

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Analysis of Hardware Descriptions

Satnam Singh

A Thesis
Submitted for the Degree of

Doctor of Philosophy
at the Department of Computing Science,

The University of Glasgow,
May 1991.

© Satnam Singh 1991

ProQuest Number: 11008043

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11008043

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Abstract

The design process for integrated circuits requires a lot of analysis of circuit descriptions.
An important class of analyses determines how easy it will be to determine if a physical
component suffers from any manufacturing errors. As circuit complexities grow rapidly,
the problem of testing circuits also becomes increasingly difficult.

This thesis explores the potential for analysing a recent high level hardware description

language called Ruby. In particular, we are interested in performing testability analyses of
Ruby circuit descriptions. Ruby is ammenable to algebraic manipulation, so we have

sought transformations that improve testability while preserving behaviour.

The analysis of Ruby descriptions is performed by adapting a technique called abstract

interpretation. This has been used successfully to analyse functional programs. This

technique is most applicable where the analysis to be captured operates over structures

isomorphic to the structure of the circuit. Many digital systems analysis tools require the

circuit description to be given in some special form. This can lead to inconsistency

between representations, and involves additional work converting between

representations. We propose using the original description medium, in this case Ruby,
for performing analyses. A related technique, called non-standard interpretation, is shown

to be very useful for capturing many circuit analyses.

An implementation of a system that performs non-standard interpretation forms the

central part of the work. This allows Ruby descriptions to be analysed using alternative

interpretations such test pattern generation and circuit layout interpretations. This system

follows a similar approach to Boute’s system semantics work and O ’Donnell’s work on

Hydra. However, we have allowed a larger class of interpretations to be captured and

offer a richer description language.

The implementation presented here is constructed to allow a large degree of code

sharing between different analyses. Several analyses have been implemented including

simulation, test pattern generation and circuit layout. Non-standard interpretation provides

a good framework for implementing these analyses.

A general model for making non-standard interpretations is presented. Combining

forms that combine two interpretations to produce a new interpretation are also

introduced. This allows complex circuit analyses to be decomposed in a modular manner
into smaller circuit analyses which can be built independently.

Acknowledgements

I am indebted to my supervisor, Dr. Mary Sheeran, for her patience, support and

encouragement. Her undergraduate lectures on Ruby and VLSI design motivated my

interest in this field. Prof. John Hughes introduced me to Miranda, which sparked off my

interest in functional programming. My thesis has been an attempt to study both high

level hardware description languages and implementation of these languages using

functional programming.

This thesis has involved producing a large software system that runs over several
different computers and operating systems. Many have helped me get to grip with some

of the more obscure aspects of the Unix and Macintosh operating systems. In particular,
Mark Dunlop has been very helpful.

I also wish to thank John O ’Donnell for carefully reading the preliminary version of
this thesis. John Launchbury provided much useful advice on how to formulate a good

partial order for describing the D-Algorithm. Lars Rossen and Graham Hutton have made

helpful remarks about the work on the D-Algorithm and testability transformations.
Geraint Jones and Mary Sheeran have discovered simple but powerful decompositions

for butterfly networks. These decompositions have made it very easy for me to make

automatic layouts of butterfly networks.

This work was funded by the Science and Engineering Research Council of Great
Britain. The Department of Computing Science at the University of Glasgow was a very

fruitful place to work, and the functional programming group provided a useful forum for
my ideas. The support staff have also been sympathetic to my bizarre system

requirements. Finally, Susan Spence helped me in a variety of ways to complete this

work.

Table of Contents

A b s t r a c t ... i
Acknowledgements... ii
Table of Contents... iii

Chapter 1: Introduction..1

Chapter 2: Describing Circuits Using R u b y .. 8

2.1 Introduction...8

2.2 Elementary Combinational Gates... 9

2.3 Composing Circuits..12

2.3 Relational Inverse... 15

2.4 Wiring Relations...18

2.5 Replication of Circuits.. 23

2.6 Sequential Circuits..24

2.7 Four-Sided Tiles.. 26

2.8 Distributing Signals.. 29

2.9 Some Examples.. 30

2.10 Summary... 32

Chapter 3: Testing Digital C ircuits... 34

3.1 Introduction... 34

3.2 Why Circuits have to be Tested... 35

3.3 Types of Test.. 37

3.4 Test Pattern Generation... 40

3.1 Boolean Differences... 51

3.5 Deductive Fault Simulation.. 54

3.5.1 Introduction to Deductive Fault Simulation... 54

3.5.2 An Example of Deductive Fault Simulation..................................57

3.6 Testability Measure...58

3.6.1 Introduction... 58

3.6.2 ATPG Approach.. 58

3.6.3 Testability Measure (TM) Programs.. 59

3.6.4 TMEAS.. 59

3.6.5 The SCOAP Testability Measure.. 60

3.7 Design for testability techniques... 64

3.7.1 Ad hoc methods... 64

3.7.1.1 Test point insertion..64

3.7.1.2 Pin amplification..64

3.7.1.3 Blocking or degating logic.. 65

3.7.1.4 Control and observation switching.................................... 65

3.7.1.5 Test state registers...65

3.7.2 S tructural Approaches... 65

3.7.2.1 Level sensitive scan design (LSSD)................................... 66

3.7.2.2 Scan-set logic... 68

3.7.3 Built-in-test and self-test methods... 69

3.7.3.1 Signature analysis..69

3.7.3.2 Built-in-logic block observation (BILBO)......................... 70

3.8 Discussion..71

Chapter 4: Abstract Interpretation... 73

4.1 Introduction...73

4.2 Strictness Analysis..75

4.3 Abstract Interpretation of HDLs...77

4.4 An Alternative Interpretation in Ruby... 78

4.5 Combinational & Sequential Depth... 79

4.6 Related Work.. 81

4.6.1 Simulating Circuits in Miranda..81

4.6.2 System Semantics... 83

4.6.3 Other W ork...85

4.7 Discussion..85

Chapter 5 : Non-Standard Interpretation.. 87

5.1 Introduction.. 87

5.2 Techniques for Expressing NSI...88

5.3 An Example: Symbolic Simulation...95

5.4 Labelling Nets.. 99

5.5 Internal Connections...102

5.6 Composing Interpretations... 103

5.7 Conclusions..104

Chapter 6 : Applications of N S I.. 106

6.1 Introduction... 106

6.2 Deductive Fault Simulation Interpretation...106

6.3 SCOAP TM Interpretation..108

6.4 Inverting Nodes and Arcs...110

6.5 Partial Evaluation... I l l

6.6 Combining Interpretations..113

6.7 Conclusions..115

C hapter 7 : Im p lem en ta tio n ... 117

7.1 Introduction... 117

7.2 System Overview..118

7.3 The Standard and Symbolic Interpretations... 121

7.4 A Graphical Interface.. 129

7.5 A Simple NSI System...132

7.6 The Core of the Interpretation System..135

7.7 Comparison with Ada... 139

7.8 Summary..140

Chapter 8 : Test Pattern Generation... 142

8.1 Introduction..142

8.2 Formal Description of a Test Pattern... 143

8.3 Introduction to the D-Algorithm..143

8.4 Re-expressing D-Intersection..156

8.5 Implementing the D-Algorithm...160

8.6 Verification using the D-Algorithm..166

8.5 Extending the D-Algorithm...166

8.6 Conclusions.. 168

C hapter 9 : C ircu it Layo u t..171

9.1 Introduction..171

9.2 Functional Geometry.. 171

9.3 Describing Butterflies.. 172

9.4 Drawing Butterflies... 174

9.5 Drawing Non-Butterflies...177

9.6 Implementation.. 185

9.7 Conclusions.. 186

Chapter 10 : Improving Testability... 188

10.1 Introduction..188

10.2 Testing Strategy...189

10.3 Transforming Combining Forms...190

10.3.1 Introduction... 190

10.3.2 Serial Composition.. 190

10.3.4 Map..196

10.3.5 Loop.. 197

10.3.6 The Delay Element.. 198

10.3.6 Row and Col.. 198

10.3.7 Repeated composition...199

10.4 Augmenting Ruby for T ..200

10.5 Conclusions..201

C h ap ter 11 : Conclusions... 203

Appendix A ...210

A. 1 Source for Deductive Fault Simulator.. 210

A.2 Source for SCOAP Testability Measure..212

A .2.1 Controllability measure..212

A .2.2 Observability mesure...213

A. 3 Partial Evaluation Interpretation..214

References.. 215

1

Chapter 1

Introduction

The design of an integrated circuit requires the use of many software analysis tools.
Simulators can be used to check that the behaviour of the circuit corresponds with what
was specified. Other tools are used to check that enough power is delivered to each part
of the circuit, and others check that the timing behaviour of the circuit is correct.
Testability analysis tools help generate test patterns and highlight areas of the circuit that
are difficult to test.

All of these tools have to analyse some representation of the circuit. Current practice is

for each of these analysis tools to use its own representation and notation for circuits.
This requires translators to be written to convert between representations and can give rise

to inconsistency between representations. Figure 1.1 (overleaf) shows the outline of a

simple VLSI system that uses analysis tools which operate on a circuit description not
supported by the design database. This problem would be avoided if these tools used the

same representation. This also leads to a great deal of code sharing. The internal
representation of a circuit and its associated operators need only be constructed once.
They are then made available, perhaps as an abstract data type, to circuit analysis tools.

Of course, there are circuit analyses that operate on circuit descriptions at very different
levels of abstraction for which a common circuit representation may not be possible. A

good database system should keep track of the relationship between circuit

representations at differing levels and present a data interface to CAD tools to allow them

to operate over a wide spectrum of abstraction. A database system should also deal
automatically with different file formats for the same information, presenting a transparent
standard representation for CAD tools. However, this is an ideal which has not been

achieved. Usually, a database system for a CAD product comprises a collection of files

with very little management software.
This thesis presents a non-standard interpretation system, along with powerful

operations that allow a large class of circuit analysis tools to be implemented. New

2

analysis tools are made by producing new functions that operate over circuit descriptions.
It also implements a rudimentary database system which is used by the analysis tools to

extract and submit information to and from design databases.

operate over the same description. There are many ways of doing this, but in this thesis

we concentrate on developing the technique of non-standard interpretation. Non-standard

interpretation provides a natural framework for developing circuit analyses. The method

works by redefining the semantics of leaf nodes in a circuit tree (or graph) description to

yield a new analysis. Thus, the same structure is analysed, but with different (non­

standard) semantics.
Non-standard interpretation is adapted for analysing high level hardware descriptions.

The theoretical and practical aspects of this technique for analysing hardware descriptions

are considered. This technique, along with the related technique of abstract interpretation

has been used with great success to analyse computer programs, especially in functional
languages [Peyton Jones 87].

We note that analysis tools can be built more quickly and reliably if all circuit analyses

f Graphical A f Textual N
I Entry) I Entry J

Simulate J

Design Database

Reformat

Figure 1.1: A simple VLSI CAD System

3

Figure 1.2 shows an abstract circuit which we shall use to outline the principle of non­
standard interpretation. The logic elements are denoted by letters A to E and the wires are

denoted by the numbers 1 to 10.

E --------10

Figure 1.2: An abstract circuit.

Most circuit representations use a graph based approach to capture circuit connectivity.
Logic elements are treated as nodes of a graph and the wires are treated as arcs. There is a

small problem with primary inputs and outputs, but this can be dealt with by adding extra

dummy nodes at the periphery of the circuit. Such a representation for the circuit above is

shown in figure 1.3. The dummy nodes are shown as small shaded boxes.

Figure 1.3: Graph representation of circuit in figure 1.2.

This graph can be used to simulate the circuit by thinking of the nodes as procedures

that implement the actions of the circuit they model, and the arc values as representing

parameter values that correspond to the signals on the wires. This graph is said to have

an isomorphic structure to the circuit it represents: they are both the same shape. Non­
standard interpretation essentially works by providing code for the nodes which performs

some task other than simulation. The values on the arcs also change type, depending on

the interpretation being performed. This gives a new circuit analysis which we are

applying to exactly the same circuit structure that we used for specification and

simulation. There is less likelyhood of inconsistency. When specifying a new analysis in

this way, we do not have to write code to process the circuit representation since we share

the code used by the simulation analysis.
We are particularly interested in developing testability analyses, and several are

presented. The cost of testing a circuit is increasing as the sizes of circuits grow rapidly.
The consequences of not testing circuits adequately can be grave. The analysis of

4

sequential circuits for testability is difficult, and non-standard interpretation seems to offer
no advantages for analysing such circuits. Instead, we use non-standard interpretation to

analyse combinational circuits only. We then present some transformations that improve

the testability of a sequential design. Many of these transformations involve breaking the

circuit into combinational blocks which can be tested separately from the sequential
blocks. Thus, we combine a new method of analysis with successful traditional
techniques for managing the testability of sequential digital systems.

We choose to analyse a rich algebraic hardware description language called Ruby. This

is a relational language that allows regular synchronous digital circuits to be described

succinctly. Ruby descriptions can be manipulated using existing laws about Ruby

combining forms. Ruby also contains information about how circuits are laid out since it
captures circuit structure. This is the key to the analyses that we present. Several tools

have been implemented. Starting off with a simulator, we have used non-standard

interpretation to build a testability measure tool, a fault simulator, test pattern generators,

circuit layout tools and many others.
Non-standard interpretation is shown to be a good paradigm for capturing a wide

variety of circuit analyses. This method promotes code re-use and modularity, and

simplifies the implementations. This makes these tools easier to verify. Future work

could involve building a proof system based around our non-standard interpretation

system. This would check properties of circuit analysis tools to increase our confidence in

their correctness.
Chapter 2 presents a brief introduction to the subset of Ruby that has been

implemented by the author. This is a large subset, and is suitable for describing gate level
circuits and arithmetic circuits. The standard meaning of Ruby is presented, giving

behaviour as well as layout semantics.
An introduction to the problem of testability is presented in Chapter 3. We explain why

circuits have to be tested and why this is a difficult problem. Various methods are

proposed for analysing combinational circuits for testability, and some of these are

implemented in later chapters by non-standard interpretation. Sequential circuits are dealt
with by decomposing them into combinational sub-blocks which can be tested

independently of the sequential components.
Some circuit analyses can be represented as abstract interpretations. Abstract

interpretation is introduced in chapter 4, which shows how it has been used by functional
programmers to analyse lazy functional languages. We present examples of circuit

analyses that are abstract interpretations. Abstract interpretation supports the notion of
safety which allows a particular abstraction to be proved correct with respect to the

standard interpretation. This is very useful for proving the correctness of circuit analyses.

5

However, we show that abstract interpretation is not powerful enough to capture many of
the testability analyses that we would like to do.

The more general but less disciplined technique of non-standard interpretation is

introduced in chapter 5. Several methods for performing non-standard interpretation have

been implemented. Some earlier methods are presented, along with one technique that we

have settled on for making non-standard interpretations. One version allows only the

outputs of circuits to be observed, while the other model allows internal nodes to be

examined.
Having built non-standard interpretations, the next step is to show how they can be

combined. The most useful way of making a new interpretation is to modify an existing

one. Another way of combining two interpretations is to compose them in a serial

manner. A symbolic simulator is given as an example non-standard interpretation.
Chapter 6 shows how two testability analyses can be cast as non-standard

interpretations. The first is deductive fault simulation, which can be represented by one

simple non-standard interpretation combined with the standard interpretation and a

labelling interpretation. The second is SCOAP testability measure. This is expressed by

using three interpretations: labelling, controllability measure and observability measure.
Controllability is a forward interpretation in which information flows from the primary

inputs to the primary outputs. Observability measure is a backward interpretation in

which information flows from the primary outputs to the primary inputs. Since Ruby is a

relational language with inverse, both types of information flows are dealt with easily.
The implementation is described in chapter 7. The architecture of the system is

outlined. Actual test inputs and outputs for many interpretations are also presented. We

show that for a relatively small amount of code, our system affords a very high degree of
functionality. We also show how things would have been more difficult if the system was

implemented in a powerful modem imperative language like Ada. Figure 1.4 represents a

simplified view of the system architecture.

6

NSI Core

^ AST def ^

NSI #1parser
Command File
Interpreter NSI #2

etc.

Ruby descriptions Compiled intermediate form execution scripts

Figure 1.4: Simplified architecture of NSI system implemented.

One of the most important tasks carried out in testability analysis is test pattern

generation. In chapter 8, we show that a popular automatic test pattern generation

technique, called the D-algorithm, can be expressed as a non-standard interpretation.
First, we re-express this complicated algorithm by giving a more formal description of
each stage. The algorithm has complex backtracking information flow. We decompose

the algorithm into several smaller problems which are easier to solve and have simpler
information flow. Lazy evaluation is exploited to express backtracking implicitly, thus

simplifying the algorithm implementation. This non-standard interpretation is then

combined with a previously defined interpretation to produce a more efficient PODEM

style test pattern generator.
Chapter 9 presents an interpretation for drawing butterfly circuits. The non-standard

semantics employs functional geometry to help lay out these regular and recursive

circuits. Several large butterfly and related network drawings are shown, all produced

automatically by non-standard interpretation. Some of the pictures are drawn in colour to

emphasise the wiring patterns involved. The ease with which these drawings were

produced is convincing evidence in support of formal descriptions of high level circuits

and non-standard interpretation as a circuit analysis.
Chapter 10 presents a set of transformations that improve the testability of circuits

described in Ruby. We apply the traditional techniques for testability analysis, for
example decomposing serial networks into parallel ones. We also try to spot replication

so that large parts of the circuit can be tested in parallel, thus vastly reducing test effort.

Transformations for dealing with sequential circuits are also presented. These involve

7

isolating the sequential and combinational parts of the design. The approach proposed is

to use the non-standard interpreters presented in previous chapters to analyse

combinational blocks and to apply scan path techniques to test chains of sequential
components.

Chapter 11 concludes and discusses how non-standard interpretation is related to the

objected-orientated notions of classes and inheritance. This is followed by an appendix

listing the code for three non-standard interpretations. Finally, the references for the entire

thesis are given.

Chapter 2

Describing Circuits Using Ruby

2.1 Introduction
The analysis techniques presented in later chapters operate on behavioural descriptions of
circuits. For this reason it is important that we choose an expressive and powerful
hardware description language. We also wish our analyses to take advantage of any

repeated structure and hierarchy. For these reasons the relational hardware description

language Ruby [Jones & Sheeran 90] has been chosen as a suitable high level
representation.

Ruby is a powerful hardware description language which allows regular synchronous

circuits to be described and manipulated easily. Only a subset of the language is presented

here. The syntax of Ruby in the literature has been changed often. The notation

introduced in this chapter shall be used consistently, although it may not correspond

exactly with what others have written in Ruby.

Elementary combinational circuits are modelled by simple binary relations over tuples

of boolean values. Larger combinational circuits are then composed using higher order
combining forms like serial composition (relational forward composition) and parallel
composition. Combining forms like serial and parallel composition also provide layout
information.

Wiring circuits re-arrange wires without modifying the values being carried. A library

of plumbing relations is introduced to allow the description of such circuits. The notion of

lists of signals is used to help describe families of related wiring patterns e.g. zipping a 2-

tuple of lists into a list of 2-tuples. Many of the wiring circuits have definitions very

similar to tuple and list-manipulation functions found in most modern functional
programming languages.

9

Streams are introduced to help describe sequential circuits. This method allows elegant
description of sequential behaviour without using state variables. Ruby abstracts from

explicit state and explicit time. This greatly simplifies the difficult task of reasoning about
sequential circuits. The combinational primitives are extended to work over streams of
values by spreading their combinational behaviour pointwise over signals of streams.

Other Ruby constructs for replicating circuits are also introduced. A convention for

describing vertical as well as horizontal information flow is given. Finally, a small
example of a Ruby design is presented.

Ruby is still being developed and has been used to describe a large variety of circuits

e.g. butterfly circuits [Jones et. al. 90a] and FFT circuits [Jones 90]. Implementation

work and type theory development is being carried out by Hutton [Hutton 90] and

[Murphy 90]. Lars Rossen has implemented a large subset of Ruby in the Isabelle

theorem prover [Rossen 90]. A more detailed description of Ruby can be found in [Jones

et. al. 90b].

Although we have concentrated on Ruby, we could have used any hardware

description language. Languages which provide powerful forms of composition are

particularly suitable. The language Daisy [Johnson 83] would also have been a suitable

candidate. This is functional in nature and is easy to manipulate. Johnson has shown how

to synthesize designs in Daisy from recursion equations.

Hydra has been proposed by O ’Donnell as a powerful hardware description language

that can describe system at a behavioural or structural level of detail [O’Donnell 88]. It is

easy to specify different parts of a system at different levels of abstraction. Hydra

provides the designer with powerful tools like stream recursion equations, recursive

circuit specification, functional geometry and higher order circuit combining forms.

2.2 Elementary Combinational Gates
Ruby describes the behaviour of a circuit by capturing the relation between the signals at
the terminals of the circuit. Composite circuits can be described by composing relations.
Circuits are designed using a library of ready built or elementary circuits which are

combined to form larger circuits.

10

To describe combinational circuits, a suitably rich collection of elementary relations

that implement logical operations is required.There must be enough relations to allow the

description of any combinational circuit. The set of relations {NOT, AND, OR} is chosen

to be the elementary set. This collection is universal i.e. combinations of these relations

can describe any combinational circuit. Another suitable set is {NAND}. Although this set
contains only one relation, the set {NOT, AND, OR} allows more natural definitions of
many boolean expressions. The set of elementary relations is named <BJlSfC

Extra elements can be added to this set when required. For example, to describe

arithmetic circuits, it may be convenient to assume that a full-adder is an elementary

relation. By using a suitably powerful set of combining operators, any boolean function

can be described by composing the basic circuits.

Initially boolean algebra is used to describe the semantics of the gates in HASIC. One

useful extension is to three valued logic (true, false and unknown). As usual, the boolean

algebra possesses two values T (true) and F (false) and three logical operations: (logical
negation), a (conjunction) and v (disjunction).

Binary relations relate objects of one set to another. If X and Y are sets, then X Y

denotes the set of relations from X to Y. This may also be written as <P(X x F) i.e. the

powerset of the cartesian product of the sets X and T. A binary relation on sets X and Y

is a subset of X x Y. Two elements x e X and y e Y are related to each other by a binary

relation R if (x, y) s R, where (x, y) is a 2-tuple or pair. We often abbreviate (jc, y) e R

to x R y.

A relation R from X to Y does not have to relate every object in X to Y. The subset of
X that R does relate to Y is called the domain of R. The elements of Y that are related by

R form the range of R. It is useful to define two functions to extract the domain (dom)

and range (rng) from a relation R:

<BJlSrC= {NOT, AND, OR} (2.1)

dom R
rng R

{ x : : X\ 3y v.Y• x R y)

{ y : : Y\ 3x : : X> x R y)
(2.2)
(2.3)

One straightforward definition of the basic relations is:

x NOT y

(a, b> AND c

(a, b> OR c

<=> y = -i x

<=> c = a a b
<=> c = a v b

(2.4)
(2.5)
(2.6)

11

The behaviour of the NOT gate (definition 2.4) is specified by saying that the value at the

domain must always be logically opposite to the value on the range.

AND relates a pair of boolean values to a single boolean value. The behaviour of AND

is specified by stating the value at the range c is always the logical conjunction of the two

values at the domain a and b. OR is defined in a similar manner.

The basic gates and combining forms have types associated with them which give the

relation between the kinds of data that can appear at the domain and range. The type of a

relation is specified by giving a type expression for the domain and the range. For
example, a NOT gate has the type:

NOT : bool ~ bool (2 .7)

Type names appear in lower case, and polymorphic types are denoted by lower case

Greek letters. The types of the other two basic gates are:

AND : (bool, bool) ~ bool (2.8)
OR : (bool, bool) ~ bool (2 .9)

A useful wiring circuit is split which duplicates a value. This is defined as:

a split (a, a) «=> true (2.10)

The universal quantifiers are omitted for polymorphic types.

split: a ~ (a, a) <=> Va. split: a - (a, a).

This says that split relates a signal on the domain, which may be of any type (call it a) to a

pair of signals on the range. Each element of the pair is of type a. Thus, split is a

polymorphic relation.

As an alternative specification, the basic gates are now given explicitly as sets of pairs.
The first element of the pair is a value in the domain and the second element is a value in

the range. The following sets may be used to define the behaviour of the combinational
gates.

These sets just encode the truth tables for the basic gates. Definitions 2.11— 2.13 attribute

the same behaviour to the basic gates as definitions 2.4— 2.6.

NOT
AND

OR

{(F, T), (T, F)}
{((F,F), F), ((F, T), F), ((T, F), F), ((T, T), T)}
{((F.F), F), ((F, T), T), ((T, F), T), ((T, T), T)}

(2 .11)
(2.12)
(2.13)

12

Why are relations and not functions being used to describe hardware? In a real
combinational circuit built with the above primitives, information flow is unidirectional.
To answer the question “what is the output for a given input” it is sufficient to use

functions. One reason for using relations is that many of the transformations on circuits

depend on connectivity and not the direction of information flow. The use of relations

abstracts from the direction of data flow, concentrating on the connectivity. This

simplifies many algebraic laws about circuits. We shall later present some circuit analyses

which have a backward flow of information e.g. the SCOAP testability measure.Such

analyses are rendered more naturally in a relational notation. These advantages are

covered in more detail in [Sheeran 88a]. Ruby’s algebraic properties are exploited later to

aid transformations that improve testability.

2.3 Composing Circuits
It was decided earlier not to use NAND as the elementary relation. This relation may of
course be constructed using the relations AND and NOT. To make the NAND relation using

these two elementary relations, the range of the AND relation is used as the domain of the

NOT relation. The range of the NOT relation is used as the range value of the composite

relation. When two circuits are composed by using the range of one as the domain of the

other then we call such a composition a serial composition. The serial composition of
an AND gate and a NOT gate is shown schematically in figure 2.1.

13

In addition to the semantics presented above, Ruby descriptions also have a geometric

interpretation. The elementary components are drawn with the domain on the left and the

range on the right. Composition is represented by juxtaposition as shown in figure 2.1.

others. Capturing structure is very important for the analyses we present. This is

especially the case for testability analyses, where the faults to be tested for depend on the

structure of the circuit.

The structural information in Ruby descriptions is also useful for fault models that
consider the possibility of adjacent wires shorting. However, this information is not used

by the analyses presented in later chapters.

Figure 2.1: Serial composition of AND and NOT

The serial composition of two relations F and G is written as F ; G and is defined by:

The infix serial composition operator is associative. Bracketing can be omitted so that
A ; B ; C = A ; (B; C) = (A; B); C.

The range type of F must be the same as the domain type of G for serial composition to

be well typed. This relationship is expressed by the following type rule:

Serial composition is an example of a higher o rd er combining form. It takes as

parameters two circuits and yields a composite circuit.

The NAND relation built earlier may be expressed explicitly by the set:

NAND = AND ; NOT = {«F,F> T), «F, T>, T), «T, F>, T), «T, T>, F)}

NAND : <bool, bool) ~ bool

The following example shows the result of ‘simulating’ the NAND gate with ‘input’

<T. F).

(T, F> NAND x

= { def. NAND }

Wires are drawn from the bottom up that is the first element of a tuple is below all the

a (F; G) c 3b. (a F b) & (b G c) (2.14)

14

(T, F) AND; NOT x
■ { def. AND, def.;}
F NOT x

= { def. NOT}
x = T

As expected, the input/output pair is a member of the defining set for the NAND relation:

«T, F), T) e NAND.

Serial composition is a natural way to combine two circuits which communicate

information to each other. The communication occurs over the internal connection made

by serial composition. It is also desirable to compose circuits which do not communicate

with each other. One way to do this is by using parallel composition.

To demonstrate parallel composition, consider the specification of a circuit P defined

by:

<x, (y,z» P (a, b) = a = - x & b = y/sz

Notice that a and b are not related. It is possible to relate x to a using NOT independently

of relating <y,z> to b using AND. These two circuits may be placed in parallel in order to

realise the specification of P by writing [NOT, ANDJ.

Parallel composition of two circuits F and G is denoted by [F, G]. The type of the new

circuit is defined in terms of the type of the constituent circuits:

F : a ~ p G : x ~ &
[F, GJ : (a , x > ~ <P, 6)

Parallel composition of two relations is defined by independently relating the values on

the terminals of the constituent relations.

<a, b> [F, G] <c, d> = (aF c)& (b G d)

The domain and range are defined in terms of the domain and range of constituent

circuits:

dom F x dom G

Figure 2.2 shows a pictorial representation of [NOT, AND].

15

Figure 2.2: Parallel Composition [NOT, AND]

This new composite parallel circuit requires two values on its domain. These are

represented by a tuple: the first element contains the value for the bottom circuit and the

second element contains the value for the top circuit. The range is described similarly.

An example ‘simulation’ of [NOT, AND] is

(T, (F, T» [NOT, AND] <x, y>
= {def. parallel composition}
T NOT x & <F, T)AND y

= { def. NOT and AND }
x =F & y = F

As expected, «T, (F, T», <F, F» is a member of the relation [NOT, AND].

Parallel composition extends naturally to compose more than two circuits, e.g

<a, b, c> [P, Q, R] <d, e, f> = (a Pd) & (b Qe) & (c Rf)

There are many natural looking laws about parallel composition. For example:

[R, S]; [T, U] = [R ; T, S ; U]

2.3 Relational Inverse
The inverse of a relation is defined as

aR '1 b = bR a

R : a ~ b
R *1 : b ~ a

So what does it mean to talk about the inverse of a circuit? Ruby interprets this as flipping

over the circuit along a vertical axis. The domain is then on the left and the range is on the

right. Figure 2.3 shows the inverse of AND i.e. AND'1.

16

Figure 2.3: Inverse of AND.

Ripping a circuit over twice leaves it unaltered:

(FT1)-1 = R

The inverse of a serial circuit is formed by flipping the whole circuit so that the leftmost
and rightmost circuits of the composition are swapped:

(R ; S)'1 = S’1 ; R-1

As an example, consider the inverse of the NAND gate defined earlier:

(AND; NOT)-1
= NOT'1 ; AND'1

The layout for this circuit is shown in figure 2.4.

Figure 2.4: (AND ; N O T)'1 = N O T '1 ; A N D '1

The inverse of a NAND gate expects a 2-tuple from the right and delivers a single logic

value at the left.

The inverse of a parallel composition of circuits Ci,..Cn is simply the parallel
composition of the inverse of the constituent circuits i.e. For example:

[NOT, AND]*1 = [NOT*1, A N D '1]

A diagram of this circuit appears in figure 2.5.

Figure 2.5: The inverse of [NOT, AND1

Inverse is used in the definition of the conjugate higher order function. The

conjugate of two circuits R and S is denoted as R \ S and defined as:

17

R \S = S-1 ; R ; S

Figure 2.6 shows a picture of R\S. The following properties hold for conjugate:

(R \ S) ‘1 = R - 1 \ S

(R \ S) \ T = R \ (S ; T)

The proofs are omitted— they may be found in [Sheeran 90] and are very simple.

S'1 R S

Figure 2.6: R \ S

Conjugate is useful for expressing changes of representation.

We only have two values in our logic domain: high or low. Each wire in the circuit
should only be driven by one output so that there is no possiblity of conflict. So, unlike

other logic models, we do not have a value for high impedance. We also have to take care

not to describe circuits which type-check but do not make physical sense. An example of
such a circuit is:

AND ; A N D '1

We might mistakenly think this circuit makes sense at the physical level by assuming that
applying a relation followed by its inverse should be like performing the identity relation,
but reference to figure 2.7 shows that this circuit requires the outputs of two AND gates to

be tied together: this will not always result in sensible electrical behaviour. However, the

composition is well typed and does make sense at the abstract level. We have to impose

extra structure over the meaning of composition to catch such badly formed circuits

because they do not conform to physical reality.

Figure 2.7: A badly formed circuit.

We have used arrows in previous pictures to hint at the desired information flow,

although nothing in the semantics presented so far has enforced this. The two opposing

arrows in the centre of the figure 2.7 tell us that something has gone wrong.

To describe sensible circuits, the output of one circuit must be the input of the next
circuit. An analysis for checking this constraint is performed by Sheeran using

18

alternative interpretations. Such an interpretation is presented in more detail in chapter
4.

2.4 Wiring Relations
The circuits presented so far manipulate the information carried along wires in a non­
trivial manner. These circuits manipulate data which is carried along either a single wire

or a group of wires. As shown above, groups of wires are described by tupling. Often,
the tupling structure has to be re-arranged to help fit circuits together.

This kind of re-arrangement is performed by an important class of circuits which are

implemented as wiring relations. These circuits do not need to know exactly what the

information being carried along the wires is. They simply re-arrange the tupling structure.

Additionally, some wires may be lost while others may be introduced.

Consider the following specification:

(a, <b, c» R <d, e) = (d = a)&(e = b A C)

The first element of the tuple in the domain is the same as the first element of the range

tuple. How should these two values be related? To describe such relationships, we

introduce the identity relation:

a i b s a = b

In terms of hardware, this corresponds to a wire or wires which carry the ‘input’ signal to

the ‘output’ signal unaltered.

The inverse of the identity relation is the identity relation:

1-1 = i

Flipping a horizontal wire or wires along a vertical axis does not change the wiring.

Using this relation, we can now realise R as:

[i, AND]

This can be proved to correctly realise R:

<a, <b,c» [i, AND] <d, e>
* { parallel composition)
(aid) & «b,c> ANDe)

19

s {definition of i and AND }
(d = a) & (e = b a c))
= { spec, of R }
<a, <b, c» R <d, e>

Figure 2.8 shows the layout for this circuit:

Figure 2.8: [i, AND]

This is not the only realisation of R but this is the simplest and most natural
implementation. A more complex realisation is [i, [NOT, NOT]; OR ; NOT].

Two common uses of the identity relation are abbreviated:

fst R = [R, ij
snd R = [i, R]

The example in figure 2.8 can now be re-expressed as snd AND.

Another common operation is to extract either the first or the second component of a

pair. The relations Tti and n2 are defined for this purpose:

<x,y>7iix = true
(x, y> ti2 y = true

Consider the following specification S:

<a, <b, c» S (d, e) = (d = a a b) & (e = c)

The bottom two wires a and b are fed into the domain of a 2-input AND gate whilst the top
c wire passes through this circuit unchanged. The most obvious way to implement this

circuit is by using the parallel composition of an AND gate and i.

[AND, i l :: «bool, bool), p» <-> (bool, P)

However, this circuit requires its domain to be of type «bool, bool), P) for some p, but the

domain of S is of type (bool, (bool, x))- We wish to rearrange the elements of this tuple by

altering the bracketing. The wiring circuit reorg performs the required manipulation in

order to keep the types right.

20

<a, (b, c» reorg «a,b>, c> <=> true
reorg :: <a, <p, x» *-» «a,p», %)

This circuit is polymorphic in the sense that it will re-organise the input tuple for arbitrary

substitutions for the types a, p and x- By composing this circuit with [AND, i] we obtain a

suitable implementation for S:

<a, <b,c» reorg; [AND, i] (d, e>
= { definition of reorg }

«a, b), c) [AND, i] (d, e>
s { definition of AND and i }
(d = aAb) & (e = c)

In the above example the type variables for reorg are a=p=bool and x may be any type.

This reorganisation does not necessarily correspond to a physical wiring circuit. In the

example above, reorg has three ‘wires’ going into its domain and the same three wires

appear at its range in the same order. Here, reorg has been used to keep the types right,
but other reorganisations will correspond to physical wiring circuits. We shall try to hint
at the tupling structure in our diagrams by the spacing between the wires. Figure 2.9

shows the circuit we have proposed for S:

Figure 2.9: Reorganisation of tuples.

The top wire may actually be a tuple of wires. To distinguish between wires carrying

single values and wires carrying unknown or composite values we shall use a heavier line

for the latter. Notice also that the top signal does not have any arrows on it: this is

because we cannot determine from the given context the direction of information flow

over this wire. The reorganisation of the wires is shown between the dotted vertical lines.

In the preceding example, a custom built relation was used to solve a plumbing

problem. There are certain wiring patterns that occur frequently. For example, extracting

the first element of a tuple is a useful operation. Instead of defining one relation to extract
the first element from 2-tuples, and another from three tuples etc. we can define generic

tuple relations.

21

Some wiring circuits operate over lists of data rather than a fixed size tuple. However,
making a clear-cut distinction often leads to a great deal of conversion between tuples and

lists. We shall assume that a homogeneous tuple is as good as a list, so <a, b, c) could be

a triple or a three element list, depending on the context.

In a picture there is no difference between an element of a given type and a singleton

list of that type. However, to keep the types of compositions right, we have to distinguish

between a signal and a list containing only one signal. Ruby provides an abstraction [-]
for relating a signal to a list containing only that signal.

x [-] <x) <=> true

A common operation on lists is to combine two lists pairwise. The name given to this

operation is zip (an instance is shown in figure 2.10a) and it is described by:

(x, y) zip z <=> V/. zj = (xj, yj)

where Zj is the 1th element of z. This converts a pair of lists to a list to 2-tuples. Unzipping

from a list of 2-tuples to a 2-tuple of lists may be done by using zip-1.

"""" <c. f>
<d, e, f> 1 " 1

<b, e>

<a, b, c> ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ <j>

Figure 2.10a: «a, b, c), (d, e, f)> zip «a, d), (b, e), (c, f»

Another useful operation is transposition (trn). This interleaves a list of lists and is

rather like matrix transposition. The definition is:

x tm y <=> Vi, j. xj, j = yj, i

Two lists may be combined to form a larger list by appending. The circuit app

concatenates two lists: it is described by:

[Ro. R i Ri. Ri+1. Ri+2 Rnl = [[Ro. R i Ril. [Ri+1. R i+2 Rnll \ app

Figure 2.10b shows a three element list being appended to another three element list

yielding a size six list.

22

Figure 2.10b: Appending lists using app.

Lists may be built up one component at a time by using wiring relations that introduce

a new signal either on the left (apl) or the right (apr):

apl = fst [-]; app
apr = snd [-]; app

Figure 2.11 shows an instance of apl and apr.

1 s___

/ —

(a) (b)

Figure 2.11: (a) append left (b) append right

A useful operation on lists is rev which reverses the elements of a list. It has the

following defining properties:

[-1: rev = [-]

app ; rev = [rev, rev]; rev ; app

Reversing a list twice leaves it unaltered so rev is its own inverse. By restricting rev to

work on lists or tuples of length two, we obtain the circuit that swaps its inputs. The

restriction is denoted by \2 which has the effect of constraining the domain to be a 2-

tuple.

swap = rev \ 2

The swap circuit shall be drawn as two wires crossing over, as in figure 2.12. Wires

cross over without interfering with each other. Contacts between wires shall be shown

explicitly.

Figure 2.12: Swapping the elements of a 2-tuple.

23

Swap is its own inverse and applying swap twice is like applying the identity.

swap ; swap = i \ 2 = swap ; swap'1

Thus, swap = swap1.

A bus can be duplicated by using split,

x split <x, x> <=> true

Multi-way forks can be made by repeated use of split.

split4 = split; [split, split]; app

Figure 2.16: split

2.5 Replication of Circuits
Often many copies of the same circuit are combined to form a larger circuit. This section

presents various ways to replicate circuits in Ruby.

For circuits which have the same domain and range types, it is possible to lay out
horizontally many copies of the same circuit. This is represented by superscripting e.g.
R4 = R; R; R; R.

A common way to replicate a circuit is to apply it to each signal in a list of signals.

This is analogous to applying a function to each element of a list. The higher order

function that performs this task in functional programming languages is called map and

this is also the name used for mapping a relation over lists of signals.

Map has the following properties:

n ; map R = map R ; n

[-]; map R = R ; [-]
app ; map R = [map R, map R]; app

Since map R represents an infinite class of circuits it is not possible to draw a finite

picture of it. Figure 2.17 shows one representative of this class.

24

Figure 2.17: map R over a four element list.

Map has properties which are similar to those for parallel composition. For example:

map (R ; S) = map R ; map S
(map R)*1 = m ap(R '1)
(map R) \ (map S) = map (R \ S)

2.6 Sequential Circuits
The relations presented so far describe combinational circuits; the output of the circuit at
any time depends solely on the inputs at that time. Most circuits have memory elements so

the output depends not only on the current input, but also the past inputs whose history is

encoded in the internal memory components.

First we need to augment the definition of a signal. For combinational circuits, a signal
was just one value. For sequential circuits, a signal is a stream of values.

If s is a signal then s(t) is defined to be the value of the signal at time t. For example:

<a,b,<c,d»(t) = <a(t),b(t),<c(t),d(t)»

Notice that on the left we have a tuple of signals (where the basic element is a stream) and

on the right we have a tuple of basic elements.

To describe sequential circuits requires information about the past. The output of a

sequential circuit may depend on the current input at time index i and the previous value

of the state element at time i-1. To make the past history of a signal available we delay the
‘arrival’ of the stream. This is accomplished by the use of a delay element ©defined as:

a © b <=> Vt. a(t-1) = b(t)

Here, a and b must be streams. As an example, consider delaying a tuple of signals. This

corresponds to delaying each individual signal.

25

<a, b, c> <D <d, e, f> «=> Vt. <a, b, c> (t-1) = <d, e, f> (t)

« Vt. <a(t-1), b(t-1), c(t-1)> = <d(t), e(t), f(t))
« (a 2>d) & (b 2)e) & (c 2) f)

So <D does not necessarily work over just one ‘wire’: it may relate composite signals.
Thus it is not sufficient to think of 2) as being implementable as just one bit level memory

element. The symbol for the delay element is shown in figure 2.41.

Figure 2.41: The delay element.

As usual, the inverse of this circuit is formed by flipping the domain and the range. If an
anti-delay 2>! is ‘driven’ from left to right, then it predicts values rather than remembering

them. The use of both 2) and 2*-1 facilitates reasoning about circuit timing and retiming

[Sheeran 88]. In the final design, the anti-latches must be driven from right to left.

The combinational components defined so far can still be used in sequential circuits by

‘lifting’ their definitions to work on streams. Consider the example of the ANDSeq

relation which is lifted so that it operates pointwise over elements of the signals in the

domain and range.

<a, b> ANDS0q c «=> Vt. (a, b)(t) AND c(t)

<=> Vt. (a(t), b(t)) ANDc(t)

Many sequential circuits require past values to be fed back into the circuit so that they

may be used to determine the current output. To describe this kind of feedback we

introduce a new circuit former loop:

a (loop H) b =def 3.c (a, c) H (b, c)

H :: (ot, ft) ~ (X, P)
(loop H) :: a - x

The loop relation takes as parameter a circuit which relates a 2-tuple to a 2-tuple. The

second element of the range tuple is fed back and used as the second element of the

domain. A schematic for the loop circuit former is shown in figure 2.19.

26

(a) (b)

Figure 2.19: Feedback loop (a) H (b) loop H.

2.7 Four-Sided Tiles
So far circuits have been laid out like tiles with connections on only two sides, thus

allowing only very horizontal layouts. Two dimensional circuits may be described by

placing connections on all four sides of a rectangular tile. This is done in Ruby in a way

that does not require the semantics already presented to be changed in any way.

Two sides of a tile are considered to be the domain of the circuit (the left and the top)
and the other two sides form the range (the right and the bottom). Figure 2.21 shows a

picture of a four sided tile and its inverse. Because of our convention about the position

of the domain and range, the inverse is formed by flipping along a diagonal line running

from the bottom left hand comer to the top right hand comer.

The domain of a four sided tile is always a 2-tuple. The first element describes

information on the left of the tile and the second element refers to the top of the tile.
Similarly, the range is also always a 2-tuple with the first element referring to the bottom

of the tile and the second element referring to the right hand side of the tile.

b d

c a

(a) (b)
Figure 2.21: (a) Four sided tile (b) and its inverse.

Both two sided and four sided tiles will be used in descriptions. It will usually be clear
from the context which type of tile is being used.

27

New combining forms are required to compose four sided tiles. These tiles may be

composed horizontally by using beside (<-») or vertically by using below (t) . The

definitions of these combining forms are:

<a, <b, c>> F <-> G «d, e>, f)
=def 3g. <a, b) F <d, g> & <g, c> G <e, f)

«a, b>, c> Ft G <d, <e, f»
=def 3g. (a, g) F <d, f) & (b, c> G <g, e>

Figure 2.22 demonstrates these compositions pictorially.

(a) (b)

Figure 2.22: (a) beside (b) below

Two generic combining forms for composing many copies of the same tiles either
horizontally or vertically are now presented. Let row take as a higher order parameter a

four sided tile F : it will form a new circuit which contains many copies of F. Similarly, let
col be the higher order combining form for making vertical arrays. Signal construction is

denoted by so for example a:(b, c) = (a, b, c).

<a, 0> row P <0, a>
<a, b:c> row P <d:e, f> =def (a. <b, c)> (P <-» row P) «d, e>, f>
col P =def (row P*1)-1

The following properties hold for these combining forms:

snd [-]; row R
row R ; 1st [-]’1
snd ([m, n]; app); row R
row R ; fst (app-1 ; [m, n])

R ; fst [-]
snd [-]*1 ; R
((row R ; fst m) *-> (row R ; fst n)); fst app

snd app'1 ; ((snd m ; row R) <-> (snd n ; row R))

fst [■]: col R

col R ; snd [-]1
R ; snd [-]
fst [-]'1 ; R

28

fst ([m, n]; app); col R = ((col R ; snd m) t (col R ; snd n)) ; snd app

Instances of a row and a col are shown in figure 2.23.

(a)
Figure 2.23: (a) ro w F (b) COl F

The following laws hold about row and col:

co l R = (ro w R'1)'1
(row F) $ (row G) = row (F IG)

co l F <-4 co l G = col (F <-> G)

(b)

A useful variant of ro w is rdl (reduce left, figure 2.24) which is defined as:

rdl R = row (R ; n2'1) : n2

Figure 2.24: An instance of reduce left.

Reduce right (rdr) can be defined from col.

rdrR = col (R ; rcr1) ; tct

Two to one relations can be cascaded using rdl or rdr. An example of such a cascade

is rdl AND.

29

2.8 Distributing Signals
Distributing a signal across a tuple of signals is performed by adding the signal to be

distributed either to the left or to the right of each element of the tuple to be distributed

over. This leads to four possible patterns, two of which are abbreviated in Ruby as

follows:

<a, 0) dist^O
<a, b) dist|_ c «=> Vi. ct- = <a, b/>
(0, b) distR 0
<a, b> distR c <=> Vi. c; = <a*, b)

Two examples are:

<a, <b, c, d, e)> distL «a, b), <a, c), <a, d), <a, e»
«b, c, d, e), a) distR «b, a), <c, a), <d, a), <e, a»

A circuit for distribute left can be made by using four sided tiles. The value to be

distributed is fed from right to left while the signals to the individual components to be

distributed flow from top to bottom. One suitable implementation for d is tL is then given

by:

Ish = i Z t
rsh = i <-> i
distL= row (fst split; Ish ; swap); n1

Ish ; swap

b c d e
 ̂ hidden

Figure 2.25: An instance of the distribute left circuit for the example.

Distribute right can be defined in terms of distribute left:

distR = swap ; distL; map swap

30

2.9 Some Examples
In this section, some of the Ruby constructs defined above are used to build a 2 to 1
multiplexer and a binary adder. The specification for the multiplexer we want to build is:

<a, <b, c» MUX d <=> d = a/\b v - sac

I f a is true then d is connected to b; if a is false then d is connected to c. This is analogous

to an if..then..else expression. This multiplexer may be implemented as:

MUX = distL ; [AND, [NOT, i j ; AND]; OR

This description is shown to be faithful to the specification:

(a, (b, c» distL ; [AND, [NOT, i] ; AND]; OR d

= { definition of distL }

«a, b>, (a, c» [AND, [NOT, i] ; AND]; OR d
= { definition of parallel composition and AND and i }
(aAb, - sac) OR d
= { definition of OR }

d = aAb v —.aAC

Figure 2.26(a) shows the symbol used for a MUX multiplexer and part (b) shows the

implementation.

31

2-1 M U X

(a)

(b)

Figure 2.26: (a) A 2-tol multiplexer symbol (b) and an implementation.

The second example circuit is a binary addition circuit BINADD. This circuit is

represented by a four sided tile so the domain and range are pairs. The first element of the

domain (a vertical signal) is the carry in and the second element of the domain is a pair of
lists of equal length. The lists represent binary values which are to be added pairwise.
The first element of the range is a list representing the sum of the two lists on the domain

and the second element is the carry out.

A full adder circuit FA is used to add two binary values with a carry in to produce a

sum and a carry out. Let this be a four sided tile, with the carry in as the first element of
the domain and the pair of binary values to be added as the second element. The first
element of the range is the sum and the second element is the carry out.

A binary adder can now be implemented as:

BINADD = snd zip ; row FA

An instance of circuit of BINADD is shown in figure 2.27.

32

list 1 list 2

FA FA carryoutcarry in ------ FA FA

sum of listl and Iist2

Figure 2.27: BINADD

A full adder can be built from two half adders. A half adder HA takes a pair on its

domain representing two binary values. The range of a half adder is also a pair whose

first element is the carry resulting from the binary addition of the two values in the

domain. The sum itself is given in the second element of the range. Using this

component, the definition of FA is:

FA = snd HA ; rsh ; fst swap ; Ish ; snd HA ; rsh ; fst OR ; swap

Figure 2.28 shows how the full adder is constructed.

carry in
OR

b ___
HA HA sum of a and b

and carry in

carry out

Figure 2.28: Construction of a full adder.

A half adder is made from an AND gate and an exclusive-or circuit:

HA
exor

split; [AND, EXOR]
split; [[i, NOT], [NOT, i]] ; [AND, AND] ; OR

2.10 Summary
A large subset of the Ruby hardware description language has been introduced. A circuit
is viewed as a transformer of synchronous streams or signals. Circuits are composed

using powerful yet simple combing forms. These combining forms convey structural and

behavioural information. Ruby abstracts away from the notion of input and output by

considering a circuit to be a binary relation between signals. This gives rise to new

combining forms that exhibit symmetries which would not have been available in a purely

functional model.

33

This chapter has presented the normal or standard semantics attributed to Ruby. We

show in chapter 5 that by altering the semantics we can obtain additional interesting

information about Ruby circuits.

Chapter 3

Testing Digital Circuits

3.1 Introduction
Most manufactured components have to be tested, but the testing of integrated circuits is a

particularly difficult task. Traditional testing of assembled devices (e.g. chairs) relies on

visual inspection and the application of common sense. The testing of electronic

components like televisions is less straightforward, and involves the use of electronic

measurement tools like oscilloscopes to measure electrical characteristics of internal
connections. The internal workings of an integrated circuit are not usually accessible—

the only way to test such a device is by exercising it through its primary inputs and

observing the results at the primary outputs.

This problem is exacerbated by the fact that large digital systems are broken down into

smaller subsystems which may not have an easily identifiable function. Common sense is

no longer a viable technique for testing such complex circuits. Also, checking the form of
the outputs is not enough: it will invariably be Is and Os. It is necessary to check the

pattern of outputs. For most circuits it is not possible to apply all the input test patterns. A

subset of the test patterns which results in a high degree of confidence in the circuit must
be found. This is a very difficult task that requires large amounts of computer and human

resources. The generation of test patterns for general sequential circuits is not fully

automated— often an experienced test engineer has to find tests manually.

There are many reasons why circuits should be specified more formally and the

challenge testing is one of the most compelling. Too often in the past the test engineer has

had little information about the function of the circuits to be tested. A formal rigourous

notation is required for describing circuits so that they can be easily understood.
Automatic tools are used extensively in testing, and these tools require precise

descriptions of the circuits they analyse. These are yet more reasons why hardware

description languages with precisely defined semantics, like Ruby, are becoming

35

increasingly important for circuit description.

This chapter presents a brief introduction to the field of testability. Section 3.2 gives

reasons why testing has become one of the most important stages of integrated circuit
development. Section 3.3 classifies various types of test and how defects in circuits are

described. Section 3.4 presents a formal description of notions like ‘test pattern’. Some

popular methods of generating tests for combinational circuits are presented. These

include a path sensitization technique for manual test pattern generation (which is

formalised and automated by the D-algorithm presented in a later chapter) and the method

of boolean differences. Techniques like fault collapsing are introduced for reducing the

large amounts of information that are handled by CAD (Computer Aided Design) tools

performing test pattern generation. Section 3.5 shows how the very expensive task of
generating tests for a circuit can be reduced by using each pattern to cover as many faults

as possible. A technique called deductive fault simulation is presented which, given as

input a circuit, a fault and a test T covering that fault, will produce a list of all the other
faults which are exposed by the given test pattern T. Section 3.6 presents a method for
estimating how testable a given design is. This could be used in the design stage to

improve subcomponents that are difficult to test by making them more accessible. Section

3.7 presents various methods for improving the testability of circuits and shows how

sequential circuits can be tested.

3.2 Why Circuits have to be Tested
Certain applications such as life critical systems require a high degree of reliability.

Developers of such systems need a guarantee that the components they use will operate

faithfully to their specification. This guarantee is usually provided by testing components

before they are delivered to the customer. The procedure of testing occurs in two distinct
phases of the design and production of integrated circuits. The techniques employed for
testing at these two phases are different.

The design phase phase involves making a series of refinements from a specification

of a circuit to a physical realisation. Circuit specifications can be very complex and

physical realisations might require over a million components. Specifications encompass

not only the intended logical behaviour, but also performance constraints like power and

speed and resource constraints like area. There is a large scope for error or inconsistency

between the specification and the derived design. Verification involves checking that
implementations are consistent with specifications. Testing is one verification technique

36

for detecting such inconsistencies. A model of a design is simulated by a computer until a

satisfactory degree of confidence in the behaviour of the design is achieved. A design

which fails a test has to be redone, using any diagnostic information provided by the test
procedure. The fabrication of integrated circuits is a very expensive task, so every effort
must be made to ensure a design is correct before attempting to physically construct it.

We say very little about this kind of testing. Verification of designs is not easy to

perform by testing because of the vast number of test patterns that have to be applied

before a circuit can be proved to be correct. Sometimes, for practical reasons, not all
faults can be tested for. A subset of likely faults are identified and a set of tests to expose

these faults are generated. This method does not prove the correctness of a design. Much

work has been done on the use of formal mathematical techniques to reason about designs

in order to prove useful properties and ultimately correctness [Cohn & Gordon 86,
Melham 87, Cohn 87].

Integrated circuits are manufactured on disks of silicon (called wafers) containing

typically many copies of the same circuit. Each copy is called a die. A wafer is typically

75mm in diameter and contains one hundred 5mm square dies. Even if the design of the

circuit has been proved to be correct, it is still possible that a physical realisation of the

correct design does not meet its specification. The manufacturing process for integrated

circuits is far from perfect— many of the dies may have been badly formed. For certain

types of circuits such as large microprocessors like the Motorola 68000 as many as 70%

of the dies may be damaged. Wafers are baked in furnaces which may be at the wrong

temperature as well as being treated by various chemicals which may be of the wrong

composition. A single speck of dust can render a die useless. These variations and

imperfections decrease the ratio of working dies to the total number of dies on a wafer.

This ratio is called the yield.

The quality control stage of production must isolate defective components so that they

can be removed. The process of determining which dies on a wafer are working is called

wafer sort. Preventing the shipment of broken circuits is becoming increasingly

important as greater emphasis is placed on quality. Another reason for discarding

defective dies is the high cost of bonding which is often as much as a third of the total
production cost. Bonding is the setting the dies in ceramic packages and linking the tiny

pads of each die with the pins of the chip.

Manufacturing errors modify the behaviour of a circuit in many ways. A circuit can

still perform its intended logic function, but at the wrong speed, or perhaps it may

consume too much power. Parametric testing involves measuring these analogue

quantities to ensure that performance constraints are satisfied. Analogue quantities can

37

deviate from the expected values because of the variations in manufacturing process or
because of bad design, e.g. a channel being too narrow to cope with the required current
flow. Functional testing or logic testing is the checking of the logical behaviour of
the circuit. Although both types of testing are essential, nothing is said here about
parametric testing: the techniques presented in this thesis pertain mainly to functional
testing.

The primary reason for performing testing at the post-production stage is to discard

defective components. Since integrated circuits are encased in ceramic packages and dies

contain features of the submicron scale, repair is not usually a viable option. The test
procedure can provide useful diagnostic information which can be used to help locate a

fault in some subcircuit. This information can be used to improve the fabrication process

and the design process. For example, the temperature of a furnace can be reduced or a

component that fails frequently redesigned using more reliable design rules.

3.3 Types of Test
The activity of producing a suitable collection of test patterns to exercise a circuit is called

test pattern generation (often abbreviated as TPG). Ideally, test pattern generation

should be performed automatically by CAD tools, but this has only been realised for a

restricted class of circuits. Much test pattern generation is still done manually. This

consumes valuable time of experienced test engineers and is very costly.

Tools that perform automatic test pattern generation (ATPG) are based on

formalisations of manual techniques.

The obvious way to test a circuit is to see if it is operating correctly with respect to its

specification. This is the approach taken by functional test programs. The word

‘program’ does not mean a piece of software, but a sequence of test patterns. The

specification usually used is a truth table. The input part of each row of the truth table is

applied in turn for combinational circuits. The output for each pattern is checked against
the expected result in the truth table. Any deviation from the expected values indicates the

circuit is faulty and should be discarded.

This approach is not very practical for various reasons. It is often very difficult to

derive a truth table for a circuit. Even if a truth table is available, the number of test
patterns required is related exponentionally to the number of primary inputs. If a

38

combinational circuit has n inputs (Figure 3.1(a)), then it will require 2" test patterns to be

applied in order to be tested exhaustively. For even fairly modest values of n, the number
of test patterns required becomes prohibitively large.

The problem is amplified for sequential circuits. These circuits have to be tested with

all possible input combinations for each possible combination of internal state variables.
For a circuit with n primary inputs and m state elements (Figure 3.1(b)), this requires

2n+m patterns.

If, say, n = 24 and m = 20, the resultant number of test vectors for exhaustive testing

is 244. If we could generate test vectors at a rate of 106 vectors/sec, then testing will take

six months at 24 hours per day!

STATE
ELEMENTS

COMBINATORIAL
LOGIC

COMBINATIONAL
CIRCUIT

(a) (b)

Figure 3.1: (a) Combinational circuit (b) Sequential circuit.

By applying a 'divide and conquer' technique, we can decompose a big circuit into

smaller circuits and test these independently. If we can test the combinatorial and

sequential elements separately, then the number of vectors required for exhaustive testing

is reduced to 2n+2m. This could be done in under 20 seconds— a dramatic reduction in

testing time.

Thus, by partitioning the circuit into smaller subunits and testing state elements

independently we can make the problem of testing manageable. This involves thinking at
the design stage about testability. The circuit has to be designed to allow access to the

subunits and will require extra pins, increasing the packaging cost.

Design techniques to cope with testing address the following areas of importance:

• Test generation
• Test verification
• Design for test

39

Test generation entails finding and producing the smallest set of test vectors that will
give the greatest coverage of faults. Test verification concerns assessing the fault
coverage of a set of test vectors. Designing with testing in mind reduces the complexity of
the two previous problems.

Not all circuits can be naturally described by a truth table. For example, a

microprocessor is understood in terms of its instruction set or a set of register transfer
rules. An exhaustive test would involve executing every instruction with every operand.
This is clearly not acceptable. Different techniques are required for testing such circuits.

Instead of checking to see if a circuit is working, a test program can be constructed to

check if a circuit is faulty. By considering the physical structure of the circuit, a set of
possible defects is enumerated and tests constructed for each defect. A defect is a

physical failure that causes functional failure. Clearly this requires more information than

just the behaviour of the circuit: the physical layout is now important too. Test generation

techniques that attempt to detect specific structural failures generate structural test
programs. Another name for structural testing is fault-oriented TPG.

Several physical defects can have the same electrical effect on the circuit. These faults

have the same effect on the observable outputs, making them indistinguishable. For this

reason it is more profitable to think in terms of faults which are the electrical effects of
physical defects.

A general type of physical failure can now be represented in terms of how it affects the

logical operation of the circuit. The relationship between the physical defects and faults is

expressed by a fault-model. Often, a fault arises from a variety of physical defects.

The consequence of this is that fault-models can relate a fault to a list of physical defects.

Such a fault model is the single-stuck-at-fault model [Weste & Eshraghian 85].
This model makes two assumptions about how circuits can fail. The ‘single’ in the name

refers to the assumption that only a single node in the circuit is directly affected by a fault.
The second assumption is that the electrical effect of the fault is to cause a node to be

‘stuck’ at logic 0 or logic 1, irrespective of the stimuli applied at the primary inputs.

These assumptions are simplifications of the way in which circuits fail. A failure can

be caused in some other way. One example is two lines being connected together so that
they are always at the same logic level. Also, a circuit may fail at several nodes, not just
one. However, for most circuits, the single-stuck-fault model gives surprisingly good

results. This is the most widely used model in industry.

This model does not cover all faults. For example, the joining of two wires that were

40

not previously joined can radically alter the behaviour of a circuit. For CMOS, some

faults may convert a combinatorial circuit into a sequential circuit. This happens when a

node becomes permanently detached from source or drain due to a defective transistor.
The value on this node will depend on its previous value i.e. the charge stored there due

to capacitance.

Consider a 2-input AND gate f = a AND b. There are three wires associated with this

gate: two input wires and one output wire. Each wire can have one of two faults (i.e.
stuck at zero or stuck at one). So there are six possible faults. The notation a/0 is used to

mean node a stuck-at logic 0— similarly for a/1. A truth table for the fault-free circuit and

possible faults is:

a b c a/0 b/0 c/0 a/1 b/1 P/1

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0 1

1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 1 1 1

a/0 is the output expected if there was a stuck at zero fault on input wire a. Using this

model, a/0, b/0 and c/0 are indistinguishable— they are said to be equivalent. Thus there

are only four different fault classes. We only need enough test patterns to cover all the

fault classes. The following tests form a cover:

Test ab=l 1 detects a/0 b/0 c/0 (Expected output 1, get 0)

Test ab=10 detects b/1 c/1 (Expected 0, get 1)

Test ab=01 detects a/1 (Expected 0, get 1)

Notice how this model assumes that there is never more than one fault at a time; it does

not model wire a and wire b stuck at zero simultaneously.

3.4 Test Pattern Generation
I f C specifies the behaviour of a working circuit, then let Cf describe the behaviour of C

under the influence of fault/. Here, C is a function from input patterns to output patterns.
The fau lt/ is exposed by finding some input T for which C produces a different result
from Cf. An input exposes a fault when either of the following conditions are true:

41

C (T)*C i(T) (3.1)
C(T) © C{(T) (3.2)

Exclusive-or is denoted by the symbol ©. For a given fault/, there may be no test
patterns or multiple test patterns. Relationship 3.1 can be used to construct the sets of all
test TESTS (Cf) for a circuit C under fault/.

TESTS (Cf) = { T : T e INPUTS(C); C(T) * Cf(T)} (3.3)

Note that TESTS is a two place operation taking a circuit C and a fault f. The set of all
input patterns for a circuit C is given by INPUTS(C). For example:

INPUTS (AND) = {00, 01, 10, 11}

For an n- input circuit, there are 2n patterns produced by INPUTS.

Not all faults are testable. A fault can occur in a redundant part of a circuit where

certain failures will have no effect on the correct behaviour of the circuit. Redundancy is

often introduced to avoid other problems like hazards so it cannot always be removed. If

a fault/is untestable, then TESTS(Cf) will be an empty set i.e. TESTS(Cf) = {}.

Often, there is more than one member of TESTS(Cf) but only one member of this set
is required to test for fault f. Any member can be chosen, but some choices are better than

others. This is because some test patterns cover multiple faults, so a judicious selection

can reduce the total number of test patterns required for a circuit.

A fault-list is the set of all possible faults in a circuit. The particular faults present in

this set will depend on the fault model employed. For the AND gate in Figure 3.3a there

are six possible faults (two for each node) if the single-stuck-at-fault model is used. The

function FAULTLIST(C, pi, ...,pn) is defined to return the fault-list for a given circuit C

with input pi, ...,pn assuming the stuck-at-fault-model. For example:

FAULTLIST(AND, a, b) = {a/0, a/1, b/0, b/1, c/0, c/1}

The fault-cover is the percentage of the faults in the fault-list that are covered by a test
program. The ideal of 100% fault cover is not always realisable because some faults may

be untestable or the circuit may be too large to make this practical. A test program to cover

all testable faults can now be specified as follows:

TESTPROGRAM(C,...) = {(T, C f(T)): f g FAULTLIST(C,...); T g TESTS(Cf)} (3.4)

The set expression selects one fault at a time from the fault list and then chooses one

member (if it exists) from the set of tests that exposes that fault. Each input test pattern is

paired with the result of the working circuit for input T.

42

This specification gives the largest test program that does not contain duplicate test
patterns. Instead of choosing just any member T of TESTS(Cf) the selection could be

made to prefer a T which exposes many other faults too.

A direct transcription of the above specification to code would not yield an efficient
automatic test pattern generation program. Generating tests using the above specification

uses no information about the construction of the circuit so is an example of a functional
test program.

For some circuit F with input i\ . . in there are sometimes assignments to inputs which

are called enable and disable values. A disable assignment to an input determines the

output of the circuit, irrespective of the other inputs. Informally, the other inputs are

assumed to be disabled. If an assignment is not an disable assignment, then it must be an

enable assignment. This kind of assignment ensures that the value at the output does

depend on the values at the other inputs.

Consider the circuit C in Figure 3.4 with inputs a, b and c and output d i.e. the output
is a function g of the inputs:

d = g(a, b, c).

Figure 3.4

To generate a test pattern for a fault at node a , information about the value at node a must
be ‘transported’ to node d so that it can be observed. This requires nodes b and c to

assume values that do not make the output d independent of a i.e. enable input values.
This establishes a sensitive path from a to d. This ensures that a change of logic value

at node a is reflected by a change at d.

Another useful relationship between a and d is to make the logic value at node d

independent of node a. This can be done by finding ‘disabling’ values for b and c which

which produce a fixed value at d, no matter what value is present at a.

For the AND gate in Figure 3.3a, the output c can be made to always depend on the

value at a by ensuring that b is 1. The relationship between c and a is then simple: c is

always the same as a. To make the output independent of a, b is set to 0 which results in c

always being 0 no matter what a is.

The OR gate in Figure 3.3b requires b to be 0 to make c depend on a and b to be 1 to

mask the value at a. Some gates, like exclusive-or, can not be disabled.

43

Manual test pattern generation is presented first. Most automatic test pattern generation

techniques are just formalisations of manual techniques, so many of the techniques in

TPG and ATPG are essentially the same. Before considering composite combinational
circuits, a test program is generated for a single gate.

The AND gate is to be tested for stuck-at faults. The first stage in manual test pattern

generation is to prepare a fault-list. For the single-stuck-at-fault model, this means listing

each node of the circuit for each stuck-at value. The list of faults to be covered in this case

is:

FAULTLIST(AND) = {a/0, a/1, b/0, b/\, c/0, c/1}

Remember that if there are n nodes in a combinational circuit, then there will be 2n stuck-
at faults. Figure 3.5 shows the six faulty circuits that correspond to the above faults.
These faults modify the function of the AND gate: the modified function is shown next to

each broken gate.

s-a-0 s-a-1

c = 0

s-a-0 c = 0 s-a-1

b - X -

s-a-1

Figure 3.5: The stuck-at faults for an AND gate

I f the fault a/0 occurs, then the output of the AND gate will always be 0. Consequendy

if the output is 1 then fault a/0 does not occur. A test pattern has been found for a/0 if the

pattern produces a different output on a fault-free AND gate and an AND gate with fault
a/0. To set the output node c of the AND gate to 1 requires a and b to be set to 1. Since

this pattern produces differing outputs for a fault-free AND gate and an AND gate with

fault a/0 then this is a test pattern for the fault a/0.

To test for a/ 1 the fault free condition a=0 must be established. As above, b must be

set to 1 to make c depend on a. In a working circuit this would set c to 0 so a test for a/ 1
is abc=010. The reasoning behind generating tests for b/0 and a/ 1 is symmetrical: the tests

are abc- 111 for b/0 and abc= 100 for b / \ . To test for c/0 requires the fault free condition

c=l to be established. This can only be done by setting a- 1 and b- 1 so a test for this fault

44

is abc= 111. To test for c/1 requires c to be set to 0. There are three different assignments

to a and b that set c to 0: ab=00, ab=01 and ab=10. So any of abc=000, abc=010 and

abc= 100 are tests for c/1. These results are summarised in Table 3.1.

Faults Test(s)
a/0 111
a/1 010
b/0 111
b/1 100
c/0 111
c/1 000 or 010 or 100

Table 3.1

The test 111 covers three faults: a/0, b/0 and c/0. For this gate using the single-stuck-
at-fault model these faults are indistinguishable and form an equivalence class. A good

choice to expose c/1 is the pattern 010 or the pattern 100 since these tests are needed

anyway to expose other faults. A complete test program for an AND gate is {111, 100,
010}. This is only a saving of one test pattern compared to the test program generated by

an exhaustive procedure i.e. {000, 010, 100, 111}. However, for more complex circuits

the difference between the sizes of the test programs produced by functional and

structural approaches becomes much greater. The structural method can take advantage of
the connectivity information present to spot overlaps in tests and redundancies, whereas

the functional approach has only the truth table or a boolean expression to work from.

The test pattern 111 above exposed three faults: a/0, b/0 and c/0. The reason for this is

that these faults change the behaviour of the circuit in the same way i.e. transform it from

c - a / \ b i o c = 0.

This technique for testing an isolated gate extends naturally to the testing of composite

combinational circuits. Tests for all the faults in the circuit C2 shown in figure 3.6 are

now constructed by considering sensitive paths from the site of the fault to an observable

output.

Figure 3.6: Composite Combinational Circuit C2

There are 7 nodes in this circuit so there are 14 possible faults. The fault list for circuit C2

45

is:

FAULTLIST(C2) = {a/0, a/1, b/0, b/ l , c/0, c/1, d/0, d/ \ , e/0, e / \ , f /0 , f / \ , z/0, z/1}

To test for a/0 the node a has to be set to the value opposite to the stuck-at value. There is

no point in testing for a/0 with a=0 since there will be no difference between the fault-free

and faulty outputs. The next step is to try and propagate the fault information towards an

observable output, in this case z. The only way to get to z from a is through e, so the

value at e must be made to depend in some way to the value at node a. The enabling input
to an AND gate was shown earlier to be 1 so node d has to be set to 1 making e=a.

The assignment d= 1 has to be justified by proceeding backwards towards the primary

inputs to ensure that it is possible to set this node to 1. In this case it is easy to set d - 1 by

making the assignment b=0.

Having ensured that fault information can indeed be propagated from a to e the next
step is to try and propagate fault information from e to z. The enabling input for an OR

gate is 0 so node / must be set to 0. Since b=0 node / is 0 anyway, so no further
assignments are required. The value at c is immaterial: neither 0 nor 1 will have any effect
on the value of node/. The node c is assigned the value X to indicate that it can assume

either logic value. Now the fault information at e is propagated to the observable output z:

the relationship between e and z is z-e.

Putting all this together, the assignments a=l and b=0 form a sensitive path from the

site of the fault a/0 to z through e. The sensitive path is denoted by a=c=z. This states that
in a working circuit C2, nodes a, e and z all have the same logic value. In a circuit which

does not have the fault a/0 then a=z=l.

To emphasise the distinction between inputs and outputs, test patterns are written

using a multiple assignment like abc/d=pqr/s where a, b, c are primary input nodes and d

is a primary output node. The assignment states that node a is assigned logic value p, b

logic value q etc. Since c can be any value, there are two tests for at0: abc/z-100/1 (with

c=0) and abc/z=\0\/\ (with c=l). Only one test is required to expose the fault. To test for
a/0 the inputs are assigned abc= 100 (or 101) and the value z observed. If z=0 (opposite

from the fault-free value) then the fault a/0 is present.

The test for a/1 is similar to the test for a/0: the only difference is the fault-free

condition a=0. As shown above, to propagate information from e to z the only

assignment required is b=0. This forms the same sensitive path a -e -z so z=0 in a circuit
that does not have the fault a/1. The tests for a/1 are abc/z-000/0 and abc/z=001/0.

Notice that it would have been possible to consider the tests for a/0 and a/1

46

simultaneously since finding a sensitive path does did not depend on the value at node a.

The sensitive path a=e=z is highlighted by a heavy line in figure 3.7.

e=a

f=0

Figure 3.7: Sensitive path a=e=z

There are two possible sensitive paths from b to z: one through e and the other through

/. The sensitive path through e is considered first. The value at node d is always opposite

to the value at node b, so the first segment of the path is b=—d. To propagate information

from d to e requires a= 1 (the enabling input for an AND gate) so that b=—id=—>e. To

propagate fault information from e to z requires/=0 (the enabling input for an OR gate).
There are three possible assignments that set /= 0: b=0, c=0 and bc=00. However, the

assignments b -0 and bc=00 commit b to be 0 requires using the value at node b which is

the site of the fault so these patterns must be discarded. For this reason the assignment
c=0 is chosen to establish the sensitive path b=—>d=—\e=-iz. This states that in a working

circuit the value at node z is always opposite to the value at node b.

The second possible sensitive path from b to z is through / . To make/ depend on b

requires c=l. To make z depend on/requires 6=0. To set 6=0 can be done by a=0. Again

the value at node b cannot be used since this is the node under test. This establishes the

sensitive path b=f=z, yielding the test abc/z=0\ 1/1 for b/0 and abc/z=001/0 for bl 1.

To test for faults at node b two test patterns are required: one from the set {110/0,
011/1} to test for b/0 and one from the set {100/1, 001/0) to test for bl 1. Thus there are

four possible combinations of test patterns that expose both faults at node b.

To sensitize a path from c to z requires h=\ to make c=f. To make z=f requires e=0.
No further assignments are required since the assignment b=\ causes d=0 which results

in 6=0. This gives the sensitive path c=/=z. The tests for c/0 are abc/z=X\ 1/1 and the

tests for c/1 are abc/z-X 10/0.

The tests for the other faults are found in a similar manner.

This completes the first phase of manual test pattern generation for a very small circuit.

Test patterns have been generated for all 14 possible faults. This technique is tedious and

error prone. For large circuits, such manual calculations are not practical.

The faults and expanded test patterns that expose them are summarised in table 3.2.

47

Faults Input test pattern
a/0 100 or 101
a/1 000 or 001
b/0 110 or 011
b/l 100 or 001
c/0 011/1 or 111/1
c/1 010/0 or 110/0
d/(5 100 or 101
d/1 110
e/0 100 or 101
e/1 000 or 001 or 010 or 110
f/0 011 or 111
f/1 000 or 001 or 010 or 110
z/0 100 or 101 or 011 or 111
z/1 000 or 001 010 or 110

Table 3.2: Test for stuck-at faults in C2

This manual test pattern generation technique has produced all eight possible input
patterns to test the three input circuit C2. However, not all eight test patterns need be used

because most patterns expose more than one fault. By choosing patterns carefully, the

number of test vectors required to test for every fault can be substantially reduced. The

information in Table 3.2 is represented in Table 3.3 which shows the faults covered by

each test pattern. Such a table is called a fault-matrix.

h/0 j b/l d/0c/0 i c/1T/F
(500
001
010
011

110

Table 3.3 Fault matrix for circuit C2.

Only enough rows (tests) have to be chosen to ensure that there is at least one tick

under each fault. The first step is to identify columns (faults) that have only one tick.
These faults have only one test that exposes them. Such a test is called an essential test
and must be used in the test program. In table 3.3 d /\ is only covered by one tick

corresponding to test 110. Test 110 also covers the faults b/0, c/1, d! 1, e /1 ,/I and z/1.
The table is now reduced by removing columns d /1, b/0, c/1, d /1, e/1 ,//I and z/1 and the

row 110. This results in table 3.4:

48

T/F d /0
000
001
010
Oil
100
101
111

Table 3.4: Fault-matrix after removing the essential test 110.

There are no essential tests in this table i.e. each fault is covered by more than one test.
By inspection it can be deduced that three tests are required to cover all the remaining

faults. One suitable choice of test patterns might be 100 (because it covers all the faults

except a/1 and//0), 000 (because it covers a l l) and 111 (because it covers f/0).
Alternatively, a boolean expression can be derived from the table which can be reduced

to show that at least three tests are required and that there are six ways to choose them.

By simplifying a fault-matrix the test program has now been reduced from eight
patterns to four, namely {110, 100, 000, 111}. This simplification technique is directly

analogous to the technique used in Quine-McCluskey [McCluskey 62] boolean

simplification to find prime implicants.

Test pattern generation for realistic circuits involves manipulating vast amounts of
information. A useful preprocessing stage to test pattern generation is fault-collapsing.
This technique reduces the size of the fault-list by identifying faults which are

indistinguishable. Two faults are indistinguishable if they are covered by the same test
patterns. Table 3.3 is rearranged in table 3.5 to highlight indistinguishable faults. The

faults {a/0, d/0, e/0} are indistinguishable, so they can be replaced by just one fault in the

fault-list.

b/0T/F
000
001
010
011
100
101
TRT

Table 3.5: Groups of indistinguishable faults.

49

The other non-singleton groups are {e /1 ,//l, z/1} and {c/0,//0}. By choosing just one

representative from each set, the fault-list can now be reduced to:

{a/0, e/1, c/0, a! 1, b/0, b /1, c/1, d/1, z/0)

This has removed five faults from the fault-list which results in a substantial saving in

test pattern generation effort. The fault-list can be reduced even further by finding fault
dominance in table 3.6. A fault R is dominated by a fault S if the ticks in R ’s row are a

subset of the ticks in S’s row and is denoted by S -> R. There are several instances of
fault dominance in table 3.5:

a /0 -> z/0
a / l -> c/1
c/0 -> z/0
c/1 -> c/1
d /l b/0, c/1, c/1

Once the dominated faults have been removed the fault-list is reduced to just five

elements:

{a/0, a /l, b /l, c/0, d/ l)

The reduction of the fault list from 14 to 5 is a large saving but not a typical one. Fault
collapsing usually halves the size of the fault list.

Instead of building tables from scratch for each circuit to be analysed for fault-
collapsing, it is possible to determine characteristics about isolated gates and combine

these to deduce information about a circuit made from these gates. Table 3.6 shows fault-

collapsing information for AND, OR and NOT gates (Figure 3).

Gate Indistinguishable faults Fault Dominance
AND {a/0, b/0, z/0) a/l, b/l -> z/1
OR {a/l, b/l, z/1} a/0-* b /0-> z/0
NOT {a/0, z/1}; {a/l, z/0} None

Table 3.6: Fault-collapsing information for isolated gates.

The techniques of sensitive path analysis and fault collapsing have to be applied with

care to circuits containing reconvergent fanout. An example of such a circuit is shown in

figure 3.8.

50

0 - > l

Figure 3.8: Positive reconvergence under fault b/0.

The test pattern is abc/z= 111/0 and the fault under consideration is b/0. The circuit is

annotated with differences between the fault-free and faulty circuit. 1 -> 0 means that a

node which has logic value 1 in a fault free circuit assumes logic value 0 when the fault
under consideration is present and similarly for 0 1. The interesting aspect of the fault
propagation in this circuit is that there are two paths simultaneously sensitized from the

site of the fault to the primary output z. The fan-out is responsible for allowing more than

one path and the reconvergence at the last NAND gate combines the results of the two

sensitive paths to produce a sensitive output. The term dual-path sensitization is used

to describe this situation. Both the inputs to the last NAND gate must be sensitive to the

fault b/0 to sensitize the output. One change in only one input does not cause a change in

the output. Positive reconvergence occurs when two sensitive paths reconverge to

reinforce each other. Each path alone does not create a sensitive output: both must be

sensitive.

The circuit in figure 3.9 shows an example of negative reconvergence: this is where

information from two sensitive paths reconverge in a manner which makes it impossible

to extend the sensitive path.

Figure 3.9: An example of negative reconvergence

The test b -0 (sensitize the site of the fault), a= 1 (enable top NAND gate) and c=0 (enable

OR gate) is applied to the primary inputs. Two sensitive paths exist up to the last NAND

gate. Each node assumes value 0 instead of 1 when fault b/0 occurs). Unfortunately,
these sensitive paths combine at the last NAND gate to produce an output of 1 which is

the same as the output for the fault-free version of the circuit. Consequently the input
pattern abc= 100 is not a test pattern for the fault b/ \ .

51

The implication of fanout and reconvergence is that care must be taken when

examining paths through such circuits. I f a path is blocked through two alternative paths

independently then it may not be blocked if both paths are sensitized simultaneously.
Also, tests generated for reconvergent fanout circuits have to be checked to ensure that
negative reconvergence does not take place.

Fanout and reconvergence also affects the results obtained for fault-collapsing.
Applying the rules in table 3.6 to the circuit in figure 3.8 the indistinguishable faults for
the bottom AND gate are found to be {b/0, c/0, f/0 }. However, comparing this with the

fault matrix reveals that these faults are not actually indistinguishable: b/0 is different from

{c/0, f / 0 }.

The problem is that the test 111 which covers f/0 does not cover b/0 because negative

reconvergence causes the fault-effect o f/to be cancelled by the fault-effect at e. Also, the

test 110 which covers b/0 does not cover f/0 because it uses a different sensitive path

through e instead of / . Both of these problems are a result of the fan-out that occurs at
node b. One solution is to remove all the implications resulting from the fanout node,
giving the correct result at gate 3: {c/0, f/0) ; c/1 -> / / I i.e. c/0 and f/0 are equivalent and

c/1 dominates f / 1.

3.1 Boolean Differences
Another technique for generating tests for faults in combinational circuits is the boolean

difference method [Sellers 68]. This method employs differential equations to

describe test patterns. There is a strong analogy between differential equations over
boolean values and those over real numbers and they share many common properties.
This is because boolean algebra and the real number system are both examples of rings in

mathematics.

Consider the problem of generating a test for a single output circuit characterised by

the function F(xj,...x„) where xi..x„ are the primary inputs. First, the problem of
generating tests for primary inputs is solved. This is then extended to internal nodes.

A fault is testable if a change of logic value at the site of the fault also produces a

change at an observable output. Assume that input xj is to be tested for a fault. The set of
tests that expose faults at xj are captured formally by using the exclusive-or operation:

F(xi,...,0,...x„) © F (xi,...,l,...x„) = 1

52

I f the exclusive-or of the outputs with and without the fault is 0 then this means that there

is no difference in the circuit response between the fault-free and faulty circuits. The left
hand side of the above equation is the boolean difference, and is written as:

dF(X)
dxi

where X = xi,...xn.

= F(xlf ...,0,...,xn) © F (x i,...,l,...,xn)

The boolean difference describes all the conditions (i.e. values of the inputs) for which

the output of F depends only on Xj. A test for a fault at the site of the primary input x/
exists if dF(X)/dx; = 1 i.e. the output of the function is negated by the presence of the

fault for certain input assignments. However, if dF(X)/dx; = 0 then there are no input
assignments that cause the output to be complemented when the fault is present. This

makes the fault at site x/ undetectable.

The boolean difference sensitizes a path from the site of the fault to an observable

output. To generate a test pattern, the site of the fault has to be sensitized by setting it to

the opposite value of the fault. This is also done by choosing suitable assignments to the

primary inputs. A test is a consistent combination of patterns generated by the boolean

difference and the sensitization of the site of the fault i.e. the logical conjunction of the

boolean difference and the condition for sensitizing the site of the fault.

Consider the example of testing for the fault x/ stuck-at-0. The condition required to

sensitize the site of the fault is Xj = 1. Tests for this fault are given by solutions to the

expression:

dF(X)
dxj

. Xj = 1

This derivative describes the conditions required to from a sensitive path from the site of
the fault (i.e. the primary input x/) to the output and the x; term sensitizes the site of the

fault by requiring x; to be 1 (opposite of the stuck-at value). By similar reasoning, the

tests for x/ stuck-at 1 are given by the expression:

dF(X)
dxj X,_‘

This expression requires xz to be sensitized by assigning to it the value 0.

Tests can be generated for internal nodes by thinking of the node to be tested as being

an extra primary input to the circuit. Consider the generation of a test for an internal node

k using boolean differences. First, the logic value at k is expressed in terms of the

primary inputs i.e. k = g(x;,...,x„) where g is a boolean function. The reason for this is

53

that k might not depend on all n inputs. Now k can be added to the parameter list:

= F(.xu ...JCn,k) ® F (x u ...Jn,k)

Now k can be replaced in the expansions of the above expression by expressing it in

terms of the primary inputs. This relationship is given by g.

To illustrate boolean differences, this method is used to generate tests for the circuit in

figure 3.6. Tests for this circuit have already been generated by using sensitive paths. The

function of the circuit is

F(a, b, c) = (a a - ib) v (Jb a c)

The primary inputs are dealt with first. Let X = (a, b, c).

• Node a.

^ 1 = F (0 A c) © F (l,6 ,c)
da

F(0,b,c) = (O a —ib) v (bAc) = 0 v Q)a c) = bAC
F(l,b,c) = (1 a —\b) v (bAc) = —iZ? v (t>AC)

F(0,b,c) ® F(l,£,c) = —ib

This is only 1 if b=0. Note that this is the condition that is required to establish a sensitive

path from a to z. Let X denote a don’t care assignment. To test for a/0 requires a - 1 so a

test for this fault is abc/z= 10X/1. Testing for a! 1 requires a=0 so the test pattern is

abc/z=00X/0.

• Node b.

= F(a,0,c) © F(a, 1 ,c)
d b

F(a,0,c) = (<m1) v (Oac) = a
F (a ,1 ,c) = (£ZaO) v (Ia c) = c

F(fl,0,c) ® F(a,l,c)
= a © c
— (2a—iC v —tCLa C

The boolean difference is 1 when either a is 1 or c is 1 but not both. To test for b/0

requires b= 1 giving the tests abc/z= \ 10/0 (with a= 1) and abc/z=011/1 (with c=l). To test
for bl 1 requires b=0 giving the tests abc/z= 100/1 and abc/z-001/0.

• Node c.

{ defn. of F }
{ defn. of © }

54

^ = F(aAO)®f(nAl)

F(a,b,0) = (aa- £) v (£aO) = aa-tb
F (a , 6 , l) = (aa-iZ?) v (&a1) = (flA-ift) v 2?

F(a,b,0) © F(a,/?,1) = £

The solution to the differential is b= l. Tests for c/0 are abc/z=X 11/1 and test for c/1 are
abc/z=X 10/0.

• Node d.

Make d a pseudo-input d = —ib so F(a,h,c,d) = OAd v £ac.

dF^ ,’d) =F(aJi,c,0) © F(a,b,c,l)
ad

F(a,b,c,0) = 0 v /?ac = £ac
¥{a,b,c,\) = v Z?ac

F(a,^,c,0) © F(fl,£,c,l) = flA(-ift v —ic)

For d/0 this yields the tests abc/z=\0XJ\. The test for d/l is abc/z= 110/0.

The tests for the other faults are obtained in a similar manner.

3.5 Deductive Fault Simulation

3.5.1 Introduction to Deductive Fault Simulation

The generation of a test pattern for a given fault is very expensive. Once a test pattern for
a particular fault has been generated, it is often the case that this test pattern will also

reveal other faults. Employing a test pattern generation system to rediscover test patterns

at great cost is not necessary. It is possible to perform an analysis which examines a

circuit for a given test pattern in order to ascertain which faults it exposes.

A fault simulator takes as input a test pattern and a circuit description and produces as

output a list of faults that can be detected by this pattern. Some fault simulators work by

simulating defective versions of the circuit, whilst others simulate the working version

and deduce from the correct behaviour which faults are detectable at the primary outputs.
A deductive fault simulator [Armstrong 72] belongs to the latter category. A circuit

55

represented as a product of sums of AND, OR, NAND and NOR gates may be

transformed into a set expression which yields the faults required.

Deductive fault simulation works by propagating lists which represent faults detected

at predecessor gates. For each gate, the subset of faults that is passed is modified to

describe what faults are propagated to the output of the gate. We assume that the single

stuck-at fault model is employed.

The output of each gate is the true logic value and a set of faults that the output line is

sensitive to. A set X is ‘negated’ w.r.t. another set Y by complementing it with the union

of X and T.The circuit is transformed into a set expression by using the following rules.

1. Replace all AND gates by set intersection n
2. Replace all OR gates by set union u
3. Negate a fault set if its true value is 1

4. Add to each output the appropriate stuck-at-fault
5. Simplify the resulting expression

It is not obvious why these rules describe a method for correctly propagating

detectable faults. For deductive fault simulation, wires carry fault propagation information

as well as logic values. The fault information is represented as a set of faults that a given

wire is sensitive to.

The faults that are propagated through a 2-input AND gate for all 4 possible input values

are characterised by set expressions. Let the logic inputs to the AND gate be x and y and

let the fault sets be A and B respectively.

• Pattern 00/0. Any fault that causes the output to be different from its true value is a

detectable fault. In this case, the output has to be 1 for the effect of some previous fault to

be detected. This requires both inputs to be 1 for the output to be 1 i.e. we want any fault
that changes from 0 to 1 (0—>1) the first and second input. This means that we want the

faults that are common to sets A and B i.e. A r \B .

* Pattern 01/0. We want to choose those faults that cause the output to change to 1 i.e.
those faults that change the first input. It is wrong to simply choose all the faults in set A
because some of these faults may also be in set B. Consider the effect of a fault in A n B:

this causes the first input to be faulty (0—>1) and the second input to be faulty (1—>0). The

result is that the output is still 0 (not different from its true value) so such faults are not
detectable. We want those faults that are in A but not in B i.e. A — (A n f l) . We may

rewrite this as A n —S.

56

• Pattern 10/0. By a similar argument it can be seen that the faults propagated are
represented by the set expression B — (A n B) i.e. - A n B .

• Pattern 11/1. We now want to pass any faults that cause the output to become 0 i.e.
faults that cause either of the inputs to be 0. The effect of any fault in A or B is to set one
or more of the inputs to 0 so we can pass all the faults in A and B i.e. A u B . This may

be rewritten as follows: A u B - -m (A u B) = —1(—iA n S) .

To each of the set expressions above we must remember to add the fault detectable at
the output. The following table summarises the results:

Pattern Set Expression

00/0 (A n B) u {z/1}

01/0 (A n —B) u {z/1}

10/0 (-A n B) u {z/1}

11/1 —1(—A n —iB) u {z/0}

Notice the pattern:

• if jc= 1 then A is complemented (lines 3 and 4)
• if y=l then B is complemented (lines 2 and 3)
• if z=l then the first part of the set expression is complemented (line 4)

This now provides an explanation for the rules given earlier for deductive fault
simulation. These rules are represented using Venn diagrams in figure 3.10.

A - L

B —
& 0

&

^ ____ '
B

& &

57

Figure 3.10: Venn Diagrams corresponding to the deductions rules for an AND gate.

We can deduce similar rules for an OR gate:

Pattern Set Expression

00/0 (A u f l) u {z/1}

01/1 -i(A u S) u {z/0}

10/1 n M u B) u {z/0}

11/1 - n M U - n f i) u { z / 0 J

These rules are similar to the rules for an AND gate except that intersection has been

replaced by union and the output fault is different.

An inverter will pass all faults at its input and add to the fault list the fault that can be
detected at its output. Rules for other gates can be easily derived. Alternatively, any
combinational circuit can be re-expressed in terms of AND, OR and NOT and the analysis

carried out using the rules given above.

3.5.2 An Example of Deductive Fault Simulation

Figure 3.11 illustrates deductive fault simulation with an example circuit. The input
pattern is 110. Each arrow is a node named by the letter in the centre and the faults

propagated along this node are shown in the set above. The fault-free logic value of each

node is also shown.

{m/0,n/l)

(m/0,n/1,p/1)
{i/0}

or

and

not and

Figure 3.11

Consider the AND gate with output node q. The true output is 0 so we want to pass

those faults that will set both the inputs to 1 i.e. we have to ‘fault’ both the inputs. These

faults are obtained by taking the intersection of the two input fault sets (see the rules for
and gate with pattern 00/0). Since this is the primary output of the circuit, the test pattern

110 detects the faults given by the following set expression:

58

{m/0, n/1, p/1} n {a/l, m/0, n/1, o / l} u {q/1} = {m/0, n/1, q/1)

The complete sequence of deductions is presented below. The function ded describes the

deduced faults at a given node.

ded(n) = ded(m) u {n/1}
= {m/0} u {n/1}
= {m/0, n/1}

ded(r) = ded(a) u ded(n) u {r/1}
= {a/l} u {m/0, n/1} u {r/1}
= {a/l, m/0, n/1, r/1}

ded(p) = ded(n) n —ided(i) u {p/1}
= {m/0, n/1} n —i{i/0} u {p/1}

= {m/0, n/1} u {p/1}
= {m/0, n/1, p/1}

ded(q) = ded (r) n ded(p) u {q/1}
= {a/l, m/0, n/1, r/1} n {m/0, n/1, p/1} u {q/1}
= {mO, n/1, q/1}

Because deductive fault simulation works with a correct version of the circuit,

reconvergent fanout problems do not arise.

3.6 Testability Measure

3 .6 .1 Introduction

Since our objective is to increase the testability of digital circuits, we should have some

precise quantitative measurement of ‘testability’. In the literal sense, most designs are

testable, since it is possible to apply all input combinations and observe the output.
However, we feel that if a design can be tested to a high degree by applying a much

smaller set of test patterns, then it must be more testable. This section describes a few

measures of testability.

3 .6 .2 ATPG Approach

An Automatic Test Pattern Generation program is used to generate tests and to compute

(NOT gate)

(OR gate)

(AND gate)

(AND gate)

59

the fault coverage. The running time of this program gives an idea of how difficult it is to

test a particular circuit. However, the run time can be very long, and there is no data

about how to improve the testability of the circuit.

Several programs have been developed which examine the structure of a circuit in

order to estimate its testability without having the incur the expense of running an ATPG
program.

3 .6 .3 Testability Measure (TM) Programs

These testability measure programs analyse the circuit to estimate the running cost of
generating test patterns (which in turn gives an idea of how testable the circuit is). As they

accumulate this data, they are able to pin-point areas of the design that are difficult to test.
The components in these areas may then be redesigned to allow greater testability (e.g. by

incorporating asynchronous set/reset lines).

There is no simple link between circuit characteristics and testability. The circuit
parameters used by testability measure programs are heuristic and based on the experience

of studying ATPG programs. Thus, different testability measure programs use different

circuit characteristics to estimate testability.

Testability measure programs are assessed by running them on circuits which have

already been analysed by an ATPG program. A monotonic relation between the testability

program run time and the ATPG run time is offered as 'proof that the testability measure

program produces a good measure of testability.

Not surprisingly, all the testability measure programs are based around the ideas of

controllability and observability.

3 .6 .4 TM EAS

In TMEAS [Grason 79], each link has associated with it an observability value OY and a

controllability value CY. These are normalised between 0 (the worst) and 1 (the best).
Thus, for primary inputs, CY = 1 and for primary outputs OY = 1. Each component in

the circuit has associated with it a controllability transfer factor, CTF, and an

observability transfer factor, OTF. These are used to build two systems of N (N = the

number of components) simultaneous equations which are used to compute the CY and

60

OY values for internal links.

Sequential components are dealt with by introducing implicit feedback loops (to

represent state transitions) into the circuit. For a particular component, the input
controllability is defined to be the average of the input link controllabilities and the output
controllability is defined to be the average of the output link controllabilities.

The CTF is defined by considering the uniformity of the input-output mapping,
normalised between 0 and 1. A circuit whose output was 0 for half the possible input
values and 1 for the other half would have a CTF of 1. For an n-input single-output
component that has output = 0 for only one component, the CTF is 21_n.

3.6.5 The SCOAP Testability Measure

The SCOAP [Goldstein 79] testability measure assigns a 6-element vector to each node of
the circuit. The six elements describe how easy it is to set a combinational/sequential node

to 0 or 1 and how easy it is to propagate the value on some combinational/sequential node

to an observable output. For the present we shall restrict ourselves to combinational
circuits, so we shall only be interested in obtaining 3 values for each node1:

(a) setO (n) - a measure of how easy it is to set node n to logic 0.
(b) setl (n) - a measure of how easy it is to set node n to logic 1.
(c) obsv (n) - a measure of how easy it is to observe the value at node n.

The larger the value for the above measures, the greater is the degree of difficulty for
controlling/observing a given node. The following rules are used for calculating the

SCOAP values for the 2 input nodes and 1 output node of a 2 input AND gate.

SCOAP Rules for Oc.v)AND z

setO (z) = min [setO (jc), setO (y)] + 1 Rule 1
setl (z) = setl (*) + setl (y) + 1 Rule 2
obsv (x) = setl (y) + obsv (z) + 1 Rule 3
obsv (y) = setl (x) + obsv (z) + 1 Rule 4

Rule 1 describes how easy it is to set the output z of an AND gate to 0 i.e. setO (z).

1 These values were called CCO (setO), CC1 (setl) and CO (obsv) in the original literature.

61

This can be done by setting either of the inputs to 0. The SCOAP rules choose the input
which is easier to set to 0 (i.e. has the lowest measure/cost associated with it) and then

adds 1 as a penalty for propagating the result past the AND gate. To set the output of an

AND gate to 1 requires both the inputs to be set to 1. Thus, the formula for setl (z) adds
the difficulty of setting both x and y to 1 and then adds a fixed penalty of 1 for the AND
gate.

Rules 3 and 4 describe the observability costs for the input nodes x and y . To observe

the value at node jc, node y has to be set to 1 so that the output depends only on x. Thus a

cost of setl (y) has to be incurred. Then we have to add the cost of transporting the value
from the output of the AND gate z to an observable output. This can be recursively

specified as obsv (z). Finally we add a penalty of 1 for propagating the value across the

AND gate. Rule 4 is similar.

The table below show the rules for OR gates and NOT gates:

SCOAP Rules for ta.v>OR z (def 2)

setO (z) = setO (x) + setO (y) + 1
setl (z) = min [setl (x), setl (y)] + 1
obsv (x) = setO (y) + obsv (z) + 1
obsv (y) = setO (x) + obsv (z) + 1

SCOAP Rules for * NOT v (def 3)

setl (y) = setO (x) + 1
setO (y) = setl (jc) + 1
obsv (x) = 1

For inputs, setO and setl are 1 and for outputs obsv is 0. This reflects that fact that
only one assignment has to be made to set a primary input to a particular value. Also, no

assignments are required to observe an output. The controllability of the primary outputs

and the observability of the primary inputs are values of little interest.

The actual costs returned by the SCOAP measure represent the number of
combinational node assignments required to control/observe a given node plus some

notion of depth. This is a heuristic that tries to estimate the difficulty of generating test
patterns for the given node (i.e the testability of a node). SCOAP gives good values for

small to medium circuits, but deviates from true values for larger circuits.

62

Figure 3.12 shows an example circuit for which SCOAP values shall be computed.

m

and

not and

Figure 3.12

This circuit can be described by the following Ruby expressions:

[i, NOT ; split, i] ; reorgl ; [AND, OR] ; AND

<a, <b,c), d) reorgl «a,b), <c,d»

The SCOAP values are computed by first evaluating the controllability measures (setO

and setl) and then using these to compute the observability measure (obsv).

setO(a) = 1
setO(m) = 1

setO(i) = 1
setO(n) =1 + 1 = 2

set1(a) = 1
setl(m) = 1
setl(i) = 1
setl(n) = 1 + 1 = 2

setO(o) = setO(a) + setO(n) + 1 = 1 + 2 + 1 = 4

setl(o) = min [setl(a), setl(n)] + 1 = min [1, 2] + 1 = 2
setO(p) = min [setO(n), setO (i)] + 1 = min [2, 1] + 1 = 2
setl(p) = setl(n) + setl(i) + 1 = 2 + 1 = 4
setO(q) = min [setO (o), setO(p)] + 1 = min [2, 2] + 1 = 3
setl(q) = setl(o) + setl(p) + l = 2 + 3 + l = 6

Inputs

(NOT gate)
(OR gate)

(AND gate)

(AND gate)

Although a controllability value has been computed for the output q, the SCOAP rules

define the outputs to be ‘uncontrollable’ by setting them to infinity.

setO(q) = oo setl(q) = OO

The controllability information calculated is now used to compute the observability

values:

obsv(q) = 0 Output
obsv(o) = setl(p) + obsv(q) + l = 3 + 0 + l = 4 (AND gate)

obsv(p) = setl(o) + obsv(q) + l = 2 + 0 + l = 3
obsv(n) = min [setO(a) + obsv(o), setl(i) + obsv(p)] + 1 (Split)

63

= min [5, 4] + 1 = 5
obsv(m) = 1 + obsv(n) = 1 + 5 = 6

obsv(a) = setO(n) + obsv(o) + l = 2 + 4 + l = 7
obsv(i) = setl(n) + obsv(p) + l = 2 + 3 + l = 6

(NOT gate)
(OR gate)
(AND gate)

A numerical value has been obtained for the observability of the primary inputs.
However, the SCOAP rules define the primary inputs to be infinitely unobservable:

obsv(a) = oo obsv(m) = OO obsv(i) = oo

This completes the calculation of the SCOAP values for a simple combinational circuit.
These values are used to find areas of poor controllability and observability so that the

circuit can be redesigned to make it more testable. The information computed above is
shown graphically in figure 3.13.

Node o has the largest O-controllability measure at 4 and node p has the highest value

for 1-controllability (also 4). These values are not much larger than the average value of
1.83 so in this case redesign is not necessary.

SCOAP O-Controllability

nodes

SCOAP 1-Controllability

nodes

Figure 3.13: SCOAP controllability for example circuit.

The observability values are shown in figure 3.14. As expected, the nodes closer to

the primary inputs are the most difficult to observe. The increase in observability

measure from the outputs to the inputs (right to left in the figure) is small and constant so

there are no nodes that need special treatment in this example.

64

SCOAP Observability

Figure 3.14: SCOAP controllability measure for the example circuit.

3.7 Design for testability techniques
Design for testability implies some modification to the circuit to enhance the process of
test pattern generation and application. The techniques to enhance testability have been

categorized into three main groups:

1 ad hoc methods
2 Structured approaches
3 Built in test and self-test methods

3 .7 .1 Ad hoc methods

These methods evolved due to the need to solve particular testing problems, rather than

trying to solve the task of testing in general by using a design methodology.

3.7.1.1 Test point insertion

Test points are routed into the circuit to make certain internal nodes more accessible in

order to either control or observe the signal value at the node.

3.7.1.2 Pin amplification

It is desirable to reduce number of pins used by a design. Testing requires extra data to be

65

input/output and therefore extra pins. This cost can be reduced by multiplexing

input/output pins to perform the additional function of acting as test input and outputs.
The disadvantage of this approach is that it slows down the circuit.

3.7.1.3 Blocking or degating logic

In this technique additional gates are incorporated into the design to inhibit data flow

along certain paths, thus partitioning the circuit into smaller modules for the purposes of
testing. Blocking gates are two input gates, one input is the normal data line whilst the

other is the controlling or blocking signal which can be controlled from a test input

3.7.1.4 Control and observation switching

In this technique signal lines whose logic values are either easily controlled or observed

are identified in the circuit and these are used in conjunction with

demultiplexers/multiplexers to improve access to nearby nodes, whose logic values are

difficult to control or observe.

3.7.1.5 Test state registers

Test state registers can be attached to various internal nodes. These registers may have

values shifted into them to set these nodes to a particular value or they may be shifted out
so the value present at the node may be examined.

Ad hoc methods for improving the testability of a circuit have the advantage of not
imposing severe constraints on the designer. However, a disadvantage is that these

methods cannot be automated, and consequently there is no software support for these

techniques of designing for testability.

3 .7 .2 Structural Approaches

These design methods are incorporated into the design from the outset rather than as an

afterthought as with ad hoc methods. Most structural techniques use hard and fast rules

allowing software support.

The objective in developing the structural approach was to facilitate the testing of
complex sequential circuits. These methods increase the controllability and observability

of the internal state elements, essentially transforming the testing of a sequential circuit

into the simpler task of testing a combinational circuit.

66

The level sensitive scan design and the scan/set design are two of the more popular
methods in industry.

3.7.2.1 Level sensitive scan design (LSSD)

This method combines two design concepts, namely level sensitivity and scan path. The

concept of a level sensitive design requires that the operation of circuit be independent of
dynamic characteristics of the logic elements. This simplifies testing because it abstracts

away from rise and fall times and propagation delays within gates. Furthermore in a level
sensitive design the next state of the circuit is independent of the order in which changes

occur when a state change involves several input signals.

The major element in a level sensitive design is the polarity hold shift register latch

(SRL), which is used to implement all storage elements in the circuit. The SRL is similar
to a master slave flip flop and is driven by two non-overlapping clocks. These clocks can

be readily controlled from the primary inputs to the circuit.

The register also has the important characteristic of being configurable into a long shift
register which forms a scan path. Nodes may be set to some predetermined value by

shifting values into the SRLs and values of state elements may be examined by shifting

out values in the SRLs. An SRL is shown symbolically in Figure 3.15.

Data input D H
System Clock C1

Scan input M

Shiftlock C3 tH

System/Shift clock C2

L1

L2 L2

Figure 3.15: LSSD SLR Latch.

Testing using the LSSD approach proceeds as follows: first the individual registers are

tested by using simple flush and shift tests. Then, the combinatorial subfunctions are

tested. This involves switching the circuit into test mode. The SRLs are then preloaded

67

with a test pattern which is shifted in via the scan in port. This pattern is successively

stepped through each element in the scan path by pulsing clocks C3 and C2.

The circuit is then switched into its normal operating mode and clock C l is then pulsed

on and then off. The result of the combinatorial subfunction is thus stored in the L I
latches of the SRL, and by pulsing C2 these values are duplicated in the L2 latches.

Finally, the circuit is switched back into test mode. The values in the L2 latches are

shifted out by using the scan path. Thus by using the scan path, future states can be set
up independently of the present state of the system. Internal states can be easily observed,
so reducing the problem of testing a sequential circuit to that of testing a combinational
circuit (as demonstrated by the LSSD configuration in Figure 3.16).

LSSD removes the necessity of performing detailed timing analysis on the circuit since

it is is level sensitive. Automatic test pattern test generation is simplified since tests need

only be generated for combinational circuits. Since LSSD is a disciplined design

methodology a design can be checked for compliance to the design rules.

However, the designer is constrained to implement his system as a synchronous

sequential circuit. Test times are increased since input and output data must be scanned

serially and also the system must be switched between normal and test modes. Additional
input/output pins are required for the scan-in/scan-out ports and clocks. Two clock pulses

are required before data can pass from one partition to the other. This problem may be

overcome by modifying the double latch. Despite these disadvantages, the LSSD scan

path technique has been widely used in industry.

68

Scan Out

Comb Comb

Scan in
Note: Control
clocks go to
all latches

Figure 3.16: LSSD Configuration.

3.7.2.2 Scan-set logic

This technique entails selecting nodes of interest whose values can be recorded in a shift
register. The same register can be used to alter these node values. Unlike the LSSD

method, this method does not place shift registers in the main data path, as shown in

Figure 3.17. Only a small number of nodes may be tested. These nodes may be set or
examined by shifting values into or out of the shift register. The nodes to be examined are

determined by using the results of a testability analysis program.

This method does not partition the circuit into combinational blocks. The scan/set
register can be used to apply signals to blocking gates to partition the circuit into smaller

modules to ease the testing problem.

The advantage of this method over LSSD is that the state of the system latches may be

examined without interrupting the normal operation of the circuit.

69

Scan In

> — 1 2

Set function

Inputs

- > -
■ o -

■ o -

Scan function

System Logic

Scan Out

Outputs

Figure 3.16: Scan/Set Configuration.

3 .7 .3 Built-in-test and self-test methods

Scan path methods simplify the task the testing, but vast amounts of test data must still be

processed. Input test patterns have to be generated, true value output responses computed

and stored, and output responses of the circuit under test stored and analysed.

Various techniques have been tried to tackle this problem by using data compression

methods eg. transition counting and signature analysis. Transition counting is a relatively

poor method, so we shall concentrate on signature analysis— a built-in-test method

which is later incorporated into the self-test technique developed for VLSI circuits called

BILBO.

3.7.3.1 Signature analysis

The main functional element used in signature analysis is the Linear Feedback Shift
Register (LFSR) shown in Figure 3.18. This comprises of a series of latches in which

signal taps are taken from certain stages, exculsive-ORed and returned to the input of the

first latch. This configuration will generate a repetitive PN (pseudo-random noise)

sequence.

In the signature analysis configureation stage the output of the exclusive-OR gate is not
returned directly to the input of the first stage but is subsequently exclusive-ORed with a

signal from some other source, as shown in Figure 3.18. At any time the contents of the

register will not contain the values defined by the PN sequence, but will be modified in

70

some way characteristic of the signal coming from the other source. The modified bit
pattern in the register is called the signature of the input source.

EXOR

(a)

EXOR

From
test
node

B2EXOR

(b)

Figure 3.18: (a) PN Sequence generator (b) Signature analyser register

I f the LFSR is initialised to give a pattern and then mixed with a signal coming from a

node in a fault free circuit, after a prescribed number of clock cycles a signature

characteristic of the fault-free circuit will be stored in the LFSR. Faulty circuits will have

a different signature.

3.7.3.2 Built-in-logic block observation (BILBO)

BILBO is a built-in test generation scheme which uses signature analysis with a scan

path. The major component in this self-test technique is a multi-mode shift register. This

allows the BILBO to be set up in the following three ways:

1 as a long shift register forming a scan path
2 as a regular latch for normal operation
3 as a LFSR having multiple inputs for signature analysis

71

4 and under a certain control to be reset.

Figure 3.19 shows a BILBO configuration. A slightly different configuration is used
in bus architectures.

Combin.
circuit

Combin.
circuit

PN Generator Signature anaylisis register

Signature analysis register PN Generator

Combin.
circuit

Combin.
circuit

Figure 3.18: BILBO In test configuration.

A BILBO register is used to generate a PN-sequence which is applied to the

combinational block under test. A second BILBO is used as a signature analyser register,
which after N cycles will contain a signature peculiar to the state of the circuit. The

BILBO containing the signature is then reconfigured as a scan-out register and the

signature shifted out. The roles of the BILBOs are then reversed so that the next section

of the circuit can be tested.

This technique effectively eliminates the need for test pattern generation, although fault

simulation may be required to determine the fault coverage of the PN-sequences. The

circuit will also have to be simulated to determine the fault free signature values.

3.8 Discussion
Testing for manufacturing errors in integrated circuits is an increasingly important task as

72

greater emphasis is placed on reliability and quality. However, testing circuits is also

becoming increasingly difficult. This is due to the complexity of modem designs and the

difficulty of examining the internal workings of chips. Most automated test methods are

just formalisations of manual techniques. Reasonably good tools are available for
generating tests for most combinational circuits, but sequential circuits are still very

difficult to test. The usual approach is to decompose a sequential design into a set of
combinational circuits which can then be tested using traditional techniques.

Automation of test pattern generation is essential if circuits are to be tested

economically. This requires very precise descriptions of circuits for use by analysis tools.
As designs become more complex, the need to describe systems hierarchically and at high

levels of abstraction arises. Formal algebraic languages like Ruby have been shown to be

suitable for such high level descriptions.

In addition to test pattern generators, many other tools are required to reduce the

complexity of the problem. This chapter has shown the value of deductive fault
simulators and testability measure programs. These analysis tools must be reliable—

hopefully proved correct by formal verification techniques. Analysis tools also have to

cooperate with each other in a harmonious fashion to create a usable design system. Many

of the tasks performed by analysis tools are of a similar nature, so any re-use of code

would be beneficial. Later chapters present a technique which allows a great deal of code

re-use.

Chapter 4

Abstract Interpretation

4.1 Introduction
One method which has been used to analyse hardware descriptions and computer
programs is abstract interpretation. This chapter introduces this technique and presents a

common application in the field of strictness analysis of functional programs. Abstract
interpretation is then shown to be useful for hardware descriptions too. A review of how

others have used abstract interpretation for analysing hardware descriptions is also

presented.

Given the task “find the sign of 34 * (-5) * (-3993)” one straightforward way to

proceed is to evaluate the expression and then examine the sign of the result, ignoring the

rest of the answer. Alternatively, we can use some simple rules about the signs of
numbers. Since we know that when two numbers of the same sign are multiplied

together, the result is positive and when two numbers of opposite sign are multiplied

together, the result is negative, we can abstract way from the values of numbers. All we

need to know about a number is its sign.

Let +ve denote “positive” and -ve denote “negative” and let them be of type sign. W e

can define x, an abstract version of the multiplication operator * over +ve and -ve to

describe what happens when numbers of various sign combinations are multiplied

together:

-ve X -ve +ve
-ve X +ve = -ve
+ve X -ve = -ve
+ve X +ve = +ve

73

74

I f we can convert numbers to either -ve or +ve then we can use the above rules to

compute the sign of the multiplication. We need an abstraction function abs, which

removes from a number everything except the sign. The signature of this function is

abs : number - » sign

Now, the sign of 34 * (-5) * (-3993) may be computed as follows:

sign (34 * (-5) * (-3993))
= abs (34) x abs (-5) x abs (-3993)
= (+ve x -ve) x -ve
= -ve x -ve
= +ve

Performing the above calculation is much cheaper than working out the arithmetic and

then throwing away most of the result. It is a shortcut to performing the full evaluation: it
does less work and is simpler. The * operator has been replaced by an abstract operator x

and numbers have been replaced by the abstract values +ve and -ve.

rule of signsarithmetic

take sign only
-ve-678810

34 * (-5) * (-3993)

Figure 4.1: Using an abstraction over arithmetic and integers.

The standard interpretation above performs the arithmetic and then throws away

everything except the sign. The abstract interpretation provides a shortcut which

gives us the same result as applying the standard interpretation and then performing an

abstraction (i.e. ignoring the sign).

W ill the shortcut always give the right answer? We have to prove the abstract
interpretation is correct with respect to the standard interpretation. In other words, we

have to prove the safety of our abstract interpretation. For the example above, this could

be done by showing that the rule of signs always delivers a result which is consistent

with performing the arithmetic and then taking the sign.

75

4.2 Strictness Analysis
The technique of abstract interpretation has been used to compute strictness information

for lazy functional programs. This information is used to compile more efficient code and
to help spot parallelism.

In a lazy functional language, a function f will only evaluate its argument if it has to. If

the argument is a complex composite object then a closure has to be created for this

expression and passed to f. This is an expensive overhead. If we know that a particular

argument will always be used, then it is cheaper to evaluate it first and then pass the

resulting value. The function is said to be strict in the corresponding parameter. It is not
always safe to evaluate the argument before passing it. For example, if an argument
represents a non-terminating computation, but is not used in a call of a function, then it
would be wrong to attempt to evaluate this argument before making the call.

We now formally define exactly what we mean by a strict function. A function f is

strict in its argument if and only if

f 1 = 1

where 1 denotes bottom (or non-termination). This means that if f is given a non­
terminating argument, then f will not terminate.

For a function of several arguments, we speak of strictness in a particular argument.
Consider the function g of three arguments x, y and z. We say that g is strict in y if:

g x 1 z = 1 fo r any x and z

Consider the following definition of a first order function f.

fpqr= if p=0 then
q+r

else
q+p

Which parameters will f always need? The expression p=0 is always evaluated, so p is

always evaluated, since = is a strict operation. Thus, f is strict in p. The function only

uses r when p=0 so f is not strict in this parameter since it does not need always to

evaluate it. However, q is always evaluated, no matter what the result of the test p=0 is,

so f is strict in q.

76

The strictness information above was derived manually by inspection. It is possible to

use a mechanical technique to analyse the strictness of a given function. This is done by

executing an abstract version of f. Let the abstract values be 0 and 1 denoting non­

termination and possible termination. To test for strictness in p, we compute the value of f

0 11. Informally, we are testing to see if f terminates when its first argument p does not

terminate. I f this value is 0 then f is strict in p, if it is l then we have no information about

its strictness. The following abstract interpretation may be used to compute the desired

strictness information.

abs [constant! = 1
abs [variable] = variable
abs [a+bj = a a b
abs [a=b] = a a b
abs [if c then t else f] = abs [c| a (abs [t] v abs [f])

Using these rules we can compute an abstract version of f, called f#.

f# p q r = (p a 1) a (qAr v qAp)
= p a q a (r v p)

This abstract version of f may now be executed with appropriate abstract values to

yield strictness information about the parameters.

f# 0 1 1 = 0 a 1 a (1 v 0) = 0 f strict in p

f# 1 0 1 = l a 0 a (1 v l) = 0 f strict in q

f# 1 1 0 = 1 a 1 a (0 v 1) = 1 f is of unknown strictness in r

Why can we not conclude that f is not strict in r? The above interpretation only gives an

approximate answer. Consider the following definition:

gx y = if y=y then
x+2

else
0

Informally, we see that g is strict in x because the true branch of the if statement is

executed since the conditional part of the if expression is always true. This means that the

value of x is always needed. But the abstract interpretation given above yields the

following results:

g#xy = ya ((xa 1)v 1) = y
g# 0 1 = 0 g strict in y
g# 1 0 = 1 g is of unknown strictness in x

We cannot hope to find all instances of strictness using an approximating technique

77

like abstract interpretation. However, it is important that the abstractions used are safe i.e.

if an argument is analysed to be strict using the approximation, then it is also strict in the

standard semantics.

Abstract interpretation has been very successful in analysing strictness and is the

standard technique employed for this purpose [Peyton-Jones 87, Mycroft 83]. The

technique can be improved by using a non-flat abstract domain to help reason about the

strictness of composite data types [Hughes 86, Wadler 87]. It has been shown to deal

adequately with higher order functions [Burn 86, Hudak 85] and also works for

polymorphic languages [Abramsky 86]. The author has also proposed an alternative view

of strictness analysis as a differencing operation akin to boolean differences [Singh 91].

4 .3 Abstract Interpretation of HDLs
Strictness analysis is just one example from the programming language field that employs

abstract interpretation to analyse programs. Other examples include life time analysis and

compiler optimizations like register allocation. All of these examples work well with

abstract interpretation because the underlying ‘structure’ of the interpretation is the same

as that of the programs analysed.

Hardware descriptions can also be analysed by abstract interpretation. The analyses

performed will be very different since strictness analysis and CPU register allocation are

not relevant to hardware design. Instead, many useful measures like area, speed and

power can be estimated quickly by using abstract interpretation. Others measures include

longest and shortest delay and combinational nesting.

The use of a high level description language makes abstract interpretation a more

formal process since the interpretation can be stated with respect to a precisely defined

standard semantics. The interpretations we present are based on the standard semantics of

Ruby, as defined by Sheeran [Sheeran 88]. Also, it is argued that performing abstract

interpretation over high level descriptions will result in more accurate information. Most

abstractions are approximations— more information about the purpose of a design is

likely to lead to a more precise analysis. In a logic diagram, the purpose of individual

gates may be very unclear. The use of a high level description language encourages

modular hierarchical design where the purpose of subcomponents is stated clearly.

78

4 .4 An Alternative Interpretation in Ruby
An alternative interpretation has been used by Sheeran to analyse Ruby circuit

descriptions [Sheeran 86]. Left to right information flow is denoted by => and right to left

by <=. The symbol => is used to describe the case where the inputs are in the domain and

the outputs are in the range. Similarly, <= describes the case where the inputs are in the

range and the outputs are in the domain.

Each primitive is replaced by a relation describing the allowable directions of

information flow. This relation is represented by a set of possible direction assignments

to the domain and range. For gates like AND this will give a singleton set since there is

only one allowable manner of information flow.

A N D * = {((=>,=*),=>)}

To distinguish between the standard AND and the abstract version, the abstract version

has been named AND*. Other primitives are annotated similarly.

Since NOT is its own inverse, it can always be driven from either direction giving a

two element set.

N O T* = {(=>,=>), («=,«=)}

The abstract identity relation is defined to be the identity over => and <= and tuples of

these values.

ID * = TO {(=>,=*), (<=,<=)}

The operation TO is introduced to extend a relation over arbitrary tuples as well as atomic

values. This operation can be defined schematically as:

a TO(/?) b <=> true where a R b and a, b atomic

<a> TO(/?) « true where a TO(/?) b

<a, b> TUiR) <c, d> « true where a TO(/?) c & b rTU(JR) d

etc.

A wire or bus places no constraints on information flow. Latches have to be run

forwards so they are replaced by => or tuples containing only left to right arrows.

Abstract versions of the combining forms must also be given. The inverse of a circuit

79

should reverse all the information flows as well as flipping the circuit. Let the direction

reversing relation be rev-dir:

rev-dir = <TU {(=>,<=), (<=,=>)}

Note that rev-dir is its own inverse i.e. rev-dir = rev-d ir1. The abstract version of

relational inverse should reverse the direction of flow, compose this with the inverse of

the abstract circuit and reverse the direction of flow again..

(F '1)* = rev-dir; (F *)'1 ; rev-dir

The definitions of serial and parallel composition remain unaltered. This interpretation can

be used to check that information flows in only one direction.

4 .5 Combinational & Sequential Depth
An estimate of how long information takes to propagate from the inputs of a circuit to the

outputs is a useful piece of information. One technique for measuring this delay is to

count the maximum number of delay elements between the inputs and outputs.

A suitable abstract interpretation for performing this task is defined as:

a(D*b =def b = a + 1

a NOT* b =def b - a

(x, y) AND* z =def z = max [.x, y]

(x, y) OR* z =def z = max [x, y]

The semantics of the other language constructs remain unaltered: only the meaning of the

basic components has to be changed.

As an example, consider the analysis of the following circuit:

F = split; [AND ; (D, [i, £>] ; AND ; £>] ; OR

A circuit diagram for this circuit is shown in figure 4.2.

80

AND

AND

OR

Figure 4.2: Example circuit F.

The maximum delay computation proceeds as follows. We start off with a delay of 0 on

each primary input.

<0, 0> F* b o 0 split* ; [AND* ; [i, <D*] ; AND* ; £>*]; OR* b

<=> 3c.d. 0 AND* ; 2) ‘ c a 0 [i , © *]; AND* ; 2) ^ a

<c, d> OR* b

<=> b = max [1,2]

«• b = 2

This computation is shown in figure 4.3. Note that we rely on the laws:

(R ; S)* = R* ; S*

[R, S]* = [R*, S*]

AND*

0

max [1, 2] = 2OR*0

AND*

Figure 4.3: Sequential depth calculation of F.

A similar interpretation can be used to find the shortest sequential delay by using min

instead of max in the definitions of AND* and OR*.

The combinational depth of a circuit can be computed by associating a weight for each

combinational component. Consideration of the testability of the basic gates yields very

rough weightings of 1 for inverters, 2 for OR gates and 3 for AND gates. This gives the

81

simple interpretation:

a tD b =def b — cl

a NOT* b =def b = a + 1

<x, y> A N D * z =def z = max [x, y] + 3

<x, y> OR* z =def z = max [.x , y] + 2

Using these rules with the above circuit gives:

0 F* b <=> 0 split* ; [AND* ; <D\ [i, <D*\ ; AND* ; 2>*|; OR* b

<=> 3c.d. 0 AND* ; © * c a O [i, <D*] ; AND* ; <D* d a

<c, d> OR* b

<=> b = max [3, 3] + 2

<=> b = 5

Information about maximum combinational depth is useful for analysing the timing

behaviour of a circuit.

4 .6 Related Work

4 .6 .1 Sim ulating Circuits in M iranda

[Hill 86] has shown how Miranda can be used to simulate digital sequential circuits. He

relies on Miranda’s lazy evaluation to support a simple model of streams. However, his

analysis was only applied to flattened gate-level descriptions with no support for

hierarchy or geometry.

H ill represents gates by Miranda functions. Larger circuits are then built by using

Miranda’s ordinary functional composition. The gate functions operate over a three

valued logic (true, false and unknown). This is represented by the data type b it:

bit ::= ON | OFF | UH

The function used to specify the behaviour of an OR gate is given as:

b_or x y = ON, x = ON \/ y = ON
UH, x = UH \/ y = UH

= OFF, otherwise

Note that this is a function of two arguments. It is not possible to use this function in

82

expressions that employ Miranda’s function composition notation. This is because

function composition is defined only for functions for one argument.

Signals are represented simply as lists of these three valued bits. Clocks are

distributed throughout the circuit explicitly. Constant signals are defined as infinite lists

based on b it. Type synonyms are written using == and list concatenation (like LISP’s
CONS) is written using :

signal == [bit]
on = ON:on
off = OFF:off
uh = U H :uh

Clocks can also be defined as infinite lists of b it values. The definition provided for the

OR gate above cannot be used in sequential circuits. A new function has to be defined by

lifting the existing function to work over lists of bits.

bitwise op bl b2 = map2 bl b2
where
map2 (a:x) (b:y) = (a $op b) : (map2 x y)

or_gate = bitwise b_or

Again, Hill uses too poor a representation for signals, since he has had to define a special

function map2. In our system, this is not necessary, because we use a tuple of streams

over which a normal map can be applied.

Using the above definitions, H ill has built some modest circuit descriptions of

synchronous circuits. However, this approach is hampered by the fact that circuit

descriptions are simply Miranda functions. Miranda’s limitations e.g. lack of a parallel

combining form, are reflected in H ill’s descriptions. This prevents structural information

from being captured elegantly— H ill’s definitions only give connectivity.

H ill has suggested that by using a different semantics his system could be used to

produce circuit layouts and test vectors. This is quite easy to accomplish in his system

since for most alternative interpretations, only the definitions of the base components

need to be altered. H ill also suggests the use of a more detailed representation for b i t

e.g. voltage levels.

The author has implemented a much improved version of H ill’s system which uses a

richer data type to capture structured logic types. In this system, every function is unary,

and Miranda’s built in function composition can be used to give elegant and readable

circuit descriptions. There is no need to define a special function for serial composition.

83

4 .6 .2 System Sem antics

Boute has extended the denotational semantics of programming languages to a semantics

suitable for describing arbitrary systems [Boute 88]. A system is a collection of physical

objects (subsystems) which interact with each other through physically identifiable

interfaces. Thus, systems can comprise of objects which are not computations in any

sense. However, useful computations can still be performed over these objects. One

major advantage of Boute’s system is that different meaning functions can be used with

the same formal description to calculate different system properties such as component

cost and performance characteristics.

Boute presents a systems semantics for describing system properties by means of

semantic functions. This is different from denotational semantics which defines exactly

one interpretation using an abstract mathematical domain [Stoy 77]. System semantics

defines various interpretations corresponding to different characteristics of a physical

system. The generalization of denotational semantics by the use of abstract domains

(abstract interpretation) is mirrored in systems semantics by an extension in the opposite

direction (adding information rather than removing it) by using concrete interpretations.

This is done by injecting extra information into domains rather than abstracting

information.

Boute defines semantics using a model which consists of a meaning function m which

maps elements of a set S into elements of a domain of interpretation D. The domain D is

the domain of possible meanings (m e S -> D). A model M is a pair M = (D, m). Boute

uses total functions to define meanings, so corresponding models are completely defined.

Boute employs a hardware description language called Functional Description of

Systems (FUNDS). We shall not present the entire syntax and semantics of this language:

the examples should be sufficient to demonstrate the principles under consideration. The

syntax of FUNDS is left flexible and resembles usual functional language syntax (like

SASL [Turner 79]). The combinational subset contains the following constant entities:

constant = zero I one I not I and I or

where not is of 1 place and and or are multi-place (i.e. any number of arguments).

To avoid the proliferation of semantic definitions, common parts are factored out. At

the semantic level, a generic definition is introduced for models to which others models

are said to conform. Models which do not have factorizable parts are said to be singular.

At the syntactic level when semantic functions are defined over an abstract syntax, the

84

concrete syntax is defined in terms of the abstract syntax without reference to the meaning

functions.

The following generic model is defined for the meaning of functions (m fun) and

expressions (mexp). Here, D is a zeroth-order domain of interpretation. The interpretation

for the constants is of the general form k g C -> D c, where D C = D * -> £>.

mexp g E D

mexp v i = i v variables

mfun £ F -> / -> D * -> £)

mfun c i = k c for constants

mfun ITk(vo,...,vn_i).eH i e D n -> £>

m/arc fU(v0,...,vn-i).eTl i (do,...,dn_i) = me*/? e i [do/vo] ••• t^n-l/Vn-ll
m g 5 -> D * —> £)

m s = m fun s i i can be any interpretation

Using this generic model, a simplex behavioural model Smplx = ({0, 1}, smplx) for

the combinational part of FUNDS can be constructed. The constants have the following

definitions:

k zero g -> D with k zero = 0

k one g D with k one = 1
k not g D -> £> with k not d - —id
k and g D* ^>D with k and (do,...,dn. \) = do a .. . a dn. i

k o r g D * -> D with k and (do,...,dn. \) = do v .. . v dn. i

Since the model Smplx conforms to the generic model, mexpr and mfun do not need to be

defined again. The meaning function for sentences is then smplx.

Boute also defines several others models including a structural model for describing

loop-free single-output combinational circuits built from elementary gates. He chooses a

model that makes clear the distinction between fanout and replication by using an

appropriate naming convention. A multiplex behavioural model is also presented for

sequential circuits.

To contrast Boute’s method with what we have presented, we give the essential part of
a worst-case timing model with D = R>o. For an n-place constant c, k c in D n D with:

k c {do,...,dn-\) = max [do,...,dn- i] + delay c

where delay in C -> D is an auxiliary function specifying the delay for each constant. This

is very similar to the maximum combinational depth calculation presented in section 4.5.

85

The main differences are in syntax.

4 .6 .3 Other W ork

O ’Donnell has used alternative interpretations to produce drawings of tree-network

circuits [O ’Donnell 88]. He presents a language called Hydra which offers the designer

several specification styles, including the ability to capture geometric information in the

same way as Ruby does. Hydra also allows path depth and netlist analyses to be

performed. Using combining forms similar to those found in TeX for drawing pictures,

he has drawn complex circuits by exploiting the technique of functional geometry

[Henderson 82]. Similar analyses have been used to extract layout information from FP

[Schlag 84].

Meshkinpour presents a functional hardware description language called FHDL. Using

this notation, he has reorganized a given system in a pipelined fashion in order to improve

its throughput. To help partition digital systems, a symbolic interpreter is adapted to

compute timing information. This is done in an ad hoc manner by associating attributes

with various gates. This is similar to the abstract interpretation we have presented for

timing analysis.

4 .7 Discussion
Abstract interpretation can be used to analyse hardware descriptions, giving information

which is related to the circuit’s behaviour. The advantage of this technique is that once a

simulator is available for a language it only takes a small amount of extra effort to produce

other analysis tools. This is because we usually only have to redefine the meaning of the

processing nodes like AND and NOT. The definitions for wiring circuits tend to be the

same in many analyses, so the standard definition can be re-used.

Analysing circuits for testability involves finding information which is not so directly

related to the behaviour of the circuit. To do this, the behaviour of the basic components

has to be altered in a less disciplined manner which destroys the safety principle.

However, there is no way round this, since the standard semantics does not contain

enough information to abstract from and to yield the analyses we are interested in.

Boute has used a concrete domain to obtain more detailed information about circuits.

However, to perform testability analyses we will need completely different domains.

These cannot be made by simply injecting extra elements into the standard domain. We

86

need an interpretation which is even more general than that offered by concrete domains.

For example, testability measure uses a domain of vectors that are unrelated to the logic

values in the standard domain.

To describe such analyses requires the use of a non-standard semantics over a non­

standard domain of values. This is the topic of the next chapter, which deals with such

non-standard interpretations in detail.

87

Chapter 5

Non-Standard Interpretation

5 .1 Introduction
Abstract interpretation does not possess sufficient power to capture all circuit analyses of

interest. In this chapter, we use the non-traditional discipline of non -s tanda rd

in terpretation. We allow the standard semantics to be replaced by any other semantic

definition. Normally, there will be no formal connection between the standard and non­

standard semantics. Similarly, there need not be an abstraction between standard and non­

standard values.

Our approach is similar to that of Boute [Boute 88] outlined in chapter 4. Boute uses a

generic model to capture common aspects of circuit analyses. We provide a more

powerful generic mechanism. The technique we adopt operates over a richer language

than that used by Boute because we can deal (in a limited fashion) with inverse. Boute

argues that the choice of good composing forms is an essential part of his system

semantics technique, especially for alternative interpretations. We provide a richer

collection of combining forms and we also allow all of these combining forms to be

overridden. Boute does not permit the single combining form that his system supports

(i.e. functional composition) to be redefined. Thus, in one sense at least, our work can be

viewed as an extension of Boute’s to relational style descriptions with more powerful

combining forms and alternative interpretations.

Our aim is to make non-standard interpreters that we can slot into a circuit analysis

tool, rather like one can slot expansion cards into the backplane of computers to increase

their power and functionality. We have developed such a backplane for analysing Ruby

circuit descriptions. It should be easy for the user to specify and add new interpretations.

However, some user interface code might have to be written for interpretations which

require their results to be output in a special manner e.g. bar graphs.

88

Non-standard interpretation has been used by Luk [Luk 90] for analysing

parameterised designs. Luk uses various metrics which are employed to characterise the

performance trade-offs for generic designs. Akella and Gopalakrishnan [Akella 90] have

performed test pattern analysis at a higher level of abstraction by associating testing

directly with the specification of the design. Faults are injected into a structural

specification, and the behavioural consequences are inferred by process composition.

Various techniques have been used by the author to implement non-standard

interpretation, with differing degrees of success. Two promising techniques for non­

standard interpretation are presented. We show some initial attempts as motivation for the

final approaches. One of the final approaches is used when we want to observe the values

at the primary inputs and outputs of circuits. The other technique returns a graph of the

circuit under analysis with all the internal nets annotated with their non-standard values.

Throughout this chapter, a node is a processing element like an AND or NOT gate. It

is not a wire. Wires are grouped into nets. Every wire on a net has the same value.

5 .2 Techniques for Expressing NSI
There are many ways to represent a non-standard interpretation of Ruby hardware

descriptions. We have talked about ‘changing the semantics’ of the elementary gates in a

rather informal manner. Before a system can be built for performing non-standard

interpretation, we have to be much more precise about what we mean by ‘interpretation’.

This is done by discussing various models for interpretations that have been

implemented.

To aid the description of various interpretations, we assume that we have available an

algebraic object that represents the abstract syntax of Ruby expressions. The semantics

of Ruby is then described by giving the semantic denotations for the abstract syntax. The

specification of this rather large object would look like the following algebraic type

declaration. The vertical bars separate constructors which correspond the elements of the

Ruby language. Thus, the abstract syntax is represented in terms of constructors.

RUBY := A nd ’ I O f I N ot’ I A p tf I S e f [RUBY] I P a r ’ [RUBY] I
B lock ’ string [RUBY] I Id! I Inv ' RUBY I F o rk ’ num...

A prime is written after the name of each constructor to avoid confusion with the

corresponding syntactic entity. We can define the standard semantics for Ruby by giving

89

a semantic function for each constructor (abstract syntax) in RUBY. We shall use the

term ‘Ruby construct’ to mean one of the constructors in RUBY. Note that this

specification is recursive, and represents Ruby circuit descriptions as a tree. We shall talk

about graphs to allow for the possibility of feedback loops in sequential circuits, or the

sharing of nodes. The leaf nodes are constructors of arity 0. For example, the processing

nodes And”, O r’ and N ot’ and basic wiring forms like App’ do not operate over circuit

descriptions. The internal nodes correspond to the ‘higher-order’ constructors like serial

(Ser’) and parallel (Par’) composition which themselves take other Ruby constructions

and combine them to make a new construction.

A Ruby expression can refer to the name of another Ruby definition available through

the current environment. The constructor Block ’ describes such a reference. The first

argument is the name of the definition which is being referenced and the second argument

is a list of Ruby expressions which are higher order arguments (parameters). This

mechanism is implemented just like function calls in traditional functional languages. The

reference is replaced by the defining body of the referenced definition, with the

appropriate parameter and argument substitutions (call-by-value). For example, if fst R is

defined in the environment to be P ar' [R, i] then the expression B lock ' “fst” [And’] is

expanded as follows:

Block ’ “fst” [And ’] -> Par’ [And, i]

Note that the formal higher order formal parameter R matches with the actual parameter

(argument) And ’. The transformation above assumes the existance of a global constant

environment.

The semantic functions, including non-standard interpretations, can be considered to

be mappings between the abstract syntax of Ruby (call this A) and an abstract domain of

interpretation for expressing the semantics (call this D). This is demonstrated in figure 5.1

for a mapping E. The mapping also needs to take account of environment information

which is omitted from the diagram.

A
► o

abstract syntax semantic domain

90

Figure 5.1: A semantic mapping between A and D.

An important restriction is placed on how non-standard interpretations are to be

constructed. The most general approach is to replace the relation which specifies the

behaviour of each element of Ruby by a non-standard relation. The non-standard

semantics could then be implemented by mapping it onto a relational language. Although

this is the most straightforward way to proceed, we choose a different technique. We

want our interpretations to be realised efficiently, to capture the information flow

precisely and to be easy to implement. Relational implementations make data

dependencies implicit and usually result in backtracking implementations that are not very

efficient. After considering a large number of circuit analysis algorithms, we have come

to the conclusion that many complex algorithms can be decomposed into a series of

unidirectional analyses. Each unidirectional stage can be implemented by functions rather

than relations. This leads to a much more efficient implementation, while retaining ease of

coding.

We choose a very simple scheme for trying to capture relational analyses by

composing unidrectional analyses. Only two kinds of unidirectional analyses are used:
forw ards analysis and backwards analysis. In forwards analysis, information flows only

from the domain to the range. In backwards analysis, information flows from the range to

the domain. Complex relational analyses are described by using combinators that operate

over unidirectional analyses. For example, one useful combinator applies a forwards

analysis and then overlays the result of this onto a backwards analysis. We cannot capture

all relational analyses using this scheme, but we have been able to express many complex

backtracking circuit analyses using this technique.

One of the most obvious ways to make a non-standard interpretation is to completely

respecify the semantics of Ruby, as shown in figure 5.2 for a non-standard interpretation

E’ . Note that the semantic domain will in general be different for each interpretation. This

is how the first non-standard interpretation system was built by the author. However,

providing an alternative semantics for all of Ruby is a rather unsatisfactory approach. One

of the most appealing aspects of non-standard interpretation is the ability to change the

meaning of only a small subset of the language (e.g. the three logic gates) to get a

completely new interpretation. The other elements of the language should have the same

semantics as before, but should operate over non-standard values.

91

A
A

abstract syntax semantic domain

Figure 5.2: Completely respecified non-standard semantics

The difference between figure 5.1 and figure 5.2 is that the range is different (non­

standard semantic domain) and the semantic function is different (a non-standard

semantics). However, the domain is the same in both schemes (since we want to analyse

the same description under many interpretations).

In most interpretations, the meanings of the wiring primitives and combining forms

remain unaltered. Wires carry information without examining it. They may lose

information by not connecting (or relating) a wire in the domain to the range. Wires can

also duplicate information as well as re-arrange the order of information in a tuple.

However, the information content does not affect the behaviour of wiring circuits. Such

circuits behave then rather like polymorphic functions.

In most interpretations, the wiring primitives and combining forms will just be

plumbing that transmits the values of interest that are computed at combinational gate

nodes. A large area of most circuit designs is spent on communication rather than

processing. Ruby provides a rich collection of operations for describing and laying out

various wiring forms. It would be tedious to have to respecify them for each new

analysis.

This leads to an alternative technique for making non-standard interpretations. We can

parameterise the standard semantics on the ‘processing’ nodes i.e. And’ , O r ’ and Not’ .

This is done by parameterising the semantics on the language constructs which require

different interpretations. At first, the basic gates i.e. the processing nodes were selected

for parameterisation. This method corresponds directly to the generic instantiation

mechanism used in the Ada language for generic packages.

This approach effectively divides the syntactic domain A shown in figure 5.1 into two

parts. One part is invariant between different interpretations and is used to describe those

syntactic entities which have fixed interpretations. The other part contains the syntactic

entities that change meaning under different interpretations. This is demonstrated in figure

92

5.3 for a non-standard interpretation E” .

parameteri sed _ A 1
entites / ■ —

syntactic
entites
whose
interp. —
does not
vary

E
abstract syntax semantic domain

Figure 5.3: Parameterised interpretations.

Note that the syntactic domain A has been split into two domains A \ and A2. It should

be the case that A \ u A2 = A 1 and A 1 n A2 = 0 . This ensures that there is exactly one

mapping for every well formed syntactic entity.

This method works well for analyses that only need to provide alternative semantics

for the basic gates. This covers a large class of interpretations. For example, symbolic

simulation and deductive fault simulation can both be represented by this model. This

technique can be implemented in Miranda simply as a function which can be partially

applied. However, it is inflexible because it is difficult to cope with changing the status of

a syntactic entity from non-parameterised to parameterised. For example, we might also

want our interpretation to be parameterised on Fork!. This involves changing A l and A2

and re-coding our implementation function, although the change is very minor.

This was indeed done, and then several other language features were also added to the

list of paramerterised language constructs. The situation degenerated to the point that the

standard interpretation was a hollow shell providing no default semantics for any

language feature because everything was paramerterised. This takes us back to where we

started i.e. having to re-specify the semantics of the entire language for each

interpretation. Clearly, another method was required that allowed certain Ruby constructs

to have their semantics redefined while leaving the others alone.

A variant of the above technique involves making the standard interpretation the

‘behaviour’ or ‘simulation’ interpretation where every Ruby construct including the

processing nodes had a default (simulation) semantics. A mechanism is then provided for

over-riding the semantics of any Ruby construct.

A semantic definition is now provided for the forwards and backwards standard

semantics. The semantic definition S is called an interpretation and takes as its parameters

the direction of the analysis, a Ruby expression to evaluate and domain or range values to

93

be used during the evaluation. The environment p is always constant during evaluation,

so it is not an explicit parameter. The direction is denoted by / for forwards and b for
backwards.

direction : = / I b

The type of an interpretation can be given as follows where V 1 and V2 denote the

range and domain of interpretation:

interpretation: direction -» RUBY -> V l-> V2

We shall use partial application to simplify our semantic definitions. Let/, g and h be

functions and x be a parameter. Under partial application the following equivalences hold.

They extend in a natural manner to other combining forms.

The standard semantics for the serial and parallel combining forms are defined as

follows where the third parameter is omitted by partial application. Pattern matching is

used and the definitions are scanned in a top down manner.

S fU S er' [P, Q]1 = 5 /IT P l ; S /IT Q l (5.1)
S b I\Ser' [P, Q]H = S b H Q \ \ S b ITP1 (5.2)

S d ir [,Ser’ [jc] H = S d ir ITxH (singleton serial composition list)

S d ir IP a f [P, Q]1 = [S d ir ITPH, S d ir IT01I] (5.3)

In the above definitions, semicolon (;) refers to the usual forward function

composition: (f - ,g)x = g (fx). A definition for parallel composition specialised to

functions is also required:

[F, G] {a, b) = (F a, G b) (5.4)

Inverse is defined by:

S fU n V B \ = S6ITBH (5.5)

S b U n v * B1 = S / m (5.6)

A named Ruby definition is elaborated by looking up the name in the environment and

then performing a textual substitution of parameters by arguments using the function

subst. The environment function has type p :: string -> RUBY

S d ir KBlock’ name argsH = S d ir tisubst (p name) a rgsl (5.7)

94

The behaviour of the basic gates are described by set-valued functions, using one

function for each direction. For example, the forward behaviour of AND is given by

Andf and the backward behaviour by Andb defined as:

Andf {(L, L) } = {L} (5.9)

Andf { (L, H)} = {L} (5.10)

Andf { (H, L)} = {L} (5.11)

Andf {(H, H)} = {H } (5.12)

Andb {L } = {(L, L), (L, H), (H, L)} (5.13)

Andb {H} = {(H, H)J (5.14)

The corresponding functions for OR (Orf, Orb) and NOT (Notf, Notb) are defined

similarly. This gives the following standard semantics for the basic gates:

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

Higher order combining forms like m ap are instantiated into thier fixed size

equivalents at run time. Thus, the analysis of a circuit containing a map degenerates into

the analysis of a fixed size parallel composition. The standard definitions of the higher

order combining forms are used to simply unfold them from descriptions.

A non-standard interpretation is made by overriding some or all of the standard

interpretation by another semantic definition over the same language (or abstract syntax).

The usual definition for over-riding is used, employing the infix operator ©:

(P © 0 a = P a, if a e dom P

= Q a , otherwise (5.30)

I f I is a new interpretation for some of Ruby, then a non-standard interpretation is

given by:

/ © 5

From the definition of © it is clear that the following identity holds:

S = S © S

S f ftA n d 'H = Andf
S b fTArtd’l = Andb
S /ITO r’l Orf
S b ITOr’H = Orb
S fK N o t’ H Notf

S b (TÂ or’H = Notb

W e now review our decision to use the above mechanism for non-standard

95

interpretation and compare it with the most general non-standard interpretation scheme.

For a full relational implementation, a set could be used to represent the required relation.
However, since we are only interested in running our circuits either forwards or

backwards, it seems natural to represent the non-standard semantics by two functions.

Another reason for separating the forward and backwards semantics is that many analyses

only make sense in one direction. For these, the semantic function for the other direction

can be left undefined. O f course, separating a relation into two functions allows for much

more efficient implementation. This allows the relation to be implemented by a pair of

functions without explicit backtracking.

5 .3 An Example: Symbolic Simulation
A symbolic simulator is constructed using the interpretation scheme presented above. The

non-standard values are now symbolic expressions which represent the value at a given

node in terms of input variables. Let the non-standard value be called symbol and define it

as:

symbol := variable I AndExpr symbol symbol I OrExpr symbol symbol I
NotExpr symbol

The input to the simulator is the name of primary inputs. We define symbolic simulation

only for forward interpretations: the backward case is left undefined.

An exclusive-or gate can be defined in Ruby by:

exor = split; [[i, not], [not, i]] ; [and, and j; or

The abstract syntax tree in terms of RUBY for this definition is shown in figure 5.4.

96

ChJCm) GssDGD
Figure 5.4: Abstract syntax for exclusive-or definition.

It is instructive to note that non-standard interpretations that use alternative semantics for

just the processing constructs (,And’ , O r’ , N o t’) change the interpretation of some leaf

nodes, as is the case in figure 5.4. Other leaf nodes like Id ’ remain unaltered.

A symbolic simulation of the definition with the non-standard value <x, y) (.x and y are

symbolic variables) should give the following result:

OrExpr (AndExpr (N otExpry) x) (AndExpr (N otExprx) y)

The expression above is a LISP-like representation of the boolean expression x .—\y I

—ix.y which realises the exclusive-or operation.To implement symbolic simulation as a

non-standard interpretation, only the processing nodes need to be redefined. A suitable

interpretation is Sym, defined as:

and_sym (x, y) = AndExpr x y
or_sym (x, y) = OrExpr x y
not_sym x = NotExpr x

Sym f IT AN D H = andjrym
Sym f IT OR U = or_sym
S y m ff tN O T l = not_sym

Note that the backward interpretation is left undefined since symbolic simulation is

usually only carried out in the forward direction. However, it is interesting to consider

what a backward symbolic simulator should do. The forwards case finds an answer to the

question “I f I give the following inputs, what expression appears at the output?”. The

answer to this question is easily derived from the structure of the circuit. The backwards

case can be thought of as asking two slightly different questions. In one case, constant

Ser’

(Block1 split []) (P a f) (Par*) Or’

(A n d ') (A n d ')Par’ Par'

97

values are assigned to outputs of internal nodes and the question is “What inputs produce

these outputs?”. Answering this question essentially involves performing the task of a test

pattern generation program. In the other case, we associate expressions (in terms of input

variables) to the primary outputs. This asks the question “what input assignments

produce these values at the output, if any?”. This performs the task of a program that

checks to see if the realisation of the circuit meets its specification. There is a strange link

between backwards symbolic simulation and test pattern generation and circuit validation.

Roth [Roth 80] has shown that his test pattern generation technique (the D-algorithm)

could be adapted to validate certain kinds of circuits. This exploits the behavioural
information present in test patterns.

A symbolic simulator interpreter in the forward direction called SS can now be built:

SS = (Sym © S) f

This symbolic simulator is now used to simulate the exclusive-or circuit:

SS IT exorU <x , y)
= {Use standard definition of function-call elaboration and serial

composition.}
SS IT sp lit; [[i, not], [not, i]] ; [and, and] ; o r l (x, y)
= [Use standard definition for elaborating wiring circuit split and serial

composition.}
SS IT[[i, not], [not, i]] ; [and, and] ; orU ((x, y>, (.x, y »
= [Standard interpretation used for identity and parallel composition. Over­

riding interpretation Sym used for not.}
SS IT [and, and] ; orT « x , NotSym y>, (NotSym x, y »
= [Standard interpretation used for parallel composition. Over-riding

interpretation Sym used for and.}
SS ITorT (AndSym x (NotSym y), AndSym (NotSym x) y))
= [Over-riding interpretation Sym used for or.}
OrSym (AndSym x (NotSym y)) (AndSym (NotSym x) y))

which is the expected result. Note that we have used syntactic entities inside the IT...H

meta brackets for clarity. We should have written And'' instead of and.

A symbolic simulator is a very obvious candidate for implementation as a non-standard

interpretation. It is clear from the outset that we only have to re-define the processing

nodes: the semantics of everything else stays the same. The example works well: the

definition given above is natural looking. For a modest outlay, we have reused a large

amount of the standard interpretation to build a completely new tool.

In the standard interpretation the values that flow along the wires are standard boolean

values. The nodes are represented by functions that manipulate this boolean data. Figure

98

5.5 show a graph of the exor gate under simulation with the input <L,H). The standard

values on each arc are shown.

« L , H>, <L, H>^.

^Block' split [])

<L,

exor

(Par) (Or’)
L / \ H

And) I And'

CwDS) (SG D
Figure 5.5: A standard interpretation of exor.

Contrast this with the graph that corresponds to the symbolic simulation non-standard

interpretation shown in figure 5.6.

exor

x.-iy I —ix.y

K r p (o 7)f \ xy
(A n ?) (i)

C w i) (N o 7) (N o 7) (j d l)
Figure 5.6: Symbolic Simulation N SI of exor.

For clarity, NotSym is represented by —i (prefix), AndSym by . (infix) and OrSym by I

(infix).

These two graphs are isomorphic: we are computing over the same structure. The

same Ruby description is analysed by two different interpretations. This gives rise to

automatic consistency between the circuit specification used for description (behaviour)

and the circuit specification used for other analyses.

99

One weakness of this technique as it stands is the inability to examine the value of

internal nets. This is a crucially important requirement, since all testability analyses are

concerned with these internal connections.

5 .4 Labelling Nets
Many analyses require the circuit’s nets to be uniquely labelled. For example, in

deductive fault simulation, we talk about node n stuck at some value. Should Ruby

descriptions be annotated by the designer? This would require every node to be given a

unique name.

There are several reasons why this is a bad idea. Firstly, this would make Ruby

descriptions ugly by littering them with distracting information. A large part of Ruby’s

elegance arises from its carefully designed syntax which makes apparent certain

characteristics of designs. Hence the mathematical-style notation rather than an intractable

verbose V H D L style.

Many hardware description languages require nets to be explicitly labelled, and most

net representations like ED IF [EDIF Comimittee] rely on all nodes having names.

However, using a simple labelling scheme, it is not possible to label every Ruby

expression. Consider the circuit map and. It is not possible to tell how many nets there are

until this circuit is given some input, like «L,H), <H,H» or is just as part of some other

circuit which fixes the size of the map e.g. map and ; and. Recursive descriptions often

describe circuits whose dimensions depend on the size of the data.

Instead of trying to cope with circuits which have this kind of data dependency, we

shall automatically label internal nets of only fixed-size Ruby circuits. By ‘fixed-size’ we

mean a circuit for which the number of internal nodes can be determined even if it

contains generic combining forms like map. The size can be fixed by constraining the

generics by using them with fixed size circuit builders (e.g. the combinational gates) or

by applying an input of known size. The input itself is not important.

Whatever labelling scheme is chosen, it must be easily understood by the designer,

because he or she will have to be able to identify internal nets from the label assigned.

Later, we shall see how to produce a graph-like representation with internal arcs labelled.

Rather than examining a circuit diagram that corresponds to a Ruby description with a

view to finding a suitable labelling we shall use the Ruby description itself for labelling.

100

Each net (which corresponds to an arc in the abstract syntax tree) is to be labelled by

the processing node that drives it. We constrain ourselves to circuits which have at the

most one output of a processing node connected to a net.

The following labelling scheme is used. We assume that we have an infinite supply of

numerical labels (whole numbers) starting with 1. Let the current label be the next free

label which has not been used. To label a combinational node we assign it the current

label and then increment the current label. Wiring circuits do not consume labels: they just

carry labels between combinational nodes. To label a composite (or higher-order)

constructor like serial or parallel composition, we label the constituent circuits from the

left to the right.

The type RUBY presented earlier is redefined to allow the basic gate constructors

And \ O r’ and Nor’ to hold values by making their arity one. This is done by making

RUBY a polymorphic type. In the labelling interpretation, we specialise this polymorphic

type to integer values to allow us to attach label values to the basic gates. This extra value

is written as a subscript to A nd ’ , O r’ and N o t’ . Where it is omitted, its value is not

needed and is assumed to be undefined.

The labelling interpretation is then defined using the following definition of L:

L : f$ A n d ’ ^ c = And’ c
£,;/IT<9r’H c = Or’c

L : f IT N o t’ 11 c = N ot’ c

L i f ^ l d ’ J c = Id ’

L f ^ F o r k ’ nil = Fork ’ n

L f f tS e r ’ (jc:jc5)H c = Ser’ (.xc : (L f l fS e r ’ xsll (c + # *)))

L f t iP a r ’ (x:xs)H c = P a r’ (xc : { L f ^ P a r ’ xsH (c + #*)))

The definition of L over other combining forms follows in a similar manner. This

definition used a function # which operates over abstract syntax descriptions. This returns

the number of labels consumed by a fragment of abstract syntax, and corresponds directly

to how many processing nodes are found. A partial definition is:

A n d ’ = 1

O r ’ = 1

N o t’ = 1

#Scr ’ [] = 0

Ser’ (x:xs) = #x + # Ser’ xs

For example, the labelling of the exor circuit as defined above is:

101

exor = split; [[i, notd, [not2, i]] ; [and3, and4] ; ors

where each combinational node is subscripted by its label. Notice that by giving a

different Ruby description, we can get a different labelling:

exor2 = split; [[i, notd ; and2, [not3(i] ; and4]; ors

Thus, it is not possible to simply look at the circuit diagram and label the internal nets.

We must label Ruby descriptions themselves.

The labelling scheme outlined above is easy to implement and is also straightforward

for a human to perform. This labelling scheme can also be implemented as a non-standard

interpretation, as shall be shown later. The exclusive-or graph is labelled using this

scheme in figure 5.7.

exor

(A n ?) (A n d)

CUD® (S(jdD
Figure 5.7: Labelling of exor.

Notice that certain arcs which are connected to primary inputs have undefined labels

because they are not driven explicitly by a combinational gate. The algorithm for labelling

could be amended to deal with input wires as a special case, but a better solution seems to

be to provide a special component, say inpad, that represents an ‘input node’ (rather like

an input pad). This node is treated like a combinational node when labelling i.e. it

increments the current label, but it behaves like a wire i.e. does not modify the incoming

information. A third description of an exclusive-or gate can then be given as:

exor3 = [inpad-i, inpad2]: split; [[i, not3], [not4(t]] ; [and5) and6] ; or7

which properly labels the primary nets. However, we are often not interested in the

values at the primary nets, so we shall often not bother to use inpad.

102

5 .5 Internal Connections
It would be useful to have as output from an interpretation a graph (like figure 5.5) which

gives not only the value at the output, but also the values on all the internal arcs. This

information is especially useful in symbolic simulation when the behaviour returned at the

output does not match the expected behaviour. The graph could be analysed to discover

where the behaviour of the implementation departs from the specification, thus reducing

the size of the implementation that has to be debugged.

There are more pressing reasons for being able to observe internal nodes. Many

testability analyses compute valuable data about internal nets. Using the scheme described

above, this data is locked ‘inside’ the circuit since we are only able to observe the primary

outputs.

There are various ways to get at the information locked in the internal nets. The first

method adopted was to change the non-standard values to be tuples. One element of the

tuple contained the ‘result’ from the previous combinational node i.e. the same value as

before, and the second element contained a set of node assignments. A node assignment

is itself a pair of node numbers and values at that node. To get the values at the internal

nets, we gather together all the node assignments appearing at the outputs (by taking their

set union) and tabulate the results on node numbers.

Running such an interpretation on the exclusive-or gate example with input <L, H>

using the standard interpretation would give output like:

Node Value

1 L
2 H

3 L

4 H

5 H

The node column could also be annotated with the kind of gate the label refers to by a

slight modification to the non-standard value. However, output of this type is difficult to

analyse. It would be preferable to have output which resembles the decorated graph

shown in figure 5.5. For example:

exor <L, H> = split; [[i, nof L], [not2 H, i]] ; [and3 L, and4 H]; ors H

103

Then next section considers one way of achieving this by composing interpretations.

5 .6 Composing Interpretations
Since application of an interpretation can be considered to be a transformation (or

function) from one graph to another, a natural extension is to allow two transformations

over isomorphic graphs to be composed.

Consider the labelling example. The interpretation £ takes a Ruby description (a graph)

and some data and returns a graph as a result. Because of the way higher order combining

forms are elaborated, the graph returned may not be isomorphic to the circuit description

graph. For example, every instance of map is replaced by the corresponding parallel

composition. We apply interpretations only to circuit descriptions of fixed-size so we are

sure that the graphs will be isomorphic between composed interpretations.

The graph returned by the standard interpretation forms a Ruby description which can

then be analysed by another interpretation using its own non-standard values. In the

labelling example, we want to apply the labelling interpretation to the graph annotated

with standard values, to return a graph annotated with label and logic value pairs.

To allow such a combination to be expressed, another combining form is introduced over

interpretations: serial composition. We shall denote this closed operator by ;. When two

circuits are composed, we have to provide a pair as ‘input’ data. The first element of the

pair is the input to the first interpretation and the second element of the pair is the input to

the second interpretation. The meaning of serial composition over interpretations is

defined by using interpretation that have their direction of analysis partially applied:

{a, b) (X : y)c ir <=> y { X c ir a) b

Informally, interpretation X analyses c ir with input a and returns a new annotated graph

as its result. This graph is analysed by interpretation y with input b to return a third

annotated graph which is the result of the serial composition. Both interpretations use the

same environment. Note that composition is defined not over interpretations (which are

parameterised on a direction and of type d irec tion R U BY ' V I -> V2) but on

interpretations in a given direction (i.e. the direction is partially applied giving a function

of type RUBY ' -> V I -> V2).

The new labeling interpretation L2 can now be defined in terms of S and L:

104

L f = l F

S{ = S F
L2 = L f

This composite interpretation expects as input a pair (a, b>, where a is a standard value

(e.g. tuple of logic values) and b is the number to start labelling from. Figure 5.8 shows

the graphs constructed in the L2 labelling of the circuit and ; not.

r^~) n * T) g*T)
/ \ » / v »

C ^) (S) s f<L,H> (A rf) (^) Lf<1,2> (A ^) (^)
Figure 5.8: L2 interpretation for a N A N D gate.

5 .7 Conclusions
Starting from the standard semantics, various adaptions have been explored in an attempt

to find a good method for non-standard interpretation. The simplest way to give an

alternative semantics is to define one from scratch, but this is unsatisfactory because

much work is duplicated. Intuitively we might think of non-standard interpretation as

providing alternative semantics for the processing nodes, so the semantics could be

parameterised on the definitions of these nodes. However, we adopt a more powerful

system that allows any Ruby language feature to be redefined.

Various ways of combining interpretations to produce new interpretations have been

presented. Interpretation overriding provides the mechanism for making a non-standard

interpretation by adapting an existing interpretation. Interpretation composition combines

interpretations to produce new interpretations and is useful for developing complex

analyses in a modular fashion. A very useful interpretation built in this way is the labeling

interpretation.

The non-standard interpretations presented all analyse isomorphic circuit descriptions,

105

so we avoid the problem of inconsistency between the standard circuit representation and

different representations used for other analyses.

Chapter 6

Applications of NSI

6 .1 Introduction
In the last chapter, a technique for implementing non-standard interpretation was

proposed. This technique is evaluated by using it to build various analysis tools. The

tools implemented as non-standard interpretations are deductive fault simulation and

SCOAP testability measure. An alternative circuit representation is also considered for

anlayses where are net based rather than node based. We also discuss the technique of

partial evaluation for circuit analysis and how this method can be easiy cast as a non­

standard interpretation.

We show that one of the weakness of non-standard interpretation with respect to abstract

interpretation is that we lose the ease with which safety properties can be proved. A method

for attempting to recover safety properties by combining interpretations is presented.

6 .2 Deductive Fault Simulation Interpretation
Now that internal nets can be labelled and combinational gates can have their semantics

changed, there is enough machinery available to preform deductive fault simulation by non­

standard interpretation. The output from a deductive fault simulation program is a set of

stuck-at faults that can be detected by a given test pattern. These stuck-at faults give

information about internal nets, so the circuit must be labelled. This can be done using the L

interpretation. However, recall that deductive fault simulation works by ‘deducing’ which

faults can be detected by analysing the correct behaviour of the circuit. This suggests that

107

deductive fault simulation encapsulates the standard interpretation. Instead of re-specifying

the standard interpretation, we can use the L2 interpretation which produces a labelled graph

annotated with standard values.

All that remains now is to make an interpretation that takes an L2 labelled description and

(empty) fault sets as input and produces as output the faults that can be detected by the given

test pattern (embedded in the L2 annotated graph).

The non-standard semantics to be attributed to the combinational gates by deductive fault

simulation (section 3.5) is given by:

and ded <n, v) «X, x), <T, y» = <0„ (0* X n $y Y) u {n /-.v}, n)
o r ded (n , v> «X, x), (Y, y)) = <0„ (0 *X u t y Y) u {«/-.v}, n)
not_ded (n , v> (X, x) = <0V ($x X u { n / - >v), n)

Note the extra first parameter refers to the value deposited at the node from the previous (L2)

interpretation, and the second parameter is the data coming into this node through ‘wires’.

The non-standard values like (X, x) are pairs: the first element is a set of faults and the second

element is the standard value for the net which is transmitting the fault set.

The symbol 0 is used to describe a conditional set complementation operation. When

applied to a setX with a subscripted boolean (or logic) value, 0*X means complement setX

(with respect to X u Y) i f x is true. If x is false then X is unaltered. When —i is used in a fault

set and applied to a boolean value, it simply denotes boolean negation. For example, {n/—tv}

refers to the stuck-at fault for node n which is of opposite polarity to the correct simulation

value at the node n i.e. the fault at the output of a gate.

The result of each of the definitions is a pair: the first element gives the set of faults that is

propagated past this gate, along with the fault detectable at the output of this gate. The second

element is the correct logic value at the output of the gate. Note that these ‘correct’ logic

values are not computed here: they have already been worked out by the L2 interpretation.

Here, they are just passed to successor nodes to allow the fault sets to be properly

complemented.

This interpretation, called DS, can now be given as:

D S f ITA n d ’ l = and_ded (6.1)

D S /IT O r’H = or_ded (6.2)

£>S/IT Aor’TI = no tded (6.3)

108

Note that the backward case has been left undefined. Deductive fault simulation makes sense

only for the forward case. The backwards analysis asks the question “what input(s) do I need

to test for the following set of faults?” which is an extension of the test pattern generation

problem. We choose to tackle test pattern generation as a separate problem (shown later). It is

interesting to note that our organization of interpretations into forwards and backwards

analyses has pointed out a fundamental relationship between deductive fault simulation and

test pattern generation.

The DS interpretation can be used to build a specification for a deductive fault simulator.

This interpretation produces at the output sets of faults covered by a given test pattern. The

union of all the fault sets at the outputs give the final result of the deductive fault simulation.

The DS interpretation takes as input pairs. For example, to analyse the exor description for

the input <L,H> we would give «L, H>, « { },L),<{ },H>» as input. The first element contains

logic values which are used to produced a fixed circuit circuit for labelling. The second

element of the tuple contains a tuple itself of pairs of fault sets and logic values which is used

by the DS interpretation. Such a fault simulator is called ‘DE'DSIMand is defined as:

‘DL'DSIM = L2 ; (DSf © Sf)

where DSf = D S f and Sf = S f.

One pleasing aspect of having formulated the deductive fault simulation problem in this

manner is that it has been decomposed into several sub-problems which have been solved

independently. The structure of the division corresponds directly to the different

interpretations used. This agrees with good software engineering practice: the problem is

divided into smaller problems whose solutions are then composed. The methods for

composition used here are overriding and serial composition of interpretations.

6 .3 SCOAP TM Interpretation
Like deductive fault simulation, the SCOAP testability measure algorithm requires the internal

nets to be uniquely labelled. It is essential that the values at internal arcs can be observed. The

SCOAP algorithm, as presented in chapter 3, has non-trivial data dependency. Note that to

compute the observability of the output net of a node A, we must have already computed all

the controllabilities from the primary inputs to node N , and we must have computed all the

109

observabilities from the output of node N to the primary outputs. This seems to require

simultaneous flow of information forwards and backwards, and perhaps suggests an

implementation in a logic language like PROLOG.

However, note that the SCOAP problem can be split into two stages. The controllability

values can be computed without knowing any of the observability values. This can be done

using a simple left to right interpretation. Once a circuit has been annotated with

controllability values, we are in a position to compute observability values by working

backwards from the primary outputs to the primary inputs. This can be accomplished by

using a backward interpretation. Composing these two interpretations with a labelling

interpretation will give us a SCOAP testability measure interpretation.

Let the forward controllability measure interpretation be CONT. This can be defined

immediately from the definition in chapter 3 as:

and cont n <v, (cx, cy))

= {(cx, cy),<min [setO cx, setO cy] + 1, setl cx + setl cy + 1»

or cont n <v, <cx, cy))

= ((cx, cy), setO cx + setO cy + 1, min [setl cx, setl cy] + 1>

not cont n <v, cx) = (cx, (setO cx + 1, setO cx + 1»

setO (x, y) = x

setl (x, y) = y

CONT /ITA nd’H = andjcont (6.4)

C O A T /ir O r ’H = or_cont (6.5)

CONT /fTA ^r’H = not_cont (6.6)

This interpretation does not use any node annotations. Each node should hold information

about the controllabilities of the input and output nets to that node. For this reason, the non­

standard values are not just a pair of controllability measures. Instead, we use a pair whose

first element is the controllabilities of the input nets of the previous node, and the second

element containing a pair of controllability measures. This slight contortion arises from the

fact that SCOAP is really a net-based analysis which is being cast in a node-based

framework.

110

Assuming a graph has been annotated with controllability measure, a backward

observability measure OBSV can be defined as:

and obsv ({cx, cy), v> obsv
= ((cx, setl y + obsv +1), (cy, setl x + obsv + 1»

o r obsv ({cx, cy), v) obsv
= ((cx, setO y + obsv +1>, (cy, setO x + obsv + 1»

not obsv ((cx, cy), v> obsv
= <cjc, obsv +1)

OBSV b ^ A n d ' l and_obsv (6.7)
OBSV b ITOr’H or_obsv (6.8)
OBSV b ITAtor’H not_obsv (6.9)

This interpretation uses the controllability annotations at the combinational nodes to compute

the observability values. The graph return is annotated with a pair: the first element contains

controllability information and the second element is an observability measure. Notice that

this interpretation is only defined for the backwards case.

SCOAP can now be described by composing these two interpretations:

SCOAP = L2 ; (CONT f) ; (OBSV b)

Once again, the problem has been divided into sub-problems which have been solved

independently. The SCOAP analysis was expressed as the composition of three sub-analyses:

(i) labelling, (ii) controllability measure and (iii) observability measure. The observability

interpretation is a backwards analysis: we have simplified the task posed by the apparently bi­

directional nature of the problem by chosing interpretations that are uni-direction. It is easy in

the case of SCOAP to find such a division.

6 .4 Inverting Nodes and Arcs
The interpretation models presented so far have been ‘node centred’. By this, we mean that

they are concerned with analysing characteristics of nodes like AND gates. Many analyses are

certainly node based e.g. counting the number of gates in a circuit.

Ill

However, many other analyses seem to be more ‘net based’ rather than node based. This

is especially true of testability analyses which compute information about internal nets. The

SCOAP testability measure involved a slight contortion with node values which allowed the

testability information of surrounding nets to be held.

This suggests that if we are really performing net based analyses, we should represent

nodes in the graph by nets and arcs by ‘components’ (which are, confusingly, called nodes in

the circuit!). This gives us a netlist view of a circuit, rather like an EDIF description. How

would non-standard interpretation proceed in such a representation? Instead of re-defining

nodes, we re-define arcs with non-standard semantics. Nodes contain nets which hold non­
standard values.

We choose not to use this method for non-standard interpretation for two reasons. First, it

is not too difficult to pose a net based analysis as a node based analysis. This has been done

for both deductive fault simulation and SCOAP. Secondly, the spirit of non-standard

interpretation seems to suggest that we analyse the same (isomorphic) description with

different semantics. I f we flipped the nodes and arcs of a Ruby abstract syntax tree, we

would be analysing a slightly different description. This different description is strongly

related to the original description because there is a homomorphisim that relates the two

representations (the homomorphism that flips nodes and arcs). We guess that most analyses

are node based rather than net based. However, in the field of testability, many important

analyses are naturally net-based, but these can be dealt with by our system.

6 .5 Partial Evaluation
Partial evaluation is the evaluation of expressions in the source code of some language at

compile time. This is often possible if enough information is available at compile time.

One advantage of partial evaluation is that some expressions can be replaced by their

values at compile time. This leads to savings at run time. A novel application of partial

evaluation has been found in the field of automatic compiler generation [Peyton Jones 85,

Launchbury 90].

We have implemented a simple partial evaluation system as a non-standard interpretation.

It uses some of the usual laws of switching algebra to simplify boolean expressions. The

representation of expressions is similar to that used by the symbolic simulation interpretation

112

presented in chapter 5. A listing of the code for the non-standard interpretation can be found

in appendix A .3. Some of the simplifications implemented are:

> simplify (NotSymbol (NotSymbol x)) = x - n x = x
> simplify (NotSymbol (AndSymbol x y)) -,(x a y) = - ix v -.y
> = OrSymbol (simplify (NotSymbol x)) (simplify (NotSymbol y))
> simplify (AndSymbol SymbolTrue x) = x x a false = false

The simplification function tries to make use of as much information as possible to perform

calculations at compile time. Product of sum expressions are transformed into sum of

products expressions since this is the canonic representation used by many analysis tools,

e.g., Quine and McCluskey tabular minimization tools.

By applying this partial evaluation before other analyses, we can reduce the total amount

of work that has to be done by simplifying the original description. This saving is especially

worthwhile when several interpretation stages are composed together.

It may not always be desirable to apply such a partial evaluation. Some interpretations may

want to analyse the original formal description without any alterations. One such example is

hazard detection, which requires finding redundant circuits. These redundancies may be

inadvertently removed by the partial evaluation system.

A partial evaluation analysis returns as its result a symbolic expression. This has to be

converted into a Ruby description before the results of the analysis can be used by other

interpretations. This is a difficult task to perform automatically, even when the original formal

description is available. However, if a circuit description can be reconstructed from the output

of this interpretation, then we have found a new type of non-standard interpretation. Here,

we have an example of an interpretation which allows us to perform transformations on the

formal description analysed.

This represents an increase in the power of non-standard interpretation, since many more

circuit analyses could be represented if transformed circuit descriptions were returned rather

than isomorphic circuit descriptions. Although we have done some work on reconstructing

circuits from symbolic expressions, at the moment there seems to be no satisfactory method

for doing this. Our method involves analysing boolean expressions containing no state

variables and producing a network of basic gates combined with serial and parallel

composition. The resulting Ruby expression is very unreadable. For example, it is not too

difficult to transform (x Ay) v —iz to [AND, i] ; [i, NOT] ; OR which can be simplified to

[AND, NOT] ; OR.

113

Future work could look for methods of transforming a formal description given the source

and target symbolic expressions. The key might be to seek a good algorithm for finding the

difference between two symbolic expressions and then identifying what portion of the formal

description this difference corresponds to. This will probably require the use of existing

automatic analysis and verification tools.

In several areas of hardware description analysis and program analysis we have found

strong analogies and techniques which are applicable to both types of descriptions. Non­

standard interpretation is an obvious example. We believe the meaning of partial evaluation is

similar in these two types of descriptions. In programming languages, partial evaluation

analyses the source code to produce a more efficient, but semantically equivalent, program.

This is then compiled to better object code. In hardware, partial evaluation analyses hardware

descriptions to produce behaviourally equivalent descriptions. These descriptions correspond

to hardware which operates more quickly and uses fewer components. Thus, in both cases,

the quality of the realisation (object code for programs, hardware for HDLs) is improved.

6 .6 Combining Interpretations
One very useful feature of abstract interpretations is that we can prove that they conform to

some safety criterion w.r.t. the standard interpretation. For example, the behaviour of a

strictness analysis can be checked against the standard interpretation to make sure that only

correct approximations are found. This is possible because the abstract behaviour is just part

of the standard behaviour: a cut down version or an approximation. The abstract values are

just approximations of the standard values. This fundamental relationship between standard

and abstract interpretations makes many properties of the abstract model easier to establish

and verify (including correctness and safety).

Unfortunately, non-standard interpretation does not share this property. This is because

the relationship between the standard and non-standard interpretations can be completely

arbitrary. Also, non-standard values need not be linked to standard values in any way. For

example, there is little similarity between running an exor circuit with input <L, H) and

computing its SCOAP testability measures. Indeed, these are two different kinds of analysis.

One analysis is dynamic and the other is static. Simulation is dynamic because it needs some

input and a circuit description before it can give a result. However, SCOAP attempts to

114

compute an approximation to the testability of a circuit by considering only the structure of

the circuit. Since SCOAP does not need any ‘input’, it is a static analysis.

The standard interpretation with logic values is not rich enough to perform useful abstract

interpretations. This is because the basic data entity is a boolean variable, which does not give

us much to abstract from! Tuples of booleans are the most complex data values that occur in

the standard interpretation, but even these do not contain enough information.

What is ideally required is a ‘super-interpretation’ from which we can abstract enough

information to allow us to make abstract interpretations for simulation, testability measure,

deductive fault simulation, labelling etc. This interpretation would propagate along its ‘wires’

complex data object which contain sets of faults, testability measures, logic values etc.

Such a super-interpretation is a very contrived object, and of course does not exist in any

useful form. The analysis of circuits is performed by a set of tools which are detached in their

operation rather than being rolled into one gigantic analysis tool.

We could artificially build a super-interpretation by combining existing interpretations.

This poses several questions. Firstly, how are interpretations combined? Can they be blended

together, factoring out common functionality? This is a difficult analysis to perform. Let us

just represent the combination of n interpretations by placing them into an n-tuple. Then,

abstract interpretation involves uses a pro jec tion function to extract the required sub­

behaviour.

The next question to consider is how to represent data values in a super-interpretation.

Again, attempting to merge data by factoring seems like a difficult task, so we shall just tuple

the data values in a similar manner to how the interpretations are tupled. For example, the 1th

element of a data tuple is manipulated by the /th interpretation of the tuple that holds the super­

interpretation.

Parallel composition over interpretations (i.e. functions) as defined in chapter 5 can be

used to combine interpretations to produce a super-interpretation:

SUPER = [L, L2, SCOAP, D E D S IM , ...]

A new interpretation could then be made by projecting out one or more of the components

from SUPER. Unfortunately, this method has not gained us anything. We still need to

specify interpretations of interest beforehand. Any property we prove about an abstract object

from SUPER holds only if the component interpretations of SUPER have been validated.

115

I f we could construct a super-interpretation for a finite set of non-standard interpretations,

then there is a possiblity for some factorisation. Many interpretations will perform the same

calculations. A realisation for SUPER could economise on space by factoring out the

common parts of such interpretations. One problem with this suggestion is that these

calculations are expressed as functions over which equality tests are not usually allowed. This

makes the implementation of such a scheme problamatic when using a programming language

like Miranda. The main use of super-interpretations at the moment seems to be as a

conceptual device.

A good area for future research is to see if there is some other way of proving properties

of alternative analyses which use isomorphic structures (w.r.t. standard analysis). As shown

above, the traditional methods used in abstract interpretation don’t seem to be too helpful, but

other techniques in algebra may be readily applicable. Intuitively, one would think that there

is much to inherit from the standard interpretation when analysing isomorphic descriptions.

6 .7 Conclusions

Non-standard interpretation has been used to specify two non-trivial circuit analyses. This

was accomplished by providing a specification which is very similar to the algorithms given

in chapter 2. A large part of the standard semantics has been re-used, which allows a concise

descriptions of the non-standard behaviour by concentrating attention on the nodes where the

non-standard processing takes place.

Not only does non-standard interpretation allow circuit analyses to be constructed very

quickly and in a natural manner, but it also is a good paradigm for implementing circuit

analyses. This is because many circuit analyses have a similar structure to the circuit under

analysis. Combining forms have been introduced to combine small interpretations into bigger

ones. This allows problems to be sub-divided into smaller problems and solved

independently. This is good software engineering practise and allows circuits with complex

bi-directional data flow to be modelled by a series of uni-directional interpretations. These

uni-directional interpretations can be implemented efficiently using functions, rather than

relations which would be required to implement a bi-directional interpretation.

116

In the next chapter, an implementation of a non-standard interpretation system in the style

presented in the last chapter is shown.

a

"3’551
■“ • S ^ s u '“ s t i ' :

m l i i £
u- OS «as O O ^

to to to
to to (0
to to to
to to to

to to

u 0 0000 0
3-1 0 0
U 0 0

M 0 0
M M M u 1-1 0 000

CD CD CD "O T5T3T5'0 'O rOT?T3
cd 0) CD T3 V 1—1
0) CD CD T3 T3 <T>
0) 0) 0) T3 T5 o\
CD 0) CD T3 T> t—\

CD CD CD CD ~0 T5 T3 T3
O
rH

03 03 03
(/) W OJ 03 03 CM

w t/> to 03 03 03 O
l/> w to 03 03 03
trt w to 03 03 03 00
V) w to 03 03 03 I—1

V) to 03 03 1010 1n
rH

' 33 33 3 D 43 43
33 jQ 43 M >
£3 43 43 V 0
33 43 43 10 2
O 43 X) 3
33 43 X 0 -H

33 33 33 33 b b b b b b b b b <a u
£ [u

O O M .. OJ
u O U X 4-1
0 0 U 0 Ifl
0 0 U <-> Q
u 0 u

O C C U U u r r r r

03 03 to 03 03 0303 <0 03 03 03 03
03 05 03 03 03 03
03 03 OS 03 03 03
03 03 03 03 03 03
03 03 03 03 03 03

03 03 03 03

' £ 2 M M M £ X _Q
43 43

43 43
£ 43 43

S> X
43 -QNN M M £ £ J 3 X 43 43 X 43 43 4 3 X

43
bJO
C

• f*H

CO

i
I
CO

X>
,0

V3• fH
43■*-*
<-H

c§<4-1ctf

.0)

W £>
2
O
2

. —. • •
H &

7 3
<v
6
sC/3
c
o

c y u

117

Chapter 7

Implementation

7.1 Introduction
The implementation of our non-standard interpretation system is presented. The

implementation is in Miranda, and is machine independent. There are many reasons for

using a lazy functional language for the implementation. Functional languages are much

more expressive than traditional languages. They provide powerful features for

combining existing programs to make larger programs, thus encouraging modularity.

Richer data types are offered as standard e.g. lists. Polymorphism is a very useful

feature, which is employed to describe the operation of wiring circuits. Currying is useful

for making specialised interpretations from a general interpretation. Functional languages

employ a terse notation which is suitable for algebraic manipulation, thus making the task

of verification easier. Lazy evaluation allows allows complex data dependencies to be

specified elegantly [Wadler 85].

One of our aims is to show that non-standard interpretation allows analyses to be

quickly prototyped. New analyses are added by writing a small Miranda module which is

incorporated into the system.

We start by giving an overview of the system software. Section 7.2 presents example

scripts which the user submits to the system for execution. Details of the standard and

symbolic interpretations are given in section 7.3. Section 7.4 outlines the graphical user

interface and section 7.5 presents a simple attempt at implementing a non-standard

interpretation system. This apporach is shown to have shortcomings which are rectified in

a more complex implemention presented in section 7.6. Section 7.7 considers the impact

of using Ada as an implementation language instead of Miranda, and finally, section 7.8

concludes the chapter.

118

7 .2 System Overview
The architecture of the system is shown in figure 7.1. The entire system is written in

Miranda, with the exception of some Pascal programs that were used to convert between

Miranda picture data types and Macintosh PICT/MacDraw I I format. A direct

manipulation graphical interface also exists. There is a bolt-on graphical interface, which

works under the SunView or X I 1 window systems. This is also implemented in

Miranda, along with a SunView and X I 1 drivers written in Lex, Yacc and C.

From a user’s point of view, the system just provides a collection of programs that can

be used to analyse Ruby descriptions which have been compiled. The compiler is for a

large subset of Ruby and is also part of the system. For example, i f the user wanted to

analyse a N A N D gate circuit then the first step would be to compile the following

description:

> nand = and ; not ;;

This is compiled into an abstract syntax tree form which is used by interpretations for

analysis. I f the above description is in a file called ‘alpha, ruby’ then the compiled

version is deposited in the file ‘alpha. env’.

The user then decides what analyses are required. This is done by preparing a script

which is executed by the system. Let us prepare a simple script called ‘alpha. run’ to

analyse the NAND gate shown above. First, we have to i m p o r t from file ‘alpha.env'
the definition of our NAND gate. The we have to decide which analyses we want to

perform. The keyword s t a n d a r d will execute the standard interpretation taking as

parameters the circuit to the analysed and the domain values to be used. Similarly,

s y m b o l i c performs a symolic simulation and t r u t h produces a truth table. The

behaviour of these interpretations is defined in chapters 5 and 6. Let the file ‘alpha. run’
be:

IMPORT alpha ;;

STANDARD nand {<L, H>} ;;
TRUTH nand ;;
SYMBOLIC nand {<a, b>} ;;

After importing the definitions from the file ‘alpha. env' (the . env is omitted) the nand
circuit (defined in ‘alpha. env') is simulated with input {<L, H>}. Next, a truth table is

requested for nand and finally a symbolic interpretation with input variables {<a, b>} is

119

performed. The output is placed in the file ‘alpha, log'. Executing the script
‘alpha.run’ produces:

Ruby NSI System V10.12.90

Tue Dec 18 01:58:38 GMT 1990
Parsing file alpha.run

1) Standard: {<L,H>} nand {H}
2) Truth table: nand

<L,L> -> {H}
<L,H> -> {H}
<H,L> -> {H}
<H,H> -> {L}

3) Symbolic: {<a,b>} nand {~(a & b) }

The first few lines of the output announce the name and version of the program along

with the date and time the execution started. Each output is numbered and gives the name

of the interpretation being performed and the circuit under examination along with domain

and range values.

Output 1 shows a NAND gate which has only one value at its domain so the range also

contains only one value since NAND is a function in the forward direction. Output 2

demonstrates the truth table interpretation which runs the NAND gate for every possible

input. Set brackets are omitted on the domain values. Finally, output 3 shows the boolean

expression that represents the behaviour of the N A N D gate. Logical negation is

represented by conjunction by & and disjunction by I. Variable names may be of
arbitary length.

03 <D

03 <D

O P
iS §
.1=! ~a

O
t - i D

O S

s
H
uMPs

(4-1
GO

121

7 .3 The Standard and Symbolic Interpretations
This section presents many example scripts and the output expected of our non-standard

interpretation system. The following sections consider how to write such a system. The

output presented in this section was produced by an actual interpretation system which is

presented in a later section and has been checked manually for correctness.

A parser for the Ruby language has been written using a library of higher order

parsers. Using higher order functions, we can give a YACC like specification for a

grammar. This specification is executable, and we can easily associate actions with

productions. This is a much more satisfactory approach to that taken in YACC, which

associates C code with YACC productions.

The syntax accepted by the parser is slightly different from that used in chapter 2. This

is to allow Ruby descriptions to be given in plain text files which are constrained to use

the ASCII character set. The major differences are that inverse is denoted by a percent

symbol (%), beside is written as <-> and below as W/.

Each line is assumed to be a comment, unless it contains the > character as its first

symbol. This is the same commenting convention that is used in Miranda and Orwell.

Unlike Miranda, our parser does not use the offside rule to determine when a definition

finishes. Instead, indentation has no special meaning, and each definition must be

terminated by a double semi-colon (;;).

A powerful set of core operations is implemented as primitives in the non-standard

interpretation system. These include serial composition, parallel composition, inverse and

append. A general forking primitive is provided which takes as a parameter the number of

forks to perform. Split is defined as a special case. The projections K\ (written pi1) and

k2 (written pi2) are also defined in terms of a more general projection relation. The other

common Ruby circuits are described in a prelude file. This is just a normal file which is

parsed and compiled. The standard prelude (in the file ‘prelude. ruby’) is shown on the

next page.

Most of the definitions shown have already been explained in chapter 2. The relations

ish and rsh are used to re-organize tuples. It is surprising that these powerful relations

can be expressed in terms of the small core of Ruby that has been implemented directly.

122

These kinds of operations have to be provided as primitives in other hardware description

languages.

123

Prelude for Singh-Ruby Nov. 90

> fst R = [R, id] ;;
> snd R = [id, R] ;;

First and second.

> apl = fst [-] ; app ;;
> apr = snd [-] ; app ;;

Append left and append right.

> pil = project 2 1 ;;
> pi2 = project 2 2 ;;

Projection relations over pairs.

> split = fork 2 ;;

A two-way fork.

> swap = rev \ 2 ;;

Swap for 2-tuples.

> lsh = id \V/ id ; ;
> rsh = id <-> id ;;

Left and right shifts e.g..
« a , b>, c> lsh <a, <b, c »
<a, <b, c » rsh « a , b>,c >

> rdl R = row (R ; pi2%) ; pi2 ;;
> rdr R = col (R ; pil%) ; pil ;;

Reduce left and reduce right.

> irt R = (tri R) \ rev ;;

An upside-down triangle.

Some more useful wiring circuits.

> distl = row (fst split ; lsh ; swap) ; pil ;;
> distr = swap ; distl ; map swap

124

The usual logic gates can be defined in terms of the elementary gates. The following

definitions appear in the file ‘g a t e s . r u b y ’ .

> n and = an d ; n o t ; ;
> n o r = o r ; n o t ; ;

> e x o r = s p l i t ; [[i d , n o t] , [n o t , i d]] ; [a n d , an d] ; o r ; ;

Variants of a full-adder appear in the file ‘ a r i t h . r u b y ’ .

S t a n d a r d A r i t h m e t i c c i r c u i t s .

> h a l f _ a d d e r = s p l i t ; [a n d , e x o r] ; ;

T h i s c i r c u i t t a k e s tw o i n p u t s a and b and
d e l i v e r s t h e c a r r y and sum. h a l f _ a d d e r < a , b> = < c a r r y , sum>

> f u l l _ a d d e r = snd h a l f _ a d d e r ; r s h ; f s t swap ; l s h ;
> snd h a l f _ a d d e r ; r s h ; f s t o r ; swap ; ;

A f u l l a d d e r : f u l l _ a d d e r < c a r r y _ i n , < a , b » = <sum, c a r r y _ o u t >

> h o r i z _ a d d e r = row f u l l _ a d d e r ; ;
> h o r i z _ a d d e r 2 = snd z i p ; h o r i z _ a d d e r ; ;

T h i s im p le m e n ts a ' f l a t ' a d d e r :
< c a r r y _ i n , « x 0 , y 0 > . . < x n . . y n > > f l a t _ a d d e r < s 0 . . s n , c a r r y _ o u t >

w h e re
x i , y i a r e c o r r e s p o n d i n g b i t s t o be ad d ed
s 0 . . s n a r e t h e sum o u t p u t s

> v e r t _ a d d e r = f s t z i p ; c o l (f u l l _ a d d e r \ swap) ; ;

The v e r t i c a l v e r s i o n o f t h e h o r i z t o n a l f u l l a d d e r .

The results obtained by running a test script to exercise the standard and symbolic

evaluation interpretations are shown overleaf.

125

Ruby NSI System V10.12.90

Tue Dec 18 01:23:38 GMT 1990
Parsing file testl.run

1) S t a n d a r d : < L , H > } and {L }
2) S t a n d a r d : < H ,H > } and {H}
3) S t a n d a r d : H} an d % { < H ,H > }
4) S t a n d a r d : L} an d % { < L , H > , < H , L > , < L , L > }
5) S t a n d a r d : < L , L > } o r {L }
6) S t a n d a r d : < L , H > } o r { H }
7) S t a n d a r d : L} o r % { < L , L > }
8) S t a n d a r d : H} o r % { < H , H > , < H , L > , < L , H > }
9) S t a n d a r d : L} n o t {H}

10) S t a n d a r d : H} n o t {L}
11) S t a n d a r d : H} n o t % {L}
12) S t a n d a r d : < L ,H > } nand {H}
13) S t a n d a r d : H} nand% {<L,H>,<H,L>,<L,L> }
14) S t a n d a r d : H} nor% {<L,L> }
15) S t a n d a r d : <L,H > } e x o r {H}
16) S t a n d a r d : <H,H> } e x o r {L}
17) S t a n d a r d : H} exor% { < H , L > , < L , H > }
18) S y m b o l i c : < a , b > } e x o r {a & ~b \ / ~a & b
19) T r u t h t a b l e : n o r

< L , L > - > H}
< L ,H > - > L}
< H ,L > - > L}
<H,H> - > L}

20) Truth table: nor%
<L> - > { < H , H > , < H , L > , < L , H > }
<H> - > { < L , L > }

21) Symbolic: {<a,b>} half_adder {<a & b,a & ~b \/ ~a & b>}
22) Truth table: half_adder

< L , L > - > { < L , L > }
< L ,H > - > { < L , H > }
< H ,L > - > { < L , H > }
< H ,H > - > { < H , L > }

I f set brackets are omitted on the domain, then they are added automatically. For example,

when the half adder is given the input < l , l > in the truth table interpretation, it is

automatically coerced to the singleton set { <l , l > }.

Output 2 shows an AND gate run forward under the standard interpretation with one

value in its domain giving a singleton set at its range. Output 4 shows the result of

running the gate backwards by applying {L } to the inverse of AND. This gives three

possible values at the range. Running the inverse of AND with {<l , h >} produces an

empty set.

126

The entire source code for the symbolic non-standard interpretation is given below.

The first few lines contain include directives which make available definitions from other

Miranda modules. Next, symboiic interp is defined by giving a list of three triples.

Each triple contains a reference to a part of Ruby abstract syntax which is to be

overloaded and its forward and backward overloaded semantics. A recursive algebraic

type symbolic_rep is used to represent syntax graphs. The functions associated with

each of the basic gates are defined in a straightforward manner. Finally, the interpretation

is defined using the function standard which takes as input a list of triples (as defined

above) and returns an overriden interpretation.

> I I Symbolic Interpretation

> %include "ruby"
> %include "standard"
> %include "-/miranda/general.lit"

> symbolic_interp
> = [(And', and_sym, undef),
> (Or', or_sym, undef),
> (Not', not_sym, undef)]

> symbolic_rep ::= Symbol string
> I AndSymbol symbolic_rep symbolic_rep
> I OrSymbol symbolic_rep symbolic_rep
> I NotSymbol symbolic_rep

> and_sym n (Tuple [Symbolic x, Symbolic y]) = Symbolic (AndSymbol x y)
> or_sym n (Tuple [Symbolic x, Symbolic y]) = Symbolic (OrSymbol x y)
> not_sym n (Symbolic x) = Symbolic (NotSymbol x)

> symbolic_nsi = standard symbolic_interp

The interpretation is named symbol ic_interp and consists of a list of triples. Each triple

specifies some feature of Ruby to be overriden and gives the forward and backward

overriding functions. The backwards case for symbolic simulation is left undefined. The

data type symbolic_rep describes the non-standard values used in this interpretation.

Here, symbolic values are represented by syntax tress in terms of variables (from primary

inputs) and the three elementary logical operations.

The source code for the deductive fault simulation and SCOAP testability measure

interpretations is shown in Appendix A. Examples of executing these interpretations are

given below. First, we show some deductive fault simulations.

1) LabelSyn: <L,L,L> apl%; full_adder
[[-], id]%; app%; [id, fork 2; [and#l, fork 2; [[id, not#2],

[not#3, id]]; [and#4, and#5]; or#6]]; id <-> id; [rev \ 2, id]; id \V/ id;
[id, fork 2; [and#7, fork 2; [[id, not#8], [not#9, id]]; [and#10, and#ll];
or#12]]; id <-> id; [or#13, id]; rev \ 2

127

2) Annotate: <L,H> exor
fork 2; [[id, not#l L], [not#2 H, id]]; [and#3 L, and#4 H]; or#5

H
3) Deductive Fault Simulation: <<{},L>,<{},H>> exor <L,H>

fork 2; [[id, not <{1/1},L>], [not <{2/0},H>, id]]; [and
<{3/1},L>, and

<{4/0, 2/0},H>]; or <{5/0, 4/0, 2/0},H>
4) Deductive Simulation: exor

<L,L> -> {3/1, 4/1, 5/1}
<L,H> -> {2/0, 4/0, 5/0}
<H,L> -> {1/0, 3/0, 5/0}
<H,H> -> {1/1, 2/1, 3/1, 4/1, 5/1}

5) Deductive Simulation: half_adder
<L,L> -> {1/1, 4/1, 5/1, 6/1}
<L,H> -> {1/1, 3/0, 5/0, 6/0}
<H,L> -> {1/1, 2/0, 4/0, 6/0}
<H,H> -> {1/0, 2/1, 3/1, 4/1, 5/1, 6/1}

As an example, consider output 2. This shows how the exlusive-or design is labelled.

Output 3 demonstrates the result of performing deductive fault simulation with input

<L,H>: the output produced is <{5/0, 4/0, 2/0},H>. The states that the faults detected by

the pattern <L, H> are {5/0, 4/0, 2/0} and the output value for a correctly functioning

circuit should be H. Output 4 shows a deductive fault simulation of the exclusive-or

circuit with every 2-tuple test pattern. This output can be used by another anlysis to

determine further testability information like fault dominance.

Output 5 shows a deductive fault simulation of a half adder for every 2-tuple input.

Every element of the set produced by test pattern <L, L> also occurs in some other test

pattern. Thus, <L,L> can be left out of an exhaustive test program is <L, H>, <H,L>

and <H,H> are included.

The following output demonstrates some SCOAP testability measures. The first five

outputs show SCOAP combinational controllability and observability values. Outputs 6,

7 and 8 show only the controllability values.

1) Scoap: « ? , (1,1) >,<?, (1,1) » « ? , 0 > , < ? , 0 » half_adder
fork 2%; [and <(1,1,2), (1,1,2)>, fork 2%; [[id%, not (1,1,6)],

[not (1,1,6), id%]] ; [and <(1,1,6), (2 , 2 , 5) > , and < (2 , 2 , 5) , (1,1 , 6)>] ; or
< (2 , 4 , 3) , (2 , 4 , 3) >]

2) Scoap: « ? , (1,1)>,«?, (1,1)>,<?, (1,1) » > « ? , 0 > , < ? , 0 » full_adder
[id%, fork 2%; [and < (1,1,5), (1,1,5)>, fork 2%; [[id%, not

(1,1,11)], [not (1,1,11), id%]]; [and < (1,1,11), (2,2,10)>, and
<(2,2,10),(1,1,11)>]; or <(2,

4,8) , (2,4,8)>]] ; (id <-> id)%; [rev \ 2%, id%]; (id W / id)%; [id%, fork
2%; [and < (1,1,9), (5,5,5)>, fork 2%; [[id%, not (5,5,7)], [not (1,1,10),
id%]]; [and <(1,1,11), (6,6,6)>, and <(2,2,9), (5,5,6)>]; or
<(2,8,4) , (3, 8,3)>]]; (id <-> id)%; [or <(2,3,3), (2, 7,3)>, id%]; r e v \ 2 %

Output 1 presents a SCOAP analysis of a half adder. Each of the inputs to the final OR

gate of the have adder have the same SCOAP vectors. For these nodes the SCOAP setO

128

controllability is 2, the setl controllability is 4 and the observability is 3. The SCOAP

values for the output nodes are not shown because they are not of interest. Similarly, the

observabilities of the primary input nodes are not of interest. The second output shows an

analysis of a full adder design which makes use of the half adder design. From examining

the unfolded half adders, it is clear than a hierarchical approach to SCOAP test pattern

generation could speed up analysis significantly. The could be done by expressing the

testability measures as relative offsets rather than absolute values.

The following outputs show SCOAP applied to smaller circuits. Note that the

exlcusive-or circuit has symmetrical measures. This is what one would expect of a circuit

which as 50% of its outputs as 1 and 50% as 0.

3) Scoap: <?, (1,1)> <?,0> not
not (1,1,1)

4) Scoap: «?, (1 , 1)>,<?,(1,1) » <?,0> and ; not
and < (1,1,3), (1,1,3)>; not (2,3,1)

5) Scoap: «?, (1 , 1)>,<?,(1,1) » <?,0> exor
fork 2%; [[id%, not (1,1,6)], [not (1,1,6), id%]]; [and

<(1,1,6), (2,2,5)>, and <(2,2,5), (1,1,6)>]; or <(2, 4, 3) , (2, 4, 3) >

The following output shows that is also possible to run a constituent interpretation. In

this case, we show the controllability interpretation. Consequently, each net is annotated

with a pair rather than a triple. The outputs 6 and 7 are abstractions of the output from 5

and 2 because they can be obtained by removing information about observability values.

6) Controllability: « ? , (1,1) >, <?, (1,1) >, <?, (1,1) » fras
[id, not (1,1), id]; [apl , id]; [id, [-]]; app; halve%; [and ,

or]; and
7) Controllability: « ? , (1,1) >,<?, (1,1) » exor

fork 2; [[id, not (1,1)], [not (1,1), id]]; [and < (1,1), (2,2)>,
and <(2,2), (1,1)>]; or <(2,4), (2,4)>

8) Controllability: <<?,(1,1)>,<<?,(1,1)>,<?,(1,1)>» full_adder
[id, fork 2; [and <(1,1), (1,1)>, fork 2; [[id, not (1,1)], [not

(1,1),id]]; [and <(1,1), (2,2)>, and < (2,2), (1,1)>]; or < (2,4), (2,4)>]]; id
<-> id; [rev \ 2, id]; id \V/ id; [id, fork 2; [and <(1,1),(5,5)>, fork 2;
[[id, not (5,5)], [not (1,1), id]]; [and <(1,1), (6,6)>, and <(2,2), (5,5)>];
or <(2,8), (3,8)>]]; id <-> id; [or < (2,3), (2,7)>, id]; r e v \ 2

The triples associated with each node give the set 0, setl controllability and the

observability for that node. For example, the last OR gate of output 1 has one input with

setO = 2, setl = 4 and obsv = 3 (the other input has the same values).

This output can be put though a filter to produce bar charts that highlight nodes of poor

testability. This makes the output much easier to digest. We have implemented a filter

which transforms the output above into a format suitable for the Jazz package on

Macintosh computers. The data was read into the Jazz spreadsheet from which graphs

were automatically produced. This is how the SCOAP tables in chapter 2 were

129

constructed. The diagram below was produced by taking output 5 and filtering it through

to Jazz. It was then manually touched up in MacDraw II to add the labels on the right.

notl not2 andl and2

7 .4 A Graphical Interface
The interpretation system has been given a direct manipulation graphical interface which

works under the SunView windowing system on Sun computers. This makes the system

much easier to use and the output much easier to understand. The graphical system

presents menus and button so that the user does not have to remember a large number of

housekeeping commands. The graphical display can produce bar charts and output to

other specialised programs like spreadsheets for further processing.

A special driver was written by the author to allow Miranda programs to control the

SunView windowing system from a remote host over a U N IX network. This was a large

undertaking, but the final result shows that functional languages can be used to write

programs with better interfaces.

The details of the implementation of the graphical interface are outside of the scope of

this thesis. A screen snapshot of one of the interfaces is shown on the next page. The

interface is currently rather simplistic. There is much scope for improvement. For

example, the output from the SCOAP testability measure could be automatically filtered

through a function to produce histograms. At the moment, a separate tool in the system

has to be manually run by the user.

Another problem with the interface is that it is hardwired to work with the SunView

windowing system. It would be beneficial to devise a generic intermediate representation

130

for windowing operation. Unfortunately, no widely accepted representation is available

and the features offered by most windowing systems tend to differ greatly.

The need to write a small SunView server in C blemishes the otherwise entirely

functional language code. We require current functional languages to be extended to

provide better system interfacing facilities before this problem can be resolved. However,

under SunView, it is difficult to write windowing applications in any language other than

C. This is due to the large number of C data types used to represent SunView objects and

the difficulty of cross-linking between C and other languages like Pascal and Ada.

i

I

le n dump for ss on Tue Dec 18,1990 at 02:16.

[Load][Cornplle 1 {Execute] [Quit]

Directory: /users/grad/ss/phd/current
Filaname: defs^
Gem Analysis Tools
Gem Parser V25.7.90
Syntax error in next definition.
Environment file /users/grad/ss/phd/current/defs.env created
Gem Parser V25.7.90

1) nand
2) nor
3) alpha

Parsed without any errors.
Environment file /users/grad/ss/phd/eurrent/defs2.env created

“ Test befinitions
-- Satnam Singh
— 6.7.90

nand - and ; not

shelltool - /bin/csh
tor about tive minutes, it is

not friendly to other users to
print these kind of jobs while

they are waiting.
* laserdump is copyrighted Hark

Dunlop 1990 ^ l/current/defs2.env created

ss@lewis> laserdump
Dumping screen to printer -Plwsl01...|

132

7.5 A Simple NSI System
This section presents a simple non-standard interpretation system for a subset of Ruby.

We try to implement as directly as possible the semantic equations presented in chapter 5.

Such a system should provide the core of the program used to implement the system

outlined in section 7.2. The problems with this particular implementation provide some

motivation for the more complex implementation actually produced.

The Ruby subset we use has the three basic gates, serial and parallel composition,

inverse, identity and fork. The basic gates can ‘store’ information at their nodes: the type

of the information is a polymorphic type parameter to ruby. The direction of flow is

represented by the algebraic type direction.

> || Demonstration Toy NSI System

Shows a naive system that won't work. Motivates the more exotic
interpretation

system actually used in real implementation.

> ruby * ::= And * | Or * | Not * I Ser [ruby *] | Par [ruby *] I
> Inv (ruby *) | Id I Fork num

> direction ::= F | B

It would be nice to make the data domain polymorphic, but this prevents a natural

definition for overriding when using the Hindley-Milner [Milner 78] polymorphic type

system. This is because overriding needs to have a type like where x is the type

of an interpretation. This requires all interpretations to be of the same type. Consider f \

and /2 and an overriding expression/2 ® / i . In the above scheme f \ and/2 will be

monotypes because they are specialised to a particular task. In a strict polymorphic

language like Miranda, this would require circumventing the type security rules.

However, even if we use a polymorphic base type for data objects, particular

interpretations will have monotypes which will in general not be compatible. For

example, one interpretation might work over logic values while another works over

testability vectors. Such interpretations could not be unified by overriding.

The alleviate this problem, we have adopted the ‘universal type’ approach. All the

types we need are subtypes of a larger type. Now, all data values have monotypes and

overriding does not present a problem.

> data ::= Tuple [data] I H | L I Cont (num, num) I Sym [char]
> | AndSym data data I OrSym data data I NotSym data I Undefined

133

Some useful functions are defined over logic values. Pattern matching is top down:

> lognot :: log ic -> log ic
> lognot L = H
> lognot H = L

> logand :: lo g ic -> log ic -> log ic
> logand H H = H
> logand a b = L

> logor :: lo g ic -> lo g ic -> log ic
> logor L L = L
> logor a b = H

The function l i f t is defined to make the definition of set valued functions easier. It lifts a

function that operates over one data value to a function that operates over a set of data

values by repeatedly applying the base function. The results of the individual
computations are combined by set union. The standard Miranda function for transforming

a list into a set by removing duplicates is called mkset.

> l i f t f d c [] = []
> l i f t f d c (x:xs)= mkset ((f d c x) + + (l i f t f d c x s))

When performing parallel composition of several circuits, the results of the constituent

circuits have to be combined carefully so that all the correct set-values appear at the

domain or range. For example, if the output of some arithmetic circuits is {1,2}, {3},

{4,5} then their parallel composition produces as output the set {<1,3,4),

<1,3,5),<2,3,4),<2,3,5)}. The following function combs performs this computation.

> combs ([xs]) = [[x] | x <- xs]
> combs (xs:ys) = [x:y | x <- xs ; y <- combs ys]

The standard interpretation is now defined. The basic gates are defined in a straight

forward manner. The top level function is standard which takes as its input a direction,

a circuit and set of input values at the domain or range. It returns the set values at the

domain or range depending on the direction of the interpretation. To make the definition

simpler, we use an auxiliary function standard' which takes similar input as standard

expect a single input value is used rather than a set of values. The function standard' is

then lifted over a set of values by using the auxilluary function l i f t .

> standard = l i f t standard1

> standard1 F (Inv r) = standard' B r
> standard1 B (Inv r) = standard' F r

> standard' F (Not v) x = [lognot x]
> standard' B (Not v) x = [lognot x]

134

> s t a n d a r d 1 F (And v) (T u p le [a , b]) = [a $ lo g a n d b]
> s t a n d a r d ' B (And v) H = [T u p l e [H , H]]
> s t a n d a r d 1 B (And v) L
> = [T u p l e [L, L] , T u p le [L, H] , T u p le [H , L]]

> s t a n d a r d ' F (O r v) (T u p l e [a , b]) = [a $ l o g o r b]
> s t a n d a r d ' B (O r v) L = [T u p l e [L , L]]
> s t a n d a r d ' B (O r v) H
> = [T u p l e [L , H] , T u p le [H, L] , T u p le [H , H]]

Serial and parallel composition are given the following definitions. The first line states

that the serial composition of a circuit with nothing is simply the same as computing the

circuit by itself. This provides the base case for the recursive unfolding of serial

composition shown on the following line. Parallel composition is defined by

decomposing the input tuple and independently applying these parts to the constituent

circuits of the parallel composition. We have to take every possible combination of

outputs: this is computed by the function comb.

> standard' d (Ser [c]) x = standard' d c x
> standard' F (Ser (c:cs)) x = standard F (Ser cs) (standard' F c x)
> standard' B (Ser cs) x = standard B (Ser (init cs)) (standard' B (last

cs) x)
> standard' d (Par xs) (Tuple vs)
> = map (Tuple) (combs [standard' d x v | (x, v) <- zip2 xs vs])

The wiring primitives are defined as:

> s t a n d a r d ' d I d x = [x]
> s t a n d a r d ' F (F o r k n) x = [T u p l e (r e p n x)]
> s t a n d a r d ' B (F o r k n) (T u p le x s)
> = [h d x s] , i f # (m kse t x s) = 1 \ / #xs ~= n
> = [] , o t h e r w i s e

We define a new symbolic interpretation by overriding it with the standard interpretation.

> s y m b o l i c ' F (N o t v) x = [NotSym x]
> s y m b o l i c ' F (And v) (T u p le [a , b]) = [AndSym a b]
> s y m b o l i c ' F (O r v) (T u p le [a , b]) = [OrSym a b]
> s y m b o l i c ' d r v = [U n d e f in e d]
> s y m b o l i c l = l i f t s y m b o l i c '

> s y m b o l i c d c = (s y m b o l i c l d c) $ o v e r r i d e (s t a n d a r d d c)

Overriding is given the most natural definition:

> o v e r r i d e f l f 2 v
> = r l , i f r l ~= [U n d e f in e d]
> = f 2 v , o t h e r w i s e
> w h e re
> r l = f l v

However, the following examples show that there is a problem with this interpretation:

135

> nand = Ser [And 1, Not 2]

Miranda symbolic F (And 1) [(Tuple [Sym "a", Sym "b"])]
[AndSym (Sym "a") (Sym "b")]

Miranda symbolic F nand [(Tuple [Sym "a", Sym "b"])]
[H]

The standard interpretation works correctly, and the symbolic interpretation gives the

correct answers when used with the basic gates or wiring primitives. However, when a

higher order combining form is used, the computation locks into the standard

interpretation.

We need to somehow remember what the base interpretation is. This has to be done

through a parameter, making our interpretations higher order functions. We also have to

extend our system to deal with block definitions and arithmetic operations as well as the

remaining part of Ruby.

The next section introduces a more complex implementation for a non-standard

interpretation system. Overriding is modelled by lists and list concatenation. The system

also contains extensions to allow internal node values to be examined.

7 .6 The Core of the Interpretation System
The core of the interpretation system is implemented by two modules called ruby and

standard. These modules are refered to in the include directives shown in the listing of

the symbolic simulation interpretation shown in section 7.3.

The module ruby defines the abstract syntax tree for the core subset of Ruby that we

have implemented. The module contains auxiliary functions for pretty printing and

environment support. It also implements a polymorphic tuple type that represents the

values that flow along wires.

The definition of the abstract syntax tree used for ruby is shown below.

> ruby ::
>
>
>
>
>
>
>
>
>

Block [char] [ruby] I
Ser [ruby] I
Par [ruby] I
Repeat num ruby I
Power ruby ruby ruby
Inv ruby I
Conj ruby ruby I
Id I
App I
Singleton I

Block eloboration.
Serial composition.
Parallel composition.
Repeated composition.
I| Repeated application.

Inverse.
Conjugate.
Identity.
Tuple append.
Singleton.

136

> 1 Project num num |
> I Map ruby |
> 1 Rev |
> 1 Swp |
> I Tri ruby |
> 1 Beside ruby ruby I
> I Below ruby ruby |
> I Row ruby |
> I Col ruby |
> 1 Zip |
> I Trn |
> I Halve |
> I Pair |
> I Fork num |
> 1 Restrict ruby num |
> 1 Loop ruby I
> I Delay |
> I Numeric num |
> 1 Plus ruby ruby |
> I Minus ruby ruby |
> 1 Multiply ruby ruby I
> I Divide ruby ruby I
> I Parameter string |
> I And tuple
> I Or tuple | Not tuple

Projection from tuple.
Map.
Reverse.
Vertical reflection.
Triangle
Beside. 2 -> 2.
Below. 2 -> 2.
Row. 2 -> 2.
Col. 2 -> 2.
Zip.
Transpose.
Halve. 2n -> [n, n]
Pair. 2n -> [2,..2]
Multi-way fork.
Type restriction.
Feedback
Delay component
Numeric value
Addition.
Subtraction.
Multiplication.
Division.
Parameter name.

I Vdd | Vcc I Comp2 tuple I I Node.

Another type ruby' is used to identify constructors of ruby for overriding.

> ruby1 ::= Ser1 | Par' | Repeat1 I Power' | Inv' | Conj' | Id1 | App' |
> Singleton' | Project' I Map' | Rev' | Swp' | Tri' I Beside' I
> Below' | Row' | Col' I Zip' | Trn' | Halve' I Pair' | Fork' |
> Restrict' I Numeric' I Loop' | Delay' I
> Plus' | Minus' | Divide' | And' | Or' | Not' I Comp2'

The type ruby' should not be confused with RUBY as defined in chapter 5. RUBY

corresponds to the Miranda type ruby. Rather confusingly, id' in ruby' is not the same

as I d ’ in RUBY. The system keeps a list of language features which can be overriden.

The type ruby' simply ennumerates references to the language features that can be

changed.

The standard interpretation is defined in the module standard. This also contains

definitions for implementing overriding. The main export from this module is the function

standard which is used (often by currying) to build non-standard interpretations. The

function standard is the implementation of the model presented in chapter 5 and

corresponds to a non-standard interpretation builder. An example of its use can be seen in

the listing of the symbolic simulation interpretation. The first argument of this function is

an interpretation. The remaining arguments are the environment, the circuit description to

be evaluated and the values on the domain of the circuit (or range when the circuit is

interpreted backwards).

137

An interpretation is implemented by a list of triples defined as follows:

> interp_type
> == [(ruby', tuple -> tuple -> tuple,
> tuple -> tuple -> tuple)]

Over-riding is implemented by list concatenation. When a meaning is sought for a

constructor of ruby' , the list is searched from the beginning until a match is found. We

have experimented with more elaborate representations for interpretation overriding (e.g.

by using a data type that does not merge interpretations). However, these representations

were discarded for the simple list concatenation method which provides us with all the

power we need.

To find a meaning for some Ruby construct of type ruby' , the following function is

used. It is called arity one because it is used to attribute meanings to those constructors

of Ruby that make use of values at nodes. The first parameter is the environment and the

second, tok, is the element of ruby' to be over-ridden. The next parameter, n, gives a

unique label to the node. This function is used for the forward case only: the next

parameter f f gives the standard forward defining function. The last parameter is the value

on the domain, which will always be a set in our implementation.

> arity_one i tok n ff (Set xs)
> = set_union [setify (f1 n x) | x <- xs]
> where
> matches = [f | (r, f, b) <- i ; r = tok]
> f = hd matches
> f 1 = ff, if matches = []
> = f, otherwise
> arity_one i tok n f v
> = error ("arity_one case: " ++ showtok tok ++ " with " ++ show_tuple

The list of all possible matches is constructed by the comprehension on the fourth line.

However, lazy evaluation ensures that only enough of the list is actually evaluated to give

the first match. I f the environment does not contain a meaning for the Ruby component

tok, then the standard forward function f f is used.

The backwards case is similar.

> arity_one_inv i tok n bf (Set xs)
> = set_union [setify (f n x) | x <- xs]
> where
> matches = [b I (r, f, b) <- i ; r = tok]
> f = hd matches
> f 1 = bf, if matches = []
> = f, otherwise

Many Ruby constructs do not need to examine the values at nodes. These are defined

138

using specialised versions of arity_one and arity_one_inv. These functions are

useful because they automatically raise the arity of the forward and backward defining

functions. This makes their definitions simpler since they don’t have to involve an unused

parameter.

> arity_zero i tok ff (Set xs)
= arity_one i tok Undefined (raise ff) (Set xs)

> arity_zero_inv i tok bf (Set xs)
> = arity_one_inv i tok Undefined (raise bf) (Set xs)

> raise f n x = f x

An example of some functions that use the above functions are shown below.

> standard i env Id v = arity_zero i Id' id v
> standard i env (Inv Id) v = arity_zero_inv i Id1 id v
> standard i env (And n) v = arity_one i A n d 1 n (raise logand) v
> standard i env (Inv (And n)) v

= arity_one_inv i A n d 1 n (raise inv_logand) v

Identity is defined to use the standard Miranda identity function. This works at arity zero

because the identity function does not need to examine the value at nodes. The AND gate

is defined by using as the standard function the logical conjunction function logand
which has its arity raised. The inverse is defined using the function inv_iogand which is

defined to be the inverse of logand.

These kinds of definitions are repeated for every construct of Ruby i.e. every element

of ruby' . The entire source definition for standard takes up a several pages. However,

this provides the basic framework for our non-standard interpretation system which pays

off great dividends when defining new analyses.

The module standard also contains definitions for set manipulation and a variation on

the function standard that returns the values of internal nodes. It also contains a function

for automatically labelling nodes and provides many test functions. The interpretation

combining functions are also defined here.

One important interpretation combining function is cross which is used to combine

the results of two interpretations. Some of the source code for this function is shown

below:

> cross (And a) (And b) = And (Tuple [a, b])
> cross (Or a) (Or b) = Or (Tuple [a, b])
> cross (Not a) (Not b) = Not (Tuple [a, b])
> cross (Ser xs) (Ser ys) = Ser [cross x y | (x, y) <- zip2 xs ys]
> cross (Par xs) (Par ys) = Par [cross x y I (x, y) <- zip2 xs ys]
> cross (Beside a b) (Beside c d) = Beside (cross a c) (cross b d)

139

When two interpretations are combined, the results at corresponding nodes are held in a

pair (a tuple of 2 elements). This can be visualised by superimposing the results of two

interpretations.

7 .7 Comparison with Ada
We believe the choice of a lazy functional implementation language is an important reason

why our system has been built quickly and why new interpretations are easy to add. In

this section, we discuss the impact of using a modem imperative language like Ada for

the implementation. The author has implemented a small subset of the system in Ada, as

well as a test pattern generation program (the D-algorithm presented in chapter 8).

One of the key aspects of non-standard interpretation is the ability to produce a generic

scheme that captures hardware analyses at a useful level of abstraction. In our system,

this is done by overloading the standard interpretation. The use of a powerful and

carefully chosen representation for interpretations has greatly simplified our

implementation. One important aspect of our system is that it contains functions as first

class objects. Non-standard interpretation is then implemented by overriding, which can

be represented naturally by functions that manipulate data structures that also contain

functions.

Ada does not treat functions and procedures as first class objects. Procedures and

functions can be passed as parameters but they can not be held in data structures. Thus,

whenever a new interpretation has to be added, the core of the interpretation system has to

be modified for the extra functions to be introduced. Our system does not require the

interpretation core files to be altered in this way. We simply write a new module and link

it to the existing system.

Another important feature of functional languages is polymorphism. Non-standard

interpretations are defined by using Miranda functions that operate over non-standard

values. These non-standard values can be of any type. Our interpretation is constructed so

that wires can carry any type of information and so that the defining functions for nodes

can operate over tuples of any type. This means that a universal type encompassing all

likely data types does not need to be constructed.

Ada does not have a polymorphic type system. It does support another system for

generalising declarative units like procedures and packages called the generic mechanism

which works by instantiation. However, even using a generic system, which is less

140

powerful than polymorphism, we still have to alter the core code of the interpretation

system to explicitly declare all new non-standard values. There is no need to do this in

our interpretation system.

Although the analysis of sequential circuits has not been presented in this thesis, our

system can simulate sequential circuits that contain feedback loops and delay elements.

This is done by changing the standard values to be streams of logic values. The

definitions of the basic gates are then lifted to operate over streams. Lazy evaluation

allows the stream model to be implemented in a straightforward manner.

Ada does not allow for the expression of infinite data objects, and consequently does

not support lazy evaluation. Thus, streams and stream operations have to be implemented

in a less direct manner compared with lazy lists in Miranda. One could construct a stream

data type using Ada’s concurrent tasking primitives, but this would be overkill and

inelegant as well as being difficult to program.

O f course, well designed functional languages like Miranda have many other

advantages over imperative languages like Ada. The points raised above emphasise three

of the most important reasons why it was wise to use a lazy functional language for our

implementation.

7 .8 Summary
An actual implementation of a non-standard interpretation system has been shown. This is

a large subset of Ruby which supports a rich set of combining forms. As the source code

for the symbolic simulator shows, non-standard interpretation allows new analysers to be

built by expending very little extra effort once the standard interpretation exists.

The system has been extensively tested using small to medium sized circuits. We

believe that the task of formally proving the correctness of the system is greatly eased by

the non-standard interpretation discipline. However, this is still a long and tedious task

and is outside the scope of this thesis.

A graphical interface has been built for a large part of the system. This greatly

improves the useability of the system. We note that more lines of code in the system are

used to implement the user interface than anything else. Perhaps this suggests that we

should be trying to build rapid prototyping tools for interfaces too.

The choice of a lazy functional language for the implementation has been a good one.

141

Higher order functions, polymorphism and lazy evaluation are important features of

Miranda which have allowed our system to be represented elegantly. These features also

allow new interpretations to be added easily. These features are not found in modem

imperative languages like Ada. Such languages would make our source code more more

cumbersome and new interpretations would be more difficult to add.

Chapter 8

Test Pattern Generation

8.1 In troduction

In this chapter a non-standard interpretation implementation of the D-Algorithm for
test pattern generation is presented. First, the notion of a test pattern is formally
defined. The D-Algorithm is then introduced using one of the many notations

employed by the originator [Roth 66]. The description is then simplified by defining
a partial order and using a clearer mathematical notation.

Although the D-Algorithm has much more complicated information flow than

any previous interpretation implemented it is shown that it may be easily imple­
mented without explicitly specifying backtracking. The algorithm can be decom­
posed into three phases which are applied in sequence. In each phase, the algorithm

seeks a path in the circuit satisfying a given property. There are often many possible

paths- the original implementation uses backtracking to find a suitable path. The

non-standard interpretation implementation of the D-Algorithm realises each of the

three phases with a unidirectional interpretation with simple data flow i.e. left to

right in forward case and right to left in the backward case.
Information about all possible paths is propagated through each unidirectional

interpretation. This produces a list of all possible paths to the output of each

phase. However, just one path is required, so only the head of the list needs to be

evaluated. Lazy evaluation ensures that the tail of the list is not constructed so this

implementation does no more work than the backtracking version.
A modification of the backward phase of the D-Algorithm is used to check that

two circuits exhibit the same behaviour. The technique is quite efficient when the

two circuits under comparison are nearly identical. This is often the case when one

142

143

design is modified to incorporate some “engineering change” . An example of such

a change is a post-hoc measure to increase testability.
To help describe the D-Algorithm, some terminology is introduced to describe

faults and values on wires.

8.2 Form al D escrip tion o f a Test P attern

8.2.1 Terminology

W ires and faults

The wires or lines in circuits will be denoted by lower case letters e.g. a, 6, and

c. It is convenient to assume that we have available a set containing all the lines

available. Let L IN E S be such a type, so if a is a line then a £ L IN E S .

A line may be stuck-at-0 or stuck-at-1. The shorthand a/0 meaning a stuck-at-0

will be used in this chapter (similarly a / 1 for a stuck-at-1). The value on a line is

denoted by the set logic which contains {0,1} i.e. {0,1} C logic.

Tuples

We are only interested in analysing combinational circuits with the D-Algorithm.
To simplify the presentation, we model a circuit as a relation between tuples rather
than using sequences. In particular, a circuit is modeled by a relation from an

n-tuple (ai, a2 , ..., an) to a logic value. Each element in the tuple is of type logic.

Multiple output circuits may be modeled by many single output circuits. If p is a

tuple, then pi is the i th element of the tuple p. For example, if p = (x,y,z) then

P2 = y-

Let ALL(n) be the set of all tuples of size n. For example,

ALL(2) = {(0,0),(0,1),(1,0),(1,1)}

The set ALL(n) contains 2n elements.
All tuples in this chapter are homogenous i.e. all the elements are of the same

type logic.

G ates

As before we model logic gates as being relations between wires [Sheeran 90]. For
an n input circuit, the behavioural relation is between the sets ALL(n) and logic.

144

A behavioural relation essentially represents the truth table of the gate behaviour.
In the case of the A N D gate this relation may be represented by a set of pairs. The

first element of the pair denotes the domain (a 2-tuple in the case of an A N D gate)
and the second element of the pair denotes the range (a logic value). Thus, A N D

is considered as being the following relation:

A N D : (logic, logic) <-> logic

A N D = {((0 ,0), 1), ((0 ,1),0),((1 ,0),0), ((1 ,1 ,), 1)}

Composite circuits may be constructed by performing relational composition with

existing relations.
It is convenient to describe the operation of an A N D gate by a function from its

inputs to its output. It is also useful to be able to describe the function which takes
a value for the output of the A N D gate and returns the set of all possible input
values that produce this output. We shall place an arrow over the name of a relation

to extract the forward and backward functions. A left to right arrow extracts the

forward function, whilst a right to left arrow extracts the backward function. For a

relation R , these two operations are defined as:

R = {y : xRy]

R = {x : xRy}

Now A N D represents the forward function for simulating the A N D gate and
let A N D represent the behaviour for running the circuit backwards. These two

functions have the following types and behaviour:

AND: (logic, logic) —> [logic]

A N D (x,y) = [z : (x ,y)ANDz]

AND: logic —> {(logic, logic)}

A N D z = {(:r,y) : (x ,y)ANDz]

It is useful to have some way of obtaining the number of inputs a gate or circuit
has. Let INPUTS(G) be the size of the tuple that gate G is defined over. For
example,

IN P U T S (A N D) = 2

8.2.2 Specification of a test pattern

If G is the behaviour of the working circuit, then let Gj describe the behaviour of
G under the influence of fault / . To expose the fault / we have to find some input

145

for which G produces a different output from Gj. To be precise, we require some p

such that G p ^ Gj p (alternatively, G P ® Gf p, where ® is the usual exclusive-or
operator).

One way of finding such a p is to build the truth tables for the functions G and

Gf and compare the output columns. Selecting only the rows that differ in their
outputs gives suitable values for p. Let TEST(G, f) be the set of all values p such

that G P ^ G j p:

TESTS(G, f) = { p : P £ ALL{ INPUTS{G)) , G p ^ G j p] (8.1)

A tuple p is a test pattern for circuit G under fault / if p € TESTS(G, /) . If
TEST(G, f) = {} then the fault / is not detectable because G = Gf. This is

usually because the fault occurs in a redundant part of the circuit G. Redundancy

is often deliberately built into circuits to overcome problems like hazards, but in

turn it causes some faults to be undetectable.
A literal transcription of the above comprehension requires building ALL(n) for

both functions yielding an algorithm of complexity 0(2n+1), where n = INPUTS(G)

This is an impractical implementation for all but the smallest circuits. A much more

efficient method is required for finding a member of this set.

8.3 T he D -A lgorithm

8.3.1 Introduction to the D-Algorithm

The D-Algorithm [Roth 66] is a test pattern generation algorithm which takes as

input a combinational circuit description and a fault and produces as output a

test pattern to expose the fault. This section introduces the D-Algorithm and its

associated calculus.
The single stuck-at fault model is employed in this paper to describe the D-

Algorithm, although this technique also works with other models. This model rep­
resents failure by assuming that exactly one wire in the circuit maintains the same

logic value, irrespective of what pattern is applied to the primary inputs.
We have shown that a straightforward implementation of the specification of a

test pattern requires an algorithm of exponential complexity. The D-Algorithm is

introduced with an explanation of how it seeks a test pattern.
The original paper on the D-Algorithm presented many tables involving logic

gates that were hand constructed. We show how to compute these tables from first

146

Figure 8.1: An AN D gate.

X y 2

0 0 0

0 l 0

1 0 0

1 l 1

Table 8.1: A N D gate behaviour

principles, thus easily extending them to any logic gate.

8.3.2 Singular Cover

It is necessary to describe what input patterns to a gate will give a particular output
pattern. A set containing this information is called a singular cover. The singular
cover for an A N D gate with inputs x and y and with output 2 is shown in Table

8 .2 .

This table contains the following information. To set the output z of the A N D

gate to 1, both the inputs have to be set to 1. The output of this gate may be set
to 0 by setting £ to 0 and y to any value, or by setting y to 0 and x to any value.
The letter X denotes an arbitrary “don’t care” value.

This singular cover is really an abbreviated form of the truth table. It is designed

to be used in the opposite direction from the truth table i.e. given an output, a set
of inputs that produces this output is required. The singular cover is in two parts:
one for the patterns that produce a 0 output and the other for the patterns that
produce a 1 output (hence the horizontal dividing line in the table).

The expanded form of the singular cover for a gate G which takes as input an

x y Z

1 1 i

0 X 0
X 0 0

Table 8.2: A N D gate singular cover.

147

n-tuple may be represented as the following pair of sets of tuples:

COVER(G) = ({p : p € ALL(n); G P = 0}, {p : p € ALL(n); G P = 1})

The first element is the set of all input patterns that produce output 0 and the

second element is the set of all input patterns that produce output 1. To build

this cover would require an operation of complexity 0(2n) which is too expensive to

compute and store for realistic circuits.
In order to construct the smaller and more convenient singular cover from the

cover, the X value must be added to the domain of logic values. Later, two other
values will be required. Let logic now be the set {0,1, X, D, D}.

The singular cover may be built by the following technique. For each set C in

COVER(G) perform the following operation. If two tuples x,y 6 C can be found

in which there is some position where they differ i.e. X{ = 0 and y, = 1 then remove
these two tuples from the set and replace them with an element like x or y but with

X as its i th element. This procedure is repeated until there are no such differences.
This will occur when there is no cubes which differ in only one position to an other
cube. Note that an X does not combine with just any member of logic to return

another X. Only differences between 0 and 1 are considered. At the end of this

procedure the set will contain the condensed singular cover. This allows tables of
sigular cover to be computed automatically for any combinational component.

8.3.3 D-cubes

Assume that the A N D gate in Table 8.2 is suspected of having a fault at line x. This

requires the observation of line .t which needs fault information to be propagated to

an observable output. The first step is to make the output z sensitive to the value

on line x. For the fault information on line x to be propagated to line z requires

input line y to be set to 1 so that x A I = x = z i.e. z assumes the value at x.

By setting y = 1 we are ensuring that lines x and z have the same logic value.
If the faulty gate was a N A N D gate, then by setting y = 1, we are ensuring the

output z always has the opposite value from from the input x. This relationship

between lines is represented symbolically by D and D. The symbols D and D may

assume the values 0 or 1. All the Ds in a given pattern have the same value and

similarly all the Ds. If both Ds and Ds occur in the pattern, then the elements

containing a D have a logic value opposite to those elements containing a D. The

D notation is used to relate wires which always have opposite logic values.

148

A D-cube is a vector or string of values of type logic. D-cubes are used to

represent fault propagation information by relating the values at various nodes in

the circuit. These cubes are called propagation cubes because they show how to

propagate fault information from one input line to an output line. In circuits with
reconvergent fanout, it is possible to have more than one input carrying fault infor­
mation. This case is dealt with later.

Table 8.3(a) shows 2 D-cubes for an A N D gate. The first line explains how

to make the output sensitive to the value on line x i.e. set y = 1 so z = x. The

second line explains how to make the output sensitive to the value on line y i.e. set
x = 1 so z = y. Table 8.4 contains the same information for a N A N D gate. Here,
the value being propagated from an input line to the output line is negated: this
relationship is expressed by assigning a D to the input line and a D to the output
line. Alternatively, D could be assigned to the input line and D to the output line:
the important fact is that these lines have opposite logic values in a working circuit

Table 8.3(b) shows the propagation D-cubes for an OR gate. If all the fault
sensitive values in a singular cover were “flipped” i.e. Ds changed to Ds and vice

versa, then the cover would still represent the same partial function. The choice of
D in Table 8.3 is arbitrary: D could have been used instead.

For a circuit containing n wires, the D-Algorithm uses an n tuple to describe

the assignments to these wires. Instead of writing the tuple in the usual (uj,. . . , vn)

notation, where each coordinate i represents the assignment at wire 1, an abbrevi­
ated form is used. The abbreviation involves omitting some or all of the information

about coordinates that have an X value- instead a list of assignments to coordinates

is constructed. For example,
Dx\ yDz

represents one of the propagation D-cubes for the A N D gate in Figure 8.1. The

assignments are superscripted with the coordinate. If a is a cube then at is the value

at coordinate i. If this is not explicitly mentioned in the cube then the value at wire

i is understood to be A". Cubes are essentially an abbreviated form of tuples.
For this A N D gate, the cube Dxl yDz means that if y = 1 then the value of the

output z will always be the same as the value on the input x. For the N A N D gate,
the cube D xl yD z means that if y = 1 then the value of the output z will always be

different from the value on the input x.

The D symbols differ from the X symbol because all the Ds in a given cube

must have the same value, whereas the Xs are independent of each other. If two

149

x y_

D 1
1 D

D

D

(a)

y zX

D 0 D

D D D

D D D

(b)
Table 8.3: Propagation D-cubes for (a) A N D and (b) OR gates.

x y z

D 1
1 D

D

D

Table 8.4: Primitive D-cubes for a N A N D gate.

coordinates i and j of some cube p have been assigned the same fault sensitive value

then in a working circuit the logic value present at these two coordinates is always

the same. If the circuit has input lines p\ .. .pn, then no matter what inputs are

applied pi = pj is always true in working circuit. A similar situation holds for when

two coordinates are both D.

This implication does not follow if pi = pj = X. For example, the cube

1 aX bD cDd may represent a member of either { l a060cl d, l al*Ocl d} (varying X with

D = 0) or { l a06l c0d, l al 6l c0d} (varying X with D = 1). Notice that in each set
that D always has the opposite value of D.

8.3.4 Embryonic Tests

A primitive cube for a gate contains embryonic tests. These are tests only for the

lines on the input and output of the gate concerned and not necessarily test patterns

to be applied to the primary inputs. The primitive cube DX\ VD Z for the A N D gate

from Table 8.3 contains two embryonic tests. For the first test, let D = 0 i.e. the

output should be 0 in a working circuit. This is not the case if x / \ or z/ 1 so the

signal 010 is a test for x / \ and z/ l . The other embryonic test from this cube may

be obtained by setting D = 1. This yields the test 111 for the faults x/0 and z/ 0 by

a similar argument. The other primitive cube for the A N D gate 1 xD yDz also yields

two tests: if D = 0 this gives the signal 100 which tests for y / l and if D = 1 then

this yields 111 which tests for y/0. Thus to test for all stuck it faults, it is necessary

to apply the signals 010, 100 and 111.

150

OR

AND

AND

Figure 8.2: Composite circuit

8.3.5 Combining Embryonic Tests

Figure 8.2 on page 150 shows a simple three gate circuit with the singular cover
and D-cubes shown in Table 8.5. This table is now used to find a test which will
make the output line 6 sensitive to the value at input line 1.

First, input line 1 is assigned the value D represented by D l . Let this information

be stored in a testcube i.e. tc° = D 1. Required is a cube which has a D or D value

in coordinates 1 and 4 i.e. line 4 is to be made sensitive to line 1. If line 4 can be

sensitised then the process can be repeated to find a sensitive path past the gates

that have line 4 as an input. If line 4 cannot be sensitised then there are no other
possible paths to the output and test pattern generation fails.

Examining the D-cubes for an A N D only one cube satisfies these requirements:
D 112D 4. Alternatively, using the table of D-cubes (table 8.5), we see only one

column which has a D value in rows 1 and 4. This cube contains a test for line 1 in

terms of line 4. If line 1 is stuck-at-0 then setting D = 1 gives the test 111. If line

1 is stuck-at-1 then setting D = 0 gives the test 010. Now, tc° has been combined

with D 1l 2D 4 to yield another test cube tc1 = D 1l 2D 4.

Line 4 now carries fault information which has to be propagated to the output
line 6. In order to do this, a D-cube which has D values in coordinates 4 and 6 is

required. There are 2 such values: D405D6 and D 4D 5D6. Choosing the first cube

and combining it with tc1 yields another test cube tc2 = D 1! 2 D 405 D6.

The above process may be represented symbolically as follows. When two cubes

are “combined” what is actually happening is an intersection process which checks

that no coordinate in the two cubes has an inconsistent value. For example, if

one cube contained the value l 4 and another contained the value 04 then these two

151

cubes may not be combined or intersected. This is because the first requires line 4

to be set to 0 and the second also requires line 4 to be set 1 in order to propagate

fault information. Since this condition cannot be meet, no fault information passes
through the gate concerned.

Here is a symbolic representation of the example given above:

tc° = D 1

tc1 = tc° D D 1l 2D 4 = D 1 D D 112D4 = D H 2D4

tc2 = tc1 0 D405D6 = D l l 2D4 D D405D6 = D 1l 2D405D6

The cubes tc°,tcl ,tc2 form a connected chain from a primary input to a primary
output.

The cube tc2 contains possible tests for lines 1 and 4 in terms of line 6. This

cube has the following interpretation. If line 2 has signal 1 and line 5 has signal 0
then lines 1, 4 and 6 will have the same value. This cube does not say anything

about how (or if) lines 2 and 5 may be set to these values.

Most cubes require a constant value to be applied to the input line of the gate

propagating fault information. The intersections above have not taken account of
how (or even if) these nodes can be set appropriately. This requires another step
called the consistency operation or justification to be applied to each possible test
pattern produced by the intersection process. Working from a sensitive output, the

singular cover is used to justify the fixed logic node assignments made by the forward

intersection process. If a primary output is reached, then the current possible test is

a proper test which detects the fault concerned when it along with any other input
assignments required by the justification process are applied to the appropriate

primary inputs. Otherwise, this possible test is discarded.

8.3.6 Intersecting Cubes

The intersection of cubes in general is now considered. Let a and b be cubes and

define the intersection of these cubes as follows. If for some coordinate i, a, = 1
and 6, = 0 or = 0 and 6, = 1 then define the result of the intersection to be the

empty cube </>. Such an intersection is called a (/(-intersection. This happens when

the cubes being combined are trying to assign opposite fixed logic values to line i

i.e. contain inconsistent information. If there are no (/(-intersections then use the

1 2 3 4 5 6 Notes
1 1 1 singular cover for AND\
0 0

0 0
0 0 singular cover for A N D 2

1 1 1
0 0

1 1 singular cover for 0R\
1 1

0 0 0
D 1 D D-cubes for AND\
1 D D

D 1 D D-cubes for A N D 2

1 D D
D D 0 D D-cubes for 0R\

0 D D
D D D

Table 8.5: Singular Cover and primitive D-Cube

153

nan cl

nand

nand

Figure 8.3: Reconvergent Fanout

following rules:
o n o = o n x = i n o = o

i n i = i = i n x = i n i = i

x n x = x
X H D = D D K = D

X H D = D H X = D
D n D = //
D n D = //
D D D = d d d = \

The first two lines deal with the case where a fixed value is combined with an

uncommited value X. The fixed value simply dominates the uncommited value.
The third line deals with the trivial case where two uncomitted values are combined

to give an uncomitted value. The fourth and fifth lines show that D and D values

also dominate X values.
Intersections between fault sensitive values (D and D) occur in circuits with

reconvergent fanout. An example of such a circuit is shown in Figure 8.3. An

intersection between two fault sensitive values of the same polarity (i.e. both D or
both D) is called a /z-intersection. Intersections between fault sensitive values of
opposite polarity are called A-intersections.

If (.i and A intersections are generated between the components of the cubes, then

the intersection of these cubes is not defined. This corresponds to one cube saying

that lines i and j must always have the same value whilst the other cube is saying

that i and j must always have opposite values. It is impossible to satisfy both of
these assertions simultaneously. An example of such an intersection is:

P ' l ^ n D ' i 2/)3 = A*iV

Since both A and fi appear in the result, this intersection is not defined. If no A

intersections take place then it is safe to use the following rules for intersecting cubes

154

a and b:
D H D = D
D D D = D

fl i .ai Obi = A

The third line ensures that there are no A terms arising from the combination of
the two cubes. This corresponds to the case where for each coordinate i in one cube

which is D or X), the corresponding coordinate in the other cube is either X or the
same. An example of such an intersection is:

D ' l 2! ? n D 'X 2~B3 = Dl \2D3

If no A intersections take place then the // intersections may be resolved by

flipping all the D and D values in the second cube and then reintersecting the

result with the first cube. This will effectively transform the fi intersections to A
intersections. An example of this case is:

D ' l 2D3 n D l l 2D3 = D ' l 2!)3 n D 1!2!)3 = D'12D3

This above intersections are sensible because both cubes are conveying consistent
information: the first says that line 1 and line 3 always have the same value by

assigning the same value to both lines (D in this case). The second also states that
lines 1 and 3 always have the same value (this time by using the symbol D). By

flipping the D and D values in the second cube, we do not alter its information

content, but it does now becomes consistent with the first cube. For this method
to work it must be established that no A intersections take place, since flipping a A

result at 6, makes it immediately inconsistent with the value at at.
Intersections of cubes are formed until a primary output is reached or the in­

tersection yields an empty cube. If a primary output has been reached then a

possible sensitive path has been found. The forward propagation phase (called D-
drive) makes assumptions about the input values of gates that propagate the fault
information. For example, tc2 above assumes that line 5 can be set to 0 in order
to propagate the fault sensitive value at line 4 past the OR gate to line 6. All of
these assumptions have to be justified by backward simulation. This part of the D-
Algorithm is called the consistency phase. It may not be possible to set a particular
line to the desired value, or the assumptions made may be mutually inconsistent.

If the result of intersecting two cubes fails, then the algorithm backtracks to the

last fork and tries to find a different sensitive path. If there are no remaining paths

then the fault under consideration is not detectable.

155

8.3.7 The Consistency Phase

The assumptions made in the D-drive phase of the algorithm are justified in the

consistency phase of the algorithm. The singular covers are used to find a connected
chain from a fault sensitive output to the primary inputs. This is done by a backward

simulation of the circuit. Again, there may be several possible paths from a sensitive

primary output to the primary inputs, and only some (or none) will be paths that
are consistent with the assignments made in the D-drive phase. The algorithm uses

a backtracking procedure to find a possible path.
In the example circuit there is only one possible sensitive path found by the

D-drive phase, namely: tc2 = D 112D4Q5D6. This makes the assumption that line
5 can be set to 0. This assumption is checked by the consistency phase by using

the singular cover shown in Table 8.5. Required is a cube that gives information
about what the inputs to the bottom A N D gate must be to secure a value of 0 at
the output (line 5) of the gate.

There are three cubes that have line 5 set to zero:

A W
y 2o3o5

040506

The last one contains no information about the input lines of the bottom A N D gate
i.e. lines 2 and 3, so it is discarded. The first cube is checked to see if it contains

information consistent with the assignments made during the D-drive process by

intersecting it with tc2:

A 30205 fl D l l 2D405D6 = Dl<t>2D4Q5D6 = <f>

This intersection is empty i.e. inconsistent, so the cube is Â 10205 discarded. Inter­
secting the second cube yields:

a 2o3o5 n d ' i 2d 4o5d 6 = d 1i 2o3d 4o5d 6

Thus, D l 1203D 405 D6 is a complete test cube for stuck-at-0 and stuck-at-1 faults

at line 1. To test for line 1 stuck at 0, the pattern D^O3 is used: in a working

circuit the output should be 1 (the cube states that in a working circuit lines 1 and
6 always have the same value if line 2 is 1 and line 3 is 0). Similarly, to test for line

1 stuck at 1, the pattern 011203 is used: if the output is 0 the circuit is working.

156

8.3.8 Possible Adaptions to the D-Algorithm

The D-Algorithm stops when it finds one possible connected D-chain from the site of
the fault to the primary outputs and one possible path that justifies the assignments

made in the D-drive phase. There may be more than one possible path or set of
assignments that sensitise the site of the fault.

The algorithm has already been modified by others to take into account several
heuristics. For example, during the backwards phase when there is more than one

possible route to the primary inputs, the algorithm tries the shortest paths first.
One a test pattern has been generated, it may be run through the deductive fault

simulator interpretation to discover all the other faults that this pattern exposes.
Often, more than one pattern will expose a given fault. However, some of these

patterns will expose more additional faults than others. It is desirable to find the

pattern which exposes the most faults. This can be accomplished by adapting the D-
Algorithm to try all possible paths in order to construct all the possible test patterns

for a given fault. Then, each of these patterns is passed through a deductive fault
simulator to discover which is the “best” pattern. This will usually lead to a smaller
set of test patterns for a complete circuit, but is a very expensive operation to

perform. However, for a production design, testing time is a very important factor
in the cost of each unit, so the extra one-off analysis time may be worthwhile if the

testing time is reduced by applying a smaller set of test patterns.

8.4 R e-expressing D -In tersection

The intersection process is the most important part of the D-Algorithm. Various

notations have been employed by Roth to describe D-intersection (fl in the original
paper [Roth 66] and I since then [Roth 80]).

The notation a fl b was used to appeal to the notion that the result of this

operation somehow contains all of the information in cubes a and 6 and nothing

else, or is undefined if the information in a is inconsistent with the information in

6. Furthermore, some cubes contain more information than others. Roth says that
cube a D-contains another cube b if it is possible to obtain cube b from a by replacing

the X values in a by suitable fixed logic values. This relationship is also expressed

in set notation as a D c in the original literature. This notation was later replaced

by the notion of faces and cofaces.
It is possible to define a partial order over cubes a and b using the above con-

157

0 1 D D

_L

Figure 8.4: Partial order for assignment values.

tainment property. By constructing a suitable domain, the intersection of two cubes

corresponds to finding the least upper bound of the two cubes a U 6.
This notation is much more natural than that used by Roth. Firstly, the analogy

with the use of U and C in domain theory is strong.
In domain theory, a U b denotes the value, if it exists, which contains all the

information in a and all the information in b and nothing else. Such a value does

not always exists if a and b are inconsistent with each other. However, least upper
bounds of inconsistent objects do not exist, whereas the union of a set of two objects

returns a set with inconsistent elements. The use of least upper bound seems to be

a much more apt notation which captures more accurately what happens when two

cubes are intersected.
In domain theory, the expression a C b means that b contains at least as much

information as a. This is a similar concept to one cube “containing” another. The

symbol X will now be replaced by ± to signify that there is no information about
what value is assigned to a wire. For example, 02D3_L5 Q 02D315 may be constructed

by defining a partial order over the individual elements of the cubes.
Consider the following partial order for the assignment values:

IC O

1 C 1
i C D

_L c X)

This is like the Bool domain with two fault sensitive elements added. This

partial order is shown pictorially in the lattice in Figure 8.4.
The partial order over cubes may be naturally defined as follows. For any two n

input cubes a and b:

a C b =def c where Vz : 0 < i < n : c, = a, U 6,

158

£•1010 £>1011
\ /
£•1011

/ \
£11X11 £110X1

Figure 8.5: Part of a partial order for cubes.

If the least upper bound of any of the elements does not exist, then the least upper
bound of the two cubes does not exist either.

Part of the lattice containing the cubes Z)1_L1± and D10±_L is shown in Figure

8.5. The coordinates for each assignment have been omitted: the cubes are to be

combined pairwise. All the cubes above Z)1_L1_L and Z)10_LJ_ are consistent. It is

possible to obtain Z)1010 from D1J_1_L be replacing both _L values by 0. However,
only one cube ,Z)101_L, contains the information in the cubes D1_L1_L and Z)10_L_L.

The other two cubes contain information about the value of the fifth element which

was not present in the original cubes. In the lattice, these two cubes are upper
bounds for the bottom cubes, but D101A. is the least upper bound.

£>1_L1_L U D10LL = D101 _L

If two cubes are not consistent, then the least upper bound does not exist.
Unfortunately, there is a case where there is no least upper bound of two cubes

but there are bounds which contain useful values. This occurs when A intersec­
tions take place but no / 1 intersections occur. Consider the result of combining the

following cubes:

D ' l 2D3 U d ' i 2D3

The least upper bound does not exist, because D U D does not exist. However,
D 'V D and £> 12£)3 are two sensible results. They are two upper bounds, but
neither of them is a least upper bound. This situation is shown in Figure 8.6.

The cubes D 112D 3 and D 1\ 2D3 really represent the same information. By flip­
ping the fault sensitive values of one cube we obtain the other. We are unable to

detect this because the symbols D and D appear in different contexts in the two

cubes. One solution is to generate different names for fault sensitive values for each

cube. If a, 6,. .. are names for fault sensitive values, then our domain is still flat i.e.
I C q where a is a fixed logic value or a sensitive value and there is no relationship

between the other values.

159

D ' l 2D 3 D l l 2D 3

D H 2D 3 D 1 J-2D 3

Figure 8.6: No least upper bound.

To express the fact that one sensitive value is always the opposite of another, we

introduce a function over this domain for “negation”, denoted by an overbar. This
function is defined as:

T = _L

0 = 1
1 = 0

The result of applying this function to a fault sensitive value a is a. Thus, the two

cubes above could be represented by a} \2a3 and 611263. To compute the least upper
bound of these cubes, we have to find solutions to a U b and a U b. The possible

values for a and b are drawn from the set 0, 1. Possible substitutions for a and b

can be found by solving the equations:

a = b

b — a

The solution set is {(a = 1, 6 = 0), (a = 0, b = 1)}. Using the first solution in the

set, one upper bound may now be found:

a1! 2 a3 U 611263 = {a U b y i 2(b U a)3

a U 6 = l l _ l l = a

6l_la = 0U0 = a

a ' l 2a3 U b ' \2b3 = a H 2a3

The other solutions may be constructed in a similar manner.
This section has described a structure that can be used to descirbe fault sen-

sistive information. The structure allows the rules for combining fault sensistive

information to be cast using well known mathematical notation. This results in a

better understanding of the rules and gives a clearer idea ofhow these operations

can be implemented.

160

8.5 Im plem enting th e D -A lgorithm

8.5.1 Introduction

The D-Algorithm is implemented in three stages. Each stage is coded as a non­
standard interpretation and the stages are combined to produce the complete D-
Algorithm. The first stage computes a list of possible test patterns that might
expose the given fault. The next stage checks if each of these patterns is capable

of driving fault information to an observable output, making certain assumptions

on the way. For each successful pattern, the consistency phase checks to see if
the assumptions made during the previous stage can be satisfied, yielding true test
patterns.

To demonstrate the implementation, we shall use the circuit shown in figure 8.2.
The Ruby description for this is submitted to our system in the file ’ch8. ruby’:

Chapter 8 te s t c i r c u i t .

> t e s t c i r = [id , [s p l i t , id]] ; reorg ; [and, and] ; or ;;

> reorg = [id , lsh] ; rsh ;;

The output below shows how the circuit is simulated and annotated. The test file

simulates the circuit for input < L, < i / , L >> . It then labels the circuits, followed

by an annotated circuit graph.

> IMPORT prelude ;;

> IMPORT ch8 ;;

> STANDARD <L, <H, L>> t e s t c i r ;;

> LABEL <L, <L, H>> t e s t c i r ;;

> ANNOTATE <L, <H, L>> t e s t c i r ;;

The output produced is:

1) Standard: {<L,<H ,L>>} t e s t c i r {L }

2) LabelSyn: {<L,<L,H>>} t e s t c ir

[id , [fo rk 2, i d]] ; [id , id \V / id] ; id <-> id ; [and#l, and#2]; or#3

3) Annotate: {<L,<H ,L>>} t e s t c ir

[id , [fo rk 2, i d]] ; [id , id \V / id] ; id <-> id ; [and#l < {L}> ,

and#2 <{L}>] ; or#3 <{L}>

161

Parse OK.

R esults logged in ch8 .log

8.5.2 Sensitising the Faulty Node

The first step of the D-Algorithm involves finding an input combination to set the

faulty node to a sensitive value. For example, if node i is stuck-at-0, then an input
combination that sets this node to 1 is sought. This has been implemented as a

simple backward interpretation. We start off with a circuit which has every internal
node set to X except the faulty node, which is set to the opposite value to what it
is stuck-at. For example, to test for node 6 stuck-at-0, node 6 is assigned the value
1.

Setting the value of a node to a particular value is an operation which can

be implemented simply as a non-standard interpretation in either direction. For
simplicity, we consider a circuit graph which has already been decorated by labels

which we will parse in the forward direction. The method involves propagating a

pair. The first element contains a function which applied to a node number will
return true or false depending on whether this node has to be updated or not. The

second element contains the update value. To initialise all the nodes to X we supply

the constant function which takes any integer and returns true.

labelal l: int —> bool

labelalln = true

To label the entire circuit graph with X values, we propagate the tuple < labelall, X >.

The interpretation which does this is called SETALLX. To label a particular node,
we use the following function:

labelnode : int —► int —> bool

labelnodenm = n = m

So, to label node 13 with the value D we would propagate the tuple < labelnode 13, D > .

The definition of each processing node simply applies the function in the first ele­
ment of the pair to the node number and then updates the value at its node when

neccessary. The interpretation that performs this task is called S£TAfOT>£, of
which S£TACCX is a special case.

The next step is to perform a backward simulation to discover what input pat­
terns will sensitise the fault site. We cannot simply re-use the standard interpreta­
tion, since that is only defined over two-valued logic. A new interpretation is needed

162

for three-valued logic (A', 1 and 0). All output nodes are assigned X: the backward

simulation will sweep towards the inputs until it encounters the faulty node. At this

node, the output net will have the value X , but the value at the node will be 1 or
0. The backward simulation continues from this node, but this time the output of
the node is taken from the value at the node, rather than the X at the output net.
Shown below is the backward definition for an A N D gate. This constructor Set is

used to build a set from a list. The third line considers the case where the output of
the A N D gate is H and there are no previous assignments to this node (i.e. the set
at the node is Set [X]). In this case, there is only one possible assignment to the

inputs to produce a H at the output. This is the singleton set {< H , H >} which is

returned as the result of the function in this case. The next line considers the case

where there is a L at the output and returns the three possible input patterns that
can produce this value. The other lines generalise these definitions over A' values.

> and_sen (Set [H]) v = and.sen (Set [X]) H

> and.sen (Set [L]) v = and.sen (Set [X]) L

> and.sen (Set [X]) H = Set [Tuple [H, H]]

> and.sen (Set [X]) L = Set [Tuple [L, L] , Tuple [L, H] , Tuple [H, L]]

> and.sen (Set [X]) X = Set [Tuple [H, H]]

This function is lifted to operate over sets of any size: the definition shown is defined

just for singleton sets. The interpretation which implements the sensitisation opera­
tion for the whole circuit description is called SEAT. This relies on the circuit being

appropriately decorated: we name the interpretation that performs the decorations
and the backwards analysis SEMCX'R, and define it as:

S S M C in = (SSTACCX{); (S€TATOV€{); (S€Af[)

To execute this interpretation, abritary inputs are given for the first stage when the

entire circuit graph is labelled with .A values. For the second stage, we supply the

appropriate pair containing the node to be sensitised and the value that node is to

be set to. The final stage is run backwards with X values at each output node.

8.5.3 The D-Drive Phase

The D-drive phase may be implemented as a simple forward interpretation. The

information flow appears to be complicated by backtracking, which seems to call for
a forward interpretation that oscillates. However, instead of propagating forward

information about only one path, information about all possible paths is propagated.

163

We shall consider forks with a fan-out of 2. The analysis extends easily to forks

of a greater size. At each fork in the circuit which has a fault sensitive value at

its input, the two outputs are defined as follows. Instead of using the standard

behaviour of fork, which would make both outputs equal to the input, each output

is a list of two values. One prong of the fork will propagate the list [D, _l_] whilst

the other prong will propagate the list [-L,D]. This has the effect of trying three

possible paths:

1. Try to propagate the fault sensitive value only through the first fork, making

no assignments to the second.

2. Try to propagate the fault sensitive value through the second fork, making no

assignments to the first.

3. Try to propagate the fault sensitive value though both forks simultaneously.

Sometimes it is necessary to simultaneously form a double D-chain (corresponding

to two sensitive paths) to cope with reconvergent fanout (hence the rules for D U D

etc.).

Nodes are defined naturally to propagate a list of possible propagation cubes.

However, lazy evaluation will ensure that only those elements required to produce

a test vector are actually evaluated [Wadler 85]. Each two input gate takes along

each input a list of possible assignments. The output is the cartesian product of the

two lists, with <f> intersections removed.

For an A N D gate with input lines x and y , the D-drive rule for propagating a

D value along the x input is expressed as follows in the non-standard interpretation

system. Angle brackets are used to form tuples, an asterisk denotes a non-standard

operation and the lower case identifiers describe fault sensitive information. The

non-standard values are D-cubes.

< tca,tcb > A N D * tcc tcc = tca U tc i, ly if D x C tca A _LW C tc

The propagation requires line y to be 1 in order to propagate the D at line x to the

output of the or gate: this is specified by adding the cube l y to tc\>. The other rules

are expressed in a similar manner. The above definition is extended to allow sets of

cubes to be the non-standard values, and the cartesian product between the sets is

formed using the above rule.

< Si, S2 > A N D S3 S3 = { tc 3 : tc\ (E 5 i, tc 2 6 S2, < tc \ , tc 2 > A N D * tc3)

164

Here, Si are the sets of possible test cubes. This this coded in a stright forward

mannei by defining the ordering relation and then using the usual definitions of
least upper bounds and set comprehensions. The interpretation is named D R IV E .

8.5.4 Implem ent at ion of the Consistency Operation

The consistency operation involves checking that the assignments produced by the

D-drive phase can actually be made by manipulating primary inputs. It is very

similar to backward simulation. A backward logic simulator has already been im­
plemented by using a backward non-standard interpretation. The output of the

circuit is specified (either completely or partly) and all the possible input patterns
that produce the given output are returned.

For each possible test cube tc, a path is sought back to the primary inputs using

the singular cover. The algorithm steps back a gate at a time: for each gate the least
upper bound for every cube c in that gates singular cover SC O V E R is found, if it
exists. For example, if the output of the gate described by S C O V E R is required to
be 1, then:

tc = {c : c € snd S C O V ER, ifcU tc exists }

The second element of S C O V ER, which contains the set of cubes that assign 1 to

the output is accessed by the snd function which returns the second element of a

tuple. This gives a possible set of test cubes, each of which are extended backwards

using the above process until a primary input is reached. If the final set is empty,
then it is not possible to justify any of the possible test cubes generated by the

D-drive process so no test pattern is generated for the given fault.
The backwards interpreter is implemented by performing a 5-valued backward

simulation, rather like the sensitisation interpretation. However, at each stage, the

set of values stored at each node, which represent assignments made to that node,
are checked against propagated values. If inconsistent values are encountered i.e.
when a node has been previously required to hold a 0 but an attempt is made to set

its output net to 1, then an empty set is propagated towards the inputs.
If the result of this phase gives an empty set for a particular assignment, then

this assignment is not propagated any further by the D-drive process. Let the

interpretation for this phase be called COAfSIS . The definition for the AND gate

in the consistency interpretation is given below, along with the function used to

check for conflicts. The co n flic t functions just checks to see if any incompatible

assignments have been made to the same node e.g. L and / / , or D and D.

165

> and_consis (Set assignments) v
> = Set [], if conflicts assignments v
> = and_sen consis v, otherwise

> conflicts a L = True, if member a H
> conflicts a H = True, if member a L
> conflicts a v = True, if (member a L) & (member a H)
> conflicts a v = True, if (member (v:a) D) & (member (v:a) Dbar)

8.5.5 The com plete algorithm

The complete D-Algorithm is then described by:

DALG = SEN NODE- D R IV E / ; CO NSIS b

The result is a graph, annotated at each node with sets of D-cubes. Not all these
D-cubes correspond to useful tests: only those cubes that make it to an observable

output can be used to determine test patterns.
To perform a D-Algorithm test pattern generation on our test circuit, we have to

place some dummy components at the inputs to allow us to talk about the primary

inputs. This is becuase net values are derived from the node that drives the net.
Primary inputs of circuits in isolation are not driven by any nodes. We use the

special component inpad for this purpose. It is like the identity relation over single

wires, except that it consumes a label during the labelling interpretation. The test
script for our circuit is shown below. Instead of setting a node to a fixed value we

have chosen to use D which should return a list of test cubes at the result. In this

case, we expect only a singleton set since we know in advance that there is only one

satisfactory test cube.

IMPORT prelude ;
IMPORT ch8 ;
IMPORT pads ;

DALG <3, D> [inpad, [inpad, inpad]] ; testcir ;;

The output produced is shown below. Unfortnately, the nodes are labelled differently

from the figure, but the cube produced is correct.

1) DALG: <3, D> [inpad, [inpad, inpad]] ; testcir {D3H2D5L4D6}

166

The implementation is unfortunately slow and wasteful of space. An imperative

implementation can use a smaller number of variables to represent cubes and use

explicit backtracking to update these cubes as the analysis proceeds.
The current implementation could be improved by adding an extra parameter

to the interpretation function to hold environment information, thus avoiding the

expensive task of labelling every node with a set of cubes. For a large circuit, an

environment look-up could be an expensive operation.
However, it is still useful that such a complex algorithm can be broken down into

modular chunks which can be implemented independently.

8.6 V erification using th e D -A lgorithm

The D-Algorithm may be modified to compare two designs for equivalent behaviour.
First, an m output design is broken down into m single output designs.

Let A and B be single output circuits which are to be tested for equivalence.
The output of A is assigned value 1 and the output of B is assigned the value 0.
Backward simulation in the style of the consistency operation is used to find what
input values produce the given output value. If there is any intersection between the

results of the two backward simulation (i.e. if the least upper bound of the cubes

returned by them exists) then a counterexample has been found that states A and

B cannot be equivalent.
This counterexample is a pattern which sets A to 1 and B to 0, but for A and

B to be equivalent they must produce the same output fro the same input.
In general, this analysis time grows exponentially with the size of the circuit.

However, for circuits that are nearly identical, the running time grows in a more

linear manner.

8.7 E xten d in g the D -A lgorithm

One of the most popular recent techniques for generating test patterns is PO-
DEM: path orientated decision making [Goel 81]. The D-Algorithm makes arbi­
trary choices about which paths to follow at forks and in which order to backtrack.
PODEM uses information generated by other testability analysis tools to find paths

which produce a result, positive or negative, quickly. For this reason the PODEM

algorithm usually performs much better than the D-Algorithm. However, it still be­

167

longs to the same class of test pattern generation techniques which exploit sensitive
paths.

Consider the task of setting the output of a three input OR gate to be 1. This

can be done by attempting to set any of the three inputs to 1. Instead of choosing

one randomly, PODEM annotates each wire by its controllability value. This could

be done using the SCOAP testability measure scheme. Then, it makes sense to try

to set to 1 the input which is the easiest to control i.e. the node with the best
controllability value. Using SCOAP, this would correspond to choosing the node
with the lowest rating.

Now consider the task of setting the output of a three input OR gate to 0.
This requires all the inputs to be set to 0. Here, it makes sense to try setting the
node with the poorest controllability to 0. If this node cannot be set to 0, then

there is no point in trying any of the other nodes. Thus, PODEM does not try to

simultaneously seek paths back from each node. Instead, it tried the hardest node

first, and proceeds to the other nodes only if the hardest node can be set to the
required value.

This technique speeds up test pattern generation because a solution to each

justification step is found quickly. A further improvement is made if a fault simulator
is used after each test pattern is generated. The simulator will expose other faults

covered by the automatically generated test pattern. These faults can be removed

from the fault list, thus reducing the number of faults that have to be exposed by

the expensive automatic test pattern generation program.
It is interesting to note that we can construct a PODEM style interpreter by

combining three existing interpretations: SCOAP testability measure, deductuve

fault simulation and the D-Algorithm.
The outputs from the above procedure are then fed into the deductive fault

simulation interpretation to discover what other faults are exposed by the generated

test pattern. The incorporation of a deductive fault simulation into a cycle as

described above requires a new interpretation combining form.
The first step would be to simply annotate the circuit with SCOAP testabil­

ity measures. The non-standard semantics of each node would then be altered to

produce sets of result, where each result is orderd using the available testability

measures. This has the effect of converting the set into a list, whose earlier elements

are the ones most likely to give a result quickest. Using lazy evaluation carefully , we

are even less likely to perform unfruitful computations. Our D-algoirthm implemen­

168

tation only builds as many elements of a list that it absolutely has to. The PODEM

implementation always builds a complete list, but the elements are only partially

evaluated. Only the testability measures for each element is always know: this is

used to sort the list into order, without evaluating the heavyweight expressions to
deal with the backtracking.

To demonstrate this idea, consider the following Miranda script:

listl = [(2, undef), (1, undef)]
sort2 [a, b]

= Ca, b], if fst a < fst b
= [b, a], otherwise

runl = map fst (sort2 listl)

If undef is ever evaluated, a run time error occurs. The list l i s t l contains pairs, the

first element of each pair is defined and the second element is undefined. In a lazy

language like Miranda it is possible to sort this list without evaluating the second

elements. The function runl will definitely cause sort2 to perform an exchange but
it will give the correct result, as shown:

Miranda runl
[1,2]

Note that we have filtered out the undefined values for output. This is exactly

the kind of operations that a non-standard interpretation implemention of PODEM

would do to ensure efficient execution.
We have not at present implemented a full PODEM style test pattern generation

program. One problem is that by creating more complex interpretations, we are

overloading the Miranda system. Our first attempt at realising a PODEM style

implementation caused a stack overflow on our Miranda system. We only have

access to Miranda running on relatively slow Sun 3 computers with only 4 megabytes

of memory. We are currently reimplementing the entire system in Lazy ML. This

runs faster and is implemented on more powerful Sun 4 computers with larger 24

megabyte memories. It is hoped that PODEM will run on the new system. Another
problem is that PODEM requires backtracking to be considered explicitly, whereas

we have so far dealt with it implicitly. However, it still should be possible to elegantly

realised a PODEM test pattern generator with respectable run time performance.

169

8.8 C onclusions

The D-Algorithm has been re-expressed by defining a partial order over the D-
cubes. This leads to a clearer understanding of what is meant by D-intersection-
the most important part of the D-Algorithm. The new notation helps to give a

clearer description of the algorithm and helps to motivate a cleaner implementation.
Non-standard interpretation has been exploited to make the implementation of

a complicated algorithm simpler. The method takes advantage of the fact that the

circuit analysis has the same shape as the design and that backtracking need not be

programmed since this may be handled by generating all possible results and using

lazy evaluation to ensure no loss of efficiency.
This interpretation, coupled with others already implemented, forms a small

but powerful prototype circuit analysis system. The size is kept to a minimum by

factoring out the common part of these analyses so that they do not need to be

respecified. This helps to maintain the system and makes the very important job of
verifying the software easier.

The backwards consistency phase of this technique has also been used to help

verify circuits. However, in general, the running time of this analysis is exponential
compared to the size of the circuit. This method is particularly useful when two

nearly identical circuits are compared, where the running time rises more linearly.
This is a very common case as one completed design is modified to incorporate some

“engineering change”. However, simulation as a means of verification in the general
case is not a realistic proposition. Showing that two designs are equivalent has

attracted much attention from those employing formal methods, with a reasonable

degree of success.

The D-Algorithm is an old one, and does not compare favourably with more

recent techniques. However, it is possible to use the D-Algorithm in conjunction with

other testability analysis tools to construct a faster analysis tool. The interpretations

for deductive fault simulation, SCOAP testability measure and the D-Algorithm can

be combined to make a PODEM-style interpretation. This gives an increase in speed

for a very small amount of work since we can easily compose interpretations.
The prototypes produced are very slow and require a large amount of heap

space. An optimisation to the standard interpretation would immediately benefit
all other interpretations. This has not been attempted, since we want to contain the

complexity of our system to make future changes easier. Another approach might be

to improve the performance of individual interpretations. However, the operation

170

of a pa r t i c u l a r i n t e r p r e t a t i o n is s t i l l co ns t r a in ed by tin* u n d o r l v i n g i n t e r p r e t at ion

m o d e l .

Chapter 9

Circuit Layout

9.1 Introduction
This chapter presents another application of non-standard interpretation. We show that
circuit layout can be accomplished using non-standard interpretation [Singh 91]. We use
this technique to lay out butterfly circuits which are described in Ruby.

The result is that very complex circuit layouts can be automatically generated from the
standard behavioural Ruby description. The extra code required to realise the drawing
alternative semantics is very small indeed. Several colour prints of butterfly circuits
produced by our interpretation system are presented.

9 .2 Functional Geometry
Functional geometry involves using functions to represent drawings. New drawings can
be made from existing drawing (functions) by combining them using higher order
functions. Henderson has shown that the famous Escher fish picture can be formed by
combining just four tiles using appropriate higher functions [Henderson 82]. Circuit
layout using functional geometry has also been attempted successfully by others e.g.
[Sheeran 83].

In this chapter, we combine the principles of non-standard interpretation and functional
geometry to produce complex circuit layouts. We take advantage of the fact that our
implementation is in a polymorphic high-order language to provide a simple but powerful
set of functional geometry primitives.

5:27 pm 171 Friday, November 15, 1991

172

These primitives are used to provide non-standard semantics for certain Ruby
descriptions. We constrain ourselves to the study of butterfly networks which are
characterised by a high wiring to processing area ratio. The recursive decompositions
found by [Sheeran 89] are used to help draw butterfly and butterfly-related networks
automatically.

The problem of drawing any Ruby description is a much harder one, in particular four­
sided tiles. This is because four sided tiles are implemented in terms of two sided tiles.
Work has been done by the author and others to draw Ruby descriptions containing only
two sided tiles. This is quite straightforward, the major complication being the loop

construct.

9 .3 Describing Butterflies
The wiring relations trn, zip, halve and pair (introduced in chapter 2) are used to build
some of the new wiring patterns which we need to describe butterflies.

We shall not try to represent the structure of tuples in our drawings. This could be
done by varying the spacing between wires to reflect how the tuple is constructed. This
means that by looking at a picture, we cannot tell the difference between twelve wires
(12) and 12 ; halve. Similarly, pair will not affect how wires are drawn. However, both of
these relations are still needed to keep the type right of the information travelling along
wires.

One much used wiring pattern in butterfly networks is riffle, otherwise known as the
‘perfect shuffle’. Riffling involves halving a bus of wires, then transposing the resulting

tuple, followed by unpairing. The definition is:

riffle = halve ; trn ; pair'1

We shall also make use of the inverse of riffle i.e. riffle-1.

A relation R is homogeneous if it relates only signals of the same length. A larger
homogeneous circuit can be made by making two copies of a smaller one. One such
combining form is two defined as:

two R s [R, R] \ halve-1

Another useful operation is the interleaving of two copies of R:

5:27 pm 172 Friday, November 15, 1991

173

ilv R = (two R) \ riffle

There are many useful laws about these combining forms, e.g:

two (R ; S) = two R ; two S
two ilv R = ilv two R
ilv (R ; S) = ilv R ; ilv S

These laws are easily proved in the usual manner.

Four recursive descriptions of butterfly networks found by Sheeran are:

'Fn+l R = ilv 'Fn R ; tWO"+1 R (A)
'Fn ilv R ; twon+1 R (B)
ilvn+1 R ; ^ ntwoR (C)
ilvn+1 R ; two *Fn R (D)

where the base case is:

To R R

If R is a comparator (or sorter) then *F R is Batcher’s bitonic merger.

It is possible to directly transcribe the above definitions to our implementation of
Ruby. The source text for the butterfly definitions is given below.

> riffle = halve ; zip ; pair% ;;
> two R : [R, R] \ halve% ;;
> ilv R : (two R) \ riffle ;;

> butfyl 0 R = R
> butfyl n R = ilv (butfyl (n-1) R) ; two**n R

> butfy2 0 R = R ;;
> butfy2 n R = butfy2 (n-1) (ilv R) ; two**n R

> butfy3 0 R = R ;;
> butfy3 n R = ilv** n R ; butfy3 (n-1) (two R)

> butfy4 0 R = R ; ;
> butfy4 n R = ilv**n R ; two (butfy4 (n-1) R)

5:27 pm 173 Friday, November 15, 1991

174

A sample execution of one of these butterflies is shown below. The component R is

represented by a two-input comparator (sorter) called comp2. The execution file contains:

> IMPORT b u t f y ; ;
> IMPORT p r e l u d e ; ;

> STANDARD < L , H> b u t f y l 0 o r ; ;
> STANDARD < L , L , L , H > b u t f y l 1 (o r ; s p l i t) ; ;

> STANDARD < 8 , 3 > comp2 ; ;
> STANDARD < 4 , 7 , 9 , 5> b u t f y l 1 comp2 ; ;
> STANDARD < 1 , 2 , 3 , 4 , 8 , 7 , 6 , 5 > b u t f y 2 2 comp2 ; ;
> STANDARD < 1 6 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8> b u t f y 3 3
comp2 ; ;

The output produced is:

1) S t a n d a r d : < L , H > b u t f y l 0 o r H
2) S t a n d a r d : < L , L , L , H > b u t f y l 1 (o r ; s p l i t) < H , H , H , H >
3) S t a n d a r d : < 8 , 3 > comp2 < 3 , 8 >
4) S t a n d a r d : < 4 , 7 , 9 , 5 > b u t f y l 1 comp2 < 4 , 5 , 7 , 9 >
5) S t a n d a r d : < 1 , 2 , 3 , 4 , 8 , 7 , 6 , 5> b u t f y 2 2 comp2 < 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8>
6) S t a n d a r d : < 1 6 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8> b u t f y 3 3
comp2 < 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 16>

9 .4 Drawing Butterflies
Butterfly circuits are now laid out using non-standard interpretation. The non-standard

values that flow along wires will be tuples containing coordinates of the bottom left hand

corner, colour information and an accumulator value which gathers together all the line

drawing commands needed to produce the drawing on some graphical output device. The

non-standard definitions for the nodes use their inputs to work out where to draw

themselves and in what colour.

With the exception of forks, all of the non-standard interpretations have not over­

ridden the meaning of the basic wiring primitives. However, to draw circuits we have to

redefine the meaning of the wiring relations too. For example, the identity relation now

has to add extra graphical commands to those that it has received through its input to

produce a horizontal line. It must also update the ^-coordinate of the bottom left hand

comer.

We shall be dealing with only one processing node called R which is a 2 to 2 relation.

This shall be drawn as a square tile.

5:27 pm 174 Friday, November 15, 1991

175

A picture description is made up by a list of picture commands. The picture commands

are represented in the implementation by type draw:

> d r a w : : = L i n e p t p t | T e x t p t [c h a r] | R e c t p t (num, num) |
> D im num num I C o l o u r num | S e t _ c o l o u r num num num num
> | O r i g i n (num, num)
> p t == (num, num)

A picture description is of type [d r a w] .

Instead of defining a graphical wiring function for each wiring form, we define a

general purpose higher order wiring function called d r a w _ w i r i n g . One of the parameters

to this function a the standard wiring function. This function is defined as:

> d r a w _ w i r i n g f n (o x , o y , z , ac c)
> = (ox+xdisp, oy, zs, ex++acc)
> where
> xsr = fn (in ox oy z)
> ex = concat [[Colour v, Line npt (dx i npt)] I ((npt, v) , i)
> <- zip2 xsr (index xsr)]
> where
> dx y (x,y') = (x+xdisp,oy+y*dy)
> xdisp=((#z) div 2)*10
> zs = [c | (p, c) <- xsr]
> dy = 2 0

Using this higher order function, we obtain the following non-standard definitions:

> n s i _ r i f f l e = d r a w _ w i r i n g r i f f l e
> n s i _ i d = d r a w _ w i r i n g i d

The non-standard definition for the processing node R simply draws R in a box, with

two wires on the left and two on the right and does some colouring.

> r _ w i d t h = 4 0
> r _ h e i g h t = 4 0

> d r a w _ r (x , o y , [a , b] , a c c)
> = (x + r _ w i d t h , o y , [a , b] , a c c + +
> [C o l o u r 2 , R e c t (x , y + 2) (r _ w i d t h , r _ h e i g h t - 4) ,
> C o l o u r 3 , T e x t (x + 2 0 , y + 2 0) " R "])
> w h e r e
> y = o y - 1 0

Drawing a butterfly of size 0 will draw just R. Figure 9.1 shows 'Fo i-e. R. Like all

the diagrams in this chapter, this picture was automatically produced by the non-standard

interpretation for drawing Ruby and then converted to MacDraw I I format for inclusion in

this thesis.

5:27 pm 175 Friday, November 15, 1991

176

Q
Figure 9.1: R

Let us consider for the moment those butterflies networks generated by the first recursive

description given (labelled with A). A butterfly of size 1 is show in Figure 9.2.

Substituting n = 0 in the description gives:

ilv 'Fo R : two0+1 R

ilv R ; two R

which corresponds with the figure drawn.

R
D G R

Figure 9.2: Butterfly of size 1.

A butterfly of size 2 is shown in figure 9.3. Notice that there are instances of a size 1

butterfly in this picture.

Figure 9.3: Butterfly of size 2.

A butterfly of size 3 is shown in Figure 9.4. Again, there are many instances of a size 2

butterfly in this picture.

Figure 9.4: Butterfly of size 3.

A butterfly of size 4 takes up a whole page, and a colour plate of it is shown overleaf.

5:27 pm 176 Friday, November 15, 1991

177

Butterflies of type B and D look the same when they are generated by a non-standard

interpretation. Figure 9.5 depicts what is drawn.

Figure 9.5: Butterflies B and D of size 3.

9.5 Drawing Non-Butterflies
In reference [Dowd et al. 89] a merger similar to Batchler’s bitonic merger is presented.

The balanced merger, so called because it merges two interleaved sorted lists, has been

shown by Sheeran to have a recursive decomposition similar to the butterfly [Sheeran

91]. The following are Ruby descriptions of that butterfly-like network. Representatives

from the following circuit descriptions have also been drawn.

> a l t = t w o * * n (one swap) ; ;

> v e e R = (i l v R) \ a l t ; ;

> w f l y l 0 R = R ; ;
> w f l y l n R = v e e (w f l y l (n - 1) R) ; t w o * * n R ;;

> w f l y 2 0 R = R ; ;
> w f l y 2 n R = w f l y 2 (n - 1) (v ee R) ; t w o * * n R ; ;

> w f l y 3 0 R = R ; /
> w f l y 3 n R = v e e * * n R ; w f l y 3 (n - 1) (two R) ; ;

> w f l y 4 0 R = R ; ;
> w f l y 4 n R = v e e * * n R ; two (w f l y 4 (n - 1) R) ; ;

> r s 0 R = R ; ;
> r s n R = i l v (r s (n - 1) R) ; w f l y l n R ; ;

> e x = i l v r ; v e e r ; two r ; ;

5:27 pm 177 Friday, November 15, 1991

178

There circuits w f l y i to w f i y 4 are rather like butterflies, except they are based on r i f f l e

; a l t instead of r i f f l e . Here, v e e corresponds to i l v , but using r i f f l e ; a l t

instead of riffle. Substituting v e e for i l v in the original butterfly descriptions yields

w f l y l tO w f l y 4 .

These circuits are based on a component with four values at the domain and range. We

need a new definition for drawing R:

> d r a w _ r 4 (x , o y , [a , b , c , d] , a c c)
> = (x + r _ w i d t h , o y , [a , b , c , d] , a c c + +
> [C o l o u r 2 , R e c t (x , y + 2) (r _ w i d t h , 2 * r _ h e i g h t - 4) ,
> C o l o u r 3 , T e x t (x + 2 0 , y + 4 0) " R "])
> w h e r e
> y = o y - 1 0

This draws a rectangle with four wires in the domain and four in the range.

The semantics for serial composition is not altered. This is because each drawing

function increments the current Jt-coordinate by the width it requires. Alternatively, the

alternative semantics of the leaf nodes could be changed to give information about how

wide the component is. Then, serial composition could be redefined to take account of

this and increment the running x-coordinate by itself rather than have it done explicitly in

the code for the leaf nodes.

The alternative semantics for parallel composition is defined only for the case where

two circuits are placed in parallel. However, these two circuits may themselves be parallel

compositions. It is defined as follows:

> p a r i d r (o x , o y , n l , a c c)
> = (o x 11 , o y , a + + n ' ' , a c c 11+ + a c c ' + + a c c)
> w h e r e
> a c c 1 = i d w i r e s (o x , o y , o x 1 ' - o x , # n l d i v 2)
> (o x ' 1, o y ' 1, n ' ' , a c c 1 ') = r (o x , o y + d y * (# n l d i v 2) , b , [])
> [a , b] = h a l v e n l

The next few pages show drawings produced by non-standard interpretation for some

of the circuits described above. The first is a butterfly (A) of size 5. The following page

shows a butterfly (A) of size 4. Butterflies C and B/D are shown next, both of size 4. The

next page shows three circuits: (a) a periodic balanced sorter (b) a recursive sorter based

on the balanced merger (c) a shuffle-exchange network. The next two pages show black

and white drawings of vee-based butterflies with 4 to 4 components.

5:27 pm 178 Friday, November 15, 1991

70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 77 70 77 70 70 70 70 77 70 77 70 70 70
i r11 1 rnr inr t r i i t- r i r 1

A butterfly of size 4

I ■ 1--------- L 1 1 1 1

DS OS

o S oS

r—
i

i
i

i
i

i—
i

i—
i

I—
l

a s OS o s o s o s o s o s a s

185

9 .6 Implementation
The non-standard interpretation system produces as output a file of graphical descriptions

based around a Miranda algebraic type. Several other programs have been written which

translate the output from the non-standard interpretation to a format suitable for driving

graphical output devices.

One variant of the above interpretation involved producing LaTeX picture environment

commands. This allows butterfly drawing to be included directly into LaTeX documents.

However, the picture environment supports only a limited number of possible line

gradients. It was not possible to draw butterflies of size greater than 4 without exactly

aligning the wires in riffles.

The butterflies produced by the non-standard interpretation system can be drawn on

Sun computers running the SunView window system (formerly known as SunTools). A

program was written using the Unix tools Lex and Yacc and the programming language C

for parsing lists of the type draw. This program then executed the appropriate SunView

system calls to drive graphics canvases. The program will produce colour displays in a

re-sizeable window with scrollbars.

To produce a black and white hardcopy, a utility called ScreenDump, written by Mark

Dunlop, can be used. However, it was desirable to produce colour output. To achieve

this, the output files were transferred to a colour Macintosh II computer connected to a

colour laser printer. A program was written in LightSpeed Pascal for parsing the same

Miranda data structure and then calling appropriate Macintosh QuickDraw commands for

drawing butterfly circuits in colour on a Macintosh display. These drawing could then be

pasted into the clipboard or saved as PICT files. The PICT files were read in using

MacDraw I I and then pasted into Microsoft Word documents for inclusion in this thesis.

Every drawing in this chapter was produced in this way.

From MacDraw II, colour output could be produced by sending the drawings to the

colour laser printer. Another program for sending QuickDraw commands directly to the

laser writer was also produced. This program works faster, but is not as versatile as the

version that produces PICT format output, since PICT files can be pasted into many

Macintosh applications and then annotated by hand.

5:27 pm 185 Friday, November 15, 1991

186

9 .7 Conclusions
Ruby contains information about circuit layout as well as behaviour. All the non-standard

interpretations presented up to this point have involved finding alternative meanings for

Ruby behaviour. However, we can also produce layouts by changing the standard

behaviour to draw pictures. We have drawn butterfly-type circuits using this technique.

However, we have not shown how to draw an arbitarary Ruby description. This is a

hard problem, since it is not easy to see how to lay out four sided tiles, or even tell what

is a four sided tile. This is because Ruby does not offer any primitive support for four

sided tiles. The drawing of circuits with four-sided tiles might be possible by using

contextual information.

Another problem is how to deal with generic circuits like map AND. We can choose to

draw an arbitrary representative of this class, or we could make up a special symbol,

perhaps involving vertical dots to shown that this picture does not represent a particular

circuit. Our implementation avoids this problem by drawing only fixed sized circuits.

Generic combining forms can be used, as long as there is enough context information

available to determine the size of the domain or range values for generics.

One interesting application for non-standard interpretation might be for synthesis of

mask level layout. A non-standard interpretation could be devised for synthesising a mask

level layout for each processing node and wiring form. This could be done by using an

existing CAD tool. The combining forms then glue together the constituent layouts to

form complete circuits. This would be a viable approach because Ruby contains enough

topological information. This means that we avoid the hard problem of how to

automatically lay out large circuits. The layout of the high-level blocks is done explicitly

in Ruby. The relatively tedious task of producing layouts for AND, OR, FORK, ID etc.

can be done economically using automatic layout tools.

One advantage of this method is that it allows the designer to experiment quickly with

different layout. The designer can concentrate on the layout at a high level of abstraction,

knowing that the cells near the leaves of the design tree will be dealt with automatically.

5:27 pm 186 Friday, November 15, 1991

Chapter 10

Improving Testability

10.1 Introduction

Ruby possesses many powerful algebraic laws and properties that help designers reason

about circuits. Circuit designs can be derived from a high level specification using

correctness preserving transformations that guarantee the validity of the final design.

Many of the existing rules about Ruby transform its physical layout in order to save

area or increase speed. This chapter presents transformations that improve the testability

of Ruby descriptions.

The first step is to declare a strategy for testing Ruby descriptions (section 10.2).

Testability has eluded precise formal descriptions: much of the existing traditional

techniques for improving testability work by trying to increase con tro llab i l i ty and

observability. This is accomplished by improving access to internal nodes by introducing

extra circuitry (as shown in chapter 2). The first part of the test strategy is to employ

traditional techniques for improving testability. Ruby is particularly suited to describing

regular circuits which often have replicated cells . The second part of the test strategy is to

capitalise on this replication by testing repeated blocks in parallel.

Having set out the test strategy, the next step is the introduction of a testability

transformation scheme (section 10.3). Transformations are defined for the most common

Ruby combining forms and for the sole sequential element (D.

The use of the testability transformation can lead to very messy and cluttered Ruby

descriptions. Also, the designer might have to do some trivial re-wiring to connect

together subcircuits that propagate testability information in an incompatible manner.

189

Particular attention is paid to the transformation of serial composition since this is the

combining form that is likely to induce the highest degree of untestability. The next step is

a superficial extension to Ruby to allow the expression of testability requirements while

still retaining notational elegance.

The remainder of the chapter explores the possibility of exploiting the behavioural and

layout information conveyed by Ruby with a view to producing more testable circuits. By

careful examination of the behaviour of a composite circuit, a decomposition may be

found which results in a more testable structure.

10.2 Testing Strategy

The transformations for improving testability introduced here have been drawn up with

the following considerations in mind. Firstly, the methods used for improving the

testability of circuits are traditional ones that aim to increase the controllability and

observability of internal nodes. This is accomplished by allowing direct or improved

access to internal nodes. This is done by splitting sequential networks into parallel

networks. Secondly, the emphasis is on evaluating whether a given fabricated design is

working or not: there is no attempt to diagnose the fault. This results in cheaper

transformations which give a “go/no-go”. This is often all that is required.

I f a regular circuit is converted to a flattened netlist before applying testing analysis,

the advantage of regularity is lost and the analysis must be redone for each repeated

circuit. However, since we are satisfied with a “yes/no” answer, it is possible to test each

replicated cell in parallel. This saves much testing circuitry and test application time. The

test technique for replicated cells involves distributing the same signal to each replicated

cell and comparing the outputs of each cell. I f there is any difference in output response

between the various cells there there must be at least one faulty cell. An assumption is

made about how circuits fail: it is assumed that all the replicated cells of some circuit F

will not all fail in the same manner

Sequential circuits are tested by using the traditional technique of decomposition to a

set of combinational circuits and then testing these. The sequential elements are chained

together to form a shift-register to allow economic testing.

190

10.3 Transforming Combining Forms

1 0 . 3 . 1 In troduct ion

In this section, a testability transformation called Tis introduced. This transformation is

defined over the various combining forms and elements of Ruby. Each transformation

aims to increase the testability of a circuit by increasing the controllability and

observability of internal nodes and by performing as much parallel testing as possible.

A Ruby description can be analysed using existing tools or the non-standard interpretation

system presented earlier. Areas of poor testability can then be transformed using T

The remainder of this section defines plausible transformations for some of the most

common Ruby constructs.

1 0 . 3 . 2 Serial Composit ion

Serial composition connects two communicating circuits together via an internal

connection. This internal connection can be very hard to control and observe.

The testability of serial composition is improved by transforming it to a network

which allows the internal connection to be directly controlled and observed. Consider the

circuit in figure 10.1(a) which shows circuits A (domain x) and B (range z) connected via

an internal connection y. The circuits A and B might be quite testable independently, but

the composition makes it harder to apply test vectors to B thus reducing B's

controllability. Since any test information about A must be propagated through B , A 's

observability is reduced.

The situation is exacerbated if the range of A is not a superset of the test program for

B. This can cause some faults in B which were testable with B in isolation to become

untestable. Let Pa be the test test program for A and Pb be the test program for B. Let Fa

be the set of faults in A (similarly for B). The function C(P,G) gives the set of faults in

circuit G which are exposed by the test vectors in set P. The cover for A is then:

|C(P^)l
\F a \

The cover for B is defined analogously.

191

In addition to exercising A with Pa , A must be made to produce as many elements of

Pb as possible at its range. The additional elements are given by the relation Pa A Pb .

Thus the test program for the composition A ; B is given by the union of Pa and Pa ':

Pa ,B = P a v Pa ' (10.2)

In general, it is possible that A cannot generate all of Pb at its output i.e. rng A C p B.

This constrains the set of possible values at the intermediate signal y to be rng A n Pb -

This cover the of composition is now given by the left hand side of the inequality:

|C(P,4 ,A)| + 1C(rng A n PB, B)| „ \Z(PaA) u C(PbA)\N + N “ W + N
This inequality becomes an equality when rng A > P g . The degree to which the cover is

reduced depends on the behaviour of A and B and the test program Pb .

Reduced cover can occur when the composition of A and B contains redundant

circuitry. Although A and B can be free of redundant subcomponents, their composition

might not be, especially if A's range is a subset of all the possible 2n values for an n-bit

output. This situation is likely to occur in hierarchical design when ready built general

components are plugged together. The resulting implementation may not only satisfy the

specification but may also have unnecessary extra behaviour. This can occur when very

general or non-cohesive components are used.

One way to overcome this is to analyse the composition with a view to removing any

redundancy. This is undesirable in general because it diminishes one of the advantages of

hierarchical design using correctness preserving transformations. Such tailoring of ready

built and proved designs is a large burden on the designer: if the redundancy is removed

by using ad-hoc methods then the resulting circuit would have to be re-verified in a

bottom-up manner. Much of the work that went into designing a ready built and correct

by construction (or exhaustive testing) library module is lost.

192

The problem can be alleviated by choosing a slightly different test program for Pb .

For any given design B , there is likely to be more than one possible test program that

gives optimum or near-optimum test cover. Normally, after fault collapsing etc. one test

set is arbitarily chosen and the rest discarded. However, if this choice were delayed until

B is actually used in some larger design, then a better choice could be made for the test

program. For example, two test programs for B, P \ and ^2, might be equally good for

testing B in isolation but one might be better than the other when the composition A ; B

has to be tested. Let t be an essential test for A. I f t e P i , t e P 2 then by choosing P 1

some faults in A are also covered. These extra faults are discovered by using fault

simulation. This suggests that P\ would be a better choice than P ^

A fau lt/in B might be covered by the essential test t\ in P\ and t2 in P 2 . If, however,

t\ & rng A then P 1 will not expose fault / . I f t2 e mg A then this would be a better choice

since fault /c a n still be exposed. By making these kinds of analyses for all the tests, a

much better choice can be made between possible test programs. This will help to reduce

(or halt) the reduction of the fault cover that may occur when two circuits are composed in

series. The penalty to pay is delayed and more expensive test pattern analysis which has

to be performed in a contextual manner instead of in isolation for each module.

m
T [A ;B]

(a) (b)

Figure 10.1: (a) Serial composition (b) external behaviour transformation.

193

The problem of diminished controllability and observability of the internal connection

in serial composition can be reduced by transforming the design to allow direct

controllability and observability of the internal connection. This involves changing the

behaviour of the circuit. The circuit in figure 10.1(a) is transformed to have the external

behaviour of the circuit shown in figure 10.1(b). The input has added to it a boolean input

m which describes the mode in which the circuit is operating in. In normal mode, circuit

B receives its input from the output of A (normal serial composition). In test mode, B's

input is taken from the second additional input x \ thus increasing the controllability of the

internal connection z. The output is modified by always making the value at the internal

connection z visible through the second element of the 2-tuple range, thus increasing the

observability of the internal connection.

It is possible that only some of the wires in the intermediate connection z are difficult

to observe. In this case, appropriate selectors can be applied to the second element of the

range tuple to filter out the desired wires. Similarly, it might be the case that not all of the

intermediate wires are difficult to test. This case involves the more difficult task of

redesigning the transformed circuit to share some of the wires in x with x \

This transformation is specified formally by:

(x , <m, x')) TlT/4;£H <y, z) -> 3q .(-im(q=z) v m.(q=x')) a

(x A z) a (q B y) (10.3)

When m is true, then circuit is not in test mode so it behaves like A;5.When m is false

then the circuit is in test mode. Circuit B should now receive its inputs from the test input

x' instead of x.

The specification of a 2 to 1 multiplexer is given below. This circuit is assumed to be

part of an available library of specified, implemented and proved correct circuits.

(a, b , c> M UX d <=> a.(d=b) v —a.{d=c)

This component can be used to realise the expression:

- i m(q=z) v m.(q=x')

194

in specification (10.3), giving:

(x , (m , x '» TlTA;i?"ll (y, z) s {m,x\z)MUX q a (x A z) a (q B y)

Using the definition of serial composition, the multiplexer is composed in serial with

circuit B.

(x , <m, * '» TlTA;5H (y, z> s {mj.',z) {M U X ; £)}> a (a : A z)

Since A takes its input from the bottom and M U X ; B from the top, these circuits are

composed in parallel:

(x, (m, jr')) TlTA;5ll (y, z) = (x, <m^t',z» [A, Aft/X ; £] <r, a

r=_y a s=z

The wires at the output of the composition are the wrong way round: the output of B

should go to the bottom (i.e. y) and the output of A should go to the top (i.e. z). This

problem can be fixed by swapping these wires:

{x, (m, x')) T lTA ^H (y, z> = (x, {m.yX\z)) [A, M U X ; B] ; swap (y, z>

This right hand side is not directly realisable because z occurs in the domain and the

range. The loop combining form can be used to feed back the z from the range back to

the domain. However, z must also appear as the second element of the range tuple. For

this reason, z is duplicated by a fork. A rewiring relation is required to keep the type of the

domain type right i.e. the tuple must be transformed from (y, <z,z» to «y, z>,z». This is

accomplished by the relation reorg 1. Similarly, the domain tuple must be reorganized so

that A and M UX receive the right signals: this is done by reorgl.

{.x , (m, x')) TlTA;Z?H (y, z> s (x, <m, x'))reorg2 ;
loop ([A, M U X \B] ; swap ; [i, fork] ; reorg 1)

195

<y, z)
<y, < z,z» reorg 1 « y , z) ,z »

(x, (m, x'), z) re o rg l {x,(m j.\z))

This is now a realisable description. Since it was derived from the specification using

correctness preserving transformations, it must also be correct by construction. This

description can be simplified by applying the law:

[A , B] ; [C , D] = [A ; C, B ; D] (10.4)

which results in:

(x , (m, x '» T ! T /4 ; 5 H <y, z> s <jc, <m, x '» re o rg l ;
loop ([A ; fork, Aft/X ; B] ; swap ; reorgl)

O', z>

A picture of this circuit is shown in figure 10.2. The wiring reorganizations are not
shown for clarity.

m

Figure 10.2: Transformed serial composition.

This transformation has added circuitry which can also fail. The complexity o i A ; B must

be large enough to overcome this overhead. An alternative arrangement to that shown in

figure 10.2 could involve feeding m through as an output.

196

Notice that this arrangement allows the parallel testing of A and B. In test mode, the

output z gives the results of tests to A applied at x and the output y gives the results of the

tests applied to B at x \ This is because in test mode, the series connection is effectively

broken and the circuit behaves as if it were a parallel composition.

Using the very approximate testability measure (i+o)/g where i is the input of inputs, o

is the number of outputs and g is the number of gates, the testability effort of a series

composition has been reduced to be the same as the parallel case i.e. from

(ia+ob)/(ga+gb) to (ia+oa)/ga + (ib+ob)/gb , where ia , io and ga are A's inputs, outputs

and number of gates (similarly for B).

1 0 . 3 . 4 Map

Since map F replicates F, test pattern analysis can be done for one F and reused in every

other instance. One straight forward way to test circuits in a map structure would be to

use the following transformation rule:

T lfm ap FH -> map (T lfFH) (10.9)

This involves more than doubling the number of wires that go into and out of the circuit

generated by the map . Since all the F 's are identical and in general don't interact with

each other, they can be tested simultaneously by applying the test vectors to each F. This

gives a substantial saving of input lines since only one test mode wire and a signal the size

of one F 's domain needs to be added. However, the number of output lines has still

doubled.

It is unnecessary to propagate the observability output of each F in test mode to an

observable output. The testability information required is 'is there a faulty F in the parallel

structure?’. Assuming that all the circuits will not fail at once in the same way, the

network is almost certainly working if all the F s give the same answer to the same stimuli

(assuming that the internal state elements have been initialised consistently). So it is

sufficient to additionally propagate the result of only one TlTFll and a bit indicating

whether all the mapped F s produced the same output (i.e. are working).

197

A formal description of such a transformation is:

0cs, t) T IT map F l (ys, <w, z»
=def (xs> t) distR ; map (T lT F ll); split; [map tu, G] <ys, <w, z»

where G = split; [comp, 7ti] (10.10)

The normal input is the list xs and the test input is t (which is distributed to each mapped

F). The result contains the normal output list ys along with w which indicates whether

there were any faults found in the mapped F's and z which contains the test output value

of one of the F s.

The component comp is a generic comparator which takes a list of signals on its

domain and gives true at its range if they are all the same, and false if they are not.

T[A]

T [A]

Figure 10.4: (a) Instance of map F (b) corresponding T transformed circuit.

An instance of map F and its transformation is shown in figure 10.4.

1 0 . 3 . 5 L o o p

The problem with testing loop circuits is the hidden internal feedback line and the internal

state that most loop circuits posses. The transformation adopted for loop circuits breaks

the feedback loop to allow it to be directly controllable and observable by undoing the

loop. The sequential elements are dealt with in a later section.

We choose to analyse loop circuits by breaking the feedback loop. The transformation

used is:

198

TlTloop FH -> TlTFH (10.11)

This simply undoes the loop. We have to remember that the resulting circuit is a pair to

pair relation. The second element of the range pair is used to form the feedback path

which is now broken.

An alternative method for analysing loop circuits is to unfold the loop, as is done by

other analysis like symbolic evaluation.

1 0 . 3 . 6 The Delay Element
The delay element <D is the only sequential component in Ruby. A transformation for this

element will in turn affect all Ruby sequential circuits. Traditional techniques for dealing

with state elements include isolating the delay circuitry from the combinational circuitry so

that these can be tested as two separate subsystems. This reduces the complexity of

testing from 0 (2 /I+m) to 0 (2 n)+0 (2m) where n is the number of delay elements and m is

the number of state elements when performing exhaustive testing.

The behaviour of the *D element is modified so that in test mode it can be directly

controlled. The following transformation is used:

(x, (m, x')) TH"£>H y m (x ‘D y) v —i m i x ' T f y) (10.12)

Here, x is the normal input to the delay element and m is the test mode. I f the circuit is not

under test, then the transformed circuit's output is a single time unit delayed version of x.

When the circuit is being tested, then the input x \ which is assumed to be part of a scan-
path chain, is related to y through £>.

1 0 . 3 . 6 Row and Col

Since all the elements of these structures are the same, then it should be possible to tests

these elements in parallel, in a similar manner to map. For row F, a row of F's can be

placed below a distributed common test signal along with the normal vertical input, giving

the transformation:

199

(h, (m , h'), v» TIT row FH (y, <z,w»
-> <h , <m , /f>, v» snd ; dist^ ; row (T l f F l l) ; fst (split; snd comp) <y, (z,w»

(10.17)

Here, h is the horizontal input, v the vertical input, with m the the mode bit and h' the

direct control value corresponding to h. The normal horizontal output is y and the vertical

normal output is z. The w line is false if there was a discrepancy found between the F s in

test mode. Figure 10.5 shows a picture of the transformation for an instance of row F.

comp

(a) (b)

Figure 10.5: (a) row F (b) and its transformation.

The transformation for col is defined analogously.

1 0 . 3 . 7 Repeated composit ion

Since all the cells in a repeated composition are the same, it is possible to test all of them

in parallel and then ’and’ the outputs. One possible scheme is shown in figure 10.6.

T[A] T[AJ

Figure 10.6: A possible transformation for repeated composition.

2 00

The test vector and mode is distributed to each cell from the top. The test outputs are

compared to check if they are all the same by the comparator at the bottom.

A similar technique can be applied to tri and irt triangles.

10.4 Augmenting Ruby for T

The transformations in section 10.3 have the unfortunate affect of transforming beautiful

designs into ugly, complicated designs. The rules are also not totally consistent with each

other e.g. the test output of a col does not feed in directly to the test input of a normal

serial composition. It is the designer’s responsibility to organise the interface between

different types of structures, although this is usually trivial. I f descriptions become too

complicated to reason about easily, then Ruby will becomes less effective as a design

tool.

A ll of the transformations in Tare of a mechanical nature. They all transform Ruby

expressions to Ruby expressions. Instead of making the designer explicitly use the rules

of T o f transform circuits extra constructs could be added to Ruby to describe where

testability transformation should take place. This augmented version of Ruby could then

be translated into a series of semantically equivalent T transformations along with any

glue transformations required.

As an example, consider the problem of a hard to test internal node in a serial

composition A ; B ; C ; D ; E. Let the difficult node be between C and D. The testability of

a series network is improved if it could be mode more parallel. A pseudo-parallel

construct could be defined with the following ‘top level’ semantics:

(A , B ; C, D ; E > « A ; B ; C ; D ; E (10.18)

This indicates that A ; B ; C should be placed in parallel with D ; E for the purposes of

testing. However, the designer uses the expression on the right hand to to reason about

this construct i.e. normal serial composition. There is no overhead of having to reason

and route extra wires: these are handled automatically by the transformation from

augmented Ruby to transformations in T on standard Ruby.

201

A possible transformation from enhanced Ruby to the standard Ruby under Tcould

be:

(A ; B ; C , D \ E) -> ; B ; C) ’; (D ; £) 1 (10.19)

Here, Tis modified to transform dashed expressions by leaving them unchanged.

Other transformations could be used to link up all the *D latches into a shift-register

chain for LSSD testing. It might be profitable to have more than one LSSD shift-register,

or to exclude certain delay elements for global shift registers. One reason for doing this

would be to reduce the overhead of a snakinging LSSD path through a large circuit.

10.5 Conclusions

The increasingly important requirement to accommodate testability constraints early on in

the design of digital systems makes the design task more complex. Many of the

advantages of using hierarchical algebraic languages are diminished by having to consider

in great detail the testability characteristics of each construct.

To aid the designer a testability transformation Tutilizing traditional test techniques

has been presented. This technique uses proved transformation rules to help transform an

existing design to be more testable.

Transforming various parts of the design introduces the need to perform much tedious

re-wiring amongst the various methods used in T for propagating fault information. This

problem is overcome by extending the description language, Ruby, with constructs which

identify those parts of the design which have to be made more testable. The tedious

wiring can now be automated in a translation from augmented Ruby to standard Ruby.

This increases the testability of Ruby designs while still retaining tractable descriptions

with pleasing algebraic properties.

2 02

An alternative approach suggested by Sheeran is to make each circuit a pair to pair

circuit. The first element of the pairs are used to drive standard Ruby descriptions. The

second are used to drive Ruby circuits that have been transformed, perhaps by the method

given above. Depending on whether the circuit is being tested, either the first or the

second element will be ‘active’ . This method has the advantage that circuits can be

composed together just as easily as before.

Chapter 11

Conclusions

We have shown that non-standard interpretation provides a good framework for

expressing many hardware analyses. Drawn from the domain of testability, we have

shown how several non-trivial analyses can be expressed easily and quickly. We claim

that non-standard interpretation provides a paradigm for hardware analyses. This is not

surprising if we consider that most hardware analyses manipulate circuit representations

which are isomorphic to the circuit description. However, often the circuit has to be

respecified before analysis, and the structure analysed bears no connection to the structure

built when compiling the circuit description. This duplicates much effort which can be

saved by using just one representation. It also avoids the problem of inconsistency

between representations.

The motivation for using non-standard interpretation arose from the desire to use just

one circuit representation for many analyses. The first non-standard interpretation was

written to estimate the number of test patterns required to exhaustively test a circuit. This

kind of approximation analysis seemed similar to the approximations used for functional

programs to discover strictness.

Taking inspiration from the analyses used by functional programmers to detect

strictness in lazy functional languages, we have adapted their abstract interpretation

techniques to work on Ruby hardware descriptions. In doing so, we have had to settle for

the more general technique of non-standard interpretation, which provides a weaker

association between the standard and non-standard interpretations. This makes it harder to

prove safety properties of our analyses.

204

A powerful algebraic relational hardware description language was used for

performing non-standard interpretation. A large subset of the language was

implemented— a major undertaking. A restriction has been placed on the nature of

information flow, although this does still allow us to capture most circuits of interest. The

standard interpretation can be used to simulate circuits in Ruby. This has been used to

simulate circuits ranging from individual gates, through arithmetic circuits like 32-bit

adders to large butterfly networks. Even by itself, the standard interpretation is a very

useful tool.

The non-standard interpretations extend the power of the system. Normally, type

checking is an integral part of a compiler. However, we have demonstrated that type-

checking can be easily captured as a non-standard interpretation. This making type

checking much easier to provide, and the language implementation much simpler.

However, the system by default does not run the type checking non-standard

interpretation on every design— it is up to the user to execute each design with the type

checker. This is similar to the case that exists in C where a separate program, often lint, is

used to perform type checking.

Ruby provides a geometric interpretation for circuits as well as a behavioural

description. A drawing interpretation exists for producing circuit layouts automatically.

The interpretation for producing colour drawings of butterfly circuits demonstrates

strikingly how much can be done by non-standard interpretation. The alternative

semantics needed to draw these butterflies fits easily onto a page. We have produced a

useful tool for a small investment by re-using much code from the standard semantics.

The re-use was made possible by the carefully chosen non-standard interpretation model.

The layout interpretation was written in just one afternoon.

We have presented more than just a method for providing alternative semantics easily

with much re-use. We have also shown how to combine non-standard interpretations to

produce new interpretations. Combining interpretations is a powerful technique, and

future work could involve finding even more combinators. The theoretical implications of

combining interpretations are only just being explored by functional programmers. Any

advance in the theory would be directly relevant to the non-standard interpretation

technique we have presented.

205

Combining forms have been introduced to combine small interpretations into bigger

ones. This allows problems to be sub-divided into smaller problems and solved

independently. This is good software engineering practise and allows circuits with

complex bi-directional data flow to be modelled by a series of uni-directional

interpretations. These uni-directional interpretations can be implemented efficiently using

functions, rather than relations which would be required to implement a bi-directional

interpretation.

A typical integrated circuit design project involves the use of several analysis

programs. Usually, these programs are poorly integrated and it is not possible to combine

them. The technique we have presented allows interpretations to be combined easily to

form new interpretations. One convincing example is of how a testability measure

interpreter (SCOAP), an automatic test pattern generation interpreter (D-algorithm) and a

fault simulator (deductive fault simulation) have been combined to produce a more

efficient path oriented automatic test pattern generator (PODEM).

Attempting to cast a circuit analysis as a non-standard interpretation disciplines us to

think of the analysis in a precise manner. At first sight, it may not seem possible to

express an algorithm as complex as the D-algorithm as a non-standard interpretation.

However, after coming up with a more precise description of D-intersection and finding a

decomposition of the algorithm into subproblems we were able to cast this algorithm as a

NSI.

The implementation runs very slowly, although full performance cannot be expected

of a prototype. There is some scope for improving the performance of the central non­

standard interpreter builder. This would then automatically speed up all other non­

standard interpretations. However, we have decided to stick with a simple and correct

implementation. Future work in this area might involve using formal transformations to

improve the performance of the system. We have not been able to compare the

performance of this system with commercial systems.

The analyses we have presented deal with only discrete non-standard values.

However, there is no reason why analogue quantities should not be used as non-standard

values. A very low level analogue description could be abstracted to produce a digital

version. Providing the abstraction is safe, this could be used to analyse circuits at low

levels of abstraction.

206

The choice of a lazy functional language allowed backtracking analyses to be cast

elegantly as non-standard interpretations. The backtracking was performed implicitly by

constructing a list of possible paths but only evaluating the portion of the list required to

produce the result. Lazy evaluation is also useful for describing streams when simulating

sequential circuits, since a stream is modelled by an infinite list (or a tuple of infinite

lists). The interface with the windowing system also relies on lazy evaluation to function

correctly. In principle, it is possible to implement the non-standard interpretation

technique in any language, but lazy functional languages seem to particularly suited.

Ruby was a good choice of hardware description language because of the small

number of simple, well-defined combining forms. It is very easy to translate between a

Ruby description and its abstract representation. Compiling a language like V H D L would

have been a more difficult task. VH DL has a very large syntax and complicated semantics

and not every V H D L construct can be naturally overriden. Compactness and clear

compositionality are requirements for non-standard interpretation to work correctly.

Our standard interpretation of Ruby was coded to allow Ruby descriptions to be run in

one direction at a time. To make a more general Ruby interpreter, we can replace the

semantics of the active nodes with set to set functions and then perform a PROLOG style

analysis of the circuit representation. We could then give the values of some inputs and

some outputs and compute possible values at the remaining inputs and outputs. This

would be even more inefficient than the current implementation. Currently, we give all the

inputs and compute the outputs or vice versa.

Non-standard interpretation can be used to build testability analysis tools. Once these

have been used the next step is to transform the circuit to improve its testability. We have

presented a few simple techniques for transforming some Ruby expressions to improve

testability in general. These transformations are just formalisations of traditional manual

techniques specialised to Ruby. Non-standard interpreters could be used to produce

circuit transformers by using the existing testability analyses and adding transformation

analyses.

The following list contains some possible avenues for future research.

207

1. The current Miranda implementation is very slow. This is partly because Miranda is

interpreted. A native coded compiled version of Miranda is being produced, but we expect

to recode the system in Lazy M L. This is compiled lazy functional language which has

much better run-time performance. Faster implementations should also be able to support

more attractive and easy to use user interfaces based around the X I 1 system and XView

toolkit.

2. Conversion to the Haskell lazy functional language would be advantageous. This

language is emerging as the standard lazy functional language, and incorporates the most

recent advances in programming language theory and practice. It is also efficiently

compiled to object code.

3. Another avenue for future work could involve trying to recover safety properties.

It might be possible to recover safety by combining common parts of existing

interpretations. The work on causal relations [Hutton 90] may be of benefit in this area.

4. Objected orientated programming has many obvious benefits for circuit simulation

[Wolf 91]. For example, a simple two valued logic simulator could be extended to a three

valued simulator by inheriting the common operations over the different logic systems.

By thinking about how one interpretation is different and how it is similar to the standard

interpretation, we can find a good application for objected oriented techniques. This

would make non-standard interpretations easier to perform and specifications would look

more natural. With hindsight, we notice that the non-standard interpretation system we

have presented has hand-coded into it notions very similar to inheritance and type

extension as well as data abstraction. However, we had to employ the features of a

functional programming language (e.g. polymorphism) to emulate these characteristics of

objected oriented programming. It would be an interesting piece of further work to

reimplement our non-standard interpretation system in an object orientated language such

as Smalltalk or C++.

5. We hope to flesh out the layout interpretations to produce output suitable for

automatic layout and routing tools. These would then provide a quick route to silicon and

an almost automatic translation between high level Ruby specification and CIF layout. It

might be possible to perform routing and layout by using non-standard interpretation.

Another analysis which could be captured as a non-standard interpretation could be design

rule checking.

208

6. Field programmable logic devices are gaining popularity and can be used to realise

complex designs. We hope to map our butterfly networks onto a field programmable logic

device manufactured by Algortonix. The software used to program the Algortonix has

clever routers which realise complex wiring patterns efficiently. The code used to drive

the programming software will be produced by non-standard interpretation.

7. Another project under consideration is compiling Ruby to occam2 and then

simulating it on a 64 transputer array manufactured by Parsytec. The transputer array can

be configured arbitrarily using a crossbar switch. The translation between Ruby and

occam2 can be performed easily as a non-standard interpretation. I f this is successful,

then this equipment could be used to perform expensive circuit calculations like test

pattern generation very quickly in parallel. One important consideration is how much

hardware to map to each transputer, since the number of available transputers is limited.

8. One very useful tool for Ruby would be a transformation assistant program. This

would allows the user to manipulate Ruby expressions, perhaps using a structure editor.

There would be a library of transformations available. As the user performed

transformations, the system would show the effect each transformation had on the layout.

It could also perform gate count estimates or power calculations. These additional views

of the could be constructed as non-standard interpretations. One possible tool which could

be used to help build this system is the Cornell Synthesiser Generator. This tool makes it

easy to build structure editors. A non-standard interpretation of the decorated graph of the

abstract syntax could be used to produce layouts and performance estimates.

9. The testability transformation we have suggested has been motivated by the

traditional techniques currently used in industry. They are really too complex to be of any

practical benefit. It is the author’s opinion that a formal analysis of the hardware

description should somehow give clues about how testable a circuit is and how it can be

transformed to improve testability. Also, formal rules could be formulated stating how to

compute the testability of a composite design when the testability of the constituent

designs is known. For example, if we know how to generate test patterns for circuits A

and B then we look for a way of deriving the test patterns required for A ; B without

starting from scratch.

209

10. Although non-standard interpretation works well for analyses which have a

similar ‘shape’ to the circuit under analysis, there are still many analyses which cannot be

cast in this way. Instead of relying on an isomorphic relationship between the standard

and non-standard representations, we could look for a homomorphism. This would

greatly increase the type of analyses we could capture while still retaining a formal

relationship between the standard and non-standard representations.

11. Currently the non-standard interpretations produced work in ‘batch’ mode. A

circuit is submitted along with some inputs and some outputs is produced. However,

many designers produce circuits incrementally, adding a bit at a time to a circuit. It is

wasteful to recompute from scratch when work from a previous calculation can be used.

It should be easy to add hooks into the system to provide such support. This would then

allow the non-standard interpretation system be used as part of a larger incremental design

system.

2 1 0

Appendix A

A .l Source for Deductive Fault Simulator
> I I deduc.m Deductive Fault Simulation of Combinational Circuits

> %include "ruby"
> %include "standard"
> %include "-/miranda/general.lit"

> deduc_interp
> = [(And1, and_ded, undef),
> (Or1, or_ded, undef),
> (Not', not_ded, undef)]

> deduc_nsi = standard deduc_interp

> not_ded (Tuple [Label n, Logic vhere]) (Tuple [FaultSet fx, vin])
> = Tuple [FaultSet (outfault n vhere fx), Logic vhere]
> not_ded x other = error ("not_ded: " ++ show_tuple other)

> and_ded (Tuple [Label n, Logic vhere])
> (Tuple [Tuple [FaultSet fx, Logic x],
> Tuple [FaultSet fy, Logic y]])
> = Tuple [FaultSet (outfault n vhere fo), Logic vhere]
> where
> fo = cn vhere (intersection (cn x fx u) (cn y fy u)) u
> u = union fx fy
> and_ded x other = error ("and_ded: " ++ show_tuple x ++ " with

input "
> ++ show_tuple other)

> or_ded (Tuple [Label n, Logic vhere])
> (Tuple [Tuple [FaultSet fx, Logic x],
> Tuple [FaultSet fy, Logic y]])
> = Tuple [FaultSet (outfault n vhere fo), Logic vhere]
> where

211

> fo = cn vhere (union (cn x fx u) (cn y fy u)) u
> u = union fx fy
> or_ded x other = error ("or_ded: " ++ show_tuple other)

> outfault n False fs = (SA1 n) : fs
> outfault n True fs = (SAO n) : fs

> cn False fs u = fs
> cn True fs u = mkset (u— fs)

212

A .2 Source for SCOAP Testability Measure

A . 2 .1 Controllabil i ty measure

> %include "ruby"
> %include "standard"
> %include "~/miranda/general.lit"

> cont_interp
> = [(And1, and_cont, undef),
> (Or', or_cont, undef),
> (Not1, not_cont, undef)]

> cont_nsi = standard cont_interp

> not_cont nv (Tuple [a, x])
> = Tuple [x, Cont (cOx+1, clx+1)]
> where
> Cont (cOx, clx) = x
> not_cont x other = error ("not_cont: " ++ show_tuple x ++ " with "

++
> show_tuple other)

> and_cont nv (Tuple [x, y])
> = Tuple [Tuple [snd_tuple x, snd_tuple y],
> Cont (min [cOx, cOy]+l, clx+cly+1)]
> where
> Cont (cOx, clx) = snd_tuple x
> Cont (cOy, cly) = snd_tuple y
> and_cont x other = error ("and_cont: " ++ show_tuple x ++ " with

input "
> ++ show_tuple other)

> or_cont nv (Tuple [x, y])
> = Tuple [Tuple [snd_tuple x, snd_tuple y],
> Cont (cOx+cOy+1, min [clx, cly]+l)]
> where
> Cont (cOx, clx) = snd_tuple x
> Cont (cOy, cly) = snd_tuple y
> or cont x other = error ("or_cont: " ++ show_tuple other)

213

A . 2 .2 Observabili ty mesure

> %include "ruby"
> %include "standard"
> %include "~/miranda/general.lit"

> obsv_interp
> = [(And*, undef, and_obsv),
> (Or', undef, or_obsv),
> (Not', undef, not_obsv),
> (Fork1, undef, fork_obsv)]

> obsv_nsi = standard obsv_interp

> not_obsv (Cont (cO, cl)) (Tuple [ignore, Nr ob])
> = Tuple [Scoap (cO, cl, ob+1), Nr (ob+1)]
> not_obsv x other = error ("not_obsv: " ++ show_tuple x ++ " with "

++
> show_tuple other)

> and_obsv (Tuple [Cont (cOx, clx), Cont (cOy, cly)])
> (Tuple [ignore, Nr ob])
> = Tuple [Tuple [h, Nr (ob+l+cly)], Tuple [h, Nr (ob+l+clx)]]
> where
> h = Tuple [Scoap (cOx, clx, ob+l+cly), Scoap (cOy, cly,

ob+l+clx)]
> and_obsv x other = error ("and_obsv: " ++ show_tuple x ++ " with

input "
> ++ show_tuple other)

> or_obsv (Tuple [Cont (cOx, clx), Cont (cOy, cly)])
> (Tuple [ignore, Nr ob])
> = Tuple [Tuple [h, Nr (ob+l+cOy)], Tuple [h, Nr (ob+l+cOx)]]
> where
> h = Tuple [Scoap (cOx, clx, ob+l+cOy), Scoap (cOy, cly,

ob+l+cOx)]
> ord_obsv x other = error ("or_obsv: " ++ show_tuple x ++ " with

input "
> ++ show_tuple other)

> fork_obsv v (Tuple xs)
>|| = error ("fork_obsv trace: " ++ show_tuple xs)
> = foldll (min_merge_tuples (Tuple xs)) xs

> min_merge_tuples e (Tuple [x, Nr a]) (Tuple [y, Nr b])
> = Tuple [x, Nr (min [a, b])], if ~is_num x & ~is_num y
> min_merge_tuples e (Tuple as) (Tuple bs)
> = Tuple [min_merge_tuples e a b I (a, b) <- zip2 as bs]
> min_merge_tuples e x y
> = error ("min_merge_tuples: e=" ++ show_tuple e ++ " x=" ++
> show_tuple x ++ " against " ++
> show_tuple y)

> ext_obsv (Tuple [blah, Nr d]) = Nr d
> ext_obsv (Tuple xs) = Tuple (map ext_obsv xs)
> ext obsv other = error ("ext_obsv: " ++ show_tuple other)

214

A .3 Partial Evaluation Interpretation

> || Partial Evaluation Interpretation

> %include "ruby”
> %include "standard"
> %include "~/miranda/general.lit"

> partial_eval_interp
> = [(And', and_sym, undef),
> (Or', or_sym, undef),
> (Not1, not_sym, undef)]

> and_sym n (Tuple [Symbolic x, Symbolic y])
> = Symbolic (AndSymbol x y)
> or_sym n (Tuple [Symbolic x, Symbolic y])
> = Symbolic (OrSymbol x y)
> not_sym n (Symbolic x) = Symbolic (NotSymbol x)

> partial_eval_nsi = standard symbolic_interp

> simplify (NotSymbol (NotSymbol x)) = x
> simplify (NotSymbol (AndSymbol x y))
> = OrSymbol (simplify (NotSymbol x)) (simplify (NotSymbol y))
> simplify (NotSymbol (OrSymbol x y))
> = AndSymbol (simplify (NotSymbol x)) (simplify (NotSymbol y))
> simplify (AndSymbol SymbolFalse x) = SymbolFalse
> simplify (AndSymbol x SymbolFalse) = SymbolFalse
> simplify (AndSymbol SymbolTrue x) = x
> simplify (AndSymbol x SymbolTrue) = x
> simplify (OrSymbol SymbolTrue x) = SymbolTrue
> simplify (OrSymbol x SymbolTrue) = SymbolTrue
> simplify (OrSymbol SymbolFalse x) = x
> simplify (OrSymbol x SymbolFalse) = x

215

References

[Abramsky 85] Samson Abramsky. Strictness Analysis and Polymorphic Invariance.

Programs as Data Objects. Springer-Verlag LNCS 217,1985.

[Abramsky 86] Samson Abramsky. Strictness Analysis and Polymorphic Invariance.

Proceedings of the D IK U Workshop on Programs as Data Objects,

LNCS 217, Springer-Verlag. 1986.

[Abramsky 90] Samson Abramsky. Abstract Interpretation, Logical Relations and Kan

Extensions. Not published (yet).

[Akella et al. 90] Venkatesh Akella, Ganesh Gopalakrishnan. High Level Test

Generation via Process Composition. Designing Correct Circuits 90.

Mary Sheeran and Geraint Jones (eds.). Springer Verlag, 1991.

[Armstrong 72] D. B. Armstrong. A Deductive Method for Simulating Faults in Large

Circuits. IEEE Trans. Computers, C-21(5). 1972.

[Brackenbury 87] Linda E. M. Brackenbury. Design of VLSI Systems— A Practical

Introduction. Macmillan Computer Science Series. 1987.

[Bossen 71] Douglas C. Bossen. Cause-Effect Analysis for Multiple Fault Detection

in Combinational Networks. IEEE Transactions on Computers, Vol.

C-20, No. 11, November 1971.

[Boute 86] Raymond T. Boute. Representational and denotational semantics of

digital systems. Rep. No. 61, Dept. Computer Science, Univ.

Nijmegen. January 1985.

[Boute 88] Raymond T. Boute. System Semantics: Principles, Applications, and

Implementation. ACM Transactions on Programming Languages and

Systems. Vol. 10 No. 1 pp.l 18-155. 1988.

[Bum et. al. 85] G. L. Bum, C. L. Hankin, S. Abramsky. The Theory of Strictness

Analysis for Higher Order Functions. Programs as Data Objects.

Springer-Verlag LNCS 217, 1985.

[Caneghem et. al. 86] Michel Van Canegham, David H. D. Warren (eds.). Logic

Programming and its Applications. Ablex Series in Artifical

Intelligence. 1986.

216

[Cohn & Gordon 86] Avra Cohn, Mike Gordon. A Mechanized Proof of Correctness of

a Simple Counter. University of Cambridge Computer Laboratory

Technical Report No. 94. July 1986.

[Cohn 87] Avra Cohn. A Proof of Correctness of the Viper Microprocessor: The

First Level. University of Cambridge Computer Laboratory Technical

Report No. 104. January 1987. Also on VLSI Specification,

Verification and Synthesis. G. Birtwistle and P. Subrahmanyan eds.,

Kluwer Academic Publishers 1988.

[Devadas et. al. 89] S. Devadas, H.-K. T. Ma, A. R. Newtton, Sangiovanni-Vincentelli.

A Synthesis and Optimization Procedure for Fully and Easily Testable

Sequential Machines. IEEE Transactions on Computer-Aided Design

of Integerated Circuits and Systems, Vol. 8, No. 10, October 1989.

[Davio et. al. 83] M. Davio, J.-P. Deschamps, A. Thayse. Digital Systems with

Algorithm Implementation. Wiley, 1983.

[Dowd et al. 89] M. Dowd, Y. Perl, L. Rudolph, M. Saks. The periodic balanced

sorting network. JACM, Vol. 36, No. 4, October 1989.

[EDIF Committee] Electronic Design Interface Format Steering Comittee. EDIF —

Electronic Design Interface Format Version 10 0, Texas Instruments,

Dallas, Texas, 1985.

[Gibson 83] J. R. Gibson. Electronic Logic Circuits. Edward Arnold. 1983.

[Goel 81] Prabhakar Goel. An Implicit Enumeration Algorithm to Generate Tests

for Combinational Logic Circuits. IEEE Transactions on Computers,

Vol. C-30, No. 3, March 1981.

[Goldstein 79] L. H. Goldstein. Controllability/Observability Analysis of Digital

Circuits. IEEE Transactions on Circuits and Systems, Vol. CAS-26,

No. 9. Sept. 1979.

[Gosling 80] John B. Gosling. Design of Arithmetic Units for Digital Computers.

1980.

[Grason 79] J. Grason. TMEAS: A Testability Measure Program. Bell

Laboratories, Murray Hill, N.J. 1979.

[Hayes 71] John P. Hayes. On Realizations of Boolean Functions Requiring a

Minimal or Near-Minimal Numberof Tests. IEEE Transactions on

Computers, Vol. C-20, No. 12, December 1971.

[Henderson 82] Peter Henderson. Functional Geometry. Proc. ACM Symposium on

Lisp and Functional Programming. August, 1982.

217

[Herbert 86] John Mary Joseph Herbert. Application of Formal Methods to Digitial

Systems Design. PhD Thesis, Corpus Christi College, The University

of Cambridge. 1986.

[Hill 86] S. A. Hill. Simulating Digital Circuits. Technical Report No. 42,

Computing Laboratory, University of Kent. 1986.

[Hsieh 71] Edward P. Hsieh. Checking Experiments for Sequential Machines.

IEEE Transactions on Computers, vol. C-20, No. 10, October 1971.

[Hudak et al. 85] Paul Hudak, J. Young. A set-theoretic characterisation of function

strictness in the lambda calculus. Technical Report YALEU/DCS/RR-

391, Yale University. 1985.

[Hughes 86] John Hughes. Stictness Detection in Non-Flat Domains. Proceedings

of the D IK U Workshop on Programs as Data Objects, LNCS 217,

Springer Verlag. 1986.

[Hunt 85] W. A. Hunt. FM8501: A Verified Microprocessor. PhD Thesis.

Institute for Computing Science. University of Texas at Austin. 1985.

[Hutchison et. al. 87] David Hutchison, Peter Silvester. Computer Logic: Principles and

Technology. Ellis Horwood Series in Computers and their

Applications. 1987.

[Hutton 90] Graham Hutton. Functional Programming with Relations. Glasgow

Workshop on Functional Programming. Kei Davis, John Hughes

(eds). Springer Verlag Workshops in Computing. 1991.

[Ivanov et al. 89] A. Ivanov, V. K. Agarwal. An Analysis of the Probabalisitc

Behaviour of Linear Feedback Signature Registers. IEEE Transactions

on Computer-Adied Design of Integerated Circuits and Systems. Vol.

8, No. 10, October 1989.

[Johnson 83] Steven Dexter Johnson. Synthesis of Digital Designs from Recursive

Equations. Technical Report No. 141, Indiana University Computer

Science Department. 1983.

[Johnson 84] Steven Dexter Johnson. Synthesis of Digital Designs from Recursion

Equations. ACM. May 1984.

[Jones et. al. 90] Geraint Jones, Mary Sheeran. The Study of Butterflies. Third

Annual Glasgow Workshop on Functional Programming. Ullapool.

August 1990.

218

[ND Jones 85] N. D. Jones, P. Sestoft, H. Sondergaard. Mix: A Self-Applicable

Partial Evaluator for Experiments in Compiler Generation. Lisp and

Symbolic Computation 2. 1989.

[Kahn 74] G. Kahn. The Semantics of a Simple Language for Parallel

Programming. Information Processing 74. North Holland. 1974.

[Kloos87] Delgado Kloos. Semantics of Digital Circuits. Springer-Verlag LNCS

Vol. 285. 1987.

[Lala 85] Parag K. Lala. Fault Tolerant and Fault Testable Hardware. Prentice-

Hall. 1985.

[Launchbury 90] John Launchbury. Lecture Notes on Domain Theory. Lectures given at

Glasgow University. 1990.

[Launchbury 90] John Launchbury. Projection Factorisations in Partial Evaluation. PhD

Thesis. Computing Science Dept. Report CSC 90/R. The University of

Glasgow. 1990.

[Lewin 85] Douglas Lewin. Design of Logic Systems. Van Nostrand Reinhold,

1985.

[Luk 90] Wayne Luk. Analysing Parameterised Designs by Non-Standard

Interpretation. Proc. Application Specific Arrays and Processors. IEEE

Computer Press. 1990.

[Mano 84] M. Morris Mano. Digital Design. Prentice-Hall. 1984.

[McCluskey 62] Edward J. McCluskey, H. Schorr. Essential Multiple-Output Prime

Implicants. Mathematical Theory of Automata. Proc. Polytechnic Inst.

Brooklyn Symp. Vol. 12, pp. 437— 457. April 1962.

[McCluskey et. al. 71] Edward J. McCluskey, Frederick W. Clegg. Fault Equivalence in

Combinational Logic Networks. IEEE Transactions on Computers,

Vol. C-20, N o .ll, November 1971.

[McCluskey 86] Edward J. McCluskey. Logic Design Principles: With Emphasis on

Testable Semicustom Circuits. Prentice-Hall. 1986.

[Mead et. al. 80] Carver Mead, Lynn Conway. Introduction to VLSI Systems. Addison-

Wesley. 1980.

[Meshkinpour 84] Farshad Meshkinpour. On Specification and Design of Digital

Systems using an Applicative Hardware Description Language. Report

No. CSd-840046, UCLA Computer Science Department. 1986.

219

[Melham 87] Thomas F. Melham. Abstraction Mechanisims for Hardware

Verification. University of Cambridge Computer Laboratory Technical

Report No. 106. January 1987.

[Melham 90] Thomas F. Melham. Formalising Abstraction Mechanisims for

Hardware Verification in Higher Order Logic. PhD Thesis. University

of Cambridge. August 1990.

[Milner 78] Robin Milner. A Theory of Type Polymorphism in Programming.

Journal of Computer and System Sciences. 1978.

[Morison 82] J.D. Morison, N.E. Peeling, T.L. Thorp. ELLA: A Hardware

Description Language. RSRE 1982.

[Morrison et al. 83] J.D. Morison, N.E. Peeling, T.L. Thorp. Hardware Specification -

A Use for Hardware Description Languages? RSRE 1983.

[Muehldorf et. al. 81] Eugen I. Muehldorf, Anil D. Savkar. LSI Logic Testing — An

Overview. IEEE Transactions on Computers, Vol. C-30, No. 1,

January 1981.

[Mukheijee 86] Introduction to nMOS and CMOS VLSI Systems Design. Prentice-

Hall. 1986.

[Murphy 90] David Murphy. Type Refinement in Ruby. Glasgow Workshop on

Functional Programming. Kei Davis, John Hughes (eds). Springer

Verlag Workshops in Computing. 1990.

[Mycroft 83] A. Mycroft. F. Strong Nielson. Strong abstract interpretation using

power domains. ICALP 1983, LNCS 154, Springer-Verlag. 1983.

[MyCroft et. al.85] Alan Mycroft, Neil D. Jones. A Relational Framework for

Abstract Interpretation. Programs as Data Objects.Springer-Verlag

LNCS 217, 1985.

[O’Donnell 86] John T. O ’Donnell. Hardware Description with Recursion Equations.

Indiana University Computer Science Department Technical Report

No. 212. 1986.

[O’Donell 88] John T. O ’Donell. Hydra: Hardware descriptions in a functional

language using recursion equations and higher order combining forms.

The Fusion of Hardware Design and Verification, ed. George Milne.

North-Holland. 1988.

[Oliver et. al. 89] J. L. Oliver, F. Ozgtiner. Design of Concurrent Error-Detetcting

Systolic Arrays Using \g3N\^ Codes. IEEE Transactions on

220

Computer-Adied Design of Integerated Circuits and Systems, Vol. 8,

No. 10, October 1989.

[Patel et al. 85] D. Patel, M. Schlag and M. Ercegovac. nuFP: An Environment for the

Multi-Level Specification, Analysis, and Synthesis of Hardware

Algorithms. Proceedings of IFIP Conference on Functional

Programming Languages and Computer Archetecture. Springer-

Verlag LNCS 201, 1985.

[Peyton Jones 87] Simon L. Peyton-Jones. The Implementation of Functional

Programming Languages. Prentice-Hall. 1987.

[Roth 66] John Paul Roth. Diagnosis of Automata Failures; A calculus and a

Method. IBM Journal of Research and Development, Vol. 10, No. 4.

July 1966.

[Roth 80] John Paul Roth. Computer Logic and Testing. Computer Science

Press. 1980.

[Rubin 87] Steven M. Rubin. Computer Aids for VLSI Design. Addison-Wesley.

1987.

[Russell et. al. 86] G. Russell (Ed.), D.J. Kinniment, E.G. Chester, M.R. McLauchlan.

CAD for VLSI. Van Nostrand Reinhold. 1986.

[Schlag 84] Martine Schlag. Extracting Geometry from FP for VLSI Layout.

Report No. CSD-840043, UCLA Computer Science Department.

1984.

[Sellers 68] F. F. Sellers, M. Y. Hsiao, L. W. Bearnson. Analyzing errors with

the Boolean Difference. IEEE Transactions on Computing. Vol. EC-

17, pp. 676-683. July 1968.

[Sheeran 83] Mary Sheeran. pFP - An Algebraic VLSI Design Language. PhD.

Thesis, PRG, University of Oxford, 1983.

[Sheeran 84] Mary Sheeran. muFP, a language for VLSI design. Proc. Symposium

on Lisp and Functional Programming (ACM). 1984.

[Sheeran 86] Mary Sheeran. Describing and reasoning about circuits using relations.

Theoretical foundations of VLSI Design. Proc. 1986 Leeds workshop.

Cambridge Tracts in Theoretical Computer Science 10. Cambridge

University Press, 1990.

[Sheeran 87] Mary Sheeran. Relations + Higher Order Functions = Hardware

Descriptions. University of Glasgow Computing Science Technical

Report CSC/87/R1. 1987.

221

[Sheeran 88]

[Sheeran 90a]

[Sheeran 90b]

[Singh 89a]

[Singh 89b]

[Singh 90]

[Singh 91]

[Stephenson 76]

[Stoy 77]

[Tocci 80]

[Trullemans 86]

[Turner 79]

[Turner 85]

Mary Sheeran. Retiming and Slowdown in Ruby. The Fusion of

Hardware Design and Verification. July 1988.

Mary Sheeran, Geraint Jones. Circuit Design in Ruby. Lyngby Lecture

Notes. 1990.

Mary Sheeran. Sorts of Butterflies. Proc. IVth Higher Order

Workshop. Banff 1990. G. Birtwistle ed. Springer Workshops in

Computing. 1991.

Satnam Singh. Implementation of a Non-Standard Interpretation

System. Glasgow University Functional Programming Workshop.

Springer-Verlag, 1989.

Satnam Singh. Application of Non-Standard Interpretation: Testability.

Design of Correct VLSI Circuits. Proc. IFIP-IM EC Workshop,

Belgium. North Holland, 1989.

Satnam Singh. Differentiating Strictness. Functional Programming,

Glasgow 1990. Kei Davis and John Hughes (eds). Workshops in

Computing. Springer-Verlag, 1991.

Satnam Singh. Circuit Layout using NSI. Advanced Research

Workshop on Correct Hardware Design Methodologies. Turin, 1991.

North-Holland.

J. E. Stephenson, J. Grason. A Testability Measure for Register

Transfer Level Digital Circuits. Digest 6th Int. Symp. Fault-Tolerant

Computing. FTCS-6, Pittsburgh, pp. 101-107 June 1976.

Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach

to Programming Language Theory. M IT Press in Computer Science.

1977.

Ronald J. Tocci. Digital Systems: Principles and Applications.

Prentice-Hall. 1980.

C. Trullemans (ed.). Algorithmics for VLSI. Academic Press. 1986.

D. A. Turner. SASL Language Manual. University of Kent, UK.

1979.

D. A. Turner. Miranda: A non-strict functional language with

polymorphic types. Proceedings of the IFIP Conference on Functional

Programming Languages and Computer Architecture. Springer Verlag

LNCS 201, 1985.

222

[Varma et. el. 89] Devadas Varma, E. A. Trachtenberg. Design Automation Tools for

Efficient Implementation of Logic Functions by Decomposition. IEEE

Transactions on Computer-Adied Design of Integerated Circuits and

Systems, Vol. 8, No. 8, August 1989.

[Wadler 85] Philip L. Wadler. Representing Failure as a List of Successes.

Proceedings of the IFIP Conference on Functional Programming

Languages and Computer Architecture. Springer Verlag LNCS 201,

1985.

[Wadler 87] Philip L. Wadler. Strictness Analysis on Non-Falt Domains. Abstract

Interpretation of Declarative Languages. Samson Abramsky, Chris

Hankin (eds.). Ellis Horwood, 1987.

[Wadler et. al. 87] Philip L. Wadler, John Hughes. Projections for Strictness Analysis.

Springer Verlag LNCS 274, 1987.

[Weste 85] Neil Weste and Kamran Eshranghian. Principles of CMOS VLSI

Design: A Systems Perspective. Addison-Wesley, 1985.

[Wilkins 86] B.R. Wilkins. Testing Digital Circuits. Van Nostrand Reinhold. 1986.

[Wolf 91] Wayne Wolf. Object-Oriented Programming for CAD. IEEE Design &

Test. March 91.

[Wu et. al. 90] Cheng-Wen Wu, Peter Cappello. Easily Testable Iterative Logic

Arrays. IEEE Trans, on Computers. Vol. 39, No. 5, May 1990.

GLASGOW [
uNr/’-^-rrY [
i .y " ■ ■ i

