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Notations

Operators
denotes "estimate of".

E{ . } denotes "expected value of"
Var{.} denotes "variance of".
Cov{.} denotes "covariance of".
Pr{.} denotes "probability of".
Corr{.,.} denotes "correlation of".

Symbols
M,N
X
Po (p)
N (p, cr2 )

Fm, n

Point processes M and N.
Ordinary time series X.
Poisson variate with mean p.

2Normal variate with mean p and variance cr . 
Chi-square variate with degree of freedom n. 
F variate with degrees of freedom m and n.

Functions
M(t) Counting measure that counts the number of events in the interval

(0,t] .
dM(t) Differential increment of point process M.
P^ Mean intensity of point process M.
PM M ^  Product density function of point process M at lag u.
PMN^U  ̂ Cross-product density function between point processes M and N at

lag u.
mM M ^  Auto-intensity function of point process M at lag u.
mMN^U  ̂ Cross-intensity function between point processes M and N at lag u.
°*MM^U  ̂ Auto-cumulant density function of point process M at lag u.
^MN^U  ̂ Cross-cumulant density function between point processes M and N at

lag u.
f^(A) Auto-spectrum of point process M at angular frequency A.
f^CA) Cross-spectrum between point processes M and N at angular

frequency A.2|Rm n (A)I Ordinary coherence function between point processes M and N at
angular frequency A.

f"ll 2 ^ ^  Partial auto-spectrum of order-1 of point process 1 after removing
the effects of point process 2 .

P 1 2  Partial cross-spectrum of order-1 between point processes 1 and 2
after removing the effects of point process 3.

2| R 12 3 ^ )  I Partial coherence function of order-1 between point processes 1

and 2 after removing the effects of point process 3.
f (A) Partial auto-spectrum of rrder-2 of point process 1 after removing

the effects of point processes 2 and 3.
f (A) Partial cross-spectrum of order-2 between point processes 1 and 212.34

after removing the effects of point processes 3 and 4.
|R 2 3 4 (A)|2Partial coherence of order-2 between point processes 1 and 2 after

removing the effects of point processes 3 and 4. 
Third-order cumulant densit 
1 , 2 and 3 at lags u and v.

q l23^U,V  ̂ Third-order cumulant density function between the point processes

v



Summary

The main objective of this thesis is the development of analytical techniques 

and computational procedures for the analysis of complex neuronal networks. The 

techniques are applied to data obtained from elements of neurophysiological systems 

and simulated models to illustrate different aspects of these analysis tools.

The nerve signals that occur within neuromuscular control systems are widely 

accepted to be stochastic in nature and are characterised by the times of occurrence of 

events, typically 1 msec, in duration of fixed amplitude, within the process. This 

provides the basis for considering these processes as stochastic point processes. The 

analytical approach adopted is similar to that used in ordinary time series and requires 

an inter-disciplinary approach involving linear and non-linear system analysis, 

estimation theory, probability theory and statistical inference. In this thesis a 

considerable amount of work is devoted to the discussion of these various areas related 

to the point process analysis techniques. In addition, neurophysiological concepts are 

discussed to provide a basis for the application of these techniques. These techniques 

are applied to the analysis of real data obtained from physiological experiments and 

simulated data generated by model neuronal networks of different complexities. 

Finally, some possibilities for future work opened up by the present investigation are 

considered.

An introduction together with some historical notes are given in Chapter 1. 

The objectives of this thesis are set down and some general ideas of a point process and 

neurophysiology are introduced. The historical notes at the end of Chapter 1 are

intended to give a picture of the trend of developments concerning point processes.

Chapter 2 presents a simplified account of the relevant neurophysiological 

background. Some features of the neuromuscular system which lead to the use of point 

process analysis techniques are discussed. This is followed by a brief description of 

the organisation of neuromuscular system and some of its elements. The idea that the 

generation of an action potential occurs when the membrane potential at the trigger 

zone of a neurone exceeds the threshold forms the basis for the neurone model 

wseo( in 'Hus +Wsi5 . The multiple input and output nature of neuromuscular 

systems in addition to the short duration of an action potential justify the realisation of 

a spike train as stochastic point process. Chapter 2 is concluded by considering some 

findings from the application of point process analysis techniques to data recorded from



neuromuscular elements. The details of the techniques are then explained in Chapter 3- 

5.

Chapter 3 gives a development of the theory of linear point process system 

analysis. The formal definitions of the assumptions involved, namely stationarity, 

mixing, and orderliness are explained. These assumptions are important in simplifying 

the theories involved and are seen to be valid in our applications. Theories for 

univariate, bivariate and multi-variate point processes are considered. The asymptotic 

value of the auto- spectrum of a point process is shown to be a non-zero constant, 

which marks the distinction from the auto-spectrum of an ordinary time series. 

Various quantities in both time and frequency domains are introduced and, among 

them, the coherence function and its partial and multiple forms are explained in 

particular details. The application of coherence is emphasised in Chapter 6.

Since the processes involved are stochastic in nature, appropriate estimation 

procedures for the time and frequency domain quantities should be used. Chapter 4 is 

devoted to explaining the estimation procedure used and the statistical properties of 

these estimates. Also the Poisson point process - which possesses similar properties to 

Gaussian white noise in the case of ordinary time series - is introduced. The 

importance of the Poisson point process lies on the fact that it may be used as a 

'reference process' to indicate departure of independence within a point process. At 

the end of Chapter 4, the confidence intervals of the time and frequency domain 

estimates under the hypothesis of independence are developed. The confidence interval 

approach forms the basis of inferring whether there is any significant association 

between processes or within a process.

Chapter 5 describes briefly the implementation of the neurophysiological and 

simulation experiments. The digital algorithm for generating the exponential and 

Gaussian variables to provide the required stimuli in the experiment are explained. 

The neurone model, which is the building block of more complicated neuronal 

networks, is also described.

Chapter 6 presents results and discussion. First some $«hnAla.+*o\ spike 

trains of different structures are analysed using histogram, auto-intensity and auto­

spectrum. The histogram is found to be least sensitive in revealing significant 

information concerning the processes. Then the time and frequency domain analysis 

techniques discussed in Chapter 3-4 are applied to the input and output spike trains of a



model neurone. The cases where an input spike has an excitatory effect on the output, 

and that when an input spike has an inhibitory effect on the output are looked at. Some 

general findings from the analysis are pointed out, and in particular the distinctions of 

these two situations lie in the shape of the cross-intensity estimates and the phase 

spectra. The analysis of the bivariate point process is followed by the study of a 

neuronal network model in which a pair of neurones are influenced by a common input. 

The shape of the ordinary coherence estimate is seen to be related to the frequency 

content of the common input and some analytical studies of this observation are also 

presented. In addition, the use of partial coherence of order-1 is demonstrated and is 

seen to be able to remove the contribution of the common input mathematically. The 

analysis is then extended to a neuronal network model in which a pair of neurones are 

influenced by two common inputs. Cases where both inputs are point processes, and 

where one input is a continuous signal are considered. The analysis techniques in the 

frequency domain are seen to work well in either case, and the usefulness of partial 

coherence of order-1 and 2 is demonstrated. Some addition notes of the interpretation 

of partial coherence are also given and expanded in Appendix 4. Next, it is attempted 

to investigate the non-linear interactions between the discharge of a single la afferent 

and the response of a single motor unit based on a model neurone incorporating after­

hyperpolarisation. The third-order cumulant density function is seen to be more 

sensitive than the cross-intensity and the time course of the after-hyperpolarisation is 

related to the trough that appears in the cumulant. This result leads to the possibility of 

deducing the time course of the after-hyperpolarisation obviating the use of invasive 

methods like intracellular recording.

Chapter 7 indicates some possible areas in the future work, namely: (1) further 

investigations of higher order parameters, (2) maximum likelihood approach to estimate 

model parameters and (3) Lanczos analysis of electric current flow in excitable cells. 

These are outlined in Chapter 7 as a conclusion of the present work.
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Introduction and Historical Notes



Chapter 1 Introduction and Historical Notes

The work of this thesis is primarily concerned with 

developing analytical techniques and computational procedures for 

the analysis of complex neuronal networks. The use of models of 

neuronal networks plays a key role in this project. In the study 

of real neuronal networks several kinds of signals may occur. In 

this thesis, we will be primarily concerned with signals that can 

be modelled as stochastic point processes, although the 

interaction between point processes and the type of continuous 

signals that occur in the analysis of dynamic systems will also be 

considered.

Stochastic point processes belong to a class of stochastic 

processes which concern the occurrence of events in time or space. 

Examples of stochastic point processes are vast: queues, neuronal 

electrical activities, heartbeats, population growth, accident or 

failure processes, radioactivity and many others. In contrast to 

the ordinary time series, where a process is represented by the 

magnitude of the process as a function of time, a point process 

may be completely characterised by the times of occurrence of the 

point events. Since in everyday life, data arises as both 

ordinary time series and point processes, the study of point 

processes may be considered in parallel with the study of ordinary 

time series. (See Brillinger 197Sa for a comparative analysis of 

ordinary time series and point processes)

The techniques for the analysis of point processes are, in



many cases, similar to those used for ordinary time series (see 

for examples Barlett 1963a and Beutler and Leneman 1968). The 

methods of analysis are, statistical in nature and may be divided 

into time and frequency domain; the time domain parameters usually 

have their frequency domain equivalence and vice versa.. There 

are, however, situations in which unique techniques are applicable 

only to one type of domain but not to the other. In addition, a 

situation may arise where the processes involve a mixture of 

ordinary time series and point processes. In this case, hybrid 

parameters in both time and frequency domains are to be defined 

and the analysis techniques needed to be modified. The study of 

these forms part of the main theme of this thesis.

Neurophysiology is an area where the signals of interest are 

a rich combination of ordinary time series (such as excitatory 

post-synaptic potentials and length changes) and point processes 

(such as action potentials). The short duration of an action 

potential compared with the intervals between successive pulses 

provides the basis for considering the spike train as a 

realisation of a point process. Under the same experimental 

conditions, the pattern of firing of the action potentials would 

vary with the statistical (or average) properties unchanged. 

Hence the neurophysiological system may be consider as stochastic 

in nature. In addition, the system may be considered as 

stationary (short term) and this allows considerable 

simplification in the analysis techniques. These considerations 

suggest that the use of point process analysis techniques are 

appropriate in neurophysiology. A more detailed description of



these terms is given in Chapter 2.

In the experimental study of a biological system such as the 

neurophysiological system, it may be difficult sometimes to

interpret the results due to the inherent complexity of the 

system. Several hypotheses may seem to be possible or no

immediate interpretation can be made to explain a certain 

observation in the results. In these cases simulation can provide 

an invaluable guide to the interpretation through the 

investigation of a model with known structure and properties. 

Such an approach can facilitate the interpretation of results 

obtained from the unknown system. In this thesis, simulation

studies are based on a model neurone and interconnected groups of

model neurones. The properties of this type of model neurone have 

been investigated previously and were shown to be satisfactory in 

representing the properties of the real system (Halliday 1986). 

This model then forms the basic building unit of a network of the 

desired structure.

The main objectives of this thesis is to (1) investigate the 

analysis techniques and computational procedures for point 

processes and (2) to apply these techniques to the analysis of 

complex neuronal networks along with simulation studies. Original 

contributions have been made to (6b) identify different patterns of 

spike trains with the aid of simulation, (b) to demonstrate, by 

simulation and analytically, how the coherence between the outputs 

of a single input, two-output neuronal model may reflect 

statistical properties associated with the common input and (b) to



investigate, based on simulation studies, the hypothesis that the 

time course of post-spike depression can be deduced from the 

third-order cumulant density function and (<£) to demonstrate 

different aspects of point process analysis techniques through 

simulation studies and to show how the analysis techniques can 

extract useful information concerning the functional and 

structural aspects of the neurophysiological system.

A wide variety of examples of point processes are discussed 

in Lewis (1972a) and Snyder (1975). An extensive discussion with 

examples comparing ordinary time series and point process can be 

found in Brillinger (1978a). The fundamental theory and 

applications of ordinary time series can be found in monographs by 

Bloomfield (1976), Box and Jenkins (1970), Brillinger (1975d), 

Jenkins and Watts (1968) and Koopmans (1974). In the case of 

point processes the relevant theory can be found in Brillinger 

(1975a), Cox and Isham (1980), Cox and Lewis (1966), Daley and 

Vere-Jones (1988) and Lewis (1972).



1.1 A Historical Note on Point Process

While the frequency domain analysis of a signal may be said 

to have commenced in 1664 when Isaac Newton decomposed a light 

signal into separate components by passing the light through a 

glass prism, the earliest study of point processes began when J. 

Graunt (1620-1674) constructed life tables as an application of 

mathematics to the study of population. The table corresponds to 

the superposition of many independent point processes, each 

containing a single point at the time of death of an individual. 

For an early history describing this study see Westergaard (1968).

The Poisson point process was introduced over a long period 

of time. It has a Poisson counting distribution (hence its name) 

and is credited to de Moivre in 1718 and Poisson in 1837. 

Clausius (1858) in his studies on the kinetic theory of gas showed 

that the exponential distribution of intervals in a point process 

was related to the free path length of a gas molecule. In 1868, 

Boltzmann further derived the expression exp(-pt) for the 

probability of no randomly placed points in an interval of length 

t. Bateman (1910) showed that the numbers of particles from 

radioactive emissions in fixed time intervals satisfied a simple 

set of differential equations, and that the solutions to these 

equations were Poisson probabilities. Erlang, in his pioneering 

work, made extensive use of Poisson process in the studies of 

congestion problems in traffic systems and telephone systems. ror 

a historical review, see Jensen (1948) and Haight (1967).



Another class of point processes with a long history of 

study is that of renewal processes. They are defined as 

stationary point processes where the interval between two 

successive events is independently distributed. The appropriate 

application of these processes results in a considerable amount of 

simplification since the probability density function of the 

intervals is sufficient to describe the process completely. The 

renewal process generalises the Poisson process in the sense that 

the interval density is not limited to exponential form. There 

has been extensive studies of general renewal theory with emphasis 

on the analytical problems involved (Smith, 1958, Feller, 1971). 

For a more applied accounts, see Cox (1962).

Recently, increasing attention has been drawn to the 

application of point process analysis techniques to 

neurophysiological problems. Point process analysis techniques 

have been found to be useful in assessing associations between 

neuronal signals and in the estimation of biologically meaningful 

parameters. Examples include Amjad (1989), Brillinger (1986, 

1988a,b) and Halliday (1986) .
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Neurophysiological Background



Chapter 2 Neurophysiological Background

Neurophysiology is a branch of science concerned with how 

the elements of the nervous system function and work together. 

The aim of this chapter is to present a simplified account of some 

aspects of neurophysiology which are relevant to the discussions 

in the following chapters. A recurrent area of neurophysiology 

considered throughout this thesis is the neuromuscular system. The 

neuromuscular system may be defined loosely as all those parts of 

the nervous and muscular systems concerned with the initiation and 

control of movement and the maintenance of posture. Obviously the 

inherent nature and the kinds of data arising from the 

neuromuscular system determine the particular type of analysis 

techniques used. In this chapter, some features of the 

neuromuscular system which lead to the use of point process 

analysis techniques are discussed. This is followed by a 

simplified description of the organisation of the neuromuscular 

system and some of its elements. Finally, some findings related 

to the application of point process analysis techniques are 

discussed to illustrate the usefulness of the techniques.

2.1 Some Characteristics of Neuromuscular Systems related to the

Point Process Analysis Techniques

Many biological systems have the important feature that 

under normal conditions they are acted upon by several inputs 

simultaneously, which in turn give rise to several outputs. The 

muscle spindle, an important element of the neuromuscular control

7



system which is thought to be responsible for the control of 

movement and maintenance of posture, is inherently multiple input 

and output. The muscle spindle, under normal conditions, is acted 

upon by continuous changes in the length of the parent muscle 

which it is attached to. In addition to this continuous length 

change, the output activity from the spindle is further modified 

by several other input processes in the form of nerve impulses. 

Figure 2.1.1 is an example illustrating how the output point 

process activity of a muscle spindle is affected by the various 

kinds of input conditions. A nerve impulse is a localised voltage 

change of approximately 100 mV in amplitude and 1 msec, in 

duration which occurs across the membrane surrounding the nerve 

cell body and axon. Nerve impulses are often referred to as 

’action potentials’ or, because of their relatively short 

duration, as ’spikes’. The short duration of action potentials, 

compared with the time intervals between successive pulses (see 

Figure 2.1.1), provides the basis for considering the spike trains 

as realisations of stochastic point processes and thus allowing 

point process analysis techniques to be applied. In the analysis 

of a muscle spindle, the neurophysiologist may want to 

characterise the input-output relationship of the muscle spindle 

based on the recordings of the input and output processes. In 

another example, the processes involved may not be directly 

related by a input-output relationship, but simply simultaneous 

recordings of some combination of spike trains and continuous 

signals obtained from cell bodies, axons, electroencephalograms 

(EEGs) etc. In this case, one might want to determine if these 

processes are related, and how the relation between any two may be

8
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influenced by the other processes.

It has been found that some neuromuscular elements have 

non-linear features so that the application of linearised 

mathematical descriptions may not be adequate. For example there 

is evidence which shows that muscle spindles have significant 

amplitude-dependent and velocity dependent non-linearities (Chen 

and Poppele, 1978; Hasan and Houk, 1972; Hulliger et al, 1977a, b; 

Houk et al, 1981 and Matthews and Stein, 1969). In addition, the 

input, output relationships of an alpha-motoneurone has been found 

to be non-linear due to the presence of significant post-spike 

depression duration (Conway et al., 1989; Lau et al., 1989a).

The features of the neuromuscular system discussed above 

indicate that the analysis tools required by neurophysiologists 

should be flexible enough to tackle non-linear systems which 

involve multiple processes consisting a combination of point 

processes and continuous signals.



2^2 The Peripheral Nervous System

The neuromuscular control system consists of all parts of 

nervous and muscular systems concerned with the initiation and 

control of movement and the maintenance of posture. The system 

has been divided into peripheral and central parts on anatomical 

and functional grounds. At the level of the spinal cord, the 

peripheral nervous system is arranged in a sequence of repeating 

units. The components of the peripheral neuromuscular system at 

one segmental level of the spinal cord are illustrated in Figure 

2.2.1.

There are several classes of nerve cells which lie within 

the spinal cord. One of these involves alpha-motoneurones which 

have long processes, called axons, innervating the load-bearing or 

extrafusal muscle fibres responsible for generation of forces or 

changes of length. The cell bodies of the alpha-motoneurones have 

diameters ranging from 25 to 100 pm and the axons are from 8 to 20 

pm in diameter. The axons conduct nerve impulses, which travel at 

velocities in the range 50-120 m/sec., from the cell bodies to the 

extrafusal muscle fibres. The mean frequencies of action 

potentials generated by the nerve cell may vary from one pulse 

every few seconds to several hundred pulses per second. The fine 

branches of the alpha-motoneurone axon end on specialised areas of 

the extrafusal muscle called the ’motor endplate’. When a nerve 

impulse reaches the junction between the axon and the muscle 

fibre, a sequence of electro-chemical events occur which leads to 

the contraction of the load-bearing muscle fibres. The force of

10
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the contraction of the entire muscle may be graded by increasing 

the number of active alpha-motoneurones associated with a muscle 

and by altering the frequency of the nerve impulses reaching the 

muscle over the axons of the alpha-motoneurones.

Once the axon of an alpha-motoneurone reaches a muscle, it 

divides into a number of fine branches. Each terminal branch 

innervates a single extrafusal fibre, and all of the extrafusal 

fibres innervated by one alpha-motoneurone lie within the same 

muscle. The alpha-motoneurone together with all the extrafusal 

fibres that it innervates is called a ’motor unit’. The number of 

motor units within a muscle and the size of a motor unit, which 

depends on the number of extrafusal fibres innervated by a 

particular alpha-motoneurone, are closely related to the function 

of that muscle. Motor units may be related to the incremental 

units of force that a muscle can develop. Muscles concerned with 

the control of delicate movements have small motor units and can 

generate the small increments of force required for these 

movements, whereas muscles with large motor units produce large 

increments of force and may function simply to maintain a fixed 

attitude or posture.

Buried within the extrafusal muscle fibres are a number of 

physiological transducers, or ’receptors’, that respond to imposed 

length changes or force acting on the parent muscle. These 

receptors are known as muscle spindles. They transmit pulse coded 

information as sequences of spikes via the sensory nerves to the 

groups of nerve cells lying within the spinal cord. The junctions



at which the sensory axons make contact with these cells are 

called ’synapses’. Each sensory nerve divides into a number of 

branches after entering the spinal cord and may make synaptic 

contact with a large number of nerve cells over several segmental 

layers in the spinal cord. Conversely, each nerve cell in the 

spinal cord may receive information from a large number of 

receptors associated with different muscles. The train of action 

potentials travelling along the axon releases a sequence of 

electro-chemical events at the synapses between the sensory axon 

and the nerve cell within the spinal cord which then modify the 

on-going activities of the nerve cell.

In addition, nerve cells within the same segmental layer may 

interact with each other and interactions between different 

segmental layers may also exist. The segmental and intersegmental 

circuits in the spinal cord are further acted upon by axons 

arising from nerve cells at higher levels of the central nervous 

system. It is possible for a single alpha-motoneurone to be 

affected by up to 10000 different inputs. An introduction to the 

organisation of the spinal cord can be found in Shepherd (1974), 

and a detailed review of this along with the properties of the 

spinal cord and its interconnections is given in Burke and Rudomin 

(1977).

1 ̂



2.3 The Neurone

Although there are many kinds of neurones with significant

structural and functional differences, four basic components can

be identified in a neurone (see Figure 2.3.1). (1) The axon is
or pfcr' phei'&j

the element that links the neurone to a neighbouring neurone. (2) 

The synapses are the junctions between the incoming axon and the 

soma (or cell body) where electro-chemical reactions take place. 

The effectiveness of an input depends on its position of 

innervation. (3) The soma or cell body along with the dendrites 

are the processing elements of the cell. (4) The dendrites are 

hair-like processes emanating from the soma. Note that synapses 

can also occur at dendrites. These four components are discussed 

in more details in the following sections.

2.3.1 The Axon

The axon is surrounded by a cylindrical semi-permeable 

membrane and contains axoplasm, and is in turn surrounded by 

extra-cellular fluid. The internal and external fluids of the 

axon are composed mainly of ionised potassium chloride and sodium 

chloride; with the concentration of potassium ions inside the axon 

much higher than that outside. This leads to a concentration 

gradient across the membrane which causes a movement of the excess 

potassium ions to the outside. This diffusion of ions disturbs 

the charge balance and results in an electric field which opposes 

the ’chemical field’. Equilibrium is attained when the two forces 

are equal, resulting in a potential difference across the

13
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illustrating the basic components.



membrane, the inside being more negative. This negative potential 

compared to the surrounding fluid is called the resting potential, 

and in the squid giant axon, Loligo, is about -70 mV.

Equilibrium is disturbed by either changing the 

extracellular ionic concentration or externally applying an 

electrical potential gradient across the membrane. If this change 

is such that it causes the inside of the axon to be more negative, 

it is called hyperpolarisation; otherwise it is called 

depolarisation. If the depolarisation is so large that the 

membrane potential exceeds a certain value, known as the 

threshold, the potential across the stimulated part shoots up and 

then returns to the resting level (see Figure 2.3.2). This leads 

to an action potential. The change in membrane potential excites 

the adjacent parts of the membrane and the phenomenon propagates 

along the axon by contiguous stimulation, the direction of 

propagation is usually away from the neurone cell body. The 

waveform has a characteristic shape and is known as action 

potential. When an action potential has been generated, the 

region of stimulation cannot be excited for a short time 

thereafter. This property is called refractoriness. Immediately 

following an action potential, the region cannot for some time 

generate another, with any strength of stimulus. This is the 

absolute refractory period and lasts for about 1 msec. After 

this, there is a period of about 3 msec, when excitation is 

possible, but only with a very powerful stimulus. This is the 

relative refractory period.

14
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Figure 2.3.2 Voltage recorded intracellularly in an axon in response to 
current pulses. All potentials are measured relative to the extracellular 
fluid as earth and in the absence of a current pulse the inside has a 
potential of -70 mV relative to the extracellular fluid. Pulses which make 
the potential across the membrane more negative are termed hyperpolarising 
pulses and those which make it more positive are termed depolarising pulses. 
Once the depolarising pulse’s magnitude exceed that of the threshold the 
voltage across the membrane shoots up and this is termed an action potential, 
nerve impulse or spike.



2.3.2 The Synapse

Interactions between neurones take place at the synapse 

where the activity of one neurone is transferred to another by the 

axon. The terminal end of an axon broadens into a bulge called 

the bouton and lies adjacent to the cell membrane or a dendrite of 

the soma (see Figure 2.3.3). Generally the bouton does not make 

physical contact with the membrane and there is a cleft that 

separates the two. Small packets called vesicles are found in the 

bouton which contain a chemical known as the transmitter; the type 

of transmitter depends on the kind of junction. When an action 

potential arrives at the bouton, a transmitter is released from 

the vesicles and the transmitter molecules modify the permeability 

of the membrane to different ions. If the resulting change in the 

potential in the soma or dendrite is positive, it is called an 

excitatory post-synaptic potential (EPSP); otherwise it is called 

an inhibitory post-synaptic potential (IPSP). In the absence of 

an input spike, the membrane potential tends to decay to the 

resting level which is below the threshold.

2.3.3 The Soma

When post-synaptic potentials are induced at several points 

along the soma due to successive arrivals of action potentials, 

the resulting membrane potential may be the linear sum of the 

individual potentials. This phenomenon is known as spatial or 

temporal summation. As in the axon, recovery effects keep taking 

place in the absence of inputs, ie. the membrane is ’leaky’. When
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Figure 2.3.3 Schematic representation of two synapses at the junctions of 
two axons and a nerve cell. The boutons at the terminal end of the axons do 
not make physical contact with the membrane. The small packets, vesicles, 
found in the bouton contain a chemical known as the transmitter which varies 
with the kind of junction. This transmitter acts as a mediator in the 
transfer of activity from the axon to the soma.



the integrative effect exceeds the threshold the neurone ’fires’, 

sending an action potential along its axon. The origin of the 

axon at the soma, known as the hillock (see Figure 2.3.1), has a 

lower threshold than the other parts of the membrane and is thus 

the impulse generating region of a neurone. Like the axon, the 

soma also has the properties of decreased excitability following 

the generation of an action potential. In the case of an 

alpha-motoneurone, this property is known as the 

after-hyperpolarisation and its period is correlated with the 

upper and lower frequency limits of the firing of the motoneurone 

and the type of muscle innervated. Hence after-hyperpolarisation 

may be thought to play an important role in the control of 

repetitive firing and in characterising the function of the 

alpha-motoneurone.

2.3.4 The Dendrites

These hair-like processes protruding from the soma may be 

numerous and thus present an increased area of contact to incoming 

axons, each of which may branch out to form many synapses. The 

role of dendrites in the firing of the cell is still unclear. 

Action potentials can also arise in dendrites but the behaviour of 

dendrites is highly non-linear and is not understood clearly but 

are thought to possess computational properties.
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2.4 Some Examples of the Application of Point Process

Analysis Techniques

This section illustrates the usefulness of the point process 

analysis technique through the application to some elements of the 

neuromuscular system. A tenuissimus muscle spindle and a single 

la-afferent and motor unit from soleus and lateral gastrocnemius 

muscle are considered. The theories and background to the 

techniques used are explained in the later chapters.

2.4.1 Application to an Isolated Muscle Spindle

The following examples are based on experiments involving 

cat tenuissimus muscle spindles where the primary (la) and 

secondary (II) endings were isolated in dorsal root filaments. 

Figure 2.4.1 illustrates the application of both cross-intensity 

(Figure 2.4.1a, b) and coherence (Figure 2.4.1c, d) to the same 

data set to provide a comparison of the effects that each of two 

static fusimotor axons has alone on the response of the same la 

sensory ending during concurrent and independent stimulation of 

both fusimotor axons with the parent muscle held at a fixed 

length. In this example the two cross-intensities differ both in 

shape and in the magnitude of the peak. The coherence confirms 

this difference in the strength of association, but also allows a 

further characterisation of the differences between the effects of 

the two fusimotor axons on the same la ending. The coherences 

(Figure 2.4.1c, d) suggest that has a stronger effect on the

la ending than y at each frequency over a broad range of

17
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Figure 2.4.1 Comparison of (a,b) the square-root of the estimated 
cross-intensity functions with (c,d) the estimated coherences of the response 
of a muscle spindle la sensory ending to concurrent and independent 
stimulation of two static fusimotor axons denoted as and ^  . The
fusimotor axons were stimulated for periods of 60 seconds with sequences of 
pulses having an exponential distribution of intervals. In (a,b) the 
horizontal dashed line is the asymptotic value of the square-root of the 
estimated cross-intensity function equal to the square-root of the mean rate 
of the la discharge. The horizontal solid lines represent an approximate 95% 
confidence interval for the value of the cross-intensity function for any 
specific value of the lag u under the assumption that the two processes are 
independent. In (c,d) the horizontal dashed line represents the upper level 
of the approximate 95% confidence interval for the coherence under the 
hypothesis that the two processes are independent.



frequencies. A quantitative measure of this difference,

represented by the difference between the inverse hyperbolic 

tangent of the respective coherency, is shown in Figure 2.4.2.

The difference plot suggests that the two coherences exhibit a 

small but significant difference over the range from 0 to about 20 

Hz. Over this range of frequencies, ^  is more strongly coupled 

to the la ending than ^ s * Above 20 Hz, the difference between 

the two coherences is not significant.

The second example illustrates the application of partial

coherence. The data is taken from the responses of a primary (la) 

and secondary (II) ending from the same muscle spindle during 

stimulation of a static fusimotor axon innervating the muscle

spindle (Gladden et al., unpublished observations). In the 

absence of fusimotor stimulation, the discharge of the la and II 

endings are uncorrelated, whereas in the presence of fusimotor 

stimulation they are strongly correlated as illustrated in Figure 

2.4.3c. The partial coherence between the responses of the la and 

II endings taking into account the presence of the fusimotor input 

shows that the coupling between these responses is due entirely to 

the presence of fusimotor stimulation (Figure 2.4.3d).

2.4.2 Application to la Afferent/Motor Unit Interactions

Analysis on data obtained from recordings of single motor 

unit electromyogram (EMG) and identified single la afferents from 

the same muscle were performed (Conway, Halliday and Rosenberg, 

1991, to be published). Second-order interactions were examined
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Figure 2.4.3 (a)-(c) The estimated pairwise coherences between a fusimotor
input and the responses of la and II sensory endings from the same muscle 
spindle. (d) The estimated partial coherence between the responses of the la 
and II endings taking into account the presence of the static fusimotor 
input. The static fusimotor axon was stimulated for 60 seconds with a 
sequence of pulse having an exponential distribution of intervals. The 
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approximate 95% confidence interval for the coherences under the assumption 
that the two processes are independent. ( flJl )



and four types of interactions were identified based on 

second-order cross-intensity.

Two different interactions between a la afferent and a motor 

unit may be detected during simultaneous recordings from 

in-continuity Ia-afferents and single motor-units. One is the 

presence of a central interaction between the afferent and the 

motoneurone, and the other is the peripheral interaction between 

the motor unit and the muscle spindle. In a recording from the la 

afferent/motor unit pair, both or neither of these interactions 

may be present. Hence a total of four modes of interactions 

between the motor unit and the Ia-afferents is possible. The four 

patterns, as revealed by the second-order intensities, are 

depicted in Figure 2.4.4. Type I (Figure 2.4.4a) refers to la 

afferent/motor unit pairs where no second-order interactions were 

present. Type II (Figure 2.4.4b) is characterised by a strong 

motor unit to la afferent interaction as indicated by the

significant depression in the estimated cross-intensity for 

negative values of lag u. This depression is attributed to an 

unloading of the muscle spindle by the twitch initiated by the 

motor unit EMG spike. In Type III (Figure 2.4.4c), both la

afferent to motor unit and motor unit to la afferent interactions 

were present. The sharp peak to the right of the origin in the 

estimated cross-intensity illustrated in Figure 2.4.4c occurs at a 

lag u corresponding to the latency (uncorrected for conduction 

delays) in a monosynaptic pathway between the la afferent and the 

motor unit, whereas, the trough occurring for negative values of

lag u (as in Figure 2.4.4b) corresponds to the unloading of the
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Figure 2.4.4 Square root of the estimated cross-intensity function computed 
between the spontaneous discharge of a single la afferent recorded 
in-continuity with the spinal cord, and the discharge of a single motor unit 
from the same muscle as the afferent. Four types of interactions are 
characterised by the second-order cross-intensity estimates (a) Type I: no
significant interaction between afferent and motor unit, (b) Type II: 
peripheral interaction between motor unit and muscle spindle, (c) Type III: 
both a central la afferent motoneurone interaction and a peripheral motor 
unit muscle spindle interaction are present, and (d) Type IV: only a central 
la afferent/motor unit interaction is present. The solid horizontal lines in 
each panel represent approximate 95% confidence intervals under the 
hypothesis that the two processes are independent. The horizontal dashed 
line is the asymptotic value of the estimated cross-intensity function, and 
is equal to the square root of the mean rate of the motor unit discharge.



muscle spindle by the motor unit twitch. Type IV (Figure 2.4.4c) 

were defined as second-order interactions where la afferent/motor 

unit pairs displayed only a central interaction which was 

consistent with a monosynaptic pathway.
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Chapter 3 A Summary of the Theories of Linear Analysis for Point 

Processes

3.1 Introduction

Just as there are several different ways of characterising 

an ordinary time series - Brillinger (1978a) gives six - there are 

various approaches to the theory of point processes and to 

characterising these processes. The choice of definition or 

representation depends on the particular need of a given problem. 

While in ordinary time series a signal may be defined by the 

magnitude of the signal as a function of time, a point process M 

may be defined (1) in terms of the generalised function X^(.), ie.

m
^ ( t )  = £ 5(t-tk ) (3.1.1)

k=l

where 5(.) is the Dirac delta function and t^ (k=l,2,..,m) are the 

times of occurrence of the M events. The Dirac delta function 

5(u) may be considered as a rectangular pulse with a width of du 

(du— >0) and an area of one unit situated at u=0. (2)

Alternatively, a point process may be defined by a counting 

measure denoted as

M(t) = #{tk :0<tk^t} (3.1.2)

where t>0 and #{A> indicates the number of elements in the set A.

(3) By differentiating expression (3.1.2), differential increments 

of process M is obtained as
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(3.1.3)

which gives the number of events in a small interval (t,t+dt). It 

can be seen that ^ ( t )  and dM(t) are related by

dM(t) = X ^ t M t  (3.1.4)

The idea of the three definitions is depicted in Figure (3.1.1).

The last definition (3.1.3) has two advantages: (1) it is

convenient in defining a number of point process quantities, and 

(2) because a discretised realisation of a point process is 

readily obtained by setting dt as the sampling interval. On the 

other hand, the first definition (3.1.1) is useful in developing 

hybrid parameters in the situation where there are ordinary time 

series as well as point processes. In all three cases, a point 

process is defined by the sequence of the times of occurrence t^ 

(k=l,2,..,m). Assuming that the point process is stochastic in 

nature and that it is digitised every small time interval dt, a 

stochastic point process may then be defined as a random, 

non-negative, integer-valued measure (Brillinger 1975). In our 

application, this measure corresponds to the time of occurrence of 

an action potential sampled at a frequency of 1 kHz. The details 

of the experimental and computational aspects may be found in 

Chapter 5.

Generally, M (t) may be used to denote a r vector-valued 

point process, ie.
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Figure 3.1.1. Diagram to illustrate the definition of a point process based 
on (a) the analogy with the ordinary time series as a sequence of Dirac delta 
functions (b) the counting variate M(t) which represents the number of events 
in the time interval (0,t] and (c) the differential increments dM(t) which 
takes a value of 1 or 0 depending on whether an event has occurred between 
the time interval (t,t+dt].



M (t) = <M (t),M_(t),..,M (t)> i z r (3.1.5)

In this thesis, the particular class of point processes 

considered are assumed to obey the assumptions of stationary, 

mixing and orderliness. These assumptions are discussed in

sections (3.1.1-3).

3.1.1 Stationarity

The quantitative idea of stationarity for a point process is 

basically the same as for stochastic processes in general, ie. the 

statistical properties of the process are unaffected by a

translation of the time axis. Formally speaking, a point process 

is completely stationary (or strictly stationary) if all the joint 

probability distributions are time invariant. However, the full 

power of complete stationarity is seldom required and other forms 

of stationarity have been defined. A point process is simply 

stationary if the probability distribution of the number of events 

in the interval (t,t+h] is the same as that of (t+u,t+u+h], where 

t,h,u>0. A point process is weakly stationary, or second-order 

stationary, if in addition to being simply stationary, the 

second-order joint probability distribution between the number of 

events in the intervals (t,t+h] and (t+u,t+u+h] is the same as 

that of between (t+v,t+v+h] and (t+u+v,t+u+v+h] where t,u,v,h>0. 

Put another way, the second-order joint probability depends only 

on the interval between the two events. In this thesis,

second-order stationarity is assumed for the processes being 

analysed.
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Stationarity has important implications in the analysis of 

stochastic processes. Besides the immediate implication of an 

arbitrary time origin, the assumption of stationarity provides a 

basis for the Fourier or harmonic analysis of point processes. 

The argument can be found in Brillinger (1975d) p. 7.

3.1.2 Mixing

A second assumption concerning the class of point processes 

of interest is that they have a short span of dependence. If a 

point process is defined using expression (3.1.3), the 

differential increments dM(t) and dM(t+u) become statistically 

independent as u becomes large. This is known as the mixing 

condition.

Formally, the mixing condition may be divided into two 

categories. Given the r-vector valued stationary point process 

M=[M^,M2,..M ] with all of whose cumulant density functions exist 

(cumulant density function is discussed in the later sections, it 

is adequate here to note that it is analogous to covariance 

functions in ordinary time series), then the strong mixing 

condition is defined as (See Brillinger, 197-^)

00 oo> P

J i“ 00 “ 00

for 1 —0, j=l,..,k-l and any k tuple a1>...,ak when k=2,3,... In

expression (3 1 6a) q (.) is the cumulant density function of
ar ' ak

order-k. A less stringent condition occurs when 1=0, ie.
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00 00

(3.1.6b)
-oo -oo

The condition implied by expression (3.1.6b) means that the 

processes involved are more associated with each other compared 

with the condition implied by expression (3.1.6a). In fact, 

condition (3.1.6a) implies condition (3.1.6b). However the 

converse is not true.

3.1.3 Orderliness

An orderly point process is one with isolated events. 

Mathematically,

where Pr{A} denotes the probability for A to happen and o{h} is a 

standard mathematical symbol defined such that o{h}/h->0 when h->0. 

This assumption is satisfied in the case of action potentials

since a neurone has the physical/chemical determined property that 

once it has generated an action potential it can not produce a

second one until a small but finite period of time, called the

absolute refractory period, has elapsed. The period may be in the 

order of a few milliseconds and limits the rate at which a neurone 

may generate action potentials.

Under this assumption, the differential increment of the

process has the properties,

Pr{M(t+h)-M(t)>1} = o{h} (3.1.7)
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A  if an event occurred in (t,t+h] 
dM(t) = | (3.1.8)

^0 otherwise

where h— »0.
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3.2 Univariate Point Process Parameters

3.2.1 Time Domain Analysis

For a point process M satisfying the assumptions outlined in

sections (3.1.1-3), the product density of order-1, Pw , may beM
defined as

Pudt = E{dM(t)} (3.2.1)M

where "E" denotes "expected value of" and dt— >0. Pw is also knownM
as the mean intensity. Under assumption (3.1.3), P.. may beM
interpreted as

P. .dt = Pr{dM(t)=l> (3.2.2)M

This quantity is a principal descriptor of a point process since 

it is effectively the mean rate of the process M. Note that it is 

independent of time t due to the assumption of simple 

stationarity.

The second-order product density at lag u, may be

defined as

Pixx/(u)dudt = E{dM(t)dM(t+u)> (3.2.3)
MM

where du,dt— >0. Pv/w(u ) may be interpreted as MM

Pv fu)dudt = Pr{dM(t)=1 and dM(t+u)=l> (3.2.4)
MM
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and gives a measure of the probability that two events are 

separated by a time interval u. Expression (3.2.3) and (3.2.4) 

are based on the assumption of second-order stationarity and 

orderliness. Note that at u=G, expression (3.2.3) becomes

Px/lwf(u)dudt 
. MM

= E{[dM(t)] } (3.2.5)
u=0

Now, dM(t)=l if an event has occurred in (t,t+h] and dM(t)=0

otherwise. In any case, dM(t)=[dM(t)] . Hence

PM M lu)dudt u=0
= E{dM(t)> = PMdt 

M

which gives

PM M (U) u=0
= P j / d u  - >  Pm5 ( u ) (3.2.6)

where 5(.) is the Dirac delta function.

Under the mixing condition, ie. dM(t) and dM(t+u) become 

dependent of each other as u becomes large, it follows that

lim PM M (u  ̂ PM
u — XX)

(3.2.7)

Another important function which describes the second-order 

properties of a stationary point process is the auto-intensity 

function m^(u). It is defined as
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"Vim (u)du = E{dM(t+u) I dM(t)=l> (3.2.8)

where du— >0 and "|" denotes "given". Using similar arguments as 

for mMM^U  ̂ ma^ in ^erPre^e<̂  as

m ^ u M u  = Pr{dM(t+u)=l | dM(t)=l> (3.2.9)

This provides a measure of the probability for an M event to occur 

given that another M event has occurred u time units earlier. 

From the definition of conditional probability, it follows that 

expression (3.2.9) may be written as

”1M M (U) = PM M (U)/PM C3-2 '10)

In addition, as u becomes large, we have

lim mM M ( u ) = P M (3.2.11)
u— >00

Expression (3.2.11) suggests that for large values of u, the

function would fluctuate around the mean rate of the

process M until it eventually settles to the value Pw .M

The second-order cumulant density function at lag u, q1/w(u),MM
is defined as

qM M ^  dudt = cov{dM(t) ,dM(t+u) > (3.2.12)

where cov{a,b} denotes the covariance of a and b. It can be seen
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that the cumulant density function is analogous to the covariance 

function in the case of ordinary time series. In terms of product 

density functions, can be expressed as

2 (3.2.13)

This result follows immediately from expressions (3.2.1), (3.2.3)

and (3.2.12).

When lag u— >0, it follows from expressions (3.2.6) and

(3.2.13) that

The singularity of at u— *0 plays an important role in the

auto-spectrum of a point process. As will be shown later, this 

causes the spectrum of a point process to tend to a non-zero 

asymptotic value as the frequency becomes large, which marks a 

major distinction between the spectrum of an point process and 

that of an ordinary time series.

From expression (3.2.7) and (3.2.13), it can be seen under 

the mixing condition that

This suggests that the second-order cumulant density function may 

be considered as a measure of association between pairs of spikes.

(3.2.14)

(3.2.15)
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In practice, a value of 0 indicates independence, a positive value 

indicates an excitatory effect due to the earlier spike whereas a 

negative value indicates an inhibitory effect due to the earlier 

spike.

A final point to note is that all the three density 

functions anc* are even functions in u, ie.

they are all symmetrical about the y-axis. In the next section 

(3.2.2), it will be seen that the power spectrum of a process M 

may be defined as the Fourier transform of the cumulant

density function. From the properties of Fourier-Stieltjes 

transform of an even function, it can be deduced that the power 

spectrum of a point process is an even and real function.

3.2.2 Frequency Domain Analysis

A fundamental parameter of a stationary point process is the 

power spectrum. It can be defined in two ways : (1) The

Fourier transform of the cumulant density function

(Barlett, 1963a, Brillinger ,1974a, b) or (2) It may also be 

defined in terms of the periodogram of the process (Brillinger, 

1972, 1974a, b). The former definition is analogous to the

Wiener-Khintchine theorem in the case of ordinary time series. 

Both definitions are asymptotically equivalent (see for example 

Otnes and Enochson, 1978 p 317).

Suppose M is a stationary point process satisfying the 

conditions of orderliness and mixing. Under the mixing condition 

(3.1.6b),
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lqM M (u)l dU <0° (3.2.16)

(Brillinger, 1 9 7 ^ This implies the existence of the

auto-spectrum of the process M, f._.(u), which is defined as the
MM

Fourier transform of q.„.(u), ie. 
MM

fM M U )  = a / 2 % )
exp(-i Au)q (u)du 

MM
(3.2.17)

One important way in which the auto-spectrum of a point process 

differs from that of an ordinary time series follows from the 

Riemann-Lebesque lemma (Katznelson, 1968; Papoulis, 1962) which 

states that for an function g(x) which does not consist of 

singular points and vanishes for large x, then

lim 
A I — >oo

exp(-iAu)g(u)du = 0 (3.2.18)

Hence from expressions (3.2.14) and (3.2.17), since the cumulant

density function q.„.(u) consist of a Dirac delta function at u— >0, MM

it follows that

lim f^CA) = PM /Zn (3.2.19)
| A |— >oo

In the case of ordinary time series, the spectrum of any realistic 

signals would go to zero for large A. However, the auto-spectrum 

is similar to that of an ordinary time series in that it is a
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symmetrical and non-negative function of A as can be seen in 

expression (3.2.17).

The inverse relationship to the definition (3.2.17) may be 

provided by

W u) = exp(+iAu)f (A ) dA (3.2.20)MM

The second definition of the auto-spectrum of a point
(T)process involves the periodogram I (X) which is defined as the 

modulus squared of the finite Fourier^ transform of the process,ie.

iA^tX) = (l/27iT)d^T)(X)d^T)(X) MM M M
where

T
exp(-iXt)dM(t) (3.2.21)

0

In expression (3.2.21), T is the record length and the overbar

"---- ” denotes a complex conjugate quantity. Now the power

spectrum can be defined as:-

f (X) = lim E { I ^ )(X)> (3.2.22)MM _ MMT—

In words, the power spectrum may be defined as the expected value

of the periodogram as T— >co. This suggests that the power spectrum

may be estimated from the periodogram. In fact, in terms of 

computational efficiency, the second definition is preferred in 

the estimation of power spectrum. The details of the estimation
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procedures can be found in Chapter 4.
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3.3 Bivariate Point Process Parameters

3.3.1 Time Domain Analysis

Time domain quantities for bivariate point process are

useful in assessing timing relations between the two processes.

Suppose M and N are two point processes that satisfy assumptions
Cvo&S-

CS. 1.1-3). The second-order product density function û ̂

between M and N is defined as

Pv/XI(u)dudt = E{dM( t )dN(t+u)} (3.3.1)MN

where du,dt— >0. P ^ ( u )  may be interpreted as

P....(u)dudt = Pr{dM(t)=l and dN(t+u)=l} (3.3.2) MN

and provides a measure of the probability for an N event to occur

u time units after an M event. Note that PWXI(u) is not an evenMN
function. In fact,

Let r=t—u,
PM N (_U) =

= E{dM(T+u)dN(r)> = PKTM(u) (3.3.3)MN NM

Another distinction from the second-order product density function 

is that at lag u=0,

PM N (u)dudt = E{dM(t)dN(t)} (3.3.4)
u=0
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ie. , it does not involve the Dirac delta function. If the two 

processes are independent of each other,

P..M (u)dudt = E{dM(t)dN(t+u)>MN

= V N dUdt
which gives

y “ > = V H for all u (3.3.5)

where and P^ are the mean intensities of M and N respectively. 

Similarly, under the mixing condition, the same result is 

obtained, ie.

lim PW M (u) = PJP.. (3.3.6)MN M N
u — XX)

The cross-intensity function rn^Cu) is defined as

m ^ C u M u  = E{dN(t+u) | dM(t)=l} (3.3.7)

It can be interpreted as

m^CuJdu = Pr{dN(t+u)=l | dM(t)=l} (3.3.8)

and provides a measure of the conditional probability of an N 

event to occur given an M event has occurred u time units earlier. 

It can also be expressed as

mM N (u) = PM N (u)/PM (3.3.9)
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Hence, should be expected to possess the same properties as

Pnhj(u ) as discussed earlier. Applying the mixing condition, it 

follows that

lim " W U) = PN (3.3.10)
U — >00

which implies that for u large, the occurrence of an M event does 

not alter the probability of an N event to occur.

The cross-cumulant density function for the bivariate

process, qw,.(u), is defined as MN

q (u) = cov{dM(t) ,dN(t+u) } (3.3.11)MN

In terms of the cross-product density function, q ^ (u) may be 

expressed as

W U) = PM N (U)-PMPN (3-3 '12)

As will be seen in the next section, the cross-spectrum is defined

as the Fourier transform of qv/x,(u). Since P..XI(u) doesMN MN
not involve the Dirac delta function, the same is true for qWXI(u).

MN

This implies the cross-spectrum would behave in the same way as 

that in the case of ordinary time series, ie. it has an asymptotic 

value of 0 as the frequency becomes large. In addition, q ^ ( u )  is 

not even in general, which implies that the cross-spectrum is 

complex in general.
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Finally from expression (3.3.6) and (3.3.12), the mixing 

condition implies,

lim = 0 (3.3.13)
u—

3.3.2 Frequency Domain Analysis

The fundamental frequency domain quantity in bivariate point 

process analysis is the cross-spectrum. As the auto-spectrum is 

the Fourier transform of the auto-cumulant density

function, the cross-spectrum is the Fourier transform of

the cross-cumulant density function. Provided the condition

jq (u)jdu < oo (3.3.14)MN
—oo

is satisfied, the cross-spectrum f.~.(A) for the point processes MMN
and N may be defined as

fM M (A) = (1/2tt) MN exp(-iXu)qM N (u)du (3.3.15)
-oo

where q ^ ( u )  is the cross-cumulant density function between the

processes M and N. In fact, condition (3.3.14) is automatically

satisfied due to the mixing assumption. Alternatively, in terms

of the finite Fourier transforms of processes M and N, theA
cross-spectrum may be defined as
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fM M (X) = lim (l/27rT)E{diT ) (X)dK(.T ) (^)> (3.3.16)MN _ M NT— K»

Both definitions can be shown to be asymptotically equivalent as 

in the case of the auto-spectrum.

Due to the mixing condition and the fact that it does not 

have any singularities, the cross-cumulant density function 

satisfies the conditions of the Riemann-Lebesque Lemma, hence

lim fwKI(X) = 0 (3.3.17)
i^ i MNI A j —

Hence the cross-spectrum for point processes behaves in the same 

way as that in the case of ordinary time series.

Since in general, q.„.(u) may not be an even function in u,MN
the cross-spectrum is usually a complex quantity. It may be

represented by the magnitude squared, and the phase, ie. if

then 

and

The phase may ke interpreted as the phase difference

between the harmonics of the processes M and N at frequency A. 

Note that it is an odd function in A which implies

fM N (X) = CM N (X) + 1(W A)

W x >|2 = Cu m U ) 2+ Qu .,(A)2 (3.3.18a)MN 1 MN MN

0M N (X) = arCtan[QM N (A)/CM N U ) ] (3.3.18b)
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In the analysis of neuronal networks, the cross-spectrum is rarely 

an end result by itself. Rather, it is usually an intermediate 

step in obtaining the closely related transfer function and 

coherence function. These important functions are discussed in 

the next section.

3.3.3 Identification of a Single-Input, Single-Output Point

Process System

The consideration of point process systems is basically 

similar to that of ordinary time series. A point process system 

consists of the input point processes, the output point processes 

and the operator "S" which transforms the input processes over 

into the output processes. As in the case of ordinary time 

series, a linear time-invariant point process system refers to a 

system such that the statistical properties between the input and 

output point processes can be related by linear combinations with 

constant weights. In addition, a point process system is said to 

have a refractory period if there exists a time interval 

immediately following an output event during which time there can 

be no further output. Refractoriness in neuronal discharges, and 

dead time in a Geiger counter are examples.

To identify a point process system is to determine the 

characteristics of the system, ie., the operator "S", from 

observing the input and output processes. In the case of a



stochastic system, it is not possible to identify the system 

completely. The most that can be done is to determine the average 

quantities or parameters that characterise the statistical or 

average properties of "S".

In this section, the case of single-input, single-outputA
linear point process system is considered. The assumptions 

(3.3.1-3) again apply to the bivariate point process involved.

Suppose M and N are the input and output point processes of 

a linear time-invariant system as illustrated in Figure (3.3.1)

Single-input,
single-output
point process

system

Figure 3.3.1. Single-input, single-output linear point process model with 
input point process M and output point process M.

An important element characterising the system is provided

by

Tj (t)dt = Pr{dN(t)=l | M> = E{dN(t) | M} (3.3.20)

where ^ ( t )  maY be considered as the probability intensity of an N 

event occurring at time t given the input events in M. Obviously,
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for a physical system, only input events prior to time t can 

affect the occurrence of the output event at time t. The 

developments below discuss plausible forms for Tj^Ct). First, 

assume the output emit points at a rate s^ when there is no input, 

ie M ( .)=0. So,

i?M (t) = s (3.3.21)N 0

Next, suppose M corresponds to a single event at time v^. Then we 

might alter (3.3.21) to

7) (t) = s +s (t-v.) (3.3.22)N 0 1 1

Here s^(t) represents the effect, on the output intensity, of an 

input event at time 0. Finally, suppose M corresponds to a series 

of events at times v^ (k=l,2,..,m). Expression (3.3.22) may be 

generalised to

7)..(t) = s +s (t-v )+s (t-v )+ .. +s (t-v ) N 0 1 1 1 2  l m
s^(t-v)dM(v) (3.3.23)

This is the linear model we base our discussion on in this 

chapter. It also resembles strikingly the linear model used in 

ordinary time series except that it has the further interpretation 

in terms of probability.

To solve for sQ in expression (3.3.23), we take the expected 

value with respect to time. It follows that
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Sj, (v)dv (3.3.24)

To solve for s^(.), one substitutes expression (3.3.24) into 

expression (3.3.23) which gives,

V t)_PN = s.(v)[dM(t-v)-Pwdv] 1 M (3.3.25)

For a pair of times t and t+u, the product [^..(t)-P„] [T?lt(t+u)-P.T]N N N N
is seen to be given by

s.(v)s.(w) [dM(t-v)-P.,dv] [dM(t+u-w)-P.,dw] (3.3.26)1 1  M M

Taking the expected value of expression (3.3.26) followed by 

additional jnanipuiatj.oris gives

qN N (u) s. (w)s. (v)q,_f(u+v-w)dvdw (3.3.27)1 1 MM

The cross-cumulant density function q^tu) may be derived in a 

similar manner by finding the product [Tj^fU-P^] [^(t+uJ-P^] 

followed by taking the expected value, which yields,

qM N <U) = Sl(v)qM M (U'V)dV (3.3.28)

The transformation of equations (3.3.27) and (3.3.28) to a complex 

valued frequency domain form by taking Fourier 

transforms yields the important power spectra and cross-spectra
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relations

fN N U )  = lSl (X)|2fM M W )  (3.3.29a)

and fM N (X) = S 1 (X) fM M (X) (3.3.29b)

where S^(A) and s^(u) are related by

oo
S X (X) exp(-iAu)s^(u)du (3.3.30)

S^(A) is known as the transfer function whereas s^(u) is known as 

the first-order kernel. A few points should be noted here. (1) 

Expressions (3.3.27-29) are directly analogous to the 

corresponding relationships in the case of ordinary time series 

(see for example Bendat and Piersol, 1971). (2) Expression

(3.3.29b) shows that the tiansfei function may be estimated from 

the cross-spectrum and auto-spectrum. (3) From expressions 

(3.3.29), it can seen that

W A ) I 2MN = 1 (3.3.31)

This result is obtained under the assumption that the system is

linear time invariant with single-input, single-output and no
2

extraneous noise is present. The quantity

is also known as the ordinary coherence function and is denoted by 
2|R^(A)j . The possible interpretations of this function are 

discussed in the next section.



3.3.4 The Ordinary Coherence Function

2The ordinary coherence function IR^CA)! between two point 

processes M and N is defined as

The ordinary coherence can be interpreted as (1) The degree of 

linear predictability of the process N by the process M (2) The 

limiting correlation-squared between the finite Fourier^ transforms 

of M and N. These interpretations are derived as follows.

The first interpretation arises from the mean square error 

of expression (3.3.23). To find the mean square error of the
pi-oCHS

linear ooint model. exDression (3.3.25) suggests the intensity ofA
the error process to be defined as

V tJ = [V t)-PN]" s.(v)[dM(t-v)-P dv] (3.3.33)1 M

where (t ) may be considered as the error intensity of N after a

linear least square prediction from the contribution of M is 

removed. Clearly from expression (3.3.33), ElTj^tt)}=0. The 

cumulant density function q (u) is determined by

q (u) = E{tj (t)7j (t+u)> (3.3.34)nee e e

From expressions (3.3.33) and (3.3.34),



< W u) = qNN(u) - S1(v)qMN(u-v)dv (3.3.35)

The Fourier-Stieltjes transform of expression (3.3.35) yields

ee NN 1 MN
= fMM(A)-fM M (A)f._.(A)/fM M (A) NN MN NM MM

f NN(X) [ H V X ) |2] (3.3.36)

where i-s the auto-spectrum of the error process. It may be

considered as the residue spectrum of N after the linear least

square prediction from M is removed. From expression (3.3.36), it
2can be seen that when |R^(A)| =1, the error spectrum becomes 

zero, indicating perfect prediction from M. On the other hand, 

when |R^(A) | =0, the error spectrum becomes equal to the 

auto-spectrum of N, indicating whatever predicted are errors. 

This discussion concludes that in the case where the input point 

process is M whereas the output point process is N, the ordinary 

coherence function I may used as a measure of the

linear predictability of N from M.

The second interpretation can be illustrated by considering 

the limiting correlation squared between the finite Fourier-S+i'^‘tj'i-5 

transforms of M and N that is defined as

i ,CT) r .2|cov{dM (A),d (A)} I
lim -------- ^ m   (3.3.37)
T— >oo [var{dM (A)}var{dN (A)}

Now from expression (3.3.16), the numerator of expression (3.3.37)
2is seen to be I 27rTf.... (A) whereas from expressions (3.2.21) and i MN 1



(3.2.22), the denominator of expression (3.3.37) is equal to 
2

(27tT) • Hence the ordinary coherence function
2

|Rj^(A)| may be defined as the limiting linear correlation

squared between the frequency components at frequency X of M and 

N. Another important implication of expression (3.3.37) is that 

it is in such a form that the Schwarz inequality in the theory of 

vector space geometry may be applied (Koopmans, 1974). The 

Schwarz inequality states that

| <x,y> | S ||x|| |Jy|| (3.3.38)

where |<x,y>| is the inner product of x and y, and ||x|| = |<x,x>| 

with similar definition for ||y||. Since the covariance and 

variance operators may be considered as inner product operators, 

it follows that

0 55 I V * ’ !2 s 1 (3-3 -39)

The upper and lower bounds of this quantity enable assessments of 

perfect association and independence respectively making it a more 

useful quantity than the cumulant density functions which have no 

upper bound. (See the discussion in Rosenberg et al, 1989).



3. 4 Multi-Variate Point Process Parameters

The frequency domain description of the single-input, 

single-output relations described in the previous section is 

obviously much simpler than the time domain description. This 

leads to the extension of the techniques to describe situations 

where the system concerned involves multiple inputs and multiple 

outputs.

Among the key concepts is the idea of residual or partial 

random variables. It may be considered as the value of the random 

variable after taking into account of the linear effects of other 

known process(es). The best way to introduce the idea is probably 

to consider a two-input, single-output linear point process model.

N

Figure 3.4.1. Two-input, single-output linear point process model with input 
point processes and M^, and output point process N.

3.4.1 Partial Quantities of Order-1

Consider the linear model illustrated in Figure (3.4.1). 

Suppose the two input point processes and are correlated and
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let processes N and be the linear least-square prediction 

based on process and are described by the expressions

f) i(t) = S1 +

S2N(v)dM2 (t"V)

S21

(3.4.la) 

(3.4.lb)

where ^ ( t )  may be interpreted as

7?N (t)dt = Pr{dN(t)=l | M2> = E{dN(t) | M2>

and Ct) may be considered as the probability intensity of an N 

event occurring at time t given the input events in The

interpretation for 7)^(t) is similar. The function S2 N ^  

represents the effect, on the output intensity of N, of an M2 

event at time 0 with similar meaning for s?^(t). Taking the 

expected values with respect to time in expression (3.4.1), it 

follows that

PN s (v)[dM (t-v)-P dv] 2N 2 2

s21(v)[dM2 (t-v)-P2dv]

(3.4.2a)

(3.4.2b)

If the objective of the analysis is to find the relations between 

M 1 and N after taking account of the linear contribution from M2> 

we start by defining the residue or partial intensities of and N 

and given by

\ N (t) = (V t)_V' s2 N (v)[dM2 (t-v)-P2dv] (3.4.3a)
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where ^ ^(t) may be interpreted as the residue intensity of N 

after subtracting the linear least-squares prediction from M2> 

with similar interpretation for The treatment is similar

to section (3.3.4) except that the quantities related to the error 

process are now interpreted as the residual quantities of the 

process. Now, we may define the residue spectrum of N after 

removing the contributions from M2 as the partial auto-spectrum 

PNN 2 ^ ^ ’ anC* residue spectrum of after removing the

contributions from M2 as f 2^ ^  using the results obtained in 

expression (3.3.36), ie.

fNN.2(X) = f NN(A)[1-iR2N^ | 2l (3.4.4a)
(A) = f ( A ) [ 1 - | R  (A)[^] (3.4.4b)11.2 11 1 21 

where

lR™ ( ^ | 2 = lf, M ( * M 2/ f2 ? ( * > W X)2N 1 1 2N 1 22 NN
)21(X)|2 = |f21 (X)|2/ f22U ) f n

For the derivation of the partial cross-spectrum between M.̂  and N, 

f IN 2^ )  > we start with expression (3.4.3) and obtain the residue 

cross-cumulant density function between N and M^, q ^ 2^U ^’ wkich 

is given by

= q 1N( u  - s2N(v)q^2 (u-v)dv (3.4.5)

Taking the Fourier transform of expression (3.4.5)



yields

flN.2(X) flN(X) S2M(A)f12(X)

= f1N(*) " f 2 U iX ) f!2(A)/f22(A) (3.4.6)

Both partial auto-spectrum and partial cross-spectrum can be 

interpreted as the resulting quantities after the portion linearly 

correlated with a third process is removed.

More generally, for an r vector-valued stationary point 

process M(t)={M (t),M (t),..,M (t)}, the partial cross-spectrum of 

order-1 between processes M^, after removing the linear

contributions from Mc is given by

f ^ (A) = f ,(A)-f (A)f A X )/f (A) (3.4.7)ab. c ab ac cb cc

for a,b, c=l, 2, . . r and a*b*c. In the case a=b but a*c, the

quantity f (A) is known as partial auto-spectrum of process Maa. c 3-
after removing the linear contributions from M .

The partial cross-spectrum f c (A) may also be interpreted

as the covariance between the limiting finite Fourier transforms

of M and M, after the linear effects of the process M have been a b c
removed. It may be stated as,

f „ (A) - lim cov<d(T,( A ) ^ T)( A ) ^ . d ‘T ) (A)-dfT ) ( A ) ^ >ab.c _ a c f IAJ b c l lAJT— >oo cc cc
A

(3.4.8)
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Hence when there is no direct connections between processes and

M , the value of f (A) would be zero. However, the value of b ab. c
this quantity is not bounded above to enable us to assess the 

strength of direct connection between the processes. This 

disadvantage leads to the normalisation of partial cross-spectrum. 

The resulting quantity is known as the partial coherence of 

order-1 and is given by

2 lfa b c U , |2R , (A) = 7 „  (3.4.9)1 ab.c 1 f (A) f,, (A)aa.c bb.c

2Similar interpretations exist for |Ra^ as the case
2of ordinary coherence (see section 3.3.4). I^ab ma^

interpreted as the degree of linear predictability of the process

M, by M after the linear contribution from M is removed, or it b J a c
may also be interpreted as the limiting correlation-squared

between finite Fourier transforms of M and M, , with the lineara b
contributions from M removed. Again the second interpretationc
allows the Schwarz inequality to be applied and gives the result

0 s |R u (A)12 ^ 1 (3.4.10)1 ab.c 1

Finally the relations between the partial coherence of 

order-1 and the ordinary coherence may be expressed as

I R . U ) - R  C O R  , (X) I2 
i R „  (X)|2= _ ^ ----- “  Cb —  (3.4.11)[HRac(X)l ][HRcbU)l 1

In practice, situations can arise in which the value of the
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2partial coherence |Ra^ may he higher or lower than that of
2the ordinary coherence • Generally, in the case when the

process M is correlated to either M or M, but not both, thena b
2 2

l^ab c^^l ~l^ab^^l ’ *̂n °^her hand, when the process Mc is

correlated with both M and M, , for example when M is the commona b c
input to both M and M,, then |R , (A) 12<IR , (X) 12 . It isa b 1 ab. c 1 1 ab 1
obvious that if M is not correlated to M or M, , thenc a b
IR , (A)12=|R ,(A)I2 .1 ab.c 1 1 ab 1

3.4.2 Identification of a Two-Input, Single-Output Linear Point 

Process Model

The analysis that follows is a direct extension of the 

discussions outlined in section (3.3.3). Consider the point 

process model illustrated in Figure (3.4.2).

.M2

Two-input, 
single-output 
point process 

system

-  N

Figure 3.4.2. Two-input, single-output linear point process model with input 
point processes and and output point process N.

Suppose that both inputs and act additively on the 

output process N. Extending the model in expression (3.3.23), the 

linear least-squares prediction of N from and is given by



where may be interpreted as

-riN (t)dt = Pr{dN(t)=1 | M 1 and = E{dN(t) | M and M2>

and may be considered as the probability intensity of an N

event occurring at time t given the input events in and M^. 

The function s^(t) represents the effects, on the output intensity 

of N, of inputting a single point at time 0 with M2=0 whereas 

the function s2 (t) represents the effects, on the output intensity 

of N, of inputting a single point at time 0 with M^=0. The 

constant s^ may be considered as the mean rate of N when both 

and M2 are inactive.

Taking the expected value of expression (3.4.12), it follows

that

s1 (v)[dM^(t-v)-P^dv]+ s (v)[dM (t-v)-P dv] (3.4.13)

To find the auto-cumulant density and auto-spectrum, we multiply 

expression (3.4.13) by (“̂ (t+uJ-P^] followed by taking the 

expected values, ie.

< W u) = Si(v)s (w)q11(u+v-w)dvdw+

S1 (v ^s2^w ^ i 2 ^ u+v~w d̂vdw+

S2 (v ) S2 (w ) q22 (u+v-w) clvdw

s (w)s2 (v)q21(u+v-w)dvdw



(3.4 .14)

By taking the Fourier transform of expression (3.4.14),

the expression is simplified to

fN N U )  = S l U )  fH 1 U ) + S2 (X) f (X)

where S^(A) and S2 (A) are the Fourier

(3.4.15)

transforms of

s. (v) and s^(v) respectively. Note that f...r(A) given by 1 2 NN
expression (3.4.15) is a real quantity.

Similarly, the cross-cumulant densities can be obtained as,

q lN(u) =

q2N(u) =

si

s1 (v)q2 (u-v)dv+

S2^V q̂ l2^U_V d̂V

s2 (v )q22^u_v d̂v

(3.4.16a)

(3.4.16b)

which after taking the Fourier transform yields

f lN (A) = S 1 (A)f11(A)+S2 (A)f12(A)

f2 N U )  = S1 (A)f21(A)+S2 (A)f22(A) (3.4.17)

Now expression (3.4.17) can be viewed as a system of simultaneous 

equations with two unknowns S^(A) and S2 (A). The solutions for 

S^(A) and S2 (A) are given by

f22(X)flN(X)_f12(X)f2N(A)S . (A ) —1 f11(A)f22(A) fl2(A)f21(X)



s2(A) =

flN.2(X)

fll f2 N ^ ”f2 1 ^ f l N ^
^ll(AJ^22(A)"f21(X)f12(A)
2N. 1

f22.1(A)

(3.4.18a)

(3.4.18b)

3.4.3 Multiple Coherence runction of Order-2

The multiple coherence function is an direct extension of

the ordinary coherence function introduced in section (3.3.4). It

arises from the mean square error consideration of a linear model

with multiple inputs. In the case of a two-input, single-output

model, we define the error intensity tj (t) as
£

De (t) = U N (t)-PN ]- s ^ v )  [dM^ (t-v)-P^dv]

s2 (v)[dM2 (t-v)-P2dv] (3.4.19)

Clearly E{7}e (t) }=0. The cumulant density function for the error 

process is given by E{7)e (t)7)e (t+u)} which after substituting 

(3.4.19) and simplifying gives

q (u) = qMM(u)- 
££ NN s' jtvlq^Cu-v)- S2 ^ qN2^U~V ^dV

s (v)q1N(u+v)dv- s2 (v)q2N(u+v)dv+ S1^v ^sl ^ q ll(u+v_w^dvdw

S2(v )S2(w)q22(u+v-w)dvdw+

s0 (v)s,(w)q01(u+v-w)dvdw

S1 ̂ v ^s2^w q̂ i2^U+V""W ^dvdw

(3.4.20)

Using expression (3.4.16), expression (3.4.20) simplifies to
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The Fourier transform of expression (3.4.21) gives the

error spectrum, ie.

f (X) = (X)fM1 (X)-S_(X)fH_(X) (3.4.22)
ec NN 1 N1 2 N2

Equation (3.4.22) may be expressed as

fce(A) " (3'4 '23)

,,,.2 _ S l (A)fN l (A) . S2 (X,fN 2 (X)
^  I N . 12( 5 I fMKIU )  + fMM(A)NN NN

= 1 - f (X)/f.m (X) ee NN

2
The quantity |R^ 12^ )  I caH ec* the multiple coherence function

of order-2 between the output process N and the input processes

and M0 . Since O^f (X)^f....(X), it can be seen from expression 2 ec NN
(3.4.23) that

0 “ lRN 12(X)|2 ~ 1 (3.4.24)

The multiple coherence function may be interpreted as the degree 

of linear predictability of N from and M^. In fact, the 

multiple coherence function may be considered to include both the 

ordinary and partial coherence functions defined earlier. In 

particular, for the 2-input, single-output case, a partial 

coherence function may be considered as the multiple coherence



function applied to the respective residual processes whereas the 

ordinary coherence function is equivalent to the multiple

coherence function of order-1.

13.+.H)
Using expressions (3.4.18) and (3.4.23), the multiple

A

coherence function of order-2 may be expressed as

lRN.12(A)l = IRN1(A)I + lRN2.1(A)l [1_lRNltA)l ]

= I V « | 2 + !RN1.2a ) |2 [ H RN2(A,|2] (3'4'25)

2which shows that the multiple coherence function |R^ ^ 2 ^ ^  

accounted by the inputs and may be decomposed into the 

respective ordinary and partial coherence functions.

3.4.4 Matrix Formulation for the Multiple-Input, Multiple-Output 

Linear Model

The results obtained in the previous sections may be seen to 

be more apparent when expressed in matrix notation. In this 

section, the general case of a m-input, n-output linear model is 

considered. The results are expressed in matrix notation and it 

will be clear that the kind of analysis involved is similar to 

multiple regression analysis in the theory of statistics.

Consider a point process system with m-input and n-output, 

as illustrated in Figure 3.4.3.
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M 11 Multiple-input,

* multiple-output *

. point process •
M systemin

Figure 3.4.3 Multiple-input, multiple-output linear point process model with 
input point processes M=[M^,..,Mm] and output point processes N=[N ,..,N ].

First, the quantities involved are defined in matrix form

as: -

The matrices of auto-spectrum for M and N are defined as

f m m u )  ■
fM M (A)•■fM M (X) • m l  m m

(3.4.26a)

and

f n n (a) =

f Kl M ( X ) - - f M M ( X )1 1  NlNn

fN N.(X)" fN N tX) n 1 n n

(3.4.26b)

The matrices of cross-spectrum are defined as



w x) -
fu a , " fN H ( U1 1  1 m

fN M (X)'*fN M (X) n 1 n m

(3.4.27b)

The matrix of transfer function is defined as

SM N (X) =
sm n (a)' *s m  n (a)1 1  I n

SM -SM N (A)• m l  m n

(3.4.28)

The matrix of partial output spectrum is defined as

f n n .m (a) =
fN N .M(A)-,fN N  .W(A) 1 1  I n

fN N .H(A)''fN N .H(A)■ n 1 n n

(3.4.29)

where a typical entry f . M M (X) represents the partial spectrumN N, • na b
between and after removing the linear effects of the

processes ,...M^.

Now the matrix formulation of the solution of the linear 

model is given by

which gives
f m n (a) f m m (a )sm n (a)

s m n (a) f m m (a) f m n (a)

(3.4.30)

(3.4.31)

where A denotes the inverse of matrix A. Let H * denotes thea
set of all components of H omitting M , then the typical entry

Sw vt(A) is generally given by M N. a b
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fM N M * (A)q f > ) _ ________a P a_____________
M K  fw w w (A) fM __ w (ATa b M M .M * N, N, .M *

(3.4.32)
a a a b b ’ a

for a=l,2,..,m, b=l,2,..,n.

The matrix of the partial spectrum is given by

FNN.M^A) FN N (A) FNM^A)FM M (A)FM N (A) (3.4.33)

*Now the partial coherence of order-m between the output processes

N^ and N^ after removing the effects of the m-input processes
2

M ^ . M ^ . - . M ^  |R^ m^A Î ’ ma^ 130 exPressec* by the corresponding
a b'

elements of the matrix F.„T „(A), ie.NN. n

lfN N M (A)|2
RN N . M (A)I f (A) f (A) (3.4.34)a b N N .M N,N,.Ma a b b

Finally, the multiple coherence of order-m between a typical 

output N^ and the inputs M^.M^.'-.M^ may be expressed as

fN N .M(A)
lRN .M(A)I 1 fN (A) a N Na a

(3.4.35)
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Chapter 4 Estimation Procedures and Statistical Inferences

4.1 Introduction

In Chapter 3, various parameters in both time and frequency 

domains are introduced and defined in a theoretical manner. In 

practice, these theoretical parameters that represent the "true" 

characteristics of the processes and systems involved are usually 

unknown and need to be estimated from the observed processes and 

any known information concerning the system. The aim of this 

chapter is to present the estimation procedures for those 

parameters that have particular relevance to the analysis of 

neurophysiological systems.

In the context of the work described in this thesis, the 

observed signals are characterised by the sampled times of 

occurrence of the events within the spike trains. Hence, for a 

sample of an univariate point process M of duration T, the 

observations occur at times t^.t^j.-.t^. where t^=jAt, At is the 

sampling interval. We write the j-th observation as

and At=l msec. , ie. a sampling rate of 1 kHz is used in the work 

involved in this thesis. The details of the experimentation can 

be found in Chapter 5.

Throughout this chapter, the assumptions stated in sections 

(3.1.1-3) apply to the underlying processes, namely stationarity,

otherwise



mixing and orderliness. In addition, the property of ergodicity 

is assumed to justify the validity of estimating the parameters 

from one realisation. Also, the sampling rate of 1 kHz ensures 

that the Nyquist criterion is fulfilled since the refractory time 

of neurophysiological system is greater that 1 ms in general (see 

Chapter 2).

It is important to stress that the estimates obtained, no 

matter what procedures are used, can never represent the true 

values of the quantities. This is due to the fact that the 

neurophysiological systems concerned are essentially stochastic in 

nature and the best that one can obtain are the average values of 

the parameters. In addition, there are other factors that affect 

the estimates such as finite record length, which leads to the 

fact that the estimates are discrete in nature, whereas the true 

quantities are continuous. It can be shown that the estimates are 

only representatives of the values over a bin width around the 

neighbourhood of the true quantities (see, for example, Brillinger 

1974a and Rigas 1983 for a discussion of the validity of the 

stationarity and ergodicity assumptions, the choice of resolution, 

etc). Hence the estimates obtained are susceptible to errors or 

uncertainties. This chapter includes consideration of procedures 

to reduce the uncertainties involved. Also, in order to construct 

the confidence intervals for these estimates, a knowledge of the 

distribution properties of these quantities is called for. It 

will be seen that for most cases, the large sample properties of 

the estimates may be applied to simplify the construction of 

confidence interval.



A class of point process known as a Poisson point process is 

described and its similarity to Gaussian white noise in the case 

of ordinary time series is emphasised. A Poisson point process 

may be considered as a point process in which the individual 

events are independent of each other. In the univariate case, the 

Poisson point process is used as a "reference process" to reveal 

the departures of a spike train from complete randomness. Such 

departures can reveal significant effects concerning the process. 

Extending the idea of independence to bivariate and multi-variate 

cases, tests of independence are established and form a set of 

useful tools in measuring associations between the processes 

concerned.

The treatment used in this chapter is closely related to the 

theory of statistical inference which is concerned primarily with 

the problem of drawing inferences about the values of unknown 

parameters on the basis of observational data. A detailed account 

of the theory of statistical inference may be found in Kendall and 

Stuart (1961). An applied contemporary account of the estimation 

of ordinary time series quantities may be found in Shumway (1988) 

whereas in the case of point processes, a preliminary account may 

be found in Cox and Lewis (1966, 1972) and the extension of this 

in Brillinger (1975a).



4.2 Estimation of Time Domain Parameters

In this section, the estimation procedures for the first and 

second-order time domain parameters are considered. At

appropriate points, the asymptotic distribution and the variance 

of the estimates are given based on the mixing condition stated in 

section (3.1.2).

4.2.1 Mean Intensity

Suppose for a point process M, M(T) represents the number of 

events in the interval (0,T] and the process is sampled every At 

seconds such that At is sufficiently small to ensure that not more 

than one event can take place in this interval. A possible 

estimate for may be arrived at by considering the definition

(3.2.2), ie.

P^At = Prob{M event in an interval (t,t+At]>
Number of times the event actually occurs

Total number of elements in the sample space 
M(T)

T/At

Hence a natural estimate for P.. may be written as
M

M(T)
PM = -----  (4.2.1)
M T

ie. The mean intensity P^ simply represents the mean rate of the 

process. Alternatively, a formal way of expressing (4.2.1) is to
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write

PM = (1/T) dM(t) (4.2.2)
0

Obviously, one would be interested to know if P.. is an unbiased
M

estimate of P^. It is straight- forward to see that

E { P >  = (1/T) M

T Tl A

E{dM(t)} = (1/T)
0 0

PMdt = PM (4.2.3)

Expression (4.2.3) uses the definition of P.. stated in expression
M

(3.2.1). Hence Pw is an unbiased estimate of Pw . To investigate M M
the efficiency of the estimate P^, one can evaluate

2Var{P^>=E{(Pj^-P^) }• Using expression (4.2.2) one has

T T
Var{P > 

M = E{E-l (1/T ) dM(t)dM(s)
0 0

T TA A

= (1/T )

= (1/T2 )

= (1/T )

E{dM(t)dM(s)> - P:M
0

T T T T
P ^ t - s M t d s  - (1/T ) 

MM
P2dtds

M
0 0

T T
q^ft-sidtds

MM
(4.2.4)

0

In expression (4.2.4), P,„.(t-s) and q.„,(t-s) are the second-order
MM MM

product density function and cumulant density function at lag 

(t-s) respectively. The result has made use of definitions 

(3.2.3) and (3.2.13).
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By introducing a change of variable u=t-s, the integration 

on the square on the t-s plane is transformed to a triangle on the 

t-u plane. This operation simplifies expression (4.2.4) to

Var(P > = (1/T2 ) 
M

(T-IuI)q (u)du (4.2.5)i i m m
-T

Now applying the mixing assumption in expression (3.1.6a), it can 

be seen that for T large with respect to the span of effects of

Var{P } = (1/T) 
M W u)du (4.2.6)

-T

A further simplification can be made by applying the mixing 

assumption in expression (3.1.6b). Hence for T large

Var{P } ^ 0 (4.2.7)
M

One may conclude that Pw is a consistent estimate of Pw . As we
M M

will see later in this chapter the estimation of other higher 

order quantities involves P^ and the result in expression (4.2.7) 

is assumed in order to simplify calculations.

4.2.2 Second-Order Parameters

While the first-order counting variate M(T) is used to



estimate the mean intensity, the second-order counting variate 
(T)~*MM ma^ k0 emPloyed to estimate the second-order time domain

parameters. It is defined as

JM M ^ Uk ) = #{(t,s) : uk-b/2<tCM)-s(M^u^+b/2} (4.2.7)

for some small bin width b>0. Here uk=kb' and t , s^^denote the

times of occurrence of a pair of M events. The symbol #{A} denotes

the number of elements in set A. Essentially, the variate 
(T)Jxn/ (u. ) counts the number of M events falling inside a bin of MM k &

width b whose mid-point is u^ time units along from another M 

event in a record of length T. The situation is depicted in 

Figure (4.2.1). The expected value of this histogram type 

estimate for b small can be shown to be

The proof can be found in the original paper by Cox (1965) or in 

Brillinger (1975a). The result has assumed that remains

sufficiently constant in the interval (uk“b/2,uk+b/2].

M

s
1

t time
 __________  u, -b/2  ^k
------------ —  u. +b/2 -------------*—k

Figure 4.2.1. Schematic diagram that explains the second-order counting 
(Tlvariate J (u ). The M spike at time t falls into a bin of width b whose MM k

centre is u time units away from another M spike at time s.
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Now from expression (4.2.8), a unbiased estimate for P,„,(u, )MM k
may be obtained as

>WV = (1/bT)J™ (V (4-2-9)
(T)The second-order counting variate (û .) is important not only

in estimating the second-order time domain parameters but also in 

that the concept can be extended to estimate higher order time 

domain parameters. These are discussed in Chapter 6.

At the moment, it is worthwhile to examine the properties of
(T)Jm m  in detail. The properties to be discussed are asymptotic

in nature in the sense that they are strictly true only when the

record length T tends to infinity. First of all, note that

expression (4.2.8) is strictly true only when |u^|«T, otherwise

the end effects would introduce bias. However, this presents no

problem in our applications since a pair of spikes are rarely

associated when they are more than 1 second apart while the record

length is usually 60 seconds. Secondly, it can be shown that the
(T) (T)variates J._, (u„) , . . , (u, ),.. are asymptotically independentMM 1 MM k

Poisson variates (Brillinger, 1975a). This result is not

unexpected since we are counting "rare" events. If the record
(T)length T is large so that the mean value of J.... (u. ) is large, itMM k

may be approximated by the normal distribution, with mean and

variance both equal to bTP._.(u. ). This allows the approximateMM k
confidence interval to be constructed. Finally, the normal

approximation may be improved by applying the square root 

transformation. In this case, the approximate distribution for
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r.(T)r .,1/2 .. .lu. ) J would be MM K

[JM M )(V ll/2 = N [[bTPM M (uk )]1/2-1/4] (4.2.10)

2 2 where N[/i,(r ] denotes a normal variate with mean p and variance cr

(Kendall and Stuart, 1966). Figure (4.2.2) illustrates the

transformation process. It should be noted that the square root
1/2transformation is applicable only when [bTP.„.(u. )] »l/2, ie. theMM K

mean of the normal variate is significantly larger than the

standard deviation of the normal variate (Poisson variate is 

positive). This in turn implies that whenever the square root 

transformation is applicable, the transformation would improve the 

efficiency of the estimate. For situations where the count rate

is really low such that the normal approximation is not justified,

Brillinger (1975a) suggests using the transformation

f (x) g(y)

N(p ,0.25)

yxx

Figure 4.2.2. The transformation of a Poisson variate to an approximate 
normal variate. (a) The probability density function f(x) of a Poisson 
variate x. (b) The probability density function g(y) of the "transformed 
variate y which has an approximate normal distribution.
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1 /2Now, based on the expression (4.2.10), [Pl/W(u, )] may beMM k

estimated by

and it has an asymptotic distribution of

1/2 (4.2.11)

[W V )1/2 = N [ [PMM(Uk ) ) 1 / 2 ' 1/4bT]  ( 4 - 2 ‘ 12)

1/2Likewise, to estimate >

1/2 = [ [ l / b M C D U ^ v ] 172 (4.2.13)

where M(T) is the number of M events in the interval (0,T 1. The
1/2approximate asymptotic distribution for gi-ven by

[i"MMCV ll/2 = (4.2.14)

In a similar manner, the second-order cross-product density

and intensity functions for point processes M and N may be
(T)estimated from the counting variate Jww (u. ) defined asMN k

fTl fNl (Ml^MN Ûk^ = ^ ^ , s )  sucb that u-b/2^t -s <u+b/2} (4.2.15)

(N) (M)where t ,s denote spike-times of N and M respectively. The 

rest of the symbols are defined as in expression (4.2.7). This 

variate counts the number of pairs of events such that an N event 

falls inside a bin of width b whose mid-point is u time units
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along from an M event. See Figure (4.2.3).

nN

t
-«-------  u, -b/2k - ^ 1  1

1  ̂ ,1 a-K/O
M “k

time

Figure 4.2.3. Schematic diagram that explains the second—order counting 
(T)variate (ujc)- The N spike falls into a bin of width b whose centre is u^

time units away from an M spike.

(T )From may be estimated as

(T)(i l ) (4.2.16)
W V  = (1 /b T )J MN (Uk )

1/2After applying the square root transformation das an

asymptotic distribution of

[W V )1/2 ■ N [[PMN(V ll/2'1/4bT] (4-2'17)

1/2
Similarly, the estimate for m̂HN^uiĉ  ̂ iS given by

[ [ l / b M d n j " ’^ ) ] 172 (4.2.18)

and the approximate asymptotic distribution is

[̂ N (uk )]1/2 = N [[mMN (Uk )]1/2,l/4bM(T)] (4.2.19)
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Expressions (4.2.11-14) and (4.2.16-19) summarise the results for 

the distribution of the estimates for the second-order time domain 

estimates. They belong to the class of natural estimate and the 

advantage is that the estimation procedure is simple and fast to 

implement on digital computers. This is because in the point 

process case, we only need to compute all possible values of (t-s) 

in order to determine the value of the counting variate at all 

u ^ ’s. The speed of computation only depends on the number of 

events in each record of M and N. The details of the algorithm 

for evaluating the counting variate can be found in Chapter 5.

A final point to note is the effect of the choice of bin

width b. Obviously, a choice of b greater than the sampling

interval essentially smooths out the estimate. The consequence of

smoothing is well known in digital signal processing - it reduces 

the variance of the estimate (ie. improves efficiency) but also 

reduces the resolution. In addition, too large a bin width would 

introduce bias since the assumptions underlying expression (4.2.8) 

are no longer true. This point may also be seen by thinking of 

the Fourier transform pair relationship between the time parameter 

and the frequency domain parameter. A low resolution in the time 

domain parameter is effectively equivalent to a slow sampling rate 

so that aliasing may incur in the frequency domain parameter.

Based on this argument, a rough guide for the maximum bin width b 

may be obtained as b«l/P where P is the span of frequency range of 

the effects lying outside the confidence interval.
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4.3 Estimation of Frequency Domain Parameters

In this section, the estimation procedures for the frequency 

domain parameters are considered. Again, the importance of a 

knowledge of the asymptotic distributions and the variance of 

these estimates is emphasised.

4.3.1 Auto-Spectrum and Cross-Spectrum

The estimates for auto-spectra and cross-spectra are of 

fundamental importance in the estimation of frequency domain 

parameters due to the fact that it is from these quantities that 

other estimates are constructed. As mentioned in section (3.2.2) 

the auto-spectrum may be defined in two ways: (1) The

Fourier transform of the cumulant density function, and

(2) the asymptotic expected value of the periodogram. Hence two 

different approaches exist for estimating the auto-spectrum. 

However, Jones (1965), Bingham et al (1967) and others pointed out 

that the fast Fourier transform (FFT) algorithms enable the 

periodogram to be computed more efficiently and most computing 

procedures take this route. In addition, due to the fact that the 

general FFT algorithm is intended for a complex data array and the 

data array is real-valued in nature, further improvements on the 

speed of calculation can be achieved. (The details of the 

specialised FFT algorithm for real data values can be found in 

Chapter 5) Throughout this thesis, the estimates for auto-spectrum 

and cross-spectrum are based upon the periodogram.



From expression (3.2.21), the finite Fourier transform of aA
point process M in discrete form may be written as

d^T)(X ) = M k exp(-iA t) [dM(t)-P,.dt] (4.3.1)k M

where A^=27rk/T is the angular frequency in radians per second. 

The frequency of the k-th ordinate in cycles per second is given 

by k/T. The zero mean process [dM(t)-P^dt] is used in place of 

dM(t) for clarity in the following derivation. In practice, using 

either [dM(t)-P^dt] or dM(t) makes no difference except for the 

component at A^-0 which is of no interest.

Now the periodogram is written as

C  fV  - ci/wndJT)(Vd£T)(V <4-3-2’
To show that the auto-spectrum can be estimated by the

periodogram, one may proceed as follows. From expression

(4.3.1-2), the expected value of the periodogram may be seen to be
T T

)> =d/27rT)MM k
J0’

exp[-iA (t-s)]E{[dM(t)-P dt][dM(s)-PMds]} k M M

(4.3.3)

Now, using the definition of the second-order cumulant density 

function given by expression (3.2.12), it follows that



T T

E<1™ (V> exp[-iA (t-s) ]q._.(t-s)dtds 
k  MM (4.3.4)

0 0

where q^(t-s) is the second-order cumulant density function at 

lag (t-s). In expression (4.3.4), the integrand is a function of 

(t-s) only, hence a change of variable u=t-s gives

(l/27tT) (T— |u| )exp[-iA^u]q^(u)du (4.3.5)
-T

Applying the mixing condition (3.1.6a), the asymptotic value of 

expression (4.3.5) becomes

lim E { I ^ ( X  )> = (1/2tt) 
T—

= fww(A, ) MM k

exp [-iA^u]q^(u)du

(4.3.6)

The result in expression (4.3.6) has made use of the definition of

the auto-spectrum in expression (3.2.17). Hence it can be

concluded that the expected asymptotic value of the periodogram 
(T)Iuu (A. ) is an unbiased estimate of the auto-spectrum f,„,(A, ).MM k MM k

Concerning the variance of this estimate, one might proceed
(T)as follows. It should be noted that d^ (Ak ) may be decomposed 

into the cosine and sine transforms as

j (T) r-v , , (T) j (T) /•-* ^d (A. ) = d (A, )-id (A )M k MC k MS k (4.3.7)

where
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c L ^ U  ) = MC k

and dMS

cos(X. t)[dM(t )-P.,dt] k M

sin(Akt)[dM(t)-PMdt]

Now, consider the case where dM(t) is Gaussian, then the linear

combination of dM(t) would also be Gaussian. Hence the cosine and

sine transforms of dM(t) is normally distributed if dM(t) is

Gaussian. However, dM(t) is obviously binomial (dM(t) can only be

either 0 or 1). Hence more stringent conditions are required to 
(T) (T)establish that dwr, (X, ) and dwr, (X. ) are asymptotically normal. MC k MS k

One approach used in Brillinger (1975d) is to assure that MCt) is 

a weakly dependent process such that the mixing condition of the 

form

00

■& = u| |q (u) Jdu < oo (4.3.8)MM
-oo

(T)holds. Then it would be sufficient to establish that d _̂. ( ^ )  anc* 
(T)dMS ^ k ^  are asymPt°tically independent normal variates with zero 

mean. Condition (4.3.8), as seen from expression (3.1.6a), is 

justified.

Now gathering the information concerning the asymptotic 
(T)properties of I 0118 ma^ Sa^ ^hat ^  related to the sum

of the squares of two independent zero mean normal variates and it

has a asymptotic mean of f.„.(X. ). Hence it can be related to aMM k
Chi-square variate with 2 degrees of freedom given by
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(4.3.10)

2(Brillinger 1974a). Since the mean and variance of a x variaten
are n and 2n respectively, one can see from expression (4.3.10) 

that for T large

Expressions (4.3.11) conclude our discussion of the asymptotic

to improve the estimate will be discussed shortly.

One might argue that the use of a longer record (ie. more 

sampling points) should give more information in estimating the 

periodogram. However, the fact is that the extra information does 

not contribute to the reduction of variance. Instead, the effect 

of more sampling points is to produce estimates at a greater 

number of discrete frequencies. If a longer run of data is 

sampled using the same sampling rate, the Nyquist critical 

frequency l/2At remains unchanged but a finer frequency spacing is 

obtained. On the other hand, if the same length of data is 

sampled with a finer sampling interval, the frequency spacing 

remains unchanged but the Nyquist frequency range is now extended 

to a higher frequency. In neither case does the extra information 

contributes to the reduction of variance.

and

(4.3.11a)

(4.3.lib)

(T)properties of I._, (A, ). Note that the variance does not vanish MM k
(T)for large T. Hence I._, (A, ) alone should not be used as anMM k

estimate for f.„.(A, ). The suitable smoothing procedures required MM k
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The periodogram can be smoothed using a number of 

techniques. Basically, these techniques may be divided into two

approaches. The first is to compute a periodogram estimate with

finer discrete frequency spacing than is really needed, and then 

to sum the periodogram estimates at K consecutive discrete 

frequencies to get one "smoother" estimate at the mid frequency of 

those K. The second technique is to partition the original 

sampled data into K segments. Each segment is separately FFT’d to 

produce a periodogram estimate. Finally the K periodograms are 

averaged at each frequency. Both approaches can be shown to be 

very nearly identical mathematically although they are different 

in implementation (See Press, W.H, et al, 1986, Chapter 12). 

Since the periodogram estimates averaged may be assumed to be 

asymptotically independent, the variances of the final estimates 

obtained from both techniques are both reduced by a factor of K. 

However, for various reasons, the second technique has been 

employed throughout the work reported in this thesis. First, the 

second technique is computationally more efficient than the first 

one by a modest factor, since it is logarithmically more efficient 

to take short FFT’s than one long one. Also, the amount of 

computer memory storage required for the second technique for each 

FFT is less than that of the first technique. This implies the 

second technique is a sensible choice for processing long runs of 

data, so as to reduce the variance of the final estimate.

Mathematically, the adopted smoothing technique may be 

described as follows. For the sake of clarity, the results given

79



below are asymptotic in nature (ie. T— x»). Suppose for a point 

process M the record length is L and it is divided into K disjoint 

sections so that

L = KT (4.3.12)

where T is the length of the individual sections. If the
(T  *)periodogram of the j-th disjoint section is written as 

an estimate of the auto-spectrum may be constructed as

K

V V ,|wtlII* l(V (4-3-l3)
j=l

Using the results in expression (4.3.10) and (4.3.11), the

estimate f.„.(A_ ) may be seen to relate to the Chi-square MM k
distribution with 2K degrees of freedom, ie.

2K w v /fM M (v  ■ 4  (4-3 -i4)

The mean and variance of the estimate fVi,,(A. ) follows asMM k

E<fMM(V> “ fMM(V  C4-3'1Sa)
and Var(f\_,(A, )} = (1/K) [f1_IUCA. ) ]2 (4.3.15b)MM k MM k

For K large, the large sample property implies that the estimate

fvnl(A, ) may be considered to be normally distributed given by MM k

W V  (4-3-16)
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Now, from expressions (4.3.15-16), the variance of the estimate is 

a function of frequency. From the result of Rao (1984, p385), the 

logarithmic transformation has the effect of stabilising the 

variance, so that when K is large,

l0ge'WV] * N [lo* e [fM M (V 1’1/K] (4'3 '17)

Hence, the distribution characteristics of log [fv/w(A. )] ise MM k
simpler than that of f.^.tA, ). One may use logarithms to the baseMM k
10 if the magnitude of the spectrum is interpreted in terms of 

decibels (dB). In this case, expression (4.3.17) may be written

as

1Og10[W V ] * N [1OS10IfM M (V !-(0'434,2/K] (4.3.18)

Expression (4.3.18) concludes the distribution properties for the 

estimate of the auto-spectrum.

In a similar fashion, the cross-spectrum between the 

processes M and N is estimated from the cross-periodogram which is 

defined as

= (l/2nT)c^T ) (X. )dr5T ) (X. ) (4.3.19)MN k M k N k

/ ip • \
Writing (X^) as the cross-periodogram of the j-th segment,

the estimate for fw..(X, ) may be written as MN k J
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K

W V  - (1/K) t4-3-20)
j=l

At this point, it may be appropriate to consider the effects 

of the choice of the disjoint segment T. First of all, it is 

obvious that T should be a integral power of 2 for the application 

of FFT (the radix-2 algorithm is used, see Chapter 5 for details 

of the algorithm). Since the discrete finite Fourier transform is 

estimated as angular frequencies at A^=27ik/T, the resolution of 

the estimate obtained would be 2n/T rad/sec. Suppose a record of 

length L is available and that L=KT. If a long disjoint segment T 

is used, a fine resolution would  be obtained. On the other hand 

if a short disjoint segment is used, a broader resolution would be 

obtained. However, the FFT works exponentially faster for short 

records, so that the price for a finer resolution would be a 

longer computational time. In addition, the idea of resolution 

bandwidth is that the estimate obtained at a particular angular 

frequency A^ is a representative of the true continuous spectrum 

within the bandwidth A -7t/T^A<A^+7r/T. Expression (4.3.6) in fact 

assumes that the true spectrum is sufficiently constant within 

this bandwidth. Hence, too short a disjoint segment would induce 

bias to the estimate since it will tend to smooth out valid peaks. 

On the other hand, in the case of too long a disjoint segment is 

used, the confidence interval (or variance) may be too wide for 

isolating and comparing significant peaks. Hence, there are 

conflicts between computational efficiency and stability on one 

hand, and resolution and unbiasness on the other. A possible 

solution may be to check the span of dependence as seen in the
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cumulant density estimate. Since the cumulant density function 

and the spectrum form a Fourier-Stieltjes transform pair, it can 

be deduced that a rough guide to the maximum frequency bandwidth 

would be 1/R where R is the span of dependence in the cumulant 

estimate. In this thesis, all frequency domain analyses are based 

on a choice of T=1024 msec.

4.3.2 Ordinary Coherence Function

The estimate for the ordinary coherence function between the 

processes M and N follows naturally from the definition given by 

expression (3.3.32). It is given by

l W | 2 - - ~ l-MN- "k- -  (4.3.22,
MM k NN k

where i-s the cross-spectrum estimate given by expression

(4.3.20); fv„,(X. ) and flIVI(A, ) are the auto-spectrum estimates of M MM k NN k
and N respectively given in expression (4.3.13). The problem now

2is to define the statistical accuracy of the estimate •

2In Amjad (1989), it is shown that an

asymptotically unbiased estimate of the coherence function. Also, 

the estimate is asymptotically normal with variance given by

Var<l«MN(V | 2> = (4/n)l ' W V | 2 [ H ’W V | 2] (4-3.23)

~ 2
where n is the degree of freedom of the estimate I ^ N ^ k ^  I • The
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disadvantage of this approach is that the variance actually

depends on the true value of the parameter which is unknown. In 

addition, there is no obvious stabilising transformation to 

transform this variance to a constant. Another approach makes use 

of the similarity of the estimate I ^ N ^ k ^  ^ e - square root of 

the coherence function; known as coherency in some literatures eg. 

Bloomfield,1976; Jenkins and Watts, 1968) to the correlation 

coefficient in linear correlation analysis (see for example

Brownlee, 1965). A transformation, which was first suggested by

Fisher, may be used to normalise the correlation coefficient

estimate, ie.

It has been shown, using empirical studies, that for estimates of

(Koopmans, 1974). In the case where disjoint sections are used to 

estimate the spectral estimates ^MN^k^ anC* ^ N N ^ k ^ ’ n=2K

where K is the number of disjoint sections averaged.

tanh-1 (4.3.24)

i 2coherence functions in the range 0.35^|R^^(A^)| ^0.95 with degree

of freedom n==20, wwlI(A, ) has an approximate normal distributionMN k
with mean and variance of

Elw^i U J }  = (n-2) 1 + tanh 1 MN k
Var{w (A )} = (n-2) 1 MN k

(4.3.25a)

(4.3.25b)

where n is the degree of freedom used to estimate 2
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Sometimes it is desirable to test the hypothesis that

independent bivariate point processes have the same coherence

structure, ie. to test whether the coherence between the processes

a and b is equal to the coherence between the processes c and d at
all frequencies. A statistical test for such a hypothesis may be

_1 ~
based on the transformed variates = tanh l^ab^'Sc^l anC*
a *
w ,(A ) = tanh jR (A ) | . The null hypothesis may be stated asCCL K  Cu K

lRab(V !2 “ lRcd(V !2 (4-3'26)

In terms of the transformed variates wak ( ^ J  and wcd ^ k ^ ’ nu^

hypothesis may be restated as

Uab(V  = Wcd(V  (4.3.27)

Under this null hypothesis, the results of expressions (4.3.25a,b) 

may be utilised to obtain the distribution of the difference of 

the transformed variates as (assuming the experiments are

independent of each other)

w u(A, ) - w (A. ) = N[0,1/(K-1)] (4.3.28)ab k cd k

for K (the number of disjoint sections average) large. Hence it 

may be concluded that one should reject the null hypothesis when

|w , (A. ) — w , (A. ) I > 1.96/V(K-1) (4.3.29)1 ab k cd k 1

85



where a 95% confidence limit is used.

4.3.3 Multiple Coherence Function and Partial Coherence Function

2An estimate of the multiple coherence function |R.. „(A. )|1 N .M k 1 a
between an point process N and the vector valued point process3.
M = [ M ^ ...M^] may be obtained following expression (3.4.35) as

fM M w (A. )N N .M k
IRm = 1 -    (4.3.30)1 N .M k 1 .a fM M (a )N N k a a

where

and

fN N . M ^ k 5 fN N (Xk* fN M (Xk )fM M (Xk )fMN (Xk 5 a a a a a a

fN M (V  = [fN M, (V ] k=1.2....ra a k
, 1 

J lk
^MM^Xk̂  X̂k^ l»2,..r

fMN (Xk 5 fN M ^ k 5 k 1>2 ’--’ra a

TIn expression (4.3.30), A denotes the transpose of the matrix A.

The individual elements fvt .. (A. ) and fw (A. ) may be estimated
a k W  k

using the procedures discussed in section (4.3.1)

Similarly, the estimate for the partial coherence function 
2R,, „ »,(A, ) between the point processes N and N, after1 N N. .M k 1 ^ a ba b

removing the linear effects of M is given by
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where

lfN N H U k ]l
lRN N . M (Ak )t 7 ~ T i  T ~ ~  (4.3.31)

a N N . M k N N . H ka a b b

fN N H ^ k 5 fN N (Xk 5 fN M (Ak )fM M (Xk )fMN (Xk 5 a b a b a b

with similar definitions for f_. „ „(A. ) and fVT „(A. ). TheN N .M k N, N. .M ka a b b
rest of the parameters are explained in expression (4.3.30).

The same transformation used in the case of ordinary 

coherence estimation may be employed to transform the multiple 

coherence function and the partial coherence function to 

asymptotic normal variates (Otnes and Enochson, 1978). The 

expressions for mean and variance of the estimates may be obtained 

by replacing expression (4.3.25) with the approximate degree of 

freedom. In the case of multiple coherence function, if w^
a*

— tanh |Rn ^ ( ^ ^  | * 
a'

E<WN M (V } = r/2(K_r) + tanh VN M U k)la ’ a
Var{w w C ' O )  = l/2(K-r) (4.3.32)N . M Ka

where r is the number of processes in M. In the case of partial 

coherence, one must reduce the number of degrees of freedom by the 

number of conditional variables whose effects have been removed.
i 2For the estimate RM .. „(A, ) , the effects of r inputs are1 N N, . M k 1 a b

subtracted out, hence
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E<UN N M(V } = V 2 K - T - 1 )  * tanh-1 |R̂ (Â) |
a b a

Var{wN M (\)> = 1/2 (K-r-1) (4.3.33)
a b ‘

In practice, the results in expression (4.3.33) are useful in 

testing equality of two partial coherences after the effects of 

other inputs are removed. Similar expression for the 95% 

confidence interval can be derived by substituting YK. by V(K-r) in 

expression (4.3.29).
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4.4 Test for Independence

This section discusses the various results obtained in the 

case where the point processes of interest are independent. The 

confidence intervals for the estimates discussed in the previous 

sections are constructed to provide a statistical test for the 

hypothesis that the processes are independent.

A Poisson point process belongs to a class of point 

processes which may be considered to be completely random. It 

will be shown that the Poisson point process possesses similar 

properties as the Gaussian signal does in the case of ordinary 

time series. The importance of Poisson point process is 

emphasised through its use as a "reference signal" to represent 

complete independence between the events within the process.

This section begins with a brief description of the Poisson 

point process followed by the key results obtained under the 

hypothesis that the process is Poisson. Finally, the distribution 

of bivariate and multi-variate parameters are presented based on 

the hypothesis that the processes are independent. Throughout the 

section, the results obtained in sections (4.2-3) are referred to 

and some results discussed in this section are considered as 

special cases of those presented in sections (4.2-3).

4.4.1 Definition and Properties of a Poisson Point Process

A Poisson point process may be considered as point events
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occurring singly in time and completely at random. It may serve 

as a mathematical model for a wide range of empirical phenomena, 

including the arrival of calls at a telephone exchange, the 

emission of particles from a radioactive source, and the 

occurrence of serious coal-mining accidents. A variety of 

examples may be found in Haight (1967).

It is important to realise that a Poisson point process is a 

consequence of the assumptions that are stated below. This means 

that whenever these assumptions are valid, the Poisson point 

process may be used as an appropriate model. The four assumptions

may be stated as (Meyer, 1980)

1. The number of events during non-overlapping time intervals

are independent random variables.

2. The number of events during any interval depends only on

the length of that interval.

3. For a sufficiently small time interval the probability of

obtaining exactly one event during that interval is directly 

proportional to the length of that interval.

4. The probability of obtaining two or more events during a

sufficiently small interval is negligible, ie. a Poisson 

point process is orderly (see section 3.1.3).

Assumptions 1 and 2 essentially relate to stationarity and 

the fact that a Poisson point process is a renewal process. 

Assumption 3 and 4 may be expressed formally as (Cox and Isham, 

1980)

90



and

Pr{M(t, t+At )=0} = 1-P. .At+o (At)
M

Pr{M(t,t+At)=l} = P At+o(At)M
Pr{M(t,t+At)>!> = o(At) (4.4.1c)

(4.4.1a)

(4.4.1b)

where M(t,t+At) represents the number of M events in the interval 

(t,t+At], and P^ is the mean intensity of the process M. The 

standard function o(At) (known as little o of At) has the property 

that o(At)/At— >0 for At— >0+ .

Based on these assumptions, two important and fundamental 

properties of a Poisson point process may be deduced: one is

concerned with the distribution of the inter-event time interval 

and the other the distribution of the number of events within a 

time interval of duration T. Suppose x is a continuous random 

variable representing the inter-event time interval and y a 

discrete random variable representing the number of events within 

a time interval T. It can be shown (see for example Meyer, 1980) 

that the respective probability density functions of x and y, f(x) 

and g(y), are given by

Expression (4.4.2a) is important since the simulation of a Poisson 

point process relies on the generation of the required inter-event 

time intervals. The details of the computational algorithm may be 

found in Chapter 5. Expression (4.4.2b) is recognised as a

f(x) = PMexp(-PMx) 

g(y) = (PMT)Yexp(-PMT)/y!

(4.4.2a)

and (4.4.2b)
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Poisson distribution with mean P^T; hence the name of the process.

4.4.2 Results obtained from a Poisson Point Process

An immediate implication of the assumptions stated in the 

previous section is that the cumulant density function of any 

order for a Poisson point process M is zero, ie.

deduce that for a Poisson point process, the second-order product 

density function has the property

approximately normal for T large, the estimate would be

bounded by the 95% confidence interval

Similarly, the estimate for the auto-intensity function would be 

bounded by the 95% confidence interval

After applying the square root transformation, expression

qa. . .a. (ul "  ’ ’V - l 1 = 01 k
(4.4.3)

for u  u. t̂ O and k=2,3,... In the second-order case, one can1 k-1

u*0 (4.4.4)

(T)From expressions (4.2.9) and (4.4.4) and the fact that

P^-1.96PM/(bT) ^ Ph m (u) - PM+1*96PM/(bT) (4.4.5)

P -1.96/(bT) 
M

1 /2 m ^ t u )  s PM+1.96/(bT) 1/2 (4.4.6)<
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(4.4.5-6) become

PM-l/(bT)1/2 < [Pm (ii)]1/2 < PM-l/(bT)1/2 (4.4.7a)

and
~l/2 1/2 ~ 1/2 ~1/2 1/2P* -l/[bM(T)]1/Z =£ [in^Cu)]17^ ^ P^ +l/[bM(T) ] (4.4.7b)

Expression (4.4.7) represents the region of fluctuation of a 

Poisson point process. If a point process of the same mean rate 

has density and intensity estimates outside these regions, it may 

be concluded that the process possesses significant effects at 

those estimates.

Concerning the auto-spectrum of a Poisson point process, one 

should note that a special case of expression (4.4.3) at k=2 may 

be written as

P  S(u)u=0
W u) ■ { (4-4 -8)v0 otherwise

The auto-spectrum is the Fourier transform of the

auto-cumulant density, hence

fM M U )  = V 2” (4'4'9)
ie. The auto-spectrum of a Poisson point process is constant at

P../2rt for all frequencies. This suggests that the Poisson point M
process may be considered analogous to Gaussian signal in the case 

of ordinary time series.
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An interesting point to note is that the result obtained in 

expression (4.4.9) is the same as that of the asymptotic value of 

the auto-spectrum of any point processes. This implies that for A 

large, the spectrum of a point process which observes the 

Riemann-Lebesque Lemma (see the discussion in section 3.2.2) would 

behave like a Poisson point process and hence would be bounded by 

the confidence interval stated in expression (4.4.10).

From expression (4.3.18) and (4.4.9), the 95% confidence 

interval of the auto-spectrum of a Poisson point process follows 

as

Pw PwM -0.8512/1* . * log1Q M +0. 85 »l/VYL (4.4.10)
2n 2u

Expression (4.4.10) is very useful in comparing the 

frequency content of a point process with a Poisson point process 

of the same mean rate. Any value outwith the limits implies 

departure from complete randomness and hence may be considered as

a significant periodic component.

4.4.3 Results for Bivariate and Multi-Variate Point Process 

Under the Hypothesis of Independence

The treatment for the second-order time domain parameters in 

the bivariate case is essentially similar to the univariate cases. 

When two point processes M and N are independent, the 

cross-cumulant density function is zero and hence,
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PMN(u) V n (4.4.11)

~  ~  -l / o

The confidence intervals for tPM N (uk ^  and
1/2[m^^(u^.)] can then be stated as

A A A A

„  ̂ _P P ^ l / 2  „  ̂  ̂ J3 P 1/2
V n - 1'96^ / ]  a PMN(V  £ PMPN+1-96B r ]  (4 4'12a)

A A

P 1/2 P 1/2
PN_1 *9 6 [bM(T)j S mM N (uk ) S PN+1'96[bM(T)] (4.4.12b)

M  1/- (1/bT)1/2s[PM N (\ )] 1/24 ?MPn] 1/2+ ( " W 1/2 (4. 4. 12c)

p»i/2-by1/2 - twvp v̂ Mn]1/2 <«■*•««
Expressions (4.4.12a-d) may be used to detect any significant 

effects indicated by values lying outside these limits.

In the frequency domain, the cross-spectrum between 

independent point processes of order-2 and above are zero, ie.

f (X,,...X, J  = 0 k^2 (4.4.13)a, . . a. 1 k-11 k

This result may be seen from the fact that the cross-cumulant

density functions do not involve any Dirac delta function as

auto-cumulant density functions do. The construction of the 95%

confidence interval for a zero cross-spectrum does not seem to be 

very meaningful. Instead, a test of zero normalised

cross-spectrum, ie. the coherence function, is more desirable.
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First of all, it should be noted that the method based on 

the Fisher’s transformation is not suitable due to the fact that 

zero is outwith the range for which the assumption is valid (see 

section 4.3.2). Hence other approaches are called for. Two

approaches are available. The first one makes use of the quantity

This is an F-distributed variate with 2 and 2(K-1) degrees of 

freedom under the assumption that processes M and N are 

independent (Mood et al, 1963). However, this method requires 

looking up the table of F-distribution and so from a computational 

point of view, another approach is preferred. The result used was 

first derived by Abramowitz and Stegun (1964) and is an extension

to the work of Goodman (1963). The 95% confidence interval of
2 2 ĵj(A^) | under the assumption that 1 ^ ^ ^ )  I can he shown to

be given by

2 (K-l)
(4.4.14)

Pr{|RM N (Ak )|2 ^ /3} = 0.95 (4.4.15)

where /3 = 1-0. 051/(K-1 ]

Hence if M and N are independent, about 95% of the values of 
~ o
I ^ N ^ k ^ l  should lie within the region between zero and j3. Any 

values outwith this interval indicate that the two processes are 

dependent at those frequencies. Note that in the extreme case 

when K=1 (ie. without averaging), then £=1 and it is impossible to 

tell whether the two processes are independent or not.
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In the case of partial coherence of order r between and

N0 after removing the effects of M={M.,Mof . . ,M }, the 95% 2 1 2 r
2

confidence interval under the hypothesis |R^ I ®^ven
1 2 ‘

by

Pr<|RN N  M ( \ ) | 2 ^ P> = 0.95 (4.4.16)
1 2 "

. o 1 n rii-17 (K_r_1)where /3 = 1-0.05

2If the values of |Rn =° are outwitl1 this level it can
1 2'

be concluded that the processes and are dependent even after 

removing the effects of M.
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Chapter 5 Experimental and Computational Considerations

5.1 Introduction

The complexity of experiments on the neuromuscular system - 

particularly those experiments where several input channels are 

active simultaneously while recording from a number of output 

channels - requires that the experimenter be able to generate 

multiple test signals, collect multivariate response data, analyse 

these interactions at the time of the experiment, and adjust the 

experimental procedures in the light of the analysis. This 

chapter describes some aspects of the design of the experiments 

for the analysis of the behaviour of neuromuscular and associated 

model systems. In Chapter 2, the elements of neuromuscular system 

involved have been described. The purpose of this chapter is (1) 

to describe the model used in the simulation experiment (2) to 

describe the computational procedures used to generate the stimuli 

to both the real and model systems (3) to describe very briefly 

the experimental systems employed in the generation and collection 

of data obtained in both the real and simulation experiments and 

(4) to set out some techniques that were used to improve the 

computational efficiency of some of the algorithms used to analyse 

the collected data.
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5.2 The Model

The model has several components and may be adapted to 

represent properties of the muscle spindle or a single neurone, 

each with several inputs or outputs. It is based on a pulse

frequency modulator first suggested by Meyer (1961) and Pavlidis 

and Jury (1965). Later a more general formulation of a "leaky 

integrator" is adopted which explains the experimental observation 

in that there exists a marked phase-locking between each cycle of 

a stimulus and the impulse generation. The model in this thesis 

is implemented on an EAI 2000 analog computer. The different 

components of the model are described as follows.

Figure (5.2.1) shows the diagram of the encoder portion of 

the model. The symbols used are standard in analog computing and 

are explained in Appendix A1. The encoder consists of a 

first-order filter followed by a threshold detector. When a 

continuous signal is applied to the encoder input, the integrator 

output ramps upwards. The rate of increase of the filter output 

depends on the amplitude of the input. When exceeds

V^, the preset threshold value, a spike is generated and the 

integrator output is reset to zero for the duration of the pulse. 

This duration, which is set to 1 millisecond, matches the typical 

pulse width of an action potential and is controlled by a timing 

circuit consisting of an integrator and a comparator. The first 

order filter making up the initial stage of the encoder plays an 

important role, allowing pulse frequency modulators to observe the 

input signal for a finite period of time before a pulse can be
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Figure 5.2.1. Patch diagram showing the analogue simulation of a pulse 
encoder on the EAI 2000 analogue computer. The explanation of the symbols 
used can be found in Appendix 1.
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Figure 5.2.2. Diagram showing the output characteristics of the pulse 
encoder illustrated in Figure 5.2.1 for different values of encoder time 
constant T.



emitted. The use of a first order filter has been found to give 

better agreement between simulated and physiological results in 

previous simulation studies (Angers and Delilse, 1971; Downie and 

Murray-Smith, 1981 and Halliday, 1986). Figure (5.2.2) shows the

output characteristics of the encoder. From Figure (5.2.2), it

can be seen that the time constant of the filter determines the 

maximum pulse frequency that can be emitted by the encoder. Also, 

from the simulation studies by Halliday (1986), the time constant 

of the filter plays an important part in determining the coherence 

between the input and output spike trains of the model.

Figure (5.2.3) shows the model employed to simulate the 

contractile and mechanical properties of the intrafusal fibres of 

a muscle spindle. The transfer function of the model has the form 

G/(1+s t ) where G is the mid-band gain and x is the time constant. 

It has been shown that the phenomenon of "driving" observed in the

muscle spindle can be simulated using this model in conjunction

with the encoder in Figure (5.2.1) (see Halliday 1986).

The model shown in Figure (5.2.4) represents the element 

used to generate the excitatory post-synaptic potential (EPSP, see

Chapter 2). The transfer function of the model has the form
2 2 G/(1+s t ) and the impulse response is given by t(G/x) exp(-t/x).

The choice of a double-pole second order filter is based on the

time course of the EPSP. Various sizes and durations of EPSP may

be modelled by adjusting the values of the gain G and time

constant x. The output from this second-order filter is used as

the input to the encoder, together they represent a model neurone.
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G/(1+ s t )

impulse response ~ (G/x)e
G / t

- 1/t

Figure 5.2.3. Patch diagram of the analogue simulation of a first-order 
filter used to simulate the contractile and mechanical properties of the 
intrafusal fibres of a muscle spindle. The transfer function has the form 

G / ( 1 + s t )  where G  i s  the gain and t  is the time constant. The response of the 
filter under a Dirac delta impulse input is also illustrated.

G / U + s t ) 2

impulse response
~ (G/T2 )te“t/TG/2t - 2/t

- 1/ 2t

Figure 5.2.4. Patch diagram of the analogue simulation of a second-order
filter used to generate the excitatory post-synaptic potential (EPSP). The

2transfer function is chosen as G/(l+sx) such that impulse response has the 
shape similar to an EPSP.



The three kinds of elements described above may be 

configured in different ways forming neuronal networks of 

different degrees of complexity. The analysis of such networks 

are investigated in Chapter 6.
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5.3 Generation of Stimuli

5.3.1 An Algorithm to Generate Poisson Processes

Generation of Poisson processes may be achieved by several 

methods. A traditional method records the signal produced by a 

Geiger counter with a radioactive source placed near the detector. 

The mean rate of the process can be adjusted by altering the 

position of the radioactive source. In general this procedure is 

poor, due to the lack of precise control over the mean rate of the 

process. In this thesis Poisson processes were produced based on 

computational methods. From expression (4.4.2a), it is seen that 

the inter-spike intervals of a Poisson process are independently 

exponentially distributed. Based on this property, a Poisson 

process may be simulated. The exponential deviate is generated 

through the transformation of uniform deviates (Press et al, 

1986). This has the advantage that the mean rate of the Poisson 

point process can be obtained to a high degree of accuracy, and 

that the time required to generate the sequence is much less than 

that of the duration of the process.

The basic principle used to generate the uniform deviates is 

based on the conventional linear congruential generator, which 

generates a sequence of integers 1^, I^, each between 0

and m-1 (a large number) by the recurrence relation

I. = al.+c mod mj>0 (5.3.1)J+l J

where a, c and m are positive integers. After an initial value 1^
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is chosen and positive integers a, c and m are specified, I is 

computed from al^+c mod m. Similarly, can then be computed

To increase the period of the sequence, the shuffle algorithm 

suggested by Bays and Durham and described in Knuth (1981) is 

employed to improve the linear congruential method. The algorithm 

is illustrated in Figure (5.3.1). The uniform deviates obtained 

from the shuffle algorithm are normalised (ie. divide by m) to 

give a probability density function

For an exponential deviate y, the probability density function is

where |3 can be interpreted as the reciprocal of the mean of y. 

Suppose y=T(x) is required to transform the uniform deviates x to 

exponential deviates y, our task is then to find T(x).

and the fact that both f(x) and g(y) are non-negative, one may

deduce from expressions (5.3.2-4) that

from a ^2+c moc* m ' recurrence will eventually repeat itself.

1 0<x<l
(5.3.2)

0 otherwise

given by

(5.3.3)
otherwise

Since

f(x)dx| = |g(y)dy| (5.3.4)
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linear 
congruentia] 
generator output

uniform
deviate

Step 1: fill Y and array V
2 : point to the element V
3: output Vy as the uniform deviate and set Y as Vy 
4: fill Vy from the linear congruential generator 
5: repeat from step 2

Figure 5.3.1. Schematic diagram illustrating the shuffle algorithm suggested 
by Bays and Durham to randomise the sequence of uniform variates generated by 
the conventional linear congruential method.



| dx/dy | = £exp(-|3y)

which gives

y = -1//3 loge (x) = T(x) (5 .3 .5)

Hence by substituting the required value for |3, a sequence of 

exponential deviates of specified mean can be obtained. The 

transformation process is summarised in Figure (5.3.2). Now a 

Poisson process of required mean rate may be generated by 

employing the exponential deviates as the inter-spike intervals.

5.3.2 An Algorithm to Generate Point Processes with 

Gaussian Distributed Inter-Spike Intervals

The generation of a point process with Gaussian distributed 

inter-spike intervals depends upon the generation of a series of 

Gaussian deviates. In this thesis, the generation of Gaussian 

deviates is based on the Box-Muller method. Consider the 

transformation between two uniform deviates on (0,1), x^, x^ and 

two quantities y , y^, a two-dimensional extension of expression

(5.3.4) may be written as,

g(yl»y2  ̂=
S(x ,x )
a(yr y 2 >

(5.3.6)

where |3(.)/5(.)| is the Jacobian determinant of the x ’s with 

respect to the y ’s. Now if x^ and x^ are two uniform deviates in 

the range (0,1) and we want y and y^ to be two independent normal 

deviates having distribution [l/V(27r)]exp(-y /2), ie. N(0,1), one
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f(x) : probability density function of x 
g(y) : probability density function of y

Figure 5.3.2. Transformation of an uniform deviate x to an exponential 
deviate y=- (1/0) InCx) where |3 is the reciprocal of the mean of y.



requires

a(x1>x2 )
aTŜ 7 V i / 2 k  exp(-y^/2)l W l / 2 n  expt-y^^)! (5.3.7)

It may be shown that a possible solution of equation (5.3.7) is 

given by

1/2y^= [-2 ln(x^)] c o s (2ttx2) (5.3.8a)
1/2and y2= [-2 ln(x^)] sin(27rx2 ) (5.3.8b)

Hence, the required transformation is obtained. One further way

to simplify the computation of expression (5.3.8) is to choose the

random point v , v^ inside the unit circle around the origin

instead of the uniform deviates x^, x2 in the unit square. Then 
2 2R=v ^+v 2 is a uniform deviate which can be used for x^, while the

angle can be taken as 27ix2 . N o w , the sine and cosine terms in

expression (5.3.8) can be written as v /VtI and v ^/YR, avoiding the

trigonometric function calls in a program and hence improve the

speed of computation. Once the standardised normal deviates are
2available, the required normal deviates N(/i,cr ) may be obtained by

a simple transformation crN(0,l)+/i.
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5.4 A Brief Description of the Experimental Systems

The experimental systems include the development of both 

hardware and software for signal generation and data collection. 

Two such systems were built, one for the use on neuromuscular 

experiments in the Department of Physiology and the other for the 

simulation experiments performed in the Department of Electronics 

and Electrical Engineering.

The signal generation/data collection system developed for 

experiments involving neuromuscular elements incorporates the 

Cambridge Electronics Design (C.E.D) 1401 intelligent peripheral 

that generates and receives analog, digital and timing signals 

using its own processor, clocks and memory under the control of a 

host computer. A two megabytes mass RAM has been installed in the 

C.E.D. device to improve its ability for mass data storage. At 

present, the host computer is a Tandon microcomputer (IBM AT 

compatible).

The program DIGAD, which combines the power of the Tandon 

microcomputer and the C.E.D. unit, provides for concurrent 

generation of point process stimuli and collection of point 

processes and continuous signals. In some applications, a noise 

generator was used to generate the stimuli, and a record of the 

noise signals and the resulting point process signal was digitised 

via the CED interface. (See Figure 5.4.1) The data, which is 

stored in ASCII format, is then readily examined and analysed.
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Figure 5.4.1. Schematic diagram illustrating the experimental setup involved 
in the generation of stimuli and collection of spike trains during an 
neuro-physiological experiment.
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EAI 2000
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EAI 2000

computer
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Figure 5.4.2. Schematic diagram illustrating the experimental setup involved 
in the generation of stimuli and collection of model response data during an 
simulation experiment.



The main features of DIGAD are:

a. Collection of eight channels of point process data with 

accuracy within one millisecond.

b. Collection of an analog signal at a sampling rate of 1 kHz. 

The resolution of the analog to digital (A/D) conversion is 

10/212=2.44 mV.

c. Generation of Poisson and Gaussian point processes through 

eight independent channels. Generation of spike trains of 

other structures is also possible provided the required data 

file is available.

d. The maximum duration of signal collection/generation (ie. 

the memory available to capture the data) is approximately 

255 seconds with a, b and c above all operating 

simultaneously.

e. An user-friendly environment is used to simplify the 

operation of DIGAD so that the user can concentrate on the 

experiment instead of the operation of DIGAD.

The experimental system used for the simulation experiments 

essentially does the same job as the Tandon microcomputer and the 

C.E.D. device in the case of the neurophysiological experiments. 

It consists of three parts: (1) An IBM AT (2) An EAI 2000 analog

computer and (3) An interface between the EAI 2000 and the IBM AT. 

The block diagram is shown in Figure (5.4.2). However, the amount 

of RAM inside the IBM AT is 512 kilobytes which limits the maximum 

duration of a simulation experiment to 60 seconds.

107



5. 5 Two efficient Algorithms
(T)5.5.1 An Algorithm for Computing (u.)

Let N and M be two spike trains realised in (0,T). Suppose

r., j=l ,2, . . . ,N(T), and s, , k=l, 2, . . ,M(T) are the observed spike J k
times of processes N and M respectively. The algorithm for theo ̂  v.wj)
fast computation of the variate (u^) (jpee Section 4.2.2) with

bin width b is explained as follows:-

1. Store the ordered times r^ and s^ in two separate arrays.

2. Initialise an integer array JT(LAGMIN:LAGMAX) (note: FORTRAN

format used) where LAGMIN is the minimum lag value and

LAGMAX is the maximum lag value, eg. JT(-100:100).

3. Initialise two pointers a and b to 1: a for process N and b

for process M .

4. For the b^*1 spike of process N, increment a by 1 until u^=

integer part of (r -s^J/b lies inside the interval

(LAGMIN,LAGMAX). Retain the pointer a.

5. Set JT(u.) = JT(u.)+l. Repeat steps (4) and (5) untilJ J
u.>LAGMAX.J

6. Increment b by 1 and go back to step (4) until b>M(T).

The algorithm described above may be extended to compute

counting variates of order-3 or above. To compute the third-order
(T)counting variate, for example, set u^ and compute ^223^Uj ,Vk^ ^°r

different values of v using the above algorithm. Then set u. tok J
another value and repeat the procedure.
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5.5.2 Fast Fourier Transform of a Single Real Function

The fast Fourier transform (FFT) of a single real function 

is of fundamental importance since it forms the basis in 

estimating the frequency domain parameters discussed in section 

(4.3). Suppose a conventional radix-2 FFT subroutine F0UR1 is 

available for calculating the fast Fourier transform for a single 

complex function. To avoid redundancy for computing a single real 

function, the following method is employed.

Suppose the real function is represented by f ̂ , j=0,..,N-l, 

where N is a integer power of 2. First the data set is spilt into 

two halves: the even-numbered f^ as one data set, and the

odd-numbered f^ as the other. Then we form a complex function

h. = f0 . + if0 .Al j=0,..,N/2-l (5.5.1)J 2j 2j+l

where i is the complex number = V(-l). We submit this to F0UR1
0 . 0and it will return a complex array H =F +iF , n=0,..,N/2-l withn n n

N/2-1
Fe = Y f01 exp[-2rrikn/(N/2) ]n L  2k

k=0

N/2-1
F° = 7 f0. . exp[-27rikn/(N/2) ] (5.5.2)n u 2k +1

k=0

Now if F is the FFT of the original data f., it can be shown that n J
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F = Fe + F° exp(-27rin/N) n=0,..,N/2-1 (5.5.3)n n n ^

Hence expressed directly in terms of the transform

F = (1/2) (H +Hm/0 ) - (1/2) (H -Hm/_ )exp(-27rin/N)n n N/2-n n N/2-n
(5.5.4)

where n=0,..,N/2-1. In addition, the following points should be

noted. Since F„t = F , there is no point in saving the entire N-n n
spectrum. The positive frequency half is sufficient and can be 

stored in the same array as the original data. The final point to 

note is that in order to actually get the entire F^ in the 

original array space, it is convenient to return as

imaginary part of Fq since the values F^ and F^/2 are rea-̂ anc* 

independent.
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Chapter 6 Results and Discussion

In this chapter, the techniques discussed in the previous 

chapters are applied to various data sets obtained during 

neuromuscular experiments and simulation studies. The procedures 

to reduce bias and uncertainties concerning the quantities 

described in Chapter 4 have been taken into account and the 

objective of this chapter is to concentrate on the interpretation 

of the results obtained.

The chapter begins with the studies on univariate pointA
processes generated by a neurone model described in Chapter 5. 

These point processes are characteristic of some physiological 

systems in the sense that they are generated under the assumptions 

which are relevant to the experimental data obtained. Both time 

and frequency domain descriptions are discussed. The objective is 

to provide some simple intuitive examples of univariate point 

processes which may help to facilitate understanding and 

identifying different patterns of spike trains. Some preliminary 

works in this aspect have been done by ten Hoopen (1974) and the 

work discussed in this thesis may be considered as an extension to 

it.

Following the consideration of univariate point processes 

attention is directed to bivariate point processes and 

multi-variate point processes. In the bivariate case, simulation 

studies are used to demonstrate the analysis of a single-input,

single-output neurone model under the influence of a noise signal.
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The effects of different sizes of excitatory post-syn«jH?c. potentials 

CEPSpXs) and inhibitory post-synoptic potentials are considered. The 

findings of such analysis form an important basis in the later 

discussions. Single-input, single-output model studies similar to 

this but applied to the modelling of muscle spindle can be founded 

in Halliday (1986).

The shape and position of the primary peak in the 

cross-correlation histogram computed from the discharges of a pair 

of neurones has been used as the basis for inferring the presence 

of shared or common inputs to these neurones (eg. Datta and 

Stephens, 1990; Ellaway and Murthy, 1981a; Kirkwood, Sears, Tuck 

and Westgaard, 1982; Michalski, Gerstein, Czarkowska and Tarnecki, 

1983). The original work of Perkel, Gerstein and Moore (1967a,b) 

and Moore, Segundo, Perkel and Levitan (1970), based largely on 

computer simulations of neuronal interactions, described the 

features that shared inputs to pairs of neurones may produce in 

the cross-correlation histogram estimated from the discharges of 

these neurones. Other workers have investigated the interactions 

between neurones within neuromuscular systems of different kinds. 

The primary intention of these investigations was to detect the 

presence of common or correlated inputs to pairs of neurones. The 

recent work of Cope, Fetz and Matsumura (1987) extended these 

studies by suggesting how the EPSP amplitude and time course would 

contribute to the size and shape of the primary peak in the 

cross-correlation histogram. It was first found out, based on a 

single-input, two-output neurone model, that the coherence 

function may reveal the frequency content of the common input
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(Rosenberg, et al. 1991; to be published). Ferrell, Rosenberg, 

Baxendale, Halliday and Wood (1990) used the coherence and partial 

coherence functions to demonstrate that coupling between pairs of 

gastrocnemius motor units occurred at the frequency of the 

mechanical activation of small groups of joint afferent neurones, 

and that the joint afferent induced coupling acted independently 

of other sources of coupling.

Following the study on a single neurone, a neuronal network 

model in which a pair of neurones is influenced by a common input 

is studied both analytically and based on simulation. The focus 

of the analysis is placed on the inferred properties of the common 

input based on the observed discharges of the two neurones. The 

analysis is then extended to the situation where a pair of 

neurones receives inputs from two common inputs; one of the common 

inputs may be a continuous signal. Based on simulation studies, 

the techniques of partial coherence of order-1 and order-2 are 

applied to the extended model. The significance of the results 

with relevance to physiological systems is discussed. This

concludes the results obtained which are related to the linear 

point process theory.

Finally, the extension of the linear system analysis in

which the input point process exerts a non-linear influence on the

output process is considered. The analysis is based on a neurone 

model which incorporates the features of after-hyperpolarisation, 

or post-spike depression (see Chapter 2). The analysis leads to 

the possibility of inferring the time course of the
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after-hyperpolarisation based on the third-order cumulant density 

estimate derived from the input and output spike trains.
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6.1 Examples of Univariate Point Processes

6.1.1 Poisson Point Processes

The theoretical basis of the definition and properties of a 

Poisson point process has been discussed in Chapter 4. In this 

section, two examples of Poisson point processes are considered. 

They are generated using the algorithms described in Chapter 5. 

Three techniques, namely interval histogram, auto-intensity and 

auto-spectrum, are applied to the examples to illustrate some 

aspects of a Poisson point process. The interval histogram is 

commonly used by neurophysiologists and is essentially an 

inter-spike interval histogram. For a renewal process (ie. a 

process in which the inter-event intervals are independently 

distributed, see Chapter 1), the interval histogram alone is 

adequate to define a point process (Cox and Miller, 1965). ,The 

Poisson point is a class of renewal point processes, with 

exponential interval histogram. For a renewal point process M 

with interval probability density function h(x), the auto-spectrum 

of the process can be expressed as

where h*(A) is the Laplace Transform of h(x) (Cox and Miller, 

1965). Hence for a renewal point process, any one of the three 

quantities is adequate to define the properties of the process. 

The interval histogram has the advantage that it is 

straight-forward to interpret and compute. However, it may

+1 (6.1.1)
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how-ren4wta.l pv&ejwst* wd tfe

present difficulties in being extended to describe properties ofA
multiple point processes or to the situation where one or more of 

the components are continuous. In the later sections, emphasis 

will be placed on the point process analysis techniques discussed 

in the earlier chapters.

Figure (6.1.1) illustrates the estimates for the interval 

histogram, the auto-intensity and the auto-spectrum of a simulated 

Poisson point process of mean rate 25.4 spikes/sec. and duration 

60 seconds. The interval histogram in Figure (6.1.1a) follows an 

exponential distribution as expected from expression (4.4.2a). 

The bin width used in the interval histogram is 4 msec. Note that 

the shorter the interval, the higher the number of occurrences. 

This may be explained by the fact that for a completely random 

process, the longer the time interval, the greater the chance for 

an event to have occurred. Note also that from the interval 

histogram, there is no accurate way of deducing other information 

concerning the process such as the mean rate. On the other hand, 

the mean rate of the process is readily obtained from the 

auto-intensity in Figure (6.1.1b). The auto-intensity fluctuates 

about the value 0.16=7(0.0254)=V(P,.) and stays within the 95% 

confidence interval given by expression (4.4.7b). It indicates 

that the probability for an spike to occur given another spike has 

occurred earlier is constant, ie. the two spikes are independent. 

The auto-spectrum is shown in Figure (6.1.1c). Again it has no 

structure and fluctuates about the value -2.4=log^Q(P^/27i). All 

values stay within the 95% confidence interval given by expression 

(4.4.10) indicating that the simulated point process is
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Figure 6.1.1. Estimates of (a) Inter-spike interval histogram, (b) square 
root of the auto-intensity and (c) logarithm to the base 10 of the 
auto—spectrum of a simulated Poisson point process with a mean interval of 
approximate 40 msec. The solid lines in (b) and (c) represent the bounds for 
the 95% confidence intervals for the Poisson process. The dashed line in (b) 
is the value of the auto-intensity for lag u large; whereas in (c) it is the 
value of auto-spectrum for A large.



essentially Poisson in nature. It is important to note that the 

auto—spectrum of a Poisson point process resembles the auto—power 

spectrum of a Gaussian white noise in the case of ordinary time 

series.

The second example is illustrated in Figure (6.1.2). In 

this case, the mean rate of the simulated Poisson point process is 

50 spikes/sec. The interval histogram in Figure (6.1.2a) again 

follows an exponential distribution and indicates that most of the 

intervals occur below 100 msec. One implication is that for a 

high mean rate, the simulation of a Poisson point process using a 

large minimum time interval (such as 1 msec. ) may not be adequate. 

In Figure (6.1.2b), the peak at u=l msec, probably reflects this. 

For the rest of u, the auto-intensity behaves as a Poisson point 

process. The auto-spectrum illustrated in Figure (6.1.2c) is 

typical of a Poisson point process.

6.1.2 Point Processes with Gaussian Interval Histograms

It is quite common to encounter spike trains experimentally 

that exhibit a Gaussian interval histogram (Sampath and 

Srinivasan, 1977). This implies that the spike train is basically 

periodic in nature but with additional noise components. If t ^, 

k=l,..,M(T), are the inter-spike intervals of such a point 

process, the intervals xk follow a normal distribution with mean p

and variance <r2 . Figures (6.1.3-5) show the effects of increasing
2 .the variance cr of a simulated point process with Gaussian

interval histogram; all of which have the same mean interval 33
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msec. The details of the generation of Gaussian deviates is given

in Chapter 5. From Figure (6.1.3), all the interval histograms
2have the same peak at 33 msec. As cr increases, the spread of the 

histograms increase accordingly. The auto-intensities are shown 

in Figure (6.1.4). All the three auto-intensities fluctuate about 

the same mean value with the same confidence interval. However, 

the periodicity, as is clear from Figure (6.1.4a), gradually 

disappears as the variance increases as is illustrated in Figure 

(6.1.4c). The first peak and the distance between successive 

peaks in Figures (6.1.4a-b) all suggest that the mean intervals of 

the process is 33 msec. However, in Figure (6.1.4c), the variance 

is so large that no peak or periodicity lies outside the 

confidence interval. It is also clear that the auto-intensity in 

Figure (6.1.4c) settles much earlier within the confidence 

interval than that in Figure (6.1.4b) which in turn settles much 

earlier than that in Figure (6.1.4a). This implies that the span 

of dependence of two spike decreases as the variance increases. 

Figure (6.1.5) shows the auto-spectra of the three point 

processes. The frequencies after which the processes behave as 

Poisson point processes are about 70Hz, 50 Hz and 30 Hz

respectively, indicating a decreasing span of dependence in the 

frequency domain as the variance increases. In Figure (6.1.5a), 

the peaks occur at multiples of the fundamental frequency (30 Hz) 

until it settles down to the Poisson confidence interval, 

indicating strong periodicity. In Figure (6.1.5b), only one peak 

is clear and in Figure (6.1.5c), no peak is shown at all.
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6.1.3 Modulated Point Processes

The examples considered in section (6.1.1-2) are renewal 

processes in which the events are independently distributed. In 

practice, it often happens that the occurrence of an event depends 

on the previous one or is a function of the events that happened 

earlier. The modulated point process is an example. One type of 

modulated point process that will be considered is generated by 

the system illustrated in Figure (6.1.6). The modulating effects 

of the sine wave generator is such that it increases the firing 

rate of the pulse generator when the sine wave is positive and 

decreases the firing rate of the pulse generator when the sine 

wave is negative. Two examples of modulated point processes are 

considered below: one with the sine wave frequency higher than the 

mean firing rate and the other with the sine wave frequency lower 

than the mean firing rate.

Figure (6.1.7) shows the interval histogram, auto-intensity

and the auto-spectrum of a modulated point process with P^=0.02875

spikes/msec, and frequency of modulating sine wave equal to 52 Hz.

In Figure (6.1.7a), the interval histogram shows a multi-mode

structure with peaks at 23, 35 and 55 msec. The dominant peak at

35 msec, indicates the mean interval might be 1/PW . However, itM

is difficult to relate the other two peaks to the features of the 

process. In Figure (6.1.7b), the auto-intensity shows strong 

periodicity at intervals of approximately 20 msec, which can be 

related to the frequency of the modulating sine wave (=52 Hz). 

This information shows up even more vividly in the auto-spectrum
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in Figure (6.1.7c) where a sharp peak at about 52 Hz is seen.

Figure (6.1.8) shows another example with P^=0.041A and

frequency of modulating sine wave equal to 10 Hz. In Figure

(6.1.8a), a multi-mode structure with a dominant peak at about 15

msec, is evident in the interval histogram. In this case, even

the dominant peak does not correspond to the mean interval which

should be 1/P. =24 msec. From the auto-intensity estimate M
illustrated in Figure (6.1.8b), the sharp peak at about 24 msec, 

reflects the mean rate of the process, but the modulated frequency 

is not at all clear. From the auto-spectrum in Figure (6. 1. 8c), 

the frequency of the modulating sine wave again appears distinctly 

as a sharp peak at about 10 Hz. It is important to note that the 

broad peak at 60 Hz does not necessarily represent the mean rate 

of the process as it does in the previous examples (see Figure 

6.1.5 and 6.1.7c).

From the above examples, it is clear that for a non-renewal 

process like the modulated point processes considered above, the 

interval histogram is not as useful as the auto-intensity and 

auto-spectrum. In fact the interval histogram does not define the 

point process completely if the point process is not renewal in 

nature. In the situation where one wants to detect a single 

frequency component of a point process, the most sensitive measure 

is probably using the auto-spectrum as illustrated by the two 

examples considered above. A consideration of such examples also 

eliminates the tendency to interpret the first broad peak in the 

auto-spectrum as the mean fire rate of the process. In fact, the
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asymptotic value of the auto-spectrum which is equal to

l o g ^ ( P w/27r), should be used to estimate the mean rate.1U M

6.1.4 Point Processes with Bursting Characteristics

The aim of this section is to simulate the kind of 

repetitive firing which is found in the ipsilateral Renshaw 

interneurones. The spike train is characterised by high frequency

repetitive firing followed by a period where no firing occurs.

The experimental system employed to simulate the process is 

illustrated in Figure (6.1.9). The noise bandwidth and the 

threshold of the encoder are adjusted to obtain bursting spike 

trains of different mean rates. Two examples are considered 

below.

Figure (6.1.10) shows a simulated bursting spike train with 

P^=0.00852 spikes/msec. The bursting is evident in Figure 

(6.1.10a). An examination of the auto-intensity in Figure 

(6.1.10b) shows a distinct peak at approximately 14 msec. This 

corresponds to a frequency of 71 Hz which might relate to the 

frequency of firing within a burst. The rest of the

auto-intensity values lie mainly within the confidence limits. 

The auto-spectrum illustrated in Figure (6.1.10c) shows two peaks 

at about 5 Hz and 75 Hz, and a trough centered at 25 Hz. The peak 

at 5 Hz might relate to the frequency of firing between bursts 

whereas the peak at 75 Hz might relate to the frequency of firing 

within a burst. The trough at 25 Hz probably refers to the

frequency components that is lacking since the spikes either fire
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at high frequencies (about 75 Hz) or at low frequencies (about 5 

Hz).

Figure (6.1.11) shows another example of a simulated

bursting spike train with P^=0.04382 spikes/msec. Similar

interpretations as above can be made.

In the two examples above, the auto-spectrum is very useful 

in deducing information concerning the frequency content of the 

spike train: A peak above the upper confidence level indicating a 

significant extra frequency component, whereas a trough indicating 

a significant less frequency component, both relative to a Poisson 

process of the same mean rate.

The examples of spectra of point processes, as illustrated 

in Figures (6.1.1-6), are useful in emphasising features which 

differ from spectra associated with ordinary time series. The 

spectrum of a Poisson process, for example, was seen to be a 

constant proportional to the mean rate of the process (Figure 

6.1.1-2). In general, the spectrum of point process, satisfying

the assumption that events widely separated in time are

independent, approach a constant value proportional to the mean 

rate of the process. One may conclude, therefore, that the 

spectrum of a point process consists of two components : one

represented by a Poisson process of the same mean rate, and the 

other indicating departures from a Poisson process of the same 

mean rate (Lewis, 1972b; Rosenberg et al., 1982). The latter 

would appear as components of the spectrum lying outside the
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confidence interval in the estimated spectrum.
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6.2 Simulation of a Single-Input. Single-Output Neurone Model

The neurone model described in section (5.2) is used to

generate the output spike train under the influence of a Poisson

point process. Two cases are considered: (1) To simulate the

effect of different excitatory post-synaptic potential (EPSP)

sizes and (2) To simulate the effects of inhibitory post-synaptic 
(IRSP)

potential on the relation of the input and output spike trains. 

The objective of the investigation is to identify the underlying 

physiological mechanisms that occur within a neurone from the 

recording of the input and output spike trains. This provides a 

non-invasive method of analysing the neurophysiological system 

avoiding some complicated methods like of intra-cellular 

recording. In fact, in the later sections, it has been

demonstrated that some clear patterns of firing can be identified

in the la and motor unit interactions based on the time and 

frequency domain analysis techniques (see Chapter 2 for some 

examples of this).

6.2.1 The Simulation of an EPSP Neurone Model

The model neurone is illustrated in Figure (6.2.1). The

size and duration of the impulse response from the second-order 

filter is determined by the time constant and the gain of the 

filter. This is adjusted to simulate EPSP’s of two different

magnitudes but the same duration; the magnitude in the first case 

being half of that of the second case. The input spike train in 

both cases is a Poisson point process of mean rate 24.5 spike/sec.
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Figure 6.2.1. (a) Schematic diagram representing a single-input,
single-output EPSP neurone model along with (b) the conventional 
physiological symbol that represents the neurone.



and the input and output spike trains were recorded for a period 

of 60 seconds. The common and different features of the two cases 

are discussed below.

Figure (6.2.2) shows the cross-intensities obtained from the 

two data sets. In both cases, the peaks occur at about 17 msec. 

These peaks indicate the probability of an output spike to occur 

given an input spike has occurred 17 msec. earlier is 

significantly higher than that by chance alone. Hence, the peak 

may be considered as the mean time delay or latency of the neurone 

model. The magnitude of the peak in the first case (Figure 

6.2.2a) is approximately half of that in the second case (Figure 

6.2.2b), indicating an increase in the magnitude of EPSP would 

increase the probability of an output spike occurring at the mean 

latency. This be u.ndfiJ'Stoooi since one can think of an increase

in the signal magnitude would increase the signal to noise ratio 

and hence increasing the degree of association. It should also be 

noted that the patterns of association, as indicated in the two 

cross-intensities, occur to the right hand side of the time origin 

as predicted by causality.

Information concerning the strength of association and time 

delay may also be deduced from the frequency domain measures. In 

Figure (6.2.3), the respective coherence estimates obtained from 

the two data sets indicate that the size of the EPSP’s has a 

direct effect on the magnitude and range of associations in the 

frequency domain. In Figure (6.2.3a), the coherence estimate 

fluctuates about 0.2 and vanishes for frequencies greater than 60
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Hz. On the other hand, the coherence estimate in Figure (6.2.3b) 

fluctuates about 0.3 and vanish at a higher frequency. A 

quantitative comparison of the two coherences may be performed by 

the difference of coherence test described in section (4.3.2). 

The result is illustrated in Figure (6.2.3c). The first coherence 

is seen to be significantly lower than the second one at the low 

frequencies especially at about 25 Hz and 35 Hz.

Another point to note is that the association in the 

frequency domain usually occurs in the low frequency range. This 

phenomenon has been investigated by Halliday (1986) in the case of 

a muscle spindle model and was shown that the time constant in the 

encoder is responsible for this. Since the same encoder is used 

in this neurone model, the same effect is expected.

The information concerning the delay may be deduced from the 

phase spectra illustrated in Figure (6.2.4). The two phase 

spectra are essentially the same in the frequency range up to 35 

Hz; the linear relationship represents a slope of approximately 

-3/30=-0.1 rad/Hz indicating a time delay of 0.1/2tt= 16 msec. This 

agrees with the findings from the cross-intensity functions (see 

Figure 6.2.2). However, beyond 40 Hz, the two phase spectra 

behave quite differently and the first phase spectrum has more 

noise components. This is explained by the fact that the variance 

of the phase spectrum is given by (Amjad, 1989)

lim Var{0(A)} = (1/2K)[|R(A)|”2- ll (6.2.1)
T— >oo L J
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portions of the two graphs indicate that both systems are dominated by 
approximately the same amount of delay.



where 0(.) is the phase estimate, T is the record length, K is the 

number of disjoint sections used in the spectral estimates and 

|R(A) | is the coherency at frequency A. The implication of 

expression (6.2.1) is that for small coherence values, the 

variance of the phase estimate would be very large and hence 

interpretation is difficult.

Now, we examine the impulse responses obtained from the two

data sets. The impulse responses are estimated from the inverse

Fourier transform of the quantity f._. (A)/f.„.(X) based onMN MM
expressions (3.3.29b) and (3.3.30). They are illustrated in 

Figure (6.2.5). The two impulse responses are both characterised 

by a peak at the mean latency of about 17 msec. The magnitude of 

the peak in the first case (Figure 6.2.5a) is again approximately 

half of that of the second one (Figure 6.2.5b), as in the case of 

the cross-intensities of the two data sets (Figure 6.2.2). In 

fact, a close examination of the impulse responses would reveal 

that they are the scaled version of the respective cross-intensity 

functions. This can be proved by the arguments that follow. 

First recall expression (3.3.28), the relation between the impulse 

response s^(u) and the cumulant density functions anc*

qM N (u) is Siven by

W u) = Sl (v)qMM(u-V )dv (6.2.2)

If M is a Poisson point process, using expression (4.4.8), we have
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u=0

otherwise
(6 .2 .3 )

Substituting expression (6.2.3) into expression (6.2.2), one 

immediately arrives at the result

Rewriting expression (6.2.4) in terms of the cross-intensity 

function, one has

Expression (6.2.5) concludes the argument that for a Poisson point 

process input, the impulse response is essentially a shifted 

version of the cross-intensity function. We will discuss the 

significance of this as follows.

First, the fact that the linear model upon which the above 

argument is based on works so well indicates that the EPSP neurone 

model, although incorporating a non-linear encoder, is essentially 

dominated by linear characteristics. Another point to note is 

that the examples of the neurone model discussed in this section 

are dominated by a time delay. In fact, this is true for most 

point process systems that have been studied (see Amjad, 1989; 

Halliday, 1986; Rigas, 1983). It means that under the influence 

of a Poisson point process, the cross-intensity would be dominated 

by a single peak. Now from the arguments above, the impulse 

response would also be dominated by a single peak and the shape of

(6.2.4)

s l (u )  = " W u ) '  PN
(6.2.5)
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this peak may be considered to be close to a delta function. 

Since the impulse response and the transfer function form a 

Fourier transform pair, one would expect the transfer function to 

be approximately uniform.

Figure (6.2.6) shows the transfer functions estimated from 

the two data sets based on expression (3.3.29). The transfer 

function estimate in Figure (6.2.6a) reveals a certain degree of 

uniformity up to a frequency of 60 Hz. After that, the variance 

is seen to increase as the frequency increases. For the transfer 

function estimate in Figure (6.2.6b), it is seen to be uniform at 

a level of about -0.5 until reaching 60 Hz. The variance of the 

estimates is less than that of the first graph. The behaviour of 

the variance can be explained in a similar manner as in the case 

of phase spectra. A similar expression for the variance of the 

transfer function exists (Amjad, 1989), ie.

where S(.) is the transfer function estimate, K is the number of 

disjoint sections used in the spectral estimates and |R(A)| is the

6.2.2 The Simulation of an IPSP Neurone Model

The objective of this section is to investigate the 

situation where each input spike produces an IPSP which has a 

inhibitory effect on the emission of the output spikes. The model

[1/2K] (6.2.6)

coherency at frequency X.
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employed to simulate the neurone is illustrated in Figure (6.2.7). 

The only difference between the IPSP and the EPSP neurone model is 

the sign of the impulse response of the second-order filter that 

goes into the encoder. The IPSP neurone model is stimulated using 

Poisson point processes of two different mean rates, 30 

spikes/sec. in the first case and 50 spikes/sec. in the second 

case. The input and output spike trains are recorded for a 

duration of 60 seconds.

Figure (6.2.8) shows the cross-intensities of the two data 

sets. Both graphs are dominated by a steep trough that touches 

the x-axis at approximately 16 msec. This implies that the 

emission of an output spike 16 msec, after an input spike is 

completely inhibited. The duration of the inhibition effect in 

the first case is seen to be about 20 msec, whereas in the second 

case it is about 30 msec. This is explained by the increase of 

the frequency of the input spike train. In addition, the mean 

firing rate of the output spike in the first case is seen to be 

higher than that of the second case, indicating the increase of 

inhibition effect.

The impulse response obtained from the data sets in the two 

cases are shown in Figure (6.2.9). The impulse response is 

estimated based on expressions (3.3.29b) and (3.3.30). Both 

impulse responses show a similar shape characterised by a trough 

with minima at about 17 msec. However, the magnitude of the 

trough in the first case is greater than that of the second. One 

interesting point to note is that the shape of the troughs, when
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Figure 6.2.9. A comparison of two impulse responses generated from a ,IPSP 
model neurone with Poisson inputs of different firing rates. In (a) the 
firing rates of the input and output spike train are 29.4 and 35.27 
spikes/sec. respectively, whereas in (b) are 50 and 23.73 spikes/sec. 
respectively. They are estimated from the inverse Fourier transform of the 
respective transfer function estimates based on the spectral estimates.



compared with the respective cross-intensities, shows appreciable 

differences: the trough in the impulse response is smoother than 

that of the cross-intensity.* The factor that accounts for this is 

probably due to the non-linear nature of the model. The proof 

given in expressions (6.2.2-5) are based on the assumption of a 

linear model. The IPSP neurone model is probably "less linear" 

than that of the EPSP neurone model and hence the impulse response 

of the system is not necessarily the scaled version of the 

cross-intensity even if the input in this case is Poisson.

The implication of the above example is that although one 

may estimate the impulse response function using the short-cut 

method based on the cross-intensity when the input is Poisson, 

limitations do exist when the system concerned possesses 

non-linear characteristics.

The transfer function estimates for the two data sets are 

given in Figure (6.2.10). The calculated estimates are based on 

expression (3.3.29). From the Figures, both transfer function 

estimates show the properties of a low pass filter. This implies 

that the the high frequency components of the input process are 

filtered out. This may be seen in the coherence estimates 

illustrated in Figure (6.2.11) where both coherence estimates show 

a high degree of association in the low frequency range up to 

about 30 Hz. In addition, the increase in input firing rate is 

seen to increase the magnitude of the coherence at a few distinct 

frequencies as is evident in Figure (6.2.11c).
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Figure 6.2.10. Transfer function estimates corresponding to the impulse 
response estimates illustrated Figure 6.2.9. The transfer function and the 
impulse response form a Fourier transform pair.
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Figure 6.2.11. A frequency domain representation of the cross-intensities in 
Figure 6.2.8. where (a) is the coherence obtained with a Poisson input firing 
at 29.4 spikes/sec. and (b) is the coherence obtained with a Poisson input 
firing at 50 spikes/sec. The difference of the inverse hyperbolic-tangent
transform of the moduli of these two coherences is shown in (c). The solid 
horizontal lines represent the critical values at approximate 95% confidence 
level of a two-tailed test of the hypothesis that the two moduli are equal.



Finally, Figure (6.2.12) shows the phase spectra obtained 

from the two data sets. Both phase spectra are characterised by a 

linear portion starting at 0=rr. The shape of the phase spectra 

suggests that it is analogous to the situation in ordinary time 

series where the input-output relationship is dominated by a delay 

and a negative regression coefficient (Brillinger, 1975d). Before 

we exploit the underlying reason in the point process case, it 

would be appropriate to explain the situation in the case of 

ordinary time series.

Suppose x(t) and y(t) are two ordinary time series given by

y(t) = a x(t-x) (6.2.7)

where a is the regression coefficient and t  is the time delay 

between x and y, ie. y is just a delayed and scaled version of x. 

We see that the transfer function between x and y is given by

|S(A) | = |oc| (6.2.8)

and the phase spectrum is given by

.-At mod 2n if a>0
0(A) = | (6.2.9)

7T_At mod 2n if a<0

Hence in the case when a<0 the phase spectrum would be a straight 

line starting at Q=n.

In the point process case, the inhibition effect of each
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Figure 6.2.12. The phase spectra obtained from the IPSP neurone model with 
Poisson input of* different firing rates. In (a) the input firing rate is 
29.4 whereas in (b) is 50 spikes/sec. The phase spectra characteristically 
begin at 0=tt radians in contrast with those obtained in a EPSP model 
illustrated in Figure 6.2.4.



input spike train would cause the cross-intensity to be dominated 

by a dip. The impulse response, which is the look-alike of the 

cross-intensity, would also be dominated by a dip. One can think 

of the dip as a peak inverted. The negative sign introduces an 

extra n radians phase change to the Fourier transform of the 

impulse response function. Hence one would expect the phase 

spectrum to start at n instead of 0 in an IPSP neurone model.
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6.3 Analysis and Simulation of Neuronal Networks in which a Pair 

of Neurones Receive one or Several Common Inputs

The analysis of the neuronal networks discussed in the 

following section are based on the use of a linear model discussed 

in sections (3.3-4). In the simplest case in which the system 

involves an input point process M and an output point .process N, 

the linear model implies the relationship (Brillinger, 1983)

d^T ) (A) * S(A)d^T)(A)+d^T ) (A) (6.3.1)

(T) (T)where S(.) is the transfer function, and dvt (.), dw (.) and 
(T)d (.) are the finite Fourier transform of the process N, M and 
c a

the zero mean stationary error process N^ respectively. Note that
(T) (T)the two terms S(A)dw (A) and d (A) in expression (6.3.1) are
M £

independent. Expression (6.3.1) is used to provide a basis for 

the analysis of the behaviour of paired neurones with single or 

multiple inputs. In this section, a common-input, two-output 

neuronal network is considered. Then the analysis is extended to 

a two-input, two-output neuronal network.

6.3.1 Paired Neurones with a Common Point Process Input

The schematic diagram of the neuronal network is illustrated 

in Figure (6.3.1) where the common point process input to the two 

neurones is denoted by N^ and the two outputs are denoted by N^ 

and N,_. Processes N^ and N^ represent independent inputs to the 

two neurones respectively. The common input, N^ is assumed to be
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Figure 6.3.1. Diagrammatic representation of a neuronal network in which two 
neurones and share the common input N^. Process is a second input
to N^, and is independent of the common input N^, and of N^. is a common
second input to and is also independent of N^.



independent of processes and N^, which, in turn, are

independent of each other. Applying expression (6.3.1), the 
-S+!4tJts

finite Fourier^ transform of may be written as

d<T ) (A) = S14(A)djT ) (A)+S24(A)d^T ) ( A ) + d ^ ( A ) + d ^ 4 (A) (6.3.2)

where the subscripts in each term indicate particular processes, 
(T)S24(A) and de24(A), ^or examPle > denote the transfer function 

relating N2 and N4> and the finite Fourier transform of the error 

process associated with this particular input/output relation.
-SheHjts

Similarly, for N , the finite Fourier Transform may be written as 
5 A

d5T)(X) = S 15a ) d r ) a ) + S 3 5 U ) d f ,(A)+dcl5(A)+dc35(A) (6'3 -3)

Using expressions (6.3.2-3), the magnitude of the cross-spectrum 

of the processes N4 and N^, based on the definition in expression 

(3.3.16), is given by

f45(A)I = lim (l/27rT)|E{d4T ) (A)d^T ) (A)}|
T— >00

= f n (A)|S14(A)| |S15(A) I (6.3.4)

Note that the contribution due to the independent input vanishes 

in expression (6.3.4).

U P SP)
In section (6.2), it was shown that the neuron model underA

investigation is dominated by a delay and hence the transfer 

function is essentially uniform over a certain frequency range.
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From this, one may rewrite expression (6.3.4) as

f45(A) | = * [constant] (6.3.5)

over a certain frequency range. Hence one would expect to see the 

features of the spectrum of the common input in the 

cross-spectrum. This idea may be extended to the coherence 

function, which is the normalised version of the cross-spectrum. 

Now, using the result in expressions (6.3.2-3) and (3.3.37), the 

coherence between processes N4 and N5 may be written as

2 lf4 5 (X)!2|R ( A ) p  = --- — -------- (6.3.6)
f44 (A)f55(A)

where

lf4S(X)|2 = f j i ^ l S ^ U M ^ S ^ U ) ! 2

f 4 4 (X )  =

f5StX) = fll(X)lS 1S(X ’|2+f33 (X)lS3 5 (X)|2+fc35(X)+fcl5(X)

In expression (6.3.4), if the contributions from the independent 

inputs and the noise process are large compared with that of the 

common input, and are constant over the range of frequencies of 

interest, then

|R45(A )|2 « * [constant] (6.3.7)

Hence, under the appropriate conditions, one might expect that the 

coherence between the discharges from a pair of neurones with a 

common input would represent a scaled version of the square of the

136



auto-spectrum of the common input.

Two examples illustrating the relation between the 

auto-spectrum of the common input to a pair of model neurones and 

the coherence between the discharge from these neurones are 

illustrated in Figures (6.3.2) and (6.3.4). In the first example, 

the common input is the same modulated spike train described in 

Figure (6.1.8). Figure (6.3.2a) shows the auto-spectrum of the 

common input in which the frequency components of the process are 

widely separated. Immediately below is the coherence estimated 

from simultaneously recorded samples of the discharge from the 

pair of model neurones (Figure 6.3.2b). The peaks in the 

coherence are seen to clearly reflect the two dominate frequency 

components in the spectrum of the common input, and therefore 

provide a reasonable representation of its frequency content.

When it is possible to record from a suspected input point 

process, the partial coherence between the output point processes 

taking into account a possible contribution from the suspected 

input may be estimated. The partial coherence will then provide 

an indication of whether the observed coupling between the pair of 

neurones is only a consequence of this input. In the case that 

the common input provides the only source of coupling between the 

two neurones, as is the case for this example, one would expect 

that the sample partial coherence (of order-1) would be close to 

zero, as is observed in in Figure (6.3.2c).

In contrast to the frequency domain representation of the
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Figure 6.3.2. The estimated (a) auto-spectrum of the common input, (b) The
ordinary coherence of the discharges of the two neurones and (c) the partial 
coherence between the discharges from the two neurones after taking into 
account the contribution from the common input. The firing rates of the 
common input and the outputs are 40.67, 33.57 and 21.85 spikes/sec.
respectively. The solid horizontal lines in (a) represents an approximate
95% confidence interval for the estimated auto-spectrum, and the dashed 
horizontal line the asymptotic value of the estimate. The horizontal dashed 
lines in (b) and (c) represent the upper level of the 95% confidence
intervals for the coherence under the assumption that the two processes are 
independent.



relation between the two output point processes, Figure (6.3.3) 

shows the analogous time domain representation of these relations. 

In Figure (6.3.3b), the cross-intensity, taken as the time domain 

analogue of the coherence, has a sharp peak at about u=10 msec, 

corresponding to the delays within the two model neurones. ThereA

is, however, no indication of any secondary features in the

cross-intensity that may unambiguously be related to the 

frequencies apparent in the auto-intensity estimates of the common 

input (Figure 6.3.3a). In addition, the significant peaks 

indicated in the coherence estimates (Figure 6.3.2b) appear as

non-significant fluctuations within the confidence interval in the 

cross-intensity estimate (Figure 6.3.3b).

In the second example the two periodic components of the

common input differ only by 20 Hz compared with a difference of 53 

Hz for the first example. The coherence between the output point 

processes is shown in register with and below the auto-spectrum of 

the common input (Figure 6.3.4). One of the two frequency 

components of the common input appears as the broad peak in the 

coherence centered at about 30 Hz and the other as the sharp peak 

at 52 Hz. The peak at 52 Hz corresponds to the sinusoidal

modulation frequency of the common input. The non-significant 

partial coherence (Figure 6.3.4c) indicates that the common input 

is the only source of coupling between the two neurones.

The time domain description for the second example is 

illustrated in Figure (6.3.5). The cross-intensity between and 

N,- has a peak displaced to the right of the origin by an amount

138



(a) Auto-intensity

[mn (u)] 1/2
0.3

0.25

0.2

0 .  15

0. 1

0 . 0 5

0 2£> SO it TOO^ f 2 5  TsS ft5 2 0 0 lag u

(b) Cross-intensity

[m45Cu)]

0.35

1/2 °*3 
0.25

0.2

0.15

0.1

0.05

■ J

,n

| f A
y

-__iiflfl-__.il L

1/

..-jfo ■ -itt'- ..I

A

1—

T  ■

2b tb lag u

Figure. 6.3.3. Estimated (a) auto-intensity of the common input and (b) 
cross-intensity between the two output spike trains. The solid horizontal 
lines represent approximate 95% confidence intervals, and the dashed 
horizontal lines the asymptotic value of the estimates.
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Figure 6.3.4. The estimated (a) auto-spectrum of the common input, (b) The
ordinary coherence of the discharges of the two neurones, and (c) the partial
coherence between the discharges from the two neurones after taking into 
account the contribution from the common input. The firing rates of the 
common input and the outputs are 28.75, 15.12 and 17.07 spikes/sec.
respectively. The solid horizontal lines in (a) represents an approximate
957. confidence interval for the estimated auto-spectrum, and the dashed 
horizontal line the asymptotic value of the estimate. The horizontal dashed 
lines in (b) and (c) represent the upper level of the 957. confidence
intervals for the coherence under the assumption that the two processes are 
independent.
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equal to the difference between the delays in the two model 

neurones (Figure 6.3.5b). Although the cross-intensity contains a 

suggestion of a periodic secondary characteristic to the right of 

the origin, it is well within the confidence interval and the 

frequency of this component does not reflect any of the frequency 

components of the common input as shown in its auto-spectrum 

(Figure 6.3.4a).

6.3.2 Paired Neurones with Two Common Point Process Inputs

The following example is based on the schematic neuronal

network shown in Figure (6.3.6). The independent common inputs to

the paired neurones are denoted by and N^. The output point

processes from the pair of neurones are denoted by N._ and N..b o
Processes and N^ represent independent inputs to the neurones

as indicated in Figure (6.3.6). By a direct extension of the

procedure set out in section (6.3.1), the coherence between

processes N_ and N- may be written as o o

,2 lf56(X,|2|R (A.) | =  — ------------------  (6.3.8)
f55(X)f6 6 CX)

where

f5 6 U )  * fll(A)SlS(A)S16CX)+f2 2 (X)S2 5 U , S 2 6 U )
f__(A) = Spectra of all inputs to N_ + Error spectra bb b
f -^(X) = Spectra of all inputs to N, + Error spectra

DO D

In this situation, under appropriate conditions, the coherence 

would have components proportional to the magnitude squared of the
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Figure 6.3.6. Diagrammatic representation of a neuronal network in which two
neurones N,. and N. share the common inputs N. and N0 . Processes N is an h o  I d  o
input to Ng that is independent of N^, and N^. is an input to that
is independent of N^, and N^.



sum of scaled versions of the two input auto-spectra.

Figure (6.3.7) gives examples of the auto-spectra of two

common input processes and and the coherence computed

between the two output processes and N ... The first input N.5 6 1
has a significant frequency component at about 10 Hz (Figure

6.3.7a) whereas the second input N has a broad peak in the

neighbourhood of 50 Hz (Figure 6.3.7b). These components are

clearly reflected in the coherence computed between the two

outputs N and as displayed in Figure (6.3.7c). b d

The time domain representation of these relations is shown 

in Figure (6.3.8). The sharp peak at about 0 msec, in the

cross-intensity between the output processes indicates that the 

two neurones discharge synchronously (Figure 6.3.8c). The spacing 

between the successive secondary peaks is about 20 msec, which 

corresponds to a frequency of 50 Hz, close to the frequency of 

firing of the second common input (see Figure 6.3.8b and 6.3.7b). 

There is, however, no indication of the frequency components 

contained in the first common input (see Figure 6.3.8a and 

6.3.7a). Consequently, the auto-intensities of the output

processes do not necessarily further the analysis of the 

properties of suspected common inputs, and in fact may be

misleading with respect to inferences concerning the frequency 

content of these inputs.

The analysis of influences on the relation between the 

output point processes may be furthered when it is possible to
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record from several suspected input processes in addition to the

two output processes. Several possible partial coherences may be

estimated in an attempt to assess the pattern of connectivity

between all the recorded processes. For the network of Figure

(6.3.6), there are two possible first-order partial coherences,

one taking into account the contribution to the coupling between

N and N made by N, and the other taking into account the b o  1
contribution from N to this coupling. These first-order partial

coherences are illustrated in Figure (6.3.9a-b). The partial

coherence in Figure (6.3.9a) takes into account the contribution

that process N. makes to the coherence between N._ and N . It1 5 6
shows, by the absence of a peak at 10 Hz ie. the dominant 

frequency component of N^, that the lower frequency component of 

the coherence between the two output processes in Figure (6.3.7c) 

is probably attributed entirely to process N^. The partial 

coherence in Figure (6.3.9b), which takes into account the 

contribution to coupling between the output processes attributable 

to N^, suggests that the peak at 50 Hz in the coherence of Figure 

(6.3.7c) may be a consequence of this process.

One may proceed further and estimate the second-order

partial coherence which assesses the extent to which the coupling

between the two outputs that is due to the presence .of the two

inputs and N^. The sample second-order partial coherence,

illustrated in Figure (6.3.9c), indicates that the coupling

between N_ and N,. is entirely due to the two common inputs, b o

From the above results, one may draw the immediate
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conclusions that (1) the linear model works well for the neuronal
A

network model and (2) the two common inputs are independent of 

each other. The second Condrfrevi is justified by the fact that 

for a linear model, the operation of the lst-order partial 

coherence of mathematically removing the contribution of a process 

is equivalent to physically removing this process only when the 

process is independent of other inputs (see Appendix 2 for proof). 

This is further supported by the cross-intensity and coherence 

between the two input processes and N^ as illustrated in Figure 

(6.3.10). The random fluctuation of the cross-intensity within 

the confidence limits (Figure 6.3.10a) and the zero coherence 

(Figure 6.3.10b) indicate that the two inputs are independent.

6.3.3 Paired Neurones with Common Spike Train and Continuous

Inputs

The usefulness of a Fourier approach for investigating 

patterns of connectivity is further demonstrated by the next 

example in which one of the two input processes to the two model 

neurones is a continuous signal, whereas the other is a point 

process (Figure 6.3.11). The continuous signal is generated by 

passing a pseudo-gaussian white noise through a band-pass filter 

consists of a high-pass filter and a low-pass Chebychev filter. 

The spectrum of the continuous input has a relative broad peak in 

the range of 20 to 60 Hz and a ripple in the upper stop band due 

to the Chebychev filter (Figure 6.3.12b), whereas the simulated 

spike train input has a strong periodic component at about 10 Hz 

(Figure 6.3.12a).
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The coherence between the two output spike trains N_ and N .5 6
shows a significant peak over the frequency range 10 to 40 Hz 

(Figure 6.3.12c) suggesting that the both input processes 

contribute to the coupling. As in the case with the two input 

spike trains in section (6.3.2), one may extend the analysis by 

recording from suspected input processes, and then investigate the 

pattern of connectivity between the recorded processes utilising 

partial coherences. The partial coherence of order-1, taking into 

account the contribution that the continuous process makes to the 

coupling between the two output processes, indicates a reduction 

of the peak in the range 25 to 40 Hz (Figure 6.3.13a). This

partial coherence shows not only that the continuous process 

contributed to the coupling of the output processes over the

frequency range 25 to 40 Hz, but also that another process also 

contributes to this coupling over a much narrower band of

frequencies centered at 10 Hz. Therefore it indicates the

presence of an independent source of coupling between the output 

processes. The partial coherence of order-1 between the output 

processes after taking into account the contribution of another 

suspected common input (Figure 6.3.13b) indicates the

disappearance of the peak centered at 10 Hz, implying that this 

source of coupling is largely due to N^. The partial coherence of 

order-2 (Figure 6.3.13c) taking into account the contribution to 

output coupling attributed to both the continuous and spike train 

inputs (Figure 6.3.13c) is not significantly different from what 

one would expect if the coupling between the output processes was 

due entirely to the two suspected input processes.
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Figure 6.3.13. Estimated (a) first-order partial coherence between and
taking into account the contribution to this coherence from common input X,
and (b) first-order partial coherence between and taking into account
the contribution from process , and (c) second-order partial coherence
between N,. and N, taking into account the contribution from both processes N 5 6 -L
and X. The dashed horizontal lines in (a,b,c) represent the upper level of 
the approximate 95°/. confidence intervals under the assumption that the two 
processes are independent.
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The above example illustrates how a Fourier approach to the 

analysis of the structure of a neuronal network naturally 

accommodates both spike trains and continuous signals. In 

addition, this particular approach can easily be extended to a 

consideration of the connectivity patterns between an arbitrary 

number of neurones. A possible generalisation is given in 

Appendix 3.

Although partial coherence has proved very useful in

investigating the contribution that a suspected input may make to

the coupling between the two neurones, it should be used with

caution. The derivation of partial coherence is based on the use

of a linear model in which it may be defined as the limiting

correlation between the finite Fourier transforms of two processesA
and after subtracting off from each the linear contribution 

that a third process M makes to these two processes. If, however, 

as demonstrated in Appendix 4, the common input exerts a 

non-linear effect on the coupling between two processes, the 

sample partial coherence between these processes may not be close 

to zero, although the single common input may be the only source 

of coupling between the two spike trains.
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6.4 Covariance Analysis of the Firing Behaviour of a

Neurone Model

It has been shown in the previous examples that the 

frequency domain analysis is particular powerful in investigating 

interactions between the frequency components of the processes, 

whereas the time domain analysis is useful in revealing the timing 

relations between them. In this section, the time domain analysis 

is extended to investigate aspects of the non-linear interactions 

that occur within a neurone model. Third-order cumulant densities 

OurQ, used to assess the statistical dependence between two spike 

trains. One feature in the cumulant describing the interactions 

between the discharge of a single la afferent and the response of 

a single motor unit was a period of depression following the motor 

unit spike. The time course of this depression followed that 

reported in the literature for after-hyperpolarisation (Burke and 

Rudomin, 1977). A simple neurone model incorporating

after-hyperpolarisation is used to investigate the idea that the 

third-order cumulant density derived from the la and motor unit 

spike trains provides an indirect measure of the time course of 

post-spike depression.

6.4.1 Third-Order Cumulant Density Function

The third-order cumulant density for three spike trains N^, 

Ng and Ng provides a measure of the joint statistical dependence 

between the three processes in time domain. By a direct extension 

of the second order case, the third-order cumulant density
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function may defined as

q l23(u,v)dtdudv = E ^ d l ^ m - P ^ t ]  [dN2 (t+u)-P2du] [dN3 (t+v)-P3dv]j

(6.4.1)

The timing convention follows that of Figure (6.4.1).

After some manipulations of expression (6.4.1), it may also 

be expressed as, (Brillinger, 1975b)

q l23^U,v) = P 123^U> V ^_P1P23^V_U^~P2P 13(‘V ')’"P3P 12^U ^+2P1P 2P3
(6.4.2)

The definitions and estimation procedures for the first and 

second-order densities are given in Chapter 3 and 4 respectively. 

The third-order product density F*i23 Û ,V  ̂ may interpreted as 

the joint probability density of the occurrence of the three 

spikes at specified time intervals and is defined as

P 123^U ’V ^dtdudV = E^tdN^(t)] [dN2(t+u)][dN3 (t+v)]| (6.4.3)

An estimate for the third-order product density can be constructed 

as (Brillinger, 1975b)

f T) ?
P 123(U,V) = J 123(u,v)/b T (6.4.4)

(T)where the third-order counting variate ',123 û ,v  ̂ is defined as



t+v

N,

N.

t+u

time

Figure 6.4.1. Diagrammatic representation of the convention used to 
represent the relative times of occurrence of spikes from three processes 

and in the third-order cumulant density function



(T)^123(u »v ) = #{ (j ,k, 1):u-b/2<s^-t^u+b/2 and v-b/2<r^-t^v+b/2}
(6.4.5)

where t. denotes the times of the N„ events, s, the N_ events and J 1 k 2
r^ the events respectively. This variate counts the number of 

occurrences of an event inside a bin of width b which is u time

units away from a event, and a event inside a bin of width b

which is v time units away from the same event.

Now the third-order cumulant density function may be 

estimated naturally by

q l23(u,V  ̂ P 123^U,V  ̂ P 1P23^V P2? 13(v) P3? 12(u)+2PlP2P3
(6.4.6)

This estimate has the advantage of being very computationally 

efficient as opposed to the alternative method based on the 

third-order periodogram in the frequency domain (Halliday, 1986). 

The theory for the estimation of the variance of this parameter is 

not complete and requires further investigation.

Third-order cumulant densities may be computed between two 

spike trains, in which case the non-linear influence that the 

pattern of events in one train exert on the second may be 

examined. The timing conventions used in the computations of the 

cumulants are set out in Figure (6.4.2).
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Figure 6.4.2. Diagrammatic representation of the timing convention of the
third-order cumulant density function CJ112 Û,V  ̂ used to investigate the 
nonlinear effects of the input process on the output process N^. The x 
and y axes represent the v and v-u axes of the contour plot of the cumulant 
and the principal diagonal represents the regions in which the value of the 
contour plot is singular.



6.4.2 The Model

The after-hyperpolarisation is incorporated into a 

traditional ’integrate to threshold and fire’ model (see Chapter 

5) by taking each output spike as input to a feedback element 

whose impulse response has the same time course as the 

after-hyperpolarisation. The input to the encoder component of 

the model is then the sequence of EPSP’s (excitatory post-synaptic 

potentials) generated from the response of a second-order linear 

filter to the input spike train, the sequence of 

after-hyperpolarisation potentials and an added independent noise 

source. (See Figure 6.4.3)

6.4.3 Results

Recordings involving a single la afferent and a single motor 

unit have been performed and third-order cumulant densities were 

employed to assess the influence in which two spikes in the la 

afferent train have on the time of occurrence of a subsequence 

motor unit spike. To simulate the system, a point process with 

Gaussian inter-spike intervals was used as the input to the 

neurone model. Figures (6.4.4-5) show the comparison of the 

third-order cumulant density derived from real data with that 

derived from model generated data. It concludes that with 

appropriate parameters chosen, the model can be employed to 

simulate the general effects of the system relating the la and the 

motor unit spike trains.



The model

Noise

Encoder n 2
111

m

EPSP

x exp(-— ) S(t-x)dx
_K^
eXe

m‘iL

~ 5 T

— -o K  exp(-— ) 5(t-x)dx

Afterhypolarization

Figure 6.4.3. Schematic diagram representing (a) the neurone model 
incorporating the effects of after-hyperpolarisation, below which is the (b) 
impulse response of the second-order filter used to generate the time course 
of an EPSP and (c) the impulse response of the feedback used to simulate the 
time course of the after-hyperpolarisation effects.
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Figure 6.4.4. Estimated (a) isometric and (b) contour plots of the 
third-order cumulant density function derived from physiological
data involving an la afferent spike train and a motor unit spike train 
(refer to chapter 2 for details).
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Figure 6.4.5. Estimated (a) isometric and (b) contour plots of the 
third-order cumulant density function clii2 Û,V  ̂ derived from simulated data. 
The input spike train is one with Gaussian distributed intervals to simulate 
the firing of the la afferent in real situation.



A comparison of the cross-intensity and a slice through the 

third-order cumulant at v-u=10 msec, computed from the real and 

model generated data is shown in Figure (6.4.6). The choice of 

v-u=10 msec. corresponds to the mean monosynaptic latency 

uncorrected for conduction delays. In this example the period of 

post-spike depression is not evident from the cross-intensity, 

whereas the slice through the cumulant clearly reveals the period 

of post-spike depression. Hence the third-order cumulant density 

may be considered to be more sensitive in revealing non-linear 

features of the system when the input has a nonlinear influence on 

the output spike train.

The dependence of the trough in the third-order cumulant 

density upon the feedback loop was investigated using a Poisson 

point process as stimulus. Figures (6.4.7-8) illustrate the 

third-order cumulant density estimate upon the presence and 

absence of the feedback loop in the model responsible for the 

after-hyperpolarisation. Note that the values along the line 

v-u=v in this case corresponds to singularities and hence should 

be ignored. It is clear that the presence of the trough is due to 

the effect of the post-spike depression caused by the feedback 

loop.

A series of analyses using different values of 

after-hyperpolarisation duration was performed. The results are 

shown in Figures (6.4.9-12) and are summarised by the slices at 

v-u=10 msec, shown in Figure (6.4.13a-d). The companion graph 

(Figure 6.4.13e) shows that there is a direct relation between the
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duration of the trough in the cumulant and the duration of the 

after-hyperpolarisation.
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Figure 6.4.6. A comparison of the (a) cross-intensity of the input and
output processes, a n d  (b) a slice at v-u=10 msec, corresponding to the m e a n  

latency through the third-order cumulant density between the results o b t a i n e d  

from the real and simulated data. In (a) the solid horizontal lines 
represent the 95% confidence interval assuming the input and output processes 
are independent, and the dashed lines represent the asymptotic value of the 
estimates.
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Figure 6.4.7. Estimated (a) isometric and (b) contour plots of the 
third-order cumulant density function derived from the model generated data
incorporating aftcr-hyperpo1arirat ion using a Poisson input.
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Figure 6.4.8. Estimated (a) isometric and (b) contour plots of the 
third-order cumulant density function derived from the model generated data
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Figure 6.4.9. Estimated (a) isometric and (b) contour plots of the 
third-order cumulated density function derived from the model generated data
incorporating aftcr-hyperpolarisation. The duration of the time course of
the af t.er-hyperpolar i sat ion i s set to approximately ?.0 msec.
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Figure 6.4.10. Estimated (a) isometric and (b) contour plots of the 
third-order cumulated density function derived from the model generated data 
incorporating after-hyperpolarisation. The duration of the time course of 
the after-hyperpolarisation is set to approximately 30 msec.
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Figure 6.4.11. Estimated (a) isometric and (b) contour plots of the 
third—order cumulated density function derived from the model generated data 
incorporating after-hyperpolarisation. The duration of the time course of
the after-hyperpolarisation is set to approximate1y 40 msec.
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Figure 6.4.12. Estimated (a) isometric and (b) contour plots of the 
third-order cumulated density function derived from the model generated data 
incorporating after-hyperpolarisation. The duration of the time course of 
the after-hyperpolarisation is set to approximately 50 msec.
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Chapter 7 Future Work

In Chapters 3 to 5, the mathematical, statistical and 

computational aspects of linear point process system analysis 

techniques have been discussed. The application of these 

techniques, illustrated by various examples in Chapter 6, has 

proved fruitful in analysing systems that involve both point 

process signals and continuous signals, and multiple inputs and 

multiple outputs. In particular, the coherence in its ordinary 

and partial forms proved to be a sensitive and powerful tool in 

measuring associations between processes. Also it has been 

attempted to characterise a system in which the input point 

process exerts a non-linear effect upon the output point process 

based on the third-order cumulant density function. It has been 

shown that the third-order cumulant can detect interactions that 

are not apparent in the cross-intensity. This represents one 

aspect of the usefulness of higher order parameters. However, the 

statistical properties of the third-order cumulant are not fully 

understood and the application should not be limited to a 

single-input, single-output system. In addition to the higher 

order time domain parameters, the higher order spectra are also in 

need of further investigation. Hence the investigation and 

application of higher order time and frequency domain parameters 

leads to an immediate area of possible future work.

Brillinger (1988a, b) has proposed and demonstrated the use 

of maximum likelihood approach for estimating biologically 

meaningful parameters. The maximum likelihood approach is a
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parametric approach that provides estimates of the parameters 

involved in the model directly. Examples of such parameters 

include the threshold, time duration of the 

after-hyperpolarisation, etc. This method has only been applied 

to a few examples, and is in need of further investigation.

The third possible direction of future work is the Lanczos 

analysis of electric current flow in excitable cells. This is 

discussed in the last section in this chapter.

7.1 Higher Order Parameters

Recently higher order statistics, especially in the form of 

cumulant density functions, have been widely used in a large 

number of fields. Higher order cumulant density functions provide 

measures of higher order interactions (in time domain) between 

point processes whereas higher order spectra may be used in 

characterising non-linear systems. However the statistical 

properties and implications of these parameters are not fully 

understood. For example, the statistical properties of the 

third-order cumulant estimate based on expression (6.4.6), have 

not been worked out. Although an alternative estimate for the 

third-order cumulant density based on the inverse 

Fourier-Stieltjes transform of the third-order spectra is possible 

and the variance of this estimate has been worked out (Rigas 

1983), the computational time involved is longer (Halliday 1986). 

In the frequency domain possible future work involves, for 

example, the development of a statistical test for zero quadratic
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coherence (Amjad, 1989).



7.2 Maximum Likelihood Methods

Maximum likelihood is a well established statistical 

procedure in which one sets down an expression for the probability 

of occurrence of the data set of interest. This expression is 

referred to as the likelihood function, and is expressed in terms 

of the data values and the parameters of the particular 

probability model used to account for the data. The maximum 

likelihood method then selects the set of parameters that 

maximises the likelihood function. In the situation where one is 

interested in determining the influences that lead to the 

generation of a particular recorded spike train the procedure may 

be outlined as follows.

If the probability for a spike to occur at time t given the 

history of the process is represented by p̂ _, the likelihood 

function for a particular spike train may be written as

where T is the record length and dN(t) is the differential 

increment which has a value of 1 if a spike has occurred in the 

interval (t,t+At] and 0 otherwise. The symbol II is the standard 

product operator. The object is then to propose a model for p̂ ..

membrane potential at the trigger zone, the cell may be assumed to 

fire at time t if Û . exceeds a threshold <f>. One may then set up a

T
dN(t)

One might, for example, proceed as follows. If represents the



function in terms of U and 0 that represents the probability p^. 

The expression of includes terms that contribute to such as 

other inputs to the cell, refractory period, 

after-hyperpolarisation, etc. Each of these terms may be 

associated with one or several parameters. The maximum likelihood 

approach then chooses the set of parameters for a particular spike 

train that maximise the likelihood function. Maximum likelihood 

methods therefore provide direct estimates of biologically 

relevant parameters. The implementation is, however, very 

computationally intensive.



7.3 Lanczos Analysis of Electric Current Flow in Excitable Cells

In solving the cable equation for a neurone of arbitrary 

complexity the voltage distribution at time t+1 is related to that 

at time t by an equation of the form:

where in the case of an active cable A may be a function of V. 

Because of the complex geometric properties of a neurone it is 

difficult to acquire insights into their computational properties. 

Several methods have been devised which allow the complex 

branching structure to be reduced to an equivalent unbranched 

cable (Butz and Cowan, 1974; Koch and Poggio, 1985 and Rail, 

1989). An alternative to these methods, which is not subject to 

geometric constraints is to apply the Lanczos transformation 

(Lanczos, 1950 and Whitehead, Watt and Morrison, 1977). In simple 

cases the Lanczos procedure separates the representation of the 

dendritic tree into two or more linear cables. This decomposition 

means that certain combinations of events within a dendritic tree 

cannot be seen by the soma. In cases where the equivalent cable 

does not separate or decompose exactly these same events are found 

to influence regions of the cable far from the soma and thus 

propagate only weakly to the soma. In either case the reduction 

of a complex dendritic tree to a single non-uniform cable greatly 

improves one’s ability to visualise and quantify the behaviour of 

the system. It is intended to develop this approach and to use it 

to try to get an understanding of which events and combinations of



events are meaningful to a real neurone and which are not.
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Appendix 1 Conventional Symbols used in the EAI 2000 Analogue

In this thesis the symbols used to represent the various 

components in analogue computing follow the conventions used in 

the the EAI 2000 Analog Reference Handbook (1978). The components 

may be classified into two classes: (1) analogue components which

are characterised by a analogue output and (2) logical components 

where the output is either a 1 or 0. These are described briefly 

below.

A.1.1 Analog Components

(a) Coefficient Unit

Function: Continuous multiplication of an analogue variable 

times a constant coefficient.

Explanation: A coefficient unit with input X and output Y;

the value of the coefficient being A.

Computer

Symbol:

X Y = AX

-1<A^+1

(b) Summer

Function: Continuous summation of several analogue variables.



Symbol:

U
V
W

Y = -(U+V+W)

Explanation: A summer circuit with inputs U, V and W; the

output being Y. Note that the output is inverted.

(c) Integrator

Function: Continuous integration, with respect to time, of 

an analogue variable.

Symbol:

IC HD

X Y = - Xdt

IC HD Effects

0 0 
1 0

None 

Reset Y

Explanation: The integrator circuit integrates the input X

with respect to time and gives the output Y. The control logic 

inputs IC (Initial Condition) and HD (HolD) may be used to reset 

the output (see the inserted table).

(d) Selector Switch



Function: Analog signal switching. 

Symbol:

Sel A
L

B

A if L=1

B if L=0

Explanation: The output Y is either equal to A or B

depending on the selector L. If L=l, Y becomes A. Otherwise Y=B.

A.1.2 Logic Components

(a) Flip-Flop

Function: Store a logic value.

Symbol:

s Q

R Q

S R V i
0 0 Qn0 1 0
1 0 1
1 1

Explanation: The input S (Set) sets the output Q, whereas

the input R (Reset) resets the output Q. Note that the output



remains unchanged when S=R=0. However in the case S=R=1, the

output toggles.

(b) Comparator

Function: Compare two analogue variables. 

Symbol:

1 if X>Y 

^ 0 if X<Y

Explanation: The output C is equal to 1 if the non-inverted

input X is greater than the inverted input Y, and 0 otherwise.
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Appendix 2 Physical and Mathematical Removal of a Common Input

The distinction between physical and mathematical removal is 

best illustrated by a neurone network in which a pair of neurones 

is influenced by two common inputs (see Figure A.2.1). and

are the two common inputs, and represent two independent

inputs to the two neurones respectively, and N.. and tL are the two
D D

output processes.

First consider the case in which the two common inputs

and N are independent. The cross-spectrum between the output

processes N c and N. is given by 5 6

f56(X) = f n (X)Sls(X)S16(X)+f22U ) S 25(X)S26(X) (A.2.1)

where the overbar "----- " denotes complex conjugate of a quantity.

The residual cross-spectrum f c , .(A) is then given bybo. 1

f_, A X )  = f_,(A)-fc1 (A)f. A X ) / f „  (A)56.1 56 51 16 11
= f (A)S (A)S (A) (A.2.2)22 25 26

Expression (A.2.2) is in fact equivalent to the situation in which 

the pair of neurones is influenced by one common input as

illustrated in Figure (A.2.2), hence it can be concluded that 

mathematical removal of the contribution from is equivalent to 

physically removing N^. Removing is similar.

However, in general, if and ^  are dependent, the



< oN1

< oN2

Figure A.2.1. Diagrammatic representation of a-neuronal network in which two
neurones N_ and N share the common inputs N and N . Processes N„ is an^ o 1 2  3
input to Nc that is independent of N., N„ and N_. N. is an input to N„ thatb 1 2 4 4  6
is independent of N^, N2 and Ng.

N

(N. removed)

2

Figure A.2.2. Diagrammatic representation of the case in which is
physically removed. This situation is equivalent to mathematically removing
the contribution of N in Figure A.2.1 when Nj and N2 are independent.



cross-spectrum between N._ and N. in this case becomesb b

f56U )  = f11(X)S15(X)S16( X ) ^ 22(A)S25(X)S26(X)

+f12U , S 15(A)S26U ) + f 21(X)S25(X)S16(X) (A'2'3)

Note the addition of the cross-spectral terms. The residual

cross-spectrum f_^ (A) would bebo. 1

f56.1(X) " S25(X,S26(X) f22tX)-f12(X)f21(X,/fll(X)]
= f22.1(X)S25(X)S26(X) (A'2 '4)

where f^  ^(A) is the residue auto-spectrum of after removing 

the associated linear components of N . Hence in general, the 

mathematical removal of a process implies removing all the 

components that are associated with that process, which in general 

is not the equivalent to removing the process physically.



Appendix 3 The Coherence Between Two Processes with Multiple

Common Inputs

Consider the situation in which a pair of neurones A and B

is influenced by m independent common inputs C„,C_,..,C as1 2  m
illustrated in Figure (6.3.1), where and 0^,..,0^

represent independent inputs to A and B respectively. In 

addition, S„ . (A),..,S_ .(A), S_ _(A),..,S_ D (A),
U - A U A u . d  U d1 m 1 m

S a(A),..,S .(A) and S0 ^(A),..,S0 „(A) represent the transfera A a A 0„B 0 B ^1 p '1 q
functions relating the input processes C, a and 0 to output 

processes and Ng. By a direct extension of the procedures used 

in Section (6.3), the cross-spectrum between processes and Ng

may be shown to be

m

fABU ) = I fC.(lW V V  U -31). . k k  k kk=l

where the overbar " " denotes complex conjugate of a

quantity. The auto-spectra of N and N may be written in the
A  15

form

m
= T A ^ S r  + y ^ S A ^ ) S  .(A)lL *- k k k k J ^ L W  \A \A Jk=l k=l

and

fB B (X) “ I K c J X)SC B (A)SC B (X)]+ I [WX)W X,iW A). „ L k k k k J , , L k k k kk=l k=l
(A.3.2)

2 2 The coherence |Ra o (A)| is now given by |fAD(A)| / f . . (A)f_.D (A)1 AB 1 1 AB 1 AA BB

i b-1



c1
c.2
m

Cm

»

3

Figure A.3.1. Diagrammatic representation of a generalised neuronal network 
in which a pair of neurones is influenced by multiple common inputs C^,..,Cm . 
a^,..f<Xp are the independent inputs to A only whereas are
independent inputs to B only.



2Each factor in the denominator of R._(A) will contain1 AB 1
contributions from the common input processes as well as from each

2of the independent inputs, whereas the numerator of |R^g(A)| will

only contain contributions from the common inputs. Adding the

error terms to the linear model will introduce additional spectral
2terms to each of the auto-spectra in the denominator in |R^g(A)| .
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Appendix 4 The Interpretation of Partial Coherence Related to 

Non-linear Characteristics in a Common Input Neuronal 

Network Model

When assessing the effect that a third point process may 

have on the coupling between two other point processes the 

interpretation of the partial coherence in cases where there is no 

difference between the ordinary and partial coherence requires 

considerable care. This absence of a difference may occur for 

several possible reasons. The third process may not influence the 

coupling between the other two processes or the common input 

exerts a non-linear effect on the coupled output processes. In 

the nonlinear case even if the common input is the only source of 

coupling between two output processes there may no difference 

between the ordinary coherence and the partial coherence taking 

into account the contribution from the third process.

Consider the case in which Nc provides the only source of 

coupling between processes N^ and N^ (see Figure A.4.1). Assume 

that the output processes N^, k=l,2, can be modelled as

dNk(t,-V a. (t-u)dN (u) + k c b. (t-u.t-v)dN (u)dN (v) +noise, k c c k

(A.4.1)

where s^ is the intensity of when Nc~0» ak^u  ̂ anc* are

the first and second-order kernels. Expression (A.4.1) is a 

direct extension of the linear model developed in section (3.3.3) 

to include a quadratic non-linearity (for a discussion of this 

kind of model in the case of ordinary time series, see Marmarelis



Noise 1 (N 1 ) el

A 1

Nc

Noise 2 (N _) e2

Figure A.4.1. Diagrammatic representation of a neuronal network in which two 
neurones share the common input Nc> Noise process is a second input to
N. that is independent of the common input N , and of N _. N . is a common
1 C  C m  C m

second input to Ng that is also independent of Nc - The system considered in 
this case involved nonlinear features.



and Marmarelis, 1978; Brillinger, 1965).

Suppose the noise term present an independent contribution 

to the system, the cross-spectrum ^or the non-linear system

may be written as

f 10(A) = A (A)A (A)f (A)+2 12 1 2 cc B (A-p,/i)B (A-p,/i)f (ji)f (A-fi)dp X m C C  cc

(A.4.2)

where a^ and A^ are Fourier transform pair and similar for b^ and 

B^. From expression (A.4.2), the residual cross-spectrum f ^  

is given by

B 1 tA-(i,|i)B2 (A-n,fi)fcc (|j)f (X-M)dfl * 0 (A.4.3)

2
Hence, in general, the partial coherence c^^l =

2
|f19 (A) | /f 11 (A)f (A) is not necessarily zero when thexc•C 11•C ££•C
system is non-linear, even in the case Nc is the only source of 

coupling between the two output processes.

The possible presence of non-linearities must be taken into 

account in the interpretation of partial coherences, particularly 

in situations when there is no difference between the ordinary and 

partial coherences. One cannot conclude, in general, that the 

absence of a difference means that process Nc has no effect on the 

coupling between and N^.
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