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Abstract

The design process for integrated circuits requires a lot of analysis of circuit descriptions. 
An important class of analyses determines how easy it will be to determine if a physical 
component suffers from any manufacturing errors. As circuit complexities grow rapidly, 
the problem of testing circuits also becomes increasingly difficult.

This thesis explores the potential for analysing a recent high level hardware description 

language called Ruby. In particular, we are interested in performing testability analyses of 
Ruby circuit descriptions. Ruby is ammenable to algebraic manipulation, so we have 

sought transformations that improve testability while preserving behaviour.

The analysis of Ruby descriptions is performed by adapting a technique called abstract 

interpretation. This has been used successfully to analyse functional programs. This 

technique is most applicable where the analysis to be captured operates over structures 

isomorphic to the structure of the circuit. Many digital systems analysis tools require the 

circuit description to be given in some special form. This can lead to inconsistency 

between representations, and involves additional work converting between 

representations. We propose using the original description medium, in this case Ruby, 
for performing analyses. A related technique, called non-standard interpretation, is shown 

to be very useful for capturing many circuit analyses.

An implementation of a system that performs non-standard interpretation forms the 

central part of the work. This allows Ruby descriptions to be analysed using alternative 

interpretations such test pattern generation and circuit layout interpretations. This system 

follows a similar approach to Boute’s system semantics work and O ’Donnell’s work on 

Hydra. However, we have allowed a larger class of interpretations to be captured and 

offer a richer description language.

The implementation presented here is constructed to allow a large degree of code



sharing between different analyses. Several analyses have been implemented including 

simulation, test pattern generation and circuit layout. Non-standard interpretation provides 

a good framework for implementing these analyses.

A general model for making non-standard interpretations is presented. Combining 

forms that combine two interpretations to produce a new interpretation are also 

introduced. This allows complex circuit analyses to be decomposed in a modular manner 
into smaller circuit analyses which can be built independently.
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Chapter 1 

Introduction

The design of an integrated circuit requires the use of many software analysis tools. 
Simulators can be used to check that the behaviour of the circuit corresponds with what 
was specified. Other tools are used to check that enough power is delivered to each part 
of the circuit, and others check that the timing behaviour of the circuit is correct. 
Testability analysis tools help generate test patterns and highlight areas of the circuit that 
are difficult to test.

All of these tools have to analyse some representation of the circuit. Current practice is 

for each of these analysis tools to use its own representation and notation for circuits. 
This requires translators to be written to convert between representations and can give rise 

to inconsistency between representations. Figure 1.1 (overleaf) shows the outline of a 

simple VLSI system that uses analysis tools which operate on a circuit description not 
supported by the design database. This problem would be avoided if these tools used the 

same representation. This also leads to a great deal of code sharing. The internal 
representation of a circuit and its associated operators need only be constructed once. 
They are then made available, perhaps as an abstract data type, to circuit analysis tools.

Of course, there are circuit analyses that operate on circuit descriptions at very different 
levels of abstraction for which a common circuit representation may not be possible. A 

good database system should keep track of the relationship between circuit 

representations at differing levels and present a data interface to CAD tools to allow them 

to operate over a wide spectrum of abstraction. A database system should also deal 
automatically with different file formats for the same information, presenting a transparent 
standard representation for CAD tools. However, this is an ideal which has not been 

achieved. Usually, a database system for a CAD product comprises a collection of files 

with very little management software.
This thesis presents a non-standard interpretation system, along with powerful 

operations that allow a large class of circuit analysis tools to be implemented. New
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analysis tools are made by producing new functions that operate over circuit descriptions. 
It also implements a rudimentary database system which is used by the analysis tools to 

extract and submit information to and from design databases.

operate over the same description. There are many ways of doing this, but in this thesis 

we concentrate on developing the technique of non-standard interpretation. Non-standard 

interpretation provides a natural framework for developing circuit analyses. The method 

works by redefining the semantics of leaf nodes in a circuit tree (or graph) description to 

yield a new analysis. Thus, the same structure is analysed, but with different (non­

standard) semantics.
Non-standard interpretation is adapted for analysing high level hardware descriptions. 

The theoretical and practical aspects of this technique for analysing hardware descriptions 

are considered. This technique, along with the related technique of abstract interpretation 

has been used with great success to analyse computer programs, especially in functional 
languages [Peyton Jones 87].

We note that analysis tools can be built more quickly and reliably if all circuit analyses

f  Graphical A  f  Textual N  
I Entry ) I Entry J

Simulate J

Design Database

Reformat

Figure 1.1: A simple VLSI CAD System
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Figure 1.2 shows an abstract circuit which we shall use to outline the principle of non­
standard interpretation. The logic elements are denoted by letters A to E and the wires are 

denoted by the numbers 1 to 10.

E --------10

Figure 1.2: An abstract circuit.

Most circuit representations use a graph based approach to capture circuit connectivity. 
Logic elements are treated as nodes of a graph and the wires are treated as arcs. There is a 

small problem with primary inputs and outputs, but this can be dealt with by adding extra 

dummy nodes at the periphery of the circuit. Such a representation for the circuit above is 

shown in figure 1.3. The dummy nodes are shown as small shaded boxes.

Figure 1.3: Graph representation of circuit in figure 1.2.

This graph can be used to simulate the circuit by thinking of the nodes as procedures 

that implement the actions of the circuit they model, and the arc values as representing 

parameter values that correspond to the signals on the wires. This graph is said to have 

an isomorphic structure to the circuit it represents: they are both the same shape. Non­
standard interpretation essentially works by providing code for the nodes which performs 

some task other than simulation. The values on the arcs also change type, depending on 

the interpretation being performed. This gives a new circuit analysis which we are 

applying to exactly the same circuit structure that we used for specification and 

simulation. There is less likelyhood of inconsistency. When specifying a new analysis in 

this way, we do not have to write code to process the circuit representation since we share 

the code used by the simulation analysis.
We are particularly interested in developing testability analyses, and several are 

presented. The cost of testing a circuit is increasing as the sizes of circuits grow rapidly. 
The consequences of not testing circuits adequately can be grave. The analysis of
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sequential circuits for testability is difficult, and non-standard interpretation seems to offer 
no advantages for analysing such circuits. Instead, we use non-standard interpretation to 

analyse combinational circuits only. We then present some transformations that improve 

the testability of a sequential design. Many of these transformations involve breaking the 

circuit into combinational blocks which can be tested separately from the sequential 
blocks. Thus, we combine a new method of analysis with successful traditional 
techniques for managing the testability of sequential digital systems.

We choose to analyse a rich algebraic hardware description language called Ruby. This 

is a relational language that allows regular synchronous digital circuits to be described 

succinctly. Ruby descriptions can be manipulated using existing laws about Ruby 

combining forms. Ruby also contains information about how circuits are laid out since it 
captures circuit structure. This is the key to the analyses that we present. Several tools 

have been implemented. Starting off with a simulator, we have used non-standard 

interpretation to build a testability measure tool, a fault simulator, test pattern generators, 

circuit layout tools and many others.
Non-standard interpretation is shown to be a good paradigm for capturing a wide 

variety of circuit analyses. This method promotes code re-use and modularity, and 

simplifies the implementations. This makes these tools easier to verify. Future work 

could involve building a proof system based around our non-standard interpretation 

system. This would check properties of circuit analysis tools to increase our confidence in 

their correctness.
Chapter 2 presents a brief introduction to the subset of Ruby that has been 

implemented by the author. This is a large subset, and is suitable for describing gate level 
circuits and arithmetic circuits. The standard meaning of Ruby is presented, giving 

behaviour as well as layout semantics.
An introduction to the problem of testability is presented in Chapter 3. We explain why 

circuits have to be tested and why this is a difficult problem. Various methods are 

proposed for analysing combinational circuits for testability, and some of these are 

implemented in later chapters by non-standard interpretation. Sequential circuits are dealt 
with by decomposing them into combinational sub-blocks which can be tested 

independently of the sequential components.
Some circuit analyses can be represented as abstract interpretations. Abstract 

interpretation is introduced in chapter 4, which shows how it has been used by functional 
programmers to analyse lazy functional languages. We present examples of circuit 

analyses that are abstract interpretations. Abstract interpretation supports the notion of 
safety which allows a particular abstraction to be proved correct with respect to the 

standard interpretation. This is very useful for proving the correctness of circuit analyses.
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However, we show that abstract interpretation is not powerful enough to capture many of 
the testability analyses that we would like to do.

The more general but less disciplined technique of non-standard interpretation is 

introduced in chapter 5. Several methods for performing non-standard interpretation have 

been implemented. Some earlier methods are presented, along with one technique that we 

have settled on for making non-standard interpretations. One version allows only the 

outputs of circuits to be observed, while the other model allows internal nodes to be 

examined.
Having built non-standard interpretations, the next step is to show how they can be 

combined. The most useful way of making a new interpretation is to modify an existing 

one. Another way of combining two interpretations is to compose them in a serial 

manner. A symbolic simulator is given as an example non-standard interpretation.
Chapter 6 shows how two testability analyses can be cast as non-standard 

interpretations. The first is deductive fault simulation, which can be represented by one 

simple non-standard interpretation combined with the standard interpretation and a 

labelling interpretation. The second is SCOAP testability measure. This is expressed by 

using three interpretations: labelling, controllability measure and observability measure. 
Controllability is a forward interpretation in which information flows from the primary 

inputs to the primary outputs. Observability measure is a backward interpretation in 

which information flows from the primary outputs to the primary inputs. Since Ruby is a 

relational language with inverse, both types of information flows are dealt with easily.
The implementation is described in chapter 7. The architecture of the system is 

outlined. Actual test inputs and outputs for many interpretations are also presented. We 

show that for a relatively small amount of code, our system affords a very high degree of 
functionality. We also show how things would have been more difficult if the system was 

implemented in a powerful modem imperative language like Ada. Figure 1.4 represents a 

simplified view of the system architecture.
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NSI Core

^  AST def ^

NSI #1parser
Command File 
Interpreter NSI #2

etc.

Ruby descriptions Compiled intermediate form execution scripts

Figure 1.4: Simplified architecture of NSI system implemented.

One of the most important tasks carried out in testability analysis is test pattern 

generation. In chapter 8, we show that a popular automatic test pattern generation 

technique, called the D-algorithm, can be expressed as a non-standard interpretation. 
First, we re-express this complicated algorithm by giving a more formal description of 
each stage. The algorithm has complex backtracking information flow. We decompose 

the algorithm into several smaller problems which are easier to solve and have simpler 
information flow. Lazy evaluation is exploited to express backtracking implicitly, thus 

simplifying the algorithm implementation. This non-standard interpretation is then 

combined with a previously defined interpretation to produce a more efficient PODEM 

style test pattern generator.
Chapter 9 presents an interpretation for drawing butterfly circuits. The non-standard 

semantics employs functional geometry to help lay out these regular and recursive 

circuits. Several large butterfly and related network drawings are shown, all produced 

automatically by non-standard interpretation. Some of the pictures are drawn in colour to 

emphasise the wiring patterns involved. The ease with which these drawings were 

produced is convincing evidence in support of formal descriptions of high level circuits 

and non-standard interpretation as a circuit analysis.
Chapter 10 presents a set of transformations that improve the testability of circuits 

described in Ruby. We apply the traditional techniques for testability analysis, for 
example decomposing serial networks into parallel ones. We also try to spot replication 

so that large parts of the circuit can be tested in parallel, thus vastly reducing test effort. 

Transformations for dealing with sequential circuits are also presented. These involve
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isolating the sequential and combinational parts of the design. The approach proposed is 

to use the non-standard interpreters presented in previous chapters to analyse 

combinational blocks and to apply scan path techniques to test chains of sequential 
components.

Chapter 11 concludes and discusses how non-standard interpretation is related to the 

objected-orientated notions of classes and inheritance. This is followed by an appendix 

listing the code for three non-standard interpretations. Finally, the references for the entire 

thesis are given.



Chapter 2 

Describing Circuits Using Ruby

2.1 Introduction
The analysis techniques presented in later chapters operate on behavioural descriptions of 
circuits. For this reason it is important that we choose an expressive and powerful 
hardware description language. We also wish our analyses to take advantage of any 

repeated structure and hierarchy. For these reasons the relational hardware description 

language Ruby [Jones &  Sheeran 90] has been chosen as a suitable high level 
representation.

Ruby is a powerful hardware description language which allows regular synchronous 

circuits to be described and manipulated easily. Only a subset of the language is presented 

here. The syntax of Ruby in the literature has been changed often. The notation 

introduced in this chapter shall be used consistently, although it may not correspond 

exactly with what others have written in Ruby.

Elementary combinational circuits are modelled by simple binary relations over tuples 

of boolean values. Larger combinational circuits are then composed using higher order 
combining forms like serial composition (relational forward composition) and parallel 
composition. Combining forms like serial and parallel composition also provide layout 
information.

Wiring circuits re-arrange wires without modifying the values being carried. A library 

of plumbing relations is introduced to allow the description of such circuits. The notion of 

lists of signals is used to help describe families of related wiring patterns e.g. zipping a 2- 

tuple of lists into a list of 2-tuples. Many of the wiring circuits have definitions very 

similar to tuple and list-manipulation functions found in most modern functional 
programming languages.
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Streams are introduced to help describe sequential circuits. This method allows elegant 
description of sequential behaviour without using state variables. Ruby abstracts from 

explicit state and explicit time. This greatly simplifies the difficult task of reasoning about 
sequential circuits. The combinational primitives are extended to work over streams of 
values by spreading their combinational behaviour pointwise over signals of streams.

Other Ruby constructs for replicating circuits are also introduced. A convention for 

describing vertical as well as horizontal information flow is given. Finally, a small 
example of a Ruby design is presented.

Ruby is still being developed and has been used to describe a large variety of circuits 

e.g. butterfly circuits [Jones et. al. 90a] and FFT circuits [Jones 90]. Implementation 

work and type theory development is being carried out by Hutton [Hutton 90] and 

[Murphy 90]. Lars Rossen has implemented a large subset of Ruby in the Isabelle 

theorem prover [Rossen 90]. A more detailed description of Ruby can be found in [Jones 

et. al. 90b].

Although we have concentrated on Ruby, we could have used any hardware 

description language. Languages which provide powerful forms of composition are 

particularly suitable. The language Daisy [Johnson 83] would also have been a suitable 

candidate. This is functional in nature and is easy to manipulate. Johnson has shown how 

to synthesize designs in Daisy from recursion equations.

Hydra has been proposed by O ’Donnell as a powerful hardware description language 

that can describe system at a behavioural or structural level of detail [O’Donnell 88]. It is 

easy to specify different parts of a system at different levels of abstraction. Hydra 

provides the designer with powerful tools like stream recursion equations, recursive 

circuit specification, functional geometry and higher order circuit combining forms.

2.2  Elementary Combinational Gates
Ruby describes the behaviour of a circuit by capturing the relation between the signals at 
the terminals of the circuit. Composite circuits can be described by composing relations. 
Circuits are designed using a library of ready built or elementary circuits which are 

combined to form larger circuits.
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To describe combinational circuits, a suitably rich collection of elementary relations 

that implement logical operations is required.There must be enough relations to allow the 

description of any combinational circuit. The set of relations {NOT, AND, OR} is chosen 

to be the elementary set. This collection is universal i.e. combinations of these relations 

can describe any combinational circuit. Another suitable set is {NAND}. Although this set 
contains only one relation, the set {NOT, AND, OR} allows more natural definitions of 
many boolean expressions. The set of elementary relations is named <BJlSfC

Extra elements can be added to this set when required. For example, to describe 

arithmetic circuits, it may be convenient to assume that a full-adder is an elementary 

relation. By using a suitably powerful set of combining operators, any boolean function 

can be described by composing the basic circuits.

Initially boolean algebra is used to describe the semantics of the gates in HASIC. One 

useful extension is to three valued logic (true, false and unknown). As usual, the boolean 

algebra possesses two values T (true) and F (false) and three logical operations: (logical
negation), a (conjunction) and v (disjunction).

Binary relations relate objects of one set to another. If  X  and Y are sets, then X  Y 

denotes the set of relations from X  to Y. This may also be written as <P(X x F) i.e. the 

powerset of the cartesian product of the sets X  and T. A binary relation on sets X  and Y 

is a subset of X  x Y. Two elements x e X  and y e Y are related to each other by a binary 

relation R if (x, y) s R, where (x, y) is a 2-tuple or pair. We often abbreviate (jc, y) e R 

to x R y.

A relation R from X  to Y does not have to relate every object in X  to Y. The subset of 
X  that R does relate to Y is called the domain of R. The elements of Y that are related by 

R form the range of R. It is useful to define two functions to extract the domain (dom) 

and range (rng) from a relation R:

<BJlSrC= {NOT, AND, OR} (2.1)

dom R
rng R

{ x : : X\ 3y  v.Y• x R y )  

{ y : : Y\ 3x : : X>  x R y )
(2.2)
(2.3)

One straightforward definition of the basic relations is:

x NOT y 

(a, b> AND c 

(a, b> OR c

<=> y = -i x

<=> c = a a b
<=> c = a v b

(2.4)
(2.5)
(2.6)
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The behaviour of the NOT gate (definition 2.4) is specified by saying that the value at the 

domain must always be logically opposite to the value on the range.

AND relates a pair of boolean values to a single boolean value. The behaviour of AND 

is specified by stating the value at the range c is always the logical conjunction of the two 

values at the domain a and b. OR is defined in a similar manner.

The basic gates and combining forms have types associated with them which give the 

relation between the kinds of data that can appear at the domain and range. The type of a 

relation is specified by giving a type expression for the domain and the range. For 
example, a NOT gate has the type:

NOT : bool ~ bool (2 .7)

Type names appear in lower case, and polymorphic types are denoted by lower case 

Greek letters. The types of the other two basic gates are:

AND : (bool, bool) ~ bool (2.8)
OR : (bool, bool) ~ bool (2 .9)

A useful wiring circuit is split which duplicates a value. This is defined as:

a split (a, a) «=> true (2.10)

The universal quantifiers are omitted for polymorphic types.

split: a ~ (a, a) <=> Va. split: a -  (a, a).

This says that split relates a signal on the domain, which may be of any type (call it a) to a 

pair of signals on the range. Each element of the pair is of type a. Thus, split is a 

polymorphic relation.

As an alternative specification, the basic gates are now given explicitly as sets of pairs. 
The first element of the pair is a value in the domain and the second element is a value in 

the range. The following sets may be used to define the behaviour of the combinational 
gates.

These sets just encode the truth tables for the basic gates. Definitions 2.11— 2.13 attribute 

the same behaviour to the basic gates as definitions 2.4— 2.6.

NOT
AND

OR

{(F, T), (T, F)}
{((F,F), F), ((F, T), F), ((T, F), F), ((T, T), T)} 
{((F.F), F), ((F, T), T), ((T, F), T), ((T, T), T)}

(2 .11)
(2.12)
(2.13)
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Why are relations and not functions being used to describe hardware? In a real 
combinational circuit built with the above primitives, information flow is unidirectional. 
To answer the question “what is the output for a given input” it is sufficient to use 

functions. One reason for using relations is that many of the transformations on circuits 

depend on connectivity and not the direction of information flow. The use of relations 

abstracts from the direction of data flow, concentrating on the connectivity. This 

simplifies many algebraic laws about circuits. We shall later present some circuit analyses 

which have a backward flow of information e.g. the SCOAP testability measure.Such 

analyses are rendered more naturally in a relational notation. These advantages are 

covered in more detail in [Sheeran 88a]. Ruby’s algebraic properties are exploited later to 

aid transformations that improve testability.

2.3  Composing Circuits
It was decided earlier not to use NAND as the elementary relation. This relation may of 
course be constructed using the relations AND and NOT. To make the NAND relation using 

these two elementary relations, the range of the AND relation is used as the domain of the 

NOT relation. The range of the NOT relation is used as the range value of the composite 

relation. When two circuits are composed by using the range of one as the domain of the 

other then we call such a composition a serial composition. The serial composition of 
an AND gate and a NOT gate is shown schematically in figure 2.1.
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In addition to the semantics presented above, Ruby descriptions also have a geometric 

interpretation. The elementary components are drawn with the domain on the left and the 

range on the right. Composition is represented by juxtaposition as shown in figure 2.1.

others. Capturing structure is very important for the analyses we present. This is 

especially the case for testability analyses, where the faults to be tested for depend on the 

structure of the circuit.

The structural information in Ruby descriptions is also useful for fault models that 
consider the possibility of adjacent wires shorting. However, this information is not used 

by the analyses presented in later chapters.

Figure 2.1: Serial composition of AND and NOT 

The serial composition of two relations F and G is written as F ; G and is defined by:

The infix serial composition operator is associative. Bracketing can be omitted so that 
A ; B ; C = A ; (B; C) = (A; B); C.

The range type of F must be the same as the domain type of G for serial composition to 

be well typed. This relationship is expressed by the following type rule:

Serial composition is an example of a higher o rd er combining form. It takes as 

parameters two circuits and yields a composite circuit.

The NAND relation built earlier may be expressed explicitly by the set:

NAND = AND ; NOT = {«F,F> T), «F, T>, T), «T, F>, T), «T, T>, F)}

NAND : <bool, bool) ~ bool

The following example shows the result of ‘simulating’ the NAND gate with ‘input’ 

<T. F).

(T, F> NAND x 

= { def. NAND }

Wires are drawn from the bottom up that is the first element of a tuple is below all the

a (F; G) c 3b. (a F b) & (b G c) (2.14)
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(T, F) AND; NOT x 
■ { def. AND, def.;}
F NOT x 

= { def. NOT} 
x = T

As expected, the input/output pair is a member of the defining set for the NAND relation: 

«T, F), T) e NAND.

Serial composition is a natural way to combine two circuits which communicate 

information to each other. The communication occurs over the internal connection made 

by serial composition. It is also desirable to compose circuits which do not communicate 

with each other. One way to do this is by using parallel composition.

To demonstrate parallel composition, consider the specification of a circuit P defined 

by:

<x, (y,z» P (a, b) = a = - x  & b = y/sz

Notice that a and b are not related. It is possible to relate x to a using NOT independently 

of relating <y,z> to b using AND. These two circuits may be placed in parallel in order to 

realise the specification of P by writing [NOT, ANDJ.

Parallel composition of two circuits F and G is denoted by [F, G]. The type of the new 

circuit is defined in terms of the type of the constituent circuits:

F : a ~ p  G : x ~ &
[F, GJ : (a , x > ~ <P, 6)

Parallel composition of two relations is defined by independently relating the values on 

the terminals of the constituent relations.

<a, b> [F, G] <c, d> = (aF c )& (b G d )

The domain and range are defined in terms of the domain and range of constituent 

circuits:

dom F x dom G

Figure 2.2 shows a pictorial representation of [NOT, AND].
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Figure 2.2: Parallel Composition [NOT, AND]

This new composite parallel circuit requires two values on its domain. These are 

represented by a tuple: the first element contains the value for the bottom circuit and the 

second element contains the value for the top circuit. The range is described similarly.

An example ‘simulation’ of [NOT, AND] is

(T, (F, T» [NOT, AND] <x, y>
= {def. parallel composition}
T NOT x & <F, T)AND y 

= { def. NOT and AND } 
x =F & y = F

As expected, «T, (F, T», <F, F» is a member of the relation [NOT, AND].

Parallel composition extends naturally to compose more than two circuits, e.g 

<a, b, c> [P, Q, R] <d, e, f> = (a Pd) & (b Qe) & (c Rf)

There are many natural looking laws about parallel composition. For example:

[R, S ]; [T, U] = [R ; T, S ; U]

2.3  Relational Inverse
The inverse of a relation is defined as

aR '1 b = bR a

R : a ~ b 
R *1 : b ~ a

So what does it mean to talk about the inverse of a circuit? Ruby interprets this as flipping 

over the circuit along a vertical axis. The domain is then on the left and the range is on the 

right. Figure 2.3 shows the inverse of AND i.e. AND'1.
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Figure 2.3: Inverse of AND.

Ripping a circuit over twice leaves it unaltered:

(FT1)-1 = R

The inverse of a serial circuit is formed by flipping the whole circuit so that the leftmost 
and rightmost circuits of the composition are swapped:

(R ; S)'1 = S’1 ; R-1

As an example, consider the inverse of the NAND gate defined earlier:

(AND; NOT)-1 
= NOT'1 ; AND'1

The layout for this circuit is shown in figure 2.4.

Figure 2.4: (AND ; N O T)'1 = N O T '1 ; A N D '1

The inverse of a NAND gate expects a 2-tuple from the right and delivers a single logic 

value at the left.

The inverse of a parallel composition of circuits Ci,..Cn is simply the parallel 
composition of the inverse of the constituent circuits i.e. For example:

[NOT, AND]*1 = [NOT*1, A N D '1]

A diagram of this circuit appears in figure 2.5.

Figure 2.5: The inverse of [NOT, AND1

Inverse is used in the definition of the conjugate higher order function. The 

conjugate of two circuits R and S is denoted as R \ S and defined as:
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R \S  = S-1 ; R ; S

Figure 2.6 shows a picture of R\S. The following properties hold for conjugate:

( R \ S ) ‘1 = R - 1 \ S

( R \ S ) \ T  = R \  (S ; T)

The proofs are omitted—  they may be found in [Sheeran 90] and are very simple.

S'1 R S

Figure 2.6: R \ S

Conjugate is useful for expressing changes of representation.

We only have two values in our logic domain: high or low. Each wire in the circuit 
should only be driven by one output so that there is no possiblity of conflict. So, unlike 

other logic models, we do not have a value for high impedance. We also have to take care 

not to describe circuits which type-check but do not make physical sense. An example of 
such a circuit is:

AND ; A N D '1

We might mistakenly think this circuit makes sense at the physical level by assuming that 
applying a relation followed by its inverse should be like performing the identity relation, 
but reference to figure 2.7 shows that this circuit requires the outputs of two AND gates to 

be tied together: this will not always result in sensible electrical behaviour. However, the 

composition is well typed and does make sense at the abstract level. We have to impose 

extra structure over the meaning of composition to catch such badly formed circuits 

because they do not conform to physical reality.

Figure 2.7: A badly formed circuit.

We have used arrows in previous pictures to hint at the desired information flow, 

although nothing in the semantics presented so far has enforced this. The two opposing 

arrows in the centre of the figure 2.7 tell us that something has gone wrong.

To describe sensible circuits, the output of one circuit must be the input of the next 
circuit. An analysis for checking this constraint is performed by Sheeran using
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alternative interpretations. Such an interpretation is presented in more detail in chapter 
4.

2.4  Wiring Relations
The circuits presented so far manipulate the information carried along wires in a non­
trivial manner. These circuits manipulate data which is carried along either a single wire 

or a group of wires. As shown above, groups of wires are described by tupling. Often, 
the tupling structure has to be re-arranged to help fit circuits together.

This kind of re-arrangement is performed by an important class of circuits which are 

implemented as wiring relations. These circuits do not need to know exactly what the 

information being carried along the wires is. They simply re-arrange the tupling structure. 

Additionally, some wires may be lost while others may be introduced.

Consider the following specification:

(a, <b, c» R <d, e) = (d = a)&(e = b A C )

The first element of the tuple in the domain is the same as the first element of the range 

tuple. How should these two values be related? To describe such relationships, we 

introduce the identity relation:

a i b  s a = b

In terms of hardware, this corresponds to a wire or wires which carry the ‘input’ signal to 

the ‘output’ signal unaltered.

The inverse of the identity relation is the identity relation:

1-1 = i

Flipping a horizontal wire or wires along a vertical axis does not change the wiring.

Using this relation, we can now realise R as:

[i, AND]

This can be proved to correctly realise R:

<a, <b,c» [i, AND] <d, e>
*  { parallel composition )
(aid) & «b,c> ANDe)
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s {definition of i and AND }
(d = a) & (e = b a  c))
= { spec, of R }
<a, <b, c» R <d, e>

Figure 2.8 shows the layout for this circuit:

Figure 2.8: [i, AND]

This is not the only realisation of R but this is the simplest and most natural 
implementation. A more complex realisation is [i, [NOT, NOT]; OR ; NOT].

Two common uses of the identity relation are abbreviated:

fst R = [R, ij 
snd R = [i, R]

The example in figure 2.8 can now be re-expressed as snd AND.

Another common operation is to extract either the first or the second component of a 

pair. The relations Tti and n2 are defined for this purpose:

<x,y>7iix = true
(x, y> ti2 y = true

Consider the following specification S:

<a, <b, c» S (d, e) = (d = a a b) & (e = c)

The bottom two wires a and b are fed into the domain of a 2-input AND gate whilst the top
c wire passes through this circuit unchanged. The most obvious way to implement this 

circuit is by using the parallel composition of an AND gate and i.

[AND, i l :: «bool, bool), p» <-> (bool, P)

However, this circuit requires its domain to be of type «bool, bool), P) for some p, but the 

domain of S is of type (bool, (bool, x))- We wish to rearrange the elements of this tuple by 

altering the bracketing. The wiring circuit reorg performs the required manipulation in 

order to keep the types right.
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<a, (b, c» reorg «a,b>, c> <=> true
reorg :: <a, <p, x» *-» «a,p», %)

This circuit is polymorphic in the sense that it will re-organise the input tuple for arbitrary 

substitutions for the types a, p and x- By composing this circuit with [AND, i] we obtain a 

suitable implementation for S:

<a, <b,c» reorg; [AND, i] (d, e>
= { definition of reorg }

«a, b), c) [AND, i] (d, e> 
s { definition of AND and i }
(d = aAb) & (e = c)

In the above example the type variables for reorg are a=p=bool and x may be any type.

This reorganisation does not necessarily correspond to a physical wiring circuit. In the 

example above, reorg has three ‘wires’ going into its domain and the same three wires 

appear at its range in the same order. Here, reorg has been used to keep the types right, 
but other reorganisations will correspond to physical wiring circuits. We shall try to hint 
at the tupling structure in our diagrams by the spacing between the wires. Figure 2.9 

shows the circuit we have proposed for S:

Figure 2.9: Reorganisation of tuples.

The top wire may actually be a tuple of wires. To distinguish between wires carrying 

single values and wires carrying unknown or composite values we shall use a heavier line 

for the latter. Notice also that the top signal does not have any arrows on it: this is 

because we cannot determine from the given context the direction of information flow 

over this wire. The reorganisation of the wires is shown between the dotted vertical lines.

In the preceding example, a custom built relation was used to solve a plumbing 

problem. There are certain wiring patterns that occur frequently. For example, extracting 

the first element of a tuple is a useful operation. Instead of defining one relation to extract 
the first element from 2-tuples, and another from three tuples etc. we can define generic 

tuple relations.
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Some wiring circuits operate over lists of data rather than a fixed size tuple. However, 
making a clear-cut distinction often leads to a great deal of conversion between tuples and 

lists. We shall assume that a homogeneous tuple is as good as a list, so <a, b, c) could be 

a triple or a three element list, depending on the context.

In a picture there is no difference between an element of a given type and a singleton 

list of that type. However, to keep the types of compositions right, we have to distinguish 

between a signal and a list containing only one signal. Ruby provides an abstraction [-] 
for relating a signal to a list containing only that signal.

x [-] <x) <=> true

A common operation on lists is to combine two lists pairwise. The name given to this 

operation is zip (an instance is shown in figure 2.10a) and it is described by:

(x, y) zip z <=> V/. zj = (xj, yj)

where Zj is the 1th element of z. This converts a pair of lists to a list to 2-tuples. Unzipping 

from a list of 2-tuples to a 2-tuple of lists may be done by using zip-1.

"""" <c. f>
<d, e, f> 1   " 1

<b, e>

<a, b, c> ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^  <j>

Figure 2.10a: «a, b, c), (d, e, f)> zip «a, d), (b, e), (c, f»

Another useful operation is transposition (trn). This interleaves a list of lists and is 

rather like matrix transposition. The definition is:

x tm y <=> Vi, j. xj, j = yj, i

Two lists may be combined to form a larger list by appending. The circuit app 

concatenates two lists: it is described by:

[Ro. R i  Ri. Ri+1. Ri+2 Rnl = [[Ro. R i  Ril. [Ri+1. R i+2 Rnll \  app

Figure 2.10b shows a three element list being appended to another three element list 

yielding a size six list.
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Figure 2.10b: Appending lists using app.

Lists may be built up one component at a time by using wiring relations that introduce 

a new signal either on the left (apl) or the right (apr):

apl = fst [-]; app 
apr = snd [-]; app

Figure 2.11 shows an instance of apl and apr.

1  s___

/   —

(a) (b)

Figure 2.11: (a) append left (b) append right

A useful operation on lists is rev which reverses the elements of a list. It has the 

following defining properties:

[-1: rev = [-]

app ; rev = [rev, rev]; rev ; app

Reversing a list twice leaves it unaltered so rev is its own inverse. By restricting rev to 

work on lists or tuples of length two, we obtain the circuit that swaps its inputs. The 

restriction is denoted by \2 which has the effect of constraining the domain to be a 2- 

tuple.

swap = rev \ 2

The swap circuit shall be drawn as two wires crossing over, as in figure 2.12. Wires 

cross over without interfering with each other. Contacts between wires shall be shown 

explicitly.

Figure 2.12: Swapping the elements of a 2-tuple.
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Swap is its own inverse and applying swap twice is like applying the identity.

swap ; swap = i \ 2 = swap ; swap'1 

Thus, swap = swap1.

A bus can be duplicated by using split, 

x split <x, x> <=> true 

Multi-way forks can be made by repeated use of split. 

split4 = split; [split, split]; app

Figure 2.16: split

2.5 Replication of Circuits
Often many copies of the same circuit are combined to form a larger circuit. This section 

presents various ways to replicate circuits in Ruby.

For circuits which have the same domain and range types, it is possible to lay out 
horizontally many copies of the same circuit. This is represented by superscripting e.g. 
R4 = R; R; R; R.

A common way to replicate a circuit is to apply it to each signal in a list of signals. 

This is analogous to applying a function to each element of a list. The higher order 

function that performs this task in functional programming languages is called map and 

this is also the name used for mapping a relation over lists of signals.

Map has the following properties:

n ; map R = map R ; n

[-]; map R = R ; [-]
app ; map R = [map R, map R ]; app

Since map R represents an infinite class of circuits it is not possible to draw a finite 

picture of it. Figure 2.17 shows one representative of this class.
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Figure 2.17: map R over a four element list.

Map has properties which are similar to those for parallel composition. For example:

map (R ; S) = map R ; map S
(map R)*1 = m ap(R '1)
(map R) \ (map S) = map (R \ S)

2.6  Sequential Circuits
The relations presented so far describe combinational circuits; the output of the circuit at 
any time depends solely on the inputs at that time. Most circuits have memory elements so 

the output depends not only on the current input, but also the past inputs whose history is 

encoded in the internal memory components.

First we need to augment the definition of a signal. For combinational circuits, a signal 
was just one value. For sequential circuits, a signal is a stream of values.

If  s is a signal then s(t) is defined to be the value of the signal at time t. For example:

<a,b,<c,d»(t) = <a(t),b(t),<c(t),d(t)»

Notice that on the left we have a tuple of signals (where the basic element is a stream) and 

on the right we have a tuple of basic elements.

To describe sequential circuits requires information about the past. The output of a 

sequential circuit may depend on the current input at time index i and the previous value 

of the state element at time i-1. To make the past history of a signal available we delay the 
‘arrival’ of the stream. This is accomplished by the use of a delay element ©defined as:

a © b  <=> Vt. a(t-1) = b(t)

Here, a and b must be streams. As an example, consider delaying a tuple of signals. This 

corresponds to delaying each individual signal.
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<a, b, c> <D <d, e, f> «=> Vt. <a, b, c> (t-1) = <d, e, f> (t)

«  Vt. <a(t-1), b(t-1), c(t-1)> = <d(t), e(t), f(t))
«  (a 2>d) & (b 2)e) & (c 2) f)

So <D does not necessarily work over just one ‘wire’: it may relate composite signals.
Thus it is not sufficient to think of 2) as being implementable as just one bit level memory 

element. The symbol for the delay element is shown in figure 2.41.

Figure 2.41: The delay element.

As usual, the inverse of this circuit is formed by flipping the domain and the range. If  an 
anti-delay 2>! is ‘driven’ from left to right, then it predicts values rather than remembering 

them. The use of both 2) and 2*-1 facilitates reasoning about circuit timing and retiming 

[Sheeran 88]. In the final design, the anti-latches must be driven from right to left.

The combinational components defined so far can still be used in sequential circuits by 

‘lifting’ their definitions to work on streams. Consider the example of the ANDSeq 

relation which is lifted so that it operates pointwise over elements of the signals in the 

domain and range.

<a, b> ANDS0q c «=> Vt. (a, b)(t) AND c(t)

<=> Vt. (a(t), b(t)) ANDc(t)

Many sequential circuits require past values to be fed back into the circuit so that they 

may be used to determine the current output. To describe this kind of feedback we 

introduce a new circuit former loop:

a (loop H) b =def 3.c (a, c) H (b, c)

H :: (ot, ft) ~ (X, P)
(loop H) :: a -  x

The loop relation takes as parameter a circuit which relates a 2-tuple to a 2-tuple. The 

second element of the range tuple is fed back and used as the second element of the 

domain. A schematic for the loop circuit former is shown in figure 2.19.
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(a) (b)

Figure 2.19: Feedback loop (a) H (b) loop H.

2.7 Four-Sided Tiles
So far circuits have been laid out like tiles with connections on only two sides, thus 

allowing only very horizontal layouts. Two dimensional circuits may be described by 

placing connections on all four sides of a rectangular tile. This is done in Ruby in a way 

that does not require the semantics already presented to be changed in any way.

Two sides of a tile are considered to be the domain of the circuit (the left and the top) 
and the other two sides form the range (the right and the bottom). Figure 2.21 shows a 

picture of a four sided tile and its inverse. Because of our convention about the position 

of the domain and range, the inverse is formed by flipping along a diagonal line running 

from the bottom left hand comer to the top right hand comer.

The domain of a four sided tile is always a 2-tuple. The first element describes 

information on the left of the tile and the second element refers to the top of the tile. 
Similarly, the range is also always a 2-tuple with the first element referring to the bottom 

of the tile and the second element referring to the right hand side of the tile.

b d

c a

(a) (b)
Figure 2.21: (a) Four sided tile (b) and its inverse.

Both two sided and four sided tiles will be used in descriptions. It will usually be clear 
from the context which type of tile is being used.
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New combining forms are required to compose four sided tiles. These tiles may be 

composed horizontally by using beside (<-») or vertically by using below (t) . The 

definitions of these combining forms are:

<a, <b, c>> F <-> G «d, e>, f)
=def 3g. <a, b) F <d, g> & <g, c> G <e, f)

«a, b>, c> Ft G <d, <e, f»
=def 3g. (a, g) F <d, f) & (b, c> G <g, e>

Figure 2.22 demonstrates these compositions pictorially.

(a) (b)

Figure 2.22: (a) beside (b) below

Two generic combining forms for composing many copies of the same tiles either 
horizontally or vertically are now presented. Let row take as a higher order parameter a 

four sided tile F : it will form a new circuit which contains many copies of F. Similarly, let 
col be the higher order combining form for making vertical arrays. Signal construction is 

denoted by so for example a:(b, c) = (a, b, c).

<a, 0> row P <0, a>
<a, b:c> row P <d:e, f> =def (a. <b, c)> (P <-» row P) «d, e>, f> 
col P =def (row P*1)-1

The following properties hold for these combining forms:

snd [-]; row R
row R ; 1st [-]’1
snd ([m, n ]; app); row R
row R ; fst (app-1 ; [m, n])

R ; fst [-] 
snd [-]*1 ; R
((row R ; fst m) *-> (row R ; fst n )); fst app 

snd app'1 ; ((snd m ; row R) <-> (snd n ; row R))

fst [■]: col R 

col R ; snd [-]1
R ; snd [-]
fst [-]'1 ; R
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fst ([m, n]; app); col R = ((col R ; snd m) t  (col R ; snd n)) ; snd app 

Instances of a row and a col are shown in figure 2.23.

(a)
Figure 2.23: (a) ro w  F (b) COl F

The following laws hold about row and col:

co l R = (ro w  R'1)'1
(row  F) $ (row  G) = row  (F IG )

co l F <-4 co l G = col (F <-> G)

(b)

A useful variant of ro w  is rdl (reduce left, figure 2.24) which is defined as: 

rdl R = row  (R ; n2'1) : n2

Figure 2.24: An instance of reduce left.

Reduce right (rdr) can be defined from col.

rdrR = col (R ; rcr1) ; tct

Two to one relations can be cascaded using rdl or rdr. An example of such a cascade 

is rdl AND.
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2.8  Distributing Signals
Distributing a signal across a tuple of signals is performed by adding the signal to be 

distributed either to the left or to the right of each element of the tuple to be distributed 

over. This leads to four possible patterns, two of which are abbreviated in Ruby as 

follows:

<a, 0) dist^O
<a, b) dist|_ c «=> Vi. ct- = <a, b/>
(0, b) distR 0
<a, b> distR c <=> Vi. c; = <a*, b)

Two examples are:

<a, <b, c, d, e)> distL «a, b), <a, c), <a, d), <a, e»
«b, c, d, e), a) distR «b, a), <c, a), <d, a), <e, a»

A circuit for distribute left can be made by using four sided tiles. The value to be 

distributed is fed from right to left while the signals to the individual components to be 

distributed flow from top to bottom. One suitable implementation for d is tL  is then given 

by:

Ish = i Z t
rsh = i <-> i
distL= row (fst split; Ish ; swap); n1

Ish ; swap

b c d e
  ̂ hidden

Figure 2.25: An instance of the distribute left circuit for the example. 

Distribute right can be defined in terms of distribute left: 

distR = swap ; distL; map swap
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2.9 Some Examples
In this section, some of the Ruby constructs defined above are used to build a 2 to 1 
multiplexer and a binary adder. The specification for the multiplexer we want to build is:

<a, <b, c» MUX d <=> d = a/\b v - sac

I f  a is true then d is connected to b; if a is false then d is connected to c. This is analogous 

to an if..then..else expression. This multiplexer may be implemented as:

MUX = distL ; [AND, [NOT, i j ; AND]; OR 

This description is shown to be faithful to the specification:

(a, (b, c» distL ; [AND, [NOT, i ] ; AND]; OR d 

= { definition of distL }

«a, b>, (a, c» [AND, [NOT, i ] ; AND]; OR d 
= { definition of parallel composition and AND and i }
(aAb, - sac) OR d 
= { definition of OR }

d = aAb v —.aAC

Figure 2.26(a) shows the symbol used for a MUX multiplexer and part (b) shows the 

implementation.
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2-1 M U X

(a)

(b)

Figure 2.26: (a) A 2-tol multiplexer symbol (b) and an implementation.

The second example circuit is a binary addition circuit BINADD. This circuit is 

represented by a four sided tile so the domain and range are pairs. The first element of the 

domain (a vertical signal) is the carry in and the second element of the domain is a pair of 
lists of equal length. The lists represent binary values which are to be added pairwise. 
The first element of the range is a list representing the sum of the two lists on the domain 

and the second element is the carry out.

A full adder circuit FA is used to add two binary values with a carry in to produce a 

sum and a carry out. Let this be a four sided tile, with the carry in as the first element of 
the domain and the pair of binary values to be added as the second element. The first 
element of the range is the sum and the second element is the carry out.

A binary adder can now be implemented as:

BINADD = snd zip ; row FA 

An instance of circuit of BINADD is shown in figure 2.27.
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list 1 list 2

FA FA  carryoutcarry in ------  FA FA

sum of listl and Iist2

Figure 2.27: BINADD

A full adder can be built from two half adders. A half adder HA takes a pair on its 

domain representing two binary values. The range of a half adder is also a pair whose 

first element is the carry resulting from the binary addition of the two values in the 

domain. The sum itself is given in the second element of the range. Using this 

component, the definition of FA is:

FA = snd HA ; rsh ; fst swap ; Ish ; snd HA ; rsh ; fst OR ; swap 

Figure 2.28 shows how the full adder is constructed.

carry in
OR

b ___
HA HA sum of a and b 

and carry in

carry out

Figure 2.28: Construction of a full adder.

A half adder is made from an AND gate and an exclusive-or circuit:

HA
exor

split; [AND, EXOR]
split; [[i, NOT], [NOT, i ] ] ; [AND, AND] ; OR

2.10 Summary
A large subset of the Ruby hardware description language has been introduced. A circuit 
is viewed as a transformer of synchronous streams or signals. Circuits are composed 

using powerful yet simple combing forms. These combining forms convey structural and 

behavioural information. Ruby abstracts away from the notion of input and output by 

considering a circuit to be a binary relation between signals. This gives rise to new 

combining forms that exhibit symmetries which would not have been available in a purely 

functional model.
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This chapter has presented the normal or standard semantics attributed to Ruby. We 

show in chapter 5 that by altering the semantics we can obtain additional interesting 

information about Ruby circuits.



Chapter 3 

Testing Digital Circuits

3.1 Introduction
Most manufactured components have to be tested, but the testing of integrated circuits is a 

particularly difficult task. Traditional testing of assembled devices (e.g. chairs) relies on 

visual inspection and the application of common sense. The testing of electronic 

components like televisions is less straightforward, and involves the use of electronic 

measurement tools like oscilloscopes to measure electrical characteristics of internal 
connections. The internal workings of an integrated circuit are not usually accessible—  

the only way to test such a device is by exercising it through its primary inputs and 

observing the results at the primary outputs.

This problem is exacerbated by the fact that large digital systems are broken down into 

smaller subsystems which may not have an easily identifiable function. Common sense is 

no longer a viable technique for testing such complex circuits. Also, checking the form  of 
the outputs is not enough: it will invariably be Is and Os. It is necessary to check the 

pattern of outputs. For most circuits it is not possible to apply all the input test patterns. A 

subset of the test patterns which results in a high degree of confidence in the circuit must 
be found. This is a very difficult task that requires large amounts of computer and human 

resources. The generation of test patterns for general sequential circuits is not fully 

automated—  often an experienced test engineer has to find tests manually.

There are many reasons why circuits should be specified more formally and the 

challenge testing is one of the most compelling. Too often in the past the test engineer has 

had little information about the function of the circuits to be tested. A formal rigourous 

notation is required for describing circuits so that they can be easily understood. 
Automatic tools are used extensively in testing, and these tools require precise 

descriptions of the circuits they analyse. These are yet more reasons why hardware 

description languages with precisely defined semantics, like Ruby, are becoming
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increasingly important for circuit description.

This chapter presents a brief introduction to the field of testability. Section 3.2 gives 

reasons why testing has become one of the most important stages of integrated circuit 
development. Section 3.3 classifies various types of test and how defects in circuits are 

described. Section 3.4 presents a formal description of notions like ‘test pattern’. Some 

popular methods of generating tests for combinational circuits are presented. These 

include a path sensitization technique for manual test pattern generation (which is 

formalised and automated by the D-algorithm presented in a later chapter) and the method 

of boolean differences. Techniques like fault collapsing are introduced for reducing the 

large amounts of information that are handled by CAD (Computer Aided Design) tools 

performing test pattern generation. Section 3.5 shows how the very expensive task of 
generating tests for a circuit can be reduced by using each pattern to cover as many faults 

as possible. A technique called deductive fault simulation is presented which, given as 

input a circuit, a fault and a test T covering that fault, will produce a list of all the other 
faults which are exposed by the given test pattern T. Section 3.6 presents a method for 
estimating how testable a given design is. This could be used in the design stage to 

improve subcomponents that are difficult to test by making them more accessible. Section 

3.7 presents various methods for improving the testability of circuits and shows how 

sequential circuits can be tested.

3.2  Why Circuits have to be Tested
Certain applications such as life critical systems require a high degree of reliability. 

Developers of such systems need a guarantee that the components they use will operate 

faithfully to their specification. This guarantee is usually provided by testing components 

before they are delivered to the customer. The procedure of testing occurs in two distinct 
phases of the design and production of integrated circuits. The techniques employed for 
testing at these two phases are different.

The design phase phase involves making a series of refinements from a specification 

of a circuit to a physical realisation. Circuit specifications can be very complex and 

physical realisations might require over a million components. Specifications encompass 

not only the intended logical behaviour, but also performance constraints like power and 

speed and resource constraints like area. There is a large scope for error or inconsistency 

between the specification and the derived design. Verification involves checking that 
implementations are consistent with specifications. Testing is one verification technique
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for detecting such inconsistencies. A model of a design is simulated by a computer until a 

satisfactory degree of confidence in the behaviour of the design is achieved. A design 

which fails a test has to be redone, using any diagnostic information provided by the test 
procedure. The fabrication of integrated circuits is a very expensive task, so every effort 
must be made to ensure a design is correct before attempting to physically construct it.

We say very little about this kind of testing. Verification of designs is not easy to 

perform by testing because of the vast number of test patterns that have to be applied 

before a circuit can be proved to be correct. Sometimes, for practical reasons, not all 
faults can be tested for. A subset of likely faults are identified and a set of tests to expose 

these faults are generated. This method does not prove the correctness of a design. Much 

work has been done on the use of formal mathematical techniques to reason about designs 

in order to prove useful properties and ultimately correctness [Cohn & Gordon 86, 
Melham 87, Cohn 87].

Integrated circuits are manufactured on disks of silicon (called wafers) containing 

typically many copies of the same circuit. Each copy is called a die. A wafer is typically 

75mm in diameter and contains one hundred 5mm square dies. Even if the design of the 

circuit has been proved to be correct, it is still possible that a physical realisation of the 

correct design does not meet its specification. The manufacturing process for integrated 

circuits is far from perfect—  many of the dies may have been badly formed. For certain 

types of circuits such as large microprocessors like the Motorola 68000 as many as 70% 

of the dies may be damaged. Wafers are baked in furnaces which may be at the wrong 

temperature as well as being treated by various chemicals which may be of the wrong 

composition. A single speck of dust can render a die useless. These variations and 

imperfections decrease the ratio of working dies to the total number of dies on a wafer. 

This ratio is called the yield.

The quality control stage of production must isolate defective components so that they 

can be removed. The process of determining which dies on a wafer are working is called 

wafer sort. Preventing the shipment of broken circuits is becoming increasingly 

important as greater emphasis is placed on quality. Another reason for discarding 

defective dies is the high cost of bonding which is often as much as a third of the total 
production cost. Bonding is the setting the dies in ceramic packages and linking the tiny 

pads of each die with the pins of the chip.

Manufacturing errors modify the behaviour of a circuit in many ways. A circuit can 

still perform its intended logic function, but at the wrong speed, or perhaps it may 

consume too much power. Parametric testing involves measuring these analogue 

quantities to ensure that performance constraints are satisfied. Analogue quantities can
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deviate from the expected values because of the variations in manufacturing process or 
because of bad design, e.g. a channel being too narrow to cope with the required current 
flow. Functional testing or logic testing is the checking of the logical behaviour of 
the circuit. Although both types of testing are essential, nothing is said here about 
parametric testing: the techniques presented in this thesis pertain mainly to functional 
testing.

The primary reason for performing testing at the post-production stage is to discard 

defective components. Since integrated circuits are encased in ceramic packages and dies 

contain features of the submicron scale, repair is not usually a viable option. The test 
procedure can provide useful diagnostic information which can be used to help locate a 

fault in some subcircuit. This information can be used to improve the fabrication process 

and the design process. For example, the temperature of a furnace can be reduced or a 

component that fails frequently redesigned using more reliable design rules.

3.3  Types of Test
The activity of producing a suitable collection of test patterns to exercise a circuit is called 

test pattern generation (often abbreviated as TPG). Ideally, test pattern generation 

should be performed automatically by CAD tools, but this has only been realised for a 

restricted class of circuits. Much test pattern generation is still done manually. This 

consumes valuable time of experienced test engineers and is very costly.

Tools that perform automatic test pattern generation (ATPG) are based on 

formalisations of manual techniques.

The obvious way to test a circuit is to see if it is operating correctly with respect to its 

specification. This is the approach taken by functional test programs. The word 

‘program’ does not mean a piece of software, but a sequence of test patterns. The 

specification usually used is a truth table. The input part of each row of the truth table is 

applied in turn for combinational circuits. The output for each pattern is checked against 
the expected result in the truth table. Any deviation from the expected values indicates the 

circuit is faulty and should be discarded.

This approach is not very practical for various reasons. It is often very difficult to 

derive a truth table for a circuit. Even if a truth table is available, the number of test 
patterns required is related exponentionally to the number of primary inputs. If  a



38

combinational circuit has n inputs (Figure 3.1(a)), then it will require 2" test patterns to be 

applied in order to be tested exhaustively. For even fairly modest values of n, the number 
of test patterns required becomes prohibitively large.

The problem is amplified for sequential circuits. These circuits have to be tested with 

all possible input combinations for each possible combination of internal state variables. 
For a circuit with n primary inputs and m state elements (Figure 3.1(b)), this requires 

2n+m patterns.

If, say, n = 24 and m = 20, the resultant number of test vectors for exhaustive testing 

is 244. If  we could generate test vectors at a rate of 106 vectors/sec, then testing will take 

six months at 24 hours per day!

STATE
ELEMENTS

COMBINATORIAL
LOGIC

COMBINATIONAL
CIRCUIT

(a) (b)

Figure 3.1: (a) Combinational circuit (b) Sequential circuit.

By applying a 'divide and conquer' technique, we can decompose a big circuit into 

smaller circuits and test these independently. If  we can test the combinatorial and 

sequential elements separately, then the number of vectors required for exhaustive testing 

is reduced to 2n+2m. This could be done in under 20 seconds—  a dramatic reduction in 

testing time.

Thus, by partitioning the circuit into smaller subunits and testing state elements 

independently we can make the problem of testing manageable. This involves thinking at 
the design stage about testability. The circuit has to be designed to allow access to the 

subunits and will require extra pins, increasing the packaging cost.

Design techniques to cope with testing address the following areas of importance:

• Test generation
• Test verification
• Design for test
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Test generation entails finding and producing the smallest set of test vectors that will 
give the greatest coverage of faults. Test verification concerns assessing the fault 
coverage of a set of test vectors. Designing with testing in mind reduces the complexity of 
the two previous problems.

Not all circuits can be naturally described by a truth table. For example, a 

microprocessor is understood in terms of its instruction set or a set of register transfer 
rules. An exhaustive test would involve executing every instruction with every operand. 
This is clearly not acceptable. Different techniques are required for testing such circuits.

Instead of checking to see if a circuit is working, a test program can be constructed to 

check if a circuit is faulty. By considering the physical structure of the circuit, a set of 
possible defects is enumerated and tests constructed for each defect. A defect is a 

physical failure that causes functional failure. Clearly this requires more information than 

just the behaviour of the circuit: the physical layout is now important too. Test generation 

techniques that attempt to detect specific structural failures generate structural test 
programs. Another name for structural testing is fault-oriented TPG.

Several physical defects can have the same electrical effect on the circuit. These faults 

have the same effect on the observable outputs, making them indistinguishable. For this 

reason it is more profitable to think in terms of faults which are the electrical effects of 
physical defects.

A general type of physical failure can now be represented in terms of how it affects the 

logical operation of the circuit. The relationship between the physical defects and faults is 

expressed by a fault-model. Often, a fault arises from a variety of physical defects. 

The consequence of this is that fault-models can relate a fault to a list of physical defects.

Such a fault model is the single-stuck-at-fault model [Weste & Eshraghian 85]. 
This model makes two assumptions about how circuits can fail. The ‘single’ in the name 

refers to the assumption that only a single node in the circuit is directly affected by a fault. 
The second assumption is that the electrical effect of the fault is to cause a node to be 

‘stuck’ at logic 0 or logic 1, irrespective of the stimuli applied at the primary inputs.

These assumptions are simplifications of the way in which circuits fail. A failure can 

be caused in some other way. One example is two lines being connected together so that 
they are always at the same logic level. Also, a circuit may fail at several nodes, not just 
one. However, for most circuits, the single-stuck-fault model gives surprisingly good 

results. This is the most widely used model in industry.

This model does not cover all faults. For example, the joining of two wires that were
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not previously joined can radically alter the behaviour of a circuit. For CMOS, some 

faults may convert a combinatorial circuit into a sequential circuit. This happens when a 

node becomes permanently detached from source or drain due to a defective transistor. 
The value on this node will depend on its previous value i.e. the charge stored there due 

to capacitance.

Consider a 2-input AND gate f  = a AND b. There are three wires associated with this 

gate: two input wires and one output wire. Each wire can have one of two faults (i.e. 
stuck at zero or stuck at one). So there are six possible faults. The notation a/0 is used to 

mean node a stuck-at logic 0—  similarly for a/1. A truth table for the fault-free circuit and 

possible faults is:

a b c a/0 b/0 c/0 a/1 b/1 P/1

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0 1

1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 1 1 1

a/0 is the output expected if there was a stuck at zero fault on input wire a. Using this 

model, a/0, b/0 and c/0 are indistinguishable—  they are said to be equivalent. Thus there 

are only four different fault classes. We only need enough test patterns to cover all the 

fault classes. The following tests form a cover:

Test ab=l 1 detects a/0 b/0 c/0 (Expected output 1, get 0)

Test ab=10 detects b/1 c/1 (Expected 0, get 1)

Test ab=01 detects a/1 (Expected 0, get 1)

Notice how this model assumes that there is never more than one fault at a time; it does 

not model wire a and wire b stuck at zero simultaneously.

3.4  Test Pattern Generation
I f  C specifies the behaviour of a working circuit, then let Cf describe the behaviour of C 

under the influence of fault/. Here, C is a function from input patterns to output patterns. 
The fau lt/ is exposed by finding some input T for which C produces a different result 
from Cf. An input exposes a fault when either of the following conditions are true:
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C (T )*C i(T ) (3.1)
C(T) © C{(T) (3.2)

Exclusive-or is denoted by the symbol ©. For a given fault/, there may be no test 
patterns or multiple test patterns. Relationship 3.1 can be used to construct the sets of all 
test TESTS (Cf) for a circuit C under fault/.

TESTS (Cf) = { T : T e INPUTS(C); C(T) *  Cf(T)} (3.3)

Note that TESTS is a two place operation taking a circuit C and a fault f. The set of all 
input patterns for a circuit C is given by INPUTS(C). For example:

INPUTS (AND) = {00, 01, 10, 11}

For an n- input circuit, there are 2n patterns produced by INPUTS.

Not all faults are testable. A fault can occur in a redundant part of a circuit where 

certain failures will have no effect on the correct behaviour of the circuit. Redundancy is 

often introduced to avoid other problems like hazards so it cannot always be removed. If  

a fault/is untestable, then TESTS(Cf) will be an empty set i.e. TESTS(Cf) = {}.

Often, there is more than one member of TESTS(Cf) but only one member of this set 
is required to test for fault f. Any member can be chosen, but some choices are better than 

others. This is because some test patterns cover multiple faults, so a judicious selection 

can reduce the total number of test patterns required for a circuit.

A fault-list is the set of all possible faults in a circuit. The particular faults present in 

this set will depend on the fault model employed. For the AND gate in Figure 3.3a there 

are six possible faults (two for each node) if the single-stuck-at-fault model is used. The 

function FAULTLIST(C, pi, ...,pn) is defined to return the fault-list for a given circuit C 

with input pi, ...,pn assuming the stuck-at-fault-model. For example:

FAULTLIST(AND, a, b) = {a/0, a/1, b/0, b/1, c/0, c/1}

The fault-cover is the percentage of the faults in the fault-list that are covered by a test 
program. The ideal of 100% fault cover is not always realisable because some faults may 

be untestable or the circuit may be too large to make this practical. A test program to cover 

all testable faults can now be specified as follows:

TESTPROGRAM(C,...) = {(T, C f(T )): f  g  FAULTLIST(C,...); T g  TESTS(Cf)} (3.4)

The set expression selects one fault at a time from the fault list and then chooses one 

member (if it exists) from the set of tests that exposes that fault. Each input test pattern is 

paired with the result of the working circuit for input T.
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This specification gives the largest test program that does not contain duplicate test 
patterns. Instead of choosing just any member T of TESTS(Cf) the selection could be 

made to prefer a T  which exposes many other faults too.

A direct transcription of the above specification to code would not yield an efficient 
automatic test pattern generation program. Generating tests using the above specification 

uses no information about the construction of the circuit so is an example of a functional 
test program.

For some circuit F with input i\ . . in there are sometimes assignments to inputs which 

are called enable and disable values. A disable assignment to an input determines the 

output of the circuit, irrespective of the other inputs. Informally, the other inputs are 

assumed to be disabled. If  an assignment is not an disable assignment, then it must be an 

enable assignment. This kind of assignment ensures that the value at the output does 

depend on the values at the other inputs.

Consider the circuit C in Figure 3.4 with inputs a, b and c and output d i.e. the output 
is a function g of the inputs:

d = g(a, b, c).

Figure 3.4

To generate a test pattern for a fault at node a , information about the value at node a must 
be ‘transported’ to node d so that it can be observed. This requires nodes b and c to 

assume values that do not make the output d independent of a i.e. enable input values. 
This establishes a sensitive path from a to d. This ensures that a change of logic value 

at node a is reflected by a change at d.

Another useful relationship between a and d is to make the logic value at node d 

independent of node a. This can be done by finding ‘disabling’ values for b and c which 

which produce a fixed value at d, no matter what value is present at a.

For the AND gate in Figure 3.3a, the output c can be made to always depend on the 

value at a by ensuring that b is 1. The relationship between c and a is then simple: c is 

always the same as a. To make the output independent of a, b is set to 0 which results in c 

always being 0 no matter what a is.

The OR gate in Figure 3.3b requires b to be 0 to make c depend on a and b to be 1 to 

mask the value at a. Some gates, like exclusive-or, can not be disabled.
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Manual test pattern generation is presented first. Most automatic test pattern generation 

techniques are just formalisations of manual techniques, so many of the techniques in 

TPG and ATPG are essentially the same. Before considering composite combinational 
circuits, a test program is generated for a single gate.

The AND gate is to be tested for stuck-at faults. The first stage in manual test pattern 

generation is to prepare a fault-list. For the single-stuck-at-fault model, this means listing 

each node of the circuit for each stuck-at value. The list of faults to be covered in this case 

is:

FAULTLIST(AND) = {a/0, a/1, b/0, b/\,  c/0, c/1}

Remember that if there are n nodes in a combinational circuit, then there will be 2n stuck- 
at faults. Figure 3.5 shows the six faulty circuits that correspond to the above faults. 
These faults modify the function of the AND gate: the modified function is shown next to 

each broken gate.

s-a-0 s-a-1

c = 0

s-a-0   c = 0 s-a-1

b - X -

s-a-1

Figure 3.5: The stuck-at faults for an AND gate

I f  the fault a/0 occurs, then the output of the AND gate will always be 0. Consequendy 

if the output is 1 then fault a/0 does not occur. A test pattern has been found for a/0 if the 

pattern produces a different output on a fault-free AND gate and an AND gate with fault 
a/0. To set the output node c of the AND gate to 1 requires a and b to be set to 1. Since 

this pattern produces differing outputs for a fault-free AND gate and an AND gate with 

fault a/0 then this is a test pattern for the fault a/0.

To test for a/ 1 the fault free condition a=0 must be established. As above, b must be 

set to 1 to make c depend on a. In a working circuit this would set c to 0 so a test for a/ 1 
is abc=010. The reasoning behind generating tests for b/0 and a/ 1 is symmetrical: the tests 

are abc- 111 for b/0 and abc= 100 for b / \ . To test for c/0 requires the fault free condition 

c=l to be established. This can only be done by setting a- 1 and b- 1 so a test for this fault
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is abc= 111. To test for c/1 requires c to be set to 0. There are three different assignments 

to a and b that set c to 0: ab=00, ab=01 and ab=10. So any of abc=000, abc=010 and 

abc= 100 are tests for c/1. These results are summarised in Table 3.1.

Faults Test(s)
a/0 111
a/1 010
b/0 111
b/1 100
c/0 111
c/1 000 or 010 or 100

Table 3.1

The test 111 covers three faults: a/0, b/0 and c/0. For this gate using the single-stuck- 
at-fault model these faults are indistinguishable and form an equivalence class. A good 

choice to expose c/1 is the pattern 010 or the pattern 100 since these tests are needed 

anyway to expose other faults. A complete test program for an AND gate is {111, 100, 
010}. This is only a saving of one test pattern compared to the test program generated by 

an exhaustive procedure i.e. {000, 010, 100, 111}. However, for more complex circuits 

the difference between the sizes of the test programs produced by functional and 

structural approaches becomes much greater. The structural method can take advantage of 
the connectivity information present to spot overlaps in tests and redundancies, whereas 

the functional approach has only the truth table or a boolean expression to work from.

The test pattern 111 above exposed three faults: a/0, b/0 and c/0. The reason for this is 

that these faults change the behaviour of the circuit in the same way i.e. transform it from 

c - a / \ b i o c  = 0.

This technique for testing an isolated gate extends naturally to the testing of composite 

combinational circuits. Tests for all the faults in the circuit C2 shown in figure 3.6 are 

now constructed by considering sensitive paths from the site of the fault to an observable 

output.

Figure 3.6: Composite Combinational Circuit C2 

There are 7 nodes in this circuit so there are 14 possible faults. The fault list for circuit C2
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is:

FAULTLIST(C2) = {a/0, a/1, b/0, b/ l ,  c/0, c/1, d/0, d/ \ ,  e/0, e / \ , f /0 , f / \ ,  z/0, z/1}

To test for a/0 the node a has to be set to the value opposite to the stuck-at value. There is 

no point in testing for a/0 with a=0 since there will be no difference between the fault-free 

and faulty outputs. The next step is to try and propagate the fault information towards an 

observable output, in this case z. The only way to get to z from a is through e, so the 

value at e must be made to depend in some way to the value at node a. The enabling input 
to an AND gate was shown earlier to be 1 so node d has to be set to 1 making e=a.

The assignment d= 1 has to be justified by proceeding backwards towards the primary 

inputs to ensure that it is possible to set this node to 1. In this case it is easy to set d - 1 by 

making the assignment b=0.

Having ensured that fault information can indeed be propagated from a to e the next 
step is to try and propagate fault information from e to z. The enabling input for an OR 

gate is 0 so node /  must be set to 0. Since b=0 node /  is 0 anyway, so no further 
assignments are required. The value at c is immaterial: neither 0 nor 1 will have any effect 
on the value of node/. The node c is assigned the value X to indicate that it can assume 

either logic value. Now the fault information at e is propagated to the observable output z: 

the relationship between e and z is z-e.

Putting all this together, the assignments a=l and b=0 form a sensitive path from the 

site of the fault a/0 to z through e. The sensitive path is denoted by a=c=z. This states that 
in a working circuit C2, nodes a, e and z all have the same logic value. In a circuit which 

does not have the fault a/0 then a=z=l.

To emphasise the distinction between inputs and outputs, test patterns are written 

using a multiple assignment like abc/d=pqr/s where a, b, c are primary input nodes and d 

is a primary output node. The assignment states that node a is assigned logic value p, b 

logic value q etc. Since c can be any value, there are two tests for at0: abc/z-100/1 (with 

c=0) and abc/z=\0\/\ (with c=l). Only one test is required to expose the fault. To test for 
a/0 the inputs are assigned abc= 100 (or 101) and the value z observed. If  z=0 (opposite 

from the fault-free value) then the fault a/0 is present.

The test for a/1 is similar to the test for a/0: the only difference is the fault-free 

condition a=0. As shown above, to propagate information from e to z the only 

assignment required is b=0. This forms the same sensitive path a -e -z  so z=0 in a circuit 
that does not have the fault a/1. The tests for a/1 are abc/z-000/0 and abc/z=001/0.

Notice that it would have been possible to consider the tests for a/0 and a/1
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simultaneously since finding a sensitive path does did not depend on the value at node a. 

The sensitive path a=e=z is highlighted by a heavy line in figure 3.7.

e=a

f=0

Figure 3.7: Sensitive path a=e=z

There are two possible sensitive paths from b to z: one through e and the other through 

/. The sensitive path through e is considered first. The value at node d is always opposite 

to the value at node b, so the first segment of the path is b=—d. To propagate information 

from d to e requires a= 1 (the enabling input for an AND gate) so that b=—id=—>e. To 

propagate fault information from e to z requires/=0 (the enabling input for an OR gate). 
There are three possible assignments that set /=  0: b=0, c=0 and bc=00. However, the 

assignments b -0 and bc=00 commit b to be 0 requires using the value at node b which is 

the site of the fault so these patterns must be discarded. For this reason the assignment 
c=0 is chosen to establish the sensitive path b=—>d=—\e=-iz. This states that in a working 

circuit the value at node z is always opposite to the value at node b.

The second possible sensitive path from b to z is through / .  To make/  depend on b 

requires c=l. To make z depend on/requires 6=0. To set 6=0 can be done by a=0. Again 

the value at node b cannot be used since this is the node under test. This establishes the 

sensitive path b=f=z, yielding the test abc/z=0\ 1/1 for b/0 and abc/z=001/0 for bl 1.

To test for faults at node b two test patterns are required: one from the set {110/0, 
011/1} to test for b/0 and one from the set {100/1, 001/0) to test for bl 1. Thus there are 

four possible combinations of test patterns that expose both faults at node b.

To sensitize a path from c to z requires h=\ to make c=f. To make z=f requires e=0. 
No further assignments are required since the assignment b=\ causes d=0 which results 

in 6=0. This gives the sensitive path c=/=z. The tests for c/0 are abc/z=X\ 1/1 and the 

tests for c/1 are abc/z-X  10/0.

The tests for the other faults are found in a similar manner.

This completes the first phase of manual test pattern generation for a very small circuit. 

Test patterns have been generated for all 14 possible faults. This technique is tedious and 

error prone. For large circuits, such manual calculations are not practical.

The faults and expanded test patterns that expose them are summarised in table 3.2.
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Faults Input test pattern
a/0 100 or 101
a/1 000 or 001
b/0 110 or 011
b/l 100 or 001
c/0 011/1 or 111/1
c/1 010/0 or 110/0
d/(5 100 or 101
d/1 110
e/0 100 or 101
e/1 000 or 001 or 010 or 110
f/0 011 or 111
f/1 000 or 001 or 010 or 110
z/0 100 or 101 or 011 or 111
z/1 000 or 001 010 or 110

Table 3.2: Test for stuck-at faults in C2

This manual test pattern generation technique has produced all eight possible input 
patterns to test the three input circuit C2. However, not all eight test patterns need be used 

because most patterns expose more than one fault. By choosing patterns carefully, the 

number of test vectors required to test for every fault can be substantially reduced. The 

information in Table 3.2 is represented in Table 3.3 which shows the faults covered by 

each test pattern. Such a table is called a fault-matrix.

h/0 j b/l d/0c/0 i c/1T/F
(500
001
010
011

110

Table 3.3 Fault matrix for circuit C2.

Only enough rows (tests) have to be chosen to ensure that there is at least one tick 

under each fault. The first step is to identify columns (faults) that have only one tick. 
These faults have only one test that exposes them. Such a test is called an essential test 
and must be used in the test program. In table 3.3 d /\ is only covered by one tick 

corresponding to test 110. Test 110 also covers the faults b/0, c/1, d! 1, e /1 ,/I and z/1. 
The table is now reduced by removing columns d /1, b/0, c/1, d /1, e/1 ,//I and z/1 and the 

row 110. This results in table 3.4:
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T/F d /0
000
001
010
Oil
100
101
111

Table 3.4: Fault-matrix after removing the essential test 110.

There are no essential tests in this table i.e. each fault is covered by more than one test. 
By inspection it can be deduced that three tests are required to cover all the remaining 

faults. One suitable choice of test patterns might be 100 (because it covers all the faults 

except a/1 and//0), 000 (because it covers a l l )  and 111 (because it covers f/0). 
Alternatively, a boolean expression can be derived from the table which can be reduced 

to show that at least three tests are required and that there are six ways to choose them.

By simplifying a fault-matrix the test program has now been reduced from eight 
patterns to four, namely {110, 100, 000, 111}. This simplification technique is directly 

analogous to the technique used in Quine-McCluskey [McCluskey 62] boolean 

simplification to find prime implicants.

Test pattern generation for realistic circuits involves manipulating vast amounts of 
information. A useful preprocessing stage to test pattern generation is fault-collapsing. 
This technique reduces the size of the fault-list by identifying faults which are 

indistinguishable. Two faults are indistinguishable if they are covered by the same test 
patterns. Table 3.3 is rearranged in table 3.5 to highlight indistinguishable faults. The 

faults {a/0, d/0, e/0} are indistinguishable, so they can be replaced by just one fault in the 

fault-list.

b/0T/F
000
001
010
011
100
101
TRT

Table 3.5: Groups of indistinguishable faults.
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The other non-singleton groups are {e /1 ,//l, z/1} and {c/0,//0}. By choosing just one 

representative from each set, the fault-list can now be reduced to:

{a/0, e/1, c/0, a! 1, b/0, b /1, c/1, d/1, z/0)

This has removed five faults from the fault-list which results in a substantial saving in 

test pattern generation effort. The fault-list can be reduced even further by finding fault 
dominance in table 3.6. A fault R is dominated by a fault S if the ticks in R ’s row are a 

subset of the ticks in S’s row and is denoted by S -> R. There are several instances of 
fault dominance in table 3.5:

a /0  -> z/0
a / l  -> c/1 
c/0 -> z/0 
c/1 -> c/1
d /l b/0, c/1, c/1

Once the dominated faults have been removed the fault-list is reduced to just five 

elements:

{a/0, a /l, b /l, c/0, d/ l )

The reduction of the fault list from 14 to 5 is a large saving but not a typical one. Fault 
collapsing usually halves the size of the fault list.

Instead of building tables from scratch for each circuit to be analysed for fault- 
collapsing, it is possible to determine characteristics about isolated gates and combine 

these to deduce information about a circuit made from these gates. Table 3.6 shows fault- 

collapsing information for AND, OR and NOT gates (Figure 3).

Gate Indistinguishable faults Fault Dominance
AND {a/0, b/0, z/0) a/l, b/l -> z/1
OR {a/l, b/l, z/1} a/0-* b /0-> z/0
NOT {a/0, z/1}; {a/l, z/0} None

Table 3.6: Fault-collapsing information for isolated gates.

The techniques of sensitive path analysis and fault collapsing have to be applied with 

care to circuits containing reconvergent fanout. An example of such a circuit is shown in 

figure 3.8.
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0 - > l

Figure 3.8: Positive reconvergence under fault b/0.

The test pattern is abc/z= 111/0 and the fault under consideration is b/0. The circuit is 

annotated with differences between the fault-free and faulty circuit. 1 -> 0 means that a 

node which has logic value 1 in a fault free circuit assumes logic value 0 when the fault 
under consideration is present and similarly for 0 1. The interesting aspect of the fault
propagation in this circuit is that there are two paths simultaneously sensitized from the 

site of the fault to the primary output z. The fan-out is responsible for allowing more than 

one path and the reconvergence at the last NAND gate combines the results of the two 

sensitive paths to produce a sensitive output. The term dual-path sensitization is used 

to describe this situation. Both the inputs to the last NAND gate must be sensitive to the 

fault b/0 to sensitize the output. One change in only one input does not cause a change in 

the output. Positive reconvergence occurs when two sensitive paths reconverge to 

reinforce each other. Each path alone does not create a sensitive output: both must be 

sensitive.

The circuit in figure 3.9 shows an example of negative reconvergence: this is where 

information from two sensitive paths reconverge in a manner which makes it impossible 

to extend the sensitive path.

Figure 3.9: An example of negative reconvergence

The test b -0 (sensitize the site of the fault), a= 1 (enable top NAND gate) and c=0 (enable 

OR gate) is applied to the primary inputs. Two sensitive paths exist up to the last NAND 

gate. Each node assumes value 0 instead of 1 when fault b/0 occurs). Unfortunately, 
these sensitive paths combine at the last NAND gate to produce an output of 1 which is 

the same as the output for the fault-free version of the circuit. Consequently the input 
pattern abc= 100 is not a test pattern for the fault b/ \ .
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The implication of fanout and reconvergence is that care must be taken when 

examining paths through such circuits. I f  a path is blocked through two alternative paths 

independently then it may not be blocked if both paths are sensitized simultaneously. 
Also, tests generated for reconvergent fanout circuits have to be checked to ensure that 
negative reconvergence does not take place.

Fanout and reconvergence also affects the results obtained for fault-collapsing. 
Applying the rules in table 3.6 to the circuit in figure 3.8 the indistinguishable faults for 
the bottom AND gate are found to be {b/0, c/0, f/0 }. However, comparing this with the 

fault matrix reveals that these faults are not actually indistinguishable: b/0 is different from 

{c/0, f / 0 }.

The problem is that the test 111 which covers f/0  does not cover b/0 because negative 

reconvergence causes the fault-effect o f/to  be cancelled by the fault-effect at e. Also, the 

test 110 which covers b/0 does not cover f/0 because it uses a different sensitive path 

through e instead of / .  Both of these problems are a result of the fan-out that occurs at 
node b. One solution is to remove all the implications resulting from the fanout node, 
giving the correct result at gate 3: {c/0, f/0 ) ; c/1 -> / / I  i.e. c/0 and f/0  are equivalent and 

c/1 dominates f / 1.

3.1 Boolean Differences
Another technique for generating tests for faults in combinational circuits is the boolean 

difference method [Sellers 68]. This method employs differential equations to 

describe test patterns. There is a strong analogy between differential equations over 
boolean values and those over real numbers and they share many common properties. 
This is because boolean algebra and the real number system are both examples of rings in 

mathematics.

Consider the problem of generating a test for a single output circuit characterised by 

the function F(xj,...x„) where xi..x„ are the primary inputs. First, the problem of 
generating tests for primary inputs is solved. This is then extended to internal nodes.

A fault is testable if a change of logic value at the site of the fault also produces a 

change at an observable output. Assume that input xj is to be tested for a fault. The set of 
tests that expose faults at xj are captured formally by using the exclusive-or operation:

F(xi,...,0,...x„) © F (xi,...,l,...x„) = 1
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I f  the exclusive-or of the outputs with and without the fault is 0 then this means that there 

is no difference in the circuit response between the fault-free and faulty circuits. The left 
hand side of the above equation is the boolean difference, and is written as: 

dF(X)
dxi

where X  = xi,...xn.

= F(xlf ...,0,...,xn) © F (x i,...,l,...,xn)

The boolean difference describes all the conditions (i.e. values of the inputs) for which 

the output of F depends only on Xj. A test for a fault at the site of the primary input x/ 
exists if dF(X)/dx; = 1 i.e. the output of the function is negated by the presence of the 

fault for certain input assignments. However, if dF(X)/dx; = 0 then there are no input 
assignments that cause the output to be complemented when the fault is present. This 

makes the fault at site x/ undetectable.

The boolean difference sensitizes a path from the site of the fault to an observable 

output. To generate a test pattern, the site of the fault has to be sensitized by setting it to 

the opposite value of the fault. This is also done by choosing suitable assignments to the 

primary inputs. A test is a consistent combination of patterns generated by the boolean 

difference and the sensitization of the site of the fault i.e. the logical conjunction of the 

boolean difference and the condition for sensitizing the site of the fault.

Consider the example of testing for the fault x/ stuck-at-0. The condition required to 

sensitize the site of the fault is Xj = 1. Tests for this fault are given by solutions to the 

expression:

dF(X)
dxj

. Xj = 1

This derivative describes the conditions required to from a sensitive path from the site of 
the fault (i.e. the primary input x/) to the output and the x; term sensitizes the site of the 

fault by requiring x; to be 1 (opposite of the stuck-at value). By similar reasoning, the 

tests for x/ stuck-at 1 are given by the expression:

dF(X) 
dxj X,_‘

This expression requires xz to be sensitized by assigning to it the value 0.

Tests can be generated for internal nodes by thinking of the node to be tested as being 

an extra primary input to the circuit. Consider the generation of a test for an internal node 

k using boolean differences. First, the logic value at k is expressed in terms of the 

primary inputs i.e. k = g(x;,...,x„) where g is a boolean function. The reason for this is
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that k might not depend on all n inputs. Now k can be added to the parameter list:

= F(.xu ...JCn,k) ® F (x u ...Jn,k)

Now k can be replaced in the expansions of the above expression by expressing it in 

terms of the primary inputs. This relationship is given by g.

To illustrate boolean differences, this method is used to generate tests for the circuit in 

figure 3.6. Tests for this circuit have already been generated by using sensitive paths. The 

function of the circuit is

F(a, b, c) = (a a  - ib) v (Jb a c)

The primary inputs are dealt with first. Let X = (a, b, c).

•  Node a.

^ 1 = F ( 0 A c) © F (l,6 ,c ) 
da

F(0,b,c) = ( O a —ib) v (bAc) = 0 v Q )a c )  = bAC
F(l,b,c) =  (1 a —\b ) v (bAc) =  —iZ? v (t>AC)

F(0,b,c) ® F(l,£,c) = —ib

This is only 1 if b=0. Note that this is the condition that is required to establish a sensitive 

path from a to z. Let X  denote a don’t care assignment. To test for a/0 requires a - 1 so a 

test for this fault is abc/z= 10X/1. Testing for a! 1 requires a=0 so the test pattern is 

abc/z=00X/0.

•  Node b.

= F(a,0,c) ©  F(a, 1 ,c)
d b

F(a,0,c) = (<m1) v (Oac) = a
F (a ,1 ,c ) = (£ZaO) v ( Ia c )  = c

F(fl,0,c) ® F(a,l,c)
= a © c
— (2a—iC v  —tCLa C

The boolean difference is 1 when either a is 1 or c is 1 but not both. To test for b/0 

requires b= 1 giving the tests abc/z= \ 10/0 (with a= 1) and abc/z=011/1 (with c=l). To test 
for bl 1 requires b=0 giving the tests abc/z= 100/1 and abc/z-001/0.

•  Node c.

{ defn. of F } 
{ defn. of © }
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^  = F(aAO)®f(nAl)

F(a,b,0) = (aa- £ )  v (£aO) = aa-tb 
F ( a , 6 , l )  =  (aa-iZ?) v (&a1) = (flA-ift) v 2?

F(a,b,0) © F(a,/?,1) = £

The solution to the differential is b= l. Tests for c/0 are abc/z=X 11/1 and test for c/1 are 
abc/z=X 10/0.

•  Node d.

Make d a pseudo-input d = —ib so F(a,h,c,d) = OAd v £ac.

dF^ ,’d) =F(aJi,c,0) ©  F(a,b,c,l) 
ad

F(a,b,c,0) = 0 v /?ac = £ac 
¥{a,b,c,\) = v Z?ac

F(a,^,c,0) © F(fl,£,c,l) = flA(-ift v —ic)

For d/0 this yields the tests abc/z=\0XJ\. The test for d/l is abc/z= 110/0.

The tests for the other faults are obtained in a similar manner.

3.5 Deductive Fault Simulation

3.5.1 Introduction to Deductive Fault Simulation

The generation of a test pattern for a given fault is very expensive. Once a test pattern for 
a particular fault has been generated, it is often the case that this test pattern will also 

reveal other faults. Employing a test pattern generation system to rediscover test patterns 

at great cost is not necessary. It is possible to perform an analysis which examines a 

circuit for a given test pattern in order to ascertain which faults it exposes.

A fault simulator takes as input a test pattern and a circuit description and produces as 

output a list of faults that can be detected by this pattern. Some fault simulators work by 

simulating defective versions of the circuit, whilst others simulate the working version 

and deduce from the correct behaviour which faults are detectable at the primary outputs. 
A deductive fault simulator [Armstrong 72] belongs to the latter category. A circuit
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represented as a product of sums of AND, OR, NAND and NOR gates may be 

transformed into a set expression which yields the faults required.

Deductive fault simulation works by propagating lists which represent faults detected 

at predecessor gates. For each gate, the subset of faults that is passed is modified to 

describe what faults are propagated to the output of the gate. We assume that the single 

stuck-at fault model is employed.

The output of each gate is the true logic value and a set of faults that the output line is 

sensitive to. A set X is ‘negated’ w.r.t. another set Y by complementing it with the union 

of X  and T.The circuit is transformed into a set expression by using the following rules.

1. Replace all AND gates by set intersection n
2. Replace all OR gates by set union u
3. Negate a fault set if its true value is 1

4. Add to each output the appropriate stuck-at-fault
5. Simplify the resulting expression

It is not obvious why these rules describe a method for correctly propagating 

detectable faults. For deductive fault simulation, wires carry fault propagation information 

as well as logic values. The fault information is represented as a set of faults that a given 

wire is sensitive to.

The faults that are propagated through a 2-input AND gate for all 4 possible input values 

are characterised by set expressions. Let the logic inputs to the AND gate be x  and y and 

let the fault sets be A and B respectively.

• Pattern 00/0. Any fault that causes the output to be different from its true value is a 

detectable fault. In this case, the output has to be 1 for the effect of some previous fault to 

be detected. This requires both inputs to be 1 for the output to be 1 i.e. we want any fault 
that changes from 0 to 1 (0—>1) the first and second input. This means that we want the 

faults that are common to sets A and B i.e. A r \B .

* Pattern 01/0. We want to choose those faults that cause the output to change to 1 i.e. 
those faults that change the first input. It is wrong to simply choose all the faults in set A 
because some of these faults may also be in set B. Consider the effect of a fault in A n  B: 

this causes the first input to be faulty (0—>1) and the second input to be faulty (1—>0). The 

result is that the output is still 0 (not different from its true value) so such faults are not 
detectable. We want those faults that are in A but not in B i.e. A — (A n f l) .  We may 

rewrite this as A n  —S.
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• Pattern 10/0. By a similar argument it can be seen that the faults propagated are 
represented by the set expression B — (A n  B) i.e. - A n B .

• Pattern 11/1. We now want to pass any faults that cause the output to become 0 i.e. 
faults that cause either of the inputs to be 0. The effect of any fault in A or B is to set one 
or more of the inputs to 0 so we can pass all the faults in A and B i.e. A u B .  This may 

be rewritten as follows: A u B -  -m (A u  B) = —1(—iA n  S ) .

To each of the set expressions above we must remember to add the fault detectable at 
the output. The following table summarises the results:

Pattern Set Expression

00/0 ( A n B )  u  {z/1}

01/0 (A n  —B  ) u  {z/1}

10/0 (-A  n B ) u  {z/1}

11/1 —1(—A n  —iB) u  {z/0}

Notice the pattern:

• if jc= 1 then A is complemented (lines 3 and 4)
• if y=l then B is complemented (lines 2 and 3)
• if z=l then the first part of the set expression is complemented (line 4)

This now provides an explanation for the rules given earlier for deductive fault
simulation. These rules are represented using Venn diagrams in figure 3.10.

A - L  

B —
& 0

&

^ ____ '
B

& &
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Figure 3.10: Venn Diagrams corresponding to the deductions rules for an AND gate.

We can deduce similar rules for an OR gate:

Pattern Set Expression 

00/0 ( A u f l )  u  {z/1}

01/1 -i(A u  S  ) u  {z/0}

10/1 n M u  B ) u  {z/0}

11/1 - n M U - n f i ) u { z / 0 J

These rules are similar to the rules for an AND gate except that intersection has been 

replaced by union and the output fault is different.

An inverter will pass all faults at its input and add to the fault list the fault that can be
detected at its output. Rules for other gates can be easily derived. Alternatively, any
combinational circuit can be re-expressed in terms of AND, OR and NOT and the analysis 

carried out using the rules given above.

3.5.2 An Example of Deductive Fault Simulation

Figure 3.11 illustrates deductive fault simulation with an example circuit. The input 
pattern is 110. Each arrow is a node named by the letter in the centre and the faults 

propagated along this node are shown in the set above. The fault-free logic value of each 

node is also shown.

{m/0,n/l)

(m/0,n/1,p/1)
{i/0}

or

and

not and

Figure 3.11

Consider the AND gate with output node q. The true output is 0 so we want to pass 

those faults that will set both the inputs to 1 i.e. we have to ‘fault’ both the inputs. These 

faults are obtained by taking the intersection of the two input fault sets (see the rules for 
and gate with pattern 00/0). Since this is the primary output of the circuit, the test pattern 

110 detects the faults given by the following set expression:
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{m/0, n/1, p/1} n {a/l, m/0, n/1, o / l} u {q/1} = {m/0, n/1, q/1)

The complete sequence of deductions is presented below. The function ded describes the 

deduced faults at a given node.

ded(n) = ded(m) u {n/1}
= {m/0} u {n/1}
= {m/0, n/1} 

ded(r) = ded(a) u ded(n) u {r/1}
= {a/l} u {m/0, n/1} u {r/1}
= {a/l, m/0, n/1, r/1} 

ded(p) = ded(n) n —ided(i) u {p/1}
= {m/0, n/1} n —i{i/0} u {p/1}

= {m/0, n/1} u {p/1}
= {m/0, n/1, p/1} 

ded(q) = ded (r) n ded(p) u {q/1}
= {a/l, m/0, n/1, r/1} n {m/0, n/1, p/1} u {q/1}
= {mO, n/1, q/1}

Because deductive fault simulation works with a correct version of the circuit, 

reconvergent fanout problems do not arise.

3.6  Testability Measure

3 .6 .1  Introduction

Since our objective is to increase the testability of digital circuits, we should have some 

precise quantitative measurement of ‘testability’. In the literal sense, most designs are 

testable, since it is possible to apply all input combinations and observe the output. 
However, we feel that if a design can be tested to a high degree by applying a much 

smaller set of test patterns, then it must be more testable. This section describes a few 

measures of testability.

3 .6 .2  ATPG Approach

An Automatic Test Pattern Generation program is used to generate tests and to compute

(NOT gate)

(OR gate)

(AND gate)

(AND gate)
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the fault coverage. The running time of this program gives an idea of how difficult it is to 

test a particular circuit. However, the run time can be very long, and there is no data 

about how to improve the testability of the circuit.

Several programs have been developed which examine the structure of a circuit in 

order to estimate its testability without having the incur the expense of running an ATPG 
program.

3 .6 .3  Testability Measure (TM) Programs

These testability measure programs analyse the circuit to estimate the running cost of 
generating test patterns (which in turn gives an idea of how testable the circuit is). As they 

accumulate this data, they are able to pin-point areas of the design that are difficult to test. 
The components in these areas may then be redesigned to allow greater testability (e.g. by 

incorporating asynchronous set/reset lines).

There is no simple link between circuit characteristics and testability. The circuit 
parameters used by testability measure programs are heuristic and based on the experience 

of studying ATPG programs. Thus, different testability measure programs use different 

circuit characteristics to estimate testability.

Testability measure programs are assessed by running them on circuits which have 

already been analysed by an ATPG program. A monotonic relation between the testability 

program run time and the ATPG run time is offered as 'proof that the testability measure 

program produces a good measure of testability.

Not surprisingly, all the testability measure programs are based around the ideas of 

controllability and observability.

3 .6 .4  TM EAS

In TMEAS [Grason 79], each link has associated with it an observability value OY and a 

controllability value CY. These are normalised between 0 (the worst) and 1 (the best). 
Thus, for primary inputs, CY = 1 and for primary outputs OY = 1. Each component in 

the circuit has associated with it a controllability transfer factor, CTF, and an 

observability transfer factor, OTF. These are used to build two systems of N (N = the 

number of components) simultaneous equations which are used to compute the CY and
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OY values for internal links.

Sequential components are dealt with by introducing implicit feedback loops (to 

represent state transitions) into the circuit. For a particular component, the input 
controllability is defined to be the average of the input link controllabilities and the output 
controllability is defined to be the average of the output link controllabilities.

The CTF is defined by considering the uniformity of the input-output mapping, 
normalised between 0 and 1. A circuit whose output was 0 for half the possible input 
values and 1 for the other half would have a CTF of 1. For an n-input single-output 
component that has output = 0 for only one component, the CTF is 21_n.

3.6.5 The SCOAP Testability Measure

The SCOAP [Goldstein 79] testability measure assigns a 6-element vector to each node of 
the circuit. The six elements describe how easy it is to set a combinational/sequential node 

to 0 or 1 and how easy it is to propagate the value on some combinational/sequential node 

to an observable output. For the present we shall restrict ourselves to combinational 
circuits, so we shall only be interested in obtaining 3 values for each node1:

(a) setO (n) - a measure of how easy it is to set node n to logic 0.
(b) setl (n) - a measure of how easy it is to set node n to logic 1.
(c) obsv (n) - a measure of how easy it is to observe the value at node n.

The larger the value for the above measures, the greater is the degree of difficulty for 
controlling/observing a given node. The following rules are used for calculating the 

SCOAP values for the 2 input nodes and 1 output node of a 2 input AND gate.

SCOAP Rules for Oc.v)AND z

setO (z) = min [setO (jc), setO (y)] + 1 Rule 1
setl (z) = setl (*) + setl (y) + 1 Rule 2
obsv (x) = setl (y) + obsv (z) + 1 Rule 3
obsv (y) = setl (x) + obsv (z )  + 1 Rule 4

Rule 1 describes how easy it is to set the output z of an AND gate to 0 i.e. setO (z).

1 These values were called CCO (setO), CC1 (setl) and CO (obsv) in the original literature.



61

This can be done by setting either of the inputs to 0. The SCOAP rules choose the input 
which is easier to set to 0 (i.e. has the lowest measure/cost associated with it) and then 

adds 1 as a penalty for propagating the result past the AND gate. To set the output of an 

AND gate to 1 requires both the inputs to be set to 1. Thus, the formula for setl (z) adds
the difficulty of setting both x  and y to 1 and then adds a fixed penalty of 1 for the AND
gate.

Rules 3 and 4 describe the observability costs for the input nodes x  and y . To observe 

the value at node jc, node y has to be set to 1 so that the output depends only on x. Thus a

cost of setl (y) has to be incurred. Then we have to add the cost of transporting the value
from the output of the AND gate z to an observable output. This can be recursively 

specified as obsv (z). Finally we add a penalty of 1 for propagating the value across the 

AND gate. Rule 4 is similar.

The table below show the rules for OR gates and NOT gates:

SCOAP Rules for ta.v>OR z (def 2)

setO (z) = setO (x) + setO (y) + 1
setl (z) = min [setl (x), setl (y )]  +  1
obsv (x) = setO (y) + obsv (z) + 1
obsv (y) = setO (x) + obsv (z) + 1

SCOAP Rules for *  NOT v (def 3) 

setl (y) = setO (x) + 1
setO (y) = setl (jc ) + 1
obsv (x) = 1

For inputs, setO and setl are 1 and for outputs obsv is 0. This reflects that fact that 
only one assignment has to be made to set a primary input to a particular value. Also, no 

assignments are required to observe an output. The controllability of the primary outputs 

and the observability of the primary inputs are values of little interest.

The actual costs returned by the SCOAP measure represent the number of 
combinational node assignments required to control/observe a given node plus some 

notion of depth. This is a heuristic that tries to estimate the difficulty of generating test 
patterns for the given node (i.e the testability of a node). SCOAP gives good values for 

small to medium circuits, but deviates from true values for larger circuits.
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Figure 3.12 shows an example circuit for which SCOAP values shall be computed.

m

and

not and

Figure 3.12

This circuit can be described by the following Ruby expressions:

[i, NOT ; split, i ] ; reorgl ; [AND, OR] ; AND

<a, <b,c), d) reorgl «a,b), <c,d»

The SCOAP values are computed by first evaluating the controllability measures (setO 

and setl) and then using these to compute the observability measure (obsv).

setO(a) = 1 
setO(m) = 1 

setO(i) = 1 
setO(n) =1  + 1 = 2

set1(a) = 1 
setl(m) = 1 
setl(i) = 1 
setl(n) = 1 + 1 = 2

setO(o) = setO(a) + setO(n) + 1 = 1 + 2 + 1 = 4 

setl(o) = min [setl(a), setl(n)] + 1 = min [1, 2] + 1 = 2
setO(p) = min [setO(n), setO (i)] + 1 = min [2, 1] + 1 = 2
setl(p) = setl(n) + setl(i) + 1 = 2 + 1 = 4
setO(q) = min [setO (o), setO(p)] + 1 = min [2, 2] + 1 = 3
setl(q) = setl(o) + setl(p) + l =  2 + 3 + l =  6

Inputs

(NOT gate) 
(OR gate)

(AND gate)

(AND gate)

Although a controllability value has been computed for the output q, the SCOAP rules 

define the outputs to be ‘uncontrollable’ by setting them to infinity.

setO(q) = oo setl(q) = OO

The controllability information calculated is now used to compute the observability 

values:

obsv(q) = 0 Output
obsv(o) = setl(p) + obsv(q) + l = 3 + 0 +  l =  4 (AND gate)

obsv(p) = setl(o) + obsv(q) + l =  2 + 0 +  l =  3
obsv(n) = min [setO(a) + obsv(o), setl(i) + obsv(p)] + 1 (Split)
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= min [5, 4] + 1 = 5 
obsv(m) = 1 + obsv(n) = 1 + 5  = 6 

obsv(a) = setO(n) + obsv(o) + l =  2 + 4 + l =  7 
obsv(i) = setl(n) + obsv(p) + l = 2 + 3 + l = 6

(NOT gate) 
(OR gate) 
(AND gate)

A numerical value has been obtained for the observability of the primary inputs. 
However, the SCOAP rules define the primary inputs to be infinitely unobservable:

obsv(a) = oo obsv(m) = OO obsv(i) = oo

This completes the calculation of the SCOAP values for a simple combinational circuit. 
These values are used to find areas of poor controllability and observability so that the 

circuit can be redesigned to make it more testable. The information computed above is 
shown graphically in figure 3.13.

Node o has the largest O-controllability measure at 4 and node p has the highest value 

for 1-controllability (also 4). These values are not much larger than the average value of 
1.83 so in this case redesign is not necessary.

SCOAP O-Controllability

nodes

SCOAP 1-Controllability

nodes

Figure 3.13: SCOAP controllability for example circuit.

The observability values are shown in figure 3.14. As expected, the nodes closer to 

the primary inputs are the most difficult to observe. The increase in observability 

measure from the outputs to the inputs (right to left in the figure) is small and constant so 

there are no nodes that need special treatment in this example.
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SCOAP Observability

Figure 3.14: SCOAP controllability measure for the example circuit.

3.7  Design for testability techniques
Design for testability implies some modification to the circuit to enhance the process of 
test pattern generation and application. The techniques to enhance testability have been 

categorized into three main groups:

1 ad hoc methods
2 Structured approaches
3 Built in test and self-test methods

3 .7 .1  Ad hoc methods

These methods evolved due to the need to solve particular testing problems, rather than 

trying to solve the task of testing in general by using a design methodology.

3.7.1.1 Test point insertion

Test points are routed into the circuit to make certain internal nodes more accessible in 

order to either control or observe the signal value at the node.

3.7.1.2 Pin amplification

It is desirable to reduce number of pins used by a design. Testing requires extra data to be
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input/output and therefore extra pins. This cost can be reduced by multiplexing 

input/output pins to perform the additional function of acting as test input and outputs. 
The disadvantage of this approach is that it slows down the circuit.

3.7.1.3 Blocking or degating logic

In this technique additional gates are incorporated into the design to inhibit data flow 

along certain paths, thus partitioning the circuit into smaller modules for the purposes of 
testing. Blocking gates are two input gates, one input is the normal data line whilst the 

other is the controlling or blocking signal which can be controlled from a test input

3.7.1.4 Control and observation switching

In this technique signal lines whose logic values are either easily controlled or observed 

are identified in the circuit and these are used in conjunction with 

demultiplexers/multiplexers to improve access to nearby nodes, whose logic values are 

difficult to control or observe.

3.7.1.5 Test state registers

Test state registers can be attached to various internal nodes. These registers may have 

values shifted into them to set these nodes to a particular value or they may be shifted out 
so the value present at the node may be examined.

Ad hoc methods for improving the testability of a circuit have the advantage of not 
imposing severe constraints on the designer. However, a disadvantage is that these 

methods cannot be automated, and consequently there is no software support for these 

techniques of designing for testability.

3 .7 .2  Structural Approaches

These design methods are incorporated into the design from the outset rather than as an 

afterthought as with ad hoc methods. Most structural techniques use hard and fast rules 

allowing software support.

The objective in developing the structural approach was to facilitate the testing of 
complex sequential circuits. These methods increase the controllability and observability 

of the internal state elements, essentially transforming the testing of a sequential circuit 

into the simpler task of testing a combinational circuit.
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The level sensitive scan design and the scan/set design are two of the more popular 
methods in industry.

3.7.2.1 Level sensitive scan design (LSSD)

This method combines two design concepts, namely level sensitivity and scan path. The 

concept of a level sensitive design requires that the operation of circuit be independent of 
dynamic characteristics of the logic elements. This simplifies testing because it abstracts 

away from rise and fall times and propagation delays within gates. Furthermore in a level 
sensitive design the next state of the circuit is independent of the order in which changes 

occur when a state change involves several input signals.

The major element in a level sensitive design is the polarity hold shift register latch 

(SRL), which is used to implement all storage elements in the circuit. The SRL is similar 
to a master slave flip flop and is driven by two non-overlapping clocks. These clocks can 

be readily controlled from the primary inputs to the circuit.

The register also has the important characteristic of being configurable into a long shift 
register which forms a scan path. Nodes may be set to some predetermined value by 

shifting values into the SRLs and values of state elements may be examined by shifting 

out values in the SRLs. An SRL is shown symbolically in Figure 3.15.

Data input D H  
System Clock C1

Scan input M  

Shiftlock C3 tH

System/Shift clock C2

L1

L2 L2

Figure 3.15: LSSD SLR Latch.

Testing using the LSSD approach proceeds as follows: first the individual registers are 

tested by using simple flush and shift tests. Then, the combinatorial subfunctions are 

tested. This involves switching the circuit into test mode. The SRLs are then preloaded
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with a test pattern which is shifted in via the scan in port. This pattern is successively 

stepped through each element in the scan path by pulsing clocks C3 and C2.

The circuit is then switched into its normal operating mode and clock C l is then pulsed 

on and then off. The result of the combinatorial subfunction is thus stored in the L I 
latches of the SRL, and by pulsing C2 these values are duplicated in the L2 latches.

Finally, the circuit is switched back into test mode. The values in the L2 latches are 

shifted out by using the scan path. Thus by using the scan path, future states can be set 
up independently of the present state of the system. Internal states can be easily observed, 
so reducing the problem of testing a sequential circuit to that of testing a combinational 
circuit (as demonstrated by the LSSD configuration in Figure 3.16).

LSSD removes the necessity of performing detailed timing analysis on the circuit since 

it is is level sensitive. Automatic test pattern test generation is simplified since tests need 

only be generated for combinational circuits. Since LSSD is a disciplined design 

methodology a design can be checked for compliance to the design rules.

However, the designer is constrained to implement his system as a synchronous 

sequential circuit. Test times are increased since input and output data must be scanned 

serially and also the system must be switched between normal and test modes. Additional 
input/output pins are required for the scan-in/scan-out ports and clocks. Two clock pulses 

are required before data can pass from one partition to the other. This problem may be 

overcome by modifying the double latch. Despite these disadvantages, the LSSD scan 

path technique has been widely used in industry.
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Scan Out

Comb Comb

Scan in
Note: Control 
clocks go to 
all latches

Figure 3.16: LSSD Configuration.

3.7.2.2 Scan-set logic

This technique entails selecting nodes of interest whose values can be recorded in a shift 
register. The same register can be used to alter these node values. Unlike the LSSD 

method, this method does not place shift registers in the main data path, as shown in 

Figure 3.17. Only a small number of nodes may be tested. These nodes may be set or 
examined by shifting values into or out of the shift register. The nodes to be examined are 

determined by using the results of a testability analysis program.

This method does not partition the circuit into combinational blocks. The scan/set 
register can be used to apply signals to blocking gates to partition the circuit into smaller 

modules to ease the testing problem.

The advantage of this method over LSSD is that the state of the system latches may be 

examined without interrupting the normal operation of the circuit.
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Scan In 

> — 1 2

Set function

Inputs

- > -
■ o -

■ o -

Scan function

System Logic

Scan Out

Outputs

Figure 3.16: Scan/Set Configuration.

3 .7 .3  Built-in-test and self-test methods

Scan path methods simplify the task the testing, but vast amounts of test data must still be 

processed. Input test patterns have to be generated, true value output responses computed 

and stored, and output responses of the circuit under test stored and analysed.

Various techniques have been tried to tackle this problem by using data compression 

methods eg. transition counting and signature analysis. Transition counting is a relatively 

poor method, so we shall concentrate on signature analysis—  a built-in-test method 

which is later incorporated into the self-test technique developed for VLSI circuits called 

BILBO.

3.7.3.1 Signature analysis

The main functional element used in signature analysis is the Linear Feedback Shift 
Register (LFSR) shown in Figure 3.18. This comprises of a series of latches in which 

signal taps are taken from certain stages, exculsive-ORed and returned to the input of the 

first latch. This configuration will generate a repetitive PN (pseudo-random noise) 

sequence.

In the signature analysis configureation stage the output of the exclusive-OR gate is not 
returned directly to the input of the first stage but is subsequently exclusive-ORed with a 

signal from some other source, as shown in Figure 3.18. At any time the contents of the 

register will not contain the values defined by the PN sequence, but will be modified in
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some way characteristic of the signal coming from the other source. The modified bit 
pattern in the register is called the signature of the input source.

EXOR

(a)

EXOR

From
test
node

B2EXOR

(b)

Figure 3.18: (a) PN Sequence generator (b) Signature analyser register

I f  the LFSR is initialised to give a pattern and then mixed with a signal coming from a 

node in a fault free circuit, after a prescribed number of clock cycles a signature 

characteristic of the fault-free circuit will be stored in the LFSR. Faulty circuits will have 

a different signature.

3.7.3.2 Built-in-logic block observation (BILBO)

BILBO is a built-in test generation scheme which uses signature analysis with a scan 

path. The major component in this self-test technique is a multi-mode shift register. This 

allows the BILBO to be set up in the following three ways:

1 as a long shift register forming a scan path
2 as a regular latch for normal operation
3 as a LFSR having multiple inputs for signature analysis
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4 and under a certain control to be reset.

Figure 3.19 shows a BILBO configuration. A slightly different configuration is used 
in bus architectures.

Combin.
circuit

Combin.
circuit

PN Generator Signature anaylisis register

Signature analysis register PN Generator

Combin.
circuit

Combin.
circuit

Figure 3.18: BILBO In test configuration.

A BILBO register is used to generate a PN-sequence which is applied to the 

combinational block under test. A second BILBO is used as a signature analyser register, 
which after N  cycles will contain a signature peculiar to the state of the circuit. The 

BILBO containing the signature is then reconfigured as a scan-out register and the 

signature shifted out. The roles of the BILBOs are then reversed so that the next section 

of the circuit can be tested.

This technique effectively eliminates the need for test pattern generation, although fault 

simulation may be required to determine the fault coverage of the PN-sequences. The 

circuit will also have to be simulated to determine the fault free signature values.

3.8  Discussion
Testing for manufacturing errors in integrated circuits is an increasingly important task as
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greater emphasis is placed on reliability and quality. However, testing circuits is also 

becoming increasingly difficult. This is due to the complexity of modem designs and the 

difficulty of examining the internal workings of chips. Most automated test methods are 

just formalisations of manual techniques. Reasonably good tools are available for 
generating tests for most combinational circuits, but sequential circuits are still very 

difficult to test. The usual approach is to decompose a sequential design into a set of 
combinational circuits which can then be tested using traditional techniques.

Automation of test pattern generation is essential if circuits are to be tested 

economically. This requires very precise descriptions of circuits for use by analysis tools. 
As designs become more complex, the need to describe systems hierarchically and at high 

levels of abstraction arises. Formal algebraic languages like Ruby have been shown to be 

suitable for such high level descriptions.

In addition to test pattern generators, many other tools are required to reduce the 

complexity of the problem. This chapter has shown the value of deductive fault 
simulators and testability measure programs. These analysis tools must be reliable—  

hopefully proved correct by formal verification techniques. Analysis tools also have to 

cooperate with each other in a harmonious fashion to create a usable design system. Many 

of the tasks performed by analysis tools are of a similar nature, so any re-use of code 

would be beneficial. Later chapters present a technique which allows a great deal of code 

re-use.



Chapter 4 

Abstract Interpretation

4.1  Introduction
One method which has been used to analyse hardware descriptions and computer 
programs is abstract interpretation. This chapter introduces this technique and presents a 

common application in the field of strictness analysis of functional programs. Abstract 
interpretation is then shown to be useful for hardware descriptions too. A review of how 

others have used abstract interpretation for analysing hardware descriptions is also 

presented.

Given the task “find the sign of 34 * (-5) * (-3993)” one straightforward way to 

proceed is to evaluate the expression and then examine the sign of the result, ignoring the 

rest of the answer. Alternatively, we can use some simple rules about the signs of 
numbers. Since we know that when two numbers of the same sign are multiplied 

together, the result is positive and when two numbers of opposite sign are multiplied 

together, the result is negative, we can abstract way from the values of numbers. All we 

need to know about a number is its sign.

Let +ve denote “positive” and -ve denote “negative” and let them be of type sign. W e  

can define x, an abstract version of the multiplication operator * over +ve and -ve to 

describe what happens when numbers of various sign combinations are multiplied

together:

-ve X -ve +ve
-ve X +ve = -ve
+ve X -ve = -ve
+ve X +ve = +ve

73
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I f  we can convert numbers to either -ve or +ve then we can use the above rules to 

compute the sign of the multiplication. We need an abstraction function abs, which 

removes from a number everything except the sign. The signature of this function is

abs : number - » sign

Now, the sign of 34 * (-5) * (-3993) may be computed as follows:

sign (34 * (-5) * (-3993))
= abs (34) x abs (-5) x abs (-3993)
= (+ve x -ve) x -ve 
= -ve x -ve 
= +ve

Performing the above calculation is much cheaper than working out the arithmetic and 

then throwing away most of the result. It is a shortcut to performing the full evaluation: it 
does less work and is simpler. The * operator has been replaced by an abstract operator x 

and numbers have been replaced by the abstract values +ve and -ve.

rule of signsarithmetic

take sign only
-ve-678810

34 * (-5) * (-3993)

Figure 4.1: Using an abstraction over arithmetic and integers.

The standard interpretation above performs the arithmetic and then throws away 

everything except the sign. The abstract interpretation provides a shortcut which 

gives us the same result as applying the standard interpretation and then performing an 

abstraction (i.e. ignoring the sign).

W ill the shortcut always give the right answer? We have to prove the abstract 
interpretation is correct with respect to the standard interpretation. In other words, we 

have to prove the safety of our abstract interpretation. For the example above, this could 

be done by showing that the rule of signs always delivers a result which is consistent 

with performing the arithmetic and then taking the sign.
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4.2 Strictness Analysis
The technique of abstract interpretation has been used to compute strictness information 

for lazy functional programs. This information is used to compile more efficient code and 
to help spot parallelism.

In a lazy functional language, a function f will only evaluate its argument if it has to. If  

the argument is a complex composite object then a closure has to be created for this 

expression and passed to f. This is an expensive overhead. If  we know that a particular 

argument will always be used, then it is cheaper to evaluate it first and then pass the 

resulting value. The function is said to be strict in the corresponding parameter. It is not 
always safe to evaluate the argument before passing it. For example, if an argument 
represents a non-terminating computation, but is not used in a call of a function, then it 
would be wrong to attempt to evaluate this argument before making the call.

We now formally define exactly what we mean by a strict function. A function f is 

strict in its argument if and only if

f 1 = 1

where 1 denotes bottom (or non-termination). This means that if f is given a non­
terminating argument, then f will not terminate.

For a function of several arguments, we speak of strictness in a particular argument. 
Consider the function g of three arguments x, y and z. We say that g is strict in y if:

g x 1 z = 1 fo r  any x and z

Consider the following definition of a first order function f.

fpqr= if p=0 then
q+r

else
q+p

Which parameters will f always need? The expression p=0 is always evaluated, so p is 

always evaluated, since = is a strict operation. Thus, f is strict in p. The function only 

uses r when p=0 so f is not strict in this parameter since it does not need always to 

evaluate it. However, q is always evaluated, no matter what the result of the test p=0 is, 

so f is strict in q.
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The strictness information above was derived manually by inspection. It is possible to 

use a mechanical technique to analyse the strictness of a given function. This is done by 

executing an abstract version of f. Let the abstract values be 0 and 1 denoting non­

termination and possible termination. To test for strictness in p, we compute the value of f 

0 11. Informally, we are testing to see if  f terminates when its first argument p does not 

terminate. I f  this value is 0 then f is strict in p, if it is l then we have no information about 

its strictness. The following abstract interpretation may be used to compute the desired 

strictness information.

abs [constant! = 1 
abs [variable] = variable 
abs [a+bj = a a b 
abs [a=b] = a a b
abs [if c then t else f] = abs [c| a  (abs [t] v  abs [f])

Using these rules we can compute an abstract version of f, called f#.

f# p q r = (p a  1) a  (qAr v  qAp)
= p a  q a  (r v  p)

This abstract version of f may now be executed with appropriate abstract values to 

yield strictness information about the parameters.

f# 0 1 1 =  0 a 1 a ( 1 v 0 )  =  0  f strict in p

f# 1 0 1 =  l  a 0  a ( 1 v  l )  =  0 f strict in q

f# 1 1 0 = 1 a  1 a  (0 v  1) = 1 f is of unknown strictness in r

Why can we not conclude that f is not strict in r? The above interpretation only gives an 

approximate answer. Consider the following definition:

gx y = if y=y then 
x+2

else
0

Informally, we see that g is strict in x because the true branch of the if  statement is 

executed since the conditional part of the if expression is always true. This means that the 

value of x is always needed. But the abstract interpretation given above yields the 

following results:

g#xy = ya ((xa  1)v 1) = y
g# 0 1 = 0 g strict in y
g# 1 0 = 1  g is of unknown strictness in x

We cannot hope to find all instances of strictness using an approximating technique



77

like abstract interpretation. However, it is important that the abstractions used are safe i.e. 

if  an argument is analysed to be strict using the approximation, then it is also strict in the 

standard semantics.

Abstract interpretation has been very successful in analysing strictness and is the 

standard technique employed for this purpose [Peyton-Jones 87, Mycroft 83]. The 

technique can be improved by using a non-flat abstract domain to help reason about the 

strictness of composite data types [Hughes 86, Wadler 87]. It has been shown to deal 

adequately with higher order functions [Burn 86, Hudak 85] and also works for 

polymorphic languages [Abramsky 86]. The author has also proposed an alternative view 

of strictness analysis as a differencing operation akin to boolean differences [Singh 91].

4 .3  Abstract Interpretation of HDLs
Strictness analysis is just one example from the programming language field that employs 

abstract interpretation to analyse programs. Other examples include life time analysis and 

compiler optimizations like register allocation. All of these examples work well with 

abstract interpretation because the underlying ‘structure’ of the interpretation is the same 

as that of the programs analysed.

Hardware descriptions can also be analysed by abstract interpretation. The analyses 

performed will be very different since strictness analysis and CPU register allocation are 

not relevant to hardware design. Instead, many useful measures like area, speed and 

power can be estimated quickly by using abstract interpretation. Others measures include 

longest and shortest delay and combinational nesting.

The use of a high level description language makes abstract interpretation a more 

formal process since the interpretation can be stated with respect to a precisely defined 

standard semantics. The interpretations we present are based on the standard semantics of 

Ruby, as defined by Sheeran [Sheeran 88]. Also, it is argued that performing abstract 

interpretation over high level descriptions will result in more accurate information. Most 

abstractions are approximations—  more information about the purpose of a design is 

likely to lead to a more precise analysis. In a logic diagram, the purpose of individual 

gates may be very unclear. The use of a high level description language encourages 

modular hierarchical design where the purpose of subcomponents is stated clearly.
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4 .4  An Alternative Interpretation in Ruby
An alternative interpretation has been used by Sheeran to analyse Ruby circuit 

descriptions [Sheeran 86]. Left to right information flow is denoted by => and right to left 

by <=. The symbol => is used to describe the case where the inputs are in the domain and 

the outputs are in the range. Similarly, <= describes the case where the inputs are in the 

range and the outputs are in the domain.

Each primitive is replaced by a relation describing the allowable directions of 

information flow. This relation is represented by a set of possible direction assignments 

to the domain and range. For gates like AND this will give a singleton set since there is 

only one allowable manner of information flow.

A N D * = {((=>,=*),=>)}

To distinguish between the standard AND and the abstract version, the abstract version 

has been named AND*. Other primitives are annotated similarly.

Since NOT is its own inverse, it can always be driven from either direction giving a 

two element set.

N O T* = {(=>,=>), («=,«=)}

The abstract identity relation is defined to be the identity over => and <= and tuples of 

these values.

ID *  = TO {(=>,=*), (<=,<=)}

The operation TO is introduced to extend a relation over arbitrary tuples as well as atomic 

values. This operation can be defined schematically as:

a TO(/?) b <=> true where a R b  and a, b atomic

<a> TO(/?) <b> «  true where a TO(/?) b

<a, b> TUiR) <c, d> «  true where a TO(/?) c &  b rTU(JR) d

etc.

A wire or bus places no constraints on information flow. Latches have to be run 

forwards so they are replaced by => or tuples containing only left to right arrows.

Abstract versions of the combining forms must also be given. The inverse of a circuit
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should reverse all the information flows as well as flipping the circuit. Let the direction 

reversing relation be rev-dir:

rev-dir = <TU {(=>,<=), (<=,=>)}

Note that rev-dir is its own inverse i.e. rev-dir = rev-d ir1. The abstract version of 

relational inverse should reverse the direction of flow, compose this with the inverse of 

the abstract circuit and reverse the direction of flow again..

(F '1)*  = rev-dir; (F *)'1 ; rev-dir

The definitions of serial and parallel composition remain unaltered. This interpretation can 

be used to check that information flows in only one direction.

4 .5  Combinational & Sequential Depth
An estimate of how long information takes to propagate from the inputs of a circuit to the 

outputs is a useful piece of information. One technique for measuring this delay is to 

count the maximum number of delay elements between the inputs and outputs.

A suitable abstract interpretation for performing this task is defined as:

a(D*b =def b = a + 1

a NOT* b =def b -  a

(x, y) AND* z =def z = max [.x, y ]

(x, y) OR* z =def z = max [x, y]

The semantics of the other language constructs remain unaltered: only the meaning of the 

basic components has to be changed.

As an example, consider the analysis of the following circuit:

F = split; [AND ; (D, [i, £>] ; AND ; £>] ; OR

A circuit diagram for this circuit is shown in figure 4.2.
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AND

AND

OR

Figure 4.2: Example circuit F.

The maximum delay computation proceeds as follows. We start off with a delay of 0 on 

each primary input.

<0, 0> F* b o  0 split* ; [AND* ; [i, <D*] ; AND* ; £>*]; OR* b

<=> 3c.d. 0 AND* ; 2 ) ‘ c a 0 [ i , © *]; AND* ; 2 ) ^ a

<c, d> OR* b 

<=> b = max [1,2]

«• b = 2

This computation is shown in figure 4.3. Note that we rely on the laws:

(R ; S)* = R* ; S*

[R, S]* = [R*, S*]

AND*

0

max [1, 2] = 2OR*0

AND*

Figure 4.3: Sequential depth calculation of F.

A similar interpretation can be used to find the shortest sequential delay by using min 

instead of max in the definitions of AND* and OR*.

The combinational depth of a circuit can be computed by associating a weight for each 

combinational component. Consideration of the testability of the basic gates yields very 

rough weightings of 1 for inverters, 2 for OR gates and 3 for AND gates. This gives the
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simple interpretation:

a tD b =def b — cl

a NOT* b =def b = a + 1

<x, y>  A N D * z =def z = max [x, y] + 3

<x, y>  OR* z =def z = max [.x , y] + 2

Using these rules with the above circuit gives:

0 F* b <=> 0 split* ; [AND* ; <D\ [i, <D*\ ; AND* ; 2>*|; OR* b

<=> 3c.d. 0 AND* ; © * c a O  [i, <D* ] ; AND* ; <D* d a

<c, d> OR* b 

<=> b = max [3, 3] + 2

<=> b = 5

Information about maximum combinational depth is useful for analysing the timing 

behaviour of a circuit.

4 .6  Related Work

4 .6 .1  Sim ulating Circuits in M iranda

[Hill 86] has shown how Miranda can be used to simulate digital sequential circuits. He 

relies on Miranda’s lazy evaluation to support a simple model of streams. However, his 

analysis was only applied to flattened gate-level descriptions with no support for 

hierarchy or geometry.

H ill represents gates by Miranda functions. Larger circuits are then built by using 

Miranda’s ordinary functional composition. The gate functions operate over a three 

valued logic (true, false and unknown). This is represented by the data type b it:

bit ::= ON | OFF | UH

The function used to specify the behaviour of an OR gate is given as:

b_or x y = ON, x = ON \/ y = ON
UH, x = UH \/ y = UH

= OFF, otherwise

Note that this is a function of two arguments. It is not possible to use this function in
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expressions that employ Miranda’s function composition notation. This is because 

function composition is defined only for functions for one argument.

Signals are represented simply as lists of these three valued bits. Clocks are 

distributed throughout the circuit explicitly. Constant signals are defined as infinite lists 

based on b it. Type synonyms are written using == and list concatenation (like LISP’s 
CONS) is written using :

signal == [bit] 
on = ON:on 
off = OFF:off 
uh = U H :uh

Clocks can also be defined as infinite lists of b it values. The definition provided for the 

OR gate above cannot be used in sequential circuits. A new function has to be defined by 

lifting the existing function to work over lists of bits.

bitwise op bl b2 = map2 bl b2
where
map2 (a:x) (b:y) = (a $op b ) : (map2 x y)

or_gate = bitwise b_or

Again, Hill uses too poor a representation for signals, since he has had to define a special 

function map2. In our system, this is not necessary, because we use a tuple of streams 

over which a normal map can be applied.

Using the above definitions, H ill has built some modest circuit descriptions of 

synchronous circuits. However, this approach is hampered by the fact that circuit 

descriptions are simply Miranda functions. Miranda’s limitations e.g. lack of a parallel 

combining form, are reflected in H ill’s descriptions. This prevents structural information 

from being captured elegantly— H ill’s definitions only give connectivity.

H ill has suggested that by using a different semantics his system could be used to 

produce circuit layouts and test vectors. This is quite easy to accomplish in his system 

since for most alternative interpretations, only the definitions of the base components 

need to be altered. H ill also suggests the use of a more detailed representation for b i t  

e.g. voltage levels.

The author has implemented a much improved version of H ill’s system which uses a 

richer data type to capture structured logic types. In this system, every function is unary, 

and Miranda’s built in function composition can be used to give elegant and readable 

circuit descriptions. There is no need to define a special function for serial composition.
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4 .6 .2  System  Sem antics

Boute has extended the denotational semantics of programming languages to a semantics 

suitable for describing arbitrary systems [Boute 88]. A system is a collection of physical 

objects (subsystems) which interact with each other through physically identifiable 

interfaces. Thus, systems can comprise of objects which are not computations in any 

sense. However, useful computations can still be performed over these objects. One 

major advantage of Boute’s system is that different meaning functions can be used with 

the same formal description to calculate different system properties such as component 

cost and performance characteristics.

Boute presents a systems semantics for describing system properties by means of 

semantic functions. This is different from denotational semantics which defines exactly 

one interpretation using an abstract mathematical domain [Stoy 77]. System semantics 

defines various interpretations corresponding to different characteristics of a physical 

system. The generalization of denotational semantics by the use of abstract domains 

(abstract interpretation) is mirrored in systems semantics by an extension in the opposite 

direction (adding information rather than removing it) by using concrete interpretations. 

This is done by injecting extra information into domains rather than abstracting 

information.

Boute defines semantics using a model which consists of a meaning function m which 

maps elements of a set S into elements of a domain of interpretation D. The domain D  is 

the domain of possible meanings (m e S -> D ). A model M  is a pair M  = (D, m). Boute 

uses total functions to define meanings, so corresponding models are completely defined.

Boute employs a hardware description language called Functional Description of 

Systems (FUNDS). We shall not present the entire syntax and semantics of this language: 

the examples should be sufficient to demonstrate the principles under consideration. The 

syntax of FUNDS is left flexible and resembles usual functional language syntax (like 

SASL [Turner 79]). The combinational subset contains the following constant entities:

constant = zero I one I not I and I or 

where not is of 1 place and and or are multi-place (i.e. any number of arguments).

To avoid the proliferation of semantic definitions, common parts are factored out. At 

the semantic level, a generic definition is introduced for models to which others models 

are said to conform. Models which do not have factorizable parts are said to be singular. 

At the syntactic level when semantic functions are defined over an abstract syntax, the
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concrete syntax is defined in terms of the abstract syntax without reference to the meaning 

functions.

The following generic model is defined for the meaning of functions (m fun) and 

expressions (mexp). Here, D  is a zeroth-order domain of interpretation. The interpretation 

for the constants is of the general form k g  C -> D c, where D C = D * -> £>.

mexp g  E D

mexp v i = i v variables

mfun £ F  -> /  -> D * -> £)

mfun c i = k c for constants

mfun ITk(vo,...,vn_i).eH i e D n -> £>

m/arc fU(v0,...,vn-i).eTl i (do,...,dn_i) = me*/? e i [do/vo] ••• t^n-l/Vn-ll 
m g  5 -> D * —> £)

m s = m fun s i  i can be any interpretation

Using this generic model, a simplex behavioural model Smplx = ({0, 1}, smplx) for 

the combinational part of FUNDS can be constructed. The constants have the following 

definitions:

k zero g  -> D with k zero = 0

k one g  D with k one = 1
k not g  D  -> £> with k not d -  —id
k and g  D* ^>D with k and (do,...,dn. \)  = do a .. . a  dn. i

k o r  g  D *  -> D with k and (do,...,dn. \)  = do v  .. . v  dn. i

Since the model Smplx conforms to the generic model, mexpr and mfun do not need to be 

defined again. The meaning function for sentences is then smplx.

Boute also defines several others models including a structural model for describing 

loop-free single-output combinational circuits built from elementary gates. He chooses a 

model that makes clear the distinction between fanout and replication by using an 

appropriate naming convention. A multiplex behavioural model is also presented for 

sequential circuits.

To contrast Boute’s method with what we have presented, we give the essential part of 
a worst-case timing model with D  = R>o. For an n-place constant c, k c in D n D  with:

k c {do,...,dn-\) = max [do,...,dn- i]  + delay c

where delay in C -> D  is an auxiliary function specifying the delay for each constant. This 

is very similar to the maximum combinational depth calculation presented in section 4.5.
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The main differences are in syntax.

4 .6 .3  Other W ork

O ’Donnell has used alternative interpretations to produce drawings of tree-network 

circuits [O ’Donnell 88]. He presents a language called Hydra which offers the designer 

several specification styles, including the ability to capture geometric information in the 

same way as Ruby does. Hydra also allows path depth and netlist analyses to be 

performed. Using combining forms similar to those found in TeX for drawing pictures, 

he has drawn complex circuits by exploiting the technique of functional geometry 

[Henderson 82]. Similar analyses have been used to extract layout information from FP 

[Schlag 84].

Meshkinpour presents a functional hardware description language called FHDL. Using 

this notation, he has reorganized a given system in a pipelined fashion in order to improve 

its throughput. To help partition digital systems, a symbolic interpreter is adapted to 

compute timing information. This is done in an ad hoc manner by associating attributes 

with various gates. This is similar to the abstract interpretation we have presented for 

timing analysis.

4 .7  Discussion
Abstract interpretation can be used to analyse hardware descriptions, giving information 

which is related to the circuit’s behaviour. The advantage of this technique is that once a 

simulator is available for a language it only takes a small amount of extra effort to produce 

other analysis tools. This is because we usually only have to redefine the meaning of the 

processing nodes like AND and NOT. The definitions for wiring circuits tend to be the 

same in many analyses, so the standard definition can be re-used.

Analysing circuits for testability involves finding information which is not so directly 

related to the behaviour of the circuit. To do this, the behaviour of the basic components 

has to be altered in a less disciplined manner which destroys the safety principle. 

However, there is no way round this, since the standard semantics does not contain 

enough information to abstract from and to yield the analyses we are interested in.

Boute has used a concrete domain to obtain more detailed information about circuits. 

However, to perform testability analyses we will need completely different domains. 

These cannot be made by simply injecting extra elements into the standard domain. We
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need an interpretation which is even more general than that offered by concrete domains. 

For example, testability measure uses a domain of vectors that are unrelated to the logic 

values in the standard domain.

To describe such analyses requires the use of a non-standard semantics over a non­

standard domain of values. This is the topic of the next chapter, which deals with such 

non-standard interpretations in detail.
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Chapter 5 

Non-Standard Interpretation

5 .1  Introduction
Abstract interpretation does not possess sufficient power to capture all circuit analyses of 

interest. In this chapter, we use the non-traditional discipline of non -s tanda rd  

in terpretation. We allow the standard semantics to be replaced by any other semantic 

definition. Normally, there will be no formal connection between the standard and non­

standard semantics. Similarly, there need not be an abstraction between standard and non­

standard values.

Our approach is similar to that of Boute [Boute 88] outlined in chapter 4. Boute uses a 

generic model to capture common aspects of circuit analyses. We provide a more 

powerful generic mechanism. The technique we adopt operates over a richer language 

than that used by Boute because we can deal (in a limited fashion) with inverse. Boute 

argues that the choice of good composing forms is an essential part of his system 

semantics technique, especially for alternative interpretations. We provide a richer 

collection of combining forms and we also allow all of these combining forms to be 

overridden. Boute does not permit the single combining form that his system supports 

(i.e. functional composition) to be redefined. Thus, in one sense at least, our work can be 

viewed as an extension of Boute’s to relational style descriptions with more powerful 

combining forms and alternative interpretations.

Our aim is to make non-standard interpreters that we can slot into a circuit analysis 

tool, rather like one can slot expansion cards into the backplane of computers to increase 

their power and functionality. We have developed such a backplane for analysing Ruby 

circuit descriptions. It should be easy for the user to specify and add new interpretations. 

However, some user interface code might have to be written for interpretations which 

require their results to be output in a special manner e.g. bar graphs.
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Non-standard interpretation has been used by Luk [Luk 90] for analysing 

parameterised designs. Luk uses various metrics which are employed to characterise the 

performance trade-offs for generic designs. Akella and Gopalakrishnan [Akella 90] have 

performed test pattern analysis at a higher level of abstraction by associating testing 

directly with the specification of the design. Faults are injected into a structural 

specification, and the behavioural consequences are inferred by process composition.

Various techniques have been used by the author to implement non-standard 

interpretation, with differing degrees of success. Two promising techniques for non­

standard interpretation are presented. We show some initial attempts as motivation for the 

final approaches. One of the final approaches is used when we want to observe the values 

at the primary inputs and outputs of circuits. The other technique returns a graph of the 

circuit under analysis with all the internal nets annotated with their non-standard values.

Throughout this chapter, a node is a processing element like an AND or NOT gate. It 

is not a wire. Wires are grouped into nets. Every wire on a net has the same value.

5 .2  Techniques for Expressing NSI
There are many ways to represent a non-standard interpretation of Ruby hardware 

descriptions. We have talked about ‘changing the semantics’ of the elementary gates in a 

rather informal manner. Before a system can be built for performing non-standard 

interpretation, we have to be much more precise about what we mean by ‘interpretation’. 

This is done by discussing various models for interpretations that have been 

implemented.

To aid the description of various interpretations, we assume that we have available an 

algebraic object that represents the abstract syntax of Ruby expressions. The semantics 

of Ruby is then described by giving the semantic denotations for the abstract syntax. The 

specification of this rather large object would look like the following algebraic type 

declaration. The vertical bars separate constructors which correspond the elements of the 

Ruby language. Thus, the abstract syntax is represented in terms of constructors.

RUBY := A nd ’ I O f  I N ot’ I A p tf  I S e f [RUBY] I P a r ’ [RUBY] I 
B lock ’ string [RUBY] I Id! I Inv ' RUBY I F o rk ’ num...

A prime is written after the name of each constructor to avoid confusion with the 

corresponding syntactic entity. We can define the standard semantics for Ruby by giving



89

a semantic function for each constructor (abstract syntax) in RUBY. We shall use the 

term ‘Ruby construct’ to mean one of the constructors in RUBY. Note that this 

specification is recursive, and represents Ruby circuit descriptions as a tree. We shall talk 

about graphs to allow for the possibility of feedback loops in sequential circuits, or the 

sharing of nodes. The leaf nodes are constructors of arity 0. For example, the processing 

nodes And”, O r’ and N ot’ and basic wiring forms like App’ do not operate over circuit 

descriptions. The internal nodes correspond to the ‘higher-order’ constructors like serial 

(Ser’ ) and parallel (Par’ ) composition which themselves take other Ruby constructions 

and combine them to make a new construction.

A Ruby expression can refer to the name of another Ruby definition available through 

the current environment. The constructor Block ’ describes such a reference. The first 

argument is the name of the definition which is being referenced and the second argument 

is a list of Ruby expressions which are higher order arguments (parameters). This 

mechanism is implemented just like function calls in traditional functional languages. The 

reference is replaced by the defining body of the referenced definition, with the 

appropriate parameter and argument substitutions (call-by-value). For example, if  fst R is 

defined in the environment to be P ar' [R, i] then the expression B lock ' “fst” [And’] is 

expanded as follows:

Block ’ “fst” [And ’] -> Par’ [And, i]

Note that the formal higher order formal parameter R matches with the actual parameter 

(argument) And ’. The transformation above assumes the existance of a global constant 

environment.

The semantic functions, including non-standard interpretations, can be considered to 

be mappings between the abstract syntax of Ruby (call this A) and an abstract domain of 

interpretation for expressing the semantics (call this D). This is demonstrated in figure 5.1 

for a mapping E. The mapping also needs to take account of environment information 

which is omitted from the diagram.

A
►  o

abstract syntax semantic domain
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Figure 5.1: A semantic mapping between A and D.

An important restriction is placed on how non-standard interpretations are to be 

constructed. The most general approach is to replace the relation which specifies the 

behaviour of each element of Ruby by a non-standard relation. The non-standard 

semantics could then be implemented by mapping it onto a relational language. Although 

this is the most straightforward way to proceed, we choose a different technique. We 

want our interpretations to be realised efficiently, to capture the information flow 

precisely and to be easy to implement. Relational implementations make data 

dependencies implicit and usually result in backtracking implementations that are not very 

efficient. After considering a large number of circuit analysis algorithms, we have come 

to the conclusion that many complex algorithms can be decomposed into a series of 

unidirectional analyses. Each unidirectional stage can be implemented by functions rather 

than relations. This leads to a much more efficient implementation, while retaining ease of 

coding.

We choose a very simple scheme for trying to capture relational analyses by 

composing unidrectional analyses. Only two kinds of unidirectional analyses are used: 
forw ards  analysis and backwards analysis. In forwards analysis, information flows only 

from the domain to the range. In backwards analysis, information flows from the range to 

the domain. Complex relational analyses are described by using combinators that operate 

over unidirectional analyses. For example, one useful combinator applies a forwards 

analysis and then overlays the result of this onto a backwards analysis. We cannot capture 

all relational analyses using this scheme, but we have been able to express many complex 

backtracking circuit analyses using this technique.

One of the most obvious ways to make a non-standard interpretation is to completely 

respecify the semantics of Ruby, as shown in figure 5.2 for a non-standard interpretation 

E’ . Note that the semantic domain will in general be different for each interpretation. This 

is how the first non-standard interpretation system was built by the author. However, 

providing an alternative semantics for all of Ruby is a rather unsatisfactory approach. One 

of the most appealing aspects of non-standard interpretation is the ability to change the 

meaning of only a small subset of the language (e.g. the three logic gates) to get a 

completely new interpretation. The other elements of the language should have the same 

semantics as before, but should operate over non-standard values.
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A
A

abstract syntax semantic domain

Figure 5.2: Completely respecified non-standard semantics

The difference between figure 5.1 and figure 5.2 is that the range is different (non­

standard semantic domain) and the semantic function is different (a non-standard 

semantics). However, the domain is the same in both schemes (since we want to analyse 

the same description under many interpretations).

In most interpretations, the meanings of the wiring primitives and combining forms 

remain unaltered. Wires carry information without examining it. They may lose 

information by not connecting (or relating) a wire in the domain to the range. Wires can 

also duplicate information as well as re-arrange the order of information in a tuple. 

However, the information content does not affect the behaviour of wiring circuits. Such 

circuits behave then rather like polymorphic functions.

In most interpretations, the wiring primitives and combining forms will just be 

plumbing that transmits the values of interest that are computed at combinational gate 

nodes. A large area of most circuit designs is spent on communication rather than 

processing. Ruby provides a rich collection of operations for describing and laying out 

various wiring forms. It would be tedious to have to respecify them for each new 

analysis.

This leads to an alternative technique for making non-standard interpretations. We can 

parameterise the standard semantics on the ‘processing’ nodes i.e. And’ , O r ’ and Not’ . 

This is done by parameterising the semantics on the language constructs which require 

different interpretations. At first, the basic gates i.e. the processing nodes were selected 

for parameterisation. This method corresponds directly to the generic instantiation 

mechanism used in the Ada language for generic packages.

This approach effectively divides the syntactic domain A shown in figure 5.1 into two 

parts. One part is invariant between different interpretations and is used to describe those 

syntactic entities which have fixed interpretations. The other part contains the syntactic 

entities that change meaning under different interpretations. This is demonstrated in figure
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5.3 for a non-standard interpretation E” .

parameteri sed _   A 1
entites /  ■  —

syntactic
entites
whose
interp. —
does not
vary

E
abstract syntax semantic domain

Figure 5.3: Parameterised interpretations.

Note that the syntactic domain A has been split into two domains A \ and A2. It should 

be the case that A \  u A2 = A 1 and A 1 n  A2 = 0 .  This ensures that there is exactly one 

mapping for every well formed syntactic entity.

This method works well for analyses that only need to provide alternative semantics 

for the basic gates. This covers a large class of interpretations. For example, symbolic 

simulation and deductive fault simulation can both be represented by this model. This 

technique can be implemented in Miranda simply as a function which can be partially 

applied. However, it is inflexible because it is difficult to cope with changing the status of 

a syntactic entity from non-parameterised to parameterised. For example, we might also 

want our interpretation to be parameterised on Fork!. This involves changing A l  and A2 

and re-coding our implementation function, although the change is very minor.

This was indeed done, and then several other language features were also added to the 

list of paramerterised language constructs. The situation degenerated to the point that the 

standard interpretation was a hollow shell providing no default semantics for any 

language feature because everything was paramerterised. This takes us back to where we 

started i.e. having to re-specify the semantics of the entire language for each 

interpretation. Clearly, another method was required that allowed certain Ruby constructs 

to have their semantics redefined while leaving the others alone.

A variant of the above technique involves making the standard interpretation the 

‘behaviour’ or ‘simulation’ interpretation where every Ruby construct including the 

processing nodes had a default (simulation) semantics. A mechanism is then provided for 

over-riding the semantics of any Ruby construct.

A semantic definition is now provided for the forwards and backwards standard 

semantics. The semantic definition S is called an interpretation and takes as its parameters 

the direction of the analysis, a Ruby expression to evaluate and domain or range values to
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be used during the evaluation. The environment p is always constant during evaluation, 

so it is not an explicit parameter. The direction is denoted by /  for forwards and b for 
backwards.

direction : = /  I b

The type of an interpretation can be given as follows where V 1 and V2 denote the 

range and domain of interpretation:

interpretation: direction -» RUBY -> V l->  V2

We shall use partial application to simplify our semantic definitions. Let/, g and h be 

functions and x  be a parameter. Under partial application the following equivalences hold. 

They extend in a natural manner to other combining forms.

The standard semantics for the serial and parallel combining forms are defined as 

follows where the third parameter is omitted by partial application. Pattern matching is 

used and the definitions are scanned in a top down manner.

S fU S er' [P, Q]1 = 5 /IT P l ; S /IT Q l (5.1)
S b I\Ser' [P, Q]H = S b H Q \ \ S b  ITP1 (5.2)

S d ir [,Ser’ [jc] H = S d ir  ITxH (singleton serial composition list)

S d ir IP a f  [P, Q]1 = [S d ir  ITPH, S d ir  IT01I] (5.3)

In the above definitions, semicolon (;) refers to the usual forward function

composition: ( f - ,g )x  = g ( fx ). A definition for parallel composition specialised to

functions is also required:

[F, G] {a, b) = (F a, G b) (5.4)

Inverse is defined by:

S fU n V  B \  = S6ITBH (5.5)

S b U n v *  B1 = S / m  (5.6)

A named Ruby definition is elaborated by looking up the name in the environment and 

then performing a textual substitution of parameters by arguments using the function 

subst. The environment function has type p :: string -> RUBY

S d ir  KBlock’ name argsH = S d ir tisubst (p name) a rgsl (5.7)
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The behaviour of the basic gates are described by set-valued functions, using one 

function for each direction. For example, the forward behaviour of AND is given by 

Andf and the backward behaviour by Andb defined as:

Andf {(L, L ) } = {L} (5.9)

Andf { (L, H )} = {L} (5.10)

Andf { (H, L )} = {L} (5.11)

Andf {(H, H )} = {H } (5.12)

Andb {L } = {(L, L), (L, H), (H, L)} (5.13)

Andb {H} = {(H, H)J (5.14)

The corresponding functions for OR (Orf, Orb) and NOT (Notf, Notb) are defined 

similarly. This gives the following standard semantics for the basic gates:

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

Higher order combining forms like m ap are instantiated into thier fixed size 

equivalents at run time. Thus, the analysis of a circuit containing a map degenerates into 

the analysis of a fixed size parallel composition. The standard definitions of the higher 

order combining forms are used to simply unfold them from descriptions.

A non-standard interpretation is made by overriding some or all of the standard 

interpretation by another semantic definition over the same language (or abstract syntax). 

The usual definition for over-riding is used, employing the infix operator ©:

(P © 0  a = P a, if a e dom P

= Q a , otherwise (5.30)

I f  I is a new interpretation for some of Ruby, then a non-standard interpretation is 

given by:

/  © 5

From the definition of © it is clear that the following identity holds:

S = S © S

S f ftA n d 'H = Andf
S b fTArtd’l = Andb
S /ITO r’l Orf
S b ITOr’H = Orb
S fK N o t’ H Notf

S b (TÂ or’H = Notb

W e now review our decision to use the above mechanism for non-standard
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interpretation and compare it with the most general non-standard interpretation scheme. 

For a full relational implementation, a set could be used to represent the required relation. 
However, since we are only interested in running our circuits either forwards or 

backwards, it seems natural to represent the non-standard semantics by two functions. 

Another reason for separating the forward and backwards semantics is that many analyses 

only make sense in one direction. For these, the semantic function for the other direction 

can be left undefined. O f course, separating a relation into two functions allows for much 

more efficient implementation. This allows the relation to be implemented by a pair of 

functions without explicit backtracking.

5 .3  An Example: Symbolic Simulation
A symbolic simulator is constructed using the interpretation scheme presented above. The 

non-standard values are now symbolic expressions which represent the value at a given 

node in terms of input variables. Let the non-standard value be called symbol and define it 

as:

symbol := variable I AndExpr symbol symbol I OrExpr symbol symbol I 
NotExpr symbol

The input to the simulator is the name of primary inputs. We define symbolic simulation 

only for forward interpretations: the backward case is left undefined.

An exclusive-or gate can be defined in Ruby by:

exor = split; [[i, not], [not, i ] ] ; [and, and j; or

The abstract syntax tree in terms of RUBY for this definition is shown in figure 5.4.
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ChJCm ) GssDGD
Figure 5.4: Abstract syntax for exclusive-or definition.

It is instructive to note that non-standard interpretations that use alternative semantics for 

just the processing constructs (,And’ , O r’ , N o t’ ) change the interpretation of some leaf 

nodes, as is the case in figure 5.4. Other leaf nodes like Id ’ remain unaltered.

A symbolic simulation of the definition with the non-standard value <x, y) (.x and y are 

symbolic variables) should give the following result:

OrExpr (AndExpr (N otExpry ) x) (AndExpr (N otExprx) y)

The expression above is a LISP-like representation of the boolean expression x .—\y I 

—ix.y which realises the exclusive-or operation.To implement symbolic simulation as a 

non-standard interpretation, only the processing nodes need to be redefined. A suitable 

interpretation is Sym, defined as:

and_sym (x, y) = AndExpr x y 
or_sym (x, y) = OrExpr x y 
not_sym x  = NotExpr x

Sym f  IT AN D  H = andjrym
Sym f  IT OR U = or_sym
S y m ff tN O T l = not_sym

Note that the backward interpretation is left undefined since symbolic simulation is 

usually only carried out in the forward direction. However, it is interesting to consider 

what a backward symbolic simulator should do. The forwards case finds an answer to the 

question “I f  I give the following inputs, what expression appears at the output?”. The 

answer to this question is easily derived from the structure of the circuit. The backwards 

case can be thought of as asking two slightly different questions. In one case, constant

Ser’

( Block1 split [] )  (P a f )  (Par* ) Or’

(A n d ') (A n d ')Par’ Par'
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values are assigned to outputs of internal nodes and the question is “What inputs produce 

these outputs?”. Answering this question essentially involves performing the task of a test 

pattern generation program. In the other case, we associate expressions (in terms of input 

variables) to the primary outputs. This asks the question “what input assignments 

produce these values at the output, if any?”. This performs the task of a program that 

checks to see if  the realisation of the circuit meets its specification. There is a strange link 

between backwards symbolic simulation and test pattern generation and circuit validation. 

Roth [Roth 80] has shown that his test pattern generation technique (the D-algorithm) 

could be adapted to validate certain kinds of circuits. This exploits the behavioural 
information present in test patterns.

A symbolic simulator interpreter in the forward direction called SS can now be built:

SS = (Sym © S) f

This symbolic simulator is now used to simulate the exclusive-or circuit:

SS IT exorU <x , y)
= {Use standard definition of function-call elaboration and serial 

composition.}
SS IT sp lit; [[i, not], [not, i ] ]  ; [and, and] ; o r l  (x, y)
= [Use standard definition for elaborating wiring circuit split and serial 

composition.}
SS IT[[i, not], [not, i] ]  ; [and, and] ; orU ((x, y>, (.x, y »
= [Standard interpretation used for identity and parallel composition. Over­

riding interpretation Sym used for not.}
SS IT [and, and] ; orT « x , NotSym y>, (NotSym x, y »
= [Standard interpretation used for parallel composition. Over-riding 

interpretation Sym used for and.}
SS ITorT (AndSym x (NotSym y), AndSym (NotSym x) y))
= [Over-riding interpretation Sym used for or.}
OrSym (AndSym x (NotSym y)) (AndSym (NotSym x) y))

which is the expected result. Note that we have used syntactic entities inside the IT...H 

meta brackets for clarity. We should have written And'' instead of and.

A symbolic simulator is a very obvious candidate for implementation as a non-standard 

interpretation. It is clear from the outset that we only have to re-define the processing 

nodes: the semantics of everything else stays the same. The example works well: the 

definition given above is natural looking. For a modest outlay, we have reused a large 

amount of the standard interpretation to build a completely new tool.

In the standard interpretation the values that flow along the wires are standard boolean 

values. The nodes are represented by functions that manipulate this boolean data. Figure
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5.5 show a graph of the exor gate under simulation with the input <L,H). The standard 

values on each arc are shown.

« L ,  H>, <L, H>^.

^Block' split [] )

<L,

exor

(Par )  (  Or’ )
L /  \  H

And ) I And'

CwDS) (SG D
Figure 5.5: A standard interpretation of exor.

Contrast this with the graph that corresponds to the symbolic simulation non-standard 

interpretation shown in figure 5.6.

exor

x.-iy I —ix.y

K r p  ( o 7 )f \ xy
( A n ? )  ( i )

C w i ) ( N o 7 )  ( N o 7 ) ( j d l )
Figure 5.6: Symbolic Simulation N SI of exor.

For clarity, NotSym is represented by —i (prefix), AndSym by . (infix) and OrSym by I 

(infix).

These two graphs are isomorphic: we are computing over the same structure. The 

same Ruby description is analysed by two different interpretations. This gives rise to 

automatic consistency between the circuit specification used for description (behaviour) 

and the circuit specification used for other analyses.
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One weakness of this technique as it stands is the inability to examine the value of 

internal nets. This is a crucially important requirement, since all testability analyses are 

concerned with these internal connections.

5 .4  Labelling Nets
Many analyses require the circuit’s nets to be uniquely labelled. For example, in 

deductive fault simulation, we talk about node n stuck at some value. Should Ruby 

descriptions be annotated by the designer? This would require every node to be given a 

unique name.

There are several reasons why this is a bad idea. Firstly, this would make Ruby 

descriptions ugly by littering them with distracting information. A large part of Ruby’s 

elegance arises from its carefully designed syntax which makes apparent certain 

characteristics of designs. Hence the mathematical-style notation rather than an intractable 

verbose V H D L style.

Many hardware description languages require nets to be explicitly labelled, and most 

net representations like ED IF [EDIF Comimittee] rely on all nodes having names. 

However, using a simple labelling scheme, it is not possible to label every Ruby 

expression. Consider the circuit map and. It is not possible to tell how many nets there are 

until this circuit is given some input, like «L,H), <H,H» or is just as part of some other 

circuit which fixes the size of the map e.g. map and ; and. Recursive descriptions often 

describe circuits whose dimensions depend on the size of the data.

Instead of trying to cope with circuits which have this kind of data dependency, we 

shall automatically label internal nets of only fixed-size Ruby circuits. By ‘fixed-size’ we 

mean a circuit for which the number of internal nodes can be determined even if  it 

contains generic combining forms like map. The size can be fixed by constraining the 

generics by using them with fixed size circuit builders (e.g. the combinational gates) or 

by applying an input of known size. The input itself is not important.

Whatever labelling scheme is chosen, it must be easily understood by the designer, 

because he or she will have to be able to identify internal nets from the label assigned. 

Later, we shall see how to produce a graph-like representation with internal arcs labelled. 

Rather than examining a circuit diagram that corresponds to a Ruby description with a 

view to finding a suitable labelling we shall use the Ruby description itself for labelling.
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Each net (which corresponds to an arc in the abstract syntax tree) is to be labelled by 

the processing node that drives it. We constrain ourselves to circuits which have at the 

most one output of a processing node connected to a net.

The following labelling scheme is used. We assume that we have an infinite supply of 

numerical labels (whole numbers) starting with 1. Let the current label be the next free 

label which has not been used. To label a combinational node we assign it the current 

label and then increment the current label. Wiring circuits do not consume labels: they just 

carry labels between combinational nodes. To label a composite (or higher-order) 

constructor like serial or parallel composition, we label the constituent circuits from the 

left to the right.

The type RUBY  presented earlier is redefined to allow the basic gate constructors 

And \  O r’ and Nor’ to hold values by making their arity one. This is done by making 

RUBY a polymorphic type. In the labelling interpretation, we specialise this polymorphic 

type to integer values to allow us to attach label values to the basic gates. This extra value 

is written as a subscript to A nd ’ , O r’ and N o t’ . Where it is omitted, its value is not 

needed and is assumed to be undefined.

The labelling interpretation is then defined using the following definition of L:

L : f$ A n d ’ ^ c  = And’ c
£,;/IT<9r’H c = Or’c

L : f  IT N o t’ 11 c = N ot’ c

L i f ^ l d ’ J c = Id ’

L f ^ F o r k ’ nil = Fork ’ n

L f f tS e r ’ (jc:jc5)H c = Ser’ (.xc : ( L f l fS e r ’ xsll (c +  # * ) ) )

L f t iP a r ’ (x:xs)H c = P a r’ (xc : { L f ^ P a r ’ xsH (c + #*)))

The definition of L  over other combining forms follows in a similar manner. This 

definition used a function # which operates over abstract syntax descriptions. This returns 

the number of labels consumed by a fragment of abstract syntax, and corresponds directly 

to how many processing nodes are found. A partial definition is:

# A n d ’ = 1

# O r ’ = 1

# N o t’ = 1

#Scr ’ [] = 0

# Ser’ (x:xs) = #x + # Ser’ xs

For example, the labelling of the exor circuit as defined above is:
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exor = split; [[i, notd, [not2, i ] ] ; [and3, and4] ; ors

where each combinational node is subscripted by its label. Notice that by giving a 

different Ruby description, we can get a different labelling:

exor2 = split; [[i, notd ; and2, [not3( i] ; and4]; ors

Thus, it is not possible to simply look at the circuit diagram and label the internal nets. 

We must label Ruby descriptions themselves.

The labelling scheme outlined above is easy to implement and is also straightforward 

for a human to perform. This labelling scheme can also be implemented as a non-standard 

interpretation, as shall be shown later. The exclusive-or graph is labelled using this 

scheme in figure 5.7.

exor

(A n ? )  (A n d )

CUD® (S(jdD
Figure 5.7: Labelling of exor.

Notice that certain arcs which are connected to primary inputs have undefined labels 

because they are not driven explicitly by a combinational gate. The algorithm for labelling 

could be amended to deal with input wires as a special case, but a better solution seems to 

be to provide a special component, say inpad, that represents an ‘input node’ (rather like 

an input pad). This node is treated like a combinational node when labelling i.e. it 

increments the current label, but it behaves like a wire i.e. does not modify the incoming 

information. A third description of an exclusive-or gate can then be given as:

exor3 = [inpad-i, inpad2]: split; [[i, not3], [not4( t]] ; [and5) and6] ; or7

which properly labels the primary nets. However, we are often not interested in the 

values at the primary nets, so we shall often not bother to use inpad.



102

5 .5  Internal Connections
It would be useful to have as output from an interpretation a graph (like figure 5.5) which 

gives not only the value at the output, but also the values on all the internal arcs. This 

information is especially useful in symbolic simulation when the behaviour returned at the 

output does not match the expected behaviour. The graph could be analysed to discover 

where the behaviour of the implementation departs from the specification, thus reducing 

the size of the implementation that has to be debugged.

There are more pressing reasons for being able to observe internal nodes. Many 

testability analyses compute valuable data about internal nets. Using the scheme described 

above, this data is locked ‘inside’ the circuit since we are only able to observe the primary 

outputs.

There are various ways to get at the information locked in the internal nets. The first 

method adopted was to change the non-standard values to be tuples. One element of the 

tuple contained the ‘result’ from the previous combinational node i.e. the same value as 

before, and the second element contained a set of node assignments. A node assignment 

is itself a pair of node numbers and values at that node. To get the values at the internal 

nets, we gather together all the node assignments appearing at the outputs (by taking their 

set union) and tabulate the results on node numbers.

Running such an interpretation on the exclusive-or gate example with input <L, H> 

using the standard interpretation would give output like:

Node Value

1 L
2 H

3 L

4 H

5 H

The node column could also be annotated with the kind of gate the label refers to by a 

slight modification to the non-standard value. However, output of this type is difficult to 

analyse. It would be preferable to have output which resembles the decorated graph 

shown in figure 5.5. For example:

exor <L, H> = split; [[i, nof L], [not2 H, i ] ] ; [and3 L, and4  H]; ors H
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Then next section considers one way of achieving this by composing interpretations.

5 .6  Composing Interpretations
Since application of an interpretation can be considered to be a transformation (or 

function) from one graph to another, a natural extension is to allow two transformations 

over isomorphic graphs to be composed.

Consider the labelling example. The interpretation £  takes a Ruby description (a graph) 

and some data and returns a graph as a result. Because of the way higher order combining 

forms are elaborated, the graph returned may not be isomorphic to the circuit description 

graph. For example, every instance of map is replaced by the corresponding parallel 

composition. We apply interpretations only to circuit descriptions of fixed-size so we are 

sure that the graphs will be isomorphic between composed interpretations.

The graph returned by the standard interpretation forms a Ruby description which can 

then be analysed by another interpretation using its own non-standard values. In the 

labelling example, we want to apply the labelling interpretation to the graph annotated 

with standard values, to return a graph annotated with label and logic value pairs.

To allow such a combination to be expressed, another combining form is introduced over 

interpretations: serial composition. We shall denote this closed operator by ;. When two 

circuits are composed, we have to provide a pair as ‘input’ data. The first element of the 

pair is the input to the first interpretation and the second element of the pair is the input to 

the second interpretation. The meaning of serial composition over interpretations is 

defined by using interpretation that have their direction of analysis partially applied:

{a, b) (X : y )c ir  <=> y { X c ir  a) b

Informally, interpretation X  analyses c ir with input a and returns a new annotated graph 

as its result. This graph is analysed by interpretation y  with input b to return a third 

annotated graph which is the result of the serial composition. Both interpretations use the 

same environment. Note that composition is defined not over interpretations (which are 

parameterised on a direction and of type d irec tion  R U BY ' V I  -> V2) but on 

interpretations in a given direction (i.e. the direction is partially applied giving a function 

of type RUBY ' -> V I -> V2).

The new labeling interpretation L2 can now be defined in terms of S and L:
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L f = l F  

S{ = S F  
L2 =  L f

This composite interpretation expects as input a pair (a, b>, where a is a standard value 

(e.g. tuple of logic values) and b is the number to start labelling from. Figure 5.8 shows 

the graphs constructed in the L2 labelling of the circuit and ; not.

r^~) n * T )  g*T)
/  \  »  /  v  »

C ^ )  ( S ) s f<L,H> (A rf) ( ^ ) Lf<1,2> (A ^ )  ( ^ )
Figure 5.8: L2 interpretation for a N A N D  gate.

5 .7  Conclusions
Starting from the standard semantics, various adaptions have been explored in an attempt 

to find a good method for non-standard interpretation. The simplest way to give an 

alternative semantics is to define one from scratch, but this is unsatisfactory because 

much work is duplicated. Intuitively we might think of non-standard interpretation as 

providing alternative semantics for the processing nodes, so the semantics could be 

parameterised on the definitions of these nodes. However, we adopt a more powerful 

system that allows any Ruby language feature to be redefined.

Various ways of combining interpretations to produce new interpretations have been 

presented. Interpretation overriding provides the mechanism for making a non-standard 

interpretation by adapting an existing interpretation. Interpretation composition combines 

interpretations to produce new interpretations and is useful for developing complex 

analyses in a modular fashion. A very useful interpretation built in this way is the labeling 

interpretation.

The non-standard interpretations presented all analyse isomorphic circuit descriptions,
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so we avoid the problem of inconsistency between the standard circuit representation and 

different representations used for other analyses.



Chapter 6 

Applications of NSI

6 .1  Introduction
In the last chapter, a technique for implementing non-standard interpretation was 

proposed. This technique is evaluated by using it to build various analysis tools. The 

tools implemented as non-standard interpretations are deductive fault simulation and 

SCOAP testability measure. An alternative circuit representation is also considered for 

anlayses where are net based rather than node based. We also discuss the technique of 

partial evaluation for circuit analysis and how this method can be easiy cast as a non­

standard interpretation.

We show that one of the weakness of non-standard interpretation with respect to abstract 

interpretation is that we lose the ease with which safety properties can be proved. A method 

for attempting to recover safety properties by combining interpretations is presented.

6 .2  Deductive Fault Simulation Interpretation
Now that internal nets can be labelled and combinational gates can have their semantics 

changed, there is enough machinery available to preform deductive fault simulation by non­

standard interpretation. The output from a deductive fault simulation program is a set of 

stuck-at faults that can be detected by a given test pattern. These stuck-at faults give 

information about internal nets, so the circuit must be labelled. This can be done using the L  

interpretation. However, recall that deductive fault simulation works by ‘deducing’ which 

faults can be detected by analysing the correct behaviour of the circuit. This suggests that
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deductive fault simulation encapsulates the standard interpretation. Instead of re-specifying 

the standard interpretation, we can use the L2 interpretation which produces a labelled graph 

annotated with standard values.

All that remains now is to make an interpretation that takes an L2 labelled description and 

(empty) fault sets as input and produces as output the faults that can be detected by the given 

test pattern (embedded in the L2 annotated graph).

The non-standard semantics to be attributed to the combinational gates by deductive fault 

simulation (section 3.5) is given by:

and ded <n, v) «X, x), <T, y» = <0„ (0* X  n $y Y) u  {n /-.v}, n) 
o r ded (n , v> «X, x), (Y, y)) = <0„ (0 *X  u t y Y) u  {«/-.v}, n) 
not_ded (n , v> (X, x) = <0V ($x X  u  { n / - >v), n)

Note the extra first parameter refers to the value deposited at the node from the previous (L2) 

interpretation, and the second parameter is the data coming into this node through ‘wires’. 

The non-standard values like (X, x) are pairs: the first element is a set of faults and the second 

element is the standard value for the net which is transmitting the fault set.

The symbol 0 is used to describe a conditional set complementation operation. When 

applied to a setX with a subscripted boolean (or logic) value, 0*X  means complement setX 

(with respect to X  u Y) i f  x  is true. If  x  is false then X  is unaltered. When —i is used in a fault 

set and applied to a boolean value, it simply denotes boolean negation. For example, {n/—tv} 

refers to the stuck-at fault for node n which is of opposite polarity to the correct simulation 

value at the node n i.e. the fault at the output of a gate.

The result of each of the definitions is a pair: the first element gives the set of faults that is 

propagated past this gate, along with the fault detectable at the output of this gate. The second 

element is the correct logic value at the output of the gate. Note that these ‘correct’ logic 

values are not computed here: they have already been worked out by the L2 interpretation. 

Here, they are just passed to successor nodes to allow the fault sets to be properly 

complemented.

This interpretation, called DS, can now be given as:

D S f  ITA n d ’ l  = and_ded (6.1)

D S /IT O r’H = or_ded (6.2)

£>S/IT Aor’TI = no tded  (6.3)
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Note that the backward case has been left undefined. Deductive fault simulation makes sense 

only for the forward case. The backwards analysis asks the question “what input(s) do I need 

to test for the following set of faults?” which is an extension of the test pattern generation 

problem. We choose to tackle test pattern generation as a separate problem (shown later). It is 

interesting to note that our organization of interpretations into forwards and backwards 

analyses has pointed out a fundamental relationship between deductive fault simulation and 

test pattern generation.

The DS interpretation can be used to build a specification for a deductive fault simulator. 

This interpretation produces at the output sets of faults covered by a given test pattern. The 

union of all the fault sets at the outputs give the final result of the deductive fault simulation.

The DS interpretation takes as input pairs. For example, to analyse the exor description for 

the input <L,H> we would give «L, H>, « { },L),<{ },H>» as input. The first element contains 

logic values which are used to produced a fixed circuit circuit for labelling. The second 

element of the tuple contains a tuple itself of pairs of fault sets and logic values which is used 

by the DS interpretation. Such a fault simulator is called ‘DE'DSIMand is defined as:

‘DL'DSIM  = L2 ; (DSf © Sf)

where DSf = D S f  and Sf = S f.

One pleasing aspect of having formulated the deductive fault simulation problem in this 

manner is that it has been decomposed into several sub-problems which have been solved 

independently. The structure of the division corresponds directly to the different 

interpretations used. This agrees with good software engineering practice: the problem is 

divided into smaller problems whose solutions are then composed. The methods for 

composition used here are overriding and serial composition of interpretations.

6 .3  SCOAP TM Interpretation
Like deductive fault simulation, the SCOAP testability measure algorithm requires the internal 

nets to be uniquely labelled. It is essential that the values at internal arcs can be observed. The 

SCOAP algorithm, as presented in chapter 3, has non-trivial data dependency. Note that to 

compute the observability of the output net of a node A, we must have already computed all 

the controllabilities from the primary inputs to node N , and we must have computed all the



109

observabilities from the output of node N  to the primary outputs. This seems to require 

simultaneous flow of information forwards and backwards, and perhaps suggests an 

implementation in a logic language like PROLOG.

However, note that the SCOAP problem can be split into two stages. The controllability 

values can be computed without knowing any of the observability values. This can be done 

using a simple left to right interpretation. Once a circuit has been annotated with 

controllability values, we are in a position to compute observability values by working 

backwards from the primary outputs to the primary inputs. This can be accomplished by 

using a backward interpretation. Composing these two interpretations with a labelling 

interpretation will give us a SCOAP testability measure interpretation.

Let the forward controllability measure interpretation be CONT. This can be defined 

immediately from the definition in chapter 3 as:

and cont n <v, (cx, cy))

= {(cx, cy),<min [setO cx, setO cy] + 1, setl cx + setl cy + 1»

or cont n <v, <cx, cy))

= ((cx, cy), setO cx + setO cy + 1, min [setl cx, setl cy] + 1>

not cont n <v, cx) = (cx, (setO cx + 1, setO cx + 1»

setO (x, y) = x

setl (x, y) = y

CONT  /ITA nd’H = andjcont (6.4)

C O A T /ir O r ’H = or_cont (6.5)

CONT  /fTA ^r’H = not_cont (6.6)

This interpretation does not use any node annotations. Each node should hold information 

about the controllabilities of the input and output nets to that node. For this reason, the non­

standard values are not just a pair of controllability measures. Instead, we use a pair whose 

first element is the controllabilities of the input nets of the previous node, and the second 

element containing a pair of controllability measures. This slight contortion arises from the 

fact that SCOAP is really a net-based analysis which is being cast in a node-based 

framework.
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Assuming a graph has been annotated with controllability measure, a backward 

observability measure OBSV can be defined as:

and obsv ({cx, cy), v> obsv
= ((cx, setl y + obsv +1), (cy, setl x + obsv + 1»

o r obsv ({cx, cy), v) obsv
= ((cx, setO y  + obsv +1>, (cy, setO x  + obsv + 1»

not obsv ((cx, cy), v> obsv
= <cjc, obsv +1)

OBSV b ^ A n d ' l and_obsv (6.7)
OBSV b ITOr’H or_obsv (6.8)
OBSV b ITAtor’H not_obsv (6.9)

This interpretation uses the controllability annotations at the combinational nodes to compute 

the observability values. The graph return is annotated with a pair: the first element contains 

controllability information and the second element is an observability measure. Notice that 

this interpretation is only defined for the backwards case.

SCOAP can now be described by composing these two interpretations:

SCOAP = L2 ; (CONT f ) ; (OBSV b)

Once again, the problem has been divided into sub-problems which have been solved 

independently. The SCOAP analysis was expressed as the composition of three sub-analyses: 

(i) labelling, (ii) controllability measure and (iii) observability measure. The observability 

interpretation is a backwards analysis: we have simplified the task posed by the apparently bi­

directional nature of the problem by chosing interpretations that are uni-direction. It is easy in 

the case of SCOAP to find such a division.

6 .4  Inverting Nodes and Arcs
The interpretation models presented so far have been ‘node centred’. By this, we mean that 

they are concerned with analysing characteristics of nodes like AND gates. Many analyses are 

certainly node based e.g. counting the number of gates in a circuit.
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However, many other analyses seem to be more ‘net based’ rather than node based. This 

is especially true of testability analyses which compute information about internal nets. The 

SCOAP testability measure involved a slight contortion with node values which allowed the 

testability information of surrounding nets to be held.

This suggests that if  we are really performing net based analyses, we should represent 

nodes in the graph by nets and arcs by ‘components’ (which are, confusingly, called nodes in 

the circuit!). This gives us a netlist view of a circuit, rather like an EDIF description. How 

would non-standard interpretation proceed in such a representation? Instead of re-defining 

nodes, we re-define arcs with non-standard semantics. Nodes contain nets which hold non­
standard values.

We choose not to use this method for non-standard interpretation for two reasons. First, it 

is not too difficult to pose a net based analysis as a node based analysis. This has been done 

for both deductive fault simulation and SCOAP. Secondly, the spirit of non-standard 

interpretation seems to suggest that we analyse the same (isomorphic) description with 

different semantics. I f  we flipped the nodes and arcs of a Ruby abstract syntax tree, we 

would be analysing a slightly different description. This different description is strongly 

related to the original description because there is a homomorphisim that relates the two 

representations (the homomorphism that flips nodes and arcs). We guess that most analyses 

are node based rather than net based. However, in the field of testability, many important 

analyses are naturally net-based, but these can be dealt with by our system.

6 .5  Partial Evaluation
Partial evaluation is the evaluation of expressions in the source code of some language at 

compile time. This is often possible if enough information is available at compile time. 

One advantage of partial evaluation is that some expressions can be replaced by their 

values at compile time. This leads to savings at run time. A novel application of partial 

evaluation has been found in the field of automatic compiler generation [Peyton Jones 85, 

Launchbury 90].

We have implemented a simple partial evaluation system as a non-standard interpretation. 

It uses some of the usual laws of switching algebra to simplify boolean expressions. The 

representation of expressions is similar to that used by the symbolic simulation interpretation
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presented in chapter 5. A listing of the code for the non-standard interpretation can be found 

in appendix A .3. Some of the simplifications implemented are:

> simplify (NotSymbol (NotSymbol x)) =  x - n x  = x
> simplify (NotSymbol (AndSymbol x y)) -,(x  a  y) = - ix  v  -.y
> = OrSymbol (simplify (NotSymbol x)) (simplify (NotSymbol y))
> simplify (AndSymbol SymbolTrue x) = x x a  false = false

The simplification function tries to make use of as much information as possible to perform 

calculations at compile time. Product of sum expressions are transformed into sum of 

products expressions since this is the canonic representation used by many analysis tools, 

e.g., Quine and McCluskey tabular minimization tools.

By applying this partial evaluation before other analyses, we can reduce the total amount 

of work that has to be done by simplifying the original description. This saving is especially 

worthwhile when several interpretation stages are composed together.

It may not always be desirable to apply such a partial evaluation. Some interpretations may 

want to analyse the original formal description without any alterations. One such example is 

hazard detection, which requires finding redundant circuits. These redundancies may be 

inadvertently removed by the partial evaluation system.

A partial evaluation analysis returns as its result a symbolic expression. This has to be 

converted into a Ruby description before the results of the analysis can be used by other 

interpretations. This is a difficult task to perform automatically, even when the original formal 

description is available. However, if a circuit description can be reconstructed from the output 

of this interpretation, then we have found a new type of non-standard interpretation. Here, 

we have an example of an interpretation which allows us to perform transformations on the 

formal description analysed.

This represents an increase in the power of non-standard interpretation, since many more 

circuit analyses could be represented if  transformed circuit descriptions were returned rather 

than isomorphic circuit descriptions. Although we have done some work on reconstructing 

circuits from symbolic expressions, at the moment there seems to be no satisfactory method 

for doing this. Our method involves analysing boolean expressions containing no state 

variables and producing a network of basic gates combined with serial and parallel 

composition. The resulting Ruby expression is very unreadable. For example, it is not too 

difficult to transform (x Ay) v  —iz to [AND, i] ; [i, NOT] ; OR which can be simplified to 

[AND, NOT] ; OR.
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Future work could look for methods of transforming a formal description given the source 

and target symbolic expressions. The key might be to seek a good algorithm for finding the 

difference between two symbolic expressions and then identifying what portion of the formal 

description this difference corresponds to. This will probably require the use of existing 

automatic analysis and verification tools.

In several areas of hardware description analysis and program analysis we have found 

strong analogies and techniques which are applicable to both types of descriptions. Non­

standard interpretation is an obvious example. We believe the meaning of partial evaluation is 

similar in these two types of descriptions. In programming languages, partial evaluation 

analyses the source code to produce a more efficient, but semantically equivalent, program. 

This is then compiled to better object code. In hardware, partial evaluation analyses hardware 

descriptions to produce behaviourally equivalent descriptions. These descriptions correspond 

to hardware which operates more quickly and uses fewer components. Thus, in both cases, 

the quality of the realisation (object code for programs, hardware for HDLs) is improved.

6 .6  Combining Interpretations
One very useful feature of abstract interpretations is that we can prove that they conform to 

some safety criterion w.r.t. the standard interpretation. For example, the behaviour of a 

strictness analysis can be checked against the standard interpretation to make sure that only 

correct approximations are found. This is possible because the abstract behaviour is just part 

of the standard behaviour: a cut down version or an approximation. The abstract values are 

just approximations of the standard values. This fundamental relationship between standard 

and abstract interpretations makes many properties of the abstract model easier to establish 

and verify (including correctness and safety).

Unfortunately, non-standard interpretation does not share this property. This is because 

the relationship between the standard and non-standard interpretations can be completely 

arbitrary. Also, non-standard values need not be linked to standard values in any way. For 

example, there is little similarity between running an exor circuit with input <L, H) and 

computing its SCOAP testability measures. Indeed, these are two different kinds of analysis. 

One analysis is dynamic and the other is static. Simulation is dynamic because it needs some 

input and a circuit description before it can give a result. However, SCOAP attempts to
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compute an approximation to the testability of a circuit by considering only the structure of 

the circuit. Since SCOAP does not need any ‘input’, it is a static analysis.

The standard interpretation with logic values is not rich enough to perform useful abstract 

interpretations. This is because the basic data entity is a boolean variable, which does not give 

us much to abstract from! Tuples of booleans are the most complex data values that occur in 

the standard interpretation, but even these do not contain enough information.

What is ideally required is a ‘super-interpretation’ from which we can abstract enough 

information to allow us to make abstract interpretations for simulation, testability measure, 

deductive fault simulation, labelling etc. This interpretation would propagate along its ‘wires’ 

complex data object which contain sets of faults, testability measures, logic values etc.

Such a super-interpretation is a very contrived object, and of course does not exist in any 

useful form. The analysis of circuits is performed by a set of tools which are detached in their 

operation rather than being rolled into one gigantic analysis tool.

We could artificially build a super-interpretation by combining existing interpretations. 

This poses several questions. Firstly, how are interpretations combined? Can they be blended 

together, factoring out common functionality? This is a difficult analysis to perform. Let us 

just represent the combination of n interpretations by placing them into an n-tuple. Then, 

abstract interpretation involves uses a pro jec tion  function to extract the required sub­

behaviour.

The next question to consider is how to represent data values in a super-interpretation. 

Again, attempting to merge data by factoring seems like a difficult task, so we shall just tuple 

the data values in a similar manner to how the interpretations are tupled. For example, the 1th 

element of a data tuple is manipulated by the /th interpretation of the tuple that holds the super­

interpretation.

Parallel composition over interpretations (i.e. functions) as defined in chapter 5 can be 

used to combine interpretations to produce a super-interpretation:

SUPER = [L, L2, SCOAP, D E D S IM , ... ]

A new interpretation could then be made by projecting out one or more of the components 

from SUPER. Unfortunately, this method has not gained us anything. We still need to 

specify interpretations of interest beforehand. Any property we prove about an abstract object 

from SUPER holds only if the component interpretations of SUPER have been validated.
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I f  we could construct a super-interpretation for a finite set of non-standard interpretations, 

then there is a possiblity for some factorisation. Many interpretations will perform the same 

calculations. A realisation for SUPER could economise on space by factoring out the 

common parts of such interpretations. One problem with this suggestion is that these 

calculations are expressed as functions over which equality tests are not usually allowed. This 

makes the implementation of such a scheme problamatic when using a programming language 

like Miranda. The main use of super-interpretations at the moment seems to be as a 

conceptual device.

A good area for future research is to see if there is some other way of proving properties 

of alternative analyses which use isomorphic structures (w.r.t. standard analysis). As shown 

above, the traditional methods used in abstract interpretation don’t seem to be too helpful, but 

other techniques in algebra may be readily applicable. Intuitively, one would think that there 

is much to inherit from the standard interpretation when analysing isomorphic descriptions.

6 .7  Conclusions

Non-standard interpretation has been used to specify two non-trivial circuit analyses. This 

was accomplished by providing a specification which is very similar to the algorithms given 

in chapter 2. A large part of the standard semantics has been re-used, which allows a concise 

descriptions of the non-standard behaviour by concentrating attention on the nodes where the 

non-standard processing takes place.

Not only does non-standard interpretation allow circuit analyses to be constructed very 

quickly and in a natural manner, but it also is a good paradigm for implementing circuit 

analyses. This is because many circuit analyses have a similar structure to the circuit under 

analysis. Combining forms have been introduced to combine small interpretations into bigger 

ones. This allows problems to be sub-divided into smaller problems and solved 

independently. This is good software engineering practise and allows circuits with complex 

bi-directional data flow to be modelled by a series of uni-directional interpretations. These 

uni-directional interpretations can be implemented efficiently using functions, rather than 

relations which would be required to implement a bi-directional interpretation.
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In the next chapter, an implementation of a non-standard interpretation system in the style 

presented in the last chapter is shown.
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Chapter 7 

Implementation

7.1  Introduction
The implementation of our non-standard interpretation system is presented. The 

implementation is in Miranda, and is machine independent. There are many reasons for 

using a lazy functional language for the implementation. Functional languages are much 

more expressive than traditional languages. They provide powerful features for 

combining existing programs to make larger programs, thus encouraging modularity. 

Richer data types are offered as standard e.g. lists. Polymorphism is a very useful 

feature, which is employed to describe the operation of wiring circuits. Currying is useful 

for making specialised interpretations from a general interpretation. Functional languages 

employ a terse notation which is suitable for algebraic manipulation, thus making the task 

of verification easier. Lazy evaluation allows allows complex data dependencies to be 

specified elegantly [Wadler 85].

One of our aims is to show that non-standard interpretation allows analyses to be 

quickly prototyped. New analyses are added by writing a small Miranda module which is 

incorporated into the system.

We start by giving an overview of the system software. Section 7.2 presents example 

scripts which the user submits to the system for execution. Details of the standard and 

symbolic interpretations are given in section 7.3. Section 7.4 outlines the graphical user 

interface and section 7.5 presents a simple attempt at implementing a non-standard 

interpretation system. This apporach is shown to have shortcomings which are rectified in 

a more complex implemention presented in section 7.6. Section 7.7 considers the impact 

of using Ada as an implementation language instead of Miranda, and finally, section 7.8 

concludes the chapter.
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7 .2  System Overview
The architecture of the system is shown in figure 7.1. The entire system is written in 

Miranda, with the exception of some Pascal programs that were used to convert between 

Miranda picture data types and Macintosh PICT/MacDraw I I  format. A direct 

manipulation graphical interface also exists. There is a bolt-on graphical interface, which 

works under the SunView or X I 1 window systems. This is also implemented in 

Miranda, along with a SunView and X I 1 drivers written in Lex, Yacc and C.

From a user’s point of view, the system just provides a collection of programs that can 

be used to analyse Ruby descriptions which have been compiled. The compiler is for a 

large subset of Ruby and is also part of the system. For example, i f  the user wanted to 

analyse a N A N D  gate circuit then the first step would be to compile the following 

description:

> nand = and ; not ;;

This is compiled into an abstract syntax tree form which is used by interpretations for 

analysis. I f  the above description is in a file called ‘alpha, ruby’ then the compiled 

version is deposited in the file ‘alpha. env’.

The user then decides what analyses are required. This is done by preparing a script 

which is executed by the system. Let us prepare a simple script called ‘alpha. run’ to 

analyse the NAND gate shown above. First, we have to i m p o r t  from file ‘alpha.env' 
the definition of our NAND gate. The we have to decide which analyses we want to 

perform. The keyword s t a n d a r d  will execute the standard interpretation taking as 

parameters the circuit to the analysed and the domain values to be used. Similarly, 

s y m b o l i c  performs a symolic simulation and t r u t h  produces a truth table. The 

behaviour of these interpretations is defined in chapters 5 and 6. Let the file ‘alpha. run’ 
be:

IMPORT alpha ;;

STANDARD nand {<L, H>} ;;
TRUTH nand ;;
SYMBOLIC nand {<a, b>} ;;

After importing the definitions from the file ‘alpha. env' (the . env is omitted) the nand 
circuit (defined in ‘alpha. env') is simulated with input {<L, H>}. Next, a truth table is 

requested for nand and finally a symbolic interpretation with input variables {<a, b>} is



119

performed. The output is placed in the file ‘alpha, log'. Executing the script 
‘alpha.run’ produces:

Ruby NSI System V10.12.90

Tue Dec 18 01:58:38 GMT 1990 
Parsing file alpha.run

1) Standard: {<L,H>} nand {H}
2) Truth table: nand

<L,L> ->  {H}
<L,H> -> {H}
<H,L> ->  {H}
<H,H> ->  {L}

3) Symbolic: {<a,b>} nand {~(a & b ) }

The first few lines of the output announce the name and version of the program along 

with the date and time the execution started. Each output is numbered and gives the name 

of the interpretation being performed and the circuit under examination along with domain 

and range values.

Output 1 shows a NAND gate which has only one value at its domain so the range also 

contains only one value since NAND is a function in the forward direction. Output 2 

demonstrates the truth table interpretation which runs the NAND gate for every possible 

input. Set brackets are omitted on the domain values. Finally, output 3 shows the boolean 

expression that represents the behaviour of the N A N D  gate. Logical negation is 

represented by conjunction by &  and disjunction by I. Variable names may be of 
arbitary length.
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7 .3  The Standard and Symbolic Interpretations
This section presents many example scripts and the output expected of our non-standard 

interpretation system. The following sections consider how to write such a system. The 

output presented in this section was produced by an actual interpretation system which is 

presented in a later section and has been checked manually for correctness.

A parser for the Ruby language has been written using a library of higher order 

parsers. Using higher order functions, we can give a YACC like specification for a 

grammar. This specification is executable, and we can easily associate actions with 

productions. This is a much more satisfactory approach to that taken in YACC, which 

associates C code with YACC productions.

The syntax accepted by the parser is slightly different from that used in chapter 2. This 

is to allow Ruby descriptions to be given in plain text files which are constrained to use 

the ASCII character set. The major differences are that inverse is denoted by a percent 

symbol (%), beside is written as <-> and below as W/.

Each line is assumed to be a comment, unless it contains the > character as its first 

symbol. This is the same commenting convention that is used in Miranda and Orwell. 

Unlike Miranda, our parser does not use the offside rule to determine when a definition 

finishes. Instead, indentation has no special meaning, and each definition must be 

terminated by a double semi-colon (;;).

A powerful set of core operations is implemented as primitives in the non-standard 

interpretation system. These include serial composition, parallel composition, inverse and 

append. A general forking primitive is provided which takes as a parameter the number of 

forks to perform. Split is defined as a special case. The projections K\ (written pi1) and 

k2 (written pi2) are also defined in terms of a more general projection relation. The other 

common Ruby circuits are described in a prelude file. This is just a normal file which is 

parsed and compiled. The standard prelude (in the file ‘prelude. ruby’) is shown on the 

next page.

Most of the definitions shown have already been explained in chapter 2. The relations 

ish and rsh are used to re-organize tuples. It is surprising that these powerful relations 

can be expressed in terms of the small core of Ruby that has been implemented directly.



122

These kinds of operations have to be provided as primitives in other hardware description 

languages.
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Prelude for Singh-Ruby Nov. 90

> fst R = [R, id] ;;
> snd R = [id, R] ;;

First and second.

> apl = fst [-] ; app ;;
> apr = snd [-] ; app ;;

Append left and append right.

> pil = project 2 1 ;;
> pi2 = project 2 2 ;;

Projection relations over pairs.

> split = fork 2 ;;

A two-way fork.

> swap = rev \ 2 ;;

Swap for 2-tuples.

> lsh = id \V/ id ; ;
> rsh = id <-> id ;;

Left and right shifts e.g..
« a ,  b>, c> lsh <a, <b, c »
<a, <b, c »  rsh « a ,  b>,c >

> rdl R = row (R ; pi2%) ; pi2 ;;
> rdr R = col (R ; pil%) ; pil ;;

Reduce left and reduce right.

> irt R = (tri R) \ rev ;;

An upside-down triangle.

Some more useful wiring circuits.

> distl = row (fst split ; lsh ; swap) ; pil ;;
> distr = swap ; distl ; map swap
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The usual logic gates can be defined in terms of the elementary gates. The following 

definitions appear in the file ‘g a t e s . r u b y ’ .

> n and  = an d  ; n o t  ; ;
> n o r  = o r  ; n o t  ; ;

> e x o r  = s p l i t  ; [ [ i d ,  n o t ] ,  [ n o t ,  i d ] ]  ; [a n d ,  an d] ; o r  ; ;

Variants of a full-adder appear in the file ‘ a r i t h .  r u b y ’ .

S t a n d a r d  A r i t h m e t i c  c i r c u i t s .

> h a l f _ a d d e r  = s p l i t  ; [a n d ,  e x o r ]  ; ;

T h i s  c i r c u i t  t a k e s  tw o  i n p u t s  a and  b and
d e l i v e r s  t h e  c a r r y  and  sum. h a l f _ a d d e r  < a ,  b> = < c a r r y ,  sum>

> f u l l _ a d d e r  = snd  h a l f _ a d d e r  ; r s h  ; f s t  swap ; l s h  ;
> snd  h a l f _ a d d e r  ; r s h  ; f s t  o r  ; swap ; ;

A f u l l  a d d e r :  f u l l _ a d d e r  < c a r r y _ i n ,  < a ,  b »  = <sum, c a r r y _ o u t >

> h o r i z _ a d d e r  = row f u l l _ a d d e r  ; ;
> h o r i z _ a d d e r 2  = snd z i p  ; h o r i z _ a d d e r  ; ;

T h i s  im p le m e n ts  a ' f l a t '  a d d e r :
< c a r r y _ i n ,  « x 0 , y 0 > . . < x n . . y n > >  f l a t _ a d d e r  < s 0 . . s n ,  c a r r y _ o u t >  

w h e re
x i ,  y i  a r e  c o r r e s p o n d i n g  b i t s  t o  be ad d ed  
s 0 . . s n  a r e  t h e  sum o u t p u t s

> v e r t _ a d d e r  = f s t  z i p  ; c o l  ( f u l l _ a d d e r  \  swap) ; ;

The v e r t i c a l  v e r s i o n  o f  t h e  h o r i z t o n a l  f u l l  a d d e r .

The results obtained by running a test script to exercise the standard and symbolic 

evaluation interpretations are shown overleaf.
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Ruby NSI System V10.12.90

Tue Dec 18 01:23:38 GMT 1990 
Parsing file testl.run

1) S t a n d a r d : < L , H > } and  {L }
2) S t a n d a r d : < H ,H > }  and  {H}
3) S t a n d a r d : H} an d  % { < H ,H > }
4) S t a n d a r d : L} an d  % { < L , H > , < H , L > , < L , L > }
5) S t a n d a r d : < L , L > }  o r  {L }
6) S t a n d a r d : < L , H > } o r  { H }
7) S t a n d a r d : L} o r  % { < L , L > }
8) S t a n d a r d : H} o r  % { < H , H > , < H , L > , < L , H > }
9) S t a n d a r d : L} n o t  {H}

10) S t a n d a r d : H} n o t  {L}
11) S t a n d a r d : H} n o t  % {L}
12) S t a n d a r d : < L ,H > }  nand  {H}
13) S t a n d a r d : H} nand% {<L,H>,<H,L>,<L,L> }
14) S t a n d a r d : H} nor% {<L,L> }
15) S t a n d a r d : <L,H > } e x o r  {H}
16) S t a n d a r d : <H,H> } e x o r  {L}
17) S t a n d a r d : H} exor% { < H , L > , < L , H > }
18) S y m b o l i c : < a , b > }  e x o r  {a  & ~b \ /  ~a & b
19) T r u t h  t a b l e :  n o r

< L , L >  - > H}
< L ,H >  - > L}
< H ,L >  - > L}
<H,H> - > L}

20) Truth table: nor%
<L> - >  { < H , H > , < H , L > , < L , H > }
<H> - >  { < L , L > }

21) Symbolic: {<a,b>} half_adder {<a & b,a & ~b \/ ~a & b>}
22) Truth table: half_adder

< L , L >  - >  { < L , L > }
< L ,H >  - >  { < L , H > }
< H ,L >  - >  { < L , H > }
< H ,H >  - >  { < H , L > }

I f  set brackets are omitted on the domain, then they are added automatically. For example, 

when the half adder is given the input < l , l > in the truth table interpretation, it is 

automatically coerced to the singleton set { <l , l > }.

Output 2 shows an AND gate run forward under the standard interpretation with one 

value in its domain giving a singleton set at its range. Output 4 shows the result of 

running the gate backwards by applying {L } to the inverse of AND. This gives three 

possible values at the range. Running the inverse of AND with {<l , h >} produces an 

empty set.



126

The entire source code for the symbolic non-standard interpretation is given below. 

The first few lines contain include directives which make available definitions from other 

Miranda modules. Next, symboiic interp is defined by giving a list of three triples. 

Each triple contains a reference to a part of Ruby abstract syntax which is to be 

overloaded and its forward and backward overloaded semantics. A recursive algebraic 

type symbolic_rep is used to represent syntax graphs. The functions associated with 

each of the basic gates are defined in a straightforward manner. Finally, the interpretation 

is defined using the function standard which takes as input a list of triples (as defined 

above) and returns an overriden interpretation.

> I I Symbolic Interpretation

> %include "ruby"
> %include "standard"
> %include "-/miranda/general.lit"

> symbolic_interp
> = [(And', and_sym, undef),
> (Or', or_sym, undef),
> (Not', not_sym, undef)]

> symbolic_rep ::= Symbol string
> I AndSymbol symbolic_rep symbolic_rep
> I OrSymbol symbolic_rep symbolic_rep
> I NotSymbol symbolic_rep

> and_sym n (Tuple [Symbolic x, Symbolic y]) = Symbolic (AndSymbol x y)
> or_sym n (Tuple [Symbolic x, Symbolic y]) = Symbolic (OrSymbol x y)
> not_sym n (Symbolic x) = Symbolic (NotSymbol x)

> symbolic_nsi = standard symbolic_interp

The interpretation is named symbol ic_interp and consists of a list of triples. Each triple 

specifies some feature of Ruby to be overriden and gives the forward and backward 

overriding functions. The backwards case for symbolic simulation is left undefined. The 

data type symbolic_rep describes the non-standard values used in this interpretation. 

Here, symbolic values are represented by syntax tress in terms of variables (from primary 

inputs) and the three elementary logical operations.

The source code for the deductive fault simulation and SCOAP testability measure 

interpretations is shown in Appendix A. Examples of executing these interpretations are 

given below. First, we show some deductive fault simulations.

1) LabelSyn: <L,L,L> apl%; full_adder
[[-], id]%; app%; [id, fork 2; [and#l, fork 2; [[id, not#2],

[not#3, id]]; [and#4, and#5]; or#6]]; id <-> id; [rev \ 2, id]; id \V/ id;
[id, fork 2; [and#7, fork 2; [[id, not#8], [not#9, id]]; [and#10, and#ll];
or#12]]; id <-> id; [or#13, id]; rev \ 2
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2) Annotate: <L,H> exor
fork 2; [[id, not#l L], [not#2 H, id]]; [and#3 L, and#4 H]; or#5

H
3) Deductive Fault Simulation: <<{},L>,<{},H>> exor <L,H>

fork 2; [[id, not <{1/1},L>], [not <{2/0},H>, id]]; [and
<{3/1},L>, and

<{4/0, 2/0},H>]; or <{5/0, 4/0, 2/0},H>
4) Deductive Simulation: exor

<L,L> -> {3/1, 4/1, 5/1}
<L,H> -> {2/0, 4/0, 5/0}
<H,L> -> {1/0, 3/0, 5/0}
<H,H> -> {1/1, 2/1, 3/1, 4/1, 5/1}

5) Deductive Simulation: half_adder
<L,L> -> {1/1, 4/1, 5/1, 6/1}
<L,H> -> {1/1, 3/0, 5/0, 6/0}
<H,L> -> {1/1, 2/0, 4/0, 6/0}
<H,H> -> {1/0, 2/1, 3/1, 4/1, 5/1, 6/1}

As an example, consider output 2. This shows how the exlusive-or design is labelled. 

Output 3 demonstrates the result of performing deductive fault simulation with input 

<L,H>: the output produced is <{5/0, 4/0, 2/0},H>. The states that the faults detected by 

the pattern <L, H> are {5/0, 4/0, 2/0} and the output value for a correctly functioning 

circuit should be H. Output 4 shows a deductive fault simulation of the exclusive-or 

circuit with every 2-tuple test pattern. This output can be used by another anlysis to 

determine further testability information like fault dominance.

Output 5 shows a deductive fault simulation of a half adder for every 2-tuple input. 

Every element of the set produced by test pattern <L, L> also occurs in some other test 

pattern. Thus, <L,L> can be left out of an exhaustive test program is <L, H>, <H,L>  

and <H,H> are included.

The following output demonstrates some SCOAP testability measures. The first five 

outputs show SCOAP combinational controllability and observability values. Outputs 6,

7 and 8 show only the controllability values.

1) Scoap: « ? ,  (1,1) >,<?, (1,1) »  « ? , 0 > , < ? , 0 »  half_adder
fork 2%; [and <(1,1,2), (1,1,2)>, fork 2%; [[id%, not (1,1,6)],

[not (1,1,6), id%] ] ;  [and <(1,1,6), ( 2 , 2 , 5 ) > ,  and < ( 2 , 2 , 5 ) ,  (1,1 , 6)> ] ;  or 
< ( 2 , 4 , 3 ) , ( 2 , 4 , 3 ) > ]

2) Scoap: « ? ,  (1,1 )>,«?, (1,1 )>,<?, (1,1) » >  « ? , 0 > , < ? , 0 »  full_adder 
[id%, fork 2%; [and < (1,1,5), (1,1,5)>, fork 2%; [[id%, not

(1,1,11)], [not (1,1,11), id%]]; [and < (1,1,11), (2,2,10)>, and 
<(2,2,10),(1,1,11)>]; or <(2,

4,8) , (2,4,8)>] ] ; (id <-> id)%; [rev \ 2%, id%]; (id W /  id)%; [id%, fork 
2%; [and < (1,1,9), (5,5,5)>, fork 2%; [[id%, not (5,5,7)], [not (1,1,10),
id%]]; [and <(1,1,11), (6,6,6)>, and <(2,2,9), (5,5,6)>]; or 
<(2,8,4) , (3, 8,3)>]]; (id <-> id)%; [or <(2,3,3), (2, 7,3)>, id%]; r e v \ 2 %

Output 1 presents a SCOAP analysis of a half adder. Each of the inputs to the final OR 

gate of the have adder have the same SCOAP vectors. For these nodes the SCOAP setO
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controllability is 2, the setl controllability is 4 and the observability is 3. The SCOAP 

values for the output nodes are not shown because they are not of interest. Similarly, the 

observabilities of the primary input nodes are not of interest. The second output shows an 

analysis of a full adder design which makes use of the half adder design. From examining 

the unfolded half adders, it is clear than a hierarchical approach to SCOAP test pattern 

generation could speed up analysis significantly. The could be done by expressing the 

testability measures as relative offsets rather than absolute values.

The following outputs show SCOAP applied to smaller circuits. Note that the 

exlcusive-or circuit has symmetrical measures. This is what one would expect of a circuit 

which as 50% of its outputs as 1 and 50% as 0.

3) Scoap: <?, (1,1)> <?,0> not
not (1,1,1)

4) Scoap: «?, ( 1 , 1  )>,<?,( 1,1) »  <?,0> and ; not
and < (1,1,3), (1,1,3)>; not (2,3,1)

5) Scoap: «?, ( 1 , 1  )>,<?,( 1,1) »  <?,0> exor
fork 2%; [[id%, not (1,1,6)], [not (1,1,6), id%]]; [and

<(1,1,6), (2,2,5)>, and <(2,2,5), (1,1,6)>]; or <(2, 4, 3) , (2, 4, 3) >

The following output shows that is also possible to run a constituent interpretation. In 

this case, we show the controllability interpretation. Consequently, each net is annotated 

with a pair rather than a triple. The outputs 6 and 7 are abstractions of the output from 5 

and 2 because they can be obtained by removing information about observability values.

6) Controllability: « ? ,  (1,1) >, <?, (1,1) >, <?, (1,1) »  fras
[id, not (1,1), id]; [apl , id]; [id, [-]]; app; halve%; [and ,

or ]; and
7) Controllability: « ? ,  (1,1) >,<?, (1,1) »  exor

fork 2; [[id, not (1,1)], [not (1,1), id]]; [and < (1,1), (2,2)>,
and <(2,2), (1,1)>]; or <(2,4), (2,4)>

8) Controllability: <<?,(1,1)>,<<?,(1,1)>,<?,(1,1)>» full_adder
[id, fork 2; [and <(1,1), (1,1)>, fork 2; [[id, not (1,1)], [not

(1,1),id]]; [and <(1,1), (2,2)>, and < (2,2), (1,1)>]; or < (2,4), (2,4)>]]; id 
<-> id; [rev \ 2, id]; id \V/ id; [id, fork 2; [and <(1,1),(5,5)>, fork 2;
[[id, not (5,5)], [not (1,1), id]]; [and <(1,1), (6,6)>, and <(2,2), (5,5)>];
or <(2,8), (3,8)>]]; id <-> id; [or < (2,3), (2,7)>, id]; r e v \ 2

The triples associated with each node give the set 0, setl controllability and the 

observability for that node. For example, the last OR gate of output 1 has one input with 

setO = 2, setl = 4  and obsv = 3 (the other input has the same values).

This output can be put though a filter to produce bar charts that highlight nodes of poor 

testability. This makes the output much easier to digest. We have implemented a filter 

which transforms the output above into a format suitable for the Jazz package on 

Macintosh computers. The data was read into the Jazz spreadsheet from which graphs 

were automatically produced. This is how the SCOAP tables in chapter 2 were
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constructed. The diagram below was produced by taking output 5 and filtering it through 

to Jazz. It was then manually touched up in MacDraw II to add the labels on the right.

notl not2 andl and2

7 .4  A Graphical Interface
The interpretation system has been given a direct manipulation graphical interface which 

works under the SunView windowing system on Sun computers. This makes the system 

much easier to use and the output much easier to understand. The graphical system 

presents menus and button so that the user does not have to remember a large number of 

housekeeping commands. The graphical display can produce bar charts and output to 

other specialised programs like spreadsheets for further processing.

A special driver was written by the author to allow Miranda programs to control the 

SunView windowing system from a remote host over a U N IX  network. This was a large 

undertaking, but the final result shows that functional languages can be used to write 

programs with better interfaces.

The details of the implementation of the graphical interface are outside of the scope of 

this thesis. A screen snapshot of one of the interfaces is shown on the next page. The 

interface is currently rather simplistic. There is much scope for improvement. For 

example, the output from the SCOAP testability measure could be automatically filtered 

through a function to produce histograms. At the moment, a separate tool in the system 

has to be manually run by the user.

Another problem with the interface is that it is hardwired to work with the SunView 

windowing system. It would be beneficial to devise a generic intermediate representation
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for windowing operation. Unfortunately, no widely accepted representation is available 

and the features offered by most windowing systems tend to differ greatly.

The need to write a small SunView server in C blemishes the otherwise entirely 

functional language code. We require current functional languages to be extended to 

provide better system interfacing facilities before this problem can be resolved. However, 

under SunView, it is difficult to write windowing applications in any language other than 

C. This is due to the large number of C data types used to represent SunView objects and 

the difficulty of cross-linking between C and other languages like Pascal and Ada.
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le n  dump for ss on Tue Dec 18,1990 at 02:16.

[Load][Cornplle 1 {Execute] [Quit]

Directory: /users/grad/ss/phd/current
Filaname: defs^
Gem Analysis Tools
Gem Parser V25.7.90 
Syntax error in next definition.
Environment file /users/grad/ss/phd/current/defs.env created 
Gem Parser V25.7.90

1) nand
2) nor
3) alpha 

Parsed without any errors.
Environment file /users/grad/ss/phd/eurrent/defs2.env created

“ Test befinitions 
-- Satnam Singh 
—  6.7.90

nand - and ; not

shelltool - /bin/csh
tor about tive minutes, it is

not friendly to other users to 
print these kind of jobs while 

they are waiting.
* laserdump is copyrighted Hark 

Dunlop 1990 ^ l/current/defs2.env created

ss@lewis> laserdump 
Dumping screen to printer -Plwsl01...|
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7.5  A Simple NSI System
This section presents a simple non-standard interpretation system for a subset of Ruby.

We try to implement as directly as possible the semantic equations presented in chapter 5.

Such a system should provide the core of the program used to implement the system 

outlined in section 7.2. The problems with this particular implementation provide some 

motivation for the more complex implementation actually produced.

The Ruby subset we use has the three basic gates, serial and parallel composition, 

inverse, identity and fork. The basic gates can ‘store’ information at their nodes: the type 

of the information is a polymorphic type parameter to ruby. The direction of flow is 

represented by the algebraic type direction.

> || Demonstration Toy NSI System

Shows a naive system that won't work. Motivates the more exotic 
interpretation

system actually used in real implementation.

> ruby * ::= And * | Or * | Not * I Ser [ruby *] | Par [ruby *] I
> Inv (ruby *) | Id I Fork num

> direction ::= F | B

It would be nice to make the data domain polymorphic, but this prevents a natural

definition for overriding when using the Hindley-Milner [Milner 78] polymorphic type

system. This is because overriding needs to have a type like where x is the type

of an interpretation. This requires all interpretations to be of the same type. Consider f \  

and /2  and an overriding expression/2  ® / i .  In the above scheme f \  and/2  will be 

monotypes because they are specialised to a particular task. In a strict polymorphic 

language like Miranda, this would require circumventing the type security rules. 

However, even if  we use a polymorphic base type for data objects, particular 

interpretations will have monotypes which will in general not be compatible. For 

example, one interpretation might work over logic values while another works over 

testability vectors. Such interpretations could not be unified by overriding.

The alleviate this problem, we have adopted the ‘universal type’ approach. All the 

types we need are subtypes of a larger type. Now, all data values have monotypes and 

overriding does not present a problem.

> data ::= Tuple [data] I H | L I Cont (num, num) I Sym [char]
> | AndSym data data I OrSym data data I NotSym data I Undefined
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Some useful functions are defined over logic values. Pattern matching is top down:

> lognot :: log ic  -> log ic
> lognot L = H
> lognot H = L

> logand :: lo g ic  -> log ic  -> log ic
> logand H H = H
> logand a b = L

> logor :: lo g ic  -> lo g ic  -> log ic
> logor L L = L
> logor a b = H

The function l i f t  is defined to make the definition of set valued functions easier. It lifts a

function that operates over one data value to a function that operates over a set of data

values by repeatedly applying the base function. The results of the individual 
computations are combined by set union. The standard Miranda function for transforming 

a list into a set by removing duplicates is called mkset.

> l i f t  f  d c [] = []
> l i f t  f  d c (x:xs)= mkset ( (f  d c x ) + + ( l i f t  f  d c x s ) )

When performing parallel composition of several circuits, the results of the constituent 

circuits have to be combined carefully so that all the correct set-values appear at the 

domain or range. For example, if  the output of some arithmetic circuits is {1,2}, {3}, 

{4,5} then their parallel composition produces as output the set {<1,3,4), 

<1,3,5),<2,3,4),<2,3,5)}. The following function combs performs this computation.

> combs ( [xs ] ) = [ [x] | x <- xs]
> combs (xs:ys) = [x:y | x <- xs ; y <- combs ys]

The standard interpretation is now defined. The basic gates are defined in a straight 

forward manner. The top level function is standard which takes as its input a direction, 

a circuit and set of input values at the domain or range. It returns the set values at the 

domain or range depending on the direction of the interpretation. To make the definition 

simpler, we use an auxiliary function standard' which takes similar input as standard 

expect a single input value is used rather than a set of values. The function standard' is 

then lifted over a set of values by using the auxilluary function l i f t .

> standard = l i f t  standard1

> standard1 F (Inv r) = standard' B r
> standard1 B ( Inv r) = standard' F r

> standard' F (Not v) x = [lognot x]
> standard' B (Not v) x = [lognot x]
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> s t a n d a r d 1 F (And v )  (T u p le  [a ,  b]) = [a  $ lo g a n d  b]
> s t a n d a r d '  B (And v )  H = [ T u p l e  [H , H ] ]
> s t a n d a r d 1 B (And v )  L
> = [ T u p l e  [L, L ] , T u p le  [L, H ] , T u p le  [H , L ] ]

> s t a n d a r d '  F (O r v )  ( T u p l e  [ a ,  b ] ) =  [a  $ l o g o r  b]
> s t a n d a r d '  B (O r v )  L = [ T u p l e  [L ,  L] ]
> s t a n d a r d '  B (O r v )  H
> = [ T u p l e  [L ,  H ] , T u p le  [H, L ] , T u p le  [H , H ] ]

Serial and parallel composition are given the following definitions. The first line states 

that the serial composition of a circuit with nothing is simply the same as computing the 

circuit by itself. This provides the base case for the recursive unfolding of serial 

composition shown on the following line. Parallel composition is defined by 

decomposing the input tuple and independently applying these parts to the constituent 

circuits of the parallel composition. We have to take every possible combination of 

outputs: this is computed by the function comb.

> standard' d (Ser [c]) x = standard' d c x
> standard' F (Ser (c:cs)) x = standard F (Ser cs) (standard' F c x)
> standard' B (Ser cs) x = standard B (Ser (init cs)) (standard' B (last

cs) x)
> standard' d (Par xs) (Tuple vs)
> = map (Tuple) (combs [standard' d x v | (x, v) <- zip2 xs vs])

The wiring primitives are defined as:

> s t a n d a r d '  d I d  x  = [x ]
> s t a n d a r d '  F (F o r k  n) x  = [ T u p l e  ( r e p  n x ) ]
> s t a n d a r d '  B (F o r k  n) ( T u p le  x s )
> = [h d  x s ] ,  i f  # (m kse t x s )  = 1 \ /  #xs  ~= n
> = [ ] ,  o t h e r w i s e

We define a new symbolic interpretation by overriding it with the standard interpretation.

> s y m b o l i c '  F (N o t  v )  x = [NotSym  x]
> s y m b o l i c '  F (And v )  (T u p le  [ a ,  b ] ) = [AndSym a b]
> s y m b o l i c '  F (O r v )  ( T u p le  [ a ,  b ] ) = [OrSym a b]
> s y m b o l i c '  d r  v  = [ U n d e f in e d ]
> s y m b o l i c l  = l i f t  s y m b o l i c '

> s y m b o l i c  d c = ( s y m b o l i c l  d c) $ o v e r r i d e  ( s t a n d a r d  d c)

Overriding is given the most natural definition:

> o v e r r i d e  f l  f 2  v
> =  r l ,  i f  r l  ~= [ U n d e f in e d ]
> = f 2  v ,  o t h e r w i s e
> w h e re
> r l  = f l  v

However, the following examples show that there is a problem with this interpretation:
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> nand = Ser [And 1, Not 2]

Miranda symbolic F (And 1) [(Tuple [Sym "a", Sym "b"])]
[AndSym (Sym "a") (Sym "b")]

Miranda symbolic F nand [(Tuple [Sym "a", Sym "b"])]
[H]

The standard interpretation works correctly, and the symbolic interpretation gives the 

correct answers when used with the basic gates or wiring primitives. However, when a 

higher order combining form is used, the computation locks into the standard 

interpretation.

We need to somehow remember what the base interpretation is. This has to be done 

through a parameter, making our interpretations higher order functions. We also have to 

extend our system to deal with block definitions and arithmetic operations as well as the 

remaining part of Ruby.

The next section introduces a more complex implementation for a non-standard 

interpretation system. Overriding is modelled by lists and list concatenation. The system 

also contains extensions to allow internal node values to be examined.

7 .6  The Core of the Interpretation System
The core of the interpretation system is implemented by two modules called ruby and 

standard. These modules are refered to in the include directives shown in the listing of 

the symbolic simulation interpretation shown in section 7.3.

The module ruby defines the abstract syntax tree for the core subset of Ruby that we 

have implemented. The module contains auxiliary functions for pretty printing and 

environment support. It also implements a polymorphic tuple type that represents the 

values that flow along wires.

The definition of the abstract syntax tree used for ruby is shown below.

> ruby ::
>
>
>
>
>
>
>
>
>

Block [char] [ruby] I
Ser [ruby] I
Par [ruby] I
Repeat num ruby I
Power ruby ruby ruby
Inv ruby I
Conj ruby ruby I
Id I
App I
Singleton I

Block eloboration.
Serial composition. 
Parallel composition. 
Repeated composition.
I| Repeated application. 

Inverse.
Conjugate.
Identity.
Tuple append.
Singleton.
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> 1 Project num num |
> I Map ruby |
> 1 Rev |
> 1 Swp |
> I Tri ruby |
> 1 Beside ruby ruby I
> I Below ruby ruby |
> I Row ruby |
> I Col ruby |
> 1 Zip |
> I Trn |
> I Halve |
> I Pair |
> I Fork num |
> 1 Restrict ruby num |
> 1 Loop ruby I
> I Delay |
> I Numeric num |
> 1 Plus ruby ruby |
> I Minus ruby ruby |
> 1 Multiply ruby ruby I
> I Divide ruby ruby I
> I Parameter string |
> I And tuple
> I Or tuple | Not tuple

Projection from tuple.
Map.
Reverse.
Vertical reflection.
Triangle 
Beside. 2 -> 2.
Below. 2 -> 2.
Row. 2 -> 2.
Col. 2 -> 2.
Zip.
Transpose.
Halve. 2n -> [n, n]
Pair. 2n -> [2,..2]
Multi-way fork.
Type restriction.
Feedback 
Delay component 
Numeric value 
Addition.
Subtraction.
Multiplication.
Division.
Parameter name.

I Vdd | Vcc I Comp2 tuple I I Node.

Another type ruby' is used to identify constructors of ruby for overriding.

> ruby1 ::= Ser1 | Par' | Repeat1 I Power' | Inv' | Conj' | Id1 | App' |
> Singleton' | Project' I Map' | Rev' | Swp' | Tri' I Beside' I
> Below' | Row' | Col' I Zip' | Trn' | Halve' I Pair' | Fork' |
> Restrict' I Numeric' I Loop' | Delay' I
> Plus' | Minus' | Divide' | And' | Or' | Not' I Comp2'

The type ruby' should not be confused with RUBY  as defined in chapter 5. RUBY  

corresponds to the Miranda type ruby. Rather confusingly, id' in ruby' is not the same 

as I d ’ in RUBY. The system keeps a list of language features which can be overriden. 

The type ruby' simply ennumerates references to the language features that can be 

changed.

The standard interpretation is defined in the module standard. This also contains 

definitions for implementing overriding. The main export from this module is the function 

standard which is used (often by currying) to build non-standard interpretations. The 

function standard is the implementation of the model presented in chapter 5 and 

corresponds to a non-standard interpretation builder. An example of its use can be seen in 

the listing of the symbolic simulation interpretation. The first argument of this function is 

an interpretation. The remaining arguments are the environment, the circuit description to 

be evaluated and the values on the domain of the circuit (or range when the circuit is 

interpreted backwards).
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An interpretation is implemented by a list of triples defined as follows:

> interp_type
> == [(ruby', tuple -> tuple -> tuple,
> tuple -> tuple -> tuple)]

Over-riding is implemented by list concatenation. When a meaning is sought for a 

constructor of ruby' , the list is searched from the beginning until a match is found. We 

have experimented with more elaborate representations for interpretation overriding (e.g. 

by using a data type that does not merge interpretations). However, these representations 

were discarded for the simple list concatenation method which provides us with all the 

power we need.

To find a meaning for some Ruby construct of type ruby' , the following function is 

used. It is called arity one because it is used to attribute meanings to those constructors 

of Ruby that make use of values at nodes. The first parameter is the environment and the 

second, tok, is the element of ruby' to be over-ridden. The next parameter, n, gives a 

unique label to the node. This function is used for the forward case only: the next 

parameter f f gives the standard forward defining function. The last parameter is the value 

on the domain, which will always be a set in our implementation.

> arity_one i tok n ff (Set xs)
> = set_union [setify (f1 n x) | x <- xs]
> where
> matches = [f | (r, f, b) <- i ; r = tok]
> f = hd matches
> f 1 = ff, if matches = []
> = f, otherwise
> arity_one i tok n f v
> = error ("arity_one case: " ++ showtok tok ++ " with " ++ show_tuple

The list of all possible matches is constructed by the comprehension on the fourth line. 

However, lazy evaluation ensures that only enough of the list is actually evaluated to give 

the first match. I f  the environment does not contain a meaning for the Ruby component 

tok, then the standard forward function f f is used.

The backwards case is similar.

> arity_one_inv i tok n bf (Set xs)
> = set_union [setify (f n x) | x <- xs]
> where
> matches = [b I (r, f, b) <- i ; r = tok]
> f = hd matches
> f 1 = bf, if matches = []
> = f, otherwise

Many Ruby constructs do not need to examine the values at nodes. These are defined
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using specialised versions of arity_one and arity_one_inv. These functions are 

useful because they automatically raise the arity of the forward and backward defining 

functions. This makes their definitions simpler since they don’t have to involve an unused 

parameter.

> arity_zero i tok ff (Set xs)
= arity_one i tok Undefined (raise ff) (Set xs)

> arity_zero_inv i tok bf (Set xs)
> = arity_one_inv i tok Undefined (raise bf) (Set xs)

> raise f n x = f x

An example of some functions that use the above functions are shown below.

> standard i env Id v = arity_zero i Id' id v
> standard i env (Inv Id) v = arity_zero_inv i Id1 id v
> standard i env (And n) v = arity_one i A n d 1 n (raise logand) v
> standard i env (Inv (And n)) v

= arity_one_inv i A n d 1 n (raise inv_logand) v

Identity is defined to use the standard Miranda identity function. This works at arity zero 

because the identity function does not need to examine the value at nodes. The AND gate 

is defined by using as the standard function the logical conjunction function logand 
which has its arity raised. The inverse is defined using the function inv_iogand which is 

defined to be the inverse of logand.

These kinds of definitions are repeated for every construct of Ruby i.e. every element 

of ruby' . The entire source definition for standard takes up a several pages. However, 

this provides the basic framework for our non-standard interpretation system which pays 

off great dividends when defining new analyses.

The module standard also contains definitions for set manipulation and a variation on 

the function standard that returns the values of internal nodes. It also contains a function 

for automatically labelling nodes and provides many test functions. The interpretation 

combining functions are also defined here.

One important interpretation combining function is cross which is used to combine 

the results of two interpretations. Some of the source code for this function is shown 

below:

> cross (And a) (And b) = And (Tuple [a, b])
> cross (Or a) (Or b) = Or (Tuple [a, b])
> cross (Not a) (Not b) = Not (Tuple [a, b])
> cross (Ser xs) (Ser ys) = Ser [cross x y | (x, y) <- zip2 xs ys]
> cross (Par xs) (Par ys) = Par [cross x y I (x, y) <- zip2 xs ys]
> cross (Beside a b) (Beside c d) = Beside (cross a c) (cross b d)
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When two interpretations are combined, the results at corresponding nodes are held in a 

pair (a tuple of 2 elements). This can be visualised by superimposing the results of two 

interpretations.

7 .7  Comparison with Ada
We believe the choice of a lazy functional implementation language is an important reason 

why our system has been built quickly and why new interpretations are easy to add. In 

this section, we discuss the impact of using a modem imperative language like Ada for 

the implementation. The author has implemented a small subset of the system in Ada, as 

well as a test pattern generation program (the D-algorithm presented in chapter 8).

One of the key aspects of non-standard interpretation is the ability to produce a generic 

scheme that captures hardware analyses at a useful level of abstraction. In our system, 

this is done by overloading the standard interpretation. The use of a powerful and 

carefully chosen representation for interpretations has greatly simplified our 

implementation. One important aspect of our system is that it contains functions as first 

class objects. Non-standard interpretation is then implemented by overriding, which can 

be represented naturally by functions that manipulate data structures that also contain 

functions.

Ada does not treat functions and procedures as first class objects. Procedures and 

functions can be passed as parameters but they can not be held in data structures. Thus, 

whenever a new interpretation has to be added, the core of the interpretation system has to 

be modified for the extra functions to be introduced. Our system does not require the 

interpretation core files to be altered in this way. We simply write a new module and link 

it to the existing system.

Another important feature of functional languages is polymorphism. Non-standard 

interpretations are defined by using Miranda functions that operate over non-standard 

values. These non-standard values can be of any type. Our interpretation is constructed so 

that wires can carry any type of information and so that the defining functions for nodes 

can operate over tuples of any type. This means that a universal type encompassing all 

likely data types does not need to be constructed.

Ada does not have a polymorphic type system. It does support another system for 

generalising declarative units like procedures and packages called the generic mechanism 

which works by instantiation. However, even using a generic system, which is less
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powerful than polymorphism, we still have to alter the core code of the interpretation 

system to explicitly declare all new non-standard values. There is no need to do this in 

our interpretation system.

Although the analysis of sequential circuits has not been presented in this thesis, our 

system can simulate sequential circuits that contain feedback loops and delay elements. 

This is done by changing the standard values to be streams of logic values. The 

definitions of the basic gates are then lifted to operate over streams. Lazy evaluation 

allows the stream model to be implemented in a straightforward manner.

Ada does not allow for the expression of infinite data objects, and consequently does 

not support lazy evaluation. Thus, streams and stream operations have to be implemented 

in a less direct manner compared with lazy lists in Miranda. One could construct a stream 

data type using Ada’s concurrent tasking primitives, but this would be overkill and 

inelegant as well as being difficult to program.

O f course, well designed functional languages like Miranda have many other 

advantages over imperative languages like Ada. The points raised above emphasise three 

of the most important reasons why it was wise to use a lazy functional language for our 

implementation.

7 .8  Summary
An actual implementation of a non-standard interpretation system has been shown. This is 

a large subset of Ruby which supports a rich set of combining forms. As the source code 

for the symbolic simulator shows, non-standard interpretation allows new analysers to be 

built by expending very little extra effort once the standard interpretation exists.

The system has been extensively tested using small to medium sized circuits. We 

believe that the task of formally proving the correctness of the system is greatly eased by 

the non-standard interpretation discipline. However, this is still a long and tedious task 

and is outside the scope of this thesis.

A graphical interface has been built for a large part of the system. This greatly 

improves the useability of the system. We note that more lines of code in the system are 

used to implement the user interface than anything else. Perhaps this suggests that we 

should be trying to build rapid prototyping tools for interfaces too.

The choice of a lazy functional language for the implementation has been a good one.
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Higher order functions, polymorphism and lazy evaluation are important features of 

Miranda which have allowed our system to be represented elegantly. These features also 

allow new interpretations to be added easily. These features are not found in modem 

imperative languages like Ada. Such languages would make our source code more more 

cumbersome and new interpretations would be more difficult to add.



Chapter 8 

Test Pattern Generation

8.1 In troduction

In this chapter a non-standard interpretation implementation of the D-Algorithm for 
test pattern generation is presented. First, the notion of a test pattern is formally 
defined. The D-Algorithm is then introduced using one of the many notations 

employed by the originator [Roth 66]. The description is then simplified by defining 
a partial order and using a clearer mathematical notation.

Although the D-Algorithm has much more complicated information flow than 

any previous interpretation implemented it is shown that it may be easily imple­
mented without explicitly specifying backtracking. The algorithm can be decom­
posed into three phases which are applied in sequence. In each phase, the algorithm 

seeks a path in the circuit satisfying a given property. There are often many possible 

paths- the original implementation uses backtracking to find a suitable path. The 

non-standard interpretation implementation of the D-Algorithm realises each of the 

three phases with a unidirectional interpretation with simple data flow i.e. left to 

right in forward case and right to left in the backward case.
Information about all possible paths is propagated through each unidirectional 

interpretation. This produces a list of all possible paths to the output of each 

phase. However, just one path is required, so only the head of the list needs to be 

evaluated. Lazy evaluation ensures that the tail of the list is not constructed so this 

implementation does no more work than the backtracking version.
A modification of the backward phase of the D-Algorithm is used to check that 

two circuits exhibit the same behaviour. The technique is quite efficient when the 

two circuits under comparison are nearly identical. This is often the case when one

142
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design is modified to incorporate some “engineering change” . An example of such 

a change is a post-hoc measure to increase testability.
To help describe the D-Algorithm, some terminology is introduced to describe 

faults and values on wires.

8.2 Form al D escrip tion  o f a Test P attern

8.2.1 Terminology

W ires and faults

The wires or lines in circuits will be denoted by lower case letters e.g. a, 6, and 

c. It is convenient to assume that we have available a set containing all the lines 

available. Let L IN E S  be such a type, so if a is a line then a £ L IN E S .

A line may be stuck-at-0 or stuck-at-1. The shorthand a/0 meaning a stuck-at-0 

will be used in this chapter (similarly a / 1 for a stuck-at-1). The value on a line is 

denoted by the set logic which contains {0,1} i.e. {0,1} C logic.

Tuples

We are only interested in analysing combinational circuits with the D-Algorithm. 
To simplify the presentation, we model a circuit as a relation between tuples rather 
than using sequences. In particular, a circuit is modeled by a relation from an 

n-tuple (ai, a2 , ..., an) to a logic value. Each element in the tuple is of type logic. 

Multiple output circuits may be modeled by many single output circuits. If p is a 

tuple, then pi is the i th element of the tuple p. For example, if p = (x,y,z)  then 

P2 =  y-

Let ALL(n)  be the set of all tuples of size n. For example,

ALL(2) =  {(0,0),(0,1),(1,0),(1,1)}

The set ALL(n)  contains 2n elements.
All tuples in this chapter are homogenous i.e. all the elements are of the same 

type logic.

G ates

As before we model logic gates as being relations between wires [Sheeran 90]. For 
an n input circuit, the behavioural relation is between the sets ALL(n)  and logic.
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A behavioural relation essentially represents the truth table of the gate behaviour. 
In the case of the A N D  gate this relation may be represented by a set of pairs. The 

first element of the pair denotes the domain (a 2-tuple in the case of an A N D  gate) 
and the second element of the pair denotes the range (a logic value). Thus, A N D  

is considered as being the following relation:

A N D  : (logic, logic) <-> logic

A N D  =  {((0 ,0 ), 1), ( (0 ,1 ),0 ),((1 ,0 ),0 ), ((1 ,1 ,), 1)}

Composite circuits may be constructed by performing relational composition with 

existing relations.
It is convenient to describe the operation of an A N D  gate by a function from its 

inputs to its output. It is also useful to be able to describe the function which takes 
a value for the output of the A N D  gate and returns the set of all possible input 
values that produce this output. We shall place an arrow over the name of a relation 

to extract the forward and backward functions. A left to right arrow extracts the 

forward function, whilst a right to left arrow extracts the backward function. For a 

relation R , these two operations are defined as:

R =  {y : xRy]

R =  {x : xRy}

Now A N D  represents the forward function for simulating the A N D  gate and 
let A N D  represent the behaviour for running the circuit backwards. These two 

functions have the following types and behaviour:

AND: (logic, logic) —> [ logic]

A N D  (x,y) =  [z : (x ,y )ANDz]

AND: logic —> {(logic, logic)}

A N D  z =  {(:r,y) : (x ,y )ANDz]

It is useful to have some way of obtaining the number of inputs a gate or circuit 
has. Let INPUTS(G)  be the size of the tuple that gate G is defined over. For 
example,

IN P U T S (A N D )  = 2

8.2.2 Specification of a test pattern

If G is the behaviour of the working circuit, then let Gj  describe the behaviour of 
G under the influence of fault / .  To expose the fault /  we have to find some input
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for which G produces a different output from Gj. To be precise, we require some p 

such that G p ^  Gj  p (alternatively, G P ®  Gf p, where ® is the usual exclusive-or 
operator).

One way of finding such a p is to build the truth tables for the functions G and 

Gf and compare the output columns. Selecting only the rows that differ in their 
outputs gives suitable values for p. Let TEST(G, f )  be the set of all values p such 

that G P ^ G j  p:

TESTS(G, f )  =  { p : P £ ALL{ INPUTS{G)) ,  G p ^ G j p ]  (8.1)

A tuple p is a test pattern for circuit G under fault /  if p € TESTS(G,  / ) .  If 
TEST(G, f )  =  {} then the fault /  is not detectable because G =  Gf. This is 

usually because the fault occurs in a redundant part of the circuit G. Redundancy 

is often deliberately built into circuits to overcome problems like hazards, but in 

turn it causes some faults to be undetectable.
A literal transcription of the above comprehension requires building ALL(n)  for 

both functions yielding an algorithm of complexity 0(2n+1), where n =  INPUTS(G)  

This is an impractical implementation for all but the smallest circuits. A much more 

efficient method is required for finding a member of this set.

8.3 T he D -A lgorithm

8.3.1 Introduction to the D-Algorithm

The D-Algorithm [Roth 66] is a test pattern generation algorithm which takes as 

input a combinational circuit description and a fault and produces as output a 

test pattern to expose the fault. This section introduces the D-Algorithm and its 

associated calculus.
The single stuck-at fault model is employed in this paper to describe the D- 

Algorithm, although this technique also works with other models. This model rep­
resents failure by assuming that exactly one wire in the circuit maintains the same 

logic value, irrespective of what pattern is applied to the primary inputs.
We have shown that a straightforward implementation of the specification of a 

test pattern requires an algorithm of exponential complexity. The D-Algorithm is 

introduced with an explanation of how it seeks a test pattern.
The original paper on the D-Algorithm presented many tables involving logic 

gates that were hand constructed. We show how to compute these tables from first
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Figure 8.1: An AN D  gate.

X y 2

0 0 0

0 l 0

1 0 0

1 l 1

Table 8.1: A N D  gate behaviour 

principles, thus easily extending them to any logic gate.

8.3.2 Singular Cover

It is necessary to describe what input patterns to a gate will give a particular output 
pattern. A set containing this information is called a singular cover. The singular 
cover for an A N D  gate with inputs x and y and with output 2  is shown in Table 

8 .2 .

This table contains the following information. To set the output z of the A N D  

gate to 1, both the inputs have to be set to 1. The output of this gate may be set 
to 0 by setting £ to 0 and y to any value, or by setting y to 0 and x to any value. 
The letter X  denotes an arbitrary “don’t care” value.

This singular cover is really an abbreviated form of the truth table. It is designed 

to be used in the opposite direction from the truth table i.e. given an output, a set 
of inputs that produces this output is required. The singular cover is in two parts: 
one for the patterns that produce a 0 output and the other for the patterns that 
produce a 1 output (hence the horizontal dividing line in the table).

The expanded form of the singular cover for a gate G which takes as input an

x y Z

1 1 i

0 X 0
X 0 0

Table 8.2: A N D  gate singular cover.
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n-tuple may be represented as the following pair of sets of tuples:

COVER(G) =  ({p : p € ALL(n); G P =  0}, {p : p € ALL(n); G P =  1})

The first element is the set of all input patterns that produce output 0 and the 

second element is the set of all input patterns that produce output 1. To build 

this cover would require an operation of complexity 0(2n) which is too expensive to 

compute and store for realistic circuits.
In order to construct the smaller and more convenient singular cover from the 

cover, the X  value must be added to the domain of logic values. Later, two other 
values will be required. Let logic now be the set {0,1, X, D, D}.

The singular cover may be built by the following technique. For each set C in 

COVER(G)  perform the following operation. If two tuples x,y  6 C can be found 

in which there is some position where they differ i.e. X{ =  0 and y, =  1 then remove 
these two tuples from the set and replace them with an element like x or y but with 

X  as its i th element. This procedure is repeated until there are no such differences. 
This will occur when there is no cubes which differ in only one position to an other 
cube. Note that an X  does not combine with just any member of logic to return 

another X.  Only differences between 0 and 1 are considered. At the end of this 

procedure the set will contain the condensed singular cover. This allows tables of 
sigular cover to be computed automatically for any combinational component.

8.3.3 D-cubes

Assume that the A N D  gate in Table 8.2 is suspected of having a fault at line x. This 

requires the observation of line .t which needs fault information to be propagated to 

an observable output. The first step is to make the output z sensitive to the value 

on line x. For the fault information on line x to be propagated to line z requires 

input line y to be set to 1 so that x A I =  x = z i.e. z assumes the value at x.

By setting y =  1 we are ensuring that lines x and z have the same logic value. 
If the faulty gate was a N A N D  gate, then by setting y =  1, we are ensuring the 

output z always has the opposite value from from the input x. This relationship 

between lines is represented symbolically by D  and D. The symbols D and D may 

assume the values 0 or 1. All the Ds in a given pattern have the same value and 

similarly all the Ds. If both Ds and Ds occur in the pattern, then the elements 

containing a D  have a logic value opposite to those elements containing a D. The 

D  notation is used to relate wires which always have opposite logic values.



148

A D-cube is a vector or string of values of type logic. D-cubes are used to 

represent fault propagation information by relating the values at various nodes in 

the circuit. These cubes are called propagation cubes because they show how to 

propagate fault information from one input line to an output line. In circuits with 
reconvergent fanout, it is possible to have more than one input carrying fault infor­
mation. This case is dealt with later.

Table 8.3(a) shows 2 D-cubes for an A N D  gate. The first line explains how 

to make the output sensitive to the value on line x i.e. set y =  1 so z =  x. The 

second line explains how to make the output sensitive to the value on line y i.e. set 
x =  1 so z =  y. Table 8.4 contains the same information for a N A N D  gate. Here, 
the value being propagated from an input line to the output line is negated: this 
relationship is expressed by assigning a D to the input line and a D to the output 
line. Alternatively, D could be assigned to the input line and D to the output line: 
the important fact is that these lines have opposite logic values in a working circuit

Table 8.3(b) shows the propagation D-cubes for an OR gate. If all the fault 
sensitive values in a singular cover were “flipped” i.e. Ds changed to Ds and vice 

versa, then the cover would still represent the same partial function. The choice of 
D  in Table 8.3 is arbitrary: D could have been used instead.

For a circuit containing n wires, the D-Algorithm uses an n tuple to describe 

the assignments to these wires. Instead of writing the tuple in the usual (uj,. . . ,  vn) 

notation, where each coordinate i represents the assignment at wire 1, an abbrevi­
ated form is used. The abbreviation involves omitting some or all of the information 

about coordinates that have an X  value- instead a list of assignments to coordinates 

is constructed. For example,
Dx\ yDz

represents one of the propagation D-cubes for the A N D  gate in Figure 8.1. The 

assignments are superscripted with the coordinate. If a is a cube then at is the value 

at coordinate i. If this is not explicitly mentioned in the cube then the value at wire 

i is understood to be A". Cubes are essentially an abbreviated form of tuples.
For this A N D  gate, the cube Dxl yDz means that if y =  1 then the value of the 

output z will always be the same as the value on the input x. For the N A N D  gate, 
the cube D xl yD z means that if y =  1 then the value of the output z will always be 

different from the value on the input x.

The D symbols differ from the X  symbol because all the Ds in a given cube 

must have the same value, whereas the Xs are independent of each other. If two
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x y_

D 1 
1 D

D

D

(a)

y zX

D 0 D

D D D

D D D

(b)
Table 8.3: Propagation D-cubes for (a) A N D  and (b) OR gates.

x y z

D 1 
1 D

D

D

Table 8.4: Primitive D-cubes for a N A N D  gate.

coordinates i and j  of some cube p have been assigned the same fault sensitive value 

then in a working circuit the logic value present at these two coordinates is always 

the same. If the circuit has input lines p\ .. .pn, then no matter what inputs are 

applied pi =  pj is always true in working circuit. A similar situation holds for when 

two coordinates are both D.

This implication does not follow if pi =  pj =  X.  For example, the cube 

1 aX bD cDd may represent a member of either { l a060cl d, l al*Ocl d} (varying X  with 

D =  0) or { l a06l c0d, l al 6l c0d} (varying X  with D  =  1). Notice that in each set 
that D  always has the opposite value of D.

8.3.4 Embryonic Tests

A primitive cube for a gate contains embryonic tests. These are tests only for the 

lines on the input and output of the gate concerned and not necessarily test patterns 

to be applied to the primary inputs. The primitive cube DX\ VD Z for the A N D  gate 

from Table 8.3 contains two embryonic tests. For the first test, let D =  0 i.e. the 

output should be 0 in a working circuit. This is not the case if x / \  or z/ 1 so the 

signal 010 is a test for x / \  and z/ l .  The other embryonic test from this cube may 

be obtained by setting D =  1. This yields the test 111 for the faults x/0 and z/ 0 by 

a similar argument. The other primitive cube for the A N D  gate 1 xD yDz also yields 

two tests: if D =  0 this gives the signal 100 which tests for y / l  and if D =  1 then 

this yields 111 which tests for y/0. Thus to test for all stuck it faults, it is necessary 

to apply the signals 010, 100 and 111.
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OR

AND

AND

Figure 8.2: Composite circuit

8.3.5 Combining Embryonic Tests

Figure 8.2 on page 150 shows a simple three gate circuit with the singular cover 
and D-cubes shown in Table 8.5. This table is now used to find a test which will 
make the output line 6 sensitive to the value at input line 1.

First, input line 1 is assigned the value D represented by D l . Let this information 

be stored in a testcube i.e. tc° = D 1. Required is a cube which has a D or D value 

in coordinates 1 and 4 i.e. line 4 is to be made sensitive to line 1. If line 4 can be 

sensitised then the process can be repeated to find a sensitive path past the gates 

that have line 4 as an input. If line 4 cannot be sensitised then there are no other 
possible paths to the output and test pattern generation fails.

Examining the D-cubes for an A N D  only one cube satisfies these requirements: 
D 112D 4. Alternatively, using the table of D-cubes (table 8.5), we see only one 

column which has a D value in rows 1 and 4. This cube contains a test for line 1 in 

terms of line 4. If line 1 is stuck-at-0 then setting D =  1 gives the test 111. If line 

1 is stuck-at-1 then setting D =  0 gives the test 010. Now, tc° has been combined 

with D 1l 2D 4 to yield another test cube tc1 =  D 1l 2D 4.

Line 4 now carries fault information which has to be propagated to the output 
line 6. In order to do this, a D-cube which has D values in coordinates 4 and 6 is 

required. There are 2 such values: D405D6 and D 4D 5D6. Choosing the first cube 

and combining it with tc1 yields another test cube tc2 =  D 1! 2 D 405 D6.

The above process may be represented symbolically as follows. When two cubes 

are “combined” what is actually happening is an intersection process which checks 

that no coordinate in the two cubes has an inconsistent value. For example, if 

one cube contained the value l 4 and another contained the value 04 then these two
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cubes may not be combined or intersected. This is because the first requires line 4 

to be set to 0 and the second also requires line 4 to be set 1 in order to propagate 

fault information. Since this condition cannot be meet, no fault information passes 
through the gate concerned.

Here is a symbolic representation of the example given above:

tc° =  D 1

tc1 =  tc° D D 1l 2D 4 = D 1 D D 112D4 =  D H 2D4

tc2 =  tc1 0 D405D6 = D l l 2D4 D D405D6 =  D 1l 2D405D6

The cubes tc°,tcl ,tc2 form a connected chain from a primary input to a primary 
output.

The cube tc2 contains possible tests for lines 1 and 4 in terms of line 6. This 

cube has the following interpretation. If line 2 has signal 1 and line 5 has signal 0 
then lines 1, 4 and 6 will have the same value. This cube does not say anything 

about how (or if) lines 2 and 5 may be set to these values.

Most cubes require a constant value to be applied to the input line of the gate 

propagating fault information. The intersections above have not taken account of 
how (or even if) these nodes can be set appropriately. This requires another step
called the consistency operation or justification to be applied to each possible test
pattern produced by the intersection process. Working from a sensitive output, the 

singular cover is used to justify the fixed logic node assignments made by the forward 

intersection process. If a primary output is reached, then the current possible test is 

a proper test which detects the fault concerned when it along with any other input 
assignments required by the justification process are applied to the appropriate 

primary inputs. Otherwise, this possible test is discarded.

8.3.6 Intersecting Cubes

The intersection of cubes in general is now considered. Let a and b be cubes and 

define the intersection of these cubes as follows. If for some coordinate i, a, =  1 
and 6, =  0 or =  0 and 6, = 1 then define the result of the intersection to be the 

empty cube </>. Such an intersection is called a (/(-intersection. This happens when 

the cubes being combined are trying to assign opposite fixed logic values to line i 

i.e. contain inconsistent information. If there are no (/(-intersections then use the



1 2 3 4 5 6 Notes
1 1 1 singular cover for AND\
0 0

0 0
0 0 singular cover for A N D 2

1 1 1
0 0

1 1 singular cover for 0R\
1 1

0 0 0
D 1 D D-cubes for AND\
1 D D

D 1 D D-cubes for A N D 2

1 D D
D D 0 D D-cubes for 0R\

0 D D
D D D

Table 8.5: Singular Cover and primitive D-Cube
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nan cl

nand

nand

Figure 8.3: Reconvergent Fanout

following rules:
o n o  =  o n x  =  i n o  =  o 

i n i  =  i =  i n x  =  i n i  =  i 

x n x  = x
X  H D  =  D D K  =  D 

X  H D  = D H X  =  D 
D n D = // 
D n D = // 
D D D = d d d = \

The first two lines deal with the case where a fixed value is combined with an 

uncommited value X.  The fixed value simply dominates the uncommited value. 
The third line deals with the trivial case where two uncomitted values are combined 

to give an uncomitted value. The fourth and fifth lines show that D and D values 

also dominate X  values.
Intersections between fault sensitive values (D and D)  occur in circuits with 

reconvergent fanout. An example of such a circuit is shown in Figure 8.3. An 

intersection between two fault sensitive values of the same polarity (i.e. both D  or 
both D ) is called a /z-intersection. Intersections between fault sensitive values of 
opposite polarity are called A-intersections.

If (.i and A intersections are generated between the components of the cubes, then 

the intersection of these cubes is not defined. This corresponds to one cube saying 

that lines i and j  must always have the same value whilst the other cube is saying 

that i and j  must always have opposite values. It is impossible to satisfy both of 
these assertions simultaneously. An example of such an intersection is:

P ' l ^ n D ' i 2/)3 = A*iV

Since both A and fi appear in the result, this intersection is not defined. If no A 

intersections take place then it is safe to use the following rules for intersecting cubes
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a and b:
D H D  = D 
D D D  = D 

fl i .ai Obi =  A

The third line ensures that there are no A terms arising from the combination of 
the two cubes. This corresponds to the case where for each coordinate i in one cube 

which is D or X), the corresponding coordinate in the other cube is either X  or the 
same. An example of such an intersection is:

D ' l 2! ?  n D 'X 2~B3 =  Dl \2D3

If no A intersections take place then the // intersections may be resolved by 

flipping all the D and D values in the second cube and then reintersecting the 

result with the first cube. This will effectively transform the fi intersections to A 
intersections. An example of this case is:

D ' l 2D3 n D l l 2D3 =  D ' l 2!)3 n D 1!2! )3 =  D'12D3

This above intersections are sensible because both cubes are conveying consistent 
information: the first says that line 1 and line 3 always have the same value by 

assigning the same value to both lines (D in this case). The second also states that 
lines 1 and 3 always have the same value (this time by using the symbol D). By 

flipping the D and D values in the second cube, we do not alter its information 

content, but it does now becomes consistent with the first cube. For this method 
to work it must be established that no A intersections take place, since flipping a A 

result at 6, makes it immediately inconsistent with the value at at.
Intersections of cubes are formed until a primary output is reached or the in­

tersection yields an empty cube. If a primary output has been reached then a 

possible sensitive path has been found. The forward propagation phase (called D- 
drive) makes assumptions about the input values of gates that propagate the fault 
information. For example, tc2 above assumes that line 5 can be set to 0 in order 
to propagate the fault sensitive value at line 4 past the OR gate to line 6. All of 
these assumptions have to be justified by backward simulation. This part of the D- 
Algorithm is called the consistency phase. It may not be possible to set a particular 
line to the desired value, or the assumptions made may be mutually inconsistent.

If the result of intersecting two cubes fails, then the algorithm backtracks to the 

last fork and tries to find a different sensitive path. If there are no remaining paths 

then the fault under consideration is not detectable.
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8.3.7 The Consistency Phase

The assumptions made in the D-drive phase of the algorithm are justified in the 

consistency phase of the algorithm. The singular covers are used to find a connected 
chain from a fault sensitive output to the primary inputs. This is done by a backward 

simulation of the circuit. Again, there may be several possible paths from a sensitive 

primary output to the primary inputs, and only some (or none) will be paths that 
are consistent with the assignments made in the D-drive phase. The algorithm uses 

a backtracking procedure to find a possible path.
In the example circuit there is only one possible sensitive path found by the 

D-drive phase, namely: tc2 =  D 112D4Q5D6. This makes the assumption that line
5 can be set to 0. This assumption is checked by the consistency phase by using 

the singular cover shown in Table 8.5. Required is a cube that gives information 
about what the inputs to the bottom A N D  gate must be to secure a value of 0 at 
the output (line 5) of the gate.

There are three cubes that have line 5 set to zero:

A W  
y 2o3o5 

040506

The last one contains no information about the input lines of the bottom A N D  gate
i.e. lines 2 and 3, so it is discarded. The first cube is checked to see if it contains 

information consistent with the assignments made during the D-drive process by 

intersecting it with tc2:

A 30205 fl D l l 2D405D6 = Dl<t>2D4Q5D6 =  <f>

This intersection is empty i.e. inconsistent, so the cube is Â 10205 discarded. Inter­
secting the second cube yields:

a 2o3o5 n d ' i 2d 4o5d 6 = d 1i 2o3d 4o5d 6

Thus, D l 1203D 405 D6 is a complete test cube for stuck-at-0 and stuck-at-1 faults 

at line 1. To test for line 1 stuck at 0, the pattern D^O3 is used: in a working 

circuit the output should be 1 (the cube states that in a working circuit lines 1 and
6 always have the same value if line 2 is 1 and line 3 is 0). Similarly, to test for line 

1 stuck at 1, the pattern 011203 is used: if the output is 0 the circuit is working.
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8.3.8 Possible Adaptions to the D-Algorithm

The D-Algorithm stops when it finds one possible connected D-chain from the site of 
the fault to the primary outputs and one possible path that justifies the assignments 

made in the D-drive phase. There may be more than one possible path or set of 
assignments that sensitise the site of the fault.

The algorithm has already been modified by others to take into account several 
heuristics. For example, during the backwards phase when there is more than one 

possible route to the primary inputs, the algorithm tries the shortest paths first.
One a test pattern has been generated, it may be run through the deductive fault 

simulator interpretation to discover all the other faults that this pattern exposes.
Often, more than one pattern will expose a given fault. However, some of these 

patterns will expose more additional faults than others. It is desirable to find the 

pattern which exposes the most faults. This can be accomplished by adapting the D- 
Algorithm to try all possible paths in order to construct all the possible test patterns 

for a given fault. Then, each of these patterns is passed through a deductive fault 
simulator to discover which is the “best” pattern. This will usually lead to a smaller 
set of test patterns for a complete circuit, but is a very expensive operation to 

perform. However, for a production design, testing time is a very important factor 
in the cost of each unit, so the extra one-off analysis time may be worthwhile if the 

testing time is reduced by applying a smaller set of test patterns.

8.4 R e-expressing  D -In tersection

The intersection process is the most important part of the D-Algorithm. Various 

notations have been employed by Roth to describe D-intersection (fl in the original 
paper [Roth 66] and I  since then [Roth 80]).

The notation a fl b was used to appeal to the notion that the result of this 

operation somehow contains all of the information in cubes a and 6 and nothing 

else, or is undefined if the information in a is inconsistent with the information in 

6. Furthermore, some cubes contain more information than others. Roth says that 
cube a D-contains another cube b if it is possible to obtain cube b from a by replacing 

the X  values in a by suitable fixed logic values. This relationship is also expressed 

in set notation as a D c in the original literature. This notation was later replaced 

by the notion of faces and cofaces.
It is possible to define a partial order over cubes a and b using the above con-
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0 1 D D

_L

Figure 8.4: Partial order for assignment values.

tainment property. By constructing a suitable domain, the intersection of two cubes 

corresponds to finding the least upper bound of the two cubes a U 6.
This notation is much more natural than that used by Roth. Firstly, the analogy 

with the use of U and C in domain theory is strong.
In domain theory, a U b denotes the value, if it exists, which contains all the 

information in a and all the information in b and nothing else. Such a value does 

not always exists if a and b are inconsistent with each other. However, least upper 
bounds of inconsistent objects do not exist, whereas the union of a set of two objects 

returns a set with inconsistent elements. The use of least upper bound seems to be 

a much more apt notation which captures more accurately what happens when two 

cubes are intersected.
In domain theory, the expression a C b means that b contains at least as much 

information as a. This is a similar concept to one cube “containing” another. The 

symbol X  will now be replaced by ±  to signify that there is no information about 
what value is assigned to a wire. For example, 02D3_L5 Q 02D315 may be constructed 

by defining a partial order over the individual elements of the cubes.
Consider the following partial order for the assignment values:

IC O  

1 C 1 
i  C D  

_L c  X)

This is like the Bool domain with two fault sensitive elements added. This 

partial order is shown pictorially in the lattice in Figure 8.4.
The partial order over cubes may be naturally defined as follows. For any two n 

input cubes a and b:

a C b =def c where Vz : 0 < i < n : c, =  a, U 6,
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£•1010 £>1011
\  /
£•1011

/  \
£11X11 £110X1

Figure 8.5: Part of a partial order for cubes.

If the least upper bound of any of the elements does not exist, then the least upper 
bound of the two cubes does not exist either.

Part of the lattice containing the cubes Z)1_L1± and D10±_L is shown in Figure 

8.5. The coordinates for each assignment have been omitted: the cubes are to be 

combined pairwise. All the cubes above Z)1_L1_L and Z)10_LJ_ are consistent. It is 

possible to obtain Z)1010 from D1J_1_L be replacing both _L values by 0. However, 
only one cube ,Z)101_L, contains the information in the cubes D1_L1_L and Z)10_L_L. 

The other two cubes contain information about the value of the fifth element which 

was not present in the original cubes. In the lattice, these two cubes are upper 
bounds for the bottom cubes, but D101A. is the least upper bound.

£>1_L1_L U D10LL =  D101 _L

If two cubes are not consistent, then the least upper bound does not exist.
Unfortunately, there is a case where there is no least upper bound of two cubes 

but there are bounds which contain useful values. This occurs when A intersec­
tions take place but no / 1 intersections occur. Consider the result of combining the 

following cubes:

D ' l 2D3 U d ' i 2D3

The least upper bound does not exist, because D U D does not exist. However, 
D 'V D  and £> 12£)3 are two sensible results. They are two upper bounds, but 
neither of them is a least upper bound. This situation is shown in Figure 8.6.

The cubes D 112D 3 and D 1\ 2D3 really represent the same information. By flip­
ping the fault sensitive values of one cube we obtain the other. We are unable to 

detect this because the symbols D and D appear in different contexts in the two 

cubes. One solution is to generate different names for fault sensitive values for each 

cube. If a, 6,. ..  are names for fault sensitive values, then our domain is still flat i.e. 
I C q  where a is a fixed logic value or a sensitive value and there is no relationship 

between the other values.
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D ' l 2D 3 D l l 2D 3

D H 2D 3 D 1 J-2D 3

Figure 8.6: No least upper bound.

To express the fact that one sensitive value is always the opposite of another, we 

introduce a function over this domain for “negation”, denoted by an overbar. This 
function is defined as:

T = _L 

0 =  1 
1 =  0

The result of applying this function to a fault sensitive value a is a. Thus, the two 

cubes above could be represented by a} \2a3 and 611263. To compute the least upper 
bound of these cubes, we have to find solutions to a U b and a U b. The possible 

values for a and b are drawn from the set 0, 1. Possible substitutions for a and b 

can be found by solving the equations:

a = b 

b — a

The solution set is {(a =  1, 6 = 0), (a =  0, b = 1)}. Using the first solution in the 

set, one upper bound may now be found:

a1! 2 a3 U 611263 = {a U b y i 2(b U a)3 

a U 6 = l l _ l l = a  

6l_la =  0U0 = a 

a ' l 2a3 U b ' \2b3 =  a H 2a3

The other solutions may be constructed in a similar manner.
This section has described a structure that can be used to descirbe fault sen- 

sistive information. The structure allows the rules for combining fault sensistive 

information to be cast using well known mathematical notation. This results in a 

better understanding of the rules and gives a clearer idea ofhow these operations 

can be implemented.
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8.5 Im plem enting th e D -A lgorithm

8.5.1 Introduction

The D-Algorithm is implemented in three stages. Each stage is coded as a non­
standard interpretation and the stages are combined to produce the complete D- 
Algorithm. The first stage computes a list of possible test patterns that might 
expose the given fault. The next stage checks if each of these patterns is capable 

of driving fault information to an observable output, making certain assumptions 

on the way. For each successful pattern, the consistency phase checks to see if 
the assumptions made during the previous stage can be satisfied, yielding true test 
patterns.

To demonstrate the implementation, we shall use the circuit shown in figure 8.2.
The Ruby description for this is submitted to our system in the file ’ch8. ruby’:

Chapter 8 te s t  c i r c u i t .

> t e s t c i r  = [ id ,  [ s p l i t ,  id ] ]  ; reorg ; [and, and] ; or ;;

> reorg  = [ id ,  lsh ] ; rsh ;;

The output below shows how the circuit is simulated and annotated. The test file 

simulates the circuit for input < L, < i / ,  L >> . It then labels the circuits, followed 

by an annotated circuit graph.

> IMPORT prelude ;;

> IMPORT ch8 ;;

> STANDARD <L, <H, L>> t e s t c i r  ;;

> LABEL <L, <L, H>> t e s t c i r  ;;

> ANNOTATE <L, <H, L>> t e s t c i r  ;;

The output produced is:

1) Standard: {<L,<H ,L>>} t e s t c i r  {L }

2) LabelSyn: {<L,<L,H>>} t e s t c ir

[ id ,  [ fo rk  2, i d ] ] ;  [ id ,  id  \V /  id ] ;  id  <-> id ; [and#l, and#2]; or#3

3) Annotate: {<L,<H ,L>>} t e s t c ir

[ id ,  [ fo rk  2, i d ] ] ;  [ id ,  id  \V /  id ] ;  id  <-> id ; [and#l < {L}> ,

and#2 <{L}>] ; or#3 <{L}>
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Parse OK.

R esults logged in  ch8 .log

8.5.2 Sensitising the Faulty Node

The first step of the D-Algorithm involves finding an input combination to set the 

faulty node to a sensitive value. For example, if node i is stuck-at-0, then an input 
combination that sets this node to 1 is sought. This has been implemented as a 

simple backward interpretation. We start off with a circuit which has every internal 
node set to X  except the faulty node, which is set to the opposite value to what it 
is stuck-at. For example, to test for node 6 stuck-at-0, node 6 is assigned the value 
1.

Setting the value of a node to a particular value is an operation which can 

be implemented simply as a non-standard interpretation in either direction. For 
simplicity, we consider a circuit graph which has already been decorated by labels 

which we will parse in the forward direction. The method involves propagating a 

pair. The first element contains a function which applied to a node number will 
return true or false depending on whether this node has to be updated or not. The 

second element contains the update value. To initialise all the nodes to X  we supply 

the constant function which takes any integer and returns true.

labelal l: int  —> bool 

labelalln = true

To label the entire circuit graph with X  values, we propagate the tuple < labelall, X  >. 

The interpretation which does this is called SETALLX. To label a particular node, 
we use the following function:

labelnode : int —► int —> bool 

labelnodenm =  n = m

So, to label node 13 with the value D  we would propagate the tuple < labelnode 13, D  > . 

The definition of each processing node simply applies the function in the first ele­
ment of the pair to the node number and then updates the value at its node when 

neccessary. The interpretation that performs this task is called S£TAfOT>£, of 
which S£TACCX  is a special case.

The next step is to perform a backward simulation to discover what input pat­
terns will sensitise the fault site. We cannot simply re-use the standard interpreta­
tion, since that is only defined over two-valued logic. A new interpretation is needed
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for three-valued logic (A', 1 and 0). All output nodes are assigned X:  the backward 

simulation will sweep towards the inputs until it encounters the faulty node. At this 

node, the output net will have the value X , but the value at the node will be 1 or
0. The backward simulation continues from this node, but this time the output of 
the node is taken from the value at the node, rather than the X  at the output net. 
Shown below is the backward definition for an A N D  gate. This constructor Set is 

used to build a set from a list. The third line considers the case where the output of 
the A N D  gate is H and there are no previous assignments to this node (i.e. the set 
at the node is Set [X ]). In this case, there is only one possible assignment to the 

inputs to produce a H at the output. This is the singleton set {<  H , H  >} which is 

returned as the result of the function in this case. The next line considers the case 

where there is a L at the output and returns the three possible input patterns that 
can produce this value. The other lines generalise these definitions over A' values.

> and_sen (Set [H ]) v = and.sen (Set [X ]) H

> and.sen (Set [L ] ) v = and.sen (Set [X ]) L

> and.sen (Set [X ]) H = Set [Tuple [H, H ]]

> and.sen (Set [X ]) L = Set [Tuple [L, L ] , Tuple [L, H ] , Tuple [H, L ]]

> and.sen (Set [X ]) X = Set [Tuple [H, H ]]

This function is lifted to operate over sets of any size: the definition shown is defined 

just for singleton sets. The interpretation which implements the sensitisation opera­
tion for the whole circuit description is called SEAT. This relies on the circuit being 

appropriately decorated: we name the interpretation that performs the decorations 
and the backwards analysis SEMCX'R, and define it as:

S S M C in  =  (SSTACCX{); (S€TATOV€{); (S€Af[)

To execute this interpretation, abritary inputs are given for the first stage when the 

entire circuit graph is labelled with .A values. For the second stage, we supply the 

appropriate pair containing the node to be sensitised and the value that node is to 

be set to. The final stage is run backwards with X  values at each output node.

8.5.3 The D-Drive Phase

The D-drive phase may be implemented as a simple forward interpretation. The 

information flow appears to be complicated by backtracking, which seems to call for 
a forward interpretation that oscillates. However, instead of propagating forward 

information about only one path, information about all possible paths is propagated.
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We shall consider forks with a fan-out of 2. The analysis extends easily to forks 

of a greater size. At each fork in the circuit which has a fault sensitive value at 

its input, the two outputs are defined as follows. Instead of using the standard 

behaviour of fork, which would make both outputs equal to the input, each output 

is a list of two values. One prong of the fork will propagate the list [D, _l_] whilst 

the other prong will propagate the list [-L,D]. This has the effect of trying three 

possible paths:

1. Try to propagate the fault sensitive value only through the first fork, making 

no assignments to the second.

2. Try to propagate the fault sensitive value through the second fork, making no 

assignments to the first.

3. Try to propagate the fault sensitive value though both forks simultaneously.

Sometimes it is necessary to simultaneously form a double D-chain (corresponding 

to two sensitive paths) to cope with reconvergent fanout (hence the rules for D  U D  

etc.).

Nodes are defined naturally to propagate a list of possible propagation cubes. 

However, lazy evaluation will ensure that only those elements required to produce 

a test vector are actually evaluated [Wadler 85]. Each two input gate takes along 

each input a list of possible assignments. The output is the cartesian product of the 

two lists, with <f> intersections removed.

For an A N D  gate with input lines x and y , the D-drive rule for propagating a 

D  value along the x input is expressed as follows in the non-standard interpretation 

system. Angle brackets are used to form tuples, an asterisk denotes a non-standard 

operation and the lower case identifiers describe fault sensitive information. The 

non-standard values are D-cubes.

<  tca,tcb >  A N D * tcc tcc =  tca U tc i, ly if D x C tca A _LW C tc

The propagation requires line y to be 1 in order to propagate the D  at line x to the 

output of the or gate: this is specified by adding the cube l y to tc\>. The other rules 

are expressed in a similar manner. The above definition is extended to allow sets of 

cubes to be the non-standard values, and the cartesian product between the sets is 

formed using the above rule.

<  Si, S2 >  A N D  S3  S3  =  { tc 3  : tc\ (E 5 i, tc 2 6 S2, <  tc \ , tc 2 >  A N D *  tc3)
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Here, Si are the sets of possible test cubes. This this coded in a stright forward 

mannei by defining the ordering relation and then using the usual definitions of 
least upper bounds and set comprehensions. The interpretation is named D R IV E .

8.5.4 Implem ent at ion of the Consistency Operation

The consistency operation involves checking that the assignments produced by the 

D-drive phase can actually be made by manipulating primary inputs. It is very 

similar to backward simulation. A backward logic simulator has already been im­
plemented by using a backward non-standard interpretation. The output of the 

circuit is specified (either completely or partly) and all the possible input patterns 
that produce the given output are returned.

For each possible test cube tc, a path is sought back to the primary inputs using 

the singular cover. The algorithm steps back a gate at a time: for each gate the least 
upper bound for every cube c in that gates singular cover SC O V E R  is found, if it 
exists. For example, if the output of the gate described by S C O V E R  is required to 
be 1, then:

tc =  {c : c € snd S C O V ER,  ifcU tc exists }

The second element of S C O V  ER,  which contains the set of cubes that assign 1 to 

the output is accessed by the snd function which returns the second element of a 

tuple. This gives a possible set of test cubes, each of which are extended backwards 

using the above process until a primary input is reached. If the final set is empty, 
then it is not possible to justify any of the possible test cubes generated by the 

D-drive process so no test pattern is generated for the given fault.
The backwards interpreter is implemented by performing a 5-valued backward 

simulation, rather like the sensitisation interpretation. However, at each stage, the 

set of values stored at each node, which represent assignments made to that node, 
are checked against propagated values. If inconsistent values are encountered i.e. 
when a node has been previously required to hold a 0 but an attempt is made to set 

its output net to 1, then an empty set is propagated towards the inputs.
If the result of this phase gives an empty set for a particular assignment, then 

this assignment is not propagated any further by the D-drive process. Let the 

interpretation for this phase be called COAfSIS . The definition for the AND  gate 

in the consistency interpretation is given below, along with the function used to 

check for conflicts. The co n flic t functions just checks to see if any incompatible 

assignments have been made to the same node e.g. L and / / ,  or D  and D.
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> and_consis (Set assignments) v
> = Set [], if conflicts assignments v
> = and_sen consis v, otherwise

> conflicts a L = True, if member a H
> conflicts a H = True, if member a L
> conflicts a v = True, if (member a L) & (member a H)
> conflicts a v = True, if (member (v:a) D) & (member (v:a) Dbar)

8.5.5 The com plete algorithm

The complete D-Algorithm is then described by:

DALG = SEN NODE- D R IV E  / ;  CO NSIS b

The result is a graph, annotated at each node with sets of D-cubes. Not all these 
D-cubes correspond to useful tests: only those cubes that make it to an observable 

output can be used to determine test patterns.
To perform a D-Algorithm test pattern generation on our test circuit, we have to 

place some dummy components at the inputs to allow us to talk about the primary 

inputs. This is becuase net values are derived from the node that drives the net. 
Primary inputs of circuits in isolation are not driven by any nodes. We use the 

special component inpad for this purpose. It is like the identity relation over single 

wires, except that it consumes a label during the labelling interpretation. The test 
script for our circuit is shown below. Instead of setting a node to a fixed value we 

have chosen to use D  which should return a list of test cubes at the result. In this 

case, we expect only a singleton set since we know in advance that there is only one 

satisfactory test cube.

IMPORT prelude ;
IMPORT ch8 ;
IMPORT pads ;

DALG <3, D> [inpad, [inpad, inpad]] ; testcir ;;

The output produced is shown below. Unfortnately, the nodes are labelled differently 

from the figure, but the cube produced is correct.

1) DALG: <3, D> [inpad, [inpad, inpad]] ; testcir {D3H2D5L4D6}
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The implementation is unfortunately slow and wasteful of space. An imperative 

implementation can use a smaller number of variables to represent cubes and use 

explicit backtracking to update these cubes as the analysis proceeds.
The current implementation could be improved by adding an extra parameter 

to the interpretation function to hold environment information, thus avoiding the 

expensive task of labelling every node with a set of cubes. For a large circuit, an 

environment look-up could be an expensive operation.
However, it is still useful that such a complex algorithm can be broken down into 

modular chunks which can be implemented independently.

8.6 V erification using th e  D -A lgorithm

The D-Algorithm may be modified to compare two designs for equivalent behaviour. 
First, an m output design is broken down into m single output designs.

Let A and B  be single output circuits which are to be tested for equivalence. 
The output of A is assigned value 1 and the output of B  is assigned the value 0. 
Backward simulation in the style of the consistency operation is used to find what 
input values produce the given output value. If there is any intersection between the 

results of the two backward simulation (i.e. if the least upper bound of the cubes 

returned by them exists) then a counterexample has been found that states A and 

B  cannot be equivalent.
This counterexample is a pattern which sets A to 1 and B  to 0, but for A and 

B  to be equivalent they must produce the same output fro the same input.
In general, this analysis time grows exponentially with the size of the circuit. 

However, for circuits that are nearly identical, the running time grows in a more 

linear manner.

8.7 E xten d in g  the D -A lgorithm

One of the most popular recent techniques for generating test patterns is PO- 
DEM: path orientated decision making [Goel 81]. The D-Algorithm makes arbi­
trary choices about which paths to follow at forks and in which order to backtrack. 
PODEM uses information generated by other testability analysis tools to find paths 

which produce a result, positive or negative, quickly. For this reason the PODEM 

algorithm usually performs much better than the D-Algorithm. However, it still be­
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longs to the same class of test pattern generation techniques which exploit sensitive 
paths.

Consider the task of setting the output of a three input OR gate to be 1. This 

can be done by attempting to set any of the three inputs to 1. Instead of choosing 

one randomly, PODEM annotates each wire by its controllability value. This could 

be done using the SCOAP testability measure scheme. Then, it makes sense to try 

to set to 1 the input which is the easiest to control i.e. the node with the best 
controllability value. Using SCOAP, this would correspond to choosing the node 
with the lowest rating.

Now consider the task of setting the output of a three input OR gate to 0. 
This requires all the inputs to be set to 0. Here, it makes sense to try setting the 
node with the poorest controllability to 0. If this node cannot be set to 0, then 

there is no point in trying any of the other nodes. Thus, PODEM does not try to 

simultaneously seek paths back from each node. Instead, it tried the hardest node 

first, and proceeds to the other nodes only if the hardest node can be set to the 
required value.

This technique speeds up test pattern generation because a solution to each 

justification step is found quickly. A further improvement is made if a fault simulator 
is used after each test pattern is generated. The simulator will expose other faults 

covered by the automatically generated test pattern. These faults can be removed 

from the fault list, thus reducing the number of faults that have to be exposed by 

the expensive automatic test pattern generation program.
It is interesting to note that we can construct a PODEM style interpreter by 

combining three existing interpretations: SCOAP testability measure, deductuve 

fault simulation and the D-Algorithm.
The outputs from the above procedure are then fed into the deductive fault 

simulation interpretation to discover what other faults are exposed by the generated 

test pattern. The incorporation of a deductive fault simulation into a cycle as 

described above requires a new interpretation combining form.
The first step would be to simply annotate the circuit with SCOAP testabil­

ity measures. The non-standard semantics of each node would then be altered to 

produce sets of result, where each result is orderd using the available testability 

measures. This has the effect of converting the set into a list, whose earlier elements 

are the ones most likely to give a result quickest. Using lazy evaluation carefully , we 

are even less likely to perform unfruitful computations. Our D-algoirthm implemen­
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tation only builds as many elements of a list that it absolutely has to. The PODEM 

implementation always builds a complete list, but the elements are only partially 

evaluated. Only the testability measures for each element is always know: this is 

used to sort the list into order, without evaluating the heavyweight expressions to 
deal with the backtracking.

To demonstrate this idea, consider the following Miranda script:

listl = [(2, undef), (1, undef)] 
sort2 [a, b]

= Ca, b], if fst a < fst b 
= [b, a], otherwise

runl = map fst (sort2 listl)

If undef is ever evaluated, a run time error occurs. The list l i s t l  contains pairs, the 

first element of each pair is defined and the second element is undefined. In a lazy 

language like Miranda it is possible to sort this list without evaluating the second 

elements. The function runl will definitely cause sort2 to perform an exchange but 
it will give the correct result, as shown:

Miranda runl 
[1,2]

Note that we have filtered out the undefined values for output. This is exactly 

the kind of operations that a non-standard interpretation implemention of PODEM 

would do to ensure efficient execution.
We have not at present implemented a full PODEM style test pattern generation 

program. One problem is that by creating more complex interpretations, we are 

overloading the Miranda system. Our first attempt at realising a PODEM style 

implementation caused a stack overflow on our Miranda system. We only have 

access to Miranda running on relatively slow Sun 3 computers with only 4 megabytes 

of memory. We are currently reimplementing the entire system in Lazy ML. This 

runs faster and is implemented on more powerful Sun 4 computers with larger 24 

megabyte memories. It is hoped that PODEM will run on the new system. Another 
problem is that PODEM requires backtracking to be considered explicitly, whereas 

we have so far dealt with it implicitly. However, it still should be possible to elegantly 

realised a PODEM test pattern generator with respectable run time performance.
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8.8 C onclusions

The D-Algorithm has been re-expressed by defining a partial order over the D- 
cubes. This leads to a clearer understanding of what is meant by D-intersection- 
the most important part of the D-Algorithm. The new notation helps to give a 

clearer description of the algorithm and helps to motivate a cleaner implementation.
Non-standard interpretation has been exploited to make the implementation of 

a complicated algorithm simpler. The method takes advantage of the fact that the 

circuit analysis has the same shape as the design and that backtracking need not be 

programmed since this may be handled by generating all possible results and using 

lazy evaluation to ensure no loss of efficiency.
This interpretation, coupled with others already implemented, forms a small 

but powerful prototype circuit analysis system. The size is kept to a minimum by 

factoring out the common part of these analyses so that they do not need to be 

respecified. This helps to maintain the system and makes the very important job of 
verifying the software easier.

The backwards consistency phase of this technique has also been used to help 

verify circuits. However, in general, the running time of this analysis is exponential 
compared to the size of the circuit. This method is particularly useful when two 

nearly identical circuits are compared, where the running time rises more linearly. 
This is a very common case as one completed design is modified to incorporate some 

“engineering change”. However, simulation as a means of verification in the general 
case is not a realistic proposition. Showing that two designs are equivalent has 

attracted much attention from those employing formal methods, with a reasonable 

degree of success.

The D-Algorithm is an old one, and does not compare favourably with more 

recent techniques. However, it is possible to use the D-Algorithm in conjunction with 

other testability analysis tools to construct a faster analysis tool. The interpretations 

for deductive fault simulation, SCOAP testability measure and the D-Algorithm can 

be combined to make a PODEM-style interpretation. This gives an increase in speed 

for a very small amount of work since we can easily compose interpretations.
The prototypes produced are very slow and require a large amount of heap 

space. An optimisation to the standard interpretation would immediately benefit 
all other interpretations. This has not been attempted, since we want to contain the 

complexity of our system to make future changes easier. Another approach might be 

to improve the performance of individual interpretations. However, the operation
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of a pa r t  i c u l a r  i n t e r p r e t a t i o n  is s t i l l  co ns t r a in ed  by tin* u n d o r l v i n g  i n t e r p r e t  at ion 

m o d e l .



Chapter 9 

Circuit Layout

9.1  Introduction
This chapter presents another application of non-standard interpretation. We show that 
circuit layout can be accomplished using non-standard interpretation [Singh 91]. We use 
this technique to lay out butterfly circuits which are described in Ruby.

The result is that very complex circuit layouts can be automatically generated from the 
standard behavioural Ruby description. The extra code required to realise the drawing 
alternative semantics is very small indeed. Several colour prints of butterfly circuits 
produced by our interpretation system are presented.

9 .2  Functional Geometry
Functional geometry involves using functions to represent drawings. New drawings can 
be made from existing drawing (functions) by combining them using higher order 
functions. Henderson has shown that the famous Escher fish picture can be formed by 
combining just four tiles using appropriate higher functions [Henderson 82]. Circuit 
layout using functional geometry has also been attempted successfully by others e.g. 
[Sheeran 83].

In this chapter, we combine the principles of non-standard interpretation and functional 
geometry to produce complex circuit layouts. We take advantage of the fact that our 
implementation is in a polymorphic high-order language to provide a simple but powerful 
set of functional geometry primitives.
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These primitives are used to provide non-standard semantics for certain Ruby 
descriptions. We constrain ourselves to the study of butterfly networks which are 
characterised by a high wiring to processing area ratio. The recursive decompositions 
found by [Sheeran 89] are used to help draw butterfly and butterfly-related networks 
automatically.

The problem of drawing any Ruby description is a much harder one, in particular four­
sided tiles. This is because four sided tiles are implemented in terms of two sided tiles. 
Work has been done by the author and others to draw Ruby descriptions containing only 
two sided tiles. This is quite straightforward, the major complication being the loop 

construct.

9 .3  Describing Butterflies
The wiring relations trn, zip, halve and pair (introduced in chapter 2) are used to build 
some of the new wiring patterns which we need to describe butterflies.

We shall not try to represent the structure of tuples in our drawings. This could be 
done by varying the spacing between wires to reflect how the tuple is constructed. This 
means that by looking at a picture, we cannot tell the difference between twelve wires 
(12) and 12 ; halve. Similarly, pair will not affect how wires are drawn. However, both of 
these relations are still needed to keep the type right of the information travelling along 
wires.

One much used wiring pattern in butterfly networks is riffle, otherwise known as the 
‘perfect shuffle’. Riffling involves halving a bus of wires, then transposing the resulting 

tuple, followed by unpairing. The definition is:

riffle = halve ; trn ; pair'1 

We shall also make use of the inverse of riffle i.e. riffle-1.

A relation R is homogeneous if it relates only signals of the same length. A larger 
homogeneous circuit can be made by making two copies of a smaller one. One such 
combining form is two defined as:

two R s [R, R] \ halve-1 

Another useful operation is the interleaving of two copies of R:
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ilv R = (two R) \ riffle

There are many useful laws about these combining forms, e.g:

two (R ; S) = two R ; two S
two ilv R = ilv two R
ilv (R ; S) = ilv R ; ilv S

These laws are easily proved in the usual manner.

Four recursive descriptions of butterfly networks found by Sheeran are:

'Fn+l R = ilv 'Fn R ; tWO"+1 R (A)
'Fn ilv R ; twon+1 R (B)
ilvn+1 R ; ^ ntwoR (C)
ilvn+1 R ; two *Fn R (D)

where the base case is:

To R R

If R is a comparator (or sorter) then *F R is Batcher’s bitonic merger.

It is possible to directly transcribe the above definitions to our implementation of 
Ruby. The source text for the butterfly definitions is given below.

> riffle = halve ; zip ; pair% ;;
> two R : [R, R] \ halve% ;;
> ilv R : (two R) \ riffle ;;

> butfyl 0 R = R
> butfyl n R = ilv (butfyl (n-1) R) ; two**n R

> butfy2 0 R = R ;;
> butfy2 n R = butfy2 (n-1) (ilv R) ; two**n R

> butfy3 0 R = R ;;
> butfy3 n R = ilv** n R ; butfy3 (n-1) (two R)

> butfy4 0 R = R ; ;
> butfy4 n R = ilv**n R ; two (butfy4 (n-1) R)
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A sample execution of one of these butterflies is shown below. The component R is 

represented by a two-input comparator (sorter) called comp2. The execution file contains:

> IMPORT b u t f y  ; ;
> IMPORT p r e l u d e  ; ;

> STANDARD < L ,  H> b u t f y l  0 o r  ; ;
> STANDARD < L , L , L , H >  b u t f y l  1 ( o r  ; s p l i t )  ; ;

> STANDARD < 8 , 3 >  comp2 ; ;
> STANDARD < 4 , 7 , 9 , 5> b u t f y l  1 comp2 ; ;
> STANDARD < 1 , 2 , 3 , 4 ,  8 , 7 , 6 , 5 >  b u t f y 2  2 comp2 ; ;
> STANDARD < 1 6 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 ,  1 , 2 , 3 , 4 , 5 , 6 , 7 , 8> b u t f y 3  3 
comp2 ; ;

The output produced is:

1) S t a n d a r d :  < L , H >  b u t f y l  0 o r  H
2)  S t a n d a r d :  < L , L , L , H >  b u t f y l  1 ( o r ;  s p l i t  ) < H , H , H , H >
3) S t a n d a r d :  < 8 , 3 >  comp2 < 3 , 8 >
4) S t a n d a r d :  < 4 , 7 , 9 , 5 >  b u t f y l  1 comp2 < 4 , 5 , 7 , 9 >
5) S t a n d a r d :  < 1 , 2 , 3 , 4 , 8 , 7 , 6 , 5> b u t f y 2  2 comp2 < 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8>
6) S t a n d a r d :  < 1 6 , 1 5 , 1 4 , 1 3 , 1 2 , 1 1 , 1 0 , 9 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8> b u t f y 3  3 
comp2 < 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 16>

9 .4  Drawing Butterflies
Butterfly circuits are now laid out using non-standard interpretation. The non-standard 

values that flow along wires will be tuples containing coordinates of the bottom left hand 

corner, colour information and an accumulator value which gathers together all the line 

drawing commands needed to produce the drawing on some graphical output device. The 

non-standard definitions for the nodes use their inputs to work out where to draw 

themselves and in what colour.

With the exception of forks, all of the non-standard interpretations have not over­

ridden the meaning of the basic wiring primitives. However, to draw circuits we have to 

redefine the meaning of the wiring relations too. For example, the identity relation now 

has to add extra graphical commands to those that it has received through its input to 

produce a horizontal line. It must also update the ^-coordinate of the bottom left hand 

comer.

We shall be dealing with only one processing node called R which is a 2 to 2 relation. 

This shall be drawn as a square tile.
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A picture description is made up by a list of picture commands. The picture commands 

are represented in the implementation by type draw:

> d r a w  : : =  L i n e  p t  p t  | T e x t  p t  [ c h a r ]  | R e c t  p t  (num, num) |
> D im  num num I C o l o u r  num | S e t _ c o l o u r  num num num num
> | O r i g i n  (num, num)
> p t  ==  (num, num)

A picture description is of type [ d r a w ] .

Instead of defining a graphical wiring function for each wiring form, we define a 

general purpose higher order wiring function called d r a w _ w i r i n g .  One of the parameters 

to this function a the standard wiring function. This function is defined as:

> d r a w _ w i r i n g  f n  (o x ,  o y ,  z ,  ac c )
> = (ox+xdisp, oy, zs, ex++acc)
> where
> xsr = fn (in ox oy z)
> ex = concat [ [Colour v, Line npt (dx i npt) ] I ( (npt, v) , i)
> <- zip2 xsr (index xsr)]
> where
> dx y (x,y') = (x+xdisp,oy+y*dy)
> xdisp=((#z) div 2)*10
> zs = [c | (p, c) <- xsr]
> dy = 2 0

Using this higher order function, we obtain the following non-standard definitions:

> n s i _ r i f f l e  = d r a w _ w i r i n g  r i f f l e
> n s i _ i d  = d r a w _ w i r i n g  i d

The non-standard definition for the processing node R simply draws R in a box, with 

two wires on the left and two on the right and does some colouring.

> r _ w i d t h  = 4 0
> r _ h e i g h t  = 4 0

> d r a w _ r  ( x , o y , [ a ,  b ] , a c c )
> = ( x + r _ w i d t h , o y ,  [ a ,  b ] , a c c + +
> [ C o l o u r  2 ,  R e c t  ( x ,  y + 2 )  ( r _ w i d t h ,  r _ h e i g h t - 4 ) ,
> C o l o u r  3 ,  T e x t  ( x + 2 0 , y + 2 0 )  " R " ] )
> w h e r e
> y  = o y - 1 0

Drawing a butterfly of size 0 will draw just R. Figure 9.1 shows 'Fo i-e. R. Like all 

the diagrams in this chapter, this picture was automatically produced by the non-standard 

interpretation for drawing Ruby and then converted to MacDraw I I  format for inclusion in 

this thesis.
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Q
Figure 9.1: R

Let us consider for the moment those butterflies networks generated by the first recursive 

description given (labelled with A). A butterfly of size 1 is show in Figure 9.2. 

Substituting n = 0 in the description gives:

ilv 'Fo R : two0+1 R 

ilv R ; two R

which corresponds with the figure drawn.

R
D G R

Figure 9.2: Butterfly of size 1.

A butterfly of size 2 is shown in figure 9.3. Notice that there are instances of a size 1 

butterfly in this picture.

Figure 9.3: Butterfly of size 2.

A butterfly of size 3 is shown in Figure 9.4. Again, there are many instances of a size 2 

butterfly in this picture.

Figure 9.4: Butterfly of size 3.

A butterfly of size 4 takes up a whole page, and a colour plate of it is shown overleaf.
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Butterflies of type B and D look the same when they are generated by a non-standard 

interpretation. Figure 9.5 depicts what is drawn.

Figure 9.5: Butterflies B and D of size 3.

9.5  Drawing Non-Butterflies
In reference [Dowd et al. 89] a merger similar to Batchler’s bitonic merger is presented. 

The balanced merger, so called because it merges two interleaved sorted lists, has been 

shown by Sheeran to have a recursive decomposition similar to the butterfly [Sheeran 

91]. The following are Ruby descriptions of that butterfly-like network. Representatives 

from the following circuit descriptions have also been drawn.

> a l t  = t w o * * n  (one  swap) ; ;

> v e e  R = ( i l v  R) \  a l t  ; ;

> w f l y l  0 R = R ; ;
> w f l y l  n R = v e e  ( w f l y l  ( n - 1 )  R) ; t w o * * n  R ;;

> w f l y 2  0 R = R ; ;
> w f l y 2  n R = w f l y 2  ( n - 1 )  (v ee  R) ; t w o * * n  R ; ;

> w f l y 3  0 R = R ; /
> w f l y 3  n R = v e e * * n  R ; w f l y 3  ( n - 1 )  ( two  R) ; ;

> w f l y 4  0 R = R ; ;
> w f l y 4  n R = v e e * * n  R ; two  ( w f l y 4  ( n - 1 )  R) ; ;

> r s  0 R = R ; ;
> r s  n R = i l v  ( r s  ( n - 1 )  R) ; w f l y l  n R ; ;

> e x  = i l v  r ; v e e  r  ; two r  ; ;
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There circuits w f l y i  to w f i y 4  are rather like butterflies, except they are based on r i f f l e  

; a l t  instead of r i f f l e .  Here, v e e  corresponds to i l v ,  but using r i f f l e  ; a l t  

instead of riffle. Substituting v e e  for i l v  in the original butterfly descriptions yields

w f l y l  tO w f l y 4 .

These circuits are based on a component with four values at the domain and range. We 

need a new definition for drawing R:

> d r a w _ r 4  ( x , o y , [ a ,  b ,  c ,  d ] , a c c )
> = ( x + r _ w i d t h , o y , [ a ,  b ,  c ,  d ] , a c c + +
> [ C o l o u r  2 ,  R e c t  ( x ,  y + 2 )  ( r _ w i d t h ,  2 * r _ h e i g h t - 4 ) ,
> C o l o u r  3 ,  T e x t  ( x + 2 0 , y + 4 0 )  " R " ] )
> w h e r e
> y  = o y - 1 0

This draws a rectangle with four wires in the domain and four in the range.

The semantics for serial composition is not altered. This is because each drawing 

function increments the current Jt-coordinate by the width it requires. Alternatively, the 

alternative semantics of the leaf nodes could be changed to give information about how 

wide the component is. Then, serial composition could be redefined to take account of 

this and increment the running x-coordinate by itself rather than have it done explicitly in 

the code for the leaf nodes.

The alternative semantics for parallel composition is defined only for the case where 

two circuits are placed in parallel. However, these two circuits may themselves be parallel 

compositions. It is defined as follows:

> p a r i d  r  (o x ,  o y ,  n l ,  a c c )
> = ( o x 11 , o y ,  a + + n ' ' ,  a c c 11+ + a c c ' + + a c c )
> w h e r e
> a c c 1 = i d w i r e s  (o x ,  o y ,  o x 1 ' - o x ,  # n l  d i v  2)
> ( o x ' 1, o y ' 1, n ' ' ,  a c c 1 ' )  = r  (o x ,  o y + d y * ( # n l  d i v  2 ) ,  b ,  [ ] )
> [ a ,  b]  = h a l v e  n l

The next few pages show drawings produced by non-standard interpretation for some 

of the circuits described above. The first is a butterfly (A) of size 5. The following page 

shows a butterfly (A) of size 4. Butterflies C and B/D are shown next, both of size 4. The 

next page shows three circuits: (a) a periodic balanced sorter (b) a recursive sorter based 

on the balanced merger (c) a shuffle-exchange network. The next two pages show black 

and white drawings of vee-based butterflies with 4 to 4 components.
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9 .6  Implementation
The non-standard interpretation system produces as output a file of graphical descriptions 

based around a Miranda algebraic type. Several other programs have been written which 

translate the output from the non-standard interpretation to a format suitable for driving 

graphical output devices.

One variant of the above interpretation involved producing LaTeX picture environment 

commands. This allows butterfly drawing to be included directly into LaTeX documents. 

However, the picture environment supports only a limited number of possible line 

gradients. It was not possible to draw butterflies of size greater than 4 without exactly 

aligning the wires in riffles.

The butterflies produced by the non-standard interpretation system can be drawn on 

Sun computers running the SunView window system (formerly known as SunTools). A 

program was written using the Unix tools Lex and Yacc and the programming language C 

for parsing lists of the type draw. This program then executed the appropriate SunView 

system calls to drive graphics canvases. The program will produce colour displays in a 

re-sizeable window with scrollbars.

To produce a black and white hardcopy, a utility called ScreenDump, written by Mark 

Dunlop, can be used. However, it was desirable to produce colour output. To achieve 

this, the output files were transferred to a colour Macintosh II  computer connected to a 

colour laser printer. A program was written in LightSpeed Pascal for parsing the same 

Miranda data structure and then calling appropriate Macintosh QuickDraw commands for 

drawing butterfly circuits in colour on a Macintosh display. These drawing could then be 

pasted into the clipboard or saved as PICT files. The PICT files were read in using 

MacDraw I I  and then pasted into Microsoft Word documents for inclusion in this thesis. 

Every drawing in this chapter was produced in this way.

From MacDraw II, colour output could be produced by sending the drawings to the 

colour laser printer. Another program for sending QuickDraw commands directly to the 

laser writer was also produced. This program works faster, but is not as versatile as the 

version that produces PICT format output, since PICT files can be pasted into many 

Macintosh applications and then annotated by hand.
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9 .7  Conclusions
Ruby contains information about circuit layout as well as behaviour. All the non-standard 

interpretations presented up to this point have involved finding alternative meanings for 

Ruby behaviour. However, we can also produce layouts by changing the standard 

behaviour to draw pictures. We have drawn butterfly-type circuits using this technique.

However, we have not shown how to draw an arbitarary Ruby description. This is a 

hard problem, since it is not easy to see how to lay out four sided tiles, or even tell what 

is a four sided tile. This is because Ruby does not offer any primitive support for four 

sided tiles. The drawing of circuits with four-sided tiles might be possible by using 

contextual information.

Another problem is how to deal with generic circuits like map AND. We can choose to 

draw an arbitrary representative of this class, or we could make up a special symbol, 

perhaps involving vertical dots to shown that this picture does not represent a particular 

circuit. Our implementation avoids this problem by drawing only fixed sized circuits. 

Generic combining forms can be used, as long as there is enough context information 

available to determine the size of the domain or range values for generics.

One interesting application for non-standard interpretation might be for synthesis of 

mask level layout. A non-standard interpretation could be devised for synthesising a mask 

level layout for each processing node and wiring form. This could be done by using an 

existing CAD tool. The combining forms then glue together the constituent layouts to 

form complete circuits. This would be a viable approach because Ruby contains enough 

topological information. This means that we avoid the hard problem of how to 

automatically lay out large circuits. The layout of the high-level blocks is done explicitly 

in Ruby. The relatively tedious task of producing layouts for AND, OR, FORK, ID  etc. 

can be done economically using automatic layout tools.

One advantage of this method is that it allows the designer to experiment quickly with 

different layout. The designer can concentrate on the layout at a high level of abstraction, 

knowing that the cells near the leaves of the design tree will be dealt with automatically.
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Chapter 10 

Improving Testability

10.1 Introduction

Ruby possesses many powerful algebraic laws and properties that help designers reason 

about circuits. Circuit designs can be derived from a high level specification using 

correctness preserving transformations that guarantee the validity of the final design.

Many of the existing rules about Ruby transform its physical layout in order to save 

area or increase speed. This chapter presents transformations that improve the testability 

of Ruby descriptions.

The first step is to declare a strategy for testing Ruby descriptions (section 10.2). 

Testability has eluded precise formal descriptions: much of the existing traditional 

techniques for improving testability work by trying to increase con tro llab i l i ty  and 

observability. This is accomplished by improving access to internal nodes by introducing 

extra circuitry (as shown in chapter 2). The first part of the test strategy is to employ 

traditional techniques for improving testability. Ruby is particularly suited to describing 

regular circuits which often have replicated cells . The second part of the test strategy is to 

capitalise on this replication by testing repeated blocks in parallel.

Having set out the test strategy, the next step is the introduction of a testability 

transformation scheme (section 10.3). Transformations are defined for the most common 

Ruby combining forms and for the sole sequential element (D.

The use of the testability transformation can lead to very messy and cluttered Ruby 

descriptions. Also, the designer might have to do some trivial re-wiring to connect 

together subcircuits that propagate testability information in an incompatible manner.
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Particular attention is paid to the transformation of serial composition since this is the 

combining form that is likely to induce the highest degree of untestability. The next step is 

a superficial extension to Ruby to allow the expression of testability requirements while 

still retaining notational elegance.

The remainder of the chapter explores the possibility of exploiting the behavioural and 

layout information conveyed by Ruby with a view to producing more testable circuits. By 

careful examination of the behaviour of a composite circuit, a decomposition may be 

found which results in a more testable structure.

10.2 Testing Strategy

The transformations for improving testability introduced here have been drawn up with 

the following considerations in mind. Firstly, the methods used for improving the 

testability of circuits are traditional ones that aim to increase the controllability and 

observability of internal nodes. This is accomplished by allowing direct or improved 

access to internal nodes. This is done by splitting sequential networks into parallel 

networks. Secondly, the emphasis is on evaluating whether a given fabricated design is 

working or not: there is no attempt to diagnose the fault. This results in cheaper 

transformations which give a “go/no-go”. This is often all that is required.

I f  a regular circuit is converted to a flattened netlist before applying testing analysis, 

the advantage of regularity is lost and the analysis must be redone for each repeated 

circuit. However, since we are satisfied with a “yes/no” answer, it is possible to test each 

replicated cell in parallel. This saves much testing circuitry and test application time. The 

test technique for replicated cells involves distributing the same signal to each replicated 

cell and comparing the outputs of each cell. I f  there is any difference in output response 

between the various cells there there must be at least one faulty cell. An assumption is 

made about how circuits fail: it is assumed that all the replicated cells of some circuit F  

will not all fail in the same manner

Sequential circuits are tested by using the traditional technique of decomposition to a 

set of combinational circuits and then testing these. The sequential elements are chained 

together to form a shift-register to allow economic testing.



190

10.3 Transforming Combining Forms

1 0 . 3 . 1  In troduct ion

In this section, a testability transformation called Tis introduced. This transformation is 

defined over the various combining forms and elements of Ruby. Each transformation 

aims to increase the testability of a circuit by increasing the controllability and 

observability of internal nodes and by performing as much parallel testing as possible.

A Ruby description can be analysed using existing tools or the non-standard interpretation 

system presented earlier. Areas of poor testability can then be transformed using T

The remainder of this section defines plausible transformations for some of the most 

common Ruby constructs.

1 0 . 3 . 2  Serial Composit ion

Serial composition connects two communicating circuits together via an internal 

connection. This internal connection can be very hard to control and observe.

The testability of serial composition is improved by transforming it to a network 

which allows the internal connection to be directly controlled and observed. Consider the 

circuit in figure 10.1(a) which shows circuits A (domain x ) and B (range z) connected via 

an internal connection y. The circuits A and B might be quite testable independently, but 

the composition makes it harder to apply test vectors to B thus reducing B's  

controllability. Since any test information about A must be propagated through B , A 's 

observability is reduced.

The situation is exacerbated if the range of A is not a superset of the test program for 

B. This can cause some faults in B which were testable with B in isolation to become 

untestable. Let Pa be the test test program for A and Pb  be the test program for B. Let Fa 

be the set of faults in A (similarly for B ). The function C(P,G) gives the set of faults in 

circuit G which are exposed by the test vectors in set P. The cover for A is then:

|C(P^)l
\F a \

The cover for B is defined analogously.
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In addition to exercising A with Pa , A must be made to produce as many elements of 

Pb  as possible at its range. The additional elements are given by the relation Pa A Pb . 

Thus the test program for the composition A ; B is given by the union of Pa and Pa ':

Pa ,B = P a v Pa ' (10.2)

In general, it is possible that A cannot generate all of Pb at its output i.e. rng A C  p B. 

This constrains the set of possible values at the intermediate signal y  to be rng A n  Pb - 

This cover the of composition is now given by the left hand side of the inequality:

|C(P,4 ,A)| + 1C(rng A n  PB, B)| „  \Z(PaA )  u  C(PbA)\N + N  “ W + N
This inequality becomes an equality when rng A > P g .  The degree to which the cover is 

reduced depends on the behaviour of A and B and the test program Pb .

Reduced cover can occur when the composition of A and B contains redundant 

circuitry. Although A and B can be free of redundant subcomponents, their composition 

might not be, especially if  A's range is a subset of all the possible 2n values for an n-bit 

output. This situation is likely to occur in hierarchical design when ready built general 

components are plugged together. The resulting implementation may not only satisfy the 

specification but may also have unnecessary extra behaviour. This can occur when very 

general or non-cohesive components are used.

One way to overcome this is to analyse the composition with a view to removing any 

redundancy. This is undesirable in general because it diminishes one of the advantages of 

hierarchical design using correctness preserving transformations. Such tailoring of ready 

built and proved designs is a large burden on the designer: if  the redundancy is removed 

by using ad-hoc methods then the resulting circuit would have to be re-verified in a 

bottom-up manner. Much of the work that went into designing a ready built and correct 

by construction (or exhaustive testing) library module is lost.
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The problem can be alleviated by choosing a slightly different test program for Pb . 

For any given design B , there is likely to be more than one possible test program that 

gives optimum or near-optimum test cover. Normally, after fault collapsing etc. one test 

set is arbitarily chosen and the rest discarded. However, if  this choice were delayed until 

B is actually used in some larger design, then a better choice could be made for the test 

program. For example, two test programs for B, P \  and ^2, might be equally good for 

testing B  in isolation but one might be better than the other when the composition A ; B 

has to be tested. Let t be an essential test for A. I f  t e P i  , t e P 2  then by choosing P 1 

some faults in A are also covered. These extra faults are discovered by using fault 

simulation. This suggests that P\ would be a better choice than P ^

A fau lt/in  B might be covered by the essential test t\ in P\ and t2 in P 2 . If, however, 

t\ & rng A then P 1 will not expose fault / .  I f  t2  e mg A then this would be a better choice 

since fault /c a n  still be exposed. By making these kinds of analyses for all the tests, a 

much better choice can be made between possible test programs. This will help to reduce 

(or halt) the reduction of the fault cover that may occur when two circuits are composed in 

series. The penalty to pay is delayed and more expensive test pattern analysis which has 

to be performed in a contextual manner instead of in isolation for each module.

m
T [A ;B ]

(a) (b)

Figure 10.1: (a) Serial composition (b) external behaviour transformation.
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The problem of diminished controllability and observability of the internal connection 

in serial composition can be reduced by transforming the design to allow direct 

controllability and observability of the internal connection. This involves changing the 

behaviour of the circuit. The circuit in figure 10.1(a) is transformed to have the external 

behaviour of the circuit shown in figure 10.1(b). The input has added to it a boolean input 

m which describes the mode in which the circuit is operating in. In normal mode, circuit 

B receives its input from the output of A (normal serial composition). In test mode, B's 

input is taken from the second additional input x \  thus increasing the controllability of the 

internal connection z. The output is modified by always making the value at the internal 

connection z visible through the second element of the 2-tuple range, thus increasing the 

observability of the internal connection.

It is possible that only some of the wires in the intermediate connection z are difficult 

to observe. In this case, appropriate selectors can be applied to the second element of the 

range tuple to filter out the desired wires. Similarly, it might be the case that not all of the 

intermediate wires are difficult to test. This case involves the more difficult task of 

redesigning the transformed circuit to share some of the wires in x  with x \

This transformation is specified formally by:

(x , <m, x')) TlT/4;£H <y, z) -> 3q .(-im(q=z) v  m.(q=x')) a

(x A z) a (q B y ) (10.3)

When m is true, then circuit is not in test mode so it behaves like A;5.When m is false 

then the circuit is in test mode. Circuit B should now receive its inputs from the test input 

x' instead of x.

The specification of a 2 to 1 multiplexer is given below. This circuit is assumed to be 

part of an available library of specified, implemented and proved correct circuits.

(a, b , c> M UX d <=> a.(d=b)  v  —a.{d=c)

This component can be used to realise the expression:

- i m(q=z) v  m.(q=x')
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in specification (10.3), giving:

(x , (m , x '» TlTA;i?"ll (y, z) s {m,x\z)MUX q a (x A z) a (q B y)

Using the definition of serial composition, the multiplexer is composed in serial with 

circuit B.

(x , <m, * '»  TlTA;5H (y, z> s {mj.',z) {M U X  ; £)}> a  (a : A z)

Since A takes its input from the bottom and M U X  ; B from the top, these circuits are 

composed in parallel:

(x, (m, jr')) TlTA;5ll (y, z) = (x, <m^t',z» [A, Aft/X ; £ ] <r, a

r=_y a  s=z

The wires at the output of the composition are the wrong way round: the output of B 

should go to the bottom (i.e. y ) and the output of A should go to the top (i.e. z). This 

problem can be fixed by swapping these wires:

{x, (m, x')) T lTA ^H  (y, z> = (x, {m.yX\z)) [A, M U X  ; B]  ; swap (y, z>

This right hand side is not directly realisable because z occurs in the domain and the 

range. The loop combining form can be used to feed back the z from the range back to 

the domain. However, z must also appear as the second element of the range tuple. For 

this reason, z is duplicated by a fork. A rewiring relation is required to keep the type of the 

domain type right i.e. the tuple must be transformed from (y, <z,z» to «y, z>,z». This is 

accomplished by the relation reorg 1. Similarly, the domain tuple must be reorganized so 

that A and M UX  receive the right signals: this is done by reorgl.

{.x , (m, x')) TlTA;Z?H (y, z> s (x, <m, x'))reorg2 ;
loop ([A, M U X \B ]  ; swap ; [i, fork] ; reorg 1)
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<y, z)
<y, < z,z»  reorg  1 « y ,  z ) ,z »

(x, (m, x'), z) re o rg l {x,(m j.\z))

This is now a realisable description. Since it was derived from the specification using 

correctness preserving transformations, it must also be correct by construction. This 

description can be simplified by applying the law:

[ A , B ] ; [ C , D ]  = [A ; C,  B ; D]  (10.4)

which results in:

( x ,  (m, x '»  T ! T /4 ; 5 H  <y, z> s  <jc, <m, x '»  re o rg l ;
loop ([A ; fork, Aft/X ; B ] ; swap ; reorgl)

O', z>

A picture of this circuit is shown in figure 10.2. The wiring reorganizations are not 
shown for clarity.

m

Figure 10.2: Transformed serial composition.

This transformation has added circuitry which can also fail. The complexity o i A ; B  must 

be large enough to overcome this overhead. An alternative arrangement to that shown in 

figure 10.2 could involve feeding m through as an output.
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Notice that this arrangement allows the parallel testing of A and B. In test mode, the 

output z gives the results of tests to A applied at x  and the output y gives the results of the 

tests applied to B at x \  This is because in test mode, the series connection is effectively 

broken and the circuit behaves as if it were a parallel composition.

Using the very approximate testability measure (i+o)/g where i  is the input of inputs, o 

is the number of outputs and g is the number of gates, the testability effort of a series 

composition has been reduced to be the same as the parallel case i.e. from 

(ia+ob)/(ga+gb) to (ia+oa)/ga + (ib+ob)/gb , where ia , io and ga are A's inputs, outputs 

and number of gates (similarly for B).

1 0 . 3 . 4  Map

Since map F  replicates F, test pattern analysis can be done for one F  and reused in every 

other instance. One straight forward way to test circuits in a map structure would be to 

use the following transformation rule:

T lfm ap FH  -> map (T lfFH ) (10.9)

This involves more than doubling the number of wires that go into and out of the circuit 

generated by the map . Since all the F 's are identical and in general don't interact with 

each other, they can be tested simultaneously by applying the test vectors to each F. This 

gives a substantial saving of input lines since only one test mode wire and a signal the size 

of one F 's domain needs to be added. However, the number of output lines has still 

doubled.

It is unnecessary to propagate the observability output of each F  in test mode to an 

observable output. The testability information required is 'is there a faulty F  in the parallel 

structure?’. Assuming that all the circuits will not fail at once in the same way, the 

network is almost certainly working if all the F s give the same answer to the same stimuli 

(assuming that the internal state elements have been initialised consistently). So it is 

sufficient to additionally propagate the result of only one TlTFll and a bit indicating 

whether all the mapped F s  produced the same output (i.e. are working).
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A formal description of such a transformation is:

0cs, t) T IT map F l  (ys, <w, z»
=def (xs> t) distR ; map (T lT F ll); split; [map tu, G] <ys, <w, z»

where G = split; [comp, 7ti] (10.10)

The normal input is the list xs and the test input is t (which is distributed to each mapped 

F). The result contains the normal output list ys along with w which indicates whether 

there were any faults found in the mapped F's and z which contains the test output value 

of one of the F s.

The component comp is a generic comparator which takes a list of signals on its 

domain and gives true at its range if  they are all the same, and false if they are not.

T[A ]

T [A ]

Figure 10.4: (a) Instance of map F (b) corresponding T  transformed circuit.

An instance of map F  and its transformation is shown in figure 10.4.

1 0 . 3 . 5  L o o p

The problem with testing loop circuits is the hidden internal feedback line and the internal 

state that most loop circuits posses. The transformation adopted for loop circuits breaks 

the feedback loop to allow it to be directly controllable and observable by undoing the 

loop. The sequential elements are dealt with in a later section.

We choose to analyse loop circuits by breaking the feedback loop. The transformation 

used is:



198

TlTloop FH -> TlTFH (10.11)

This simply undoes the loop. We have to remember that the resulting circuit is a pair to 

pair relation. The second element of the range pair is used to form the feedback path 

which is now broken.

An alternative method for analysing loop circuits is to unfold the loop, as is done by 

other analysis like symbolic evaluation.

1 0 . 3 . 6  The Delay Element
The delay element <D is the only sequential component in Ruby. A transformation for this 

element will in turn affect all Ruby sequential circuits. Traditional techniques for dealing 

with state elements include isolating the delay circuitry from the combinational circuitry so 

that these can be tested as two separate subsystems. This reduces the complexity of 

testing from 0 (2 /I+m) to 0 (2 n)+0 (2m) where n is the number of delay elements and m is 

the number of state elements when performing exhaustive testing.

The behaviour of the *D element is modified so that in test mode it can be directly 

controlled. The following transformation is used:

(x, (m, x')) TH"£>H y m ( x ‘D y )  v —i m i x ' T f y )  (10.12)

Here, x  is the normal input to the delay element and m is the test mode. I f  the circuit is not 

under test, then the transformed circuit's output is a single time unit delayed version of x. 

When the circuit is being tested, then the input x \  which is assumed to be part of a scan- 
path chain, is related to y through £>.

1 0 . 3 . 6  Row and Col

Since all the elements of these structures are the same, then it should be possible to tests 

these elements in parallel, in a similar manner to map. For row F, a row of F's can be 

placed below a distributed common test signal along with the normal vertical input, giving 

the transformation:
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(h, (m , h'), v» TIT row FH (y, <z,w»
-> <h , <m , /f>, v» snd ; dist^ ; row ( T l f F l l ) ; fst (split; snd comp) <y, (z,w»

(10.17)

Here, h is the horizontal input, v the vertical input, with m the the mode bit and h' the 

direct control value corresponding to h. The normal horizontal output is y and the vertical 

normal output is z. The w line is false if  there was a discrepancy found between the F s in 

test mode. Figure 10.5 shows a picture of the transformation for an instance of row F.

comp

(a) (b)

Figure 10.5: (a) row F (b) and its transformation.

The transformation for col is defined analogously.

1 0 . 3 . 7  Repeated composit ion

Since all the cells in a repeated composition are the same, it is possible to test all of them 

in parallel and then ’and’ the outputs. One possible scheme is shown in figure 10.6.

T[A] T[AJ

Figure 10.6: A possible transformation for repeated composition.
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The test vector and mode is distributed to each cell from the top. The test outputs are 

compared to check if they are all the same by the comparator at the bottom.

A similar technique can be applied to tri and irt triangles.

10.4 Augmenting Ruby for T

The transformations in section 10.3 have the unfortunate affect of transforming beautiful 

designs into ugly, complicated designs. The rules are also not totally consistent with each 

other e.g. the test output of a col does not feed in directly to the test input of a normal 

serial composition. It is the designer’s responsibility to organise the interface between 

different types of structures, although this is usually trivial. I f  descriptions become too 

complicated to reason about easily, then Ruby will becomes less effective as a design 

tool.

A ll of the transformations in Tare of a mechanical nature. They all transform Ruby 

expressions to Ruby expressions. Instead of making the designer explicitly use the rules 

of T o f  transform circuits extra constructs could be added to Ruby to describe where 

testability transformation should take place. This augmented version of Ruby could then 

be translated into a series of semantically equivalent T  transformations along with any 

glue transformations required.

As an example, consider the problem of a hard to test internal node in a serial 

composition A ; B ; C ; D  ; E. Let the difficult node be between C and D. The testability of 

a series network is improved if  it could be mode more parallel. A pseudo-parallel 

construct could be defined with the following ‘top level’ semantics:

(A , B ;  C, D ; E > «  A ; B ; C ; D ; E  (10.18)

This indicates that A ; B  ; C should be placed in parallel with D ; E for the purposes of 

testing. However, the designer uses the expression on the right hand to to reason about 

this construct i.e. normal serial composition. There is no overhead of having to reason 

and route extra wires: these are handled automatically by the transformation from 

augmented Ruby to transformations in T  on standard Ruby.
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A possible transformation from enhanced Ruby to the standard Ruby under Tcould

be:

(A ; B ; C , D  \ E) -> ; B ; C ) ’; (D ; £ ) 1  (10.19)

Here, Tis modified to transform dashed expressions by leaving them unchanged.

Other transformations could be used to link up all the *D latches into a shift-register 

chain for LSSD testing. It might be profitable to have more than one LSSD shift-register, 

or to exclude certain delay elements for global shift registers. One reason for doing this 

would be to reduce the overhead of a snakinging LSSD path through a large circuit.

10.5 Conclusions

The increasingly important requirement to accommodate testability constraints early on in 

the design of digital systems makes the design task more complex. Many of the 

advantages of using hierarchical algebraic languages are diminished by having to consider 

in great detail the testability characteristics of each construct.

To aid the designer a testability transformation Tutilizing traditional test techniques 

has been presented. This technique uses proved transformation rules to help transform an 

existing design to be more testable.

Transforming various parts of the design introduces the need to perform much tedious 

re-wiring amongst the various methods used in T  for propagating fault information. This 

problem is overcome by extending the description language, Ruby, with constructs which 

identify those parts of the design which have to be made more testable. The tedious 

wiring can now be automated in a translation from augmented Ruby to standard Ruby. 

This increases the testability of Ruby designs while still retaining tractable descriptions 

with pleasing algebraic properties.
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An alternative approach suggested by Sheeran is to make each circuit a pair to pair 

circuit. The first element of the pairs are used to drive standard Ruby descriptions. The 

second are used to drive Ruby circuits that have been transformed, perhaps by the method 

given above. Depending on whether the circuit is being tested, either the first or the 

second element will be ‘active’ . This method has the advantage that circuits can be 

composed together just as easily as before.
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Conclusions

We have shown that non-standard interpretation provides a good framework for 

expressing many hardware analyses. Drawn from the domain of testability, we have 

shown how several non-trivial analyses can be expressed easily and quickly. We claim 

that non-standard interpretation provides a paradigm for hardware analyses. This is not 

surprising if  we consider that most hardware analyses manipulate circuit representations 

which are isomorphic to the circuit description. However, often the circuit has to be 

respecified before analysis, and the structure analysed bears no connection to the structure 

built when compiling the circuit description. This duplicates much effort which can be 

saved by using just one representation. It also avoids the problem of inconsistency 

between representations.

The motivation for using non-standard interpretation arose from the desire to use just 

one circuit representation for many analyses. The first non-standard interpretation was 

written to estimate the number of test patterns required to exhaustively test a circuit. This 

kind of approximation analysis seemed similar to the approximations used for functional 

programs to discover strictness.

Taking inspiration from the analyses used by functional programmers to detect 

strictness in lazy functional languages, we have adapted their abstract interpretation 

techniques to work on Ruby hardware descriptions. In doing so, we have had to settle for 

the more general technique of non-standard interpretation, which provides a weaker 

association between the standard and non-standard interpretations. This makes it harder to 

prove safety properties of our analyses.
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A powerful algebraic relational hardware description language was used for 

performing non-standard interpretation. A large subset of the language was 

implemented—  a major undertaking. A restriction has been placed on the nature of 

information flow, although this does still allow us to capture most circuits of interest. The 

standard interpretation can be used to simulate circuits in Ruby. This has been used to 

simulate circuits ranging from individual gates, through arithmetic circuits like 32-bit 

adders to large butterfly networks. Even by itself, the standard interpretation is a very 

useful tool.

The non-standard interpretations extend the power of the system. Normally, type 

checking is an integral part of a compiler. However, we have demonstrated that type- 

checking can be easily captured as a non-standard interpretation. This making type 

checking much easier to provide, and the language implementation much simpler. 

However, the system by default does not run the type checking non-standard 

interpretation on every design—  it is up to the user to execute each design with the type 

checker. This is similar to the case that exists in C where a separate program, often lint, is 

used to perform type checking.

Ruby provides a geometric interpretation for circuits as well as a behavioural 

description. A drawing interpretation exists for producing circuit layouts automatically. 

The interpretation for producing colour drawings of butterfly circuits demonstrates 

strikingly how much can be done by non-standard interpretation. The alternative 

semantics needed to draw these butterflies fits easily onto a page. We have produced a 

useful tool for a small investment by re-using much code from the standard semantics. 

The re-use was made possible by the carefully chosen non-standard interpretation model. 

The layout interpretation was written in just one afternoon.

We have presented more than just a method for providing alternative semantics easily 

with much re-use. We have also shown how to combine non-standard interpretations to 

produce new interpretations. Combining interpretations is a powerful technique, and 

future work could involve finding even more combinators. The theoretical implications of 

combining interpretations are only just being explored by functional programmers. Any 

advance in the theory would be directly relevant to the non-standard interpretation 

technique we have presented.
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Combining forms have been introduced to combine small interpretations into bigger 

ones. This allows problems to be sub-divided into smaller problems and solved 

independently. This is good software engineering practise and allows circuits with 

complex bi-directional data flow to be modelled by a series of uni-directional 

interpretations. These uni-directional interpretations can be implemented efficiently using 

functions, rather than relations which would be required to implement a bi-directional 

interpretation.

A typical integrated circuit design project involves the use of several analysis 

programs. Usually, these programs are poorly integrated and it is not possible to combine 

them. The technique we have presented allows interpretations to be combined easily to 

form new interpretations. One convincing example is of how a testability measure 

interpreter (SCOAP), an automatic test pattern generation interpreter (D-algorithm) and a 

fault simulator (deductive fault simulation) have been combined to produce a more 

efficient path oriented automatic test pattern generator (PODEM).

Attempting to cast a circuit analysis as a non-standard interpretation disciplines us to 

think of the analysis in a precise manner. At first sight, it may not seem possible to 

express an algorithm as complex as the D-algorithm as a non-standard interpretation. 

However, after coming up with a more precise description of D-intersection and finding a 

decomposition of the algorithm into subproblems we were able to cast this algorithm as a 

NSI.

The implementation runs very slowly, although full performance cannot be expected 

of a prototype. There is some scope for improving the performance of the central non­

standard interpreter builder. This would then automatically speed up all other non­

standard interpretations. However, we have decided to stick with a simple and correct 

implementation. Future work in this area might involve using formal transformations to 

improve the performance of the system. We have not been able to compare the 

performance of this system with commercial systems.

The analyses we have presented deal with only discrete non-standard values. 

However, there is no reason why analogue quantities should not be used as non-standard 

values. A very low level analogue description could be abstracted to produce a digital 

version. Providing the abstraction is safe, this could be used to analyse circuits at low 

levels of abstraction.
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The choice of a lazy functional language allowed backtracking analyses to be cast 

elegantly as non-standard interpretations. The backtracking was performed implicitly by 

constructing a list of possible paths but only evaluating the portion of the list required to 

produce the result. Lazy evaluation is also useful for describing streams when simulating 

sequential circuits, since a stream is modelled by an infinite list (or a tuple of infinite 

lists). The interface with the windowing system also relies on lazy evaluation to function 

correctly. In principle, it is possible to implement the non-standard interpretation 

technique in any language, but lazy functional languages seem to particularly suited.

Ruby was a good choice of hardware description language because of the small 

number of simple, well-defined combining forms. It is very easy to translate between a 

Ruby description and its abstract representation. Compiling a language like V H D L would 

have been a more difficult task. VH DL has a very large syntax and complicated semantics 

and not every V H D L  construct can be naturally overriden. Compactness and clear 

compositionality are requirements for non-standard interpretation to work correctly.

Our standard interpretation of Ruby was coded to allow Ruby descriptions to be run in 

one direction at a time. To make a more general Ruby interpreter, we can replace the 

semantics of the active nodes with set to set functions and then perform a PROLOG style 

analysis of the circuit representation. We could then give the values of some inputs and 

some outputs and compute possible values at the remaining inputs and outputs. This 

would be even more inefficient than the current implementation. Currently, we give all the 

inputs and compute the outputs or vice versa.

Non-standard interpretation can be used to build testability analysis tools. Once these 

have been used the next step is to transform the circuit to improve its testability. We have 

presented a few simple techniques for transforming some Ruby expressions to improve 

testability in general. These transformations are just formalisations of traditional manual 

techniques specialised to Ruby. Non-standard interpreters could be used to produce 

circuit transformers by using the existing testability analyses and adding transformation 

analyses.

The following list contains some possible avenues for future research.
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1. The current Miranda implementation is very slow. This is partly because Miranda is 

interpreted. A native coded compiled version of Miranda is being produced, but we expect 

to recode the system in Lazy M L. This is compiled lazy functional language which has 

much better run-time performance. Faster implementations should also be able to support 

more attractive and easy to use user interfaces based around the X I 1 system and XView  

toolkit.

2. Conversion to the Haskell lazy functional language would be advantageous. This 

language is emerging as the standard lazy functional language, and incorporates the most 

recent advances in programming language theory and practice. It is also efficiently 

compiled to object code.

3. Another avenue for future work could involve trying to recover safety properties. 

It might be possible to recover safety by combining common parts of existing 

interpretations. The work on causal relations [Hutton 90] may be of benefit in this area.

4. Objected orientated programming has many obvious benefits for circuit simulation 

[Wolf 91]. For example, a simple two valued logic simulator could be extended to a three 

valued simulator by inheriting the common operations over the different logic systems. 

By thinking about how one interpretation is different and how it is similar to the standard 

interpretation, we can find a good application for objected oriented techniques. This 

would make non-standard interpretations easier to perform and specifications would look 

more natural. With hindsight, we notice that the non-standard interpretation system we 

have presented has hand-coded into it notions very similar to inheritance and type 

extension as well as data abstraction. However, we had to employ the features of a 

functional programming language (e.g. polymorphism) to emulate these characteristics of 

objected oriented programming. It would be an interesting piece of further work to 

reimplement our non-standard interpretation system in an object orientated language such 

as Smalltalk or C++.

5. We hope to flesh out the layout interpretations to produce output suitable for 

automatic layout and routing tools. These would then provide a quick route to silicon and 

an almost automatic translation between high level Ruby specification and CIF layout. It 

might be possible to perform routing and layout by using non-standard interpretation. 

Another analysis which could be captured as a non-standard interpretation could be design 

rule checking.
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6. Field programmable logic devices are gaining popularity and can be used to realise 

complex designs. We hope to map our butterfly networks onto a field programmable logic 

device manufactured by Algortonix. The software used to program the Algortonix has 

clever routers which realise complex wiring patterns efficiently. The code used to drive 

the programming software will be produced by non-standard interpretation.

7. Another project under consideration is compiling Ruby to occam2 and then 

simulating it on a 64 transputer array manufactured by Parsytec. The transputer array can 

be configured arbitrarily using a crossbar switch. The translation between Ruby and 

occam2 can be performed easily as a non-standard interpretation. I f  this is successful, 

then this equipment could be used to perform expensive circuit calculations like test 

pattern generation very quickly in parallel. One important consideration is how much 

hardware to map to each transputer, since the number of available transputers is limited.

8. One very useful tool for Ruby would be a transformation assistant program. This 

would allows the user to manipulate Ruby expressions, perhaps using a structure editor. 

There would be a library of transformations available. As the user performed 

transformations, the system would show the effect each transformation had on the layout. 

It could also perform gate count estimates or power calculations. These additional views 

of the could be constructed as non-standard interpretations. One possible tool which could 

be used to help build this system is the Cornell Synthesiser Generator. This tool makes it 

easy to build structure editors. A non-standard interpretation of the decorated graph of the 

abstract syntax could be used to produce layouts and performance estimates.

9. The testability transformation we have suggested has been motivated by the 

traditional techniques currently used in industry. They are really too complex to be of any 

practical benefit. It is the author’s opinion that a formal analysis of the hardware 

description should somehow give clues about how testable a circuit is and how it can be 

transformed to improve testability. Also, formal rules could be formulated stating how to 

compute the testability of a composite design when the testability of the constituent 

designs is known. For example, if  we know how to generate test patterns for circuits A 

and B then we look for a way of deriving the test patterns required for A ; B without 

starting from scratch.
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10. Although non-standard interpretation works well for analyses which have a 

similar ‘shape’ to the circuit under analysis, there are still many analyses which cannot be 

cast in this way. Instead of relying on an isomorphic relationship between the standard 

and non-standard representations, we could look for a homomorphism. This would 

greatly increase the type of analyses we could capture while still retaining a formal 

relationship between the standard and non-standard representations.

11. Currently the non-standard interpretations produced work in ‘batch’ mode. A 

circuit is submitted along with some inputs and some outputs is produced. However, 

many designers produce circuits incrementally, adding a bit at a time to a circuit. It is 

wasteful to recompute from scratch when work from a previous calculation can be used. 

It should be easy to add hooks into the system to provide such support. This would then 

allow the non-standard interpretation system be used as part of a larger incremental design 

system.
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Appendix A

A .l Source for Deductive Fault Simulator
> I I deduc.m Deductive Fault Simulation of Combinational Circuits

> %include "ruby"
> %include "standard"
> %include "-/miranda/general.lit"

> deduc_interp
> = [(And1, and_ded, undef),
> (Or1, or_ded, undef),
> (Not', not_ded, undef)]

> deduc_nsi = standard deduc_interp

> not_ded (Tuple [Label n, Logic vhere]) (Tuple [FaultSet fx, vin])
> = Tuple [FaultSet (outfault n vhere fx), Logic vhere]
> not_ded x other = error ("not_ded: " ++ show_tuple other)

> and_ded (Tuple [Label n, Logic vhere])
> (Tuple [Tuple [FaultSet fx, Logic x],
> Tuple [FaultSet fy, Logic y]])
> = Tuple [FaultSet (outfault n vhere fo), Logic vhere]
> where
> fo = cn vhere (intersection (cn x fx u) (cn y fy u)) u
> u = union fx fy
> and_ded x other = error ("and_ded: " ++ show_tuple x ++ " with

input "
> ++ show_tuple other)

> or_ded (Tuple [Label n, Logic vhere])
> (Tuple [Tuple [FaultSet fx, Logic x],
> Tuple [FaultSet fy, Logic y]])
> = Tuple [FaultSet (outfault n vhere fo), Logic vhere]
> where
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> fo = cn vhere (union (cn x fx u) (cn y fy u)) u
> u = union fx fy
> or_ded x other = error ("or_ded: " ++ show_tuple other)

> outfault n False fs = (SA1 n) : fs
> outfault n True fs = (SAO n) : fs

> cn False fs u = fs
> cn True fs u = mkset (u— fs)
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A .2 Source for SCOAP Testability Measure

A . 2 .1  Controllabil i ty  measure

> %include "ruby"
> %include "standard"
> %include "~/miranda/general.lit"

> cont_interp
> = [(And1, and_cont, undef),
> (Or', or_cont, undef),
> (Not1, not_cont, undef)]

> cont_nsi = standard cont_interp

> not_cont nv (Tuple [a, x])
> = Tuple [x, Cont (cOx+1, clx+1)]
> where
> Cont (cOx, clx) = x
> not_cont x other = error ("not_cont: " ++ show_tuple x ++ " with "

++
> show_tuple other)

> and_cont nv (Tuple [x, y])
> = Tuple [Tuple [snd_tuple x, snd_tuple y],
> Cont (min [cOx, cOy]+l, clx+cly+1)]
> where
> Cont (cOx, clx) = snd_tuple x
> Cont (cOy, cly) = snd_tuple y
> and_cont x other = error ("and_cont: " ++ show_tuple x ++ " with

input "
> ++ show_tuple other)

> or_cont nv (Tuple [x, y])
> = Tuple [Tuple [snd_tuple x, snd_tuple y],
> Cont (cOx+cOy+1, min [clx, cly]+l)]
> where
> Cont (cOx, clx) = snd_tuple x
> Cont (cOy, cly) = snd_tuple y
> or cont x other = error ("or_cont: " ++ show_tuple other)
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A . 2 .2  Observabili ty  mesure

> %include "ruby"
> %include "standard"
> %include "~/miranda/general.lit"

> obsv_interp
> = [(And*, undef, and_obsv),
> (Or', undef, or_obsv),
> (Not', undef, not_obsv),
> (Fork1, undef, fork_obsv)]

> obsv_nsi = standard obsv_interp

> not_obsv (Cont (cO, cl)) (Tuple [ignore, Nr ob])
> = Tuple [Scoap (cO, cl, ob+1), Nr (ob+1)]
> not_obsv x other = error ("not_obsv: " ++ show_tuple x ++ " with "

++
> show_tuple other)

> and_obsv (Tuple [Cont (cOx, clx), Cont (cOy, cly)])
> (Tuple [ignore, Nr ob])
> = Tuple [Tuple [h, Nr (ob+l+cly)], Tuple [h, Nr (ob+l+clx)]]
> where
> h = Tuple [Scoap (cOx, clx, ob+l+cly), Scoap (cOy, cly, 

ob+l+clx)]
> and_obsv x other = error ("and_obsv: " ++ show_tuple x ++ " with 

input "
> ++ show_tuple other)

> or_obsv (Tuple [Cont (cOx, clx), Cont (cOy, cly)])
> (Tuple [ignore, Nr ob])
> = Tuple [Tuple [h, Nr (ob+l+cOy)], Tuple [h, Nr (ob+l+cOx)]]
> where
> h = Tuple [Scoap (cOx, clx, ob+l+cOy), Scoap (cOy, cly, 

ob+l+cOx)]
> ord_obsv x other = error ("or_obsv: " ++ show_tuple x ++ " with 

input "
> ++ show_tuple other)

> fork_obsv v (Tuple xs)
>|| = error ("fork_obsv trace: " ++ show_tuple xs)
> = foldll (min_merge_tuples (Tuple xs)) xs

> min_merge_tuples e (Tuple [x, Nr a]) (Tuple [y, Nr b ] )
> = Tuple [x, Nr (min [a, b])], if ~is_num x & ~is_num y
> min_merge_tuples e (Tuple as) (Tuple bs)
> = Tuple [min_merge_tuples e a b I (a, b) <- zip2 as bs]
> min_merge_tuples e x y
> = error ("min_merge_tuples: e=" ++ show_tuple e ++ " x=" ++
> show_tuple x ++ " against " ++
> show_tuple y)

> ext_obsv (Tuple [blah, Nr d]) = Nr d
> ext_obsv (Tuple xs) = Tuple (map ext_obsv xs)
> ext obsv other = error ("ext_obsv: " ++ show_tuple other)
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A .3 Partial Evaluation Interpretation

> || Partial Evaluation Interpretation

> %include "ruby”
> %include "standard"
> %include "~/miranda/general.lit"

> partial_eval_interp
> = [(And', and_sym, undef),
> (Or', or_sym, undef),
> (Not1, not_sym, undef)]

> and_sym n (Tuple [Symbolic x, Symbolic y])
> = Symbolic (AndSymbol x y)
> or_sym n (Tuple [Symbolic x, Symbolic y])
> = Symbolic (OrSymbol x y)
> not_sym n (Symbolic x) = Symbolic (NotSymbol x)

> partial_eval_nsi = standard symbolic_interp

> simplify (NotSymbol (NotSymbol x)) = x
> simplify (NotSymbol (AndSymbol x y))
> = OrSymbol (simplify (NotSymbol x)) (simplify (NotSymbol y))
> simplify (NotSymbol (OrSymbol x y ) )
> = AndSymbol (simplify (NotSymbol x)) (simplify (NotSymbol y))
> simplify (AndSymbol SymbolFalse x) = SymbolFalse
> simplify (AndSymbol x SymbolFalse) = SymbolFalse
> simplify (AndSymbol SymbolTrue x) = x
> simplify (AndSymbol x SymbolTrue) = x
> simplify (OrSymbol SymbolTrue x) = SymbolTrue
> simplify (OrSymbol x SymbolTrue) = SymbolTrue
> simplify (OrSymbol SymbolFalse x) = x
> simplify (OrSymbol x SymbolFalse) = x
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