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( n )

To Mum and Dad.



"ULFHEJM: Yes; even stone's got something to fight for. It's

dead and'll do everything it can to save itself from being 

chiselled into life."

From When we dead awaken by Henrik Johan Ibsen (1828 - 1906).

"Then at the balance let's be mute,

We never can adjust it;

What's done we partly may compute, 

But know not what's resisted."

From Address to the Unco Guid by Robert Bums (1759 - 1796)
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SUMMARY.

The basic aim of this work was to explore ways of applying the 

technique of Surface-enhanced Raman spectroscopy (SERS) to the 

routine analysis of organic and inorganic compounds. Intensive study 

of the activity of a series of modified tris(2,2'-bipyridyl) ruthenium(II) 

complexes was designed to address the question of the nature of the 

surface/adsorbate molecule bond. The research was divided into three 

main areas.

(1) The preparation of disubstituted analogues of the complex tris(2,2'- 

bipyridyl) ruthenium(II) diiodide, Ru(bipy)3l2 - Four complexes, in

addition to the parent complex, were prepared, each incorporating three 

2,2’-bipyridyl ligands substituted in the C4 and C4- positions. These

complexes were tris(4,4'- diethoxycarbonyl, -diamino, -diphenyl and 

-dimethyl-2,2'-bipyridine) ruthenium(II). The 4,4'-diethoxycarbonyl 

and 4,4'-diamino ligands were prepared from literature procedures and 

the 4,4'-diphenyl and 4,4'-dimethyl ligands were used as received.

Each of the complexes was purified by column chromatography and 

characterised, primarily, by electronic absorption spectroscopy.

(2) A study of SERS-active substrates. The analytical potential of 

several categories of surfaces was probed with organic molecules and 

Ru(bipy)3l2  and other complexes. The results showed that silver-coated



microscope slides, prepared through the reduction of ammonical silver 

nitrate solution, exhibited appreciable activity with a range of adsorbate 

species and particularly strong enhancement with Ru(bipy)3l2 . It was 

found that the molecules physisorbed on the metal surface.

Vapour-deposited silver-coated polycarbonate substrates also 

displayed SERRS-activity with Ru(bipy)3I2. The resultant spectra were

considerably less enhanced but showed evidence of chemisorption of 

the adsorbate.

These findings are discussed in relation to current theories of SERS 

enhancement.

(3) A comparitive study of the SERRS of [Ru(bipy)3]2+ and disubstituted

analogues with silver slides and silver polycarbonate. The effect of 

substitution of the 2,2f-bipyridyl ligands incorporated into the 

complexes was studied.

These results and the assignment of the SERR spectra showed that 

disubstitution does not affect the adsorption of the complex on silver 

slides, but does have a limited effect on the adsorption on silver 

polycabonate.

All the findings of the work are summarised and discussed with 

regard to the analytical applications of the technique. It is proposed 

that SERS has only limited applicability in the area of chemical sensing



and that there is no ideal SERS-active substrate due to the large number 

of variables operating in any SERS analysis.



CHAPTER ONE.

GENERAL BACKGROUND TOPICS.



1. GENERAL BACKGROUND TOPICS.

A. RAMAN SPECTROSCOPY.

1.1 Introduction.

Raman spectroscopy provides rotational and vibrational (and 

sometimes electronic) spectra through inelastic scattering of visible 

light. This differs from absorption spectroscopy where transmitted 

radiation is examined.

If a substance is irradiated with an intense beam of monochromatic 

light (provided by a laser) then a small proportion of the radiation is 

scattered. Most of this scattered energy has the same freqency as the 

incident radiation: this is termed Rayleigh scattering. A small 

proportion of the radiation, however, will have a frequency other than 

the incident radiation. This is referred to as Raman scattering. 

Scattered radiation of lower frequency than that of the incident beam is 

termed Stokes radiation, while radiation of higher frequency is termed 

Anti-Stokes radiation.



Figure 1.1 : Raman scatterine.

hu
LASER ~  

Monochromatic 

light source.

SAMPLE

V

scattered radiation 

hu (Rayleigh) 

hu - E (Stokes) 

hu + E (Anti-Stokes)

Rayleigh and Raman scattering proceed through virtual excited 

states with no measurable lifetimes. These processes differ from 

fluorescence where the emitted frequency corresponds to molecular 

electronic (vibronic) transitions and is independent of the exciting 

frequency. Fluorescence proceeds through real excited states with 

measurable lifetimes.

Figure 1.2 displays an energy level diagram illustrating the types of 

scattering which takes place when a molecule is irradiated.



1 st excited electronic state.

v' = 2 
v' = 1 
v' = 0
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h(u - uvib)
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Ground electronic state.

v = 2 
v=  1 
v = 0

vibrational levels

Figure 1.2: Raman scattering processes.

Anti-Stokes band intensities drop off rapidly with frequency in 

accordance with the Boltzmann distribution of molecules in excited

vibrational states, given by equation 1.1.

Nv+1
_ e-(Ev+1 - Ev)/kT ( 1.1)

N.

where Nv + 1 and Nv are the numbers of molecules in the upper and 

lower vibrational states respectively, (E ^ j - Ev) is the difference in 

energy of the two vibrational states, T is the temperature in Kelvin and 

k is the Boltzmann constant.

Unlike anti-Stokes bands, Stokes bands maintain their intensities 

throughout the spectrum.

Raman spectroscopy represents a method of obtaining a complete 

vibrational spectrum from 10 cm '1 (far infra-red) to approximately



5000 cm '1 in a single run and on a simple spectrometer. It can also 

yield a complete rotational spectrum from 10 to 500 cm '1.

A typical Raman spectrum is displayed in figure 1.3.

Rayleigh

Stokes Anti-Stokes

—r  
hu

Figure 1.3: Typical Raman spectrum.

1.2 Vibrational Raman effect.

A molecule in an electric field is distorted due to the attraction 

of the nuclei to the negative pole of the field and the converse attraction 

of the electrons to the positive pole. This separation of the charges 

induces an electric dipole moment, ji, in the polarised molecule. The 

magnitude of the field-induced dipole depends on the magnitude of the 

electric field vector, E, and the ease with which the molecule is distorted 

(polarisability) (equation 1.2).

U = « I  > 0-2)

where a  is the dynamic polarisability tensor of the molecule.

The polarisability tensor is anisotropic since an electric field applied



along a bond axis displaces an electron in the bond more easily than a 

field applied across the bond. It is a second-rank (polar) tensor with 

nine components and, for non-spherical molecules, equation 1.2 actually 

represents three equations (1.3a-c).

j(ZX — Q£XXEX + QXyEy + GXZEZ (1.3a)

,AZy — QfyxEX + GtyyEy + b

*^z — ^ zx ^x  + ^ zy ^y  + ^ z z^ z  c

The origin of scattered light is in the characteristic electromagnetic 

fields radiated by an oscillating electric dipole moment, jj, induced in 

the molecule by the electric field vector of the incident electromagnetic 

radiation.

A light wave with electric field vector E obeys expression 1.4.

E = E°cos27rut , (1.4)

where E^ is the maximum electric field, V is the frequency and t is 

the time.

The electric field vector induces an oscillating dipole moment given 

by equation 1.5.
U = otE°cos27rin (1.5)

When the oscillating dipole emits radiation of the same frequency as

the applied field, Rayleigh scattering is observed. If the polarisation is 

modulated by molecular vibrations, the oscillating dipole will have

vibrational oscillations superimposed on it. Equation 1.6 holds for small



6

displacements.

a  = Oq + (da/dQv)0 Qv0 cos27ruvlbt , (1.6)

where = equilibrium polarisability,

Qv = normal co-ordinate of vibration,

[ Qv =Qv° cos27tuvibt ]

(da/dQv)o = rate of change of a  with vibration.

Substitution of 1.6 into equation 1.5 gives the following expression:

U = {®o + (da/dQv)o Qv° cos27TUvibt} E° cos27rut (1.7)

=> u  = Oq E° cos27rut + {(da/dQv)0 Qv° E° cos2jruvibtcos2irut} (1.8)

Since 2cosAcosB = cos(A +B) + cos(A -B), equation 1.8 becomes:

U = [Oo E° cos2jrot] + [>/2 (da/dQv)0 Qv° E°{cos2jtu + uvlb}t (1.9)

+ co s2 tt( u  - u vib)t]

Thus, the frequency spectrum of the scattered light contains small 

components, v ± vvib (Stokes and anti-Stokes), in addition to the

dominant component, u (Rayleigh). All these components make up the 

Raman spectrum. The amplitude of the Raman wave is proportional to 

(dot/dQv)0.

1.3 Quantum selection rules.

The polarisability tensor, a , is regarded as an operator bringing



about transitions between vibrational quantum states.

The transition polarisability is defined as follows:

(2ap)fi = < u t- | a a p IUj> , (1.10)

where i and f represent the initial and final Raman states.

The vibrational Raman selection rules are the following:

(da/dQv)0 * 0  ; Auv = ±l (1.11)

Hence, the selection rule that ”to be Raman active, a molecular 

vibration must cause a change in a component of the polarisability".

1.4 Raman polarisation measurements.

In light scattering at 90°, two distinct polarisation components can 

be measured, I„ (parallel intensity) and Ix(intensity at 90°) as shown in 

figure 1.4.

x

incident beam

scattered beamI.,)
y

Figure 1.4: Polarisation measurements.



The in te n s i t ie s  of I„ a n d  I x c a n  be m e a s u re d  th ro u g h  a n  o r ie n te d  

P o la ro id  s h e e t.

The Raman depolarisation ratio is defined in equation 1.12.

p = I1 / I , ( (1.12)

If the incident laser beam is linearly polarised along x,

— ^XX —X

Wy ~ —yx—x

U z=«zxEx . 0-13)

and hence, P = &zx2/&xx2 (1-14)

For an isotropic sample, this must be averaged over all orientations 

of the molecule.

Equation 1.15 can be obtained.

P=  3P2

4 5 a2 + 4P2 , (1.15)

where a  is the mean polarisability and P is the polarisability 

anisotropy.

The mean polarisability can never vanish as all molecules have 

intrinsic polarisability. The polarisability anisotropy, P2, can vanish in 

the case of electrically isotropic molecules such as carbon tetrachloride.



In general, from equation 1.15:

3/4 > p > 0 (1.16)

1.4.1 Depolarisation ratios.

Raman depolarisation ratios can assist vibrational band assignments. 

The quantities a  and P2, from equation 1.15, are re-interpreted as 

transition polarisability components.

The mean polarisability, a , spans only the totally symmetric 

irreducible representation. Parts of P2 can span both totally symmetric 

and non-totally symmetric irreducible representations. Therefore, 

p = 3/4 for a non-totally symmetric vibration and 3/4 > p > 0 for a 

totally symmetric vibration. Any deviation from complete 

depolarisation, therefore, indicates a totally symmetric vibration.

1.5 Resonance Raman spectroscopy.

In conventional Raman spectroscopy, the sample is completely 

transparent (the laser frequency is well removed from any allowed 

electronic absorption). If, however, the exciting frequency is in the 

region of an electronic absorption, there can be tremendous 

enhancement of the Raman intensity.

The Raman transition polarisability, a a p, induced in a molecule due

to the oscillating electric field vector of the light source, can be 

re-defined quantum mechanically:
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(S«p)fi= —  < flUalm >< m|(Jp|i> < >< m |ua | i >

Z _  ----------------------------  +   (1.17)
n  f  i.f (Em - Ei) - hi) (Em- Ef) + hu

where !i>, |m> and |f> are initial, intermediate and final Raman 

states. The energy of the states is represented by E, ji is the 

electric dipole operator and hu is the excitation energy of the laser.

The fundamental processes involved in resonance Raman 

spectroscopy are displayed in figure 1.5.

conventioi 
Stokes Ra

hu

✓

rial
mai

V  \

(transparent)

1 hu

/

'  WU' Uvib)

S  /

h(U  - Uvib) 

resonance Raman

Figure 1.5: Resonance Raman scattering processes.

At resonance, hu is approximately equal to (Em - Ej) and, 

consequently, the denominator of the first term of equation 1.17 tends 

to zero. Since scattered intensity depends on the square of the 

transition polarisability, large enhancement results.

Resonance enhancement enables vibrational spectra to be obtained



in unfavourable situations such as very dilute solutions, matrix isolated 

species and local sites in large biological molecules. Indeed, the study of 

biological molecules by resonance Raman methods has become 

extremely widespread. Fundamental chemically-based biological 

functions have been studied through the selective enhancement of 

active chromophores.

B. LASERS.

1.1 Radiative processes.

Figure 1.6 shows common absorption and emission processes for a 

typical organic molecule.

Sl VR -IS CTIC

VR

RF

s0

Figure 1.6: Absorption and emission processes.

(a) Absorption (A).

The room temperature absorption spectrum is dominated by



transitions from singlet ground vibrational states to upper vibrational 

states in the excited singlet electronic state. The absorption spectrum 

generally gives details of the upper vibrational states.

(b) Resonance fluorescence (RF) and fluorescence (F).

Resonance fluorescence is not always the favoured process.

Vibrational relaxation (VR) (energy degradation) to the lowest available 

vibrational level in the upper singlet electronic state can occur. 

Fluorescence then proceeds from the lowest vibrational state. RF and F 

give details of the vibrational levels of the ground electronic state. 

Resonance fluorescence is favoured by isolated conditions.

(c) Phosphorescence (P).

Inter system crossing (ISC) from the upper singlet state to the 

triplet state, T j, followed by vibrational relaxation leads to

phosphorescence. This process is formally spin-forbidden and the 

radiative lifetimes can be very long.

When the vibrational levels of the upper and lower singlet states 

overlap, energy can be dissipated through non-radiative processes such 

as ISC, internal energy conversion (IEC) and VR. These three processes 

compete with the radiative processes: under certain circumstances they 

may quench fluorescence and phosphorescence.
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1.2 Lasing action: emission and absorption processes.

In a two-level system, several absorption and emission processes 

can take place. Figure 1.7 illustrates these.

> hu = E2 - Ej

spontaneous emission

stimulated absorption

* 2hu
stimulated emission

Figure 1.7: Absorption and emission processes in a two-level system.

Spontaneous emission always occurs in an excited system. It is 

frequency dependent, being of high probability at high frequencies.

Stimulated absorption has a probability which depends on the density 

of radiation and the nature of the transition. Stimulated emission 

results in light amplification and is the basis of laser action: the 

production of coherent, monochromatic light.

The probabilities of each of the above three processes occurring can

hu

E i -

E 2 -

l

->



be expressed as follows:

Spontaneous emission: A2i.

Stimulated absorption: B12p(u), where p(u) is the energy

Stimulated emission: B21p(u).

A and B are Einstein's "A and B” coefficients of spontaneous and 

stimulated emission, respectively.

If an equilibrium exists where n y molecules are in E| and n2 in E2

at temperature T, with radiation density p(u), the total emission rate is 

equal to the total absorption rate:

At thermal equilibrium, the Boltzmann distribution applies 

(equation 1.1). Substituting this expression into 1.19 gives:

This expression is similar to Planck's radiation law which states:

density.

n2CA2i + B2iP(u)) = n i B 12p(u) (1.18)

and hence: p(u) =

p (u )=  A21/B21

[(B12/B21) - 1] (1.20)

p(u) = 87rhu3 (1.21)

C3 g h u /k T  _ j
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Equations 1.21 and 1.20 are only consistent if:

A2 i 87Thu3 B 12

  = --------  and   = 1 ( 1.22 )
B21 B21

At high frequencies, spontaneous processes dominate stimulated 

processes. Lower frequency spectroscopies are therefore dominated by 

induced processes.

The ratio of probabilities is given by equation 1.23:

Probability (spontaneous emission)

Probability (stimulated emission)

l21

B21p(u)

_ ghu/kT _ i (1.23)

From this equation, it is clear that the spontaneous process is more 

probable when hu > kT and the stimulated process is more probable

when hu < kT.

Therefore,

Rate of emission

Rate of absorption

A2i + B21p(u)

B12p(u)
(1.24)

‘21 n2
1 +

B,2p(U)
(1.25)

Expression 1.25 is approximately equal to (n2/nj) if hu «  kT. Under 

the conditions of thermal equilibrium, n2 < nj. For laser action, 

however, population inversion (n2 > nj) is required.



Population inversion was first described with a microwave system: 

the ammonia maser. This was a physical method of population 

inversion.

The first laser (1960) used ruby (Cr3+ doped alumina) as an active 

medium. The requirements for laser action are described as follows:

(a) An optical medium with optical gain (population inversion).

(b) A means of trapping light spontaneously emitted, leading to 

feedback. This is generally achieved through the use of a cavity.

The first ruby laser employed two exactly parallel mirrors 

(Fabry-Perot cavity), allowing standing waves to interfere.

When the lower lasing energy state is the ground state (which is 

repopulated as emission proceeds), only pulsed operation is possible. 

Lasing action is not possible while pumping (excitation) is occurring.

1.3 Examples of laser systems.

1.3.1 Rare gas discharge lasers.

The first example of this type of laser employed a mixture of helium 

and neon and was the first laser which was able to be operated in a 

continuous wave (cw) mode. Helium acts as an energy store and 

transfer medium. Lasing action occurs in the neon. Figure 1.8 shows an 

energy level diagram of the processes involved.
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Figure 1.8: Helium/neon laser: energy processes.

The 1S q and 3St levels of helium are forbidden and, therefore,

metastable. Three laser lines are produced; the most frequently used 

being the red 0.633 pm line. Pumping is achieved through electrical 

discharge and the lower lasing (Ne) levels can decay to the ground state 

allowing continuous wave operation.

All rare gas discharge lasers operate on the basis of these principles. 

All have a discharge tube and two Fabry-Perot mirrors, one semi- 

reflecting. Table 1.1 details the main laser lines available from 

rare gas discharge lasers.

The power output from these lasers ranges from 1 mW to 100 W.



Table 1.1: Rare gas discharge lasers: output wavelengths. 

Helium/Neon 632.8 1150.0 3390.0 (nm)

Argon ion 

Krypton ion

Cadmium/helium

488.0 514.5

520.8 530.8 568.2 647.1

325.0 441.7

1.3.2 Dve lasers.

The active media present in these lasers are solutions of organic 

dyes. Dye lasers can be smoothly tuned over various wavelength 

ranges, depending on the particular active dye used. They can be 

pumped by flashes, pulsed lasers or, more commonly, by sufficiently 

powerful cw rare gas discharge lasers.

Dye lasers operate through fully allowed transitions with no

intervening metastable state, as shown in figure 1.9.

S

pump (Ar+) 400 -1000 nm

Figure 1.9: Dve laser: energy processes.

Any one dyestuff can lase over a > 50 nm region. Rhodamine 6G, for 

example, can be continuously tuned from 569.3 to 609.1 nm.



Dye lasers are extremely useful in the field of resonance Raman 

spectroscopy and in the study of the dependence of scattered intensity 

of a Raman-active vibration on excitation wavelength (excitation 

profiles).

1.3.3 Neodymium YAG lasers.

These solid state lasers use the active medium Nd3+ in yttrium 

aluminium garnet (YAG). Lasing action is displayed in figure 1.10.

As is evident from figure 1.10, continuous wave operation is 

possible. The lasing transition is 1060.0 nm (in the near infra-red).

The technique of Q-switching is normally employed. This involves 

rotating one cavity mirror and pumping, causing the population of the 

metastable level to build up. When the mirrors align, the energy is 

released in a single, short pulse (of picosecond duration). Output power 

levels of 1012 W have been achieved with Q-switched Nd3+ YAG lasers 

in conjunction with several amplifiers.

excited state

pump 1.06 jum (n.i.r.)

ground state

Figure 1.10: Neodvmium YAG laser: energy processes.
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SURFACE-ENHANCED RAMAN SPECTROSCOPY.



2. SURFACE-ENHANCED RAMAN SPECTROSCOPY.

2.1 History.

In 1974. Fleischmann et a l . (1) reported anomalously large Raman 

intensities from studies of pyridine adsorbed on silver electrodes which 

had been subjected to sucessive oxidation-reduction cycles (ore). They 

explained these mysterious inordinate signal strengths in terms of a 

large increase in the surface area of the electrode, due to the 

roughening procedure, and, therefore, in the number of adsorbate 

molecules sampled.

The next significant studies were made in 1977 by Albrecht and 

Creighton (2) and, independently, by Jeanmaire and Van Duyne (3). 

These investigations were also on the adsorption of pyridine 

on roughened silver electrodes. Both sets of results displayed a Raman 

signal intensity enhancement of approximately 105. These groups were 

the first to recognise that the large increase in Raman-scattered 

intensity could not be accounted for by the increase in surface area 

alone. This was proven by showing that equally intense signals could 

be obtained with silver electrode surfaces roughened only slightly (the 

increase in surface area not exceeding a factor of ten). Their conclusion 

(2) was that the anomalous increase in signal intensity was caused by a 

surface effect which greatly increased the molecular Raman scattering



cross-section.

The nature of this "surface effect" was probed in subsequent years 

and two main theoretical models emerged : electromagnetic and 

chemical (discussed in section 2.3). As the subject grew, it was 

christened "surface-enhanced Raman scattering or spectroscopy" (SERS).

All of the early studies were of pyridine adsorbed on silver 

electrode surfaces and, indeed, electrodes were almost exclusively 

studied in the early years of the development of the field. Colloids and 

vapour-deposited surfaces, however, were found to be SERS-active and 

to give intensities comparable to those with electrode surfaces.

SERS has proved to be a very widely applicable technique: over one 

hundred different types of adsorbate molecules have been studied.

The appreciation of the theoretical aspects of SERS led to the successful 

use of metals other than silver such as gold, copper, indium, aluminium, 

lead, platinum, rhodium and alkali metals.

In addition to having stimulated something of a renaissance in 

classical electrostatic and electromagnetic theory and related theoretical 

fields, SERS has, in recent years, been applied with some success to 

several chemical areas including the trace analysis of pollutants and 

contaminants.



2.2 SERS-ACTIVE SYSTEMS.

"SERS-active systems" can be thought of as being surfaces with 

many, usually coupled, microscopic metal domains. The factors of 

surface roughness and surface morphology have been shown to be 

critical with respect to SERS enhancement. Surfaces which display 

adequate SERS-activity usually have roughness features in the 

range 10 to 500 nm. Common categories of roughness are metal 

spheres and ellipsoids, ridges and metal clusters. The type of surface 

upon which SERS is observed falls into three main areas : 

electrochemical, vapour-deposited and chemical.

2.2.1 Electrochemical systems.

On electrode surfaces subjected to one or more oxidation-reduction 

cycles rough metal features form. During the oxidation half-cycle a 

metal salt is produced at the electrode surface and when reduced, the 

liberated metal does not re-deposit itself uniformly over the surface 

but, instead, forms clusters (4) of metal.

As described previously, SERS was first observed from electrodes 

and, as a result, the majority of studies have been with electrochemical 

systems.

2.2.1.1 The silver/pvridine/halide ion system.

This has been the most extensively studied electrochemical area.



Early experiments revealed a high degree of SERS enhancement and

that pyridine could be adsorbed on the electrode surface either via 

Lewis base co-ordination through nitrogen (chemisorption) or by 

physisorption through water (5) as shown in figure 2.1.

physisorbed
molecule

Figure 2.1: Bonding modes of pyridine on a silver electrode.

Later results demonstrated that prolonged oxidation-reduction 

cycles reduced SER intensity and that highly enhanced spectra resulted 

from electrodes exposed to only one roughening cycle (5)(6).

It has been shown that the effect of the adsorption of halide ions 

(from the supporting electrolyte) on the pyridine/silver system is 

crucial.

Fleischmann e ta l .{ 1) observed that over the potential range 0.0 to 

-0.6 volts there was a remarkable change in the relative intensities of 

the 1008 and 1036 cm-1 bands of pyridine. This evidence suggested 

the presence of interactions, probably involving the 71-electrons of the 

pyridine ring, between the adsorbed molecules and the halide ions in

N chemisorbed molecule

Ag surface
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the electrochemical double layer as shown in figure 2.2.

«29 !HoO

Cl

/ Ag surface x

Figure 2.2: Influence of chloride ions on the adsorption of pyridine on a

Potential dependence.

The factor of applied potential has been proven to be the most 

influential parameter controlling adsorption in the electrochemical 

environment.

Marinyuk et al. (6) observed a progressive increase in the Raman 

intensities of the ring modes of adsorbed pyridine between -0.3 and 

-0.8 volts, indicating re-orientation of the adsorbed molecules from 

end-on perpendicular co-ordination through nitrogen to flat 

co-ordination via the 7T- system of the pyridine ring. Such an 

increase in band intensities occurs due to the overlap of wave functions 

between electrons in the metal and the ring 7T- electrons.

silver electrode surface.



Many other interesting phenomena have been discovered by 

varying the applied potential.

Furtak and Roy (7) have shown that surface coverage of halide 

ions is the factor most dominant over the potential dependence of these 

systems and that the Stark effect and bond perturbation play only 

minor roles (8). They argued that the variation in intensity and 

frequency of the spectra could be explained in terms of changes in 

surface coverage together with mutual depolarisation ratios. In 

addition, active sites on the surface were identified as silver clusters 

stabilised by co-adsorbed halide ions.

Further study (9) showed that the active clusters were [AgJ* 

species, exhibiting electronic resonance through HOMO - LUMO 

transitions. It has also been proven that species adsorbed on and 

adjacent to the clusters demonstrate preferential scattering (10) (11).

Polycrvstalline silver electrodes.

The measurement of the differential capacitance of electro-polished 

[100], [110] and [111] silver single crystal faces and of poly crystalline 

silver has been found to be highly dependent on the nature of the 

surface in addition to the composition of the solution. Such 

measurement has yielded important results.

By following capacitance/voltage curves, Fleischmann et al. (12)



showed that roughened electrodes consist of an ensemble of faceted 

microcrystals. The same group (13), by exciting an electrode surface 

with laser light during roughening, observed that sites where Lewis acid 

co-ordination took place were possibly formed by photolysis of silver 

chloride and that the adsorbed species were stabilised in the presence 

of chloride ions.

Surface species.

Although the predominant type of adsorption in the silver/ 

pyridine/halide system had been thought to be well established, Regis 

and Corset (14) showed that the interactions of the species at the 

surface are considerably more complicated than had previously been 

thought. They discovered that the pyridinium ion, instead of pyridine 

itself, was preferentially adsorbed at the electrode surface in the 

presence of specifically adsorbed chloride.

Other effects.

The pyridine/choride/silver electrode system has revealed many 

other important phenomena.

Sobocinski and Pemberton (15) probed silver active sites by 

studying the loss of SERS intensity from the system due to laser - 

induced heating. The induced desorption of pyridine and chloride 

from the active sites was found to be a first order reaction.



Competitive adsorption (16) has been observed at silver electrodes 

by varying the concentration of bulk pyridine and mono-substituted 

pyridines. The co-adsorption behaviour was well approximated by 

Langmuir isotherms; an area which has been gaining much momentum 

in recent years (183).

In their initial studies, Jeanmaire and Van Duyne (3) extended the 

applicability of the system to other nitrogen heterocycles and amines in 

addition to verifying the remarkable sensitivity of SERS for the study of 

pyridine adsorbed on silver electrode surfaces.

General discussion.

It is clear that for this system, SERS studies have given a far more 

detailed picture of the species present at electrode surfaces than could 

be derived from electrochemical measurements alone.

The experiments previously described, along with other studies 

involving cyanide adsorption (17) (18), indicate the formation of surface 

complexes associated with adatoms of silver (19) produced during the 

roughening procedures. The predominant type of surface complex in 

the pyridine/chloride/silver electrode system involves a Lewis 

acid-base interaction between the adsorbate and the metal surface.

All of the spectroscopic evidence put forward points to the 

formation of a distinct adsorbate-surface chemical bond, mediated by



halide ion adsorption, rather than simply electrostatic forces.

Phy si sorption, mediated by water molecules, occurs to a far lesser 

extent.

2.2.1.2 Other electrochemical systems.

The early SERS electrochemical studies on the pyridine/halide/ 

silver electrode system served to highlight a number of effects which in 

subsequent years became identified with other electrochemical systems. 

Many of these effects have been shown to have important consequences 

in relation to SERS theory and for the broader application of the 

technique. The experiments involved have extended SERS to other 

types of metal electrodes and have encompassed the use of a variety of 

organic and inorganic species. An account is now given of some of the 

important observations which have been made.

(a) Roughening procedure : surface morphology.

It has been demonstrated that the factors involved in the 

roughening procedure affect the subsequent SERS intensity.

Gao et al. (20) explored this dependence using benzonitrile and 

thiocyanate as model adsorbates on gold electrodes. They found that 

SERS intensities were maximised with roughening conditions yielding 

gold particles of approximately 100 nm diameter.

Practical considerations, however, need not only concern surface



morphology effects. Beer et al. (21) studied the effect of ex. situ, and in. 

situ, roughening procedures on the SERS intensities of pyridine, 4-ethyl 

pyridine and 4-cyano pyridine adsorbed on silver and gold electrodes. 

Roughening in the presence of the adsorbate (in. situ.) gave rise to new 

spectral features attributed to the trapping of adsorbate molecules in 

the surface and the subsequent complexation with metal atoms.

It was concluded that the ex. situ, procedure was preferable when 

effects such as the orientation or the adsorption isotherm was of 

interest.

(b) Large scale and atomic scale roughness features.

Over a number of years, many experiments (22) (23) have been 

carried out in order to gauge the relative importance of both large scale 

roughness (having dimensions of the order of 5 to 10 nm) and atomic 

scale roughness in SERS electrochemical systems.

These experiments have included the variation of roughening 

procedures (24) (25), scanning electron microscopy studies (26) (27), 

study of the laser-induced thermal decay of SERS intensity as a probe of 

atomic scale roughness (28 - 30) and the determination of the electronic 

properties of roughened silver electrodes by differential reflectivity 

(31) (32). Control of large scale roughness was possible by regulating 

the roughening cycle. Atomic scale roughness, however, proved



considerably more difficult to characterise and control. The results of 

all these studies have shed new light on the complex roles of surface 

roughness in SERS. It has been shown that both categories of surface 

morphology have important and distinct contributions to the SERS 

enhancement mechanism.

(c) Molecular interactions with electrode surfaces.

Many SERS studies with electrode systems have given rise to 

interesting vibrational information on the orientation of adsorbate 

molecules.

Loo et al. (33) investigated the co-ordination chemistry of 

malononitrile, (CN)CH2(CN). It was found that the degeneracy of the

doubly degenerate cyanide stretching mode at 2263 cm"1 in the normal 

Raman spectrum was removed when the molecule adsorbed on a copper 

electrode surface. Two distinct cyanide stretching bands were observed 

at 2096 and 2204 cm '1, indicating that only one C=N was 7T- co

ordinated to the copper surface.

Gao and Weaver (34) attempted to probe the nature of adsorbate- 

surface bonding for simple aromatic molecules by studying the SERS of 

benzene and eight mono-substituted benzenes at gold electrode 

surfaces. They discovered that benzene itself adsorbed flat via the ring



31

71-electron system. Mono-alkyl, benzoate and aldehyde substituted 

benzenes showed decreases in ring mode energies along with band 

broadening, suggesting some type of attachment via the benzene ring. 

For halogen-substituted benzene molecules, characteristic low- 

frequency halogen-surface vibrations were clearly visible, indicating 

the substituents had a role in the adsorption to the surface.

Other examples include Holze's (35) study of the adsorption of 

aniline on gold electrodes, where the observation of a gold-nitrogen 

vibrational mode indicated perpendicular edge-on adsorption.

The experiments of Bukowska et al. (36) on the adsorption of 

pyrrole (figure 2.3) on a roughened polycrystalline silver electrode 

confirmed the parallel orientation of the molecule on the surface and 

revealed other phenomena such as the competitive adsorption of 

chloride anions (from the supporting electrolyte).

H

Figure 2.3: Structure of pyrrole.

Sato et al. (37) also observed competitive adsorption with pyridine 

and 2- and 4-methyl pyridine on silver electrodes. Their results, 

combined with those of Lombardi et al. (38) and Furtak and Macomber (39)



highlighted the contribution of two effects, electronic and steric, to 

the competitive adsorption process. It was found that the steric factor 

rendered the adsorption of 2-methyl pyridine unfavourable. This was 

confirmed by Ikezawa et al. (16). The electronic effect of each methyl 

group was also found to be extremely important. Both factors have 

important implications with respect to the chemical (charge-transfer) 

mechanism of SERS enhancement.

fd) Potential and pH dependence.

The effect of applied potential on SERS, which has been amply 

displayed with the pyridine/halide/silver electrode system, has been 

proven to be as important a factor in other systems along with the 

effect of pH environment (40).

Lippert and Brandt (41) observed potential dependence with a 

macromolecular system; an area where, previously, SERS had not been 

widely applied (42). Their studies of poly(2-vinyl pyridine) showed 

that the species on the surface was predominantly the pyridinium ion 

when the electrode potential was positive and predominantly neutral 

pyridine around zero electrode charge. Orientation changes involving 

the polymer chain were observed in the fingerprint region of the SER 

spectra. It was found that the presence of the macromolecule improved 

the stability of the SERS active sites.



The potential and pH-dependent adsorption of aniline on silver 

electrodes was investigated by Holze (43). He found that, in neutral 

solution, aniline adsorbed via nitrogen co-ordination in a perpendicular 

orientation at positive relative potentials. In acidic solution, the 

predominant species was the anilinium cation which adsorbed flat 

through the interaction of the aromatic 7T-electron system.

The effect of pH and applied potential in conjunction with the 

influence of the supporting electrolyte anion was demonstrated by 

Kellogg and Pemberton (44) in their studies on the adsorption of 

cyanide on silver electrodes. Whereas the potential at which SERS 

intensity maximised was only slightly dependent on the nature of the 

supporting electrolyte anion in basic media, in acidic media the nature 

of the anion was critical. They found that, in acidic solution, end- 

bonded and side-bonded HCN were both present and that different 

anions had differing abilities to influence the association of HCN with 

the surface. In basic media, end-bonded cyanide (CN') predominated.

This last example demonstrates the complexity of SERS 

electrochemical systems and how various solution effects (pH, potential 

and nature of supporting anion) influence SERS-activity.

(e) Electrodeposition of other metals.

The development of this area arose from the desire to extend the



applicability of SERS to metal surfaces other than silver, gold and 

copper. Experimentally, it involves coating SERS-active electrode 

surfaces with thin transition metal overlayers (liberated from their 

salts) in order that the chemical properties of the modified surface 

reflect mainly those of the overlayed film whilst maintaining SERS- 

activity due to the proximity of the underlying substrate.

In essence, it is a means of extending SERS to metals that, in 

themselves, do not exhibit appreciable Raman scattering enhancement.

Leung and Weaver (45) reported SERS enhancement from 

underpotential deposited monolayers of mercury, thallium and lead on 

roughened gold electrodes with adsorbed halides, thiocyanate and 

pyridine. Although the observed intensities were comparable to those 

obtained on an unmodified gold electrode, SERS intensity with pyridine 

was found to decrease slightly upon overlayer formation.

The same workers (46) also studied the SERS of carbon monoxide 

adsorbed on roughened gold electrodes modified by electrodeposition of 

thin films of platinum and palladium. Terminal and bridging carbon 

monoxide were found to be present, adsorbed to the transition metal 

overlayers rather than residual gold.

Fleischmann and Tian (47) reported the startling fact that the 

underpotential deposition of nickel and cobalt films induced SERS on a 

smooth silver electrode with pyridine as adsorbate.



Transition metal overlayers have also been used to study the 

morphology of electrode surfaces and the role the morphology plays in 

SERS enhancement.

Guy and Pemberton (48) analysed the quenching of the SERS of 

3,6-dihydroxypyridazine (figure 2.4) adsorbed on lead-modified silver 

electrodes. Their observations of the loss of atomic scale roughness 

features during electroplating could not fully account for the 

extent of SERS quenching.

The experiments of Fleischmann et al. (49) and Kellogg and 

Pemberton (50) on the adsorption of cyanide at modified silver 

electrodes showed the occurence of preferential displacement of HCN 

from active sites by underpotential deposited lead and confirmed 

previous findings that both large and atomic scale roughness features 

contribute significantly to SERS in electrochemical systems.

Studies such as those previously described, along with

H

Figure 2.4: Structure of 3.6-dihvdroxvpvridazine.



spectroelectrochemical experiments (51), have shown that the 

underpotential deposition of foreign metals gives rise to systematic 

variations in the electronic structure of the underlying metal and, 

therefore,in the optical properties of the electrode surface. This has 

been extremely useful for studying the properties of electrode surfaces 

since pure metals offer only a discrete set of surface electronic 

properties for study.

(f) Role of surface carbon.

Some researchers (52) (53) have argued that SERS enhancement for 

pyridine on silver electrode surfaces arises primarily from adsorption of 

the molecules on or in carbon overlayers on the metal surface. A more 

detailed study by Cooney et al. (54) suggests that the presence of ultra- 

high surface area carbon overlayers is essential to the observation of 

SERS from benzene, carbon dioxide and a range of alkenes.

Relatively few workers, however, have argued a convincing case for 

the participation of surface carbon in SERS at electrode surfaces. The 

majority view is still that atomic and large-scale metal roughness 

features are the important factors governing adsorption.

2.2.2 Vapour-deposited surfaces.

The early results with electrochemical SERS-active systems shed a 

great deal of light on some of the mysteries of SERS but also threw up



many unresolved questions with respect to the theoretical aspects. In 

the early 1980s, many workers realised that in order to gain further 

understanding of SERS theory it was necessary to utilise systems 

wherein the morphology could be controlled more stringently. As the 

early theoretical studies used simple models of surface roughness, it 

seemed advantageous to duplicate these computational approximations 

experimentally. This reasoning, in part, led to the interest in the area of 

vapour-deposited SERS-active surfaces.

2.2.2.1 Categories of vapour-deposited surfaces.

Variation of the experimental conditions of metal evaporation can 

produce rough surfaces with a range of morphologies.

(a) Island films.

This technique leads to the production of small metal particles of 

around 5 to 20 nm in diameter on polished glass, quartz or copper 

substrates. The metal surface is prepared by vapour-deposition of a 

small quantity of metal (5 to 15 nm mass-thickness) in ultra-high 

vacuum (approximately 10"6 Torr) onto the substrate, which is held at 

elevated temperature. The heat of the substrate increases metal atom 

mobility causing the evaporated metal nuclei to grow into 

approximately spherical "islands".



fb) Cold-deposited films.

The ultra-high vacuum deposition of a small amount of metal onto a 

cold (between 30 and 120 K), polished substrate gives a rough film. 

Islands do not form due to the lack of mobility of the metal atoms. 

Monte Carlo techniques (55) have shown that the roughness of these 

films consists of closely packed, sharp surface features separated by 

equally sharp pores. The surface resonances (discussed in section 2.3.3) 

are delocalised over many peaks and troughs.

(c) Assemblies of metal spheroids.

The first step in the production of spheroid assemblies is the 

preparation, by lithographic methods, of a two-dimensional array of 

conical silica posts (56). Vacuum evaporation of silver at a glancing 

angle gives isolated silver particles of ellipsoidal shape on top of each 

silica post.

fd) Coated microspheres.

This method involves the vapour deposition of an even film of metal 

on plastic spheres (commonly teflon or polystyrene) fixed on support 

material (57). The substrate is not held at extreme temperatures as an 

even film is required. Uniform coverage of plastic spheres is essential. 

This is achieved through the use of spin-coating devices. One clear 

advantage of this type of surface is that the required surface roughness 

dimensions can be designed simply by selecting commercially available



plastic spheres of appropriate diameter and uniform size distribution. 

Moody et al. (58) have shown, however, that the experimental 

parameters for the production of coated microspheres must be chosen 

carefully in order to maximise SERS enhancement.

This category of SERS-active surface has been used extensively in 

the field of chemical sensing (discussed in Section 2.4.3).

222 .2  Studies with vapour-deposited surfaces.

Yamada et al. (32) (59) examined the adsorption of pyridine on 

homogeneous silver island films, consisting of equal-sized silver spheres 

of approximately 20 nm diameter. Strong SER spectra were observed 

indicating nitrogen-bonded pyridine molecules and thus mirroring 

results with silver electrodes.

Albano et al. (60) studied the loss of signal intensity due to pyridine 

decomposition on annealed cold-deposited copper films. They found 

that the rate of decomposition of pyridine, which was monitored by 

detecting hydrogen desorption, increased as the annealing temperature 

increased. These results were interpreted in relation to the reaction of 

pyridine molecules inside pores on the cold-deposited surface. Other 

results (61) (62) have shown that, in these systems, pyridine 

molecules inside the cavities on the surface are the major source of 

Raman signals.



Other studies of pyridine adsorption include those of Erturk et al.

(63) who observed induced chemical and vibrational specificity of SERS 

by the postdeposition of silver in ultra-high vacuum at 40 K onto 

smooth silver already covered by a monolayer of adsorbate. They 

postulated a role for the postdeposited silver specific to chemical 

enhancement.

Otto's (64) experiments on the adsorption of pyridine, benzene, 

cyclohexane and pyrazine on cold-deposited silver films revealed some 

interesting experimental and theoretical aspects including the selective 

enhancement of one vibrational mode of pyridine caused by the 

presence of atomic scale roughness features.

Island films have also shown interesting effects. Venkatachalan et 

al. (65) observed laser induced conversion of adsorbed p-amino benzoic 

acid to p,p'-azo dibenzoate (figure 2.5). Their findings suggested a two- 

step conversion: hydrolysis of amine followed by dimerisation during

exposure to the laser beam.

C O f

p-amino benzoic acid p,p'-azo dibenzoate

Figure 2.5: Dimerisation of p-amino benzoic acid on a silver island film.



2.2.2.3 Adsorption of gases.

The high vacuum conditions used in the preparation of these SERS- 

active systems has led to the extensive study of adsorbed gases (66).

In particular, much attention has been focussed on the behaviour of 

olefins adsorbed on silver surfaces: this has given some clues to 

elucidate various heterogeneously catalysed reactions of industrial 

importance (67).

Studies of the adsorption of 1-butene and 1,3-butadiene on cold- 

deposited silver films by Itoh et al. (68) yielded interesting results on 

the orientation of the respective adsorbates. It was shown that

1-butene was weakly 7T-bonded and fixed in the cis conformation.

They discovered three distinct types of adsorption state with 1,3-buta- 

diene involving the adsorption of either one double bond or both.

The study of adsorbed gases has not been confined exclusively to 

olefins. Carbon monoxide adsorption has also yielded interesting 

vibrational information. Wood et al. (69) observed spectra from carbon 

monoxide adsorbed on silver and gold cold-deposited films strong 

enough to allow adsorbate detection at less than 1 % of monolayer 

coverage. The spectra displayed internal CO stretch and CO-Ag stretch. 

The internal CO stretching frequency was found to be dependent on 

extent of coverage.



2.2.2.4 Theoretical aspects.

As stated previously, the major use of vapour-deposited SERS-active 

systems has been in modelling simple rough surfaces experimentally in 

order to glean more knowledge of SERS theory. Some of the evidence 

obtained from these systems is presented at this point and discussed 

further in section 2.3.

(a) Electromagnetic mechanisms.

The results of Wood et al. (70) indicated that the nature of the 

surface was all important in determining SERS enhancement, thus 

suggesting a theoretical model based on the electromagnetic field 

density present near the metal surface. Evaporated surfaces exhibited 

larger, though shorter ranged, enhancements compared to roughened 

single-crystal silver surfaces.

Wang and Lee (71) probed further the nature of this 

"electromagnetic density" effect and, through the adsorption of crystal 

violet on silver island films, found that there was a linear correlation 

between surface plasmon resonance and SERS enhancement. Surface 

plasmon resonance is discussed more fully in section 2.3.3.2.

Osawa et al. (12) also found a linear correlation between electric 

field strength within the metal surface and SERS intensity from studies 

of p-nitrobenzoic acid adsorption on evaporated silver surfaces.



In Otto's (64) extensive study of cold-deposited silver films, 

discussed previously, he tested the electromagnetic model by measuring 

excitation profiles of various bands. It was found that the profiles did 

not exhibit any special chemical specificity but corresponded to the 

optical absorption of the silver surface, thus indicating purely 

electromagnetic surface-bound enhancement. These findings were 

mirrored by those of Pockrand (73).

All of these representative examples indicated a purely 

electromagnetic SERS mechanism. Other workers, however, proposed 

the existence of a second mechanism, closely related to the chemical 

nature of the adsorbate species.

(b) Chemical mechanisms.

The observations of Erturk et al. (74) of the quenching of the SERS- 

activity of ethylene and ethane on cold-deposited silver and copper 

films could not be explained by an electromagnetic enhancement 

mechanism. Other evidence (75) pointed to the existence of a resonance 

Raman effect operating via charge-transfer transitions involving the 

adsorbate species and the metal surface.

From comparative studies of pyridine exposed to silver, copper and 

gold films in ultra-high vacuum, Pockrand (76) concluded that SERS 

enhancement results from a combination of the electromagnetic (surface



plasmon) mechanism and an adatom-adsorbate induced resonance 

process. It was further postulated that only surface-bound molecules 

contribute to the chemical effect. The silver/copper/gold comparative 

results, however, also confirmed the crucial factor of surface optical 

properties: strong signals resulted from copper and gold surfaces only 

when exposed to red laser light.

Giergel et a l (11) also proposed a combination of both theoretical 

models and attempted to estimate the relative Raman scattering cross- 

sections for chemisorbed and physisorbed pyridine molecules on silver 

films in high vacuum. They proposed that greater enhancement results 

from chemisorbed molecules.

2.2.2.5 Metal Overlavers.

As with electrochemical systems, the post-deposition of foreign 

metals in ultra-high vacuum has provided important clues to the 

nature of the SERS effect.

The results of Gao and Lopez-Rfos (77), from the post-deposition of 

palladium on silver island films, along with other data (78), have clearly 

demonstrated the effect on SERS of changes in the electronic structure 

of the metal surface induced by the deposition of foreign metals. This 

work has further highlighted the important role played in SERS by the 

optical properties of the metal substrate and has led to the postulation



that the electromagnetic mechanism is the major effect giving rise 

to SERS enhancement.

2.2.3 Metal colloids (sols).

Although randomly rough electrode surfaces were found to be ideal 

for the study of the adsorption chemistry involved in SERS processes, 

they were not ideally suited for investigating the physical phenomena 

associated with SERS. The measurement of various optical properties, 

such as absorption spectra, was found to be extremely problematic. 

Since the determination of such properties was vital to the 

improvement in understanding of SERS, attention began to be focussed 

on more regular, finely divided metal surfaces such as colloids.

2.2.3.1 Preparation of colloids.

(a) Gold colloids.

Gold colloids are generally prepared by the reduction of the 

tetrachloroaurate (III) ion, [AuCl^-. The most frequently used reducing

agent has been sodium citrate (79).

The typical experimental procedure involves the heating of a 

solution of tetrachloroaurate (III) followed by the addition, with 

stirring, of sodium citrate solution. After approximately thirty minutes, 

a deep red colloid results. The average diameter of gold particles 

produced in this manner is approximately 20 nm and of uniform size



distribution. Frens (80), however, has shown that, through the careful 

monitoring of the preparation procedure and the quantities involved, 

gold particles of controlled, uniform size can be produced within the 

range 12 to 150 nm.

An unaggregated gold colloid with particle diameters around 20 nm 

shows an absorption maximum at 520 nm, corresponding to the 

excitation of surface plasmons.

(b) Silver colloids.

The production of silver colloids of uniform particle shape and size 

has proved more testing.

The general method, of Creighton et al. (79), involves the reduction 

of silver nitrate, AgN03, by sodium tetrahydroborate, NaBH4. Small

volumes of each reactant are stirred constantly at 0°C for several 

minutes to produce the yellow colloid (absorption maximum at 385 nm). 

Electron microscopy studies (81) have shown that silver colloids are 

generally of irregular particle shape. Excessive aggregation was found 

to be a major problem associated with SERS experiments.

2.2.3.2 The nature of colloids.

A colloidal suspension is preserved due to the negative charges on 

the metal particles resulting from adsorbed anions. The consequent 

electrostatic repulsion between the particles preserves the overall



dispersion and prevents aggregation. Addition of a neutral adsorbate 

species such as pyridine, as in SERS experiments, results in 

displacement of the adsorbed ions and a reduction in the charge of the 

metal particles. Collisions occur, leading to aggregation due to the 

presence of short-range attractive forces between the particles. At high 

concentrations of adsorbate species, the process of aggregation can be 

extremely rapid and result in precipitation of the metal. When the 

concentration of adsorbate is low, however, small dispersed aggregates 

form. The process of partial aggregation can be monitored by following 

the change in absorption maximum.

Partial aggregation seems, in many cases, to be a necessary factor in 

obtaining appreciable SER spectra. In colloid SERS experiments, control 

and monitoring of adsorbate concentration is essential in order to 

induce partial aggregation, but to prevent complete precipitation of 

metal.

2.2.3.3 Colloidal particle size.

A theoretical understanding of the fundamental processes 

associated with the SERS effect in colloidal metal systems required 

knowledge of colloidal particle size. Common methods of ascertaining 

particle sizes have included light absorption measurements and 

transmission electron microscopy (TEM) studies (82) of particle residues
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after solvent evaporation.

Notholt and Gottmann (83), however, developed a method using 

photon correlation spectroscopy which gave particle size data to within 

10% accuracy.

2.2.3.4 Aggregation studies.

Siiman and Feilchenfeld (84) (85) have studied, in great detail, the 

process of silver colloidal aggregation. They induced aggregation with 

oxoanions such as chromate and tungstate. The kinetics of aggregation, 

as measured by SERS and TEM, were interpreted in terms of a fractal 

rate law and fractal structure of colloidal particle aggregates (figure 2.6).

Figure 2.6: Transmission Electron Micrographs of silver colloidal

The study of colloidal aggregation has also had important 

consequences in regard to SERS electromagnetic theory. In particular.

I— I
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aggregates.



the coupling of electromagnetic resonances as in colloidal suspensions is 

highly dependent on the process of particle association.

The studies of Weitz et al. (86) on gold colloidal aggregation also 

revealed fractal structures and led to new insights into the nature of 

gold colloids. The existence of heterogeneous colloidal gold surfaces 

with donor and acceptor sites Au(0) and Au(I), respectively, was 

proposed.

2.2.3.5 The orientation of adsorbates at colloid surfaces.

Although electrode surfaces and colloidal suspensions have 

considerably different surface morphologies, their respective SERS 

results have broadly agreed with respect to the orientation of adsorbate 

species.

Muniz-Miranda et al. (87) demonstrated the equivalence of 

experiments carried out with colloids and electrodes using the three 

diazines pyrazine, pyrimidine (figure 2.7) and pyridazine adsorbed on 

silver sols. Only pyrazine failed to exhibit nitrogen-co-ordinative 

chemisorption in its SER spectrum on silver colloid. They proposed that 

this was due to co-adsorbed reduction products on the silver surface.



Figure 2.7: Structure of (a) pyrimidine, (b) pyrazine and (c) 2-naphthoic
acid.

(a) Organic adsorbates.

Moskovits and Suh (88) studied the surface geometry of pyridine, 

quinoline and 2-napthoic acid (figure 2.7) adsorbed on silver colloids. 

They found that whereas quinoline and pyridine were chemisorbed 

perpendicular to the surface via their respective nitrogen lone pairs,

2-napthoic acid adsorbed in two very different fashions, perpendicular 

and flat, depending upon the concentration of the adsorbate species. 

These conclusions were evidenced by observing C-H stretching and 

bending modes in the SER spectra and applying a simple selection rule 

(89) (90) which states that vibrations deriving their intensities from a 

large value of a zz (where a zz = z-polarisability, z being the local

surface normal direction) have the most intense SERS. The two possible 

orientations for 2-napthoic acid are shown in figure 2.8.



low surface concentration: 
flat co-ordination

high surface concentration: 
upright co-ordination

Figure 2.8: Orientations of 2-naphthoic acid on a silver colloid.

This selection rule, which has proved extremely useful in 

determining the orientation of organic molecules at colloidal surfaces, 

arose from SERS studies of molecular ions. Moskovits and Suh (90) 

observed SERS of the dianions of carboxylic acids such as pthalic, maleic 

and fumaric acids, using Raman depolarisation ratios to determine the 

orientation of adsorbate molecules.

Kim and Itoh (91) observed surface geometry changes of 2,2’- 

bipyridine adsorbed on a silver colloid. The behaviour of this 

system in the pH range 8.5 to 2.8 was compared with an electrochemical 

study by the same workers (92) involving 2,2'-bipyridine, chloride 

ions and silver electrodes. In the latter study, four different types of 

surface species were formed with variation in applied potential. In the 

silver colloid study, two types of surface species predominated at pH 8.5



and 2.8 respectively: one involving co-planar cis chemisorption and the 

other involving strong Lewis acid/base co-ordination through one 

bipyridyl nitrogen. Both of these categories of surface species were 

found to exist in the electrochemical system.

These studies confirmed the equivalence of colloidal and 

electrochemical SERS systems. Indeed, further investigation by the 

same group revealed that the second, Lewis acid/base colloidal surface 

complex involved co-adsorbed chloride ions (from HC1, used to induce 

pH changes).

Hildebrandt and Stockburger (93) used chloride and other anions 

to "activate" silver colloids. Other workers (94) noted that this 

activation procedure induced adsorption sites highly specific to certain 

adsorbates.

Studies with organic acids have also proved fruitful. Pagganone et 

al. (95) studied the molecular structure and orientation of benzoic acid 

adsorbed on silver colloids. Their findings, realised through a complete 

assignment of the SER spectrum of benzoic acid, indicated the 

chemisorption of the molecule as the benzoate ion in a bidentate 

fashion.

Wan et al. (96) studied the SERS of substituted benzoic acids.

While it was noted that, at room temperature, each of the substituted 

benzoic acids displayed distinct spectra, at high temperature their SER



spectra were all very similar. These findings were ascribed to room 

temperature bidentate carboxylate co-ordination and high temperature 

monodentate bonding. They postulated that a monodentate bonding 

scheme would, according to Moskovits' (89) selection rule, result in 

carboxylate bands swamping the SER spectra and therefore 

lead to them all appearing similar.

Similar bonding modes were observed by Kai et al. (97) in the SER 

spectra of carbonate, hydrocarbonate and substituted acetic acids on 

silver sols. Their observation of highly enhanced spectra for carbonate 

indicated end-on adsorption through oxygen. Once again, the selection 

rule of Moscovits (89) ruled out flat orientation. The substituted 

acetic acids were found to be, initially, in a single bonding state through 

the carboxyl group. Changes in their SER spectra over a period of time, 

however, showed that a bidentate bridging adsorbed state was 

eventually reached.

(b) Inorganic adsorbates.

In the early years of SERS, studies with inorganic species were 

relatively few. Since the advent of colloids as SERS-active substrates, 

however, inorganic adsorbates have been increasingly used.

One particular area of interest has been that of oxo-complexes. 

Feilchenfeld and Siiman (85) observed SERS from [M OJ2- ions, where



M= Cr, Mo, W, on silver sols. Recently, Greaves and Griffith (98) 

reported appreciable SER spectra from vanadate, [HV04]2\  and also

phosphate and arsenate between pH 3 and 12 on silver colloids. Their 

results indicated that the oxo-molecules were chemisorbed to the silver 

surface in the manner shown in figure 2.9.

More complex inorganic molecules have been studied in recent 

years.

Dines and Peacock (99) observed the Surface-Enhanced Resonance 

Raman Spectroscopy (SERRS) of a series of iron (II) and ruthenium (II) 

complexes of 2,2’-bipyridine. They noted very intense spectra (figure 

2.10) that displayed no evidence of chemical bond formation between 

the adsorbates and the silver colloid surface. This was evidenced by the 

lack of wavenumber shifts between the resonance Raman (RR) spectra 

and corresponding SERR spectra. SERRS is discussed in section 2.2.3.6.

M O

Ag

Figure 2.9: Bonding mode of the fMO^l2' ion on a silver colloid.



500100 900 
vj  cm

1300 1700

Figure 2.10: SERR spectra of rRufoipv^l2* under Ar+ excitation
(488.0 nm). (a) 4.2 x 10'7 moles I '1: (b) 2.9 x 10' 12 
mol I' 1.

Vanhecke et al. (100) observed essentially identical RR and SERR 

spectra with ruthenium (II) tris-bipyridyl, but postulated that the 

nitrogen atoms of the ligand were co-ordinated to the ruthenium and 

silver in a similar mode. This is highly unlikely as such a bonding 

scheme, apart from being chemically unfavourable, would lead to 

wavenumber shifts in the SERR spectra. They extended their study to 

the ruthenium (II) tris-complex of 1,4,5,8,9,12-hexaazatriphenylene 

(HAT) (figure 2.11) and heteroleptic ruthenium (II) complexes 

of 2,2'-bipyridine and HAT in order to investigate the question of which 

ligand predominated in the adsorption mechanism. The use of the 

ligand HAT also permitted the study of novel polymetallic complexes 

(101) (figure 2.11). The results of these experiments demonstrated the



influence of the charge-transfer (chemical) mechanism in SERS.

(a) (b)

Figure 2.11: Structure of (a) Trisf 1.4.5.8.9.12-hexaazatriphenvlene) 
rutheniumdD and (bl a trirutheniumdD hexa(2.2'- 
bipvridine) HAT complex.

2.2.3.6 Biologically active molecules: SERRS.

SERS-active colloid systems have recently been used to great effect 

in the analysis and vibrational study of biologically active molecules.

This has led to the increasing use of Surface-Enhanced Resonance 

Raman Spectroscopy (SERRS). The SER effect combines with resonance 

Raman to give SERRS. SERRS is, in essence, identical to SERS but with 

the additional factor of the laser excitation being near an allowed 

absorption maximum of the adsorbate species under investigation. 

Chromophoric molecules such as haemoglobin (102) have been of



particular interest. The use of the technique has allowed the 

investigation of the nature of bonding of complex molecules and the 

detection of changes in conformation or molecular structure at the 

surface.

Unlike SERS, SERRS has shown wide and even conflicting variations 

in enhancement factors (103) (104) with adsorbate and with 

environment, leading to equally wide variations in theoretical models.

Colloid SERS systems have been applied to the trace analysis of 

drugs and other biological molecules. The possibility of applying colloid 

systems to the detection of complex molecular structures without their 

destruction has been clearly demonstrated. This aspect is further 

discussed in section 2.4.3.

2.3.7 Theoretical aspects.

As with island films, unaggregated colloids have provided valuable 

simple model systems for the study of SERS theory. The additional 

possibility of choosing particle sizes by careful control of practical 

procedures has also proved invaluable.

A great many of the theoretical studies with colloids have been 

concerned with gauging the relative contribution of the electromagnetic 

effect to overall SERS enhancement (79)(105)(106).
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2.2.3.8 Related SERS-active substrates.

(a) Supported colloids.

Lasema et al. (107) reported the simple, one-stage preparation of 

silver coated filter paper. The preparation was based on the method of 

Creighton et al. (79), being the reduction of filter paper-supported silver 

nitrate with sodium tetrahydroborate applied evenly over the filter 

paper by means of a spraying device. SEM study revealed the presence 

of porous silver cluster formations with individual particle size around 

lOOnm (figure 2.12).

(a) <b)

Figure 2.12: Scanning electron micrographs of silver-coated filter paper, 
la) magnification x 220: bar length 100 um: 
lb) magnification x 2200: bar length 10 um.



Simple organic test molecules (107-109) adsorbed on this type of 

surface have displayed intense, reproducible spectra. Although filter 

paper-supported silver colloids have no inherent aggregation problems, 

they have the disadvantage of low stability.

Sequaris and Koglin (110) supported silver colloid on TLC silica gel 

plates, obtaining highly intense SER spectra from 9-methyl guanine 

(figure 2.13).

HN

HN

Figure 2.13: Structure of 9-methvl guanine.

(b) Mobile metal films.

Reports of the production of metal liquid-like films via the 

reduction of silver nitrate have recently appeared (111). Gordon et al. 

(112) developed a method of production of mobile silver films at the 

interface between an aqueous sol and the solution of a transition metal 

complex in an organic solvent. With several inorganic complexes, 

significant enhancement was observed similar to their SERR spectra 

with silver colloids.

An important practical consequence of these studies was that they 

represented a means of obtaining appreciable SERR spectra of water-



insoluble or sparingly soluble complexes normally unsuitable 

for SERR study with aqueous silver colloids.

(c) Chemically prepared films.

A method for the production of this convenient and inexpensive 

type of substrate was reported by Ni and Cotton (113). Essentially a 

simple procedure, it involves the production of Tollen's reagent 

(ammonical silver nitrate) and its subsequent reduction to give a 

suspension of silver. The silver particles then form an active film on 

frosted microscope slides. The surface displayed appreciable 

SERS-activity with adsorbates such as 4,4'-bipyridine but it was noted 

that the resultant magnitude of enhancement was highly dependent on 

the preparative conditions.

2.2.4 O ther SERS-active substrates.

2.2.4.1 Silver powder.

There have been a number of studies of the SERS of aggregated, 

precipitated silver powders (114) (115).

SERS with silver powder was used recently by Matsuta and 

Hirokawa (116) in an attempt to study the adsorption of the 

atmospheric pollutant gas sulphur dioxide at real environmental 

conditions (not under high vacuum: at one atmosphere). As would be 

expected, they found that oxygen and water vapour had significant



roles in the adsorption of the gas.

Dorain and Boggio (117) investigated the possibility of using the 

silver powder technique to study surface chemical reactions using 

nitrogen dioxide gas as a model adsorbate. Their results identified the 

major nitrate species present on silver microstructures during the 

surface reaction. This highlighted the potential of the technique for the 

study of in situ heterogeneous catalysis of gases on silver metal 

surfaces. The same workers also demonstrated the replacement 

reaction of adsorbed nitrate on silver powder surfaces with sulphur 

dioxide.

2.2.4.2 Rough silver surfaces.

The production of rough silver was achieved by pre-depositing 

calcium fluoride (118) on a substrate followed by the deposition of an 

even silver film: the roughness of the resultant silver surface 

corresponded to the roughness of the pre-deposited calcium fluoride 

film.

Mechanical polishing (25) and ion-bombardment in high vacuum 

(119) also produce suitably rough surfaces.

Rowe et al. (120) reported the novel preparation of SERS-active 

substrates when silver halide films were exposed to ultra-violet 

radiation in vacuo , releasing halogen vapour and leaving a randomly



rough silver surface.

2.3. THEORY OF SERS.

2.3.1 Background.

The question of the nature of the enhancement mechanism of SERS 

has been the subject of a great body of work (121-124), both 

experimental and theoretical, over the last twelve years. This interest 

has been fuelled, primarily, in order to apply the technique in specific 

chemical areas. Many workers, however, have studied the 

enhancement mechanism from a purely theoretical viewpoint.

There has been and, indeed, still is a great deal of controversy over 

the enhancement mechanism although it is now widely accepted that 

two main mechanisms contribute, either independently or in tandem, to 

SERS enhancement. These mechanisms are electromagnetic and 

chemical (charge-transfer). The controversy chiefly lies in the relative 

contributions of the two main mechanisms to the overall enhancement 

factor.

2.3.2 Factors influencing SERS.

Clues to the nature of the enhancement mechanism, some of which 

have been indicated previously, can be drawn from observations of 

some of the main factors that influence SERS. A summary of the most 

significant factors is now given.



fa) Dielectric properties of the surface metal.

The excitation wavelength used in SERS experiments has been 

shown to be critical. Studies with transition metal overlayers on silver 

electrode surfaces, as discussed previously, have confirmed that the 

electronic properties of the metal surface are of paramount importance 

in determining the extent of SERS enhancement.

(b) Morphology and dimensions of roughness species on the surface.

Flat surfaces do not produce appreciable SERS enhancement: some 

degree of roughness, whether random or uniform-sized spheres, seems 

to be necessary in order to observe SERS-activity at a metal surface. As 

the electrochemical studies showed, however, there is debate over the 

roles of large and atomic-scale roughness in producing enhanced 

spectra.

fc) Molecule-surface separation.

As will be discussed, a consequence of the electromagnetic effect is 

that SERS intensity falls off with distance from the surface. The 

chemical mechanism is a shorter-range effect.

(d) Orientation of the molecule with respect to the surface.

(e) Chemical nature of the adsorbed molecule.

This factor explains the molecular selectivity of SERS.



Discussion.

Factor (a) is a purely electromagnetic effect, depending solely on the 

nature of the metal surface, whereas factor (e) is only dependent on the 

structure of the adsorbate molecule and is therefore a purely chemical 

effect.

For a given metal/molecule system, however, factors (b), (c) and (d) 

are considerably more difficult to justify. Macroscopically, the SERS 

effect is polydirectional: there is little dependence of the enhancement 

upon geometrical factors. Some degree of microdirectionality seems to 

be necessary, however, to explain why certain vibrational modes are 

enhanced preferentially to others in certain systems. Microscopic 

positioning of the molecule relative to the surface justifies a certain 

degree of bonding in the surface-molecule complex and, consequently, 

the dependence of the enhancement on both the distance and 

orientation factors.

Theories of enhancement.

2.3.3 Electromagnetic theory.

2.3.3.1 The image field model.

Although it is now known that surface roughness is a vital factor 

with respect to SERS, many early theoretical workers studied possible 

enhancement mechanisms arising from the electromagnetic interactions



between adsorbate molecules and a flat metal surface.

The basic tenets of the image field model, as proposed by King et al. 

(125) and Efrima and Metiu (126), are that SERS enhancement derives 

from the large polarisability when the Raman emitting system is taken 

to be composed of the adsorbate molecule and its conjugate-charge 

image in the metal.

King et al. (125) assumed a diagonal Raman polarisability tensor and 

a field polarised in the direction normal to the flat surface (z-axis). The 

dipole moment induced in the adsorbate molecule by the image field in 

addition to the incident field is given by equation 2.1.

u = a (E  + £„„) . (2.1)

where E = incident electric field,

Eim = image electric field,

a  = zz component of the molecular polarisability and

H = field-induced dipole moment.

The image field is given by equation 2.2.

Eim= [(£ - eo)/(e + e0)lu (2.2)

4r^

where r = distance between the point dipole and the 

surface,



£ = dielectric function of the metal surface 

and £q = dielectric function of the ambient.

King et a l found r very difficult to define, for real molecules and 

surfaces.

Substituting equation 2.2 into equation 2.1 and subsequent 

rearrangement gives the following expression.

U = a [ l  - (a/4r3)(e - Eq/s + e ^ E  (2.3)

In this form, equation 2.3 resembles the normal Raman expression 

for field-induced dipole moment, U = fiE (1.2),with the normal 

polarisability, a , replaced by an effective polarisability, a eff, given by

equation 2.4.

1 - [(J2t/4r3)(e - eye + e0)] (2.4)

Appreciable enhancement is only achieved if the quantity otet̂ /a 

exceeds unity to any great extent. The magnitude of a ê  depends 

critically on r: it is only at very small values of r that the factor otet̂ /ot

is significantly large.

Although some have tried to refine (127) (128) the image field 

model, many workers have found no evidence to support the existence 

of image field enhancement (129) (130). The majority view is that the 

image field effect makes only a minor contribution to SERS



enhancement.

2.3.3.2 The electromagnetic mechanism.

The surface of a good electric conductor (in the case of SERS, rough 

metal) has an electromagnetic resonance called the surface plasmon 

(131). Incident light on the metal surface can produce collective 

electron resonance phenomena creating oscillations in the charge 

density formed by the conduction electrons of the surface metal. The 

quanta associated with these oscillations are plasmons. For a plane 

wave incident from the ambient medium to excite the plasmon, both 

frequency and parallel momentum must be conserved. With air or 

vacuum as the medium, this condition cannot normally be achieved and 

hence a surface plasmon does not radiate but is surface-bound with its 

energy dissipated as heat over the metal surface. Ruling the surface 

with a grating, however, can allow the plasmon to radiate as, in this 

case, a new parallel momentum conservation rule applies.

A randomly rough surface, common to many categories of SERS- 

active systems, is essentially equivalent to a surface with a two- 

dimensional Fourier superposition of gratings. A portion of the energy 

of the plasmon is therefore radiated.

Small particles possess electromagnetic resonances which are 

similar to the surface plasmon. When a particle is small with respect to



the wavelength of incident radiation, a plasmon can be excited which 

has the symmetry of a time-varying dipole. The dipolar plasmon can 

then radiate. For a spherical metal particle, this resonance occurs at the 

frequency toR , for which equation (2.5) holds.

Re[£(coR)] = -2£0 (2.5)

The SERS effect has been observed in systems, such as small metal 

features and gratings, that can couple plasmon-like electromagnetic 

resonances to electromagnetic waves.

The assessment of Metiu and Das (132) is that surfaces absorb the 

incoming photon and store its electromagnetic energy into the surface 

plasmon, the energy being delocalised in the direction parallel to the 

surface but localised in the perpendicular direction. This results in a 

considerable increase in the density of electromagnetic energy near the 

metal surface. They argue that metal spheres, such as in aggregated 

colloids, localise photons, by plasmon excitation, in all directions 

resulting in a large concentration of electromagnetic energy. This energy 

is concentrated further by the gaps between the metal features.

In summary, the electromagnetic effect occurs due to the resonance 

excitation of specific modes of the metal surface arising from surface 

morphologies (133). It is related to the increase in electric field 

strength of the incident electromagnetic radiation (laser light) near the



metal surface due to the excitation and radiation of surface plasmon 

oscillations.

2.3.3.3 Models of surface roughness.

The calculations (134) (135) which elucidated the electromagnetic 

mechanism required certain approximations and assumptions to be 

made. It was assumed that SERS-active substrates were covered with 

submicroscopic surface roughness features which could be regarded as 

small metal ellipsoids with respect to their response to electromagnetic 

radiation. These assumptions were most accordant with unaggregated 

colloidal particles and island films.

Field concentration effect.

An adsorbed metal placed near a surface consisting of metal 

ellipsoids will have an induced dipole moment due to the contributions 

of both the incident field and the field elastically scattered by the 

ellipsoid. When the metal features are small in relation to the 

wavelength of excitation, the scattered field increases greatly in 

magnitude compared to the incident field when the excitation frequency 

is in resonance with the surface plasmon frequency. The 

Raman-scattered field, under these conditions and for small Raman 

shifts, will also be in resonance with the surface plasmon of the metal 

feature, giving rise to highly enhanced scattered fields.



2.3.3.3 (a) Spherical particles H341 H361.

If a molecule is considered to be a classical electric dipole and 

placed at a position r' outside a spherical metal particle, upon 

irradiation with an electromagnetic plane wave of frequency co0, the

molecular dipole will radiate at the Raman frequency oo with dipole 

moment given by equation 2.6.

U(r',to) = oTE (r',(O0) , (2.6)

where a ' = Raman polarisability 

and E ^ ^ cOq) = E i (r',to0) + ELM(r,,co0) , (2.7)

where Ej = incident field and 

Elm = scattered field.

The electric field associated with the Raman radiation at a point of 

observation r is given by equation 2.8.

Er (r,w) = Edip (r,to) + Esc (r,co) , (2.8)

where Edip = field which would be present at r due to 

the oscillating dipole, u, had the sphere 

been absent

and Esc = field scattered by the sphere that must be

calculated by solving the appropriate 

boundary-value problem at the frequency co.



All four fields involved can be expressed as linear combinations of 

vector spherical harmonics. The values of the coefficients pertinent to 

the field E^ can be obtained directly from Lorenz-Mie theory (137).

The Raman-scattered intensity, which is the square of the far-field 

amplitude of ER, is given by equation 2.9.

IR = lim [ Er (r,io) {exp(ikr)/r}]2 (2.9)
kr-t^

The quantity {exp(ikr)/r} is the space-dependent part of a spherical 

wave.

The electromagnetic enhancement factor G can therefore be defined 

as G = Ir/I°r, where I°R is the Raman intensity in the absence of the

metal sphere (normal Raman intensity). If the metal sphere was 

absent, the induced dipole moment would be given by (otEj) and Er

would be equivalent to E^p.

The expected enhancement for a sphere placed arbitrarily above a 

sphere of any size and with any polarisation of the incident and 

scattered fields can thus be determined.

Effect of particle size.

Metal particles that are close in size to the laser excitation 

wavelength display less enhancement. The dependence of the 

enhancement upon excitation frequency also depends on particle size.



Small particles display a sharp resonance caused by the excitation of 

dipolar surface plasmons, whereas larger particles show much broader 

excitation spectra due to the excitation of higher multipole plasmons.

In summary, the electromagnetic model for SERS from molecules 

adsorbed on spherical metal particles predicts that a high degree of 

enhancement will result from systems which fall into the following 

three categories.

(i) The molecule is not too distant from the metal surface.

(ii) The particle size is smaller than the wavelength of excitation.

(iii) The frequency of excitation or scatter is near the surface plasmon 

resonance.

2.3.3.3(b) Spheroidal particles.

Although the physics of the electromagnetic effect are similar when 

a spherical particle is replaced by a non-spherical particle (138), the 

new geometry does give rise to some modifications. An account of these 

changes is now given.

(i) The surface plasmon resonance shifts towards the red end of the 

spectrum.

(ii) The SERS of adsorbates near the tip of prolate or the waist of oblate 

ellipsoids is enhanced, whereas that of molecules near the sides of 

prolate and the top of oblate ellipsoids (figure 2.14) is reduced with 

respect to the SERS of molecules near a regular sphere.



(a) (b)

Figure 2.14: (a) prolate and (b) oblate ellipsoid

High enhancement has been shown to derive from molecules near 

areas of high curvature (139).

(iii) The enhanced spectrum has two peaks, one due to the 

enhancement of the incident field and one due to the scattered field, 

separated by an energy gap corresponding to the frequency of the 

vibration causing the scattering.

(iv) If a metal surface is modelled in terms of an assembly of 

hemispherical or hemispheroidal bumps on a metal plane, the 

enhancement can increase greatly (122) compared with that of a free 

spheroid. This additional enhancement arises from the image of the 

metal spheroidal dipole in the underlying perfect mirror. If the rough 

surface consists of a large number of ellipsoids of differing size packed 

closely, a progressive red-shift in the plasmon resonance frequency 

occurs concurrently with increasing packing density.

An analogy of this process is colloidal aggregation, as similar 

red-shifts in the plasmon resonance maximum can occur upon particle 

association.



Several workers (140) have calculated expressions for the 

electromagnetic enhancement of molecules near spheroidal particles. 

The effect of other pertinent factors, such as molecular orientation, on 

the spheroidal model has also been estimated.

2.3.3.4 Calculations and experiment.

As discussed previously, SERS-active systems whose geometry and 

morphology are well understood, including island films and 

microlithographically produced particles, have played an important role 

in testing the calculations on the electromagnetic model in an 

experimental environment. Indeed, quantitative agreement between 

observations and calculations has been noted in many cases.

Good agreement was found, by Liao et al. (56), between calculated 

and observed SERS enhancement of cyanide adsorbed on 

microlithographically produced ellipsoids.

Studies of the equivalence of calculated and observed SERS with 

electrode surfaces and colloidal suspensions have been few due to the 

more complex nature of the morphologies involved. The studies that 

have been undertaken, however, have shown appreciable quantitative 

or semi-quantitative agreement.



2.3.3.5 Excitation profiles.

The measurement of excitation profiles of SERS systems provides a 

means of confirming that enhancement is caused by the electromagnetic 

mechanism. SERS excitation spectra peaks coincide with surface 

plasmon resonance maxima for most metal surfaces. Studies with cold- 

deposited films showed that, for silver, the excitation maximum (64) is 

in the red, with copper, gold and lithium in the far red and platinum 

(141) and indium (121) in the blue. These results are exactly as 

predicted on the basis of optical constants of the metals.

2.3.3.6 Coupling between particles.

Models based on the electrostatics of isolated metal spheroids fail to 

account for several significant features of substrates with coupled metal 

particles such as cold-deposited films, electrodes and aggregated 

colloids. In each case, the surface plasmon absorption maximum lies to 

the red with respect to the corresponding maximum of isolated 

spheroids. This has been displayed clearly by metal colloid 

systems (99).

Maxwell-Gamett theory (142) has been applied to this problem in 

an attempt to take account of the coupling involved, with some success.

The effect of the coupling of metal particles leads to the question of 

the precise locations on the surface where the enhancement would be



expected to be at a maximum. As discussed previously, for spheroid 

models, these would be at the tips of prolate and the waists of oblate 

spheroids. Calculations on coupled features (143-145), however, have 

revealed that the voids between metal features exhibit the highest field 

densities and, therefore, enhancements.

2.3.3.7 Criticisms of the electromagnetic theory.

General criticisms of the electromagnetic mechanism have been 

made in terms of the electrostatics of metal ellipsoids. Controversy has 

raged over the best method of interpreting certain experimental 

observations.

The assumptions made in electromagnetic theoretical calculations 

have proved slightly tenuous. One particular assumption is that the 

dielectric function is local (146) and therefore independent of the 

electromagnetic wave vector.

Some workers (121) have criticised the validity of applying classical 

electromagnetic theory to the study of SERS-active surfaces since the 

application of classical theory assumes continuous media. The 

particulate nature of the species involved in SERS-active systems has 

therefore caused problems.



2.3.4 Chemical theory.

It is logical to argue that, on the basis of the factors that influence 

SERS, the enhancement mechanism cannot be solely dependent on the 

nature of the active surface: the chemical structure and the bonding of 

the adsorbate to the surface must play an important part in the overall 

mechanism.

The evidence outlined below has led to the development of the 

chemical (charge-transfer) or adatom-complex model of enhancement.

2.3.4.1 Evidence for chemical contributions to SERS enhancement.

(a) A purely electromagnetic theory of enhancement would result in 

SER spectra being simply enhanced duplicates of the corresponding 

normal Raman spectra. There are many examples, however, of SER 

spectra differing in relation to normal Raman spectra in terms of 

relative intensities and wavenumbers of bands.

This phenomenon was noted amongst the earliest SERS 

electrochemical studies. As discussed previously, pyridine commonly 

bonds to electrode surfaces via Lewis acid/base nitrogen-mediated 

adsorption (2). SER spectra of pyridine on electrode surfaces show 

changes in wavenumbers and relative intensities when compared 

to the Raman spectrum of neat pyridine. These observations can be 

understood in terms of the adsorbate forming a surface complex, with



the bulk adsorbate being the "ligands". Such a change inevitably alters 

the SER spectrum.

(b) Carbon monoxide and nitrogen, co-adsorbed in equal quantities onto 

cold-deposited silver films, display disparate enhancements (147). 

Furthermore, the SER spectra show unique wavenumber shifts with 

respect to normal Raman spectra. The authors of this report overruled 

the possibility of displacement by one of the gases and postulated 

different bonding orientations for each: CO bonding end-on and N2 

oriented in a side-bonded mode. The different orientations cannot 

account for the extremely disparate SERS enhancements of the 

molecules, whose Raman scattering cross-sections are almost identical.

(c) In aqueous systems, such as the electrochemical environment, there 

has been little or no observation of SER scattering from water (148), 

which is an appreciable Raman scatterer. A solely surface-bound 

electromagnetic enhancement mechanism would not discriminate 

between adsorbate molecules and would therefore cause the spectrum 

of water to be enhanced.

(d) It has been noted that, in many cases, SERS excitation profiles 

obtained from colloidal silver do not correspond well with respective 

absorption maxima (79)(82)(149).

Although aggregation of colloids produces a red-shifted absorption 

maximum, as previously discussed, there is considerable evidence for



the presence of an adsorbate-metal charge-transfer absorption 

corresponding to the excitation maximum which is normally too weak to 

be detected in the optical absorption spectrum.

(e) The electromagnetic model predicts that enhancement would 

gradually tail off with distance from the metal surface. There is 

considerable evidence, however, for saturation of the effect at 

monolayer level (150) (151) with subsequent layers of adsorbate 

effectively exhibiting no enhancement. This is clearly indicative of an 

additional enhancement mechanism intrinsically linked with the 

chemical bonding of adsorbate molecules at the metal surface.

2.3.4.2 Surface features.

It has been noted by many workers that small metal features, of 

2 nm and smaller, do not contribute significantly to the electromagnetic 

mechanism. Such metal features are involved with the adsorption of 

molecules at the active surface and have the general term "atomic- 

scale roughness”.

Otto (23) postulated that strong Raman enhancement is only 

observed when the adsorbate molecule is chemically bound to an atomic 

scale roughness feature (adatom).

2.3.4.3 Early adatom theory.

It was initially thought that the adatom mechanism enhanced



Raman spectra by increasing the magnitude of the scattering cross- 

section of the adsorbed molecule. It was also believed that the 

scattering of electron-hole pairs at atomic-scale roughness played a 

large role in enhancement.

The manner in which the admolecule was involved in these 

processes was not clear, but the most likely explanation was the 

existence of Coulombic coupling between the admolecule and the 

electromagnetic fields associated with electron-pair excitation.

The original adatom model was a resonance Raman model with a 

transparent adsorbate and the production of new states on the surface 

in resonance with the exciting radiation.

2.3.4.4 The chemical theory.

Avouris and Demuth (152) discovered a weak absorption in the 

electron energy loss spectrum (EELS) of several adsorbate species on 

silver close to, but not coincident with, the surface plasmon maximum. 

They interpreted the absorption as a charge-transfer band, either 

metal-adsorbate or adsorbate-metal.

This study turned the focus on the role of adatoms in the chemical 

model from electron-hole excitations to charge-transfer sites. 

Chemisorption and the formation of a charge-transfer complex are 

intrinsic factors in SERS chemical theory.



The chemical mechanism is defined as the enhancement of the 

Raman scattering cross-section of a chemisorbed molecule due to a 

resonance Raman process associated with a charge-transfer transition.

In this mechanism, it is clear that an accessible surface absorption 

develops (153) due to the broadening and shifting in energy of the free 

molecular states upon adsorption. This is caused by the formation of a 

surface energy band (molecule-molecule interaction) and by 

interactions with the metal energy states. The magnitude of HOMO- 

LUMO transitions in the free adsorbate molecule is too great for 

excitation by a conventional laser source, but once the molecule is 

bound to a surface the transitions are in resonance or approaching 

resonance with the laser excitation.

The involvement of this charge-transfer process in the SERS 

mechanism explains many of the experimental observations detailed 

previously that are irreconcilable with purely electromagnetic 

enhancement. The lack of enhancement with adsorbates such as 

nitrogen and methane can be interpreted in terms of the lack of a 

chemical bond and therefore of a charge-transfer complex.

Complex formation also explains observed differences in relative 

intensities and shifts in wavenumber in SER spectra compared to 

corresponding spontaneous spectra. One reviewer (121), however, 

believes this evidence does not necessarily discount the electromagnetic



mechanism as the main enhancement effect. He argues that bonding to 

the metal surface may alter the frequencies and relative intensities of 

the Raman bands without necessarily being involved in the actual 

enhancement. According to this view, the electromagnetic mechanism 

would be responsible for the enhancement of all SER spectra whether 

the adsorbate was surface-bound or not.

2.3.4.5 Magnitude of contribution of the chemical effect.

Although the electromagnetic models are concerned essentially with 

physisorbed molecules, the basic equations defining electromagnetic 

enhancement can be altered slightly to encompass the polarisability of 

the metal-molecule complex rather than that of the molecule itself. In 

many cases, therefore, observations that are at odds with 

electromagnetic theory and apparently only explicable in relation to the 

chemical mechanism can be re-interpreted successfully.

The extent of contribution to overall enhancement of the chemical 

effect and, likewise, the electromagnetic mechanism varies greatly 

depending upon the adsorbate species and SERS-active systems 

involved.

The experiments of Murray and Bodoff (154) on the coverage of 

silver island films with ^N-radiolabelled potassium cyanide indicated 

that the chemical effect played a minor role in the enhancement



process, amounting to a factor of six against electromagnetic 

enhancement of 104. In contrast, Yamada et al. (59) estimated a 

charge-transfer enhancement factor of 103 against an electromagnetic 

factor of 10, from studies of pyridine adsorbed on silver island films. 

They observed a clear charge-transfer band in the absorption spectrum 

at 600 nm which overlapped well with excitation profile measurements.

The uncertainty over the chemical mechanism is reflected in the 

indecisiveness over the role of adatoms (155) in the mechanism. The 

chemical model does not intrinsically require adatoms: only sites where 

chemisorption can take place.

General discussion.

Although in many studies the question of the enhancement 

mechanism has been treated as either electromagnetic or chemical, in 

most cases there are contributions from both effects.

Campion and Mullins (156) observed unenhanced Raman spectra 

from pyridine adsorbed on various faces of single-crystal silver. Those 

who vigorously supported the chemical model postulated that there was 

no enhancement in this system due to the absence of chemisorption, 

whereas the supporters of the electromagnetic model argued that the 

lack of appropriate roughness features led to the absence of 

enhancement.



In more recent SERS studies, many workers have attempted to 

rationalise enhancement on the basis of both theories. Notholt and 

Ludwig (157), from studies of pyridine on silver electrodes, postulated a 

total enhancement factor, being the product of the enhancement factors 

from both effects and a constant.

The controversy that the SERS enhancement mechanism has aroused 

still persists to this day. Although there have been countless studies 

and elegant and comprehensive explanations of both main enhancement 

mechanisms, the central question of the extent to which the chemical 

mechanism contributes to SERS, if at all, still seems insoluble.

2.3.5 O ther theoretical models.

2.3.5.1 Variations on the chemical model.

(a) Modulated reflectivity model (158).

This model involves the modulation of the susceptibility of the 

metal surface, by injection and withdrawal of electrons, co-incident with 

the vibration of the adsorbate molecule and its effect on the Raman 

scattering cross-section.

(b) Inelastic Mie scattering! 159).

This model, related to the above, considers the effect of charge 

injection and withdrawal on colloidal metal spheres (79). It was 

postulated that the charge injection-withdrawal process modulates the



polarisability of the metal sphere by shifting its surface plasmon 

resonance synchronously with vibration of the adsorbate, thus creating 

sum and difference side bands on the Mie-scattered light corresponding 

to the Raman effect.

It has also been proposed that inelastic Mie scattering explains the 

disparate enhancements associated with different bands in SER spectra. 

This, it is proposed, reflects the different charge injection-withdrawal 

abilities of different vibrational modes.

2.3.5.2 Parametric excitation model (160).

In this model of enhancement, it is proposed that SERS is due to the 

instability of the Raman mode of the molecular dipole, caused by the 

coherent superposition of the laser excitation field and the surface field 

induced by the light scattered by the molecule. The scattered field 

further induces motion of the molecular dipole and, consequently, an 

unstable feedback is established; the SERS intensity increasing with 

time. The time taken to achieve maximum intensity depends upon the 

separation of the adsorbate molecule from the surface.

2.3.5.3 Super radiance model (161).

This, somewhat speculative model, is involved with the possibility 

of several adsorbed molecules emitting in phase and the subsequent 

increase in Raman scattering cross-section.



2.3.5.4 Microensemble model ( \62V

In this model, the adsorbed molecule and its surrounding media, 

including the metal surface, are considered to form a microensemble. 

The model is essentially charge-transfer based, but does take into 

account the role of surface roughness. It is proposed that the presence 

of roughness breaks the surface up into microdomains in which the 

electrons move freely, but with boundaries to motion between the 

domains.

2.4 APPLICATIONS OF SERS.

2.4.1 Chemical reactions at surfaces.

The extraordinary sensitivity of SERS has led to the technique being

used to study the progress of certain surface chemical reactions. This is

possible through the detection of adsorbed reactants and reaction

intermediates and products.

In Suh and Michaelen’s (163) studies of the polymerisation of

acrylic acid on silver electrodes, chemical changes in the polymer

backbone were reflected in the SER spectra.

SERS has also been used to monitor redox processes at electrode

surfaces (164). The influence of surface interaction effects on the SERS

of adsorbed redox couples has been studied in relation to the

frequency-potential dependence of oxidation state-sensitive vibrational 

modes.



2.4.2 Behaviour of molecules adsorbed on metal surfaces.

SERS is potentially a very sensitive tool for studying surface 

chemical properties such as the geometry and orientation of adsorbate 

species and changes in orientation induced by external variables. SERS 

has also proved effective in the study of the nature of the surface 

bonding site and the nature of the chemisorptive bond. The studies of 

Siiman et al. (165) illustrate this well. They observed SERS from 

nicotinamide adenine dinucleotide (NAD) and NADH (figure 2.15) 

adsorbed on silver colloids. The orientation and conformation of the 

bases adenine and nicotinamide in the surface-adsorbed forms of the 

coenzyme were inferred from the relative intensities of the SERS bands. 

It was found that these modes dominated the spectra and the alcohol 

and ring modes of the ribose and pyrophosphate groups were enhanced 

to a much lesser de

Figure 2.15: Structure of the coenzvme nicotinamide adenine 
dinucleotide(NAD) (unreduced form).

O



Other examples include the surface geometry changes of 

2-naphthoic acid adsorbed on silver colloids (88).

2.4.3 Analytical chemistry.

This area of application of SERS has been gaining considerable 

momentum in recent years. The extreme sensitivity of SERS, which has 

led to many applications involving adsorption behaviour at metal 

surfaces, inevitably lends itself to the analysis of trace quantities of 

material.

Several categories of SERS-active substrates have been used. 

Surfaces which have exhibited the greatest analytical potential have 

been those of reproducible morphology. The control of roughness 

dimensions has also been an important factor.

2.4.3.1 Electrode surfaces.

Although electrodes subjected to oxidation-reduction cycles have a 

randomly rough surface morphology and control of the size of 

roughness protusions is not simple, they have shown considerable 

potential in the area of chemical sensing.

Carraba et a l (166) carried out feasibility studies on the use of SERS 

on electrodes for the detection of organic water contaminants. This 

involved the analysis of a wide range of common families of organic 

contaminants found in surface and sub-surface water. With some



adsorbates, extremely low limits of detection were observed (pyridine 

at 8.5 pg) and the variation of electrode potential and excitation 

wavelength permitted the qualitative detection of a two-component 

mixture of contaminants. It was concluded that SERS on silver 

electrodes had potential applications in chemical sensing and also in the 

determination of hydrological transport and rates of movement in 

sub-surface systems.

2.4.3.2 Vapour-deposited surfaces.

The production of vapour coated microspheres was reported by 

Goudonnet et al. (57). Their initial aim was to use the substrate as a 

test surface for SERS theoretical models. More recent application of the 

substrate in the field of analytical chemistry, however, has 

overshadowed this.

Coated microspheres have many important advantages as analytical 

SERS-active substrates. Firstly, the preparation procedure, although 

employing high vacuum coating apparatus, is fairly standard and 

requires no extremes of temperature as with other vapour-deposited 

surfaces. The second and most important advantage is that the 

dimensions of the metal spheres can be chosen whereas with island 

films and cold-deposited surfaces, the active dimensions depend on 

careful control of the preparation procedure. This makes coated



microspheres ideal for analytical applications where maximisation of 

signal strength is critical (58).

The initial studies of Goudonnet et a i employed phthalic (figure 

2.16), benzoic and nitrobenzoic acids as model adsorbates, all showing 

intense, reproducible SER spectra with excitation wavelength 

appropriate to the size of the silver structures.

Vo-Dinh et al. (167) investigated more closely the potential 

analytical applications of the technique. With various organic 

compounds such as carbazole, 1-amino pyrene (figure 2.16) and benzoic 

acid, detection limits were found to be between 0.2 and 1.4 ng, with 

good reproducibility. The same group carried on this work into the area 

of organophosphorus chemical agents (168), again obtaining clear, 

reproducible SER spectra down to nanogram levels.

Figure 2.16  ̂ Stucture of (al carbazole and (b) 1-amino pyrene.



A variation of the microlithography method of producing silver 

particles on prolate silica posts, developed by Enlow et al (169), has 

also displayed analytical SERS-activity. Intense spectra were observed 

from various nitro-polynuclear aromatic compounds. 1-nitropyrene was 

detected by SERS in nanogram quantities. This important class of 

pollutant compounds (170) has been analysed using various techniques, 

with SERS increasingly coming into the foreground.

2.4.3.3 Colloids.

As already stated, SERS-active colloid systems have been 

used extensively for the chemical sensing of biologically-active 

molecules, often encompassing the utilisation of surface-enhanced 

resonance Raman spectroscopy (SERRS). SERS and SERRS as techniques 

have the important advantage of yielding complete vibrational spectra 

of active molecules without their destruction. The types of biological 

molecules studied have included nucleic acids (171)(172), eye lens 

pigments (173), haemoglobin (102), cytochromes (174) and other 

proteins.

Kniepp and Fleming (172) reported the observation of intense SERS 

spectra from deoxyribonucleic acid (DNA) and thermally denatured DNA 

(figure 2.17) adsorbed on silver sol particles. In addition to showing a 

detection limit of 10 jug per ml, the study of this system also provided



valuable information on the behaviour of DNA at the metal surface. It 

was inferred that, on adsorption, DNA retained its double-stranded a- 

helical geometry and that the SER spectra were enhanced via the 

electromagnetic mechanism.
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Figure 2.17: Structure of deoxyribonucleic acid (DNA).
B » pyrimidine (a) or purine (b) base unit.

Nabiev et al. (94) also observed SERS from DNA molecules. The 

adsorption of nucleotides, calf thymus DNA and plasmid DNA, in the 

supercoiled and relaxed conformations, on silver colloids was studied. 

Activation (93) of the colloids with chloride ions induced adsorption 

sites highly specific to adenine nucleotides. This permitted the selective 

detection of the sites of destabilisation of double-stranded DNA helices 

and identification of the nucleotides at these sites. The detection limit 

for these systems was found to be approximately 10  ̂g.



A study by Nie et a i (173) on the SERS of some eye lens pigments of 

certain diurinally active animals on silver colloids displayed the 

significant potential of the technique. Lenticular pigments such as 

kynurenine, N-formyl kynurenine, p-carboline and bityrosine 

(figure 2.18) were used in the analysis. All showed distinct, highly- 

enhanced spectra. The findings of this group were shown to be very 

significant with respect to the metabolic and photochemical generation 

of lens pigments.
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Figure 2.18: Structure of the lenticular pigments (a) N-formyl 
kynurenine. tb) 6 -carboline and (c) bitvrosine.

The exhaustive studies of Chimanov, Efremov and Nabiev (175) 

(176) on a variety of biomolecules adsorbed on silver colloids (and also 

electrodes) yielded important results. Their analysis of the water- 

soluble proteins lysozyme and bovine serum albumin, various 

dipeptides and amino acids gave highly enhanced spectra. It was found 

that amino acids such as tryptophan (figure 2.19) were chemisorbed via



the aromatic side chain.
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Figure 2.19: Structure of (a) tryptophan and (b) rhodamine 6 G.

Silver colloids have also proved effective in the trace determination 

of nitrogen-containing drugs (177) and dyes (178). Many studies, 

for example, of the dye molecule rhodamine 6 G (figure 2.19) have been 

undertaken. Through adsorption isotherms from SERRS of rhodamine 

6 G, Hildebrandt and Stockburger (179) identified two types of 

adsorption sites on activated silver colloid surfaces: one involved with 

physisorption and the other in chemisorption of the dye molecule.

Distinct and highly enhanced SERR spectra were observed, indicating the 

power of the technique as an analytical tool for dye molecules.

2,5 RECENT DEVELOPMENTS IN SERS.

2.5.1 Langmuir-Blodgett monolayers.

SERS has proved a sensitive technique for the characterisation of 

monolayers and interfaces consisting of Langmuir-Blodgett films (180) 

(181). Indeed, Langmuir-Blodgett monolayers have provided an



elegant way of studying properties of SERS such as physisorption, 

chemisorption, distance dependence and coverage dependence. 

Depolarisation ratios and excitation profiles have been studied under 

qualitative control of adsorbate molecular monolayers on SERS-active 

surfaces.

2.5.2 Fibre-optic sensors.

Bello and Vo-Dinh (182) recently developed a fibre-optic system 

able to excite and collect SER spectra routinely. The SERS signals were 

generated from a sensing plate tip, having silver-coated microparticles 

deposited on a glass support. The SERS-active substrate was produced 

by, firstly, depositing a small volume of a 5% aqueous solution of 

1 0 0  nm diameter commercially available alumina particles on a clean 

microscope slide, followed by vacuum evaporation of a thin layer of 

silver. The substrate, under optimum experimental conditions, yielded 

reproducible, highly enhanced spectra with organic adsorbates.

2.5.3 Flow-injection systems.

Many workers (183)(184) have demonstrated the effectiveness of 

flow-injection sampling systems for real-time quantitative analysis of 

aqueous solutions of adsorbates by SERS.

Taylor et al. (185) studied the SERRS of crystal violet with a unique 

flow-injection system (figure 2.20). This optimised system was able to



deliver within five minutes, with the aid of an optical multichannel 

analyser for detection, quantitative and structural information on 

extremely dilute adsorbate solutions. With crystal violet, high-quality, 

reproducible spectra were obtained down to approximately 1 0 ' 19 

grammes of material, thus demonstrating the potential of the technique 

for routine, rapid SERS analyses.

SERScat3 - W A Y  V A L V E
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Figure 2.20: Schematic diagram of a SERS flow-iniection system.

2.5.4 Surface-Enhanced Hvper Raman Spectroscopy (SEHRS) (186).

2.5.4.1 Hvper-Raman Scattering (HRS).

Hyper-Raman scattering, a non-linear process, was first observed in 

1965(187).

When monochromatic radiation is focussed on a material, 

inelastically scattered light displaced from the incident frequency is 

found (Raman scattering). Very weak inelastically scattered radiation 

displaced from double the incident frequency can also be detected. This 

is termed hyper-Raman scattering (HRS), a three-photon process with



extremely small cross-sections. The HRS selection rules permit the 

observation of nuclear motions and the study of low frequency 

vibrational modes due to the weakness of the hyper-Rayleigh line.

SEHRS offers the possibility of boosting the inherently small HR 

cross-sections, due to surface effects, and therefore increase non-linear 

scattered intensities. Picosecond neodymium YAG lasers are commonly 

used as the excitation source.

2.5.4.2 Applications of SEHRS.

The studies of Golab et al. (188) on pyridine adsorbed on silver 

electrodes excited by cw mode-locked Nd YAG laser techniques realised 

spectra similar to those obtained with conventional SERS, with some 

slight differences in relative intensities of bands, but of far greater 

enhancement. The overall enhancement of SEHRS over bulk HRS was 

estimated to be approximately 1 0  ̂ 3, a factor of 1 0  ̂greater than the 

typical SERS enhancement with pyridine on silver electrodes.

Johnson and Soper (189) observed conventional enhancements of 

103 to 106, however, in the SEHRS of pyridine adsorbed on silver 

colloids. Changes were also noted in the relative intensities of SEHRS 

with respect to HRS, indicating the influence of surface morphology 

effects.

It was concluded from these two studies that SEHRS is considerably



more sensitive to orientation effects than SERS.

(CH = C H ) —  C H = l v

C->H<

N  I
C->H2n 5

Figure 2.21: Structure of S^-diethyloxarihiakarbocvanine dyes. 
X = O .S :n =  1 .2 .3 .

The recent study of Yu et al. (190) on the picosecond SEHRS spectra 

of several non-centrosymmetric oxa- and thia-carbocyanine dye 

molecules (figure 2 .2 1 ) adsorbed on pre-aggregated silver colloid 

yielded important new vibrational information. The SEHRS spectra 

obtained displayed dramatic changes compared to their respective 

FT-Raman and SERS spectra, including some bands only detectable 

through SEHRS. It was noted that the SEHRS spectra consisted of mainly 

central tt- conjugated chain vibrational modes, instead of 

end-chromophore vibrations which were predominant in the 

corresponding Raman spectra.

These studies have shown that the technique of SEHRS, in addition 

to producing high quality, highly enhanced surface Raman spectra, is 

capable of yielding important vibrational data that is unable to be 

obtained through Raman, i.r. and surface-enhanced Raman methods.
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3. O BJECTIV ES.

The overall objective of this study was to explore ways of applying 

SERS to the analysis of a variety of organic and inorganic species. It is 

clear from the volume of SERS analytical literature that, with certain 

adsorbate species on appropriate surfaces and under the right 

conditions, SERS is extremely sensitive to low concentrations of 

adsorbate species. In order to utilise SERS as an analytical technique in 

a rational way, the precise nature of the surface/adsorbate molecule 

interaction (which is not properly understood) must be probed. To this 

end, a systematic investigation of a range of different SERS-active 

substrates, coupled with different types of adsorbate molecules, was 

undertaken.

The initial aim was to find SERS-active surfaces suitable for 

intensive study.

SERS-active surfaces include:

(a) Colloids.

(b) Vapour-deposited surfaces.

(c) Chemically-produced active films.

Potential variable molecular parameters include the following:

(a) The charge of the adsorbate.

(b) The overall shape of the molecule.

(c) The hydrophobic or hydrophilic nature of the molecule.



(d) The influence of co-ordinating groups in the molecule.

The conclusions drawn from these systematic studies should lead to 

a better understanding of the adsorption of different molecules at 

SERS-active surfaces. Tris(2,2-bipyridyl) ruthenium(II) and modified 

analogues were chosen as appropriate test molecules.

The programme of work was divided into three parts:

(1) The preparation of modified 2,2'-bipyridyl ligands and subsequent 

tris-ligand ruthenium (II) complexes.

Characterisation of ligands and complexes. Extensive study of the 

absorption spectroscopy of the tris-ligand complexes.

(2) SERS feasibility studies of a variety of active surfaces with inorganic 

and organic molecules. [Ru(bipy)3]2+ was the main test molecule.

(3) Comparitive studies of [Ru(bipy)3]2+ and disubstituted analogues 

with chemically prepared and vapour-deposited silver surfaces.
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4. EXPERIMENTAL.

4.1 Preparation of bipvridvl ligands and their ruthenium complexes.

4.1.1 2.2'-bipyridine.

This ligand was used as received (99%, Aldrich).

(a) Trisl^ '-bipyridine) rutheniumflD diiodide. Rufbipv^K

The method of Palmer and Piper (191) was used to prepare this 

complex.

Ruthenium trichloride trihydrate (RuCl3 .3 H2 0 ) (0.25 g, 0.956

mmoles), 2,2'-bipyridine (0.45 g, 2.88 mmoles) and Analar ethanol (20 

ml) were placed in a round-bottom flask and refluxed for 72 hours. At 

the end of this period, half the volume of solvent was removed (rotary 

evaporator). Following the addition of excess potassium iodide, 

Ru(bipy)3 I2  precipitated out. Subsequent filtration afforded 0.49 g 

(80.1%) of complex.

(b) Trisf2,2t-bipvridine) rutheniumfID dichloride. Rufbipv^CL.

An alternative method, that of Braddock and Meyer (192), was used 

to prepare this complex.

Ruthenium trichloride trihydrate (0 . 2 0  g, 0.765 mmoles), 2 ,2 '- 

bipyridine (0.36 g, 2.31 mmoles) and reagent grade N,N- dimethyl 

formamide (15 ml) were placed in a round-bottom flask and refluxed 

for 3 hours. At the end of this period, the solution was concentrated to



approximately 5 ml and added, dropwise, to a saturated solution of 

tetra-n-butyl ammonium chloride in Analar acetone. This resulted in 

the precipitation of 0.47 g(74.7%) of the complex.

(c) Bis(2,2'-bipyridine) rutheniumQD dithiocvanide. RufbipvWNCS)2.

The method used was that of Wajda and Rachlewicz (193). 

Ruthenium trichloride trihydrate (0.25 g, 0.692 mmoles) was 

dissolved in 65 ml of absolute ethanol. A further solution of 0.30 g 

(1.92 mmoles) of 2,2'-bipyridine in 30 ml of ethanol was prepared.

Upon mixing the solutions, a brown precipitate formed immediately. 

The mixture was refluxed for a total of 15 hours (isomantle).

After filtering the residue, 0.45 g (5.56 mmoles) of sodium 

thiocyanate was added to the filtrate and the resulting solution was 

refluxed for 6  hours . Dark brown/violet crystals precipitated. Filtering 

and subsequent washing with distilled water and ethanol gave 0.25 g 

(61% yield) of product.

(d) Bis(2.2'-bipvridine) ruthenium (ID dichloride dihvdrate. 

Ru(bipvl2 Cl2 .2H2 Q.

The procedure used was based on the method of Meyer (194). 

RuC13 .3H20  (0.42 g, 1.61 mmoles), 2 ,2 '-bipyridine (0.50 g, 3.21

mmoles) and lithium chloride (0.46 g, 0.0108 moles) were dissolved in 

purified DMF (40 ml) contained in a 100 ml round-bottom flask fitted 

with reflux condenser apparatus. The mixture was refluxed for 8  hours



whilst being constantly stirred magnetically. After cooling to room 

temperature, the solution was poured into rapidly stirred Analar 

acetone (200 ml). The round bottom flask was washed with more 

acetone (2 x 50 ml) and the combined mixtures allowed to stand 

at 0°C overnight. The resultant dark green microcrystalline material 

was collected on a medium porosity sintered-glass filter funnel and 

washed with water (75 ml) and diethyl-ether (75 ml). The total yield of 

complex was 0.57 g (6 8 %).

(e) Bis(2.2,-bipvridine) 1.10-phenanthroline rutheniumfID dichloride. 

rRufbipvWphenflCH.

The method used to prepare this complex was based on the method 

described by Crosby and Elfring (195). A similar method, that of 

Bosnich (196), was not attempted.

A suspension of Ru(bipy)2 Cl2  (0.61 g, 1.17 mmoles) in distilled water

(200 ml) and Analar methanol (100 ml) was heated until dissolution 

was complete. 1,10-phenanthroline monohydrate (0.25 g, 1.39 mmoles) 

was added.

The resultant solution was refluxed for one hour. The bright orange 

solution produced at the end of the heating period was filtered and 

evaporated to dryness on a steam bath. The solid was immediately 

recrystallised from hot methanol. After collection on a sintered-glass 

filter funnel, 0 . 5 4  g (69.5% yield) of product was obtained.



4.1.2 2.2,-bipvridine-4.4,-dicarboxvlic acid.

The scheme for this reaction is shown in figure 4.1.

The ligand was prepared by the method of Case (197). Potassium 

permanganate (22 g, 0.1392 moles) and 4,4'-dimethyl-2,2'- bipyridine 

(99%, Aldrich, 4 g (0.0217 moles)) in distilled water (380 ml) were 

heated (isomantle) to discolourisation of the permanganate. The 

precipitated manganese dioxide was removed by filtration and the 

colourless filtrate extracted with Analar diethyl ether to remove 

unchanged reactant. The filtrate was then acidified with concentrated 

hydrochloric acid and the resultant precipitated crude acid collected by 

filtration, yielding 1.15 g (21.7%) of product.

(a) RutheniumQD complex of 2.2'-bipvridine-4.4f-carboxvlic acid.

In an attempt to prepare the ruthenium tris-ligand complex, the 

ligand was reacted with RuCl3 .3 H2 0  according to the method of

Braddock and Meyer (192). When the reacted solution was added 

dropwise to a saturated solution of tetra-N-butyl ammonium bromide in 

acetone, no complex precipitated. The DMF/acetone was distilled off to 

produce a large mass of deep purple material (approximately 8  g, > 1 0 0 % 

based on the formation of the tris-ligand complex).

1L3 Diethvl 2.2,-bipyridine-4.4,-dicarboxvlate (scheme : fig 4.1).

The procedure reported by Maerker and Case (198) was employed



in the preparation of this ligand.

2,2'-bipyridine-4,4'- dicarboxylic acid (1.15 g, 4.7 mmoles) in a 

mixture of 13 ml of concentrated (98%) sulphuric acid and 27.5 ml of 

absolute ethanol was refluxed for 1 0  hours, cooled to room temperature 

and poured on ice. Neutralisation with 25% aqueous sodium hydroxide 

afforded a grey-white solid. The latter was collected by filtration and 

recrystallised twice from absolute ethanol, yielding 0.90 g (38.4%) of 

white crystals.

(a) Tris (diethyl 2.2,-bipyridine-4.4,-dicarboxylate) ruthenium (II) 

ditetrafluoroborate.

A method suggested by Cook et al (199) was utilised in the 

preparation of the tris-ligand ruthenium (II) complex.

Ethanediol (85 ml) was placed in a round bottom flask. To this was 

added 0.285 g (0.95 mmoles) of diethyl 2,2,-bipyridine-4,4'- 

dicarboxylate and 0.12 g (0.32 mmoles) of dipotassium aquapenta- 

chloro ruthenate (III), K ^ R u C ^ t^ O )]. The mixture was refluxed for 72

hours (isomantle) and filtered hot. The filtrate had approximately half 

its volume of ethanediol removed. Distilled water (20 ml) was 

added and the solution extracted with toluene to remove excess 

unreacted ligand. Addition of 2 ml of a saturated solution of sodium 

tetrafluoroborate did not result in precipitation of the complex. Removal 

of further solvent only resulted in precipitation of excess NaBF4.
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Figure 4 .1 : Preparative routes to 2.2,-bipvridine-4.4t-dicarboxvlic acid 
and diethyl 2.2,-bipvridine-4.4’-dicarboxvlate and their 
rutheniumfID complexes.



4.1.4 4.4,-diamino-2.2,-bipvridine (scheme: figure 4.2).

There are various synthetic routes to this ligand. The one which 

was chosen was via the preparation of 2 ,2 '-bipyridine-l,l'-dioxide and, 

subsequently, 4,4'-dinitro-2,2'-bipyridine-l ,l'-dioxide(200).

Oxidation step.

2,2'-bipyridine (5 g, 0.032 moles), glacial acetic acid (25 ml) and 

30% hydrogen peroxide (5 ml) were heated in a water bath for 4 hours.

A further 5 ml of peroxide were added and the mixture heated for an 

additional 8  hours. After cooling to 0°C, the solution was made alkaline 

with a concentrated solution of potassium hydroxide to give a white 

material which was recrystallised from water and dried with Analar 

chloroform. The yield of N,N-dioxide was 5.1 g (84.8%).

This reaction was repeated many times and on each occasion the 

yield was greater than 80%.

Nitration step,

2.2’-bipyridine-l,l'-dioxide ( 1 0  g, 0.053 moles) was added to a 

mixture of 26 ml of fuming nitric acid (95%, specific gravity 1.5) and 30 

ml of concentrated (98%) sulphuric acid. The acid/N,N-dioxide mixture 

was heated in a water bath for 4 hours. At the end of this period, the 

mixture was poured into ice to form a green solution. After a few 

minutes, yellow solid began to form near the top of the iced solution. 

Once all the ice had melted, the yellow material was collected by



filtration. Recrystallisation from distilled water yielded 4.23 g (28.5%) of 

4 ,4 '-dinitro-2 ,2 '-bipyridine- 1 ,1  '-dioxide.

Amination step.

Amination of the nitro-N,N-dioxide compound was effected by using 

the procedure of Maerker and Case(198).

Iron powder (8.5 g, 0.152 moles) was added to 3.8 g (0.0137 moles) 

of the nitro-N,N-dioxide in 150 ml of glacial acetic acid at 100°C, with 

stirring. The temperature of the mixture was maintained at 114°C for 

70 minutes. After cooling to room temperature, 100 ml of water was 

added. The solution was made alkaline with 25% sodium hydroxide 

solution and brought to a volume of 600 ml with water. Filtration 

afforded a black, tarry precipitate which was dried in an oven for 30 

minutes. The dried solid was extracted with 95% (bulk) ethanol until 

further extraction no longer gave a purple alcohol solution. The 

combined extracts were filtered and then acidified, with cooling to 0°C, 

with concentrated hydrochloric acid. The resulting suspension was 

filtered, the white precipitate washed with 95 % ethanol and discarded 

and the alcoholic wash solution combined with the filtrate. The solution 

was then concentrated to a volume of 250 m l.

On standing for 24 hours, orange/brown needles deposited in the 

concentrate and were collected by filtration (0.95 g). The filtrate, after 

farther concentration, yielded a second crop of crystals (0.25 g). The



solids were combined and recrystallised from aqueous ethanol (50 ml 

95% ethanol/ 8  ml water) to give 0.54 g of the hydrochloride of the 

product. The latter material was dissolved in water and the free base 

precipitated after the addition of dilute sodium hydroxide solution. The 

white precipitate, after three recrystallisations, weighed 0.18 g (6.7% 

yield). Two further attempts at this preparation did not improve the 

yield of diamine.

(a) Tris^^'-diam ino^.^-bipyridine) ruthenium (ID dichloride.

The method of Cook et al (199) was used for this preparation. 

Dipotassium aquapentachlororuthenate(III), K ^R uC ^O ^O )] (0.08 g,

0.21 mmoles), in 10 ml of hot distilled water containing one drop of 6 M 

hydrochloric acid was added to a solution of 4,4'-diamino bipyridine in 

8  ml of DMF. The resulting mixture was refluxed for 15 minutes. 

Phosphinic acid, H3 PO2  (30%, 1 .95 ml), was then added followed by

neutralisation with 0.52 ml of 2M sodium hydroxide solution. The 

solution was refluxed for a further 30 minutes after which it was 

filtered hot and 1.73 ml of 6 M hydrochloric acid was added. At this 

stage, approximately half the solvent was removed and the solution was 

allowed to cool in ice overnight.

Crystallisation did not result, even after further solvent removal.
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Figure 4.2: Preparative route to 4.4t-diamino-2.2t-bipvridine and its 
rutheniumdD complex.



4.1.5 4.4'-diphenyl- and 4.4'-dimethvl-2.2,-bipvridine.

The ligands 4,4'-diphenyl and 4,4'-dimethyl-2,2'-bipyridine were 

used as received (99%, Aldrich).

(a) Tris(4.4,-diphenvl-2.2>-bipyridine) ruthenium(II) dichoride.

The preparation of this complex was a two-step process 

(scheme: figure 4.3). An attempt was made to prepare the complex via 

a facial DMSO-ruthenium (III) complex.

Attempted preparation of fac -rRuCtyDMSOlgl (201).

Concentrated hydrochloric acid (5 ml) was added to a solution of 

hydrated ruthenium trichloride (0.2498 g, 0.955 mmoles) in dimethyl 

sulphoxide (1.5 ml). The mixture was heated at 85 °C for 

approximately 30 minutes, concentrated to 2 ml and cooled overnight at 

10°C. Instead of yellow needle-like crystals of the facial isomer 

separating out, dark orange mer product was formed.

The mer isomer was used in the second stage of the reaction. 

Preparation of rRutdiphbipy^C PI.FPO (2 0 2 ).

To a solution of mer -[RuCtyDM SO)^ (0.1017 g, 0.230 mmoles) in

absolute ethanol (15 ml), 4,4'-dipheny 1-2,2’-bipyridine (0.2136 g, 0.694 

mmoles) ( 1 : 3  molar ratio) was added. The mixture was refluxed for 2 

hours whence a dark brown solution was obtained. The solution was 

concentrated to 5 ml, cooled to room temperature and diethyl ether 

added. Fine brown product precipitated and was filtered, washed with



diethyl ether and dried in vacuo, yielding 0.1573 g (61.4%).

(hi Tris(4.4'-dimethvl-2.2t-bipyridine) rutheniumdD dichloride.

The route to the tris-ligand complex was via two steps (scheme: 

figure 4.3). The first step was the preparation an octahedral mer - 

trichloride tri(DMSO) ruthenium(III) complex (201). This complex was 

then reacted, in the appropriate proportions, with the modified 

bipyridyl ligand (2 0 2 ).

Preparation of mgr-rRuCtyDMSOljl (201).

Concentrated hydrochloric acid (36%, 5 ml) was added to a solution 

of hydrated ruthenium trichloride (0.2512 g, 0.961 mmoles) in dimethyl 

sulphoxide (DMSO) (1.5 ml). The mixture was maintained at reflux, in 

an oil bath at 135°C, for 1.5 hours and then cooled to room temperature. 

The compound separated out and was filtered and carefully washed 

twice with small portions of ice-cold acetone. Subsequent drying gave

0.2841 g (67.0%) of product.

Preparation of rRufdimebipv^CUlT ^O  (2 0 2 ).

To a solution of mer -[R u C ^D M S O y  (0.2053 g, 0.465 mmoles) in

absolute ethanol (20 ml), 4,4,-dimethyl-2,2,-bipyridine (0.2598 g, 1.41 

mmoles) ( 1 : 3  molar ratio) was added and the resultant mixture 

refluxed for 2 hours whence a dark solution was obtained. The solution 

was concentrated to 5  ml, cooled to room temperature and reagent 

grade diethyl ether (3 ml) was added to precipitate the complex. The
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product was filtered, washed with diethyl ether and dried in vacuo.

The yield was 0.2004 g (58.1 %), assuming one water of crystallisation in 

the formulation.

4.2 Column chromatography.

Several ruthenium(II) tris-bipyridyl complexes were purified by 

column chromatography. In all cases, a 0.5 m long, 1 cm diameter glass 

column with porous frit was used. The support used was sephadex 

LH20 (Pharmacia). The general procedure followed is now described.

Sufficient sephadex to fill the column was mixed thoroughly with 

the solvent (in most cases, reagent grade ethanol). Whilst mobile, the 

resultant slurry was poured into the column and allowed to settle. This 

normally took two or three attempts as excess solvent had to be drained 

away. When the solvent had drained to the head of the sephadex 

support, an ethanolic solution of the impure complex was poured into 

the column and allowed to migrate. Once all the sample had migrated 

onto the column, a large volume of solvent was poured into the column. 

Care was taken to ensure that the solvent reservoir was constantly 

replenished. The normal time taken for complete separation and 

collection of the fractions was between 1.5 and 2 hours. Adequate 

separation of the fractions was achieved with all the samples of 

ruthenium complexes purified.



The sephadex could be re-used by slushing the full quantity of 

support out of the column and extracting any material which had 

remained with the appropriate solvent. Highly polar or completely 

non-polar solvents had to be used in some cases.

4.3 P repara tion  of SERS-active substrates.

4.3.1 Colloids.

Silver colloids were prepared according to the method of Creighton 

et al. (79). The following solutions were prepared : sodium tetrahydro- 

borate, NaBH4, (10"3mol l-1) and silver nitrate, A gN 03, (2 xlO'3moll l).

Both solutions were pre-cooled in ice and 3 ml of NaBH4  were added

dropwise to 1 ml of A gN 03  with stirring to give yellow silver colloidal

solution. The reaction was scaled-up successfully.

4.3.2 fa) Chemically produced films.

The procedure used to produce silver active films was a 

modification of the method reported by Ni and Cotton (113).

Frosted microscope slides were cleaned in concentrated nitric acid

and washed in distilled water. Solutions of sodium hydroxide (5% w/v), 

glucose ( 1 0 % w/v) and silver nitrate (2 % w/v) were prepared.

Ten drops of the sodium hydroxide solution were added to 1 0  ml of the 

silver nitrate solution in a 150 ml beaker. This resulted in the 

formation of a dark brown precipitate (silver hydroxide). Ammonia



(s.g. 0 .8 8 ) was added dropwise with stirring until the precipitate 

redissolved. Dry frosted microscope slides were placed round the 

circumference of the beaker and 3 ml of the glucose solution were 

added. The solution was then mixed thoroughly. The beaker containing 

the microscope slides was placed in a near-boiling water bath for 

approximately 30 seconds. The slides were inspected constantly 

throughout this operation and the beaker was removed from the 

water bath when a light yellow coating of silver had formed on the 

frosted part of the slide. The beaker was placed in an ultra-sound bath 

for 1 minute to encourage the formation of an even silver layer.

Prolonged exposure of the slides/silver solution to heat produced white 

silver films.

Once produced, the silver coated slides were stored under distilled 

water until required. The slides were found to be stable under distilled 

water for several weeks.

(b) Production of gold and copper active films.

Various attempts were made to produce gold and copper coated 

slides in the same manner as above. The relevant metal salts used were 

hydrogen tetrachloroaurate(III), HC14 Au, and cupric chloride, CuC^. 

Reducing agents used were glucose for gold slides and a glucose/sodium 

citrate mixture for copper slides.



4.3.3 Supported silver colloids.

Silver-coated filter-paper substrates were prepared according to the 

method of Lasema et al (107).

A petri-dish was half-filled with an 0.1 molar solution of silver 

nitrate. An appropriately sized piece of filter-paper (Whatman No.l) 

was placed in the dish and, therefore, saturated with silver nitrate.

After a few minutes, the saturated filter-paper was removed from the 

petri-dish and allowed to dry briefly on a larger piece of filter-paper. A 

previously prepared solution of sodium tetrahydroborate (0 . 2  molar) 

was sprayed onto the saturated filter-paper in a vertical fashion from 

approximately 20 cm distance (a TLC spray was used for this purpose).

The freshly prepared silver-coated filter-paper was grey/green in 

colour: after a few hours it became brown.

Silver-coated TLC silica-gel plates were prepared in an identical 

manner (1 1 0 ).

43.4 (a) Silica spheres.

The controlled growth of monodisperse silica spheres was first 

reported by Stober et al in 1968 (203). The procedure has been 

developed in recent years by Adams et al (204).

The reaction is straightforward, being essentially the alkaline 

hydrolysis of tetraethylorthosilicate. A typical example is repeated
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here.

A brown, wide-necked bottle was washed with detergent, rinsed 

thoroughly with distilled water followed by ethanol and diethyl ether 

and dried in an oven for 30 minutes. Distilled water (6.7 ml), laboratory 

grade ethanol (28.9 ml) and ammonia (s.g. 0.88, 1 ml) were added 

to the bottle and mixed thoroughly. Tetraethylorthosilicate (TEOS) (10 

ml) was added to the mixture, the bottle sealed and the contents mixed 

thoroughly by shaking. The reaction mixture was then left for three 

days. During this period, a milky suspension formed. The silica was 

dried down using a rotary evaporator.

According to Adams et al, these proportions of reactants should give 

silica particles of approximately 140 nm diameter.

Reactions were carried out with different proportions of reactants as 

detailed in table 4.1.

Table 4.1: Preparation of silica spheres: proportions of reactants.

Volume of: TEOS water ammonia ethanol (sphere size) 
(ml)

1 0 13.2 2 6 8 (390 nm)

5 1 0 . 2 5.9 73 (230 nm)

1 0 13.1 1 28.9 (195 nm)

(b) Chemically coated silver silica spheres.

Attempts were made to chemically coat silica spheres of an



appropriate size with silver based on a method developed for latex 

spheres (205).

A quantity of silica spheres (140 nm) was mixed thoroughly in 20 

ml of distilled water to give a grey suspension and the excess was 

filtered off. Acetaldehyde (2 ml) was added to 8  ml of the silica 

suspension in a small beaker. The beaker was placed in an ultra-sound 

bath and 4 ml of a previously prepared Tollens reagent solution (5 ml of 

5% AgN03/5 ml of 2M (3.5%) NH3) was added. The mixture was

then sonicated for approximately 2 hours. At the end of this period, a 

brown suspension had formed.

4.3.5 Vapour-deposited surfaces.

Vapour-deposition of silver onto various substrates was effected by 

using a circular silver metal target in conjunction with a Polaron E5000 

sputter-coater. A diagram of the coating unit is displayed in figure 4.4. 

Operating procedure.

Once the silver target and samples had been loaded into the unit, 

the sample stage was cooled for 30 minutes.

The vacuum chamber was evacuated to 0.08 torr ('PUMP' 

operation). Argon gas was then admitted via the argon inlet valve 

followed by almost immediate re-evacuation of the chamber. This 

argon flush/evacuation procedure was repeated twice. Heating of the



target was begun (’SET HT’) and a potential of 0.75 kV applied across it. 

The argon inlet valve was opened slowly until a current of 25 mA was 

displayed on the ammeter. This operation was accompanied by the 

gradual appearance of purple silver plasma at the target. The current 

was maintained at 25 mA until the desired thickness of silver had 

coated onto the sample. This was calculated by using the following 

formula:

d = I V t G , (4.1)

where d = thickness of coating (A),

I = current (mA),

V = voltage (kV),

t = time (minutes) and

G = gap factor. For this unit = 5.

Therefore, for I = 25 mA, V = 0.75 kV, t = 10 mins, G = 5 ; 

d = 937.5 A i.e. 93.75 nm.

A coating time of 10 minutes would, therefore, give a film of 

approximately 1 0 0  nm thickness.

Once the coating part of the operation had been completed, all three 

dials were switched off and air admitted to the system through the air 

bleed valve.
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Figure 4.4: Sputter-coating unit.
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Substrates.

(al Polycarbonate.

Pieces of this new type of substrate were prepared for coating by 

rinsing in laboratory grade ethanol and air-drying. Due to the nature of 

these substrates, they had to be coated with silver on both sides.

(b) Silica spheres.

Silica sphere substrates were prepared for coating in the following 

ways:

(i) A silica suspension was allowed to dry slowly in air to give plates of 

semi-transparent or opaque silica. The plates were then stuck onto 

glass with adhesive and coated with the required thickness of silver.

(ii) Silica spheres dried by rotary evaporation were ground thoroughly 

(mortar/pestle) and applied on a piece of glass which had been coated 

with an even layer of adhesive (araldite or 3M spray-glue). Excess 

silica was removed and another piece of glass was placed over the 

spheres and subjected to pressure (bulldog clip) for 24 hours. This 

produced a fairly even layer of silica which could be silver coated.

44 Spectroscopy.

44.1 Raman spectroscopy.

A schematic diagram of the laser Raman system used is displayed in 

figure 4.5.
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All Raman experiments were carried out with the following 

apparatus :

LASER: Coherent Innova 70 Argon-ion laser. Exciting lines 457.5 -

514.5 nm. Figure 4.6 shows an energy level diagram of the 

lasing transitions.

SPECTROMETER: Spex Ramalog IV spectrometer. 

PHOTOMULTIPLIER TUBE: RCA.

PHOTON COUNTING SYSTEM: Spex.

RECORDER: Servoscribe chart recorder.

Typical operating conditions.

Laser pow er: 100 mW at sample.

Scan speed : 1000 cm^min ' 1 / 30 steps s‘l .

SERS experiments (figure 4.7 L

In each case, SERS substrates were immersed in the appropriate 

adsorbate solution for at least two minutes prior to use. Adsorbate 

solutions were normally contained in small petri-dishes, except in the 

case of vapour-deposited surfaces where the substrate was either 

placed on a drop of adsorbate solution or spotted with a small amount 

of solution and dried.



125

ADSORBATE
SOLUTION

SURFACE

MIRROR

• SCATTERED 
! BEAM

TO
SPECTROMETER

INCIDENT
BEAM

Figure 4.7: SERS experiments.



SERS experiments with gases: use of a vacuum line, 

fal Hydrogen sulphide gas/silver slides.

A lecture-bottle of H2S was used.

A dry ice/chloroform slush bath (-75°C) was prepared in a Dewar 

flask. An empty vessel fitted with a Rotaflo tap and quickfit 

connections was placed in the slush bath. Hydrogen sulphide was 

admitted into the vessel via a pasteur pipette/teflon tube from the gas 

cylinder. The H2S liquefied and collected at the bottom of the vessel.

Several pieces of silver coated microscope slides were placed in a 

second vessel, equipped with a side-arm and 1 0  mm^ quartz cell in 

addition to a Rotaflo tap and quickfit connections. This vessel was 

attached to a vacuum line along with the vessel containing H2 S. A

Dewar flask, filled with liquid nitrogen, was placed round the vessel 

containing H2S liquid. The vessel containing the silver slides was

evacuated to 10"  ̂Torr and H2S was allowed to diffuse into this vessel 

by removing the liquid nitrogen from around the other vessel and 

allowing it to warm up gradually.

(b) Benzene/pvridine vapour/silver slides.

Several pieces of silver slides were placed in the quartz cell part of 

a vacuum/u.v. vessel (described above). One drop of benzene or 

pyridine was placed in the other half of the vessel. This part of the



vessel was cooled in liquid nitrogen , solidifying the liquid. The vessel 

was then evacuated to 10' 5 Torr and isolated from the vacuum line.

The liquid warmed up, liquefied and vapourised.

The main problems associated with this method resulted from the 

condensation of the benzene/pyridine in the vessel.

4.4.2 Electronic absorption spectroscopy.

All absorption spectra were obtained from a Perkin-Elmer 

Lambda 9 U.V./vis./n.i.r. spectrometer. Dilute solutions of species under 

investigation were placed in 1 0  mm2  quartz cells.

4.4.3 Nuclear magnetic resonance (n.m.r.f spectroscopy.

*H n.m.r. spectra were obtained from a 200 MHz Bruker n.m.r. 

spectrometer.

4.4.4 Infra-red spectroscopy.

Infra-red spectra were obtained from 8  mm diameter KBr discs of 

samples on a Perkin-Elmer PE 93 infra-red spectrometer. A Philips 

P9800 FT-ir spectrometer was used for some samples.

4.4.5 Scanning electron microscopy (SEML

(a) Preparation of samples.

Samples were cut to approximately 10 mm square. They were 

mounted on small stainless steel stubs which were covered with a thin



layer of silver paint. Once the silver paint had dried completely, the 

samples were ready for SEM study.

In order to give acceptable images, SEM samples must be 

conductive. This normally entails coating samples with a thin, even 

layer of gold/palladium. As all the samples which required SEM 

analysis were already coated with silver of some kind, this initial step 

was unnecessary.

(b) SEM experiments.

A Philips scanning electron microscope was used. The maximum 

possible magnification was x 1 0 0 ,0 0 0 .



CHAPTER FIVE.

STUDIES OF DISUBSTITUTED 2.2'-BIPYRIDINES AND 

TRIS-BIPYRIDYL RUTHENIUM!!!! COMPLEXES.



5. STUDIES OF DISUBSTITUTED 2.2'BIPYRIDIN ES AND

TRIS-BIPYRIDYL RUTHENIUM (II) COMPLEXES.

5.1 Characterisation of bipvridvl ligands.

As detailed in chapter 4, three substituted 2,2'-bipyridine ligands 

were prepared. A brief account of the spectroscopic and analytical 

evidence obtained is now presented.

5.1.1 2.2'-bipvridine-4.4'-dicarboxylic acid (diacbipv).

The infra-red spectrum of this ligand displayed characteristic 

hydroxyl stretching at 3400 cm ' 1 and carbonyl stretching at 1700 cm-1. 

Heteroaromatic C—H stretching modes were observed at 3000- 

3100 cm '1.

Microanalysis gave the following results:

Found: C: 49.95%; H: 2.70%; N: 9.83%.

Requires: C: 59.00%; H: 3.30%; N 11.50%.

Although, superficially, these results appear extremely inaccurate, it 

should be noted that the product was extremely impure and 

recrystallisation proved impossible. Interpretation of the results on the 

basis of C/H/N ratios gave the following:

Found: C: 5.92; H: 3.85; N: 1.00.

Requires: C: 6.00; H: 4.00; N: 1.00.

Taking into account the purity of the product, it is clear that
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2,2-bipyridine-4,4'-dicarboxylic acid was formed.

5.1.2 Diethyl 2.2,-bipyridine-4.4'-dicarboxvlate (diesbipvl.

The final product obtained was fairly pure and crystalline. The 

infra-red spectrum of the product displayed a clear aryl-substituted 

ester carbonyl stretching mode at 1730 cm-1. The melting point of the 

product (159-160°C) was within one degree of the value quoted in the 

literature (198).

The analytical data obtained was as follows:

Found: C: 54.93; H: 4.47; N: 7.97.

Requires: C: 64.00; H: 5.33; N: 9.33.

C/H/N ratios were as follows:

Found: C: 16.10; H: 15.72; N: 2.00.

Requires: C: 16.00; H: 16.00; N: 2.00.

The most conclusive proof of the identity of the product came from 

the n.m.r. spectrum (figure 5.1).

The assignment of the spectrum is indicated overpage (labelling: 

figure 5.1).
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Figure 5.1: n.m.r. spectrum of diethyl 2.2*-bipvridine-4.4'

dicarboxvlate. Solvent: CDCI3 .
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5.1.3 4.4,-diamino-2.2>-bipvridine (diambipv).

(a) 2 .2 *-bipvridine-1 .1 '-dioxide.

The infra-red spectrum of this compound showed nitrosyl stretching 

at 1250 cm" 1 in addition to characteristic heteroaromatic C—H 

stretching and breathing modes.

Microanalysis gave the following data:

Found: C: 63.93; H: 4.20; N: 14.94.

Requires: C: 63.83; H: 4.26; N: 14.89.

All these results are consistent with the formation of the 

N,N-dioxide compound.

(b) 4.4,-dinitro-2.2,-bipyridine-1.1 '-dioxide.

The i.r. spectrum of this product showed a band at 1290 cm"1, 

ascribed to the nitrosyl stretching mode. Bands were also observed at



1340 and 1520 cm" 1 due to C— NO2  (conjugated) stretch (symmetric and 

asymmetric).

Analytical data:

Found: C: 40.49; H: 1.88; N: 19.00.

Requires: C: 43.17; H: 2.16; N: 20.14.

Corresponding C/H/N ratios:

Found: C: 2.46; H: 1.38; N: 1.00.

Requires: C: 2.50; H: 1.50; N: 1.00.

Considering the impurity of the yellow material obtained, these 

results correlate fairly well.

(c) 4.4l-diamino-2.2,-bipyridine.

Infra-red analysis of the recrystallised product revealed N—H bend 

at 1600 cm ' 1 and N — H stretch (symmetric and assy metric) at 3410 

and 3300 cm '1, respectively.

Analytical data:

Found: C: 63.77; H: 5.42; N: 28.93.

Requires: C: 64.52; H: 5.38; N: 30.11.

C/H/N ratios:

Found: C: 2.57; H: 2.62; N: 1.00.

Requires: C: 2.50; H: 2.50; N: 1.00.

These analyses agree fairly well with the theoretical data. Even 

after several recrystallisations, the product still appeared impure.



Mass spectrometry was employed in an attempt to confirm the 

identity of the product. The parent molecular ion peak was at 186 g 

(molecular weight of 4,4'-diamino-2,2’-bipyridine) and peaks were 

observed at 170 and 154 g, indicating the loss of each amino 

substituent.

5.2 Absorption spectroscopy of rutheniumdD complexes of substituted 

2 .2 !-bipvridyl ligands.

5.2.1 RufbipvljCU and Rufbipv^K

The chemistry of the tris(2,2'-bipyridyl) ruthenium(II) ion has been 

known for many years (206) (207). The attention paid to [Ru(bipy)3]2+

and related complexes in the fields of photochemistry and 

electrochemistry is, in part, due to the chemical stability of the species. 

These complexes, in addition to analogous 1,10-phenanthroline 

complexes, have been used as dyes in luminescent solar collectors (199). 

The complex, as produced by the method previously described, is a 

racemic mixture of (+) and (-) enantiomers. The chirality of the species 

is not relevant to this study as conventional Raman techniques are 

insensitive to optical activity.

Pure Ru(bipy)3 Cl2  and Ru(bipy)3 l2  were produced, showing no 

evidence of the formation of any by-products. The characteristic 

electronic absorption spectra of these complexes (199) afforded a



simple method of characterisation.

Figure 5.2 shows the absorption spectrum of a 1.2 x 10"4  mol I" 1 

solution of Ru(bipy)3 I2  compared with the spectrum of a dilute solution

of RuCl3 .3H2 0 . An intense maximum is observed at 451 nm. In

addition, there is a shoulder present at approximately 415 nm. The 

absorption maximum is assigned as a metal (d) -> ligand (7T*) charge- 

transfer transition. Two one-electron transitions lie within the main 

absorption band. These involve transitions from the d orbitals of e 

symmetry, under the D3 point group, to the a2  and e components of the

7T* ligand orbitals (206)(208). Figure 5.3 illustrates these transitions.

The other ruthenium(II) complexes produced were also 

characterised by absorption spectroscopy. Table 5.1 summarises known 

(199) absorption maxima and extinction coefficient data for each of the 

other complexes prepared.
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Figure 5.2: Electronic absorption spectra of (a) a dilute aqueous solution 
ofRuCl3 .3H20  and (b) a 1.2 x 10~4  mol l' 1 aqueous 
solution of Rufbipv^K
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Table 5.1: Spectroscopic properties of tris(2.2,-bipyridvn-

rutheniumd!) complexes (reference (199): solvent: ethanol/ 

methanol (4:1 v/v)).

Complex. Xmax (abs.) extinction
(nm) coefficient.

£s x 1 0 4

Tris-(2,2'-bipyridine) ruthenium(II) 450 1.43

----- (4,4'-bisethoxycarbonyl------- 464 2.33

----- (4,4'-diamino------------------- 504 1.05

----- (4,4'-diphenyl------------------ 473 2.80

----- (4,4'-dimethyl------------------ 455 1.70

5.2.2 Tris(diethyl-2.2,-bipyridine-4.4,-dicarboxylate) rutheniumfll) 

ditetrafluoroborate. Rufdiesbipv^TBF^I.

As discussed in section 4.1.3 (a), crystallisation of the complex did 

not occur. In order to characterise the product, a quantity of the 

reaction mixture concentrate was diluted in distilled water ( 1 :1 0 0 ) to 

give a bright orange solution. Two portions were diluted in this 

manner. The absorption spectrum of one of the solutions is displayed in 

figure 5.4. The two solutions display intense metal (d) ligand (7T*) 

charge-transfer maxima at 466 and 465 nm, corresponding well to the 

expected maxima as detailed in table 5.1. The spectra did not indicate 

the presence of any by-products or impurities, although NaBH4  is
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Figure 5.4: Electronic absorption spectrum of an 8.9 x 10~4  mol I' 1 

aqueous solution of RufdiesbipvtyBF/jIg .



certainly present as a result of the preparative procedure. The 

concentrations of the solutions, determined from the Beer-Lambert law 

and extinction coefficient data (table 5.1), were 8.9 x 10' 4  and 9.3 x 10‘ 4  

mol l"1, respectively. The shift in the absorption maxima to longer 

wavelength, with substitution in the C4  and C4< positions, is as expected 

on the basis of molecular orbital calculations (209).

5.2.3 Tris(4.4l-diamino-2.2,-bipvridine) ruthenium(II) dichloride. 

Rufdiambipy )3 C12.

As with the diester species, this complex did not crystallise. A 1:20 

dilution in distilled water of the dark red reaction concentrate was 

prepared. Initially this diluted solution was red. After approximately 

one week, however, it had become deep blue.

In order to obtain an absorption spectrum of the blue solution, a 

small volume was forced through glass microfibre paper (to filter some 

material which had deposited in the solution). The filtered solution was 

light red in colour. The absorption spectra of each of these solutions is 

displayed in figure 5.5. The blue solution has maxima at 650.8 and

514.4 nm and the light red solution has an intense maximum at

503.4 nm. It is clear that the light red solution contains the 4,4-diamino 

substituted complex since the absorption maximum corresponds well 

with the value from table 5.1.



141

0.6

Absorbance

0.4

0.2 -

700600400 500
nm

Figure 5.5: Electronic absorption spectra of (a) RufdiambipylgCU
reaction concentrate in distilled water after one week (blue)

and (bl the same solution after draining through glass 
microfibre paper (light red).



Dilution of the reaction concentrate in ethanol (1:20) gave a wine 

coloured solution. This solution was stable: no colour change was 

observed.

Purification by column chromatography.

(al Blue solution (reaction concentrate in water).

Although the blue solution absorbed onto the sephadex column, it 

did not travel. More polar solvents such as ethanol and methanol and 

non-polar solvents such as carbon tetrachloride did not elute the blue 

material.

(b) Wine solution (Reaction concentrate in ethanol).

This solution adsorbed onto the sephadex column and migrated.

Two fractions were obtained and the absorption spectra of each was 

obtained (figure 5.6). Fraction 1 was green and showed a maximum at

631.6 nm. Fraction 2 was red and showed a maximum at 504 nm. 

Clearly, fraction 2 is the tris-ligand complex. A possible identity of 

fraction 1 is the bis-ligand neutral complex, Ru(diambipy)2 Cl2 - The 

formation of impurities such as this, in this category of reaction, is well 

known (206). The absorption spectrum of Ru(bipy)2 Cl2, however, has a

maximum at 525 nm: such a large shift (525 ->631.6 nm), on 

substitution of the 2,2'-bipyridyl ligands, is unlikely. Fraction 1 may, 

therefore, be the tris-ligand ruthenium(III) complex.

The purified ethanolic solution of Ru(diambipy)3 Cl2  was suitable for
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Figure 5.6: Electronic absorption spectra of fractions obtained from the 
column chromatography of a solution of the 
Rufdiambipv^CU reaction concentrate in ethanol.
(a) Fraction 1 (green): (bl fraction 2 (red).



use in SERS experiments.

Reaction of rRufdiambipvlgl2* with acid.

The SERS of the protonated diamine complex was of interest. To this 

end, a 5 ml sample of the complex in ethanol was treated with 1 ml of 

approximately 4 mol T1 hydrochloric acid. It was observed that, after 

several hours, the initially red solution had become deep blue (in an 

identical manner to the reaction concentrate/water solution).

Absorption spectra of the solution, at several intervals, were obtained.

The spectrum of the solution after treatment with concentrated aqueous 

sodium hydroxide was also obtained. Figure 5.7 displays all these 

spectra and the spectrum of a solution of the complex in ethanol with 

2 ml of water added. The spectra of the complex after treatment with 

acid show the progressive appearance and strengthening of a maximum 

at approximately 650 nm which eventually becomes the dominant 

absorption in the visible region. After neutralisation with sodium 

hydroxide, the blue solution once again became red and the 504 nm 

absorption was observed. The spectrum of the complex/ethanol/water 

mixture shows a small absorption around 650 nm.

Clearly, a new species is forming on addition of acid and also water 

(at a considerably slower rate), but not with ethanol.

The progress of the complex/ethanol/acid reaction was followed 

more accurately (figures 5.8 and 5.9). The reaction exhibited a half-
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Figure 5.7: Electronic absorption spectra of a 5 ml sample of
Rufdiambipv^Ck in ethanol (a) treated with 1 ml of 4
molar HC1. after 5 hours, (b) the same solution after 16 
hours, (c) the same solution after the addition of 2  ml of 
dilute aqueous NaOH and (d") the original solution, after 
treatment with 2 ml of distilled H2 O. after 19 hours.
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Figure 5.8: Electronic absorption spectra, at various intervals, of a 10 ml 
sample of RufdiambipvlgClo in ethanol with 1 ml of 4 molar 
HC1 added.
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Figure 5.9: Graph of the reaction of Rufdiambipv^Ck with HC1 with
time, d indicates the absorbance of the 504 nm band and ♦ 
indicates the absorbance of the 650 nm band.



life of approximately 100 hours, with the blue absorption becoming 

dominant beyond this point.

The identity of the blue species is probably the tris-ligand 

ruthenium(III) ion. It is highly unlikely that the protonation of the 

4.4'-diamino substituents of the 2,2'-bipyridyl ligand would cause such 

drastic changes in the absorption spectrum of the complex. Oxidation of 

[Ru(bipy)3 ]2+ in acidic media is known (206), but, normally, an oxidising

agent such as cerium(IV) or lead(IV) oxide is required. It is possible 

that the substitution of the 2,2'-bipyridyl ligands makes the 

ruthenium(II) complex more susceptible to slow oxidation in the acidic 

environment. This explains the slower rate of oxidation in water and 

the stability of the ruthenium(II) complex in ethanol, since alcohols do 

not promote oxidation.

The absorption maximum of the blue ruthenium(III) complex is 

primarily a ligand(7T) -^metal(t2g) charge-transfer transition (206).

5.2.4 Tris(4.4,-diphenyl-2.21'-bipvridine) ruthenium(II) dichloride. 

Rufdiphbipv^CU.

A small amount of the solid product was dissolved in absolute 

ethanol to give a dark red solution. The absorption spectrum of this 

solution (figure 5.10) displayed several broad maxima, indicating the 

presence of by-products.



Several samples of the solution were subjected to column 

chromatography. In each case, three fractions were eluted. The 

absorption spectra of each of these fractions are shown in figure 5.10. 

The main features of the spectra were as follows:

Fraction 1: orange; absorption maximum at 474 nm.

Fraction 2: pink; maxima at 525 and 390 nm.

Fraction 3: yellow; maxima at 525 (weak) and 390 nm.

Fractions 2 and 3 were very close together on the column, but well 

separated from fraction 1.

Fraction 1 is clearly the [Ru(diphbipy)3]2+ complex. The shape and

value of the absorption maximum are as expected (table 5.1). Fraction 

2 is almost certainly the neutral bis-ligand ruthenium(II) complex.

The absorption spectrum of fraction 3 was similar to that of 

fraction 2, but with the absorption at 525 nm much reduced in 

intensity. Since fraction 3 was so close to fraction 2 on the sephadex 

column, it is likely that the former is Ru(diphbipy)2Cl2  which , for some

reason, travelled at a slower rate through the support.
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Figure 5.10: Electronic absorption spectra of Rufdiphbipv^CU in
ethanol, (a) reaction product (mixture): (bl fraction 1 
(orange! from column chromatography of the reaction 
product: (cl fraction 2 (pink): (d) fraction 3 (vellowl. 
Absorbance data are not indicated as the spectra are 
presented for comparison of absorption maxima only.



5-2.5 Tris^^'-dim ethyl^.l'-bipvridine) rutheniumrtll dichloride. 

Rufdimebipv^CK  

A small amount of the orange product, dissolved in absolute ethanol, 

gave a very clean absorption spectrum (figure 5.11), with an intense 

maximum observed at 454.5 nm. This is clearly the metal(d) ligand 

(7T*) transition of the complex, as detailed in table 5.1. Column 

chromatography yielded only one fraction, indicating the complex, as 

prepared, was pure.



Absorbance

600500400300
nm

Figure 5.11: Electronic absorption spectrum of a dilute ethanolic 
solution of Rufdimebipv^CU.



CHAPTER SIX. 

SPECTROSCOPIC INVESTIGATIONS OF

POTENTIALLY SERS-ACTIVE SUBSTRATES.



6. SPECTROSCOPIC INVESTIGATIONS OF POTENTIALLY

SERS-ACTIVE SUBSTRATES.

6.1 Introduction.

As discussed in chapter 3, the overall objective of these studies was 

to probe the nature of the surface/adsorbate molecule interaction. The 

primary aim was to find a suitable surface for intensive SERS study. A 

summary of the most important requirements for a probe surface, 

specific to these studies, is given at this point.

(a) Range.

With respect to SERS, it would be advantageous if the surface was 

able to sense a wide range of adsorbate molecules. In particular, the 

surface must be active with [Ru(bipy)3]2+ and modified analogues.

(b) Reproducibility.

The surface must be highly reproducible in order that meaningful 

comparisons can be made of SER spectra of different adsorbate 

molecules adsorbed on the same type of surface. A surface with a 

simple, regular morphology would be advantageous.

(c) Ease of production.

A surface to be subjected to intensive SERS study would, ideally, 

have a simple and inexpensive preparative procedure.

[Ru(bipy)3 ]2+ and analogues were chosen as initial test molecules



since the SER spectrum of Ru(bipy)3 Cl2  has been studied (99) and has 

shown a high degree of enhancement. The reason for studying 

disubstituted analogues of [Ru(bipy)3]2+ was to address, in part, the 

question of the influence of co-ordinating groups in adsorbate molecules 

on SERS enhancement.

Inorganic complexes are advantageous for SERS investigation as 

they are generally of high symmetry. This gives the possibility of 

different selection rules for the Raman spectra of free and adsorbed 

molecules. The [Ru(bipy)3]2+ ion is of D3 symmetry (figure 6.1).

2 +

n — Ru

Figure 6.1: Structure of the (+HRu(bipy)3l2+ cation.

6.2 Colloids.

Colloids are potentially useful in the context of this body of work as 

they provide an ideal control system on account of the vast amount of



work which has already been published. The literature has shown that 

colloidal SERS-active systems can detect a large variety of chemical 

species.

6.2.1 Silver colloids/Rufbipv^K

Figure 6.2 shows the electronic absorption spectrum of a freshly 

prepared silver colloid sample. The colloid is yellow in colour and 

displays a strong absorption maximum at 390 nm. This maximum 

represents the surface plasmon resonance peak and, in this case, is 

characteristic of roughly spherical metal particles with diameters in the 

region 5 to 50 nm (79). Figure 6.2 also shows the absorption spectrum 

obtained when 2 ml of the silver colloid sample was mixed with 2 ml of 

a 1 x 10'4 mol l '1 aqueous solution of Ru(bipy)3I2. It can be seen that

the addition of the adsorbate solution induced a red-shift in the surface 

plasmon maximum: in this case to 500 nm. This was reflected in the 

colour change of the complex/colloid mixture which became orange. It 

has been suggested that such a shift is due to the formation of colloidal 

aggregates. Indeed, it was observed that, after some time, the 

complex/colloid solution became green and large metal particles were 

visible in the cell. This process illustrates the disadvantage of colloids 

in SERS experiments: the precipitation of metal. The maximum that 

develops at 500 nm, however, renders this system, in the partially



aggregated state, suitable for SERS study with an argon-ion laser since 

the new surface plasmon resonance falls within the range of Ar+ 

exciting lines, 457.1 to 514.5 nm.

There was no evidence of the formation of a charge-transfer band in 

the absorption spectrum.

The SERR spectrum of colloidal silver after exposure to Ru(bipy)3I2

is shown in figure 6.3 (Ar+ laser, 488.0 nm excitation). It should be 

noted that the enhanced spectrum of this system is SERRS as the 

excitation wavelength is close to both the surface plasmon resonance of 

the colloidal surface and the metal(d) -> ligand(7T*) charge-transfer 

absorption of the bulk adsorbate. In the region 1000 to 1750 cm '1, 

highly intense Raman bands were observed, most ascribed to 

2,2*-bipyridy 1 ring modes. The resonance Raman spectrum of 

Ru(bipy)3I2 is also shown in figure 6.3. The enhancement of SERRS over

RRS is approximately 106. It is also clear that the relative intensities 

and wavenumbers of the Raman bands in the SERR spectrum compared 

to those in the RRS, indicating the absence of a chemical bond between 

the adsorbate molecules and the colloidal surface. The absence of any 

obvious charge-transfer band in the absorption spectrum of the 

complex/colloid mixture further confirmed this. SERS enhancement in 

this system is via the electromagnetic (surface plasmon excitation) 

mechanism.
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Figure 6.2: Electronic absorption spectra of (a) a freshlv-prepared silver 
colloid sample and (b) 2 ml of the colloid mixed with 2 ml of 
an aqueous solution of Rufbipv^k  ( l x  10~4 mol l~h
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Figure 6.3: (a) SERR and (b) RR spectra of the silver colloid/Rufbipv^Io 

svstemdO'4 mol l 'h . TAr* laser. 488.0 nm excitation].



6.3 Chemically prepared films

6.3.1 Silver-coated microscope slides.

The initial studies of Ni and Cotton (113) with silver-coated slides 

indicated that they had some potential in the field of chemical sensing. 

(a) Characterisation of the surface.

Absorption spectrum.

Figure 6.4 displays the electronic absorption spectra of a piece of 

silver-coated slide before and after exposure to a solution of 

Ru(bipy)3l2 . Before exposure, the silver slide displays an absorption

maximum at 410 nm. The position of this surface plasmon maximum, 

being close to the maximum for silver colloids, is not surprising as the 

preparative methods for both substrates are very similar. The shift to 

longer wavelength, with silver slides, is consistent with a "partially 

aggregated" silver film. The absorption spectrum after exposure shows 

a peak at approximately 450 nm, with the feature at 410 nm still 

visible. The maximum at 450 nm simply corresponds to the addition of 

the Ru(bipy)3I2 solution and the resultant metal(d) -> ligand(7T*) 

transition.

Electron microscopy.

Scanning electron microscopy (SEM) was used to study a frosted 

microscope slide surface before and after coating with silver and after 

exposure to a solution of 2,2’-bipyridine (figure 6.5).
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Figure 6.4: Electronic absorption spectra of a piece of chemically 
silver-coated slide (a) before and (b) after exposure to a 
10~3 mol I '1 aqueous solution of Rufbipv^K
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(a)

(b)

Figure 6.5: Scanning electron micrographs of a frosted microscope slide
(a) before and (b) after coating with silver. Magnification x 1600.
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(c)

6.5 (c) after_exposure of the silver-coated slide to a dilute 
solution of l.^-bipyridine. Magnification x 1600.



Figures 6.5 (a) and (b) clearly show that the regular, machined 

nature of the frosted slide surface morphology is not preserved after 

silver coating and that a randomly rough silver layer is deposited. The 

diameters of the silver surface features are in the range 40 to 150 nm 

and highly irregular. There is no evidence of surface rearrangement, 

after exposure to the adsorbate solution, from figure 6.5 (c).

(bl SERRS with Ru(bipv)3I2 and Ru(bipvl3Cl2.

The SERR spectrum of a piece of silver coated slide immersed in an 

aqueous solution of Ru(bipy)3Cl2  is shown in figure 6.6. The

corresponding resonance Raman spectrum is also displayed. Clearly, the 

SERR spectrum is highly enhanced and is almost identical to the 

spectrum of Ru(bipy)3I2 adsorbed on a silver colloid (figure 6.3). The

SERR spectrum displays no obvious differences in relative intensities 

and band positions with respect to the RRS. The enhancement over the 

RRS is of the order of 106.

It should be noted that the SERRS spectra, with silver slides, of 

solutions of Ru(bipy)3l2  and Ru(bipy)3Cl2  (of equal concentration) were

identical in terms of relative intensities, band positions and 

enhancement. This indicates that the anion plays no significant role in 

the adsorption process. Such effects are more pronounced in 

electrochemical systems.
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Figure 6.6: (a) SERR and (b) RR spectra of the silver slide/Rufbipv^CU 

system (10~3 mol l 'h . TAr+ laser. 488.0 nm excitationl.



The SERR spectra of Ru(bipy)3I2 in contact with silver-coated

frosted and flat microscope slides were also tested. Equal enhancement 

was observed. This is further evidence (along with SEM) that silver 

films coat onto substrates in a random fashion and that the morphology 

of the substrates before coating does not influence SERS enhancement. 

The roughness of the frosted slides may, however, help to physically 

stabilise the silver layer.

Another notable feature of the SERR spectrum of [Ru(bipy)3]2+ is the 

absence of fluorescence, which is so dominant in the RRS of 

Ru(bipy)3Cl2 . Fluorescence is a significant limitation of Raman

spectroscopy. It is problematic for two main reasons. Firstly, both 

Stokes Raman and fluorescence bands occur at frequencies lower than 

that of the incident radiation. Both processes can occur in the same 

energy region and interfere. Secondly, the quantum yield of 

fluorescence processes is generally much higher than that of Raman 

scattering and weaker Raman signals can be lost under intense 

background fluorescence. The quenching mechanism at work in this 

case may involve the injection or withdrawal of electrons taking part in 

the fluorescence process.

(c) Optimisation of surface preparation procedures.

In order to maximise SERS enhancement and gauge the optimum 

practical procedure, SERR spectra were obtained from silver slides



which had been prepared with different concentrations of silver nitrate 

solution. In these experiments, all other factors were identical 

throughout: the concentrations and volumes of the other reactants used, 

heating times and sonication times. Table 6.1 summarises the results of

these studies.

Table 6.1: Effect of variation in silver nitrate concentration.

AgNC>3 concentration. Description of

(w/v %). resultant film.
Arbitrary indication 

of SERRS intensity 
with rRufbipv^l2*

3

2

1

0.5

Very thick, white. 

Even, yellow.

Thin and uneven. 

Not homogeneous.

+ + +

(+)

More detailed study was clearly not required: the 2% solution of 

silver nitrate gives the most enhanced SERR spectrum. The use of a 3 % 

solution of silver nitrate gives a silver surface which does not have 

adequate roughness features. The less concentrated silver nitrate 

solutions give patchy films with not enough active silver: these 

extremely thin films could be susceptible to burning in the laser beam.

Other variable factors include the time of heating. It was observed 

that if the slides were left for too long in the near-boiling silver



solution, thick white layers were produced.

In all subsequent preparations of silver-coated slides, 2% silver 

nitrate was used.

fd) Other aspects of the SERR spectrum of rRutbipvty2* on silver slides.

(i) Dependence on time.

The SERR spectrum of RuCbipy^C^ (10'3 mol l '1 aqueous solution) 

was followed over a period of time. An initial spectrum was obtained 

immediately after the slide was immersed in the adsorbate solution 

and, thereafter, at ten minute intervals. Table 6.2 summarises the 

results obtained.

Table 6.2: Variance of the intensity of the 1488 cm '1 peak from the 

SERR spectrum of Rufbipv^k  on a silver slide with time.

Time (minutes). Counts (arbitrary units:
1488 cm '1 signal, (peak height - baseline)).

0 21
10 30
20 41
30 43
40 50
50 51
60 49

The graph plotted from this data (figure 6.7) shows that SERRS 

intensity reaches a maximum only after at least 30 to 40 minutes. This 

indicates that adequate time must be allowed, in SERS experiments,
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Figure 6.7: Plot of the intensity of the 1488 cm '1 peak of the SERR
spectrum of Rufbipy^k  on a silver slide versus time. Data
from table 6.2.



between treatment of the slide with the adsorbate solution and the 

actual Raman experiment. Care was taken to ensure that all parameters 

were held constant throughout these studies. The petri-dish containing 

the adsorbate solution and the silver slide was not moved throughout 

the study and the incident laser beam was blocked between 

experiments.

(ii) Dependence on adsorbate concentration.

Successive dilutions were made to a 10"  ̂mol l '1 aqueous solution 

of Ru(bipy)3 Cl2  and small pieces of freshly-prepared silver slides were

immersed in each dilution and the SERR spectra obtained. All other 

factors, such as the laser power, were held constant. The spectra 

showed a progressive decrease in SERRS enhancement with decrease in 

adsorbate solution concentration. Peaks, with acceptable signal-to-noise 

ratios, could still be detected at concentrations of 10-̂  mol l"1 and 

lower.

This factor was re-examined quantitatively (table 6.3 and 

figure 6.8)



Table 6.3: Variance of the intensity of the 1488 cm-1 peak o f the SERR

spectrum of Rufbipv^Clo on silver slides with adsorbate 

concentration.

Concentration of Counts (arbitrary units:
Rufbipv^CU (mol l 'h  1488 cm-1 signal, (peak height - baseline)

2 x 10-4 984
4 x 10'^ 638
8 x 10'6 525
1.6 x lO’6 224
3.2 x 10'7 180
6.4 x lO"** 153
1.28 xlO"8 120
2.56 x lO’9 104
5.12 x lO’10 81

These studies clearly demonstrate the remarkable sensitivity of 

silver slides in the detection of the [Ru(bipy)3 ]2+ ion. The experiments,

however, have a significant source of error. It was assumed that each 

of the silver slides used were identical and that the laser beam fell on 

an identical area of the slide in each case. Due to the randomly rough 

nature of the film and the variance in the dimensions of roughness 

features across the surface, this cannot be true. Although the general 

trend in this case is clear, with respect to individual SERS experiments 

and comparisons between experiments, the reproducibility of the 

practical method is probably not very high.
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Figure 6.8: Plot of the intensity of the 1488 cm~^ peak of the SERR 
spectrum of Rufbipv^CU versus adsorbate concentration.
Data from table 6.3.



(nil Enhancement: effect of charge.

As discussed in section (b), the SERR spectrum of [Ru(bipy)3]2+ on

silver slides shows no evidence of chemical bond formation between the 

adsorbate and the surface. It is known that colloidal silver particles are 

negatively charged and since silver slides are produced in an almost 

identical fashion, the silver layer may be negatively charged. The high 

degree of enhancement observed with [Ru(bipy)3 ]2+ could, therefore, be

the result of some charge-mediated interaction. In order to test this 

hypothesis, SERR spectra were obtained from Ru(bipy)2 Cl2  and 

Ru(bipy)2 (SCN)2 on silver slides. Both of these molecules are neutral.

The observed enhancements, in each case, were only slightly lower than 

those obtained with the tris-l^'-bipyridyl complex. The concentrations 

of each neutral complex solution were identical to the concentration of 

the solution of the tris-2,2,-bipyridyl complex used for the comparison. 

If, therefore, the enhancement of the Raman spectrum of [Ru(bipy)3]2+

is, indeed, charge- mediated, it is a very small effect.

(el SERRS with other 2.2*-bipvridvl and 1.10-phenanthroline 

complexes.

Table 6.4 details the complexes studied.

All of the 2,2'-bipyridyl complexes, except Mo(CO)4 (bipy), gave

highly enhanced spectra. All the spectra displayed similar



characteristics in the 1000 to 1750 cm '1 region. Clearly, these active 

vibrations are due to the ring modes of the 2,2'-bipyridyl ligands.

Ru(phen)3 Cl2  showed a high degree of SERRS enhancement (figure

6.9). Although the general pattern in the 1000 to 1750 cm '1 region was 

similar to that of the 2,2’-bipyridyl complexes, the bands were at 

distinctly different positions. The question arises as to which ligand 

would predominate in the SERR spectra of a mixed-ligand complex. To 

resolve this question, the complex Ru(bipy)2 (phen)Cl2 was prepared.

This complex displayed a broad absorption maximum at 450 nm. Figure 

6.10 shows its SERR spectrum on a silver slide. Although this spectrum 

is dominated by fluorescence, bands are discernible above the rising 

baseline. Table 6.5 compares the band positions of this complex with 

those of [Ru(bipy)3]2+ and [Ru(phen)3]2+. The band positions of the

mixed ligand ruthenium(II) complex are assigned to one or other of the 

ligands involved.

From the spectrum of [Ru(bipy)2 (phen)]Cl2 » it is clear that the

2,2'-bipyridyl peaks are of higher intensity over the 1,10- 

phenanthroline peaks by a factor of approximately two. This is simply 

a consequence of the ratio of 'bipy' to 'phen' in the mixed-ligand 

complex. There is no evidence of competitive adsorption or the 

selective enhancement of one or other set of vibrational modes.



Table 6.4: 2.2l-bipvridvl and 1.10-phenanthroline complexes.

ComDlex. SERRS solvent. Preparation.

Mo(CO)4(bipy) c h 3c n as received.

Ru(bipy)2 (SCN)2 c h 3c n section 4.1.1(c).

Ru(bipy)2Cl2 c h 3c n section 4.1.1(d).

Ru(bipy)2(pn)I2 * c h 3c n as received.

Ru(phen)3Cl2 c h 3c n as received.

Ru(bipy)2(phen)Cl2 c h 3c n section 4.1.1(e).

* pn = 1,2-propylenediamine.
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Figure 6.9: SERR spectrum of a IQ'3 mol I '1 acetonitrile solution of
RufphenljCWsilver slide. \Ar+ laser. 488.0 nm excitation!.
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Figure 6.10: SERR spectrum of a IQ'-* mol 1~* acetonitrile solution of 
RufbipvWpheiOCWsilver slide. TAr+ laser. 488.0 nm
excitationl.



Table 6.5: Comparitive band frequencies of rRulbipvty2* fbipv peaks'). 

rRu(phen)312+ ('phen peaks') and IRulbipv WphenllCU rbipv- 

phen peaks*), (w = weak).

(bipy) peaks, (phen) peaks. fbipv)(phen) peaks corresponds to:

1040
892

1041 bipy

1183

1060w
1155w

1182 bipy

1285
1217

1283 bipy
1308 1308 phen

1329 1329 bipy
1417
1460 1461 phen

1500 1500 bipy
1520 1520 phen

1575 1573 bipy
1583 1580 phen

1621 1620 bipy

(f) SERS-activitv of silver-coated slides with organic and gaseous 

adsorbate species.

(i) 2.2*-bipvridine.

The SER spectrum of a 1.8 x 10"  ̂mol H  aqueous solution of 2,2'- 

bipyridine adsorbed on a silver slide (figure 6.11) shows appreciable 

enhancement. With the same solution, the normal Raman spectrum 

(same figure) is lost beneath the noise. The SER spectrum compared to 

the Raman spectrum of bulk 2,2'-bipyridine (same figure) shows
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Figure 6.11: (a'l normal Raman spectrum of an ethanolic solution of 
2.2'-bipvridine.
(b) SER spectrum of an ethanolic solution of 2.2l-bipvridine 
(1.8 x 10~3 mol HVsilver slide.

(c) normal (bulk) Raman spectrum of solid 2.2,-bipvridine. 
TAr+ laser. 488.0 nm excitationl.



distinct differences. Table 6.6 details the bands present in each

spectrum.

Table 6.6: Bands present in the SER spectrum of a 1.8 x 10 3 mol I '1

solution of 2.2*-bipvridine and the NRS of the bulk adsorbate.

NRS (cm '1). SERS (cm '1).

884w
1004

1030
1056w

1068
1175

1240
1278

1308
1324

1457
1492 1490

1564
1580
1602 1600

The large differences between the SERS and NRS of 2,2'-bipyridine 

indicate chemical bonding between the molecule and the silver surface. 

This undoubtedly involves a Lewis acid/base interaction between one 

or both of the bipyridyl nitrogen atoms and the silver surface. Since 

rotation around the C2— C2- bond can occur, it is possible that only

one nitrogen may be bound to the silver surface. The similarity of the 

SER spectrum to the RRS of [Ru(bipy)2]2+, however, suggests bidentate



chelation, with ruthenium, in effect, replaced by silver as shown in 

figure 6.12.

/  Ag surface /
x '  /  /  /  /

Figure 6.12: Interaction of 2.2l-bipvridine with a silver slide surface. 

(n) Pyridine.

Figure 6.13 shows the SER spectrum of a solution of pyridine 

(0.1 mol I '1) in contact with a silver-coated slide. The Raman spectrum 

of liquid pyridine is pictured for comparison, since the normal Raman 

spectrum of 0.1 mol I-1 pyridine, under the same conditions, was lost 

beneath background noise. There are significant differences between 

the spectra shown, as summarised in table 6.7.

Clearly, the differences indicate chemisorption of pyridine molecules 

through the nitrogen lone pairs, thus forming ’complexes’ and altering 

the enhanced spectrum. The broad maxima in the SER spectrum may be 

associated with carbon deposition.



1250 10001500

Raman shift (cm'l)

Figure 6.13: (a) SER spectrum of an aqueous solution of pyridine (0.1 
mol 1'^/silver slide.
(b) normal Raman spectrum of liquid pyridine.
TAr+ laser. 488.0 nm excitationl.



Table 6.7: SER spectrum of pyridine (0.1 mol I-1 aqueous solution) 

and NRS of liquid pyridine (w = weak).

NRS (cm '1) SERS (cm4 )

992 1009

1031 1036

1218w 1250 - 1350, broad

1596w 1510 - 1620, broad

(iii) Benzoic acid.

The SER spectrum of a 10"  ̂mol I-1 ethanolic solution of benzoic 

acid and the corresponding normal Raman spectrum were obtained 

Figure 6.14 shows significant differences between the spectra. These 

differences may indicate the adsorption of benzoic acid through the 

carboxyl group and as the benzoate ion, evidenced by the lack of a clear 

carbonyl stretching mode.

(iv) Benzene.

Figure 6.15 shows the SER and NR spectra of a solution of benzene 

(0.1 mol l '1). The system clearly exhibits no SERS enhancement, even 

with the high laser power output used.

Discussion.

These results show that, with organic adsorbates, silver slides
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Figure 6.14: (a) SER spectrum of an ethanolic solution of benzoic acid 
(10~3 mol l'h/silver slide.
(b) normal Raman spectrum of the same solution. 
fAr* laser. 488.0 nm excitation!.
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Figure 6.15: (a) SER spectrum of benzene (0.1 mol l'h/silver slide, 
(b) normal Raman spectrum of the same solution. 
fAr+ laser. 488.0 nm excitationl.



exhibit SER-activity only when exposed to molecules which have a 

strong site of co-ordination. The lack of SERS enhancement with 

benzene is a consequence of the inability of the molecule to bond 

strongly to the chemically-deposited silver surface. All the organic 

adsorbate species studied showed evidence of chemisorption and 

subsequent complexation with silver atoms. Whereas strong 

complexation seems to be necessary for high enhancement with organic 

adsorbates, it is not the case with inorganic complexes. The additional 

resonant enhancement factor associated with [Ru(bipy>3]2+ may be

responsible for the inordinate enhancement.

(VI Gases.

The SERS of hydrogen sulphide gas and vapour-phase benzene and 

pyridine was studied. None showed any enhancement. It is thought 

that this may, in part, be due to the procedures used. In the case of 

hydrogen sulphide, the molecules may simply be desorbing from the 

metal surface at much lower than monolayer coverage.

It was observed that vapour-phase benzene and pyridine 

condensed on the sides of the vacuum cell. Clearly, in each case, the 

vapour pressure was not sufficient.



6.3.2 Gold and copper-coated microscope slides.

Attempts to prepare gold and copper films, by variations on the 

method used for silver-coated slides, proved unsuccessful. In each case, 

thin, patchy films were produced. SEM study (figure 6.16) confirmed 

this.

The absorption spectrum of a piece of gold-coated microscope slide 

showed a broad maximum at approximately 580 nm. Argon-ion 

excitation was, therefore, not suitable.

The SERS-activity of gold and copper films was tested with 

[Ru(bipy)3 ]2+ and various other adsorbates. The exciting line used was

the 647.1 nm line of a krypton-ion laser. These spectra displayed no 

vibrational features. It is clear that slides produced through these 

preparative methods do not possess the required roughness features to 

support SERS enhancement.

6.3.3 General discussion.

The experiments outlined indicate that, for certain adsorbates, silver 

slides show a high degree of sensitivity with respect to SERS. When 

considered in relation to the relative ease and inexpense of production 

of the substrate, this indicates considerable potential in the field of SERS 

chemical sensing.

The substrate, however, has several notable drawbacks. Firstly, the
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(a)

Figure 6.16: Scanning electron micrograph of la) gold and (b) coppery 
coated microscope slides. Magnification I  1600,-.



randomly rough morphology inevitably raises doubts about the 

reproducibility of the preparative procedure and the validity of 

comparing spectra obtained from different silver slides or even from 

different pieces or areas of the same silver slide. This problem has 

particular relevance to studies of concentration dependence and other 

precise, quantitative SERS investigations.

Secondly, as evidenced by SEM investigations, the size distribution 

of active silver particles is in the range 40 to 150 nm. Such a 

distribution randomly arrayed across a substrate inevitably leads to 

'more active1 and 'less active' areas on the silver surface. The effect 

may, however, be fairly small in practice but is extremely pertinent to 

the quantitative aspects of SERS analytical study.

The SERR and SER spectra obtained with silver-coated slides indicate 

that many different categories of molecules can be detected. Silver- 

coated slides, however, do not display the wide range of SERS-activity 

shown by colloids and electrode systems. Benzene, for example, can be 

detected in low concentrations through the use of other active systems, 

but not by silver slides.

The extraordinary sensitivity of the slides for the [Ru(bipy)3]2+ ion

and other ruthenium-bipyridyl and phenanthroline complexes shows 

that they are suitable for the systematic investigation of [Ru(bipy)3 ]^+

and derivatives.



6.4 Supported silver colloids.

6.4.1 Filter paper-supported colloids.

This method of production of silver-coated filter paper was first 

reported in 1988 by Lasema et al. (107). Characterisation of the coated 

filter paper proved impossible due to the opaque nature of the 

substrate. Lasema et al., however, carried out diffuse reflectance 

measurements on the surface. These results showed a broad reflectance 

minimum at 470 nm consistent with the formation of colloidal 

aggregates on the filter paper surface. They also studied the surface by 

SEM (section 2.2.3.8).

The SERS-activity of freshly-prepared silver-coated filter paper was 

tested with a range of adsorbates. Figure 6.17 shows the SERR spectrum 

of Ru(bipy)312 solution on a piece of coated filter paper. The

vibrational features are identical to those obtained with colloids and 

silver slides. The degree of enhancement is almost comparable to that 

of the silver slide/complex system.

Organic adsorbates were also tested. The SER spectra of benzoic acid 

(figure 6.18) and pyridine in contact with the surface displayed 

appreciable enhancement. It can be seen that similar wavenumber 

shifts over the corresponding NRS are present in these spectra as were 

observed with silver slides. Benzoic acid is preferentially adsorbed 

through the carboxylate group and pyridine through the heteroaromatic
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Figure 6.17: SERR spectrum of Rufbipv^U (2 x 10'3 mol HVsilver- 
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Figure 6.18: SERR spectrum of benzoic acid (1Q~4 mol I'^/silver-coated 
filter paper. TAr+ laser. 488.0 nm excitationl.
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ring nitrogen. As with the silver slide system, benzene did not display 

any enhancement.

The coated filter paper substrate, as previously discussed, was 

green when freshly prepared, gradually becoming brown with slow 

oxidation. Lasema et al. stated that the half-life of the substrate, with 

9-amino acridine as the adsorbate species, was approximately 15 to 20 

minutes. In order to test this result, the activity of Ruflripy^C^ with a

piece of silver-coated paper was tested when freshly prepared, at 

regular intervals immediately afterwards and after 24 hours. All other 

factors were held constant and the complex/surface system was kept 

enclosed during the 24 hour period. Table 6.8 and figure 6.19 

summarise the results obtained.

Table 6.8: SERRS intensity (peak height - baseline, %) of the 1488 cm '1 

peak of RufbipvljC^ with time (minutes).

time (mins.) SERRS intensity (%)

0 62
5 60
10 55
15 56
20 50
25 51
30 50
40 47
60 48
90 43
3600 40
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Figure 6.19: Plot of the intensity of the 1488 cm '1 peak of the SERR 
spectrum of Rufbipv^CWsilver-coated filter paper

versus time.



The reading at time = 3600 minutes is subject to some uncertainty 

due to the error associated with obtaining the correct laser power 

output after it was switched back on. However, the general pattern of 

decreasing intensity with time after production is clear. The intensity, 

in this case, did not decrease at the same rapid rate as reported by 

Lasema et al.

6.4.2 TLC plate-supported silver colloids.

This method, suggested by Sequaris and Koglin (110), is almost 

identical to the method for producing filter paper-supported colloids.

The substrate was found to be extremely unstable when placed in 

adsorbate solutions (the coated silica broke away from the plastic 

backing). In order to overcome this problem, in each case, a small 

volume of adsorbate solution was spotted carefully onto a small area of 

the surface and dried.

Figure 6.20 illustrates a SERR spectrum obtained using this surface. 

Clearly, Ru(bipy)3 l2  displays a highly enhanced spectrum which is 

identical to those obtained with silver slides. Pyridine, benzoic acid and 

benzene, however, did not display any appreciable SERS enhancement.

6.4.3 Discussion.

The analytical potential of both of these categories of surfaces has 

been discussed in a series of reports (107 - 109).
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Figure 6.20: SERR spectrum of R u fb ip v ^  (2 x 10~3 mol l'h/silver 
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Figure 6.21: (a) SERR spectrum of R u fb ip v ^  (2 x 10~4 mol l '1)/
silver-coated glass-supported silica spheres.
(b) normal Raman spectrum of the adsorbate solution. 
TAr* laser. 488.0 nm excitationl.



The major advantage of supported colloids is that their use 

overcomes the problems encountered in colloidal experiments by 

providing active silver particles which are, in effect, already partially 

aggregated.

An important disadvantage of these substrates is the physical 

difficulty of manipulating the freshly-prepared wet surfaces and 

preparing them for SERS experiments. As has been demonstrated, 

unlike silver slides which are stable for long periods under distilled 

water, these surfaces have a short lifetime. The half-life of the 

Ru(bipy)3 l2 /silver-coated filter paper system, however, is longer than

that previously reported by Lasema. This may be because the former 

system was kept totally enclosed, thus preventing rapid oxidation of the 

exposed silver surface. With relevance to this study, the SERRS spectra 

obtained from silver-coated filter paper showed no obvious differences 

or any additional vibrational information compared to the silver slide 

spectra. This is a manifestation of similar preparative procedures.

6.5 Silica spheres: chemical methods.

Three methods of production were used.

6.5.1 Filter paper-supported silica spheres.

This procedure simply involved a suspension of silica in distilled 

water being filtered, soaked in silver nitrate solution and sprayed with



sodium tetrahydroborate in a similar fashion to the method of 

Lasema et al.

As expected, the substrate was not stable in adsorbate solutions 

and, therefore, adsorbates were spotted carefully onto the surface. 

Ru(bipy)3 l2 showed slight enhancement over its normal Raman 

spectrum.

6.5.2 Glass-supported silica spheres.

Once a quantity of silica spheres had been coated onto glass and the 

adhesive had dried, silver coating was effected by the method of 

Lasema. The silver did not form homogeneously on the silica surface.

The SERS-activity of the surface was tested with Ru(bipy)3 l2 (figure 

6.21). A noisy spectrum resulted which displayed slight enhancement 

over the normal Raman spectrum. It is obvious that a more satisfactory 

method of coating a surface such as this would be by vapour-deposition 

of an even silver film on the rough surface.

6.5.3 Modification of a method of production of silver-coated latex 

spheres (205).

The electronic absorption spectrum of the brown suspension 

produced from this reaction displayed a maximum at 441 nm.

SERRS with Ru(bipy)3 l2, however, displayed no enhancement. This

could be due to the formation of large silver aggregates since it was



observed that a small amount of brown precipitate had formed after the 

SERRS spectrum had been recorded.

6.5.4 Discussion.

Clearly, chemical methods of coating silica spheres are unsuitable. 

With filter paper and TLC plates, aggregates of silver formed and, in the 

case of the filter paper method, stuck to the fibres of the paper 

substrate. With silica spheres, however, not enough active silver 

formed. Indeed, with the glass-supported silica spheres, it was 

observed that when the reducing agent was sprayed onto the saturated 

substrate, the resultant silver aggregate suspension appeared to run off 

the surface. This is certainly due to the inability of the silver 

aggregates to 'stick' to such a silica sphere template. Even if the silver 

produced had adhered to the silica spheres, the resultant morphology 

would have been one of aggregated silver formations and would not 

have reflected the morphology of the silica spheres.

The modified latex-coating method did not produce a SERS-active 

substrate. Clearly, the substitution of silica for latex is not feasible since 

the silver produced did not coat the particles but aggregated and 

eventually formed metal powder.

It is clear that the only other potentially successful method of 

coating silica is by vapour-deposition means.



6.6 Vapour-deposited surfaces.

6.6.1 Polycarbonate surface.

As received, this substrate was a transparent circular disc with a 

small hole in the centre. The disc could be cut into small pieces either 

by the use of a knife or scissors.

(a) Electron microscopy.

An initial scanning electron micrograph of a 1 cm2 piece of 

polycarbonate, which had been cut from a disc and vapour-coated with 

a thin layer of gold, showed no surface features. This seemed surprising 

since it could plainly be seen, with the naked eye, that the 

polycarbonate surface diffracted visible light. The only other possibility 

was that the surface was rough on only one side. In order to investigate 

this, a piece of polycarbonate was vapour-coated with gold on both 

sides and studied by SEM. Three magnifications were obtained and are 

diplayed in figure 6.22. These micrographs show that the 

polycarbonate surface consists of regularly spaced, undulating ridges 

approximately 340 nm apart. This is, of course, within the range of 

typical SERS-active roughness dimensions.

The discovery that the substrate is one-sided threw up 

experimental difficulties, associated with how the rough side would be 

recognisable for use in SERS experiments, since both sides appear 

identical to the naked eye. This problem was overcome by subjecting
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both sides of the coated polycarbonate to adsorbate solutions. Due to 

the transparent nature of coated polycarbonate, the rough side was 

exposed to the incident laser beam whatever the orientation of the 

substrate on the sample stage.

One clear advantage of this category of substrate with respect to 

analytical SERS study is that it fulfils the requirement of reproducibility 

(if coated with an even layer of silver).

(b) Absorption spectroscopy.

The electronic absorption spectrum of a piece of silver-coated 

polycarbonate (50 nm thick) is pictured in figure 6.23. The spectrum 

has a broad maximum at 370 nm. After exposure to Ru(bipy)3I2

solution (figure 6.23), a maximum develops at 450 nm corresponding to 

the metal(d) -> ligand (7 T * ) transition. There is, however, another peak 

present at 486 nm. It is possible that this is due to a charge-transfer 

interaction between adsorbate molecules and the metal surface. If this 

is the case, SERR spectra of [Ru(bipy)3]^+ on coated polycarbonate should

show spectral changes due to surface/adsorbate molecule complex 

formation.

(c) SERRS of Rufbipv^K

The SERR spectrum of a solution of Ru(bipy)3I2 in contact with a 

piece of silver-coated polycarbonate (50 nm) is shown in figure 6.24.
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Figure 6.23: Electronic absorption spectra of vapour silver-coated 
(50 nm) polycarbonate (a) before and (b) after exposure to 
a dilute solution of Rufoipv^K
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Figure 6.24: (a) SERR spectrum of Rufbipvljlo (2 x 10'4 mol l-1y  

chemically silver-coated slide.
(b) SERR spectrum of the same solution in contact with 
vapour silver-coated (50 nm) polycarbonate.
TAr+ laser. 488.0 nm excitation!.



The SERR spectrum of a similar concentration of the complex in contact 

with a chemically coated silver slide is also shown. This SERRS 

spectrum effectively represents the RRS of Rufbipy^^, as shown in

section 6.3.1(b). There are clearly subtle differences in wavenumber 

positions of bands and relative band intensities between the spectra. In 

addition, there is, what appears to be, a new peak in the polycarbonate 

spectrum at 1115 cm-1. The spectrum of a piece of polycarbonate, 

however, showed that this anomalous peak was due to the 

polycarbonate substrate itself. It is inevitable that SERR spectra of 

coated polycarbonate exhibit such bands as the surface is transparent to 

the laser beam.

Nevertheless, it is clear that these real changes in wavenumber and 

relative intensities may indicate chemisorption of the [Ru(bipy)3]2+ 

molecule. All of these aspects are discussed, in greater detail, in 

section 7.3.

One clear difference between the two spectra, however, is the 

degree of enhancement. With similar concentrations of adsorbate 

solutions, the enhancement with the silver coated polycarbonate is 

smaller by a factor of approximately ten compared to the enhancement 

shown by the silver slide.

Effect of excitation waveleneth.

The question of whether or not a charge transfer complex forms was
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probed by varying the excitation wavelength of laser radiation. If, 

indeed, the maximum at 486 nm in the absorption spectrum 

corresponds to charge transfer excitation, the excitation ’profile' should 

reach a maximum in this area. If the enhancement of the spectrum is 

purely associated with surface plasmon resonance, the maximum would 

be at 400 nm, assuming no surface rearrangement on contact with 

Ru(bipy)3 l2  solution.

As can be seen from table 6.9 and figure 6.25, the intensity of the 

1483 cm" 1 peak of Ru(bipy)3 I2  reaches a maximum of intensity with

exciting lines of 496.5 and 514.5 nm. This does not conclusively prove 

that a charge-transfer surface/adsorbate complex forms: more detailed 

study with a dye laser would be necessary in order to prove this fully. 

This area is considered further in section 7.3.

Table 6.9: Effect of changing the argon-ion excitation wavelength on the

intensity of the 1483 cm" 1 peak of Ru(bipv)3 I2  adsorbed on

silver-coated (50 nm) polycarbonate.

Ar+ excitation (nm) Intensity (arbitrary: peak height -
baseline)

457.9
476.5 
488.0
496.5 
501.7
514.5

1140
1450
2070
2180
2200
2190
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Figure 6.25: Plot of the intensity of the 1483 cm" 1 peak of the SERR 
spectrum of Rufbipv^W vapour silver-coated (50 nm)
polycarbonate versus excitation wavelength. Data from 
table 6.9.

Effect of variation in the vapour-coating procedure.

SERR spectra of Ru(bipy)3 l2  in contact with pieces of polycarbonate

coated with 25,50 and 1 0 0  nm of silver are displayed in figure 6.26.

There are no obvious differences in terms of degree of enhancement 

between the three spectra. This finding is not surprising since the 

coating method used is unlikely to 'fill in' any of the surface features, 

even with thicker coatings. In most of the subsequent preparations of
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Figure 6.26: SERR spectra of Ruftripy^k  (2 x 10 4  mol H ) in contact
with polycarbonate coated with (a) 25. (bl 50 and 
(cl 1 0 0  nm of silver.
(d) normal Raman spectrum of the same solution.
TAr+ laser. 488.0 nm excitationl.
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Figure 6.27: SERR spectra of Rufbipv^k  (2 x 10~4  mol l 'h  in contact
with vapour 50 nm silver-coated (a) polycarbonate, fb) flat 
and (c) frosted microscope slides (counter sensitivity 
increased by a factor of 1 0 ).
TAr+ laser. 488.0 nm excitationl.



silver-coated polycarbonate surfaces, 50 nm was chosen as the normal 

film thickness. This was a balance between economy and the possibility 

of a very thin layer of silver burning in the laser beam.

Figure 6.27 shows the SERR spectra of a solution of Ru(bipy)3 l2  in

contact with silver-coated (50 nm) polycarbonate and silver-coated (50 

nm) flat and frosted microscope slides. The spectra of the flat and 

frosted microscope slides show considerably less enhancement 

compared to the spectrum of the polycarbonate. This demonstrates that 

the regular features on the polycarbonate surface cause enhancement, 

in addition to the silver mirror itself.

(d) Other adsorbates.

The SERS-activity of the polycarbonate surface with organic 

adsorbate species (pyridine, benzene, benzoic acid and p-amino benzoic 

acid) was tested. None of the spectra displayed any enhancement.

6.6.2 Silica spheres.

Suspensions of silica spheres of varying dimensions, prepared via 

the method of Adams et al (204), were dried using two methods: rotary 

evaporation and slow evaporation in air to give semi-transparent plates.

Figure 6.28 shows the SERR spectrum of silver-coated (50 nm) silica 

spheres which had been dried by rotary evaporation immersed in a 

solution of Ru(bipy)3 l2 . The spheres had been ground and stuck on a



glass substrate with 3M spray-glue and the resultant layer of spheres 

had been evened. The spectrum displays little enhancement over the 

RRS of the complex. The silica surface was opaque, thus rendering the 

measurement of its absorption spectrum impossible.

The electronic absorption spectrum of a vapour silver-coated 

evaporated silica plate, as shown in figure 6.29, exhibits a broad 

maximum at 408 nm. Figure 6.30 shows the SERR spectrum of 

Ru(bipy)3 I2  in contact with this surface. Clearly, this spectrum is only

slightly enhanced compared to the corresponding RRS.

Benzoic acid and pyridine showed no enhancement with this 

surface.

Both types of coated silica sphere surfaces were studied by SEM 

(figure 6.31). The rotary evaporated coated silica surface is highly 

disordered and randomly rough, whereas the slowly-evaporated surface 

has a more ordered morphology. The size distribution of the roughly 

spherical protrusions on the surface is between 300 and 1000 nm with 

the features spaced approximately 1000 nm apart. Since SERS-active 

substrates necessarily have coupled metal features, the large spacing of 

silver-coated spheres on the surface could explain the lack of 

enhancement.
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Figure 6.28: (a) SERR spectrum of Rufbipvtyo (2 x 10~4  mol I' 1)/
vapour silver-coated (50 nm) silica spheres on glass, 
(b) normal Raman spectrum of the adsorbate solution. 
TAr+ laser. 488.0 nm excitation!.
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Figure 6.29: Electronic absorption spectrum of a vapour silver-coated 
(50 nm) slow-evaporated silica plate.
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Figure 6.30: (a) SERR spectrum of Ruflripv^k  (2 x 10~4  mol H )/
vapour silver-coated (50 nm) slow-evapprated silica plate, 
(b) normal Raman spectrum of the adsorbate solution. 
TAr* laser. 488.0 nm excitationl.
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Figure 6.31: Scanning electron micrographs of (alrotary-evaporated 
silica spheres and (b) slow-evaporated.silica spheres- 
Magnification i  3200.



6.6.3 Discussion.

The inherent reproducibility of vapour silver-coated polycarbonate 

substrates renders them suitable for use in analytical SERS study. As 

the SEM study revealed, the variation of the roughness ridges across 

one piece of polycarbonate is extremely small. Hence, identical coated 

polycarbonate surfaces can be produced, provided the film thickness is 

carefully controlled. The preparative procedure, however, is necessarily 

time-consuming.

The SERR spectrum of Ru(bipy)3 l2  shows clear differences with

respect to the RRS and, consequently, the SERR spectrum of the molecule 

on silver slides. Although the existence of an adsorbate molecule/ 

surface complex cannot be proved conclusively, the results obtained 

may be explained by considering the differences in preparative 

procedures used and the overall differences in the morphologies of the 

two types of surfaces. This is further discussed in section 7.3.

One limiting factor in the study of the SERRS of tris-2,2'-bipyridyl 

ruthenium(II) complexes is the enhancement obtained. Although it is 

evident that chemical bond formation occurs, to some extent, with the 

coated polycarbonate surface, the degree of enhancement is 

considerably smaller than that obtained with 'chemical' systems such as 

silver-coated slides. This may simply be a question of surface area. 

Although no accurate measurements were made, it is clear that the



regularly rough, homogeneous silver-coated polycarbonate surface has a 

much lower surface area than the randomly rough silver slide surface, 

leading to a decrease in the number of adsorbate molecules 'sampled' 

by the incident laser beam.

Another possible explanation for the lower enhancement concerns 

the dimensions of the polycarbonate roughness features. One of the 

basic tenets of the electromagnetic theory of enhancement states that, 

for a high degree of enhancement, the metal roughness features must 

be considerably smaller than the wavelength of the exciting radiation. 

The polycarbonate roughness features are 340 nm apart, compared to 

silver slide features of between 40 and 150 nm. With laser excitation of 

488.0 nm, therefore, silver slides, having the smallest metal features, 

would be expected to produce the larger SERRS enhancement.

The ability of molecules such as Ru(bipy)3 l2  to adsorb to the

polycarbonate surface, but not organic species such as 2 ,2 '-bipyridine 

and benzoic acid, may reflect the nature of the surface. The 

2,2'-bipyridine molecule can rotate about the C2 — C2< axis, whereas 

Ru(bipy)3 I2  is essentially 'fixed'. It is possible that the highly ordered,

smooth nature of the polycarbonate surface morphology may only allow 

such 'fixed' molecules, and not molecules which can bind in several 

ways, to adsorb. If this is the case, similar binding modes should be 

noted with other tris(2,2'-bipyridyl) and modified ruthenium(II)



complexes.

6.7 General comments.

The two surfaces which displayed the greatest potential with 

respect to the analytical applications of SERS were chemically prepared 

silver-coated slides and vapour-deposited silver-coated polycarbonate.

Silver-coated slides displayed intense enhancement with 

Ru(bipy)3 l2  and also appreciable enhancement with simple organic

molecules (2,2'-bipyridine, pyridine and benzoic acid). Molecules 

containing some type of co-ordinative atom or group seem to be 

necessary for the observation of SERS enhancement. In particular, the 

results obtained with silver slides indicate that molecules with 

heteroaromatic, nitrogen-containing rings should exhibit SERS activity.

The SERS and SERRS-activity of filter paper and TLC plate-supported 

silver colloids mirrored the activity of silver slides. The supported 

colloids, however, have several experimental drawbacks.

Silver-coated polycarbonate surfaces, although showing 

considerably less enhancement with [Ru(bipy)3]2+, exhibited interesting

adsorption effects. Clearly, the ordered nature of the surface 

morphology allows the chemisorption of the [Ru(bipy)3]2+ molecule.

This is reflected in the observation of new vibrational features in the 

resultant SERR spectra. The extent of chemisorption, however, is not clear.



CHAPTER SEVEN.

SERRS OF TRIS(2«2'-BIPYRIDINE) RUTHENIUM(II) 

AND MODIFIED COMPLEXES ON CHEMICALLY-PREPARED

AND VAPOUR-DEPOSITED SURFACES.



7. SERRS O F TRIS(2.2-BIPYRIDINE) RU THENIIJM (II) AND

M ODIFIED COMPLEXES ON CHEMICALLY-PREPARED AND 

VAPOUR-DEPOSITED SURFACES.

7.1 Introduction.

The investigations described in chapter 6  revealed two interesting 

points in relation to SERS-active substrates and, particularly, the 

activity of [Ru(bipy)3]2+.

(a) With silver slides and, indeed, all the chemically-produced surfaces 

tested, [Ru(bipy)3]2+ exhibited a high degree of enhancement which was

dependent upon the concentration of adsorbate present. The SERR 

spectra were effectively enhanced duplicates of the corresponding 

resonance Raman spectra, indicating physisorption of the complex and 

subsequent enhancement through the electromagnetic mechanism.

The spectra showed high enhancement of ring breathing, hydrogen 

wagging, carbon-carbon and other ring modes of the 2 ,2 ‘-bipyridyl 

ligand. This suggests that the small physisorptive interaction between 

the adsorbate molecule and the metal surface must occur via the 2 ,2 - 

bipyridyl ring.

The equivalence of SERRS results with all the chemically-prepared 

substrates is a consequence of almost identical preparative routes.

(b) Vacuum-coated silver polycarbonate surfaces, as prepared, had



surface morphologies completely different from those of the chemically- 

prepared surfaces. As would be expected, the SERR spectra of the 

coated polycarbonate displayed subtle modifications with respect to the 

corresponding silver slide SERR spectra.

The rationale behind the following studies was to introduce and 

investigate the additional factor of the influence of co-ordinative 

substituents upon the adsorption behaviour of the parent [Ru(bipy)3]2+

molecule.

7.2 C hem ically-prepared silver-coated slides.

7.2.1 Ru(bipv)3 I2: assignment of RRS and SERRS.

The SERR spectrum of a solution of Ru(bipy)3 I2  in contact with a

silver slide and the RR spectrum of the complex are shown in figure 7.1.

Although the bands present in the SERR spectrum are intense and 

well-defined and simple to determine their positions accurately, the 

recording of the RRS of the molecule proved troublesome. As 

mentioned previously, the central problem is the dominance of 

fluorescence. A RRS with acceptable signal-to-noise ratios was obtained 

with high laser power output (500 mW at laser head) and high photon- 

counter sensitivity.

Presented in table 7.1 are spectral data from the SERR and RR 

spectra of Ru(bipy)3 I2. These data were based on several runs of each



spectrum. The variance of the band positions was commonly only 1 or 

2 cm 'l. Some peaks, however, were unable to be measured in the RRS.

It is clear, from the tabulated data, that there are few differences, in 

terms of positions of bands, between the two spectra. There are also no 

obvious changes in relative intensities.

Assignment.

The assignment of the vibrational modes of [Ru(bipy)3]2+, as

detailed in table 7.1, is from the studies of Mallick et a i  (210). The 

assignment of the principle vibration of each mode is given. The full 

assignment of each mode is presented with the normal mode 

descriptions in figure 7.3. Mallick et al. assigned the spectrum on the 

basis of normal co-ordinate calculations, employing a modified valence 

force field procedure. The spectra were interpreted on the basis of 

effective C2v symmetry (a single co-ordinated 2,2'-bipyridine ligand).

The atom numbering and internal co-ordinate labelling scheme is 

indicated in figure 7.2.

Figure 7.3 shows the normal mode descriptions of the Aj Raman-

active vibrations of the [Ru(bipy)3]2+ molecule. From the assignments, it 

can be seen that the normal modes are complex combinations of various 

stretching, wagging and breathing modes.

The low wavenumber region of the Raman spectrum of the complex
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Figure 7.1: (a) Resonance Raman and (b) SERR spectra of Rufbipylj k
(2 x 1 0 ~ 3  mol l ' 1 aqueous solutionVsilver slide.
[At* laser. 488.0 nm excitationl.



Table 7.1: Data from resonance Raman and SERR spectra of 2 x 10~3 

mol H  Rufbipv^k  solution / silver-coated slide.

RRS (cm '1) SERRS/Ag slide (cm~h Assignment (210)

339

435

671

1027

1176
1264
1276
1318

1489
1562
1604

u(RuNC)

u(RuN)

a(CCC)
a(CCC)

u(C4- C 5)

5(CCH) 
5(CCH) 
8(CCH) 
u(C2— C3)

5(C2C3H)
8(CCH)
5(CCH)
u(C4- C 5)

u(C2— C3)

265
335
372
435
467
668
723
760
1025
1066
1177
1260
1275
1318
1451
1488
1560
1605
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Figure 7.2: Atom numbering and internal co-ordinate labelling scheme 
of one co-ordinated 2 .2 f-bipyridine of  the rRurtripy^l2* 
molecule. The b(CCH) and a (C C O  modes are illustrated.
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is dominated by Ru— N stretching and RuNC modes. In the region 600 

to 1 0 0 0  cm '1, ring-breathing (out of plane and in plane) is observed. 

Between 1000 and 1650 cm '1, the spectrum shows mainly C = C  

stretching and in-plane hydrogen wagging modes. The C— H stretching 

modes between 3060 and 3075 cm ' 1 were not examined.

7.2.2 RRS and SERRS with tris(diethyl-2.2,-bipvridine-4.4'- 

dicarboxvlate) rutheniumflD. rRufdiesbipvty2*.

Figure 7.4 shows the SERR spectrum of an aqueous solution of the 

diester complex in contact with a silver-coated slide, along with the 

corresponding RR spectrum. It should be noted that the two spectra 

shown are not under the same experimental conditions: they are 

displayed for the purposes of direct comparison. The power required to 

achieve acceptable signal-to-noise ratios in the RRS was orders of 

magnitude greater than the power needed to generate a strong SERR 

spectrum. Table 7.2 details all the band positions in the RR and SERR 

spectra of the diester complex. As with the parent complex, these 

figures are based on a series of identical spectra.

(a) Resonance Raman spectrum.

The RRS of the diester complex shows a broadly similar pattern, in 

the region displayed, compared to the RRS of the parent complex. There 

are, however, wavenumber shifts consistent with the modification of
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Figure 7.4: (al Resonance Raman and fbl SERR spectra of
R ufdiesbipvtyB F^ (dilute aqueous solutionVsilver slide. 
[Ar+ laser. 488.0 nm excitation!.



Table 7.2: Data from resonance Raman and SERR spectra of a dilute

solution o fR u fd iesb ip v y B F ^  / silver-coated slide.

RRS (cm '1) SERRS/Ag slide (cm-1! Assignment (210)
251 u(RuNC)
285
345 u(RuN)
459b
650 a(CCC)

693 690 a(CCC)

763
1025 1024 l)(C4 — C5 )

1182 5(CCH)
1274 1274 U(C2 — C3)
1319 1319 5(C2 C3H)

1438 6 (CCH)
1482 1480 8 (CCH)
1557 1555 u(C4 — C5)
1615 1615 u(C2 - C 3)

(b = broad)



the 2,2'-bipyridyl ligand in the C4  and C4 . positions. Two points are

worthy of mention. Firstly, in the RRS of the parent complex, a peak 

was observed at 1176 cm'*, ascribed to an in plane hydrogen wagging 

mode (81 % PED). In this region in the RRS of the diester complex a peak 

of comparable intensity is not present. A very small feature, however, 

can be observed. The diminution of this peak is not surprising, since 

the incorporation of carboxylic ester substituents in the ring, and the 

subsequent loss of two ring hydrogens, would have the effect of 

reducing the contribution of such hydrogen wagging modes.

Secondly, the peaks at 1274 and 1319 cm ' 1 in the RRS of the diester 

have reversed their relative intensities with respect to the two 

corresponding peaks in the parent complex RRS (at 1275 and 

1318 cm"1). The peak at 1319 cm ' 1 is assigned as hydrogen wagging 

(C2 C3 ), in-plane hydrogen wagging and C j— C? stretching. The peak at

1274 cm '1, however, is not associated with any hydrogen wagging 

modes, being due to C = C  and C = N  vibrations, and, therefore, is 

stronger in the RRS of the diester complex.

No distinct modes associated with the carbonyl-ester groups are 

observed in the RRS. These vibrations will, in a similar fashion to the 

modes of the parent complex, be combined with the other ring modes 

resulting in shifts in the band positions.



(b) Comparison of the RRS and SERRS of the diester complex.

Clearly, there are no differences, in terms of band positions or 

relative intensities, between the two spectra, as displayed in figure 7 .4 . 

The SERR spectrum displays enhancement almost comparable to that 

observed with Ru(bipy)3 l2. The RRS shows evidence of fluorescence: 

the baseline begins to rise sharply from approximately 1400 cm '1. In 

the SERR spectrum the fluorescence is almost completely quenched.

These findings indicate that the presence of carboxylic ester 

substituents in the C4  and C4< positions of each of the 2,2'-bipyridyl

ligands incorporated in the complex does not influence the adsorption 

behaviour of the molecule on silver-coated slides. The complex does not 

chemically bind to the silver surface and, consequently, the 

enhancement, like that of [Ru(bipy)3]2+, is caused exclusively by the

electromagnetic (surface plasmon) effect.

No experiments were carried out to investigate the concentration 

dependence of the SERRS of the diester complex, but highly-enhanced 

spectra were obtained from solutions of 1 0 '^ mol l' 1 and lower 

concentrations.

7.2.3 Tris(4.4,-diamino-2.2t-bipvridine) ruthenium (II). 

rRu(diambipy)312+.

Figure 7.5 shows the SERR spectrum of a solution of the diamino
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(c ) SERR spectrum of the above solution after acidification/ 
silver slide.
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Table 7.3: Data from resonance Raman and SERR spectra of a dilute 

ethanolic solution of Rufdiambipv^CU / silver-coated slide.

RRS (cm’1) SERRS/Ag slide (cm '1) Assignment (210)

420
491

561 564
740 a(CCC)

1030 1028 u(C4 — C5)

1246 1246 u(C2 - C 3)
1274 1274 6 (C2 C3H)

1366 1365 5(CCH)
1498 1496 5(CCH)
1556 1557 u(C4 — C5 )

1616 1617 u(C2 ~ C 3)



complex in ethanol in contact with a freshly-prepared silver-coated 

slide. The RR spectrum of the complex is also presented. Spectral data, 

arising from several, reproducible runs of the RR and SERR spectra, are 

summarised in table 7.3.

(a) Resonance Raman spectrum.

The RR spectrum of the diamino complex proved particularly 

difficult to obtain. This was slightly surprising as there was no obvious 

high level of fluorescence to compete with the resonance Raman 

process. High incident laser power levels and high spectrometer 

sensitivity was necessary. Even with these levels, ethanolic vibrational 

modes are extremely strong in the spectrum obtained, as indicated.

The changes exhibited by the RRS of this complex, with respect to 

[Ru(bipy)3]2+, are consistent with diamino substitution in the C4  and C4.

2 ,2 ’-bipyridyl ring positions.

The peak observed at 1246 cm'* may correspond to the 1264 cm'* 

peak of Ru(bipy)3 I2, assigned as hydrogen wagging and C = N

stretching. The peak at 1274 cm ' 1 in the spectrum of the diamino 

complex corresponds to the 1276 cm" 1 peak of [Ru(bipy)3]2+, assigned as

mainly C = C  and C = N  stretching. The strengthening of these two 

peaks and the disappearance of the peak at 1318 cm ' 1 may be due to 

the presence of two new C===N bonds in each ligand and the subsequent 

mixing of these modes within existing modes associated with C = N



stretching.

The other notable aspect of the RRS of this complex, in contrast to 

the RR spectra of both the parent and diester complexes, is the closeness 

of the three peaks in the region 1490 to 1620 cm-1.

(b) Comparison of the RR and SERR spectra of the diamino complex.

The SERR spectrum of the diamino complex displays no obvious band

wavenumber shifts or relative intensity changes compared to the RRS of 

the complex. The enhancement of the SERR spectrum is, therefore, 

attributed to the electromagnetic mechanism. The presence of 

accessible amino groups in the 2 ,2 '-bipyridyl ligands clearly does not 

induce adsorption of the complex. Nitrogen-mediated chemisorption on 

silver slides has already been observed with pyridine and 

2,2’-bipyridine. The nitrogen atoms present in these molecules, 

however, have considerable Lewis base character and this is certainly 

the predominant type of chemisorption in these systems.

The highly enhanced SERR spectrum effectively 'filters out' the 

peaks attributed to ethanol in the RRS: only one such peak is just 

visible, at 875 cm '1, in the SERR spectrum.

(c) Effect of protonation.

A solution of the diamino complex was treated with several drops of 

a 1 mol l' 1 solution of hydrochloric acid in order to study the effect on 

SERRS of protonation of the complex. A small volume of dilute acid was



used in order that the changes in absorption characteristics noted with 

the addition of concentrated acid did not occur (section 5.2.3). Acid was 

added until the pH of the resultant solution was below 7. The solution 

did not change colour, even after several days.

Figure 7.5 shows the SERR spectrum of the ethanolic diamino 

solution after treatment with acid on a fresh silver-coated slide.

Clearly, the features exhibited by this spectrum are identical to those in 

the SERR spectrum of the untreated solution. Protonation of the 

diamino-substituted 2 ,2 ’-bipyridyl ligands, therefore, does not affect 

enhancement or the adsorption behaviour of the complex.

7.2.4 Tris(4.4,-diphenyl-2.2,-bipyridine) ruthenium(II). 

fRu(diphbipy) 3l2+.

Presented in figure 7.6 are the SERR and RR spectra o f the diphenyl 

complex, in ethanol. Spectral data (from several runs) are recorded in 

table 7.4.

(a) Resonance Raman spectrum.

The RRS of this complex shows, ignoring the ethanolic bands, 

broadly the same pattern as the other complexes studied.

One interesting feature, however, is the strengthening o f a peak at 

725 c m 1 which is, in the same region, present as a weak feature in the 

spectra o f the other complexes. The strengthening of this peak,
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Figure 7.6: (a) Resonance Raman and (b) SERR spectra o f
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fAr+ laser. 488.0 nm excitation].
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Table 7.4: Data from resonance Raman and SERR spectra o f a dilute

ethanolic solution of Ru(diphbipy)3I2 /  silver-coated slide.

RRS (cm~l) SERRS/Ag slide (cm-1) Assignment 12101

375 u(RuN)
410w
543w

628b 628 a(CCC)
725b 725 a(CCC)

767w
85 lw

1025 1026 u(C4 — C5)

1060 5(CCH)
1254 1254 u(C 2 - C 3)

1332 1330 5(C2C3H)

1416w 5(CCH)
1484 1483 5(CCH)
1535 1534 u(C4— C5)

1610 1612 u(C 2 - C 3)

(b = broad, w = weak)



assigned in the RRS of [Ru(bipy)3]2+ as a combination of a(CCC ) and

C = C  stretching modes, is probably caused by the presence, in the 

substituted complex, of the new carbon frameworks in the ligands.

(b) Comparison of the RR and SERR spectra of the diphenyl complex.

As with the previous tris-ligand ruthenium(II) complexes, the SERR 

spectrum o f the diphenyl complex exhibits effectively no changes in 

relative intensities or band wavenumber positions compared to its RR 

spectrum. Several bands which were hidden under the noisy baseline 

of the RRS are, however, clearly visible in the SERRS. Indeed, the two 

bands at 628 and 725 cm "1 in the RRS are considerably more 

well-defined and distinct in the SERR spectrum. The intense 

fluorescence present in the RRS is clearly quenched in the SERRS.

Whereas with the diester and diamino complexes, where changes in 

the adsorption behaviour of the complex may have been expected due 

to the presence o f co-ordinative groups in the ligands, the behaviour of 

the diphenyl complex is not surprising. Based on previous results with 

benzene on silver-coated slides, the presence of phenyl substituents on 

2 ,2 '-bipyridyl rings is hardly likely to induce chemisorption of the 

complex.



7.2.5 Tris(4,4'-dimethvl-2.2'-bipvridine) rutheniumfllT 

rRu(dimebipv)312+.

Figure 7.7 shows the RR and SERR spectra of the dimethyl complex. 

Spectral data (based on several identical spectra) are recorded in table 

7.5.

la) Resonance Raman spectrum.

The dimethyl complex can be considered to be, out of all the 

complexes studied, the one 'most similar' to the parent complex. This is 

reflected in the RR spectrum of the complex. A peak is present at 

1199 cm "1 which, although shifted by some 20 cm '1, corresponds to the 

peak at 1177 cm "1 in the spectrum o f the parent complex. This peak is 

considerably reduced in intensity in the RR spectra of the other 

modified complexes. The intensities of the peaks at 1270 and 

1318 cm" 1 (1275 and 1318 in the spectrum of [Ru(bipy)3]2+) have

reverted to the relative intensities shown in the spectrum of 

[Ru(bipy)3]2+. The relative intensity pattern of the three peaks of

highest wavenumber (1484,1545 and 1615 cm"1) is considerably 

different to that of the corresponding bands of [Ru(bipy)3]2+. The peak

at 1545 cm"1, assigned as C =  C stretching, may be of the highest 

intensity because of the increase of carbons in the framework o f the 

ligand due to the incorporation o f two methyl substituents.
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Figure 7.7: (a) Resonance Raman and (b) SERR spectra of
Rufdimebipv^CU (dilute ethanolic solutionVsilver slide.

TAr* laser. 488.0 nm excitation!.



Table 7.5: Data from resonance Raman and SERR spectra of a dilute 

ethanolic solution of Rufdim ebipv^Cln / silver-coated slide.

RRS (cm '1) SERRS/Ag slide (cm '1) Assignment (21

335
400

562 561
660w a(CCC)

735 733 a(CCC)
919w

1030 1029 u(C4— C5)

1113 8 (CCH)
1199 1198 5(CCH)
1270 1268 u(C2 - C 3)

1318 1317 5(C2C3H)

1430w 1427w 5(CCH)
1484 1483 5(CCH)
1545 1545 u(C 4— C5)

1615 1613 u(C 2 - C 3)



(b) Comparison of the RR and SERR spectra of the dimethyl complex.

The SERR spectrum of the complex clearly shows no significant 

changes in relative intensities or band positions with respect to the 

corresponding RR spectrum.

The SERR spectrum, however, shows many intense, distinct bands 

which are indistinguishable from background noise in the RRS. This 

illustrates the power of SERRS in obtaining new vibrational information 

on adsorbate species.

Once again, the fact that this complex displays no evidence of 

chemisorption on the silver surface is not surprising: methyl groups 

would not be expected to adsorb under these conditions or, indeed, 

influence any potential adsorption properties of the 2 ,2 ’-bipyridyl ring 

to any large extent.

7.2.6 Discussion.

The results obtained with silver-coated slides reveal several 

interesting points.

Firstly, it is clear that the substitution of the 2,2'-bipyridyl ligands 

in the tris-ligand ruthenium(II) complex does not, to any great extent, 

affect the magnitude of SERRS enhancement observed. Considered in 

relation to a purely electromagnetic surface and resonance Raman 

enhancement effect, this is not suiprising. If the enhancement is



considered to arise from separate contributions from surface and 

resonance enhancement, the only factor which is likely to change, with 

changing substituents, is the resonance enhancement. Clearly, within 

experimental reproducibility, the surface enhancement factor is fairly 

constant from a qualitative viewpoint. The resonance enhancement 

factor will, of course, change with different complexes, having different 

metal(d) -»ligand(7T*) charge-transfer absorptions. This, however, is not 

a large effect since the maxima of the five complexes studied are within 

a small wavelength range (table 5.1). The two enhancement factors 

combine to give a huge overall enhancement effect for all the 

complexes.

The effect of the presence of substituents in the C4  and C4< positions 

of the 2 ,2 ’-bipyridyl molecule on the adsorption behaviour of the 

complexes at silver slide surfaces was studied. Potentially co-ordinative 

(diester, diamino) ligands were used in addition to modified ligands 

which, on the basis o f earlier results, were highly unlikely to induce 

chemisorption. The results of these investigations show clearly that 

none o f the modified ligands influence adsorption on the silver surface 

either through the substituents or through the 2 ,2 ’-bipyridyl ring itself.

From earlier results with 2,2,-bipyridine on chemically silver-coated 

slides, it is clear that the most likely route of co-ordination o f the 

molecule to a chemically-produced substrate is through a Lewis



acid/base interaction involving the ring nitrogen atoms. This is clearly 

not possible due to the orientation of the 2 ,2 '-bipyridyl segment in the 

molecule and the fact that it is already chelating to a ruthenium atom. 

Vanhecke et al. (100) argued that, with silver colloids, the [Ru(bipy)3]2+

ion adsorbs through the ring nitrogen whilst maintaining the Ru— N 

bond. This was suggested without evidence and, as discussed in section 

2.2.3.5(b), is highly unlikely since none of the spectra of Vanhecke et al. 

displayed any indication of complex formation on the silver colloid 

surface. It is, therefore, unlikely that with silver slides as the active 

surface, the [Ru(bipy)3]2+ molecule can co-ordinate through the ring

nitrogen. The presence of co-ordinative substituents does not influence 

adsorption either through the substituents themselves or in any other 

fashion.

The five categories of substituents on the 2,2’-bipyridyl ring include 

both electron-withdrawing and electron-releasing groups. Clearly, the 

effect of increased electron density in the ring (diamino and dialkyl 

substituents) and, therefore, on the ring nitrogen has no effect on the 

adsorption of either the ring or the nitrogen.

It is clear that the enhancement mechanism operating in these 

systems involves purely electromagnetic (surface plasmon) excitation. 

The roughness o f the silver slide surface gives an extremely high 

surface area allowing the physisorption o f a great number of adsorbate



molecules. The enhancement, in this case, is not confined to simply the 

first monolayer of physisorbed molecules.

This set of studies has also highlighted one o f the most important 

aspects o f the technique. The SERR spectra obtained, in each case, show 

vibrational features which were not observed easily or, indeed, at all in 

the respective RR spectra.

7.3 Vapour silver-coated polycarbonate.

7.3.1 Tris(2.2,-bipvridvD rutheniumdD.

(a) Note on the presentation of spectra.

Throughout this chapter, the SERR spectra of the complexes studied 

in contact with silver-coated polycarbonate are presented and 

compared with the corresponding SERR spectra of the complexes in 

contact with chemically-prepared silver slides. This comparison 

effectively equates to a comparison o f polycarbonate SERR spectra with 

the respective resonance Raman spectra o f the complexes since, as 

previously shown, all the silver slide SERR spectra of the ruthenium 

complexes are enhanced duplicates of their corresponding RR spectra.

(b) Raman spectrum of the polycarbonate substrate.

As discussed previously, the SERR spectrum of Ru(bipy)3l2 solution

in contact with silver-coated polycarbonate shows some bands due to 

the polycarbonate substrate itself.



Several Raman spectra of a piece of uncoated polycarbonate were 

obtained in order to determine, more accurately, the positions of the 

polycarbonate bands. Figure 7.8 shows an example of such spectra. The 

spectrum displays peaks with appreciable signal-to-noise ratios at 700, 

875,1106, 1180, 1235 and 1629 cm '1. The peak at 875 cm ' 1 is the 

most intense. Unfortunately, some of these peaks are in areas which 

would be expected to show modes of [Ru(bipy)3]2+ and modified

complexes. This is, therefore, a considerable disadvantage of the 

polycarbonate surface. All polycarbonate bands are clearly indicated in 

subsequent spectra.

(c) SERR spectrum of Ru(bipv)3I2.

Figure 7.9 shows the SERR spectrum of a piece of vacuum silver- 

coated (50 nm) polycarbonate exposed to a solution of Ru(bipy)3I2. The

corresponding spectrum with a silver slide is shown for reference. As 

can be deduced from the background noise, the spectra were obtained 

under different conditions. The sensitivity of the photon-counting 

system had to be increased by a factor o f ten in order to achieve equal 

enhancement with the polycarbonate/complex system.

The positions of the SERRS bands present in each spectrum are 

detailed in table 7.6.

The only obvious differences between the two spectra, in terms of 

relative intensities, are the positions o f the two peaks o f highest
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Figure 7.8: Raman spectrum o f an uncoated piece o f polycarbonate. 
fAr* laser. 488.0 nm excitationl.
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Figure 7.9: (a^ SERR spectrum/vacuum silver-coated polycarbonate and
(b) SERR spectrum/silver slide o f R ufbipv^I^ (2 x 10~3

mol I' 1 aqueous solution! (photon counter sensitivitv/101 . 
fAr* laser. 488.0 nm excitation].
(* « polycarbonate bands.)
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Table 7.6: Data from SERR spectra of an aoueous solution of R ufbipv^k  

<2 x 10~3 mol I"1) on vapour silver-coated (50 nm) 

polycarbonate and a silver-coated slide.

SERRS/Ae slide Ccm-1! SERRS/Ag pc (cm '1! Assignment 12101

204
265 u(RuNC)
335
372 u(RuN)
435
467
668 664 a(CCC)
723 706 a(CCC)
760
1025 1024 u(C4— C5)
1066 5(CCH)
1177 1160 5(CCH)
1260 5(CCH)
1275 1276 u(C2—Cj)
1318 1314 5(C2C3H)
1451w 5(CCH)
1488 1483 8(CCH)
1560 1556 u(C4— C5)
1605 1602 u(C2— C3)



wavenumber. In the SERR spectrum of the silver slide, the peak at 

1560 cm -1 is over twice the intensity of the peak at 1605 c m '1. In the 

SERR spectrum of the polycarbonate, however, the two peaks are of 

approximately equal intensity.

In terms of vibrational band positions, the two spectra show several 

differences. All of the bands in the spectrum of the polycarbonate 

display a general shift to lower energy compared to the silver slide 

spectrum and, therefore, to the resonance Raman spectrum. This shift is 

not even, varying between 1 and 17 cm '1. Most of the wavenumber 

shifts in the spectrum, however, are o f between 4 and 7 cm '1. There 

are no new bands present in the SERR spectrum of the polycarbonate 

except an extremely small feature at 204 cm "1 which was not 

reproducible. Some bands observed in the SERR spectrum of the silver 

slide cannot be observed above background noise in the polycarbonate 

SERRS. This is simply a consequence of the lower enhancement 

obtained with the polycarbonate. The small wavenumber shifts of 

between 4  and 7  cm ' 1 were observed time and again in a series of 

identical spectra. Clearly, these shifts are real and not a function of any 

inherent inaccuracy of the Raman spectrometer.

All o f this evidence implies some degree o f chemisoiption of the 

[Ru(bipy)3]2+ molecule. The most likely adsorption mode is edge-on

bonding through a 2,2-bipyridyl ring C = C .  The enhancement of the



band at 1605 cm-1, ascribed to u (C = C ) , further evidences this. None 

of the ring modes in the polycarbonate SERR spectrum display any 

evidence of splitting or broadening and it is, therefore, likely that both 

pyridyls of the 2 ,2 -bipyridyl ligand are attached to the silver surface. 

This situation, of course, leads to enhancement through the charge- 

transfer mechanism. It is likely, however, that that the enhancement is 

a combination of both effects since the excitation wavelength 

(488.0 nm) is fairly close to both the surface plasmon (410 nm) and 

adsorbate/surface charge-transfer (beyond 514.5 nm) maxima, as 

indicated in section 6.6.1(c). Resonance Raman enhancement also plays 

a significant part in the enhancement process of this system.

7.3.2 fRu(diesbipv)3l2*.

Figure 7.10 shows the SERR spectrum of a piece of silver-coated (50 

nm) polycarbonate and of a chemically silver-coated slide exposed to an 

aqueous solution o f the diester complex.

Compared to the spectrum of the polycarbonate exposed to 

[Ru(bipy)3]2+, the polycarbonate SERR spectrum of this complex was

considerably easier to obtain and shows slightly greater enhancement.

Table 7.7 shows spectral data obtained from several runs o f both 

spectra. The SERR spectra of the coated polycarbonate surface were 

highly reproducible.
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Figure 7.10: (al SERR spectrum/vacuum silver-coated polycarbonate
and (b) SERR spectrum/silver slide of R u fd iesb ip v ^ fB F ^

(dilute aqueous solution) (photon counter sensitivity/1 0 ).
(c) SERR spectrum of the above silver polycarbonate 
surface after washing in water. 
fAr* laser. 488.0 nm excitationl.
(* « polycarbonate bands.)
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Table 7.7: Data from SERR spectra of an aqueous solution of 

R u fd iesb ip v ^ rB F ^  on vapour silver-coated (50 nm) 

polycarbonate and a silver-coated slide.

SERRS/Ag slide (cm '1) SERRS/Ag pc (cm '1) Assignment (210)

224
251 246
285 289 u(RuNC)
345 u(RuN)
459b
650 a(CCC)
690 695 a(CCC)

763 787
1024 1 0 2 1 u(C 4 - C 5)

1182 5(CCH)
1274 1269 u(C2— C3)

1319 1316 8 (C2C3H)

1438w 1426w 6 (CCH)
1480 1472 5(CCH)

1555 1546 u(C4—  C5)

1615 1607 u(C2 — C3)



The two spectra display clear differences in relative intensities and 

band positions. The main changes in relative intensity come within the 

the three peaks of highest wavenumber (at 1480,1555 and 1615 cm ' 1 

in the silver slide spectrum). The peak at 1555 cm ' 1 is slightly lower in 

intensity compared to the 1480 cm ' 1 peak in the silver slide spectrum. 

In the polycarbonate spectrum, however, the two peaks are of 

approximately equal intensity. The peak at 1615 cm ' 1 in the silver 

slide SERRS increases its intensity, relative to the other two peaks, in 

the polycarbonate spectrum.

The changes in band positions in the polycarbonate spectrum range 

between 3 and 24 cm '1, with most o f the changes being of between 6  

and 8  cm"1. In most cases, the shifts are to lower frequency. All of 

these shifts were duplicated in every run of the spectrum, with 

variance o f approximately 1 cm '1.

Other notable changes include the absence of a peak in the 

polycarbonate spectrum which is present as a broad band in the silver 

slide SERRS. An additional peak is present, in the polycarbonate 

spectrum at 224 cm ' 1 and with good reproducibility.

Figure 7.10 also shows the SERR spectrum of a sample of the same 

aqueous solution o f the diester complex which had been in contact with 

a piece o f silver-coated polycarbonate for over one hour and had then 

been washed with distilled water and dried. The resultant Raman



spectrum of the polycarbonate is very noisy but shows the 

strengthening o f the peak of highest frequency and the possible 

splitting of the peak at 1269 cm '1.

As has been demonstrated for the parent complex, all of the 

findings outlined above indicate that chemisorption of the diester 

complex occurs to some degree.

The increase in relative intensity of the two peaks of highest 

frequency, assigned in the silver slide spectrum as C = C  stretching 

modes, may indicate some role of the 2 ,2 '-bipyridyl ring in the 

adsorption of the complex. However, it is likely that the carboxylate 

(OCO) symmetric stretch is involved in these modes. The further 

evidence of the appearance, in the polycarbonate spectrum, o f a new, 

repoducible mode at 224 cm '1, which could represent silver- 

carboxylate stretch, indicates that the molecule may adsorb on the 

silver surface through the substituent carboxylate ester group. The 

geometry of the overall diester complex ion entity effectively excludes 

the possibility o f flat 2 ,2 -bipyridyl co-ordination to the metal surface 

and so the most likely bonding mode is a perpendicular carboxylate 

orientation.

The spectrum of the silver-coated polycarbonate surface after 

washing in water reveals an even greater increase in the relative



intensity of the peak of highest wavenumber. The process of washing 

may rid the surface o f most of the weakly-bound physisorbed 

molecules and leave the chemically-bound adsorbate species attached. 

The splitting o f the 1269 cm -1 p e a k , which from the assignment o f the 

parent complex involves u(C 3 — C4) and u(C4— C5) modes, could 

indicate that only one of the carboxylate ester substituents of the 2 ,2 '- 

bipyridyl ring is co-ordinated to the silver surface.

7.3.3 rRufdiambipvlgl2*.

Figure 7.11 shows the SERR spectrum o f a solution o f the diamino 

complex, in ethanol, in contact with a piece of silver-coated (50 nm) 

polycarbonate and the SERRS o f the same solution in contact with a 

chemically silver-coated slide. Band position data are detailed in 

table 7.8.

The two spectra display obvious differences in relative intensities 

and band positions. Once again, the major changes in relative intensities 

occur within the three peaks o f highest frequency. The relative 

strengthening of the peak at 1610 cm ’ 1 in the polycarbonate spectrum 

is accompanied by the possible splitting o f the peak at 1555 cm’1. This 

peak is not as sharp as the corresponding peak appears in the silver 

slide SERRS.

Another obvious change involves the peak at 1244 cm ’ 1 in the
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Table 7.8: Data from SERR spectra of an ethanolic solution of

RuldiambipvlgCk  on vapour silver-coated (50 nm)

polycarbonate and a silver-coated slide. 

SERRS/Ag slide (cm '1) SERRS/Ag pc (cm-1)

420
491
564

740
1028

1246
1274

1496
1557

1617

255
290

560
699
797
1021
1244

1270

1361
1492
1555

1610

Assignment (2101

u(RuNC)
u(RuN)

a(CCC)

u(C4 - C 5)
u(C2 - C 3)
5(C2C3H)

5(CCH)
6 (CCH)
1XC4 — C5 )
u(C 2— C 3)



polycarbonate SERRS. This peak is of almost double the relative 

intensity of the corresponding peak in the silver slide spectrum.

The average change in band positions between the two spectra is 

approximately 6  to 8  cm-1, and in most cases to lower frequency.

These changes were found to be reproducible.

Another evident change in the polycarbonate SERRS is the 

appearance o f a reproducible low energy peak at 255 cm-1.

These findings clearly indicate chemisorption of the diamino 

complex.

Once again, the selective enhancement of u(C 3— C4) and 

u(C4— C5) modes (210) indicates that the molecular adsorption site is in

the region o f the substituents. The low wavenumber band indicates 

attachment through the substituent amine group, the peak representing 

u(A g— N). Such a feature in this region of the spectrum, however, 

could be ascribed to l)(Ru— N). Since, however, no such band is 

observed in this area o f the highly enhanced silver slide SERR spectrum, 

it is highly unlikely the feature would be observed in the spectrum of 

the polycarbonate.

Although the peak at 1555 cm ' 1 is not cleanly split, there is 

considerable evidence of asymmetry. The splitting of this u(C4— C5) 

mode suggests that only one of the substituents on the 2 ,2 '-bipyridyl 

ring is bound on the silver surface. The peak at 1021 cm-1, assigned as



u(C4 — C5), also appears to be broader compared to the corresponding 

band in the silver slide SERRS.

Effect of protonation.

Figure 7.11 also shows the SERR spectrum of the diamino complex, 

after treatment with dilute hydrochloric acid, in contact with silver- 

coated polycarbonate. This spectrum is very similar to the spectrum of 

the original solution, indicating that the protonation of the complex has 

no obvious effect on the adsorption behaviour of the complex on the 

polycarbonate surface. The only difference between the spectra is that, 

with the same laser power and experimental conditions, the spectrum of 

the protonated diamino complex is less enhanced.

7.3.4 rRu(diphbipy)3l2+.

Figure 7.12 shows the SERR spectra of both silver-coated (50 nm) 

polycarbonate and a chemically silver-coated slide exposed to the same 

solution o f the diphenyl complex. The spectral data obtained from these 

studies are shown in table 7.9.

The two spectra display subtle differences in band positions and 

relative intensities.

The most obvious change in band intensity is the relative 

strengthening of the peak at 1254 c m 1. There are no obvious 

wavenumber modifications within the three peaks of highest frequency
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Table 7.9: Data from SERR spectra of an aqueous solution of 

Rufdiphbipv^Clo on vapour silver-coated (50 nm)

polycarbonate and a silver-coated slide.

SERRS/Ag slide (cm"1) SERRS/Ag pc (cm 'h  Assignment (210)

330 u(RuNC)
375w 382 o(RuN)
410w
543w a(CCC)
628 627 ct(CCC)
725 721
767w
851w
1026 1020 u(C4 — C5)
1060w 5(CCH)
1254 1254 u(C2 — C3)

1330 1329 5(C2C3H)

1416w 1418w 5(CCH)
1483 1477 5(CCH)
1534 1532 u(C4— C5)

1612 1609 u(C 2— C3)



or, indeed, within any of the other bands in the spectrum.

The changes in band positions are smaller than the changes in the 

polycarbonate spectra of the other modified complexes. In this case, 

most of the peaks are shifted by 4 to 6  cm ' 1 to lower frequency.

The only other noteworthy aspect of the polycarbonate SERRS of the 

diphenyl complex is the small degree of splitting of the peak at 

1020 c m '1. No low frequency peaks were observed.

All this evidence indicates a small degree of chemisorption of the 

diphenyl complex occurs. The SERR spectrum of the complex on the 

polycarbonate surface is not modified, with respect to the corresponding 

silver slide SERRS, in the same way that the polycarbonate spectra of 

the other modified complexes exhibit change. Certainly, the general 

pattern o f the spectrum, saving the splitting of the 1 0 2 0  cm "1 peak and 

a small change in relative intensity, is very similar to the silver slide 

SERR spectrum and, therefore, to the corresponding RR spectrum.

The extent of chemisorption o f the complex is, therefore, very small. 

The fact that the peak at 1020 cm ' 1 splits and the small increase in 

the intensity of the 1254 cm ' 1 peak suggests that the complex adsorbs 

on the polycarbonate surface through one of the pyridyl ring C ^ C  in 

the 2 ,2 '-bipyridyl molecule.

The overall enhancement of the spectrum, therefore, has a small



chemical contribution with the bulk of the enhancement caused by the 

electromagnetic effect.

7.3.5 IRuldimebipv^l2*.

Figure 7.13 shows the SERR spectra of a dilute solution of the 

dimethyl complex in contact with both silver-coated (50 nm) 

polycarbonate and a chemically silver-coated slide. Table 7.10 

summarises the results of these studies.

In a similar manner to the spectra of the diphenyl complex , these 

spectra display only minor differences in relative intensities and band 

frequencies. The enhancement observed on the polycarbonate surface 

is high compared to the other complexes studied.

The main changes in relative intensities centre on the peaks at 1480 

and 1607 cm '1. The relative intensities observed in the silver slide 

SERRS effectively ’swap round' in the polycarbonate SERRS, with the 

peak at 1607 cm '1 increasing in relative intensity. This effect was 

reproducible.

The changes in band frequencies are relatively small. The average 

shift is between 3 and 5 cm '1 to lower energy.

The only other notable spectral feature in the polycarbonate SERRS 

is the marked broadening of the peak at 1024 cm"1.

The polycarbonate SERR spectrum is complicated by the fact that
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Table 7.10: Data from SERR spectra of an aqueous solution of 

Rufdimebipv^CU on vapour silver-coated (50 nm)

polycarbonate and a silver-coated slide.

SERRS/Ag slide (cm-1) SERRS/Ag pc (cm 'h Assignment (210)

335
400
561 559
660w a(CCC)
733 731 a(CCC)
919 w
1029 1024 u(C4- C 5)

1113 5(CCH)
1198 1199 5(CCH)
1268 1272 o(C2— C3)

1317 1314 6(C2C3H)

1427w 1428 5(CCH)
1483 1480 6(CCH)
1545 1545 u(C4— C5)

1613 1607 u(C2— C3)



some of the polycarbonate modes are close to SERRS bands of the

dimethyl complex.

All of the evidence outlined points to a similar bonding mode for 

this complex as was deduced for the parent complex. The 2,2'-bipyridyl 

molecule is, therefore, attached to the metal surface via one of the 

C = C  bonds in the ring. The most likely attachment point is the 

C4— C5 bond. The only difference is that, in this case, there is some

evidence of asymmetry in the bonding orientation. It is possible that 

only one pyridyl ring of the 2,2'-bipyridyl ligand is attached to the 

metal surface with the other pyridyl extending out towards the bulk 

solution.

7.3.6 Discussion.

The enhancement and adsorption effects observed in the SERR 

spectra of these complexes on silver-coated polycarbonate substrates in 

many ways reflect the type of exciting radiation used. From section 

6.6.1(c), it is clear that the substrate has a surface plasmon maximum at 

410 nm. The subsequent determination of whether a feature observed 

at 486 nm in the absorption spectrum of a coated polycarbonate, which 

had been exposed to [Ru(bipy)3]2+ solution, by 'excitation profile'

measurement failed to realise any clear answers. The subsequent 

SERRS enhancement was observed to maximise around excitation of



514.5 nm (argon-ion). The investigation of whether the enhancment is, 

in fact, maximised at higher wavelength of laser radiation was not 

possible due to the unavailability of any laser lines other than those of 

the argon-ion system. If, as seems likely, the adsorbate/ 

polycarbonate surface entity exhibits a charge-transfer maximum at 

some point in the spectrum beyond 514.5 nm, this would render the 

common excitation wavelength of 488.0 nm somewhere in the'middle 

ground between the surface plasmon maximum and the charge-transfer 

maximum. If, indeed, the charge-transfer maximum is at 486 nm, with 

excitation of 488.0 nm, one would expect the enhancement to be 

extremely large and more obvious evidence of chemisorption would be 

expected to appear in the SERR spectrum. This is clearly not the 

case. The identity of the feature at 486 nm is, therefore, not clear.

On the basis of all this evidence, it is not surprising that all of the 

adsorbate/polycarbonate systems studied display both chemisorptive 

and physisorptive properties.

The adsorption behaviour exhibited by disubstituted tris-2,2’- 

bipyridyl ruthenium(II) complexes on silver-coated polycarbonate 

substrates confirms some of the earlier conclusions reached. As 

discussed previously, the large dimensions of roughness species on the 

polycarbonate surface are not conducive to high degrees of SERRS 

enhancement. The regular nature of the surface, however, is an
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important factor governing the adsorption behaviour of the complexes.

The SERRS results show that with complexes having potentially 

co-ordinative substituents (diamino, diester complexes), the differences 

in relative intenities of bands and band frequencies over the 

corresponding RR spectra are quite marked. There is also considerable 

evidence for the attachment of the molecules via the substituent groups. 

With the other adsorbate complexes (diphenyl, dimethyl and parent 

complexes), the differences between the respective SERR and RR spectra 

are more subtle.

In some cases, the complexes adsorb through only one ligand 

substituent, giving effectively two non-equivalent pyridyl rings within 

the 2,2'-bipyridyl molecule.

The question of whether or not only one, two or all three ligands are 

involved in the adsorption of one complex ion has not been addressed.

In each case, it seems unlikely that all three 2,2’-bipyridyl ligands are 

bound as, due to the geometry of the tris-ligand molecule, this would 

require the ion to be totally enclosed within the metal surface in a 

'cage’-type structure. The attachment of two ligands is feasible, but the 

elucidation of the true adsorption mechanism would require further 

study.



CHAPTER EIGHT. 

CONCLUSIONS.



8. CO NCLUSIONS.

The overall objective of this body of work was to investigate fully 

certain aspects of the SERS-activity of tris(2,2'-bipyridyl) ruthenium(II) 

complexes and related species with particular relevance to the nature of 

the adsorbate/metal surface bond and to potential applications of SERS 

in chemical sensing. The results previously discussed indicate several 

broad conclusions.

(1) With common organic molecules as adsorbate species on 

chemically-produced surfaces such as silver slides, it is clear that the 

adsorbate must possess a co-ordinative site. Such sites include basic 

nitrogen atoms or carbonyl groups. Adsorbate species devoid of such 

molecular properties, such as benzene, display no SERS-activity with 

silver-coated slides. This, however, is not a universal rule as benzene 

and other molecules without any obvious co-ordinative site can exhibit 

SERS-activity under certain conditions (64). Benzene has displayed 

appreciable SERS enhancement with vapour-deposited surfaces and 

under vacuum conditions.

Chemisorption seems to be a necessary requirement for SERS- 

activity with common organics on chemically silver-coated slide 

surfaces. Surface plasmon resonance excitation is not sufficient to 

produce enhanced spectra coupled with the lack, in the case of most 

organic molecules, of a resonance Raman effect with excitation of
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488.0 nm.

The spectra obtained from silver slides with, in turn, 2,2'- 

bipyridine, pyridine and benzoic acid as adsorbate species were not as 

highly enhanced as previous spectra reported in the literature (95) 

with silver colloid as the active surface.

(2) Chemically-produced silver slides exhibit SERS-activity with 

[Ru(bipy)3]2+ and modified analogues. The inherent resonance Raman

effect, at 488.0 nm argon-ion excitation, and the surface plasmon 

enhancement mechanism combine to produce an extremely large degree 

of enhancement. In this case, however, chemisorption is not a 

necessary factor and the Raman spectra of the complexes are enhanced 

solely via the electromagnetic mechanism.

It is proposed that the main reasons for the inordinate enhancement 

produced, in this case, is the presence of the resonance Raman effect 

and the symmetry of the molecules.

The additional factor of resonance enhancement explains some of 

the additional enhancement beyond the levels obtained with simple 

organic molecules. Ru(bipy)3l2  and modified analogues are regular, 

almost 'spherical' molecules with no inherent fluxional motion. It is 

reasonable to envisage, with chemically-produced silver slides of high 

surface area, a high degree of non-chemisorptive surface coverage and,



consequently, a large number of adsorbate molecules sampled. This, 

therefore, leads to a high degree of enhancement.

Other possible reasons for the large enhancement, such as charge- 

induced adsorption, were ruled out.

The inordinate enhancement allows Ru(bipy)3l2  to be detected, on 

silver slides, at concentrations of lower than 10"9 moles l '1. 

Superficially, this result indicates that silver slides have considerable 

analytical potential. This, however, must be measured against the fact 

that most analytical applications require the detection of complex 

organic molecules that, in the vast majority of cases, do not have any 

accessible absorption maximum. Developments in the field of laser 

technology and the vast range of laser excitation frequencies available 

may offset this disadvantage.

(3) The results of the comparitive studies of the SERRS of Ru(bipy)3I2

and disubstituted analogues in contact with vapour silver-coated 

polycarbonate and chemically silver-coated slides proved interesting. 

Whereas none of the modified complexes chemisorbed on silver slides, 

there was evidence of chemisorption, in varying degrees, of the 

complexes on the vapour-deposited surface.

The additional factor of the substitution of the 2,2’-bipyridyl ligands 

was influential in the case of the polycarbonate, but the extent of the



effect was no greater than was originally predicted.

It is proposed that the ordered nature of the polycarbonate surface 

facilitates the adsorption of the highly symmetrical tris-ligand 

ruthenium(II) complexes. These molecules are rigid and, it is believed, 

incapable of any fluxional, rotational or substitution processes at metal 

surfaces.

The extent of the enhancement of the Raman spectrum of 

Ru(bipy)3 l2 on the silver polycarbonate, which was considerably less 

than that obtained with silver slides, is critically dependent upon the 

dimensions of the surface roughness species. As previously indicated in 

section 6.6.3, the large dimensions of the roughness species and the 

proximity of the argon-ion laser exciting line do not favour high

enhancement. The other critical factor is the effect of excitation

 ̂ /

wavelength and the distance of the surface plasmon absorption from the 

exciting line (488.0 nm). The surface plasmon maximum, due to the 

absence of any surface reorganisation effects, is unchanged with 

exposure to the adsorbate solution.

The only constant factor in the SERRS experiments with the 

tris-ligand ruthenium(II) complexes and the chemically-prepared silver 

slides and the vacuum silver-coated polycarbonate is the inherent 

resonance enhancement.

The lack of stronger spectral evidence for chemisorption of the



complexes on the polycarbonate surface is a manifestation of the 

exciting lines used: radically changed spectra may have been obtained 

through the use of krypton-ion exciting lines.

All of these studies show, what has become increasingly clear from 

SERS reports in the literature, that no general rules can be applied to a 

given SERS-active system.

The question of the nature of the adsorbate/surface bond cannot be 

answered simply since the nature of the bond changes with changing 

adsorbate species and SERS-active surfaces. Certainly, chemisorbed 

molecules are attached to the metal surface by real chemical bonds, 

causing radical changes in SER(R) spectra over normal and resonance 

Raman spectra. The other extreme is, of course, physisorption. The 

results with tris-ligand ruthenium(II) complexes on silver slides show 

that, although no more than simple Van der Waals’ forces anchor the 

adsorbate to the metal surface, large enhancements are produced.

The specific case of these complexes illustrates SERS perfectly as 

it is a combination of several factors that produce a huge 

enhancement: resonance enhancement close to the excitation 

wavelength, high surface area, regular adsorbate molecules and the 

proximity of the surface plasmon maximum and the excitation 

wavelength.

The results with silver-coated polycarbonate surfaces show that



Ru(bipy)3l2 , although exhibiting large physisorptive enhancement with

silver slides, can be induced to adsorb. These observations, however, 

have limited relevance to the analytical applications of SERS.

It is clear that each analytical SERS experiment must be judged in 

terms of all the factors influencing the enhancement. General 

predictions can, however, be made about certain molecular types. For 

example, an organic molecule containing a six-membered heterocyclic, 

nitrogen-containing ring would be expected to show SERS-activity, 

under argon-ion excitation, with silver colloids. The application of 

general rules, however, is generally not possible in SERS.

This, in part, is the reason why SERS has not become a widely 

applied analytical technique. Although SERS can be very powerful in 

some cases, the trace determination or analysis of a new compound is 

governed by the availability of appropriate active surfaces and laser 

systems.

Extensive theoretical study, which has almost run its course, over 

the last ten years has still not fully elucidated the nature of SERS 

enhancement. The application of SERS in chemical sensing has suffered 

from the lack of serious attempts to link the theoretical aspects with the 

analytical applications.
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