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SUMMARY

In the theory of integrated optics, a central role is played by the rib

waveguide geometry. The electromagnetics problems consists of the determination of 

the transverse mode profile and propagation constant of the dominant mode in the 

guide. Since this problem is not soluble in closed form by any known analytical 

methods, several numerical techniques have been used, amongst which the simple 

finite— difference (FD) method is very attractive because of the rectilinear geometry 

of the rib waveguide. However, the problem requires the imposition of a boundary

condition at infinity in the transverse cross— section, which is not possible on a FD 

mesh of finite extent.

The Green's function (GF) is an alternative formulation for this

open— boundary problem. A suitable GF for a planar waveguide (with no rib) can be 

found analytically by Fourier transform methods, which can then be used to

transform the Helmholtz equation for the region outside the rib from an elliptical

partial differential equation into an integral equation on a contour surrounding the

rib only, via Kirchhoff's theorem. This integral equation is matched to a FD solution 

for the field inside the rib by an iterative method. In this way the correct boundary 

conditions at infinity are automatically incorporated. In actual implementation of the 

method, a fully discretised analogue of Green's theorem on the FD mesh is used, in 

which the GF is the true inverse of the discrete FD operator, rather than

discretising the exact boundary integral equation, which permits a systematic

treatment of the singularity of the GF to be carried out.

The method is explored fully by initially considering slab waveguides, i.e . with 

no rib. Application to the ridge waveguide is however not investigated to due time 

contraints, but a possible method is discussed.
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CHAPTER 1 INTRODUCTION

1.1 WAVEGUIDE OPTICS

Waveguide optics has undergone massive investigation during the last decade, as 

researchers begin to exploit the propagating characteristics of light. With the promise 

accomplished of high transmission rates by fibre optics, the next step of semiconductor 

integrated optics does not seem too remote. Propagation of electromagnetic waves in 

semiconductor material had already been investigated in the 1950's by Marcuvitz1 where 

the theory of wave propagation was established.

The main impetus for constructing integrated optical circuits came about when the 

design of an all—optical fibre circuit was devised by S.E. Millar2 at Bell Laboratories. 

Although transmission of optical information in fibres yielded in high bit transmission rates, 

they suffered from signal degradation over several hundreds of kilometres. Optical fibre 

repeaters constructed from the current state— of— the— art electrical technology proved 

adequate but cumbersome. Because the operating wavelength was in the micron region, 

optical structures of these dimensions could yield small compact device circuits with lower 

loss than their bulk counterparts.

The majority of guided wave propagation problems are solved by employing the 

analytical separation of variables technique. This method, although powerful, becomes 

impossible whenever the boundary conditions are not simple. Dielectric slab waveguides3 

have been analysed exactly. Other geometries considered are the strip or embedded strip 

waveguide geometry, and ridge waveguides. Confinement of the light in the strip 

waveguides is accomplished by the use of total internal reflections at the dielectric 

boundaries.

These various geometries may solve the problem of guiding the light, other 

problems can occur such as dispersion, cutoff conditions and multimode operation. Ideally 

monomode operation is desired and this can be attained by careful material design, 

geometry and dimensions.

1.1.1 Dispersion

One of the main causes of loss of waveguiding is that of material dispersion. This is 

due to the inherent property that the refractive index of optical materials is a function of 

wavelength. Therefore for minimum dispersion, a particular operating wavelength for the 

waveguide material is chosen4.

Another cause of loss of waveguiding is that caused by waveguide dispersion. This 

causes the optical pulse to spread out and become distorted as it travels down the length 

of the waveguide. Since the pulse spread is proportional to the difference in the refractive

2



indices of the guiding and substrate layers, this distortion can be reduced by considering a

much smaller difference in refractive index step.

The other type of dispersion is that of intra— modal dispersion. For a given 

frequency of operation, the waveguide supports a finite number of modes, each of which 

travels at its own velocity. Thus the optical information can become irregular because of 

this. However, the problem can be solved by operating the waveguide with one mode,

known as monomode operation.

1 .1 .2  Cutoff Condition

Confinement of the light inside a guiding dielectric layer is accomplished by 

surrounding this layer with other dielectric layers whose refractive index is lower. With 

this configuration, the optical signal is sandwiched between the dielectric interfaces by total 

internal reflection (TIR). When TIR is lost at one dielectric interface, the light escapes 

from the guiding region and subsequently disperses into the surrounding region. This 

mainly occurs at low frequencies in which the angle of incidence of the light at a 

dielectric interface is sufficiently high. As a consequence propagation of the light is not

possible.

1 .1 .3  Monomode Operation

Monomode operation in optical devices is preferred. As mentioned above, an optical 

device which operates in multimode the optical information is dispersed due to the 

different group velocities of each mode and thus transmission of information becomes 

useless. Since the number of modes supported is directly dependant on the materials and 

geometry used, suppression of these unwanted modes can be accomplished by careful 

device design. The zero order or fundamental mode has a maximum at the centre of the 

guide, with the field decaying as one progresses to the dielectric boundaries. This field is 

easily generated by semiconductor lasers and can be detected by photo— diodes.

Hence for a waveguide to operate with particular modes it is important that these 

optical devices be accurately modelled so that the time and effort spent on material and 

geometry design of the device be reduced.

It can be seen that the development of optical devices is over— complicated by the 

tight tolerances of the small micronic structures. However it is envisaged that this 

technology can replace the 'electric systems' technology by superior performance and be 

cost effective5.
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1.2 WAVEGUIDING STRUCTURES

1.2.1 Slab Waveguide

The slab waveguide is the simplest geometry that can be considered. Because of its 

simplicity, it can be described by simple mathematical equations that give exact analytical 

solutions. These waveguide solutions and properties have been useful in obtaining a better 

understanding of more complicated waveguiding structures.

Figure 1.1 shows the configuration of the dielectric slab waveguide. A layer of 

material with refractive index n 2 is deposited onto a substrate with refractive index n 3. 

The cladding, n p  can either be another dielectric material with a refractive index lower 

than n 2, or air, which has a refractive index of unity. Because n 2 >  n 1, n g, light is 

confined by total internal reflections on the dielectric interfaces.

If n 1 =  n 3, we have a symmetrical slab waveguide structure. For n , * n 3, it is 

called an asymmetric slab waveguide. The symmetric structure supports many modes which 

are mathematically expressed as odd and even modes. The lowest order mode is capable 

of propagation down to very low frequencies. Modes in the asymmetric slab waveguide 

are fewer and mathematically more complicated. However they are more widely used since 

the higher modes can easily be suppressed.

Fabrication of slab waveguides is made easier by the simple geometry of the

structure. Deposition of glass/plastic films onto similar substrates is accomplished by 

evaporation, sputtering or by epitaxial growth techniques. Another method called

ion— implantation, utilises the method of creating a separate layer on a substrate by 

bombarding the surface with ions. This alters the refractive index of the surface layer and 

hence a guiding film is created. The depth of the layer can be altered by accelerating the 

ions to a higher or lower velocity.

1 .2 .2  Embedded Strip Waveguide6

Restricting the area of the ion implantation, a smaller or narrower structure can be 

built. As the name suggests, a waveguide with a higher refractive index is embedded into 

the substrate as shown in figure 1.2a. The rays of light are again confined in the lateral 

direction by the reflection at the bottom and top dielectric interfaces, but they are also 

confined in the transverse direction thus restricting another degree of freedom. The 

propagation of the rays can be visualised as a zig— zag fashion along the length of the

guide (figure 1.2b) which can be bent to channel the light along a predetermined path.

1 .2 .3  Ridge/Rib Waveguide

A simple solution to confine a mode in a dielectric slab waveguide is to introduce
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Figure 1.2 Embedded Strip Waveguide Geometry



a ridge/rib into which extends part of the modal field (figure 1.3). This structure is useful 

because it can control the effective index of propagation of the mode by altering the rib 

height. A  guide consisting of a rib height h greater than the depth layer d will give 

strong guiding in the rib part as the mode would be operating at cutoff in the thinner 

slab region. Such a device with strong guiding characteristics can easily incorporate bends 

or curves as in the embedded waveguide. A structure with h < <  (h + d ) would cause the 

mode to extend laterally as the vertical confinement is weak. This configuration can be

used for transferral of modal power into another rib waveguide in close proximity. This 

directional coupler can be ultimately used as a logic switch.

1.3 NUMERICAL TECHNIQUES

Because of the complexities of the waveguide structure, an analytical solution of the 

wave equation is not possible, so an approximate numerical solution is sought.

Over the last two decades, researchers have devised many approximate numerical 

techniques in order to model waveguiding characteristics. A solution to an eigenvalue

equation will give an effective index value of the propagation wave, and a physical

representation of the modal field. These can be used to determine the guiding 

characteristics of the structure, how well/weakly confined the wave mode is etc.. The

number of propagating modes and their effective indices of propagation can consequently 

be calculated and by altering the dimensions of the waveguide, suppress any unwanted 

modes. Other ways of suppressing modes is to alter the waveguide material composition or 

the operating wavelength. Optimum devices can therefore be designed from the results of 

the numerical analysis.

The main method of determining optical waveguide charateristics is to use Maxwell's 

equations. These equations involve the electromagnetic components of the optical field E

and H, whose properties ultimately lead to a wave equation which is solved for the

particular waveguide structure.

The wave equation is readily determined for simple slab waveguides, where the 

boundary conditions are simple and yield exact solutions to the electric field profile and 

effective index of propagation. However this analytical technique breaks down whenever the 

waveguide geometry becomes complicated e.g. when a vertical dielectric boundary is

introduced as in the embedded and ridge waveguides. As a consequence an approximate

numerical technique is pursued.

1.3.1 Effective Index Method

The Effective Index method7 (EIM) is an approximate technique which attempts to 

solve the effective index by considering slab modes. This is accurate if the adjacent slabs
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do not differ considerably in height and this method could break down if the rib was very 

much pronounced. However the over estimation puts an upper limit to the effective index.

1 .3 .2  Scalar Finite Difference Method8

This method is suitable for rectangular waveguides such as the ridge waveguide. The 

cross section of the waveguide is covered by a rectangular mesh/grid, the points on this 

grid representing the electric field component of the optical field. The second order 

derivatives in the wave equation are replaced by the finite difference (FD) approximation 

and the equation is rearranged to be solved for the electric field at each grid point. The 

FD approximation is applied in a pagewise manner across the cross section of the 

waveguide, with the effective index being updated by the Rayleigh quotient using the 

corrected field values. Convergence is usually attained when the difference between 

successive effective index values is small or that the effective index no longer improves.

The error involved in this method is (^ h )2 where h is the mesh spacing between 

adjacent points. This is a simple technique which gives an acceptable representation of the 

field profile and the effective index estimate.

The major limitation to this technique is that the boundary conditions at infinity 

cannot be modelled. To solve this, one would have to consider a larger box to include 

the field further along the lateral direction. Alternatively the finite mesh/grid can also be 

graded, so that smaller mesh points are used within the vicinity of the modal field, and a 

larger mesh as the field gets weaker.

1 .3 .3  Fourier Techniques

As most waveguides have a planar stratification, elementary Fourier techniques can 

be implemented. The advantage of this is that the Fourier transform (FT) would eliminate 

the coordinate variable in the direction of the FT, thus simplifying the wave equation to 

be solved. As shown in chapter 4, this reduces the partial differential wave equation into 

an ordinary differential equation, whose solutions are simple.

1.4 GREEN'S FUNCTION METHOD

The Green's function (GF) method has been mainly applied to microwave problems9 

but recently has been used for optical waveguide problems10* 11. The GF is a solution of 

Poisson, wave and Helmholtz equations, and as the boundary conditions are exact, makes 

the GF a very powerful technique.

The GF basically gives the impulse response of a system. The inhomogeneous 

Helmholtz wave equation contains the Dirac delta function <5(y— y') which can be thought
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of as being a pulse of laser light in the guiding region. Thus we can determine the modal 

distribution of the waveguide caused by this point source. For the other surrounding

regions, the homogeneous Helmholtz wave equation is solved, and with the reduction to an 

ordinary differential equation with the application of the Fourier transform, gives a simple 

known solution.

The GF can also be used with other analytical techniques such as the

Kirchhoff— Huygen's line integral. This method explicitly incorporates the field conditions at 

infinity, which is of course, advatageous to our problem.

1.5 CONCLUSIONS AND INTENDED RESEARCH

Waveguiding can be accomplished in many ways and is dependent on many factors 

like material composistion and geometry. These parameters can be determined by the 

numerical modelling of the optical device, hence an accurate numerical method is sought.

Initially the Effective Index Method and Finite Difference methods are studied and 

the results compared to results published by other authors who have used these methods.

To obtain an analytical solution to the field of dielectric waveguides, the scalar GF

is determined. This is the main focus of research for the thesis. Since the slab waveguide

solution is known to be exact, the results of the GF derived will be compared to this..

1.6  LAYOUT OF THESIS

A review of the basic waveguide structures to be considered has been given. The 

complication of the exact analytical solution for other waveguide geometries has given 

impetus to construct another numerical technique for the evaluation of waveguide 

characteristics of rib structures.

Chapter 2 will discuss the background theory of wave propagation in dielectric films 

in more detail. The concepts discussed will include Maxwell equations, total internal 

reflection and of exact solutions of the electric field for slab waveguides.

A  full chapter is devoted to the Effective Index and the Finite Difference methods 

for slab and ridge waveguides, and particular ridge waveguide structures of interest will be 

introduced and solved with the numerical techniques mentioned. The finite difference 

approximation is introduced here to facilitate an understanding to the discretized method 

used in the Kirchhoff— Huygens line integral.

In chapter 4, an introduction is given to the scalar Green's Function which is to be 

applied to the waveguide problem. The properties and relevant boundary conditions 

applicable to the GF method are discussed. The analytical tool, the Kirchhoff— Huygens 

(KH) line integral is derived, whose components includes the GF.
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The derivation of the GF will be given in chapter 5. In this chapter, the GF for

free space and the dielectric slab structure are determined. These exercises are performed

so that the calculated GF can be compared to solutions given in the literature.

In chapter 6, the solution of the GF for a point source inside the guiding layer of

the slab waveguide is extended to derive a transcendental equation, which when solved,

gives the effective index of the structure. As this GF is a component of the KH line 

integral, the integral is performed for a chosen path in the slab waveguide. Numerical 

results using the KH integral and any limitations of the GF method are discussed.

Conclusions about the research work and future considerations and improvements are 

given in chapter 7.
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CHAPTER 2 WAVEGUIDE THEORY

Before attempting to solve the propagation characteristics of ridge waveguides, this 

chapter introduces Maxwell's equations, the concept of total internal reflection of light in 

dielectric media, transverse electric (TE) and transverse magnetic (TM) propagation of 

electromagnetic waves in slab waveguides and eigenvalues of such structures. Since the 

treatment of the slab structure is exact, it will be used as a reference for the calculation 

of the Green's function for the slab waveguide.

2.1 MAXWELL'S EQUATIONS

Propagation of electromagnetic waves is described by the electrical and magnetic field

vectors E(x,y) and H(x,y), the vectors being derived from the electric and magnetic fields

produced by the motion of electrostatic charges. The electric and magnetic field

components of electromagnetic wave propagation are expressed from Faraday's and

Ampere's Laws respectively

VxE = - 5B /5t ( 2 . 1 )

VxH = 5D /5t + 1  ( 2 . 2 )

where B is the magnetic flux density, D is the electric flux density and J is the current 

density. Assuming that there are no sources in the region containing the fields, then J =  

0 and p =  0, thus

V.B = 0 ( 2 . 3 )

V.D = p = 0 ( 2 . 4 )

V. J  = b p /  bt = 0 ( 2 . 5 )

B = eE = eQerE ( 2 . 6 )

B = fiH = /x0 /xrH ( 2 . 7 )

where p is the charge density, er is the permitivity of the medium, eG is the permitivity 

of free space, ^  is the relative permeability of the material (usually equal to 1) and /x0 

is the permeability of free space.

For time harmonic fields, propagation of the electromagnetic wave along the 

z—direction is assumed as exp j( oat — (3z). Therfore the above equations are expanded to 

give

VxE = -  jooB ( 2 . 8 )

VxH = jwD ( 2 . 9 )

from (2.6), (2.7) assuming a source free region, i.e. p =  0, we obtain

VxE = -  jayiH ( 2 . 1 0 )
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VxH = jo)eE

V./iH = 0

V. eE = 0

These are the reduced Maxwell's Equations for time harmonic fields.

( 2 . 1 1 )

( 2 . 1 2 )

( 2 . 1 3 )

2.1.1 Wave Equation

and

Taking the curl of (2.10) and (2.11) we obtain

VxVxE = V(V.E)  -  V2E = - j o)/i VxH = co2 e/xE 

VxVxH = V(V.H) -  V2H = VxE = co2 e/*H

l . e V2E + kc 2E = 0 

V2H + kc 2H = 0

( 2 . 1 4 )

( 2 . 1 5 )

( 2 . 1 6 )kc 2 = w2jlie

Equations (2.14) and (2.15) represent the reduced Helmholtz wave equation for 

electromagnetic waves for macroscopic media, which will be used extensively for the 

evaluation of slab waveguides.

2 .1 .2  Maxwell's Curl Equations

Using the definition of the curl operator on the vector U  =  u(x,y,z)

i j k
d /d x  d /d y  d /d zVxU =

Ux Uy Uz

auz _ auy
.dy dz i + dz dx

auv aux
dx dy ( 2 . 1 7 )

in equations (2.10) and (2.11), we obtain the expanded Maxwell's equations in component 

form

dF
+ j^Ey = 

dE
-j^ E X “ = -  j W/̂ Hy

= - j ^ H zdEy dEj
dx dy

/■JH
4 z  +  ^ hy -  j w e E *

dKL
dx = jweE,

( 2 . 1 8 )

( 2 . 1 9 )

( 2 . 2 0 ) 

( 2 . 2 1 ) 

( 2 . 2 2 )
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The above equations explicitly relate the transverse electric field and the tranverse 

magnetic field components. However, we need not solve the above for all components, 

since we can make use of the redundancy in Maxwell's equations to get the tranverse field 

components from solutions for the longitudianl component Ez and Hz (section 2.3).

2 .1 .3  Eigenvalue |3

To describe each mode propagating in the dielectric medium, a distinct value of 

eigenvalue (3 (or effective index ne) is designated. Each mode has this distinct eigenvalue 

unless two modes are degenerate (these modes have equal phase velocities but their

transverse field profiles are not always identical). Thus having defined a propagating mode, 

it is then assumed to have a translational invariance as exp j(cot — (3z), which describes a 

mode travelling in the positive z— direction, with a propagation index of 0 and at a 

frequency oo (co =  2irf) readian/second, i.e.

E i ( x , y , z )  = e j ( x , y)  e j ( w t “^ i z )

Hi ( x , y , z )  = hj ( x , y)  e J ( cot"^ i z ) ( 2 . 2 4 )

Since we have written the time and space variation of the field in terms of the complex 

exponential, the only physically meaningful part of this complex expression is the real part 

i.e . £ =  Re(E). This equality relates the real measurable field £ to the theoretically

derived field E. The principle advantage of this is that the complex exponential expression 

is more readily manipulated than the equivalent expressions involving sine and cosine 

functions.

2 .1 .4  Guidance

For a mode to propagate in a dielectric medium, it is necessary that the effective 

index <S= kQne be such that

k0n 2 >> (3 > kQn 3 > k ^  ( 2 . 2 5 )

where k0 =  2nr/A0 is the free space wave number, A0 being the free space wavelength, 

n 1 and n 3 are the refractive indices of the surrounding cladding and substrate regions 

respectively. A mode is said to be strongly guided if the value of n e is close to that of

the film refractive index n 2, and weakly guided if ne is close to n 3. A value of effective

index between these two extremes ensures that total internal reflection occurs at both 

dielectric boundaries. This is described in more detail below. It is therefore envisaged that 

the solution of the eigenvalue equations derived for slab waveguides will yield effective 

index values within this range of propagating modes.



2.1.5 Cutoff Condition

If the value (3 of a mode satisfies the relation

(3 = kQn 3 ( 2 . 2 6 )

the mode is said to be operating at the cutoff condition. As described in section 1.2, this 

occurs when total internal reflection (TIR) is lost at a dielectric boundary and the mode 

propagates into the surrounding medium. The concept of TIR is described below.

2.2 REFLECTION AT A  DIELECTRIC INTERFACE

Consider a ray of light at an interface between a dense medium with refractive 

index n 2, and a less dense medium which has a refective index of n 1, i.e. n 2>  n . This 

is shown in figure 2.1. By the application of Snell's law

n 2s i n 0 2 = n 1s i n 0 1 ( 2 . 2 7 )

It can be seen that for the critical condition 0 1 =  9 0 0 (i.e. no light escapes into the n 1 

region) we require

n 2/ n ,  = s i n 0 c ( 2 . 2 8 )

Once the critical condition is met, s in 01 >  1.0, therefore the x/2 — 0 1 is imaginary.

The ray is reflected back into the n 2 medium. For a three layer problem, we require the 

condition

s i n 0  > n 3/ n 2 ( 2 . 2 9 )

at the lower interface. For the cutoff conditions n 2sin0 >  n 1 and n 2sin0 >  n 3,

multiplying by kQ

n 2ko s i n 0  > kQn 1 

n 2ko s i n 0  > kQn 3

Thus n 2k0 > P > k0n 3 > ( 2 . 3 0 )

as mentioned previously in equation (2.25). A graphical representation of the above 

inequality is shown in figure 2.2.

It can be seen that for a given value of frequency a), there exists a continuum 

range of values for (3 for each mode. Each value of (3 gives a different value of bounce 

angle at the interface (figure 2.3a).

Simple guide analysis suggests that (3 can take on a continuum of values between 

n 2kQ and n ^  for a given frequency. Since a given value of (3 corresponds to one value 

of bounce angle, this implies that the bounce angle has a continuim of values once critical 

conditions have been met.

Figure 2.3b shows loss of TIR — light escapes into the cladding (air). Figure 2.3c
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Figure 2.1 Reflection at a Dielectric Interface
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shows TIR conditions satisfied at the n 2/n 1 interface but not at the n 2/ n 3 interface. Since 

TIR is not achieved here, the light escapes into the lower substrate. Figure 2.3d depicts 

the condition when critical conditions have been met at both interfaces and guiding 

persists.

2.3 THE ASYMMETRIC SLAB WAVEGUIDE

Having set out the conditions for optical wave guiding, we shall derive the 

expressions for the electric and magnetic fields in a slab waveguide.This derivation will 

yield a transcendental equation which can be solved for a particular mode number to 

obtain its effective index of propagation. We will only consider propagating modes for the 

asymmetric slab waveguide, the symmetric guide (n n =  n 3) being a special case.

The geometry and coordinate system of the guide are shown in figure 2.4. The 

translation invariance described in section 2.1.2 will be used to depict a propagating wave 

in the positive z— direction. The guide will be assumed to be homogenous and isotropic in 

nature. Guided solutions are expected for the guiding region n 2 and the modal field is 

expected to decay exponentially in both the cladding and substrate regions. The guide has 

no variation along the y—axis i.e. a/3y =  0. The phase front of the propagating wave 

lies in the x— y plane, being confined in the x— direction by the upper and lower 

dielectric boundaries, and extends to infinity along the y— direction.

2.3.1 Guided TE Modes

For TE polarisation, the only three field components Ey, H x and H z exist (figure

2.5a). With Ex , Ez, Hy =  0, we have the following field expressions from Maxwell's

equations in section 2.1.2

-j|3Hx -  3Hz /d x  = ja)e0 er Ey ( 2 . 3 1 )

j0E y = -jw ^o Hx ( 2 . 3 2 )

dE y/dx = -ju /x0 Hz ( 2 . 3 3 )

Thus the H components can be expressed in terms of the Ey component

Hx = - jM * o  3Ey/ a z  = ~(3o)fj,0Ey  ( 2 . 3 4 )

Hz = i /o>Ho aEy/ a x  ( 2 . 3 5 )

Substitution of (2.34) and (2.35) into (2.31) yields the one— dimensional reduced wave

equation for the Ey component

a 2Ey
—  + ( n 2k0 2 -  0 2)E = 0 ( 2 . 3 6 )
ax2

The problem of determining the TE modes of the slab wavguide has now become very
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simple since we now have to find solutions of the one dimensional reduced wave equation, 

the magnetic field components being readily calculated from equations (2.31)—(2.33). The 

above equation can be solved for each dielectric region, subject to the following 

conditions.

1. The tangential E and H fields are continuous at the boundary x =  0 and x =  — d.

2. As we require a solution of a mode confined within the film layer, the solution of the 

wave equation must yield an oscillatory solution for that region.

3. With the above assumptions, the field is expected to decay outside the film region i.e. 

an exponential decay of the field occurs in the cladding and substrate regions as x -» oo. 

Hence the field has an evanescent 'tail' in these regions.

Solutions which satisfy these conditions for the Ey component are

A e -K 1x

Ev ( x , z )  = B c o s ( k 2x + i/0 e “ j 0 z  

C e K 3X

x > 0 

- d  < x < 0 

x < - d

where

k , = ( 0 2 -  n i 2k0 2) i

k 2 = ( n 2 2k0 2 -  (32)2 

k-  = ((32 -  n 32k0 2)*

( 2 . 3 7 )

( 2 . 3 8 )

( 2 . 3 9 )

( 2 . 4 0 )

The term e-M has been omitted for convenience. It has been assumed that all the 

dielectric regions are magnetically equivalent i.e. /r1 =  f i2 =  f i3 =  1.0. The phase

constant \p has been introduced since the solutions in general will be neither odd nor even 

as is the case for a symmetric slab. The amplitude coefficients A, B and C will be 

determined by applying the boundary conditions.

From equation (2.35), the magnetic field component Hz can be expressed as

H ~ ( x , z )  =

_ j * i A e"k i x  J0)

- j ^ 2B s i n ( x  2x + \},) 

j-3 C  e K 3

X > 0

- j P z  -d  < X < 0 ( 2 . 4 1 )

x  < - d

Applying the boundary conditions at x =  0 

Eta n  : A = B co s  (i/0

H tan : A = k 2/ k i b s in( i /0

Taking the ratio of these two equations to eliminate A and B gives

t a n ( i / 0  =  k   ̂/ k  2 ( 2 . 4 2 )
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A similar expression is obtained at the other boundary x =  - d

t a n ( ^  -  k 2d)  -----k 3/ k 2

Taking the inverse tangents of equations (2.42) and (2.43), noting that

t a n ( x )  = t a n ( x  ± nir)

we obtain

yf, = ^ T E  ± 

\p -  K2d = 2^-?^ ±

tvk

m7r

n = 0 , 1 , 2 , .

n = 0 , 1 , 2 , .

m = 0 , 1 , 2 , .

where

= 2 t a n  “ 1 ( k1/ k2)
= 2 t a n “ 1 ( k 3/ k 2)

Adding equations (2.44) and (2.45) we obtain the transcendental equation 

2 k 2d -  -  f 3TE = 2q7r q = 0 ,  1,  2,  . . .

( 2 . 4 3 )

( 2 . 4 4 )

( 2 . 4 5 )

( 2 . 4 6 )
( 2 . 4 7 )

( 2 . 4 8 )

The above equation can be solved numerically or graphically to obtain the eigenvalue (3 

for a particular mode q.

Using the boundary conditions expressed for E ta n  and H t a n , the E y  field component 

can thus be written down as

E y ( x , z )  =  B

cos(y^) e -Ki x 

c o s ( k 2x + \J/) 

cos ( i J/ -  K2d) e K3^x+^

x > 0

e - J ^ z  - d  < x < 0 ( 2 . 4 9 )

x  < -d

The expressions for H x  and can be obtained directly from equations (2.34) and (2.35).

2.3.2 Guided TM Modes

For TM polarsation, the only non— zero field components are H y ,  Ex and E z 

(figure 2.5b). By following the above derivation for the TE field component E y and using 

the equations from section 2.1.2,  expressions for the Hy component can be written down 

as

H y ( x , z )  =  B

cos ( i {/' ) e ~ K 1X 

c o s ( k 2x + i/'1) 

c o s ( f  -  k 2d) e K 3(x+d)

x > 0

e" j^ z  -d  < x < 0 ( 2 . 5 0 )  

x < - d

where \p' is given by

and

. _  TM

\j/' = ^  ± mr
_  TM

-  K 2 d  =  ± m t

ip,™ = 2 ta n “ 1 ( e 2 K l / e 1 K 2 )

n  =  0 ,  1 ,  2 ,  

m = 0 , 1 , 2 , . . .

( 2 . 5 1 )

( 2 . 5 2 )

( 2 . 5 3 )
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-  TM

3 = 2 t a n _ 1 ( e 2K3 / e 3K2)

The transcendental equation is thus given as

2 " ^1 -  ^3 = 2q7r q = o , 1 , 2,

( 2 . 5 4 )

( 2 . 5 5 )

2.3.3 Fundamental Mode Solutions

Having obtained the TE and TM solutions one can determine the modal propagation 

constants of various slab structures. In this section, we will calculate the propagation 

constants of the slab structures shown in figure 2.6. Note that the calculated eigenvalue 

will be used to plot the fundamental TE mode profile, which will be compared to later 

with other numerical evaluation techniques to be discussed later. These values will be used 

as a reference to determine the validity of the transcendental equation that will be 

obtained from the derivation of the slab waveguide Green's function.

The figure shows a slab structure with a guiding layer of depth d =  1 .3 /mi with a 

refractive index n 2 =  3.44 and the operating wavelength is X =  1.55/mi. It is surrounded 

by air (n 1 =  1.0) and an infinite substrate layer of refractive index n 3. The above

configuration will be tailored to give confinement of the fundamental TE only (q =  0 in 

equation (2.48)).

Fundamental TE F ir s t  o rd er  TE

S tr u c tu r e n a ne (b ) ne (b )

1 . 3 . 3 0 5 3. 407608578 (0 . 7 5 6 4 ) 3 . 319209796  ( 0 . 1 0 3 4 )

2. 3 . 3 4 3. 409401428 (0 . 6 9 0 9 ) -

3. 3 . 3 9 3. 414288868 (0 . 4 8 3 9 ) -

4 . 3 . 4 0 3 . 416097973 ( 0 . 4 0 1 0 ) -

5 . 3 . 4 2 3. 422500118 (0 . 1 2 4 7 ) -

6. 3 . 4 3 5

Table 2a

Table 2a lists the solutions to the TE transcendental equation (2.48), the program to solve

equation (2.48) is listed in appendix A. The normalised index b is given by the expression

b =
ne 2 " n : ( 2 . 5 6 )
n. -  n.‘ 2 3

which will be used as a guide to how strongly the mode is confined. As can be seen, the

value of the effective index lies in the range n 3 <  ne <  n 2. This is the case for the

first five structures. Guides 1 and 2 constitute a strongly guided mode since b is greater

than the order of 0.5. Guides 3 and 4 on the other hand show slightly less strongly

confined modes, whereas guide 5 shows a mode which is very near to cutoff. Guide 6
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Figure 2.6 Asymmetric Slab Waveguide Structures
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has no solution and therefore no modes propagate.

Figure 2.7 shows the cross sectional field profile of the electric field for each slab 

structure. As expected for the first two waveguides, most of the electric field is confined 

within the guiding layer since the effective index of propagation is relatively high. As a 

consequence, the field hardly penetrates into the surrounding regions.

However since guides 3, 4 and 5 have lower effective indices, the mode is still

confined within the guiding layer, but exhibit a larger evanescent tail into the substrate

region. This is due to the angle of incidence of the ray approaching critical conditions at 

the n 2/ n 3 interface.

2.3.4 First Order Mode

The effective index of the first order TE mode can be calculated by setting q =  1 

in equation (2.48).

Guide 1 has a solution for the first order mode as its thickness can support two

modes. The solution of the next higher mode is not possible. Figure 2.8 shows the cross

sectional field profile of the first order mode. Several observations can be made.

The mode profile exhibits a zero near the centre of the dielectric slab. The mode 

profile on one side of the zero is a rotated image of the other profile but is not

indentical, this being due to the differences in the dielectric boundary refractive indices. 

However, since the refractive index difference between the n 2/ n 3 is small, the field

penetrates into the substrate. The large penetration into this region is reminiscent of a

mode near cutoff (c.f.  solution for the fundamental mode for guide 5).

2.3.5 Conclusions

Due to the simplicity of the slab waveguide structure, an exact solution for the

Helmholtz wave equation is achieved. Development of the Ey field component solutions 

has led to a transcendental equation (2.48) which when solved, gives an indication as to 

how many modes are supported in the slab and their relative effective indices . Using 

Maxwell's equations, we can determine all the relevant field components for the particular 

polarisation of the field.
Simple guide analysis has laid the constraints to which electromagnetic propagation is 

possible within dielectric structures.

2.4 RIDGE WAVEGUIDES

Confinement of the mode can be achieved in the vertical direction by the use of 

abrupt refractive index changes. Figure 2.9 shows a cross sectional contour plot of the
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electric field for the slab structure 2 (at z =  0). As the field decays rapidly in the outer 

two regions, n 1 and n 3, the decay in the lateral y—direction is slow.

The ridge waveguide structure (figure 1.3) has been studied with considerable interest 

as a means of mode confinement and control. Ease of control of geometry and material 

doping has made this structure preferable for such purposes. A guiding layer is grown on 

a substrate layer, similar to the fabrication of a slab waveguide. The ridge is formed by 

etching away the film on either side to the required depth. Thus the height of the guiding 

layer and the ridge can be controlled with ease. Finally the whole structure may be

covered with a cladding layer, or left exposed (thus surrounded by air whose refractive

index is 1.0).

The ridge geometrical configuration and the refractive index profile preclude any 

analytical solution to the wave equation, so one has to resort to approximate numerical

techniques for finding the eigenvalue (3. A variety of techniques are applicable, most of

them orginally developed for applications other than optics, will be introduced in the next

chapter. These techniques will be applied to several structures and the results will be 

compared. Of practical interest if the scalar Finite Difference method, which solves the

Helmholtz wave equation by approximating the second order derivatives by a difference

equation. This method will be subsequently used for a discrete derivation of the

K irchhoff-Huygens line integral which will enclose the ridge part of the structure only.
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CHAPTER 3 NUMERICAL TECHNIQUES

As an analytical solution cannot be obtained for the ridge waveguide, we shall

investigate two numerical techniques which attempt to solve the eigenvalue equation.

Although there are many techniques available12 for our purpose, we shall limit our

investigation to the Effective Index Method (EIM) and the scalar Finite Difference Method 

(FDM).

3.1 RIDGE WAVEGUIDE STRUCTURES

Having defined the two numerical techniques to be implemented, we shall now

define the particular ridge waveguide structures to be analysed. M.J. Robertson et al. 13 

define three structures which have been widely used by other authors M.S. Stern14, M.S. 

Stern et a l . 1 5 and by C. Vassallo16. These are referred to as structures BT1, BT2 and 

BT3 (figure 3.1).  The three structures have been designed for single mode operation at an 

operating wavelength of 1.55/im. The refractive indices of the materials are typical values 

for those of bulk GaAs/AlGaAs.

3.1.1 BT1 Structure

As described in section 2.4, the ridge structures can be tailored for a variety of 

purposes. In figure 3.1 structure BT1 has a very large difference in refractive indices (An 

= 2.44 and 0.1).  Strong confinement is accomplished by the relatively large ridge height 

and narrow width. Such a structure is useful for curved waveguides since radiation loss is 

minimal.

3.1.2 BT2 Structure

For directional couplers, the requirement that the electric field extend laterally 

means a small ridge height is required. Structure BT2 is a weakly guiding waveguide in 

which a small ridge height allows very small vertical confinement, but allows the field to 

extend laterally.

3.1.3 BT3 Structure

Figure 3.1 shows a larger structure in which the mode profile is tailored to fit the 

mode profile of an optical fibre. Such a structure would be essential for an optical fibre 

to integrated circuit coupler configuration.
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Appendices B and C show the computer programs used to calculate the effective 

index of the ridge waveguides using the Effective Index Method and the Finite Difference 

Method. A comparison will be made to the results obtained by M. J. Robertson et al . 13.

3.2 EFFECTIVE INDEX METHOD8» 1 7

This method solves the propagation contants semi— analytically, the solution being that of a 

transcendental equation for two slab waveguides, one representing the guiding layer slab 

and the other representing the ridge slab (see figure 3.2). Having obtained the effective 

indices of these two regions, the transcendental equation is again solved in the transverse 

direction, the solution of which is a good approximation to the true propagation constant. 

The following describes the method.

Initially, a normalised parameter v is introduced

v  = k 0d ( n 2 2 -  n 32)2 ( 3 . 1 )

where d is the depth of the slab, k 0 is the free space wavenumber, and n 2, n 3 are the 

refractive indices of the guiding layer and substrate respectively. Next an asymmetry 

parameter

n 3 2 -  n T 2
o;TE = ----------------  ( 3 . 2 )

n 2 2 ~ n 3 2

is defined which varies from 0 for the symmetric waveguide to «  in the limit of very 

strong asymmetry. Using the normalised b—v diagram shown in figure 3.3, one can obtain 

the normalised effective index of the slab

n .x 2 n 2 *e -  3
b = ----------------  ( 3 . 3 )

1 2 — n 22 3

The values of b range from 0 to 1, corresponding to the modal effective indices over the 

allowed range n 3 to n 2. This allows easier comparison between the different structures. 

Rearranging the above equation, we solve for the effective index

ne 2 = n 32 + b ( n 2 2 -  n 32) ( 3 . 4 )

This method is accurate for slab structures but since the ridge waveguide is solved by 

investigating slab modes, discrepancies can occur for large etch step.

3.2.1 ELM Program1 8

The ridge structure is divided into the three slab structures as shown in figure 3.2. For 

our purposes, solutions for TE modes are considered. The effective indices of the two 

(three) slab modes are calculated using the EIM subroutine and are consequently used for
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the second EIM calculation in the longitudinal direction. The calculated effective values for 

the three structures are

S tr u c tu r e ne b [13]

BT1 3. 396321732 0 . 4 9 9 5 0 . 4 9 9 5
BT2 3. 395483971 0 . 4 4 0 6 0 . 44 0 7
BT3 3. 437391281 0. 4781 0 . 4 7 8 3

Table 3a

The normalised modal refractive index b is given by equation (3.3).

These results compare favourably with the published results of M. J. Robertson et 

al .1 3 which discusses the validity of the results obtained. The value for BT1 is expected 

to be low since the slab mode is at cutoff. In this case an effective index of 1.0 is

chosen in this region, thus the overall resulting effective index will be lower than the true 

value.

The value for BT2 is expected to be much more accurate as the etch step is very 

small and both rib/slab modes are propagating. However the effective index value is

expected to be higher than the true value.

Again for BT3, the effective index is anticipated to be high since the slab mode is 

near cutoff and the rib height is twice the height of the slab thickness and the rib width

is less than the rib height, giving a much higher result.

3.3 SCALAR FINITE DIFFERENCE METHOD8

The finite difference method approximates the second order derivatives of the scalar 

Helmholtz wave equation by a difference equation. Arranging the equation to solve for the 

electric field at a particular point it is applied to all points across a mesh which surrounds 

the waveguide cross-section  geometry. The boundary conditions are enforced by enclosing 

the waveguide by an arbitrary box on which the electric field tends to or is equal to

zero. Advantage is taken of the symmetry of the structure, so that only half of the 

waveguide cross— section is considered.

As discussed in appendix D, the finite difference approximation for the 2nd order

derivative has an error of (^ x)2, ^x being the difference step between adjacent points in

the x -d irection . It is envisaged that the error can be reduced by considering a smaller 

difference step.

The method involves an iterative technique which solves the electric field at each 

mesh point, and the effective index is updated after each pass through the structure with 

the newly calculated field values. Convergence is determined when the difference between
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successive effective indices is small, or the effective index no longer improves.

Starting from the scalar Helmholtz wave equation for TE modes8

a 2E d 2E
  + --------  + k0 ( n 2( i , j )  -  ne 2)E = 0 ( 3 . 5 )
d x 2 d y 2

where n(i,j) is the local refractive index of the waveguide at the point (i , j), and ne is the 

estimated refractive index of the structure. Then approximating the second order 

derivatives by the difference equations (D7), (D8) in appendix D, at the point (i,j) and 

rearranging for Ej j ,  we obtain the following discrete equation

Ei + l , j  + Ei - l , j  + R2(Ei , j + l  + Ei , j —1)

Ei , j  =   ( 3 . 6 )

2(1+R2) -  k0 2( * x ) 2 [ n 2( i , j )  -  ne 2 ]

where R =  a x / Ay. For a square grid, a x  =  Ay, therefore R =  1. So the electric field at 

the point P(ih, jk) can be represented by equation (3.6).

With an initial guess of the field, together with an estimate of the propagation 

constant (usually n 3), an iterative routine is used to calculate the field distribution by 

applying the FD approximation equation (3.6) at each field point. After each iteration 

through the structure, the variational expression

x s e c t
a2E d 2E 1
5^2  + 5^2  + V n2E J E dx dy

0 2 -    <3 . 7 )

E2 dx dyJJ x s e c t

or in discrete form

J  [E1+i j  + Ef _ j + Ei j j + 1 + E j j . !  -  4 E i j  + (a x ) 2k0 2n 2El i j ] E i j

ne 2 " — --------------- ------- ---------------------------------------------------------------------------------------------
2  ( E i j ) 2 ( * x ) 2k0 2 ( 3 . 8 )

is applied using the updated field values to calculate the resulting effective index of the 

structure. Here we have used ax =  Ay, i.e. each mesh point is on a square grid.

Because of the simplicity of the FD method, a computer program can easily be

written to implement the many calculations required for the iterative method. Since we are 

dealing with a matrix structure, the process can be be accelerated by the use of a vector 

facility (or array processor).

3.3.1 Successive Over Relaxation

The convergence of the result can be speeded up by using an acceleration factor.

The difference between any two successive E jj  values corresponds to a correction term to

the current estimate, and convergence may be accelerated by overcorrecting at each stage. 

This process is known as Successive Over Relaxation (SOR). An SOR factor of 1 does
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guarantee convergence, but it was found that a convergence factor of 1.6 was an 

improvement (convergence was three times faster). The SOR method is described in

appendix E.

3.3.2 Finite Difference Program

The program written for the FDM consists of a 2 dimensional array in which the 

elements are configured to represent the refractive cross— sectional area of the waveguide 

structure. A corresponding array for the electric field at each mesh point is also used. 

The electric field is set to zero at the box boundary. The size of the box is alterable and 

is chosen so that the waveguide and the electric field some distance away from the 

waveguiding region is enclosed. Since the value of the difference between successive array 

elements is unity, the meshspacing to be implemented can be dynamically incorporated, 

giving the program greater flexibilty. For our analysis, three meshsizes will be used as in 

reference 13 with the exception of the meshsize of =  0.0333/un which does not

adequately fit any of the structures.

3.3.2.1 Iterative Procedure

Together with an initial guess of the electric field and of the effective index n e the 

finite difference approximation is applied to the waveguide cross section in three distinct 

stages.

Stage one applies the FD approximation with a relaxation factor of 1.0. This allows 

an initial field representation given the estimated value of the effective index. This crude 

representation is subsequently used in the second iteration sequence (consisting of 20 

iterations) in which the FD approximation is applied with a relaxation factor. The value

of the chosen relaxation factor is given in section 3.3.2.2. The effective index is updated

after each pass through the structure and it is expected that the value of the effective 

index converges rapidly with the application of the acceleration parameter. Finally the field 

is smoothed out with another further 20 iterations using a relaxation factor of 1.0 and the 

effective index of the final waveguide field is calculated.

3.3.2.2 Choice of Acceleration/Relaxation Factor

Appendix E describes the method of S.O.R. as applied to the Gauss—Seidel method of 

iteration. Implementing expression (E9) on the FD approximation equation (3.6),  we obtain

E . ( n + 1 )  = co(r . h . S.  o f  eqn.  3 . 6 )  -  ( o ) - l )Ei ( n ) ( 3 . 9 )

The iterative calculations can therefore be applied with a choice of an acceleration 

parameter co.
A RF between the range 1.0 <  w <  2.0 is shown to be convergent 3 2 . Although a
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factor of 1.0 does guarantee convergence, a value greater than this would improve 

convergence significantly. The difficulty arises because it is not possible to dynamically 

choose an optimum value within the program.

Figure 3.4 shows the rate of convergence for the effective index for the BT1

structure for a choice of relaxation factors. A RF of 1.0 does show convergence to a final

value, but the convergence is slow. However a RF of 1.5 accelerates convergence

significantly as the final value is reached at the third iteration. This essentially has given

an improvement by a factor of 3. The same occurs for a RF of 1.6. A RF of 1.8 gives

a good estimate in the second iteration but as before does not converge until after the

third iteration.

A RF greater than or equal to 2.0 however gives quite different results (figure 3.5).  

For a RF of u =  2.0 the effective index converges to a lower value of 3.3920, hence 

the RF should be in the range 1.0 <  to <  2.0. Applying the RF of 1.0 in the third

iterative sequence, the correct effective index is achieved. Increasing the RF gives

unpredictable results. For a RF of 2.01. the result converges to a value close to that of

the substrate refractive index (ne =  3.340). A further increase to 2.02 leads to a total

breakdown of the program. Hence the SOR method becomes unstable for oo >  2.

In conclusion, a relaxation factor of 1.6 will be used.

3.3.2.3 FD Box Size

One interesting aspect of finite differences is the size of the box which encloses the 

waveguide structure. As figures 3.6a and 3.6b show for the BT3 structure, the box has to

be big enough not only to adequately cover the structure, but to also extend further to

cover the region where the field falls to zero. Figure 3.6a shows that the field extends 

further along the x— direction, and this is accommodated by using a box of 30/im x 20/im. 

Figure 3.6b shows the same structure using a much smaller box, and as can be seen, 

there is a poor representation of the field inside the structure, and hence a poor value of 

the effective index (b =  0.2719 for a box size of 10/mi x 10/mi (^x,^y =  0.25/mi)).

In conclusion, the enclosing box is increased in size until the value of the effective 

index no longer improves. The chosen box size for the BT1 structure is 5 /mi x 5 /mi and 

for the BT2 structure, the box size chosen is 10/mi x 6 /mi.

However, due to an increased box size, more mesh points result. Therefore a 

greater accuracy is achieved at the expense of computer storage and execution time.

3.3.3 Results

The following table summarises the results obtained by performing the finite 

difference method on the three structures. The effective index and b value are the results 

obtained by M. J. Robertson et al .1 3, with the corresponding values obtain by the FD
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program listed under the 'Result' column.

A mesh spacing of ^x,^y= 0.0333/un was not used as by M. J. Robertson et a l . 1 3. 

This is because the mesh size of 0.0333/mi does not adequately fit any of the structures 

and therefore a mesh size of 0.025/on was used instead (results are shown in parenthesis).

BT1 S t r u c t u r e

Meshs iz e E f f e c t i v e  IndexM.3] b[13] R e s u l t

0 . 1 3. 392361359 0 . 5199 0 . 51 9 9
0 . 0 5 3 . 391471242 0 . 511 0 . 51 0 9

0 . 0 3 3 3  ( 0 . 0 2 5 ) 3 . 391291712 0 . 5092 ( 0 . 5 0 8 5 )

BT2 S t r u c t u r e

Meshs i z e E f f e c t i v e  Indexri31 b[13] Re s u l t

0 . 1 3 . 396401981 0 . 4521 0 . 43 7 8

0 . 0 5 3.395596501 0 . 4421 0 . 4 2 6 9

0 . 0 3 3 3  ( 0 . 0 2 5 ) 3 . 395429873 0 . 4 4 0 0 ( 0 . 4 2 3 7 )

BT3 S tr u c tu r e

Me s h s i z e E f f e c t i v e  Indexri31 b[13 ] Re s u l t

0 . 2 5 3.436986842 0 . 3 9 7 2 0 . 40 0 1

0 . 1 3. 436904219 0 . 3 8 0 7 0 . 3 7 8 4

0 . 0 6 2 5 3. 436863500 0 . 3 7 2 5 0 . 3 7 5 2

Table 3b

It can be seen from the above, that the results obtained are in close agreement. This is 

particularly true for the BT1 structure. The FD applied to this structure with a box size 

of 5 /mi x 5 //m gives a good representation of the field since the entire waveguide mode 

profile is confined within the rib, and hence the close agreement with the published 

results. Figure 3.7 shows a contour plot of the modal field.

The results for the BT2 structure are somewhat different from the published results. 

Again a large enough box was used (10/rm x 6/ml) to obtain a good representation of
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Figure 3.8 BT2 Mode Profile Contour Plot
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the field, but the structure is weakly guiding. Structure BT1 is strongly guiding and hence 

the finite difference coped well. Due to the weakly guiding nature of BT2, the finite

difference method is more sensitive, and hence the discrepancy of the results. The 

cross-sectional mode profile is shown in figure 3.8.

The results for BT3 compare very well with a difference of about 0.7%, and this

was accomplished by using the larger box as in figure 3.6a as opposed to the box size in

figure 3.6b.

3.4 CONCLUSIONS

The waveguide structures analysed with the two numerical techniques have

demonstrated the variation in results that can be expected. Because of approximations that 

are taken into account (e.g. for BT1 using the EIM, the mode is cutoff in the slab 

region, therefore an effective index of unity is taken for this part, hence yielding a lower 

value to the overall effective index), the true value can only be postulated from the 

convergence that is expected by using, say, a smaller mesh size (ax) in the FD

approximation. As the error involved in the FDM is (a x ) 2, it is therefore expected that 

the effective index will come to a final value as this mesh size is decreased. Figure 3.9 

shows the three effective index values for each structure against decreasing mesh size ( a x ).

For the BT1 structure, the graph converges due to the error in using a difference 

equation rather than the differential equation, which increases with mesh size (the 

difference factor). This is also the case for the other two ridge waveguides. The FDM has

converged with a mesh size down to 0.01/cm, but because of smaller element size, this

results in larger storage space on the computer, and ultimatley leads to a larger execution

time.

The EIM predicts effective index values larger than the FDM. This is thought to be 

due to the corner effects where sinusoidal and exponential field dependance of the EIM 

no longer gives a good approximation to the real mode profile.

The removal of geometrical factors and approximations as made in the EIM above, 

could eliminate or minimize the doubt of the accuracy of the final result. As most 

structures to be analysed are of a planar nature, a Fourier analysis can be implemented. 

This has three distinct advantages.

1. Fourier transforms along the planar stratification simplifies the problem by eliminating 

the coordinate component in that direction. Thus the solution becomes that of a simple 

ordinary differential equation with only one coordinate variable.

2. Fourier transform techniques are simple to program with efficient numerical code and 

give much more accurate results.
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3. Most important of all, boundary conditions along the planar stratification are exact 

and intrinsic, thus minimising errors in the final result.

The Green's Function method is proposed and discussed in the next chapter. Using 

the elementary Fourier technique, the GF can be calculated for the planar geometry, the 

boundary conditions at the dielectric interfaces and at infinity are incorporated, thus 

yielding a much more accurate representation of the waveguide mode. The effective index 

is a solution to a transcendental equation that will be extracted from the GF equation of 

the structure. This is discussed in chapter 6.
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CHAPTER 4 GREEN'S FUNCTION METHOD

4.1 INTRODUCTION

As discussed in the previous chapter, a mathematical method is required for the

planar stratified dielectric medium. The limitations imposed by the previous numerical 

techniques gives impetus for the derivation of a much more accurate method which is 

taylored to incorporate the exact boundary conditions posed by the problem. The 

conditions at infinity which were difficult to manipulate in the Finite Difference method, 

are explicitly incorporated into our solution. For our analysis, we shall assume the 

following.

1. Because we are considering a stratified medium, we shall assume translational invariance 

as exp j(o)t — (Sz), i.e. travelling waves in the positive z—direction, with an effective 

index of propagation of (3 =  nekQ, at a frequency of oo rads/sec.

2. The stratified media are isotropic and magnetically equivalent.

3. Again we shall consider the scalar wave equation, hence we ignore any polarisation 

dependence of the waveguide modes.

4. Solutions of the GF in media containing sources (inhomogeneous equations) will yield

travelling/ standing wave solutions. Source free media (homogeneous equations) will 

constitute solutions with a decaying nature of the GF. The layer containing the source is

assumed to be the guiding layer.

4.2 EXISTENCE OF THE GREEN'S FUNCTION

4.2.1 Poisson's Equation

Consider the differential equation of Poissons equation

V2<t>(r) = - p ( r ) A o er ( 4 -1}

where ct(r) is the scalar potential at the point r, and p(r) is the charge density. For the 

homogeneous case p(r) =  0 and the above equation simplifies to the form of Laplaces 

equation

V2$ ( r )  = 0 ( 4 , 2 )

q is a point charge ar r', then the potential at r is given as
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* ( r )  = 47r(r-r'  ) e0 e] ( 4 . 3 )

Alternatively, the solution of (4.1) can be obtained by integrating around a volume which 

contains the charge density. Consider figure 4.1. The region P of volume V encloses the 

charge density p(r'), which is broken up into small elements, each element contributing a 

point source of q =  p(r') d 3r'. The total charge within the cube at r' is p(r') d 3r' and 

using equation (4.3) this makes a contribution to the potential r of

p ( r ' )  d 3r
4 tr e0 er | r - r '

Integrating or summing over all elements to find the total potential, we have

*(r) =

This can be written as

p ( r 1)
4 ir | r - r 1 | e0 er d 3r '

*(r) = g ( r , r ’ ) E i l l l  d3r '
o cr

where the Green's Function for Poisson's equation is given by

-  47 F -7 T

4.2.2 Green's Function for the Helmholtz Wave Equation

( 4 . 4 )

( 4 . 5 )

( 4 . 6 )

( 4 . 7 )

Rewrite Poisson's equation (4.1) as

- V 2$ ( r )  -  p ( r ) / £ 0 er ( 4 . 8 )

the solution of which is given by (4.6). Operating V2 on equation (4.6) remembering that 

this affects the r variable only and not r'

- V 2<t>(r) = -V2g ( r , r ') P ( r ' )
en e

d r ’ ( 4 . 9 )
o cr

But Poissons equation (4.1) shows that the left hand side is equal to p ( r ) / e0 er. This is 

possible only if

- V 2g ( r , r ' )  = 5(r  -  r ' )  ( 4 . 1 0 )

where 5(r -  r') is the dirac delta function defined as33

6 ( r ' )  d 3r = 1 ( 4 . 1 1 )
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Expressing equation ( 4 .1 0 )  as the homogeneous wave equation which involves a derivative 

with respect to time i.e.

V2g '  I *  I t * 8 " 0 ( 4 . 1 2 )

and using the translational invariance as described in equation (2.26) we obtain the 

homogeneous Helmholtz wave equation for the GF

V 2 g  +  k 2 g  =  0  ( 4 . 1 3 )

where k =  oVc. The reason for solving the Helmholtz equation for the GF instead of the 

wave equation is because the solution of the elliptical Helmholtz wave equation subject to 

Dirichlet/Neumann boundary conditions on a closed surface results in a stable solution19.

4.3 GREEN'S FUNCTION THEORY

4.3.1 Integral Theorems

For subsequent analysis of the GF, we shall use a variant of Gauss's theorem called 

Green's theorem which will play an important role in the derivation of the reprocity 

relations of the GF and of the Kirchhoff— Huygens integral.

4.3.2 Gauss's Theorem

Below is a derivation of a relation between a surface integral of a vector and the 

volume integral of the divergence of that vector. Assuming that the vector F and its first 

derivatives are continous over the region of interest, then

* * *

F . ds = V . F dv
s J V

Hence the above equation states that the surface integral of a vector over a closed surface 

equals the volume integral of the divergence of that vector, integrated over the volume 

enclosed by the surface.

4.3.3 Green's Theorem

If <p and i/ are scalar fields, then by1 9

V.(<p Vi/') =  ^ V .(V i/ )  +  V ^ Vi/
i.e.

V.(<p V i/) =  <^V2i/  +  V ^ Vi/

We now integrate throughout a region V bounded by the closed surface S and, using
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Gausses theorem above, we obtain

ypVi/'.n ds = Vp  Vi/' dV

n being the unit outward-drawn normal to the surface. Writing . n as < ^ ^ / d n ) ,  we 

have

whence

diP
<p —  ds = 

dn
^V2i/- dV + Vip Vi/' dV + -V . (i/'V^)

v

ds = -  ^V2^] dV ( 4 . 1 4 )

The above equation is the Green's theorem. Having used Gauss's theorem, we require that

<p, \p and their partial derivatives of the first and second order be continuous functions of

x, y, and z.

4.3.4 Reciprocity Property of the G F1 9

An important property of the GF is the symmetry of its two variables, i.e.

g ( r , , r 2) = g ( r 2 , r 1) ( 4 . 1 5 )

where r 1 can be classified as the source point and r 2 the observation point. First, let 

gCr.r,) satisfy

V2g ( r , r 1) + k 2g ( r , r 1) = - 5 ( r - r 1) ( 4 . 1 6 )

corresponding to a mathematical point source at r =  r r  g(r,r 2) satisfies the same

equation

( 4 . 1 7 )V2g ( r , r 2) + k 2g ( r , r 2) = - S ( r - r 2)

Then g(r,r2) is a sort of potential at r, created by a unit point source at r 2. We multiply 

the equation for g (r ,r^  by g(r,r2) and the equation for g(r,r2) by gCr,^) and subtract the 

two

g ( r , r 2) V2g ( r , r , ) -  g ( r , r , ) V 2g ( r , r 2)
-  - g ( r , r 2) S ( r - r , )  + g ( r , r , ) « ( r - r 2) ( 4 . 1 8 )

Integrating with respect to r over whatever volume is involved

g ( r , r 2) V2g ( r , r 1) -  g ( r , r , )  . V2g ( r , r 2) dV
V

- g ( r , , r 2) + g ( r 2 , r , )  dV
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Using G reen 's theorem  (4.14) the above integral becomes

g ( r , r 2) Vg( r , r 1) -  g ( r  , r 1 )Vg(r , r 2) dS = - g ( r , r 2) + g C r , ^ )  ( 4 . 1 9 )

The terms on the right hand side appear when we use the Dirac delta functions and carry 

out the volume integration. Under the requirement that GF's g(r,r1) and g(r,r2) or their 

normal derivatives vanish over the surface S, the surface integral vanishes and

g ( r i >r 2) = g C r ^ r , )

which shows that the GF is symmetric. This property shows that however asymetrically the 

points r and r1 are situated relative to the boundary, the potential at r due to point 

source placed at r' equals the potential at r' due to the same source placed at r.

4.4 BOUNDARY CONDITIONS

Before attempting to solve the partial/ordinary differential equations for our given 

region of interest, boundary conditions must be imposed to ensure that a unique solution 

is obtainable. Furthermore, as in section 2.3.1, the tangential components of the Green's 

function must be matched across any dielectric boundaries in order to obtain the value of 

the coefficients in the general solution of the partial/ordinary differential equation.

4.4.1 Dirichlet Boundary Conditions

When the function U =  u(x,y) is specified at/on the boundary, we refer to this as 

Dirichlet boundary conditions (DBC). DBC are often used for closed boundary situations.

4.4.2 Neumann Boundary Conditions

When the normal derivative (or gradient) of the function U is specified, i.e. dU/dn, 

on the boundary, we refer to this as Neumann boundary conditions (NBC). For the 

homogeneous case, the function U or the derivative dU/dn is set to zero on the boundary 

and for in homogeneous boundary conditions, the value of U or dU/dn is specified for the 

DBC and NBC respectively.

4.4.3 Discontinuity Boundary Conditions20

The Green's function is defined everywhere except at the source point (x ,y ). This 

is a direct consequence of the singularity nature of the Dirac delta function. From 

equation (4.13), we consider the inhomogeneous one dimensional Helmholtz equation
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d 2R
a p  +  k 2g =  -  6(y-y') (4.20)

Integrating both sides with respect to y, from y ’- y  to y ' + 7 , and let y  -> 0. Using this 

convention we are essentially integrating from y '-  to y'+ , hence we obtain

LHS

y' +

y -

+ k*g dy -  M i l Z l )  
ay 2 6 y dy

y=y’ +

ag(y ,y ’) 
ay

y=y’ -

RHS -fi(y-y’) dy = - 1  

y ’-

The jump c o n d i t i o n  at  the  so u rce  point  y = y' i s  g i v e n  as

a y g(y>y')
y=y' +

ay g(y>y’) =  - l

y=y -
( 4 . 2 1 )

For dielectric boundaries, we require that the Green's function be continous i.e.

g ( y = d + , y ' )  = g (y=d“ , y ' ) ( 4 . 2 2 )

where d is the coordinate of the dielectric boundary with respect to some origin, the 

dielectric boundary lying in a plane perpendicular to the y— axis. This continuity condition 

is also applicable to the GF at the source point i.e.

g(y=y,+ , y') = g(y=y' , y')

4.4.4 Further Boundary Conditions on the Green's Function

( 4 . 2 3 )

The GF required for our analysis is the solution of the scalar inhomogeneous

Helmholtz wave equation

V2g ( r , r ' )  + k 2g ( r , r ' )  = - 5 ( r - r ' )  ( 4 . 2 4 )

for a point source at r', at an observation point r =  (x,y,z). This equation satisfies

homogeneous Dirichlet (G =  0) or Neumann (dG/dn =  0) boundary conditions on the

boundary surface S, and also in the source coordinates, on S' which surrounds the source 

point (figure 4.2). The Dirac delta function on the right hand side is defined in equation 

(4.11).

Next we show that the inhomogeneous equation

V2 ̂  + k 2^ = - p ( r )  ( 4 . 2 5 )

subject to the same Dirichlet/Neumann boundary conditions on the surface S, may be
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expressed in terms of g. Multiplying (4.24) by * and (4.25) by g(r,r') and subtracting the
two, exchanging r and r' at the same time

g( r '  , r ) V 2i / ' (r’ ) -  , K r ' ) V 2 g ( r \ r )  -  - | > ( r ' ) S ( r - - r )  -  g ( r \ r ) p ( r ' ) ]  ( 4 . 2 6 )

Integrating this over the source coordinates r' =  (x’.y '.z1) in the definition domain P
(figure 4.2b) we obtain,

g ( r ' , r )  V2i / /(r' )  -  i£(r ’ )V2g ( r ' , r)  dV' + P ( r ' ) g ( r ' , r )  dV'

g ( r ' , r ) V 2f ( r ' ) -  0 ( r ' )V2g ( r ' , r)  dV' + p ( r ' ) g ( r ' , r )  dV'

The first integral vanishes due to Sommerfeld's radiation condition. Withthis together with 

the unique property of the delta function, the first integral at is equal to

i^r). Changing the volume integral at C to V, we obtain

g ( r ' , r ) V 2vKr' ) -  i^(r’ )V2g ( r ' , r )  dV1 + p ( r ' ) g ( r \ r )  dV' ( 4 . 2 7 )
v

_  T iKr)  i f  r i ns  id 
L 0 i f  r out s i

de S 
de S.

Using Green's theorem (equation (4.14)), we can reduce the first integral to a surface 

integral

g ( r '  , r )VvKr'  ) -  vKr ' ) ^ g ( r ' , r)  .dS + p ( r ' ) g ( r ' , r )  dV' ( 4 . 2 8 )

- {
\J/(r) i f  r i n s i d e  S 

0 i f  r o u t s i d e  S.

For the inhomogeneous equation (p ^ 0), using the homogeneous boundary conditions 

stated above (g =  0) on S, the surface integral over S is zero and

vKr) = p ( r ' ) g ( r , r 1) dV1 ( 4 . 2 9 )

for r inside or on S. This function automatically satisfies the homogeneous Dirichlet 

boundary conditions (\p =  0 on S) and is solution of equation (4.25). Again this function 

holds for Neumann boundary conditions. In conclusion, equation (4.29) is a solution of the 

inhomogeneous equation (4.25) for homogeneous boundary conditions when g(r ,r) satisfies

the same conditions as does \p.

Hence for subsequent analysis, the GF wave equation (4.24) will be solved for our
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particular problem to determine the required Green's function.

4.5 DEFINITION OF THE ANALYTICAL PROBLEM: Kirchhoff— Huvgen's Tnte.pral

4.5.1 Slab/Ridge Waveguide GF Problem

As a preview, we shall define the problem that is to be solved for our particular 

waveguide structure. The slab waveguide shown in figure 1.1 is translationally invariant in 

the longitudinal and lateral directions. A guiding slab of a refractive index of n 2 is 

surrounded by two infinite media each with a lower refractive index than that of the 

guiding layer. As discussed in chapter 2, the solution to the wave equation yielded exact 

solutions to the electric field profile in all three regions. The boundary conditions were 

simple and therefore easy to implement.

As discussed in section 4.4.4, the GF does satisfy the same conditions as the

function \p (or the electric field E for our case) and therefore can be readily applied to

our slab waveguide problem. Hence the following inhomogeneous Helmholtz equation

Vt 2g ( r , r ' )  + k 2g ( r , r ' )  = - f i ( r - r ' )  ( 4 . 3 0 )

k 2 = n 2k0 2 -  (32 ( 4 . 3 1 )

where Vt 2 =  (8 2/ 3 x 2 +  8 2/ 8 y 2), will be solved inside the guiding layer (which includes 

the source term at r') and the homogeneous Helmholtz equation

Vt 2g ( r , r ' )  + K2g ( r , r ' )  = 0 ( 4 . 3 2 )

will be solved for the surrounding dielectric regions where no sources are present.

4.5.2 Kirchhoff— Huygen's Line Integral

Following the derivation in section 4.4.4, using the two dimensional inhomogeneous 

equation V2î  -+- k 2\p =  — p(r) where k is given by (4.31), we obtain for the

homogeneous problem (p(r) =  0)

g ( r '  , r ) V t 2^ ( r ' )  -  vKr’ )Vt 2g ( r  ’ , r)  ds'  = - ^ ( r )  ( 4 . 3 3 )

s

where the surface integration is performed in the x - y  plane. Using Green's theorem in 

the plane using the reciprocity property, we obtain

H r )  = g ( r . r ' )  ^  (Hr ' ) -  H r ' )  ^  g ( r , r ' ) dl  ( 4 . 3 4 )

c

The path of integration is taken along a path enclosing the region of interest. The 

negative sign is eliminated by taking 8/8n as the normal inward on the surface boundary.
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Equation (4.34) is the Kirchhoff Huygens line integral which will be used for our 

analytical study of the rib/slab waveguide. The three components of the integral are 

therefore required. i/(r ) is the general solution for the homogeneous wave equation at the 

source point r'. i/{r) is the scalar field at the observation point r. Finally the GF g(r,r') 

is the GF for our particular region, which will be formulated in the next chapter.

4.6 CHOICE OF NUMERICAL METHOD

4.6.1 Numerical Choice for the Green's Function

The choice for calculating the GF are many, e.g. Fikioris9 (Watson transformation), 

R.C. Stevenson21 (Integral equations), Sphicopoulus et al . 22 (Dyadic GF), Kolk23 

(Domain integral equation), C.C. Su24 (Principle value integral) etc.. Although the 

majority of these authors discuss the vectorial dyadic GF, we have simplified our problem 

to solving the scalar GF.

To further simplify our problem, we consider solving an ordinary differential

equation. As the planar stratification is invariant in the lateral directions, a Fourier 

transform in these directions reduces the two dimensional Helmholtz wave equation (4.30) 

and (4.32) to a one dimensional ordinary differential equation with only the one coordinate 

variable, the solutions of which are readily derivable.

Using the singularity nature of the GF at the source point, we can calculate

analytically the spatial GF by the use of Cauchy's residue theorem. Thus the choice of 

the Fourier transform method has resulted in a simpler equation to solve. The presence of 

the singularity can also be used to derive a transcendental equation. As our GF 

calculations will require complex arithmetic to be performed, the GF program is 

implemented in Fortran 77.

Thus the GF for our case can be solved analytically and can be determined for any 

spatial coordinate within the waveguide.

4.6.2 Numerical Method for the Electric Field

The electric field within the region of interest is primarily determined by solutions

to Maxwell's equations. Figure 2.9 shows the electric field profile of a slab waveguide

using the exact field solutions obtained in chapter 2 and the solution as determined by the

scalar FD method. As we are interested in an initial guess of the electric field for the

Kirchhoff-Huygens integral, either field solution can be used. The object is that the field 

profile should converge using the Kirchhoff-Huygens integral in an iterative method.

However, the effective index of the waveguide is required at each iteration, and the FD 

method is therefore most appealing.
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4.6.3 Numerical Method for the Kirchhoff- Huygen's Integral

Given the GF at any point, and the electric field at discrete points, we can enclose 

a region of the waveguide of interest by the line integral and calculate the new electric 

field on this contour. Since we are using the discrete representation of the electric field, 

the integral (4.34) can be transposed via the rectangular rule into a matrix, the elements 

of which are the GF and the electric field. As in the FD method used in chapter 3, the 

vector processor facility can be used to accelerate the matrix calculations.

4.7 CONCLUSIONS

From simple solutions like Poisson's equation, we have shown that the GF is indeed 

a solution of this elliptic equation. Since the Helmholtz wave equation is also elliptic, it is 

therefore well— posed under the same conditions, and is suitable for our waveguide 

problem.

The integral theorems have been extensively used to demonstrate the properties of 

the GF. The theorems are further developed to derive the Kirchhoff— Huygens line integral 

which will be our analytical tool for the rib/slab waveguide.

Considering the waveguide structure, the stratification has allowed us to calculate the

GF by an elementary Fourier transform method, which has the added advantage of

simplifying the Helmholtz equation to an ordinary differential equation. The Fourier 

method is easily implemented on the computer. Having investigated the FD method in

chapter 3, the Kirchhoff— Huygens line integral and its elements can be approximated by

this method, thus leading to a final matrix problem which can be used in an iterative 

procedure.
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CHAPTER 5 DERIVATION OF THE GREEN’S FUNCTION

From the previous considerations discussed in chapter 4, we shall now formulate the

GF for our problem. The GF required is to satisfy the boundary conditions at infinity and

at any dielectric discontinuities. As mentioned in section 4.1, the GF must constitute of

sinusoidal solutions for the guiding layer and an evanescent decaying solution is required in 

the surrounding regions. These restrictions ensure that the GF satisfies the wave equation 

and Sommerfeld's radiation condition. Furthermore, we expect to observe other properties 

of the GF, e.g. the symmetry of the GF (the GF is an even function) and the large 

singularity that is to be expected at the source point where the GF is not defined. Only 

when the GF has been formulated for several situations and properties confirmed with the 

theory, will we then confidently use the GF for our problem.

As an initial exercise, the free space GF is determined in order to compare the

solution to that with say, the Hankel function solution. The free space GF can also be

used for Poissons equation, or for the purpose of diffraction theory.

The GF for the slab waveguide solution is determined for two different situations. 

The first considers the situation where the point source is located a finite distance above 

the dielectric slab, i.e. the point source is in free space within the proximity of a 

dielectric structure. The second situation, which is relevant to our problem, is when the 

point source is present within the guiding region, so resulting in a GF for the guiding

slab. The homogenous solution for the GF wave equation (4.32) is however, formulated

for the outer cladding and substrate regions.

5.1 FOURIER TRANSFORM OF THE GF WAVE EQUATION

The Green's function is a solution to the Helmholtz wave equation except at the

source point. The 2D wave equation is reproduced below

a 2 g d 2 g
 +   + k 2g = - 5 ( x - x  ) 8 ( y - y  ) ( 5 . 1 )
d x 2 a y 2

k2 = n 2k0 2 -  (82 <5 -2)

As the waveguide slab structure is translationally invariant in the x-direction, a Fourier

transform in this coordinate variable reduces the partial differential equation (5.1) to an

ordinary differential equation with y as the only variable, i.e.

a 2G , , c  on
—  + ( K 2 _ k x 2 )G = - 5 ( y - y  )
a y 2
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The forward one dimensional Fourier transform is defined as

+00

G(kx , y)  = g ( x , y )  e " ik xx dx (5 4)

where kx is the Fourier spatial frequency. The inverse Fourier transform is defined as

+00

g ( x , y )  - G(kx.y> e ‘kxX dkx ( 5 . 5 )

By reducing the partial differential equation to an ordinary differential equation, we shall 

apply equation (5.3) to the particular situations.

5.2 FREE SPACE fUNBOUNDED! GREEN'S FUNCTION

5.2.1 Forward Fourier Transform Solution.

Figure 5.1 shows the situation where the source point is located in free space in the 

absence of any dielectric boundaries. The unbounded GF G0 is readily derivable from the 

homogeneous wave equation (4.32). The simplicity of this solution can be used to 

formulate more complicated expressions for the GF in bounded regions. For the 

unbounded case, with the surface of integration at infinity, DBC and NBC are the same, 

therefore, for a fixed point source at r1, we expect G0 and its derivatives to vanish as 

the observation point r +  oo. Moreover, the decay of the GF is expected to be exponential 

as a function of r—r' (r—r' =  7(x— x' )2 +  (y— y ')2) , when k , 2 <  kx 2.

The equations to be solved are

3 2G
  -  Y],2G = 0 y > y' ( 5 . 6 a )
dy2

d 2G
—  _ ^ 2 G = o y < y' ( 5 . 6 b )
d y 2

where 2 = kx 2 -  k , 2 ( 5 . 7 )

The general solution to equation (5.6) for each region can be written down as

G0 = A e - ^ y  + B e V r f  Y > Y'  <5 -8)

g 0 = c e-*7iy + d e ^ y  y < y' (5-9)

As there are no boundaries, an incoming wave solution Be1! 17 is not valid for y y ,
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therefore we can assume B -  0. Similarly for the region y <  y', c  =  0. The remaining 

terms for each region therefore constitutes an impulse at the source which decay 

exponentially as the observation point y tends to infinity.

Next, we apply the discontinuity boundary conditions (section 4.4.3) to the above 

general solutions, to determine the coefficients A and D. Since there is no dielectric 

boundary, the discontinuity of the GF across the source point is applicable only. Hence 

the boundary conditions for the GF and its derivative yield the following, with the source 

point located at the origin (y' =  0)

G0 (y  = ° )  : A = D ( 5 . 1 0 )

^2° (y  = 0) : —t?1 A -  = -1 ( 5 . 1 1 )

1 , e ’ A = —  ( 5 . 1 2 )
2 ^

D = —  ( 5 . 1 3 )
2 r)1

Therefore the GF for the two regions is then given as

cQ = Z-HL  y > y' ( 5 . 1 4 )
2r/i

G0 = 0r?~y y < y' ( 5 . 1 5 )
2*7,

From direct observation of the GF expression, it can clearly be seen that the GF decays 

as l y - y ' l  00. Therefore the radiation condition in the y—direction is satisfied

immediately. The GF is also even, i.e. G0(y—y') =  G0(— y— y').

5.2.2 Inverse Fourier Transform

The x— coordinate can be reintroduced by performing the inverse Fourier transform 

(IFT) of the GF from equation (5.5). However, for computer applications, we shall 

determine the spatial GF g(x,y) numerically. This has the added advantage in that we can 

calculate the IFT quickly and efficiently. The resulting spatial GF will give a good 

approximation to the required analytical GF. For this case, the discrete inverse Fourier

transform (DIFT) of (5.5) is written as

= i  S  G* ck* ' y) e i j k / N  J = 0 ' N’ 1 ( 5 - 16)K—U

For our purposes, the NA G 25 routine C06FCF is used to calculate the IFT. Since the 

above NAG routine only calculates the forward Fourier transform, the IFT is calculated by

taking the complex conjugate, performing the Fourier transform with C06FCF, and then
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taking the complex conjugate of the result.

The difficulty arises since the NAG Fourier transform is only applicable for positive

frequencies i.e . j 0. .N 1. Appendix F discusses the formulation of the shifting property

of the Fourier transform.

Because the GF in the frequency domain is real valued (Im(G) =  0), the IFT will 

form a Hermitian sequence (i.e. for 0 <  k , N/2, Real(g) is contained in X(k), and 

Im(g) is contained in X( n- k ) ,  X being the array to store the values of the discrete GF 

values).

Fortran computer listings of the GF program and the IFT calculations are given in 

appendices G and H.

5.2.3 Cartesian Coordinate Resolution

As we are dealing with a discrete solution of the GF, we require that the GF can

be defined for particular spatial coordinates (x,y). The intermediate GF can therefore be

determined by interpolation if necessary. For a resolution of ax, the forward Fourier 

transform (5.4) must be band—limited. Using the identity

AXAkx = 2tt/N ( 5 . 1 7 )

where N is a positive power of 2, we can determine the actual frequency range required

for the desired resolution ax in the IFT. For the integration range — Mk0 <  kx <  Mk0

in equation (5.4),  divided into N equal steps, the interval step Akx in the discrete forward

Fourier transform is given as

Akx = 2Mk0/N ( 5 . 1 8 )

Hence 2 tc
= 2Mk0/N  .N

i . e .  a x  = X/2M ( 5 . 1 9 )

Therefore the resolution step can be dynamically chosen by band— limiting the interval 

range of the forward Fourier transform for the particular operating wavelength X.

5.2.4 Cartesian Contour Plot

Figure 5.2 shows the two dimensional contour and three dimensional plot of the 

spatial GF g(x,y) for free space. As expected there exists a singularity at the source point, 

where the GF is not defined. The GF radiates away from the source point and decays as

1/R (where R =  ( r - r ' )  =  7 { (x -x ’) 2 +  (y -  yO2) -* °°- This is exPected since the 

observation point and the source point are infinitely removed from each other. This

solution is similar to that for a Hankel function25.
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5.3 DIELECTRIC SLAB GF SOLUTION -  SITUATION 1

Figure 5.3a shows the situation where the point source is located in free space in 

the presence of a dielectric slab. Using the assumptions made earlier in chapter 4, we 

shall calculate the GF in all three regions. Since the dielectric interface is partially 

reflecting, our solution between the source point and the dielectric surface will constitute 

that of an outgoing wave and an incoming wave, i.e. equation (5.9). As the guiding layer 

solution is that of a standing wave, we will consider this too.

5.3.1 Sign of %

propagation in the slab region. Since the source is located in free space, an effective 

index value in this region is therefore chosen. The difficulty arises since the effective 

index (3 of electromagnetic waves in air is unknown (as in the previous problem). For any 

propagation in this region, we would have to consider an effective index value (3 >  n 

As a result, the signs of rjn  will have to be considered in order to have the solution 

required obeying the following inequality

The above ensure that the wave equation will yield a solution for the GF in air, and that 

the GF in the other two dielectric regions is evanescent. Using the above substitutions, the 

homogeneous equation for each region becomes

For waveguiding purposes, we require a solution to the effective index of

kQn 2 > kQn 3 > Q > k ^

Hence from equation (4.3.1)

the following changes of variables are made

( 5 . 2 0 a )

( 5 . 2 0 b )

( 5 . 2 0 c )

a 2G y > y'
-  V C o ( 5 . 2 1 a )

3 y 2 0 < y  < y

a 2G
+ r) 2 2G = 0 - d  < y  < 0 ( 5 . 2 1 b )

a y 2

67



Original in colour

(a)

(b)

y
* n  y -

>  — .......— ... ... y ■
X

n a

*

y

y °

n 3

k

n ,

i

/  y  a  
X

► y -  

n 2

.....................................  r 7

n

Figure 5.3 Green's Functions Situations

68



a 2G
  + tj3 2G = 0 y < - d  ( 5 . 2 1 c )
d y 2

with general solutions

G = Ae- 17iy  y  > y ' ( 5 . 2 2 a )

G = A ^ - ^ i y  + B ^ ^ i y  0 < y < y'  ( 5 . 2 2 b )

G = A 2e ~ i V 2y  + B2e i7?2y -d  < y  < 0 ( 5 . 2 2 c )

G = A3e ^ 3y y  < - d  ( 5 . 22d)

Note that, as assumed in section 4.1, we have written down a standing wave solution of 

the GF in the guiding layer using complex exponential notation. The constants A, A.,,  

etc. are determined by applying the discontinuity boundary conditions a t y  =  0, y =  —d, 

and at the source point y'.

y = -d  G : A 3e ~ V 3d  = A 2e i V 2d + B 2e ~ irl 2d  ( 5 . 2 3 a )

dG/dy : r)3A 3e ~ V 3d  = - i i ] 2A2ei '1?2ĉ  + ir}2B 2e ~ ^ rl 2d  ( 5 . 2 3 b )

y = 0 G : A, + B1 = A2 + B2 ( 5 . 2 3 c )

dG/dy : -*7̂  + = - i ^ 2A2 + i^ 2B2 ( 5 . 2 3 d )

y = y» G : A e - V r f '  “  A , e ~ V t f '  + ( 5 . 2 3 e )

dG/dy : - r j ^ A e ' V i y '  + 17., A., e ^ i y '  -  T71B1e ‘5? i y f = -1 ( 5 . 2 3 f )

After some manipulation, the constants are found to be

B. «  i -  e - ^ y ’ ( 5 . 2 4 a )
1 2 T7i

A2 = (~r/3 + i i72) e -17 i y ’ e ~ i rl 2d  /  denom ( 5 . 2 4 b )

B2 = (r)3 + i 172) e 772d e -r7iy' /  denom ( 5 . 2 4 c )

A, = A2 + B2 -  B, ( 5 . 24d)

A -  A, + i -  e ' l i y '  ( 5 . 24e)
Z y) i

A3 = (A2 e ~ i V 2d  + B 2 e ^ V 2d ) e V 3d  ( 5 . 2 4 f )

denom = 2 i r? n Tj3s i n ( i 72d) + 2 i r j 2 [(rj ,  + )j3) c o s ( } j 2 d) -  rj2s i n ( r j 2d )  ] ( 5 . 2 4 g )

5 .3 .2  Inverse Fourier Transform Solution

The required GF for each region is given by performing the IFT (equation F6 in 

Appendix F) to equations (5.22a) — (5.22d).

The spatial GF for a point source y' located 0 . 5 /um above a dielectric slab of 

thickness d =  0 .5 /urn and refractive index n 2 =  3.44, substrate refractive index n 3 =
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Figure 5.4 2D Contour Plot of G reen's Function for Situation 1
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3.34 is shown in figure 5.4. Here a resolution of 0 .1/urn was chosen by bandlimiting 

the forward Fourier transform in the range - 7 . 7 5 k 0 <  kx <  7.75kQ. The intermediate 

points of the spatial GF have been interpolated by the IBM UNIRAS™ graphics routine.

A  large singularity is again observed at the source point ( x \  y') =  (0.0, 0.5),  and 

decays radially. Note that the decay is slow for y >  y' since an effective index of n e =

1.001 was chosen. At the other side of the source point, the decay is rapid due to 

reflections from the dielectric boundary surface at y =  0.

The Fortran program listing to calculate the above GF is listed in Appendix I.

5.4 DIELECTRIC SLAB GF SOLUTION -  SITUATION 2

For many waveguide analyses, the source of excitation is present in a dielectric 

region enclosed by a cladding and substrate layer. For this situation we would require the 

delta source point in the n 2 region (figure 5.3b), with the corresponding inhomogeneous 

GF wave equation (5.3) to solve. Using the guidance inequality described in section 2.1.4 

and using equations (5.20) with rj3 2 =  kx 2 — k 32, the wave equations to solve for each 

dielectric region are

d 2G

a y 2

a 2G 

ay 2

d 2G 

a y 2

d 2G 

a y 2

The solutions to these are

G = A e ' V i V  y  > 0 ( 5 . 2 7 a )

G = A ^ - i ^ y  + B ^ i ^ y  y'  < y  < 0 ( 5 . 2 7 b )

G  = A2e - ir?2y + B2e iT72y - d  < y  < y'  ( 5 . 2 7 c )

G = A 3e V 3y  y  < - d  ( 5 . 27d)

As before, the coefficients A, A 1? etc. are determined by applying the discontinuity

-  17, 2G = 0 y  > 0 ( 5 . 2 6 a )

+ rj22G = 0 y 1 < y  < 0 ( 5 . 2 6 b )

+ t/22G = 0 - d  < y  < y 1 ( 5 . 2 6 c )

-  ?j32G = 0  y  < - d  ( 5 . 26d)
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boundary conditions at y =  0 , y =  -  d, and at the source point y =

A^ e ~ V 3 d = A , e il?2d + Bne - i ^ 2 d

y'-
y = - d  G : 

d G / d y  :
3 “ 2'~ “ 2"

“*} 3A 3e =  - i ^ 2A 2e i7?3d +  iTy2B 2e - i l 72d

( 5 . 2 8 a )

( 5 . 2 8 b )

y = 0 G : 

dG /dy :

A — A1 + B1 

-t/,  A = - i r / 2A1 + ii72Bn

( 5 . 2 8 c )  

( 5 . 28d)

y = y 1 G : A1e - ’?2y , + B1e T?2y' = &2e ~ y 2y '  + B2ei72y ’ ( 5 . 28e)

dG/dy : - r )2A , e ~ y 2y '  + ^ B ^ W '  + r\2A2e"T72y'  -  r]2B2e ’72y'  = -1  ( 5 . 2 8 f )

After some manipulation, the coefficients are found to be

B- -  w e i V 2y ’ e ir/2d 2 e - i ^ y '  e ~ i V 2d
(i73 + 1J72) /  denom

A1 = “ (^71 + -  ^ 2) B1
i

B 2 2rj e^ 572y'  e ir?2d -  i l l  + e - i r72y ' e i ’72d 1 /  denom
(^1 -  1^ 2) J

A2 = ( -^ 3  + irl 2) / ( V 3 + irI2) B2 e “2 i 772d
A = A1 + B,

A3 = (A2 e ^ y 2d  + B2 e ^ V 2d ) e V 3d

denom = (Vi  + i y 2) c ir)2d + ( * y 2 V s ) c - i r j 2d  
(Vi  “ i r) 2) ( v 3 + i7?2)

( 5 . 2 9 )

5.4.1 Singularity Nature of the Green's Function

Before attempting to derive the required spatial GF via the IFT, some characteristics 

of the GF with the point source located within the active layer are discussed. Since a

numerical IFT is readily applicable here, we have to investigate possible contributions to 

the final GF by the physical conditions imposed on our GF.

The presence of dielectric boundaries along the x— direction gives rise to simple pole 

singularities in the G F 27. These poles contribute to the modal distribution of the GF. 

Simple calculus using the method of residues can be implemented as the IFT integral 

requires avoidance of these poles.

The remaining part of the GF in the Fourier domain (after removal of these poles)

can be calculated numerically, thus giving a spatial GF that decays as |x—x' |  - > 00.

Furthermore, as the propagation constant of the waveguide is required, we can

derive a transcendental equation from the GF of the guiding layer by manipulating the 

singularity nature of the GF at the poles. For this case the denominator equation (5.29) is 

equated to zero. The resulting transcendental equation is simple and can be solved as 

before and is formulated in the next chapter. The frequency at which the poles occur can 

also be determined by the same transcendental equation.
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5.5 CONCLUSIONS

Starting from the three dimensional homogeneous GF wave equation, we have 

reduced the problem to a one dimensional equation by exploiting the translational 

invariance of the slab structure. We have solved this equation for various situations 

involving the dielectric slab, and using the boundary conditions specified in section 4.4.3,  

the spatial GF is matched across all discontinuities. The conditions at infinity are explicitly

incorporated in the solution, and comparisons with the Hankel function lead to the strong

argument that the solution is correct and therefore accurate. At a glance, using the 

discrete Fourier transform, we can deduce the shape of the spatial GF, observe the 

singularity at the source point and the decay away from the source point. Such theories 

given about the GF have been investigated and are concluded to be correct.

Finally for the source point in the guiding layer, we have derived a GF expression 

whose IFT can be calculated analytically by the method of residues. The singularity nature 

of the source point will lead to a simple transcendental equation that will be solved for

the eigenvalues of the slab. This is now developed in the next chapter.



CHAPTER 6 EIGENVALUE SOLUTION USING THE GREEN’S FUNCTION

As the required GF for the slab is to be determined analytically, we will derive the 

modal contribution of the spatial GF gm(x,y) via the residue theorem. The determination 

of the GF in the frequency domain has resulted with the GF having a denominator that 

can be equated to zero. From this the resulting transcendental equation, which is similar 

to the TE transcendental equation (2.48), can be solved for the effective index (and 

frequency of the poles) since it takes account of the depth of the slab d and the 

surrounding refractive indices. The coordinates of y and y' are not relevant at this stage.

6.1 DERIVATION OF THE GF TRANSCENDENTAL EQUATION

The singularity occurs in the Fourier domain when the denominator of the above

GF tends to zero. Consider equation (5.29). The denominator can be transformed into

[ e ^ i  -  e “ ^ 3  e ] ( 6 . 1 )

where = 2 t a n _1 [r]2/ r j ^]  ( 6 . 2 )

<fc3 = 2 t a n " 1 C’J / V  ( 6 . 3 )

At the singularity, equation (6.1) is equated to zero, hence 

e i ( (I)i + $3 + 2772H) _  2

i . e .  + <t>3 + 2rj2d  = 2qx q = 1 , 2 , . . .  ( 6 . 4 )

This is the transverse resonance condition equation which can be solved to obtain the 

eigenvalue (3 (or effective index ne) and the poles of the GF.

6.1.1 Solutions to the GF Transcendental Equation

Figure 6.1 shows the above equation plotted for various choices of effective index ne 

for waveguide structure 2. The value of the propagation constant can be read off

immediately from where the graph intersects the resonance condition at 2-k. Here q =  1

and therefore the solution obtained is for the fundamental mode (ne =  3.409374). Figure

6.2 shows the transcendental equation plotted for the waveguide 1 slab structure. As this is 

a two moded structure, we see two solutions of the transcendental equation. The 

corresponding effective indices for the the two modes are neo =  3.407594 and ne i =  

3.319209.
The GF transcendental equation (6.4) has been solved for the same slab waveguides 

defined in section 2.3.3.  The Fortran computer listing is listed in Appendix J. The results 

have been tabulated below
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Figure 6.1 Graphical Solution of Transcendental Equation for WG2
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Figure 6.2 Graphical Solution of Transcendental Equation for WG1

76



S t r u c t u r e n.
Fundamental mode 

ne (b)

F i r s t  o rd er  mode 

ne (b )

1 . 3 . 3 0 5 3 . 407593932  ( 0 . 7 5 6 3 ) 3 . 3 1 9 2 0 9 9 6 8
2. 3 . 3 4 3 . 409374837  ( 0 . 6 9 0 6 ) -
3. 3 . 3 9 3 . 414297681  ( 0 . 4 8 4 1 ) -
4 . 3 . 4 0 3 . 416099847  ( 0 . 4 0 1 1 ) -
5. 3 . 4 2 3 . 422485526  ( 0 . 1 2 4 0 ) -
6. 3 . 4 3 5

Table 6a

The effective index values calculated are in very good agreement with the exact solutions 

derived in chapter 2. The largest error being 0.7799x10— 3 %  for the waveguide structure 

2, and the smallest error being 5.182x10— 6 % for the first order mode for waveguide 1. 

From the above results, we can conclude that the GF expressions (5.29) are correct and 

exact for the three layered slab waveguide. These eigenvalues can therefore be used in the 

expressions for the spatial GF g(x,y) which are now formulated.

6.2 DERIVATION OF THE MODAL CONTRIBUTION TO THE SPATIAL GF ^ ( x .y )

6.2.1 Singularities of the GF

The singularities can be found by solving the above transcendental equation as a 

function of the spatial frequency kx . Next the Fourier transform of the GF must be 

modified to extract the singularity term, so that the inverse Fourier transform (IFT) of the 

GF will yield a modal contribution. Consider the GF equation (5.27b) for the region y' <  

y <  0

G(kx , y)  =

(V, + + e irl 2 y Bi
( r)^ - i*?2)

i t i y' e i7h d + Ll 2L2------l a ) e - i r j 2V'  e " ir/ 2d
2rT2 • v

-s

CO + ii?2>

[ e i $^ e iy)2d  -  e - ^ 3  e ~ iT72d ]
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i / 2 i ) ,  » ( k y ,y )  t t ( k y . y ' )

[ e 14>, e i l j d  -  e - i ^ s  e  - i ^ 2d ]

Rewriting the above, at kx =  kq

where

G ( k x , y )  -  - S ' C k x . y . y 1)
{1 -  e i  f ( k x ) }

f ( k x ) = + $ 2 + 2r)2d

G,(kX}y ,y ’) = i / 2 i72 ¥ ( k x>y) t ( k x , y ' )

( 6 . 5 )

( 6 . 6a)  

( 6 . 6 b )

* ( k x , y)  = 

* ( k x , y ' )  =

_  LI2-LJI2)e-ir]2Y + e i^2y 
(^1 ~ i ^ 2)

e i V2y '  e i V2d + 1 1 -̂ 2 - e - i r ) 2y '  e ~ i V 2d  
(rj 3 + i r}2)

( 6 . 6 c )  

( 6 . 6d)

6.2.2 Pole Contribution of the Green's Function

Using the Taylor series expansion about the point (x— a)

f ( x )  = f ( a )  + f ' ( a ) ( x - a )  + f ' ’ ( a ) ( x - a ) 2/ 2 ! + . . .

equation (6.6) becomes

f ( k x ) = f ( k q) + f ' (k q) (kx -  kq) + f " ( k q ) ( k x -  kq ) 2/ 2 ! + . . .

= 2q7r + f ' ( k q) ( k x -  kq) + . . .

where kq is the singular point on the real kx axis. Higher order powers have been

omitted. The denominator of equation (6.5) can then be approximated by

1 _ e i f  (kx ) = 1 -  e ^ cl7r e* ( f ' (kq) (kx - kq) • • • )

-  1 -  1 . [ 1  + i f ' ( k q ) ( k x - kq) + . . . ]

= - i f ( k q) ( k x - k q) + . . .  

where the Taylor series for the exponential term is given by28

e z = 1 + z  + z 2/ 2 !  + z 3/ 3 ! + ------

After this expansion, the pole contributions to the GF in equation (6.5) becomes

l / 2 ^ 2 # ( k q ,y )  t ( k q , y ’ )

( 6 . 7 )

Gm(kx. y> “  -  f ' ( k q ) ( k x - k q)

1 / 2 1 7 2 S C k . q . y )  t C k . q . y ' )  

-  f ' ( - k q ) ( k x+kq)

kx “ kq

kx “ “kq

We now introduce the x-coordinate variable by applying the IFT as defined in equation 
(5.5), i.e.
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+00

Sm(x >y) = —
1_

2t

1 / 2 1) ,  tt(kq ,y )  tt(kq , y ' )  e ikxX dk

-  f ' ( k q) ( k x - k q )

+ 0 0

1+
2 tt

l / 2 r ] 2 ^ ( k _ q ,y )  fr(k_q , y ' )  e i k x x dkx ( 6>8) 

-  f ' ( - k q ) ( k x+kq)

The above integral can be implemented using the Cauchy residue theorem29. The integral 

has been split into two cases. The first case, x >  0, the contour of integration is the

path of an infinite semicircle in the upper half plane, and the second case, x <  0 , the

contour path is the path enclosing the semicircle in the lower half plane (figure 6.3). The 

poles at kx =  ±kq lie on the real axis. We integrate by displacing the poles by 17 and 

then taking the limit as 7  -+ 0. So for 7  positive, contour C 1 encloses the pole at

kx =  kq+- i7  and the residue at this pole is (for x >  0)

l / 2 i 7 2 ^ ( k q+ i 7 ,y )  t ( k q+ i 7 , y ' )
R e s id u e  at  kx = kq+ i 7  =   e 1 (^Lq+ 17 ) x  ( 6 . 9 a )

-  f 1(kq+i 7)

Similarly, the residue enclosed by the contour C 2 gives for x <  0

1/ 2 t/ 2 * ( - < k q+ i 7 ) , y )  ♦ ( - ( k q i 7 ) , y >
R e s id u e  at  kx = - ( k q+ i 7 ) =-------- - f r ( - '( F + T̂ )~)--------------------------

q ( 6 . 9 b )

6.2.3 Spatial GF gm(x,y)

Now letting 7  + 0, the spatial pole contribution of the GF is given by the residue 
theorem as

gm( x ,y )  = 2-7ri *  (sum o f  r e s i d u e s )

i / 2 i?2 ¥ ( k q ,y )  ^ (k q , y f )
,_____________ _________ ______ e l k qx x > 0 ( 6 . 10a)

" f ( kq) 

i / 2172 * ( - k q ,y )  f ( - k q , y ’ )
= ____________ __________ ______ e - l k qx  x  < 0 ( 6 . 10b)

-  f 1( - kq)

The GF g(x,y) can now be calculated for any point (x,y) for a given source point (x',y*). 

Since we have assumed the source point to lie on the origin, we have let x — 0 . 

Reintroducing this term we simply replace the exponential term by e ^ q ^  x ) or 

e~  ikq(x- x ’).

The value of f ’( ±kn) can be determined from the derivative of equation (6.4) i.e .
HI

79



Im (kx)

kq + iy

Re (kx)

Figure 6.3 Plane of Integration for the Cauchy Integrals
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f ( k x ) — + 2 r ) 2 d  — 2qi

f ' (kx -  ikq) -  jjj 4 , + 55- 43 + jj-J n 2d

+

_a
d k >

_a
3 k,

2 t a n _1 

2 t a n - 1

l z
V,

Hz
V3

] ]

] ] + 3kJZr,2<i

After some manipulation, the above equation is simplified to

f ' ( k q )  = -2kq
* ? iA 2 + H 2 A 1 V3 / V 2 +  V2/ V-

V2 + V- V 2 + V:
+ ---

*12
( 6 . 11 )

The calculation of the root kq and the value of f'(kq) are contained in the Fortran 

program  GFCALCS listed in Appendix J .

6.3 D ERIV A TION O F TH E IFT GREEN'S FUNCTION gn(x.y)

Having completed the modal contribution of the GF, there remains the nonsingular 

part of the GF. This GF, gn(x,y), is calculated numerically using the IFT equation defined 

by (5.5). Thus the complete spatial GF g(x,y)is written as the sum of the two individual 

com ponents

g ( x , y )  = gn(x >y) + gm(x >y)
i.e.

g(x >y) = 2 ^
i / 2 i72 tf(kx ,y )  ¥ ( k x , y ' )

[ e i(J)i e i l 7 2 d  -  e ~ ici )3 e  “ i ’72 d  ]

i / 2 q72 ¥ ( k q ,y )  tf(kq>y ' )  .
__ ___   . o 1e ikqx

-  f ' ( kq)

i / l r ) 2 t ( - k q ,y )  t f ( -k q , y ' )
 _  a 1

-  f ' ( - k q )

e - x k qx e i k x x  d k .

i / 2 rj2 ¥ (± k q ,y )  tf(±kq , y ' )
e - i k q I x I ( 6 . 1 2 )

-  f ' ( - k q)
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Similar expressions can be derived for the GF in the other dielectric regions using the 

solutions given by equations (5.27) and (5.29). These final GF expressions can now be 

used in the Kirchhoff— Huygens line integral. The Fortran computer listings to calculate 

the modal contribution and the FT GF are listed in appendices K and L respectively. The 

IFT GF gn(x,y) can be calculated using the IFT program listed in Appendix H.

The two components of the Green's function gm(x,y) and gn(x,y) are shown in 

figures 6.4 and 6.5 respectively. The modal GF gm(x,y) dominates, while the numerical 

GF gn(x,y) decays exponentially as x co.

6.4 KIRCHHOFF- HUYGEN'S LINE INTEGRAL

Reproducing the line integral below

dg d ^ ( r ' )
H r )  = i ^ (r ' ) —  - g

c 3n 3n
dl ( 6 . 1 3 )

where \J/(r) is the electric field within our region of interest. Again as an initial exercise, 

we will evaluate the above integral for a slab waveguide, the path of the integral is shown

in figure 6.6. This has been chosen as the field is at a maximum within the guiding

layer, and the solution to the exact field is also known. However we do have the 

flexibility to enclose any other region of interest. For an initial guess of the field v^r'),

we shall use the FD method solution of the electric field for a slab region.

6.4.1 Matrix Implementation

As a direct consequence of implementing the FD method, the above line integral 

can be represented in discrete form (rewriting i/' as u> <5u/Sn as u'(x) and <5g/ <5n as

g ’(xn> xm)) as>
N -l

U(xm) = 2  u ( x n ) g ' (Xn ,x m) -  u ' ( x n ) g ( x n , x m) ( 6 . 1 4 )
n=0

or in matrix form

u,m- = u , u. un] g 11 g 12 
S' 2 1 s' 2 2

• • 6 im 
•• S' 2m

S 'n i  § ' n2 • • • S nm

-  u' 51 1 gl  2
5 2 1 S 2 2 

Sni Sn 2

Sim
62m

Snm

( 6 . 1 5 )
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Figure 6.4 Contour Plot of the Modal G reen's Function gm (x,y)
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Figure 6.5 Contour Plot of the Numerical G reen 's Function gn(x,y)
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6.4.2 GF Matrix Elements

Figure 6.6 shows the proposed Kirchhoff—Huygens integral path enclosing the 

dielectric field within the dielectric slab, the maximum of the field placed at the centre of 

the enclosing 'box'.

Begining from the top left hand corner, the integral is performed in a clockwise 

direction, with an interval step of 0.1 jttm. This is the suggested step to match the 

sampling rate in the FD method.

The GF is calculated at every observational point xn along the contour for every 

source point xm . The position of the source point is then incremented to the next 

sampling point, and the GF again is calculated at each sampling observational point. This 

is repeated until the last sampling source point is reached.

Thus having completed the elements of the GF and electric field matrices (along 

with their respective derivatives), the discrete Kirchhoff— Huygens matrix calculation 

(equation (6.15)) is performed.

The diagonal elements of the GF matrix correspond to the observational point xn 

coinciding with the source point xm. As the GF is not defined at these points (the GF is 

infinite in this case), the value of the GF here is finite by virtue of the bandlimiting 

imposed in the inverse Fourier transform.

6.4.3 Iterative Procedure

As an initial exercise, the results of the scalar FD method on the slab waveguide 

(section 4.6.2) are used as an initial condition for the KH integral equation (6.12). The 

size of the 'box' for the FD program only covers this area surrounded by this contour.

Having calculated an initial guess of the contour field values using the FD program, the

GF function is determined as described above. After performing the Kirchhoff-Huygens 

calculation, the new values of the electric field calculated around the contour are

consequently used as an initial condition for the FD program. Overleaf is a flow chart of 

the process. It is expected that the iteration procedure will converge to give a final result 

of the effective index and cross sectional field profile of the waveguide structure.

6.5 SLAB WAVEGUIDE RESULTS

The KH integral method was applied to the waveguide 1 structure. For the FD

method, an initial field was calculated with a resulting effective index of ne =  3.40812758 

(b =  0.7603). The modal and numerically calculated GF's gm(x,y) and gn(x,y) were

determined and the KH integral was performed with these components.

Figure 6.7 shows the electric field around the chosen contour in the slab guiding
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Figure 6.6 K irchhoff-H uygens Line Integral Path
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region. The paths within the contour are labelled 1 — 4. The final electric field after the 

KH integral shows that the KH method does indeed give an approximation to the electric 

field around the contour. This is particularly true for the contour paths 2 and 4 where 

the contour path is vertical with the absence of dielectric boundaries. However the electric 

field in paths 1 and 3 is poorly represented. This is possibly due to the fact that the 

effective index chosen for the GF’s is when the source point is placed in the centre of 

the guiding layer. For these contour paths, the source point is very close to the dielectric 

boundary and the effective index of such a situation is different. This conclusion is drawn 

from an investigation that was made when the effective index changed using the Rayleigh 

quotient (equation (3.7))in the FD method for slab waveguides whenever the focal point of 

the electric field was displaced from the centre of the slab. As the GF programs assume a 

particular effective index for a source point located in the centre of the slab, it takes no 

account if the effective index changes when the position of the source point changes 

relative to the boundary. To solve this, we would be required to calculate the effective 

index everytime the source point is moved vertically for both components of the GF.
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6.6 RIB WAVEGUIDE RESULTS

The rib waveguide structure is difficult to manipulate due to the finite width of the 

rib in the lateral direction. As discussed earlier, approximate techniques are therefore

implemented such as treating the structure as three seperate slab modes as performed in

the Effective Index Method (EIM). It would be possible to calculate the GF in this

manner, but the inherent errors that arise from the EIM would be encountered.

The FD technique is useful since the electric field is well represented within the rib 

structure. The majority of the field is concentrated within the rib, therefore the contour 

path of the Kirchhoff— Huygens integral would enclose this part. However the GF for the 

rib is difficult to determine, therefore the GF for a slab waveguide of the same depth as 

the rib and layer could be used. The result is therefore expected to converge by the

iterative method (section 6.4.3). The effective index calculated by the FD program would 

be used in the calculation of the GF.

6.7 CONCLUSIONS

Determining the GF for a source point located in the guiding region of a three 

layered slab waveguide has resulted in a method of calculating the exact effective index of 

propagation and the corresponding modal distribution due to a point source located in the 

guiding layer. The results of this method have been confirmed with the method described 

in chapter 2. With this basic test we can conclude that the GF has been correctly 

determined and can therefore be implemented for our analytical study of the slab 

waveguide.

The poles of the GF gave rise to a modal distribution of the GF, gm(x,y), which is 

the more dominant. The remainder of the GF calculated numerically gives rise to a 

smaller contribution, which decays as x co. The GF for both parts decays rapidly in the 

cladding and substrate regions. These modal distributions are consistent with what is 

expected for a slab waveguide mode, therefore the GF method has given us many answers 

about mode profiles. These GF expressions can be further extended to be used for other 

analytical methods which require the GF to be known.

Discretising the KH integral has led to a simple matrix calculation which can easily 

be applied to the contour chosen in the structure. Thus the problem has continually been 

simplified without the loss of the analytical technique. It is expected that the electric field 

calculated using the Kirchhoff-  Huygens line integral will converge on the vertical paths 2 

and 4 using the iterative loop, but not for the horizontal paths. Possible solutions to this 

problem would be to calculate the effective index for different values of source point (i.e. 

the y' coordinate of the source point) or by choosing a horizontal path that is relatively 

distant to any horizontal dielectric interfaces.

89



CHAPTER 7 CONCLUSIONS AND FUTURE WORK

7.1 WAVEGUIDE STUDY

Our initial investigations of dielectric slab waveguides using Maxwell's equations 

led us to the determination of the effective index of wave propagation for various 

structures. As this theory was established as being exact, we have based further 

numerical study on this. Because the ridge waveguide structure could not be analysed 

analytically, approximate techniques were implemented.

The EIM proved simple to implement for the ridge structure. However it was 

accurate if the rib height was small compared to the slab height. If the rib was 

higher, the result tended to be higher than other methods. Because of this nature, the 

EIM has been regarded as an upper limit for the effective index7.

The FD method has proved very simple and versatile to implement on the ridge 

waveguide. This is primarily due to the fact that a rectangular mesh is used, and that 

the FD approximation is easily applicable to the scalar Helmholtz wave equation. The 

mesh spacing and box size could be chosen very easily. However a difficulty arose 

since the solution of the fields at a corner dielectric boundary is a singularity, which 

cannot be accurately modelled by any known technique. The error involved in the FD 

method is (^ x)2, so it was anticipated that this error could be reduced by choosing a 

smaller mesh. However this results in increased computer time.

Investigations were also made into the size of the enclosing box which 

surrounded the waveguide structure. As the FD program set the electric field to zero 

at the box boundary, a smaller box around a waveguide structure resulted in a poor 

representaion of the mode profile, thus an incorrect estimate of the effective index. A 

larger box would include the decay of the electric field as we moved away from the 

centre of the structure. Again, because of more elements in the FD matrix, the 

penalty for this is computer time. Therefore it is important to consider the enclosing 

box dimensions for the FD method.

In order to save time, full advantage was used with the inclusion of an 

acceleration parameter to improve convergence, and of the vectorial array processing 

facility on the mainframe computer, which decreased the time spent running the FD 

program considerably.

7.2 GREEN'S FUNCTION STUDY

The theory of Green's functions was investigated with the determination of the 

GF for three different situations. For the free space situation the GF proved to have 

singularity at the source point and decayed exponentially radially. The GF was also
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proved to be continuous across the source point according to boundary condition stated 

in equation (4.23).

The GF for a point source located above a dielectric slab showed the rapid 

decay of the GF between the source point and the dielectric layer. This is due to the 

cause of destructive interference of the outgoing and incoming reflected waves. The 

decay is slower for the region above the source point.

The GF for the source point located inside the guiding layer proved to have 

poles at particular frequencies as discussed by Marcuvitz/Felsen2 7. The determination of 

this GF resulted in a transcendental equation, which when solved, determined the 

effective index of propagation for the slab waveguide. This method proved to be as 

accurate as the exact method using Maxwell's equations, thus confirming that the GF 

calculated was correct.

As a final check, the GF's were implemented in the Kirchhoff— Huygens line 

integral method. Because of the omission of calculating the effective index for different 

point sources of the GF in the slab waveguide, the Kirchhoff— Huygens integral failed 

to converge at the horizontal dielectric boundaries. However the field is fairly well 

represented on the vertical paths of the contour.

7.3 IMPROVEMENTS AND FUTURE CONSIDERATIONS

The above investigation has led to the conclusion that the implementation of the 

Green's function for optical waveguides is feasible, and can be improved. This is 

particularly true as the Fourier method is advantageous because of the planar 

stratification of the waveguides, which reduces to the problem to an ordinary 

differential equation with one coordinate variable.

The problems were tackled using the scalar finite difference technique but full 

vectorial solutions of the GF are readily available and easy to implement21* 23. This 

would ensure that both TE and TM polarisations could be investigated. Coupled to 

this, a vectorial solution of the FD method could be used, one which has been 

developed in the department30 and by other authors31 . Therefore, with more time, 

the simple numerical method of solving the field profile, Green's function and effective 

index value with the Kirchhoff— Huygens integral can be implemented using vectorial 

methods.
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APPENDIX A Transcedental Equation Program

PROGRAM TRANSECENDENTAL

T h i s  p r o g r a m  w i l l  c a l c u l a t e  t h e  r o o t  o f  t h e  t r a n s c e n d e n t a l  
e q u a t i o n  ( 2 . 4 8 )  f o r  TE p o l a r i s a t i o n .  The v a l u e  i s  c a l c u l a t e d  
u s i n g  p r o g r e s s i v e l y  s m a l l e r  e r r o r  EPS as  us e d  by t h e  NAG 
r o u t i n e  C0 5 AJ F .

COMMON/WORK/ D, KO , N l ,  N 2 , N 3 , P I , Q

DOUBLE PR EC I S I ON B, NE,  KO, KQ, P I
DOUBLE PR EC I S I ON D, LAMBDA, N l , N 2 , N3
DOUBLE PREC I S I ON EPS , ETA
INTEGER I F A I L , K , NFMAX, Q 
EXTERNAL TENE

W R I T E ( 6 , * )  * I n p u t  t h e  d e p t h  o f  t h e  s l a b  ( u r n ) 1 
READ ( 5 , * )  D
W R I T E C 6 , * )  ' E n t e r  N l ,  N2 ,  N3 '
READ ( 5 , * )  N l ,  N2 ,  N3
W R I T E C 6 , * )  ' I n p u t  t h e  o p e r a t i n g  w a v e l e n g t h  ( u r n ) '  
READ ( 5 , * )  LAMBDA
W R I T E C 6 , * )  ' I n p u t  t h e  mode number  q '
READ ( 5 , * )  Q

D = D *  I D - 6
LAMBDA = LAMBDA *  I D - 6
P I  = 4 * A T A N ( 1 . 0D0)
KO = 2 . 0 D 0 * P I / L A M B D A

T h i s  p a r t  w i l l  f i n d  t h e  r o o t  ( o r  e i g e n v a l u e  n e )  .

DO 10 K = 1 ,  10
EPS = 1 0 . 0 D 0 * * ( - K )
NE = N3 + 0 . 0 1 D 0  
ETA = 0 . 0 D 0  
NFMAX = 500  
I F A I L  = 0
CALL C05AJF ( NE ,  EPS,  ETA,  TENE,  NFMAX,  I F A I L )
B = ( N E * * 2  -  N 3 * * 2 ) / ( N 2 * * 2  -  N 3 * * 2 )
W R I T E ( 6 , 9 7 )  ' Ne = ' ,  NE,  ' b  = ' , B  

CONTINUE

FORMAT( A 6 , F 1 5 . 9 ,  A 6 ,  F 1 0 . 4 )

STOP
END

REAL FUNCTION TENE( NE)

T h i s  f u n c t i o n  c a l c u l a t e s  t h e  v a l u e  o f  t h e  t r a n s c e d e n t a l  e q n .  
f o r  a g i v e n  v a l u e  o f  t h e  e f f e c t i v e  i n d e x  ( N e ) .  The eqn i s

PH 1 1 + PH 12 + 2 * E T A 2 * D  = ( 2 q ) * P I .
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COMMON/WORK/ D,  KO, N l ,  N2 ,  N3 ,  P I ,  Q

DOUBLE PRECI SI ON BETA,  KX,  KO, NE,  P I ,  P H I 1 ,  P H I 2  
DOUBLE PRECI S I ON D,  LAMBDA, N l ,  N 2 , N3 
DOUBLE PRECI SI ON ETA 1,  E T A 2 , ETA3 
INTEGER -Q

KX = 0 . 0 D 0

CALL ETA_KAPPA ( N E ,  KX,  ETA 1 ,  E T A 2 , ETA3)

PH 1 1 = 2 . 0 DO *  ATANCETA2/ ETA1)
PH 12 = 2 . 0 DO *  ATANCETA2/ ETA3)

TENE = - PH 1 1 - PH 12 + 2 . 0 D 0 * E T A 2 * D  -  2 * D F L 0 A T ( Q) * P I  

END

SUBROUTINE ETA_KAPPA ( N E ,  KX,  ETA1 ,  E T A 2 , E T A 3 )

COMMON/WORK/ D,  KO, N l ,  N 2 , N3 ,  P I ,  Q

DOUBLE PREC I S I ON  BETA,  KO, KX,  NE,  N l ,  N 2 ,  N3 
DOUBLE PRECI S I ON KAPPA1,  KAPPA2,  KAPPA3 
DOUBLE PRECI S I ON ETA 1 ,  E T A 2 , ETA3  
DOUBLE PRECI S I ON D,  P I  
INTEGER Q

BETA = NE*K0
KAPPA1 = ( N l  *  K 0 ) * * 2  -  B E T A * * 2
KAPPA2 = ( N2 *  K 0 ) * * 2  -  B E T A * * 2
KAPPA3 = ( N3 *  K O ) * * 2  -  B E T A * * 2

N2 > Ne > N3 > Nl  S i t u a t i o n .

ETA1 = DSQRT( K X * * 2  -  KAPPA1 )
ETA2 = DSQRT( KAPPA2 -  K X * * 2  )
ETA3 = DSQRT( K X * * 2  -  KAPPA3 )

END
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APPENDIX B 

PROGRAM RIB EIM
Effective Index Method Program

T h i s  p r o g r a m  c a l c u l a t e s  t h e  e f f e c t i v e  i n d e x  o f  a r i b  w a v e g u i d e  
u s i n g  t h e  E f f e c t i v e  I n d e x  Me t hod  o f  s l a b  g u i d e s .  The v a r i a b l e  
us e d  a r e

A H e i g h t  o f  r i b  ( i n  m i c r o n s ) .
D De p t h  o f  s l a b  ( i n  m i c r o n s ) .
W W i d t h  o f  r i b  Cin m i c r o n s ) .
NC R e f r a c t i v e  i n d e x  o f  t h e  c l a d d i n g .
NG R e f r a c t i v e  i n d e x  o f  t h e  g u i d i n g  l a y e r .
NS R e f r a c t i v e  i n d e x  o f  t h e  s u b s t r a t e  l a y e r .
NE1 E f f e c t i v e  i n d e x  v a l u e  o f  r i b .
NE2 E f f e c t i v e  i n d e x  v a l u e  o f  s l a b .
NE E f f e c t i v e  i n d e x  v a l u e  o f  mode.
LAMBDA O p e r a t i n g  w a v e l e n g t h .
EIM S u b r o u t i n e  t o  c a l c u l a t e  t h e  e f f e c t i v e  i n d e x

o f  a g i v e n  s l a b  s t r u c t u r e .
FNEFF S u b r o u t i n e  t o  c a l c u l a t e  t h e  t r a n s c e d e n t a l  eqn

DOUBLE PRECI S I ON A,  D,  W, LAMBDA
DOUBLE PRECI S I ON NC, NG, N S , NE1,  NE2 ,  NE
EXTERNAL E I M ,  FNEFF

W R I T E C 6 , * )  ' T y p e  i n  t h e  h e i g h t  o f  t h e  r i b  Cum) '
READ ( 5 , * )  A
W R I T E C 6 , * )  ' T y p e  i n  t h e  h e i g h t  o f  t h e  g u i d i n g  l a y e r  ( u r n ) '  
READ ( 5 , * )  D
W R I T E C 6 , * )  ' T y p e  i n  t h e  w i d t h  o f  t h e  r i b *
READ ( 5 , * )  W
W R I T E C 6 , * )  ' T y p e  i n  N l ,  N2 ,  N3 '
READ ( 5 , * )  NC,  NG, NS
W R I T E C 6 , * )  ' T y p e  i n  t h e  o p e r a t i n g  w a v e l e n g t h  Cum) '
READ ( 5 , * )  LAMBDA

LAMBDA = LAMBDA *  I D - 6  
A = A *  I D - 6
D = D *  I D - 6
W = W *  I D - 6

THI CK PART OF STRUCTURE

N E 1 = EIMCNC,  NG, NS,  NS,  A,  0 . 0 D 0 ,  LAMBDA, ' T E ' ,  0 )

T H I N  PART OF STRUCTURE

NE2 = EIMCNC,  NG, NS,  NS,  D,  0 . 0 D 0 ,  LAMBDA, ' T E ' ,  0 )

TOP PART OF STRUCTURE

NE = E I MCNE2 ,  NE1,  NE2,  NE2,  W, 0 . 0 D 0 ,  LAMBDA, ' T E ' , 0 )

WRITE C 6 , 9 7 )  ' NE 1 = ' ,  NE1
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W R I T E ( 6 , 9 7 )  ' NE2 = ' ,  NE2
WRITE C 6 ,  9 8 )  ' E f f e c t i v e  i n d e x  o f  s t r u c t u r e  = ' ,  NE 
W R I T E ( 6 , 9 9 )  ' N o r m a l i s e d  i n d e x  b = ' ,  ( N E * * 2  -  N S * * 2 ) / ( N G * * 2 - N S

97 F 0 R M A T C A 6 , F 1 5 . 9)
98 F 0 R M A T ( A 3 2 , F 1 5 . 9 )
99 F 0 R M A T C A 2 2 , F 1 5 . 9 )

STOP
END

DOUBLE PRECI S I ON FUNCTION EIM ( N l ,  N 2 ,  N 3 ,  NA , D 2 ,  D 3 , LAMBDA,  
1 POLRSN, MODE)

T h i s  p r o g r a m  c a l c u l a t e s  t h e  e f f e c t i v e  i n d e x  f o r  a A l a y e r  p r o b  
u s i n g  t h e  e f f e c t i v e  i n d e x  m e t h o d .  F o r  t h e  3 l a y e r ,  l e t  N3=NA a 
D3 = 0 . 0 .

COMMON/WORK/ KO, P I ,  E T A 1 , E T A 2 , E T A 3 , ETAA

DOUBLE PRECI S I ON N l ,  N2 ,  N3 ,  NA,  FERROR,  LAMBDA, D 2 , D3
DOUBLE PRECI S I ON KO, P I ,  E T A 1 , E T A 2 , E T A 3 , ETAA
DOUBLE PRECI S I ON N E F F M I N , NEFFMI D,  NEFFMAX,  F M I N , F M I D , FMAX
I NTEGER MODE 
CHARACTER*2 POLRSN

P I  = A*DAT AN( 1 . 0  DO)
KO = 2 . 0 D 0  *  P I  /  LAMBDA 
FERROR = I D - 7

I F  (POLRSN . EQ.  ' TM' )  THEN
ETA1 = 1 . 0 D 0 / N 1 * * 2
ETA2 = 1 . 0 D 0 / N 2 * * 2
ETA3 = 1 . 0 D 0 / N 3 * * 2
ETAA = 1 . 0 D 0 / N A * * 2
SE
ETA1 = 1 . 0D0
ETA2 = 1 . 0D0
ETA3 = 1 . 0D0
ETAA = 1 . 0D0

END I F

W R I T E ( 6 , * )  ' C a l c u l a t i n g  . . . '
I F  ( N l  . GT.  N 3 ) THEN 

NEFFMIN = Nl  + I D - 1 0  
ELSE

NEFFMIN = N3 + I D - 1 0  
E N DI F

NEFFMAX = N2 -  I D - 1 0
FMAX = F N E F F ( NEFFMAX, N l ,  N2 ,  N3 ,  NA, D 2 , D 3 ,  MODE)
F MI N  = F N E F F ( N E F F M I N , N l ,  N2 ,  N3 ,  NA, D 2 ,  D 3 , MODE)

I F  ( ( ( F M A X  . G T .  0 . 0 D 0 )  .AND.  ( FMI N  . G T . 0 . 0 D 0 ) )  .OR.  
( ( FMAX . L T .  0 . 0 D 0 )  .AND.  ( FMI N  . L T .  0 . 0 D 0 ) ) )  THEN 

W R I T E ( 6 , * )  ' Mode n o t  p r o p a g a t i n g '
E IM = 1 . 0 D 0  
GOTO 300  

E N D I F
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1 0 0 NEFFMID = (NEFFMAX + N E F F M I N ) / 2 . 0D0

2 0 0

300

FMAX = FNEFF( NEFFMAX, N l , N2 , N3 , NA , D2 , D3 , MODE)
FM ID = FNEFF( NEFFMI D, N l , N2 , N3 , NA , D2 , D3 , MODE)
FMIN = FNEFF( NEFFMI N, N l , N2 , N3 , NA , D2 , D3 , MODE)

I F  ( FMID . GT .  O.ODO) THEN 
NEFFMIN = NEFFMID  

ENDI F

I F  ( FMI D . L T .  O.ODO) THEN 
NEFFMAX = NEFFMID  

E NDI F

I F  (ABSCNEFFMAX -  NEFFMIN)  . L T .  FERROR) GOTO 200

GOTO 100

EI M = NEFFMID

END

DOUBLE PR ECI S I ON FUNCTION FNEFFCNEFF,  N l ,  N 2 ,  N 3 ,  N A , D 2 ,  D 3 ,  
1 MODE)

COMMON/WORK/ KO, P I ,  ETA1 ,  ETA2 ,  E TA3 ,  ETAA

DOUBLE PR ECI S I ON NEFF,  N l ,  N2 ,  N3 ,  NA,  D 2 , D3 
DOUBLE PR ECI S I ON KO, P I ,  ETA 1 ,  E T A 2 , E T A 3 , ETAA 
DOUBLE PRECI S I ON K l ,  K2 ,  K3 ,  KA,  S I ,  S 2 ,  S 3 ,  SA 
INTEGER MODE

K l  = K 0 * D S Q R T ( N E F F * * 2  -  N l * * 2 )
K2 = K 0 * D S Q R T ( N 2 * * 2  -  N E F F * * 2 )
K3 = K 0 * D S Q R T ( N E F F * * 2  -  N 3 * * 2 )
KA = K 0 * D S Q R T ( N E F F * * 2  -  N A * * 2 )
S3 = D E X P ( K 3 * D 3 )  *  ( ETA3* K3  + ETAA*KA)
SA = D E X P ( - K 3 * D 3 )  *  ( E T A3* K3  -  ETAA*KA)
51 = ET A3 * K3  *  ( S 3 - S A )
52  = E T A2* K2  *  ( S 3 + S A )
S2 = S 1 / S 2
S I  = ETA 1* K 1 /  ( E T A 2 * K 2 )
FNEFF = K2* D2  -  DATANCSl )  -  DATANCS2)  -  DFLOATCMODE) *  P I

END
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APPENDIX C Finite Difference Method Program 

PROGRAM SCALARFD

c T h i s  p r o g r a m a p p l i e s  t h e  f i n i t e  d i f f e r e n c e  a p p r o x i m a t i o n  t o
c
c

t h e  r i b  w a v e g u i d e  b e l o w ,  and o u t p u t s  t h e  f o l l o w i n g :

c 1 .  The e f f e c t i v e  i n d e x  o f  t h e  s t r u c t u r e
c 2 .  The c r o s s s e c t i o n a l  f i e l d  p r o f i l e
c
r

3 .  A t h r e e  d i m e n s i o n a l  p l o t  o f  t h e  f i e l d .
u
c
r

The v a r i a b l e s used i n  t h e  p r o g r a m  a r e
L,
C EPSI LON M a t r i x  c o n t a i n i n g  t h e  r e f r a c t i v e  i n d e x  p r o f i l e
C o f  t h e  w a v e g u i d e .
c E F I E L D M a t r i x  c o n t a i n i n g  t h e  e l e c t r i c  f i e l d  v a l u e s  a t
c e ach  mesh p o i n t  .
c N l R e f r a c t i v e  i n d e x  o f  t h e  g u i d i n g  l a y e r .
c N2 R e f r a c t i v e  i n d e x  o f  t h e  s u b s t r a t e .
c N3 R e f r a c t i v e  i n d e x  o f  t h e  c l a d d i n g  l a y e r .
c NEFF E f f e c t i v e  i n d e x  o f  t h e  w a v e g u i d e .
c CONSTANTl K0 x M e s h s i z e .
c MESHSIZE S i z e  o f  m e s h i n g  t o  be u s e d .
c LAMBDA O p e r a t i n g  w a v l e n g t h .
c K0 W a v e n u m b e r .
c XDIM S i z e  o f  e n c l o s i n g  box i n  x - d i r e c t i o n .
c YDIM S i z e  o f  e n c l o s i n g  box i n  y - d i r e c t i o n .

XDIM

250

500

500
+

a c t i v e  r e g i o n

YDIM

box e n c l o s i n g  s t r u c t u r e

COMMON/WORK 1 /  E P S I L O N ( 0 : 5 0 0 , 0 : 5 0 0 ) ,  CONV,  MESHSIZE  
C0MMQN/W0RK2/  EF I E L D  ( 0 : 5 0 0 , 0 : 5 0 0 ) ,  CONSTANTl ,  C0NSTANT2

C M a t r i c e s :

REAL EPSILON
DOUBLE PRECI S I ON EF I E L D

C Mesh s i z e :

I NTEGER XSTART, XEND,  YSTART, YEND
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n
 n

C C a I c u l a t i o n  c o n s t a n t s :

REAL H I ,  H2,  WIDTH,  N l ,  N2 ,  N3 
REAL MESHSIZE,  XDIM,  YDIM,  EPEAK 
DOUBLE PRECISION CONSTANTl ,  C0NSTANT2  
DOUBLE PRECI SI ON LAMBDA, P I ,  NEFF

C C o u n t e r s :

INTEGER COUNTER 1 ,  C0UNTER2, C0UNTER3  
INTEGER COORD1 ,  C00RD2

LOGICAL CONV 
CHARACTER*1 MODE

PI  = 4 * A T A N ( 1 . 0D0)

W R I T E ( 6 , * ) '  I n p u t  h e i g h t  o f  t h e  r i b '
READ C 5 , * )  HI
W R I T E ( 6 , * ) '  I n p u t  h e i g h t  o f  l a y e r '
READ( 5 , * )  H2
W R I T E C 6 , * ) '  I n p u t  w i d t h  o f  w a v e g u i d e '
READ( 5 , * )  WIDTH
W R I T E C 6 , * ) '  I n p u t  r e f r a c t i v e  i n d e x  o f  g u i d e '
READ( 5 , * )  N l
W R I T E C 6 , * ) '  I n p u t  r e f r a c t i v e  i n d e x  o f  s u b s t r a t e '
READ( 5 , *  ) N2
W R I T E C 6 , * ) '  I n p u t  r e f r a c t i v e  i n d e x  o f  a i r '
READ( 5 , *  ) N3
W R I T E C 6 , * ) '  I n p u t  mesh s p a c i n g s  i n  m i c r o n s  ( 0 . 1 ,  0 . 0 5 ,  0 .  
READ( 5 , *  ) MESHSIZE
W R I T E C 6 , * ) '  I n p u t  box d i m e n s i o n s  ( i n  m i c r o n s ) '
READ( 5 , * )  X D I M ,  YDIM
W R I T E C 6 , * ) '  I n p u t  e f f e c t i v e  i n d e x  e s t i m a t e '
READ( 5 , * )  NEFF
W R I T E ( 6  , * )  ' I n p u t  w a v e l e n g t h  i n  m i c r o n s '
READ( 5 , * )  LAMBDA
W R I T E ( 6 , * ) ' F u n d a m e n t a l  ( F )  o r  1 s t  o r d e r  ( 1 )  mode ? '
READ( 5 , 9 7 )  MODE 

97 FORMAT ( A l )

C0NSTANT2 = N E F F * * 2
CONSTANTl  = ( M E S H S I Z E * 2 * P I / L A M B D A ) * * 2

CALL F I LLMATX ( H I ,  H2 ,  WI DTH,  N l ,  N2 ,  N3 ,  MODE)

C a l c u l a t e  t h e  s t a r t  and end v a l u e s  o f  t h e  m a t r i x  i n  w h i c h  
t h e  mesh box i s  t o  be u s e d .

XSTART = 250 -  X D I M / ( 2 * M E S H S I Z E ) + 0 . 1
XEND = 250 + X D I M / ( 2 * M E S H S I Z E )  + 0 . 1
YSTART = 250 -  Y D I M / ( 2 * M E S H S I Z E ) + 0 . 1
YEND = 250  + Y D I M / ( 2 * M E S H S I Z E )  + 0 . 1

IF (MODE . EQ.  ' 1 ' )  THEN 
XSTART = 2 5 0  

ENDIF

WRI TE( 6 , * )  'XSTART = ' ,  XSTART, '  XEND = ' ,  XEND 
WRI TE( 6 , * )  ' YSTART = ' ,  YSTART, '  YEND = ' ,  YEND 
W R I T E ( 6 , * )  'ARRAY SI ZE I S ' ,  XEND- XSTART,  YEND-YSTART

0 1 )  '
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3 2 0

C
C

250

C
C

280

1

C

C

DO 320  COUNTER 1 = 1 , 5
W R I T E ( 6 , * )  ' F I R S T  LOOP COUNTER = ' ,  COUNTER1 
CALL RELAX( 1 . 0 , XSTART, XEND, 1 , Y S T A R T , Y E N D , 1)
CALL RELAX( 1 . 0 , X S T A R T , X E N D , 1 , Y E N D , Y S T A R T , - 1 )
CALL RELAX( 1 . 0 , XEND, XSTART, -  1 , YEND, Y S T A R T , -  1)
CALL RELAX( 1 . 0 , XEND, XSTART, -  1 , Y S T A R T , Y E N D , 1)

CONTINUE

I t e r a t e  w i t h  r e l a x a t i o n  f a c t o r  o f  1 . 6 0 0  u n t i l  t h e r e  i s  no 
s i g n i f i c a n t  c h an ge  i n  t h e  r a t i o  o f  t h e  two f i e l d s

COUNTER 1 = 1

DO 2 5 0  C0UNTER2 = 1 , 2 0
W R I T E ( 6 , * )  'SECOND LOOP COUNTER = ' ,  C0UNTER2  
CALL I N D E X F I N D ( XSTART, XEND,  YSTART,  YEND)

DO 250  COUNTER 1 = 0 , 2
CALL RELAX( 1 . 6 0 0 , XSTART, XEND, 1 , Y STAR T, YEND, 1 )
CALL RELAX( 1 . 6 0  0 , X S T A R T , X E N D , 1 , Y E N D , Y S T A R T , - 1 )
CALL RELAX( 1 . 600 , XEND, XSTART, -  1 , YEND, YSTART, -  1)
CALL RELAX( 1 . 6 0 0 , X E N D , X S T A R T , - 1 , Y S T A R T , Y E N D , 1)

CONTINUE

I t e r a t e  w i t h  a r e l a x a t i o n  f a c t o r  o f  1 t o  smoot h  r e s u l t  and  
c a l c u l a t e  f i n a l  v a l u e  o f  e f f e c t i v e  i n d e x .

COUNTER1 = 1

DO 2 8 0  COUNTER3 = 1 , 2 0
W R I T E ( 6 , * )  ' T H I R D  LOOP COUNTER = ' ,  C0UNTER3  
CALL I N D E X F I N D ( X S T A R T , XEND,  YSTART,  YEND)

DO 280  COUNTER1 = 0 , 4
CALL RELAX( 1 . 0 , XSTART, XEND, 1 , YSTART, YEND, 1 )
CALL RELAX( 1 . 0 , XSTART, XEND, 1 , Y E N D , Y S T A R T , - 1 )
CALL RELAX( 1 . 0 , XEND, XSTART, - 1 , YEND, Y S T A R T 1)
CALL RELAX( 1 . 0 , XEND, XSTART, -  1 , YSTART, Y E N D , 1)

CONTINUE

CALL I N D E X F I N D ( X S T A R T , XEND,  YSTART,  YEND)

W R I T E ( 6 , 1 )  ' b  = ' ,  ( C0NSTANT2 -  N 2 * * 2 ) / ( N 1 * * 2  -  N 2 * * 2 )
FORMAT ( A 4 , F 8 . 4 )

EPEAK = P E A K F I N D ( E F I E L D ,  XSTART,  XEND,  YSTART,  YEND, COORD1 , COORC 
W R I T E ( 6 , * )  'EPEAK I S ' ,  EPEAK,  ' A T ' ,  COORD1,  C00RD2

CALL PLOT ( E F I E L D ,  XSTART,  XEND,  YSTART,  YEND,  M ESHSI Z E ,  EPEAK)

STOP
END

* * * * * * * * * * * * * * * * * * * *  SUBROUTINES * * * * * * * * * * * * * * * * * * * * *  

S u b r o u t i n e  t o  f i l l  m a t r i c e s .

SUBROUTINE F I LLMATX ( H I ,  H2 ,  WIDTH,  N l ,  N 2 ,  N3 ,  MODE)

COMMON/WORK 1 /  EPS I  LON( 0 : 500 , 0 : 5 0 0 )  , CONV,  MESHSIZE
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C0MM0N/ W0RK2 /  EF I ELD ( 0 : 5 0 0 , 0 : 5 0 0 ) ,  CONSTANTl ,  C0NSTANT2

INTEGER X , Y , CENTRE,  I  OFFSET
REAL E P S I L O N ,  H I ,  H2 ,  WIDTH,  MESHSI ZE,  N l ,  N2 ,
REAL LENGTH,  HEI GHT ,  OFFSET
DOUBLE P REC I S I ON E F I E L D ,  CONSTANTl ,  C 0 N S T A N T 2 ,
LOGICAL CONV
CHARACTER* 1 MODE

C F i l l  r e f r a c t i v e  i n d e x  m a t r i x  and z e r o  f i e l d  m a t r i c e s .

P I  = 4 * A T A N ( 1 . 0D0)

DO 10 X = 0 , 5 0 0
DO 15 Y = 0 , 2 5 0

E P S I L O N ( X , Y)  = N 3 * * 2  
E F I E L D ( X , Y )  = O.ODO 

15 CONTINUE

DO 20 Y = 2 5 1 ,  ( 2 5 0  + H 2 / M E S H S I Z E )  + 0 . 1  
EPS I  L O N ( X , Y)  = N 1 * * 2  
E F I E L D ( X , Y )  = O.ODO 

20 CONTINUE

DO 10 Y = ( 2 5 1 + H 2 / M E S H S I Z E )  + 0 . 1 ,  500  
EPS I  LON( X , Y)  = N 2 * * 2  
E F I E L D ( X , Y)  = O.ODO 

10 CONTINUE

DO 30 X = 2 5 0 - W I D T H / ( 2 * M E S H S I Z E )  + 0 . 1 ,  2 49  + W I D T H / ( 2 * M E S H S I Z E ) + 0 .  1
DO 30 Y = 2 5 1 - H 1 / M E S H S I Z E  + 0 . 1 ,  250

E P S I L O N ( X , Y)  = N l * * 2  
E F I E L D ( X , Y )  = O.ODO 

30 CONTINUE

LENGTH = WI DTH / MESHSI ZE  
HEI GHT = ( H I  + H 2 ) / M E S H S I Z E

X I  = 2 5 0  -  W I D T H / ( 2 * M E S H S I Z E )  -  0 . 9  
Y 1 = 2 5 0  -  H 1 / ME S H S I Z E  + 0 . 1

W R I T E ( 6 , * )  1 I n p u t  o f f s e t  f o r  t h e  F I E L D *
READ( 5 , * )  OFFSET

I  OFFSET = OFFSET/ MESHSI ZE + 0 . 1
I OF F S E T  = 250 + H 2 / MESH SI ZE  + 0 . 1  -  I OF FSET
CENTRE = H E I G H T / 2  + 1 . 1
CENTRE = 250  -  H l / M E S H S I Z E  + 0 . 1  + CENTRE 
I OF F S E T  = IOFFSET -  CENTRE

W R I T E ( 6 , * ) ' CENTRE' , CENTRE, * I O F F S E T I O F F S E T  

I F  (MODE . EQ.  1F * )  THEN
DO 40 X = 2 5 0 - W I D T H / ( 2 * M E S H S I Z E )  + 0 . 1 ,  2 4 9

DO 40 Y = 2 5 1 - H 1 / M E S H S I Z E  + 0 . 1 ,  2 5 0 + H 2 / M
E F I E L D ( X , Y + I O F F S E T )  = S I N ( P I * ( Y - Y 1 ) / H E I G H T  

40 CONTINUE

ELSE
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C DO 41 X = 249  , 249  + W I D T H / ( 2 * M E S H S I Z E ) +0 . 1
C DO 41 Y = 2 5 1 - H 1 / M E S H S I Z E  + 0 . 1 ,  2 5 0 + H 2 / M E S H S I Z E  + 0 . 1
C E F I E L D C X ,  Y+ I OF F SET )  = S I N ( P I  * ( Y - Y 1 ) / H E  I G H T ) * S I N ( P I  * C X - X 1 ) /LENGTH

E F I E  LD C 2 5 3  , 2 5 0 )  = 1 . 0 D 0  
Cl  CONTINUE

ENDI F

RETURN
END

C S u b r o u t i n e  t o  p e r f o r m  r e l a x a t i o n  on E - f i e l d .

SUBROUTINE RELAX( RFACTOR, XSTART,  XEND,  X I N C ,  YSTART,  YEND,  Y I N C )

COMMON/WORK 1 /  EPS I  LONC0 : 5 0 0  , 0  : 5 0 0 )  , CONV, MESHSIZE  
C0MM0N/ W0RK2/  E F I E L D C 0 : 5 0 0 ,  0 : 5 0 0 ) ,  CONSTANTl ,  C0NSTANT2

INTEGER X ,  Y ,  XSTART,  XEND,  X I N C ,  YSTART,  YEND,  Y I NC  
REAL EPSILON
DOUBLE PRECI S I ON E F I E L D ,  CONSTANTl ,  C0NSTANT2  
REAL RFACTOR,  UFACTOR 
LOGICAL CONV

UFACTOR = RFACTOR -  1

C M a i n  i t e r a t i o n  r o u t i n e .

DO 10 Y = YSTART,  YEND,  Y I NC  
DO 20 X = XSTART,  XEND,  X I NC

E F I E L D C X , Y )  = R F A C T O R * C E F I E L D C X + l , Y )  + E F I E L D C X - 1 , Y ) +
1 E F I E L D C X , Y + l )  + E F I E L D C X , Y - 1)  ) /
1 ( 4  -  C ON S T A N T l * C E P S I LON C X , Y)  -  CONSTANT2) )
1 -  UFACTOR *  E F I E L D C X , Y )

I F  C E F I E L D C X , Y )  . L T .  0 . 1 D - 2 0 )  THEN 
E F I E L D C X , Y )  = O.ODO 

E NDI F  
20 CONTINUE

10 CONTINUE

RETURN
END

C S u b r o u t i n e  t o  u p d a t e  e f f e c t i v e  i n d e x .

SUBROUTINE I NDEXF I ND C XSTART, XEND,  YSTART,  YEND)

COMMON/WORK 1 /  EPSI  LONC0 : 500  , 0 : 5 0 0 )  , CONV, MESHSIZE  
C0MM0N/ W0RK2/  E F I  E L D C0 : 5 0 0  , 0  : 5 0 0 ) , CONSTANTl ,  C0NSTANT2

INTEGER X ,  Y,  XSTART,  XEND,  YSTART,  YEND 
REAL E P S I L O N ,  MESHSIZE
DOUBLE PRECI S I ON E F I E L D ,  CONSTANTl ,  C0NSTANT2  
DOUBLE PRECI S I ON TOPSUM, BOTSUM, CONST 
LOGICAL CONV
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n
o

n

TOPSUM = O . O D O  
BOTSUM = O . O D O  
CONV = . F A L S E .

C Sum t h e  u p p e r  and l o w e r  f u n c t i o n s

DO 10 Y = YSTART,YEND  
DO 10 X = XSTART,XEND

TOPSUM = TOPSUM + E F I E L D C X , Y )  *  ( E F I E L D C X + 1 , Y ) + E F I E L D C X - 1 , Y  
1 + E F I E L D C X , Y + l )  + E F I E L D C X , Y - 1)  -  A *  E F I E L D C X , Y )
1 + E F I E L D C X , Y )  *  E P S I L O N C X , Y )  *  CONSTANTl )

BOTSUM = BOTSUM + E F I E L D C X , Y )  *  E F I E L D C X , Y )
10 CONTINUE

C R e c a l c u l a t e  t h e  e f f e c t i v e  i n d e x

CONST = TOPSUM /  CBOTSUM*CONSTANT1)

I F  C C CONST -  C0NST ANT 2) / CONST  . L T .  0 . 0 1 D 0  ) THEN 
CONV = . TRUE.

E NDI F

C0NSTANT2 = CONST
WRITE C 6 , 9 8 )  ' E f f e c t i v e  i n d e x  = ' ,  SQRTCC0NSTANT2)

98  FORMAT C A 2 0 , F 1 5 . 8 )

RETURN
END

S u b r o u t i n e  t o  f i n d  t h e  maximum f i e l d  v a l u e .

REAL FUNCTION PEAKFIND CF I EL D ,  XSTART,  XEND,  YSTART,  YEND, COORD 1 ,
C 0 0 R D 2 )

DOUBLE P RECI S I ON  F I E L D  C 0 : 5 0 0 ,  0 : 5 0 0 )
I NTEGER XSTART,  XEND,  YSTART,  YEND,  X ,  Y,  COORD1,  C00RD2

PEAKFI ND = 0 . 1 E - 5 0  
DO 10 X = XSTART,  XEND 

DO 10 Y = YSTART,  YEND
I F  C F I E L D C X , Y )  . GT .  PEAKFIND ) THEN 

PEAKFIND = F I E L D C X , Y )
COORD1 = X 
C00RD2 = Y 

E NDI F  
10 CONTINUE

RETURN
END

C S u b r o u t i n e  t o  p r i n t  t h e  EF I E L D v a l u e s .

SUBROUTINE PLOT C F I ELD ,  XSTART,  XEND,  YSTART,  YEND,  M E S H S I Z E ,  
1 EPEAK)

DOUBLE PRECI S I ON F I E L D  C 0 : 5 0 0 ,  0 : 5 0 0 )
INTEGER XSTART,  XEND,  YSTART,  YEND,  X ,  Y 
REAL MESHS I Z E ,  EPEAK
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0 P E N ( 2 , F I L E = ’ / F I E L D  UMPDATA’ , FORM=' FORMATTED’ )

DO 10 X = XSTART, XEND 
DO 10 Y = YSTART,  YEND

'WRITE ( 2 , 9 9 )  ( X - 2 5 0 ) * M E S H S I Z E , ( 2 5 0 - Y ) * M E S H S I Z E ,  F I E L D ( X , Y )  
1 /  EPEAK

10 CONTINUE

99 FORMAT( 2 F 1 0 . 2 ,  F 2 0 . 8 )
RETURN
END
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APPENDIX D Finite Difference Approximation

D l .  Finite Difference Approximation to Derivatives

When a function u =  u(x) and its derivatives are single— valued, finite and 

continuous functions of x, then expanding u about the points (x+ h) and (x— h) via 

Taylor's theorem

and
u(x+h)  = u (x )  + h u ' ( x )  + £h2u ' ' (x)  + 1/ 6h 3u ' ’ ’ (x)  + . .  (Dl )

u ( x - h )  = u (x )  -  h u ’ (x)  + £h2u ' 1(x)  -  1/ 6h 3u ' ' ' (x )  + . .  (D2)

Addition of these expansions gives

u (x+h ) + u ( x - h )  = 2u(x )  + h 2u ' ' (x )  + 0 ( h 4 )

where 0 ( h 4) denotes terms containing fourth and higher order powers of h. Assuming 

these are negligible in comparison with lower powers of h it follows that

u' ’ (x)  = d 2u 1
. Ox2 . h 2 u(x+h)  + u ( x - h )  -  2u (D3)

with a leading error on the right hand side of h 2.

Subtracting equation (D2) from (Dl)  and neglecting h 3 terms

u(x+h)  -  u ( x - h )  = 2 h u ' ( x )
i.e.

u ' ( x )  = Ou 1
. Ox . 2h u(x+h)  -  u ( x - h ) (D4)

with a leading error of order h 2. Equation (D4) approximates the slope of the tangent 

at P (figure D . l )  by the slope of the chord AB. This is known as the 

centra l—d i f f e r e n c e  approximation. We can also approximate the slope of the tangent at 

P by either the slope of the chord PB, giving the f o r w a r d - d i f f e r e n c e  formula

U ' ( x )  -  H u(x+h)  -  u (x )

or the slope of the chord AP giving the b a c k w a r d - d i f f e r e n c e  formula

U ' ( x )  -  K u (x )  -  u ( x - h )

(D5)

(D6)

D 2. Finite Difference Notation For Two Variables

Assume u is a function of the indepedant variables x and y i.e. u u(x,y). Subdivide
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Original in colour

f  (x)

x+hx-h x

Figure D .l. FD Approximation of the Tangent of a Curve
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the x - y  plane into a grid with sides 5x =  h, 8y = k as shown in figure D.2. Let 

the coordinates (x,y) of the representative mesh point P be

x = ih ; y = jk

where i and j are integers. Denote the value of u at P by

up = u ( i h ,  jk)  = U | ; j

Then by equation (D3)

a 2u d 2u ' u { ( i + l ) h ,  jk)  -  2u { i h ,  jk)  + u { ( i - l ) h ,  jk)

. a x 2 . p . a x 2 . i.j h2
i.e.

a 2u

d x 2

" i + l . J  " 2u i , j  + u i - l , j
(D7)

1 . J h 2

with a leading error of order h 2. Similarly in the y— direction

d 2u

ay 2

u i , j + l  " 2u i , j + u i , j - l
(D8)

i , J k 2

with a leading error of order k 2. With this notation the forward difference 

approximation for du/dy at P is

du

dy

u i , j + l  " u i , j (D9)

with a leading error of O(k).
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Figure D.2 Finite Difference Grid
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APPENDIX E GAUSS-SEIDEL ITERATIVE METHOD

E l. Iterative Method For Solving Large Linear Systems of Algebraic Equations

An iterative procedure can be implemented to solve a matrix given that the 

matrix is sparse and well— conditioned. Such an iterative procedure would be used if a 

direct method involved more computer memory than can be allowed. The iterative 

method for solving equations is one in which a first approximation is used to calculate 

a second approximation which in turn is used to calculate a third and so on. The 

iterative procedure is said to be convergent when the differences between the exact 

solution and the successive approximations tend to zero as the number of iterations 

increase. Consider the matrix equation below

Ax = B
i.e.

a i 1 a i 2 a i 3 a i 4 X 1 b 1

a  2 1 a  2 2 a  2 3 a  2 4 X  2 s b 2

a  3 1 a  3 2 a  3 3 a  3 4 X  3

CO

a 4 1  a 4 2  a 4 3  a 4 4 . X < . b  4

Expanding this

a i i x i + a  1 2 X  2 + a i 3 + a i  4 x 4 = b

a  2 1 x  1 + a 2  2 X 2 + a  2 3 + a  2 4 X 4 = b

a  3 1 x 1 + a 3 2 X 2 + a  3 3 + a  3 4 X 4 = b

a 4  1 X 1 + a 4  2 X  2 + a 4 3 + a 4 4 ^ 4 = b

( El )

(E2)

Assuming a^ ^ 0, these equations may be written as

1

x ,  =

X. =

l 11 

J _
t2 2

JL_
l 3 3 

1
l 4 4

b., -  a 12x 2 -  a 13X3 a i 4 X 4

b 2 -  a 2 i x i a. 2 3X 0 "̂52 4  4

b 3 “ a 31X1 “ “ 32^2 

b 4  "  a 4 1 X 1 “  a 4 2 X 2 ”  a 4 3 X 3 ]

(E3)
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E2 . Gauss— Seidel Method

In this method the (n+ l)th  iterative values are used as soon as they are available and 

the iteration corresponding to equations (E3) is defined by

x ( n + l )  = _L_ b -  a x (n ) -  a x (n ) - a x  ( n ) 11 a U1 12 2 a i 3 X 3 14 411 J

X  ( n + l )  = _L_ b -  a X ( n+ l )  - a x  ( n ) - a x  ( n ) l2 a  2 2 1 1 2 3 3 2 4 4 J

i  r l
b 3 -  a 31x 1( n + l ) -  a 32x 2( n+1) -  a 34x 4 ( n > J

3 3 J

(E4)

x 4 (n + l)  _  _ ± _  _ a 41x 1 (n + l > -  a 42x 2 ( n+1> -  a 43x 3 ( n+1)]
4 4 J

In the general case for m  equations

- . ( n + l )  =

■l l

i - 1 m
b i -  2  a i j  x j (n+1) -  I  a i j  X j ( n )

j = l  j = i + l
(E5)

E3. Successive Over—Relaxation Method

If the Gauss— Seidel iteration equations are written as

x. ( n + l )  = (n)  + _ L

( n + l )  = x (n)  +

x ( n + l )  = x (n)  + _  
3 3 a

( n + l )  = x (n) +

11 i

_1_
12 2

1_
3 3

b 1 -  a i 1 X 1 ( n )  "  a !2X2(n) ~  a i 3 X 3 ( n )  "  a 1 4 X 4 ( n ) ]

b 2 " a 21x 1<n+1) -  a 22x 2 (n > -  a 23x 3( n ) -  a 24x 4 ( n )]  

b 3 ~ a 31x 1 ( n+! )  _ a 32x 2 ( n+1) -  a 33x 3 ( n )
(n)

b 4 -  a 41x , ( n + ! ) _ a 42x 2 ( n+ l )  _ a 43x 3 ( n+1)

-  a„ „x (n)
(E6)

it is seen that the expressions in the square brackets are the corrections or changes 

made to X}(n) by one Gauss- Seidel iteration. If successive corrections are all 

on e-sign ed  it would be reasonable to expect convergence to be accelerated if each 

equation of (E6) was given a larger correction term than is defined by equation (E6). 

This idea leads to the successive over— relaxation or SOR iteration which is defined by 

the equations
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X i ( n + i )  =

x 2 ( n + l )  _

x 3 ( n+l )  = 

x 4 ( n + l )  =

The factor 

general case

>

or rewriting

(n ) +

(n ) + 00

(n) + J L
•3 3

b 1 “  a i 1 X 1 ( n )  ~  a i 2 X 2 ( n )  “  a i 3 X 3 ( l l )  "  a ! 4 X 4 ( n ) ]

b 2 " a 21x / n+1) -  a 22x 2 (n > -  a 23x 3( n ) -  a 24x 4 ( n >]

b  3 "  a 3 1 X 1 ( n + l )  -  a 3 2 X 2 ( n + 1 )  "  a 3 3 X 3 ( n >  , . I

-  a  3 4X 4 J

(n) + J L
4  4

b 4 -  a 41x 1(n+1) -  a 42x 2( n+1) -  a 43x 3( n+l )
(n )

(E7)

oo is called the acceleration parameter or relaxation parameter. So for the 

for m  equations the SOR iteration is defined by

. ( n+1)  = x . ( n ) +

11

i - 1 m
b, -  l  a j j  X j ( n + D  -  2  a , j  X j <">

j = l  J = i

(E8)

as

■•(n+1) =
0)

i i

bj a XJ(n+ l )
j = l

m
-  2  a i j  * j (n)  

j - i + l

-  (oo -  l ) X i ( n )

= 00 (R .H.S .  o f  G a u s s - S e id e l  i t e r a t i o n  e q u a t i o n s )

-  (oo -  l ) x j ( n ) (E9)
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APPENDIX F Derivation of the Discrete Fourier Transform

FI. Inverse Fourier Transform

The inverse Fourier transform of a function F(kx ,y) is defined as

+00

f ( x , y )  = ^  |  F(kx ,y)  e lkxx dkx
-0 0

Rewriting this for a band— limited integral between the range — Mk0 <  kx • 
where M is a real number and kg =  2t/X0 is the free space wave number,

Mk0

f ( x , y )  = i  f F(kx ,y) e ikxx dkx
-Mk0

F2. Shift Property

Making the substitution k' =  kx +  Mk0 , equation (F2) becomes

2Mk0

f ( x , y )  = i  [ F(kx ,y)  e^k ’x dk* e ” ^ koxZti- J Q

Now let k =  27rs, dk =  27rds, so

47rMk0
f ( x , y )  = [ F(2-7rs,y) em irs 'x  » e -i27rMs0x

0

or in discrete form [NAG notes]

T N-l
f .  = _  J Fk e " i27rMsox j = 0 , l , . . , N -

M  k=0

for f(x,y) in some finite range (0,T) divided into N equal intervals. Now x =  

so equation (F5) reduces to the inverse discrete Fourier transform representation

T N-l
f .  = _  I  Fk e *j k2tf/N e - i j 7 2  j _  0 , 1 , . . , N -

J 7N k=0

Hence the inverse Fourier transform has to be post—multiplied by the factor e

(FI)  

< Mk0 ,

(F2)

(F3)

(F4)

-1 (F5)

j/47rMs0,

-1 (F6)

' ij/2
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APPENDIX G Free Space Green’s Function Program 

PROGRAM GREEN

PROGRAM TO COMPUTE THE GREEN'S FUNCTION FOR A FREE 
SPACE S I T U A T I O N .

REAL Y,  YDASH
DOUBLE PREC I S I ON AETA1,  BETA,  KX,  KO, KAPPA1,  LAMBDA, N1 

1 NEFF,  I N C ,  M, P I

COMP L E X * 1 6 E T A 1 , G

OPEN C l ,  F I L E = ' / FREE OUT P UT ' ,  FORM=' FORMATTED' )

W R I T E C 6 , * )  ' I n p u t  s o u r c e  p o i n t  c o o r d  ( YDA SH) *
READ ( 5 , * )  YDASH 
W R I T E C 6 , * )  ' I n p u t  N l '
READ ( 5 , * )  Nl
W R I T E C 6 , * )  ' I n p u t  e f f e c t i v e  i n d e x  e s t i m a t e '
READ ( 5 , * )  NEFF
W R I T E C 6 , * )  ' I n p u t  t h e  o p e r a t i n g  w a v e l e n g t h  Cum) '
READ ( 5 , * )  LAMBDA
W R I T E ( 6 , * ) ' I n p u t  number  o f  i n t e r v a l s  (N = p o w e r  o f  2 ) '  
READ( 5 , * )  N
W R I T E ( 6 , * ) ' I n p u t  f r e q .  r a n g e  o f  FT ( e g  A = - A k o  t o  A k o ) '  
READ( 5 , * )  M
W R I T E ( 1 , * )  N,  M, LAMBDA

YDASH = YDASH *  I E - 6  
LAMBDA = LAMBDA *  I D - 6  
P I  = A * A T A N ( 1 . 0D0)
KO = 2 * P I / L A M B D A  
BETA = NEFF*K0

KAPPA1 = ( N l  *  K 0 ) * * 2  -  B E T A * * 2  

INC = 2 * M * K 0 / N

5 0 0  W R I T E ( 6  , * )  ' I n p u t  o b s e r v a t i o n  c o o r d  ( Y ) '
READ ( 5 , * )  Y
I F  (Y  . L T .  - 1 0 . 0 )  GOTO 2000

Y = Y *  I E - 6  
DO 1 000  J = 0 ,  N - l

KX = - M* K0  + J *  INC

C Case  o f  N e f f  > Nl

AETA1 = K X * * 2  -  KAPPA1
ETA 1 = DCMPLX( A ET A1 , 0 . 0 D 0 )
ETA1 = CDSQRT( ETA 1)
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I F  ( Y  . G E .  YDASH) THEN
G = C 0 . 5 D 0 / E T A 1 ) *  CDEXP( - E T A 1 * Y )  

END I F

I F  (Y . L T .  YDASH) THEN
G = C 0 . 5 D 0 / E T A 1 ) *  CDEXP( E T A 1 * Y )  

END I F

W R I T E C 1 , * )  KX,  Y ,  G

1000  CONTINUE

W R I T E C 1 , * )  ' '
GOTO 500

2 0 0 0  STOP 
END
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APPENDIX H GF Inverse Fourier Transform Program

PROGRAM IFFT_GREEN

P r o g r a m  t o  c a l c u l a t e  t h e  i n v e r s e  F o u r i e r  t r a n s f o r m  
o f  t h e  G r e e n ' s  f u n c t i o n  (GF)  o b t a i n e d  f o r  t h e  t h r e e  
l a y e r e d  d i e l e c t r i c  s l a b  s t r u c t u r e .

C THE VARIABLES USED ARE:

KX
GREEN

XCOORD

DELTAX
N
M

D e l t a  kx v a l u e s .
V a l u e  o f  t h e  c o m p l e x  F o u r i e r  T r a n s f o r m  f o r  t h e  

t h r e e  l a y e r e d  s t r u c t u r e .  
l x N  a r r a y  o f  t h e  x c o o r d i n a t e s  c a l c u l a t e d  a f t e r  

t h e  I n v e r s e  F o u r i e r  T r a n s f o r m  ( i e  kx - - >  x ) . 
D i s c r e t e  i n c r e m e n t  o f  t h e  x c o o r d i n a t e .
Number  o f  i n t e r v a l s  i n  t h e  FT ( p o w e r  o f  2 ) .  
F r e q .  r a n g e  o f  FT ( i e  A = - Ak o  < kx < A k o ) .

INTEGER N,  NY,  X ,  Y
DOUBLE P RE CI S I ON M, SCALE,  YCOORD
DOUBLE PR ECI S I ON  DELTAX,  LAMBDA, KO, KX,  P I
DOUBLE P RE CI S I ON XCOORD( 0 : 5 1 1 ) ,  R ( 0 : 5 1 1 ) ,  I M ( 0 : 5 1 1 ) ,  W O R K ( 0 : 5 1 1 )  
COMPLEX* 16 GREEN,  I

0 P E N ( 1 ,  F I  L E = ' / F REE O U T PU T ' ,  FORM=' FORMATTED * )
OPEN( A , F I L E = ' / F R E E  UMPDATA' ,  F 0 R M = ' FORMATTED’ )

C Read N ( n o .  o f  i n t e r v a l s  i n  t h e  F T ) ,  FT f r e q .  r a n g e  and w a v e l e n g t h

READ ( 1 , * )  N,  M, LAMBDA 
W R I T E ( A , * )  N,  LAMBDA

LAMBDA = L A M B D A * I D - 6 
P I  = A * A T A N ( 1 . 0  DO)
KO = 2 . 0  * P I / L A M B D A  
DELTAX = LAMBDA/ ( 2 . 0  * M )

C C a l c u l a t e  s t e p  c o o r d i n a t e s  i n  x - d i r e c t i o n .

DO 5 J = 1 ,  N
X C O O R D ( J - l )  = - D E L T A X * N / 2 . 0D0 + J *DELTAX

5 CONTINUE

W R I T E ( 6 , * )  'How many v a l u e s  o f  o b s e r v a t i o n  p o i n t s  ( y )  ?*
READ( 5  , * )  NY 
MID = N / 2  -  1 
I  = ( 0 . 0  DO, 1 . 0 D 0 )
SCALE = N / S Q R T ( D F L O A T ( N ) )

DO 10 L = 1 ,  NY- 2  
C W R I T E ( A , * )  'YDASH = ' ,  - D F L O A T ( L ) / I  0

DO 10 Y = 1 ,  NY 
DO 15 X = 0 ,  N - l

READ ( 1 , * )  KX,  YCOORD, GREEN 
R ( X ) = DREAL(GREEN)
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I M ( X ) = DIMAGC GREEN)
15 CONTINUE

I F A I L  = 0
CALL C06GCFCI M,  N , I F A I L )
CALL C06FCFCR,  I M ,  N,  WORK, I F A I L )
CALL C 0 6 GCF ( I M , N,  I F A I L )

C M u l t i p l y  t h e  I F T  by t h e  p h a s e  f a c t o r  e x p ( - j / 2 )  and by
C s c a l e  f a c t o r  T / S Q R T ( N ) .

DO 21 J = 0 ,  N - l
GREEN = D CMPL XC R( J ) ,  I M ( J ) )
GREEN = SCALE *  GREEN *  CDEXP( DCMPLX( 0 . 0 D 0 , - D F L O A T ( J ) / 2 . 0 D 0 ) )  
R ( J ) = DREAL( GREEN)
I M ( J ) = DIMAG( GREEN)

21 CONTINUE

DO 25  X = 0 ,  N - l
GREEN = DCMPLX( R ( X ) , I M C X ) )
WRITE ( 4 , * )  X C 0 0 R D ( X ) * 1 D 6 , Y C 0 0 R D * 1 D 6 ,  GREEN 

25  CONTINUE

WRITE ( 4 , * )  ' '
10 CONTINUE

CLOSE ( 1 )
CLOSE C 4 )

STOP
END
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APPENDIX I GF Program — Situation 1 

PROGRAM GREEN_FUNCTION

PROGRAM TO COMPUTE THE GREEN'S FUNCTION FOR A THREE 
LAYERED MEDIUM.

S I T U A T I O N  1 .  SOURCE POI NT IN A I R  ( N l  LA Y E R ) .

DOUBLE PRECI S I ON Y,  YDASH,  D,  M
DOUBLE PRECI S I ON AETA1,  A E T A 2 , A E T A3 , NEFF
DOUBLE P RECI S I ON N l ,  N2 ,  N3
DOUBLE P RECI S I ON KAPPA1,  KAPPA2,  KAPPA3
DOUBLE PRECI S I ON BETA,  LAMBDA, I N C ,  KO, KX,  P I

COMPLEX*16 A,  A l ,  B l ,  A 2 , B 2 , A 3 ,  G 
COMPLEX* 16 E T A 1 , E T A 2 , E T A 3 , I ,  I E T A 2 , I ETA2D  
COMPLEX* 16 AA1,  A A 2 , CA1,  C A 2 , DENOM

CHARACTER* !  ANSWER

WRITE ( 6  , * ) ' I n p u t d e p t h  o f  N2 l a y e r  ( d ) '
READ ( 5 , * ) D
WRITE ( 6  , * ) ' I n p u t N l ,  N 2 , N 3 '
READ ( 5 , * ) N l ,  N2 , N3

WRITE ( 6  , * ) ' I n p u t e f f e c t i v e  i n d e x  e s t i m a t e '
READ ( 5 , * ) NEFF
WRITE ( 6  , * ) * I n p u t t h e  o p e r a t i n g  w a v e l e n g t h  (u rn ) '
READ ( 5 , * ) LAMBDA
WRITE ( 6  , * ) ' I n p u t number  o f  i n t e r v a l s  (N = p ower o f
READ ( 5 , * ) N
WRITE ( 6  , * ) ' I n p u t f r e q .  r a n g e o f  FT ( e g  A = - Ak o t  0
READ ( 5 , * ) M

OPEN( 1 , F I L E = ' / F T G R E E N 1  OUTPUT' , FORM=' FORMATTED' )
W R I T E ( 1 , * ) N,  M, LAMBDA

D = D *  I D -  6
LAMBDA = LAMBDA *  I D - 6  
P I  = 4 * A T A N ( 1 . 0D0)

KO = 2 * P I / L A M B D A  
BETA = NEFF*K0
KAPPA1 = ( N l  *  K 0 ) * * 2  -  B E T A * * 2
KAPPA2 = ( N2 *  K 0 ) * * 2  -  B E T A * * 2
KAPPA3 = ( N3 *  K 0 ) * * 2  -  B E T A * * 2

W R I T E ( 6 , * )  ' KAPPA 1 = ' ,  KAPPA1
W R I T E ( 6 , * )  ' KAPPA2 = ' ,  KAPPA2
W R I T E ( 6 , * )  ' KAPPA3 = ' ,  KAPPA3
W R I T E ( 6 , * )  ' '

I  = DCMPLX( 0 . 0 D 0 , 1 . 0 D 0 )
INC = 2 * M * K 0 / N
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2 0 0 0  W R I T E C 6 , * )  ' I n p u t  s o u r c e  p o i n t  c o o r d  ( Y D A S H ) '  
READ ( 5 , * )  YDASH 
YDASH = YDASH *  I D - 6

500 W R I T E C 6 , * )  ' I n p u t  o b s e r v a t i o n  c o o r d  ( Y ) '  
READ ( 5 , * )  Y

LT .  - 1 0 ) GOTO 3000

I D - 6

c_ ii o N-  1

- M * K 0  + J *  INC

NE > N3 > N l  S i t u a t i o n .

= K X * * 2 + KAPPA 1
AETA2 = KAPPA2 -  K X * * 2  
AETA3 = KAPPA3 -  K X * * 2

ETA1 = DCMPLXCAETA1, 0 . 0 D 0 )
ETA2 = DCMPLX( A E T A 2 , 0 . 0 D 0 )
ETA3 = DCMPLX( A E T A 3 , 0 . 0 D 0 )

ETA1 = CDSQRT( E T A 1 )
ETA2 = CDSQRT( E T A 2 )
ETA3 = CDSQRT( E T A 3 )

I E T A 2  = I * E T A 2  
I E T A 2 D  = I * E T A 2 * D  
CA1 = I E T A 2  + ETA3  
CA2 = I E T A 2  -  ETA3

AA1 = E T A 1 * E T A 3 * C D S I N ( E T A 2 * D )
AA2 = AA1 + E T A 2 * ( - E T A 2 * C D S I N ( E T A 2 * D )

1 + ( E T A 1 + E T A 3 ) * C D C 0 S ( E T A 2 * D ) )
DENOM = 2 * I * A A 2

B2 = CA1 *  C D E X P ( - E T A 1 * Y D A S H )  *  CDEXP( I E T A 2 D )
A2 = CA2 *  C D E X P ( - E T A 1 * Y D A S H )  *  C D E X P ( ~ I E T A 2 D )
A2 = A2 / DEN0M  
B2 = B2/DEN0M

B 1 = C D E X P ( - E T A 1 * Y D A S H ) / ( 2 * E T A 1 )
A1 = A2 + B2 -  B 1

A3 = ( A 2 * C D E X P ( I E T A 2 D )  + B 2 * C D E X P ( - I E T A 2 D ) ) *  CDEXP( E T A 3 * D )  
A = A 1 + ( CDEXPCETA1 * YDASH) ) / ( 2 * E T A l )

C Now c a l c u l a t e  t h e  GF f o r  e ach  r e g i o n .

I F  ( Y  . GE .  YDASH) THEN 
G = A *  C D E X P ( - E T A 1 * Y )

ENDI F

I F  (CY . L T .  YDASH) .AND.  (Y . GE. 0 . 0 D 0 ) )  THEN 
G  = A1 *  C D E X P ( - E T A 1 * Y )  + B1 *  C D E X P ( E T A 1 * Y )

ENDI F

I F  (CY . L T .  0 . 0 D 0 )  .AND.  (Y . GE. - D ) ) THEN
G = A2 *  C D E X P ( - I E T A 2 * Y )  + B2 *  CDEXP( I E T A 2 * Y )
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ENDI F

1000

3 0 0 0

98

I F  CY . L T .  - D )  THEN
G = A3 *  CDEXP( E T A3 * Y )

ENDI F

W R I T E C 1 , * )  KX,  Y ,  G

CONTINUE

W R I T E ( 1 , * )  ' '
GOTO 500

W R I T E C 6 , * )  ' A n o t h e r  r u n  w i t h  a d i f f e r e n t  v a l u e  o f  YDASH ? '  
READ ( 5 , 9 8 )  ANSWER 
FORMAT C A 1)
I F  (ANSWER . EQ.  ' Y ' )  GOTO 2 000

STOP
END
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APPENDIX J g f  Transcedental Equation Program

PROGRAM GF_CALCULATIONS

C T h i s  p r o g r a m  w i l l  c a l c u l a t e  a l l  t h e  n e c e s s a r y  v a l u e s  r e q u i r e d
C f o r  t h e  G r e e n ' s  F u n c t i o n  f o r  a s l a b  w a v e g u i d e .  The c o n s t a n t s
C c a l c u l a t e d  a r e :
C
C 1 .  E f f e c t i v e  I n d e x  Ne
C 2 .  R o o t  o f  t h e  t r a n s c e d e n a t 1 e q n .  Kq
C 3 .  D e r i v a t i v e  f ' C k q )  used i n  t h e  T a y l o r  s e r i e s  e x p a n s i o n .
C

COMMON/WORK/ D,  K 0 , N l ,  N 2 , N3 , P I , NEFF

DOUBLE PR ECI S I ON  B, NE,  K0 , KQ, P I , NEFF
DOUBLE PREC I S I ON  D, LAMBDA, Nl  , N2 , N3
DOUBLE PR ECI S I ON  EPS,  ETA 
INTEGER I F A I L ,  K,  NFMAX, Q 
EXTERNAL T E N E , TEKQ

DOUBLE PREC I S I ON  E T A 1 , E T A 2 , ETA3
DOUBLE PREC I S I ON  A A 1 , A A 2 , DEN0M1,  DEN0M2, FDASH

OPEN ( 5 ,  F I L E = ' /GFCALCS I N P U T ' ,  FORM=' FORMATTED * )  
OPEN C 2 ,  F I L E = ' /GFCALCS O U T P U T ' ,  FORM=' FORMATTED * )

W R I T E ( 6 , * )  ' I n p u t  t h e  d e p t h  o f  t h e  s l a b  ( u m ) '
READ ( 5 , * )  D
W R I T E ( 6  , * )  ' E n t e r  N l ,  N2 ,  N3 '
READ ( 5 , * )  N l ,  N 2 , N3
W R I T E C 6 , * )  ' I n p u t  t h e  o p e r a t i n g  w a v e l e n g t h  ( urn) '  
READ C 5 , * )  LAMBDA
W R I T E C 6 , * )  ' I n p u t  t h e  mode number  q '
READ ( 5 , * )  Q

Q = Q + 1 
D = D *  I D - 6 
LAMBDA = LAMBDA *  I D - 6  
P I  = q * A T A N ( 1 . 0D0)
KO = 2 . 0 D 0 * P I / L A M B D A

C T h i s  p a r t  w i l l  f i n d  t h e  r o o t  ( o r  e i g e n v a l u e  n e ) .

DO 10 K = 1 ,  10
EPS = 1 0 . 0 D 0 * * ( - K )
NE = N3 + 0 . 0 1 D 0  
ETA = 0 . 0 D 0  
NFMAX = 500  
I F A I L  = 0
CALL C05AJF ( NE ,  EPS,  ETA,  TENE,  NFMAX,  I F A I L )
B = ( N E * * 2  -  N 3 * * 2 ) / ( N 2 * * 2  -  N 3 * * 2 )
W R I T E ( 6 , 9 7 )  ' Ne = ' ,  NE,  ' b  = ' , B

10 CONTINUE

97 FORMAT( A 6 , F 1 5 . 9 ,  A6,  F 1 0 . 4 )
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WRI TE( 6 , * )  • *

C T h i s  p a r t  w i l l  f i n d  t h e  r o o t  ( o r  e i g e n v a l u e )  Kq.

NEFF = NE 
DO 20 K = 1 ,  10

EPS = 1 0 . 0 D 0 * * ( - K )
KQ = 1 0 0 . 0D0 
ETA = 0 . 0 D 0  
NFMAX = 500  
I F A I L  = 0
CALL C05AJF (KQ,  EPS,  ETA,  TEKQ, NFMAX,  I F A I L )
W R I T E ( 6 , 9 8 )  'Kq = * ,  KQ

20 CONTINUE

98 FORMAT( A 6 , F 1 0 . 2 )

W R I T E ( 6 , * )  * '

C T h i s  p a r t  w i l l  c a l c u l a t e  t h e  d e r i v a t i v e  f ' ( k q ) .

CALL ETA_KAPPA ( N E ,  KQ, E T A 1 , E T A 2 , ETA3)

C Now c a l c u l a t e  t h e  d e r i v a t i v e  f ' ( k q )

AA1 = ( E T A 1 / E T A 2 )  + ( E T A 2 / E T A 1 )
DENOM1 = E T A 1 * * 2  + E T A 2 * * 2

AA2 = ( E T A 3 / E T A 2 )  + ( E T A 2 / E T A 3 )
DEN0M2 = E T A 3 * * 2  + E T A 2 * * 2

FDASH = - 2 . 0 D 0  *  KQ *  ( AA1 / DEN0M1 + AA2/ DEN0M2 + D / E T A 2 )
WRITE ( 6 , * )  'FDASH 3 Kq = ' , K Q , '  = ' ,  FDASH

WRITE ( 2 , * )  NE,  ' b  = ' ,B 
WRITE ( 2 , * )  KQ,  FDASH

STOP
END

C * * * * * * * * * * * * * * * * * * * *  FUNCTIONS * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

REAL FUNCTION TENE( NE)

T h i s  f u n c t i o n  c a l c u l a t e s  t h e  v a l u e  o f  t h e  t r a n s c e d e n t a l  e q n .  
f o r  a g i v e n  v a l u e  o f  t h e  e f f e c t i v e  i n d e x  ( N e ) .  The eqn i s

PH 1 1 + PH 1 2 + 2 * E T A 2 * D  = ( 2 q ) * P I .

COMMON/WORK/ D,  K0 ,  N l ,  N2 ,  N 3 , P I ,  NEFF,  Q

DOUBLE PRECI SI ON BETA,  KX,  K0 ,  N E , P I ,  P H I 1 ,  P H I 2 ,  NEFF 
DOUBLE PREC I S I ON  D,  LAMBDA, N l ,  N2 ,  N3 
DOUBLE PR ECI S I ON E T A 1 , E T A 2 , ETA3 
INTEGER Q

KX = 0 . 0 D 0

CALL ETA_KAPPA ( N E ,  KX,  ETA1,  ETA2 ,  ETA3)

PH 1 1 = 2 . 0 D 0  * ATAN( ETA2/ ETA1)
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PH 1 2 = 2 . 0 DO *  ATANCETA2/ ETA3)

TENE = PH 1 1 + PH 12 + 2 . 0 D 0 * E T A 2 * D  -  2 * D F L 0 A T ( Q) * P  I  

END

REAL FUNCTION TEKQCKX)

T h i s  f u n c t i o n  c a l c u l a t e s  t h e  v a l u e  o f  t h e  t r a n s c e d e n t a l  
f o r  a g i v e n  v a l u e  o f  t h e  e f f e c t i v e  i n d e x  ( N e ) .  The eqn

PH 1 1 + PH 12 + 2 * E T A 2 * D  = ( 2 q ) * P I .

COMMON/WORK/ D,  KO,  N l ,  N 2 ,  N3 ,  P I ,  NEFF,  Q

DOUBLE P RECI S I ON KX,  KO, P I ,  P H I 1 ,  P H I 2 ,  NEFF 
DOUBLE P RECI S I ON D,  LAMBDA, N l ,  N 2 , N3 
DOUBLE P RECI S I ON ETA 1 ,  E T A 2 , ETA3  
INTEGER Q

CALL ETA_KAPPA ( N E F F ,  KX,  E T A 1 , E T A 2 , ETA3)

PH 1 1 = 2 . 0 D 0  *  A T A N ( E T A 2 / E T A 1 )
PH 1 2 = 2 . 0 D 0  *  A T A N ( E T A 2 / E T A 3 )

TEKQ = PH 1 1 + PH 12 + 2 . 0 D 0 * E T A 2 * D  -  2 * D F L 0 A T ( Q ) * P I  

END

SUBROUTINE ETA_KAPPA ( N E ,  KX,  E T A 1 , E T A 2 , ETA3)

COMMON/WORK/ D,  KO, N l ,  N 2 ,  N 3 ,  P I ,  NEFF,  Q

DOUBLE PR ECI S I ON  BETA,  KO, KX,  N E , N l ,  N2 ,  N3 
DOUBLE PR ECI S I ON  KAPPA1, KAPPA2,  KAPPA3 
DOUBLE PRECI SI ON ET A1 ,  E T A 2 , ETA3  
DOUBLE P RE C I S I ON D,  P I ,  NEFF 
INTEGER Q

BETA = NE*K0
KAPPA 1 = ( N l  *  K 0 ) * * 2  -  B E T A * * 2
KAPPA2 = ( N2 *  K0 ) * * 2  -  B E T A * * 2
KAPPA3 = ( N3 *  K 0 ) * * 2  -  B E T A * * 2

C N2 > Ne > N3 > Nl  S i t u a t i o n .

ETA1 = DSQRT( K X * * 2  -  KAPPA1 )
ETA2 = DSQRT( KAPPA2 -  K X * * 2  )
ETA3 = DSQRT( K X * * 2  -  KAPPA3 )

END

eqn .
i s
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APPENDIX K GF Program — Situation 2 — Modal Contribution

PROGRAM MODAL_GREEN_FUNCTION

P r o g r a m  t o  c o mp u t e  t h e  p o l e  c o n t r i  
f u n c t i o n .  S o l u t i o n  i s  i n  t h e  c a r t

C S i t u a t i o n  2 .  S o u r c e  p o i n t  i n  N2 gu

DOUBLE PR ECI S I ON FDASH, Y ,  YDASH,
DOUBLE PRECI SI ON N l ,  N 2 ,  N3 ,  N E ,
DOUBLE PRECI SI ON AETA1,  AETA2,  AE 
DOUBLE PRECI SI ON KAPPA1,  KAPPA2,
DOUBLE PREC I S I ON BETA,  LAMBDA, KO 
CHARACTER* I  ANSWER

C0MPLEX* 16  ETA2  
DOUBLE PR ECI S I ON E T A 1 , ETA3 
C0MPL EX* 16  PH I A  1 , P H I A 2 ,  P H I B 2 ,
COMPLEX*16 DENOM, I E T A 2 D , IETA2YD
COMPLEX * 1 6 G, GG, I ,  CA1,  C A 2 , C A 3 , CAA, C A 5 , CA6
INTEGER X

OPEN( 5 , F I L E = ' /NEWG2 I N P U T ' ,  FORM=' FORMATTED’ )
OPENC 1, F I L E = ' / G F 2  UMPDATA' ,  FORM=' FORMATTED' )

WRITE ( 6 , * ) ' I n p u t  d e p t h  o f  N2 l a y e r  ( d ) *
READ ( 5 , * ) D
WRITE ( 6 , * ) ' I n p u t  N l ,  N 2 , N 3 '
READ ( 5 , * ) N l ,  N 2 , N3
WRITE C 6 , * ) ' I n p u t  e f f e c t i v e  i n d e x  e s t i m a t e '
READ C 5 , * ) NE
WRITE ( 6 , * ) ' I n p u t  t h e  o p e r a t i n g  w a v e l e n g t h  Cum) '
READ ( 5 , * ) LAMBDA
WRITE ( 6 , * ) ' I n p u t  number  o f  i n t e r v a l s  CN = power o f
READ ( 5 , * ) N
WRITE C 6 , * ) ' I n p u t  r o o t  Kq '
READ ( 5 KQ
WRITE ( 6 , * ) ' I n p u t  d e r i v a t i v e  o f  f C k q )  g r a p h '
READ C 5 FDASH

FDASH = DABS C FDASH)
D = D *  I D -  6
LAMBDA = LAMBDA *  I D - 6

I  = DCMPLX CO. 0 D 0 , 1 . 0 D 0 )
P I  = 4 * A T A N C 1 . 0D0)
KO = 2 . 0 DO* P I / LA MBD A  
KX = KQ

C C a l c u l a t e  t h e  r e s p e c t i v e  w a v e n u mb e r s  f o r  e a c h  d i e l e c t r i c

BETA = NE*K0
KAPPA1 = CN1 * KO) * * 2  - B E T A * * 2
KAPPA2 = CN2 * KO) * * 2  - B E T A * * 2
KAPPA3 = CN3 * KO) * * 2  - B E T A * * 2

b u t i o n  o f  t h e  G r e e n ' s  
e s i a n  X - Y  d o m a i n .

i d i n g  l a y e r .

D,  M
B
TA3
KAPPA3 
, KQ,  KX,  P I

P H I A 2 D ,  P H I B 2 D ,  PH I A3

r e g i o n .
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C N2 > Ne > N3 > Nl  S i t u a t i o n .

2 0 0 0

C

C

5 0 0

C

C

10

AETA1 = K X * * 2  -  KAPPA1
AETA2 = KAPPA2 -  K X * * 2
AETA3 = K X * * 2  -  KAPPA3

ETA2 = DCMPLX C A E T A 2 , 0 . 0 D 0 )

ETA 1 = DSQRT( AETA1)
ETA2 = CDSQRT( E T A 2 )
ETA3 = DSQRT( AETA3)

W R I T E C 6 , * )  ’ I n p u t  s o u r c e  p o i n t  c o o r d  ( Y D A S H ) '
READ ( 5 , * ) YDASH 
YDASH = YDASH *  I D - 6  
W R I T E C 1 , * )  'YDASH = ' ,  YDASH

C a l c u l a t e  some c o n s t a n t s  t o  be used  i n  t h e  G r e e n ' s  f u n c t i o n  G.

I E T A 2 D  = I  *  ETA2*D  
I E T A 2 Y D  = I  *  ETA2*YDASH

CA 1 = ETA 1 + I *ETA2
CA2 = ETA1 -  I*ETA2
CA 1 = CA1/ CA2
CA3 = -ETA3 + I*ETA2
CA4 = ETA3 + I *ETA2
CA3 = CA3/CAA
CA5 = 1 / ( 2 . 0D0 * ETA2 )
CA6 = CDEXP(IETA2YD)  * CDEXP( IETA2D)

W R I T E C 6 / * )  ' I n p u t  o b s e r v a t i o n  c o o r d  ( Y ) '
READ ( 5 , * )  Y
I F  ( Y  . L T .  -  1 0 . 0 DO) GOTO 3000  
Y = Y * l D - 6

C a l c u l a t e  some more c o n s t a n t s  f o r  t h e  G r e e n ' s  f u n c t i o n  G.  

PH I A 1 = - CA1 + 1 . 0 D 0
P H I A 2  = - CA1 *  C D E X P ( - I * E T A 2 * Y )  + CDEXP( I * E T A 2 * Y )
P H I B 2  = CA6 + C A 3 * C D E X P ( - I E T A 2 Y D ) * C D E X P ( - I E T A 2 D )
PH I A 2 D  = CA3 *  CDEXP( - 2 . 0 D 0 * I E T A 2 D )  *  CDEXP( - I * E T A 2 * Y )  +

1 C D E X P C I * E T A 2 * Y )
P H I B 2 D  = CA6 -  CA1 *  CDEXPC- I E T A 2 Y D )  *  CDEXP( I ET A 2 D )
PH I A3 = ( CA3 + 1 . 0 D 0 )  *  CDEXP( - I E T A 2 D )

Now c a l c u l a t e  t h e  G r e e n ' s  f u n c t i o n  f o r  e a c h  r e g i o n .

I F  ( Y  . GE .  0 . 0 D 0 )  THEN
GG = CA5 *  PHI A1  *  PHI B2  *  DEXP( - E T A 1 * Y )  /  ( - F D A S H )
DO 10 X = - ( N / 2 - 1 ) , 0

G = GG *  C D E X P ( - I * K Q * D F L 0 A T ( X ) * l D - 7 )
W R I T E ( 1 , * )  D F L 0 A T ( X ) * 1 D - 1 , Y * 1 D 6 ,  G 

CONTINUE

GG = CA5 *  PH I A 1 *  PHI B2  *  DEXP( - E T A 1 * Y )  /  FDASH 
DO 15 X = 1 /  N / 2

G = GG *  C D E X P ( I * K Q * D F L 0 A T ( X ) * l D - 7 )
W R I T E (1> * )  D F L O A T ( X ) *  I D - 1> Y * 1 D 6 ,  G 

CONTINUE
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25

30

35

40

45

3 0 0 0

98

I F  CCY . GE .  YDASH) .AND.  (Y . L T .  0 . 0 D 0 ) )  THEN 
GG = CA5 *  PHI A2  *  PHI B2  /  ( - F DA SH)
DO 20 X = - C N / 2 - 1 ) , 0

G = GG *  C D E X P ( - I * K Q * D F L 0 A T ( X ) * l D - 7 )  
W R I T E ( 1 , * )  D F L O A T ( X ) * 1 D - 1 ,  Y * 1 D 6 ,  G 

CONTINUE

GG = CA5 *  P HI A2  *  PHI B2  /  FDASH 
DO 2 5  X = 1 ,  N / 2

G = GG *  C D E X P C I * K Q * D F L O A T ( X ) * l D - 7 )
W R I T E ( 1 , *  ) DFLOAT( X ) *  I D - 1 , Y * I D 6 ,  G 

CONTINUE  
E N DI F

I F  (CY . L T .  YDASH) . AND.  (Y . GE. - D ) ) THEN 
GG = CA5 *  PHI A2D *  PHI B2D /  ( - F D A S H )
DO 30 X = - ( N / 2 - 1 ) ,  0

G = GG *  C D E X P ( - I * K Q * D F L O A T ( X ) * l D - 7 )  
W R I T E d , * )  D F L 0 A T ( X ) * 1 D - 1 ,  Y * 1 D 6 ,  G 

CONTINUE

GG = CA5 *  PHI A2D *  PHI B2D /  FDASH 
DO 35  X = 1 ,  N / 2

G = GG *  C D E X P ( I * K Q * D F L O A T ( X ) * l D - 7 )  
W R I T E d , * )  D F L 0 A T ( X ) * 1 D - 1 ,  Y * 1 D 6 ,  G 

CONTINUE  
EN DI F

I F  ( Y  . L T .  - D )  THEN
GG = CA5 *  PH I A3 *  PHI B2D *  D E X P ( E T A 3 * ( Y + D ) ) /  
DO 40 X = - ( N / 2 - 1 ) ,  0

G = GG *  C D E X P ( - I * K Q * D F L O A T ( X ) * l D - 7 )  
W R I T E d , * )  DFL OAT( X )  * 1 D - 1 , Y * 1 D 6 ,  G 

CONTINUE

GG = CA5 *  PH I A3 *  PHI B2D *  D E X P ( E T A 3 * ( Y + D ) ) /  
DO 45  X = 1 ,  N / 2

G = GG *  CDEXP( I * K Q * D F L O A T ( X ) * l D - 7 )  
W R I T E d , * )  DFLOAT( X)  * 1 D - 1  , Y * 1 D 6 ,  G 

CONTINUE  
ENDI F

W R I T E d , * )  ' '

GOTO 5 0 0

W R I T E ( 6 , * )  * A n o t h e r  r un  w i t h  a d i f f e r e n t  v a l u e  o f
READ ( 5 , 9 8 )  ANSWER 
FORMAT( A 1 )
I F  (ANSWER . EQ.  * Y ' )  GOTO 2000
STOP
END

( - F D A S H )

FDASH

YDASH ?*
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APPENDIX L GF Program -  Situation 2 -  FT Calculation
PROGRAM GREEN_FUNCTION

P r o g r a m  t o  c ompu t e  t h e  G r e e n 1s f u n c t i o n  f o r  a t h r e e  l a y e r e d  
d i e l e c t r i c  s l a b  s t r u c t u r e .  The GF c a l c u l a t e d  i s  i n  t h e  F o u r i e r  
d o m a i n ,  t h e  s p a t i a l  GF i s  d e t e r m i n e d  u s i n g  t h e  I FFT_GREEN  
p r o g r a m .

S i t u a t i o n  2 .  S o u r c e  p o i n t  i n  N2 g u i d i n g  l a y e r .

DOUBLE P RE CI S I ON  Y,  YDASH,  D,  M 
DOUBLE P R E C I S I ON  N l ,  N 2 , N3 ,  N E , B 
DOUBLE P R E C I S I ON  A E T A 1 , AETA2,  AETA3  
DOUBLE P R E C I S I ON  KAPPA1,  KAPPA2,  KAPPA3 
DOUBLE P R E C I S I O N  BETA,  LAMBDA, I N C ,  KO, KX,  P I  
CHARACTER*1 ANSWER

COMPLEX* 16 ETA2
DOUBLE P RE CI S I ON ETA 1 ,  ETA3
COMPLEX* 16 A,  A 1 , B l ,  A 2 , B 2 , A 3 ,  G
COMPLEX* 16 DENOM, I E T A 2 D , I ETA2YD
C O M P L E X * I 6 I  , CA 1 , C A 2 , C A 3 , CA4,  C A 5 , CA6

OPEN( 5 ,  F I L E = ' / F T G F 2  I N P U T ' ,  FORM=' FORMATTED' )
OPEN(1  , F I L E = ' / F T G F 2  O U T P U T ' ,  FORM=' FORMATTED' )

W R I T E ( 6 , * ) ' I n p u t d e p t h  o f  N2 l a y e r  ( d ) '
READ ( 5 , * ) D
W R I T E ( 6 , * ) ' I n p u t N l ,  N 2 , N 3 '
READ ( 5 , * ) N l  , N2 , N 3
W R I T E C 6 , * ) ' I n p u t e f f e c t i v e  i n d e x  e s t i m a t e 1

READ ( 5 , * ) NE
W R I T E ( 6  , * ) ' I n p u t t h e  o p e r a t i n g  w a v e l e n g t h ( urn) '
READ ( 5 , * ) LAMBDA
W R I T E ( 6 , * ) ' I n p u t number  o f  i n t e r v a l s  (N = power
READ ( 5 , * ) N
W R I T E ( 6 , * ) ' I n p u t f r e q .  r a n g e  o f  FT ( e g  4= -  Ako
READ ( 5 , * ) M

W R I T E ( 1 , * ) N,  M, LAMBDA

D = D *  I D - 6
LAMBDA = LAMBDA * I D - 6

I  = DCMPLX ( 0 . 0D0 , 1 . 0D0)
P I  = 4* ATAN C1 . 0 DO)
KO = 2 . 0 DO * P I / L A M B D A  
INC = 2 . 0 D 0 * M * K 0 / N

C a l c u l a t e  r e s p e c t i v e  wa v e n u mb e r s  f o r  e a c h  d i e l e c t r i c  r e g i o n .  

BETA = NE*K0
KAPPA1 = ( N l  *  K 0 ) * * 2  -  B E T A * * 2  
KAPPA2 = ( N2 *  K 0 ) * * 2  -  B E T A * * 2
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KAPPA3 = ( N3 *  K0 ) * * 2  -  B E T A * * 2

W R I T E C 6 , * )  ' I n p u t  s o u r c e  p o i n t  c o o r d  ( Y D A S H) '  
READ ( 5 , * )  YDASH 
YDASH = YDASH *  I D - 6

W R I T E C 6 , * )  ' I n p u t  o b s e r v a t i o n  c o o r d  ( Y ) '
READ ( 5 , * )  Y
I F  (Y . L T .  - 1 0 . 0 D 0 )  GOTO 3000

Y = Y *  I D - 6 
DO 1000  J = 0 ,  N - l

KX = - M* K 0  + DFLOATCJ) * I N C

N2 > Ne > N3 > N l  S i t u a t i o n .

AETA1 = K X * * 2  -  KAPPA1
AETA2 = KAPPA2 -  K X * * 2  
AETA3 = K X * * 2  -  KAPPA3

ETA2 = DCMPLXCAETA2, 0 . 0 D 0 )

ETA1 = DSQRT( AETA1)
ETA2 = CDSQRT( E T A 2 )
ETA3 = DSQRT( AETA3)

C a l c u l a t e  some c o n s t a n t s  t o  be used  i n  t h e  G r e e n ' s  f u n c t i o n  G.

I E T A 2 D  = I  *  ETA2*D  
I ET A 2 Y D  = I  *  ETA2*YDASH

CA 1 = ETA1 + I * E T A 2
CA2 = ETA1 - I  * ETA2
CA 1 = CA1 / CA2
CA3 = - E T A 3  + I  * ETA2
CA4 = ETA3 + I * E T A 2
CA3 = CA3/ CA4
CA5 = 2 . 0 D 0 * I * E T A 2
CA6 = CDEXPCI ETA2YD)
DENOM = - ( CA1* C D E X P (

CDEXP( I ETA2D)
TA2D) + C A 3 * C D E X P ( - I E T A 2 D ) ) 

Now c a l c u l a t e  t h e  c o e f f i c i e n t s  A,  A l ,  . . . ,  A3

B 1 = ( CA6 + C A 3 * C D E X P ( - I E T A 2 Y D ) * C D E X P ( - I E T A 2 D ) ) / ( C A 5 * D E N 0 M )
A 1 = - CA1 * B 1

B2 = ( CA6 -  C A 1 * C D E X P ( - I E T A 2 Y D ) * C D E X P ( I E T A 2 D ) ) / ( CA5* DEN0M) 
A2 = CA3 *  B2 *  C D E X P ( - 2 . 0 D 0 * I E T A 2 D )

A = A 1 + B1

A3 = ( A2 *  CDEXP( I E T A 2 D )  + B2 *  CDEXP( - I E T A 2 D ) )
1 *  DEXP( ET A3 * D)

Now c a l c u l a t e  t h e  G r e e n ' s  f u n c t i o n  f o r  e ach  r e g i o n .

I F  ( Y  . GE.  0 . 0 D 0 )  THEN 
G = A *  DEXP( - ETA 1 * Y)  

W R I T E C 1 , * )  KX,  Y,  G 
END I F
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KAPPA3 = ( N3 *  K 0 ) * * 2  -  B E T A * * 2

W R I T E d , * )  ' I n p u t  s o u r c e  p o i n t  c o o r d  ( Y D A S H ) '  
READ ( 5 , * )  YDASH 
YDASH = YDASH *  I D - 6

W R I T E d , * )  ' I n p u t  o b s e r v a t i o n  c o o r d  ( Y ) '
READ ( 5 , * )  Y
I F  ( Y  . L T .  - 1 0 . 0 D 0 )  GOTO 3000

Y = Y *  I D - 6 
DO 1 0 0 0  J = 0 ,  N - l

KX = -  M*K 0 + D F L O A T C J ) * I N C

N2 > Ne > N3 > N l  S i t u a t i o n .

AETA1 = K X * * 2  -  KAPPA1
AETA2 = KAPPA2 -  K X * * 2  
AETA3 = K X * * 2  -  KAPPA3

ETA2 = DCMPLXCAETA2, 0 . 0 D 0 )

ETA 1 = DSQRT( AETA1)  
ETA2 = CDSQRT(ETA2)  
ETA3 = DSQRT( AET A3 )

C a l c u l a t e  some c o n s t a n t s  t o  be used  i n  t h e  G r e e n ' s  f u n c t i o n  G.

I E T A 2 D  = I  *  ETA2* D  
I E T A 2 Y D  = I  *  ETA2*YDASH

CA 1 = ETA 1 + I * E T A 2
CA2 = ETA1 - I  * ETA2
CA 1 = CA1 / CA2
CA3 = - E T A 3  + I * E T A 2
CA4 = ETA3 + I * E T A 2
CA3 = CA3 / CA4
CA5 = 2 . Q D 0 * I * E T A 2
CA6 = C D E X P ( I E T A 2 Y D )
DENOM = - CC A1 * CD EXP(

Now c a l c u l a t e  t h e  c o e f f i c i e n t s  A,  A l ,  . . . ,  A3

B 1 = ( CA6 + C A 3 * C D E X P ( - I E T A 2 Y D ) * C D E X P ( - I E T A 2 D ) ) / ( CA5 * DEN 0 M)
A l  = - CA1 *  B 1

B2 = ( CA6 -  C A 1 * C D E X P ( - I E T A 2 Y D ) * C D E X P ( I E T A 2 D ) ) / CCA5*DEN0M)
A2 = CA3 *  B2 *  C D E X P C - 2 . 0 D 0 * I E T A 2 D )

A = A l  + B1

A3 = ( A2 *  CDEXP( I E T A 2 D )  + B2 *  CDEXP( - I E T A 2 D ) )
1 *  DEXP( E T A 3 * D )

Now c a l c u l a t e  t h e  G r e e n ' s  f u n c t i o n  f o r  e a c h  r e g i o n .

I F  ( Y . GE .  0 . 0 D 0 )  THEN 
G = A *  D E X P ( - E T A 1 * Y )

W R I T E d ,  * )  KX,  Y,  G 
EN D I F

129



I F  ( C Y . GE .  YDASH) .AND.  (Y . L T .  O . ODO) )  THEN 
G = A l  *  C D E X P ( - I * E T A 2 * Y )  + B1 *  C D E X P ( I * E T A 2 * Y )  

W R I T E d , * )  KX,  Y,  G 
END I F

I F  ( ( Y . L T .  YDASH) .AND.  (Y . GE. - D ) ) THEN
G = A2 *  C D E X P ( - I * E T A 2 * Y )  + B2 *  CDEXP( I * E T A 2 * Y )  

W R I T E d , * )  KX,  Y ,  G 
E N D I F

I F  CY . L T .  - D )  THEN
G = A3 *  DEXP C E T A 3 * Y )

W R I T E d , * )  KX,  Y ,  G 
E N D I F

1 0 0 0  CONTINUE

W R I T E d , * )  ' '
GOTO 500

3 0 0 0  W R I T E C 6 , * )  ' A n o t h e r  r u n  w i t h  a d i f f e r e n t  v a l u e  o f  YDASH ? '
READ ( 5 , 9 8 )  ANSWER 

98 FORMAT( A l )
I F  (ANSWER . EQ .  * Y ' )  GOTO 2000
STOP
END
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APPENDIX M Kirchhoff— Huygen's Line Integral Program 

PROGRAM KIRCHHOFF_HUYGEN_INTEGRAL

P r o g r a m  t o  c a l c u l a t e  t h e  new f i e l d  a r o u n d  a s e l e c t e d  
c o n t o u r  s u r r o u n d i n g  a w a v e g u i d e  s t r u c t u r e .  The K i r c h h o f f -  
Hu y g e n s  l i n e  i n t g r a l  f o r m u l a  i s  used  i n  w h i c h  t h e  i n i t i a l  
f i e l d  U F I E L D  and G r e e n ' s  F u n c t i o n  G i s  u s e d .

The f i e l d  v a l u e s  o u t p u t  i n  f i l e  ' SLABFD UMPDATA'  f r o m  t h e  
s c a l a r  f i n i t e  d i f f r e n c e  p r o g r a m  a r e  s t o r e d  i n  t h e  U F I E L D  
a r r a y .  The n o r m a l  d e r i v a t i v e  d u / d n  i s  c a l c u l a t e d  and  
s t o r e d  i n  t h e  a r r a y  DU F I E L D .  The G r e e n  F u n c t i o n  v a l u e s  
a r e  r e a d  f r o m  t h e  two c o r r e s p o n d i n g  GF p r o g r a m s .

F i n a l l y  t h e  K i r c h h o f f - H u y g e n  l i n e  i n t e g r a l  i s  p e r f o r m e d  
a r o u n d  t h e  w a v e g u i d e  s t r u c t u r e  and t h e  new c o n t o u r  
f i e l d  v a l u e s  a r e  w r i t t e n  i n t o  t h e  f i l e  ' F I L E  F T 0 9 F 0 0 1 *  
t o  be u s e d  f o r  a s u b s e q u e n t  r un  o f  t h e  s c a l a r  f i n i t e  
d i f f e r e n c e  p r o g r a m .

C THE VARIABLES USED ARE:

c XCOORD l x N  a r r a y  o f  t h e  x c o o r d i n a t e s .
c XSTART S t a r t  v a l u e  o f  t h e  x c o o r d i n a t e .
c DELTAX D i s c r e t e  i n c r e m e n t  o f  t h e  x c o o r d i n a t e .
c GREEN NxNY+2xNY a r r a y  o f  t h e  I F T  GF g .
c DGREEN NxNY+2xNY a r r a y  o f  t h e  n o r m a l  d e r i v a t i v e  o f  t h e  GF
c U F I E L D NxNY a r r a y  o f  t h e  e l e c t r i c  f i e l d  v a l u e s  c a l c u l a t e d
c f r o m  t h e  p r o g r a m  SLABFD.
c DUF I ELD NxNY a r r a y  o f  t h e  n o r m a l  d e r i v a t i v e  o f  t h e  U F I E L D .
c U , DU 1 x 6 4  a r r a y  o f  t h e  c o n t o u r  f i e l d  u & t h e  d e r i v a t i v e
c G,  DG 1 x 6 4  a r r a y  o f  t h e  c o n t o u r  GF g & t h e  d e r i v a t i v e  dg
c UM 1 x 6 4  a r r a y  o f  t h e  r e s u l t i n g  new c o n t o u r  f i e l d .
c H M e s h s i z e  o f  t h e  f i n i t e  d i f f e r e n c e  ( = 0 . 1 u m ) .

COMMON / D A T A /  XCOORD
COMMON / R D A T A /  U F I E L D ,  D U F I E L D ,  U,  DU 
COMMON / I D A T A /  GREEN,  DGREEN, G, DG

INTEGER N,  NY,  X ,  Y,  YDASH
DOUBLE P R E CI S I ON  H,  YCOORD, XCOORD ( 0 : 2 5 5 )
DOUBLE P R E C I S I ON  XSTART,  LAMBDA, DELTAX
DOUBLE P RE CI S I ON U F I EL D  ( 1 : 1 3 , 0 : 2 5 5 ) ,  D UF I ELD  ( 1 : 1 3 , 0 : 2 5 5 )  
DOUBLE PR E C I S I ON  UM ( 1 : 6 4 ) ,  U ( 1 : 6 4 ) ,  DU ( 1 : 6 4 )

COMPLEX* 16 GREEN ( 0 : 1 4 ,  0 : 2 5 5 ,  1 : 1 3 ) ,  DGREEN ( 0 : 1 4 ,  0 : 2 5 5 ,  1 : 1 2
COMPLEX* 16 G( 1 :6  4 ,  1 : 6 4 ) ,  DG( 1 : 6 4 ,  1 : 6 4 )
COMPLEX* 16 GN, GM

C Read N ( n o .  o f  i n t e r v a l s  i n  t h e  F T ) ,  FT f r e q .  r a n g e  and w a v e l e n

0 P E N ( 1 ,  F I L E = ' / I F T G F 2  UMPDATA' ,  F 0 R M = ' FORMATTED' )
0 P E N ( 2 ,  F I L E = ' / SLABFD UMPDATA' ,  F 0 R M = ' FORMATTED' )
O P E N ( 1 0 ,  F I L E = ' / G F 2  UMPDATA' ,  F 0 R M = ' FORMATTED' )
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READ( 1 , * )  N,  LAMBDA

H = 0 . 1 
MI D = N / 2  -  1 
DELTAX = H 
XSTART = - ( M I D ) * H  
DO 5 X = 0 ,  N - l

XCOORD C X ) = XSTART + X*DELTAX  
5 CONTINUE

W R I T E ( 6 , 9 f )  'How many v a l u e s  o f  y d a s h  ? '
READ( 5 ,96) NY

DO 10 Y = 1 ,  NY 
DO 10 X = 0 ,  N - l

READ ( 2 , * )  XX,  YCOORD, U F I E L D ( Y , X )
10 CONTINUE

C Now c a l c u l a t e  v a l u e s  f o r  d u / d n  m a t r i x  DUFI ELD f r o m  t h e  U F I E L D
C m a t r i x  v a l u e s .

DO 15 X = 1 ,  N - 2
D U F I E L D ( 1 , X)  = - ( U F I E L D ( 2 , X )  -  U F I E L D ( 1 , X ) ) / H  
D U F I E L D ( N Y , X )  = - ( U F I E L D C N Y - 1 , X)  -  U F I E L D ( N Y , X ) ) / H  

15 CONTINUE

DO 20 Y = 2 ,  NY- 1

DO 25  X = 1 ,  MID
D U F I E L D ( Y , X )  = - ( U F I E L D ( Y , X)  -  U F I E L D ( Y , X - 1 ) ) / H  

25 CONTINUE

DO 30 X = M I D + 1 ,  N - l
D U F I E L D ( Y , X )  = - C U F I E L D ( Y , X)  -  U F I E L D C Y , X + 1 ) ) / H  

30 CONTINUE

20 CONTINUE

DO 35 YDASH = 1 ,  NY 
DO 40 Y = 0 ,  NY+1

DO 45 X = 0 ,  N - l
READ ( 1 , * )  XX ,  YCOORD 
READ ( 1 , * )  GN 
READ ( 10 , 96 )  XX ,  YCOORD 
READ ( 10 , 96 )  GM
GREEN( Y , X ,  YDASH) = GN + GM 

45 CONTINUE
40 CONTINUE

C Now c a l c u l a t e  v a l u e s  f o r  d g / d n  m a t r i x  DGREEN f r o m  t h e  GREEN
C m a t r i x  v a l u e s .

DO 70 X = 1 ,  N - 2
DGREEN( 1 , X , YDASH) = ( GREEN( 0 , X , YDAStt) -  GREEN( 1 , X , YDASH) ) / H
DGREEN( N Y , X , YDASH) = ( GREEN( N Y + 1 , X , YDASH) -  GREEN( N Y , X , YDASH)

70 CONTINUE

DO 35 Y = 2 ,  NY- 1

DO 75 X = 1 ,  MID

132



D G R E E N ( Y , X , YD A S H )  = ( GREEN( Y , X - 1 , YDASH) -  GREEN( Y , X , YDASH) ) / H  
75 CONTINUE

DO 80 X = M I D + 1 ,  N - l
DG R E E N ( Y , X , YD A S H )  = CGREEN( Y , X + 1 , YDASH) -  GREEN( Y , X , YDASH) ) / H  

80 CONTINUE
35 CONTINUE

CALL CONTOUR ( M I D ,  NY)

W R I T E C 6 , * )  'Now p e r f o r m i n g  KH i n t e g r a l  c a l c u l a t i o n

C Now m u l t i p l y  t h e  f o l l o w i n g  u *  d g / d n  -  g *  d u / d n

DO 90 X = 1 ,  64  
U M( X ) = 0 . 0 D 0  
DO 95 Y = 1 ,  64

UM( X ) = UM( X)  + U ( Y ) * D G ( Y , X )  -  D U ( Y ) * G ( Y , X )
95 CONTINUE
90 CONTINUE

C O u t p u t  t h e  new c o n t o u r  f i e l d  v a l u e s  i n  n o r m a l i s e d  f o r m .

CALL OUTPUT CUM)

STOP
END

C * * * * * * * * * * * * * * * * * * * * * * *  SUBROUTINES * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE CONTOUR ( M I D ,  NY)

COMMON / D A T A /  XCOORD
COMMON / R D A T A /  U F I E L D ,  D U F I E L D ,  U,  DU 
COMMON / I D A T A /  GREEN,  DGREEN,  G, DG

C T h i s  r o u t i n e  dumps t h e  c o n t o u r  i n t e g r a l  v a l u e s  o f  t h e
C GREEN,  DGREEN,  U F I E L D ,  DUFI ELD m a t r i c e s  i n t o  t h e  r e l e v a n t
C f i l e s  and r e a d s  t h e  dumped d a t a  b a c k  i n t o  t h e  m a t r i c e s
C G,  DG,  U and DU.  T h i s  dump i n g  o f  v a l u e s  and r e a d i n g  t hem
C b a c k  i n t o  t h e  m a t r i c e s  was done f o r  s i m p l i c i t y .  The f i l e s
C us e d  t o  s t o r e  t h e  dumped v a l u e s  a r e  t h e n  d e l e t e d .

INTEGER M, N,  NY,  M I D ,  X ,  Y ,  XDASH, YDASH
DOUBLE P R E C I S I ON  U F I E L D ( 1 : 1 3 , 0 : 2 5 5 ) ,  D U F I E L D ( 1 : 1 3 , 0 : 2 5 5 )
DOUBLE P R E C I S I O N  U C 1 : 6 4 ) ,  D U ( 1 : 6 4 )
COMPLEX* 16 GREENC0 : 1 4 , 0 : 2 5 5 , 1 : 1 3 ) ,  DGREENC0 : 1 4 , 0 : 2 5 5 , 1 : 1 3 )  
COMPLEX* 16 GC1. - 64 ,  1 : 6 4 ) ,  DG( 1 : 6 4 ,  1 : 6 4 )

OPEN( 3  , F I L E = ' /GREEN D A T A ' ,  FORM=' FORMATTED' )
OPEN C 4 , F I L E = ' /DGREEN D A T A ' ,  F 0 RM = ' FORMATTED * )

W R I T E ( 6 , * )  'Now c a l c u l a t i n g  c o n t o u r  p o i n t s  o f  i n t e g r a l  . . . '

CCC W R I T E ( 3 , * )  ' P a t h  1 Cxdash = - 1 . 0  t o  1 . 0 ,  y d a s h  = 0 . 1 ) '

DO 5 XDASH = 0 ,  20

DO 10 X = 0 ,  20
W R I T E ( 3  , * )  GREEN( 1 ,  M I D+ X - X D AS H,  1)
W R I T E ( 4  , * )  DGREEN( 1 ,  M I D + X - X D A S H ,  1)
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10 CONTINUE

15

20

25

5

CCC

35

40

45

50

30

CCC

X = X -  1 
DO 15 Y = 2 ,  NY

W R I T E C 3 , * )  GREENCY,  M I D+X- XDASH,  1)
I F  C XDASH . EQ.  2 0 )  THEN

WRITE C 4 , * )  -DGREEN( Y , M I D + X - XD A S H ,  1)  
ELSE

W R I T E C 4 , * )  DGREEN C Y , MID + X - XDA SH,  1)  
END I F  

CONTINUE

Y = Y -  1
DO 20 X = 1 9 ,  0 ,  - 1

W R I T E ( 3 , * )  GREENCY,  M I D+ X- XDA SH,  1)  
W R I T E C 4 , * )  DGREEN( Y , M I D + X- XD ASH ,  1)  

CONTINUE

X = X + 1
DO 25  Y = N Y - 1 ,  2 ,  - 1

W R I T E C 3 , * )  GREENCY,  MI D+X- XD ASH ,  1)
WRITE C 4 , * )  DGREEN C Y , M I D+ X - X DA S H,  1)  

CONTINUE  
WRITE C 3 , * )  * '
W R I T E C 4 , * )  * *

CONTINUE

WRITE C 3 , * )  1 P a t  h 2 Cxdash = 1 . 0 ,  y d a s h  = - 0 . 2

XDASH = X D A S H - 1 
DO 30 YDASH = 2 ,  NY

DO 35  X = 0 ,  20
W R I T E C 3 , * )  GREEN C1,  M I D + X- XD ASH,  YDASH)  
W R I T E C 4 , * )  DGREEN C1 ,  M I D + X - X D AS H,  YDASH)  

CONTINUE

X = X -  1 
DO 40 Y = 2 ,  NY

W R I T E C 3 , * )  GREENCY,  M I D + X - X D A S H ,  YDASH)  
W R I T E C 4 , * )  -DGREEN C Y , MID + X - XDASH,  YDASH)  

CONTINUE

Y = Y -  1
DO 45  X = 1 9 ,  0 ,  - 1

WRITE C 3 , * )  GREENCY,  MID + X - XDASH,  YDASH)  
W R I T E C 4 , * )  DGREEN C Y , M I D+ X- XDA SH,  YDASH)  

CONTINUE

X = X + 1
DO 50 Y = N Y - 1 ,  2 ,  - 1

W R I T E C 3 , * )  GREENCY,  M I D+ X- XDA SH,  YDASH)  
W R I T E C 4 , * )  DGREEN C Y , M I D + X - X D AS H,  YDASH)  

CONTINUE  
WRITE C 3 , * )  ' '
W R I T E C 4 , * )  ' '

CONTINUE

W R I T E C 3 , * )  ' P a t h  3 Cxdash = 0 . 9  t o  - 1 . 0 ,  y d a s h

t o  - 1 . 3 ) *

= - 1 . 3 ) *
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YDASH = YDASH-  1
DO 55 XDASH = 1 9 ,  0 ,  - 1

60

65

70

75

55

CCC

85

90

95

100

DO 60 X = 0 ,  20
W R I T E ( 3 , * )  GREEN C 1 , MID + X-XDASH,  YDASH)
WRITE C A , * )  DGREEN( 1 , MID + X- XDASH,  YDASH)  

CONTINUE

X = X -  1
DO 65 Y = 2 ,  NY

W R I T E ( 3 , * )  GREENCY,  MI D+X- XDASH,  YDASH)  
W R I T E C 4 , * )  DGREEN( Y , MI D+X- XDASH,  YDASH)  

CONTINUE

Y = Y -  1
DO 70 X = 1 9 ,  0 ,  - 1

W R I T E ( 3 , * )  GREENCY,  MI D+X- XDASH,  YDASH)  
WRITE C 4 , * )  DGREEN C Y , MI D+X- XDASH,  YDASH)  

CONTINUE

X = X + 1
DO 75 Y = N Y - 1 ,  2 ,  - 1

WRITE C 3 , * )  GREENCY,  MI D+X- XDASH,  YDASH)
WRITE C 4 , * )  DGREEN C Y , MI D+X- XDASH,  YDASH)  

CONTINUE  
W R I T E C 3 , * )  * '
WRITE C 4 , * )  ’ '

CONTINUE

W R I T E C 3 , * )  1 P a t h  A Cxdash = - 1 . 0 ,  y d a s h  = - 1

XDASH = XDASH+1
DO 80 YDASH = N Y - 1 ,  2 ,  - 1

DO 85 X = 0 ,  20
WRITE C 3 , * )  GREEN C1 ,  MI D+X- XDASH,  YDASH)  
WRITE C 4 , * )  DGREEN C l ,  MI D+X- XDASH,  YDASH)  

CONTINUE

X = X -  1
DO 90 Y = 2 ,  NY

WRITE C 3 , * )  GREENCY,  MI D+X- XDASH,  YDASH)  
W R I T E C 4 , * )  DGREEN C Y , M I D+X- XDASH,  YDASH)  

CONTINUE

Y = Y -  1
DO 95 X = 1 9 ,  0 ,  - 1

WRITE C 3 , * )  GREENCY,  MID + X- XDASH,  YDASH)  
WRITE C 4 , * )  DGREEN C Y , MID + X-XDASH,  YDASH)  

CONTINUE

X = X + 1
DO 100 Y = N Y - 1 ,  2 ,  - 1

WRITE C 3 , * )  GREENCY,  MI D+X- XDASH,  YDASH)  
W R I T E C 4 , * )  DGREEN C Y , MID + X-XDASH,  YDASH)  

CONTINUE  
W R I T E C 3 , * )  ' '
WRITE C 4 , * )  ' '

2 t o  - 0 . 2 ) *
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80 CONTINUE

C

CCC

110

CCC

115

CCC

1 2 0

CCC

125

C
C

130

135

Now dump o u t  v a l u e s  o f  t h e  f i e l d  U and t h e  d e r i v a t i v e  dU.

OPEN C 7 , F I L E = ' / U F I E L D  D A T A ' ,  F0RM= ' FORMATTED' )
OPEN( 8  , F I L E = ' / D U F I E L D  DATA * , FORM=' FORMATTED' )

W R I T E ( 7 , * )  ' P a t h  1 ( x d a s h  = - 1 . 0  t o  1 . 0 ,  y d a s h  = 0 . 1 ) '

DO 110 X = - 1 0 ,  10
W R I T E C 7 , * )  U F I E L D ( 1 ,  MI D+X)
W R I T E ( 8 , * )  D U F I E L D C 1,  M I D+ X)

CONTINUE

W R I T E ( 7 ,  * )  ' P a t h  2 ( x d a s h  = 1 . 0 ,  y d a s h  = - 0 . 2  t o  - 1 . 3 ) '

X = X - l
DO 115  Y = 2 ,  NY

W R I T E ( 7 , * )  UF I E L D ( Y , M I D+ X)
W R I T E ( 8 , * )  DUF I ELDCY,  M I D+ X)

CONTINUE

W R I T E C 7 , * )  ' P a t h  3 ( x d a s h  = 0 . 9  t o  - 1 . 0 ,  y d a s h  = - 1 . 3 ) *

Y = Y - l
DO 120 X = 9 ,  - 1 0 ,  - 1

W R I T E ( 7 , * )  U F I E L D ( Y ,  M I D + X)
W R I T E ( 8 , * )  D U F I E L D ( Y ,  M I D+ X)

CONTINUE

W R I T E ( 7 , * )  ' P a t h  A ( x d a s h  = - 1 . 0 ,  y d a s h  = - 1 . 2  t o  - 0 . 2 ) '

X = X + l
DO 125 Y = N Y - 1 ,  2 ,  - 1

W R I T E ( 7 , * )  U F I E L D ( Y , M I D+X)
W R I T E ( 8 , * )  D U F I E L D ( Y , M I D+X)

CONTINUE

CLOSE( 3 )
CLOSE( 4 )
CLOSE( 7 )
CLOSE( 8 )

Now r e a d  i n  t h e  v a l u e s  dumped o u t  i n t o  t h e  m a t r i c e s  
G, DG,  U and DU.

OPE N ( 3  , F I L E = ' /GREEN D A T A ' ,  FORM=' FORMATTED' , ST A T US = ' OLD' )  
OPEN( 4  , F I L E = ' /DGREEN D A T A ' ,  FORM=' FORMATTED * ,  S T A T U S = ' OLD ' )  
OPEN( 7 ,  F I L E = ' / U F I E L D  D A T A ' ,  FORM=' FORMATTED 1 , S T A T U S = ' OLD' )  
OPEN( 8  , F I L E = ' / D U F I E L D  D A T A ' ,  FORM=' FORMATTED' , S T A T U S = ' OLD' )

DO 130 N = 1 ,  64  
READ ( 7 ,36) U ( N )
READ( 8 , * )  DU( N)

CONTINUE

DO 135  M = 1 ,  64  
DO 135  N = 1 ,  64  

READ ( 3 , 5t) G ( N , M)
READ( A , * )  DG( N , M)

CONTINUE
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CLOSE( 3 ,  STATUS = ' D E L E T E ' )  
CLOSE C 4 , STATUS = ' D E L E T E ' )  
CLOSE( 7  , STATUS = ' D E L E T E ' )  
CLOSE( 8 ,  STATUS = ' D E L E T E ' )

RETURN
END

SUBROUTINE OUTPUT CNEWU)

DOUBLE P RE CI S I ON  NEWUMAX, N E W U ( 1 : 6 4 )

C F i n d  t h e  maximum f i e l d  v a l u e  i n  t h e  a r r a y

NEWUMAX = A B S C NE WU( l ) )
DO 10 I  = 2 ,  64

I F  ( AB SC NEWU CI ) ) . GT .  NEWUMAX) THEN 
NEWUMAX = ABSCNEWUCI ) )

END I F  
10 CONTINUE

Now n o r m a l i s e  a l l  t h e  v a l u e s  i n  t h e  a r r a y  and o u t p u t  t hem
i n t o  t h e  f i l e  F I L E  F T 0 9 F 0 0 1 .

DO 20 I  = 1 ,  64
W R I T E C 9 , * )  NEWUC D/ NEWUMAX  

20 CONTINUE

RETURN
END
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