in
the transverse direction when undeformed. It has two or three double nodes as
shown in Fig.5.10, using linear, parabolic or cubic interpolation functions,
respectively. The number of nodes should be compatible with that of the concrete

and reinforcement elements. For example, the connection between a three— node
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parabolic element with three nodes along each side of a concrete is accomplished

by a contact element with three double— nodes.

In the unloaded stage, two opposite nodes i and k have identical coordinates,
these nodes combining into a so— called double node ik, as shown in Fig.5.10(a).
The local coordinates of any point x are related to the global coordinates of

the nodal points x;, which gives

x =N - uj (5.15a)
n

i. e. x(§) = T Nj@) x (5.15b)
i=1
n

and y(&) = L Ny(%) yi (5.15¢)
=1

When the load is applied the displacements u at an arbitrary point along the
element are related to the nodal displacements u; by the shape functions, which

are given by

u=N"- uj (5.16a)
n

i. e. u(f) = I Nj(§) ug (5.16b)
=1
n

and v(§) = I N;j() vi (5.16¢)
i=1

where Nj are interpolation functions, and n is the number of nodes along the

contact element.

The relative displacements § between the two connected points will occur, as
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shown in Fig.5.11, given by

d=A - -u (5.17)
1.e.

[ uj

5y -1 0 0 1 0 0 vi

sy |- 0 -1 0o 0o 1 o Wy

52 0 0 -1 0 0 1 ug

vk

L Wk

Substituting eq.(5.16) into eq.(5.17) leads to eq.(5.18), which relates the relative

displacements 5 at any point of an element to the nodal displacements yu;.

8=A N - u; =B - yj (5.18)

Analogous to eq.(5.17), the stress g at points i and k are related in eq.(5.19)

to the contact stresses 7 between two elements (see Fig.5.12), i.e.

c=-Al -z (5.19)
1. e.

Oxi | -1 0 0

Oyi 0 -1 0 -

0zi ~ 0 0 -1 Ty

o | 1 0 0 s

Oyk 0 1 0

Ok 0 0 1

The relationship between contact stresses and relative displacements in the

contact interface is defined in the local coordinate system by
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L
P gL QL +LOL
i. e.
Tr Cer Cre Crs o
Te | = | Cer Cer Cis St
Ts Csr Cst Css bg

(5.20)

where L indicates the local system. 70L is the initial stress, and r, s and t are

tangential and normal directions at the double node ik. CL is a material matrix.

In the special case when the contact behaviour in the coordinate directions are

independent from each other, we obtain the material matrix CL* as

(5.21)

where C.., C;; and Cg are the bond— modulii in the r—, t— and s— directions.

To build up the element stiffness matrix and the vector of nodal forces, the

material matrix has to be transformed from the local to the global coordinate

system. Then the element stiffness matrix [KM] and the vector of element nodal

forces FM are obtained in the global system, which can be assembled into the

structural force vector directly without any additional effect. These transformations

and integrals are

and

(5.22)

(5.23)

(5.24)
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7= [ C ]g (5.25)
where
tr
(T]1-| tn
ts

is a transformation matrix, consisting of unit direction vectors parallel and

normal to the contact interface at the double node ik, see Fig.5.12.

The integrations above are carried out numerically over the contact surface,

usually with a Gauss numerical integration procedure.

The differential area dA for the one— dimensional contact element is

dA = b det|J]| d¢ (5.26)

where b is the width of the contact surface and det}J| is the determinant of the
Jacobian matrix. In particular, for the one—dimensional contact problem

considered here, det |J| is equal to the real length of the element, L.

2. 2—D Continuous Interface Element

As shown in Fig.5.13, the 2D contact element is used to connect 3D elements

as well as layered shell elements.

In principle, the procedure developed for the one— dimensional contact element
can be directly used for the two— dimensional element, except that the second

coordinate 7 is employed. The coordinates ¢, and 7 form an orthogonal natural

coordinate system,
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Furthermore, the differential area dA is now

dA = det|J| di dy (5.27)

where det|J| is related to the two coordinates. Therefore, for the two

dimensional contact element det|J| is equal to the real surface area of the

element, which is obtained from

) 3
i.e.
] ox dy oz 9
or ar ar or ox
o || ax e >
3s 3s 3s ds 3y
) ox oy oz 9
at 3t 3t at 3z

5.4.3 Embedded Bond Element

Fig.5.14 shows the embedded bond element of Balakrishnan and

Murrayl Balakrisknan and Murray 1987]  They assumed that the bar and element
sides are straight. Bond nodes are added along the embedded reinforcement bar.

The reinforcement displacement field is then given by
fg = fo + fp (5.29a)

where f, and fy, are the displacement of the concrete and bond slip at that

point. They are defined as

fo = u cosf + v sinf (5.29b)

where u and v are the displacements of concrete in x— and y— direction,
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respectively, and ¢ is the tangential angle of the bar at a particular point.

p
and fb -.):1 HJ Ubj (5.290)
Jj=

in which Hj is the shape function of the embedded the bond element, Upj are

the nodal bond displacements and p is the number of slip nodes along the bar.

The virtual work of the embedded bond element is given by

1
T
(Ui 1T (T . [Hj]1 [Dp] [Hj] Ap Js a8 } [Upj] (5.30)
m -—
where Dy, is the bond stress producing unit slip; m is the number of bond
elements in the concrete element; Ap is the contact area per unit length of
reinforcing steel; and Jg = [(dwdf)? + (dy/ds’)z]f. The factor in the curly

bracket is the stiffness matrix for the bond element.

Because the bar is straight 8 does not change along the element, and therefore

the reinforcement strain can be obtained by

du dv dfy,
€g =~ cosf + siné +
dr dr dr
[[aN;
—_— [0] uj
1 at 1 [dH
= — [cos6 sing] + — |— {Ubj}
JS aNi Js dE
(O =] Vi
ar 11
o
= [Bes Bus] [lvi (5.31)

Ubj
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where i = 1, 2, ..., q are the total number of the concrete nodes; j = 1, 2,
..., p the total number of the bond nodes; and N; are the shape functions of the

concrete element.

The stiffness matrix for the concrete parent element is expanded to include
stiffness coefficients related to the reinforcement and bond, the increase in size
depending on the number of additional bond nodes. The expanded stiffness matrix

is then assembled into the global stiffness in the standard manner.

However, this will expand the bandwidth significantly when bandwidth solution
procedures are adopted. On the other hand, it will be difficult to use a front
solution technique in the conventional manner. These disadvantages are overcome

using the general embedded bond element derived in the next section.

5.4.4 A General Embedded Bond Element

This general formation follows a procedure similar to that used by Balakrishnan

and MurraylBalakrishnan and Murray 1987]  However the bar element and the

parent concrete element are now generally curved finite elements.

The displacement of steel bar consists of the displacements of the concrete and

the bond—slip between the two components, as shown in Fig.5.15.

Consider a point P on the original undeformed bar. After deformation, the
reinforcement at this point moves to Pg whilst the concrete has moved to P, a
point which lies along the deformed reinforcing bar. The distance P, to Pg
represents the bond slip f,, between concrete and steel during deformation. The

reinforcement displacement along the deformed bar is then given by
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fs = fc + fp (5.32)

where f; is the concrete displacement in the direction of the deformed bar. This
is obtained by interpolating the nodal displacement of the parent concrete element
using the derivation given in Chapter 4 for the embedded element when perfect

bond was assumed.

Let Up,, Up,s --s Upp be p slip degrees of freedom of p bond nodes located

on the reinforcement within the element. Then

P
f, = £ Hy

j Ubj (5.33)
i=1

where Hj are the shape functions used to interpolate the bond slip at an

arbitrary point along the bar.

The uniaxial strain in the reinforcing steel is then given by

dfg
es = (5.34)
dr
where r is the local direction along the reinforcement.
From eqgs.(5.32), (5.33) and (5.34), the steel strain is given by
dfy
es = [Bes] (8%} + (5.33)
dr

where [B.g] is a reinforcement strain matrix due to concrete displacement
assuming full bond and (53} is the nodal displacements of the concrete element.

Note that [Bgg ] is identical to [Bg] derived in Chapter 4 (eq.(4.52)).
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Using eq.(5.33), eq.(5.35) becomes

1 aHj
s = [Bes] (6%} + — { U }
ig L oat
e
1 3H; ’
= | [Bes] - -
Ig ar oy
e
= [Bes Bbs) { Uy } (5.36)
where 5¢ = [u; v ]JT are the nodal displacements of the concrete element; § is

the local curvilinear coordinate along the reinforcing bar;

dx dy )
and Js-[(_)z.,.(_)z]
da¢ d¢

Now the strain energy in the concrete element is

re = = 1,060 I8 [0] [B] (5%) @ve (5.37)

the strain energy in the steel bar is

1 ¢

T T 5e
Ts = 73~ f ] [Bes Bbs ] [Ds] [Bes Bps ] [ Ub] dvg (5.38)

Vgl Up

the strain energy absorbed by the bond is

T
"bond ~ _;" [Ub]T Jbond [Hp] [Dp] [Hp] dvb [Up] (5.39)
surface

and the work done by the nodal forces {Fe} is
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L {69}T [Fe] (5.4M

and the work done by "self-equilibrating externnl force pnives” o

appllied on bond nodes is

- - T, :
"v,a = (Ub) W'n] (55 a0
where all terms have been previously defined.
Minimizing the Lotal potential enerpy (n + LI LA ' m ' n‘/' Y, w
obtaln
8" F°
IKOI' =
( (S. 41
Uh v,a
Ke + Kg Kbs
where Ko - (S. 41
T
Khs 1 Khs - Kp
Ke = fve [Be JT[De [ Bc Kve is the concrete stiffness matrix:
Ks = Jys [Bes JT[Ds [ Bes ] dvs is the reinforcement stiffness matrix.

excluding bond effects;

Kbs = Jys [Bhs ]T[Ds [ Bps ] dvs. and
Fys [Bes ]T [Dg [ Bis ] dvs are stiffness matices due to bond

Kb =
effects;
Ky = SThond [Ilh]'r [Dy] [Mp] dvp Is the bond stiffness matrix.
surface

For Kg, Kpe and Kyg,, the matrix [Ds] = Fq. the modulus of elasticity for
steel and dvg = Agdr where A is the cross—sectional area of the bar, and dr is

the differential length. dvy, = &¢ dr, where ¢ is the perimeter of the reinfoicing

bar.

Expanding the partitioned matrix gives

S
( Kot Keg ) 4 1 Kphey - Uy, —{rf} (S. 420

5.472
and K -8 + (kK -~ Kh)‘Uh = ,/,a (S. ’

hat ha

AL a bond depree of freedom, the foree can be  Interpreted of
. 0 ree 0 e ,
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congisting of two parls

by =9, * ¥,

where dlahas been defined already, and "'b is  the inlernnl
self-equilibrating bond force representing the action and reaction
between reinforcement and concrete. In Appendices 1V and V., it ha=

been explalned, 1n which

v =K-U (5.42d)

actually appears on the left hand side of the equation and

consequent ly v:a Is the only force left on the right hand side.

In order to maintain compatiblity at the boundary and only !he
internal bond-slip can be condensed out, and assuming no externnld

force palr ¢ act on internal nodes then eq.(5.41) can be re-avranped
L]

to glve
KetKg (Kbs 1)y (Kps1)p I (KpsyIm 8e Fe
{
T .i
(Khsi)y  (Kphs - Kp)yy (Kpg - Kb),P : (Kps = Kn)ym|| Uby Yan
i -
| '
(kg8|)p (kbg - kb)p| (kbg - Kh)pp | (khg - Kh)pm ”h P \'tp
_____________________________________ '______.___,_____ - ————
|
(le)s')m (Khs - Kp)my  (Kps - kb)mp ¢ (Kps - Kb)nm [”hm] [0]
(5.43a)
ie.
Kesh Ksbm [U [9
b a 43
pr 5ap (5.4
T
Ksbm Ksbmm [me] (o ]

where m indicates the middle nodes of the hond element.

[Ubm ] is hence given by
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6&
(Ubm] - 'k;émm' Ksbm v, (5.44a)
Up
and -
se Fe
[ Kesb - Kebm - K;ilamm i k‘srbm 11U, | - [Yas (5.44b)
Up Vap

f.e. [ Kree ] {U,} = {a, (5.44c)

where Kr is a general embedded stiffness matrix for the reinforced
concretee:zlement including bond-slip effects. Notice that In the most
normal slituations l/;M and wap would be equal to =zero. However, -/fa
could be applied in computation as an external self-equilibrating
force palr associated with the slip degree of freedom, but the

physical interpretation of doing this needs further clarification (see

bond examples later).

5.5 Summary

The above described formulation has been implemented into a program used in

this study. The sequence for each embedded bar element is summarized as

follows:

1. Calculate B, Bpg and Hy,.

2. Calculate Kq and assemble into the concrete element.
3. Calculate Ky, Kpg and Ky

4. Inverse (Kpg - Kp)mm

5. Multiply - Kebm - Ksbmm—l . Ksme and assemble the resulting matrix at
structural level.

6. [me] is obtained from the element nodal displacements using eq.(5.44a).

This procedure is repeated for all the bars in a concrete element.
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CHAPTER SIX
NONLINEAR SOLUTION TECHNIQUES

6.1 Introduction

The finite element method has been applied successfully to a wide range of
linear structural problems, and has been extended to geometric and material
nonlinearities. While the analysis of linear problems is relatively straightforward, a
nonlinear analysis is considerably more difficult. A crucial factor is that the
nonlinear problem, in general, requires solving a set of nonlinear algebraic
equations, which in itself, is a formidable task. In addition, the nonlinear
problems encountered in structural mechanics may be path—dependent (e.g.
plasticity), or they may possess multiple solutions (e.g. snap— through buckling). A
typical example is the imperfection sensitivity of certain structures which in
general is directly related to the postcritical response. The prediction of
postcritical response can be of great value, particularly for structures exhibiting a
decreasing post— limit characteristic, such as cracking in reinforced concrete.
Therefore, the quest for reliable solutions to nonlinear structural analysis is indeed

a necessary though difficult task.

In order to overcome the difficulties encountered in solving nonlinear algebraic
equations, a stepwise linearization technique is usually adopted. Of these the
Newton— Raphson incremental iteration method is the most popular. This
procedure can be summarized as follows:

K(u)Au q - f(u (6.1a)

p(u)
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where q is a vector of the total external applied forces.
f(u) is a vector of internal forces which is the sum of
equivalent nodal forces of each element.
Au is a vector of incremental deformation.
u is a vector of total deformation.
K(u) is the stiffness matrix, which is a function of
deformation state.

p(u) is residual force vector.

This is sketched in Fig.6.1 for a one dimensional problem. In this procedure,

the incremental displacement Au for an increment of load Aq is obtained by

Au = K=1 (u) Aq (6.1b)

Th residual forces ¢ are found using eq.(6.1a). If ¢ is not within the
prescribed tolerances, iteration is required under constant load level q until the

convergence criteria are satisfied.

In its conventional form, the stiffness matrix is changed at every iteration. This
is quite time consuming and not necessary in many cases. The modified
Newton— Raphson method (Fig.6.2) does not change the stiffness matrix at each
iteration. Usually one change per increment, at the first or second iteration, is
adopted, although schemes exist which allow a change after several iterations.

While requiring more iterations, modified Newton— Raphson is usually more

efficient computationally.

Using load increments, the Newton— Raphson method can fail to calculate
equilibrium states near to, at the point of, and beyond critical points. In other

words, the convergence of the numerical procedure can be lost within a certain
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neighborhood of a critical state of equilibrium. However, the failure of the direct
application of the Newton— Raphson method does not necessarily imply that the
procedure can not be wused at all. In most engineering problems, the
determination of the first critical state of equilibrium and load corresponding to it
is the objective of the analysis. When this is the case, it is possible to define the
critical point configuration as the equilibrium state beyond which the convergence
of the method is lost. But, it should be borne in mind that an unwelcome

increase in computational effort may result.

In order to extend analysis beyond the critical point, displacement control
schemes are often adopted in many finite element programs. This method
interchanges the dependent and independent values in solving the equilibrium
equations to avoid the singularity at the critical point. i. e. the displacement level
is kept constant while adjusting the load vector. The simplest form of this is to
impose a displacement at a load application point and to calculate the reactive

forces corresponding to this displacement at the point of application.

Another displacement control method(Ramm  1980] s to take a single
displacement component as a controlling parameter during the iterations. But this
requires a proper selection of the controlling parameter. It also fails in some

situations, for example in snap— back phenomena.

To provide an efficient iterative performance beyond the limit point,
arc— length solution methods were proposed in the early 1980s, and have been
increasingly used in nonlinear analysis since then. This method controls the
iterations in the numerical approximation by using restrictions on the loading
parameter AN to trace equilibrium. These restrictions, known as constraint
equations, can be a sphere, an updated normal plane or some other alternative

form. This iterative technique was independently introduced by Riks[Riks 1972 and
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1979], wempnerl Wempner 1971] an4 wesselsWessel 1977] in the 1970'. Later, it
was improved by Ramm[Ramm 1980] and Crisfield[Crisfield 1980] who made it

much more suitable for finite element analysis.

In the remainder of this Chapter, the displacement control method is first
described, after which the arc—length method will be discussed in detail together
with line search techniques. Line searches are methods of accelerating the
iteration procedure and can be most beneficial for problems involving sudden
nonlinearities such as occurs in reinforced concrete with significant strain softening
in the constitutive relationships. Both arc—length and line search procedures have

been implemented into the programs developed in this study.

6.2 Starting Point and Notation

The solution of eq.(6.1) for nonlinear finite element analysis is based on an
incremental— iterative procedure, i. e. the nonlinear problem is stepwise linearized
and the linearization error is corrected by additional equilibrium iterations. If

loading is assumed to be proportional, a load vector q can be expressed as
q =X\ q, (6.2)

where q, is a vector of reference loads.

Eq.6.1 can then be rewritten as

K(u) Au = Mgy - f(u) (6.3)

Within one increment from configuration m to m+1, the load and displacement
states at positions i and j, before and after an arbitrary iteration cycle are shown
in Fig.6.3. The total increments between positions m and i are denoted by uj,

qi and ); while the changes in a iteration from i to j are denoted by Au;, Aqg;
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and A);, respectively. Thus

u = u+ui (6.4)
u‘j = u, + Aui (6.5)
i m

A = )‘+)‘i (6.6)
)‘j - )‘i + Axi (6.7)

in which the left superscript refers to the ‘'total' displacement or loading
configuration, the right subscript refers to ‘incremental', while A refers to

iterative.
This notation was devised by Ramm[Ramm1980] and is illustrated in Fig.6.3.

The load level is then expressed as

'q = "q +q (6.8)
= 6.9
qJ, q; + Aqi ( )

In order to progress from i to j on a constrained load— displacement path,
both the load and displacement have to change. However, incremental
displacement at i, denoted §;, is calculated linearly on the basis of the current
residual force y; and some appropriate stiffness matrix IK existing at i. This taen
takes the solution to an intermediate point j' at the some load level = "\

Hence the state at j' is governed by the equation,

ik 5. =1q-fCuw = "r - FCW (6.10)
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In order to reach point j, a load factor A\j, defined by Aq; = A)\ Qo Is
calculated by some means which allows the iterative equilibrium equations to be
expressed by,

K du, = 4q, + Yq - ftw)

i i
Aq, + 'y = AN q+ e (6.11)

where f(lu) are the internal forces and i, are the out— of— balance forces. q, is

the same as in eq.(6.2)

The stiffness matrix K at state i takes account of all possible nonlinear effects.
It can change at every iteration or be occasionally updated as in the modified

Newton— Raphson method.
The singularity of the stiffness is usually checked by the determinant
IDet (iK)| = 0 (6.12)

This determinant can easily be calculated as the product of all diagonal terms
in the triangularized matrix during Gaussian elimination. In the usual finite

element computation, it is very rare to get a zero determinant. But it is

necessary to find out whether or not it is a negative. When it is negative,

unloading should be applied.

Since the linearized error is corrected by equilibrium iterations it is necessary
to check when equilibrium has been achieved so that iteration can cease. This is

done by making use of convergence criteria. In this study, the following criteria

are employed.
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1
) lojl
< Cp1 (6.13)
Iqil
2). loiox |
£ Cpg (6.14)
fqjl
3). lpi |
< Cp3 (6.15)
lo, |

where |pjl is the norm of the residual forces,
Iqj! is the norm of the applied forces,
lo,| is the norm of the residual forces at start of an
increment.
and wr;xax | the maximum component of the residual forces.

CF1, Cpz and Cgj are prescribed tolerances.

The first criteria ensures that the convergence should be satisfied within a
reasonable range. The second criteria is for the situation where the first may not
be the best indication of convergence because it represents an ‘average'
assessment of overall equilibrium of the structure. If the magnitude of the total
applied loads is large and the nonlinearity small, the ratios in the first criteria
would be small. On other hand, the reverse situation will produce ratios of large
values. In order to guard against these, the final convergence criteria should be

applied.

In all convergence checks, the total stresses are used in calculating the

unbalanced forces in order to avoid the residuals accumulating.
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6.3 Displacement Control Scheme

In order to obtain convergence at a critical point, a primary task of solution
techniques is to avoid any singularities. Many displacement control schemes
attempt to do this by selecting a single displacement component as a controlling

parameter and taking the corresponding loading level as unknown.

If eq.(6.11) is reordered, so that the prescribed component Au,; is the last in

the displacement vector Ay;, equilibrium can be expressed as

- Ay - + (6.16)
K,y Ky, Au, li q. ¥2

where the underline _ denotes submatrices or vectors.

Then interchanging variables

- - Au,ij (6.17)
K,y -a ax i ¥2 K22
In this equation, it is seen that the symmetry and the banded structure of the
stiffness matrix is lost. However, if it is formed in two parts, a solution can be

obtained. The first line of the equation gives
. . ; .

1K11 Au,j = Arj 191 + @, - 'Kyp Auyj (6.18)

This is a linear equation in the unknown increment of the load parameter A\

Therefore, the solution can be decomposed into two parts as
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Au,j = ANj Au,qp + Au, g (6.19)

corresponding to the two parts of the right hand side of eq.(6.18). Hence, both

solutions are obtained simultaneously using two different 'load' vectors:

'K,y Au,i1 = q, (6.20 a)

L SRY:\CRE | iS’s’ - iK12Auz>i (6.20 b)

Substituting the displacement increment Au,; in eq(6.19) into the second part of

eq.(6.17), the load factor A\ can be obtained as

lo, - iKzz Auyy - 'K, 44,4 17

AN = . - (6.21)
-lq, + 1Koy Ay

Instead of solving an unsymmetrical system equation, the modified stiffness
expression eq.(6.17) is analysed for two right hand sides provided that iK” is
not singular. Since the displacement Au,; is fixed during iterations the underlined

terms in eqgs.(6.20) and (6.21) are omitted in all further iteration cycles.

However, the technique described above requires a modification of the stiffness
matrix (IK to ig, ,)- Since it is not very likely that the solution will be exactly
at a singular point, the original matrix IK may still be used and eq.(6.20)

replaced by

K Aujp = g (6.22 a)

(6.22 b)

where the underlined term in eq.(6.20) is not required to be formed. Similar to

€q.(6.19), both solutions are added together, thus
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Auj = ANj Aujy + Augyp (6.23)

in which the component Au,; is also included. i. e.

Auzi = A)\i AuZil + A“ziII (6.24)

This, in fact, is a constraint equation. In the first iteration cycle, it is used to

determine the load factor A\, given by

Au,j - Au,, g
AN, = (6.25a)

1

Au,j

For all further cycles Au,; does not change, i. e. Au,j is zero, and A\; is

given by

- Au,ig
AN = — (6.25b)

Au, i
Applying the modified Newton— Raphson technique, egs.(6.22) need to be solved
simultaneously. This additional store for Au,jj is required. Iterations are continued

until all other displacement components are adjusted and the new equilibrium

position is found.

The displacement control method is usually used only in the neighborhood of
the critical point although it may be applied throughout the entire load range.
Obviously, the method fails when the structure snaps back from one displacement
level to a lesser level, and some knowledge of the failure mode is desirable for a
proper choice of the controlling displacement. It might even be necessary to
change the prescribed displacement parameter during the solution. An effective
modification is to relate the procedure to a measure including the effect of all

displacements rather than to a single displacement component. However, the
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arc—length method is much more effective in solving this type of nonlinear

problem.
6.4 Arc— length Solution Technique

In contrast to the normal Newton— Raphson procedure under load control, the
arc— length technique treats the load level as a variable in the governing
equilibrium equations to bring the load— displacement state from j' to j (Fig.6.3).

An extra governing equation is then needed to calculate the load factor, A\
Decomposing eq(6.11) into two parts, it is assumed that:

iK 57 = q, (6.26a)

ig 5; = 1p (6.26b)

The iterative and incremental displacements are given by

Auj = A \j 67 + b (6.27a)

uj = uj + Aujy (6.27b)

where 1y is an artificial factor used to accelerate the convergence speed in an
analysis. This will be discussed in detail in section 6.5. For the moment, it is

assumed to be 1.0 (i. e. the solution is not accelerated).

Since eq.(6.26) is an n— dimensional problem, then eq.(6.27) represents a
(n+1) dimensional problem. In this case, 6T, 3§ and Ay; are of order (n+1)
with their (n+ 1)th coordinate set to zero, while A}j is a vector with its (n-+1)th
Ccoordinate being A\; and others being zero. Viewing the load— displacement space

in terms of vectors, as shown in Fig.6.4, then vectors Y and n; are defined as
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Ly =uj + M (6.28)
0j — nAuj + 4 ) (6.29)

where u; is the

incremental displacement vector in which

the (n+1)th coordinate

equals zero, \j is a vector of incremental load factors with only the (n+1)th

coordinate not zero. Therefore vector 15 is given by

j=i+1 (6.30)

n;, such that

(6.31)

Substituting eqgs.(6.27a), (6.28) and (6.29) into eq.(6.31), the scalar factor A); is

determined as

- 4i 44 + Ry
ANy - (6.32)
T
nui by + A
Obviously, if the constraint expression eq.(6.31) were added into the

incremental stiffness matrix equation, the symmetric and banded structure of the
matrix would be destroyed, as was the case in the displacement controlling

the situation in the original arc—length method; however

scheme. This was

Wesselsl Wessels  1977]  realized, using geometrical considerations, that the

difficulties could be removed by a two step technique similar to that used to

improve the displacement control solution procedure.

The constraint R; can be chosen in various ways. Two common, but effective,

Ones are updated normal plane tracing and spherical tracing.
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6.4.1 Iterating Along an Updated Normal Plane

If the iteration path is restricted to a 'plane' normal to the updated tangent ti
see Fig.6.5, the scalar product of the tangent t; and vector n;, which contains

the unknown load factor A)\;, vanishes. Thus
t{ " n; =0 (6.33)

Ry =0 (6.34)

Therefore, eq.(6.32) becomes

Auj 5
ANy = - (6.35)

ng'}-g + A

i
Instead of the updated tangent t;, the ‘plane' normal to the first tangent t,

can also be used. In this case the load factor A)\; is then expressed as

ANg = - (6.36)
6.4.2 Tracing on a 'Sphere’
Instead of following the updated normal plane, the so— called 'sphere' tracing

iterates along a sphere with the centre at m and the radius ds of the initial

tangent vector vector t,, as shown in Fig.6.6, i. e.

[= ... =ltjl = ds (6.37)

This restriction is defined by
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Li.tj - (ds)? =0 (6.38)

The radius ds is also given by
ldsi=ltjl=1t; + nj| (6.39)
Hence
nj - (pj + 24 )y =0 (6.40)

Substituting eqs.(6.28) and (6.29) into eq.(6.40), and writing in matrix form

results in

nAul (mAuj +2u; ) AN (A £2 N ) =0

(6.41)

in which Ay; is expressed in eq.(6.27a). Eq.(6.41) then leads to a quadratic

constraint equation for the load parameter A\;.

a (A\)2 + 2b A\j + ¢ =0 (6.42)
where
= T 2 6.43a
a—1+ﬁT .QTn ( )
T
b=+ é¥ &y 4+ M Ep Y (6.43b)
T
c =127 é? uj + 7% 8 3 (6.43¢)

Eq.(6.42) generally has two roots, A\, and A\j,, which means there are two
intersections with the sphere as shown in Fig.6.7. Therefore, it is necessary to

select the correct one to trace convergence properties and the forward structural
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behaviour.

The two roots A\;, and A\, give two values for angle § between the previous
tangent vector Y and the new one t;, ,. The appropriate root is chosen by

ensuring an acute ‘angle' #, i. e.

Li - Liwy
cosf = (6.44)

where t; and ;4 , are defined in eqs.(6.28) and (6.30).

Usually, one of these rcots will give a positive cos§ and the other negative, so
that there should be no problem in choosing the loading factor, A);, which gives
an acute ‘'angle’ #. However, some situations do exist where both values of cosé
are positive. In this case, the appropriate A\; may be chosen as the root closest

to the linear solution of the eq.(6.42) which is

c
(6.45)

A]“i,lin = -
b

This situation happens rarely. But if it is encountered in the solution
procedure, it must be dealt with very carefully, because it could mean that there
is something wrong such as divergence, violation of the solution etc. A way to
avoid this is to reduce the step length. If this does not help, increasing the

length can be tried, since reducing the step length is not always on the safe side.

Step Length ds

So far it has been assumed that the step length ds is known. For the initial
increment, some guessed load factor Ax, can be applied and, having obtained a

solution from eq.(6.26a), the step length is given by
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ds = &\, / (b1 b ) (6.46)

which is then used in the following iterations. In the constant arc— length method
of Riks/Wempner, this step length ds is held constant in the rest of the
increments. In variable step length procedures, the step length ds is adjusted from
one increment to another to account for the different degree of nonlinearity
throughout the load— displacement path. This change can be accomplished in

various ways. The followings are commonly used ones:

dsj = (14/1j-,)% dsj_, (6.47a)
or

dsj = (Iq/1i-)% dsj_, (6.47Db)
where dsj— , is the incremental length at the previous increment, I4q is the

desired number of iterations, usually assumed to be 2 or 4 and Ij—, is the

number of iterations needed at the (i—1)th increment.

If I, is zero, ds; is then chosen as

dsj = 2 dsj_, (6.48a)

or
dsjy = 1.5 dsj_, (6.48b)
From numerical experience, it is not good enough to just simply use the step
length adjustments given by egs.(6.47) and (6.48), because before and after
cracking occurs in a reinforced concrete structure, the nonlinearities are very
different. It is better to set the step length before cracking and to load the

structure very carefully after cracking using the equations described above.
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6.4.3 Intermediate Process in Arc— length Iteration

As described in eqs.(6.10) and (6.11), before the final position j is reached in
an iteration, the load— displacement state has to be brought to the so— called
'intermediate point', j'. The procedure is actually an iteration in the
Newton— Raphson method in load— displacement space. However, in this process
the reactions at prescribed boundary points are redistributed in order to follow the
nonlinearities of the structure. This phenomenon is significant in the nonlinear
analysis of reinforced concrete structures. Furthermore, when the structure traces
the arc—length path (along an updated normal or a sphere or others) from j' to
j, the reactions in the load vector are also dependent on the updated stiffness
matrix. If the stiffness matrix is different from the previous one, the load vector
needs to be reformed in terms of the changes occurring when the reference load
is added onto the structure. In particular, the displacements corresponding to the
reaction forces need to be reformed. This will effect the final load configuration

through the factor A\

From this point of view, the 'proportional' assumption in eq.(6.2) can not be
simply used, we must deal with it cautiously through an iteration procedure to
trace the nonlinearities. In programming, when eq.(6.26b) is employed for &; the
reactions should be allowed to redistribute in reaching j'. Furthermore, the
external force vector in eq.(6.2) should be reconstructed when using eq.(6.26a).

Finally, the external forces are iterated to obtain

ba; = agj + Mg, (6.49)

where Agi' represents the iterative load vector due to the residual forces Iy,

obtained from eq.(6.26b), and q, is the iterative load after calculation of &t.
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Computational experience has shown that, if this intermediate process is
neglected and eq.(6.2) is incorporated directly, there will be large difference in
the reaction forces for a slight nonlinearity. Sometimes, this is such that
numerical convergence can not be obtained, especially in the nonlinear analysis of

reinforced concrete structures.
6.4.4 Iteration in the Descending Part of Load— Displacement Space

If tracing the descending part of the load— displacement space (i.e. the stiffness
matrix exhibits a negative determinant), nonlinear analysis falls into a difficult
stage. In the increasing part, either the tangent or secant stiffness matrix can be
used and usually there is no problem in obtaining convergence. The only
significant point is that the tangent matrix usually converges faster than the secant
one. But for the descending part, it is difficult to a find solution if the secant
stiffness matrix is adopted because it is always positive and it is necessary to use
the tangent stiffness matrix to escape from this problem and reach convergence.

These phenomena for an iteration is illustrated in Figs.(6.8) and (6.9).
6.5 Line Search Scheme

In eq.(6.27) the accelerating parameter 7 was assumed to be a constant 1.0.
This section will discuss »n in more detail, with particular reference to the line

search scheme.
Basically, the line search concept attempts to find parameter 7 such that the

energy ¢ done by the out— off— balance forces on the incremental displacement u;

is stationary in the direction n. The energy ¢ at iteration j is defined by

(i - oC(iw + 112 [e] " du (6.50)
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Now minimizing the energy with respect to n and using eq.(6.27b) then

3d dg]T  adu
onil oulj  9ny
=sj(j j)=0 (6.51)

The subscript j implies that Si,j is the jth estimate of the inner products

obtained at the jth estimate of T, j— 1» which is 7; ;,

In practical numerical computation, eq.(6.51) is too strict and it is preferable

to satisfy this equation within some reasonable bounds, i. e.

Isjni, ) 1 <a |l sg(ng ol (6.52)

where so(’?i,o) - 5.{ i¢. and

¢ are the out— of— balance forces at end of ith iteration. Eq.(6.52) is illustrated

in Fig.(6.10).

Numerical experience has indicated that a fairly slack tolerance is « = 0.6. In
such instances, many iterations will require no extra residual calculations since the
first trial i, (normally unity unless acceleration is used) will immediately satisfy
€q.(6.52). However, if eq.(6.52) is violated, a new scale n; , must be tried as the
second attempt to satisfy the equation. The second estimate 7u; , can be computed
in a number of Ways[Wessv:ls 1977, Batoz 1979 and Crisfield 1980] For simplicity,
a linear interpolation (or extrapolation) through the values s,(7; ,) and s(nj o) is

usually adopted, i.e.

i, 2 - s(Mi, o) - Sy

i, s(mi,,) - s(ni,o) Sy ~ Sg



Nonlinear Solution Techniques -150-

- 8 pi
= : (6.53)

T
8i (pi,1(Mi,4) - ¢i)

For further estimates, the concept is simply repeated:

Tin e (6.54)

The following derivation extends the line search scheme for use with the

arc— length method.
Substituting eq.(6.27a) for Au; and eq.(6.10) for ¢ into eq.(6.51) gives

od T )

—-— = (8 +ANj & ) (dNhgg - £5 (np) )

sj = 0 (6.55)
However, as before, eq.(6.52) will be used as a practical substitute for

eq.(6.51). The inner product i is then calculated at the jth estimate of Si(ﬂi,j)

using the internal force vector, fj(nj), i. e.

o T T i T
Sj-J)\_éi Qo - 9 fj,_j+A>‘i J)\_QT d,
T
RS B
= d, dx - d, +dy ANy dN - d, AN (6.56)

Similarly, s (n; o) is given by

sp = (5 + M & ) (g, - £

- LT T T
= 0x 8] g, + An T ap - & £i - My a L
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=Jdhe, + A INe, - e, - AN e, (8.57)

Using the interpolation (or extrapolation) of eq.(6.54) a new scale i, j+ 1 is

obtained. Substituting eqs.(6.56) and (6.57) into eq.(6.54) gives:

Ni, j+1 e, In+ ANy IN e, - ANj e, - e,
- - (6.58)
ni,j e, ANy - d, ANy + e, - d,

Having obtained the secant— type interpolation of expression eq.(6.58), a straight

forward application to the arc— length procedure can now be designed:

— Given 7 , = 1.0, )\; is found in the usual manner using either the quadratic

equation or updated normal plane constraint.

— Update the displacements and internal forces;

— The inner products S and s, can then be calculated using equations (6.56)

and (6.57). The adequacy of the first N, = 1.0 is checked by eq.(6.52);

— If eq.(6.52) is not satisfied, this approach would involve the immediate
application of eq(6.58) with 7; ;, = 1.0 to interpolate for =z; , However, since
the constraint equation used to calculate AN; was satisfied with »; , = 1.0, the
constraint equation will be violated using the coefficients obtained with 7; , =
1.0. In other words, the straight forward application of eq.(6.58) leads to a
scalar 7; , that does not satisfy the constraint relationship unless the load level \;
is also adjusted. Hence, eqs.(6.58) and the constraint equations, (6.35) or (6.42),

must be solved simultaneously for A\, and M,j+ 1

To combine the constraint equations with eq.(6.58), all equations are used. The

scalars involving &1 and q, are calculated once the tangential vector §T has been
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computed. These are then kept fixed for the rest of the increment. The inner
products involving f;, 5, q, and &1 are calculated when §; has been computed.
These remain fixed for the rest of the iteration for 7. The scalars d, and d,
involve the internal force vector at the end of the ith iteration, and are therefore
re— computed each time when the new internal forces are calculated, which may

be a number of times per iteration in adopting a line search.

The simultaneous solution of eq.(6.58) with the constraint equations is achieved
using a simple direct substitution method. To start with, the procedure would use
the original estimate for A\, obtained from the constraint equations with i,
1.0. The internal force vector vector ijn and appropriate inner products would
then be computed and, if eq.(6.52) were violated, the calculation would follow

the steps:

i). Solve eq(6.58) for ni, 2.
ii). Replace 7; , with x; , in the constraint equations and solve for a new A\

ili). go back to i) if there is a significant change in the two 7;.

However, it should be noted that eqs.(6.56) and (6.58) are not accurate unless

Jx is the load level at which fj j was computed, i. e. at the displacement level

Ju = u; + ni,j (87 + A)\i T ) (6.59)

This approximation is due to the assumption that fj,j is independent from in
and only depends on 7; i Fortunately, as Crisfield[Crisfield 1983] demonstrated,

using eq.(6.58) gives very satisfactory results.
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6.6 A Brief Description of Programming

Based on the modified Newton— Raphson method, the arc— length solution
techniques, together with the line search scheme, have been incorporated into the
program used in this study. This is described in the following flow chart. The

following notation is used to denote inner products required in the procedure.

¢, = 8T - b1 c; = 8T - 3
N co - 8i -y
cs - 81 - 3

d, = é'{ . 9y d, = -‘5-}. ’ -f-j,_)
d, = é¥ . Qp d,= ﬁ}‘ ) £j,_]
e, = d, e, = ﬁ}‘ . &

e, =d, €4 = ﬁ‘}: £

Flow _Chart of Nonlinear Solution Scheme:
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CHAPTER SEVEN
FUNDAMENTAL NUMERICAL STUDIES
OF

MODELLING TECHNIQUES

7.1. Introduction

Having discussed and implemented the finite element computational
representation of reinforced concrete structures, several examples are now
presented to assess the methods developed. Fundamental numerical studies are
carried out in this Chapter whilst the next Chapter presents applications to more

realistic reinforced concrete structures.

The main purposes of this Chapter are:

1). To investigate the capability, effectiveness and reliability of the new proposed

embedded reinforcement models, including curved bars.

2). To investigate the concrete crack rotation approach and strain— decomposed
crack models for skew reinforced concrete panels to see how effective these are

in tracing changing crack orientations.

3). To assess arc—length solution and line search techniques in reinforced

concrete structure analysis, in particular when tracing post crack behaviour.

4). To investigate tension stiffening and shear retention laws. Although many
relationships have been suggested to date, there is still no general agreement of

the most appropriate relationships due to the complicated mechanism of such
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effects.

5). To assess the capability of the implemented embedded bond—slip model and
the adopted nonlinear bond—slip relationship, and to obtain a better insight into

the fundamental behaviour of bond— slip.

These fundamental numerical studies have been undertaken on a stock of
relatively simple reinforced concrete panels and specimens. They include: i)
one— way reinforced concrete panels; ii) skew reinforced concrete panels; iii)

biaxially loaded Bhide— Collins panels; and iv) pull—out tests and transfer tests.

The program used in these investigations is based on the original version of
FECON 86[Phillips 1986]  Thjs has been modified to include the new
reinforcement modelling, bond modelling, tension stiffening, shear transfer, line
search and arc— length solution techniques, and rotating and strain de— composed

cracking simulation.

7.2 Comparison of Different Embedded Reinforcement Models

Introduction

The aim of this section is twofold. One is to assess the new formulations
against the previous one of Phillips and Zienkiewicz. The capability and reliability
of the latter formulation has been proven by quite a number of investigations on
deep beams, prestressed concrete pressure vessels, etc. Therefore, it is worthwhile
comparing the new models with the previous one by analysing some simple
examples. The second aim is to show the potential use of the new models by

Comparing with the experimental results of a skew reinforced concrete panel.
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7.2.1 One Way Reinforced Square Panels

Two artificial specimens, 1000mm square with thickness of 100mm, reinforced
in the x—direction, were analysed (see Fig.7.1). The two specimens have different
location of reinforcement. In the first case, the bar distance d is 250mm from
the boundary side while in the second one d equals 200mm. A uniformly
distributed tensile load and a pure bending moment were applied as shown. The
different locations of reinforcement were used because the first one can be
analysed by all three models while the second one will show any variation in the
steel stress due to the change of steel layout. Theoretically the stresses should be

the same whatever the position of steel.

Parameters Studied

Variation of the steel stress will be investigated with reference to different
meshes and the embedded models. Two meshes are used for the first case where
d = 250mm while four meshes are used for the second case where d = 200mm,
as shown in Fig.7.2(a) to (f), respectively. The numbers in each diagram indicate
the different embedded models studied for each mesh, where 1 represents
Phillips— Zienkiewicz formulation, II denotes the orientated embedded straight bar
formulation, and III stands for the general embedded approach. A 3 by 3 Gauss

integration rule was used. All analyses were linear— elastic.

Material Properties

The following concrete and steel properties were assumed.
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Concrete: E. = 20GPa, » = 0.15

Steel: Eg = 210GPa, A = 300mm?

Results

The steel stresses at the middle Gauss point in each bar are listed in Table
7.1(a) and 7.2(b) for the tensile load and bending load respectively. These show
a very small but acceptable variation between rectangular elements and distorted

elements. Likewise there is little difference between each formulation.

For the tensile loading, elements nearer to the boundary exhibit slightly higher
steel stresses than those near to the loading. This is due to the fact that there is
a displacement variation over the width of the panel corresponding to the
uniformly distributed load. When an equal prescribed displacement is applied over
the whole width, then all steel stresses were identical and equal to the theoretical
value (see Table 7.1(a), mesh b). For mesh (f) which used 6 distorted elements
leading to 4 bar elements along the length, the steel stress was much more

evenly distributed along the bar, (see Table 7.1(a), mesh (f)).
Under bending load, similar observation can be made. In addition, the tensile
and compressive steel stresses in the upper and lower bars respectively were

identical at a given section, confirming the accuracy of each formulation.

Based on these results, it is concluded that all formulations perform

satisfactorily and hence can be used and evaluated in more complex situations.

7.2.2 A Skew Reinforced Concrete Panel

Description of the Specimen
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The next specimen presented is a real reinforced concrete panel selected from
the experimental study conducted by Scanlon, Phillips and Green in 1988[Scanion,
Phillips and Green 1988] The selected panel was 1000mm x 550mm x 100mm in
size, reinforced with 10mm ¢ torbar in the skew and transverse directions.
Referring to shown in Fig.7.3, the reinforcement arrangement is defined by o =
71°, So = 33mm, and ST = 100mm. The panel was subjected to one directional

tension load under displacement control.

Parameters Studied

The intention of these analyses was to investigate the behaviour given by
different mesh sizes and different embedded formulations. Two meshes were
investigated, see Fig.7.4. The first one is a single element, 100mm x 35mm,
reinforced with one skew bar and two transverse bars. The second mesh is also a
single element but now representing the whole panel with the steel arrangement
identical to the experimental specimen. The orientated embedded straight bar
formulation (denoted Model I) and the general embedded bar formulation (Model
II) were both studied. Although the analyses were nonlinear, other modelling
aspects were kept as straightforward as possible in order to reduce the number of
factors which might influence the comparisons. Thus cracking was modeled by the
fixed crack approach with a constant shear retention factor of 0.5. Tension
stiffening was neglected and full bond was assumed. Linear compressive behaviour
was also assumed. The modified Newton— Raphson nonlinear solution procedure

was used in all cases.

Material Properties

Concrete: E, = 20GPa, » = 0.15, f' = 2.63MPa, f' = 41.1MPa
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Steel: E; = 210GPa, f; = 546MPa

Results

The results are shown in Figs.7.5 (a, b, ¢ and d), in which the strains in the
steel and concrete are compared with experimental results. General trends are
similar in all cases. Before cracking occurred, all analyses were in close
agreement with the experiment, indicating that both embedded formulations were
performing satisfactorily and that there was little mesh sensitivity. After cracking,
results started to change. There was a slight difference in the results of Model I
and II for the same mesh (100mm x 35mm) but a significant difference in the
results for the two meshes for Model II. This can be attributed to the bars being
placed at their exact positions in the 1000mm x 550mm mesh, whereas in the

100mm x 35mm mesh the bars extended to the element edges.

The principal strains in the concrete (Fig.7.5(a)) and the principal strains
angles in the concrete (Fig.7.5(b)) predict similar trends to experimental,
especially the latter. The strains in the skew bars (Fig.7.5(c)) are in good
agreement with experiment whilst those in the transverse bars (Fig.7.5(d)) are

poor. All analyses overestimated the ultimate load.

The lack of close agreement with experiment after cracking is due to the
adopted material laws rather than the performance of the embedded elements as
such. In experiment, transverse cracks occurred first, followed by cracks inclined
at about 35°. The fixed crack model used in the analysis would not be able to
follow this behaviour and would produce a stiffer response and higher ultimate

load.

7.3. Skew Reinforced Concrete Panels
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Introduction

In this section, a full investigation of skew reinforced concrete panels is
undertaken. The panels are specimens No.2, No.3 and No.9, .again taken from
the experimental study carried out in 1988[Scanlon, Phillips and Green 1988]
These panels are interesting in that they represent different types of fundamental
behaviour of a reinforced concrete element under direct tension depending on the
orientation of the skew reinforcement bars. Although all aspects of behaviour are
of interest, special attention is paid to changing crack orientations and the
post— crack response, i. e. the decreasing portion of the response curves after the
initiation of cracks. In experiments, it has been seen that the crack orientations
changed for different skew panels. After the first crack occurred the second crack
may opens in an angle different from a right angle. It is therefore interesting to
see if the strain— decomposed non— orthogonal crack model and rotating crack

model can follow this behaviour properly.

Due to the inclination of the steel bar, the reinforcing bars can not effectively
pick up the forces from concrete after crack formed. The structure hence exhibits
high nonlinearity. A good solution technique in this type of structure analysis is

therefore required.

Specimens No. 2 and No.3 were analysed under displacement control, whilst

Specimen No.9 was analysed using arc—length and line search solution techniques.

Description of the Specimen

As shown in Fig.7.3, the panel was a rectangular plane of length L with width

b and thickness t subjected to a tensile force T under displacement control. The
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panels were uniformly reinforced with transverse bars placed perpendicular to the
force T. The skew bars were placed at an angle o to the transverse bars. Bars
were spaced at S, and ST in the skew and the transverse directions, respectively.
Reinforcement consisted of 10mm ¢ "Torbar", reinforcing in both the skew and

transverse directions. Reinforcement details for each panel are givven in Table 7.2.

Element Discretization

The whole panel for specimens No. 2 and 3 are analysed while only a part of
specimen No.9 was taken for the analysis. The meshes for both concrete and
reinforcement were generated automatically using the mesh generation routines,

and they are shown in Fig.7.6 for Panel 2 and 3, and in Fig.7.7 for Panel 9.

Material Properties

The properties of the reinforcement and concrete are given in Table 7.3

Results

The results for specimens No.2, No.3 and No.9 are given in Figs.7.8 to
Fig.7.10, respectively, along with experimental results. These include principal
strains in the concrete, steel strains and the rotation of the principal strain angle.
The initial and final crack patterns are given in Fig.7.11 (a), (b) and (c). For
panel No.2, concrete principal strains are given in Fig.7.8(a) for different crack
models whilst Fig.7.8(b) and (c) give the results for the strain decomposed model
using 30° as the threshold angle. Panel No.3 was computed using the fixed crack
model and the rotating crack model. The concrete principal strain and its strain
angle are presented in Fig.7.9 (a) and (b). Fig.7.9(c) shows the steel strain versus

load for the fixed crack model. Panel No.9 was analysed using both the fixed
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and rotating crack models. The numerical results are given in Fig.7.10 for the

principal strain in concrete and the strain in steel.

In the analysis of Panel 2, the orthogonal fixed crack, strain—decomposed
crack and the rotating crack models are used. For the strain—decomposed
concept, the chosen threshold angles are 30°, 45° and 60°. In the rotating crack
model, the crack is allowed to rotate at every iteration. It is seen that while the
fixed crack approach overestimates the loading capability the rotating crack model
underestimates it. In the strain—decomposed crack model, the overestimation is
reduced with a decrease in the threshold angle, see Fig.7.8(a). The results close
to the experimental curve if the threshold angle is close to the crack inclination
which occurred in the experiment. Therefore, it is suggested that if the crack
inclination is known then the strain— decomposed crack model can be a useful
tool to predict the ultimate load of the structure. If crack direction is not known,
which is usually the case, then the fixed model can be used to give an upper
bound whilst the rotating crack model will give a lower bound on the ultimate

load.

The longitudinal and transverse steel strains as well as the principal strain angle
of concrete are given in Fig.7.8(b) and (c) for the threshold angle of 30°. The

results are in quite good agreement with those of the experimental ones.

Fig.7.10 show the results for specimen No.9 using both orthogonal fixed crack
model and the rotating crack model, in which the crack is allowed to rotate once
an increment. Consistent results were achieved including the behaviour of both
concrete and steel. The solution convergence was obtained within five iterations
after crack occurs, indicating that arc— length procedure with line search scheme
is quite effective method in the nonlinear analysis of reinforced concrete

Structures.
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The crack patterns presented in Fig.7.11(a), (b) and (c) are the results of the
rotating crack approach. These have reasonably predicted the orientation of the

second set of cracks.

7.4. Bhide— Collin's Panel

Inroduction

In this section, a one— way reinforced concrete panel subjected to combined
tension and shear is examined. The panel was selected from the experimental
work of Bhide— Colling{Bhide and Collins 1987] and designated PB20. This panel
is interesting because it provides a good test of whether the various cracking
models can properly allow for the detrimental effect of tensile cracking on the
shear capacity. In reinforced concrete design, it is common practice to ignore the
ability of concrete to resist tension. While this assumption is appropriate in design
for bending and axial load, it is less so for shear. In addition, there are
numerous practical situations in which reinforcement concrete structures are
subjected to combined shear and tension stresses. The ability of cracked concrete
to resist shear is even more important in such cases, especially if there is no
shear reinforcement. It is, therefore, important to understand the behaviour of

members without shear reinforcement subjected to combined tension and shear

In the following analyses, attention is focused on the tension stiffening and
shear retention laws since these will have a crucial effect on post— cracking

behaviour. The following tension stiffening laws were examined:

i) Sudden drop to zero on the initiation of the crack, i.e. no stiffening

i) Yamaguchi and Nomura's bilinear strain— stress relationship, designated O—P
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iii) Phillips and Zhang's trilinear strain—stress relation based on the fracture
energy theory, designated P—Z with crack spacing | = 10mm and 15mm

iv) Bhide— Collins tension— stiffening law, used with assumed crack angles of 30°,
45°, 60° and 90° as well as the predicted angle.

v) Vecchio— Collins equation, designated V—C

All tension stiffening laws were used in conjunction with a constant shear

retention factor of 0.5.

The shear retention laws examined are:
i) constant shear retention factors of 0.25, 0.5 and 0.7
ii) Melhorn's shear rulelMelhorn 1990] ,nq

iii) bilinear relationships[Nilson 1985]

All  various shear retention laws were used in conjunction with the

Vecchio— Collins' tension stiffening law.

In all cases the fixed cracking model was used.

Description of the Specimen

The test panel was an 890 mm square reinforced concrete element with a
thickness of 70 mm as shown in Fig.7.12. It was reinforced with 6mm diameter
deformed reinforcement bars arranged in two layers parallel to the sides of the
panel, and spaced at 44.5 mm centres as shown in Fig.7.13. A clear cover of 6
mm was provided between the faces of the panel and the outmost layer of
reinforcing steel. The specimen was subjected to the combined tension and shear

stresses under loading control, the proportion of tension to shear stress being 2.04
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to 1.0 throughout the loading history

Element Discretization

Since the specimen was designed to be in a uniform state of stress only one
eight— noded parabolic plane stress element was used, with nine integration points.
The meshes for concrete and reinforcement are shown in Fig.7.14. The
reinforcement was modelled as one— dimensional uniaxial members by the general
embedded bar model. Perfect bond is assumed between reinforcement and
concrete. Solutions were obtained using the modified Newton— Raphson scheme

under load control.

Material Properties

The concrete properties are:

1

fo = 21.7MPa fy = 2.56MPa
E. = 20GPa v = 0.15
The reinforcement properties are:

fs

424MPa pg = 0.02195

210GPa

Es

Results

Tensile stress versus strain in the concrete, measured in the x— direction are
plotted with the experimental curve in Fig.7.15(a), (b) and (c). It is clear from
these curves that tension stiffening has more influence than shear retention on
behaviour. The tension stiffening laws in Fig.7.15(a), all of which contained either
sudden drops or very steep softening curves, did not follow the experimental

curve very closely. The tension stiffening laws presented in Fig.7.15(b) all had
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curved softening branches and gave a much closer prediction to experiment except
when the assumed crack angle was at 90° to the reinforcement. From these
curves, it would seem justified to recommend the wuse of either the
Vecchio— Collins law, which is computationally less complex, or the Bhide— Collins
law in conjunction with the crack angle predicted by cracking model. The latter
suffers from the crack and the main reinforcement direction, which could be

awkward in more general situations.

From Fig.7.15(c), it can be seen that there is very little practical difference
between the different shear retention laws in this case, except that the small
constant (3 factor = 0.25 is less stiff. In view of this, it would seem reasonable
to recommend a constant (3 factor of 0.5 which is commonly used by other
analysts, or the Melhorn law which takes into account the amount of
reinforcement crossing a crack, which could be important in more general

situations.

It would be emphasized, of course, that these conclusions are relevant only to

the fixed crack model. A more comprehensive study is required if more general

guidelines are to be drawn regarding other stress states or cracking models.

7.5 Bond—slip Modelling Techniques

Inroduction

In this section, the main purpose is to examine the embedded bond— slip
formulation and study the fundamental bond—slip concepts. In addition, various
bond—slip relationships will be investigated. A square one— way reinforced
concrete panel as well as pull—out tests and a transfer test will be analysed. In

these analyses, bond—slip was assumed for all the reinforcement bars of the
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specimen.

7.5.1 Square Panel With One-Way Reinforcement

The square one-way reinforced panel studied previously in section 7.2.1 is used
again here to study the bond-slip effects using the bond formulation in
conjunction with general embedded bar formulation. The panel is shown in
Fig.7.1, subjected to a uniformly distributed tensile load of 1.0 N/mm2. It is
recalled that the concrete modulus E. was 20 GPa whilst for steel Eg was

210GPa.

The steel strain distribution is plotted in Fig.7.16(a), for different bond-slip
modulii using mesh of Fig.7.2(a). The assumed bond modulii were 210.0GPa,
21.0GPa, 210.0MPa and 0.0MPa. The steel strain calculated without bond-slip is
also given. It was shown that a change in bond modulus causes an change in
steel strain. When the bond modulus is the same as the steel modulus
(Eg=210GPa) the strain is identical to that given by the perfect bond formulation.
When the bond modulus is small compared to the steel modulus (1/1000 of Eg)
the steel strain decreases abruptly from the middle to the either side and the
steel was therefore de-activated. For Ey=210.0MPa, the concrete deformation,
bond-slip and steel deformation were also given in Fig.7.16(b), in which the steel
was relatively moved back from concrete edge in a consistent manner as shown in

Fig.7.16(a) for the same bond modulus.

Further study the variation of the steel strain distribution, mesh in Fig.7.16(c)

were used. The results in Fig.7.16(d) were satisfactory.

Hence, the proposed bond formulation is capable of taking bond-slip

phenomena into account in a consistent manner.
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In addition, half of this panel (1000mm x 500mm) with loading on bond-slip
degree of freedom was analysed using one element. Load and boundary conditions
were shown in Fig.7.16(e and f). Numerical results were given as well. Due to
the bond force, the concrete compresses from its original position while the
reinforcement extends. The reaction forces were self-equilibrating along the
boundary side, which is expected since the applied bond force is self-equilibrating.
This analysis is somewhat artifical because it is not clear that such an extenal
bond force system is physically possible. However, it would be a useful analytical

'‘device’ for certain types of problems and should be investigated further in order

to obtain a rational interpretation.
7.5.2 Pull-out Tests

Analyses of pull-out tests taken from the experimental work of Jiang, Shah
and Andonian[Jiang, Shah and Andonian 1984] are presented in this section. The
specimen consists of a rectangular concrete block and two reinforcement bars
embedded in opposite sides of the cross-section, see Fig.7.17(a). The bars were
standard 19mm diameter bars split into two halves. Tensile loads were applied
directly to the bars. The purpose of the analyses was to compare different
bond-slip laws against experimental data using the general embedded bar element

formulation.

Two specimens Al and A2, 127mm long, were analysed using a 6 element
mesh (Fig.7.17(b)) for one quarter of the specimen. Table 7.4 lists other

dimensions and material properties. The force is assumed to be transferred from

reinforcing bar to concrete.

In all analyses, orthogonal fixed crack model was used with Vecchio~Collins
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tension stiffening law and constant shear retention factor of 0.5. The solution

were obtained using modified Newton-Raphson method.

Fig.7.18(a), (b) and (c) present steel strain distribution for specimen Al using
bond-slip relations i) constant E,, = 21000MPa, ii) Houde's equation, and iii)
monotonic relationship. All exhibit good agreement with experimental results
initialy and up to the failure load. While the constant bond modulus
underestimate the steel strain, ii) and iii) using bond stress—slip law are more
consistent with the experimental strains except near the end of the specimen. In
general, however, the comparison are good given the coarse mesh used. A finer
mesh, especially near the specimen end would allow more concentrated cracking
and hence decrease the force transfer from steel to concrete, increasing the steel

strains. Crack formulation for specimen Al is plotted in Fig.7.19

Fig.7.18(d) presents local slip along the bar for specimen A2 using Houde's
bond law. Again good agreement is obtained at low load with greater discrepancy

at higher loads near the specimen end.

7.5.3 Transfer Test

In this section, an anchorage transfer test was modelled using a specimen tested
experimentally by Rehm et al[Rehm, Martin and Muller 1968]. The specimen was
2000mm x 2000mm x 2000mm and contained a curved reinforcement bar with a
diameter of 12mm. The specimen was also analysed by Melhorn and Keuser in
1985 using contact elements to model the bond-slip effect. The dimensions and
material properties are shown in Fig.7.20 along with the experimental and
This specimen was chosen as

previous numerical strains in the reinforcing bar.

being particularly suitable for testing the embedded bond formulation when a

Curved bar was present.
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The meshes for this study are shown in Fig.7.21 for both concrete and
reinforcement. Houde's bond stress—slip law was adopted along with the fixed
crack model and Vecchio—Collins tension stiffening with a constant shear retention

factor of 0.5. A Newton-Raphson solution procedure was used under load control.

The analytical results for the steel strain distribution are given in Fig.7.22. The
general trends are consistent with the results of the experiment and those of the
previous analysis. However, due to a lack of detailed experimental and analytical
information from the previous study, it is not possible to comment on the
accuracy of the results. Nevertheless, the analysis indicates that the curved

embedded bar formulation with bond slip effects performs satisfactorily.



"A[2A130adsal ‘inoy 0) Quo 1eq ul IS0Y) 0} Jejiunis A1k JYSI9 O} 9Alj JBQ Ul SISSINS JUDWIIDIONIDI Y] 4xx
rwu/N 891 = Sp ssans [eona1ody) ‘wwg)'Q=¢ ‘[0UOD JUSWAE|dSIP IIpUN PIABIND[ED SEM q YSOW 4
", St ParRIor sem waishs 9)euIpio0d Yy ‘uonendwod sy Juiop up

wu/N LLL8°6 = S0 [eonaioayy |

10+369€£986°0 10+d8€9886°0 10+398€886°0 T0+3661986 0 |yyxlIll J
10+3¢¢08L6°0 10+4£06486°0 10+d9%€9.6°0 10+36.£886° 0 I @
10+10%¢846°0 10+d%S%886 "0 TO+dLE€8LL6°0 10+309%886 0 IH P
10+30698.6°0 10+3¢8€886 0 10+3C€CLL6°0 10+3/.¢5886°0 I
omj 03 Je[lwls |suo o3 Jejluls 10+3£0L646°0 T0+3¢€€686° 0 I 2
¢0+3000891°0 ¢0+4000891°0 ¢0+3000891°0 ¢0+3000891°0 sl q
omM3) 03 Je[luls | suo o] Je|luls 10+4.009.6°0 10+d06¢686° 0 w11
oM} 03 Je[luls | suo 031 JeJlUWLS 10+d%009.6°0 10+368¢686°0 I e
om3 o3 JEllWIS | duo 03 Je]luwls 10+3%7009.6 "0 10+368¢686°0 I
Inoj Jleg 9aayl Jeg om] Jeg auQ Jeg
1 9POW soysap
(;wu/N) SS211S jusuwadIojulay

+~ PEO | JUIog Ssned) puoddS 3yl e sIssansg FUIWII0JUIIY

(®)1 Z SI9®L



‘A1panoadsar ‘aanisod Ing Jnoy 0} U0 Jeq Ul ISOY) O} Ie{iuNS 1B Y39 O) SAY Jeq Ul SISSINS JUSWIIIOJUIDL Y] sy
" Sy pawios sem wdishs Jjeurpiood ayy ‘uonendwod sy Sutop ul 4

(3) pue (p) ‘(9) 10j ;wwy/N £868°S Pue (B) 10j ;ww/N [€]0°S SI SO [ednai0oy) |

10+d80£€8S "0~ 10+3662.8S "0~ 10+39.888S "0~ 10+3S60L8G 0~ | yy Il J
10+36T11285°0 T0+3L20T66°0 10+d018¢86 "0~ 10+3€6006S "0~ Il p
10+d880£446°0 T0+3/%6686°0 10+30%%6LG° 0~ 10+316998S 0~ 11
10+3a%1¥vC8S "0 T0+3¢¢S066°0 10+3a%1%28S "0~ 10+d¢¢S506S "0~ I

b
10+388¢¢8S°0 10+3£6€06G°0 10+388¢¢8S 0~ 10+3€6£06S 0~ 1
10+38.688%°0 | I10+d£0CC0S6°0 10+38.688% 0~ 10+d£0¢¢0S "0~ w11
10+3.8068%°0 10+36¢€¢05°0 10+4/.8068% 0~ 10+d62€¢05 "0~ 11 e
10+3.8068%°0 T0+362€206°0 10+3/8068% 0~ 10+d6¢€£¢0S 0~ I

anog aegq aauqy] Jlegq om] .teg aup Jeg
1 9POKW Saysap
(;uw/N) SS9J431S JuaWadIOJU[IY

I PEO’] JUIOg SSUED) pUOJISS 9yl JE S9ssoll§ JUoWIdIojuroy

Q)1r’'L 319.L



ww $°Cg = "ul | 4

001 cc 8 m
002 €€ 1L c
00¢ 99 1L Z
unw L
lg ‘asuansuea] Og ‘mays (‘3sp ©0) a|3uy “on
Suioedg juswadiojulay juswestojul sy uawioads

S[oUEg 91910U0)) PadIOJuidy MINS 9y} JO AJowloan) Uawidadg 7 L IIQEL



‘sd 6p1 = ediN 1

BAW000‘01Z = snnpol s,3unox
%6 L = uorleduoly y

BdW (0 8£9= SSaJd31s ajewiiyq
BdW 0°9%G = S5913S Jooudd %7 0

I JULWaDIoJU Y

000°0¢ 86" Y €9°¢ 0°¢9 6
00002 6L % €9°C 11y €
00002 6¢°€ G8°¢ 9°6¢ Z
(edW) (edW) (edW) (4 BdW) -oN
Kyorise|3 aanidny yi3uaais yi8uauass
ajtlsua] uawoadg
sn | npop Jo sninpoy Suriards aqn)

919J4J0U0d




sisf{|eue Joj paunsse x

S'gY G6 S6 v
STy G6 9/ v
(edW) (uur) (urur) ‘ON

%) y q "2ads




2
reinforcement q®1.0 N/mm

AR

[ -]

S
)
=

b
d
b

=

1000mm

1000mm load I load II

Fig.7.1 Dimensions and Loading Conditions



bar elements

L .
I
[/
L /

concrete elements

{a)

HZSOmm

(1, 1T, III)

ﬂmm

Fig.7.2 Meshes




bar elements

(c)

- ———

(£, I

Fig.7.2 Meshes — — continued




- [ =~
/
/
Il
L
(a)
i I
5~ ~ 6 | 7 _€
\\4’//
|
l
|
1 «1?%‘3\~ 4
, | —~
- | ~

(1I)

iIl)

Fig.7.2 Meshes — - continued



A

LILLLLLLLL L L

4

S
a
, B/ L
S
transver‘y‘ X
A S

A
——
-

v 4
bars ]
skew / X
pars 77777 77777777777 >
b

Fig.7.3 Dimensions and Loading Conditions






Load in KN

600

Load in KN

i
500 + !
!
400 +
300 + :
.‘
I
200 +
.?-:':3_'."' ———— Experimental
100 4 OS— + Mesh 100x35 Model I
SO a Mesh 100x35 Model I
| YR a Mesh 1000x550 Modei II
0 & ,
0 - 2 4 6 8 10
Strain (x 1E-3)
Fig.7.5(a) Load vs. Principal Strain
700
— . Expertmental
600 4 e + Mesh 100x35 Model I
Ao a Mesh 100x35 Model II
500 { @e--ceeieeienen s Mesh 1000x550 Model 11
»
400 4 .
300 +
200 4
0 10 20 30 40 50

Angle in Degree

Fig.7.5(b) Load vs. Principal Strain Angle




Load I1n KN

Load tn KN

500

.8
400 4
300 +
200 -
1o 4 o ———— Expertmental
- + Mesh 100x35 Model I
PR - a Mesh 100x35 Model Il
L T a Mesh 1000x550 Model II
0 +
0 ! 2 3 4 S

Strain

(x 1E-3)

Fig.7.5(c) Load vs. Strain in Skew Bar

500
=
400 + 3
A
’/
‘/ f! s

L/

300 + I oo

ool ————— Experimental
dreresnesnseanes + Mesh 100x35 Model I
Amme - 4 Mesh 100x35 Model II
[ TERPR a Mesh 1000x550 Model II
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Strain (x 1E-3)

Fig.7.5(d) Load vs. Strain in Transverse Bar



(€ pue z'ON) ssysapy 92 Fig

s L3 - ’ % o L (2 1

94 Ud 1] ¢ 2t b4 1 ! o

14 2L T oz ot ot ra " ]

82 g 124 Vi 92 9 52 S %2

¢ 123 e e 37 123 te —0t 6z

1) cl 1Y (1 oy ol 8 é 8s

% 18 0% o LL ras > L1a oy 1)
(@]

m 95 91 s [} S L2 €S (o} 28

.- vy ty 12 ty 0y s 88 13

0L (04 69 éi a9 gl 19 21 99

6t 4 2 v°? st g 122 £+ 12

] VoA ] {9 z8 ce 18 P4 08

13 e te 00 e 1 2 4 S8

86 &e 16 2Z 9 o 56 sZ w6

1 20t sot Y0t 0t 2Ot -0t 00t 64

uu 0001

HSIW JTTYINDD



(T'oN) panunuod — — saysopy 91-91g

< A § 7 SR—
oL /,.m/ e /
82 Mo . N = " T~ 5
: 8 R |
78 &L Tt
aa/mwp 42 wm//i.wk/ cl b Q/%h G9 = o mm/v/A
ez T~z T =
~92 %
g 08 a//mm/ ¢ e o9 B Qm/a/
Sz 51
// LS
/E/ '8 - .,/.wﬂ 2 < e 29 IS 09 ~
N e/mﬂ . . %//om/
- 19
-~ ‘/
£8 T R/emr M&/ﬁ/ B 69 e c9
Se z/&./
] , 22 S 8 £9
o-—— -— 11— m/::: - : o - —

4]

0z

6z

8¢

Ly




(€°0N) panunuos — — saysopy AR

///'
/
/

/4

s

/

/
I

— //:
/
/
/ /

W/

Wz
/ / /
/

ﬁ/@
/

&

/

,/:K/:
V/

T

’

W/

TV

T

HSIW INTWITI0INTIE




w99

oy —

(6'0N) saysapy £'2°91q

[ J

?1

1)

L4

uw 00T

1]




(6'oN) PaNUNuod — — saysapy
L L3y

-
-




SC00 000 £00 0

(z'oN) utens edung 'sa peo (e)g L 814

uisysg jedjoulyy

oo 1000 002 0

. " ' + o

‘Bep g9 pesoduooep-ulBUlg Mo i
‘Bep G4 pesoduocep-ujsuig a— — —a o

‘Bep (g pesoducoep-ujeuig w---------- "

Z M®) uojsue] ‘yoeuj Bujag v———-—- 5 !

¢ Me) uojsuej .u_oa...u (L1 [ + Lo
8aun] je3uenjuedxy —— +

1 09
1 o8

Nt uI pee



06

(z-oN) m3uy uwensg jedpuirg sa peo ()8 L 914

onJuBer ui 0ybuy

01-

08 0¢ a9 0s th] 0% 0Z 01 0
: : L . m ' m m
11 N8y i I I 4
02
s1)nsey 1siusu|dedxy ey ————
QY
09
08
. 1 {00t
!
{
!
N m -0ct
i 4
s i
. -0y

091

0nt

Feo"

Y Y



(zON) uteng 2915 ‘sa peop (9)g'L31g

(£-31) uledag
LT L4 1°¢ 8-l sl ¢l 6°0 90 €0 0°0 g0~
1 - R S — 1 e | } } R B e | ‘
1jneey -u -.-.— [ IR ™
a.mxcu Jeg OQLO>GCGL._' Gp.:. P -5 - 0
AINBOY *J T At
(*dxe) Jeg nexg ey — 0
“
,W 09
3
£
-o
1E
-|t 08
t
t
|
i
mcc_

—oct

-0l

peoT

NY di



Load tn KN

500

400 4 P

300 4+
200 T
£/
~———— Experimental
A /S
¥
100 4§ +—-——+ Swing
Y -A [ I xed
0 t t + . . .
{ 2 3 4 S é 7
Stralin (1E-3)

Fig.7.9(a) Load vs. Principal Strain (No.3)




Load in KN

600

500 A

200 +

———————- Experimental
S o BT

Moo e e s, A S\-Ilhg

300 4 ‘ /

l.. /

! ;

é

4 4

i i
v.’ ?
f _.A
F 3 -
""‘ —————————————— ‘
-—M;-awuﬁr:(’f- .........
100 + Ah 4
|

0 10 20 - -

Angle 1n Jegree

Fig.7.9(b) Load vs. Principal Strain Angle (No.3)

50




Load 1n KN

S00

f N
|
, |
o
woli B ?

| ® !

T i
! i ; i
bosgo 4

1 a _f //

P ;
! ; ;A //
| L .
] N /
‘ M
! 7 7
| 20477 /
l a {
| ’4? } ‘
! ju# ———— Experimental
! inf
j IS
! i 4+ Skaw Bar
[ 100
: Ao aExperimental
|
i - aransverse Bar
;L s t + T T T

-1 0 1 2 3 4 5 é

Strain (1E-3)

Fig.7.9(c) Load vs. Steel Strain (No.3)




0°¢

S¢

(6'0N) utens edioung sa peoT (e)oi'L 3 © 31) vledas
0°¢ S -1 0°1

1 N \
T } |

T

1eauewaedxy . - R,

yoe.ay pex| .y

yoeu) Buprg v —m—w

S0 0°0

0l

4

Y

0%

0s

09

0/

08

06

001

ot

ocl

peo-

N Ul



0% "0

(6'0N) 1eg m3yS ul utens ‘sa peoq (q)ol'L 914

Se 0 0g°0

0170

(-3

ujedJag

S0 ‘0

00°0

(~dxe) ueg mexg ey
(19R.13 POx |, .o MOXG Of

(12e42 Buins) ueg meyg ey,

[P

B ey

" S 4

T

os

09

-1~ 001

-1°0tl

ozl

peo-]

N Ui



suianed yder) [ejuawrradxg ®)rr L3y

6 ON €'ON 70N

oC'SE a// I/Mu.mm
/ I.l...(a/.. !xu./ /

—-—  373uB X0BID }TU] ---==  }0BIO TEBT}TUT



(tentur) suraneq yoery reourswiny @i 8ig

6°0N ¢®oN 2°OoN




6'ON

(1eury) susaneq yoe1) jeorrawny ()11 81

£'ON

2°oN




Concrete Fanet

\},{{:) - 890x890x70 mm
/10/} (’\b/\
Al 4
.}-r' SN
/\‘rj uuo\i
\_/'%
Q
54
%

Fig.7.12 Collins' Panel

% Position of -
Hex Nut .

Fig.7.13 Reinforcement Layout




&
/
Lo ! 19
1)L =
T—

39 Q -0
74 -] 38
35 18 4
33 12
31 4 32
29 > 04
7 ~ 38
P ¢ T 264
23 12 2L
21 - —
19 g

17 2 8
15 &

13 Z -
" 4

9 5 2
7 4 &
5 k4

3 2 —
1 ; 2

Fig.7.14 Meshes




00T

uopd3aIId —X U} ujelnlg 'SA S$S3I1G UOSUI L Aﬁm_.\..wi

(E-31) uleuag

S2°1 oSt L~ | 00"t sS40 s 29
1 i A L 4 ]
Bujueyjiie-uojsue] InoyaiN a4—-—- —- —a
&lc [ I .
0°SI=1 Z-d »—— ~
jpnoydnoayy pasn G°Q = I0308BJ
0°0171 =d —* UoT}U8}3I IBAYS JUBJSUOD
1etuswjyedx]y

S0

lrcd

5%

s Ul sseuag



PaNUIUOd — — UONDAI(] —X Ul UIRNS "SA SSINIG UOISUd], (q)ST L g

{e-3l) ulsusg

' 0%

0 ‘06 ®)1buy >*——x

e1buy yosuj up A—— —- —a 4-5% o
0°0% o1buy Wl ™ w
0°'sy ®1Buy wo——mm - 5

!I|°I-
0°0¢ ®1buy 4 pnoysnoayy pasn G*( = I10398BJ W
1ssuemjuedxgy —-— UOT3U9}9X Iedys }UB}SUOD
151
To<¢T
Tse
TOY

(a3



002

PRnUNUOd — — UONIAI(] —X Ul ulens

‘SA ssang uotsuay (9)s1 LT

©-31) ujeng
Set 0s -l L= A} oot S0 050 KO 000
1 1 = t u 1 00
Iﬂd-.z M
6Z ‘0=®10g ‘ausasuo]) A—-- - —-- -
TSV
m.OHQD@m ~UCGDQC°U [ [
2 "0=®a3eg ’‘ausisuo] v . — ———.—..¥
~0°1
3@1— LCOC—.— _m rommmmTT .w_::—w..:.,vh;w
183uewjaedxy . --— PosSH MR LAY TS
UOTSU8} SUTL[[0Q~O0TYD03p
1871
-1-0°C
18T
1o

s¥Y

Sdld Wi 008JLAG



E-3)

St~ain

.08

. 06 ¢t

.04 -

.02 ¢+

.00 -

Without Bond-slip

100 200 300 400 500 600 700 800 900

Distance From the Supporting Boundary in mm

Fig.7.16(a) Steel Strain Variation

’- + F = 0. OMPa

A-ermmem oo —.a E =2 210. OGPa

& m E = 21.0GPa

$—- — — . —9v E = ZI0.0NPa

; - Wy -2 ;

S
- s ~
e ~
.‘/‘ ~
yd ~N
</ \
./ \
// N
-/' \

v v

1000



Disoiacement ar Slip In mm

0. 08

0.07 ¢

0.06 ¢

0.05 $

0.04 ¢}

0.03 {

0.02

0.0V

0.00

-0. 04

s—————— Concrete Displacement
e e + BOﬂd'-OllP
Y S, s Steel Displacement
o
N + ~f= ............ i 4 B EXXTrrreever i* t t
100 200 300 400 S00 600 700 800 900 . ,1,00

Distance From the Supporting Boundary In mm

Fig. 7. 16 (b) Displecament and Slip Variation

Fig.T7.16(b) Deformation And Slip




concrete
/—

P — — — —— e — — ey

b — e e e —— o —— —]

(a)

e e e s ] o — e ———

b — o e —

(v)

(c)

Fig.7.16(c) Meshes




(1E-3)

Strain

E-3)

Straln

-

1

i1

Strain

0. 06

¢——0 Mash (a)
0. 04
0. 02
0.00
0 200 400 600 800
Distance From the Supporting Boundary in mm
0. 06
»—— Mash (b)
0. 04
0.02
0.00
0 200 400 600 800
0. 06
o—e Mash (c), Bar |
s + Mach (), Bar 2
0.04 } +
4+
0.02
0. 00 —-
0 200 400 600 a0() 1000

1000

1000

Figs7.16(d) Steel Strain Distribution




98,2

Fp = 10,000(N)
1976.4 | -
- — — —— -
988.2.___
(1) Force and Reaotion (N)
A- ) —000033
j" oconcrete
deformation
- 0,0035

— —— — — ——— — —— —

S v
“\»
i

| slip -[ 0,0583
) 4
-0,0033

(11) Deformation (mm)

Fig.7.16(e) Loaded Bond With fixed Steel End




Fp = 10,000 (N)

166 | -

-

(1) Force and Reaction (N)

j° -0,0101
concrete
deformation
ek N S
P.01125(alip)
slip = 0,0869

b }
(11) Deformation (mm)

Fig,7.16(f) Loaded Bond With Not Fixed Steel End




1591, N0 —Ing jo speing L1 9

uaw}oadg (e)

ysaW (9)

U0} 19935-SS0I) "
¥ i
e rree




Strain (1E-3)

At Load 4. 0Kip
- + Experimental
&-—-=-=—----a At Load 8. 0Kip
LR @ Expertimental
25 ——— —y At Load ]2.0 Klp
) prrrrra e x Experimental
R —+ At Load 16.0Kip
»x—=-—-—-—-x Experimental
——————e At Load 20.0Kip
R + Experimental
2.0
_______ B s
_________________ ——————e
I ;::3"———-—4»~—'—"“’
~———
1.5 4 I
__-——-““—"—— -
—— T RS
k- — —m—— e T e —+ -
_____ ot
. DV ISR * 4
------------------------- .
1.0 + Amﬂwaw"“"“"”"fq_,g_q——-"'?ﬂ
Foncomeerreasem s e — Y T
B
8
AT 4
T‘ gA- ------- A—-—“"‘Q-‘a
0.S 4 ocimim = —a
"——‘_-—.'—‘-——-
0.9 —t—t + : s * + : ‘ : '

0 5 10 15 20 25 30 35 40 45 SO 55 60

Distance From the Middle Point in mm

Fig.7.18(a) Steel Strain Distribution: Ep = 21,000.0(MPa)

65




(1E-3)

Straln

At Load 4.0Kip

. - ET<Per‘"nencaL
Ty a At Load 8.0Kip
8 a Experimental
l v At Load 12.0Kip
o x ExPer imental
oo —+ At Load 16.0Kip
%—- —- —- —-x Experimental
& —————e At Load 20.0Kip
AR - Exper Imental
e B
.
T
*:'_::.—.-:.?::.:-_.—:_:,4:::.‘.:.9-‘--’— -----
ormmmAEEIE N
1 - -
I e X
T ey
_______ B
Vb inlainin iy Ve
. —F
s e
L e H-eonnmoamaa X
e
4 P TR
%;?—————'4—'-—?——)( --------
______ A
-
““““ - - B 4
Ta-——a——m-a——ﬁ ——————— A
s +
0 S 10 15 20 25 30 35 40 45 50 55 40

Distance From the Middle Point in mm

Fig.7.18(b) Steel Strain Distribution: Law One

65




NI
)

0

[%]
18]

3.4
e———— At Load 4. 0Kip
, « FExperimental
s -o=o - -—a At Load 8.0Kip
% w Experimental
v— —- — —v At Load 12.0Kip
- ) o
% Experimental
-+ At Load 16. 0Kip
a—: —- —- — x Experimental
# - — - - —~@ At Load 20.0Kip
v ----»  Experimental
20U p—
. e .
e e T T
T T
- e = A W
LT N .
.S ¢+ T -+ e A
s - e —
- +- g T e T
T L i —e T
B g e = ¥
7
. A
’__,av"' .o
i.u V——‘—V"‘ ___9____)(9—- ............. L
s .
- - 6‘ -
PR VEETIE LY. ]
e - e man T
R - T a o &
0.5
u.y t } —+—t t t t —+ + t } +
U ) i0 15 20 25 30 35 40 45 S0 55 60 [32)
Distance From the Middle Point in nm

Fig.7.18(c) Steel Strain Distribution: Law Two




S9

2y) diys-puog 18007 p)g| 4 Bl

ww u| U|O4 PPl Byl wod soueis|(]

0 S 05 S¥ 0Oy S 0¢ S OC

S

I 01 S

-

L L
T T

L L Il i
LI 13 L] ]

L L
L T

B o
-

1eausuw | uedx ]

diy 0z peo] 3y
Jeaueuw | Jedxy]

diy 9| peo ay
1eausu | uedx]
diy o1 peoT ay

08

06

ool

(€-3|) ww uj diyg



T

woned yoer) g1 L 91

diygg
AN VAR B N I B
S VA A A V|

VAR .

/| |

/|

divg
VARV VY N N




(5861 19snay pue UIOY[YI) 1S3], J9jsuel] Uuo uonednsaaul uy oz L 31

SIDQ  JUIWIII0JUIRI Y}
JO SIXD 3y} Ul SUIDI|S

{uru)x 00SZ 00st 00s
<t + '

(%] ,L

— 0
0
050
L0
10q 4J00WS 3JJ weeee- ¥
0q yj00Ws s3I} 1001
0q pagals 34 —---
0 peqaLs |58 — —-
Sz

00 0t-

A A A A A

(wik o
r—
wwgp'0='v
i0q pagquO'l). 2,
10q Yoowsz'Q
1='»
“puoq
£'0 = A
LAUW/NOZY = Y
3 .OO—\—uﬁw

7WW/N 0150273
CEINERIIDIE)

2'0=2A

{WW/N g€'T =)

LUW/N 0g )

UW/N 0l-€2°°3
31315003

" D}DP|DIIIDN

S|UIWI|d 3}3Jdu0d

SjuaWI|I
|| }12DjU0d
puD 133)s

el

r00
60
| 01
S1
0T
+G'T
t0'E

St




load
P

Fig.7.21 Meshes

ns-r-—zw Ty ST, 60 403D 7, VT 3
nzy 30 72024 7218 52y 12 32 6 .12
111 .- 821 b o S X &8 35 34 [8-1 1l
110y 29 {23 7017 sof 11 30 5 10
109 b — B2 B M58 4 18 2
108y 28 88{ 22 68{ /86 «8f /10 28 4 [
‘o’r BZ - v d b - & &z V% 4 b ol w4 12 >4
108 27 86} 2] 66415 | 9 26 3 6
'E Bé. 24 4B, 73 AB ;7 5 1 b &
1040 26 8{ 20 64{ 14 a4y B8 26 2 4
103 f—P6- 83T B —hE—4 5 3
1y 25 82{ /19 6413 2y 7 =22 ! 2
‘n‘ 4 -1 24 &L B4 Al h ¥4 14 3l
£ Ve Z
4
)
o
o
N \\A
F 2 =2 1 e
2000 mm
jeng}—




(1E-3)

Strain

o——— Load:« 34. OKN
%
N,
L lm \ TR + Load: 40. OKN
' \
. \ P - Loade 44. OKN
N ' \
N ®
SN B mload: 4B.0KN
A
0.9 4+ sV
Y
AN #¥— - —7 Load: 52. OKN
0.6 4+
0.3 +
0.0 : —+ * —
200 600 900 1200
Distance in mm 3
Steel Strain Distribution a

Fig.7.22 Transfer Test: F. E. Results




Chapter Eight 174~

CHAPTER EIGHT
APPLICATIONS TO REINFORCED CONCRETE

DEEP BEAMS AND BEAM- COLUMN JUNCTIONS

8.1 Introduction

In this Chapter, application to some reinforced concrete structures are made. In
particular, two perforated deep beams and two beam— column junctions were
analysed. These examples were selected because they exhibited various features
which would test the potential and capability of the embedded reinforcement,
bond models and crack models in more realistic situations. In all the following
analyses, a uniaxial elastic— plastic law with linear work hardening was used for
steel. Maximum principal stress criterion was employed for detecting initial crack

formation.

8.2 Perforated Deep Beams

In this section, two deep beams with openings are presented. The numerical
investigation was carried out for two reasons. Firstly, the deep beam is one of
the most frequently employed members in modern construction having useful
applications in a variety of structures, for instance, departmental stores, hotels,
municipal buildings and so on. However, the behaviour of such members is still
not fully understood, particularly if they contain web openings. Indeed, perforated
deep beams are still not yet covered by major design codes of practice. It is well
known that stress concentrations exist at the corner of openings, which obviously
effect the loading— carrying capability. It is of interest to see if the behaviour can

be improved by arranging skew reinforcement at the corner.
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Secondly, in either experimental or engineering design, regions around the
supports and loading points are usually provided with more dense reinforcement in
order to contain the high load stresses and bursting stresses. These regions can be
strengthened in finite element analysis by using a higher concrete compressive
strength. However, the scale of the increase is usually made by assumption and
by analytical experience. There is no rational approach to define how much the
increase needs to be. The amount of increase for concrete compressive strength is
crucial if the supports control the failure mode of the structure together with the
yielding of steel. In this study, the general embedded bar model has been used to

take the dense reinforcement into account.

8.2.1 Beam One

Specimen and Dimensions

The selected specimen was B3 taken from the experimental study conducted by
Memon in 1982[G. H. Memon 1982] The beam had an overall depth of
1000mm, thickness of 100mm and span length of 950mm, giving span to depth
ratios of 0.95. It was perforated by a central rectangular opening. Two
symmetrical increasing point loads were applied on the top surface until failure

occurred. Details and dimensions of the beam are shown in Fig.8.1 in which

Xy = 400 (mm) h, = 400 (mm)
X, = 625 (mm) h, = 300 (mm)
D -~ 1000 (mm) L = 950 (mm)

Shear span to depth ratio a/D = 0.32

Clear shear span to depth ratio x/D = 0.22
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The arrangement of reinforcement is shown in Fig.8.2. Ej = 0.1 Eg is

assumed.

Concrete:
fou = 38.2 N/mm? f.' = 29.8 N/mm?
f, = 2.85 N/mm? E. = 22.92 kN/mm?

Steel properties are given in Table 8.1 and Ey is assumed 0.1Eq.
The adopted solution scheme was Newton— Raphson method under displacement
control. The rotating crack model was used with Bhide— Collins' tension stiffening

law and Melhorn's shear retention model. Full bond was assumed.

Meshes for Concrete and Reinforcement

Due to the symmetry of the structure and loading, only half of the beam was
analysed. For concrete, one mesh is used for all analyses but three different
reinforcement meshes were considered shown in Fig.8.3. The first one simply
models the longitudinal steel bars, local reinforcing at the loading and support
points being ignored. The second one is exactly similar to the experimental layout
of the bars. In the third mesh, two additional inclined 10mm ¢ steel bars are
included into the second reinforcement mesh at the corner of the opening. The

three meshes are denoted by I, II and III.
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Results

Numerical results are given in Fig.8.4 to Fig.8.7 along with experimental ones.
For mesh II (i. e. reinforced supports), good correlation has been obtained for
load— deflection, steel strains in the bars above the opening, as well as the crack
patterns. Final failure was caused by crushing of concrete under the load, after

yielding in the main reinforcement.

For the two other meshes (I and III) it can be seen that:

i) If the loading points and the supports are not reinforced with dense steel
bars, failure is caused by crushing of concrete in this region. Also the steel strain
increases at earlier stage (Fig.8.5) due to the more rapid deflection development
(Fig.8.4). Therefore, un— reinforced supports can significantly effect the loading
capacity of the structure and hence the local reinforcement needs to be taken
into account in order to model the proper force transfer in this region. This is
easily accomplished using the embedded formulation without having to resort to a

finer concrete mesh in this region.

if) For mesh III where a skew bar is located at each corner of the opening, at
failure the concrete crushed at the loading points and also in the top corner of
the hole. The top skew bar also prevented some cracking in this region. From
the load— deflection curve and crack pattern, it can be seen the skew bars do not
change overall structural behaviour very much, there being a small increase in
strength of less than 4%. This is because the failure of the structure is not
controlled by the stress concentrations around the corner of the opening. This is
not too unexpected because the opening only slightly interrupts the primary load

paths in the beam between the load points and supports.
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8.2.2 Beam Two

Specimen and Dimensions

This example was taken from the experimental study of Khaskheli [Khaskheli
1989] The dimensions and the reinforcement arrangement are shown in Fig.8.8

and Fig.8.9.

This beam was designed and tested to check the applicability of the "direct
design" procedure[Khaskheli 1989] when web openings interrupt the load path in
the shear spans. For the finite element analysis, it was the aim to examine the

capability of the proposed modelling techniques in such engineering structures.

The specimen is a single—span perforated deep beam with two openings of
500mm x 500mm each in size. One was located below the mid— depth of the
beam in one shear span, and another one was above the mid—depth of the
girder in the other shear span. Two symmetrical point loads were applied on the

top surface until failure occurred.

Span/depth ratio L/D = 1.40

Shear— span/depth ratio a/D = 0.40
Clear— shear span/depth ratio XYD = 0.35
Girder depth D = 2000.0 mm

Girder span L = 2800.0 mm

Girder thickness b = 100.0

Material Properties

Concrete:
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foy = 57.0 N/mm? f.' = 37.8 N/mm?

fe = 3.1 N/mm? Ec = 21.1 kN/mm?

High yield deformed bars of 6mm, 8mm and 10mm diameter were used for the
longitudinal and transverse reinforcement in the experiment. Their properties are

given in Table 8.2.

Arc— length with line search scheme was used. Cracking was simulated by a
fixed crack approach with Bhide— Collins' tension stiffening law, and Melhorn's

shear retention method. Full bond was assumed.

Element Discretization

The whole specimen was discretized in the analysis. The concrete and
reinforcement meshes are shown in Fig.8.10. Two reinforcement meshes were
used, designated I and II. The first mesh is the same as the experimental layout,
whilst the second included extra 10mm ¢ diagonal bars in the corners of the

openings.

Results

In Fig.8.11, the load— deflection curves are given for both experiment and
computation. For mesh I the comparison is very satisfactory up to the failure
stage. The numerical ultimate load is 1023 KN while the experimental one was
just less than 1000 KN. The addition of skew bars increased the ultimate load by

about 9%.

The comparison of the experimental and theoretical steel strain are shown in
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Fig.8.12 for the first three longitudinal steel bars at the bottom of the span. The
numerical results are satisfactory up to the development of cracking, after which
it gives a stiffer response than the experiment. To a certain extent this can be
attributed to the rather coarse mesh, which does not allow sufficient force transfer
around the opening. Also, it may be due to the fact that full bond was assumed.
The rather extensive cracking network would suggest that bond had deteriorated in
certain regions. However, in general, the numerical prediction of steel strains

follows the correct trends.

The crack patterns as well as the maximum stress contours are presented in
Fig.8.13 for loading levels 400 KN, 700 KN and 1000 KN, in which the crack
patterns are compared with the experimental ones. Apart from a few cracks
occurring near the supports on either side of the beam, good agreement has been
obtained. This slight difference is attributed to the simply supported boundary
conditions being placed at the corner nodes of the corner element rather than

spread over 200mm from the side as in the experiment.

The addition of skew bars in the corner of the openings had a greater
influence on behaviour than in the previous beam. This is because the openings
are in the shear span and will influence the force flow from the load point to
support. Fig.8.12(a) shows that although the skew bars are contributing to the
structural resistance, they are some way from yielding at failure. (The yield strain
for 10mm ¢ bar was 2350 microstrain). The results of these two analyses suggest
that a parametric study of different reinforcement arrangements around the
openings would help in identifying methods of strengthening beams with

perforations.
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8.3 Beam— Column Junction in Portal Frame

In this example, a single— bay portal frame is analysed. This structure was
experimentally tested by Stroband and KolpalStroband and Kolpa 1983] an4 has
also been numerically analysed by van Mier[van Mier 1987] " particular attention is
given to the construction detail at the beam — column connection. The behaviour
of this structural joint is interesting because in this kind of structure it is
commonly assumed that the joint is as strong as the connected members.
However, in certain cases, the strength of the joint may be lower. In addition,
the curved corner reinforcement bar is difficult to model using conventional

reinforcement modelling techniques. In this section, the effect of such a curved

bar is investigated.

In the experimental investigation, it was found that the first crack in this kind
of structure usually occurs in the mid— span region of the beam and in the
column. Only at a more advanced stage does inclined flexible cracking occur in
the corner. The development of the splitting cracks mainly depends on the radius

of the curved reinforcement bar in the joint.

Description of the Problem

Dimensions and reinforcement of the portal frame are shown in Fig.8.14,
There is no variation of the cross—section area of the beam and the column.
The frame was loaded in accordance with the conditions of a four— point bending
test under loading control as shown in Fig.8.15(a), which causes a negative
bending moment in the joint between the beam and the column (see

Fig.8.15(b)).

Material Properties
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Concrete:

fo' = 37.8 N/mm? » = 0.15

fe = 2.42 N/mm? E. = 2.7 KN/mm?2
Steel:

Eg = 210.0 KN/mm ?

Ey, = O0.1Eg
fsy = 350.0 KN/mm? (for 46)
fsy = 282.0 KN/mm?2 (for 312)

foy = 300.0 KN/mm? (for ¢14)

The solution was obtained using the arc—length method with line search
scheme. The rotating crack model was used with Vecchio— Collins' tension

stiffening law and Melhorn's shear retention model. Full bond between concrete

and reinforcement was assumed.

Element Discretization

As shown in Fig.8.16, one mesh is used for concrete while two meshes are
examined for the reinforcement. The first has straight bars in the corner and the

other has a curved bar in the corner.

Results

In Fig.8.17, load— deflection is compared with the numerical results of van

Miedvan Mier 1987], where little significant difference is observed. For the
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straight bar model, the ultimate load was 28KN whereas there was only a slight
increase for the curved bar at 29KN. The experimental value was given as 28KN

also. Unfortunately, no experimental load— deflection curve was reported.

Fig.8.18 examines the corner reinforcement in more detail by comparing the

strain response of the curved approximation and the straight simplification.

For the straight bar, the steel stresses on either side of the corner diagonal are
very similar until failure is approached, when the stress in the vertical bar
increases more rapidly, reflecting the extra horizontal cracking that occurs in the
column near the junction. For the curved bar the stresses at the same points
have increased compared to the straight bar, but show a similar trend; however
the point at the centre of the curve is now also carrying a substantial stress. This
suggests that the junction is strengthened because the curved bar picks up the

stresses released by the diagonal cracking in the concrete.

The maximum principal stress contour is shown along with van Mier's results
in Fig.8.19 and 20 for linear stage and failure stage, respectively. The general
trends are similar with some differences in stress occurring in the corner for the
straight bar model and curved bar model, indicating that the curved bar is

absorbing more tensile stress from the concrete.

Fig.8.21 compares the crack pattern with that of van Mier at loading level 8.0
KN while Fig.8.22 gives comparison of the results of present study, van Mier'

study and Stroband— Kolpa's experimental results.

At loading level 8.0 KN, the cracking patterns agree quite well with the
experimental crack pattern. At the final stage, satisfactory agreement has also

been obtained. There is a slight difference of crack patterns between the curved
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bar model and the straight bar model, indicating that the curved bar has slightly
strengthened the corner and effected its local failure mode. The numerical results
indicated crushing in the re— entrant corner of the junction, but that failure was

actually caused by flexure in the main beam at a later load.

The final deformed mesh is given in Fig.8.23, where it can be seen that most
deflection occurs in the middle of the beam, the beam being more flexible than
the column. Also the crack development at the junction has allowed the beam to

rotate more at its ends.

8.4 Beam— column Joint

A beam-— column joint tested experimentally by Allwood[Allwood  1980], was
selected to study the influence of bond—slip and its modelling. This type of
structure is of interest because of the variation of stresses in the beam continuity
bars as the bars pass through the columns, particularly wide columns, and how
this is effected by bond—slip. Modern Codes of Practice allow the bending
moment at the face of the column to be used for design calculations but, where
the column width is large compared to the beam spans, such a bending moment

can be substantially less than the value at the centre of the column.

Dimensions _and_Reinforcing Details

The analysis presented here investigated the stress distribution of the steel bars
in the beam—column joint. Fig.8.24 shows the dimension and reinforcement
details of the experimental specimen. Due to the symmetry of the structure, only
one half has been analysed. Bond—slip was assumed for the longitudinal
reinforcements of the beam. The concrete and reinforcement meshes are given in

Fig.8.25.
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Material Properties

Concrete compressive strength f —=56,0MPa at 28 days. In this analysis, the
following properties were assumed: E. = 20GPa, fy = 2.0MPa, » = 0.15; and

Eg = 210GPa, = 600MPa for high yield 4mm ¢ bar, oy = 500MPa for

Ty
12mm ¢ bar, E; = 0.1Eg

Houde's bond slip law was used in this analysis. The fixed crack model was
used for concrete in conjunction with Vecchio— Collins' tension stiffening law and
Melhorn's shear retention law. Solutions were obtained using the arc—length

method with line search.

Results

Figs.8.26(a) and (b) show the computational results for steel stresses using
perfect bond and bond-—slip, respectively. For perfect bond the analysis
underestimated the experimental steel stresses at all load levels whilst there was
very close agreement when bond—slip was allowed for. The peak stress occurred
more towards the beam in the numerical analysis, and were about 15% higher in
magnitude near failure. The predicted ultimate loads were overestimated but
within reasonable bounds: with full bond the failure load was 25.0KN, with

bond—slip 22.5KN whereas the experimental load was reported to be 20KN.
8.5 Concluding Remarks
In this Chapter, applications of the modelling techniques to two perforated deep

beams, a portal frame and symmetrical beam— column junction have been made.

From the deflection curves, steel strain curves, crack patterns and stress contours,
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it has been seen that the general embedded finite element reinforcement
modelling procedure is reasonably accurate and potentially very useful. It also
allows parametric studies to be conveniently undertaken to study the influence of
reinforcement because additional bars can be included without the need for
remeshing the analytical model. The bond modelling technique also proved useful
in studying bond—slip effects and was able to demonstrate its influence very

clearly.
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Fig.8.12 Load vs. Steel Strain —continued
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the overall view detail of the corner

(a) J. van Mier (1987)
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(b) Finite element results

Fig.8.19 Maximum Principal Stresses —linear stage
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.3) J. van Mier (1987)
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(a) J. van Mier (1987)

(b) Experimental (Stroband and Kolpa 1983)

Fig.8.22 Crack Patterns at Failure

(a) Straight Bar Model

(b) Curved Bar Model

Fig.8.22 Crack Patterns at Failure —<continued
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CHAPTER NINE

CONCLUSIONS

9.1 General Points

This study has been concerned with the nonlinear finite element modelling of
reinforced concrete structures. Three primary aspects of numerical approximation
have been studied: reinforcement modelling techniques, material behaviour and
nonlinear solution techniques. In particular, the following areas have been
examined in detail: crack modelling, including shear retention and tension
stiffening, embedded reinforcement modelling, bond slip modelling, bond
stress—slip relationships and arc—length and line search solution schemes.

Attention was limited to 2— dimension idealizations.

A stock of numerical examples has been analysed, including both those
examining fundamental behaviour as well as applications to more realistic
engineering structures. For the fundamental investigations, the selected specimens
were mainly reinforced concrete panels under well— defined states of stress and
bond specimens. The engineering structures included perforated deep beams and

beam— column junctions.

For these classes of problem, the results of the developed numerical procedures

were satisfactory, most being in good agreement with experimental data.

9.2 Fundamental Study

1. Two embedded reinforcement formulations and one embedded bond—slip model

have been developed and implemented, leading to a general model for embedded
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reinforcement with bond—slip effects. All these models have performed well in
application. The general reinforcement model is particularly useful because it
allows the main concrete finite element mesh and the reinforcement mesh to be

developed quite independently.

2. For the bond—slip bond modelling, a general formulation was developed and
studied. The model is effective in taking bond—slip effects into account. The
bond stress— slip relationships used in this study are good enough to obtain results
consistent with experimental ones. For many structures, a constant bond modulus
is sufficient to approximate general bond—slip effects. If the constant modulus is
of the same magnitude scale as the elastic modulus of steel, the bond is almost

perfect.

3. Cracking behaviour was modeled using a smeared approximation. In particular,
fixed cracking model, strain—decomposed cracking model and rotating cracking

models were examined and compared.

The rotating crack model allows the crack to rotate continuously whilst in the
fixed crack models the new crack direction can only appear in the direction of

predefined threshold angles.

If cracks form at different orientations during the loading process, the swinging
approach gives a lower bound on the loading capacity of the structure whilst the
fixed orthogonal model gives an upper bound. The strain decomposed approach
predicts a value between these two bounds, depending on the threshold angles
adopted. For structures where crack directions do not change very much, the

fixed crack model is sufficiently accurate for predicting loading behaviour.
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The strain decomposed and swinging crack models require substantially more
computational effort than the fixed orthogonal crack model, and should only be

selected when the circumstances justify a more accurate approach.

4. A number of shear retention and tension stiffening post— cracking models were
examined. On the basis of the examples analysed in this study, the
Vecchio— Colling Vecchio and Collins 1985] and Bhide— CollinsiBhide and Collins
1987] equations are recommended for tension stiffening while Mehlhorn's

formulation[Mehlhorn 1990] is recommended for shear retention.

5. Solution schemes examined in this study were the Newton— Raphson method
and arc— length and line search schemes. All these were effective under load
control up to peak loads. However, the arc—length and line search, being the

most sophisticated, was particularly effective in tracing post— cracking behaviour.

9.3 Application to Reinforced Concrete Structures

In this study, the modelling techniques have been used to analyse perforated
deep beams and beam— column junctions. In all analyses, the deflection curves,
steel strain curves, maximum stress contours as well as crack patterns generally
showed satisfactory agreement with either experimental results, or the numerical
predictions of other researchers. The general embedded reinforcement modelling
procedure proved very useful in discretising structures in which the reinforcement
layout was complex. It made the inclusion of extra reinforcement bars into an
existing mesh very convenient. It has also been shown that bond—slip effect can

be taken into account in application without great difficulty.

1. The analysis of perforated deep beams indicates that the addition of skew bars

around an opening influenced behaviour if the opening was in the load path, by
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restraining local failure in the vicinity of the opening and hence improving the
ultimate capacity. The importance of properly modelling the reinforcement near
load and support points, in order to prevent premature local failure, was also

demonstrated.

2. Analysis of the beam— column junction demonstrated that in certain situations
where bond—slip effects are significant, the steel stresses are significantly
influenced by the bond slip simulation. Assuming perfect bond underestimated the
steel stress, whilst allowing for bond—slip produced better agreement with
experimental results, and reduced the predicted load carrying capacity of the

junction.

9.4 Suggestion for Further Research

1. Since reinforcement in cracked concrete structures is usually subjected to dowel
action, further research is needed to incorporate this effect into the embedded
representation of the steel bar. In such situations, the reinforcing steel will no

longer be regarded as a slender uniaxial element but as a beam element.

2. The embedded reinforcement formulation should be investigated for use in
predicting the behaviour of prestressed concrete structures. The fact that curved
bars or cables can be readily accommodated makes the embedded formulation

potentially powerful for these structures.

3. The cracking models and reinforcement models should be examined under
repeated and cyclic loading regimes. The mechanisms involved are substantially

more complicated and would provide a severe test of the proposed models.
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4. An obvious development is to extend the formulations proposed in this study

to three dimensional structures.
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APPENDICE

Appendix I

Basic_Procedure of Finite Element Method

Based on homogeneous, continuous and isotropic assumptions, the element
stiffness matrix for an individual finite element can be determined using an
energy principle, such as the principle of virtual work or total potential energy.

The general procedure is given by

i) For any structure or an element, the internal displacements {4} at any point
within the system can be expressed in terms of the nodal displacements {5¢} by

means of assumed displacement functions [N ], i. e.

(6} = [N] (2% (1.1)

in which [N] is a set of interpolation function termed "shape functions". It is
used to approximate the true displacement behaviour of the element in the

continuum, based on Laplace interpolation.

ii) Taking proper derivatives of eq.(I.1), the strain— displacement relationship is

then established as

(e} = [B] (&°} (1.2)

where [B] is the so—called strain matrix. It is generally composed of derivatives

of the shape functions.
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iii) Select an appropriate stress— strain relationship for the element material, i.e.

{0} =[] {&} (1.3)
where [D] is the constitutive relationship matrix of the element.

iv) Substitute eq.(I1.2) into eq.(1.3) to obtain the stress— displacement relation. i. e.

{0} = [D] [B] {5¢} (1.4)

v) Provided that the element shape functions have been interpolated properly so
that no singularities exist in the integrands of the functions, the total potential

energy of the continuum will be the sum of the energy contributions of the

individual elements, i. e.
T =T g (1.5)
e

where 7. represents the total potential energy of element e, which can be

rewritten as

1
Te = - [62]T sve [B]T [D][B] [&®] dv
- [5e]T Jve [N]T {p} dv - [‘Se]T Ise [N]T {a} ds (1.6)

where ve is the element volume; se is the loaded element surface; p is the body

forces per unit volume and q is the applied surface forces.

vi) Performing the minimization for element e with respect to the nodal

displacements {6¢} for the element, gives
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org

Ive [BIT [D] [B] {5} av
o[ 8¢ ]

{ Jve [N]T {p} dv + fge [N]T {a} ds“}

Ke (58} - Fe (1.7)

where

K¢ = [y [B]JT [D] [B] dv is the stiffness matrix of the element,
and

F€ = [fye [N]T {p} dv + [q [N]T {q} ds is the equivalent nodal

forces for the element.

Generally, the integration indicated in K€ must be carried out numerically

within the element.

vii) Once the element stiffness matrices have been calculated and transformed
from local to global coordinate system, the structural stiffness matrix K can

then be formed by the systematic addition of element stiffness matrices, i. e.

[K] (s} = (F} (1.8)

where (F} is the known external nodal forces and {8} is the unknown nodal

displacements obtained by solving eq.(1.8).

viii) Having worked out the nodal displacements, the element stresses within each

element are given by_

(o) = [D] [B] (s°) (1.9)



Appendices

-213-

ix) Other subsidiary element quantities can also be obtained in a similar manner.

In finite element analysis, the isoparametric element is commonly adopted, i. e.

the shape function used to define the variation of displacements are the same as

those functions used to define the mapping relationship between global Cartesian

coordinates and the local curvilinear co— ordinates. This study makes use of the

eight node isoparametric elements for two dimensional problem and the [N]

matrix of such an element is given by

Nj 0
[N] = (i =1 to 8)
0 N;

where Nj is a parabolic shape function. For corner nodes

1
Ni = — (1 + Eo)(l + "70)(50 + Ng - 19
4
where £, = ¢ & and 15 = 7 u;.
For middle nodes
1
Ni = — (1 - £2)(1 + ng)  (if &; =
and 2
1
Ny = — (1 + &0 - 92) (if 93 =
2

Then, the displacements within an element is defined by

[ ) ] = [N] [ i ] (i =1 to 8)

0.0)

0.0)

(1.10)

(1.11a)

(1.11b)

(1.11¢)

(1.12)
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where u; and v; are the nodal coordinates.

The geometry is defined by

Xi
(i =1 to 8) (I1.13)
Yi

[z]=[N1

where x; and y; are the nodal coordinates of the element.

The strain at a point in an element is given by

€y du/9ox
{ey=1e |- av/3dy = [B]{s®} (1.14)
Yxy du/oy + dv/9ox
where [B] = [B,, ---, B, ] and
oN; /9x 0]
[ Bj ¢¢,m ]- 0 aNj/dy (1.15)

oONj/dy ONj/ox

Since the shape function is expressed in a local curvilinear system, a

transformation is required from local to global. This is a well—known relation

between cartesian and curvilinear derivatives, given by

38/9x -1 0/9¢
=[J] (1.16)

3/3y 3/d7

where [J] is the Jacobian matrix given by

ax/3t  dy/t
[J]= (I.17a)

ox/0n dy/on i
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In the local system, this [J] matrix is given by

oN/o¢ X
[J]1~= (1.17b)
oN/don y

Having obtained the [B] matrix and [J] matrix, the stiffness matrix in
eq.(I.7) can be worked out over the element volume in the local coordinate

system, in which

1 1
Jve dv = f ) det|J| didy (1.18)
-1 -1

In this study, the Gauss— Legendre quadrature rules have been used to carried

out this integration.
Appendix II
Stress Invariants

The three principal stress invariants I,, J, and J, are often used in formulating

various criteria of failure for concrete material. These are given by

I, =0, +0, + 0, (Il.1a)
1

J,=—[(6, -0)2 + (0, - 0,)2 + (0, - 0,)2] (I1.1b)
6

Jy = s,8,5, (Il.1c)

where 1., J, and J, are the first, second and third stress invariants;
oj is the principal stress;

s; is the deviatoric stress, representing a state of pure shear,
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S§§{ = 0f — 0ot and ogcy = I,/3 are the mean normal stress or

octahedral normal stress.

The octahedral normal stress acts on a plane which has equal angles with each
of the principal stress directions. The plane is defined as an octahedral plane.

Its corresponding normal strain is given by

1
€oct = — (€, + €, + €3) (11.2)

The shear stress on the octahedral plane is given by
Toct = Y(2J3,/3) (I1.3)
where 7450t is the octahedral shear stress.
The corresponding octahedral shear strain reads

2
v=—=[Ce, - €02+ (e, - €5) + (e5 - €0 ]} (11.4)
3

Detailed derivations are given in [Chen 1982].
Appendix III
Damage Rule
Under monotonic loading, the bond resistance of a deformed bar depends
primarily on the strength of the "concrete key", i.e. the concrete between the

steel lugs. After the damaged area exceeds the lug spacing, there is only friction

to provide bond resistance. The frictional resistance must be developed as the
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concrete key is being damaged. As shown in Fig.Ill.1, it is assumed that the
damage occurs in a linear fashion and is divided into a "strength component" and

a "frictional component".

The strength component depends on the total damage and the loss of the
strength does not depend on whether the damage is all in one direction or is
composed of slip components in each direction. The deterioration of the frictional
bond stress can be determined by assuming that the frictional bond stress reduces
from the frictional bond stress of the previous cycle (suggested to be about
18%[Pochanart and Harmon 1989]y assuming no new frictional resistance

developed during the cycle under the slip control.

Appendix IV

Equilibrium Between Concrete and Reinforcement

As shown in Fig.IV.1, the force acting on the bond by reinforcement Fg is
the same in magnitude as the force Fyg acting on the reinforcement by the bond

at an arbitrary point P, i. e.

Fep = Fpg (IV.1)
where
de 5€
Fsb = f — | [os] dvs
Ve dr Uy
T 8¢
- 5,08 1" [Ds1[ Bs By ] v ] (1v.2)
S Ub

Fbs = SponalMbj 1T [ Db 1[ Hpy 1 dvp[ upj ]
surface
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(I1v.3)
where | is the length of the bar.
Substituting egs.(IV.2) and (1V.3) into eq.(IV.1) gives

T

Kps, - 5¢ + (Kps - Kp ) - Uy = 0 (1V.4)
where

Kps = Jys [Bps ]T[Ds J[Bobs ] dvs, and
Kbs, = Jfys [Bes]T [Ds ][ Bps] dvg are stiffness matrices due to bond

effects;

Kb = Tbond [Hb]T [Dp] [Hp] dvp is the bond stiffness matrix.

In embedded reinforcement model with bond-slip, the equivalent reinforcement

force is given by

6e
= Jys [Bcs Bps ]T [Ds] [Bcs Bbs] dv (V.1)
Fsp Ub

l;SC

where [Bcs Bps ] is the strain matrix of steel given by eq(5.36),

[Dg] is the constitutive relationship matrix.

This equivalent force consists of two parts Fg. and Fgp. The former is the



Appendices -219-

embedded reinforcement force produced by its movement together with concrete.
The latter is due to bond-slip. In other words, Fgp, should by equilibrated by

bond force Fy:
Fp = Kp Uy (Vv.2)
Therefore

Fsp = fyvs BTbs Dg Beg 8¢ dv + Jfyg BTbs Dg Bpg Up dv

=KpUp (Vv.3)

. 5@
[KThs, Kps] [U ] = KpUp (v.4)
b

where Ky, Kpg, and Kps are defined in eq.(5.41)
For the whole element, it hence gives

Ke + Kg Kps 1 Fe Fé€
= = (V.5)

KTps, Kbs KpUpl  LFp
As mentioned above, F, is a bond force rather than an applied external force
of structure, and hence can not be increased/decreased incrementally in
computation. It is only dependent on the particular mechanical state at a given

region.

In compuation, Fy, can be kept at right hand side of the equilibrium equation.
But this makes calculation tedious and invalidates the standard finite element
solution procedure. In order to overcome this difficulty, Fp was shifted to left

hand side of the equation while maintaining the equilibrium condition of the
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structure through the assembly strategy of the element stiffness matrix at structural

level, which leads to eq.(5.41) and (5.42).
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