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SUMMARY

This thesis is concerned with the development of an inelastic material model

to be used in conjunction with the finite element technique to simulate the

behaviour of reinforced concrete shear— walls under lateral loads. The proposed 

computational model is capable of tracing the entire nonlinear response up to 

ultimate load conditions. The main features of the nonlinear behaviour of concrete 

and steel are incorporated in the numerical model. These include cracking, 

nonlinear biaxial stress— strain relationships in concrete up to crushing and yielding 

of steel.

The investigation first considers the linear elastic behaviour of coupled 

shear— walls then a consistent material model that matches the existing experimental 

evidence for the behaviour of plain concrete under monotonic biaxial loading is 

considered. The reinforcing steel is idealized as bilinear uniaxially stressed material.

The individual material models are combined with the finite element technique

to demonstrate their applicability. To check the validity and accuracy of the

numerical model, finite element calculations are compared with experimental results 

for shallow and deep beams, shear panels subjected to monotonic loading. Finally, 

various hypothetical coupled shear— walls and tested microconcrete shear walls were 

analysed highlighting the history of crack propagation, deflections, crushing of 

concrete and yielding of steel up to failure.

The resulting model should prove to be a simple useful research tool for use 

in the study of any reinforced concrete structure which may be considered to be in 

a state of plane stress.
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CHAPTER 1 

INTRODUCTION

1 - 1  GENERAL :

Reinforced concrete is by far one of the most commonly used construction 

materials with applications in many types of structures such as tall buildings, 

bridges, cooling towers, nuclear containment and pressure vessels, etc. Despite this 

widespread use of concrete as a structural material, knowledge about its physical 

properties and behaviour under general multiaxial stress states is still incomplete or 

rather deficient. The main reason for this is that this composite material

demonstrates a highly nonlinear behaviour caused by cracking, aggregate interlock at 

crack interfaces, dowel action in bars crossing cracks, bond— slip phenomenon 

between steel and concrete, crushing of inelastic concrete and yielding of steel 

among others. Therefore it becomes apparent that formulation of rational analytical 

procedures is very difficult. To overcome these limitations, both analytical and 

experimental studies of reinforced concrete members, as basic components of 

complete structural systems, have been the focus of a number of investigators for 

many years and continue to be so. These early studies, by necessity, concentrated 

on the behaviour of isolated members such as beams, columns, joints, slabs, etc.

As facilities developed and computing hardware capability expanded, the scope 

broadened to include entire systems such as full scale three dimensional buildings. 

These developments in the power of modern computing systems along with the 

accumulated data from tests, have made possible the inclusion of the complex

material behaviour under multiaxial stress conditions into methods of analysis.

Present day linear analysis methods are generally considered adequate in 

engineering design practice, because structures designed on the basis of these 

simplified analysis methods have, by and large, behaved satisfactorily, and the 

complexity of reinforced concrete behaviour has left little other choice. However,



the adequacy of these traditional methods have been questioned in a number of 

applications. Foremost is the construction of nuclear power plants. A second 

application for which the standard design methods may be inadequate is the design 

of tall concrete structures to safely withstand strong lateral loads induced by 

earthquake ground motions for which ductility and energy absorbtion capacity, 

associated with large inelastic deformations is to be activated. In a more general 

sense, there exists a fundamental inconsistency in current analysis and design 

practice. While structures are generaly analysed using linear elastic methods, they 

are designed on the basis of ultimate uniaxial strength conditions. In contrast, the 

material within these structures is nonlinear and in a multiaxial state of stress.

The most powerful and general method now available in structural analysis, by 

which a complete detailed study can be performed, is the finite element method. 

Its basic concepts are now well established and have been widely published. Its 

generality and versatility are particularly essential for structural systems that fall 

outside the experimental database, because physical experiments to determine the 

sequence of formation and location of failure modes were not easy to conduct. The 

scaling of these structures made the construction of physical models of the size to 

fit into laboratories very difficult, demanding and expensive. Such problems are also 

seen in the case where the number of necessary experimental test specimens is 

extremly large in accordance with the variety of loading and boundary conditions. 

This is particularly important for reinforced concrete shear walls which have usually 

been tested using small scale models of microconcrete mix or perspex materials. 

Because full scale experimental studies on reinforced concrete coupled shear walls 

are difficult and costly, if not impossible at the moment, the use of the finite 

element methods incorporating the main features of the nonlinear behaviour of the 

constituent materials, concrete and steel, is a well justified alternative for simulating 

the behaviour of such systems up to failure. This prompted the so called numerical 

experiments being adopted in this study.



1 - 2  SCOPE AND PURPOSE

Computer aided structural analysis of reinforced concrete structures has been 

the object of extensive research for almost three decades. The usual method of 

modelling reinforced concrete systems is to make use of finite element models with 

various degrees of sophistication that have been used successfully for predicting the 

response of reinforced concrete beams, slabs and shells, etc.

The purpose of this study is an attempt to demonstrate the possibility of

predicting the history of stresses, deflections and crack propagation, crushing of 

concrete and yielding of steel up to failure of reinforced concrete coupled shear 

walls. Therefore, the first objective was to develop a nonlinear plane stress finite 

element program which can analyse a wide range of reinforced concrete systems in 

plane stress conditions and subjected to short term loading up to failure. The 

ultimate purpose of this study was to estabilish an economical computer program 

and procedures to undertake a parametric study of shear wall behaviour.

A review of the available analytical and computational methods of analysis is 

given in Chapter 2, in which numerical investigations using these methods were 

deemed necessary to carry out a parametric study on coupled shear walls. Studies 

on the degree of accuracy of each of the following methods, namely, continuum

shear analogy, wide— column frame analogy and finite element techniques have been 

carried out.

In Chapter 3 , a survey of available literature on the experimental behaviour 

of concrete and steel and their mathematical modelling is given along with a 

description of the mathematical model used to simulate their experimental behaviour 

in this study. An orthotropic biaxial model of concrete is used to represent various 

aspects of concrete behaviour suited to two dimensional plane stress problems. It

simulates the behaviour of concrete in the compression— compression zone up to

crushing type of failure, and in the tension— tension and combined 

tension— compression up to cracking type of failure. For cracking and post cracking 

behaviour of concrete, the smeared approach is used, including tension stiffening



due to bond between steel and concrete, and a variable shear retention factor 

simulating dowel action and friction at the interfaces of an open crack. For steel 

reinforcement a bilinear uniaxial model with or without strain hardening is 

employed.

In chapter 4 , nonlinear methods of solution are discussed and a description 

of the method adopted in this study is presented.

The validity and accuracy of the finite element model is tested and reported 

in chapter5 by comparing the results obtained from the present analysis with 

carefully conducted experimental tests on various concrete structures.

Chapter 6 presents some numerical applications of reinforced concrete shear 

walls including the influence of the degree of coupling, position of the openings, 

stiffening beam in the top, stiffening beam at midheight, on the ultimate load, 

crack propagation and mode of failure including the sequence of yielding of steel 

and crushing of concrete in the lintel beams and walls.

Finally, general conclusions and recommendations for future work are 

presented in chapter 7.



CHAPTER 2

ANALYTICAL AND COMPUTATIONAL METHODS OF ANALYSIS

2 - 1  INTRODUCTION :

The structural analysis of tall shear wall buildings has been treated extensively 

in technical literature in recent years as most designers are aware of the benefits 

that shear walls can offer in the lateral load resistance of multistorey buildings.

The most frequent causes of horizontal loads are due to wind, blasts and

earthquake actions. For tall buildings the effect of lateral loads is very significant, 

from both the ultimate strength and serviceability points of view, and it is

important to ensure adequate strength and stiffness to resist these horizontal loads.

Because a large portion of the lateral load on a building, if not the whole 

amount, and the resulting shear force from the load, are often resisted by such 

structural elements, they have been called shear walls. However, it should be noted 

that rarely is the critical mode of resistance associated with shear. As multistorey

buildings have become taller and more slender, the trend for the use of shear 

walls is almost imperative in certain high rise buildings to control overall lateral 

deflections and interstorey drift. The observed behaviour of well designed shear 

walls has convincingly shown their potential in damage control, providing safety and 

protection against nonstructural damage during moderate seismic disturbances.

Buildings comprising such structural systems are commonly of 10 to 30 storeys, 

and their behaviour is influenced by the shape of the walls whether planar, flanged 

or cores, and their position. The plan distribution of walls should be such that the 

building is torsionally as well as flexurally stiff. In its simplest form the shear wall 

consists of a single monolithic cantilever wall and can be classified as, short, squat 

or cantilever according to its height to depth ratio, Fig (2—1). However, in general 

reinforced concrete shear walls are often interrupted by vertical bands of openings



for doors, windows and corridors, yielding highly indeterminate structures from the 

point of view of stress analysis, Fig (2—2). In such cases the behaviour is much

more complicated. The practical importance to the designer of obtaining accurate

methods of analysis of such coupled wall structures has emerged as a critical design 

item reflected in the large number of papers devoted to this subject.

Three main distinct methods have been developed for the efficient and

accurate analysis of such structures, Fig (2—3):

1— The continuum method (Analytical).

2— The wide—column frame analogy (Computational).

3— The finite element technique (Computational).

In this chapter, the various analytical and computer based methods for the 

analysis of tall shear wall buildings are discussed. Numerical investigations using the 

above three techniques are presented, and wherever possible, comparison of the

accuracy of results due to these different methods is made. Special emphasis on

structural features such as local deformations and stress concentrations at

beam— wall junctions, degree of rigidity of the coupling are incorporated in the

analysis. This will provide valuable information on the main factors affecting the

response of shear walls in the simple case of linear elastic theory, before a study 

of these systems loaded up to collapse can be pursued, using the experimentally 

based constitutive laws of concrete and steel.



2 - 2  CONTINUUM SHEAR CONNECTION ANALOGY

In this method the discrete system of connections, formed by lintel beams or 

floor slabs are replaced by an equivalent substitute continuous medium Fig (2—4). 

By assuming that the lintel beams coupling the walls have a point of contraflexure 

at midspan and do not deform axially, conditions of compatibility and equilibrium 

yield a governing differential equation of the second order, enabling a closed 

mathemetical solution to the problem to be obtained for specific loading functions 

(uniform, triangular or point loads).

The continuum technique appears to have been first used by Chitty and Wan 

1947 , in the analysis of a cantilever composed of a number of parallel beams

interconnected by cross bars. This was later used by Beck 1962 , who applied this

technique to coupled shear walls taking the shear forces in the connecting medium 

as the basic statically indeterminate redundant to investigate the behaviour of a 

single case of coupled shear walls on rigid foundations subjected to uniformly 

distributed load. Rosman 1964 subsequently extended the method to cope with 

various boundary conditions at the lower end, and derived solutions for a wall 

system with one or two symmetric bands of openings under both a uniformly 

distributed load and a single point load at the top. Many other researchers in the 

field such as Coull and al. in the U.K, Tso and his colleagues in Canada, Gluck 

and Gellert in palestine have all contributed a good deal to the development and 

extension of this approach using a similar procedure. Explicit theoretical solutions 

have been presented for the common practical cases using this technique which are 

in good agreement with experimental tests conducted on model structures. Further 

developments of the method are reviewed below:
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fa’I Variation of cross section :

Traum 1967 used the continuous connection method to analyse symmetrical 

coupled shear walls pierced by one band of openings and with a single stepped 

variation in cross section and considered the upper zone of the wall as elastically 

supported on the lower one at the discontinuity. The lower zone was then analysed 

being subjected to axial forces, bending moment and shearing force at its top 

together with the horizontal external loading. Using the same approach Coull and 

Puri 1967 presented another type of discontinuity by considering a stepped variation 

in the thickness of the walls, and presented in 1968 a simpler analysis of the 

problem considered by Traum 1967, but applied the loads simultaneously and 

included the effects of shear deformations in the walls.

fbl Multi—bav shear wall structures:

Most of the published work deals with two wall structures, in which case, the 

set of equations ensuring compatible deformations and equilibrium degenerates into 

a single differential equation comprising the redundancies. Hussein 1972 presented a 

method based on a continuous media technique for the analysis of multi— bay shear 

wall structures resting on rigid foundations. This required formulation of governing 

simultaneous second order coupled differential equations, for which numerical 

solution was sought by the matrix orthogonalization method. In the case of shear 

walls with slender connecting beams, good agreement was obtained between the 

theoretical and experimental results conducted on perspex models. Coull and Subedi 

1972 presented an explicit solution for the case of shear wall containing either two 

asymmetrical or three symmetrical bands of openings, and theoretical deflection 

profiles and bending stress distributions have been compared with results obtained 

from tests. Elkholy and Robinson 1973 extended the problem to deal with 

multi— bay structures resting on rigid and elastic foundations.
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(c) Beam—wall ioint flexibility:

The importance of beam— wall joint flexibility and the local deformations due 

to high stress intensities have been analysed by Michael 1967 who considered the 

wall as a semi— infinite elastic plane and took the effect of the local deformations 

by reducing the beam stiffnesses by factors depending on the geometric proportions 

of the beams. Further refined work was done by Bhatt 1973 who conducted an 

investigation of the local deformations using the finite element technique and 

suggested modifications presented in graphical and tabular forms which could be 

applied to the continuous technique to take into account the effect of local 

deformations.

(dl Elastoolastic analysis:

It appears that, while the procedure has many limitations, the continuum 

idealization has proved sufficiently accurate to allow study of the basic behaviour of 

coupled systems. For wind loading on tall structures, such elastic analysis is 

generally adequate, since the criterion governing design is usually the deflection. 

However, for strong seismic excitation, the walls as well as the connecting elements 

may experience extensive yielding, and nonlinear behaviour results.

Ultimate analysis employing the above continuous connection method was first 

introduced by Winokur and Gluck 1968. They considered symmetrical and 

unsymmetrical coupled shear walls with uniform or abrupt changes in cross section. 

They assumed a complete collapse mechanism, by formation of plastic hinges at 

points of contact of all connecting beams and the shear— wall, and at the base of 

the latter. Extensive work by Paulay (1970,1971), resulted in an approximate 

stagewise procedure in which a fixed sequence of partial failure mechanisms 

involving the walls and beams is assumed prior to collapse. He included the effect 

of cracking of both connecting beams and piers by making an arbitrary reduction 

in their stiffness, and traced the post— elastic performance of the structure by



means of a step by step procedure. Gluck's formulation 1973 of the elastoplastic 

behaviour of the coupling continuum, with walls assumed elastic, provided lateral 

capacity based on the rotational yield limitation in the connecting beams. Elkholly 

and Robinson 1974 presented a finite difference method to solve the resulting 

differential equation of the continuum shear analogy for elastic and inelastic analysis 

of coupled shear walls resting on rigid, elastic or inelastic foundations, with 

constant or variable cross section. The effects of cracking of the reinforced 

concrete elements as well as the gravity loads were included in the analysis. Coull 

and Choo 1982 presented a simplified version of a technique described by Pekau

and Gocevski 1978 for the elasto—plastic analysis of coupled shear walls with top 

stiffening beam.

Finally, a completely new aspect of the analysis of shear walls using the shear 

connection analogy was presented by Ungureanu 1976 who proposed a structural 

model by which the horizontal elements coupling the vertical members are replaced 

by a connection of variable stiffness according to a periodic law. This is an

attempt to take into account more efficiently the local effects at the joints between 

horizontal and vertical elements. The concept of periodic continuous connection as 

proposed by Ungureanu who neglected axial deformations in the walls, needs

further investigation as compared to the widely used simple constant stiffness 

distribution. The continuum method is the only method amenable to hand

calculations for regular systems, although in many cases the use of a small 

computer is advisable.



2 -  3 W ID E - COLUMN FRAME ANALOGY

The analysis of coupled shear walls by the wide— column frame analogy is 

basically an extension of the stiffness method. The first of the frame analogies is 

the equivalent frame method used by Green 1952, who replaced the walls by line 

members along their centroidal axes and assumed points of contraflexure at

midpoints of all members. He neglected axial deformations of the walls and the 

influence of the finite width of the walls compared to the centre line distances,

both of which may be of major importance in tall slender structures. An

improvement on the equivalent frame method is the so called wide— column frame 

idealization. In this method a planar coupled shear wall can be idealized as a 

frame in which the walls and beams are represented by line elements of 

corresponding stiffness along their centroidal axes Fig (2—5). The influence of the 

finite width of the walls is incorporated by a stiff arm connecting the end of the 

beams to the centroidal axis of the wall Fig (2—5). By formulating the stiffness

matrix relating displacements and external applied forces at the nodes a solution is 

derived using standard matrix procedures. MacLeod 1967 used the stiffness method 

to obtain a solution by incorporating infinitely stiff end sections. A variation of the 

method, was presented by Shwaighofer and Microys 1969 who considered the rigid 

arms as members with high but finite values of cross section area and moment of 

inertia.

The wide— column frame analogy method is relatively more versatile than the 

continuum method in that, variations in wall thickness, storey height, loading 

function and opening sizes may be taken into account easily.

In the present study a computer program WFRAME based on the 

wide— column frame analogy has been developed for the analysis of coupled shear 

walls under lateral loads. Incorporation of a transformation matrix procedure has 

been adopted to include the effect of the rigid ends which account for the finite



dimensions of the much stiffer walls. This allows consideration of the lintel beams

along with the rigid arms as a single member.

A wall element between two consecutive floors is usually represented by a 

frame element with three degrees of freedom per node, Fig (2—5), corresponding 

to axial, lateral deflection and rotation. The stiffness matrix of which, taking into 

account axial and shear deformations effects, not to be neglected due to the large

height to depth ratio is expressed as :

u i
EA

o

-EA

h

0

12EI

( l + a ) h 3

6EI

-12EI

(4+a)E I

( l + a ) h 2 (1+cOh

EA

-6EI

( l + a ) h 3 (l+a;)h2

6EI (2 -a )E I

( l + a ) h 2 (l+oi)h

12EI

(1+cOh3

-6EI (4+a)E I

( l + a ) h 2 ( l+ a )h

The term ot =  12EIk/h2GA deals with shear deformations effects, k is the shape 

factor which is equal to 1.2 for rectangular sections.

The beams are usually assumed to be axially rigid and therefore, only four 

degrees of freedom are associated with each beam element Fig (2 -5 ) , and the 

stiffness matrix is
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[ Kb*]
El

( l + o )

V * d* V * 6*A A B B
12

L3
6 (4+cO

L2 L
-12 -6 12

L3 L2 L3
6 (2-cO -6 (4+a)

L2 L L2 L

( 2 - 2 )

In addition to the shear deformations effects included through the term a, which 

may be important for deep coupling systems, the presence of the arm implies that 

the node of a beam does not coincide with the node of the connecting wall 

element Fig (2—5) , and therefore, appropriate coordinate transformations have to 

be carried out which relates the displacements { D } at A and B, Fig (2—5), 

to the displacements { D* } at A* and B* by geometry as follows :

{ D* > = [ H ] [ D ]

where

(2 -3 )

0

0

-b

1

(2 -4 )

is the transformation matrix. It follows that the stiffness matrix of a beam with 

rigid arms including shear deformations can be given by :

[ Kb ] =  [ H f  [ Kb* ] [ H ] (2 -5 )

which can be given explicitly as
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VA VB eB

12 •

L3

6 12a 4+a 12a 12a2

L2 L3
------+ ------+ -----

L L2 L3

-12 -6 12 12

L3 L2 L3 L3

6 12 2-ot 6 (a+b) 12ab -6 12b 4+a 12b 12b2
| 4-  +

. L2 L3 L L2 L3 L2 L3 L L2 L3 .

The beam and wall stiffness matrices are assembled in a standard manner and 

solved for the displacements, which in turn can be used to yield the internal forces 

in all members. Here the assembly process is defined as the operation of adding 

the coefficients of the element equations into the proper locations in the global 

system equations.
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2 - 4  THE FINITE ELEMENT TECHNIQUE / GENERAL :

As with any major development in enginering mechanics, the early history of 

the finite element method can be traced along several paths, because the method 

makes use of many theories drawn from mathematics and continuum mechanics. 

The name finite element was first introduced by Clough 1960. Since then, more 

individuals and organizations began working with this engineering tool. At present 

the finite element technique has emerged as the most powerful general method for 

structural analysis, and has provided engineers with a tool of very wide capability. 

For reinforced concrete, in particular, the phenomena of cracking, tension 

stiffening, nonlinear multiaxial behaviour and other effects previously ignored or 

treated in a very approximate manner can now be considered more rationally.

Four finite element models are currently employed in structural analysis :

(a) The displacement model

(b) The equilibrium model

(c) The mixed model

(d) The hybrid model

Most structural analyses in common use are based on the displacement model, 

in which, assumed displacement fields and the principle of minimum potential 

energy functional are used to solve various structural mechanics problems. A 

number of different variational principles, other than the principle of minimum 

potential energy, can be used to derive different types of finite elements, namely; 

the principle of minimum complementary energy and the principle of stationary 

Reissner energy. The displacements are the primary unknowns in this model, and 

the displacement field is chosen to satisfy compatibility of deformations both within 

and across the boundaries of elements.



Similarly, equilibrium elements are based on an assumed stress field instead of 

displacements, and the principle of minimum complementary energy is used to 

compute the nodal values of stresses or forces, treated as primary unknowns of the 

discretized structure. The stress field is selected such that internal equilibrium is 

satisfied with continuous stress transmission between elements.

In mixed finite element models, which make use of the principle of stationary 

Reissner energy, both displacements and stresses are treated as field variables. This 

will require more degrees of freedom to achieve a given accuracy. This 

shortcoming can be avoided in hybrid based models in which the assumed 

displacement and stress fields are independant. Hybrid elements are obtained if in 

addition to one field variable, displacement or stress, other variable, stress or 

displacement, are introduced and the parameters that correspond to the additional 

variable are eliminated at the element stage level before assembling.

In general, the displacement approach predictions are too stiff compared to the 

exact solution, whereas equilibrium based models are too flexible. However, both 

models converge to the exact solution as the number of elements used to model a 

situation increases.

In the present study, the displacement based model along with the principle of 

minimum potential energy has been used. This is due partly to the large library of 

available elements using this concept, and also to its simplicity. As the standard 

procedure of the finite element method is well known Zienkiewicz 1977, Cook 

1981, Bathe 1981, Desai 1979, Brebbia 1974 and Gallagher 1975 ... no attempt 

will be made to describe it in detail, but in order to define terms, a brief review 

of the method will be presented instead.
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2 - 5  FINITE ELEMENT DISPLACEMENT APPROACH :

The finite element displacement method can be viewed as an extension of the 

stiffness method of skeletal structures but applied to two and three dimensional 

problems in structural mechanics. However, unlike skeletal structures, there are no 

well defined joints and the actual number of degrees of freedom in any continuum 

can essentially be considered as infinite. As a numerical approach an approximate 

solution is made by assuming the continuum is divided into a series of elements 

which are connected at a finite number of joints known as nodal points. This 

process is known as discretization, converting a problem with an infinite number of 

degrees of freedom to one with a finite number. The resulting continuum is 

composed of a finite number of sub— regions or elements of simple geometry 

defined by selected key points where conditions of equilibrium and compatibility are 

to be enforced.

In the finite element displacement approach, the displacements at any general point 

within an element are dependant only upon the unknown nodal displacements, 

being related by means of interpolation functions, as follows :

{ 5 } = [ N ] { 5e >   (2 -7 )

Here, [ N ] denotes a rectangular matrix containing the shape functions that 

relate displacements { 5 } at any point within an element to the element nodal 

displacements { 5e }. The strains within any element can then be expressed in 

terms of the element nodal displacements. The strain displacement relationship is 

obtained by differentiation of the displacements { 5 }. For problems involving 

small linear strains, the process is expressed by applying a linear differential 

operator to Eq. (2—7 ), thus:
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{ * > =  [ B ] { 5e > ..  (2 -8 )

where [ B ] is the strain matrix composed of derivatives of the shape functions.

The stresses may be related to the strains by making use of the elastic constitutive 

laws :

{ «■ > = [ D ] { « >.................................................  (2- 9 )

where, [ D ] is the material constitutive or stiffness matrix relating stresses { a  }

to strains { c } :

The equations of equilibrium are obtained by minimizing the total potential 

energy of the system. The total potential energy, ns, is expressed as:

n 0 = { o- } T { e } dv - { 5 {b} dv - { 5 } T {q> ds . . .  (2 -10)

(v) (v) ( s )

where { a  } and { e } are the stress and strain vectors respectively, { 5 } the 

displacement at any point, { b } the body force per unit volume, and { q } the 

applied surface loads.

The right hand side terms of Eq. (2—10) represent the strain energy of internal 

stresses, the work of external actions due to body forces and distributed surface 

loads. Integrations are taken over the whole structure, and will be the sum of the 

energy contribution of each individual element, thus:

ns — ^ ne (2- 11)
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where rre represents the total potential energy of element (e) which, using 

Eq.(2—10) can be written as:

ne 2 { *e >T [ B ]T [ D ] [ B ] { 5® > dv

(ve )

{ ae >T [ N ]T {b> dv - {5e >T [ N ]T {q> ds ...........(2 -1 2 )

(ve ) ( s e )

Minimizing the potential energy results in:

drre

d6e
[ B JT [ D ] [ B ] dv

(v e )

[ N ]T {b} dv - [ N ]T ( q )  ds ......................... (2 -13 )

(v€ <SJ

where

[ N ]T {b> dv - [ N ]T {q> ds ..............  (2 -14 )

(v e ) ( s e )

are the equivalent nodal forces for the element,and

[ B ]T [ D ] [ B ] dv (2 -15 )

( v e)

is termed the element stiffness matrix.

The summation of the terms in Eq. (2—13) over all elements results in:

dnf
as (2 -16 )

where [ ] is the global structural stiffness matrix and { F } the global loading

vector obtained by summation of Equations (2—15) and (2—14) respectively.
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For an equilibrium to be stable, the total potential enenrgy ns of the system must 

be a minimum, therefore:

dns
 0

asor

[ K s H O  -  { F } =  0 ..........  (2—17)

The result is a system of equilibrium equations in which,the nodal displacements 

{ 5 } of the overall structure are related to the externally applied load { F } 

through the global structural stiffness matrix [ Kg ]. These linear simultaneous 

equations are then solved by standard techniques to yield the unknown nodal 

displacements. The strains and therefore the stresses within each element can 

becomputed from the displacements using equations (2— 8) and (2— 9) respectively.

2 -  6 SHEAR WALL DISCRETIZATION BY FINITE ELEMENT :

It is apparent from section (2— 5) that the finite element method with the 

direct stiffness formulation involve three levels of idealization: material, element and 

structural as indicated in Fig (2—6).

The material model is represented by a constitutive matrix [ D ], which relates 

stresses to strains. Its quality depends on the assumed material constitutive laws and 

how they describe the real material behaviour.

The finite element represented by the element stiffness [ Ke ], describes the 

behaviour of a portion of the structure with an assumed displacement function and 

a given material stiffness. Its accuracy depends primarily on the type of 

displacement functions used.



The structural model represented by the structural stiffness [ Ks ], describes the 

global behaviour of the structure. It reflects all of the assumptions made at the 

material and element levels. In addition, the structural model is affected by the 

choice of the finite element mesh. The predicted response of the structure is 

therefore influenced by approximations made at all three levels.

2 -  6- 1  MATERIAL IDEALIZATION :

It is through the constitutive matrix [ D ] in Eq. (2— 9) that nonlinear 

effects are introduced into the element stiffness relation Eq. (2—15). Stresses and 

strains are investigated at integration points. Cracking, yielding and crushing of 

concrete are thus determined from the stress and strain evaluations at these points.

In this chapter and for a preliminary study, a linear elastic material has been 

assumed to permit a simple parametric study of shear wall behaviour in the simple 

elastic case before a more refined nonlinear model will be introduced in Chapter

(3).

2 - 6 - 2  ELEMENT IDEALIZATION :

Several types of plane stress elements are commonly used, Fig (2—7). 

Constant strain triangular elements have enjoyed considerable appeal for their 

simplicity as well as their ability to idealize structures with irregular boundaries. 

The main disadvantage of these elements stems from their uniform strain field and 

hence uniform stress field. Another type of plane element used in practice is the 

linear isoparametric quadrilateral element. Improved stress predictions can be 

obtained since the strains, and therefore the stresses vary linearly within each 

element. This element however, suffers the disadvantage of poor behaviour in 

representing in— plane bending.
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Higher order parabolic isoparametric elements are now extensively used for plane 

stress problems. In fact most of the standard finite element packages have this 

element in their library routines. However, this element suffers from spurious shear 

effects when applied to certain classes of problems as reported recently by 

Jeyachandrabose and Kirkhope 1983; For instance, the analysis of cantilever beam 

under uniform loading. Although the computed deflections and axial stresses are in 

excellent agreement with theoretical ones, the shear stresses show a parabolic 

oscillation within each element, thus providing a poor representation of the actual 

stress. Although substitute shape functions have been derived using least square 

stress/strain smoothing techniques to eliminate the spurious shear modes, many 

investigators still use this popular element.

In addition to the uniform stress and strain fields in the constant strain triangle, 

the poor bending behaviour of the linear isoparametric element, the spurious shear 

effect of the popular parabolic isoparametric element, these elements are in 

general, not suitable for the analysis of shear walls if interaction with frames, or 

when modelling slender lintels as beam elements are considered. Special elements to 

deal with this situation and more suitable for shear walls have been developed. 

Abu Ghazaleh 1965, MacLeod 1969, Sisodiya, Lin et al. 1971 and Cheung and 

Ghali 1973 have proposed rectangular elements with additional rotational degrees of 

freedom, Fig(2—8). They assumed different displacement functions for the two 

translational degrees of freedom { u,v } and expressed the additional rotational 

degree of freedom as:

Abu— Ghazaleh's 1965 element Fig (2—8a):

0i =  1/2 ( dv/dx -  au/ay ) i =  1 ,2 ,3,4.   (2 -1 8 )

The displacement u is linear in £ and cubic in 17 .



MacLeod's 1969 element Fig (2—8b):

0, =  8 3 =  -  du/dy 0 2 =  04 =  dv/dx

or 0 , =  03 =  dv/dx 02 =  04 =  —du/dy   (2—19)

The displacement u is assumed linear in £ and quadratic in rj, whereas v is 

assumed quadratic in £ and linear in rj.

Lin et al's 1971 element Fig (2—8c):

î =  dv/dx * =  1*2.3,4.

The displacement u is linear in both £ 

and linear in rj.

Sisodiya and Cheung 1971 element Fig (2—8d):

0j =  —du/dy i =  1,2 ,3,4. ...........................  (2—21)

The displacement u is linear in the £ direction and cubic in the r\ direction, 

whereas v is linear in both directions, which would lead to a linear distribution of 

vertical stresses on horizontal sections of the wall.

Most rotational degrees of freedom in the elements above, are either biased around 

one of the axes, or induce a lack of symmetry in truly symmetrical cases.

A more refined element suitable for the analysis of shear walls when compared to 

the previously mentioned elements was presented by Oakberg and Weaver 1969. 

Four degrees of freedom are assumed at each node, Fig (2—9), two translations in 

the x and y directions and two slopes of horizontal and vertical lines at each edge 

expressed as partial derivatives of the translational displacements.

In this study, the element used to discretize a shear wall is the higher order 

element of Oakberg and Weaver 1969. The displacement functions assumed for this 

element are:

  (2- 20)

and rj directions whereas v is cubic in £
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Translations :

u -  a ,  + a 2 $ + a 3 17 + a 4 $77 + a 5 172 + a 6 $ij2 + a 7 173 + o l q %y)3 

v -  a9 + a10$ + 0 ,̂17 + a12 r̂j + a13S2 + a14$2l7 + a is^3 + a i 6%3rl (2“22)

R o t a t i o n s  :

0X = d v /d x  = i / a  ( d v /d £ )

-  i / a  ( oi10 + a 12rj + 20?! 3$ + 2a 1 4 $T7 + 3a 1 5 $ 2 + 3a 1 5 S 2 t? )

0y ------ du/dy -  - i / b  (du/dr )̂

-  - 1 / b  ( a 3 + oi4 $ + 2 Q; 5 17 + 2a6^ri + 3Ct7i) + 30tB̂ rj ) . . .  ( 2 - 2 3 )

This is written in matrix form as:

1 $ 17 $17 172 £ i 7 2 173 £ t73 0 0 0 0 0 0  0 0

0 0 0 0  0 0 0 0 1 $ 37 ^  77 $ 2 £ 2 17 £ 3 £ 3 ?7

0 0 0 0 0  0 0  0 0 1 0 1 7 2 $ 2$r; 3$ 2 3$ 2r;

u

V

*x

-0V-

a,

a<■2

a

( 2~24)

1 60 0 1 $ 217 2$ 77 3172 3 $ 772 0 0 0 0 0 0  0 0

The unknown vector coefficients { a 1,Q!2......., a 16 defining the assumed

displacement functions are obtained by expressing Eq (2— 24) for each node in

turn, which results in a set of 16 simultaneous equations. Solution of the system

defines completely the shape functions [ N ] for each node, summarized in Fig 

(2—9). To compute the translations u( $,77 ), v( $,77 ) and rotations 6-^ $,77 ), 6y

($,77 ) at any point ( $,77 ) within the element, use is made of Eq (2—7) which 

takes the form :

u ( $ , 77) = . I i Ni , ($ , 77) u t v ( $ , 77) = . 1 ^  2($ , 77) Vi

( 2—2 5 )



The strain displacement relationships Eq (2—8) may be written as:

ex

4
ey ■ -  I

i “ i

yxy

im ply {

d N f l 3 N , 2 u i

d x

d N , 2 * » i 3

a x

v i

d y

a N i ,  d N i 2

3 y

d N i 3 a ^  4 ^ x i

a y  a x a x a y • e y i -

4

> -  i £ ,  t  B * ] { « i >

(2-26)

(2-27)

in which ex, 6y are the normal strain components, y^y  is the shear strain 

component; [ Bj ] is the 3x4 strain matrix which contains the cartesian derivatives

of the shape functions at node (i).

Since the shape functions [ N ] are defined in terms of the local coordinates 

($ ,17) of the element, a transformation from local to global coordinates (x,y) is

required to obtain the [ B ] matrix in Eq (2—26). This is done through the well

known Jacobian matrix as follows:

oi\ j
c>X dl;

dNj  dS aNj  brj
5) x  a  77 a x

bNt aN;
b y  br)

or in matrix form:

bri_
a y

asbNi
aS b y

bNt
dx

dN,
a y  J

as _p_ bNi

brj as aNj
b y ay brj

[ J ]

aN,- 
"5 F

aNi
brj

(2-28)

where [ J  ] is the Jacobian matrix.

From the theory of elasticity, for isotropic material in a plane stress condition
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without initial strain and stress, the stress are related to the strains through the 

elasticity matrix [ D ] as follows:

, _  E
°y ( 1 - v 2 )

.T v vxy

o

w / 2

cy
Txy

(2-29)

Having defined [ B ] and [ D ], the element stiffness matrix can therefore be 

evaluated:

[ Ke ] -  j  [ B ]T [ D ] [ B ]
(v^)

dv (2-30)

where dv =  t dx dy, t being the thickness of the plane element.

Transformation from global to local coordinates systems results in 

dv =  det [ J  ] d£ dr]

Analytical integration of equation (2— 30) is possible. However, in this study some 

form of numerical integration is resorted to. Gaussian quadrature rules have been 

used because of their higher efficiency over other forms of quadrature. A 3x3 

gauss rule has been used for the numerical integration of Eq.(2—30), although 2x2 

and 4x4 are also available.

2 -  6-  3 STRUCTURAL IDEALIZATION :

The use of a two dimensional formulation for structural analysis of reinforced 

concrete shear walls requires appropriate pre— processing facilities due to the high 

amount of input data needed for the discretization of the continuum. Therefore, 

since most of the finite element calculations involve a great deal of time and effort 

to generate numerical data such as node numbers, nodal point coordinates and 

element connectivity, automatic mesh generation schemes are very useful and 

important to finite element applications, especially when a large number of



elements or very complex geometries are encountered.

Several techniques are available such as, the superelement mesh generation method 

first introduced by Zienkiewicz and Phillips 1971 and used by Durocher and Gasper 

1979 who included automatic bandwidth reduction. The method of superelement 

mesh generation, also known as isoparametric generation, is a method generating 

finite element meshes by dividing large superelements into smaller mesh elements. 

Another procedure known as a mapping technique is obtained by using two 

successive transformations. First, a conformal mapping regularizes the shape of the 

body ie. removing geometrical singularity. This transformed regular body is then 

subdivided into a number of zones and by using isoparametric transformation a 

mesh of the mapped body is generated.

In this study a straightforward mesh generation scheme has been developed for 

the automatic generation of nodal coordinates and automatic numbering of nodes 

and element connectivities based on a minimum amount of user supplied data. The 

procedure can discretize shearwalls with any configuration of the openings and with 

any refinement in critical regions. This automation reduces errors and spares the 

user a long tedious chore. The scheme is simpler than the techniques mentioned 

above but leads to less input data in the specific case of shearwalls. The wall is 

assumed as one unit and by introducing the openings re— ordering and renumbering 

is followed.



2 - 7  APPLICATIONS TO COUPLED SHEARWALLS

Without implying lack of generality in regard to the applicability of the finite 

element method, only typical coupled shearwalls are considered.

Various examples of shearwall problems have been analysed and these illustrate the 

simplicity, versatility and accuracy of this method as compared to the results of 

other available methods. Because the amount of input data required for the 

discretization of the shearwall is very high, an automatic mesh generation procedure 

has been developed using the linear cubic finite element. A plot of the generated 

mesh before loading and after deformation is used to check both the correctness of 

the generated mesh (node numbering and element connectivity) and gives an overall 

behaviour of the wall when deformed. A reasonably accurate analysis requires a 

fine division of the wall, particularly in the neighbourhood of openings and it is 

essential to save computer storage as much as possible. The number of unknown 

displacements to be handled will frequently be of the order of thousands. The band 

matrix solution procedure used in this study is essential and efficient if proper node 

numbering has been generated. This was achieved by numbering the nodes across 

the width of the wall rather than across the height in order to minimize the 

bandwidth in all the coupled shearwalls analysed in this study.

2 - 7 - 1  CONVERGENCE STUDY :

The finite element method is an approximate numerical tool, and as 

mentioned in section (2—6), approximations are introduced at the material, element 

and structural levels. The material is assumed elastic for a preliminary study and 

using a higher order element, it follows that to obtain reliable and accurate 

solutions the structural idealization is crucial as it is user defined. Therefore, two 

coupled shearwalls will be analysed using various finite element mesh refinements.
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The purpose is to perform a convergence study as the mesh is refined and to gain 

experience with the linear cubic element Fig (2—9), to assess how much refinement 

is needed to obtain reliable results for other shearwalls.

First, an eight story symmetrical coupled shearwall previously analysed by 

Almahaidi et al. 1975 with five different mesh configurations shown in Fig (2—10) 

is studied.

Nodes Elements Degrees o f

Mesh A 272 208 1088

Mesh B 336 256 1344

Mesh C 402 320 1608

Mesh D 498 384 1992

Mesh E 658 512 2632

The structure's flexibility is plotted against the number of degrees of freedom as 

shown in Fig (2—11). Assuming that the exact solution is approached asymptotically 

as the finite element mesh is refined and considering the bound characteristics of 

the finite element displacement approach, The flexibility predicted by this method 

is less than the exact one. In the absence of an exact solution to this problem the 

continuum and wide column—frame analogies as shown in Fig (2—11) reveal that 

the coarse meshes (A) and (B) need further refinement to obtain reliable results.

Second, a 21 story coupled shearwall analysed by Chan and Cheung 1979 with 

two appropriate discretizations Fig 2—12) has been analysed and good agreement is 

observed with mesh refinement, Fig (2—13).

An important behaviour to be noted from the overall displacement diagram Fig 

(2—13) would be the local distortions caused between the junctions of the lintel 

beams and the walls. This will depend on the stiffness of the lintel beams and will 

be studied in the next two sections.
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2 -  7 -  2 PARAMETRIC STUDY :

One of the factors most influencing the distribution of stress and deformation 

in a coupled shearwall system is the stiffness of the lintel beams. Consequently, the 

depth of lintel beams is varied, and its influence on the variation of the overall 

behaviour is studied.

The geometry and loadings of an example shear wall problem of a six story 

building is shown in Fig (2—14). The effect of the degree of coupling is studied 

by varying the depth of lintel beams, d =  50, 90 and 150 cm, corresponding to 

what may be considered as weak, moderate and stiff coupling respectively.

The finite element discretizations for the coupled shear wall with weak, moderate 

and stiff coupling along with the vertical stress distribution at intermediate height 

levels are shown in Fig (2—15), Fig (2—16) and Fig (2—17) respectively. It can 

be noticed that the stress distribution is not linear as would be predicted by the 

continuum shear connection and wide— column frame analogies. However, at the 

base of the walls, the wide— column frame analogy results in satisfactory prediction 

for engineering and design purposes as shown in Fig (2—18) to Fig (2—20). If one 

analyses the distribution of vertical stresses at the base of the wall, it can be 

concluded that with slender (d= 50cm) lintel beams Fig (2—18), the vertical stress 

at the base of the wall agrees well with simple bending theory. This weak coupling 

results in high bending moments in the walls and low axial forces in the walls as 

both walls tend to behave as separate units. On the other hand, with stiff coupling 

(d= 150cm) high axial forces in the walls are induced Fig (2—20).

The forces acting on the lintel beams can be calculated from either the stress or 

deformation of the beams. The bending moments at the ends of lintel beams are 

calculated from the slopes at the ends Fig (2—21) and the relative vertical 

dispacements at the ends Fig (2—22). For the rotations at the ends of lintel beams 

Fig (2—21) it can be noticed that the wide—column frame analogy predicts
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satisfactory results compared to the finite element method. On the other hand, the 

relative vertical displacements at the ends of the lintel beams reveal that the wide 

column frame analogy is not reliable in the case of moderate and stiff coupling for 

which a large scatter is observed. This is due mainly to local high distortions at 

the junction lintel beams— wall and to the assumption of rigid arms which is in a 

case of stiff coupling not valid.

When the lintel beams are slender (d=50cm), the bending moments in all six 

beams are almost the same Fig (2—23). As the depth of lintel beams increases 

(d= 150cm) the maximum bending moment occured in the lintel beam at level 2. 

The lateral deflection along the height of the wall for various degrees of coupling 

is shown in Fig (2—24). The stiffness of the lintel beams, therefore has 

considerable influence on the stress distribution and the deformation characteristics 

of the entire structure.

Due to space limitations and because the purpose of this investigation is the 

nonlinear behaviour of reinforced concrete coupled shear walls, other elastic 

analyses are not included, however a more realistic study will be performed in 

chapter 6 including the effects of cracking and nonlinear concrete and steel 

behaviour.

From this preliminary study the following conclusions may be drawn:

In the absence of an elastic solution to a particular shear wall structural action, 

the continuum shear connection and wide— column frame analogies can be used to 

assess if further refinement of a finite element mesh is needed in order to obtain 

reliable results. The solution predicted by the finite element method is more 

flexible with an appropriate selection of finite element mesh.

The continuum shear connection and wide— column frame analogies are considered 

sufficiently accurate for engineering design purposes to predict internal actions and 

deformations in coupled shearwalls.

The use of the wide column— frame analogy to predict the stress variation at
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intermediate levels or for the computation of bending moments at the ends of deep 

lintel beams is not reliable.
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CHAPTER 3

NUMERICAL MODELLING OF CONCRETE AND STEEL 

3 - 1  INTRODUCTION ;

Analysis of the complete response of structural systems of steel and concrete 

requires consideration of a number of nonlinear effects. The most important of 

these effects include tensile cracking and compressive crushing of concrete, 

nonlinear material properties, concrete steel bond, aggregate interlock and 

reinforcement dowel action. The finite element method offers a convenient and 

adaptable means whereby such complex systems may be analysed. The basic 

information required is the multidimensional stress— strain relations describing 

adequately the characteristics of reinforced concrete materials. These are called the 

constitutive laws and may be viewed as the simplified mathemetical descriptions of 

the behaviour of the constituent materials approximating closely the real behaviour. 

They are based on experimental data, and allow formulation for concrete relations 

between any applied multiaxial stress state and the strains or distortions resulting 

from it. Various approaches have been suggested and several proposals have been 

made for the description of an ultimate strength surface for concrete. A first 

important consideration is that the constitutive properties of concrete have not yet 

been universally defined and there is no generally accepted material law which fully 

describes the concrete behaviour in combined stress conditions, Buyukozturk et al. 

1985. In addition to the disagreement on the theory upon which the constitutive 

model is to be built, elasticity, plasticity or endochronic, a large scatter of results 

has been observed on past test studies on the response of concrete to multiaxial 

stress states. The scatter can be attributed to two principal factors: variations of 

the materials tested and variation in the test method and loading systems.

In the following, the mathematical modelling for each of the constituents, steel
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and concrete, are described separately.

3 -  2 MECHANICAL BEHAVIOUR OF CONCRETE :

The purpose of this section is to summarize some of the key facets of the 

experimental behaviour of plain concrete under uniaxial and biaxial states of stress. 

These experimental test data are essential in the development of constitutive models 

for concrete and provide data for the determination of the various parameters 

which appear in the mathematical model to be presented later in this chapter.

3 -  2 - 1  UNIAXIAL COMPRESSIVE STRESS- STRAIN RESPONSE :

Consideration of uniaxial stress— strain response of plain concrete under short 

term loading is a useful starting point for a discussion of more complex conditions. 

Typical curves for concrete subjected to monotonic uniaxial compressive stress 

versus axial, lateral and volumetric strains are shown in Fig (3—1). In Fig (3—2) 

different uniaxial stress— strain curves are given for concretes with various 

compressive strengths fc \  The development of microcracking is closely related to 

the characteristics of stress—strain relations, Hsu et al. 1963 and Chen and 

Yamaguchi 1985. The main experimental observations can be summarized as 

follows: (a) concrete has a nearly linear elastic behaviour up to about 30% of its 

maximum compressive strength fc \  Although some bond cracks at the 

mortar— coarse aggregate interfaces already exist, they are quite stable and have 

little tendency to propagate, (b) For stresses above 0.3 fc ', concrete begins to 

soften as further bond microcracks form, (c) Beyond 0.75 fc *, these microcracks 

propagate and extend through the cement mortar and the stress— strain curve bends 

sharply until it approaches the peak stress fc \  beyond which a crushing failure is 

observed at some ultimate strain in the range 0.003— 0.004 approximately, when the
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crack system eventually becomes unstable causing failure. The exact point of 

complete breakdown is highly variable and depends on the relative stiffness of the 

specimen and the testing system.(d) The shape of the stress— strain curve is similar 

for low, normal and high strength concretes, and all peak points are located close 

to a strain value of 0.002. (e) Beyond the peak point fc ' higher strength concrete 

exhibits a more sharply descending branch and behaves in a brittle manner.

Numerous mathematical expressions based on the above experimental data have 

been used to predict uniaxial compressive stress— strain response using curve— fitting 

techniques. An excellent and comprehensive summary of these efforts has been 

presented by Popovics 1970. Carreira and Chu 1985 proposed a complete 

stress— strain relationship of plain concrete in compression for both the ascending 

and descending branches of the stress—strain diagram. Wan 1988 proposes an 

equation to represent the uniaxial compressive stress— strain relation of concrete as 

a generalized form of Popovics 1970 and Saenz 1964. It consists of two 

parameters, to control the ascending and descending behaviour.

3 -  2 -  2 UNIAXIAL TENSILE STRESS- STRAIN RESPONSE :

The tensile strength of plain concrete, generally 5—10% of the compressive 

strength of concrete can be determined by several testing methods. These methods 

may be broadly classified into three types: direct, flexure and indirect as indicated 

in Fig (3—3). When tested under strain control using direct tensile tests in a stiff 

testing apparatus, the uniaxial stress— strain response of plain concrete is 

approximately linear up to about 80% of the peak stress and some softening is 

apparent thereafter, Fig (3—4). The drawbacks of the direct pull tests are the 

difficulties of holding the specimens so as to eliminate eccentricity of the line of 

action of the load, and the development of secondary stress concentration induced 

by the holding devices. Consequently, the direct tension tests are infrequently used,
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instead, flexure and indirect tests are more appropriate. Of all the indirect methods 

introduced in recent years, the splitting tests are the most common ones. An

apparaisal of the splitting tests on cylinders, widely used, has been given by Wright 

1955, and splitting tests on cubes has been described by Nilssons 1961. In the split 

cylinder test, a concrete cylinder is laid horizontally between the loading platens of 

a testing machine and compressed along the line of a diameter until the specimen 

splits along a vertical diameter plane as indicated in Fig (3—3). An elastic 

analytical study using finite elements for various splitting tests has been reported by 

Davies and Bose 1968, and a more refined treatment of this problem has been 

given by Chen and Chen 1976, Chen and Chang 1978. The tensile strength in 

flexure is known as the modulus of rupture and is obtained by testing a plain 

concrete beam under symmetrical two point loading applied at one third span

points.

The tensile strength of concrete evaluated by means of flexure tests conducted 

on plain concrete beams tends in general to be higher than the tensile strength of 

a split cylinder, which in turn tends to be higher than tensile strength obtained 

from a direct tension test Chen 1970.

From the above discussion, it can be appreciated that the effective tensile 

strength of concrete may be difficult to determine, despite its wide use as a

criterion for the onset of cracking and its importance in most constitutive models.

Balakrishnan and Murray 1988 found that the tensile strength of concrete influences 

the failure mode and failure load of shear critical beams. With the presence of 

reinforcing steel the prediction of stress levels to cause cracking and crack 

directions becomes considerably more uncertain.
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3 -  2 -  3 BIAXIAL BEHAVIOUR :

Biaxial stress states are typical of the structural action in many important 

classes of structures such as beams, panels, slabs and shells, and involve a range of 

admissible stress somewhat lower than triaxial ones. In modelling these structures, 

test results for concrete under biaxial loading are sufficient.

In recent years, a large amount of research has been done on the mechanical 

properties of concrete in biaxial states of stress, and have shown that under 

different combinations of biaxial loading, the strength and stress— strain response of 

concrete are somewhat different to those observed under uniaxial conditions. In 

contrast, the procedures used in design are based primarily on material properties 

obtained from uniaxial strength tests.

Most experimental investigations of the strength of concrete under biaxial 

states of stress, not yet incorporated into design procedures, generally agree with 

the shape of failure envelopes shown in Fig (3—5). Severe deviations in the region 

near equal biaxial compression stress state can be observed. These deviations are 

due mainly to factors such as testing machine characteristics and variations of the 

materials tested. Because no systematic study of the importance of these two factors 

could be found in the litterature, an international cooperative study, Gerstle et al. 

1980, was undertaken by main research laboratories active in multiaxial concrete 

testing. All participants used specimens of the same concrete cast and cured in one 

laboratory. The differences among tests methods are predominantly a function of 

the specimen boundary conditions as determined by different loading systems used: 

dry steel platens, lubricated steel platens, brush bearing platens and fluid cushion 

among others. It has been found, Gerstle et al. 1980, that the scatter of results in 

all test series disminished considerably with absence of constraints on the specimen 

boundaries. The boundary constraints inhibit transverse specimen deformations, and 

therefore result in erroneous material properties. Unconstrained specimen boundaries
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are necessary to obtain moduli for prediction response to general stress states.

In this numerical study the experimental findings and failure envelope of

Kupfer, Hisdorf and Rush 1969 have been used to simulate the behaviour of 

concrete. These tests were conducted on square thin concrete panels 20x20x5 cm 

subjected to inplane loading. The ratio of the stresses was held constant throughout 

loading (proportional loading). This appears to be more suitable to determine the 

biaxial strength of concrete over the entire range of biaxial stress combinations, as 

compared to previous experiments conducted on cylinders and cubic specimens, 

neither of which falls under the category of plane stress. To eliminate the effects 

of boundary restraints, brush bearing platens flexible enough to follow the concrete 

deformations without appreciable restraint were used. Fig (3— 6) illustrates the 

experimental failure strength envelope for three types of concrete subjected to

proportional biaxial loading. Three possible biaxial states are distinguished namely; 

biaxial compression, combined compression and tension, and biaxial tension. Under 

the conditions of biaxial compression, the ultimate compressive strength of concrete 

is greater than uniaxial compression due to confinement effects. A maximum 

strength increase of approximately 25% is achieved at stress ratio <t1/O'2= 0 .5 . This 

increase is reduced to about 15% at an equal biaxial compression state o 'i/o'2= 1 .0 .

Under the combination of tension and compression, concrete exhibits a 

noticeably reduced strength. The compressive strength decreases almost linearly as

the applied tensile stress is increased.

Under biaxial tension, concrete exhibits a nearly constant tensile strength 

which is almost the same as that of its uniaxial tensile strength.

The strength relations for three concretes under biaxial stress states are given by 

the interaction curves in Fig.(3—6), have been approximated by the following 

expressions in terms of principal stresses which are plotted in Fig.(3—6):



Compression— Compression:

(0- , /^ '+  a  2/fC' ) 2 +  Vytf c +  3-65 °V fc ' =  0 (3 -1 )

Compression— Tension:

<r2/ft =  1 +  0.8 <7,/fc ' ( 3 -2 )

Tension— Tension:

<r2 =  ft =  o.64 3y fc ' 2 (3 -3 )

3 - 3  CONSTITUTIVE MODELLING OF CONCRETE :

Constitutive laws for reinforced concrete are the simple analytical formulations 

to represent numerically the complicated stress— strain behaviour of concrete. A 

large number of numerical models and techniques for the analysis of reinforced 

concrete structures has been developed and the literature abounds with their 

implementation and application ASCE 1982, Chen 1982, CEB 1983, Bangash 1989. 

At present, most of the constitutive models can be classified into one of the 

following models, ASCE 1982.

(a) Elasticity based models (Linear/Nonlinear)

(b) Plasticity based models

(c) Plastic— Fracture type models.

(d) Endochronic models.

In the following, the various constitutive models above are described. The
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analytical model used in this study is then presented to simulate analytically the 

experimental behaviour of concrete under any combination of biaxial stress 

conditions.

3 - 3 - 1  ELASTICITY BASED MODELS (Linear/Nonlinear)

A recent state of the art report summary of finite element analysis of

reinforced concrete structures ASCE 1982 shows that, in spite of the general 

recognition of the nonlinear material behaviour of concrete, most analyses use a 

linear elasticity approach for modelling the material response in pre— and 

post— peak stress range. This may be attributed to the difficulties encountered in

assessing various parameters involved with complex material models and in their 

computer implementation. Significant realism in predictions can be achieved using a 

nonlinear stress— strain relationship. In general, two different approaches are 

employed in the formulation of nonlinear elasticity based stress—strain laws:

(a) Finite (or total) material behaviour characterization in variable secant moduli 

form, known as hyperelastic type of formulation.

(b) Incremental (or differential) material descriptions of the hypoelastic type using 

variable tangent moduli.

This means that the stress—strain relationships can be expressed as either:

{ <r } = [ D ] { e > ............  (3 -4 )

or

{ do- > =  [ D ] { de } ............ (3 -5 )

in the hyperelastic and hypoelastic formulations respectively.

Where [ D ] represents either the secant or tangential constitutive matrix; { cr } 

and { e } are the total stress and strain vectors; and { do  } and { de } are the



stress and strain increment vectors.

In the hyperelastic formulations, the current state of stress is assumed to be 

uniquely defined as a function of the current state of strain, that is the material 

response at any instant is a function only of the current state of stress and not of 

the load history. These models simulate the response of concrete sustaining 

monotonic or proportional loading with reasonable accuracy, but they fail to predict 

inelastic deformations when the material experiences unloading. One such approach 

is the nonlinear deformation model obtained by Kupfer and Gerstle 1973 through 

the decomposition of the stress and strain into a hydrostatic and deviatoric 

portions.Based on monotonic biaxial tests, closed form expressions for the secant 

shear modulus Gs and bulk modulus Kg were derived by curve fitting the 

experimental data. Kotsovos and Newman 1978, based on their own tests, 

developed a hyperelastic model in a similar approach to Kupfer and Gerstle 1973. 

Mathematical expressions were obtained for the variation of the bulk and shear 

moduli in the form of those obtained by Kupfer and Gerstle 1973, but included a 

correction function that takes into account volume changes that occur under 

deviatoric stress. Romstad et al. 1974 rather than utilizing continuous curves, 

defined a number of damage regions in which the material moduli are altered to 

match the softening due to increasing stresses. Within each region the modulus of 

elasticity and Poisson's ratio are kept constant.

In the hypoelastic formulation the material response at any instant is a 

function of the current state of strain, and of the stress path followed to reach 

that state. Due to their path dependant behaviour characteristic, incremental 

hypoelastic models provide a more realistic description of concrete behaviour under 

non— monotonic and non— proportional loading regimes than the hyperelastic models. 

Various special simplified forms of the hypoelastic formulation have been developed 

and used extensively in the finite element application to concrete structures. In the 

simplest approach of formulating such models, the constitutive relations are
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restricted to be incrementally isotropic, Bathe and Ramaswamy 1979, Gerstle 1981 

or orthotropic Darwin and Pecknold 1977 and Liu et al. 1972..

In this study a concrete model based on the orthotropic hyperelastic

formulation is used with the principal directions of orthotropy coinciding with the 

principal stress directions.

3 - 3 - 2  PLASTICITY BASED MODELS :

The theory of plasticity was initially developed for metals and has been used 

extensively to describe the behaviour of reinforced concrete structures. In general, 

models based on the theory of plasticity describe concrete as an elastic— perfectly 

plastic material or account for some hardening as an elasto— plastic hardening 

material.

The construction of the stress— strain matrix in elastoplasticity can be detailed 

by specifying a yield function, a flow rule (associated or non— associated) and a 

hardening rule (isotropic, kinematic or mixed). The yield condition specifies the 

state of multiaxial stress corresponding to the start of plastic flow. It is assumed 

that yielding occurs only if the stress { cr } satisfy the general yield criterion of 

the form:

F ( { (7 }, k ) = 0   (3 -6 )

where k is a hardening parameter.

During an infinitesimal increment of stress, changes of strain are assumed to be 

divisible into elastic recoverable and plastic irrecoverable components, thus:

{ de } = { dep } + { d fe } ...........  (3 -7 )

A flow rule is assumed which determines the direction of plastic strain increments
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{ d fp}  subsequent to yielding with a plastic potential function Q ( { a  }, k ) as 

follows:

{ dep } -  x
3Q

dcr
(3 -8 )

where X is a proportionality constant.

The elastic strain and stress increments are related by the elasticity matrix [ D ]

{ d *e > = [ D T 1 { } (3-9)

Substituting (3—9) and (3—8) into (3—7), the total incremental strains are written 

as:

{ de } - [ D ] - 1 { d c r }  + X
dQ

dcr
(3 -1 0 )

When plastic yield is occuring, the stresses are on the yield surface given by 

(3—6), differentiating this we can write the consistency condition as:

T
dF

dF

dcr .
{ d c r } - A X  = 0 (3 -11 )

in which we make the substitution:

dF 1
A = -  -----  dk —

dk X
(3 -1 2 )

Premultiplying both sides of Eq (3 -1 0 ) by { dF/dcr }T [ D ] and eliminating { 

dF/d<j { dcr } using Eq (3—11) we obtain the plastic multiplier X to be :

X =

dF

d<J
[ D ] {  d e  )

3F

dcr

T dQ ‘

[ D ] -----
. d(7 .

(3 -13 )



and substituting for X from (3—13) into (3—10) gives

[ D ]
3Q‘ dF'

.da. ,3o\
[ D ]

[ d<r ] -  [ D ] -
dF T 3Q'

A + — [ D ]
.da. .da.

or [ d a  ] =  [ D ep ] { d e  } (3 -1 4 )

where [ Dep ] is the incremental elasto— plastic constitutive matrix.

Although the assumptions regarding loading function and normality rule need further 

experimental confirmation, the appeal of this formulation to concrete is due to the 

fact that it extends to concrete a well established mathematical theory.

The theory of plasticity with an associated flow rule (F = Q ) has been used 

extensively in early studies to describe the behaviour of concrete. Cervenka and

Gerstle 1972 used Von Mises criterion to study reinforced concrete panels; Suidan 

and Shnobrish 1973 used the same criterion for beams; Hand et al. 1973 for plates 

and shells.

In the field of concrete research as related to the theory of plasticity, 

attempts have been made to alter some of the classical failure theories such as

Von Mises in order to overcome some disadvantages or otherwise improve their

agreement with the observed behaviour of concrete. New failure theories were

therefore developed with specific application to concrete such as the Buyukozturk 

1977 generalized Mohr Coulomb theory based on the biaxial experimental data of 

Kupfer et al 1969 and Liu et al 1972(a). However, the need for a non—associated 

flow rule (F ^ Q ), ie formulation of the plastic potential function Q, has been 

demonstrated by Vermeer and de Borst 1984. Therefore, the application of non— 

associated flow rule has been introduced by Han and Chen 1986, Hu and



Schnobrish 1989 which has succeeded in controling the major deviations observed in 

the volumetric strains using the associated flow rule, however much more 

computational effort is required.

3 -  3 -  3 PLASTIC- FRACTURING MODELS :

In a recent study Andenaes et al. 1977 on the post—fracture behaviour of 

concrete under biaxial compression has indicated that the normality flow rule used 

for plastic flow of concrete is not strictly observed in the case of fractured 

concrete. This has led to constitutive models based on the plastic— fracturing 

theory. In contrast to plastic phenomena characterized in terms of loading surfaces 

that depend on stresses, { a }, the fracturing phenomena are better described in 

terms of loading surfaces that depend on strains, { e }, rather than stresses, { a  } 

Thus, the plastic— fracturing theory requires two loading surfaces, Bazant and Kim 

1979 :

F ( { cr >, H ) =  0

$ ( { e }, H ') = 0 .............  (3 -15 )

where, H and h ', are some hardening and fracturing parameters,respectively. The

functions F and are chosen to depend only on the first and second invariants 

and take into account both plastic and fracturing deformations. In this theory the 

incremental stress— strain relations take the form :

{ da  > =  [ D ] { de }   (3 -1 6 )

where

[ D ] =  [ D ^ l ]  -  [ D P 1] -  [ D fr] ............  (3 -17 )

in which, [ Del ] is the elastic stiffness matrix, and [ D pi] and [ D f r ], introduce



the decrease of the stiffness [ D ] due to plastic strain increments and fracturing

stress decrements respectively. [ D ] is the concrete material stiffness, non

symmetric and generally not orthotropic.

The theory combines plastic strain increments and fracturing stress decrements, 

which reflect micro— cracking and accounts for internal friction, inelastic dilatancy 

due to microcracking, strain softening, degradation of elastic moduli, etc. The 

model requires six inelastic material parameters obtained by Bazant and Kim by 

computer analysis and fitting a large set of various types of test data for concrete 

as available in the literature. Inelastic analysis of reinforced concrete shear walls 

using the plastic— fracturing theory proposed by Bazant and Kim 1979 has been 

verified by Hiroshi and Setsuro 1985. Analytical predictions were in good agreement 

with experimental results, but under repeated reversal loading the analytical 

hysteresis loops were smaller than the experimental ones.

3 - 3 - 4  ENDOCHRONIC BASED MODELS :

All the models considered so far, elasticty, plasticity and plastic— fracturing are

incrementally linear. The endochronic based models are incrementally nonlinear and

the material behaviour is defined in terms of several internal states parameters. 

The central key in the endochronic theory is that the stress state is considered to 

be function of the strain rate and the strain history, defined with respect to an 

internal time measure, which is an internal state variable of the material. This 

intrinsic time is a non— decreasing scalar variable used to measure the extent of 

the irreversible damage of the internal structure of the concrete material when 

subjected to deformation histories. The most extensive developments along these 

lines for concrete, have been carried out by Bazant and Bhat 1976 who extended 

the theory, originally developed for metals by Valanis 1971, to concrete. This 

extension comprises several important nonlinear effects expressed analytically with



an extension set of functions which fit experimentally observed behaviour of plain 

concrete; inelastic volume dilatancy, strain softening range, strain rate effects, etc. 

Further refinements of the theory were devised by Bazant 1978 and Bazant and 

Shieh 1980. It should be mentioned, that this increase of scope is achieved at the 

expense of greater complexity and a large number of material parameters. This 

formulation with some adapatations was applied by Al— Manaseer 1983 to predict 

the nonlinear behaviour of beams. In general this type of formulation appears to 

have remarkable potential for special practical applications. However, further 

research is needed particularly in order to simplify and reduce the number of 

material constants without sacrifying accuracy.

3 - 4  CRACKED CONCRETE MODELS:

In contrast to the observed ductility of concrete under biaxial compression 

states, concrete is a highly brittle material in biaxial tension in which a cracking 

type of failure occurs in the early stages of loading long before either concrete or 

steel start yielding. Consequently, the formation of cracks is undoubtedly one of the 

most important nonlinear phenomena which govern the behaviour of concrete. 

Consequently, any numerical procedure which is used for the analysis of concrete 

structures should embody a sound numerical approach which models the formation, 

closing and re—opening of cracks, and post—cracking phenomena.

In the following the crack formation model along with the subsequent 

post— cracking phenonmena used in this study are described.

In the finite element analysis of concrete structures, three different approaches 

have been employed for crack modelling:

(1) Discrete cracking models.

(2) Smeared cracking models.

(3) Fracture cracking models.



Depending on the purpose of analysis a particular cracking model may be 

selected from these alternatives.

3— 4— 1 Discrete cracking models :

The discrete cracking model which is the earliest finite element model of 

reinforced concrete to include the effect of cracking, was introduced by Ngo and 

Scordelis 1967 when analysing beams with predefined located cracks. Nilson 1968 

modified this approach to allow the finite element model to generate the location 

of cracks. With this reperesentation adjacent elements are disconnected by 

separation of common nodal points when the average stress exceeds the tensile 

strength of concrete, Fig (3—7a). Further improvements were due to Al—Mahaidi 

1979 who refined the method of representing cracks by defining either two or four 

nodes at a single point tied together by stiff linkage elements until cracking occurs 

in one or two directions respectively, Fig (3—7b). The approach suffers from two 

drawbacks. First, it implies a continuous change in nodal connectivity, which does 

not fit the nature of the finite element method which works in terms of unknown 

displacements. Secondly, the crack is constrained to follow a predefined path along 

the element edges. The drawbacks are considered to be serious and attempts to 

eliminate them have been reported. Prominent among these are the introduction of 

graphics— aided algorithms of automatic mesh redefinition by Ingraffea and Saouma 

1985 and techniques which permit discrete cracks to extend through finite elements 

, Blauwendraad 1985, so that cracks are no longer forced to align with the original 

interelement boundaries. The lack of generality in possible crack direction and the 

continuously changing topology of the finite element mesh, seem to limit the scope 

of this concept to very special research applications.



3 - 4 - 2  Smeared cracking model :

In the smeared crack system, first introduced by Rashid 1968, the cracked

concrete is asumed to remain a continuum and implies an infinite number of 

parallel fissures across that part of the cracked finite element Fig (3—8). The 

formation of cracks is simulated more easily by representing cracked concrete as an 

orthotropic material and phenomena which act subsequent to cracking such as 

aggregate interlock, dowel action and tension stiffening can be appropriately

simulated. However, the smeared crack strategy has not escaped criticism, the

prime objection voiced against it be ■% that it would tend to spread crack

formation over the entire structure so that it would be incapable of predicting

major dominant shear cracks as local fracture. The arguments change when we 

consider distributed fracture. Examples are the diffuse crack patterns in large scale 

shear walls or panels due to the presence of densely distributed reinforcement. 

Such cases provide a true physical basis for smeared concepts, since the scale of

the representative continuum is very large compared to the crack spacing. With 

increased activity in concrete modelling by finite elements, questions were raised 

regarding the correctness of the simple concrete smeared crack models. The major 

point that was raised related to the dependance of the solution to the grid size 

used. In fact Bazant and Cedolin 1979 had expressed a concern that solutions using 

this technique would not converge with grid refinement if only a limiting tensile

strength criterion is used to estabilish crack formation. They recommended a

criterion based on the critical strain energy release rate. A modification of the 

strength based criterion, wherein strain softening is considered and its modulus is 

adjusted with respect to the element size, was found to yield mesh independent 

results, Rots et al. 1985. This led to the incorporation of the fracture mechanics 

concepts and significant strides have been made by several investigators.



Smeared crack concepts can be categorized into fixed and rotating smeared 

crack models. With a fixed concept, the crack direction is fixed during the entire 

computational process with double orthogonal cracks, Grayson and Stevens 1979, or 

non—orthogonal multi—directional cracks, De Borst and Nauta 1985. However, it 

has been demonstrated experimentally, Vecchio and Collins 1982, that crack 

directions may change throughout loading especially for panels not equally 

reinforced or for those panels with skew reinforcement. Research efforts have 

resulted in several constitutive relationships accounting for the variation of crack 

directions, Cope et al. 1980, Gupta and Akbar 1984,1985, Milford and Schnobrich 

1984, and Crisfield and Wills 1989. An excellent overview of these different crack 

concepts has been produced by Rots and Blauwendraad 1989.

3— 4— 3 Fracture mechanics :

The fracture mechanics model is an area which is being very actively studied 

in solving various types of cracking problems in metals and ceramics. In its current 

state of development, the practical applicability of fracture mechanics to reinforced 

concrete materials is still under active investigation by several researchers, Bazant 

and Cedolin 1980.

In this study the smeared crack concept is used to model the crack formation. 

It is assumed that the response of concrete under tensile stress is assumed to be 

linear elastic behaviour until the fracture surface is reached.

Both the maximum principal stress and maximum principal strain failure criteria 

have been commonly used to predict the stress or strain levels at which concrete 

tensile cracking occurs. Phillips 1972 considered both criteria and found that the 

maximum principal stress failure criterion gave the better correlation with test 

results and that the strain criterion can produce stiffer predictions. Consequently, in
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this study, the maximum principal tensile stress failure criterion is used to predict 

tensile crack development.

3 -  5 PRESENT MODEL FOR CONCRETE :

The use of the theory of plasticity with a yield function and its flow rule to 

derive the elesto— plastic constitutive relationship for concrete rests primarily on the 

assumption that concrete undergoes plastic yielding in a similar manner to that of 

ductile metals. The nonlinear stress— strain response of concrete is due mainly to 

cracking and bond failure between the aggregate and mortar. The cumulative effects 

of these brittle failures is the main factor causing nonlinearities. This behaviour is 

certainly different from that of ductile metals, the yielding of which is caused by 

actual plastic flow.

The endochronic theory and the plastic— fracturing theory are certainly more 

accurate but require several material parameters and extensive computational effort. 

The use of such models for analysis of large structural systems, such as coupled 

shear walls, is not recommended from an efficient computing effort viewpoint. 

However, an international competition putting into practice these different theories 

has been organised by Collins and Vecchio 1985. It has been found that there is 

no correlation between the complexity of the analytical models and the accuracy of 

the resulting predictions. Very simple models can produce predictions that are just 

as good or just as bad as those arrived at by very complex models, such as the 

endochronic theory.

The model used in this study is computationally simple but capable of 

simulating the dominant nonlinear behaviour of reinforced concrete. The 

assumptions adopted in the model are based on the experimental phenomenological 

observations and include the simulation of tensile cracking and post— cracking 

phenomena such as friction at crack interfaces, dowel action in bars crossing



cracks, tension stiffening due to bond, nonlinear multiaxial compression behaviour 

of concrete and yielding of reinforcement.

3 - 5 - 1  CONCRETE IN COMPRESSION :

Under biaxial compression state of stress, concrete can be either elastic, 

non— elastic or crushed. No experimental test is available to accurately define these 

states and therefore, assumptions have to be made.

In this study the experimental results of Kupfer et al. 1969 shown in Fig 

(3—6) are modified as shown in Fig (3—9). An initial elasticity—limit loading 

surface is assumed by scaling the ultimate failure envelope so that two zones, 

elastic and non—elastic, are defined, Fig (3—9). Concrete is assumed to be elastic 

isotropic if the state of stress { a  } is on or below the initial elasticity limit 

loading surface defined by:

(cr1/kfc '+  <T2/kfc ')2  -h o^/kfQ' 3.65 a 2/kfc ' < 0   (3—18)

where k <  1 is the scaling factor of the ultimate surface (k=0.3 is adopted). 

Concrete is assumed to be inelastic if the condition above is not satisfied, and an 

orthotropic biaxial model is used. Test data from experimentally loaded biaxial 

specimens appear to support the use of orthotropic material models. Support for 

this supposition is found in the experimental results of Kupfer et al. 1973 as 

reported by Link 1976. From comparison of Young moduli, E , and E 2 and 

Poisson's ratios v 1 and v 2> in the principal directions, Link concluded that there 

was noteworthy effects of stress related anisotropy in the compression— compression 

states for strains beyond 80% of the breaking strain. However, in 

compression— tension stress states he concluded that stress related anisotropy is 

significant. This finding has been confirmed by Maekawa and Okamura 1983, who
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have reported results of a carefully conducted and detailed study of biaxially loaded 

concrete in the compression— tension zones.

The material stiffness matrix that relates the strain vector { e } to any biaxial 

offending compressive stress { a }, is altered according to the state of the 

material, elastic, non— elastic or crushed as described below.

3— 5— 1— 1 Elastic concrete :

Prior to nonlinear behaviour or crushing, concrete is assumed to be elastic, 

homogeneous and isotropic material, and the stresses and strains relate in the 

following manner if Eq. (3—18) is fulfilled:

<Tx‘

( W 2 )

■ T  YV-

cy
Txy

(3 -19 )

This can be written in the principal stress directions as:

Ec e a =  — c —
i - v e t

(3 -20 )

which expresses the stress, a, in one of the principal directions considered, in 

terms of the corresponding strain e in the same direction, and the principal stress 

ratio a  taking into account the biaxial confinement effects. These parameters are 

defined as:

Ec The initial uniaxial modulus of elasticity, 

a  The stress ratio between the stress in the perpendicular 

direction to that in the direction considered. 

v Poisson's ratio of concrete.
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3— 5— 1— 2 Inelastic concrete :

Prior to crushing, nonlinear behaviour of concrete is assumed to occur if the 

state of stress is above the initial elasticity limit surface but below or on the 

ultimate failure envelope. This is expressed as:

(<71/kfc '+  cr2/kfc ')2  -+- ' +  3.65 (J2I ^ q > 0

( a 1/fc '+  <r2/fc ')2  + o"1 /fc * +  3.65 cr2/fc ' < 0  (3—21)

The concrete is then assumed to be orthotropic with the axes of orthotropy 

coinciding with the principal stress directions.

To account for the nonlinear stress—strain relationship of concrete in the principal 

stress directions, Eq. (3— 20) for elastic concrete is modified as proposed by Saenz 

1964 but accounting for biaxial compression effects in a similar manner to that

proposed by Liu et al. 1972b in the form:

A + B 6
a ....................................................................................................   (3 -22 )

( i — pos) (1 + C e + D e2)

in which A, B, C and D are parameters which depend upon the shape of the

stress— strain curve. Fundamentally, an expression describing the stress— strain 

relationship for concrete must fulfill the following conditions:

(a) At the initiation of loading, that is for no strain, the stress must be equal to 

zero and the initial slope defines the initial modulus of elasticity. This can be

expressed as follows:

c = 0 ;  dcr/de = Ec/(1— m) at e = 0 .(3 - 23)
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(b) When the concrete reaches its peak stress <Tp the strain at this point is Cp and 

the stress— strain curve becomes horizontal ie :

a  =  Op ; da/de = 0  at e = ep   (3—24)

Applying the boundary conditions (3— 23) and (3— 24) provide four conditions to 

define the unknown parameters A, B, C and D of Eq. (3— 22) which are then 

uniquely defined as:

A =  0 

B =  1

C =  Ec/[ (Tp( l -  pa) ] -  2/ €p 

D =  1/ ep 2

Re—introducing these constants to Eq. (3—22), then it becomes:

Ec *
(3 -25 )

( 1-pa) i +  <-

E e e
 2 ) (  ) + (  )

1 -  PQ! E, "P P

where Es is the secant modulus of elasticity at peak stress, ie Es =  <7p/ 6p. Using 

Eq. (3—25), the material stiffness in each principal direction is evaluated solely by 

the principal strain e in the same direction and the principal stress ratio a 

accounting for biaxial effects. If the principal axes of orthotropy are assumed to 

coincide with the principal stress directions, the incremental stress— strain

relationships take the form:
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d(71 ' E1 v 2 ^ 1  0 d e i

dcr 2
1

p , E2 E2 0 de 2
( 1 —^ 2)

■ d r i 2 - ■ 0 0 ( w ,  p 2) g ■ ■ d 7 i 2 -

(3 -26 )

where v , E 2 =  p 2E 1 and subscripts 1 and 2 denote the current principal stress 

axes. The material moduli E 1t E 2, G, ? , and v 2 are stress and strain dependant. 

In this study two modifications to Eq. (3— 26) are now made. First, a more 

convenient expression results if an equivalent Poisson's ratio, v, is defined as:

(3 -27)

Second, since no information is available on shear modulus G, the assumption is 

made that it is independant of axis orientation, Darwin and Pecknold 1977. This 

leads to the relation:

( ^ - p 2) G = 1 / 4  (E, + E2 -  2p ./E ,E 2 ) (3 -28)

Equation (3—26) then takes the form:

dcr, ‘ E, p j E,E2 0 ' de ,

dcr 2
1

pJ E , E 2 E2 0 d e 2
( w 2)

■ dT12' 0 0 1 / 4 ( E , +E2- 2 p J E ^ E2). • d7l 2'

(3 -29)

The determination of the load dependant properties E ,^ E 2, p occuring in Eq. 

(3—29), which completely characterize the stress—strain law, is now described.

The values of Young's moduli E 1 and E 2 for a given principal stress ratio are 

found as the slopes of the stress— strain curve given by Eq. (3— 25) which is valid 

up to the peak strain ep. Beyond this peak secant Young's moduli are used, ie:
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Ej -  da/de  e < ep

Ei "  0p /£  > 6 > ep   (3 -30 )

where eu is the ultimate strain. It may be noted that little is known regarding the 

shape of the descending branch of the stress— strain curve in biaxial states of 

stress. The descending branch is particularly dependant upon the rate of straining 

and the technique of loading, Tasuji et al. 1978,1979.

In several simple experimental tests reported in CEB 1983b, it has been 

observed that the ratios of lateral strain to principal compressive strain remains 

constant until approximately 80% of the maximum compressive stress, fc ', at which 

stress the apparent Poisson's ratio begins to increase (critical stress in Fig (3—1)).

This is confirmed by the experimental observations, Kupfer et al. 1969, which

require treating a variable Poisson's ratio, Fig (3.10). This is in agreement with 

most engineering materials as they become incompressible, v = 0.5, when

approaching failure. A secant value, v s , of poisson ratio may be more appropriate 

to use when the material dilates under compaction.

In this study a variable Poisson's ratio is computed in each principal direction. The

analytical model simulating the experimental behaviour Fig (3.10), and similar to 

that reported by Ottosen 1979, is an ellipse as shown in Fig (3.11):

vs = V f o r  r = 0- / fc ' < ra

. . . . ( 3 - 3 1 )
r -  ra 2

?s -  i*f  -  ( i>f -  *1 ) ,/ 1 -  (------------  ) f o r  r > r a
1 -  r a

in which = 0.2 is the initial Poisson's ratio, vf =  0.36 the secant value of 

Poisson's ratio at failure, ra = 0.8 and r is the ratio of the actual stress to the 

corresponding value of that stress at failure r = cr/fc \

Eqs. (3—30) and (3—31) fully define the incremental stress—strain relation (3—29).



In the event where the state of stress violates the ultimate failure envelope the

total stresses are brought back to the ultimate failure surface until the crushing

type of failure defined below occurs. The procedure is to scale the total stresses by 

a factor m <  1 so that the stresses m { cr } remain on the ultimate surface and 

the excessive stress ( 1 — m) { a } is released as residual stresses. This scaling,

ensuring the non— violation of the ultimate experimental strength envelope, is

chosen because the criterion of crushing is in the strain space, whereas in the 

stress space the violation of the failure envelope is not assumed as a condition of 

crushing.

3—5—1—3 Crushed concrete :

Crushing failure is the complete loss of strength of the material in all 

directions. The lack of available experimental data on concrete ultimate deformation 

capacity under multiaxial stress states has resulted in the appropriate strain criterion 

being adopted by simply converting the ultimate failure envelope described in the 

stress space directly into strains, thus:

( e i / eu + e2/ eu ) 2 + e i / eu + 3 -65 e2/ eu = 0   (3 -32 )

where e , and e 2 are the total principal strains and eu is an ultimate total strain 

extrapolated from uniaxial test results ( eu = 0.0035).

The crushing type of failure is therefore assumed to be a strain controlled 

phenomenon. When eu reaches the value specified as ultimate strain (0.0035), the 

material is assumed to lose all its characteristics of strength and rigidity in all 

directions. This is accomplished by simply setting the constitutive material stiffness 

matrix [ D ] to a null matrix at any integration point where crushing failure 

occurs and this will be maintained during all subsequent loading stages.
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3 - 5 - 2  CONCRETE IN TENSION ; 

3 - 5 - 2 - 1  Singly cracked concrete :

If the maximum principal tensile stress exceeds the tensile capacity of 

concrete, cracking will occur along a plane normal to the direction of the 

offending principal stress, Fig (3—8). Once a crack has formed, it is assumed that 

tensile stresses cannot be supported across the crack and the stiffness of the 

material is reduced significantly in this direction. However, material parallel to the 

crack is still capable of carrying stress prevailing parallel to the crack, and some 

shear force can be transferred along the rough surfaces of a crack. Accordingly the 

material stiffness of concrete now takes the form:

[ D ' lc r

l c o o

0 0 0

o o (SG

(3 -33 )

where the modulus of elasticity Ec is set to zero in the principal direction normal 

to the crack. Further a reduced shear modulus /3G <  G is assumed on the

cracked plane to account for aggregate interlock and dowel action. Since cracks

form at different angles, the material stiffness matrix [ D '] cr expressed in the

local coordinates system (n,t) is transformed to the global coordinates system (x,y). 

If the angle between the crack direction and the global x— axis is 0cr, then the

local material stiffness [ D ' ^  is transformed to the global coordinate system as:

[ D ]c r  -  [ T ]T [ D' ]c r  [ T ] (3 -34)

where the standard strain transformation matrix [ T ] is:
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[ T ] -

c 2 s 2 CS

s 2 c 2 - c s

-2CS 2CS c 2 -  s 2

S = sin 0cr and ^cr the

20cr = 2 7xy/(0x b1

(3 -3 5 )

however, the angle 0CT given by the equation above will lie between — 45° and 

+  45°. The actual crack direction is determined from a Mohr's circle.

3— 5 - 2 -  2 Doubly cracked concrete :

The presence of shear stresses along the current first crack at the moment of 

its formation will cause subsequent cracking and effectively produce changes in the 

crack orientation. In fact, retaining a reduced shear retention factor (3 = >  r xy?*0 

implies that the primary crack directions do not coincide with the principal plane 

and consequently the second cracks may not be necessarily orthogonal to the 

previous crack. This has been confirmed by experimental results of Vecchio and 

Collins 1982 where changes in crack orientations has been observed especially for 

panels not equally reinforced or for those panels with skew reinforcement.

In this study, the direction of the first crack 8cr is fixed in the analysis for 

further loading and a second crack is allowed to occur in the orthogonal direction 

when the stress state produces a principal stress which exceeds the tensile strength 

of concrete. Therefore, two smeared cracks in two orthogonal directions may 

develop in a previously singly cracked concrete, or previously uncracked concrete if 

both principal stresses are tensile and exceed the tensile strength of concrete. In 

this case, the material stiffness matrix is given by:
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o o 0

0 0 0 (3 -3 6 )

o 0 (3’G

where (3'= 0.5(3 is the shear retention factor for doubly cracked points, assumed to 

be half the shear retention for singly cracked gauss points.

3 - 5 - 3  TENSION STIFFENING :

As the concrete reaches its tensile strength, primary cracks form. At the

primary cracks, the concrete stress drops to zero and steel carries the full load as

indicated diagramatically in Fig (3—12). However, between cracks, load is shared 

between steel and concrete due mainly to bond. The ability of intact concrete 

between each pair of adjacent tensile cracks to assist tensile steel in carrying the 

total internal tensile load is called tension stiffening. The stiffening is the additional 

contribution of cracked concrete to the overall stiffness of the system. This partial 

tensile strength or tension stiffening will decrease gradually as more cracks develop 

and breakdown of the bond between steel and concrete occurs.

Early investigators assumed that crack formation was a brittle and

instantaneous process and tension stiffening was neglected, inducing large tensile

stresses released from the cracked zones. Usually, a large number of equilibrium 

iterations is needed to redistribute the sudden release of the tensile crack stresses. 

The use of tension stiffening is not only more realistic, but tensile forces released 

from cracked zones are gradually redistributed into the structure.

Currently, the tension stiffening can be modelled in two ways. In one case, 

the tension portion of the concrete stress— strain curve has been given a descending 

branch beyond the cracking point as introduced by Scanlon and Murray 1974 and 

Lin and Scordelis 1975. The second method is an increase in the steel stiffness to



account for concrete adhering to the bar, Gilbert and Warner 1978. Currently, the 

descending branch is the most commonly used and can take various forms, 

Fig(3—13), as adopted by various investigators, Cope and Edwards 1985.

Tension softening which many researchers are now investigating is different than 

tension stiffening even if it manifests itself as a softening phenomenon. Tension 

softening is a local material softening observed during strain controlled experiments 

and is a property of plain concrete. Tension stiffening is a global property of 

reinforced concrete. It is a consequence of the presence of steel within concrete 

and the fact that average material properties are used over a finite domain to

estabilish the stiffness characteristics of that domain. The tension softening of 

concrete and the tension stiffening of intact concrete between cracks have been

superimposed by Balakrishnan and Murray 1988a to obtain an average homogenized 

tensile stress— strain relationship.

A model similar to the one proposed by Cope et al. 1980 and Al—manaseer and 

Phillips 1987 is used in this study. The model Fig (3—13b) assumes that:

«2 f t '  ( « , -  - T “ ) ecr
<r -    f o r  a,  ecr  > e > ecr

“ i " 1
  (3 -36 )

<7 = 0 f o r  e  ̂ a ,  ecr

where ft ' is the tensile strength of concrete, ecr the cracking strain, e, a, strain

and stress normal to the crack direction, and ot2 are quasi—material model 

constants. In this model, the initial crack opening is accompanied by a sudden 

partial release of the stress components normal to the crack, after which, stress is 

released linearly with increasing tensile strain, until strain e =  oq ecr reached, 

at which point it is assumed that total bond failure has occured and there can be



no tensile stress normal to the crack.

Different values of a ,  have been used in the literature; Lin and Scordelis 1975 

adopted a value of about 6, Gilbert and Warner 1978 used 10 while Cope et al. 

1980 set a 1 <cr to 1.5 eu which is equivalent to a ,  =  20, eu being the

compressive crushing strain. There is, however little experimental evidence from

which definitive values of a ,  can be determined. The precise properties required to 

accurately simulate tension stiffening are dependant upon crack spacing,

reinforcement ratios and interface bond transfer. The state of the art is deficient in 

determining these properties in a definite manner, Balakrishnan and Murray 1988. 

It should be noted that because the model contains continuity of displacements 

between concrete and reinforcing steel, i.e, full bond is assumed and hence the 

introduction of tension stiffening will cause the steel stresses to be underestimated.

3 - 5 - 4  SHEAR ACROSS CRACKS AND SHEAR RETENTION FACTOR :

Aggregate interlock, Fig (3.14a), and dowel action,Fig (3.14b), are the main 

mechanisms of load transfer along reinforced concrete crack interfaces, Vintzeleou

et al. 1986 and Soroushian et al. 1988. The roughness of the crack surface leads

to aggregate interlock. Dowel action occurs in steel bars crossing cracks as they

tend to counteract the crack width increasing during sliding shear movement, 

Johnston and Zia 1971.

It is well known that shear stresses transferred across interfaces in concrete, such 

as crack interfaces, have a significant influence on the behaviour of concrete

structures, and many investigations on this subject have been carried out, Hofbeck

et al. 1969, Dulaczka 1972, Paulay and Loeber 1974 and Millard and Johnson

1985. Experimental results have shown that aggregate interlock resists more shear 

than dowel action, because large amounts of slip are required to develop significant 

dowel action.The mechanism of shear transfer has gradually become clear from
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many experimental studies. Based on those experimental studies, various analytical 

models of shear transfer have been developed, Fardis and Buyukozturk 1979. The 

final objective of these models seems to determine a constitutive equation which 

can be implemented in a structural analysis computer program.

To account for shear transfer across the cracks in finite element numerical 

analysis, the shear retention factor, (3 , was first introduced by Phillips 1972, 

Suidan and Shnobrish 1973, Hand et al. 1973 and Yuguzugullu and Schnobrish 

1973. This parameter is defined as an assumed numerical factor 0 < (3 < 1 to 

account for the reduction in shear modulus after the development of a crack. 

Values greater than zero were found necessary to prevent numerical difficulties. 

Currently, two main approaches are the most commonly used; the constant shear 

retention factor method, where (3 is chosen rather arbitrarily and kept constant, 

Phillips and Zienkiewicz 1972, Suidan and Shnobrish 1973, Hand et al. 1973, and 

the variable shear retention factor, where (3 is assumed to vary as a function of 

the strain normal to the crack or as a function of the average crack width Cedolin 

and Deipoli 1977; Al Mahaidi 1979; Agrawal et al. 1981; Cope and Rao 1983; 

Damjanic 1985 and Cervera et al. 1987, see Fig.(3.15). In reality aggregate shape 

and size, reinforcement ratio and bar size also influence the shear stiffness. 

Considering various structures, very little influence on the failure loads was found 

by Hand et al. 1973 and by Lin and Scordelis 1975 when /3 was varied between 

0.2—1.0 and 0—1.0, respectively. Only a minor influence on deflections and 

cracking was observed by Yuguzugulu and Shnobrish 1973 when /3 varies between 

0—1.0. On the other hand, Cedolin and Deipoli 1977, analysing a beam failing in 

shear, observed an extreme sensitivity of the (3 values on the calculated failure 

loads. Recently Perdikaris and White 1985 have presented an engineering model for 

shear transfer based on an extensive experimental study. The measured effective 

transfer shear modulus in the panels subjected to biaxial tension and monotonic 

shear remained approximately constant at about 0.05—0.07G ((3= 0.05— 0.07). It



appears that the shear retention factor, 0, is subject to much dispute. In this 

study, a first simplified approach involves the assumption that the shear stiffness 

depends only on the crack opening which is determined by the external forces 

which cause cracking. In connection with a smeared crack representation the 

fictitious strain normal to the crack , representing the crack width, is used to 

compute the shear stiffness. Therefore a reduced shear modulus 0G is a function 

of the maximum tensile strain ever reached normal to the crack, which is shown 

in Fig (3— 15c) and defined by

( 13, - 182) e
0 ------------------ ( 0 3------------- ) + 0 2 f o r  0 3 ecr  >e > ecr

d8s-  1) ec r   (3 -37 )

. 0 - 0 2 fo r  e > 0 3ec r

here 0 1, 0 2 and 0 3 are quasi—material model constants. When 0 ,is  set equal to 

0 2, the model reduces to the constant shear retention factor method.
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3 r 6  CONSTITUTIVE MODELLING OF STF.FT BARS :

In contrast to concrete behaviour, the behaviour of reinforcing steel bars is 

comparatively well understood, if not completely, at least under mono tonic loading. 

As steel reinforcement bars are comparatively thin, they are assumed capable of 

transmitting axial loads only along their direction.

The constitutive model used in this study is based on experimental test results. 

Typical stress— strain curves for steel bars used in reinforced concrete construction 

were obtained from steel bars loaded monotonically in tension. The curves exhibit 

an initial elastic portion, a yield plateau at which the strain increases with little or 

no increase in stress, a strain hardening range in which strss again increases with 

strain, and finally a range in which the stress drops off until fracture occurs. 

Yielding is accompanied by a slight abrupt decrease in stress and the stress— strain 

diagram has the shape appearing in Fig (3—16). The stresses are referred to as 

the upper and lower yield strengths. The lower yield strength is usually considered 

to be the true characteristic of the material and is referred to simply as the yield 

strength.

The length of the yield plateau is generally a function of the strength of the 

steel. High strength, high carbon steels have a much shorter yield plateau than 

lower strength, low carbon steel. In addition, high strength steels have a smaller 

ductility before fracture than low strength steel.

In finite element analysis, it is necessary to idealize the experimental shape of 

the stress—strain curve. Fig (3—17) shows four different idealizations in common 

use for reinforcing steel behaviour. To be used it is necessary to determine 

experimentally, the stress and the corresponding strain at the onset of yield, the 

elastic modulus as well as the hardening modulus, and the ultimate strain before 

fracture.
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In the present study, the three first idealizations of Fig (3—17) are 

incorporated in the finite element program simulating the behaviour of reinforcing 

steel, these are secant uniaxial stress— strain models, identical in tension and 

compression :

(a) Elastic—perfectly plastic model Fig (3.17a):

0 < «i < €y = >  Ei = Es

> ei > ey =  >  ^ i  =  Es €y  ̂ei ........... (3— 38)

Ci ^ ^  Ej 0

(b) Bilinear model Fig (3.17b):

o < 6i ^ Cy =  > Ei = E s

eu ^ ei ^ £y =  > E i = E s ey/ei + H ( 1 -  6y/€i ) ..... ( 3 -  39)

<4 > eu =  > Ei = 0

(c) Trilinear model Fig (3.17c):

o < Ci < 6y = > E i = E s

€ 0 ^ <4 ey = > E i = E s e/  ei ...(3 -4 0 )

eu ^ ei > eu = > E i = E s €y/ €[ + H ( 1 — € 0/ e i  )

ei > eu = > Ei = 0

The elastic— perfectly plastic model is quite adequate for mild low yield strength 

steel having large yield plateau. On the other hand, for high yield steel, the strain 

hardening effect may be important in absence of the yield plateau, in which case 

the bilinear model is more suitable.
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3 - 7  FINITE ELEMENT REPRESENTATION OF STEEL BARS :

The modelling of reinforcing steel for finite element analysis of reinforced 

concrete structures has been attempted at least by one of the following three

alternative representations

(a) Discrete representation.

(b) Embedded representation.

(c) Smeared representation.

3—7—1 Discrete: In a discrete representation of the reinforcement the actual bars

are replaced by one dimensional finite elements Fig (3.18c). The reinforcing bars 

may be considered to be pin connected one dimensional members directly attached

to the nodes of concrete, Cedolin et al. 1977, Grayson and Stevens 1979.

Alternatively, beam elements capable of resisting axial forces, shear and bending, 

may be used. The use of beam elements, with three degrees of freedom per node, 

to represent steel depends on the choice of concrete element and may be suitable 

and necessary in the case of heavy bars for which bending has a significant effect. 

In either case, linkage elements can be used to represent the steel—concrete 

interaction accounting for possible relative displacement of the reinforcement relative 

to the surrounding concrete.

3—7—2 Embedded: For an embedded representation, Fig (3.18b), a steel bar is

considered to be an axial member built into the concrete element so that its 

displacements are consistent with those of the element, implying perfect bond to be 

assumed. This representation introduced by Phillips 1973 and Phillips and 

Zienkiewicz 1976, has been widely used in connection with higher order 

isoparametric elements.
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Balakrishnan and Murray 1987 presented an embedded formulation with bond— slip 

effects, but extra degrees of freedom in the global stiffness matrix associated with 

slip between concrete and steel increase the computational cost.

Early embedded reinforcement models, when applied to problems with curved or 

draped reinforcement impose significant constraints on the selection of the overall 

mesh, due to the fact that the reinforcement must be aligned with one of the local 

isoparametric element coordinate axes. More recently, embedded representations that 

allow a generally oriented and curved embedded reinforcement have been developed 

Chang et al. 1987, Elwi and Hrudey 1989 and Phillips and Wu 1990. All wood and 

Bajarwan 1989 described generally orientated bars with respect to concrete elements 

including the effects of bond— slip and avoided any additional increase in the 

number of equations to be solved using an iterative procedure. Phillips and Wu 

1990 presented an orientated embedded formulation with bond— slip in a similar 

approach to Balakrishnan and Murray 1987. However, the extra degrees of freedom 

associated with bond— slip are condensed out so that there is no increase in the 

global stiffness matrix.

With these formulations, the geometry of the finite element mesh can be 

constructed independently of the reinforcement layout. Every bar can be modelled 

in its correct position and bond— slip between reinforcement and concrete dealt 

with.

3—7—3 Smeared: For a smeared or distributed representation, Fig (18—a), the

steel is assumed to be distributed over the concrete element. The smeared steel is 

assumed to have unidirectional stiffness corresponding to the direction of its 

physical layout which can have any particular orientation angle. Again perfect bond 

must be assumed. Generally, in a shearwall a large number of reinforcing bars are 

placed. Due to this feature, it is rather difficult to model each reinforcing bar 

individually and to represent bond by link elements. Consequently, in many cases,



the behaviour of a shearwall is studied using a distributed representation of the 

reinforcement.

In the present study, the smeared approach for representing steel has been 

adopted, due primarily to heavy reinforcement for which an embedded or discrete 

models requires not only a large machine computational effort, but input data for 

individual bars which is not practical. In addition, the use of discrete bar models 

dictates the concrete mesh leading very slender (high aspect ratio) concrete 

elements if the bar spacing is close. Nevertheless, smeared steel representations 

have been successfully applied to study various structures; beams; Frantzeskakis et 

al. 1989, slabs , panels; Agrawal et al. 1981, shells; Akram—Younis 1988 and 

shear walls; Santha kumar 1979.

In the present smeared approach used in this study, and referring to Fig(3-18), the 

stress— strain relations for steel reinforcement in its local directions is:

O’x '
r 1 i

ex

■ - [ V  ] 1
ey ..........................(3 -41 )

■ r x y  ■ T'xy’ J

>s ] is the elasticity matrix of steel and is given by:

Px Es 0 0

V ] - 0 P y ' ES 0 .....................  (3 -42 )

0 0 0

in which px ', py' are the steel percentages in the local directions x ', y' 

respectively, Es being the instantaneous modulus of elasticity of steel as updated 

using the constitutive model presented in section (3—6). With the steel disposed at



an angle 0S measured counterclockwise from the x— axis, the local steel stiffness

matrix is transformed to the global cartesian space (Oxy) from the local one

(Ox'y') using the standard strain transformation matrix, thus:

[ Ds ] =  [ T £ ]t  [ Ds ' ]  [ T f ] .............  (3 -4 3 )

where, [ T e ] is the same standard transformation matrix of Eq(3-35) used for

cracks, but with c =  cos(0s ), s = sin(0s) and 0S being the steel angle.

3 - 8  CONCRETE STEEL INTERACTION :

The load carrying behaviour of reinforced concrete is influenced by the 

interaction between plain concrete and the reinforcement. Stress transfer between 

these two materials in the longitudinal direction of the bars is called bond. The 

mechanism of bond can be conceived as being comprised of three components: 

Chemical adhesion, Friction and Mechanical interlock between steel and concrete. 

The effect of bond becomes evident when cracking of concrete occurs. After 

cracking, the tensile stresses normal to the crack initially transmitted by concrete, 

are to a large extent transferred from concrete to reinforcement by bond 

mechanisms.

If bond slip is to be taken into account, special interface elements must be 

used for the connection of the reinforcement elements to the concrete elements, 

three types of bond elements which have been developed will be described briefly 

below.

The simplest type of these elements is the bond— link element developed by Ngo 

and Scordelis 1967. The linkage element has no physical dimensions. It connects 

two nodes with identical coordinates and can be conceptually thought of as two 

orthogonal springs. A nonlinear bond— slip relationship, obtained from pull out



tests, is assigned to the spring parallel to the bar, and a very high stiffness is 

given to the spring perpendicular to the bar to prevent separation between the bar 

and the concrete^ Fig ('^i-19 8 ) .

A second way of modelling bond in finite element calculations is through the 

employment of contact elements developed by Schaffer 1975. It connects the nodes 

of a steel element with the nodes of an adjacent concrete element. The contact 

element has a finite dimension and double nodes, the number of which is such 

that the order of the contact element should be compatible with the order of the 

concrete and reinforcement elements, •

A third group of bond elements is called bond zone elements differs significantly 

from the two type of elements desribed previously. This element was developed by 

De Groot et al. 1981 who made a special approach by combining reinforcement 

steel and adjacent concrete into a so— called bond zone element with finite 

thickness. The element stiffness matrix for the bond zone element is described 

comprehensively by De Groot et al. 1981. A good review of these models has 

been given by Keuser and Melhorn 1987,

The use of bond elements involves additional effort and is normally used to analyse 

detail problems such as corbels and end anchorage zones. For the entire structure, 

complete compatibility is usually assumed, and the effect of bond can be modelled 

in an indirect way by tension stiffening.

As mentioned in (3—7—3), using a smeared approach representation of steel 

implies perfect bond between reinforcement and concrete. Assuming a perfect bond 

the composite material stiffness is

[ D ] = [ Dc ] +  [ Ds ]

The composite material stiffness matrix is used in Eq. (2— 30) to compute the 

element stiffness of a reinforced concrete element. For embedded and discrete 

formulations the composite stiffness is performed separately.
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CHAPTER 4

SOLUTION TECHNIQUES FOR NONLINEAR PROBLEMS

4 - 1  INTRODUCTION :

For linear elastic problems the set of equilibrium equations is linear and can 

be solved by efficient direct equation solvers using Gauss elimination, Cholesky,

frontal methods, or some iterative methods like Gauss— Seidel or Jordan methods.

However, concrete is not an elastic material and reinforced concrete structures

do not behave linearly even at low load levels due primarily to early cracking. As

a consequence, in many cases including coupled shear— walls, linear elastic analysis 

leads to results which are far from the real behaviour of the structure and can be 

on the unsafe side. In fact an ultimate limit state analysis based on linear elastic 

structural behaviour is a conventional (but apparently contradictory) procedure, 

while acting forces are computed on the basis of linear constitutive relationships, 

the nonlinear nature of these relationships are considered in computing design 

ultimate resisting moments.

In general, most problems in solid mechanics are nonlinear and therefore,

require nonlinear analysis if realistic results are to be obtained. In the displacement 

method of finite element, nonlinearities occur in three different forms:

(a) Material nonlinearity.

(b) Geometric nonlinearity.

(c) Material and Geometric nonlinearity.

Material nonlinearity encompasses problems in which stress— strain relations are 

not linear. For reinforced concrete they can vary from short term nonlinear



relationships such as yielding of steel and concrete, cracking..etc, to time dependant 

effects such as creep and shrinkage.

Although linear stress— strain equations are assumed to hold in the second 

category, problems involving geometric nonlinearity arise from both nonlinear

strain— displacement relations, and finite changes in geometry. Equilibrium equations

based on the original geometry are no longer valid due to large displacements and

need to be modified to take into account the new geometry. Also, higher order 

derivatives terms must be included in the strain—displacement relations Eq (2—8).

The third and most general category of nonlinear problems involves nonlinear 

material constitutive behaviour as well as geometric nonlinearity involving large

strains and displacements.

In this investigation only material nonlinearity caused by short term nonlinear 

behaviour of concrete and steel is considered. These include yielding or crushing of 

concrete under high compressive stresses, tensile cracking, aggregate interlock, dowel 

action, yielding of steel,..etc. The mathematical model and the constitutive laws

defining the stress— strain relations for both steel and concrete have been presented 

in Chapter (3). In this chapter the basic formulation of the nonlinear problem and 

the numerical techniques used in this study to solve it are given.

4 - 2  BASIC FORMULATION OF THE PROBLEM :

For problems where only the material behaviour is nonlinear the relationship

between stress and strain is assumed to be of the form :

F ( a , e ) = 0 ......... (4 -1 )

Finite element discretization eventually results in a set of simultaneous expressions 

expressed by:
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[ Ks (cr, e) ] { 5 > = { F }  (4 -2 )

in which the external nodal forces { F } are related to the nodal degrees of 

freedom { 5 } through the structural stiffness [ Kg ], which in turn, is a function 

of the material nonlinearities for a given state of stress.

Equations (4— 2) are initially formed at the element level, so that before 

solution of Eq (4— 2) can proceed, the element stiffness relations are added into 

the global structural system through appropriate assembly of element stiffnesses and 

load vector. An advantage of finite element analysis is that the stiffness matrix of

the element assemblage is not only symmetric and positive definite but is also

banded. Taking advantage of the banded symmetric nature of the global structural 

stiffness matrix of the sysytem [ Ks ], it is necessary to store only the symmetric 

half— bandwidth of the stiffness matrix minimizing considerably the cost of analysis 

and storage requirements. In fact, this leads to high speed access to stored data 

and back— up storage is avoided, while operations necessary for the equation 

solution are performed only on the nonzero coefficients clustered around the 

diagonal of the stiffness matrix. However this banded property depends on the 

nodal point numbering of the finite element mesh, and care must be taken to

obtain an effective nodal point numbering. There are different schemes to store the 

semi— band stiffness coefficients. These may be stored in a matrix form or as a 

one dimensional array or skyline.

The need to solve large systems of equations has led to two well estabilished 

approaches, the banded and frontal methods. The frontal method was developed 

to accommodate large matrices with relatively small core requirements on medium 

size computers, whereas banded solution methods rely mainly on the availability of 

large size computers. The first approach makes use of large storage disks and can 

be said to be I/O (input/output) intensive. The second approach makes use of a
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fast CPU to work within a large core or more likely a large virtual memory, and 

can be said to be CPU intensive. It should be noted that the performance of

frontal procedures is highly dependant upon the ordering of elements to minimize 

the wavefront. This is contrary to bandwidth solvers where ordering of nodes is 

crucial to obtaining the smallest possible bandwidth. For structural problems of 

simple regular geometry efficient numbering of elements or nodes is straightforward, 

whereas for complex geometries, algorithms have been developed to reduce the

bandwidth, Collins 1973 and Puttonen 1983 or the wavefront, Razzaque 1980 and 

Pina 1981.

The fundamental feature of the frontal or wavefront method is that the entire 

stiffness matrix is never formed but the assembly process alternates with the

solution. The frontal algorithm requires little main storage but demands appreciable

book— keeping and data transfers to and from disk storage as needed. Now that 

virtual operating systems are widespread and large enough, there is an argument 

that all this complicated programming is not really necessary. The suitability of the 

wavefront scheme over other procedures depends on the problem size and also on 

the system hardware. For very large problems or when using a hardware with little 

main storage such as PC computers, the frontal procedure is certainly an efficient 

alternative.

In this study, the global stiffness matrix is stored in a semiband matrix form, 

and Choleski decomposition is used to solve the nonlinear structural equilibrium 

equations (4—2) which are restated as:

[ L ] [ U ] { 5 > - { F >   ( 4 - 3 )

A condition for the nonlinear solution of Eq (4— 3) to be reliable and accurate is 

Unit the basic laws of continuum mechanics must be obeyed, ie;

(a) equilibrium, (b) compatibility and (c) the constitutive relations of the material.



Displacement compatibility is automatically satisfied in the displacement finite 

element technique. Therefore it becomes only necessary to enforce that the 

nonlinear constitutive relations of steel and concrete are correctly satisfied whilst at 

the same time preserving equilibrium of the structure. The non—violation of the 

constitutive laws of the materials can be satisfied using the mathematical model 

presented in Chapter (3) simulating the observed experimental behaviour of 

reinforced concrete. For equilibrium conditions, due to material degradation 

(cracking and crushing) and consequently the release of residual stresses that the 

material cannot support the equilibrium equations (4— 2) are not satisfied, the lack 

of equilibrium would give rise to residual forces { $  } expressed through:

external applied forces { F } and the developed internal forces { Fjnt

In the following sections the numerical techniques that attempt to meet the 

equilibrium requirements are presented.

B ]T {  a }  dv (4 -4 )

in which the residual forces { ^  } result from the lack of equilibrium between the



4— 3 NUMERICAL TECHNIQUES FOR NONLINEAR ANALYSIS

In recent years, significant activities have been undertaken to improve the 

efficiency, stability and range of applications of solution schemes in handling 

nonlinear finite element problems. For these problems, there is no general method 

of solution and only some of the widely used methods will be discussed here. 

Mondkar et al. 1978, Bergan et al. 1978, Crisfield 1980, 1982 and Gadala et al. 

1984 provide more comprehensive information on different solution algorithms.

The commonly used solution methods for nonlinear problems may be broadly 

classed into the following categories:

(a) Incremental methods (step— wise)

(b) Iterative methods (Newton—Raphson)

(c) Incremental— Iterative procedures (Mixed)

(d) Accelerated methods.

(e) Arc— length methods.

A crucial factor in the development of finite element computer programs for 

nonlinear analysis is the proper selection of solution algorithms. As opposed to 

linear problems, it is difficult to develop one single method of general validity that 

can be used in a routine manner. Some of the solution procedures mentioned 

above are either suitable for certain classes of nonlinear problems, or certain 

requirements must be satisfied to ensure convergence to the correct solution. For 

these reasons, a computer program for nonlinear analysis should possess several 

alternative algorithms for the solution of nonlinear systems at user will. This has 

been adopted in this study, and in the following sections the numerical procedure 

that has been implemented in the computer program and the other techniques 

mentioned above are now described for completeness.



4 - 3 - 1  INCREMENTAL METHOD:

The incremental solution is carried out by applying the total external loading

as a sequence of sufficiently small increments so that the structure can be assumed

to respond linearly within each increment. In this way the incremental or 

step— wise procedure approximates a nonlinear problem as a series of linear

problems. The structural response due to each load increment is obtained as an 

increment of displacements. These displacement increments are accumulated to 

assess the overall response at any stage of the loading, and this is repeated until 

the total load has been reached.

At each load step the stiffness matrix is recomputed tracing the damage due to 

fracture, crushing or cracking, and the nonlinearities induced in the constituent 

materials.

The incremental procedure is schematically indicated in Fig (4—1) for a one

dimensional situation. The recurrence relation at any general i^1 load step may be

given in the following algorithm:

[ Ks J { A5 }i =  { AF >j .........  ( 4 - 5 )

{ 5 }i =  (  5 > i- 1 + i  A5 }i

{ F >i = { F }i_ , +  { AF }i

where { A 5 }i and { AF }j are the displacement and load increments respectively, 

[ Kg J  is the tangent stiffness matrix of the structure at the position defined by 

the total accumulated displacements and loads respectively. The incremental 

displacement vector { A 5 }i is obtained by solving the set of simultaneous 

equations (4—5), and the corresponding increments in strains and stresses are then 

determined.

The computation involves one solution per load increment and since no iteration is
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made to restore equilibrium and account for force redistribution, the scheme is

characterized by the continuous accumulation of errors inducing the drifting of the 

solution from the true equilibrium path unless very fine force increments sizes are 

used which can be computationally inefficient.

4 - 3 - 2  ITERATIVE PROCEDURES :

With an iterative solution scheme, the total load is applied in one increment 

and the solution is obtained by successive iterations. At each iteration stresses are

evaluated according to the material constitutive laws. These stresses are then used

to compute the equivalent internal nodal forces which may not be in equilibrium

with the externally applied loads. The residual forces between the external and

internal forces are in fact a portion of the total applied load that cannot be

resisted by the structure due to its nonlinear behaviour. These unbalanced nodal 

forces are calculated and reapplied over the structure by the next iteration giving 

additional corrective displacements, and hence new stresses, which result in a new 

set of internal equivalent nodal forces. This process is repeated until equilibrium 

between the external applied load and the internal forces is approximated to some 

acceptable degree.

4 -  3 -  3 INCREMENTAL- ITERATIVE PROCEDURE :

The main disadvantage of the incremental procedure is the lack of equilibrium 

and the indeterminate drifting of the solution from the true equilibrium curve Fig 

(4—1). Although equilibrium conditions hold in the iterative scheme, no information 

can be obtained at intermediate load levels if needed. To overcome these

shortcomings, efficient procedures can be obtained by combining both incremental

and iterative solution methods. The resulting method is widely used and is known



as the mixed or incremental— iterative method. Using such a technique, the 

complete response of a structure is obtained. Valuable information is available 

during step loading to assist the process by which the structure fails while

equilibrium is automaticallly satisfied through successive iterations at each load step. 

This is schematically represented in Fig (4— 2) and Fig (4— 3) in which the loading 

is increased from { F }j_ 1 to { F { F }j_ , + { AF }. An estimation of

the displacements { A5 } due to { AF } is given by:

{ M  > = [ Ks r  ’ { &  }

{ 5 >i =  { 5 > i _ ,  +  ( A S }  . . . ( 4 -6 )

in which { 5 : is the vector of displacements at the end of the previous

increment, [ Kg ] is the structural stiffness matrix.

Using the total nodal displacements, strains and hence stresses for any point within

an element can be determined. These stresses are then converted to principal

stresses and compared against the material stress— strain curves to check for

cracking, crushing and yielding as presented in chapter 3. Should any of these

stress occur the stresses are brought down to the required level so that the

constitutive laws are not violated. The equivalent nodal forces, { fint}> required to 

equilibrate these stresses are then determined for each element

{  f i n t  }  -  |  [ B ]T {  <r > d v    ( 4 - 7 )

where { a  } is the vector of stresses.

The equivalent nodal loads for all elements in Eq. (4 -  7) are appropriately 

assembled to give a total nodal internal force vector { Fjnt } for the structure

{ F in t > -  2 j  [ B ]T { <r } dv  (4 -8 )

The global internal forces { Fjnt } are then substracted from the external applied



loads { F }i to give a vector of internal residual forces { ^  }p

{ * >i = { F >i -  { Fint > .... (4 -9 )

If the internal stresses and the external loads were in equilibrium, { ^  }i =  o. 

Generally this is not true, so { ^  has to be redistributed over the structure and 

the process is repeated. If it converges, then the terms in { become

negligible and the applied load is incremented with a new load step. The same 

analysis is then repeated until a load level is reached at which, the residual forces 

{ #  }j can not be removed at which stage collapse is assumed to have occurred. 

The global stiffness matrix [ Ks ] can take various forms and various mixed 

procedures can be built accordingly; Three iterative procedures are examined here: 

Newton—Raphson (N—R ), modified Newton—Raphson (mN— R) and quasi Newton 

method (q—N).

Newton— Raphson involves reforming and factoring the coefficient matrix [ Ks ] 

for each iteration at each increment, a computationally expensive process. However, 

the reformed matrix, reflecting material properties from the latest approximation to 

the solution, in general produces a better approximation in the next iteration Fig 

(4 -2 ) .

In the modified Newton— Raphson procedure the coefficient matrix is not reformed 

during all iterations Fig (4—3). Typically it is formed and factored at the beginning 

of each increment but other strategies may require a reform after a given number 

of preselected iterations.

Quasi— Newton methods have been used more recently to solve nonlinear systems. 

These methods involve modifications of the inverse of the coefficient matrix at 

each iteration. The modifications are cheaper to accomplish than a full reform and 

refactor of the matrix and yet convey enough information about the structural 

properties to reduce the number of iterations and ensure convergence.
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(i) Newton— Raphson methods : The Newton— Raphson method is based on the

tangential stiffness matrix at the current stress level. This requires formation and

factorization of the stiffness corresponding to the current deformation state at each 

iteration cycle (i), Fig (4—2). At each iteration [ Ks ] is updated and expressed 

in terms of the current approximation of the dispalcements. The updated solution is 

calculated as follows:

At the first iteration 1 of increment step (i)

{ AS }} -  [ Ks <<r,e) { AF >,

{ 5 }( ” { 5 }t_l + { Ai }j

and a t  i t e r a t i o n  ( j> l )  o f  increm ent ( i )

{ AS }J -  [ Ks ( r . O  l i j  { *  } j

{ 5 >, -  { 5 } , + { AS . . . ( 4 - 1 0 )

thus each solution increment is tangential to the curve at the last iteration as 

depicted in Fig (4—2). It can have a fast convergence rate but suffers from a 

number of drawbacks. In particular, the cost per iteration can become excessive for 

large systems with a large number of degrees of freedom, since the global stiffness

[ Ks ] has to be both reformed and refactorized at each iteration.

(ii) Modified Newton—Raphson methods: For modified Newton—Raphson iterations, 

the tangent stiffness matrix [ Ks ] can be based on the initial elastic stiffness of 

the structure and remains constant throughout the analysis Fig (4—3), known as the 

constant stiffness method. In this case the tangent stiffness matrix is formed and 

factored only once and the update to the solution is calculated as:



At the first iteration 1 of increment step (i)

{  * 8  >1 -  [ Ks  r 1 {  AF > i

{  5 > i  -  {  5 > i - l  +  {  } •

and at  i t e r a t i o n  ( j > l )  o f  increment ( i )

{  AS }J  -  [ Ks  J '1 {  *  > j

{ « >j " { * >j + { ** ) j  . . . ( 4 - 1 1 )

For the iterations the initial stiffness is used and it is only necessary to calculate

the out of balance loads and backsubstitute. As the coefficient matrix is not

updated based on the information from the latest iteration, it generally entails slow 

convergence. To improve the rate of convergence the stiffness matrix [ Ks ] is 

updated at the beginning of each load step or at a number of predetermined 

iterations in the analysis.

(iii) Quasi—Newton methods: Quasi—Newton methods aim to update the stiffness 

matrix or its inverse without actually reforming and refactoring the matrix. The 

global stiffness matrix is updated for every iteration based not on the actual 

mechanical damage in the structure but on the convergence behaviour in previous 

iterations. In practice this modification is performed on the inverse matrix and can 

be accomplished by vector multiplication, leading usually to the destruction of the 

banded symmetry nature of the stiffness matrix. This drawback is very significant 

for large problems, only Davidon and BFGS updates preserve symmetry. For each 

iteration quasi— Newton methods require fewer operations to update the coefficient

matrix than the Newton-Raphson method. The BFGS matrix update, discovered in 

the same year 1970 by Broyden, Fletcher, Goldfarb and Shanoo updates the



coefficient matrix in a way that preserves both symmetry and positive definite 

property from one iteration to the next, as presented by Mathies et al. 1979.

4 -  3 -  4 ACCELERATION METHODS :

Developments in numerical analysis and applied mathematics can be used to 

further improve the efficiency of the various incremental— iterative procedures at 

low additional cost. Recently, a number of techniques have been introduced in 

order to accelerate the rate of convergence of Newton— Raphson solution procedures 

for nonlinear structural analysis, such as the accelerated method proposed by 

Crisfield 1980.

Early accelerators such as the modified Aitken— 52 method discussed by Boyle 

and Jennings (1973 ) has been tested by Cope and Rao (1980) who found that 

generally the procedure does not speed up convergence. On the other hand, Chow 

and Kay 1984 have shown that significant savings in solution time has been 

achieved and that the method is effective in accelerating the rate of convergence. 

Cope and Rao (1980)found that the or- constant stiffness method due to Nayak and 

Zienkiewicz 1972 as implemented proved to be unstable. More recently, Araujo 

1989 presented extrapolation formulas for an improved estimate of the incremental 

displacements in order to accelerate the convergence of the modified 

Newton-Raphson method when analysing reinforced concrete structures.

4—4 Arc length methods:

The method was originally proposed by Wempner (1971) and Riks (1972) and, 

as modified by Crisfield (1981) and Ramm (1981), can be easily introduced into a 

standard finite element computer program . The basic idea in all a rc -  length 

methods is to modify the load level at each iteration, rather than holding the



applied load level constant during a load step, so that the solution follows some 

specified path until convergence is attained. It follows that the load level is 

unknown, and therefore an additional equation is needed in order to solve the 

equilibrium equations. This is achieved by forcing the load to follow a specified 

constraint surface, Fig (4—4). The constraint surface can take various forms as 

indicated in Fig (4—4); Hyperlinear Wempner 1971 and Riks 1979; Spherical 

Crisfield 1981 and elliptic Padovan et al. 1982. Bellini and Chulya 1987 reviewed 

and compared various existing arc— length algorithms for the automatic incremental 

solution of nonlinear finite element equations and proposed an improved algorithm 

based on essential ideas from Bathe and Dvorkin 1983. These strategies have 

significantly extended the range of Newton— Raphson schemes to trace equilibrium 

paths beyond turning points (snap—back/snap—through). However, several difficulties 

are present and prominent; among these are the extra storage requirement and 

adjustment of size, shape and orientation of the constraint surface, so as to 

enhance numerical robustness.

4 - 5  CONVERGENCE CRITERIA :

Since in a numerical process, equilibrium conditions are unlikely to be satisfied 

exactly, criteria to terminate iterations have to be estabilished for objective analysis. 

The main purpose of a reliable convergence criterion is to monitor the gradual 

elimination of the out of balance residual forces until the desired accuracy has 

been achieved. The accuracy is the error or convergence tolerance specified and 

accepted by the analyst. Although fine tolerances are desirable, specifications have 

to take into account the cost of computing necessary for a particular degree of 

accuracy, and should be commensurate with the physical uncertainties already 

involved in the description of a structure. To check the decay of residual forces 

for every degree of freedom is computationally a formidable task and sometimes



impossible. Therefore, some overall checks based on the computed quantities must 

be considered. Three types of convergence criteria have been widely used for 

nonlinear structural analysis, namely;

(a") Force convergence criterion :

ii ^ Mi,j 
----------------------------  X 100 < FTOL

II AF H j

where the notation represents the euclidian norm at iteration i of increment j, 

and FTOL is the pre— set force convergence tolerance.

(bl Displacement convergence criterion :

II AS
-------------!-------  x 100 < DTOL

II 5 l y

where DTOL is the displacement convergence tolerance.

(cl Energy convergence criterion :

| #  . AS |
------------------  x 100 < ETOL
| AF . AS |

where ETOL is the energy convergence tolerance.

Convergence criteria are used also as means of detecting the collapse of the 

analysed structure as the magnitude of the successively iterative displacements 

increases continually at the post failure stage.



In this investigation the energy convergence criterion is used to check for 

equilibrium. The force or displacement convergence criteria can not be used due to 

the different displacements units of the finite element used. The analysis is 

terminated and collapse is assumed to have occured if, either the energy 

convergence criterion is not satisfied and was unrealisically high, or the number of 

iterations within an increment exceeded a preselected value. A value of 150 

iterations was adopted.

In this study the incremental— iterative procedures and its variants have been 

adopted, in which the global stiffness matrix is:

(a) — Held constant throughout the analysis

(b) — Updated at every iteration

(c) — Updated only at the second iteration of every increment

(d) — Updated at some preselected iterations 1,2,5,10,...

The first alternative is used for very large problems such as coupled shear walls to 

be presented in Chapter 6, and the third alternative is used for relatively smaller 

problems involving beams and panels to be studied in the next section.
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CHAPTER 5 

VALIDATION OF THE NUMERICAL MODEL

In the previous sections the theoretical aspects of the computational method 

adopted in the present nonlinear analysis of reinforced concrete have been 

described. In this section, some practical applications of the proposed model are 

presented and comparisons with experimental and other numerical results are given. 

The main purpose is to verify the applicability and the accuracy of the numerical 

model against various carefully conducted experimental tests involving different 

members exhibiting various modes of failure. This was found necessary before a 

complete nonlinear study of reinforced concrete coupled shear walls is performed as 

reported in the next chapter.

The load deformation responses of reinforced concrete panels and beams 

(shallow, moderate and deep) including ultimate load, cracking patterns and 

directions at various stages of loading are investigated. The numerical model has 

been tested against the following experimental results :

(1)— Cervenka's shear panel W2.

(2)— Gijsbers and Smit beam.

(3)— Wallraven moderately deep beam.

(4)— Maier and Thuerlimann shear wall panels.

— Flanged panels (S1,S2),

— Panels without flanges (S4,S9 and S10).

(5)— Bresler's shallow beam.

(6)— Bresler and Scordelis beam OA1

(7)— Bresler and Scordelis beam OA2

(8)— Bresler and Scordelis beam OA3
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(9)— Khaskeli continuous deep beam

(10)— Vecchio and Collins panels

— Panel 25 (plane stress)

— Panel 27 (pure shear)

(11)— Murazumi et al. shear walls with large openings.

Most of the reinforced concrete structures considered above to check the validity of 

the numerical model failed in shear mode. It is well known that reinforced 

concrete structures failing in flexure are somewhat easier to predict the behaviour. 

The stiffness matrix is updated at the second iteration of every increment and a 

constant shear retention factor |S= 0.5 has been adopted unless otherwise stated.
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5— 1 CERVENKA’S Shear panel W2 :

The first example deals with a reinforced concrete shear panel W2 tested by 

Cervenka and Gerstle 1972. The test panel is orthogonally reinforced concrete 

square plate 30X30in., 3 inches in thickness, reinforced as indicated in Fig (5—1). 

The horizontal reinforcement was varied, so that a larger percentage was placed in 

the bottom six inches of the panel than was placed in the top twenty four inches. 

The shear panel, shown in Fig (5—1), was cast in two combined panels to form 

one beam—like specimen to simplify the testing procedure. This arrangement 

enabled testing of the beam as a simply supported beam with midpoint load. The 

concentrated reactions at the supports and the load point are transmitted to the 

panels by three vertical ribs as shown in Fig(5—1). These ribs help to maintatin 

the lateral stability of the specimen during testing. The test specimen W2 tested by 

Cervenka and Gerstle 1972 is analysed by the finite element program developed in 

this study. The finite element idealization of the panel is shown in Fig (5—2). A 

total of 224 nodes and 195 elements involving 3x3 gauss integration order to 

integrate the element stiffness and to monitor the state of the material were used 

to discretize half of the panel taking accont of symmetry.

Comparison between the numerical and experimental load displacement response as 

obtained by Cervenka and Gerstle and the numerical prediction in this study is 

shown in Fig (5—3). The effect of using various shear retention factors 

(|S= 0.3,0.5,0.7) simulating smooth to rough crack interface can be seen to have 

little influence on the ultimate load. The ability of the proposed model to duplicate 

experimental crack pattern is demonstrated in Fig (5— 4) for three different load 

levels. The comparison is reasonable for 14.0 Kips and quite good for 24.0 Kips, 

where predicted crack locations and crack directions reveals a good agreement with 

the experimental results The analytical solution indicates the presence of cracks in
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the centre thickened rib. Whether or not these cracks were present in specimen 

W2 cannot be ascertained. The experimental crack pattern also indicates that local 

crushing of concrete in the compressive zone of the specimen occured. This type 

of behaviour is also indicated by the analytical solutions where high compressive 

stresses (0.85 fc ') developed but no actual crushing occured.

It may be concluded that the analytical solution gave a reasonable duplication of 

the experimental behaviour of this test specimen in terms of load— deflection up to 

failure, and crack direction and location at different stages of loading.
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5—2 Gijsbers and Smit beam failing in diagonal tension:

Here, a beam which was selected from an experimental programme carried 

out by Gijsbers & Smit 1977 has been nmerically modelled. The testing programme 

was original in the sense that the beams were subjected to a uniformly distributed 

load, while the majority of tests reported in literature has concentrated on single 

or multiple point loading systems. The distributed load means that both the 

experiment and the numerical modelling predictions have to be performed under 

load control.

As shown in Fig (5—5), the actual beam was relatively small compared with 

the large supporting end blocks that had been added in order to introduce the

desired moment/shear ratios. By varying the sizes a,e and L the moment/shear ratio

as well as the slenderness of the beam could be varied. In this way a wide range

of shear failure mechanisms had been investigated. This included diagonal tension 

failure and shear— compression failure, one of which will be considered here.

The beam to be studied contained compressive as well as tensile

reinforcement, but no stirrups. The bending moment at midspan amounts to three

times the bending moment at the clamped end. The material data and the beam 

are shown in Fig (5 -5 ) . The finite element mesh used for this beam is shown in 

Fig (5—6). The calculated load deflection at midspan are compared to the

experimental results of Gijsbers and Smit 1977 and the numerical prediction of

Rots et al. 1985 in Fig (5 -7 ) . Two sets of numerical results, one using a

moderate shear retention factor (3=0.5 and the other using a high shear retention 

factor (3= 0.7 are used. A good agreement with the experimental results is observed 

at failure. The numerical results seem to give stiffer behaviour than the observed 

experimental test in the early stages of loading. The experiment was characterised 

by the abrupt loss of stiffness in the final stage which was due to the sudden 

development of a diagonal tension crack.

At first sight, the numerical analysis appears to be capable of reproducing this
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complex type of shear failure. Closer examination of the load displacement curve 

reveals a noteworthy irregularity, namely an important decrease of stiffness at a 

loading level of about 70 kN/m. It is instructive to plot the crack patterns just 

before this irregularity (q= 69kN/m) and just beyond it (q=75kN/m). This is done 

in Fig (5—8) & Fig (5,9). Note that these two loading levels roughly coincide with 

impending experimental failure and experimental failure respectively. The diagram 

reveals that it is not only the experiment but also the numerical analysis leads to a 

dominant crack developing solely within such a limiting loading interval. Although 

the type of failure mechanism and failure load are reproduced quite well, it is 

rather disappointing that the numerical load deflection response is significantly 

stiffer than the experimental over a wide range of loading. This stiffer response in 

the elastic range of loading may be attributed to the material properties such as 

Young's modulus or the finite element needs further refinement.
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5—3 WALLRAVEN'S moderately deep beam :

The moderately deep beam of Fig (5—10) has been considered. This beam 

failing in shear has been tested experimentally by Wallraven 1977 and has been 

analysed by DE Borst 1986 using the DIANA finite element program.

The beam had a thickness of 200mm and had no shear reinforcement as shown in 

Fig (5—10). The material properties of concrete and longitudinal reinforcement at 

the bottom of the beam are summarized below:

Concrete:

Ec = 28000 N/mm2 

fc =  40 N/mm2 

ft =  2.5 N/mm2

r =  0.20

In the experiment, it was observed that shear failure occured due to diagonal 

cracks. Prior to the development of diagonal cracks, vertical cracks had arisen 

predominantly in the constant moment zone. In the numerical analysis the observed 

vertical cracks due to bending arise first. On subsequent loading the principal 

stresses rotate due to high shear stresses and new non— vertical cracks form.

The present study tests the possible impact of the values of the shear retention 

factor (3 on the computational results. Numerical results have been carried out for 

3 different values of the shear retention factor, namely /3= 0.3, |3= 0.5 and (3=0.7 

simulating smooth to rough crack surfaces. In all analyses vertical cracks due to 

bending arise first. On subsequent loading the stresses rotate and new, non—vertical 

cracks due to shear form in the region between the point load and the supports 

Figs (5—11),(5—12). In Fig (5—13) no marked difference exists between the 

numerical results for the different values of the shear retention factor 0 on the 

load displacement curve which is in good agreement with the experimental results.

Steel :

Es = 210000 N/mm2 

*y =  440 N/mm2



Fig (5-10)  F i n i t e  element mesh for moderately deep beam.

Fig (5-11)  Experimental ly recorded crack p at tern  at
impending f a i l u r e .
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Fig (5-12)  Predic ted  crack pat tern  at  impending f a i l u r e
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5 4 MAIER and THUERLIMANN shear wall panels :

Maier and Thuerlimann 1986 studied experimentally the failure behaviour of 

shear wall panels. The study described below concerns numerical analysis of several 

of these panels, by means of the finite element program developed. The major 

objective is to show to which extent the failure behaviour can be simulated.

Five of the ten shear wall panels tested by Maier and Thuerlimann 1986 are 

analysed. These panels are of two different forms, flanged (panels S1,S2) and 

unflanged (panels S4,S9 and S10) as shown in Fig (5—14). The panels were 

supported on a rigid block base and loaded through a top slab Fig (5 -1 5 ). The 

loads include vertical forces Fv and a horizontal force F^. Fv was first applied 

under load control before F^ was applied by monotonic displacement control. 

Reinforcement was provided in both vertical and horizontal directions. Fig (5—14) 

summarizes the amount of reinforcement and the values of the average vertical 

stress ay caused by Fv. All the panels were essentially isotropically reinforced 

except panel S9 where only vertical reinforcement was present. The initial vertical 

compressive stress was rather low, except for panel S2 which was initially 

compressed to 0.3 f 'c . The material properties of concrete which varied slightly for 

different cases are summarized below:

PANELS S I , S2 
(With f l a n g e s )

PANELS S4,S9 & S10 
(No f l a n g e s )

CONCRETE :
Young's  modulus
C y l in d e r  s t r e n g t h  
T e n s i l e  s t r e s s
STEEL :
Young's  modulus 
Y i e l d  s t r e s s

Es = 1980 00 .0
f y = 495-575  MPa

En = 34000 .0  
f c '= 3 5 .0  
f t -  3.2

1980 0 0 .0  MPa

2 8 0 0 0 .0  MPa
3 0 . 0  MPa 

3 . 0  MPa
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The panels were assumed to be in a state of plane stress, so the web and the

flanges were modelled with plane stress elements of different thickness. The finite 

element mesh used for the analysis is shown in Fig (5—15).

The results of analysis are now discussed and compared to the experimental

observations of Maier et al. and numerical predictions of Wang et al. 1990.

Panels S4 and S10 without flanges and isotropicallv reinforced:

These two panels were both isotropically reinforced and only different in that 

panel S10 had extra reinforcement in the tension side. Figs.(5—16),(5,17) show the 

calculated load displacement responses. Good agreement to the experiment was 

achieved for both panels. Typical crack results for panel S10 are presented in Fig 

(5—18) showing a good fit to the test results at three different stages of loading.

Panel S9 without vertical reinforcement:

This is an extreme situation of orthotropy with only vertical reinforcement. It 

is found to be difficult to simulate accurately the load displacement response,

Fig(5—19). The predicted response agreed reasonably well with the experimental

response in the early stages of loading but deviates much at failure. High 

distortions of the finite element grid at failure is shown in Fig (5—20). The 

predicted and experimental crack pattern at failure are shown in Fig (5 -21). 

Although the horizontal flexural cracks in the right flange and the diagonal cracks 

in the panel are reproduced well, the analytical model predicted cracks in the left 

flange not observed during the experiment where a major diagonal crack was 

observed at failure.

Panels SI and S2 with flanges:

The calculated load displacement responses and the maximum loads are in 

satisfactory agreement with the test for both panels as shown in
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Figs.(5—22),(5—23). Similarly to the panels without flanges, yielding of the 

reinforcement can be observed at high load stages. The deformed finite element 

mesh for panel S2 at failure is shown in Fig(5—24), where slight lateral 

displacement of nodes 15—21 is slightly different due to cracking. Experimental and 

predicted crack patterns at failure for panel S2 are compared in Fig (5—25).
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S9 No f l a n g e s 0 .0 9 .9 9 .9 - 2 .20

S10 No f l a n g e s 9 .8 10 .0 57 .1 - 2 .22

Reinforcement ratio and initial vertical stress 

Fig ( 5 - 1 4 )  Geometry of the panels (dimensions in mm).
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Fig ( 5 - 2 0 )  Finite element mesh at failure of panel (S9).
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Fig ( 5 - 2 4 )  Finite element mesh at failure of panel (S 2 ).
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5—5 BRESLER'S shallow beam:

The ability of the proposed model to simulate the behaviour of a simple type 

of structure is demonstrated with the simply supported, reinforced concrete beam 

tested by Scordelis & Bresler (1964) is shown in Fig (5—26). This beam has a 

span of 12ft. with cross sectional dimensions 21.75x9.0in. It has no web 

reinforcement and the longitudinal reinforcement consists of four bars with a total 

area of 4in2 .

The beam is subjected to a central concentrated load and the experimentally 

determined failure load by crushing of concrete is 58Kips.

The experimental results are considered to be very reliable so the beam has 

almost become a benchmark for testing analytical and numerical formulations. The 

analytical model, shown in Fig(5—26), takes advantage of symmetry so that only 

one half of the beam is considered. 27 elements are used each with a 3 by 3 grid 

of integration points. The single row of steel is modelled by placing smeared 

longitudinal steel in the bottom row of elements.

The material constants used in the analysis are:

C o n c r e t e :

Ec -  3300 K i p s / i n 2

f c = 3 . 1 6  K i p s / i n 2

= 0 . 3 3  K i p s / i n 2 

-  0 . 2 0

Comparison with test results :

In Fig (5— 27) the experimental load deflection curve at the midspan section 

of the beam is compared with the curves using the present numerical model for

S t e e l  :

Es -  27800 K i p s / i n 2 

f y  = 60 K i p s / i n 2

H = 0
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various shear retention factors. Fig (5— 27) also contains the numerical results of 

Hinton et al. in which they treated the concrete and steel as hardening— plastic 

materials and used a grid of 10 three dimensional elements disposed in two layers 

through the thickness. It can be seen that numerical solutions compare favourably 

with the experimental load deflection curve.

Crack patterns for different load intensities are plotted in Fig (5— 28) and they can 

be compared with the experimental crack pattern at failure.

Three other beams shown in Fig (5— 29) which have been tested by Bresler

and Scordelis will be analysed in this investigation.

5— 6 Bresler Scordelis beam O A 1:

The finite element mesh layout for the Bresler Scordelis beam OA1 with shear 

span to depth ratio of 3.97, is shown in Fig (5—30a). The load deflection curve 

predicted by the finite element method is compared to the experimental curve in 

Fig (5—31). A comparison shows a good agreement between the numerical and 

experimental curves up to failure load. The experimental crack pattern at failure 

load of 75.0 Kip is shown in Fig (5—32d). The analytical crack patterns obtained 

in this study is shown in Fig(5— 32a— c) for different load levels up to failure. Fig 

(5—32a) corresponds to the onset of cracking at a load level of 24.0 kip, where 

flexural vertical cracks are evident. Fig (5— 32b) corresponds to a load level of 

42.0 Kip where inclined shear cracks start to develop, and Fig (5— 32c) shows the

crack pattern at numerical failure load of 72.0 Kip.

The maximum tensile stress in steel at failure was 48 Ksi well below the yield 

strength of 80.5 Ksi. Thus the numerical failure is directly attributable to the loss 

of shear stiffness.
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5— 7 Bresler Scordelis beam O A 2:

The load deflection curve for this beam with a shear span to depth ratio of

4.90 is shown in Fig (5—33). The finite element prediction is again in good

agreement with test results. Crack pattern at three different load levels are shown 

in Fig (5—34a—c), corresponding to the onset of cracking at 24.0 Kip, inclined 

shear cracks at 49.5 Kip and at failure load of 84.9 Kip.The failure mode can be 

identified by comparing the cracking pattern at failure, Fig(5—34). The horizontal 

cracking near the point load and the inclined shear cracks, clearly indicates the 

failure mode as diagonal tension. The analytical crack pattern at failure compares 

favorably with that obtained from the experiment shown in Fig (5— 34c).

5—8 Bresler Scordelis beam OA3:

This beam with a shear span to depth ratio of 6.94 is reported to have failed 

in the diagonal tension mode. The load deflection relationship observed during the 

experiment is compared to the finite element prediction in Fig (5—35). The 

prediction is not particularly good at failure. The load deflection graph shows 

parallel behaviour, however the numerical model underestimates the failure load by 

15%. The crack pattern observed in the experiment compares favourably with that 

predicted by the analysis shown in Fig (5—36). Compared to beam OA2, there is

less penetration of cracking into the compressive zone.
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Fig ( 5 - 2 8 )  Crack pattern for Bresler shallow beam.
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Onset of cracking P =  24.0 Kip.

Crack pattern at P =  42.0 Kip.

&

Numerical crack pattern at failure P =  72.0 Kip.

Experimental crack pattern at failure P =  75.0 kip.

Fig ( 5 - 3 2 )  Crack pattern for Bresler-Scordel is  beam OA1.
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Onset of cracking P =  21.0 Kip.

d

Crack pattern at P =  49.5 Kip.
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Numerical crack pattern at failure P =  84.9 Kip.
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Experimental crack pattern at failure P =  80.0 Kip.

Fig ( 5 - 3 4 )  Crack pattern for Bresler-Scordel is  beam OA2.
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Onset of cracking P = 15.0 Kip.

Crack pattern at P =  42.0 Kip.
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Numerical crack pattern at failure P =  70.5 Kip.
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Experimental crack pattern at failure P =  85.0 kip.

Fig ( 5 - 3 6 )  Crack pattern for Bresler-Scordel is  beam OA3.
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5 - 9  KHASKHELI Deep beam :

A two— span continuous deep beam shown in Fig (5— 37) is analysed. This 

beam has been tested experimentally by Khaskheli 1987. The geometry and loading 

of this beam are shown in Fig (5—37). The beam was designed to carry a total 

ultimate load of 850 kN as two concentrated loads acting at the centres of each 

span. The beam failed in shear at a load of 1333 kN. The overall depth and 

length of the beam were 900mm and 2000mm respectively with a thickness of 

100mm. The span between the centres of support bearings was 960mm. The 

measured material properties used in the analysis are as follows:

Concrete Steel

fc '=  63 N/mm2 $6 <£8

Taking advantage of symmetry, only one span of the beam is considered and 

idealized as shown in Fig (5—38). The predicted load—deflection relationships are 

compared with the experimental results in Fig (5— 39) where good agreement is 

evident. The deformed finite element mesh at failure is plotted in Fig (5— 40) and 

Fig (5—41) shows the crack pattern at failure.

ft =  3.22 N/mm2 

Ec =  19.5 N/mm2

*y =  513 N/mm2 fy =  501 N/mm2 

Es =  200 N/mm2 E s =  195 N/mm2
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Fia ( 5 - 4 0 )  Deformed finite element mesh at failure.
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5 - 1 0  VECCHIO AND COLLINS PANELS:

Vecchio and Collins 1982, conducted an excellent study on the behaviour of 

reinforced concrete panels under shear and normal stresses. In their experimental 

programme they tested 30 specimens of dimensions 890x890x70mm on a special 

testing rig shown in Fig (5— 42) which allowed any plane stress state to be created 

in the panels. In all cases the reinforcement was arranged parallel to the panel 

sides, but with different ratios and amounts for different specimens. To date, there 

is no acceptable theory capable of predicting the full load— deformation response of 

such elements. This was made evident in a recent international competition, 

Vecchio et al. 1985, in which 43 leading researchers from 13 different countries 

attempted to predict the load— deformation response of 4 of the 30 reinforced 

concrete panels. It should be emphasized that the 4 panels were deliberately chosen 

so that in none of the panels was the load capacity governed by yielding of steel. 

The predictions were strongly dependent on the assumed stress— strain characteristics 

of concrete.

Of the whole series, only two specimens will be considered here, namely 

panels (27) and (25) shown in Fig (5—43). Both have equal reinforcing ratios of 

0.01785 in the x and y directions. Panel 27 was loaded in pure shear, while panel 

25 was subjected to a combination of shear and biaxial compression as shown in 

Fig (5—43). Both panels were loaded proportionally, the material properties used 

for the numerical analysis being as follows:

PANEL 27 PANEL 25

CONCRETE :
Y ou n g's modulus Ec -  20000 20000 N/mm2
P o is s o n  r a t i o p = 0 . 1 5 0 . 1 5
C om p ressive s t r e n g t h f  '= 2 0 . 5 1 9 . 3  N/mm2
T e n s i l e  s t r e s s f t -  2 . 4 2 . 0  N/mm2
STEEL :
Y ou n g's m odulus Es = 200000 200000 N/mm2
Y i e l d  s t r e s s f y = 4 4 2 . 0 4 4 2 . 0  N/mm2
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The tests are designed so that the response of the panels is mainly dependent on 

the concrete behaviour. Both panels failed due to crushing of cracked concrete. 

These examples are included here because they are a demanding test on the

computational material model. The intention was, given that panel 27 loaded in

pure shear fails by concrete crushing, it might be expected on the basis of a

simplistic M ohr's circle type analysis that panel 25, which is loaded by shear plus 

biaxial compression, might fail earlier. The finite element discretization of the two 

panels is given in Fig (5—42).

Results from the numerical analyses are shown in Fig (5— 44) and (5— 45) 

compared to those obtained experimentally by Vecchio and Collins 1982 and

numerically by Hinton et al. 1987. It is interesting to observe how the additional 

biaxial compression in panel 25 influences the failure load in comparison with 

panel 27. Satisfactory agreement between the experimental failure results and the 

numerical prediction is obtained for panel 27 as compared to the much poorer 

predictions in the case of panel 25. It should be admitted that this may be partly 

due to limitations in the relatively simple numerical model and difficulty of the 

problem at hand. However, Panel 25 was reported by Vecchio and Collins to be 

poorly cast as it contained voids.
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5 -1 1  ANALYSIS OF SHEAR WALLS WITH LARGE OPENINGS :

Two shear walls with large openings subjected to lateral loads and analysed by 

Murazimi et al. 1981 using ADINA are considered. Fig (5—46) shows the geometry 

of the structure analysed. The shear walls are enclosed in concrete rigid frames. 

The width and depth of the columns are 60x60cm, and those of the beam are 

35x70cm. The thickness and reinforcement ratio of the wall were 15cm and 0.316% 

respectively. The finite elment mesh chosen to discretize the shear wall is shown in 

Fig (5—47). The material properties used in the numerical analysis are:

Two cases are analysed :

(1) The shear wall with two openings, subjected to uniformly distributed horizontal 

loads applied at the top of the upper beam (Case Bl).

(2) The same shear wall described above, subjected to the same amount of lateral

load applied in the opposite direction (Case B2).

The relationships between lateral loads and displacements are shown in Figs 

(5—48) ,(5—50), about which the following comments may be made.

(a) The stiffness in the elastic region and the cracking load are almost the same,

regardless of the direction of applied lateral loads.

(b) The load displacement curves for cases Bl and B2 showed different behaviours 

in nonelastic regions beyond cracking loads and have different failure loads.

Concrete Steel

fy =  3000 kg/cm2 

Es =  2100000 kg/cm2

fc ' =  210 kg/cm2 

=  21 kg/cm2 

Ec =  210000 kg/cm2 

 ̂ =  0.17



132

Therefore it may be concluded that the stiffness against lateral loads in the two 

directions are different.

Crack patterns for both cases are shown in Figs (5—49),(5—51). In both cases, the 

first cracks were observed near the corner of openings, and then cracked areas 

gradually extended all over the walls.

The major conclusions from this chapter is that the finite element method can be 

used to predict the behaviour of reinforced concrete members subjected to in plane 

forces if proper care is taken in modelling the material behaviour. The load 

deflection response, crack pattern, failure load and failure mode can be predicted 

with an accuracy that is acceptable for engineering purposes.

The simple strength criterion with a smeared crack model is adequate to study 

global behaviour as demonstrated by the various reinforced concrete elements 

studied. Reasonable crack patterns were obtained for the sample problems discussed 

despite the apparent wide diffusion. A constant shear retention factor (3 =  0.5 was 

found to lead satisfactory results and therefore has been adopted in this study. The 

present model can be used with confidence to predict the nonlinear behaviour of 

reinforced concrete coupled shearwalls for which very few experimental tests exist 

and this is presented in the next chapter.
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CHAPTER 6 

APPLICATIONS TO COUPLED SHEAR WALLS

6 - 1  INTRODUCTION :

This study has been undertaken with the objective of developing a 

computational model of reinforced concrete for the nonlinear analysis of large scale 

reinforced concrete structures, specifically coupled shear walls.

In the previous sections the theoretical aspects of the computational method 

adopted in the present nonlinear analysis of reinforced concrete structures have 

been described. Also some practical applications of the model have been presented 

and comparisons with experimental and other numerical solutions to test the 

applicability and the accuracy. The comparisons of numerical predictions and 

experimental tests show satisfactory agreement illustrating its computational efficiency 

for practical use in modelling reinforced concrete in the research situation. 

Therefore the numerical model can be confidently applied to reinforced concrete 

coupled shear walls.

In this section numerical predictions of the fundamental behaviour of 

reinforced concrete coupled shear walls up to failure is performed. Typical coupled 

shear walls are investigated varying the degree of coupling and position of the 

openings as shown in Fig (6—1). First, a symmetric six story reinforced concrete 

coupled shear wall Fig (6—la) is analysed by varying the stiffness of the 

connecting lintel beams. By varying the positions of the openings a staggered Fig 

(6—lc) and an unsymmetric Fig (6—lb) shear wall are considered. The effect of 

an additional stiffening beam at midheight Fig (6—Id) and at the top are also 

considered. To the author's knowledge, previous investigations of the degree of 

coupling on the behaviour of coupled shear walls available in the literature assumed 

either ideal elastic behaviour or elasto— plastic behaviour. The effects of cracking
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and nonlinear behaviour of concrete and steel were not considered in a parametric 

study. The reinforcement distributed vertically and horizontally with ratio 

(px= py= 2%) and the material properties of concrete and steel are as follows:

C o n crete  S t e e l

f ' c = 25 N/mm2 f  = 420 N/mm2

f t = 2 . 5  N/mm2 Es = 210000 N/mm2

Ec -  14000 N/mm2 ey  = 0 .0 0 2

v -  0 . 2

Finally, comparisons are made with the recent experimental work of Subedi 

1990, on two microconcrete coupled shear walls.



137

6 - 2  EFFECT OF THE DEGREE OF COUPLING :

6 -  2 - 1  WALL WITH WEAK COUPLING (d =  50 cm) :

The finite element discretization shown in Fig (6—2) consists of 718 nodes 

and 600 elements with a total number of 5400 integration and sampling points to 

monitor cracking or crushing of concrete and yielding of steel at any stage during

lateral loading up to ultimate load conditions.

Fig (6— 4) shows the direction and crack propagation for the various load

increments up to failure resulting from the analysis. As might be expected initial 

cracking is predicted to occur in regions of flexural tensile stress in directions at 

right angles to the bending stress. The cracks are horizontal for the loaded faces 

of the walls at base level and vertical at each end of the connecting beams 

subjected to reverse curvature bending. As applied loading is increased and the 

flexural cracks penetrate further into the bodies of the walls and depth of lintel 

beams, they tend to become inclined as the relative importance of the horizontal

shearing force increases.

Flexural cracks first appear in the lintel beams at levels (2,3,4,5,6) while the 

lower beam and the walls are uncracked at a load level of 352 kN. On further 

loading to 528 kN, flexural cracks appear in both walls and the lintel beam at 

level 1 and further development of flexural cracks in the depth of the lintel beams 

at levels 4,5,6 can be noticed. At load 704 kN, flexural cracks develop along the 

span of the lintel beams and subsequently at 1056 kN shear cracks develop along 

the height of the wall. Between 1056 kN and 2112 kN, flexural as well as shear 

cracks extend further into the depth and along the span of lintel beams. 

Concerning reinforcement, at 1144 kN tensile steel first yields at the left end of 

lintel beam (3) and both ends of lintel beams 4 and 5. Upon further loading and 

at 1320 kN, tensile steel yielded at both ends of all lintel beams except at level 1.
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At 1496 kN, tensile steel start yielding at the base of both walls.

Failure is predicted at 2288 kN at which level, concrete crushing in both ends of 

lintel beams at level 3,4,5 is observed as indicated in Fig (6—4). The crushing of 

concrete occured at the same increment (26) and iteration (4), therefore the 

sequence of crushing can not be determined. The extent of steel yielding is shown 

in Fig (6— 5) at ultimate conditions.

The lateral load versus top— deflection is shown in Fig (6— 3) along with the 

deformed finite element mesh at failure and the main load levels indicated upto 

collapse load. It can be noticed from the deformed finite element mesh at failure 

shown in Fig (6— 3) that much higher distortions in the top lintel beams have 

developed compared to the lower beam at lower levels.

6 - 2 - 2  WALL WITH MODERATE COUPLING ( d =  90 cm 1:

The finite element model shown in Fig (6— 6) for the wall with moderate 

coupling is discretized with 760 nodes and 648 elements corresponding to a total of 

3040 degree of freedom and 5832 sampling points for numerical integration and 

monitoring the damage that weakens the reinforced concrete material up to failure.

Crack development and propagation is shown in Fig (6— 8) at different 

intermediate load levels up to failure. The onset of cracking appears in lintels 

2,3,4,5 at a load of 352 kN, while the top and lower lintels and the walls are 

uncracked. At double this initial cracking load (704 kN), flexural cracks extend 

further into the depth of all lintel beams. Cracks in both walls are flexural and 

some diagonal cracks appear at the lintel beam— wall junction at the top and lower 

levels due to stress concentration.

Between 1056 and 1408 kN, shear cracks appear into the depth and along the span 

of all lintel beams. Further development of flexural and shear cracks along the 

height of both walls is noticed.
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Between 1408 kN and 2464 kN no major change of cracks along the span of lintel 

beams is observed, however, shear cracks continue to develop into the depth of 

lintel beams and along the height of the walls. Tensile steel starts yielding at left 

of end of lintel (4) at a load level of 1320 kN and subsequently at 1408 kN

tensile steel yield at both ends of lintel 4,3,2 and 5 (in that order). At 2024 kN 

tensile steel starts yielding at the base of right wall and at 2112 kN yielding 

occured at the base of the left wall and compression steel yields at both ends of 

lintels (3) and (4). At 2816 kN concrete crushes at both ends of lintels 2,3,4 and 

5 and the sequence of crushing is indicated in Fig (6—8). Also at 2816 kN

compression steel yields at the base of the right wall. Upon further loading and 

at 2992 kN numerical collapse of the coupled shear walls is observed, at which 

level crushing of compressive concrete at the base of the right wall as indicated in 

Fig (6— 8) occured. Almost half of the total height of the walls is cracked both

flexural and in shear. The deformed finite element mesh at failure is shown in Fig

(6— 7) along with the lateral load top deflection indicating the main load levels at 

which steel start yielding and concrete crushing in the lintel beams and walls. The 

extent and direction of steel yielding at numerical collapse load is shown in Fig 

(6— 9) where tensile and compressive steel have yielded at both ends of all lintel 

beams.

6 - 2 - 3  WALL WITH STIFF COUPLING f d =  ISO cm 1:

The finite element discretization shown in Fig (6—10) is similar to the wall 

with moderate coupling with a slight modification to discretize the much deeper 

lintel beams. Due to high depth of the coupling beams, the first cracks are slightly 

inclined due to shear effects, Fig (6—12). This occurred at levels 1,2,3,4 at load 

528 kN. First flexural cracks appear in the right wall at a load level 704 kN. 

Between 1056 and 3872 kN further flexural as well as shear cracks develop along
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the height of both walls and it can be noticed that the right wall has more crack 

damage than the left one. This is in agreement with what is expected because the 

walls tend to behave as a monolithic unit where the high degree of inter— coupling 

produces significant axial tensile and compressive stresses vertically in the walls. For 

reinforcement, tensile steel starts yielding at 2024 kN at the left end of the lintel 

beam at level 2. At 2464 kN tensile steel yielded at both ends of lintel beams at 

levels 1 to 4. Yielding of steel at the base of walls is predicted at 2904 kN for 

the left wall and 2992 kN for the right wall. At 3432 compression steel yields at 

both ends of lintel 2 and at 3784 kN compression steel yields at the base of right 

wall.

Failure is observed at 4312 kN at which stage the right wall is almost completely 

cracked compared to the left side. Concrete crushing is observed in lintel beams at 

levels 1,2,3,4 and diagonal cracks spread along the span of all lintel beams except 

the top story as indicated in Fig (6—12) where the sequence of crushing is also 

indicated. Crushing at the base of both walls is also observed with more damage in 

the right wall as shown in Fig (6—12) and fig (6—11) where the deformed finite 

element mesh at failure reveals high compression at the base of the right wall.
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FIG ( 6 - 2 )  FINITE ELEMENT DISCRETIZATION FOR WALL 
WITH WEAK COUPLING (d -5 0 c m .)
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WITH MODERATE COUPLING ( d - 9 0 c m . )



N
o

n
li

n
ea

r

LT)
LO

CO

COCM

in

JC

A A

U V
i—i cm co m  voCM

Ooooo o

000IX (B5I) avoi 1YU31V1

LA
TE

RA
L 

DI
SP

LA
CE

M
EN

T 
(c

m
) 

p
IG 

(6
-7

) 
LA

TE
RA

L 
LO

AD
-D

IS
PL

AC
EM

EN
T 

FO
R 

MA
LL

 
VI

TH
 

MO
DE

RA
TE

 
CO

U
PL

IN
G



352  kN 704  kN

■mm

urn

1056 kN

ffim>

1408 kN

i s iS iS

i<smt

SM ht

limL

pBto.

iiim.

-mm)

FIG  ( 6 - 8 )  CRACK PATTERN AND PROPAGATION FOR WALL 
WITH MODERATE COUPLING ( d = 9 0 c m . )

26

53

46



1760 kN 

Ir ip m  •m m

a — .j p *

p n i

! I |i |! S

m m

iptm. T n® i

ill

IIUIM i! I

211 2  kN

mm

■ B O S

W

111

» E

fptm.

= I i l i _  i p m .

i m

ill.

2 4 64  kN

Hit

I*E Z 2i

m n m

fflXbL

r  i p o s e

2992 kN

! ! ! « ._  1(1

I

i i i i i i r  m f c a B i i i

C rushed  c o n c re te

FIG (6-8) CONTINUED



FIG  (6

  T e n s i o n  ----------  C o m p r e s s i o n

9) EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE



FIG  ( 6 - 1 0 )  F IN IT E  ELEMENT DISCRETIZATION FOR WALL 
WITH S T IF F  COUPLING ( d - 1 5 0 c m . )
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F IG  ( 6 - 1 3 )  EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE
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6 - 3  POSITION OF THE OPENINGS :

In the three examples previously considered, the coupled shear walls were 

symmetric and the effects of the degree of coupling on the crack distribution, 

crushing of concrete, yielding of steel and ultimate load and mode of failure were 

considered. In this section the position of the openings is varied so that two 

situations are examined. Firstly, the effects of unsymmetrical walls where stiffness 

of the walls in the ratio (10:1) is considered, and secondly, where the openings are 

positioned in a staggered arrangement is studied.

6 - 3 - 1  UNSYMMETRIC WALLS :

In this case the symmetric coupled shear wall with weak coupling is studied by 

changing the positions of the openings Fig (6—lb ). Because of unsymmetry and 

nonlinearity two loading cases are considered. The first (case (a)) considers load 

acting on the left smaller wall, and the second (case (b)) with load acting on the 

right stiffer wall.

case (a): Load acting on the left smaller wall Fig (6—15)

The finite element mesh chosen for the unsymmetric wall is shown in 

Fig(6—14) and consists of 718 nodes and 600 elements. Apart from the cracking 

load and ultimate load of 440 kN and 2552 kN being slightly higher than the 

corresponding 352 kN and 2288 kN for the symmetric case, comparisons in terms 

of cracking shown in Fig (6—4) and Fig (6—16) show similar developments and 

propagation as described in 6— 2— 1. The only difference is in the unequal cracking 

of the walls and the lateral deflection exhibiting stiffer behaviour and higher 

ultimate load of about 12% compared to the symmetric case. At 1408 kN tensile
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steel first starts yielding at both ends of lintel 5 and 4 and at 1496 kN this 

occured at both ends of lintel 3 followed by yielding at left end of lintel 6 during 

the iterative process. At 1672 kN steel start yielding at left end of lintel 2 , right 

end of lintel 6 and at the base of the stiffer wall. At 1760 kN compressive steel 

yields at right end of lintel 3 and at 1936 kN this occured at left end of lintel 3 

and both ends of lintels 4 and 5. At 2376 kN tensile steel yields at the base of

smaller wall and at 2464 kN compressive steel yields at base of stiff er wall.

Concrete crushes at both ends of lintel beams 3 and 4 at 2464 kN. Finally

numerical collapse of the wall by crushing at both ends of lintel 2, 5 and 6 and 

at the base of the right wall is observed at 2552 kN. A summary indicating the 

main load levels is shown in Fig (6—15) on the lateral load top displacement

curve. The extent of steel yielding Fig (6—17) and crack pattern Fig (6—16) 

reveals that much damage occured in the stiff wall due to its high stiffness in

resisting most of the lateral load compared to the smaller wall.

case (b) Load acting on the right stiffer wall Fig (6—18)

Similar crack development and propagation is noticed in Fig (6—19) compared 

to Fig (6—16) when load acting on the left smaller wall.

At 1320 kN tensile steel starts yielding at both ends of lintel 4 followed by both

ends of lintel 5, 3 and right end of lintel 6 at 1408 kN (in that order). At 1496

kN tensile steel starts yielding at right end of lintel 2 and upon further loading at 

1584 kN tensile steel yields at base of stiffer wall and left end of lintel 2. At 

1672 kN tensile steel yields at left end of lintel 6 . At 2200 kN tensile steel yields 

at base of smaller wall and right end of lintel 1. At 2288 kN compressive steel

yields at both ends of lintel 5 and the base of stiffer wall and subsequently at 

2376 kN compressive steel yields at both ends of lintels 4 and 3.
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6 - 3 - 2  STAGGERED OPENINGS :

The staggered finite element discretization is shown in Fig (6—21). Because of 

unsymmetric geometry and material nonlinearity the same two opposite loading 

cases considered above will be applied here.

case (a) loading from the left side: Fig (6—22)

The cracking load 528 kN is much higher than for the case of the symmetric wall. 

Flexural cracks first appear at the base in the left side and the corner of the 

opening at the first level Fig (6—23). Upon further loading and at 1056 kN the 

base of the left wall becomes completely cracked and diagonal cracks develop at 

the corner of the second and third level.

At 1408 kN diagonal shear cracks begin to develop, in the right wall and further 

diagonal creaks develop at the corners of the openings at level 2 .

At 2112 kN further diagonal shear cracks propagate at the base of the right wall 

and along the height, This trend continues until numerical failure of the wall at 

5368 kN more than double the failure load of 2288 kN for the symmetric wall 

with weak coupling. Tensile steel starts yielding at the base of the left wall 

(opposite ends) at 2288 kN. At 2816 kN tensile steel yields at top left corner of 

the opening at level 2 and at 3432 kN tensile steel yields at the base of the right 

wall. At 4664 kN the tensile steel at the base of the left wall has completely 

yielded. Concrete crushing occured at opposite corners of the opening at level 2 as 

indicated in Fig (6—23). It is noticed that the crack directions in the portions of 

concrete between the openings are almost 45 degrees as this part is under pure 

shear with little or negligible axial vertical stress.
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case (b) loading on the right wall: Fig (6—25)

First cracks appear at the same load of 528 kN but at the corner of the openings 

at level 2 and similar crack propagation is observed until failure. At 2376 kN 

tensile steel starts yielding at top right side of the opening at level 2 and at 2904 

kN tensile steel yields in the right wall at 4.0 m above the base where steel starts 

yielding at a much higher load of 3080 kN. At 3608 kN compression steel yields 

at the base of the left wall and upon further loading complete crushing of concrete 

ocured at 4752 kN at the base of the left wall.
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FIG  ( 6 - 1 7 )  EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE
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------------ T e n s i o n    C o m p r e s s i o n

FIG  ( 6 - 2 0 )  EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE



FIG  ( 6 - 2 1 )  F IN IT E  ELEMENT DISCRETIZATION FOR STAGGERED WALL
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FIG  ( 6 - 2 4 )  EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE
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FIG ( 6 - 2 7 )  EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE
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6 - 4  ADDITION OF STIFFENING BEAM :

Two cases are considered here. A stiff beam is added to the symmetric coupled 

shear wall with weak coupling. In the first case (a) the stiff beam is located at the 

top level and in a second case (b) the stiff beam is positioned at mid— height at 

the third level. The purpose is to observe the effect of the simple additional stiff 

beam on the crack distribution and ultimate load conditions and how important this 

effect is. This type of study has been investigated by many workers in the simple 

elastic case.

6—4—1 Stiffening beam at too : case (a)

The stiff lintel beam first cracks at a load 352 kN similar to the symmetric case 

and the only noticeable difference is that the lintels at lower levels are uncracked. 

At 528 kN flexural cracks develop in all lintels and both walls. Between 704 kN 

and up to 2288kN cracking development is similar to the uniform lintel case. At 

2288 kN (the load level at which the wall without the additional stiffening beam 

collapses by crushing in lower lintels), it can be noticed no crushing occurs and 

that there is less crack damage along the height of the walls. The cracking in this 

case extends approximately 1 story less high in comparison with the uniform lintel 

case at this load level. The wall collapsed at a somewhat higher load of 2640 kN 

which represents an additional strength of approxiamtely 15 % over the wall with 

the unstiffened beams.

6—4—2 Stiffening beam at mid—height : Case (b)

Similarly to case (a), cracks first develop at the stiff beam located at mid—height 

at the same load 352 kN. Upon further loading flexural cracks propagate at the
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base of both walls and the remaining lintels at a load level 528 kN. Between 704 

kN and up to 2200 kN (almost the collapse load of the wall with uniform lintels),

further cracks develop and crushing is observed in both sides of the stiff beam at

midheight. Tensile steel starts yielding at both ends of the stiffening beam at 1144 

kN. At 1496 kN tensile steel yield at both ends of lintels 4,5 just above the 

stiffening beam. At 1760 kN tensile steel has yielded at both ends of all lintel 

beams except at level 1. Tensile steel starts yielding at the base of both walls at 

1848 kN, also compressive steel at both ends of the stiffening beam yield. Finally, 

the numerical collapse of The wall occured at 2464 kN by crushing of concrete at

both ends of the stiffening beam which is about 8 % higher than the wall with

the unstiffened beams. The extent and direction of steel yielding at ultimate load is 

shown in Fig (6—35). The lateral load top deflection up to numerical failure load 

is shown in Fig (6—33) along with some main load levels during the analysis and 

the deformed finite element mesh at failure highlighted. It can be noticed that high 

compression and traction have developed at failure in the stiffening beam at both 

ends compared to the other lintels.



FIG (6 - 2 8 )  FINITE ELEMENT DISCRETIZATION FOR WALL 
WITH TOP STIFFENING BEAM
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  T en s io n  ---------- C om pression

FIG (6-31) EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE



FIG (6 - 3 2 )  FINITE ELEMENT DISCRETIZATION FOR WALL 
STIFFENING BEAM AT MID-HEIGHT
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FIG (6-35) EXTENT AND DIRECTION OF YIELDED STEEL AT ULTIMATE
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6 - 5  MICROCONCRETE MODELS:

Subedi 1991 tested experimentally to failure three microconcrete models of 

coupled shear walls, representing approximately 1/30 scale of a 15 story building. 

In the present study Subedi's Model 1 and Model 3 are studied using the present 

numerical model. Model 1 was made of cement and graded sand with a maximum 

aggregate size of 2.36 mm. In the case of Model 3, normal concrete with a 

maximum aggregate size of 5 mm was used. The geometry and reinforcement 

details of the models were chosen to give different modes of failure, flexure for 

Model 1 and shear for Model 3. The details of material properties are given below 

as found in tests by Subedi 1991:

Model 1 : The finite element mesh for model 1 is shown in Fig (6—38). Fig 

(6— 39) shows the top lateral deflection at different stages of loading. The onset of 

cracking is predicted at 500 N in the lintel beams as compared to 1800 N where 

the first sign of cracks appeared in the experiment. This may be due to the 

development of microcracks (internal) that cannot be observed by the naked eye 

during the experiment. At 4300 N crushing of compression concrete in the lintel 

beams at levels 7 to 14 is observed in the numerical analysis. At 5300 N the

numerical model collapses by further crushing at the base of right hand 

compression wall and yielding of tensile steel at the base of the left tensile wall.

The experimentally recorded collapse load is 4950 N where nearly all coupling

beams failed in flexure and crushing of the compression wall were observed by

Model 1 Model 3

f c ' = 4 8 . 3  N/mm  ̂

f  i  — 2 .3  N/nun  ̂

f y  = 385 N/mm^

f c ' = 4 0 . 0  N/mm  ̂

f  t — 1 .9  N/mm^

f y  = 450 N/mm^
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Subedi 1991. It is concluded that both the ultimate load and mode of failure are 

predicted satisfactorily.

Model 3 : The finite element discretization is shown in Fig (6—41). The mesh

might be criticised because the element aspect ratio is relatively high, however due 

to the size of the problem at hand compromise on the degree of refinement has 

to be made. Avoiding the aspect ratio problem would lead to either coarse or very 

refined finite element grid both of which are inefficient from the point of view of 

reliability and computational cost respectively. Cracks start to develop at 6000 N

compared to 18000 N experimentally, difference due to microcracks as suggested 

above. At 27000 N tensile steel yielded in both walls in the numerical analysis. At 

33000 N compressive steel yields in the right wall and at 38000 N the concrete 

compressive stress reaches fc ' in the right wall. Shortly afterwards at 40000 N

concrete crushes in the right wall by compression. The numerical model collapses 

at 50000 N. Experimentally, the model collapses at 53000 N by beams failing in 

shear and crushing of compression walls, which is in good agreement with the 

numerical model.

CONCLUSIONS :

The history and sequence of cracking, crushing of concrete and yielding of

steel can be predicted by the use of the finite element up to failure in the 

analysis of reinforced concrete coupled shear walls.

Severe deviations between an elastic analysis and a full nonlinear analysis are 

highlighted in the lateral load top deflection curves shown for various reinforced 

concrete coupled shear walls analysed. This is important even at lower load levels 

and before any yielding of steel showing the importance of cracking in a realistic
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analysis. The crack pattern and direction are in agreement with what would be 

expected in an experimental test. The comparison of the prediction obtained by the 

present numerical model and the microconcrete experimental tests of Subedi 1991 

presented in this chapter and the numerical tests presented in chapter 5 for the 

validation of the model suggest that the numerical model developed in the study 

proved to be a valuable research tool to be used with confidence in conjunction 

with experimental tests for a further understanding of the nonlinear behaviour of 

reinforced concrete coupled shear walls. Simplicity yet main nonlinear behaviour of 

reinforced concrete taken into account was the basis for building the model.

The use of the initial elastic stiffness matrix throughout the nonlinear analysis was 

found very efficient to reduce the computational cost of the analysis. Furthermore, 

the use of an updated stiffness matrix during the incremental— iterative process will 

not only increase the computational cost prohibitively but may fail due to crushing 

at the ends of lintel beams as the global stiffness matrix approaches singularity and 

the problem of ill— conditionning may arise leading to a premature numerical collapse
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS

7—1 general:

The present study started with the development of a simple elastic finite element 

program for the analysis of coupled shear walls using a suitable higher order element.

Comparison of the finite element results with those of the continuum and wide— column 

frame analogies presented in chapter (2) revealed the superiority (at a much higher 

computational cost) of the finite element method.

Incorporation of the main features of nonlinear behaviour of concrete and steel into 

the simple elastic model above, validated in chapter 5 by comparison to other carefully 

conducted experimental tests proved the suitability of the linear cubic element in modelling 

reinforced concrete, in contrast to the widely used isoparametric parabolic element.

Numerical simulation tests shown in chapter 6 highlighted the nonlinear behaviour of 

reinforced concrete coupled shearwalls up to failure. Very few experimental tests are

available, the present model as shown in chapter 6 can be used to predict the history of

crack propagation, sequence of yielding of steel and crushing of concrete in the lintel

beams and walls to assess the overall mode of failure. Although an automatic finite 

element mesh generator has been developed to facilitate the pre— processing phase, 

post— processing was found somewhat a difficult task due to the amount of valuable output 

(in the order of 10^ lines). Nevertheless,the salient numerical results have been presented 

in chapter 6.

In this chapter, the main conclusions from the study are presented.



7— 3 Non— elastic analysis of planar reinforced concrete beams and panels:

On the basis of the results presented in chapter 6, the following conclusions regarding 

the applicability of finite element analysis can be drawn:

(1) The major conclusion from this study is that the finite element method can be used 

to predict the behaviour of reinforced concrete members subjected to in plane forces if 

proper account is taken in modelling the material behaviour. The load deflection response, 

crack pattern, failure load and failure mode can be predicted with an accuracy that is 

acceptable for engineering purposes.

(2) The expectations from nonlinear finite element analysis of reinforced concrete

structures are fulfilled in so far as it appears to be a significant improvement (but no 

more) over classical methods of analysis of such structures, which are not able to account 

adequately for important mechanical phenomena in a rational manner.

(3) The simple strength criterion with a fixed smeared crack model is adequate to study

global behaviour of many structural problems as demonstrated by the various reinforced 

concrete structures examined.

(4) Smeared crack approaches are capable of predicting dominant diagonal cracks which 

occur in shear failure. Reasonable crack patterns were obtained for the sample problems

presented in chapter 5 although the numerical model generally predicts a more diffused 

crack system than the physical reality. This is due mainly to the present limitations of the 

smeared crack concept.

(5) In shear critical beams, the numerical results and in particular the ultimate load is not 

greatly sensitive to the shear retention factor adopted. A constant shear retention factor 

|3= 0.5 was found to lead satisfactory results and therefore has been adopted in this study. 

Further research should be stimulated to better estimate the complete crack interface



stiffness matrix so as to agree with experimental findings from laboratory tests to replace 

the simple shear retention factor.

(6) Smeared steel modelling was found to yield satifactory results even for beams 

reinforced with individual bars, when the finite element grid is appropriately chosen around 

the bar.

(7) A modified Newton— Raphson algorithm in which the global stiffness matrix is updated 

in the second iteration of each load increment has been found to be effective for the 

analysis in most problems investigated.

(8) The numerical tests and results presented in chapter 6 demonstrate the suitability of 

the concrete model in simulating the dominant behaviour characteristics of reinforced 

concrete elements.



7— 4 Non— elastic analysis of reinforced concrete shear walls:

On the basis of the variety of examples analysed, it can be concluded that the 

computational model developed in this study is useful for studying complex structural

behaviour such as coupled shear walls. The entire structural response of these structures 

including cracking loads, crack development and crushing of concrete, yielding of steel, 

ultimate load and the collapse mechanism can be predicted.

(1) The standard Newton—Raphson method, where the initial elastic global stiffness matrix 

is used throughout the analysis, was found to be efficient in analysing large reinforced 

concrete structures such as coupled shear walls, reducing the total computational cost, as 

the formation and factorization of the global stiffness matrix constitutes the majority of the 

computational effort in such large problems.

(2) The numerical model is shown to be a valuable tool, to be used in combination with 

experiments on reinforced concrete coupled shear wall structures, permitting more 

comprehensive investigations.

Finally, the finite element analysis developed for this initial investigation could be 

used for a more refined and detailed parametric study of shear wall behaviour over the 

full load range. This could lead to more conclusive suggestions for possible improvements 

in the design of reinforced concrete coupled shear walls.



7— 5 Suggestions for future study:

A number of areas remain to be examined for the wider, practical application of the 

finite element method for the prediction of concrete behaviour. Some suggestions are given 

for possible improvements of the present formulation and extension of this investigation.

(1) It has been observed in analysing coupled shear walls, that the collapse is in fact

numerical when crushing occurs in the lintel beams, and the solution process becomes

unstable. In fact, even a complete collapse of a few lintel beams does not necessarily 

mean failure of the structure, as the walls may still be capable of carrying further loading. 

Therefore, it is suggested that a procedure should be developed by which, a redefinition 

of the original mesh removing the crushed elements is devised and information about the 

state of the material transferred from the previous mesh to the new updated mesh.

(2) Because of cracking and the yielding of reinforcement at the base of reinforced

concrete shear walls, it might be useful to use a model whereby variable boundary 

conditions replace the fully fixed conditions assumed at all stages of loading. This can be 

achieved by assuming two orthogonal springs with softening as a function of the steel 

strain to model partially fixed wall at high stresses. This problem does not arise for

simply supported (point support) structures, but for cantilevers and shear walls where 

continuous fixed support exists.

(3) The influence of mesh refinement and aspect ratio of the element on the nonlinear 

behaviour prediction needs to be examined.

(4) A restarting procedure should be useful for the continuation of the nonlinear solution 

in cases of highly nonlinear problems or when the iterative process fails.

(5) Improvements of the nonlinear solution algorithm to reduce the computer time. 

Improving the efficiency of the present formulation may be achieved by implementation of



matrix update schemes such as BFGS methods.

(6) Tracing of the structural response beyond the maximum load level is desirable. This 

can be achieved by including the strain softening behaviour of concrete and using 

nonlinear numerical procedures such as the arc length methods to trace the post peak 

behaviour.

(7) The rotating smeared crack model should be implemented as confirmed by the 

experimental tests of Vecchio and Collins, enabling a better prediction of reinforced 

concrete membranes.

(8) More accurate deformational response are required for some problems. This may be 

achieved by a more consistent description of the concrete— reinforcement interaction effects 

by introducing bond elements to simulate bond— slip.

(9) For reinforced concrete beams the finite element embedded formulation, especially the 

newly emerged generally orientated with bond slip is more appropriate to analyse 

reinforced concrete beams.

(10) Extension of the material model to include long term effects on concrete behaviour 

(Creep and Schrinkage) as well as cyclic loading.

(11) Finally, a macroscopic model using a wide—column frame analogy and including 

nonlinearities by moment curvature relationships is more attractive from the computational 

viewpoint and would be more suitable for design office use.


