VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Analysis of Hardware Descriptions

Satmam Singh

A Thesis
Submitted for the Degree of
Doctor of Philosophy
at the Department of Computing Science,
The University of Glasgow,
May 1991.

© Satnam Singh 1991

ProQuest Number: 11008043

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 11008043

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

The design process for integrated circuits requires a lot of analysis of circuit descriptions.
An important class of analyses determines how easy it will be to determine if a physical
component suffers from any manufacturing errors. As circuit complexities grow rapidly,
the problem of testing circuits also becomes increasingly difficult.

This thesis explores the potential for analysing a recent high level hardware description
language called Ruby. In particular, we are interested in performing testability analyses of
Ruby circuit descriptions. Ruby is ammenable to algebraic manipulation, so we have
sought transformations that improve testability while preserving behaviour.

The analysis of Ruby descriptions is performed by adapting a technique called abstract
interpretation. This has been used successfully to analyse functional programs. This
technique is most applicable where the analysis to be captured operates over structures
isomorphic to the structure of the circuit. Many digital systems analysis tools require the
circuit description to be given in some special form. This can lead to inconsistency
between representations, and involves additional work converting between
representations. We propose using the original description medium, in this case Ruby,
for performing analyses. A related technique, called non-standard interpretation, is shown
to be very useful for capturing many circuit analyses.

An implementation of a system that performs non-standard interpretation forms the
central part of the work. This allows Ruby descriptions to be analysed using alternative
interpretations such test pattern generation and circuit layout interpretations. This system
follows a similar approach to Boute’s system semantics work and O’Donnell’s work on
Hydra. However, we have allowed a larger class of interpretations to be captured and
offer a richer description language.

The implementation presented here is constructed to allow a large degree of code

sharing between different analyses. Several analyses have been implemented including
simulation, test pattern generation and circuit layout. Non-standard interpretation provides
a good framework for implementing these analyses.

A general model for making non-standard interpretations is presented. Combining
forms that combine two interpretations to produce a new interpretation are also
introduced. This allows complex circuit analyses to be decomposed in a modular manner
into smaller circuit analyses which can be built independently.

Acknowledgements

I am indebted to my supervisor, Dr. Mary Sheeran, for her patience, support and
encouragement. Her undergraduate lectures on Ruby and VLSI design motivated my
interest in this field. Prof. John Hughes introduced me to Miranda, which sparked off my
interest in functional programming. My thesis has been an attempt to study both high
level hardware description languages and implementation of these languages using
functional programming.

This thesis has involved producing a large software system that runs over several
different computers and operating systems. Many have helped me get to grip with some
of the more obscure aspects of the Unix and Macintosh operating systems. In particular,
Mark Dunlop has been very helpful.

I also wish to thank John O’Donnell for carefully reading the preliminary version of
this thesis. John Launchbury provided much useful advice on how to formulate a good
partial order for describing the D-Algorithm. Lars Rossen and Graham Hutton have made
helpful remarks about the work on the D-Algorithm and testability transformations.
Geraint Jones and Mary Sheeran have discovered simple but powerful decompositions
for butterfly networks. These decompositions have made it very easy for me to make
automatic layouts of butterfly networks.

This work was funded by the Science and Engineering Research Council of Great
Britain. The Department of Computing Science at the University of Glasgow was a very
fruitful place to work, and the functional programming group provided a useful forum for
my ideas. The support staff have also been sympathetic to my bizarre system
requirements. Finally, Susan Spence helped me in a variety of ways to complete this
work.

Table of Contents

AbStract.ciieeeenciennnenns Cestessasesesssncessasncsseseensarnrsestanes RS |
ACKNOWIEdZEMENESceeneeiiiiie i e e il
Table of ContentSiiiieiiiiieeeeiiieiiinnnereierecceaennnes Ceteseessisnnsanns iii
Chapter 1: Introduction.........cccoiiievervnrcnsances Ceveceeserrans R |
Chapter 2: Describing Circuits Using Ruby Cecessesescesiananas 8
P2 T U111 (0 s 1111 1o | DU 8
2.2 Elementary Combinational Gates........c.ooeiiiiiiiiniiiiiiiiiiniiiiiniininnn 9
2.3 Composing CirCUIS...ovvunrieierniiiiiiiiiii e 12
2.3 Relational INVETSEcouvvininiiiiiiiiiiii i 15
2.4 Wiring Relationscoooiiiiiiiiiiiiiiii 18
2.5 Replication of CIrCUILS.......iueueiureeneiiin i 23
2.6 Sequential CirCUILSocvuireiriiiniiiiii it e eaeaaas 24
2.7 Four-Sided Tilescoiuiiiniiiniiiiiiii e 26
2.8 Distributing Signals.........c.coiiiiiiiiiiiiiii 29
2.9 Some EXamplesoouininiiiiniiiiiii e 30
2,10 SUMMATY....ooetiniiititeee et e e e e e e 32
Chapter 3: Testing Digital Circuits...... Ceesescacnsesacacranns ceesesss 34
K0 G £ 11 (s [T 1o | DO PSS 34
3.2 Why Circuits havetobe Testedcooviiiiiiiiiiiiii 35
3.3 TYPeS Of TSt . uiuieinieiiitiii it e e 37
3.4 Test Pattern Generation...........coovevviiiiiiiiiiiieiiiiiiieiiieinnenieen, 40
3.1 Boolean Differencesccouiiiiiiiiiiiiiiiiiiiiiiii e 51
3.5 Deductive Fault Simulationccooooiiiiiiiiiiiniiiiiiie, 54

3.5.1 Introduction to Deductive Fault Simulation..................cciiiiis 54

3.5.2 An Example of Deductive Fault Simulation............ccccoeeiiniiinis. 57

3.6 Testability MEASUTEoiuiiiiiiiiiiiiii i i et e e e e saeans 58
3.6.1 INroduCtion.........ccoeviiiiiiiiiiiiiiiiiiieiieieieaieeeneaaeeieianees 58
3.6.2 ATPG Approach........ccocviiiiiiiiiiiiiiiiiiiiniinneecneaen 58
3.6.3 Testability Measure (TM) Programsccooiiiiiiiiiianinens 59
3.6, TMEAS.. ...ttt e 59
3.6.5 The SCOAP Testability Measure.........cccoeviiiiiiiiiniiiiciniiinnnns 60

3.7 Design for testability techniques.......c.ccccoimiiiiiiiiiiiiiiiiinnn 64
3.7.1 Adhocmethodsccovieviiiiiiiiiiiiiiiiii e 64

3.7.1.1 Test point iNSEItiONc.oovviiiiniiiiiiiiinienieenieienns 64
3.7.1.2 Pinamplification...........coooviviiiiiiiiiiiiiiii. 64
3.7.1.3 Blocking or degating Iogic..........coveviiiiiiiiniiinninen. 65
3.7.1.4 Control and observation switchingcooeiene 65
3.7.1.5 Test State TEISIETSouvvininiininiininniririearaeaeananens 65
3.7.2 Structural Approachescooviiiiiiiiiiiiiiiiiiiii e 65
3.7.2.1 Level sensitive scan design (LSSD).........ccocoveinininne. 66
3.7.2.2 Scan-set lOZIC....cccviriiniiiiniiiiniiiiiiiiiiieiieenennen, 68
3.7.3 Built-in-test and self-test methods.............coooiiiiin 69
3.7.3.1 Signature analySiS.........ccooviiiiiiiiiiiniiniiiiiiiinene. 69
3.7.3.2 Built-in-logic block observation (BILBO).................. 70

3.8 DASCUSSION ...eueittineent et ettt ettt atraentiietesereerasiereeesasaenens 71

Chapter 4: Abstract Interpretation..........ccoveveuirnienececencsncenns 73

O R 113 (o s [Tl 11) 1 DO 73

4.2 Strictness AnalysiS..........cvueeiririiiiiiiiiiiii i e 75

4.3 Abstract Interpretation of HDLs..........ocoviviiiiiiiiiiiiies 17

4.4 An Alternative Interpretation in Ruby.........coccoiin. 78

4.5 Combinational & Sequential Depth......coooociiviiiiininiiiiiiie. 79

4.6 Related WOrkooviirininiiii i 81

4.6.1 Simulating Circuitsin Mirandaooi.. 81

4.6.2 System SemAantiCS.........coeruiritiiiiniiiinniiiiiiiiiiiseaeiareeas 83

4.6.3 Other WOTK. oot e 85
B A 0 10 143 T L PP 85
Chapter 5 : Non-Standard Interpretation...........ccceeeviverecnecenns 87
5.1 INrOdUCHON. ...ttt ittt r et e e e a e e enas 87
5.2 Techniques for Expressing NSI........ccooooviiiiiiiiiiiiiiniiiiien, 88
5.3 An Example: Symbolic Simulation.......ciiiii 95
5.4 Labelling Nets.....ccouiiiiiiiiiiiiiiiiiiiniiiirii e e 99
5.5 Internal ConNECtIONS.vvvvuerrireeeiniii ittt it eeeiaeneaanas 102
5.6 Composing INterpretations.ocvuvviueeruieiniiineiniiiieeienieaeens. 103
5.7 CoNCIUSIONS. .cuuitiiiiiii i e e 104
Chapter 6 : Applications of NSI......cciiiiiiiiiiiiiiiieiieneaenannes 106
6.1 IntroduCtON........ooeiuiiiiiiiiiiii e 106
6.2 Deductive Fault Simulation Interpretation............c.cccooveiiiiiiiiniiinnnn.. 106
6.3 SCOAP TM INterpretationo.evveviiiineinuiiiiiiiiieiiieiiiieeieesiennens 108
6.4 Inverting Nodes and ATCS.........coceveiiiiiiiiiiiiiiiiiiiiiiii e, 110
6.5 Partial Evaluation........c..cocoiiiiiiiiiiiiiiiniiii 111
6.6 Combining Interpretationsc.cooveiiiiiiiiiiiiiiiiiiiiiieeeea, 113
6.7 CONCIUSIONS..ouitititiiieitiiit e e e b e e ey 115
Chapter 7 : Implementation....cccocoieiniiiieiiciiieierececniecacaes 117
% T (111 (0o 1 1o D PSP 117
7.2 System OVEIVIEWocviiiiiiiniiiiieiiieiiii e eas 118
7.3 The Standard and Symbolic Interpretations............covviieiivieiiniinennen. 121
7.4 A GraphicalInterface..........c.cooeiiiiiiiiiiiiiiiiiii 129
7.5 A SIimple NSISystem......o.oveiiiiiiiiiiiiiiiii e 132
7.6 The Core of the Interpretation System...........c.oooiviiiiiiiiiiiiiiniann, 135
7.7 Comparison with Adac.ooooiiiiiiiiiiiiiii 139
T8 SUIMMAIY ...ttt iiiet ittt et e ettt ae ettt asteaeaesaeranennas 140

F 0 T £ 11 7o s L1 1o s () « WO RPN 142

8.2 Formal Description of a Test Pattern...........c.coovvviiiviiiiiiiiiiiinannn, 143
8.3 Introduction to the D-Algorithm............coviiiiiiiiiiiiiiiiiiiiiee, 143
8.4 Re-expressing D-INtersection............coeveiiiiiiiiiiiiniiiiiiininninieieanas 156
8.5 Implementing the D-Algorithm...........c.oooiiiiiiiiiiii 160
8.6 Verification using the D-Algorithmcooiiiiiiiii 166
8.5 Extending the D-Algorithmocooiiiiiiiiiiii 166
8.6 CONCIUSIONS. . iuiiiiiiniiieiiiieei ettt ea e eaaneanes 168
Chapter 9 : Circuit Layout....cccociriiiiieieiiiiiriicnreceiececennes 171
9.1 INOUCHION. ... e ettt e e e aaas 171
9.2 Functional GEOMELTYcouiutiriitiiiniiieiiii i i neaieaaees 171
9.3 Describing Butterflies........ccoeeiiiiiiiiiiiiiii e, 172
9.4 Drawing Butterfliesoovvieininiiiiiiiiiiii s 174
9.5 Drawing Non-Butterflies.............cooiiiiiiiiiiiiiii 177
9.6 ImMPlementationcouvuiitiiiiniiiiiiiiiiiiii ittt aaaaas 185
9.7 ConCIUSIONS....iuitiiiiiiiii e 186
Chapter 10 : Improving Testability......cccovvieiiiiiieiieneccannnes 188
10.1 INrOdUCHON. ...\ vetetite ettt e e e e 188
10.2 Testing StategY ...ovuuenenintiein ittt i e e e e ea e aeaaaas 189
10.3 Transforming Combining Forms...........ccccoeiiiiiiinniiiinn... 190

10.3.1 INOdUCHON ...ouiittieiiit et e e e 190

10.3.2 Serial CompoSition...........coooeviiiiiiiiiniiiiiiiiiiiiraeans 190

10.3.4 Map .o e 196

10.3.5 LOOP ttutiitiiit ettt ettt et e et et a e aeans 197

10.3.6 TheDelayElementccoviviiiiiiiiiiiiiie, 198

10.3.6 Rowand Col......co.vveiniiiiiiiiiiiiiiiii e, 198

10.3.7 Repeated COMPOSItION......ccouuviiiiiniiiiiiiiiiiiiii i, 199
10.4 Augmenting Ruby for T...........cooiiiiiiiiii s 200

10.5 CONCIUSIONS . ettt ittt ettt ettt eaateeraensensennans 201

Chapter 11 : ConcluSiOnS..iiciiciieiiiiieiiiniierciesiasieceaconcenes 203

ApPPendiX Aiiiiiiiiiiiiiiiiiiiiiiiieittitiisitttstrsetttttenctanans 210
A.1 Source for Deductive Fault Simulatorc...ccoooiiiiiiiiiiiii, 210
A.2 Source for SCOAP Testability Measure..........coocoeeviiiiiiiniiiiniiniinnns 212
A.2.1 Controllability measure...........ccocoviiiiiiiiiiiiiiiniiene, 212
A.2.2 Observability MeESUTE......cccoiemiiiniiiiiiiiiiiiiii e, 213
A.3 Partial Evaluation Interpretationcc.vuviiuiiieieiiininniiineninenenene, 214

R O N CES . eiirrereeneeeneeerecenssosssasssscsnnsssssocssssncscasasss 215

Chapter 1

Introduction

The design of an integrated circuit requires the use of many software analysis tools.
Simulators can be used to check that the behaviour of the circuit corresponds with what
was specified. Other tools are used to check that enough power is delivered to each part
of the circuit, and others check that the timing behaviour of the circuit is correct.
Testability analysis tools help generate test patterns and highlight areas of the circuit that
are difficult to test.

All of these tools have to analyse some representation of the circuit. Current practice is
for each of these analysis tools to use its own representation and notation for circuits.
This requires translators to be written to convert between representations and can give rise
to inconsistency between representations. Figure 1.1 (overleaf) shows the outline of a
simple VLSI system that uses analysis tools which operate on a circuit description not
supported by the design database. This problem would be avoided if these tools used the
same representation. This also leads to a great deal of code sharing. The internal
representation of a circuit and its associated operators need only be constructed once.
They are then made available, perhaps as an abstract data type, to circuit analysis tools.

Of course, there are circuit analyses that operate on circuit descriptions at very different
levels of abstraction for which a common circuit representation may not be possible. A
good database system should keep track of the relationship between circuit
representations at differing levels and present a data interface to CAD tools to allow them
to operate over a wide spectrum of abstraction. A database system should also deal
automatically with different file formats for the same information, presenting a transparent
standard representation for CAD tools. However, this is an ideal which has not been
achieved. Usually, a database system for a CAD product comprises a collection of files
with very little management software.

This thesis presents a non-standard interpretation system, along with powerful
operations that allow a large class of circuit analysis tools to be implemented. New

analysis tools are made by producing new functions that operate over circuit descriptions.
It also implements a rudimentary database system which is used by the analysis tools to
extract and submit information to and from design databases.

We note that analysis tools can be built more quickly and reliably if all circuit analyses
operate over the same description. There are many ways of doing this, but in this thesis
we concentrate on developing the technique of non-standard interpretation. Non-standard
interpretation provides a natural framework for developing circuit analyses. The method
works by redefining the semantics of leaf nodes in a circuit tree (or graph) description to
yield a new analysis. Thus, the same structure is analysed, but with different (non-
standard) semantics.

Non-standard interpretation is adapted for analysing high level hardware descriptions.
The theoretical and practical aspects of this technique for analysing hardware descriptions
are considered. This technique, along with the related technique of abstract interpretation
has been used with great success to analyse computer programs, especially in functional
languages [Peyton Jones 87].

Graphical Textual
Entry Entry

Design Database

Simulate

" =

Figure 1.1: A simple VLSI CAD System

Figure 1.2 shows an abstract circuit which we shall use to outline the principle of non-
standard interpretation. The logic elements are denoted by letters A to E and the wires are
denoted by the numbers 1 to 10.

— 7
A
s — L
—B E 10
4 6 8
Figure 1.2: An abstract circuit.
Most circuit representations use a graph based approach to capture circuit connectivity.

Logic elements are treated as nodes of a graph and the wires are treated as arcs. There is a
small problem with primary inputs and outputs, but this can be dealt with by adding extra

D —9

dummy nodes at the periphery of the circuit. Such a representation for the circuit above is
shown in figure 1.3. The dummy nodes are shown as small shaded boxes.

Figure 1.3: Graph representation of circuit in figure 1.2.

This graph can be used to simulate the circuit by thinking of the nodes as procedures
that implement the actions of the circuit they model, and the arc values as representing
parameter values that correspond to the signals on the wires. This graph is said to have
an isomorphic structure to the circuit it represents: they are both the same shape. Non-
standard interpretation essentially works by providing code for the nodes which performs
some task other than simulation. The values on the arcs also change type, depending on
the interpretation being performed. This gives a new circuit analysis which we are
applying to exactly the same circuit structure that we used for specification and
simulation. There is less likelyhood of inconsistency. When specifying a new analysis in
this way, we do not have to write code to process the circuit representation since we share
the code used by the simulation analysis.

We are particularly interested in developing testability analyses, and several are
presented. The cost of testing a circuit is increasing as the sizes of circuits grow rapidly.
The consequences of not testing circuits adequately can be grave. The analysis of

sequential circuits for testability is difficult, and non-standard interpretation seems to offer
no advantages for analysing such circuits. Instead, we use non-standard interpretation to
analyse combinational circuits only. We then present some transformations that improve
the testability of a sequential design. Many of these transformations involve breaking the
circuit into combinational blocks which can be tested separately from the sequential
blocks. Thus, we combine a new method of analysis with successful traditional
techniques for managing the testability of sequential digital systems.

We choose to analyse a rich algebraic hardware description language called Ruby. This
is a relational language that allows regular synchronous digital circuits to be described
succinctly. Ruby descriptions can be manipulated using existing laws about Ruby
combining forms. Ruby also contains information about how circuits are laid out since it
captures circuit structure. This is the key to the analyses that we present. Several tools
have been implemented. Starting off with a simulator, we have used non-standard
interpretation to build a testability measure tool, a fault simulator, test pattern generators,
circuit layout tools and many others.

Non-standard interpretation is shown to be a good paradigm for capturing a wide
variety of circuit analyses. This method promotes code re-use and modularity, and
simplifies the implementations. This makes these tools easier to verify. Future work
could involve building a proof system based around our non-standard interpretation
system. This would check properties of circuit analysis tools to increase our confidence in
their correctness.

Chapter 2 presents a brief introduction to the subset of Ruby that has been
implemented by the author. This is a large subset, and is suitable for describing gate level
circuits and arithmetic circuits. The standard meaning of Ruby is presented, giving
behaviour as well as layout semantics.

An introduction to the problem of testability is presented in Chapter 3. We explain why
circuits have to be tested and why this is a difficult problem. Various methods are
proposed for analysing combinational circuits for testability, and some of these are
implemented in later chapters by non-standard interpretation. Sequential circuits are dealt
with by decomposing them into combinational sub-blocks which can be tested
independently of the sequential components.

Some circuit analyses can be represented as abstract interpretations. Abstract
interpretation is introduced in chapter 4, which shows how it has been used by functional
programmers to analyse lazy functional languages. We present examples of circuit
analyses that are abstract interpretations. Abstract interpretation supports the notion of
safety which allows a particular abstraction to be proved correct with respect to the
standard interpretation. This is very useful for proving the correctness of circuit analyses.

However, we show that abstract interpretation is not powerful enough to capture many of
the testability analyses that we would like to do.

The more general but less disciplined technique of non-standard interpretation is
introduced in chapter 5. Several methods for performing non-standard interpretation have
been implemented. Some earlier methods are presented, along with one technique that we
have settled on for making non-standard interpretations. One version allows only the
outputs of circuits to be observed, while the other model allows internal nodes to be
examined.

Having built non-standard interpretations, the next step is to show how they can be
combined. The most useful way of making a new interpretation is to modify an existing
one. Another way of combining two interpretations is to compose them in a serial
manner. A symbolic simulator is given as an example non-standard interpretation.

Chapter 6 shows how two testability analyses can be cast as non-standard
interpretations. The first is deductive fault simulation, which can be represented by one
simple non-standard interpretation combined with the standard interpretation and a
labelling interpretation. The second is SCOAP testability measure. This is expressed by
using three interpretations: labelling, controllability measure and observability measure.
Controllability is a forward interpretation in which information flows from the primary
inputs to the primary outputs. Observability measure is a backward interpretation in
which information flows from the primary outputs to the primary inputs. Since Ruby is a
relational language with inverse, both types of information flows are dealt with easily.

The implementation is described in chapter 7. The architecture of the system is
outlined. Actual test inputs and outputs for many interpretations are also presented. We
show that for a relatively small amount of code, our system affords a very high degree of
functionality. We also show how things would have been more difficult if the system was
implemented in a powerful modern imperative language like Ada. Figure 1.4 represents a
simplified view of the system architecture.

NSI Core

AST def
L g
Command File)

Interpreter

Graphical
Interface

Ruby descriptions ~ Compiled intermediate form €xecution scripts

Figure 1.4: Simplified architecture of NSI system implemented.

One of the most important tasks carried out in testability analysis is test pattern
generation. In chapter 8, we show that a popular automatic test pattern generation
technique, called the D-algorithm, can be expressed as a non-standard interpretation.
First, we re-express this complicated algorithm by giving a more formal description of
each stage. The algorithm has complex backtracking information flow. We decompose
the algorithm into several smaller problems which are easier to solve and have simpler
information flow. Lazy evaluation is exploited to express backtracking implicitly, thus
simplifying the algorithm implementation. This non-standard interpretation is then
combined with a previously defined interpretation to produce a more efficient PODEM
style test pattern generator.

Chapter 9 presents an interpretation for drawing butterfly circuits. The non-standard
semantics employs functional geometry to help lay out these regular and recursive
circuits. Several large butterfly and related network drawings are shown, all produced
automatically by non-standard interpretation. Some of the pictures are drawn in colour to
emphasise the wiring patterns involved. The ease with which these drawings were
produced is convincing evidence in support of formal descriptions of high level circuits
and non-standard interpretation as a circuit analysis.

Chapter 10 presents a set of transformations that improve the testability of circuits
described in Ruby. We apply the traditional techniques for testability analysis, for
example decomposing serial networks into parallel ones. We also try to spot replication
so that large parts of the circuit can be tested in parallel, thus vastly reducing test effort.
Transformations for dealing with sequential circuits are also presented. These involve

isolating the sequential and combinational parts of the design. The approach proposed is
to use the non-standard interpreters presented in previous chapters to analyse
combinational blocks and to apply scan path techniques to test chains of sequential
components.

Chapter 11 concludes and discusses how non-standard interpretation is related to the
objected-orientated notions of classes and inheritance. This is followed by an appendix
listing the code for three non-standard interpretations. Finally, the references for the entire
thesis are given.

Chapter 2
Describing Circuits Using Ruby

2.1 Introduction

The analysis techniques presented in later chapters operate on behavioural descriptions of
circuits. For this reason it is important that we choose an expressive and powerful
hardware description language. We also wish our analyses to take advantage of any
repeated structure and hierarchy. For these reasons the relational hardware description
language Ruby [Jones & Sheeran 90] has been chosen as a suitable high level
representation.

Ruby is a powerful hardware description language which allows regular synchronous
circuits to be described and manipulated easily. Only a subset of the language is presented
here. The syntax of Ruby in the literature has been changed often. The notation
introduced in this chapter shall be used consistently, although it may not correspond
exactly with what others have written in Ruby.

Elementary combinational circuits are modelled by simple binary relations over tuples
of boolean values. Larger combinational circuits are then composed using higher order
combining forms like serial composition (relational forward composition) and parallel
composition. Combining forms like serial and parallel composition also provide layout
information.

Wiring circuits re-arrange wires without modifying the values being carried. A library
of plumbing relations is introduced to allow the description of such circuits. The notion of
lists of signals is used to help describe families of related wiring patterns e.g. zipping a 2-
tuple of lists into a list of 2-tuples. Many of the wiring circuits have definitions very
similar to tuple and list-manipulation functions found in most modern functional
programming languages.

Streams are introduced to help describe sequential circuits. This method allows elegant
description of sequential behaviour without using state variables. Ruby abstracts from
explicit state and explicit time. This greatly simplifies the difficult task of reasoning about
sequential circuits. The combinational primitives are extended to work over streams of
values by spreading their combinational behaviour pointwise over signals of streams.

Other Ruby constructs for replicating circuits are also introduced. A convention for
describing vertical as well as horizontal information flow is given. Finally, a small
example of a Ruby design is presented.

Ruby is still being developed and has been used to describe a large variety of circuits
e.g. butterfly circuits [Jones et. al. 90a] and FFT circuits [Jones 90]. Implementation
work and type theory development is being carried out by Hutton {Hutton 90} and
[Murphy 90]. Lars Rossen has implemented a large subset of Ruby in the Isabelle
theorem prover [Rossen 90]. A more detailed description of Ruby can be found in [Jones
et. al. 90b].

Although we have concentrated on Ruby, we could have used any hardware
description language. Languages which provide powerful forms of composition are
particularly suitable. The language Daisy [Johnson 83] would also have been a suitable
candidate. This is functional in nature and is easy to manipulate. Johnson has shown how
to synthesize designs in Daisy from recursion equations.

Hydra has been proposed by O’Donnell as a powerful hardware description language
that can describe system at a behavioural or structural level of detail [O’Donnell 88]. It is
easy to specify different parts of a system at different levels of abstraction. Hydra
provides the designer with powerful tools like stream recursion equations, recursive
circuit specification, functional geometry and higher order circuit combining forms.

2.2 Elementary Combinational Gates

Ruby describes the behaviour of a circuit by capturing the relation between the signals at
the terminals of the circuit. Composite circuits can be described by composing relations.
Circuits are designed using a library of ready built or elementary circuits which are
combined to form larger circuits.

10

To describe combinational circuits, a suitably rich collection of elementary relations
that implement logical operations is required. There must be enough relations to allow the
description of any combinational circuit. The set of relations {NOT, AND, OR} is chosen
to be the elementary set. This collection is universal i.e. combinations of these relations
can describe any combinational circuit. Another suitable set is {NAND}. Although this set
contains only one relation, the set {NOT, AND, OR} allows more natural definitions of
many boolean expressions. The set of elementary relations is named BASIC.

BASIC={NOT, AND, OR} (2.1

Extra elements can be added to this set when required. For example, to describe
arithmetic circuits, it may be convenient to assume that a full-adder is an elementary
relation. By using a suitably powerful set of combining operators, any boolean function
can be described by composing the basic circuits.

Initially boolean algebra is used to describe the semantics of the gates in BASIC. One
useful extension is to three valued logic (true, false and unknown). As usual, the boolean
algebra possesses two values T (true) and F (false) and three logical operations: — (logical
negation), A (conjunction) and v (disjunction).

Binary relations relate objects of one set to another. If X and Y are sets, then X & Y
denotes the set of relations from X to Y. This may also be written as AX x Y) i.e. the
powerset of the cartesian product of the sets X and Y. A binary relation on sets X and Y
is a subset of X x Y. Two elements x € X and y € Y are related to each other by a binary
relation R if (x, y) € R, where (x, y) is a 2-tuple or pair. We often abbreviate (x, y) € R
toxRYy.

A relation R from X to Y does not have to relate every object in X to Y. The subset of
X that R does relate to Y is called the domain of R. The elements of Y that are related by
R form the range of R. It is useful to define two functions to extract the domain (dom)
and range (rng) from a relation R:

dom R
rng R

{(x:X|3y:Y+ xRy} 2.2)
uY|2x:X. xRy} 2.3)

One straightforward definition of the basic relations is:

x NOT y e y=-X (2.4)
{a,b) AND ¢ & c=aab 2.5)
@,byORc < c=avb (2.6)

11

The behaviour of the NOT gate (definition 2.4) is specified by saying that the value at the
domain must always be logically opposite to the value on the range.

AND relates a pair of boolean values to a single boolean value. The behaviour of AND
is specified by stating the value at the range c is always the logical conjunction of the two
values at the domain a and b. OR is defined in a similar manner.

The basic gates and combining forms have types associated with them which give the
relation between the kinds of data that can appear at the domain and range. The type of a
relation is specified by giving a type expression for the domain and the range. For
example, a NOT gate has the type:

NOT : bool ~ bool 2.7

Type names appear in lower case, and polymorphic types are denoted by lower case
Greek letters. The types of the other two basic gates are:

AND : (bool, bool) ~ bool 2.8)
OR :(bool, bool) ~ bool 2.9)

A useful wiring circuit is split which duplicates a value. This is defined as:

asplt{a,ay < true (2.10)
The universal quantifiers are omitted for polymorphic types.

split:a~{a,) & Vo.split:a~(a,a)

This says that split relates a signal on the domain, which may be of any type (callita)toa
pair of signals on the range. Each element of the pair is of type a. Thus, split is a
polymorphic relation.

As an alternative specification, the basic gates are now given explicitly as sets of pairs.
The first element of the pair is a value in the domain and the second element is a value in
the range. The following sets may be used to define the behaviour of the combinational
gates.

NOT = {(F, T), (T, F)} (2.11)
AND = {(F.F), F), KF.), F), (T, F), F), (T, T), T} (2.12)
OR = {€F.F)F), (F. DD, (T, F.T), (T, TN (2.13)

These sets just encode the truth tables for the basic gates. Definitions 2.11—2.13 attribute
the same behaviour to the basic gates as definitions 2.4—2.6.

12

Why are relations and not functions being used to describe hardware? In a real
combinational circuit built with the above primitives, information flow is unidirectional.
To answer the question “what is the output for a given input” it is sufficient to use
functions. One reason for using relations is that many of the transformations on circuits
depend on connectivity and not the direction of information flow. The use of relations
abstracts from the direction of data flow, concentrating on the connectivity. This
simplifies many algebraic laws about circuits. We shall later present some circuit analyses
which have a backward flow of information e.g. the SCOAP testability measure.Such
analyses are rendered more naturally in a relational notation. These advantages are
covered in more detail in [Sheeran 88a). Ruby’s algebraic properties are exploited later to
aid transformations that improve testability.

2.3 Composing Circuits

It was decided earlier not to use NAND as the elementary relation. This relation may of
course be constructed using the relations AND and NOT. To make the NAND relation using
these two elementary relations, the range of the AND relation is used as the domain of the
NOT relation. The range of the NOT relation is used as the range value of the composite
relation. When two circuits are composed by using the range of one as the domain of the
other then we call such a composition a serial composition. The serial composition of
an AND gate and a NOT gate is shown schematically in figure 2.1.

13

In addition to the semantics presented above, Ruby descriptions also have a geometric
interpretation. The elementary components are drawn with the domain on the left and the
range on the right. Composition is represented by juxtaposition as shown in figure 2.1.
Wires are drawn from the bottom up that is the first element of a tuple is below all the
others. Capturing structure is very important for the analyses we present. This is
especially the case for testability analyses, where the faults to be tested for depend on the
structure of the circuit.

The structural information in Ruby descriptions is also useful for fault models that
consider the possibility of adjacent wires shorting. However, this information is not used
by the analyses presented in later chapters.

—

—

Figure 2.1: Serial composition of AND and NOT
The serial composition of two relations F and G is written as F ; G and is defined by:
a(F;Gc = Ib.(aFb)&(bGg) (2.14)

The infix ‘;’ serial composition operator is associative. Bracketing can be omitted so that
A;B;C=A;(B;C)=(A:B);C.

The range type of F must be the same as the domain type of G for serial composition to

be well typed. This relationship is expressed by the following type rule:

F:o-~-8 G:B~1x
F;G:a~1yx

Serial composition is an example of a higher order combining form. It takes as
parameters two circuits and yields a composite circuit.

The NAND relation built earlier may be expressed explicitly by the set:

NAND = AND ; NOT = {((F.F) T), (F,),), T, F), T), (T, T, F)}
NAND : (bool, bool) ~ bool

The following example shows the result of ‘simulating’ the NAND gate with ‘input’
(T, F).

(T, Fy NAND x
= { def. NAND }

14

(T, F) AND ; NOT x
={ def. AND, def. ;}
F NOT x

={def. NOT}

x=T

As expected, the input/output pair is a member of the defining set for the NAND relation:
(T, F), T) e NAND.

Serial composition is a natural way to combine two circuits which communicate
information to each other. The communication occurs over the internal connection made
by serial composition. It is also desirable to compose circuits which do not communicate
with each other. One way to do this is by using parallel composition.

To demonstrate parallel composition, consider the specification of a circuit P defined
by:

X,y z2»P@,b)y = a=—x & b=yaz

Notice that a and b are not related. It is possible to relate x to a using NOT independently
of relating (y,z) to b using AND. These two circuits may be placed in parallel in order to
realise the specification of P by writing [NOT, AND].

Parallel composition of two circuits F and G is denoted by [F, G]. The type of the new
circuit is defined in terms of the type of the constituent circuits:

F:a-8 G:yx~8
[F. G]: (a, x)~ (B. &

Parallel composition of two relations is defined by independently relating the values on
the terminals of the constituent relations.

(a,b)[F,G](c,.d) = (aFc)&(bGd)

The domain and range are defined in terms of the domain and range of constituent
circuits:

dom F xdom G

Figure 2.2 shows a pictorial representation of [NOT, AND].

15

Figure 2.2: Parallel Composition [NOT, AND]

This new composite parallel circuit requires two values on its domain. These are
represented by a tuple: the first element contains the value for the bottom circuit and the
second element contains the value for the top circuit. The range is described similarly.

An example ‘simulation’ of [NOT, AND] is

(T, (F, T [NOT, ANDJ(x, y)
= {def. parallel composition }
TNOTx & (F, H/ANDy

= { def. NOT and AND }
x=F & y=F

As expected, (T, (F, T)), (F, F)) is a member of the relation [NOT, AND].
Parallel composition extends naturally to compose more than two circuits, e.g
{a,b,¢c)[P,Q,R]{d,e,f) = (aPd)&(bQe)&(cRH)
There are many natural looking laws about parallel composition. For example:

R.S]: [T, U] = [R;T,S;U]

2.3 Relational Inverse

The inverse of a relation is defined as

aR'b =bRa
R:a~»b
R-1:b~a

So what does it mean to talk about the inverse of a circuit? Ruby interprets this as flipping
over the circuit along a vertical axis. The domain is then on the left and the range is on the
right. Figure 2.3 shows the inverse of AND i.e. AND-1.

16

g

r—

Figure 2.3: Inverse of AND.

Flipping a circuit over twice leaves it unaltered:
(R = R

The inverse of a serial circuit is formed by flipping the whole circuit so that the leftmost
and rightmost circuits of the composition are swapped:

R;9' = s1;R
As an example, consider the inverse of the NAND gate defined earlier:

(AND ; NOT)1
=NOT-1 ; AND"1

The layout for this circuit is shown in figure 2.4.

—

——

Figure 2.4: (AND ; NOT)"1 = NOT"! ; AND'!

The inverse of a NAND gate expects a 2-tuple from the right and delivers a single logic
value at the left.

The inverse of a parallel composition of circuits C1,..C, is simply the parallel
composition of the inverse of the constituent circuits i.e. C;-1..,C,1. For example:

[NOT, ANDJ! = [NOT!, ANDY]

A diagram of this circuit appears in figure 2.5.

A—Q<<-
Figure 2.5: The inverse of [NOT, AND]

Inverse is used in the definition of the conjugate higher order function. The
conjugate of two circuits R and S is denoted as R\ S and defined as:

17

R\S = S1iR;S
Figure 2.6 shows a picture of R\S. The following properties hold for conjugate:

(R\S) = R-N\S
(R\S)\T R\(S;T)

The proofs are omitted— they may be found in [Sheeran 90] and are very simple.

— sl R S

Figure 2.6: R\ S
Conjugate is useful for expressing changes of representation.

We only have two values in our logic domain: high or low. Each wire in the circuit
should only be driven by one output so that there is no possiblity of conflict. So, unlike
other logic models, we do not have a value for high impedance. We also have to take care
not to describe circuits which type-check but do not make physical sense. An example of
such a circuit is:

AND ; AND-1

We might mistakenly think this circuit makes sense at the physical level by assuming that
applying a relation followed by its inverse should be like performing the identity relation,
but reference to figure 2.7 shows that this circuit requires the outputs of two AND gates to
be tied together: this will not always result in sensible electrical behaviour. However, the
composition is well typed and does make sense at the abstract level. We have to impose
extra structure over the meaning of composition to catch such badly formed circuits
because they do not conform to physical reality.

‘
lt—

—]

Figure 2.7: A badly formed circuit.

We have used arrows in previous pictures to hint at the desired information flow,
although nothing in the semantics presented so far has enforced this. The two opposing
arrows in the centre of the figure 2.7 tell us that something has gone wrong.

To describe sensible circuits, the output of one circuit must be the input of the next
circuit. An analysis for checking this constraint is performed by Sheeran using

18

alternative interpretations. Such an interpretation is presented in more detail in chapter
4,

2.4 VWiring Relations

The circuits presented so far manipulate the information carried along wires in a non-
trivial manner. These circuits manipulate data which is carried along either a single wire
or a group of wires. As shown above, groups of wires are described by tupling. Often,
the tupling structure has to be re-arranged to help fit circuits together.

This kind of re-arrangement is performed by an important class of circuits which are
implemented as wiring relations. These circuits do not need to know exactly what the
information being carried along the wires is. They simply re-arrange the tupling structure.
Additionally, some wires may be lost while others may be introduced.

Consider the following specification:
(@, b,chHR,e) = (d=a)&(e=bnac)

The first element of the tuple in the domain is the same as the first element of the range
tuple. How should these two values be related? To describe such relationships, we
introduce the identity relation:

aib = a=b

In terms of hardware, this corresponds to a wire or wires which carry the ‘input’ signal to
the ‘output’ signal unaltered.

The inverse of the identity relation is the identity relation:
vl = v
Flipping a horizontal wire or wires along a vertical axis does not change the wiring.
Using this relation, we can now realise R as:
[, AND]
This can be proved to correctly realise R:

(a (b,)1, AND] {d, e)
= { parallel composition }
(ard) & ((b,c)ANDe)

19

= {definition of v and AND }
(d=a)&(e=bac)

= { spec. of R}

@ (. c)HR(d, e)

Figure 2.8 shows the layout for this circuit:

—

—

Figure 2.8: [, AND]

This is not the only realisation of R but this is the simplest and most natural
implementation. A more complex realisation is [t, [NOT, NOT] ; OR ; NOT].

Two common uses of the identity relation are abbreviated:

fstR=[R,
snd R =1, R]

The example in figure 2.8 can now be re-expressed as snd AND.

Another common operation is to extract either the first or the second component of a
pair. The relations m; and nt, are defined for this purpose:

X, y) Ty X = true
X, y)my true

Consider the following specification S:
(@, ®,c)S(d,e) =(d=anb) & (e=0)

The bottom two wires a and b are fed into the domain of a 2-input AND gate whilst the top
¢ wire passes through this circuit unchanged. The most obvious way to implement this
circuit is by using the parallel composition of an AND gate and 1.

[AND, 1] :: {(bool, bool), B)) & (bool, B)

However, this circuit requires its domain to be of type ((bool, bool), B) for some B, but the
domain of S is of type (bool, (bool, x)). We wish to rearrange the elements of this tuple by
altering the bracketing. The wiring circuit reorg performs the required manipulation in
order to keep the types right.

20

(a, (b, c)) reorg ((a,b), c) = true
reorg :: {a, (B, 1)) < (B, 1)

This circuit is polymorphic in the sense that it will re-organise the input tuple for arbitrary
substitutions for the types o, p and x. By composing this circuit with [AND, 1] we obtain a
suitable implementation for S:

(a,(b,c)) reorg;[AND,1] (d,e)
= { definition of reorg }

{(a, b), C) |AND, 1] (d, €)
= { definition of AND and + }

(d=anab) & (e=¢)
In the above example the type variables for reorg are a=p=bool and x may be any type.

This reorganisation does not necessarily correspond to a physical wiring circuit. In the
example above, reorg has three ‘wires’ going into its domain and the same three wires
appear at its range in the same order. Here, reorg has been used to keep the types right,
but other reorganisations will correspond to physical wiring circuits. We shall try to hint
at the tupling structure in our diagrams by the spacing between the wires. Figure 2.9
shows the circuit we have proposed for S:

Figure 2.9: Reorganisation of tuples.

The top wire may actually be a tuple of wires. To distinguish between wires carrying
single values and wires carrying unknown or composite values we shall use a heavier line
for the latter. Notice also that the top signal does not have any arrows on it: this is
because we cannot determine from the given context the direction of information flow
over this wire. The reorganisation of the wires is shown between the dotted vertical lines.

In the preceding example, a custom built relation was used to solve a plumbing
problem. There are certain wiring patterns that occur frequently. For example, extracting
the first element of a tuple is a useful operation. Instead of defining one relation to extract
the first element from 2-tuples, and another from three tuples etc. we can define generic
tuple relations.

21

Some wiring circuits operate over lists of data rather than a fixed size tuple. However,
making a clear-cut distinction often leads to a great deal of conversion between tuples and
lists. We shall assume that a homogeneous tuple is as good as a list, so (a, b, ¢) could be
a triple or a three element list, depending on the context.

In a picture there is no difference between an element of a given type and a singleton
list of that type. However, to keep the types of compositions right, we have to distinguish
between a signal and a list containing only one signal. Ruby provides an abstraction [-]
for relating a signal to a list containing only that signal.

X [-] X)) & wue

A common operation on lists is to combine two lists pairwise. The name given to this
operation is zip (an instance is shown in figure 2.10a) and it is described by:

x,yyzipz & Vizi=(X,Y)

where z is the ih element of z. This converts a pair of lists to a list to 2-tuples. Unzipping
from a list of 2-tuples to a 2-tuple of lists may be done by using zip-1.

<c, f>
<d,e, f>

<b, e>
<a, b, c> <a, d>

Figure 2.10a: {(a, b, c), (d, e, f)) zip ((a, d), (b, e), (c, f))

Another useful operation is transposition (trn). This interleaves a list of lists and is
rather like matrix transposition. The definition is:

xtmny e Vi X j=Yji

Two lists may be combined to form a larger list by appending. The circuit app
concatenates two lists: it is described by:

[ROv R1y~'-» Rh Ri+1v Ri+2|---v Rn] = [[ROv R1l"'! Rl]- [R|+1l R|+21an]]\am

Figure 2.10b shows a three element list being appended to another three element list
yielding a size six list.

22

i

Figure 2.10b: Appending lists using app.

Lists may be built up one component at a time by using wiring relations that introduce
a new signal either on the left (apl) or the right (apr):

apl =fst[-] ; app
apr=snd (-] ; app

Figure 2.11 shows an instance of apl and apr.

) —

@ ®)
Figure 2.11: (a) append left (b) append right

A useful operation on lists is rev which reverses the elements of a list. It has the

following defining properties:

[]:rev=[]
app ; rev =[rev, rev] ; rev ; app

Reversing a list twice leaves it unaltered so rev is its own inverse. By restricting rev to
work on lists or tuples of length two, we obtain the circuit that swaps its inputs. The
restriction is denoted by \2 which has the effect of constraining the domain to be a 2-

tuple.
swap =rev\2

The swap circuit shall be drawn as two wires crossing over, as in figure 2.12. Wires

cross over without interfering with each other. Contacts between wires shall be shown

X

Figure 2.12: Swapping the elements of a 2-tuple.

explicitly.

23

Swap is its own inverse and applying swap twice is like applying the identity.
swap ; swap = 1\2 = swap ; swap’!
Thus, swap = swap'l.
A bus can be duplicated by using split.
X split (x, x) o true
Multi-way forks can be made by repeated use of split.

splitd = split ; [split, split] ; app

Figure 2.16: split

2.5 Replication of Circuits

Often many copies of the same circuit are combined to form a larger circuit. This section

presents various ways to replicate circuits in Ruby.

For circuits which have the same domain and range types, it is possible to lay out
horizontally many copies of the same circuit. This is represented by superscripting e.g.
R4 =R; R; R; R.

A common way to replicate a circuit is to apply it to each signal in a list of signals.
This is analogous to applying a function to each element of a list. The higher order
function that performs this task in functional programming languages is called map and
this is also the name used for mapping a relation over lists of signals.

Map has the following properties:

n;mapR = mapR;n
[]; map R = R:[]
app ; map R = [map R, map R] ; app

Since map R represents an infinite class of circuits it is not possible to draw a finite
picture of it. Figure 2.17 shows one representative of this class.

24

R

R

Figure 2.17: map R over a four element list.

Map has properties which are similar to those for parallel composition. For example:

map (R;S) = map R ;map S
(map R)"! = map (R
(map R)\ (map S) = map (R\S)

2.6 Sequential Circuits

The relations presented so far describe combinational circuits; the output of the circuit at
any time depends solely on the inputs at that time. Most circuits have memory elements so
the output depends not only on the current input, but also the past inputs whose history is
encoded in the internal memory components.

First we need to augment the definition of a signal. For combinational circuits, a signal
was just one value. For sequential circuits, a signal is a stream of values.

If s is a signal then s(t) is defined to be the value of the signal at time t. For example:
{a,b, {c,d) (1) = (a(t), b(t), {c(t), d())

Notice that on the left we have a tuple of signals (where the basic element is a stream) and
on the right we have a tuple of basic elements.

To describe sequential circuits requires information about the past. The output of a
sequential circuit may depend on the current input at time index i and the previous value
of the state element at time i-1. To make the past history of a signal available we delay the
‘arrival’ of the stream. This is accomplished by the use of a delay element D defined as:

aDb & Vi a(t-1) = b(t)

Here, a and b must be streams. As an example, consider delaying a tuple of signals. This
corresponds to delaying each individual signal.

25

a.b,c)Dd.e,f) & Vi{@bc)t1)=(deH(l)
o Vi (a(t-1), b(t-1), c{t-1)) = (d(1), e(t), {(t))
< (aDd) & (bDe) &(cDH)
So D does not necessarily work over just one ‘wire’: it may relate composite signals.
Thus it is not sufficient to think of D as being implementable as just one bit level memory
element. The symbol for the delay element is shown in figure 2.41.

-

Figure 2.41: The delay element.

As usual, the inverse of this circuit is formed by flipping the domain and the range. If an
anti-delay D1is ‘driven’ from left to right, then it predicts values rather than remembering
them. The use of both D and ! facilitates reasoning about circuit timing and retiming
[Sheeran 88]. In the final design, the anti-latches must be driven from right to left.

The combinational components defined so far can still be used in sequential circuits by
‘lifting’ their definitions to work on streams. Consider the example of the ANDseq
relation which is lifted so that it operates pointwise over elements of the signals in the
domain and range.

(@, b)ANDggqC = V1. (a, b)(t) AND c(t)
& Vi (a(t), bt)) AND c(t)

Many sequential circuits require past values to be fed back into the circuit so that they
may be used to determine the current output. To describe this kind of feedback we
introduce a new circuit former loop:

a(loopH)b =def 3C(a,c)H(b,¢)

H:: (aa B) - (X’ E)
(loop H) o ~ x

The loop relation takes as parameter a circuit which relates a 2-tuple to a 2-tuple. The
second element of the range tuple is fed back and used as the second element of the
domain. A schematic for the loop circuit former is shown in figure 2.19.

26

1

@ ®)
Figure 2.19: Feedback loop (a) H (b) loop H.

2.7 Four-Sided Tiles

So far circuits have been laid out like tiles with connections on only two sides, thus
allowing only very horizontal layouts. Two dimensional circuits may be described by
placing connections on all four sides of a rectangular tile. This is done in Ruby in a way
that does not require the semantics already presented to be changed in any way.

Two sides of a tile are considered to be the domain of the circuit (the left and the top)
and the other two sides form the range (the right and the bottom). Figure 2.21 shows a
picture of a four sided tile and its inverse. Because of our convention about the position
of the domain and range, the inverse is formed by flipping along a diagonal line running
from the bottom left hand corner to the top right hand corner.

The domain of a four sided tile is always a 2-tuple. The first element describes
information on the left of the tile and the second element refers to the top of the tile.
Similarly, the range is also always a 2-tuple with the first element referring to the bottom
of the tile and the second element referring to the right hand side of the tile.

b d
I
a— F|—d oc—{ F'|—b
I
C a
(a) (b)

Figure 2.21: (a) Four sided tile (b) and its inverse.

Both two sided and four sided tiles will be used in descriptions. It will usually be clear
from the context which type of tile is being used.

27

New combining forms are required to compose four sided tiles. These tiles may be
composed horizontally by using beside () or vertically by using below (T). The
definitions of these combining forms are:

(@ b, cn FoG{de),f
=def 390.(a, byF(d,9) &{g.c)G (e,

(a, by, ¢) F1 G, (e, fy)
=def 3Jg.(a, 9Fd,hH &b, c)G(g,e)

Figure 2.22 demonstrates these compositions pictorially.

(@ (b
Figure 2.22: (a) beside (b) below

Two generic combining forms for composing many copies of the same tiles either
horizontally or vertically are now presented. Let row take as a higher order parameter a
four sided tile F: it will form a new circuit which contains many copies of F. Similarly, let
col be the higher order combining form for making vertical arrays. Signal construction is
denoted by ‘:’ so for example ax(b, ¢) = (a, b, ¢).

@y rowP (0, a)
(a,bc)y rowP (de,f) =def (a,(b,c) (PerowP) (d, e)f)
col P =gef (row P-1yl

The following properties hold for these combining forms:

snd [-] ; row R
row R ; fst [-]'!
snd ([m, n] ; app) ; row R
row R ; fst (app’! ; [m, n))

R;tst[-]

snd[-]!;R

((row R ; fstm) & (row R ; fst n)) ; fst app

snd app’! ; ((shd m ; row R) & (snd n ; row R))

fst[-].colR
col R ; snd [-]!

R:snd[]
fst[-]1 ;R

fst ((m,n]; app);colR = ((col R ; snd m) I (col R ; snd n)) ; snd app

Instances of a row and a col are shown in figure 2.23.

n pP~— T p—

@ (®)
Figure 2.23: (a) row F (b) col F

The following laws hold about row and cot:

col R = (rowR1)!
(rowF) T (rowG) = row (F TG)
col F & col G = col (FoG)

A useful variant of row is rdl (reduce left, figure 2.24) which is defined as:

rdl R = row (R;ny’l)
I | | I
—4 R R R R

Figure 2.24: An instance of reduce left.
Reduce right (rdr) can be defined from col.
rdr R = col (R ;ny 'Yy ; my

Two to one relations can be cascaded using rdi or rdr. An example of such a cascade
is rdl AND.

29

2.8 Distributing Signals

Distributing a signal across a tuple of signals is performed by adding the signal to be
distributed either to the left or to the right of each element of the tuple to be distributed
over. This leads to four possible patterns, two of which are abbreviated in Ruby as

follows:
{a, Q) dist ¢
{a,b)dist ¢ =3 Vi.ci=(a, b))
(), by distg O
{(a, b) distg c o Vi.c;=(a;, b)

Two examples are:

(@, {b,c, d, e)dist, (a, b)(a,c){ad),(a ey
{b, ¢, d, e), a) distg (b, a), {c, a), (d, a), (e, a))

A circuit for distribute left can be made by using four sided tiles. The value to be
distributed is fed from right to left while the signals to the individual components to be
distributed flow from top to bottom. One suitable implementation for dist(is then given
by:

Ish =1 i 1
rsh=1e1
dist, = row (fst split; Ish ; swap) ; 1

Ish ; swap

N ' hidden

a—| I ‘

split // <a, b> <a, c> <a, d> <a, e>
swap

Figure 2.25: An instance of the distribute left circuit for the example.

Distribute right can be defined in terms of distribute left:

distp = swap ; dist_; map swap

30

2.9 Some Examples

In this section, some of the Ruby constructs defined above are used to build a 2 to 1
multiplexer and a binary adder. The specification for the multiplexer we want to build is:

@ b ch)MUXd & d=arbv-aac

If a is true then d is connected to b; if a is false then d is connected to c. This is analogous
to an if. then..else expression. This multiplexer may be implemented as:

MUX = dist, ; [AND, [NOT,; AND]; OR
This description is shown to be faithful to the specification:

(a, (b, o)) dist, ;[AND, [NOT,1]; AND];ORd

= { definition of dist_ }

{(a, b}, (a, ¢)) [AND, [NOT, }; AND]; ORd

= { definition of parallel composition and AND and }
(anb, —aac) ORd

= { definition of OR }

d=anbv-anc

Figure 2.26(a) shows the symbol used for a MUX multiplexer and part (b) shows the
implementation.

31

— 2amux — ¢

[:
@
C
-
I >O d
b
s .
t]

®)
Figure 2.26: (a) A 2-to]l multiplexer symbol (b) and an implementation.

The second example circuit is a binary addition circuit BINADD. This circuit is
represented by a four sided tile so the domain and range are pairs. The first element of the
domain (a vertical signal) is the carry in and the second element of the domain is a pair of
lists of equal length. The lists represent binary values which are to be added pairwise.
The first element of the range is a list representing the sum of the two lists on the domain
and the second element is the carry out.

A full adder circuit FA is used to add two binary values with a carry in to produce a
sum and a carry out. Let this be a four sided tile, with the carry in as the first element of
the domain and the pair of binary values to be added as the second element. The first
element of the range is the sum and the second element is the carry out.

A binary adder can now be implemented as:
BINADD = snhd zip ; row FA

An instance of circuit of BINADD is shown in figure 2.27.

32

list 1 list 2

cany in FA FA FA FA l—carry out
I | I |

sum of list1 and list2
Figure 2.27: BINADD

A full adder can be built from two half adders. A half adder HA takes a pair on its
domain representing two binary values. The range of a half adder is also a pair whose
first element is the carry resulting from the binary addition of the two values in the
domain. The sum itself is given in the second element of the range. Using this
component, the definition of FA is:

FA = snd HA ; rsh ; fst swap ; Ish ; snd HA ; rsh ; fst OR ; swap

Figure 2.28 shows how the full adder is constructed.

o I

HA HA sumofaandb
a V N x and carry in
OR

canryin carry out

Figure 2.28: Construction of a full adder.
A half adder is made from an AND gate and an exclusive-or circuit:

HA
exor

split ; [AND, EXOR]
split ; [[t, NOT], [NOT, 1} : [AND, AND] ; OR

2.10 Summary

A large subset of the Ruby hardware description language has been introduced. A circuit
is viewed as a transformer of synchronous streams or signals. Circuits are composed
using powerful yet simple combing forms. These combining forms convey structural and
behavioural information. Ruby abstracts away from the notion of input and output by
considering a circuit to be a binary relation between signals. This gives rise to new
combining forms that exhibit symmetries which would not have been available in a purely
functional model.

33

This chapter has presented the normal or standard semantics attributed to Ruby. We
show in chapter 5 that by altering the semantics we can obtain additional interesting

information about Ruby circuits.

Chapter 3
Testing Digital Circuits

3.1 Introduction

Most manufactured components have to be tested, but the testing of integrated circuits is a
particularly difficult task. Traditional testing of assembled devices (e.g. chairs) relies on
visual inspection and the application of common sense. The testing of electronic
components like televisions is less straightforward, and involves the use of electronic
measurement tools like oscilloscopes to measure electrical characteristics of internal
connections. The internal workings of an integrated circuit are not usually accessible—
the only way to test such a device is by exercising it through its primary inputs and
observing the results at the primary outputs.

This problem is exacerbated by the fact that large digital systems are broken down into
smaller subsystems which may not have an easily identifiable function. Common sense is
no longer a viable technique for testing such complex circuits. Also, checking the form of
the outputs is not enough: it will invariably be 1s and Os. It is necessary to check the
pattern of outputs. For most circuits it is not possible to apply all the input test patterns. A
subset of the test patterns which results in a high degree of confidence in the circuit must
be found. This is a very difficult task that requires large amounts of computer and human
resources. The generation of test patterns for general sequential circuits is not fully
automated— often an experienced test engineer has to find tests manually.

There are many reasons why circuits should be specified more formally and the
challenge testing is one of the most compelling. Too often in the past the test engineer has
had little information about the function of the circuits to be tested. A formal rigourous
notation is required for describing circuits so that they can be easily understood.
Automatic tools are used extensively in testing, and these tools require precise
descriptions of the circuits they analyse. These are yet more reasons why hardware
description languages with precisely defined semantics, like Ruby, are becoming

35
increasingly important for circuit description.

This chapter presents a brief introduction to the field of testability. Section 3.2 gives
reasons why testing has become one of the most important stages of integrated circuit
development. Section 3.3 classifies various types of test and how defects in circuits are
described. Section 3.4 presents a formal description of notions like ‘test pattern’. Some
popular methods of generating tests for combinational circuits are presented. These
include a path sensitization technique for manual test pattern generation (which is
formalised and automated by the D-algorithm presented in a later chapter) and the method
of boolean differences. Techniques like fault collapsing are introduced for reducing the
large amounts of information that are handled by CAD (Computer Aided Design) tools
performing test pattern generation. Section 3.5 shows how the very expensive task of
generating tests for a circuit can be reduced by using each pattern to cover as many faults
as possible. A technique called deductive fault simulation is presented which, given as
input a circuit, a fault and a test T covering that fault, will produce a list of all the other
faults which are exposed by the given test pattern T. Section 3.6 presents a method for
estimating how testable a given design is. This could be used in the design stage to
improve subcomponents that are difficult to test by making them more accessible. Section
3.7 presents various methods for improving the testability of circuits and shows how
sequential circuits can be tested.

3.2 Why Circuits have to be Tested

Certain applications such as life critical systems require a high degree of reliability.
Developers of such systems need a guarantee that the components they use will operate
faithfully to their specification. This guarantee is usually provided by testing components
before they are delivered to the customer. The procedure of testing occurs in two distinct
phases of the design and production of integrated circuits. The techniques employed for
testing at these two phases are different.

The design phase phase involves making a series of refinements from a specification
of a circuit to a physical realisation. Circuit specifications can be very complex and
physical realisations might require over a million components. Specifications encompass
not only the intended logical behaviour, but also performance constraints like power and
speed and resource constraints like area. There is a large scope for error or inconsistency
between the specification and the derived design. Verification involves checking that
implementations are consistent with specifications. Testing is one verification technique

36

for detecting such inconsistencies. A model of a design is simulated by a computer until a
satisfactory degree of confidence in the behaviour of the design is achieved. A design
which fails a test has to be redone, using any diagnostic information provided by the test
procedure. The fabrication of integrated circuits is a very expensive task, so every effort
must be made to ensure a design is correct before attempting to physically construct it.

We say very little about this kind of testing. Verification of designs is not easy to
perform by testing because of the vast number of test patterns that have to be applied
before a circuit can be proved to be correct. Sometimes, for practical reasons, not all
faults can be tested for. A subset of likely faults are identified and a set of tests to expose
these faults are generated. This method does not prove the correctness of a design. Much
work has been done on the use of formal mathematical techniques to reason about designs
in order to prove useful properties and ultimately correctness [Cohn & Gordon 86,
Melham 87, Cohn 87].

Integrated circuits are manufactured on disks of silicon (called wafers) containing
typically many copies of the same circuit. Each copy is called a die. A wafer is typically
75mm in diameter and contains one hundred Smm square dies. Even if the design of the
circuit has been proved to be correct, it is still possible that a physical realisation of the
correct design does not meet its specification. The manufacturing process for integrated
circuits is far from perfect— many of the dies may have been badly formed. For certain
types of circuits such as large microprocessors like the Motorola 68000 as many as 70%
of the dies may be damaged. Wafers are baked in furnaces which may be at the wrong
temperature as well as being treated by various chemicals which may be of the wrong
composition. A single speck of dust can render a die useless. These variations and
imperfections decrease the ratio of working dies to the total number of dies on a wafer.
This ratio is called the yield.

The quality control stage of production must isolate defective components so that they
can be removed. The process of determining which dies on a wafer are working is called
wafer sort. Preventing the shipment of broken circuits is becoming increasingly
important as greater emphasis is placed on quality. Another reason for discarding
defective dies is the high cost of bonding which is often as much as a third of the total
production cost. Bonding is the setting the dies in ceramic packages and linking the tiny
pads of each die with the pins of the chip.

Manufacturing errors modify the behaviour of a circuit in many ways. A circuit can
still perform its intended logic function, but at the wrong speed, or perhaps it may
consume too much power. Parametric testing involves measuring these analogue
quantities to ensure that performance constraints are satisfied. Analogue quantities can

37

deviate from the expected values because of the variations in manufacturing process or
because of bad design, e.g. a channel being too narrow to cope with the required current
flow. Functional testing or logic testing is the checking of the logical behaviour of
the circuit. Although both types of testing are essential, nothing is said here about
parametric testing: the techniques presented in this thesis pertain mainly to functional
testing.

The primary reason for performing testing at the post-production stage is to discard
defective components. Since integrated circuits are encased in ceramic packages and dies
contain features of the submicron scale, repair is not usually a viable option. The test
procedure can provide useful diagnostic information which can be used to help locate a
fault in some subcircuit. This information can be used to improve the fabrication process
and the design process. For example, the temperature of a furnace can be reduced or a
component that fails frequently redesigned using more reliable design rules.

3.3 Types of Test

The activity of producing a suitable collection of test patterns to exercise a circuit is called
test pattern generation (often abbreviated as TPG). Ideally, test pattern generation
should be performed automatically by CAD tools, but this has only been realised for a
restricted class of circuits. Much test pattern generation is still done manually. This
consumes valuable time of experienced test engineers and is very costly.

Tools that perform automatic test pattern generation (ATPG) are based on

formalisations of manual techniques.

The obvious way to test a circuit is to see if it is operating correctly with respect to its
specification. This is the approach taken by functional test programs. The word
‘program’ does not mean a piece of software, but a sequence of test patterns. The
specification usually used is a truth table. The input part of each row of the truth table is
applied in turn for combinational circuits. The output for each pattern is checked against
the expected result in the truth table. Any deviation from the expected values indicates the
circuit is faulty and should be discarded.

This approach is not very practical for various reasons. It is often very difficult to
derive a truth table for a circuit. Even if a truth table is available, the number of test
patterns required is related exponentionally to the number of primary inputs. If a

38

combinational circuit has n inputs (Figure 3.1(a)), then it will require 2" test patterns to be
applied in order to be tested exhaustively. For even fairly modest values of n, the number
of test patterns required becomes prohibitively large.

The problem is amplified for sequential circuits. These circuits have to be tested with
all possible input combinations for each possible combination of internal state variables.
For a circuit with n primary inputs and m state elements (Figure 3.1(b)), this requires
2™ patterns.

If, say, n = 24 and m = 20, the resultant number of test vectors for exhaustive testing
is 244, If we could generate test vectors at a rate of 106 vectors/sec, then testing will take
six months at 24 hours per day!

m STATE m

ELEMENTS 7

n p
COMBINATIONAL COMBINATORIAL
—7*| circurT 7 n LOGIC p
—~—> A
@) (b)

Figure 3.1: (a) Combinational circuit (b) Sequential circuit.

By applying a 'divide and conquer’ technique, we can decompose a big circuit into
smaller circuits and test these independently. If we can test the combinatorial and
sequential elements separately, then the number of vectors required for exhaustive testing
is reduced to 2"+2m. This could be done in under 20 seconds— a dramatic reduction in
testing time.

Thus, by partitioning the circuit into smaller subunits and testing state elements
independently we can make the problem of testing manageable. This involves thinking at
the design stage about testability. The circuit has to be designed to allow access to the
subunits and will require extra pins, increasing the packaging cost.

Design techniques to cope with testing address the following areas of importance:

o Test generation
o Test verification
o Design for test

39

Test generation entails finding and producing the smallest set of test vectors that will
give the greatest coverage of faults. Test verification concerns assessing the fault
coverage of a set of test vectors. Designing with testing in mind reduces the complexity of
the two previous problems.

Not all circuits can be naturally described by a truth table. For example, a
microprocessor is understood in terms of its instruction set or a set of register transfer
rules. An exhaustive test would involve executing every instruction with every operand.
This is clearly not acceptable. Different techniques are required for testing such circuits.

Instead of checking to see if a circuit is working, a test program can be constructed to
check if a circuit is faulty. By considering the physical structure of the circuit, a set of
possible defects is enumerated and tests constructed for each defect. A defect is a
physical failure that causes functional failure. Clearly this requires more information than
just the behaviour of the circuit: the physical layout is now important too. Test generation
techniques that attempt to detect specific structural failures generate structural test
programs. Another name for structural testing is fault-oriented TPG.

Several physical defects can have the same electrical effect on the circuit. These faults
have the same effect on the observable outputs, making them indistinguishable. For this
reason it is more profitable to think in terms of faults which are the electrical effects of
physical defects.

A general type of physical failure can now be represented in terms of how it affects the
logical operation of the circuit. The relationship between the physical defects and faults is
expressed by a fault-model. Often, a fault arises from a variety of physical defects.
The consequence of this is that fault-models can relate a fault to a list of physical defects.

Such a fault model is the single-stuck-at-fault model [Weste & Eshraghian 85].
This model makes two assumptions about how circuits can fail. The ‘single’ in the name
refers to the assumption that only a single node in the circuit is directly affected by a fault.
The second assumption is that the electrical effect of the fault is to cause a node to be
‘stuck’ at logic 0 or logic 1, irrespective of the stimuli applied at the primary inputs.

These assumptions are simplifications of the way in which circuits fail. A failure can
be caused in some other way. One example is two lines being connected together so that
they are always at the same logic level. Also, a circuit may fail at several nodes, not just
one. However, for most circuits, the single-stuck-fault model gives surprisingly good
results. This is the most widely used model in industry.

This model does not cover all faults. For example, the joining of two wires that were

40

not previously joined can radically alter the behaviour of a circuit. For CMOS, some
faults may convert a combinatorial circuit into a sequential circuit. This happens when a
node becomes permanently detached from source or drain due to a defective transistor.
The value on this node will depend on its previous value i.e. the charge stored there due
to capacitance.

Consider a 2-input AND gate f = a AND b. There are three wires associated with this
gate: two input wires and one output wire. Each wire can have one of two faults (i.e.
stuck at zero or stuck at one). So there are six possible faults. The notation a/0 is used to
mean node a stuck-at logic 0— similarly for a/1. A truth table for the fault-free circuit and
possible faults is:

a_b C a/0 b/0 c/0 a/l b/l ¢/l

0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 1
1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 1 1

a/0 is the output expected if there was a stuck at zero fault on input wire a. Using this
model, a/0, b/0 and ¢/0 are indistinguishable— they are said to be equivalent. Thus there
are only four different fault classes. We only need enough test patterns to cover all the
fault classes. The following tests form a cover:

Test ab=11 detects a/0 b/0 c/0 (Expected output 1, get 0)
Test ab=10 detects b/1 c/1 (Expected 0, get 1)
Test ab=01 detects a/1 (Expected O, get 1)

Notice how this model assumes that there is never more than one fault at a time; it does
not model wire a and wire b stuck at zero simultaneously.

3.4 Test Pattern Generation

If C specifies the behaviour of a working circuit, then let Cydescribe the behaviour of C
under the influence of fault f. Here, C is a function from input patterns to output patterns.
The fault f is exposed by finding some input T for which C produces a different result
from Cy. An input exposes a fault when either of the following conditions are true:

41

C(T) = C(T) (3.1
C(T) & C(T) (3.2)

Exclusive-or is denoted by the symbol @. For a given fault f, there may be no test
patterns or multiple test patterns. Relationship 3.1 can be used to construct the sets of all
test TESTS(Cy) for a circuit C under fault f.

TESTS(Cs) = {T : T e INPUTS(C) ; C(T) = C(T)} (3.3)

Note that TESTS is a two place operation taking a circuit C and a fault f. The set of all
input patterns for a circuit C is given by INPUTS(C). For example:

INPUTS(AND) = {00, 01, 10, 11}
For an n- input circuit, there are 2 patterns produced by INPUTS.

Not all faults are testable. A fault can occur in a redundant part of a circuit where
certain failures will have no effect on the correct behaviour of the circuit. Redundancy is
often introduced to avoid other problems like hazards so it cannot always be removed. If
a fault f is untestable, then TESTS(Cy) will be an empty set i.e. TESTS(Cy) = {}.

Often, there is more than one member of TESTS(Cs) but only one member of this set
is required to test for fault f. Any member can be chosen, but some choices are better than
others. This is because some test patterns cover multiple faults, so a judicious selection
can reduce the total number of test patterns required for a circuit.

A fault-list is the set of all possible faults in a circuit. The particular faults present in
this set will depend on the fault model employed. For the AND gate in Figure 3.3a there
are six possible faults (two for each node) if the single-stuck-at-fault model is used. The
function FAULTLIST(C, pi, ...,pn) is defined to return the fault-list for a given circuit C
with input py, ...,pn assuming the stuck-at-fault-model. For example:

FAULTLIST(AND, a, b) = {a/0, a/1, b/0, b/1, ¢/0, ¢/1}

The fault-cover is the percentage of the faults in the fault-list that are covered by a test
program. The ideal of 100% fault cover is not always realisable because some faults may
be untestable or the circuit may be too large to make this practical. A test program to cover
all testable faults can now be specified as follows:

TESTPROGRAM(C, ...) = {(T, CH(T)) : fe FAULTLIST(C, ...) ; T e TESTS(Cy)} (3.4)

The set expression selects one fault at a time from the fault list and then chooses one
member (if it exists) from the set of tests that exposes that fault. Each input test pattern is
paired with the result of the working circuit for input T.

42

This specification gives the largest test program that does not contain duplicate test
patterns. Instead of choosing just any member T of TESTS(C) the selection could be
made to prefer a T which exposes many other faults too.

A direct transcription of the above specification to code would not yield an efficient
automatic test pattern generation program. Generating tests using the above specification
uses no information about the construction of the circuit so is an example of a functional
test program.

For some circuit F with input i1..i, there are sometimes assignments to inputs which
are called enable and disable values. A disable assignment to an input determines the
output of the circuit, irrespective of the other inputs. Informally, the other inputs are
assumed to be disabled. If an assignment is not an disable assignment, then it must be an
enable assignment. This kind of assignment ensures that the value at the output does
depend on the values at the other inputs.

Consider the circuit C in Figure 3.4 with inputs a, b and ¢ and output d i.e. the output
is a function g of the inputs:

d=g(a, b, c).
a
b— C }—d
c
Figure 3.4

To generate a test pattern for a fault at node a , information about the value at node @ must
be ‘transported’ to node d so that it can be observed. This requires nodes b and ¢ to
assume values that do not make the output d independent of a i.e. enable input values.
This establishes a sensitive path from a to d. This ensures that a change of logic value
at node a is reflected by a change at d.

Another useful relationship between a and d is to make the logic value at node d
independent of node a. This can be done by finding ‘disabling’ values for b and ¢ which
which produce a fixed value at d, no matter what value is present at a.

For the AND gate in Figure 3.3a, the output ¢ can be made to always depend on the
value at g by ensuring that b is 1. The relationship between ¢ and a is then simple: c is
always the same as a. To make the output independent of a, b is set to 0 which results in ¢
always being 0 no matter what a is.

The OR gate in Figure 3.3b requires b to be 0 to make c depend on a and b to be 1 to
mask the value at a. Some gates, like exclusive-or, can not be disabled.

43

Manual test pattern generation is presented first. Most automatic test pattern generation
techniques are just formalisations of manual techniques, so many of the techniques in
TPG and ATPG are essentially the same. Before considering composite combinational
circuits, a test program is generated for a single gate.

The AND gate is to be tested for stuck-at faults. The first stage in manual test pattern
generation is to prepare a fault-list. For the single-stuck-at-fault model, this means listing
each node of the circuit for each stuck-at value. The list of faults to be covered in this case
is:

FAULTLIST(AND) = {a/0, a/1, b/0, b/1, c/0, c/1}

Remember that if there are n nodes in a combinational circuit, then there will be 2n stuck-
at faults. Figure 3.5 shows the six faulty circuits that correspond to the above faults.
These faults modify the function of the AND gate: the modified function is shown next to
each broken gate.

s-a0 s-a-1
a* a
& c=0 & ¢ c¢=b
b — b —
a a
s-al] & c=0 s-a-1] & ¢ c=a

a — s-a-0 a

&*co &—x—c c=1

b — b —

Figure 3.5: The stuck-at faults for an AND gate

If the fault a/0 occurs, then the output of the AND gate will always be 0. Consequently
if the output is 1 then fault /0 does not occur. A test pattern has been found for a/0 if the
pattern produces a different output on a fault-free AND gate and an AND gate with fault
a/0. To set the output node ¢ of the AND gate to 1 requires a and b to be set to 1. Since
this pattern produces differing outputs for a fault-free AND gate and an AND gate with
fault a/0 then this is a test pattern for the fault a/0.

To test for a/1 the fault free condition a=0 must be established. As above, b must be
set to 1 to make ¢ depend on a. In a working circuit this would set ¢ to 0 so a test for a/l
is abc=010. The reasoning behind generating tests for /0 and a/1 is symmetrical: the tests
are abc=111 for b/0 and abc=100 for b/1. To test for c/0 requires the fault free condition
c=1 to be established. This can only be done by setting a=1 and b=1 so a test for this fault

44

is abc=111. To test for ¢/1 requires c to be set to 0. There are three different assignments
to a and b that set ¢ to 0: ab=00, ab=01 and ab=10. So any of abc=000, abc=010 and
abc=100 are tests for ¢/1. These results are summarised in Table 3.1.

Faults Test(s)

a0 111

a/l 010

b/0 111

b/1 100

c/) 111

c/1 000 or 010 or 100
Table 3.1

The test 111 covers three faults: a/0, b/0 and c/0. For this gate using the single-stuck-
at-fault model these faults are indistinguishable and form an equivalence class. A good
choice to expose c/1 is the pattern 010 or the pattern 100 since these tests are needed
anyway to expose other faults. A complete test program for an AND gate is {111, 100,
010}. This is only a saving of one test pattern compared to the test program generated by
an exhaustive procedure i.e. {000, 010, 100, 111}. However, for more complex circuits
the difference between the sizes of the test programs produced by functional and
structural approaches becomes much greater. The structural method can take advantage of
the connectivity information present to spot overlaps in tests and redundancies, whereas
the functional approach has only the truth table or a boolean expression to work from.

The test pattern 111 above exposed three faults: a/0, b/0 and c/0. The reason for this is
that these faults change the behaviour of the circuit in the same way i.e. transform it from
c=anbtoc=0.

This technique for testing an isolated gate extends naturally to the testing of composite
combinational circuits. Tests for all the faults in the circuit C2 shown in figure 3.6 are
now constructed by considering sensitive paths from the site of the fault to an observable
output.

b d&—|e
f
o M

Figure 3.6: Composite Combinational Circuit C2

C

There are 7 nodes in this circuit so there are 14 possible faults. The fault list for circuit C2

45
is:
FAULTLIST(C2) = {a/0, a/1, b/0, b/1, c/0, c/1, d/0, d/1, €/0, e/1, fl0, f1, z/0, z/1}

To test for a/0 the node a has to be set to the value opposite to the stuck-at value. There is
no point in testing for a/0 with a=0 since there will be no difference between the fault-free
and faulty outputs. The next step is to try and propagate the fault information towards an
observable output, in this case z. The only way to get to z from a is through e, so the
value at e must be made to depend in some way to the value at node a. The enabling input
to an AND gate was shown earlier to be 1 so node d has to be set to 1 making e=a.

The assignment d=1 has to be justified by proceeding backwards towards the primary
inputs to ensure that it is possible to set this node to 1. In this case it is easy to set d=1 by
making the assignment b=0.

Having ensured that fault information can indeed be propagated from a to e the next
step is to try and propagate fault information from e to z. The enabling input for an OR
gate is 0 so node f must be set to 0. Since =0 node f is 0 anyway, so no further
assignments are required. The value at ¢ is immaterial: neither O nor 1 will have any effect
on the value of node f. The node c is assigned the value X to indicate that it can assume
either logic value. Now the fault information at e is propagated to the observable output z:
the relationship between e and z is z=e.

Putting all this together, the assignments a=1 and b=0 form a sensitive path from the
site of the fault a/0 to z through e. The sensitive path is denoted by a=e=z. This states that
in a working circuit C2, nodes a, e and z all have the same logic value. In a circuit which
does not have the fault a/0 then a=z=1.

To emphasise the distinction between inputs and outputs, test patterns are written
using a multiple assignment like abc/d=pqr/s where a, b, ¢ are primary input nodes and d
is a primary output node. The assignment states that node a is assigned logic value p, b
logic value g etc. Since ¢ can be any value, there are two tests for a/0: abc/z=100/1 (with
¢=0) and abc/z=101/1 (with c=1). Only one test is required to expose the fault. To test for
a/0 the inputs are assigned abc=100 (or 101) and the value z observed. If z=0 (opposite
from the fault-free value) then the fault a/0 is present.

The test for a/1 is similar to the test for a/0: the only difference is the fault-free
condition a=0. As shown above, to propagate information from e to z the only
assignment required is b=0. This forms the same sensitive path a=e=z so z=0 in a circuit
that does not have the fault a/1. The tests for a/1 are abc/z=000/0 and abc/z=001/0.

Notice that it would have been possible to consider the tests for a/0 and a/l

46

simultaneously since finding a sensitive path does did not depend on the value at node a.
The sensitive path a=e=z is highlighted by a heavy line in figure 3.7.

Q e——

d
1

0 &—]—

=0

&e=a

b=0

Figure 3.7: Sensitive path a=e=z

There are two possible sensitive paths from b to z: one through e and the other through
f. The sensitive path through e is considered first. The value at node d is always opposite
to the value at node b, so the first segment of the path is b=—d. To propagate information
from d to e requires a=1 (the enabling input for an AND gate) so that b=—d=—e. To
propagate fault information from e to z requires f=0 (the enabling input for an OR gate).
There are three possible assignments that set f=0: b=0, ¢=0 and bc=00. However, the
assignments b=0 and bc=00 commit b to be 0 requires using the value at node b which is
the site of the fault so these patterns must be discarded. For this reason the assignment
¢=0 is chosen to establish the sensitive path b=—d=—e=—z. This states that in a working
circuit the value at node z is always opposite to the value at node b.

The second possible sensitive path from b to z is through f. To make f depend on b
requires c=1. To make z depend on f requires e=0. To set e=0 can be done by a=0. Again
the value at node b cannot be used since this is the node under test. This establishes the
sensitive path b=f=z, yielding the test abc/z=011/1 for b/0 and abc/z=001/0 for b/1.

To test for faults at node b two test patterns are required: one from the set {110/0,
011/1} to test for b/0 and one from the set { 100/1, 001/0} to test for b/1. Thus there are
four possible combinations of test patterns that expose both faults at node b.

To sensitize a path from c to z requires p=1 to make c=f. To make z=f requires e=0.
No further assignments are required since the assignment b=1 causes d=0 which results
in e=0. This gives the sensitive path c=f=z. The tests for ¢/0 are abc/z=X11/1 and the
tests for ¢/1 are abc/z=X10/0.

The tests for the other faults are found in a similar manner.

This completes the first phase of manual test pattern generation for a very small circuit.
Test patterns have been generated for all 14 possible faults. This technique is tedious and
error prone. For large circuits, such manual calculations are not practical.

The faults and expanded test patterns that expose them are summarised in table 3.2.

47

Faults | Input test pattern
all IEE) or 101

a/l 000 or 001
b/0 110 or 011
b/1 100 or 001

c/A) 011/Tor111/1
¢/1 010/0 or 110/0

d/0 100 or 101
d/1 110
e/ 100 or 101

e/l 000 or 001 or 010 or 110
/0 Ollorl1l1

t/1 000 or 001 or 010 or 110
z0 100 0or 101 orOl1 or 111
Z/1 000 or 001 010 or 110

Table 3.2: Test for stuck-at faults in C2

This manual test pattern generation technique has produced all eight possible input
patterns to test the three input circuit C2. However, not all eight test patterns need be used
because most patterns expose more than one fault. By choosing patterns carefully, the
number of test vectors required to test for every fault can be substantially reduced. The
information in Table 3.2 is represented in Table 3.3 which shows the faults covered by
each test pattern. Such a table is called a fault-matrix.

TFE]a01{al{b0ibl]cOic1{d0idlieNjel]|f0}1]20]2 l=|
000 v] v v v/
001 v/ v/ v / v/
010 v/ v v/ v/
011 v/ v v v/

10| v v/ v v/ A

101 « 7 A v/

110 v/ oA v/ / 7 /
111 v/ v/ v

Table 3.3 Fault matrix for circuit C2.

Only enough rows (tests) have to be chosen to ensure that there is at least one tick
under each fault. The first step is to identify columns (faults) that have only one tick.
These faults have only one test that exposes them. Such a test is called an essential test
and must be used in the test program. In table 3.3 d/1 is only covered by one tick
corresponding to test 110. Test 110 also covers the faults b/0, c/1, d/1, e/1, f1 and 2/1.
The table is now reduced by removing columns d/1, b/0, ¢/1, d/1, e/1, f/1 and z/1 and the
row 110. This results in table 3.4:

48

T/F | a0
000
001
010
011 7 7
10017 7 7
01/ v
111 7 7

b/l {c0}id0iel]} N

S

<=

NSNS

Table 3.4: Fault-matrix after removing the essential test 110.

There are no essential tests in this table i.e. each fault is covered by more than one test.
By inspection it can be deduced that three tests are required to cover all the remaining
faults. One suitable choice of test patterns might be 100 (because it covers all the faults
except a/l and f/0), 000 (because it covers a/l) and 111 (because it covers f/0).
Alternatively, a boolean expression can be derived from the table which can be reduced
to show that at least three tests are required and that there are six ways to choose them.

By simplifying a fault-matrix the test program has now been reduced from eight
patterns to four, namely {110, 100, 000, 111}. This simplification technique is directly
analogous to the technique used in Quine-McCluskey [McCluskey 62] boolean
simplification to find prime implicants.

Test pattern generation for realistic circuits involves manipulating vast amounts of
information. A useful preprocessing stage to test pattern generation is fault-collapsing.
This technique reduces the size of the fault-list by identifying faults which are
indistinguishable. Two faults are indistinguishable if they are covered by the same test
patterns. Table 3.3 is rearranged in table 3.5 to highlight indistinguishable faults. The
faults {a/0, d/0, e/0} are indistinguishable, so they can be replaced by just one fault in the
fault-list.

T/F[a0]d0 | eP] /1] H1] Z1]cO]H0 [al[bO]BT[cATdT]z0
/iI/ 1/ 7/

001 S|/ 1/ / /

010 1/ 1/ v/

011 / I/ / v/

0]/ 1/ | / 7/ 7/

0/ 1/ 1|/ /

110 1/ i/ / |/

111 S/ 7/

Table 3.5: Groups of indistinguishable faults.

49

The other non-singleton groups are {e/1, f/1, z/1} and {c/0, f/0}. By choosing just one
representative from each set, the fault-list can now be reduced to:

{a/0, e/1, ¢/0, a/1, b/0, b/1, c/1, d/1, z/0}

This has removed five faults from the fault-list which results in a substantial saving in
test pattern generation effort. The fault-list can be reduced even further by finding fault
dominance in table 3.6. A fault R is dominated by a fault S if the ticks in R’s row are a
subset of the ticks in S’s row and is denoted by S — R. There are several instances of
fault dominance in table 3.5:

a/O - Z/O

all - e/t
¢/0 - z/0

c/l »efl

d/1l - b/0, c/1, e/l

Once the dominated faults have been removed the fault-list is reduced to just five
elements:

{a/0, a/1, b/1, c/0, d/1}

The reduction of the fault list from 14 to S is a large saving but not a typical one. Fault
collapsing usually halves the size of the fault list.

Instead of building tables from scratch for each circuit to be analysed for fault-
collapsing, it is possible to determine characteristics about isolated gates and combine
these to deduce information about a circuit made from these gates. Table 3.6 shows fault-
collapsing information for AND, OR and NOT gates (Figure 3).

Gate Indistinguishable faults Fault Dominance
AND {a/0, b/0, 710i a/l, b/l - z/1
OR {a/1, b/1, z/1} a/0 - b/0 - z0
NOT {a/0, z/1}; {a/1, z/0} None

Table 3.6: Fault-collapsing information for isolated gates.

The techniques of sensitive path analysis and fault collapsing have to be applied with
care to circuits containing reconvergent fanout. An example of such a circuit is shown in
figure 3.8.

50

0-1
1-50

b—1=20 | 21 Q=21
150

1 & P51

Figure 3.8: Positive reconvergence under fault b/0.

The test pattern is abc/z=111/0 and the fault under consideration is b/0. The circuit is
annotated with differences between the fault-free and faulty circuit. 1 — 0 means that a
node which has logic value 1 in a fault free circuit assumes logic value 0 when the fault
under consideration is present and similarly for O — 1. The interesting aspect of the fault
propagation in this circuit is that there are two paths simultaneously sensitized from the
site of the fault to the primary output z. The fan-out is responsible for allowing more than
one path and the reconvergence at the last NAND gate combines the results of the two
sensitive paths to produce a sensitive output. The term dual-path sensitization is used
to describe this situation. Both the inputs to the last NAND gate must be sensitive to the
fault b/0 to sensitize the output. One change in only one input does not cause a change in
the output. Positive reconvergence occurs when two sensitive paths reconverge to
reinforce each other. Each path alone does not create a sensitive output: both must be
sensitive.

The circuit in figure 3.9 shows an example of negative reconvergence: this is where
information from two sensitive paths reconverge in a manner which makes it impossible

to extend the sensitive path.

1

a

150
01 & p |
b 0-1 & 151 2
0-1 >1 ___l—
c._O____ 0-1

Figure 3.9: An example of negative reconvergence

The test b=0 (sensitize the site of the fault), a=1 (enable top NAND gate) and c=0 (enable
OR gate) is applied to the primary inputs. Two sensitive paths exist up to the last NAND
gate. Each node assumes value O instead of 1 when fault 5/0 occurs). Unfortunately,
these sensitive paths combine at the last NAND gate to produce an output of 1 which is
the same as the output for the fault-free version of the circuit. Consequently the input
pattern abc=100 is not a test pattern for the fault b/1.

51

The implication of fanout and reconvergence is that care must be taken when
examining paths through such circuits. If a path is blocked through two alternative paths
independently then it may not be blocked if both paths are sensitized simultaneously.
Also, tests generated for reconvergent fanout circuits have to be checked to ensure that
negative reconvergence does not take place.

Fanout and reconvergence also affects the results obtained for fault-collapsing.
Applying the rules in table 3.6 to the circuit in figure 3.8 the indistinguishable faults for
the bottom AND gate are found to be {b/0, c/0, f/0}. However, comparing this with the
fault matrix reveals that these faults are not actually indistinguishable: b/0 is different from
{c/0, f10}.

The problem is that the test 111 which covers f/0 does not cover b/0 because negative
reconvergence causes the fault-effect of fto be cancelled by the fault-effect at e. Also, the
test 110 which covers b/0 does not cover f/0 because it uses a different sensitive path
through e instead of f. Both of these problems are a result of the fan-out that occurs at
node b. One solution is to remove all the implications resulting from the fanout node,
giving the correct result at gate 3: {c/0, f/0} ; ¢/1 - f/1 i.e. c/0 and f/O are equivalent and
¢/1 dominates f/1.

3.1 Boolean Differences

Another technique for generating tests for faults in combinational circuits is the boolean
difference method [Sellers 68). This method employs differential equations to
describe test patterns. There is a strong analogy between differential equations over
boolean values and those over real numbers and they share many common properties.
This is because boolean algebra and the real number system are both examples of rings in
mathematics.

Consider the problem of generating a test for a single output circuit characterised by
the function F(xj,...x,) where xi..x, are the primary inputs. First, the problem of
generating tests for primary inputs is solved. This is then extended to internal nodes.

A fault is testable if a change of logic value at the site of the fault also produces a
change at an observable output. Assume that input x; is to be tested for a fault. The set of
tests that expose faults at x; are captured formally by using the exclusive-or operation:

F(x1,...,0,..xp) ® F(x1,...,1,..xp) = 1

52

If the exclusive-or of the outputs with and without the fault is O then this means that there
is no difference in the circuit response between the fault-free and faulty circuits. The left
hand side of the above equation is the boolean difference, and is written as:

dF(X)

ax; = F(xp,...,0,...,Xp) ® F(xy,...,1,...,Xp)

where X = x1,...Xp.

The boolean difference describes all the conditions (i.e. values of the inputs) for which
the output of F depends only on x;. A test for a fault at the site of the primary input x;
exists if dF(X)/dx; = 1 i.e. the output of the function is negated by the presence of the
fault for certain input assignments. However, if dF(X)/dx; = O then there are no input
assignments that cause the output to be complemented when the fault is present. This
makes the fault at site x; undetectable.

The boolean difference sensitizes a path from the site of the fault to an observable
output. To generate a test pattern, the site of the fault has to be sensitized by setting it to
the opposite value of the fault. This is also done by choosing suitable assignments to the
primary inputs. A test is a consistent combination of patterns generated by the boolean
difference and the sensitization of the site of the fault i.e. the logical conjunction of the
boolean difference and the condition for sensitizing the site of the fault.

Consider the example of testing for the fault x; stuck-at-0. The condition required to
sensitize the site of the fault is xj = 1. Tests for this fault are given by solutions to the
expression:

dF(X)

ax; xj=1

This derivative describes the conditions required to from a sensitive path from the site of
the fault (i.e. the primary input x;) to the output and the x; term sensitizes the site of the
fault by requiring x; to be 1 (opposite of the stuck-at value). By similar reasoning, the
tests for x; stuck-at 1 are given by the expression:
dF(X) _—
—.Xx=1
dx; Xi

This expression requires x; to be sensitized by assigning to it the value 0.

Tests can be generated for internal nodes by thinking of the node to be tested as being
an extra primary input to the circuit. Consider the generation of a test for an internal node
k using boolean differences. First, the logic value at k is expressed in terms of the
primary inputs i.e. k = g(xj,....x,) Where g is a boolean function. The reason for this is

53

that k might not depend on all n inputs. Now k can be added to the parameter list:

dF (X ,k)

* - F(x1,....X0,k) @ F(x1,....Xn,k)

Now k can be replaced in the expansions of the above expression by expressing it in
terms of the primary inputs. This relationship is given by g.

To illustrate boolean differences, this method is used to generate tests for the circuit in
figure 3.6. Tests for this circuit have already been generated by using sensitive paths. The
function of the circuit is

F(a,b,c)=(@ar-=b)v(bac)
The primary inputs are dealt with first. Let X = (a, b, ¢).

e Node a.

dF(X) _
i FO,b,c) ® F(1,b,c)

F(0,b,c) = (0A=b) v (bac) =0 v (bac) = bac
F(1,b,c) = (1a=b) v (bac) = —=b v (baC)

F(0,b,c) ® F(1,b,c) = —b

This is only 1 if 5=0. Note that this is the condition that is required to establish a sensitive
path from a to z. Let X denote a don’t care assignment. To test for a/0 requires a=1 so a
test for this fault is abc/z=10X/1. Testing for a/1 requires a=0 so the test pattern is
abc/z=00X/0.

¢ Node b.

dF(X) _
5= F(a,0,c) ® F(a,1,c)

F(a,0,c) = (arl) v(Onc) =a
F(a,1,c) = (ar0) v (1nc) =¢

F(a,0,c) ® F(a,1,c)
=a®c { defn. of F }
= AAC v —AAC { defn. of ®)

The boolean difference is 1 when either a is 1 or ¢ is 1 but not both. To test for b/0
requires b=1 giving the tests abc/z=110/0 (with a=1) and abc/z=011/1 (with ¢=1). To test
for b/1 requires b=0 giving the tests abc/z=100/1 and abc/z=001/0.

¢ Node c.

d = F(a,b,O) @ F(a,b,l)

F(a,b,0) = (ar—b) v (bA0) = an—b
F(a,b,1) = (arn—b) v (bal) = (ar=b) v b

dF(X)
c

F(a,b,0) ® F(a,b,1) = b

The solution to the differential is b=1. Tests for c/0 are abc/z=X11/1 and test for ¢/1 are
abc/z=X10/0.

e Node d.

Make d a pseudo-input d = —b so F(a,b,c,d) = ard v bac.

dF(X,d)
dd

F(a,b,c,0) =0 v bac = bac
F(a,b,c,1)=a v bac

=F(a,b,c,0) ® F(a,b,c,1)

F(a,b,c,0) ® F(a,b,c,1) = ar(—b v —c)
For d/0 this yields the tests abc/z=10X/1. The test for d/1 is abc/z=110/0.

The tests for the other faults are obtained in a similar manner.

3.5 Deductive Fault Simulation

3.5.1 Introduction to Deductive Fault Simulation

The generation of a test pattern for a given fault is very expensive. Once a test pattern for
a particular fault has been generated, it is often the case that this test pattern will also
reveal other faults. Employing a test pattern generation system to rediscover test patterns
at great cost is not necessary. It is possible to perform an analysis which examines a
circuit for a given test pattern in order to ascertain which faults it exposes.

A fault simulator takes as input a test pattern and a circuit description and produces as
output a list of faults that can be detected by this pattern. Some fault simulators work by
simulating defective versions of the circuit, whilst others simulate the working version
and deduce from the correct behaviour which faults are detectable at the primary outputs.
A deductive fault simulator [Armstrong 72] belongs to the latter category. A circuit

55

represented as a product of sums of AND, OR, NAND and NOR gates may be
transformed into a set expression which yields the faults required.

Deductive fault simulation works by propagating lists which represent faults detected
at predecessor gates. For each gate, the subset of faults that is passed is modified to
describe what faults are propagated to the output of the gate. We assume that the single
stuck-at fault model is employed.

The output of each gate is the true logic value and a set of faults that the output line is
sensitive to. A set X is ‘negated’ w.r.t. another set Y by complementing it with the union
of X and Y.The circuit is transformed into a set expression by using the following rules.

1. Replace all AND gates by set intersection M

2. Replace all OR gates by set union U

3. Negate a fault set if its true value is 1

4. Add to each output the appropriate stuck-at-fault
5. Simplify the resulting expression

It is not obvious why these rules describe a method for correctly propagating
detectable faults. For deductive fault simulation, wires carry fault propagation information
as well as logic values. The fault information is represented as a set of faults that a given
wire is sensitive to.

The faults that are propagated through a 2-input AND gate for all 4 possible input values
are characterised by set expressions. Let the logic inputs to the AND gate be x and y and
let the fault sets be A and B respectively.

« Pattern 00/0. Any fault that causes the output to be different from its true value is a
detectable fault. In this case, the output has to be 1 for the effect of some previous fault to
be detected. This requires both inputs to be 1 for the output to be 1 i.e. we want any fault
that changes from 0 to 1 (0—1) the first and second input. This means that we want the
faults that are common to sets A and Bi.e. AN B.

« Pattern 01/0. We want to choose those faults that cause the output to change to 1 i.e.
those faults that change the first input. It is wrong to simply choose all the faults in set A
because some of these faults may also be in set B. Consider the effect of a faultin A N B:
this causes the first input to be faulty (0—1) and the second input to be faulty (1—0). The
result is that the output is still 0 (not different from its true value) so such faults are not
detectable. We want those faults that are in A but not in B i.e. A — (A N B). We may
rewrite this as A N —B.

56

* Pattern 10/0. By a similar argument it can be seen that the faults propagated are
represented by the set expression B— (A N B)ie. -A N B.

* Pattern 11/1. We now want to pass any faults that cause the output to become O i.e.
faults that cause either of the inputs to be 0. The effect of any fault in A or B is to set one
or more of the inputs to 0 so we can pass all the faults in A and B i.e. A U B. This may
be rewritten as follows: A U B = =—(A U B) = ~(—A N —B).

To each of the set expressions above we must remember to add the fault detectable at
the output. The following table summarises the results:

Pattern Set Expression

00/0 (ANB) U (z/1}) 1
01/0 (AN —B)u {z/1) 2
10/0 (—rANB)u (/1) 3
11/1 —(—A N =B) U {z/0) 4

Notice the pattern:

« if x=1 then A is complemented (lines 3 and 4)
» if y=1 then B is complemented (lines 2 and 3)
« if z=1 then the first part of the set expression is complemented (line 4)

This now provides an explanation for the rules given earlier for deductive fault
simulation. These rules are represented using Venn diagrams in figure 3.10.

& = | 0
0 0 &
B — B —-
B B
A
A—0 0 A—]— 0
& — & =
B—l B —
B

57

Figure 3.10: Venn Diagrams corresponding to the deductions rules for an AND gate.

We can deduce similar rules for an OR gate:

Pattern Set Expression

00/0 AuB) U ({1}
01/1 —(A U =B)u {z/0}
10/1 —(—A U B)u {z/0}
11/1 —(—A U -B) U {2/0}

These rules are similar to the rules for an AND gate except that intersection has been
replaced by union and the output fault is different.

An inverter will pass all faults at its input and add to the fault list the fault that can be
detected at its output. Rules for other gates can be easily derived. Alternatively, any
combinational circuit can be re-expressed in terms of AND, OR and NOT and the analysis
carried out using the rules given above.

3.5.2 An Example of Deductive Fault Simulation

Figure 3.11 illustrates deductive fault simulation with an example circuit. The input
pattern is 110. Each arrow is a node named by the letter in the centre and the faults
propagated along this node are shown in the set above. The fault-free logic value of each
node is also shown.

{a/1}

0 =5 Y = (@/1,m/0.n/1,1/1) _ |
0 r
0.0/1) (mO,n/1,4/1)

{m/ and

0w ™ A
{(m/0,n/1,p/1}

(i) and o >

0 = i >
Figure 3.11

Consider the AND gate with output node q. The true output is 0 so we want to pass
those faults that will set both the inputs to 1 i.e. we have to ‘fault’ both the inputs. These
faults are obtained by taking the intersection of the two input fault sets (see the rules for
and gate with pattern 00/0). Since this is the primary output of the circuit, the test pattern
110 detects the faults given by the following set expression:

58

{m/0, n/1, p/1} ~ {a/1, m/0, n/1, o/1} U {¢/1} = {m/0, n/1, g/1)

The complete sequence of deductions is presented below. The function ded describes the
deduced faults at a given node.

ded(n) =ded(m)u {n/1} (NOT gate)
= {m/0} U {n/1)
= {m/0, n/1})

ded(r) =ded(a)u ded(n)u {r/1} (OR gate)
= {a/1} u {m/0, n/1} U (1/1}
= {a/1, m/0, n/1, 1/1}

ded(p) =ded(n) ~ —~ded(i) u {p/1} (AND gate)
= {m/0, n/1} n ={i/0} u {p/1}
= {m/0, n/1} v {p/1}
= {m/0, n/1, p/1}

ded(q) =ded (r) nded(p) v {q/1} (AND gate)
= {a/l, m/0, n/1, 1/1} ~ {m/0, n/1, p/1} U {q/1}
= {m0, n/1, q/1}

Because deductive fault simulation works with a correct version of the circuit,

reconvergent fanout problems do not arise.

3.6 Testability Measure

3.6.1 Introduction

Since our objective is to increase the testability of digital circuits, we should have some
precise quantitative measurement of ‘testability’. In the literal sense, most designs are
testable, since it is possible to apply all input combinations and observe the output.
However, we feel that if a design can be tested to a high degree by applying a much
smaller set of test patterns, then it must be more testable. This section describes a few
measures of testability.

3.6.2 ATPG Approach

An Automatic Test Pattern Generation program is used to generate tests and to compute

59

the fault coverage. The running time of this program gives an idea of how difficult it is to
test a particular circuit. However, the run time can be very long, and there is no data
about how to improve the testability of the circuit.

Several programs have been developed which examine the structure of a circuit in
order to estimate its testability without having the incur the expense of running an ATPG
program.

3.6.3 Testability Measure (TM) Programs

These testability measure programs analyse the circuit to estimate the running cost of
generating test patterns (which in turn gives an idea of how testable the circuit is). As they
accumulate this data, they are able to pin-point areas of the design that are difficult to test.
The components in these areas may then be redesigned to allow greater testability (e.g. by
incorporating asynchronous set/reset lines).

There is no simple link between circuit characteristics and testability. The circuit
parameters used by testability measure programs are heuristic and based on the experience
of studying ATPG programs. Thus, different testability measure programs use different
circuit characteristics to estimate testability.

Testability measure programs are assessed by running them on circuits which have
already been analysed by an ATPG program. A monotonic relation between the testability
program run time and the ATPG run time is offered as 'proof’ that the testability measure
program produces a good measure of testability.

Not surprisingly, all the testability measure programs are based around the ideas of
controllability and observability.

3.6.4 TMEAS

In TMEAS [Grason 79], each link has associated with it an observability value OY and a
controllability value CY. These are normalised between O (the worst) and 1 (the best).
Thus, for primary inputs, CY = 1 and for primary outputs OY = 1. Each component in
the circuit has associated with it a controllability transfer factor, CTF, and an
observability transfer factor, OTF. These are used to build two systems of N (N = the
number of components) simultaneous equations which are used to compute the CY and

OY values for internal links.

Sequential components are dealt with by introducing implicit feedback loops (to
represent state transitions) into the circuit. For a particular component, the input
controllability is defined to be the average of the input link controllabilities and the output
controllability is defined to be the average of the output link controllabilities.

The CTF is defined by considering the uniformity of the input-output mapping,
normalised between 0 and 1. A circuit whose output was 0 for half the possible input
values and 1 for the other half would have a CTF of 1. For an n-input single-output
component that has output = 0 for only one component, the CTF is 21-n,

3.6.5 The SCOAP Testability Measure

The SCOAP [Goldstein 79] testability measure assigns a 6-element vector to each node of
the circuit. The six elements describe how easy it is to set a combinational/sequential node
to O or 1 and how easy it is to propagate the value on some combinational/sequential node
to an observable output. For the present we shall restrict ourselves to combinational
circuits, so we shall only be interested in obtaining 3 values for each node!:

(a) set0 (n) - a measure of how easy it is to set node n to logic 0.
(b) setl (n) - a measure of how easy it is to set node n to logic 1.
(c) obsv (n) - a measure of how easy it is to observe the value at node n.

The larger the value for the above measures, the greater is the degree of difficulty for
controlling/observing a given node. The following rules are used for calculating the
SCOAP values for the 2 input nodes and 1 output node of a 2 input AND gate.

SCOAP Rules for (x. wAND ¢

set0 (z) = min [set0 (x), set® (y)] + 1 Rule 1
setl (2) = setl (x) +setl (y) + 1 Rule 2
obsyv (x) = setl (y) + obsv (z) + 1 Rule 3
obsv (y) =setl (x) + obsv (z) + 1 Rule 4

Rule 1 describes how easy it is to set the output z of an AND gate to 0 i.e. set0 (z).

IThese values were called CCO (set0), CC1 (set1) and CO (obsv) in the original literature.

61

This can be done by setting either of the inputs to 0. The SCOAP rules choose the input
which is easier to set to O (i.e. has the lowest measure/cost associated with it) and then
adds 1 as a penalty for propagating the result past the AND gate. To set the output of an
AND gate to 1 requires both the inputs to be set to 1. Thus, the formula for setl (z) adds
the difficulty of setting both x and y to 1 and then adds a fixed penalty of 1 for the AND
gate.

Rules 3 and 4 describe the observability costs for the input nodes x and y. To observe
the value at node x, node y has to be set to 1 so that the output depends only on x. Thus a
cost of setl (y) has to be incurred. Then we have to add the cost of transporting the value
from the output of the AND gate z to an observable output. This can be recursively
specified as obsv (z). Finally we add a penalty of 1 for propagating the value across the
AND gate. Rule 4 is similar.

The table below show the rules for OR gates and NOT gates:

AP Rules for R f2

set0 (z) =set0 (x) +setd (y) +1
setl (z) = min [setl (x), setl (y)] + 1
obsv (x) =setd (y) + obsv (2) + 1
obsv (y) =set0 (x) + obsv (z) + 1

AP Rules for x NOT f
setl (y) =setl (x) +1
setd (y) =setl (x) +1
obsv (x) =1

For inputs, set0 and setl are 1 and for outputs obsv is 0. This reflects that fact that
only one assignment has to be made to set a primary input to a particular value. Also, no
assignments are required to observe an output. The controllability of the primary outputs
and the observability of the primary inputs are values of little interest.

The actual costs returned by the SCOAP measure represent the number of
combinational node assignments required to control/observe a given node plus some
notion of depth. This is a heuristic that tries to estimate the difficulty of generating test
patterns for the given node (i.e the testability of a node). SCOAP gives good values for
small to medium circuits, but deviates from true values for larger circuits.

62

Figure 3.12 shows an example circuit for which SCOAP values shall be computed.

-1

— not —] a’ﬂ

and
— .

Figure 3.12
This circuit can be described by the following Ruby expressions:
[\, NOT; split, 1] ; reorgl ; [AND, OR] ; AND

(a, (b,c), d) reorgl (a,b), (c,d))

The SCOAP values are computed by first evaluating the controllability measures (set0

and set1) and then using these to compute the observability measure (obsv).

set0(a) = 1 setl(a) =1
setOd(m) = 1 setl(m) =1
set0() = 1 setl(i) = 1

setO(n) =1+1=2 setln)=1+1=2

set0(o) =set0(a) +setd(n) +1=1+2+1=4

set1(o) = min [setl(a), setl(n)] + 1 =min[1,2] +1 =2
set0(p) = min [setO(n), set0 (i))] + l =min [2, 1]+ 1 =2
setl(p) = setl(n) +setl(i)+1=2+1=4

set0(q) = min [set0 (0), set0(p)] + 1 =min [2,2] +1 =3
setl(q) =setl(o) +setl(p)+1=2+3+1=6

Inputs

(NOT gate)

(OR gate)

(AND gate)

(AND gate)

Although a controllability value has been computed for the output q, the SCOAP rules

define the outputs to be ‘uncontrollable’ by setting them to infinity.

set((q) = oo setl(q) = oo

The controllability information calculated is now used to compute the observability

values:

obsv(q) =0
obsv(o) =setl(p) +obsv(q)+1=3+0+1=4
obsv(p) =setl(o) +obsv(q)+1=2+0+1=3

Output

(AND gate)

obsv(n) = min [set0(a) + obsv(0), setl(i) + obsv(p)] + 1 (Split)

63
=min[5,4]+1=5

obsvim) =1+obsv(n)=1+5=6
obsv(a)

(NOT gate)
=setd(n) + obsv(o) + 1 =2 +4+1=7
obsv(i)

(OR gate)
=setl(n) +obsv(p)+1=2+3+1=6

(AND gate)
A numerical value has been obtained for the observability of the primary inputs.
However, the SCOAP rules define the primary inputs to be infinitely unobservable:
obsv(a) =

obsv(m) = o obsv(i) = o

This completes the calculation of the SCOAP values for a simple combinational circuit.

These values are used to find areas of poor controllability and observability so that the

circuit can be redesigned to make it more testable. The information computed above is
shown graphically in figure 3.13.

Node o has the largest O-controllability measure at 4 and node p has the highest value

for 1-controllability (also 4). These values are not much larger than the average value of
1.83 so in this case redesign is not necessary.

SCOAP 0-Controllability

SCOAP 1-Controllability

set0

setl

Figure 3.13: SCOAP controllability for example circuit.

The observability values are shown in figure 3.14. As expected, the nodes closer to
the primary inputs are the most difficult to observe. The increase in observability

measure from the outputs to the inputs (right to left in the figure) is small and constant so
there are no nodes that need special treatment in this example.

SCOAP Observability

obsv

nodes

Figure 3.14: SCOAP controllability measure for the example circuit.

3.7 Design for testability techniques

Design for testability implies some modification to the circuit to enhance the process of
test pattern generation and application. The techniques to enhance testability have been
categorized into three main groups:

1 ad hoc methods
2 Structured approaches
3 Built in test and self-test methods

3.7.1 Ad hoc methods

These methods evolved due to the need to solve particular testing problems, rather than
trying to solve the task of testing in general by using a design methodology.

3.7.1.1 Test point insertion

Test points are routed into the circuit to make certain internal nodes more accessible in

order to either control or observe the signal value at the node.

3.7.1.2 Pin amplification

It is desirable to reduce number of pins used by a design. Testing requires extra data to be

65

input/output and therefore extra pins. This cost can be reduced by multiplexing
input/output pins to perform the additional function of acting as test input and outputs.
The disadvantage of this approach is that it slows down the circuit.

3.7.1.3 Blocking or degating logic

In this technique additional gates are incorporated into the design to inhibit data flow
along certain paths, thus partitioning the circuit into smaller modules for the purposes of
testing. Blocking gates are two input gates, one input is the normal data line whilst the
other is the controlling or blocking signal which can be controlled from a test input.

3.7.1.4 Control and observation switching

In this technique signal lines whose logic values are either easily controlled or observed
are identified in the circuit and these are used in conjunction with
demultiplexers/multiplexers to improve access to nearby nodes, whose logic values are
difficult to control or observe.

3.7.1.5 Test state registers

Test state registers can be attached to various internal nodes. These registers may have
values shifted into them to set these nodes to a particular value or they may be shifted out
so the value present at the node may be examined.

Ad hoc methods for improving the testability of a circuit have the advantage of not
imposing severe constraints on the designer. However, a disadvantage is that these
methods cannot be automated, and consequently there is no software support for these
techniques of designing for testability.

3.7.2 Structural Approaches

These design methods are incorporated into the design from the outset rather than as an
afterthought as with ad hoc methods. Most structural techniques use hard and fast rules

allowing software support.

The objective in developing the structural approach was to facilitate the testing of
complex sequential circuits. These methods increase the controllability and observability
of the internal state elements, essentially transforming the testing of a sequential circuit

into the simpler task of testing a combinational circuit.

66

The level sensitive scan design and the scan/set design are two of the more popular
methods in industry.

3.7.2.1 Level sensitive scan design (LSSD)

This method combines two design concepts, namely level sensitivity and scan path. The
concept of a level sensitive design requires that the operation of circuit be independent of
dynamic characteristics of the logic elements. This simplifies testing because it abstracts
away from rise and fall times and propagation delays within gates. Furthermore in a level
sensitive design the next state of the circuit is independent of the order in which changes
occur when a state change involves several input signals.

The major element in a level sensitive design is the polarity hold shift register latch
(SRL), which is used to implement all storage elements in the circuit. The SRL is similar
to a master slave flip flop and is driven by two non-overlapping clocks. These clocks can
be readily controlled from the primary inputs to the circuit.

The register also has the important characteristic of being configurable into a long shift
register which forms a scan path. Nodes may be set to some predetermined value by
shifting values into the SRLs and values of state elements may be examined by shifting
out values in the SRLs. An SRL is shown symbolically in Figure 3.15.

Datainput
System Clock C1
Scan input >

Shiftlock C3 [>

L1

>

System/Shift clock C2

Figure 3.15: LSSD SLR Latch.

Testing using the LSSD approach proceeds as follows: first the individual registers are
tested by using simple flush and shift tests. Then, the combinatorial subfunctions are
tested. This involves switching the circuit into test mode. The SRLs are then preloaded

67

with a test pattern which is shifted in via the scan in port. This pattern is successively
stepped through each element in the scan path by pulsing clocks C3 and C2.

The circuit is then switched into its normal operating mode and clock C1 is then pulsed
on and then off. The result of the combinatorial subfunction is thus stored in the L1
latches of the SRL, and by pulsing C2 these values are duplicated in the L2 latches.

Finally, the circuit is switched back into test mode. The values in the L2 latches are
shifted out by using the scan path. Thus by using the scan path, future states can be set
up independently of the present state of the system. Internal states can be easily observed,
so reducing the problem of testing a sequential circuit to that of testing a combinational
circuit (as demonstrated by the LSSD configuration in Figure 3.16).

LSSD removes the necessity of performing detailed timing analysis on the circuit since
itis is level sensitive. Automatic test pattern test generation is simplified since tests need
only be generated for combinational circuits. Since LSSD is a disciplined design
methodology a design can be checked for compliance to the design rules.

However, the designer is constrained to implement his system as a synchronous
sequential circuit. Test times are increased since input and output data must be scanned
serially and also the system must be switched between normal and test modes. Additional
input/output pins are required for the scan-in/scan-out ports and clocks. Two clock pulses
are required before data can pass from one partition to the other. This problem may be
overcome by modifying the double latch. Despite these disadvantages, the LSSD scan
path technique has been widely used in industry.

L C
L1 TD_ o
] c
L2 L3
' c
> 3
__D_)
:
= i | comb. L1 Comb. L1
o' logic logic
C]
—! L2 | o — L2 | |
w : _D_
(Scan Out
v
L1 L1
L2 |—e J L2

. Note: Control
Scanin clocks go to

C1 % all latches

Figure 3.16: LSSD Configuration.

3.7.2.2 Scan-set logic

This technique entails selecting nodes of interest whose values can be recorded in a shift
register. The same register can be used to alter these node values. Unlike the LSSD
method, this method does not place shift registers in the main data path, as shown in
Figure 3.17. Only a small number of nodes may be tested. These nodes may be set or
examined by shifting values into or out of the shift register. The nodes to be examined are
determined by using the results of a testability analysis program.

This method does not partition the circuit into combinational blocks. The scan/set
register can be used to apply signals to blocking gates to partition the circuit into smaller

modules to ease the testing problem.

The advantage of this method over LSSD is that the state of the system latches may be
examined without interrupting the normal operation of the circuit.

69

Scan in Set function TTTTT Scan Out

H 1
Scan function v

System Logic
Outputs

Figure 3.16: Scan/Sect Configuration.

3.7.3 Built-in-test and self-test methods

Scan path methods simplify the task the testing, but vast amounts of test data must still be
processed. Input test patterns have to be generated, true value output responses computed
and stored, and output responses of the circuit under test stored and analysed.

Various techniques have been tried to tackle this problem by using data compression
methods eg. transition counting and signature analysis. Transition counting is a relatively
poor method, so we shall concentrate on signature analysis— a built-in-test method
which is later incorporated into the self-test technique developed for VLSI circuits called
BILBO.

3.7.3.1 Signature analysis

The main functional element used in signature analysis is the Linear Feedback Shift
Register (LFSR) shown in Figure 3.18. This comprises of a series of latches in which
signal taps are taken from certain stages, exculsive-ORed and returned to the input of the
first latch. This configuration will generate a repetitive PN (pseudo-random noise)

sequence.

In the signature analysis configureation stage the output of the exclusive-OR gate is not
returned directly to the input of the first stage but is subsequently exclusive-ORed with a
signal from some other source, as shown in Figure 3.18. At any time the contents of the
register will not contain the values defined by the PN sequence, but will be modified in

70

some way characteristic of the signal coming from the other source. The modified bit
pattern in the register is called the signature of the input source.

EXOR | &
BO |- Bl [B2 B3
@
{ EXOR |‘_—I
From B3
fest EXOR B0 -y Bl %y B2
®

Figure 3.18: (a) PN Sequence generator (b) Signature analyser register

If the LFSR is initialised to give a pattern and then mixed with a signal coming from a
node in a fault free circuit, after a prescribed number of clock cycles a signature
characteristic of the fault-free circuit will be stored in the LFSR. Faulty circuits will have

a different signature.

3.7.3.2 Built-in-logic block observation (BILBO)

BILBO is a built-in test generation scheme which uses signature analysis with a scan
path. The major component in this self-test technique is a multi-mode shift register. This
allows the BILBO to be set up in the following three ways:

1 as a long shift register forming a scan path
2 as aregular latch for normal operation
3 asa LFSR having multiple inputs for signature analysis

n

4 and under a certain control to be reset.

Figure 3.19 shows a BILBO configuration. A slightly different configuration is used
in bus architectures.

Z Combin, o] Combin,
E +—» circuit ; —» circuit
1 O 2
PN Generator Signature anaylisis register

=z Combin. w Combin.
E ——P circuit [P g —J circuit
&) o) :

1

e .

A

Signature analysi i
gnatur ysis register PN Generator

Figure 3.18: BILBO In test configuration.

A BILBO register is used to generate a PN-sequence which is applied to the
combinational block under test. A second BILBO is used as a signature analyser register,
which after N cycles will contain a signature peculiar to the state of the circuit. The
BILBO containing the signature is then reconfigured as a scan-out register and the
signature shifted out. The roles of the BILBOs are then reversed so that the next section

of the circuit can be tested.

This technique effectively eliminates the need for test pattern generation, although fault
simulation may be required to determine the fault coverage of the PN-sequences. The
circuit will also have to be simulated to determine the fault free signature values.

3.8 Discussion

Testing for manufacturing errors in integrated circuits is an increasingly important task as

72

greater emphasis is placed on reliability and quality. However, testing circuits is also
becoming increasingly difficult. This is due to the complexity of modern designs and the
difficulty of examining the internal workings of chips. Most automated test methods are
just formalisations of manual techniques. Reasonably good tools are available for
generating tests for most combinational circuits, but sequential circuits are still very
difficult to test. The usual approach is to decompose a sequential design into a set of
combinational circuits which can then be tested using traditional techniques.

Automation of test pattern generation is essential if circuits are to be tested
economically. This requires very precise descriptions of circuits for use by analysis tools.
As designs become more complex, the need to describe systems hierarchically and at high
levels of abstraction arises. Formal algebraic languages like Ruby have been shown to be
suitable for such high level descriptions.

In addition to test pattern generators, many other tools are required to reduce the
complexity of the problem. This chapter has shown the value of deductive fault
simulators and testability measure programs. These analysis tools must be reliable—
hopefully proved correct by formal verification techniques. Analysis tools also have to
cooperate with each other in a harmonious fashion to create a usable design system. Many
of the tasks performed by analysis tools are of a similar nature, so any re-use of code
would be beneficial. Later chapters present a technique which allows a great deal of code

re-use.

Chapter 4
Abstract Interpretation

4.1 Introduction

One method which has been used to analyse hardware descriptions and computer
programs is abstract interpretation. This chapter introduces this technique and presents a
common application in the field of strictness analysis of functional programs. Abstract
interpretation is then shown to be useful for hardware descriptions too. A review of how
others have used abstract interpretation for analysing hardware descriptions is also
presented.

Given the task “find the sign of 34 * (-5) * (-3993)” one straightforward way to
proceed is to evaluate the expression and then examine the sign of the result, ignoring the
rest of the answer. Alternatively, we can use some simple rules about the signs of
numbers. Since we know that when two numbers of the same sign are multiplied
together, the result is positive and when two numbers of opposite sign are multiplied
together, the result is negative, we can abstract way from the values of numbers. All we
need to know about a number is its sign.

Let +ve denote “positive” and -ve denote “negative” and let them be of type sign. We
can define x, an abstract version of the multiplication operator * over +ve and -ve to
describe what happens when numbers of various sign combinations are multiplied

together:
-ve x -ve = +ve
-ve x +wve = -ve
+ve X -ve = -ve
+ve x +wve = +ve

73

74

If we can convert numbers to either -ve or +ve then we can use the above rules to
compute the sign of the multiplication. We need an abstraction function abs, which
removes from a number everything except the sign. The signature of this function is

abs : number — sign
Now, the sign of 34 * (-5) * (-3993) may be computed as follows:

sign (34 * (-5) * (-3993))

= abs (34) x abs (-5) x abs (-3993)

= (+ve x -ve) X -ve

=-Veé X -ve

= +ve

Performing the above calculation is much cheaper than working out the arithmetic and

then throwing away most of the result. It is a shortcut to performing the full evaluation: it
does less work and is simpler. The * operator has been replaced by an abstract operator x

and numbers have been replaced by the abstract values +ve and -ve.

34 * (-5) * (-3993)

rule of signs

-678810 —| -ve
take sign only

Figure 4.1: Using an abstraction over arithmetic and integers.

The standard interpretation above performs the arithmetic and then throws away
everything except the sign. The abstract interpretation provides a shortcut which
gives us the same result as applying the standard interpretation and then performing an
abstraction (i.e. ignoring the sign).

Will the shortcut always give the right answer? We have to prove the abstract
interpretation is correct with respect to the standard interpretation. In other words, we
have to prove the safety of our abstract interpretation. For the example above, this could
be done by showing that the rule of signs always delivers a result which is consistent
with performing the arithmetic and then taking the sign.

75

4.2 Strictness Analysis

The technique of abstract interpretation has been used to compute strictness information
for lazy functional programs. This information is used to compile more efficient code and
to help spot parallelism.

In a lazy functional language, a function f will only evaluate its argument if it has to. If
the argument is a complex composite object then a closure has to be created for this
expression and passed to f. This is an expensive overhead. If we know that a particular
argument will always be used, then it is cheaper to evaluate it first and then pass the
resulting value. The function is said to be strict in the corresponding parameter. It is not
always safe to evaluate the argument before passing it. For example, if an argument
represents a non-terminating computation, but is not used in a call of a function, then it
would be wrong to attempt to evaluate this argument before making the call.

We now formally define exactly what we mean by a strict function. A function f is
strict in its argument if and only if

fl=1

where 1 denotes bottom (or non-termination). This means that if fis given a non-

terminating argument, then f will not terminate.

For a function of several arguments, we speak of strictness in a particular argument.
Consider the function g of three arguments x, y and z. We say that g is strict in y if:

gxlz=1 forany x and z

Consider the following definition of a first order function f.

fpqr= if p=0 then
q+r

else
q+p

Which parameters will t always need? The expression p=0 is always evaluated, so p is
always evaluated, since = is a strict operation. Thus, f is strict in p. The function only
uses r when p=0 so f is not strict in this parameter since it does not need always to
evaluate it. However, q is always evaluated, no matter what the result of the test p=0 is,

so f is strict in q.

76

The strictness information above was derived manually by inspection. It is possible to
use a mechanical technique to analyse the strictness of a given function. This is done by
executing an abstract version of f. Let the abstract values be 0 and 1 denoting non-
termination and possible termination. To test for strictness in p, we compute the value of f
0 1 1. Informally, we are testing to see if f terminates when its first argument p does not
terminate. If this value is 0 then f is strict in p, if it is 1 then we have no information about
its strictness. The following abstract interpretation may be used to compute the desired
strictness information.

abs [constant] = 1

abs [variable] = variable

abs[a+bj=a b

abs[a=bj=anAb

abs [if c then t else f] = abs [c] A (abs [t] v abs [f])

Using these rules we can compute an abstract version of 1, called #.

#par =(Ea1)A(Garvanp)
=pAqAa(rvp)

This abstract version of f may now be executed with appropriate abstract values to
yield strictness information about the parameters.
#0011 = 0A1A(IVv0)=0 f strict in p
#101
f#110

1A0A(IVv])=0 f strictin q

1ATA(OVD=1 f is of unknown strictness in r

Why can we not conclude that f is not strict in r? The above interpretation only gives an
approximate answer. Consider the following definition:
gx y = ify=ythen
X+2
else
0
Informally, we see that g is strict in x because the true branch of the if statement is
executed since the conditional part of the if expression is always true. This means that the
value of x is always needed. But the abstract interpretation given above yields the
following results:

g#xy =ya(xal)vil) =y ..
g#0t1 =0 gstrict iny
gt10 =1 g is of unknown strictness in x

We cannot hope to find all instances of strictness using an approximating technique

77

like abstract interpretation. However, it is important that the abstractions used are safe i.e.
if an argument is analysed to be strict using the approximation, then it is also strict in the
standard semantics.

Abstract interpretation has been very successful in analysing strictness and is the
standard technique employed for this purpose [Peyton-Jones 87, Mycroft 83]. The
technique can be improved by using a non-flat abstract domain to help reason about the
strictness of composite data types [Hughes 86, Wadler 87]. It has been shown to deal
adequately with higher order functions [Burn 86, Hudak 85] and also works for
polymorphic languages [Abramsky 86]. The author has also proposed an alternative view
of strictness analysis as a differencing operation akin to boolean differences [Singh 91].

4.3 Abstract Interpretation of HDLs

Strictness analysis is just one example from the programming language field that employs
abstract interpretation to analyse programs. Other examples include life time analysis and
compiler optimizations like register allocation. All of these examples work well with
abstract interpretation because the underlying ‘structure’ of the interpretation is the same
as that of the programs analysed.

Hardware descriptions can also be analysed by abstract interpretation. The analyses
performed will be very different since strictness analysis and CPU register allocation are
not relevant to hardware design. Instead, many useful measures like area, speed and
power can be estimated quickly by using abstract interpretation. Others measures include
longest and shortest delay and combinational nesting.

The use of a high level description language makes abstract interpretation a more
formal process since the interpretation can be stated with respect to a precisely defined
standard semantics. The interpretations we present are based on the standard semantics of
Ruby, as defined by Sheeran [Sheeran 88]. Also, it is argued that performing abstract
interpretation over high level descriptions will result in more accurate information. Most
abstractions are approximations— more information about the purpose of a design is
likely to lead to a more precise analysis. In a logic diagram, the purpose of individual
gates may be very unclear. The use of a high level description language encourages
modular hierarchical design where the purpose of subcomponents is stated clearly.

78

4.4 An Alternative Interpretation in Ruby

An alternative interpretation has been used by Sheeran to analyse Ruby circuit
descriptions [Sheeran 86]. Left to right information flow is denoted by = and right to left
by <. The symbol = is used to describe the case where the inputs are in the domain and
the outputs are in the range. Similarly, < describes the case where the inputs are in the
range and the outputs are in the domain.

Each primitive is replaced by a relation describing the allowable directions of
information flow. This relation is represented by a set of possible direction assignments
to the domain and range. For gates like AND this will give a singleton set since there is
only one allowable manner of information flow.

AND* = {((=,2),2)}

To distinguish between the standard AND and the abstract version, the abstract version
has been named AND*. Other primitives are annotated similarly.

Since NOT is its own inverse, it can always be driven from either direction giving a
two element set.

NOT* = {(2,=2), (&,&))

The abstract identity relation is defined to be the identity over = and « and tuples of
these values.

ID* = TU {(=,=), (&,<)}

The operation T is introduced to extend a relation over arbitrary tuples as well as atomic

values. This operation can be defined schematically as:

aTUuR) b o true where a R b and a, b atomic
<a> TUR) o true where a TU(R) b

<a, b> TU(R) <c, d> o true where a TUR) c & b TUR) d
etc.

A wire or bus places no constraints on information flow. Latches have to be run
forwards so they are replaced by = or tuples containing only left to right arrows.

Abstract versions of the combining forms must also be given. The inverse of a circuit

79

should reverse all the information flows as well as flipping the circuit. Let the direction
reversing relation be rev-dir:

rev-dir = TU {(=,<), (<,=)]

Note that rev-dir is its own inverse i.e. rev-dir = rev-dir-l. The abstract version of
relational inverse should reverse the direction of flow, compose this with the inverse of
the abstract circuit and reverse the direction of flow again..

(F-H)* =rev-dir ; (F*)1 ; rev-dir

The definitions of serial and parallel composition remain unaltered. This interpretation can
be used to check that information flows in only one direction.

4.5 Combinational & Sequential Depth

An estimate of how long information takes to propagate from the inputs of a circuit to the
outputs is a useful piece of information. One technique for measuring this delay is to
count the maximum number of delay elements between the inputs and outputs.

A suitable abstract interpretation for performing this task is defined as:

aD'b =def b=a+1
aNOT* b =df b=a

(x,y) AND* z =gef z=max [x, Y]
o, WOR*z =gt z=max]|x,y]

The semantics of the other language constructs remain unaltered: only the meaning of the
basic components has to be changed.

As an example, consider the analysis of the following circuit:
F =split; [AND; D, [\, D]; AND; ?2]; OR

A circuit diagram for this circuit is shown in figure 4.2.

80

O,

OR

—(2)—
AND—@——

Figure 4.2: Example circuit F.

The maximum delay computation proceeds as follows. We start off with a delay of 0 on
each primary input.
0,0)F"b o 0 split* ; [AND*; D", [1, D] ; AND* ; D]; OR*b
o Jc.d. 0 AND*; D'cAO[i, D] ; AND*; D'd A
(c,dyOR™ b
o b= max 1, 2]
=3 b=2

This computation is shown in figure 4.3. Note that we rely on the laws:

R;9* = R*:S*
R, S]* = [R*, S*]
0 /) |
. \ZJ] anD* I_@L
0
0 OR* max [1,2]=2
0
| 2@

Figure 4.3: Sequential depth calculation of F.

A similar interpretation can be used to find the shortest sequential delay by using min
instead of max in the definitions of AND* and OR*.

The combinational depth of a circuit can be computed by associating a weight for each
combinational component. Consideration of the testability of the basic gates yields very
rough weightings of 1 for inverters, 2 for OR gates and 3 for AND gates. This gives the

81

simple interpretation :
aD'b =def b=a
aNOT* b =def b=a+l
<x,y> AND* z =gt z=max [x,y] +3
<x,y>OR"z =g z=max[x,y]+2

Using these rules with the above circuit gives:

OF'b & Osplit*; [AND*; D", [, D] ; AND*; D]; OR*b
& Jcd.0AND*;D'caAO[, D]; AND*; D'd A
(c,dyOR* b
b= max[3,3] +2
o b=5

g

Information about maximum combinational depth is useful for analysing the timing
behaviour of a circuit.

4.6 Related Work

4.6.1 Simulating Circuits in Miranda

[Hill 86] has shown how Miranda can be used to simulate digital sequential circuits. He
relies on Miranda’s lazy evaluation to support a simple model of streams. However, his
analysis was only applied to flattened gate-level descriptions with no support for
hierarchy or geometry.

Hill represents gates by Miranda functions. Larger circuits are then built by using
Miranda’s ordinary functional composition. The gate functions operate over a three
valued logic (true, false and unknown). This is represented by the data type bit:

bit ::= ON | OFF | UH

The function used to specify the behaviour of an OR gate is given as:

ON
UH

b or x y = ON, x = ON \/ y

= UH, x = UH \/ y

= OFF, otherwise

Note that this is a function of two arguments. It is not possible to use this function in

82

expressions that employ Miranda’s function composition notation. This is because
function composition is defined only for functions for one argument.

Signals are represented simply as lists of these three valued bits. Clocks are
distributed throughout the circuit explicitly. Constant signals are defined as infinite lists
based on bit. Type synonyms are written using == and list concatenation (like LISP’s
CONS) is written using :

signal == [bit]
on = ON:on

off = OFF:off
uh = UH:uh

Clocks can also be defined as infinite lists of bit values. The definition provided for the
OR gate above cannot be used in sequential circuits. A new function has to be defined by
lifting the existing function to work over lists of bits.

bitwise op bl b2 = map2 bl b2
where
map2 (a:x) (b:y) = (a $op b): (map2 x y)

or_gate = bitwise b_or

Again, Hill uses too poor a representation for signals, since he has had to define a special
function map2. In our system, this is not necessary, because we use a tuple of streams
over which a normal map can be applied.

Using the above definitions, Hill has built some modest circuit descriptions of
synchronous circuits. However, this approach is hampered by the fact that circuit
descriptions are simply Miranda functions. Miranda’s limitations e.g. lack of a parallel
combining form, are reflected in Hill’s descriptions. This prevents structural information
from being captured elegantly— Hill’s definitions only give connectivity.

Hill has suggested that by using a different semantics his system could be used to
produce circuit layouts and test vectors. This is quite easy to accomplish in his system
since for most alternative interpretations, only the definitions of the base components
need to be altered. Hill also suggests the use of a more detailed representation for bit

e.g. voltage levels.

The author has implemented a much improved version of Hill’s system which uses a
richer data type to capture structured logic types. In this system, every function is unary,
and Miranda’s built in function composition can be used to give elegant and readable
circuit descriptions. There is no need to define a special function for serial composition.

83

4.6.2 System Semantics

Boute has extended the denotational semantics of programming languages to a semantics
suitable for describing arbitrary systems [Boute 88]. A system is a collection of physical
objects (subsystems) which interact with each other through physically identifiable
interfaces. Thus, systems can comprise of objects which are not computations in any
sense. However, useful computations can still be performed over these objects. One
major advantage of Boute’s system is that different meaning functions can be used with
the same formal description to calculate different system properties such as component
cost and performance characteristics.

Boute presents a systems semantics for describing system properties by means of
semantic functions. This is different from denotational semantics which defines exactly
one interpretation using an abstract mathematical domain [Stoy 77]. System semantics
defines various interpretations corresponding to different characteristics of a physical
system. The generalization of denotational semantics by the use of abstract domains
(abstract interpretation) is mirrored in systems semantics by an extension in the opposite
direction (adding information rather than removing it) by using concrete interpretations.
This is done by injecting extra information into domains rather than abstracting
information.

Boute defines semantics using a model which consists of a meaning function m which
maps elements of a set S into elements of a domain of interpretation D. The domain D is
the domain of possible meanings (m € S — D). A model M is a pair M = (D, m). Boute
uses total functions to define meanings, so corresponding models are completely defined.

Boute employs a hardware description language called Functional Description of
Systems (FUNDS). We shall not present the entire syntax and semantics of this language:
the examples should be sufficient to demonstrate the principles under consideration. The
syntax of FUNDS is left flexible and resembles usual functional language syntax (like
SASL [Turner 79]). The combinational subset contains the following constant entities:

constant = zero | one | not | and | or
where not is of 1 place and and or are multi-place (i.e. any number of arguments).

To avoid the proliferation of semantic definitions, common parts are factored out. At
the semantic level, a generic definition is introduced for models to which others models
are said to conform. Models which do not have factorizable parts are said to be singular.
At the syntactic level when semantic functions are defined over an abstract syntax, the

concrete syntax is defined in terms of the abstract syntax without reference to the meaning
functions.

The following generic model is defined for the meaning of functions (mfun) and
expressions (mexp). Here, D is a zeroth-order domain of interpretation. The interpretation
for the constants is of the general formk € C — D, where D, = D* - D.

mexpe E—>I1—-D

mexpvi=iv variables
mfune F 51 D* 5D
mfunci =kc for constants

mfun Fx(vo,...,vn.1).eli e D" 5 D
mfun TA(vg,...,vp-1).€Ni (dg,....dn-1) = mexp e i [do/vo] ... [dn-1/Va-1]
meS -D*>D

ms=mfunsi i can be any interpretation

Using this generic model, a simplex behavioural model Smplix = ({0, 1}, smplx) for
the combinational part of FUNDS can be constructed. The constants have the following
definitions:

kzeroe DO D with kzero=0

konee DO D with kone=1

knote D—->D with knotd=—d

kande D* > D with kand (dp,....dn-1) =do A ... A dp-1
kore D* D with kand (dg,....dpn-1) =do v ... v dp-1

Since the model Smplx conforms to the generic model, mexpr and mfun do not need to be
defined again. The meaning function for sentences is then smplx.

Boute also defines several others models including a structural model for describing
loop-free single-output combinational circuits built from elementary gates. He chooses a
model that makes clear the distinction between fanout and replication by using an
appropriate naming convention. A multiplex behavioural model is also presented for
sequential circuits.

To contrast Boute’s method with what we have presented, we give the essential part of
a worst-case timing model with D = R>(. For an n-place constant ¢, k ¢ in D™ — D with:

k ¢ (dp,...,dn-1) = max [dg,...,dp-1] + delay ¢

where delay in C — D is an auxiliary function specifying the delay for each constant. This
is very similar to the maximum combinational depth calculation presented in section 4.5.

85

The main differences are in syntax.

4.6.3 Other Work

O’Donnell has used alternative interpretations to produce drawings of tree-network
circuits [O’Donnell 88]. He presents a language called Hydra which offers the designer
several specification styles, including the ability to capture geometric information in the
same way as Ruby does. Hydra also allows path depth and netlist analyses to be
performed. Using combining forms similar to those found in TeX for drawing pictures,
he has drawn complex circuits by exploiting the technique of functional geometry
[Henderson 82]. Similar analyses have been used to extract layout information from FP
[Schlag 84].

Meshkinpour presents a functional hardware description language called FHDL. Using
this notation, he has reorganized a given system in a pipelined fashion in order to improve
its throughput. To help partition digital systems, a symbolic interpreter is adapted to
compute timing information. This is done in an ad hoc manner by associating attributes
with various gates. This is similar to the abstract interpretation we have presented for
timing analysis.

4.7 Discussion

Abstract interpretation can be used to analyse hardware descriptions, giving information
which is related to the circuit’s behaviour. The advantage of this technique is that once a
simulator is available for a language it only takes a small amount of extra effort to produce
other analysis tools. This is because we usually only have to redefine the meaning of the
processing nodes like AND and NOT. The definitions for wiring circuits tend to be the
same in many analyses, so the standard definition can be re-used.

Analysing circuits for testability involves finding information which is not so directly
related to the behaviour of the circuit. To do this, the behaviour of the basic components
has to be altered in a less disciplined manner which destroys the safety principle.
However, there is no way round this, since the standard semantics does not contain
enough information to abstract from and to yield the analyses we are interested in.

Boute has used a concrete domain to obtain more detailed information about circuits.
However, to perform testability analyses we will need completely different domains.
These cannot be made by simply injecting extra elements into the standard domain. We

86

need an interpretation which is even more general than that offered by concrete domains.
For example, testability measure uses a domain of vectors that are unrelated to the logic
values in the standard domain.

To describe such analyses requires the use of a non-standard semantics over a non-
standard domain of values. This is the topic of the next chapter, which deals with such
non-standard interpretations in detail.

87

Chapter 5
Non-Standard Interpretation

5.1 Introduction

Abstract interpretation does not possess sufficient power to capture all circuit analyses of
interest. In this chapter, we use the non-traditional discipline of non-standard
interpretation. We allow the standard semantics to be replaced by any other semantic
definition. Normally, there will be no formal connection between the standard and non-
standard semantics. Similarly, there need not be an abstraction between standard and non-
standard values.

Our approach is similar to that of Boute [Boute 88] outlined in chapter 4. Boute uses a
generic model to capture common aspects of circuit analyses. We provide a more
powerful generic mechanism. The technique we adopt operates over a richer language
than that used by Boute because we can deal (in a limited fashion) with inverse. Boute
argues that the choice of good composing forms is an essential part of his system
semantics technique, especially for alternative interpretations. We provide a richer
collection of combining forms and we also allow all of these combining forms to be
overridden. Boute does not permit the single combining form that his system supports
(i.e. functional composition) to be redefined. Thus, in one sense at least, our work can be
viewed as an extension of Boute’s to relational style descriptions with more powerful

combining forms and alternative interpretations.

Our aim is to make non-standard interpreters that we can slot into a circuit analysis
tool, rather like one can slot expansion cards into the backplane of computers to increase
their power and functionality. We have developed such a backplane for analysing Ruby
circuit descriptions. It should be easy for the user to specify and add new interpretations.
However, some user interface code might have to be written for interpretations which

require their results to be output in a special manner e.g. bar graphs.

88

Non-standard interpretation has been used by Luk [Luk 90] for analysing
parameterised designs. Luk uses various metrics which are employed to characterise the
performance trade-offs for generic designs. Akella and Gopalakrishnan [Akella 90] have
performed test pattern analysis at a higher level of abstraction by associating testing
directly with the specification of the design. Faults are injected into a structural
specification, and the behavioural consequences are inferred by process composition.

Various techniques have been used by the author to implement non-standard
interpretation, with differing degrees of success. Two promising techniques for non-
standard interpretation are presented. We show some initial attempts as motivation for the
final approaches. One of the final approaches is used when we want to observe the values
at the primary inputs and outputs of circuits. The other technique returns a graph of the

circuit under analysis with all the internal nets annotated with their non-standard values.

Throughout this chapter, a node is a processing element like an AND or NOT gate. It
is not a wire. Wires are grouped into nets. Every wire on a net has the same value.

5.2 Techniques for Expressing NSI

There are many ways to represent a non-standard interpretation of Ruby hardware
descriptions. We have talked about ‘changing the semantics’ of the elementary gates in a
rather informal manner. Before a system can be built for performing non-standard
interpretation, we have to be much more precise about what we mean by ‘interpretation’.
This is done by discussing various models for interpretations that have been
implemented.

To aid the description of various interpretations, we assume that we have available an
algebraic object that represents the abstract syntax of Ruby expressions. The semantics
of Ruby is then described by giving the semantic denotations for the abstract syntax. The
specification of this rather large object would look like the following algebraic type
declaration. The vertical bars separate constructors which correspond the elements of the
Ruby language. Thus, the abstract syntax is represented in terms of constructors.

RUBY :=And’ | Or’ | Not’ | App’ | Ser’ [RUBY] | Par’ [RUBY] |
Block’ string [RUBY] | Id’ | Inv’ RUBY | Fork’ num...

A prime is written after the name of each constructor to avoid confusion with the
corresponding syntactic entity. We can define the standard semantics for Ruby by giving

89

a semantic function for each constructor (abstract syntax) in RUBY. We shall use the
term ‘Ruby construct’ to mean one of the constructors in RUBY. Note that this
specification is recursive, and represents Ruby circuit descriptions as a tree. We shall talk
about graphs to allow for the possibility of feedback loops in sequential circuits, or the
sharing of nodes. The leaf nodes are constructors of arity 0. For example, the processing
nodes And’, Or’ and Not’ and basic wiring forms like App’ do not operate over circuit
descriptions. The internal nodes correspond to the ‘higher-order’ constructors like serial
(Ser’) and parallel (Par’) composition which themselves take other Ruby constructions
and combine them to make a new construction.

A Ruby expression can refer to the name of another Ruby definition available through
the current environment. The constructor Block’ describes such a reference. The first
argument is the name of the definition which is being referenced and the second argument
is a list of Ruby expressions which are higher order arguments (parameters). This
mechanism is implemented just like function calls in traditional functional languages. The
reference is replaced by the defining body of the referenced definition, with the
appropriate parameter and argument substitutions (call-by-value). For example, if fst R is
defined in the environment to be Par’ [R, 1] then the expression Block’ “ist” [And’] is
expanded as follows:

Block’ “tst” [And’} - Par’ [And' 1)

Note that the formal higher order formal parameter R matches with the actual parameter
(argument) And’. The transformation above assumes the existance of a global constant
environment.

The semantic functions, including non-standard interpretations, can be considered to
be mappings between the abstract syntax of Ruby (call this A) and an abstract domain of
interpretation for expressing the semantics (call this D). This is demonstrated in figure 5.1
for a mapping E. The mapping also needs to take account of environment information
which is omitted from the diagram.

/N

A

N
&

abstract syntax semantic domain

90

Figure 5.1: A semantic mapping between A and D.

An important restriction is placed on how non-standard interpretations are to be
constructed. The most general approach is to replace the relation which specifies the
behaviour of each element of Ruby by a non-standard relation. The non-standard
semantics could then be implemented by mapping it onto a relational language. Although
this is the most straightforward way to proceed, we choose a different technique. We
want our interpretations to be realised efficiently, to capture the information flow
precisely and to be easy to implement. Relational implementations make data
dependencies implicit and usually result in backtracking implementations that are not very
efficient. After considering a large number of circuit analysis algorithms, we have come
to the conclusion that many complex algorithms can be decomposed into a series of
unidirectional analyses. Each unidirectional stage can be implemented by functions rather
than relations. This leads to a much more efficient implementation, while retaining ease of
coding.

We choose a very simple scheme for trying to capture relational analyses by
composing unidrectional analyses. Only two kinds of unidirectional analyses are used:
forwards analysis and backwards analysis. In forwards analysis, information flows only
from the domain to the range. In backwards analysis, information flows from the range to
the domain. Complex relational analyses are described by using combinators that operate
over unidirectional analyses. For example, one useful combinator applies a forwards
analysis and then overlays the result of this onto a backwards analysis. We cannot capture
all relational analyses using this scheme, but we have been able to express many complex
backtracking circuit analyses using this technique.

One of the most obvious ways to make a non-standard interpretation is to completely
respecify the semantics of Ruby, as shown in figure 5.2 for a non-standard interpretation
E’. Note that the semantic domain will in general be different for each interpretation. This
is how the first non-standard interpretation system was built by the author. However,
providing an alternative semantics for all of Ruby is a rather unsatisfactory approach. One
of the most appealing aspects of non-standard interpretation is the ability to change the
meaning of only a small subset of the language (e.g. the three logic gates) to get a
completely new interpretation. The other elements of the language should have the same
semantics as before, but should operate over non-standard values.

91

A a

N o '
A A -0 D
/>>\ \ >
E
abstract syntax semantic domain

Figure 5.2: Completely respecified non-standard semantics

The difference between figure 5.1 and figure 5.2 is that the range is different (non-
standard semantic domain) and the semantic function is different (a non-standard
semantics). However, the domain is the same in both schemes (since we want to analyse
the same description under many interpretations).

In most interpretations, the meanings of the wiring primitives and combining forms
remain unaltered. Wires carry information without examining it. They may lose
information by not connecting (or relating) a wire in the domain to the range. Wires can
also duplicate information as well as re-arrange the order of information in a tuple.
However, the information content does not affect the behaviour of wiring circuits. Such
circuits behave then rather like polymorphic functions.

In most interpretations, the wiring primitives and combining forms will just be
plumbing that transmits the values of interest that are computed at combinational gate
nodes. A large area of most circuit designs is spent on communication rather than
processing. Ruby provides a rich collection of operations for describing and laying out
various wiring forms. It would be tedious to have to respecify them for each new
analysis.

This leads to an alternative technique for making non-standard interpretations. We can
parameterise the standard semantics on the ‘processing’ nodes i.e. And’, Or’ and Not'.
This is done by parameterising the semantics on the language constructs which require
different interpretations. At first, the basic gates i.e. the processing nodes were selected
for parameterisation. This method corresponds directly to the generic instantiation
mechanism used in the Ada language for generic packages.

This approach effectively divides the syntactic domain A shown in figure 5.1 into two
parts. One part is invariant between different interpretations and is used to describe those
syntactic entities which have fixed interpretations. The other part contains the syntactic
entities that change meaning under different interpretations. This is demonstrated in figure

92

5.3 for a non-standard interpretation E’’.

parameterised Al
entites /\ J O
N o

syntactic D’

entites A >

whose) \

interp. > 0

does not

vary A2

EII
abstract syntax semantic domain

Figure 5.3: Parameterised interpretations.

Note that the syntactic domain A has been split into two domains A1 and A2. It should
be the case that A1 U A2 =A1and A1 n A2 = &. This ensures that there is exactly one
mapping for every well formed syntactic entity.

This method works well for analyses that only need to provide alternative semantics
for the basic gates. This covers a large class of interpretations. For example, symbolic
simulation and deductive fault simulation can both be represented by this model. This
technique can be implemented in Miranda simply as a function which can be partially
applied. However, it is inflexible because it is difficult to cope with changing the status of
a syntactic entity from non-parameterised to parameterised. For example, we might also
want our interpretation to be parameterised on Fork’. This involves changing Al and A2
and re-coding our implementation function, although the change is very minor.

This was indeed done, and then several other language features were also added to the
list of paramerterised language constructs. The situation degenerated to the point that the
standard interpretation was a hollow shell providing no default semantics for any
language feature because everything was paramerterised. This takes us back to where we
started i.e. having to re-specify the semantics of the entire language for each
interpretation. Clearly, another method was required that allowed certain Ruby constructs
to have their semantics redefined while leaving the others alone.

A variant of the above technique involves making the standard interpretation the
‘behaviour’ or ‘simulation’ interpretation where every Ruby construct including the
processing nodes had a default (simulation) semantics. A mechanism is then provided for
over-riding the semantics of any Ruby construct.

A semantic definition is now provided for the forwards and backwards standard
semantics. The semantic definition S is called an interpretation and takes as its parameters
the direction of the analysis, a Ruby expression to evaluate and domain or range values to

93

be used during the evaluation. The environment p is always constant during evaluation,
so it is not an explicit parameter. The direction is denoted by f for forwards and b for
backwards.

direction :=f | b

The type of an interpretation can be given as follows where V 1 and V2 denote the
range and domain of interpretation:

interpretation: direction - RUBY - V 15 V2

We shall use partial application to simplify our semantic definitions. Let f, g and & be
functions and x be a parameter. Under partial application the following equivalences hold.
They extend in a natural manner to other combining forms.

The standard semantics for the serial and parallel combining forms are defined as
follows where the third parameter is omitted by partial application. Pattern matching is
used and the definitions are scanned in a top down manner.

SfrSer [P, O = SFTP1;SfIQ1 (5.1)
SbiSer [P, O] = SbTQN;ShTPI 5.2)
S dir [Ser’ [x]1 = S dir Tx1 (singleton serial composition list)

SdirTPar’ [P,Q]1 = [S dir TP, S dir TQOT] (5.3)

In the above definitions, semicolon (;) refers to the usual forward function
composition: (f; g) x =g (fx). A definition for parallel composition specialised to
functions is also required:

[F, Gl {a, b) = (Fa,Gb) (5.4)
Inverse is defined by:

Sftinv’ B1 = SblB1 (5.5)

Sbminv B = SfIB1 (5.6)

A named Ruby definition is elaborated by looking up the name in the environment and
then performing a textual substitution of parameters by arguments using the function
subst. The environment function has type p :: string - RUBY

S dir TBlock’ name args = S dir Tsubst (p name) args (5.7

94

The behaviour of the basic gates are described by set-valued functions, using one
function for each direction. For example, the forward behaviour of AND is given by
Andf and the backward behaviour by Andb defined as:

Andf {((L,L)} = (L} (5.9
Andf {((L,H)} = (L} ‘ (5.10)
Andf {(H,L)} = {L} (5.11)
Andf {(H,H)} = {(H) (5.12)
Andb {L} = {(L, L), (L, H), (H, L)} (5.13)
Andb {H} = {(H, H)} (5.14)

The corresponding functions for OR (Orf, Orb) and NOT (Notf, Notb) are defined
similarly. This gives the following standard semantics for the basic gates:

SfTAnd’1 = Andf (5.15)
SbTAnd’1 = Andb (5.16)
SFTorn = Orf (5.17)
SbrTOr = Orb (5.18)
SfTNot’1 = Notf (5.19)
S bTNot’1 = Notb (5.20)

Higher order combining forms like map are instantiated into thier fixed size
equivalents at run time. Thus, the analysis of a circuit containing a map degenerates into
the analysis of a fixed size parallel composition. The standard definitions of the higher
order combining forms are used to simply unfold them from descriptions.

A non-standard interpretation is made by overriding some or all of the standard
interpretation by another semantic definition over the same language (or abstract syntax).
The usual definition for over-riding is used, employing the infix operator ®:

PaQ)a

Pa,ifae domP
= Qa,otherwise (5.30)

If I is a new interpretation for some of Ruby, then a non-standard interpretation is
given by:

IACIN
From the definition of @ it is clear that the following identity holds:
S=SoS

We now review our decision to use the above mechanism for non-standard

95

interpretation and compare it with the most general non-standard interpretation scheme.
For a full relational implementation, a set could be used to represent the required relation.
However, since we are only interested in running our circuits either forwards or
backwards, it seems natural to represent the non-standard semantics by two functions.
Another reason for separating the forward and backwards semantics is that many analyses
only make sense in one direction. For these, the semantic function for the other direction
can be left undefined. Of course, separating a relation into two functions allows for much
more efficient implementation. This allows the relation to be implemented by a pair of
functions without explicit backtracking.

5.3 An Example: Symbolic Simulation

A symbolic simulator is constructed using the interpretation scheme presented above. The
non-standard values are now symbolic expressions which represent the value at a given
node in terms of input variables. Let the non-standard value be called symbol and define it
as:

symbol .= variable | AndExpr symbol symbol | OrExpr symbol symbol |
NotExpr symbol

The input to the simulator is the name of primary inputs. We define symbolic simulation
only for forward interpretations: the backward case is left undefined.

An exclusive-or gate can be defined in Ruby by:
exor = split ; [[t, not], [not, 1] ; [and, and] ; or

The abstract syntax tree in terms of RUBY for this definition is shown in figure 5.4.

96

€xor

Qd') (Not') (Not')

Figure 5.4: Abstract syntax for exclusive-or definition.

It is instructive to note that non-standard interpretations that use alternative semantics for
just the processing constructs (And’, Or’, Not’) change the interpretation of some leaf
nodes, as is the case in figure 5.4. Other leaf nodes like /d’ remain unaltered.

A symbolic simulation of the definition with the non-standard value (x, y) (x and y are
symbolic variables) should give the following result:

OrExpr (AndExpr (NotExpr y) x) (AndExpr (NotExpr x) y)

The expression above is a LISP-like representation of the boolean expression x.—y |
—x.y which realises the exclusive-or operation.To implement symbolic simulation as a
non-standard interpretation, only the processing nodes need to be redefined. A suitable
interpretation is Sym, defined as:

and_sym {(x,y) = AndExpr x y

or_symx,y)=OrExprxy
not_sym x = NotExpr x

SymfTANDT = and_sym
Sym fTORT = or_sym
SymfINOTT = not_sym

Note that the backward interpretation is left undefined since symbolic simulation is
usually only carried out in the forward direction. However, it is interesting to consider
what a backward symbolic simulator should do. The forwards case finds an answer to the
question “If I give the following inputs, what expression appears at the output?”. The
answer to this question is easily derived from the structure of the circuit. The backwards
case can be thought of as asking two slightly different questions. In one case, constant

97

values are assigned to outputs of internal nodes and the question is “What inputs produce
these outputs?”. Answering this question essentially involves performing the task of a test
pattern generation program. In the other case, we associate expressions (in terms of input
variables) to the primary outputs. This asks the question “what input assignments
produce these values at the output, if any?”. This performs the task of a program that
checks to see if the realisation of the circuit meets its specification. There is a strange link
between backwards symbolic simulation and test pattern generation and circuit validation.
Roth [Roth 80] has shown that his test pattern generation technique (the D-algorithm)
could be adapted to validate certain kinds of circuits. This exploits the behavioural
information present in test patterns.

A symbolic simulator interpreter in the forward direction called SS can now be built:
SS =@ym ©95)f

This symbolic simulator is now used to simulate the exclusive-or circuit:

SS TexorT (x, y)

= {Use standard definition of function-call elaboration and serial
composition. }

S5 Tspiit ; [[1, not], [not,]] ; [and, and] ; or]l (x, y)

= {Use standard definition for elaborating wiring circuit split and serial
composition. }

SS T[[1, not], [not, 1]] ; [and, and] ; orT ((x, y), (x, ¥))

= {Standard interpretation used for identity and parallel composition. Over-
riding interpretation Sym used for not.)

SS M{and, and] ; orT ((x, NotSym y), (NotSym x, y))

= {Standard interpretation used for parallel composition. Over-riding
interpretation Sym used for and.}

SS TorTl (AndSym x (NotSym y), AndSym (NotSym Xx) y))

= {Over-riding interpretation Sym used for or.}

OrSym (AndSym x (NotSym y)) (AndSym (NotSym x) y))

which is the expected result. Note that we have used syntactic entities inside the ...
meta brackets for clarity. We should have written And’ instead of and.

A symbolic simulator is a very obvious candidate for implementation as a non-standard
interpretation. It is clear from the outset that we only have to re-define the processing
nodes: the semantics of everything else stays the same. The example works well: the
definition given above is natural looking. For a modest outlay, we have reused a large
amount of the standard interpretation to build a completely new tool.

In the standard interpretation the values that flow along the wires are standard boolean
values. The nodes are represented by functions that manipulate this boolean data. Figure

98

5.5 show a graph of the exor gate under simulation with the input (L,H). The standard
values on each arc are shown.

Figure 5.5: A standard interpretation of exor.

Contrast this with the graph that corresponds to the symbolic simulation non-standard
interpretation shown in figure 5.6.

x.—y | —=x.y

<<X, y>, <X, y>

Figure 5.6: Symbolic Simulation NSI of exor.

For clarity, NotSym is represented by — (prefix), AndSym by . (infix) and OrSym by |
(infix).

These two graphs are isomorphic: we are computing over the same structure. The
same Ruby description is analysed by two different interpretations. This gives rise to
automatic consistency between the circuit specification used for description (behaviour)
and the circuit specification used for other analyses.

99

One weakness of this technique as it stands is the inability to examine the value of
internal nets. This is a crucially important requirement, since all testability analyses are
concerned with these internal connections.

5.4 Labelling Nets

Many analyses require the circuit’s nets to be uniquely labelled. For example, in
deductive fault simulation, we talk about node n stuck at some value. Should Ruby
descriptions be annotated by the designer? This would require every node to be given a
unique name.

There are several reasons why this is a bad idea. Firstly, this would make Ruby
descriptions ugly by littering them with distracting information. A large part of Ruby’s
elegance arises from its carefully designed syntax which makes apparent certain
characteristics of designs. Hence the mathematical-style notation rather than an intractable
verbose VHDL style.

Many hardware description languages require nets to be explicitly labelled, and most
net representations like EDIF [EDIF Comimittee] rely on all nodes having names.
However, using a simple labelling scheme, it is not possible to label every Ruby
expression. Consider the circuit map and. It is not possible to tell how many nets there are
until this circuit is given some input, like ((L,H), (H,H)) or is just as part of some other
circuit which fixes the size of the map e.g. map and ; and. Recursive descriptions often
describe circuits whose dimensions depend on the size of the data.

Instead of trying to cope with circuits which have this kind of data dependency, we
shall automatically label internal nets of only fixed-size Ruby circuits. By ‘fixed-size’ we
mean a circuit for which the number of internal nodes can be determined even if it
contains generic combining forms like map. The size can be fixed by constraining the
generics by using them with fixed size circuit builders (e.g. the combinational gates) or
by applying an input of known size. The input itself is not important.

Whatever labelling scheme is chosen, it must be easily understood by the designer,
because he or she will have to be able to identify internal nets from the label assigned.
Later, we shall see how to produce a graph-like representation with internal arcs labelled.
Rather than examining a circuit diagram that corresponds to a Ruby description with a
view to finding a suitable labelling we shall use the Ruby description itself for labelling.

100

Each net (which corresponds to an arc in the abstract syntax tree) is to be labelled by
the processing node that drives it. We constrain ourselves to circuits which have at the
most one output of a processing node connected to a net.

The following labelling scheme is used. We assume that we have an infinite supply of
numerical labels (whole numbers) starting with 1. Let the current label be the next free
label which has not been used. To label a combinational node we assign it the current
label and then increment the current label. Wiring circuits do not consume labels: they just
carry labels between combinational nodes. To label a composite (or higher-order)
constructor like serial or parallel composition, we label the constituent circuits from the
left to the right.

The type RUBY presented earlier is redefined to allow the basic gate constructors
And’, Or' and Not’ to hold values by making their arity one. This is done by making
RUBY a polymorphic type. In the labelling interpretation, we specialise this polymorphic
type to integer values to allow us to attach label values to the basic gates. This extra value
is written as a subscript to And’, Or’ and Not’. Where it is omitted, its value is not
needed and is assumed to be undefined.

The labelling interpretation is then defined using the following definition of L:

L:fTAnd’ T ¢ = And.
L:fTorie = Or;
LfTNor'T ¢ = Not'¢
Lf T T ¢ - Id
LfTFork’ nll = Fork’n

LfTSer’ (xxs)N ¢
LfTPar (x:xs)l ¢

Ser’ (xc : (L TSer’ xsT (c + #x)))
Par’ (xc : (LfTPar’ xsT (c + #x)))

i

The definition of L over other combining forms follows in a similar manner. This
definition used a function # which operates over abstract syntax descriptions. This returns
the number of labels consumed by a fragment of abstract syntax, and corresponds directly
to how many processing nodes are found. A partial definition is:

And’ = 1
#0r = 1
Nor’ = 1
Ser’] = 0
Ser’ (x:xs) = #x+#Ser xs

For example, the labelling of the exor circuit as defined above is:

101

exor = split ; [[v, not,}, [not,,)] ; [ands, andy] ; ors

where each combinational node is subscripted by its label. Notice that by giving a
different Ruby description, we can get a different labelling:

exor2 = split ; [[1, noty] ; andg, [nots, 1} ; andy] ; ors

Thus, it is not possible to simply look at the circuit diagram and label the internal nets.
We must label Ruby descriptions themselves.

The labelling scheme outlined above is easy to implement and is also straightforward
for a human to perform. This labelling scheme can also be implemented as a non-standard
interpretation, as shall be shown later. The exclusive-or graph is labelled using this
scheme in figure 5.7.

<<, 7>, <2, 7>>

(Not’) (Not’) (Id')

Figure 5.7: Labelling of exor.

Notice that certain arcs which are connected to primary inputs have undefined labels
because they are not driven explicitly by a combinational gate. The algorithm for labelling
could be amended to deal with input wires as a special case, but a better solution seems to
be to provide a special component, say inpad, that represents an ‘input node’ (rather like
an input pad). This node is treated like a combinational node when labelling i.e. it
increments the current label, but it behaves like a wire i.e. does not modify the incoming
information. A third description of an exclusive-or gate can then be given as:

exor3 = [inpad+, inpadp] ; split ; [[1, nots), [noty, 1] ; [ands, andg] ; orz7

which properly labels the primary nets. However, we are often not interested in the
values at the primary nets, so we shall often not bother to use inpad.

102

5.5 Internal Connections

It would be useful to have as output from an interpretation a graph (like figure 5.5) which
gives not only the value at the output, but also the values on all the internal arcs. This
information is especially useful in symbolic simulation when the behaviour returned at the
output does not match the expected behaviour. The graph could be analysed to discover
where the behaviour of the implementation departs from the specification, thus reducing
the size of the implementation that has to be debugged.

There are more pressing reasons for being able to observe internal nodes. Many
testability analyses compute valuable data about internal nets. Using the scheme described
above, this data is locked ‘inside’ the circuit since we are only able to observe the primary
outputs.

There are various ways to get at the information locked in the internal nets. The first
method adopted was to change the non-standard values to be tuples. One element of the
tuple contained the ‘result’ from the previous combinational node i.e. the same value as
before, and the second element contained a set of node assignments. A node assignment
is itself a pair of node numbers and values at that node. To get the values at the internal
nets, we gather together all the node assignments appearing at the outputs (by taking their
set union) and tabulate the results on node numbers.

Running such an interpretation on the exclusive-or gate example with input (L, H)
using the standard interpretation would give output like:

Node Value
1 L
2 H
3 L
4 H
5 H

The node column could also be annotated with the kind of gate the label refers to by a
slight modification to the non-standard value. However, output of this type is difficult to
analyse. It would be preferable to have output which resembles the decorated graph
shown in figure 5.5. For example:

exor <L, H> = split ; [, noty L], [not, H, 1] ; [ands L, andg HJ; ors H

103

Then next section considers one way of achieving this by composing interpretations.

5.6 Composing Interpretations

Since application of an interpretation can be considered to be a transformation (or
function) from one graph to another, a natural extension is to allow two transformations
over isomorphic graphs to be composed.

Consider the labelling example. The interpretation £ takes a Ruby description (a graph)
and some data and returns a graph as a result. Because of the way higher order combining
forms are elaborated, the graph returned may not be isomorphic to the circuit description
graph. For example, every instance of map is replaced by the corresponding parallel
composition. We apply interpretations only to circuit descriptions of fixed-size so we are
sure that the graphs will be isomorphic between composed interpretations.

The graph returned by the standard interpretation forms a Ruby description which can
then be analysed by another interpretation using its own non-standard values. In the
labelling example, we want to apply the labelling interpretation to the graph annotated
with standard values, to return a graph annotated with label and logic value pairs.

To allow such a combination to be expressed, another combining form is introduced over
interpretations: serial composition. We shall denote this closed operator by ;. When two
circuits are composed, we have to provide a pair as ‘input’ data. The first element of the
pair is the input to the first interpretation and the second element of the pair is the input to
the second interpretation. The meaning of serial composition over interpretations is
defined by using interpretation that have their direction of analysis partially applied:

@, byX;Ycir o 9YXcira)b

Informally, interpretation X analyses cir with input a and returns a new annotated graph
as its result. This graph is analysed by interpretation 9 with input b to return a third
annotated graph which is the result of the serial composition. Both interpretations use the
same environment. Note that composition is defined not over interpretations (which are
parameterised on a direction and of type direction - RUBY’ —» V1 — V2) but on
interpretations in a given direction (i.e. the direction is partially applied giving a function
of type RUBY’ — V1 - V2).

The new labeling interpretation L2 can now be defined in terms of S and L:

104

Li=_°F
St=SF
L2 =8¢ L¢

This composite interpretation expects as input a pair (a, b), where a is a standard value
(e.g. tuple of logic values) and b is the number to start labelling from. Figure 5.8 shows
the graphs constructed in the L2 labelling of the circuit and ; not.

<1,L> <2,H>
el

iz () (B0

Figure 5.8: L2 interpretation for a NAND gate.

5.7 Conclusions

Starting from the standard semantics, various adaptions have been explored in an attempt
to find a good method for non-standard interpretation. The simplest way to give an
alternative semantics is to define one from scratch, but this is unsatisfactory because
much work is duplicated. Intuitively we might think of non-standard interpretation as
providing alternative semantics for the processing nodes, so the semantics could be
parameterised on the definitions of these nodes. However, we adopt a more powerful
system that allows any Ruby language feature to be redefined.

Various ways of combining interpretations to produce new interpretations have been
presented. Interpretation overriding provides the mechanism for making a non-standard
interpretation by adapting an existing interpretation. Interpretation composition combines
interpretations to produce new interpretations and is useful for developing complex
analyses in a modular fashion. A very useful interpretation built in this way is the labeling
interpretation.

The non-standard interpretations presented all analyse isomorphic circuit descriptions,

105

so we avoid the problem of inconsistency between the standard circui<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>