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Synopsis

The core of the studies presented here is 
the calculation of numerical self consistent field 
wave functions for the second row elements Si, P,
S, Cl and Ar in excited configurations which involve 
the 3d orbital* In many discussions of the bonding 
in molecules which contain these elements as their 
central atoms,it si maintained that the 3d orbital 
may have an important role* To take a classic 
example,on the basis of the concept of hybridisation 
Pauling has interpreted the bonding in sulphur
hexafluoride in terms of the formation by the

3 2sulphur atom of sp d hybrids. Later it was observed 
that the maximum in the 3d wave function,if taken 
to be of a Slater type,lay well beyond the S - P 
internuclear distance* On further investigation, 
the use of the Slater 3d orbital in this context 
was fudged to be quite acceptable and an elaborate 
theory was developed to bring the 3d orbital into 
a form suitable for bonding.

This situation persisted to the time this 
work was commenced,though on occasions it had been 
suggested that perhaps the Slater 3d orbital is 
not a suitable representation for the 3d wave



function of S(sp d ).
In the opening chapter of this thesis,the 

course of such disputations is placed in 
perspective against a background of the chemical 
thought prevailing at the period and the problems 
involved are formulated* For a satisfying solution 
it is found to be necessary to perform a series of 
self consistent field calculations,and to investigate 
more fully the concept of the valence state.
Chapter II treats in detail the theory of the self 
consistent field and the manner in which atomic 
calculations are performed. This is followed by a 
study of the valence state concept utilising the 
theory of the symmetric permutation group. Some 
very interesting results are obtained.

The subsequent two chapters are concerned 
with the shape and energy of the valence orbitals 
possessed by the elements mentioned when in high 
oxidation states. It is discovered that many 
affirmations which have been made on the subject 
of the 3d orbital are unfounded and indeed quite 
erroneous. This is rather surprising in view of 
the admirable investigations performed on this 
topic by Craig and his collaborators during the



past decade. Their theories are therefore closely 
examined in Chapter VI and discrepancies explained.

On reaching the closing pages it is possible 
to suggest in what manner a f3d orbital1 might 
assume a role in the bonding of the second row 
elements under review. Finally a plea is made that 
the concept of hybridisation must now give way to 
the concept of polarisation if the development of 
chemical thought is not to be inhibited.



The Electronic Structure of Some Second Row Elements 

in High Oxidation States.

by

B. C. Webster B.A.

A thesis submitted for 
The Degree of Doctor of Philosophy 

in the University of Glasgow.

June 1967



Acknowledgments

The studies presented in this thesis were 
performed whilst I was a Research Assistant in 
Theoretical Chemistry at the University of 
Glasgow. This post was held in the department 
of Professor D.W.J. Cruickshank to whom I am 
extremely grateful for introducing me to this 
field of study and for his continual interest 
in the work as it progressed over a period of 
four years.

I should also like to express my gratitude 
to Dr. David Mayers of the Oxford Computing 
Laboratory for advice on the solution of atomic 
self consistent field equations and to Dr.Graham 
Doggett for many helpful discussions. Finally 
my thanks are due to my wife, Mary,for typing 
the manuscript.



CONTENTS

Chapter I. Page*

Some Problems are Placed in Perspective* 1

Introduction 1
Pre Wave Kechanical Theories 2
The Concept of Hybridisation 11
The Contraction Theory 20
The Charge Conjecture 22

Estimation of the Effective Nuclear
Charge, Zeff( 3d) 26

The Energy of the d Orbital 27
Conclusion 29

Chapter II*

The Theory of the Self Consistent Field 32

Introduction 32
The Self Consistent Field Equations 36
The Solution of the Self Consistent

Field Equations 41
Computer Programmes 53
Multiplet Structure 55



Chapter III* Page

The Concept of the Valence State 59

Introduction 59
The Valence State of Carbon in

Methane, CH^ 60
The Valence State of Sulphur in SP^ 66

Chapter IV*

Some Orbital Features 77

Introduction 77
Shapes of Orbitals 7S
Contours of f for an Octahedral

Hybrid Orbital 87
Conclusion 88

Chapter V*

A  Question of Energetics 90

Introduction 90
Configurational Energies and

Promotion Energies 90
The Valence Orbital Energies 95
A Partition of the Orbital Energy 98
Conclusion "



Chapter VI* Page

The Theory of Orbital Contraction 101

Introduction 101
The Method of Craig and Zaull 102
An Observation on this Method 103
Verification of the Result of Craig

and Zauli 106
The Shape of the 3d Orbital 109
The Influence of Exchange 110
The Effect of the Ligand Field in SF^ 111
Conclusion 115

Chapter VII.

Some Concluding Remarks 117

Synopsis 
References 
Appendix I

123
126
131



* . w  ^  '. v'

Units

Except where is otherwise stated all distances 
quoted in the text are in Angstroms (1 i = 10~8cm) 
and all energies are in electron volts.
(1 e.v. » 8106 cm"1).



CHAPTER I

SOME PROBLEMS ARE PLACED IN PERSPECTIVE

It must not be supposed that atone of every 
sort can be linked in every variety of 
combination*

Lucretius 55 B.C.

Introduction
The manner in which the elements combine is 

the essence of chemistry. For this reason it has 
become a perennial problem, each generation having 
of necessity to formulate some model for chemical 
combination. Naturally, these are framed by the 
concepts prevalent at a particular period. As the 
concepts evolve or are found to be inadequatef the 
models either become richer in content or pass into 
disuse. Often,prior to disuse,attempts are made to 
preserve a model by the addition of ever alien 
features. It is the relative rate of these processes 
which governs the progress of the science.

This present study on the theory of chemical
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'binding advances no new concepts,but examines some, 
which of recent times have become rooted in our 
thought* It is principally concerned with the 
elements which lie towards the end of the second 
short period in Mendeleeff's classification. These 
are silicon Si, phosphorus P, sulphur S, chlorine Cl, 
and argon Ar. They do, indeed,form a touchstone upon 
which a number of theories have faltered. Let us 
call some of these to mind and in so doing trace 
the theory of valence up to 1926.

Pre Wave Mechanical Theories
Berzelius* duality theory proposed in 1812 

captivated the chemical imagination for a quarter 
of a century[l]* This theory, incorporating the 
earlier ideas of Davy and Avogadro,is based on two 
premises; every atom possesses two electrical poles 
of opposite sign and unequal strength,and oxygen is 
the most electronegative element. Magnesium sulphate 
is so^egarded as being formed from two oxides,one 
electropositive,the basic oxide MgO,and one 
electronegative,the acidic oxide SOg*

2



Mg+ + 0“ — »■ MgO+
S + 30“ --i SO,"O
MgO+ + S03“ -4 MgO.SOg

There remains a slight residual charge which is 
neutralised on addition of water to produce the 
heptahydrate [MgO.SO^] 7HgO.

Faraday’s observations that equal quantities 
of electricity are associated with the equivalent 
weights of the elements discredited Berzelius* 
first postulate. The increase in knowledge of the 
properties of chlorine cast doubt upon the second. 
When Dumas discovered that chlorine could replace 
hydrogen in organic molecules without a gross 
alteration in their chemical behaviour,dualism was 
soon discarded. However the idea of attributing 
molecular binding to an electrical interaction had 
been planted.

The picturesque theory of types now became the
vogue. This was passing into a highly decorative
form when Frankland published his paper on *A New
Series of Organic Compounds containing Metals* [2].
This work, dated|l852,marks the beginning of a theory
of valence. Franklands achievment lies in his 
recognition that in the formation of a molecule

- 3 -



'no matter what the character of the uniting atoms 
may be,the combining power of the attracting element, 
if I may be allowed the term,is always satisfied by 
the same number of these atoms'. Phosphorus,for 
example,is attributed a combining capacity of three 
or five. It appears doubtful as to v/hether Frankland 
himself realised the far reaching import of this 
remark for he now proceeds to effect a marriage of 
the duality theory and the theory of types.

The term valency v/as introduced in 1868 [3 ], 
by which time Kekule and independantly Cannizzaro 
had crystallised the content of Prankland's paper 
into a viable theory [4]. Kekule,however,maintained 
that the valency of an element is a fixed property.
In consequence he had to resuscitate Berzelius' 
ideas to explain the existence of compounds in 
which the valence number is exceeded. Phosphorus 
pentachloride is so formulated as being a molecular 
compound PCl^.Clg which appeared reasonable for on 
thermal decomposition chlorine is liberated.

PC1& ^  PC13 + ci2
After Thorpes preparation of the thermally stable,

- 4 -



gaseous pentaflouride PP^in 1877, it "became clear 
that a variable valency is indeed exhibited by 
ph08phorus,and is likely to be common to other 
elements•

Kekule*8 influence persisted. Pope and Peachy 
write in 1900 * since the discovery of the sulphonium 
compounds by Oefele in 1864,attempts too numerous 
to be recapitulated here have been made to ascertain 
whether the sulphur atom is capable of combining 
with four separate univalent groups or whether 
derivatives of apparently quadrivalent sulphur are 
merely molecular,as distinct from atomic compounds. 
These attempts have up to the present yielded 
negative or ambiguous results.' They continue by 
reporting the preparation of the optically active 
compound d-methyl-ethyl-thetine-platinichloride,

demonstrating 'that in compounds of the type SX4

5 -



the sulphur atom is truely quadrivalent and that 
the four groups attached to it are,as in the case of 
carbon,situated at the apices of a tetrahedron,the 
the interior of which is occupied by the sulphur 
atom [5]* Smiles in deference to Pope and Peachy 
refrained from publishing his preparation of the

until later that year [6]. Optically active compounds 
of silicon [7] and phosphorus [8] were subsequently 
prepared* The extent to which a theory of valence 
had been assimilated at the beginning of this 
century is epitomised by de Forcrandfs formula for 
sulphur hexafluoride, SF^ [9].

Elsewhere the subject seethed with expectancy. 
Thomson had identified the electron. In 1904 he

compound
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suggested that chemical combination might be due to 
the transfer of electrons from one atom to another 
and to the static forces which must result.[10] 
Simultaneously Abegg proposed his rule of principal 
and contravalences [ll]. By this,each element is 
considered to exert a normal valency,which is 
positive for metals,negative for nonmetals,and less 
frequently a contravalency,such that their sum is 
equal to eight. Sulphur is normally divalent,as in 
hydrogen sulphide,but in the hexafluoride exerts a 
contravalence of +6.

These two suggestions,and particularly that of 
Abegg, had a profound influence on subsequent 
chemical thought. The ideas of many were finally 
syn^thesised by Kossel [12] and independantly by 
Lewis [13] into the well known octet theory. This 
titular emphasis on the word octet is unfortunate 
for Lewis’s postulate that a covalent bond is 
formed by a pairing of two electrons,has the deeper 
significance. Despite shortcomings,the theory 
became deservedly popular. Its static character is 
in evidence when one views for example the structure 
proposed for chlorine.

-  7 -



The seven valence electrons of each atom are disposed
at the corners of a cube. By the sharing of an edge
the octet is completed and a link formed. The
oxyanions of the second row elements (X0^)n”
seemed perfectly adapted to the theory.

i a-
• O '

0 - X - o

■O ' .

X- S, Cl

n = 4, 3, Z, 1

Whilst the nonexistence of FÔ *" could be regarded
2-as an anomaly,the existence of the species[SiF^] 

PClg, SFg was clearly an embarassment.
Opinions held in the early twenties may be 

savoured in the discussion upon the Electronic 
Theory of valency held by The Faraday Society on 
July 13th and 14th 1923 in the Department of

-  8 -



Physical Chemistry,Cambridge [14], Fowler’s remarks 
are apposite, ’’The formation of sulphur 
hexafluoride has been explained by treating it as

titthe fluoride of hexavalent metallic sulphur S F^* 
This view is open to objection on the ground that it 
has none of the properties of a metallic salt. On 
the other hand,it is not at all unlike a co-ordinated
compound of a metal;and there are obvious analogies

2-  2—between the ions PtClg and SiF^ ,which would
2—lead to the view that SiF^ is a co-ordinated 

radical, and that SF^ is a co-ordinated compound, 
[S*6F],like [Mo,5Co], It it possible that there is 
here a shell of 12 electrons - i.e, that the electrons 
are grouped in the series 2, 8, 12, is spite of the 
fact the usual series is 2, 8, 8,?
(Ans,) Here again chemistry must take the lead.
Physics is at present completely ignorant,but it 
certainly has as yet no objection whatever to the 
series 2, 8, 12(shared),with presumably octahedral 
symmetry for the latter. After all physics demands
at a later stage 2, 8, 18, --  with approximately
octahedral symmetry in the 18, It is merely a matter 
of energy considerations(which are as yet beyond

us) at what stage the 18 group should be formed. In

- 9 -



the free atom, of course, it does not "begin to form 
till Sc; but there is no reason why it might not 
occur in this partial form at Si or S in a compound. 
A co-ordinated compound [0. 6P] would "be very 
repugnant to physical ideas of atomic structure^ "but 
not necessarily [S. 6P].t!

With the increasing study of molecular 
structure and reactivity the demands placed upon 
valency theory were "becoming ever more stringent .
No longer was it sufficient just to be able to 
interpret the law of multiple proportions.
Interatomic distances between two given atoms were 
being observed to vary quite markedly in different 
molecules. 'Why is one shape for a molecule prefered 
to another? How is the nonexistence of certain 
molecules to be explained? Phosphorus pentachloride 
PClg may be prepared but seemingly not NCl^ or 
AsClg; SFg but not SH^; HCIO^ but not HPO^ or HBrO^; 
Bohr18 atomic theory was quite incapable of providing 
a basis for dealing with such questions. As wave 
mechanics developed,the theory of valence acquired 
a totally new complexion,and these problems now 
seemed to be within its grasp. Let us continue by

- 10 -



examining some of the solutions offered for 
molecules whose central atoms acre Si, P, S, Cl or Ar. 
Prom this series,sulphur is selected for particular 
mention since it lies at the medial position. Our 
purpose is to "bring the central theme of this study, 
the role of d orbitals in the bonding of these 
second row elements,into relief against a back­
ground of current theory.

The Concept of Hybridisation
By treating molecular formation as an 

interaction between suitably prepared atoms,the 
theory of hybridisation [15] presupposes that the 
free atom and the atom in the molecule may be 
regarded as similar species. This theory has become 
very familiar,since its conception in 1931,indeed so 
familiar that it is perhaps now taken for granted. 
Formally,it constructs from a set of atomic orbitals, 
which are nondirectional with respect to a group of 
ligands,an equal number of hybrid orbitals which 
are directed towards the ligands. By an overlap of 
hybrid orbitals orbitals,which are usually assummed
to be singly occupied,of the central atom with 
orbitals on the ligands,a o-framework for the 
molecule is formed. Often, the number of bonds which

- 11 -



are required exceeds the number of orbitals immediately
accessible for hybrid formation, when the atom is
in its ground state configuration. For example
sulphur is hexavilent in SF^ yet in its ground state

*24 3only two orbitals are singly occupied, S(s'Jp ) - P.
This difficulty is overcome by assumming that
during the reaction in which the molecule is formed,
the atoms are in excited states. Normally only one
excited state is considered,that which may
immediately be seen to provide the required number
of bonds.Sulphur is so taken as having a configuration 

3 2S(sp d ) in the hexafluoride. It is further recognised 
that the electrons occupying the hybrid orbitals 
possess a random spin,so that it is not permissible 
to specify the lowest term of the configurations, 
as being solely involved. Consequently the energy of 
excitation,refered to as the promotion energy,has 
appeared as a guage to assess whether molecular 
nuai formation is likely or otherwise. As such it 
is quite unsatisfactory; there is no way of deter­
mining per se as to whether a promotion energy is 
too high to permit a reaction to proceed and most 
opinions in this matter appear to be based on 
arbitrary judgements. It is evident that in order

- 12 -



to form the most effective hybrid orbitals from a 
set of atomic orbitals three requirements need to 
be satisfied. The atomic orbitals should possess

(1) a suitable symmetry
(2) a similar size
(3) a similar energy.

Although it is now taught as a chemical fact that
3 2the sulphur atom in SFg is sp d hybridised,it

transpires that no serious attempt has ever been
made to discover whether such a representation is
at all adequate. It may readily be shown that the
3s,3p and 3d 2 2, 3d 2 orbitals of sulphurx - y 7 z
possess adequate symmetry. Under the group 0^, six
equivalent hybrid orbitals transform as + E +
whilst s orbitals transform as Alg, p as T^u and
d as Eg + T2g* hence S(sp3dx2 _ ^2 d^2 ) is
acceptable.

Pauling disposes of the second and third 
requirements by assumming that the differences in
the radial portions R(r) of the 3s, 3p, and 3d wave 
functions are so small that they may be neglected.
The hybrid is so constructed from the angular
portions S^m ( 9 , f ) of the wave functions. One may
recall that the wave function for an electron



moving in a central field is of the form
t- , 4 ) = R(r) . Slm ( (r , d ) .

When 1 s 2, i = - 1, -2 or 0 and the d orbital is
defined. In their real forms these functions are
designated as dxz, dyz, d^, <3̂.2 _ y2, and dg2 
where ^

3d__ = R(r) • (15)2. sin£cos^cos£
1

3d =e R(r) . (15)2. sin & cos B sin
I

3d = R(r) . (15/4)2 . sin2£ sin2<t
I

3d 2 2 s= R(r£ • (15/4) . sin2£ cos 2 fx “ y ^
3d 2 =s R(r) . (5/4)2. (3cos2 & - 1) z

Acommon factor of (2.%-tt)""̂  is omitted. Figure 1 
illustrates the angular properties of the 3d orbital 
whilst in figure 2 an octahedral hybrid orbital is 
depicted. This hybrid,pointing in the +25 
direction,has the form

*+z = Jj (s +-r3pz +.J2dz2
The emphasis placed upon the angular portion 

of the wave function is carried further by Pauling 
and Sherman in their criterion for bond strength [16]. 
This assumes that a measure of the strength of a
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bond may be obtained from the values of the angular 
portions of the wave function in the direction 
of their maximum extension. The orbital functions 
are firstly scaled such that for the s orbital 
the angular function is unity, Accordingly the 
octahedral hybrid above has a strength of 2.924, 
this being the valueof

-g (l + ,3 #^3 .cosc:+ ^2."'! (3c o s 2 £ - 1 ) )

when & = 0. A pertinent application of this criterion
is to that group of molecules whose structure is
thought to be based upon a set of trigonal
bipyramidal orbitals© These include CIF^, SF^ and

3 1PClg*If the central atom is restricted to an sp d 
configuration an axial hybrid and an equatorial 
hybrid orbital are defined by

♦axial = h  * (°os a>s + pz + sin a *dz2 )

♦equatorial =J3* (sin a *s Px ~ 008 a -dz2) 
where a is a hybridisation parameter. The total bond 
strength is a maximum when cos a = 0.5424. However 
for this value of cos a, the strength of the equatorial 
hybrid is 2.249 and of the axial hybrid 2.937. The 
experimental evidence indicates the opposite*namely 
that the equatorial bonds are stronger than the axial 
bonds. The structures of CIF^ [17], SF^ [18] and

- 15 -



PCl^ [19J clearly show that the "bonds are 
inequivalent,with the axial bonds weaker than the 
equatorial bonds. This view is further supported 
by the force constants obtained from the vibrational 
spectrum of PCl^, k(axial) being 1.80 x 10 dynes/cm 
and k(equatorial) 2.89 x 10 dynes/cm [20].

0

- 16 -



3 1If the central atom is not restricted to an sp d 
configuration hut allowed to vary as sp1+2n d3“2n, 
where 0 - n  1, the most favourable configuration
is found to be for n = 4/9. For this configuration,
lS 2~sp 9 d 9, the equatorial orbitals exceed the axial 

in strength,the respective values being 2.963 and 
2.928 [21].

The Application of Maccollfs Criterion
An attempt to assess the influence of the 

radial wave function on the bond strength was 
first made by Craig, Maccoll, Nyholm, Orgel and 
Sutton in their definitive paper of 1954 on 
fChemical Bonds involving d-orbitals* [22].
Maccollfs criterion,introduced four years earlier, 
was employed [23]. This suggests that a better guide 
to the relative strengths of bonds might be 
provided by the overlap integral,for the orbitals 
involved in the bond. On finding for phosphorus 
pentachloride and sulphur hexafluoride that the 
contribution to the total overlap from the 3d 
orbitals is insignificant itis concluded for these 
molecules 1 it is not obvious that d hybridisation 
can occurf A further result reached,is pertinent to 
the previous discussion of the relative strengths

- 17 -



of the axial and equatorial bonds in phosphorus
pentaxThloride. The overlap criterion indicates 

3 1that for an sp d configuration of phosphorms,the 
equatorial bonds should be stronger than the axial 
bonds,as is observed. A view which has been 
reiterated more recently [24].

In evaluating the required overlap integrals 
Slater functions are used to represent the radial 
wave functions. Slater functions are nodeless
functions of the form

t-j / \ ,T n-1 -ter R(r) ss N. r . e
where the orbital exponent te = ^ a
normalisation factor. The effective nuclear charge
Zeff is determined from Slaters Rules [25]. One
may observe that the maximum in the probability

p odistribution function D(r) = r R (r) will lie at
pa value of r(max) = n atomic -units. (1 atomic

unit = 0.529 &). In Figure 3 R(r), P(r) and D(r)
are shown for a Slater 3d orbital with Z » 1.83.eff

3 2On applying Slater’s Rules to the sp d 
configuration of sulphur the effective nuclear 
charges for the valence electrons are found to be

Zeff (38) a Zett (3p) = 6.15 and Zgff (3d) = 1.65.
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For these values the maxim ;m in D(r) lies at 
0.77 2 for the 3s and 3p electrons,and 2.88 2 for
the 3d electron. The d orbital is so seen to be 
highly diffuse with the maximum in D(r) lying well 
beyond the S - F distance in SF^ of 1.50 2 [26].
It is scarcely surprising that on this basis the 
d orbital contribution to the binding is found 
to be insignificant. Here lies a crucial point. Is 
the basis sound? Are Slater’s rules applicable in 
this instance? Do Slater functions provide an 
adequate representation for a 3d radial function? 
The authors under discussion judge that ’it seems 
probable that the disparity in exponents while 
somewhat exaggerated,is essentially correct,at 
least for the free atoms.

When the present study was commenced in 1963 
the questions raised by this paper still awaited an 
answer. This is not to say that in the intervening 
period the subject stagnated. Indeed it flourished 
as never before. Numerous ideas were presented to 
explain the structures of molecules whose central 
atoms are second row elements. It is just that in 
the absence of any knowledge of the properties of 
outer d orbitals,a spirit of optimism prevailed.
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In the interest of cogency not all of this work 
is mentioned here hut reference to it may he 
sought in a recent article entitled ’Orbitals in 
Sulphur and its Compounds’[96]. A principle aim 
now was to find a mechanism hy which the diffuse 3d 
orbitals might effectively engage in molecular binding. 
Two hypothesies evolved,which might be named,the 
contraction theory and the charge conjecture.

The Contraction Theory
This theory, developed by Craig and his 

collaborators, contends that in a molecule the 
field imposed by the ligands upon the central atom 
produces an increase in the effective nuclear 
charge of an outer 3d orbital,thereby causing it 
to contract. In their original model [27] the 
ligands are simulated by point charges whose 
potential is represented by the leading term of the 
series expansion for l/r. Under this spherical 
potential the effective nuclear charge for a 3d 
orbital of sulphur in SF^ is found on minimising 
the total energy to increase from the Slater 
value for the free atom of 1.65 to 3.00. The valence 
orbitals so become of a comparable size. This

-  20 -



theory has subsequently been refined [28] and 
later in this study will be closely examined.
The following observation might however be made 
at this point.

That the orbitals possessed by a free atom 
may bear but a slight resemblance to the orbitals 
of that atom when a constituent of a molecule 
may be recognised in the early studies upon the 
hydrogen molecule and its positive ion. In their 
calculation on Hg+, Finkelstein and Horowitz 
treated the nuclear charge as a variable parameter 
to be determined by minimising the molecular 
energy. At the equilibrium bond length,the nuclear 
charge was found to be 1.228,corresponding to a 
contraction of the Is orbital in the molecule as 
compared with the free atom. Since there is only 
one electron present this effect is entirely due 
to the second nucleus.

Following RosenTs example Dickinson 
introduced a degree of 2p character into the wave 
function for the positive ion.

< § =  VJ,|S A U )  +  +

- 21 -



At the equilibrium internuclear distance of 1.06 S., 
the energy is minimised for Z(ls) = 1.247,
Z(2p) = 2.868 and o = 0.145. The corresponding 
molecular energy differs from the observed value 
for Hg+ by only 0.05 e.v. as compared with 0.53 e.v. 
when the 2p terms are omitted. In the ion the 2p 
function has contracted to such an extent that the 
maximum in the distribution function occurs at
0.74 which is within the H - H distance. For the 
free hydrogen atom the 2p orbital is diffuse,with 
a maximum lying at 2.12 S. The inclusion of the 
2p orbital which is well separated in energy from 
the Is orbital,is seen to be very important,yet 
to describe the bond as an sp hybrid would seem 
quite improper. This is a point to which I shall 
return.

Charge Conjecture
The discussion so far has pertained to the 

use of outer d - orbitals in o binding. As Craig et 
alia [22] illustrate, d-orbitals may also engage 
in x bonding. Here the diffuse character of the 
d-orbital permits the orbital to overlie a px 
orbital upon an adjacent atom as depicted.



I

Indeed the overlap may be quite substantial. For 
a C - S bond,with the orbital exponent of C(2px) 
twice that of S(3dx),the overlap is of the order 
of 0*4. Although this is large,since the charge is 
not concentrated in the region between the nuclei, 
it would be misleading to equate this high degree 
of overlap with the formation of an exceptionally 
strong bond, dx - px bonding might so be expected 
to occur in thiophene,as was originally suggested 
by Schomaker [29] and later substantiated by the 
molecular orbital calculations of Longuet-Higgins[30] 
and most recently Bielefeld and Fitts [31]•

It was pointed out by Jaffe [32], Bergson[33] 
and others that for the neutral atom,Slater1s rules 
indicate that the effective nuclear charge of the 
d orbital which might be involved in % bonding 
is zero. They assert that for the formation of 
px - dx bonding it is necessary for the second
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row atom to carry a positive charge,in order that 
may increase,and that atoms without such 

a charge cannot be expected to form px - dx bonds. 
This is called here,the charge conjecture. Jaffe 
proceeds to estimate Ze^(3d) in various molecules 
by evaluating the positive charge on the central 
atom with the aid of Pauling’s relation for the 
ionic character of a bond.

The sulphur atom in thiophene may bear a 
positive charge if bond structures other than I 
are admitted.

Similarly px - dx bonding could be involved in the 
S - 0 bond of sulphoxides and sulphones.

i



Moffit’s pioneer calculations tend to support
such a suggestion [34], The manner in which the
d 2 2 and d 2 orbitals of the second row elementsx - y z
might engage in x bonding with px oxygen orbitals, 
in their oxanions is illustrated in Figure 4 [35].
It also seems likely that px - dx bonding might be 
present in the phosphonitrilic and thiazyl halides[36].

ci

S
c\

P.
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Estimation of the Effective Nuclear Charge Z_^(3d).sn
To the present,the values employed for 

Ze^(3d),in for example overlap integrals,have 
been obtained by hopeful conjecture. There are no 
self consistent field wave functions available for 
the second row atoms in excited configurations. 
Several years ago McDougal calculated some Hartree 
functions for Si4+ [37] and Donley for Si3+ and Si^* 
[38].Boys quotes eight functions for various 
configurations of S and Cl but they only involve 
38 and 3p orbitals [39]. More recently Watson has 
presented a set of accurate analytic Hartree-Fock 
functions for the ground states of Si, P, S,and Cl[40]

As well as Jaffe others have contended that 
in their original form Slater’s rules are 
inadequate for treating outer d electrons,in that 
they underestimate the extent to which the d orbital 
penetrates inner orbitals. This is,one may recall, 
contrary to the conclusion reached by Craig et alia.

Following Angus [41], Syrkin and Belov [42] 
modified Slater’s rules with respect to the d 
electron,by ascribing a screening number of 0.85 
instead of unity to orbitals of the same principal 
quantum number as the d orbital. On this basis
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Zeff(3d) for the d orbital of S(sp3d2) is 2.25. 
Cruickshank attempted to obtain an estimate of 
ZQ^f(3d) from self consistent field calculations 
on the transition metal ions [35]. Here again it 
appeared that by Slater’s rules Ze^(3d) is highly 
underestimated. Mulliken had made similar observations 
[43].

Of late,Slater’s rules have been superceeded
by others based on analytical Hartree Fock
calculations for the ground states of atoms [44].

3 2Burns* rules indicate Ze^(3d) for S(sp d ) to
be 3.4 • Clearly the size to be attributed to the

3 2 \3d orbital of S ih S(sp d ) is an open choice 
within a possible range of 1.40 X to 2.89 X for

To describe this situation as unsatisfactorymax
is an understatement.

The Energy of the d Orbital
Although considerable study has been made 

of the relative sizes of the valence orbitals for 
second row elements,little has ever been said 
about their energies. Indeed the third requirement 
for hybrid formation usually has been glossed over.
The principal reason for this neglect is that very 
little information concerning the energy of
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d orbitals may be gleaned from experimental sources. 
This is unfortunate but not irremediable.

Arndt and Eistert,better known for their 
organic syntheses,propagated the view that since 
argon is chemically inert,the energy required to 
promote an electron to a 3d orbital is probably 
prohibitive,and in consequence sulphur is unlikely 
to expand its valence shell [45]. Employing Moore1s 
valuable compilation of spectroscopic data [46], 
Jaffe ascertained the orbital energies for some 
second row elements [47]. These are collated in 
Table I.

Table I
Orbital Energies of Second Row Elements.

2p 3s 3p 3d 4s
Si 98 13.6 8.15 2.54 3.23
P 128 17.5 11.0 2.25 4.04
S 162 20.2 10.4 1.94 3.83
Cl 201 24.6 13.0 _ 4.09
The energy required to promote a 3s electron in 
sulphur to the 3d level is seen to be quite 
substantial,amounting to 18.26 e.v. In considering 

these values one should remember they refer to d?' 

configurations,as in SCs^pf ->S(s^p3d^),and it is
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assumed the excitation process is adiabatic,
implying that no account is taken of any
reorganisation which may occur on promotion* In
this sense they are really pseudo - orbital energies*
Some atomic energy levels for sulphur and its ions
are shown in Figure 5. The levels on the left
refer to the lowest term for each configuration,
the ionisation potential being quoted in each case*
For example the energy required to ionise the p
electron of S(s2p4) -> S+(s2p3) is 10.4 e.v.
whilst the electron affinity of S(s^p^) -> S~(s2p^)
is 2*1 e.v. On the right of the figure are pseudo-
orbital energies for the 3d, 4p and 4s orbitals of
sulphur* All numbers are relative to the next zero
above. It may be seen that although for neutral
sulphur the energy of a d orbital is very small,
- 1.9 e.v.,as sulphur acquires a positive charge,
it increases quite markedly,being -9.7e.v. inS 
and -17.2 in S2+.

Conclusion
When viewed against the backcloth of a 

century*8 speculation current ideas on bonding 
stand out as being highly sophisticated. 
Superficially, the theory appears to be satisfactory
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Fig. 5. Ionisation potentials and pseudo orbital 
energies for sulphur and its ions(e.v,). Each 
number is relative to the next zero level above. 
Thus S+(s2p3) is 23.4 e.v. below S2+(s2p2).

S 3+ s2p  4 7 . 3  0-
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. 1 4 . 0  4 P  
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in that it provides a simple lucid language in 
which many chemical facts may he interpreted. Yet 
is also apparent that it is founded on quicksands. 
Clearly it would he highly desirable to establish 
whether d orbitals of second row elements are 
capable of assuming a role in molecular binding. 
This need is all the more pressing in view of
recent opinions that they are totally unsuitable
for such a task. A view based on no more facts 
than have been given here.[48]. The studies now 
to be presented are an attempt to clarify this 
situation. If they had been made long ago,as 
indeed they should,much ambiguity would have been 
dispelled,and time saved. That they have been so 
long in appearing is due to the fact that they are
perhaps more arduous than erudite.

The core of this thesis is the calculation 
and interpretation of numerical self consistent 
field wave functions for the second row atoms 
Si, P, S, Cl,and Ar in configurations which involve 
d orbitals. After considering the self consistent 
field equations and the methods for their solution, 

the concept of the valence state is analysed. 
Results of self consistent field calculations are
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presented and these lead one to a study of the 
energies of d orbitals. The theory of d orbital 
contraction is examined. Finally the role of 
d orbitals in the bonding of second row elements 
is reassessed. However let us now turn our attention 
to the self consistent field equations.
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CHAPTER II

THE THEORY OF THE SELF CONSISTENT FIELD

I have no hesitation in saying that,from a 
philosophical point of view,I do not believe 
in the actual existence of atoms,taking the 
word in its literal signification of 
indivisible particles of matter. I rather 
expect that we shall someday find,for what 
we now call atoms,a mathematico-meehanical 
explanation which will render an account of 
atomic weights,of atomicity and of numerous 
other properties of so called atoms.

F. A. Kekule 1867.

Introduction
An exact solution of the wave equation for 

a system of n electrons,excepting hydrogen,is as 
yet unattainable. One of the most successful 
approaches to an approximate solution has been 
provided by the self consistent field method. The
germs of this theory may be discerned in pre wave 
mechanical discussions of atomic structure but in 
its present form it originates from Hartree*s



paper of 1928 [49].
Hartree approximates the n electron wave 

function ty(r) "by a single product of n one electron 
functions (p (nl;r) each electron being assumed to 
move in a central field,of potential V(r),produced 
by the nucleus and the spherically averaged charge 
distribution of the other electrons.

\j/(r) »  <p(nl;Vj) ..........^(nlji^
where

<J> (nijp) = Eializl.
As earlier S^m(£ , <$.) is a spherical harmonic of 
degree 1 and order m. P(nl;r),the radial wave
function is a solution of the equation

2
[^2 + 2V(r) - enl- ] p(nl;r)= 0

One may note that P(nl;r) = r.R(nl;r). Prom some 
initial value for V(r) this equation is solved for 
all P(nl;r) subject to the boundary conditions 
P(nl;0) =s 0, P(nl;r) 0 as r ^ . With these 
functions a new potential is evaluated and the 
process repeated until on successive iterations 
the field and wave functions remain unaltered.
The field is then said to be self consistent. 
Hartree1s procedure was critically examined by 
Gaunt[50],and Slater[51] demonstrated that the
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self consistent field equations may be derived

by applying the variation method.
The most serious deficiency of the single 

product wave function is that it does not satisfy 
the Exclusion Principle or the Principle of Identity 
of Electrons. Consider the Is 2p configuration of 
helium,assuming an approximate wave function has 
been obtained by Hartree’s method.

i|i(x) = ip (ls;r) f (2p;r) ual.iip2 
The co-ordinate x = (r,uj consists of a space 
co-ordinate r,and a spin co-ordinate u. This 
really represents a set of twenty four degenerate 
functions since there are three 2p orbitals, 
corresponding to m = +1, 0, -1 and each electron 
may possess a spin of - Further by interchanging 
the co-ordinates of each electron this number of 
functions is doubled,producing 24 functions in all. 
The Pauli Exclusion principle requires that the 
total wave function should be antisymmetric with 
respect to the interchange of any pair of electrons. 
Consequently half of the 24 functions may be 
discarded since they are symmetric under such an 
operation.

A wave function which fulfils the requirements 
of the Exclusion Principle and the Principle of



Identity of Electrons may be obtained from the 
Hartree product by employing the antisymmetrisation 
operator A. 1

p

where p is the parity of the permutation and the 
sum extends over all permutations.

This wave function,first introduced by Dirac [52] 
was subsequently widely employed by Slater [53] 
whose name it nows bears. Using this determinantal 
wave function as a starting point,Pock[54]and 
independantly Dirac [55] derived the self consistent 
field equations including exchange,or more briefly 
the Hartree-Fock equations. Lennard-Jones soon 
presented a more elegant analysis by way of the 
density matrix[56]. Here but a brief outline of 
the original formulation is given,to introduce the 
notation of the self consistent field equations.

A = (nl) 2£(-1)p.P

$ (x) = A.4>, (nl;£)ual <j>n(nl;rn)Upn

$ (x) =* (ni)2f (-1)P.P . <f. (nljrpu^--- ^(ni;i>n)
<£ (x) = (nl;r1)ual ̂ ( n l j ^ ) ^ . .

i. ‘PSnl’r2)na 2 ^ nl’r2)u^2"’ (



This follows Hartree in 'The Calculation of Atomic 
Structures'[57].

The Self Consistent Field Equations
The Hartree-Fock equations are obtained by 

applying the variation principle to the total 
energy of an atom,whose total wave function is 
approximated by a Slater determinant or a linear 
combination of such determinants. On integrating 
over the angular variables,the total energy 
E s- J d^H <5 dT may be expressed in terms of radial 
integrals as

E = £ g(nl)I(m) +> | q(nl)[g(nl) -l]5>0(nl,nl)

+ £ q.(nl)q.(n'lI )P (nl,n'l')
- £ A^F^nljnl) - £ 311,^G^(nl,n,l')

n U K  • l i ,  t<

The radial integrals occurring in this expression 
are defined by / c°

I(nl) = jpCnljr)!^ +2f  P(nl;r)dr
, O'1 ̂ o'*

(nl,n*l*) =-j j P^(nl;r)P2(n*l*;s)U, (r,s)drds
J O Jo

Gk(nl,n1l*) | P(nl;r)P(n'l' ;r)Û .(r,s) .
P(nl;s)P(n'l';s)drds 

Uk(r,s) = rk/ sk+1 if r^s
  pk / k+1 . v— 8 / r if r> s
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The coefficients and B^lt^ ma^ 136 eva^ua‘te -̂

and hk(lm^,lfmlt$• Their values depend upon which 
configuration and multiplet of an atom is "being 
considered. One may note that for a configuration 
involving two or more incomplete groups nl, nfl* 
the expression for E carries an additional term 

C^,^PJC(nl>n,l,). By demanding that the energy
E shall be a minimum for small variations in the 
radial functions P(nl;r), subject to the 
orthonormality constraints

Jc P(nl;r) PCn'l* ;r) =. 0 nl / nflf
the Hartree-Fock equations are obtained. They are 
of the form

where Y(nljr) » Z - £ q(nl)Y_(nl,nl;r)n < O
+Yo(nl,nl;r) iA^Y^nX.nljp)

from tables of Slater coefficients, a^lm^l'm^i)

1

X(nl;r) * - B^.^Cnl.n'l' ;r)P(n’l' ;r)
n ‘ JL

and YjE(nl,n,l* ; r )  »  r j  U fc( r , s)P(nl;s)P(nf l1 ;s)ds
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If the exchange terms are eliminated by placing 
X'(nl;r) = 0 the equations reduce to those for the 
Hartree wave function but here the charge distribution 
has not been spherically averaged. On omitting 
terms with k > 0 one naturally obtains the
conventional form for Hartree1s equations.
r do 2Y(nl;r) _ i i i + i ) l p ( n l .r ) _  01 dr^ + r nl,nl 2 - ur
Due to the presence of the exchange terms the 
solution of the Hartree-Fock equations is somewhat 
arduous,as compared with the relative ease with 
which the Hartree equations may be solved. In order 
to retain this simplicity of solution and yet 
preserve the essential characteristics of the 
Hartree-Fock functions,Slater proposed that the 
exchange potentials,which clearly differ for each 
wave function,might be replaced by a single 
potential which is the same for all the wave 
functions and formed by suitably averaging the 
individual exchange potentials [58]. If it is 
further assumed that the average exchange potential 
depends only on the charge density in the region 
of a particular electron,the average exchange 
potential may be identified with that obtained 
by Bloch for a free electron gas* This potential
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has the form ^

Lchange(p) = *p] 3
where p(r) the spherically averaged total charge 
density is given by

p(r) =4ir2 *£P(nl;r)2

When Xxchange^ is inc0I*P0I*ate<i in the self- 
consistent field equations in place of the proper
exchange terms,the equations are known as the
Hartree-Fock-Slater equations,and are of the form
[ A  + Mnlir) + v  ̂ _ _ia±li|p(nl;l,)=0Ldr r excnange nl,nl ^2 1 ' ,
At small and at large distances from the nucleus
these equations are not entirely satisfactory.
Latter[59] attempted to ensure that the correct
asymptotic behaviour is observed at large values
of r,where the total potential should naturally
tend to - Z/r, by switching to this potential

V(r) - Z/r
at that value of r when v = _ — „r exchange r

Of the self consistent field equations,the
Hartree-Fock equations provide the best approximate
solutions of the wave equation for an atomic
system. They ate approximate in that the interaction

e2
between pairs of electrons, — cannot be exactly

id
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represented by a sum of one particle interactions. 
Were r .. to equal zero the electron inter-

X

action would become infinite. Consequently electrons 
prefer to keep apart from each other. The Hartree- 
Fock method allows for this in that electrons of 
the same spin to the one being considered,are 
caused to move away from the neighbourhood of this 
particular electron,through the operation of the 
exclusion principle. It is as if one unit of 
charge is removed from the system,at the position 
of the electron under consideration,leaving a 
positive hole. This is indeed referred to as the 
Fermi hole. The principle feature of the Hartree- 
Fock-Slater method is to replace the Fermi holes
of each electron,which are different,by a spherical

— 1/3hole of radius proportional to p ' ,for every 
electron.

Since the electrons of like spin remain at
further distances from the electron considered in
the Hartree-Fock method,as compared with the Hartree
method,which takes no account of the Fermi hole,

2
the coulomb repulsion — is less in the Hartree- 

Fock approach,than in the Hartree. The potential 
energy is therefore correspondingly lower in the 
former method. This effect will be reflected in
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the shape of the wave functions,and the orbital 
energies,obtained by the two methods. The Hartree- 
Fock wave functions should be more compact than 
the Hartree functions with lower orbital energies, 
whilst Hatree-Fock£Slater functions should occupy 
an intermediate position. As will be shown the 
difference between Hartree and Hartree-Fock wave 
functions for the 3d orbitals of the second row 
elements is far greater than might ever have been 
anticipated.

The Solution of the Self Consistent Field Equations,
At the present time there are two general 

methods for solving the self consistent field 
equations. One of these,which will not concern us 
here,consists in expanding the unknown wave 
function jzT in terms of a set of linearly 
independent basis functions •**^m

6 . = c . .y .1 *3*3
and determining the coefficients c ^  by solving the 
appropriate secular equation. The accuracy with 
which the resulting set of analytical wave functions 
match the true Hartree-Fock solutions clearly 
depends on the choice of the basis set,but even 
with a minimal basis set it is high, Watson[60]
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Glementi [61] and others utilising the original 
techniques of Roothaan [62],have generated tables 
of analytic Hartree-Fock functions for most of 
the elements and their ions in ground state 
configurations.

The second method consists in solving the 
self consistent field equations directly by a 
numerical approach. Hartree in his first paper [49] 
presented a detailled outline of the numerical 
procedure required to obtain a solution of the 
self consistent field equations,without exchange, 
and later extended this to equations with exchange. 
The method is admirably delineated in his book,to 
which reference has been made earlier. Applications 
of the numerical solution of the self consistent 
field equations,prior to 1950 have also been 
surveyed by Hartree [63],whilst a bibliography 
up to 1958 is annotated by Slater[64]. It is 
interesting to note that it was not until September 
1958 that a truely self consistent solution of 
the Hartree-Fock equations for an open 3d shell 
was reported. This was by Vforsley[65] for 
V2+(3s23p63d3).

-  42 -



The numerical solution of the Sslf consistent 
field equations may he divided into three stages:

(1) The evaluation and tabulation of the 
potential functions Y(nl;r) and X(nl;r).

(2) The integration of each equation,subject 
to the appropriate boundary conditions.

(3) The repetition of these two processes 
until self consistency is attained to the 
required accuracy.

(l) Evaluation of Y(nl;r) and X(nl;r).
The calculation commences by estimating a 

set of initial wave functions. These are often taken 
to be of a hydrogenic type with suitably selected 
screening numbers. To obtain Y(nl;r) and X(nl;r) it 
is necessary to evaluate the function^ from which 
they are compounded,namely Yk(nl,n’lf;r). As 
Hartree shows (section 3.5) this may be defined as 
a solution of a pair of equations which involve an 
auxiliary function Zk(nl,n’1';r). These are

g  = P(nl;r) P(n’l';r) - | Z
dY - _ (2k+l) „ k+1 y

and dF r z + r Y
with the boundary conditions Z(0) = 0 and
Yk(r) - Zk(r) -> 0 as r ^ ^
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On changing the variable to t = log r the equationsw
assume the form

* ay + fji) ----------- (a)
where a is a constant and f(x) is a known function 

= -kZ + rP(nl;r) P(nfl!;r)

H  = (k+l)Y - (2k+l)Z 
If a< 0 this equation is stable for integrating 
outwards from x = 0 and consequently the first 
equation may be solved for Z by integrating outwards 
to the boundary from a small value of r. A starting 
value may be obtained from the relation Z(r)

Z(r) - r.P(nl;r) P(nfl’ ;r) jpnr ___n _
' ii+i'ik+s)—  for sma11 r

These values for Z may then be used to solve the 
second equation which is stable to integration 
inwards from the boundary condition Z(r) = Y(r).
The solution of equation (a) is given by 

J  (e-«y) = e-« f(x)
whence using a central difference formula to 
evaluate the integral ( e-ax f(x) dx one obtains 
the result x

y(x+h) = Ay(x) + Bf(x-h) + Cf(x) + Df(x+h)
+Ef(x+2h) .....

„ vn  >» 2 ah _ 13h ah
where A = eah, b= 24 6 9 ” 24“ e 9

D = 13h/24, and E = "| e_ah .
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Substituting a = k the outward integration is 
readily accomplished,whilst with a = k+1 and the 
corresponding relation for y(x-h) the inward 
integration is performed. Two features should he 
noted. Firstly,this method of integration differs 
from that suggested by Hartree,in that a change in 
variable is made. This leads to a very swift and 
accurate integration procedure for obtaining 
Y(nl;r) and X(nl;r). For a configuration comprising 
of several groups this is a major part of the total 
calculation. Secondly,for the self consistent field 
equations without exchange there are no terms with 
k > 0 and the problem reduces to solving Poisson*s

which presents no jff difficulty.

(2) The integration of the equations.
The problem is to obtain a solution of the equation

where Y(nl;r) and X(nl;r) are known and snl is a 
parameter to be determined such that the wave 
functions satisfy the boundary conditions P(0)=P(c^)=0

equation dSY(nl,n111;r) _ P(nl;r)P(ntlt:r)

and normality requirement
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Orthogonality

It may be recalled that X*(nl;r) contains terms 
involving the off diagonal parameters n*i* 
which appear through the constraint that the wave 
functions be orthogonal. For a configuration of 
complete groups it may be shown that the wave 
functions are necessarily orthogonal and in 
consequence a satisfactory solution is obtained by 
placing enl n ,̂  = Ĉ Mfhen the groups are incomplete,

enl nl may ad3’us'te<i tile following way.
Consider P(nl;r) and P(n!l;r) to have been obtained 
as solutions to the equations 

I J  * - *„! - » ^ ] P ( n X , r )  - Knl.r)

r
*X(n'l;r)+i .P(nl)

V l
With some slight manipulation one may obtain as

_ »nl-Vl ~^rY(nI;r)-Y(n'l;p)]P(nl)P(ni)
«  ' t ^ - v i )  JJ-

+ P(nl)x(n'l) - P(n'l)X(nl)l dr 
Any required alteration in ê .. as the calculation 
proceeds may so be estimated* When there are a 
number of open groups of the same l,the procedure
becomes rather complex and to the present no 
satisfactory manner of adjusting all the off diagonal
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parameters involved,has been devised* Also for 
configurations where q ^  = q.n t̂  this method is 
clearly invalid. An example of such an anomaly is 
provided by helium in the excited state ls’Ss1* ^S[66].

The integration process
For small values of r the term in —2 dominatesr

in the radial equation,which becomes
sZeLi.) .  M i ± i )  P ( r )  «  o
dr r;<

1+1This equation has two solutions P(r) = r
and r . Since P(0) =: 0 only the former solution
is acceptable. At large values of r, P(r) behaves
as exp (-r flT-,). Between these two limits P(r) is n nj.
sinusoidal in character. This suggests that for 
stability in integration one should integrate 
outwards from small r,inwards from the boundary and 
match the two solutions at an intermediate point.

The choice of the method for performing the 
integration is important. Pour of the more common 
difference methods have been investigated by Proese 
[67]. She found that of Numero^ to be the most 
efficient and this has been employed here. Numero^/’ s 
method is based on the relation between the second 
derivative f’’ of a function and its second difference
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&2fd “ h2[ fj' + l l 62f>3,]
where h is the interval length. In a version of a 
self consistent program of my own, I used the 
integration procedure exemplified by Hartree.
[section 4.4]. This was quite satisfactory,but 
requires one to guess a second difference as the 
integration proceeds. Although quite realisable, 
a computer takes considerable more time fto guess* 
than does a human agent^the extensive use of this 
method is not recommended.

a.rt
The outward integrations^initiated by 

utilising a series expansion for P(r)
P(r) = Ar1+1[l- (f+1)r + Br2 + Cr3]

where B  _* [ 2z2 - 1(1+1)( 2 V q - e n l )] / 2(21+3)(1+1)

804 C = Z[2Z2 - (31+4)(2 V q -  e )] / 6(1+1)(1+2)(21+3) 
V0 is the potential at the nucleus due to all the 
electrons of the atom,other than the one under

The parameter A = Lt ( 1+1 ) is directly
r-> 0 r

related to the initial slope of the wave function 
and is a means by which the normality condition 
is maintained during the course of a calculation. 
Often its value is required quite accurately and
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for this purpose the radial equation is transformed 
into two first order equations for integration at 
small r* On making the substitution

s(r) s P(nl;r) 
r1+1

9 . M = f £  - P(nl;r)]. 4dr r * v / j • ^1+1
the radial equation may be written as 

ds
at - r-i

d t  = r̂enl- 2Y(ia>1')]8 “ 2(1+1) q. + r.X^ £ r^r
where as previously t=rlog (r). A  is now accessible6
as s(o). This pair of equations are integrated
outwards until

iii+ii < 2Y 
r

when P(r) is no longer of the form r1+\
The integration continues with the complete 

equation
[*r.Y(nl;r)- e^.r2-(l+§)2]P(nl;r)

dt
= r3,/2. X(nl;r)

in which the substitution P(t) = P(r).r-^ 2 has
been made to eliminate the first derivative cLP/dt*
On reaching a point r(j) where

2rY(nl;r) - e^.r2 - (1+|)2< 0 
the integration is carried on for just two more
intervals r(jl),r(j2).The inward integration is 
now commenced from an estimated value of A. for PC**̂ )
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at the boundary,and performed until r(j) is reached. 
When P(r,jl) and P(r,j2) are the same for the 
outward and inward integrations the matching is 
complete.

A match of the outward and inward integrations 
together with the maintenance of normality is 
accomplished by adjusting the parameters 
and X. At this stage the solution is far simpler 
for the equations without exchange for since they 
are homogeneous A and X become scaling factors and 
only s ^  needs to be corrected.

In the early stages of the outward integration 
enl a(i3u8ted *>y a simple doubling or halfing 
process so that the required number of nodes for 
the wave function have been passed and the function 
is decreasing,by the time r(j) is reached. There 
are a number of iterative schemes for adjusting 
the then current values of en^ to ensure a smooth 
join is obtained. Proese discusses the relative 
merits of those due to Ridley [68] and Cooley[69].
I found the latter method to be very efficient. This 
simplycorrects the eigenvalue eni ^y the amount 
that Numerous equation remains unsatisfied at the 
join r(j).
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ost&iani

i =s s + Rese
Res = 62y0 - h2[ y”  + fg^o ]

Mayers has a different scheme by which e,A,and X 
maybe simultaneously corrected[70]. This too is 
very effective; provided A has been estimated with 
reasonable accuracy it can force convergence from 
estimates of enl and X which are in error by a 
factor of 100 or more.

It may be noted that if all the estimates 
for the three parameters are very bad,there is at 
the present no satisfactory systematic procedure 
for their correction.

(3) The self consistent solutions.
Having obtained a solution of the radial equation 
for a particular electron one now needs to consider 
the most direct route to self consistency. This is 
primarily a matter where experience comes to the
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fore,particularl# when dealing with 3d orbitals 
which are highly sensitive and usually require 
several iterations to reach self consistency* Two 
points deserve to be mentioned.

It is usually more effective to attain self
consistency of the outermost group,before considering
the inner groups at all. The inner groups are then
taken singly,moving back to the outermost at the

3 2end of each cycle. For example in treating S(sp d )
3d is iterated to self consistency, then 3p, 
followed by 3d,until P(3d) and P(3p) are self 
consistent. The 3s orbital is then taken followed 
by the core orbitals,which usually converge quite 
swiftly. At the beginning of the process,time is 
conserved if only a low self consistency criterion 
is imposed. For example one might dictate that 
self consistency is attained when the results differ 
by 0.1 . When all the groups are self consistent 
to this accuracy,their refinement to a higher 
degree of self consistency is extremely fast*

On commencing the calculation from an initial 
estimated wave function,it is not generally 
satisfactory,for outer orbitals,to employ the 
corresponding solution as the input for the next
iteration. A simple device for improving estimates
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g
is to compound the new estimate P (nl;r) from the 
original one P^(nl;r) amd the corresponding 
solution Pso^(nl;r) by way of the relation

P2(nl;r) = (l-y) Psol(nl;r) + ypHnljr)
When y = 0 the new input is provided by £he 
preceeding solutions, which is satisfactory for 
core orbitals. For outer orbitals y m&y assume 
values up to as high as 0.5 .

A method which I have found to work very well 
for outer orbitals involves the input and output 
of two successive iterations, In(l), In(2$, Out(l), 
and 0ut(2). The input for the next iteration In(3) 
is taken as

In(3) = Out(l) + 0[Out(2) - Out(l)]
, q Out(1) - In(l)_______
where p - [Out(lj - In(l)J - L0ut(2) - In(2)]

Computer Programmes
Four main programmes have been used to obtain 

the self consistent field functions which are 
presented in this study. The Hartree-Fock wave 
functions were calculated with the user code 
programme written by D.F.Mayers for the Mercury 
computer at Oxford. This has since been superceeded, 
and is no longer available. Hartree-Fock-Slater 
wave functions have been obtained by adapting the 
IBM 7090 Program of Hermann and Skilmann[7l] to
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meet the requirements of the Atlas Computer at 
S.R.C. Harwell. The modifications required to 
ensure the reliable running of this Fortran 
programme were trivial,but extended over a considerable 
time period due to the unknown and changing features 
of the machine.

Hartree functions without exchange have been 
generated from two programmes written in ALGOL for 
the English Electric KDF 9. One of these was written 
by myself,the other which appeared later was devised 
by D.F.Mayers. I chose to continue with the letter 
for it incorporated a more accurate integration $ 
procedure than my own and was,generally,not so 
coarsely hewn. It has however as yet no ancillary 
features and provides but a set of self consistent 
functions on a logarithmic grid together with the 
parameters and A. This output is therefore 
employed as dfcta to another programme which by 
interpolation produces a set of functions on an 
evenly spaced grid,and calculates such material 
as the energy of the configuration,the mean radii 
of the functions,the effective nuclear charges at 
the origin,and performs an analysis of the orbital 
energies•

It might be added that except where convergence
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difficulties are met,the calculation of a^/second 
row element including d orbitals,using the Kidsgrove 
compiler,without optimiser,requires of the order 
- & minutes computing time. On Atlas - 3 minutes 

is the norm.
Multiplet Structure

In the opening paragraph's it was seen that 
the simple product of one electron functions 
employed hy Hartree really represents a set of 
degenerate wave functions. Such a set of functions 
and their energy level is known as a configuration.
In general a configuration is 2n(21+l) ...(2!n+l) 
degenerate hut of this set only a few functions,
^2(21+l)c conform to the exclusion principle. 

qnl 3 2For example of the 14,500 functions for sp d only 
1,800 satisfy the exclusion principle.

As was also remarked earlier, the linch pin 
of the self consistent method is the replacement of 
the interaction between two electrons by a sum of 
one particle interactions. The resulting Hamiltonian 
so becomes invariant under the seperate rotation of 
the co-ordinates of each electron and thejbne electron 
functions are of a central field type,transforming 
as the representation D* of the rotation group.
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However the true Hamiltonian is only invariant
under a simultaneous transformation of the electron
co-ordinates,though since spin orbit coupling is
excluded,the space and spin co-ordinates may "be
treated seperately. The wave function $ will so
transform as

1 1 1  
D 1 x D 2 x D 3 ... =£DL

under a rotation of all of the space co-ordinates
and as n ^

D8 x D8 .... = DS
under a rotation of the spin co-ordinates* Further,
it may be seen that the degeneracy of the
configuration is lo7/ered,by the emergence of a series
of multiplets,or terms,each of which is (2S+l)(2L+l)
degenerate.

Let us consider the terms which arise from
3 2an sp d configuration. This is achieved in the

q
customary manner by determining the terms for s, p ,

pand d configurations separately and then coupling
them together to obtain those terms which evolve 

3 2ffom the sp d configuration. Russell-Saunders 
coupling is assumed to be applicable. For example 
the configuration p represents 216 states of equal 
energy from which twenty one terms could arise.
Through the operation of the exclusion principle
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this is reduced to twenty states and three terms.
The permissible terms may be found in the manner
originally described by Slater[53].

The various possible assignments of the
quantum numbers m^ and mg for the three p electrons
which are in accord with Pauli*s principle are
listed in Table 2. The notation (1% 1~, G*)

1implies that electron 1 has » +1, mg * ;
electron 2 ,1̂  at +1, mg * -g ; and for electron 3,

= °, ma = +!•
Table 2

*1

2

1

0

M + ” + ~s 2 * 2

(1+,1",0+)
(l+,0+,0-),(l-,-l+,l+)

(l+,0+,-l+) (X+,0+ ,-l“),(l+,0_,-1+)
(l-,0+,-l+)

This is but a segment of the complete table which
1 3is naturally repeated for Mg « -g, -g and

Mĵ  * -1, -2.

Commencing with the state (l+, 1 %  0+),this
2clearly originates from a D term. Such a term is 

ten fold degemerate and the other nine states 
associated with this term may be selected from the
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central section of the tahle from = +1 to -2
and M and There remains one state with MT= +1 s 2 2 L
and Mg = indicating the pres^ence of the six

2fold degenerate term P. Pour states are left on 
unaccounted, and these are seen to "belong to a

4quartet, S. Due to electron interaction, the
gconfiguration p ,accordingly splits into three terms

Similarly it may "be shown that the configuration
2 3 3 1 1 1d generates five terms, D, P, G, D, and S»

When these two sets are coupled and the result coupled
2 1 with the doublet S term of the s configuration

110 terms are obtained, represinting in all the 1,800
states mentioned previously,for the configuration 
3 2sp d . They are:

21S, 71P, s1!), 8^, 3 ^

43S, 113P, 133D, 123F, 83G, 43H

25S, 55P,

7P,

55D, 5bF,

7f .

35G, 5h .

Several terms are seen to occur more than once. 
Por example there are two ^S terms. The difference 
between them may be represented schematically in a 
familar way.
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s p d
rô  0 +1 0 “1 +2 +1 0 ~"1 “2 •

'I l- 1 l 1 b

'I I 1 b  *1 I'/
In such circumstances the derivation of the self 
consistent field equations is complicated. Aterm 
chosen for study should preferably be unique.

3 2When faced with this host of terms for S(sp d ) 
it is natural to ask which are pertinent to a study 
of the shape and energy of the d orbital. In an 
attempt to find a basis for making a suitable choice 
let us now consider the concept of the valence state.

v
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CHAPTER I I I

THE CONCEPT OP THE VALENCE STATE

It is rumoured that the group pest is 
gradually being cut out of quantum physics.

H. Weyl 1928.

Introduction
The purpose of this chapter is twofold. 

Firstly, I wish to show what meaning is to be
attached to statements of the form ’in SF^ the

3 2sulphur atom is sp d hybridised1 and secondly to 
find which of the 110 terms of this configuration 
participate in the valence state of sulphur in 
SFg. The 1 valence atate* is a term which has been 
woven into many chemical discussions,so simply, 
that when the fabric of the argument is viewed 
from a distance,its presence is hardly discernible. 
On closer scrutiny it emerges as a barbed and 
elusive concept. Many semi-empirical molecular 
orbital calculations refer their parameters to 
the valence state,yet the concept of the valence 
state has been defined only in valence bond theory. 
Indeed its very definition seems to have
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presented difficulty..

The Valence State of Carbon in Methane.
Referring to the carbon atom in methane,

Van Vleck states that ’the spins of the four 
electrons belonging to sp are assumed paired 
with those of the four atoms attached by the 
carbon . Such a condition of the carbon atom we 
may conveniently call its valence state It is not 
identical with any one of the six atomic states 
of carbon and is instead to be regarded as a 
linear combination of these*[72]. In the same year 
1934,Mulliken writes ’the term*valence state* 
introduced by Van Vleck,describes a certain 
hypothetical state of interaction of the electrons 
of an atomic electron configuration*. Apparently 
unsatisfied with this as a definition he continues 
*a ’valence state’ is an atom state chosen so as 
to have as nearly as possible the same condition 
of interaction of the atom’s electrons with one 
another,as when the atom is part of a molecule.* 
Yet again in the next sentence *a valence state of 
an atom is one in which the latte^s valence 
electrons behave towards one another as if each

-  60 -



were paired somehow with a valence electron of a
foreign atom,hut not with any valence electron
of the given atom1[73]. With these definitions
only a particular coupling scheme is admitted for
the molecule,that appropriate to perfect electron
pairing. For the carbon atom in methane this is
only one of fourteen possible couplings,and for
the sulphur atom in SF^ one out of 132. The advantage
of such a restriction lies in that the energy of
the atom in the valence state is directly accessible
from the energy expression appropriate to perfect
pairing. For the carbon atom in methane the energy
of the valence state referred to the ground state 
2 2 3(s p , P) is so obtained as

Evs = 1(58) + 3I(3p) + Z  Qi;j - | W i3 
where the spins of the four electrons are taken 
as being entirely independent of each other.
It is sometimes said that since in the valence 
state the spins are random,there is an equal 
chance of the spin of two electrons being parallel 
or oppossed,and hence their exchange integral 
enters the expression weighted by a factor of j|.

More accurately,when the spins are oppossed the 
exchange interaction is + J,associated with a 
singlet state,and when parallel -J referring to
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a triplet state. Since there are four possible 
spin couplings of which three correspond to a
triplet state and one to a singlet the exchange

1 3 1interaction is +^(+J) + j(”J) = -r? J#
Later definitions of the valence state

are more general in character, Pauling writes 
quite succinctly ’the valence state of an atom is 
defined as that state in which it has the same
electronic structure as it has in the molecul^[74j,
Coulson ’the valence state is a hypothetical state 
where the valence orbitals are in a condition 
suitable for maximum overlap but in which the spins 
are random’[75]* Kotani ’the valence state of an 
atom in a molecule is the state of this atom 
which is obtained when all the other atoms in 
the molecule are removed to infinite distances, 
subject to the condition that the wave function
of the total electronic system is kept rigidly
fixed [76], Finally,Moffitt ’valence states of atoms 
are defined so that the intra-atomic couplings 
of the spins of their electrons correspond closely 
to those which may occur when the atom becomes part 
of a molecule* [77],

All of these authors are attempting in a
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variety of ways to describe the condition of the 
atom in the molecule. It is not at all clear to 
me. that there should be such an entity,but even 
accepting the postulate,the valence state seems 
to have eluded definition# Consider the original 
statements of Van Vleck and Mulliken# They appear 
to be quite specific and a formula is provided 
from which the valence state energy may be adduced. 
For a carbon atom forming four hybrids the valence 
state energy is given by the expression

Svs = 4 (1 " M.)[F0(2s,2s)-2F0(2s,2p)+F0(2p,2p)]

-|(l9+2n)F2 (2p,2p)+|(-5+2p)G1 (2s,2p) 
where p is a hybridisation parameter. When p ~ j 
the energy refers to a basis of four tetrahedral 
hybrids, h^ h^ h^ h^, each of which is singly 
occuppied. When p = 1 the energy pertains to the 
sp configuration of carbon. Clearly in any 
discussion of valence state it is essential to 
define ones basis.

Let us examine more closely the case of four
1 1 1 1singly occupied equivalent hybrids h^ h^ h^ h^ 

commonly described as V^.
E(h^ hg hg h^) = I(2s)+3l(2p)+3/16 F0 (2s,2s)

+ % 0 (2s,2p)+ TB Po(2P>2p)
Fo(2p,2p)- ■ ~  G, (2s,2p)4  ̂ 4 x
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Table 5

Terra Energies for Configurations of Carbon

3P 2I(2s)+2l(2p)+F (2s,2s)+F (2p,2p)+4F0 (2s,2p) 
-5Pg(2p,2p) - 2G1 (2s,2p)

•*1) 2l(2s)+2l(2p)+P0 (2s,2s)+P0 (2p,2p)+4P0 (2s,2p)
+Pg(2p,2p) - 2G1 (2s,2p)

1S 2l(2 s)+2l(2p)+P0 (2 s,2s)+P0 (2p,2p)+4P0 (2s,2p) 
+10Pg(2p,2p) -2G1 (2a,2p)

5S l(2s)+3l(2p)+3P0 (2p,2p)+3P0(2s,2p) 
-15Pg(2p,2p) - 3G1 (2s,2p$

3D l(2s)+3I(2p)+3P (2p,2p)+3P0 (2s,2p) 
-6Pg(2p,2p)-2G1 (2s,2p)

3P lt2s)+3l(2p)+3P0(2p,2p)+3P0 (2s,2p)-2G1 (2s,2p)

3S l(2B)+3l(2p)+3Po(2p,2p)+3P0(2s,2p) 
-15Fg(2p,2p) + G1(2s,2p)

1D l(2s)+3I(2p)+3P (2p,2p)+3P (2s,2p)-6PCJ(2p,2p)O O m

■̂p l(2s)+3l(2p)+3P (2p,2p)+3P0 (2s,2p)

3P 4l(2p)+6P0 (2p,2p) - 15Pg(2p,2p)

XD 4l(2p)+6P0 (2p,2p) - 9Pg(2p,2p)
1S 41(2p) + 6PQ(2p,2p)



From this expression for the energy it is evident
that the hybrid valence state will involve
configurations of carbon other than sp , since
no term in the latter may possess a contribution

2 2from Fo(2s,2s). The term energies of the s p ,
3 4sp and p configurations of carbon,expressed in

Slater Condon parameters,are contained in Table 3. 
There one can see that Fq(2s,2s) arises from but

2 2the s p configuration,as is only to be expected*
rr

To obtain Fq(2s,2s) and equivalence of the
I(nl) integrals so requires the valence state
energy to be compounded as

t>  3 — 2 2\ 5 -p ,/ 3 \ 3 -p i/  4\
Evs * 16 ^  p ) + 8 E(sp } + 16 E(p }
Further; utilising the theory of the symmetric

permutation group it may be shown that only
specific terms of each configuration will be

3 1involved in the valence state. They are P, D of 
s^p^ and p4 together with ^S, and of sp^* 
Also,as Serber [81] shows,the number of states of 
multiplicity (2S + l) arising from n orbitals is 
nCk - where k = ~ - S* The total number of
states is 2n. Hence in the valence state where the

-  64



spin is random,and all spin possibilities must
be considered,the total weight with respect to
spin of each raultiplet is ^

2
In the present example n=4, whence the

5 9total weight of quintets is -̂5 * triplets and
1 3 5singlets g. There is only one quintet, sp S.

This therefore will appear in a decomposition of
Evs as a sum of spectroscopic terms with the

5coefficient Noting that of the two terms of 
2 2 4s p or p ,the triplet will have three times the 
spin wieght of the singlet,the weightings of all 
of the other terms follows immediately. It is
given by the expression

9 / 2 2  3^v 3 / 2 2
Avs = 64(s P ' P) + 64(s p ' ^

5/ 3 50x 9/ 3 3~x 1/ 3 I^n+15(sp , S) +3g(sP »■ D)+3g(sp , D)
9, 4 3^ 3/ 4 1_n+ 64 (P * P) + 5 4VP , D)

This is just the result obtained in a 
different fashion by Voge[78]. However it is not 
as Voge declares the valence state of Van Vleck 
or the equivalent of the 1:1 element of his 
secular determinant referred to the valence state. 
To reproduce the expression for the valence state
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energy,of Van Vleck quoted earlier,which is 
naturally identical with the 1:1 element,requires
the spectroscopic terms to "be weighted as

„ 9/ 2 2 3/2 2 1^
vs * 64(s P ’ P) + 64(s P ’ D)

+1§(sp3, 5S)+|§(sp3, 3D)-3|(sp3, 1D)

+ 64(p4, 3P) +64^P ’ D)
In this expression the total spin weightings are 
not in the proper proportions*This discrepancy arises

rz
from the spurious inclusion of -g G^(2s,2p) for the
4p configuration in the averaging of the exchange 
terms,which is the keystone of the Van Vleck - 
Mulliken approach. The correct expression for the 
valence state energy is the first and one should 
not be mislead when working within the perfect pairing 
approximation of Van Vleck and Mulliken,into thinking 
that weighting of the terms is at all comparable.

To 1963,no study had been made of the valence 
state for sin atom in an octsihedral environment. A 
group theoretical analysis was therefore performed, 
with the sulphur atom in SP^ as an example.This 
analysis,which now follows,utilises the theory of the 
symmetric permutationgroup. Of late,the symmetric 
group has become popularised in the development of 
Spin Free Quantum Chemistry.The fundamentals are laid 
down however in the works of Weyl[79]and Wigner[80]

1
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whilst its use by Serber[81] should not he overlooked*.

The Valence State of Sulphur in SF^»
It is well known that sulphur hexafluoride 

is a regular octahedron. This high degree of 
symmetry enables one to effect a factorisation of 
the secular determinant for the molecule,quite 
readily. Since a molecule might he expected to 
attain its lowest energy state when the maximum 
number of bonds are formed,our attention might 
justifiably be restricted to that segment of the 
determinant pertaining to singlet states.

In considering the sulphur atom one has to 
take into account the following hybrid configurations

(1 ) *1 4 >4 >4*1
6 1 132

(2 ) h* 4 4 4 6 30 1260

(3) *1
*1
3
*1
4 4 6 90 1260

(4) 4 3 kO4 4 ■j_°
6 20 100

Configuration 1 is unique and will generate 
12 12Cg - singlet states. There are 30
such configurations of the type 2 ,each of which will 
give rise to 42 singlet states,and hence in toto 
1260 singlet states. Similarly each of the 90 
configurations of 3 will produce 14 singlets,
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giving in all 1260 states,whilst the 20 
configurations of type 4 will yield 100 singlets, 
since each gives rise to 5 singlet states. Clearly 
in this form the problem is intractable,as it 
involves a determinant of order 2752. But the state 
of lowest energy for a molecule is usually found 
to be that which is totally symmetric and one is 
naturally lead to consider the totally symmetric 
singlet states. The principles involved in applying 
the theory of the permutation group may be 
illustrated in determining how many of the 132 
singlet states of configuration (l) are totally 
symmetric. Six equivalent hybrids,singly occupied 
are assumed to be provided by the central atom.
These are labelled 2, 4, 6 , 8 , 10, and 12. The 
ligand orbitals,with which the hybrids overlap, 
are numbered 1, 3, 5, 7,9and 11. If a symmetry

operation of the group 0^ 
is now applied these twelve 
integers will be permuted. 
For example the operation
Cg about an axis passing
through orbitals 3 and7 

leads to a new ordering of the integers,as is
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illustrated.

K

This permutation may he expressed concisely in the 
cyclic notation as (1,5)(9,11)(2,6)(10,12)(3)(7) 
(4)(8).The integers in the parentheses,called a 
cycle,are those which have undergone an interchange 
on the operation of Cg. Similarly the operation 
about an axis passing through 1 and 5 induces the 
permutation (3,9,7,11)(4,10,8 ,12)(l)(5)(2)$6 ).

It is to be noted that the permution under 
Cg contains four cycles composed of two elements, 
and four cycles of single elements. The cycles are 
said to be of length two and one respectively. This 
leads to a definition of the partition number.
For a system comprising of n elements the number 
of possible divisions of n into positive integral 
summards is called the partition number of n.Thus 
the permutation under (^represents a partitioning
of the number 12 as

2 + 2 + 2  + 2 + 1 + 1 + 1  + 1 = 12
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whilst under C4 the partition is
4 + 4 + 1  + 1 + 1  + 1 = 12

In general the partitioning of the number n is of 
the form

^3 * * * * ~ n
where is the length of the cycle i and there are 
p cycles.

Now it is required to ascertain the characters
Vfor the representation A for the permutation of 

the set of twelve orbitals under the operation of 
the 0^ group, k s n/2 - S where as usual S is the 
total spin angular momentum. Naturally,for singlet 
states S = 0. It may be shewn that the character 
d of the represention for a particular operation

lris the coefficient of x in the polynomial
A. X

(-l)n“p(l-x)(1+x^l)(1+x 2) . . . (1+x p)
For example the character of the representation
for the permutation induced by the Cg operation is
equal to the coefficient of x in the polynomial

(-l)4 (l-x)(l+x2)4 (l+x)4
This is +4. Continuing in this manner the total
character table is constructed. It is

E 8C3 3C2 6Cg’ 6C4 i 8iC3 3iCg 6iCg 6iC4
& 132 6 4 20 4 20 2 20 4 4

This representation may be reduced in the usual



maimer under the group 0^,to give
A6 = 10Alg + 4Alu + 2A2g + 8Eg +2Eu + 6Tlg 

+ 6Tlu + 10T2g + 10T2u 
Of the 132 singlet states pertaining to configuration 
(1 ) it is to he seen that only ten are totally 
symmetric. The magnitude of the problem is so 
reduced quite drastically.

A similar analysis is now performed for the 
configurations (2),(3) and (4). This is slightly 
more involved in that not all the 90 possible 
configurations of type (3) for example will be 
invariant under an operation of the group, It is 
therefore necessary to determine for each operation 
how many configurations will remain invariant and 
so possibly have a character different from zero.
On doing this,one finds that configuration (2) 
gives rise to 39 singlets,configuration (3) 93 
singlets and configuration (4) 8 singlets.

The problem of the valence state of sulphur 
in SFg is clearly of a different order of magnitude 
to that of carbon in methane. For sulphur the 
secular determinant for the totally symmetric 
singlet states of the possible hybrid configurations 
is 150 x 150. When all interatomic integrals are 
placed equal to zero,this determinant refers
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directly to the valence state of sulphur in

This could well involve 150 terms of sulphur from
3 2 2 2 2such a variety of configurations as sp d , s p d ,

4,1 2 3,1 4,2 2 4 5 , 6 ns p d ,  s p d , p d , s p , sp and p . If only a
configuration of singly occuppied hybrid orbitals
is admitted then the problem reduces to one of the 
til10 degree,and if only one coupling scheme is

allowed, that appropriate to perfect pairing,to
has

one of the first order. However asAbeen demonstrated 
earlier for carbon,the energy of the valence state 
within the perfect pairing approximation is 
compounded from the seven terms to which the 7 x 7  
determinant may be referred. The question now
naturally arises as to which of the 110 terms of

3 2the sp d configuration for sulphur will appear 
in the determinant referring to th£valence state.
The theory of the permutation group allows such a 
selection to be made with ready ease. One has only 
to find which states of the sulphur atom when 
combined with the six ligand orbitals transform 
as the symmetric representation of the group 0^.

In the previous chapter it was observed that 
a multiplet consists of a set of (2L+l)(2S+l) 
wave functions which transform under rotation of 
the space co-ordinates and the spin co-ordinates
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T gas D and D respectively. For a rotation a the 
characters x (ol) for the representations are 
obtainable from the expression

x(«) =
sin a/2

The irreducible components of the representations 
for a number of point groups are given by Kotani[76].
For 0^*these have been verified and are listed in

3 2Table 4 for the configuration sp d which is ingrade#

Table 4

Term L States of S(sp d ) transform as

S 0 flU
P 1 Tlu
D 2 Eu + T2u
F 3 + Tlu + T2u
G 4 flu + Eu + Tlu + T2u
H 5 Eu + 8Tlu + T2u
I 6 flu + fiu + Eu + Tlu + ST2u

It is now necessary to determine the manner 
in which the ligand orbitals will transform,when 
their electrons are orientated such that their total 
spin is 0, 1, 2,and 3. This is most readily effected
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by use of the symmetric group. For example consider 
the operation Cg*. This induces the permutation 
(l,5)(3,9X7,ll) which corresponds to a partitoning 
of the inte/ger six as 2 + 2 + 2. Consequently the 
characters for S s. 0, 1, 2, 
and 3 are given as the

]rcoefficient of x ,where
k as 6/2 - S in the
polynomial

(-l)3(l-x)(l+x2)3 
For S=0 the complete
character table is

E 8C3 3Cg 6Cg* 6C4 i 8iC„ 3iC< 6iC2* 6iC4

6 5 0 -1 -1
This representation reduces under 0^ to give

a3 = *lg + fl.u + T2g 
In a similar manner,the representations for the
transformation of the ligand orbitals when the total 
spin is 1, 2,or 3 are obtained and their irreducible 
components determined. They are contained in Table 5.
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Table 5

S Ligand orbitals transform as

0 *lg + T2g +
1 H u  + Eu + Tlu + Tlg
2 T2g + Eu
3

By comparing the ligand representations of 
Table 5 with those for the central atom contained 
in Table 4 and noting the direct products which give 
rise to the totally symmetric representation A- ,xg
a selection of the terms is achieved* One finds

3 2that of the 110 terms for S(sp d ) only the following 
may participate in the valence state of sulphur in 
an octahedral environment:

S
0 ■S.u xs, *1.
1 3f , 3I.

Bu V 3s, 3h , 3I.
Tlu 3P, 3P, V 23Hr SI.

2 E 5„ 5„U H.

3

This is the result which Craig and Thirunamaehandran
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have also obtained by projection operator methods[82].
In the light of this analysis let us return 

now to our original intention and consider what is
to be understood by the statement * in SP^ the

3 2sulphur atom is sp d hybridised1. If the sulphur 
atom in SF^ forms six equivalent hybrids then it is 
quite correct that these may be formed from a set 
of orbitals which contains one s orbital,three p 
orbitals and two d orbitals* The converse is certainly 
not true* Given a set of six equivalent orbitals,
the condition of the sulphur atom in SP^ may only

3 2be partially described as being in an sp d
configuration* Other configurations contribute to
the state of the sulphur atom,which is evidently in
a highly complex condition.

One is misled by the statement to identify
the number of orbitals in the set from which the
hybrids are compounded,with the occupation numbers
of the orbitals. Either in SP^ the sulphur atom is 

3 2in an sp d configuration or it is in a hybridised 
state as represented by the configurations (l) to 
(4) inclusive. Both statements cannot be true 
simultaneously. If the former case is taken one is

returning to an early theory of valence due to
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Heitler and Rumer[83]. The latter pertains to the 
directed theory of valence of Slater and Pauling.

Having also ascertained which of the terms
3 2arising from the sp d configuration of sulphur 

participate in the valence state,the self consistent 
field calculations may now be profitably pursued.
Of these terms P is by Hund1s rules the lowest of# 
all. This term,with ^I,spin the manifold and are 
also amenable to the self consistent field method, 
being represented by one and two determinants 
respectively. They have therefore been chosen for 
study.
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CHAPTER IV

SOME ORBITAL FEATURES

Form, which we discover in nature by 
analysis, is obstinately mathematical in 
its manifestations.

Herbert Read 1965.

Introduction
There is now to be shown the variety of 

shapes possessed by the valence orbitals of the 
second row elements mentioned earlier,together with 
some of their properties. Naturally much attention 
will be directed towards the d orbital since its 
features are the least known. The radial wave 
functions^to be illustrated,have been obtained 
by the numerical solution of the self consistent 
field equations. Where multiplets are mentioned 
the coefficients of the integrals in the expression 
for the energy of the multiplet together with the
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values of the various integrals are listed in 
Appendix 1.

Shapes of Orbitals
Let us now look at figure 6. This contains

the radial functions P(3d;r) for configurations of
sulphur involving one and two d electrons
respectively. The most striking feature to be
observed is the considerable contraction of the 3d

2 3 1 5orbital when one passes from S(s p d ) D,curve a,
/ 4 1\ 5or S(sp d ) P,curve b,to a configuration involving 

two 3d electrons. For the d1 configurations the shape 
of the 3d orbital is almost independant of the 
change in occupation number of the 3s and 3p orbitals 
between the two configurations. One may recall that 
the mean radius of an orbital,designated here as

r(nl;r) ® j P(nl;r)r.P(nl;r)dr 
and is related to the effective nuclear charge Z J^nl)
by the egression

For these two orbitals the mean radius is 4.01 8
and 3.85 8 respectively. The mean radius of the 3d

7orbital for S(sp3^2) curve c is 1.89 8. . This
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corresponds to more than a twofold increase in the
effective nuclear charge Of the 3d orbital,which is

1 3 2 V1.4 for the d configurations and 2.95 for (sp d ) P.
2Amongst the d configurations,there is also

to be seen a large variation in orbital size* The
3 2Hartree 3d orbital for S(sp d ),curve d, for which 

of course no exchange terms are considered,has a 
mean radius of 3.02 &. Between this orbital and

7that for the P lie all the orbitals for the terms
listed in the previous chapter. The intermediate
curve,shown as e, does not correspond to any
spectroscopic term but lies eaergetically exactly 

3 1midway between I and I,differing from both by
1/3 G^(3s,3p)* It is for one of the determinants
of 1I, (3s0+)(3p1+)(3p1-)(3p0")(3d2+)(3d2“). This
orbital has a mean radius of 2.30 A.

Clearly there is a considerable latitude in
3 2the choice one might make for Ze^ ( 3d) of S(sp d ) 

depending on the multiplet involved. The limits are
72*94 for P and 1.85,which is the Hartree value* It 

is therefore important to consider as to which of 
the two curves correspond more closely to the 3d 
orbital for the valence state of sulphur,in the 
particular environment of interest. In an octahedral 
field Craig and Thirunamachandran find that for a
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3 2valence state "based solely on an sp d configuration, 
the 3d orbital is diffuse with a mean radius of 2.39$,. 
But if a valence state based on six equivalent 
hybrids is considered within the perfect pairing 
approximation, r (3d) is 1.67 S [84]. The analytic 
form thay have taken to represent the 3d orbital 
will be mentioned in a moment.

Another parameter which is of value in 
discussing the shapes of orbitals has been
mentioned previously in Chapter II. It is

iltr'
1+XA = L® [ ] .

r o r
This is a measure of the initial slope of the wave 
function and may be related to the effective 
nuclear charge for the orbital in^egions near to 
the nucleus. In fact it is a guide to the degree 
of penetration of a particular orbital. Here the 
effective nuclear charges appropriate to a given

Avalue of A are notated as Z ^  and evaluated from 
the relation 1

A , . ( f  W * 1
3 2Thus for the Hartree 3d orbital of S(sp d ), A is 

2.534 and Z^e^(3d),5.0 whilst for the ^F term 
A = 5.9188, and ZAeff (3d) = Naturally the
higher value of A,the greater is the initial slope.
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The 2p orbital of S(sp3d2) ?F has A =- 128*74 *
A comparison between the position of the 

principle maxima of the 3s,3p,and 3d orbitals, 
their mean radii,and initial slopes for a variety 
of configurations of sulphur together with the 
other elements of interest to us here,may be 
obtained from Table 6* In this all the pertinent 
data is to view. There is nothing untoward about 
the shape of the 3s and 3p orbitals. For this 
reason nearly all of the figures refer only to the 
3d orbital. Figure 7 however illustrates the 3s 
and 3p orbitals of S(s2p4) 3P.

3 2 7It is interesting to observe that for S(sp d ) F
the radial maxima of the valence orbitals, which lie
at 0.72 X, 0.83.X and 1.18 X,for the 3s,3p and 3d
orbitals respectively, are all well within the S-F
distance in SF^. This is the opposite of the view
maintained up to the present time,as noted in
Chapter I,that the 3d orbital is highly diffuse.
Indeed the need for the theory of ligand contraction
with regard to orbital size is entirely removed by
this result£8€T]. Craig and Thirunamachandran[b8],
together with Bendazzoli and Zauli[8£j have since 
defended the contraction theory. Their
calculations are however for a valence state based
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3 2solely on an sp d configuration of sulphur. It 
has since "been shown,as just mentioned,that when
a more realistic "basis of equivalent hybridised

7orbitals is taken,the P term and the valence 
state 3d orbital are very similar in size.

This leads us to another point raised in 
Chapter I. How accurately is a 3d orbital 
represented by a Slater orbital? The answer to
this question is the substance of Figure 8. In

7 3 2this the P term of sp d is again traced and is
to be compared with the curves labelled B and C*
The former is for a Slater orbital. This one may

rz
recall has the form r *exP("zeff /n •r)»with
Zq^{36.) ss 1.65 ,the value obtained on applying

3 2Slater1s rules to S(sp d ). It has a mean radius
of 3.36 S.. Curve C is for a Slater orbital having

3 2 7the same mean radius as that of S(sp d ) F,
1.88 & and hence zepf(3<3-) - 2.95 .

It is clear that the Slater orbital for
3 2S(sp d ) bears no resemblance at all to the self 

consistent field orbital,whilst even if the 
effective nuclear charge is chosen to obtain the 
best match,the representation of the orbital by 
a single exponential function,although improved, 
is inadequate. Craig and Thirunamachandran have
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in their work used a double exponential function
for the 3d orbital and obtain a close correspondance

3 2with the self consistent field function for S(sp d )
7 2 3 1 5P and S(s p d ) D, which is also shown again in
this figure as curve D. A double exponential
f met ion has the form r3(C^*e“^‘r + Cg.e~fc2.r)
where their are now two orbital^ exponents k^and kg
to be determined together with a coefficient of
mixing C^.

7Figure 9 shows the 3d orbital for P term 
and the analytic function of Craig and i 
Thirunamachandran. The former is the dotted curve* 
Clearly two exponentials are far better than one.
Also to be seen is the curve for the valence state

3 2based solely on an sp d configuration of sulphur. 
The ■use of a double exponential representation for 
a 3d orbital and indeed a multi-exponential 
representation for an orbital if necessary,is 
urged in an early paper of Slater[87]. More 
recently it has been found that the analytic self 
consistent field functions of Watson for the 3d 
orbitals of the transition metals may be quite 
accurately traced by a double exponential 
function[88].

3 2Although the septet term of S(sp d ) is the
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Fig. 9. The Hartree-Fock wave function of S(sp3d2) 7F as 
approximated by a double exponential function,dotted curve 
by Craig and Thirunamachandran. Vg is a particular valence 
state^ orbital.
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most favourable amongst the second row elements
for exhibiting the effect of exchange upon the
shape of the 3d orbital,this behaviour is not
restricted to sulphur. Figure 10 depicts some 3d 

1 2orbitals for d and d configurations of Silicon.
2 5Here again the 3d orbital of Si(sp d) F,curve a,

2 3and Si(s pd) F,curve b, are similar and highly
diffuse. The mean radii are 3.68 X for the former
and 3.33 X in the latter case. In contrast the 3d

2 5orbital of Si(spd ) 0,curve c,is far more compact,
having a mean radius of 2.44 X,which is to be
compared with 3.18 X for the Hartree solution
of Si(spd ),curve d, As is to be expected the
difference between these two orbitals is less than
in the case of sulphur but the distinction
between them is still quite marked. This is also
reflected in the value of A for the two orbitals,
which increases from 1.04 to 2.03 on the inclusion
of exchange.

Figure 11 shows a similar behaviour for
2 2 1 4phosphorus. The 3d orbital for P(s p d ) F, 

curve a,is highly diffuse even compared with the 
Hartree 3d orbital of P(sp2d2),curve b. Also to 
be seen are some very interesting Hartree orbitals
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5 2for argon. The 3d orbital of Ar(sp d ),curve c,
2 2is almost identical to that of P(sp d ),their 

mean radii differ by but 0.17 &. Indeed the
gHartree 3d orbitals for the series Si(spd ) to

5 2Ar(sp d ) are all very similar and only a gradual
increase in the initial slopes on moving across
the period distinguishes them. This may be seen at
a glance in Table 6. For the configuration Ar(sp d )
the 3d orbital is quite compact with the radial
maximum lying at 1. 02 2. ,curve d. It so stands out

5 2in sharp relief against the 3d orbital of Ar(sp d )
for which r _ is 2.36 £. max

To complete this series of illustrations let
us return to sulphur. In Figure 12 the Hartree 3d

3 2 2 2 2orbitals of S(sp d ),curve a,and S(s p d ),curve b,
which are scarcely separable, are placed in
perspective against the 3d orbitals of the singly

+ 3 I 2 2positive ions S (sp d),curve c,and S (sp d ),curve d, 
Clearly the acquistion of a positive charge results 
in a considerable contraction of the orbital. Further,

gif one may also retain a d configuration then 
the most compact 3d orbital of all considered here 
is obtained. The mean radii falls from 3.02 £ 
to 2.05 S. on the ionisation of the d electron 
from S(sp3d2) -> S+(sp3d1). For the ionisation of
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2 2 2 + 2 2 S(s°p d ) -> S (sp d ) the change is even more
spectacular r passing from 3.09 X to 1.69 X.

Apart from Hartree and Hartree-Fock 
wave f unctions,Hartree-Fock^Slater wave functions 
have also "been calculated for a variety of 
sulphur configurations. Tahle 6 permits a 
comparison to he made between these methods. The 
free electron approximation has quite evidently 
overestimated the exchange terms,and produced 
orbitals which are deceptively compact.
Nevertheless two results deserve mention since 
they are not duplicated by other methods.

p , O TThe first pertains to S (sp d ). This shows
a continuation of the trend noted in Figure 12,
with the 3d orbital becoming more compact as the £)&.
sulphur atom increases its positive charge. With
the successive ionisation of the p electron as
S(sp^d) -> S+(sp^d) —> S^+(sp^d) the position of
the maximum of the 3d orbital moves towards the
nucleus, r changing from 1.37 X through 1.01 X, max
to 0.89 X. The initial slope of the function 
increases quite sharply as is reflected in the 
values of A which are 4.80, 9.49 and 12.68 for the 
three configurations respectively.

The second result to note is that for
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S(s^3p^3d^4s^)• Here the 3d orbital is no longer
an outer orbital,but an inner orbital. The
distinction is quite palpable. The maximum of the
3d orbital lies at 1.0J 8 although as has been
shown d^ configurations are usually highly diffuse.
For S(s2p3d1), r = 2.$4 8 in the Hartree-Foek-max
Slater approximation its initial slope is quite 
high,A being 9.12 as compared with 4.34 for

O 'KS(s p d). Indeed the outer 4s electron has little 
influence on the inner electrons and the 3d 
electron effectively experiences the field of a 
positively charged sulphur atom. That this is the 
case,is shown by the close resemblance of the 3d 
orbital for S(sp3d14s‘l") to that of S+(sp3d^)*

Contours of \i; for an Octahedral Hybrid Orbital
In dhapter I,Figure 2,an octahedral hybrid

orbital  ̂was plotted on the assumption that the
radial wave functions of the 3s, 3p and 3d orbitals
are equal. With the acquisition of the radial wave

3 2 7functions for S(sp d ) F it is now possible to 
lift this restriction and to construct more 
realistic contours for an octahedral hybrid.

K z  = %  (s +^ p z Pz
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For a given value of is determined over a 
range of values for r. The resulting contours are 
illustrated hy the polar diagram,which is Figure 13. 
By rotating the contours about the bond axis, the 
complete contours may be visualised.

Although the intricate nodal system is 
interesting the most eyecatching feature is the 
manner in which the contours rise to a peak at 0.59
This is very close to the centre of an S - F bond.

3 2The sp d hybrid orbital would therefore appear 
to be excellently disposed for overlapping with a 
suitable ligand orbital,although it must of course 
be remembered that these contours will be 
considerably perturbed,if a fluorine atom,for 
example were to be placed at 1.5

Conclusion
The 3d orbital of the second row atoms Si,

P, S, Cl, and Ar. has been found to be highly
diffuse for the neutral elements in d^ 
configurations. When the 3d orbitals are doubly
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occupied the nuclear screening decreases and the 
orbital quite naturally contracts. What is rather 
astonishing is the observation that on allowing 
partially for the correllation of the electrons, 
through the intermediary of the Fermi hole,the 3d 
electrons are forced to move through so great a 
distance towards the nucleus. The chemical 
implication is clear. If the size of the free atom
orbital ia a dominant factor in bond formation,

2then for atomic d configurations the 3d orbital 
of the elements of the second row under review 
could participate quite readily in molecular binding. 
If the atom is positively charged the 3d orbital is, 
as is to be expected,quite compact and again 
suitable with respect to size for bonding purposes. 
Nevertheless,having reached this optimistic highspot 
our attention must inevitably turn to the energetics 
involved.
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CHAPTER Y

A Question of Energetics

The key figure in the early development 
of the concept of energy is Christiaan 
Huygens,a man whose interests ranged 
from games of chance to the properties 
of gunpowder.

D. W. Theobald 1966

Introduction
It is now intended to interweave two 

important topics; the energies of the configurations 
which have been mentioned in the preceeding pages 
and the one electron orbital energies sn .̂ The 
link between them will be provided by Koopmans 
theorem. Let us begin by considering the 
configurational energies and see how they lie with 
respect to the energy of the ground state.

Configurational Energies and Promotion Energies 
In Table 7 the energies of configurations 

for Si, P, S,;€l and Ar are listed. Both Hartree
and Hartree-Pock energies,in Rydbergs.are given
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and the promotion energy AE in electron volts.
The last column contains where observed,the value 
of AE as obtained from spectroscopic data[46], 
together with other authors estimates. At this 
juncture it might well be pointed out that the 
omissions in this Table and Table 5 for d^ 
configurations in the Hartree field are due to the 
fact that it was not possible to find a solution of 
the self consistent field equations. In these cases 
after very few iterations from a variety of initial 
estimates,the d electron became unbound. Similarly
no solutions were found in the Hartree-Fock-Slater

2field for d configurations of sulphur due to the 
onset of oscillatory behaviour during the iteration 
process.

Looking firstly at the configurations of
Silicon,the agreement between the Hartree-Fock
promotion energy for Si(s2p2) 3P SiCs^p^d1) 3F
and the observed value allows one to have a little
confidence that the other results presented might

2 1 5be of the right order of magnitude. Both Si(sp d ) F
Q  Cand Si(spd ) G lie above the ionisation limit,which 

is 8.15 e.v.,Si(s2p^) Si+(s'V*') Jordan’s

estimates [89] of AE appear to be widely astray in 
this instance. A similar pattern is portrayed for
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phosphorus where again Jordaiis estimate for AS to 
2the d configuration seems out of proportion.
On reaching sulphur the difference between the 

calculated and observed promotion energies for
0 4. f7 n r

S(s p ) «̂  S(sp d ) D has increased but the two 
values are still comparable. Whereas with silicon 
the promotion energy calculated within the Hartree 
approximation exceeded that obtained by the Hartree- 
Fock method,in the case of sulphur this situation is 
reversed consequently the promotion energies to the

4 - 3  1 + 2 2positive ions S (sp d ) and S (sp d ),which are
given for the Hartree field,probably represent lower

3 2limits. The promotion energy to S(sp d ) of 24.48 e.v* 
is below the quoted estimate of Bendazzoli and 
Zauli[86] but may be compared with the value of 
24.8 e.v. calculated by Craig and Zauli[28]. For

ochlorine and argon the promotion energy to a d~ 
configuration increases quite markedly,whilst the

3 4formation of a compound,based principally on Ar(sp d ) 
which lies 50.73 e.v. above the ground state seems 
most unlikely.

It would so appear that for a second row 
element to attain a configuration in which the 3d 
orbital is of a suitable size for bonding requires 
a considerable amount of energy. Further such
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conditions are more readily attainable to the left 
of the period than the right. On this basis,it is

3 —therefore perhaps not so surprising that [AlP^J ,
2—[SiPg] “ are well known species whilst CIP^ and 

ArFq have as yet to be prepared.

Koopmans Theorem
Prom chapter II it may be recalled that the 

energy E of an atom possessing i electrons,within 
the Hartree approximation is given by the expression 

E = f  Kn.l.) +
If the k electron is ionised adiabatically,the 
energy E+ of the resultant ion is of the form

E!+ = £  I(n.l ) + i i  F (n l ;n.l.)ĉi< 1 1  1 1  DtJ
The ionisation potential is defined by the 
difference E+ - E. Hence

Pk=E+-E =
On consideration of the s.c.f. equation for the 
orbital, k, P(nklk;r)

[ £ 2 + - MSgi1] P(nklk;r) . e ^ P ^ . - r )
r

it may be seen that Pk =- -e^ That is,assuming the 
wave functions remain unaltered on ionisation,the
ionisation potential for an electron in a particular 
orbitalmay be identified with the negative of the 
one electron energy for that orbital. Koopmans
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first demonstrated this fact in 1933,for Hartree-Fock 
wave functions[90]. When one considers the removal 
of the d electron from a d^ configuration of 
sulphur Koopmans theorem is indeed applicable,for all 
inner wave functions are scarcely affected by the 
process. The ionisation potential as determined by 
the energy difference E(S+ , s2p3, 4S)-E(S, s2p3d, 5D) 
allows for reorganisation on ionisation. It is 1.82e.v. 
whilst the value as obtained from the one electron 
orbital energy is 1.77 e.v. From spectroscopic data 
the observed ionisation potential is 1.94 e.v. which 
should be compared with the former of the two 
calculated values. The latter is for an adiabatic 
process,as is involved in an electron impact 
measurement. Since little reorganisation takes place 
on the loss of the electron the difference between 
the two calculated ionisation potentials is here not 
very great.

When one considers the d^ configuration^ 
of Si a different pattern emerges. There is a 
degree of reorganisation on the ionisation 
Sife^p^d*) Si+(s2p1) as is reflected in the
change of from 11*47 e.v. to 15.94 e.v* on the
removal of the d electron. Now the energy difference
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E(Si+ s^p1 3P) - 3(Si s^p1 .̂1 3P) of 1.01 e.v. 
differs quite markedly from the od orbital energy of 
1.86 e.v. The observed spectroscopic ionisation 
potential is 1.95 e.v. It may well be that there is 
some configuration interaction also taking place,as 
has been investigated recently in the case of 
magnesium[91].

2When d configurations are considered the 
situation is even more marked and is probably entirely 
due to the large amount of reorganisation which 
occurs on ionisation. As may be seen from Table 7,

. 5 1in the Hartree field for sulphur, E(S sp d ) - 
3 2E(S sp d ) is 7.48 e.v. whilst for the 3d

orbital of S(sp3d2) is but 2.26 e.v. Even the 3p
orbital is quite affected; E(S^ s]?d2)-E(S sp3d^) is
19.99 e.v. as compared with a 3p orbital energy of
17.77 e.v. Clearly the identification of the d
orbital energy with a spectroscopic ionisation

2potential would be quite erroneous for a d 
configuration.

The Valence Orbital Energies
The energies of the valence orbitals of the 

second row elements under review are collated in 
Table 8. In passing,one may note that in nearly all
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the examples given the energies as obtained by Hartree, 
Hartree-Fock-Slater and Hartree-Fock methods 
decrease in that order,as is to be expected. Two 
features of this table deserve careful elaboration.
It is to be seen that energetically,a 3d orbital 
of a second row element is quite different from a 
3s or 3p orbital. Even for S(sp3d2) ^F,where the 
3d orbital is compact,the orbital energy is very 
small,3.32e.v., although as has just been 
demonstrated this does not necessarily imply that 
it is very loosely bound. The 3s and 3p orbitals, 
are very much higher in energy,being 35.48 e.v. 
and 20.58 e.v. respectively. Further,on ijassing 
across the period,the d orbital energy is almost
independant of the atomic number,as is displayed

2 2 by the Hartree d configurations Si(spd ) to
Ar(sp5d2)

This marked difference in character between 
the 3d and other valence electrons has its origin 
in their respective effective potential energies 
Veff. To confirm this I made a study of the 
effective potential energy within the Hartree
approximation,for the valence electrons of the
2 . . .  d2 sequence oust mentioned. The effective
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Table 9

The position and magnitude of* the minimum in the 
effective potential energy for the 3p and 3d 
electrons of Si, P, S, Cl and Ar.

Si 3p
3d

P 3p
3d

min
£ (a) -Veff (e.v.)

0.090 464.67
0.933 5.57

0.080 565.44
0.678 7*57

3p
3d

0.074
0.551

676.81
10.74

Cl 3p
3d

0.069
0.466

798.40
15.11

Ar 3p 
3d

0.064
0.403

927.52
20.62



potential is given by the expression

Veff = -t? Y(nl;r) - r
This function is illustrated in Figure for the

3 2valence electrons of S(sp d ). A striking constrast
in behaviour is to be seen when 1 increases from
1 to 2, For the 3p electron^ the minimum of V ^
is - 676.81 e.v. and lies at r=0.07 X. The
minimum energy for the 3d electron is only l(D.74e.v.
and is located at 0.55 X.

Clearly,for the 3d electron the centrifugal
term 1(1+1) / r ,counterbalances the potential
generated by the other fifteen electrons over a

2 2very wide range of r. As a consequence d P / dr 
is much smaller for the 3d electrons than for the 
3s or 3p and the Hartree equation for the 3d 
electron must inevitably produce an orbit with an 
extremely long tail and of a low energy*

A similar pattern is common to the other 
elements mentioned,as is to be seen from Table 9.
This lists the minima of V for the 3p and 3d 
electrons,together with the value of r at which 
they occur. There is a slight increase in the binding 
of the d electrons on passing from Si to Ar, as 
may be observed in Figure 15”. Although there is a
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Pig. 14. The effective potential energy for
3 2the valence electrons of S(sp & ).
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Fig, 15, The effective potential energy for the 3d 
electrons of Si(spdS). s<sp3d2) and Ar(sp5d2).
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gradual increase in depth of the minima,the influence
of this on the final wave function is small. As
has been seen in the preceeding chapter there iB
hut a gradual rise in the initial slope of the >

2Hartree 3d function for d configurations on 
passing across the period.

Figure V6 is reproduced from Slater!s Theory 
of Atomic Structure Volume I [64] and shows that 
the 3d electron of the second row elements 
considered here is very similar to such an electron 
attached to K+ hut quite different from the 3d 
electron of the transition metal ion Cu+. For these 
two ions has a minimum of 8.16 e.v. and 134.64ev.
respectively.

A Partition of the Qrhital Energy
For a particular electron,the orhital energy 

may he decomposed into three constituents. These 
are the potential energy afforded hy the nucleus,
^nucleus*"t*16 potential energy due to the other

electrons veiectron kine't̂ c enei*gy> K

- e = “^nucleus + ^electron + K 
Such a partition for the valence electron of the 
Si - Ar sequence is quite illuminating and is

contained in'Table 10.
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The link "between the valence electrons via 
their principal quantum number is clearly very weak, 
the 3d electron assuming the role of an outsider*
In each case the 3d electrons behave as if the# 
were restricted to move on the periphery of a 
closed shell,experiencing thereby a nuclear charge 
of +£. Indeed one may note that the orbital energy 
is just of the magnitude expected for such a 
situation* On assuming hydrogenic orbitals one may 
readily obtain the relation

2Z2(3d) / n2 = 2e(3d) + PQ(3d,3d)
where the coulomb integral F (3d,3d)ss0*5162 Z(3d)/3 
Rydbergs;whence if each d electron screens the 
other by 0*33, Z(3d) — 1*67 and the orbital energy 
e(3d) is 2*26 e.v.

Conclusion
For the second row elements under review,it 

is quite plain that a considerable quantity of 
energy is required for the element to attain a 
configuration in which the 3d orbital is of a 
suitable size for bonding purposes. Even when such 
a configuration has been reached,there is a gross 
disparity between the energies of the valence 
orbitals for the neutral atoms.
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As is to be seen in Table 8 this situation 
may be ameliorated by the acquistion of positive 
charge. At the same time,the ligands of a molecule 
would acquire some negative charge. In this 
context it is perhaps pertinent to note that energies 
of the 2p orbitals on oxygen and fluorine,for 
example,decrease quite markedly when the elements 
are negatively charged. For oxygen eg is 17.19e.v. 
but is only 3.51 e.v. for the 2p orbital of 0~. 
Similarly the energy of a 2p orbital on fluorine 
is 19.86 e.v. whilst for F~,it is 4.92 e.v. The 
3d orbital of the central atom may so become on 
par with the energy of a ligand orbital,if the 
ligand has a high capacity for drawing charge off 
the central atom.

I feel that in view of these results,what has 
been termed the charge conjecture in Chapterl may 
indeed be the mechanism by which 3d orbitals might 
participate effectively in the bonding of second 
row elements, But before drawing all the threads 
together,let us look more closely at an alternative, 
the contraction theory.
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CHAPTER V I

THE THEORY OF ORBITAL CONTRACTION

There is no absurd story that one 
cannot get the idlers of a great city 
to beleive.

Beaumarchais »

Introduction
Prior to the studies which are presented here 

on the 3d orbital of second row elements,only one 
attempt of any substance had been made to illuminate 
this subject. It began with the early work of Craig 
and Magnusson[27] and culminated in an admirable 
investigation of SF^ by Craig and Zauli[28]. Their 
method,which will be considered in the ensuing 
paragraphs,yeilded the result that for the free 
sulphur atom,in an sp°dS configuration,the 3d orbital 
is similar to that predicted by Slater’s Rules.
The 3d orbital exponent was found to be 0.61 as 
compared with the Slater value of 0.55. This 
conclusion is obtained by a calculation in which 
exchange items are not considered and it was 
thought that the inclusion of such entities would
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not affect the result to any significant extent. 
When the present s.c.f. calculations were performed,

was found, to he quite different from the Craig- 
Zauli 3d orbital. It seemed pertinent therefore to 
investigate their method more closely.

The Method of Craig and Zauli
The underlying premise of this method is 

that exchange phenomena produce only a slight 
variation in the magnitudes of the principal
quantities to be evaluated,namely orbital exponents.

3 2Accordingly, the wave function ijr for S(sp d ) is 
represented by a single product of one electron 
functions.

Dividing the Hamiltonian H for the system
into parts appropriate to the sulphur core h ,thec
valence electrons h and the core-valence
interaction V

H = h + h + V c v
the energy E = may be written

E = Ecore +I' (3s)+5I' (3p)+211 (3d)+3-J(3p)
+5(3d)+3J(3s,3p)+2J(38,3d)+6J(3p,3d)

3 2 7as hhs been seen,the 3d orbital of S(sp d ) F

3S'̂ 3Px ‘̂ 3Py

V
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It now remains but to choose a form to 
represent the radial portion P(r) of the functions 
^nl (i). In the study under discussion the Is,2s and 
2p functions,employed to generate thepotential V, 
are Hartree-Fock functions obtained by interpolation 
in tables of radial wave functions- For the valence 
electrons orthogonalised Slater functions are used, 
the core functions being replaced by single Slater 
functions with exponents selected to provide a 
maximum overlap with the Hartree-Fock functions.

Finally,the values of the orbital exponents

An observation on this method
Although it may prove to be trivial an 

idiosyncrasy in this work should not be dismissed 
without an assessment of its importance. Two sets 
of core functions are employed, s.c.f. functions 
and their best superimposable Slater functions.

From the viewpoint of. the valence electrons,

Rm (r) = \i*I'n~:L*exp(-3tnr r)

k3p,k3d which minimise the energy E are ascertained.
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the charge cloud presented by the core is that 
appropriate to the Slater functions. However the 
core potential V is generated from the s.c.f. 
functions. In the present context this is not likely 
to produce any marked discrepancies hut the mode of 
the evaluation of V does raise a more serious point.

The potential V is obtained by solving 
Poisson!s equation

a8(vr) _ 1 ^ p2
dl>2 r J2' core

For Hartree-Fock functions this only yields one 
component of the potential,in Hartree*s notation, 
that for k = 0. This is readily to be seen from the 
equation for Y^(nl,nfl*;r) in Chapter II page 43.

4 ^ '  ;-~I = Y (nl,n’l’;r)
dr r

- ~=.P(nl;r)P(n’l’;r)
It is only for Hartree functions that terms with 
k >0 do not occur and it is these that strictly 
should be employed. As but one term,Yg(2p,2pjr) is 
involved here there is little error. When the method 
is applied to heavy atoms one is likely to be less 
fortunate*

The core potential used by Craig and Zauli, 
V(CZ) with that appropriate to the Slater functions,
V(S) and that for an orthogonalised 2s orbit appear
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Table 11 

Sulphur Core Potential (a.u.)

r -v(cz) -v(s) sv(os)
0.010 1546.1298 1547.5021 1546.9028
0.015 1013*6286 1014.6492 1014.0829
0.020 747.8052 748.5830 748.0571
0.025 588.6532 589.2725 588.7922
0.050 272.8050 273.3252 273.0929
0.075 169.9041 170.6826 170.6594
0.100 119.8311 120.8065 120.9240
0.125 90.6027 91.6466 91.8440
0.150 71.6228 72.6361 72.8690
0.175 58.4016 59.3272 59.5666
0.200 48.7284 49.5405 49.7691
0.225 41.3943 42.0866 42.2954
0.250 35.6844 36.2607 36.4459
0.300 27.4854 27.8587 27.9967
0.400 18.2040 18.3035 18.3722
0.500 13.4254 13.3945 13.4266
0.600 10.6568 10.5846 10.5993
0.800 7.6535 7.5998 7.6029
1.000 6.0395 6.0164 6.0172
1.200 5.0108 5.0026 5.0029
1.400 4.2887 4.2861 4.2863
1.600 3.7509 3.7501 3.7502
1.800 3.3336 3.3333 3.3335
2.000 3.0001 3.0000 3.0001



in Table 11. The 2s orbit used for generating the 
latter potential,V(OS) is

P(2s) =: 1.0351.r2.exp(-4.95r)-0.2675.r.
exp(-15.7r)

Near to the nucleus a divergence between the 
potentials is apparent,but in the most likely 
neighbourhood for the valence electrons,around 
2 - 3  a.u.,the potential is pure coulombic. Indeed 
at 1 a.u. V - -6.0 a.u. It is not surprising
therefore that these variant forms of V scarcely & 
affect the value of the integral If(3d) in the 
region of the CZ minimum,k^ = 0.61. Nor is it 
surprising that differences only begin to emerge 
as the d orbit becomes more compact. This is 
illustrated by Table 12 which contains I*(3d) as a 
function of the d orbit exponent,for the three 
potentials.

Table 12
Variation of I1(3d) with orbital exponent 

k3d for <̂ ^ ereil'k potentials V.

k3d 0#6 0.7 0.8 0.9 1.0

I\CZ) -1.0201 -1.1552 -1.2804 -1.3957 -1.5012
l'(S) -1.0200 -1.1551 -1.2802 -1.3955 -1.5008
i'(OS) -1.0201 -1.1552 -1.2803 -1.3956 -1.5009
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Verification of the Regult of Craig and Zauli
Having ascertained that this inconsistency 

in Craig and Zauli's study,one may proceed to see 
if indeed their conclusion concerning the 3d orbit 
may be substantiated. The procedure adopted here 
consists simply in evaluating that portion of the 
expression for the energy E which involves the 
d electrons,as a function of the d orbital 
exponent. The 3s and 3p electrons are represented 
by the energy minimised functions of Craig and 
Zauli. These are:

P(3s) = 1.0917 N, r3exp(-2.25r)
-0.4531 Ifg r^exp(-4.95r)
+0.1046 N^gr exp(-15.7r)

P(3p) = 1.0302 N„ r3exp(-1.91r)op
-0.2478 N2pr2exp(-5.53r)

If the two d electrons are placed in orbits 
for which = 2 and 0 respectively the energy 
expression,E(CZ),is obtained.

E(CZ) = 21f(5d)+gPo(3s,3d)+6f0(3p,3d)
+P0(3d,3d)-4|P2(3d,3a)+44| P4(3d,3d)

7For a correspondance with the s.c.f. F result 
E(7F) = 2I'(3d)+2P (3s,3d)+6Po(3p,3d)

+PQ(3d,3d)-4| FgCad.Sd)-^ P4(3d,3d)
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is appropriate. Both expressions coalesce when
one considers the Hartree energy E(H),the more
customary form for a calculation without exchange

E(H) = 2l'(3d)+2P0(3s,3d)+6F0(3p,3d)+P (3d,3d)
On expressing the F, integrals in the form

^ r̂ i k
Fk(nl,nl*) =r P2(nl;r1)dr1 ~ g +1.P2(nl';rg)dr2

o »rl
'°2/ , % _ r „ k  _ 2P (nljr^di^ (nl*;r2)dr2

yi j o
as indicated in Chapter II their evaluation
■becomes but a nominal task. This,and all the
calculation in this chapter,was programmed in Algol
and performed by a KDF9 computer.

In Table 13 the various energies are given
as a function of the d orbital exponent. Also

7 7appearing are E( FM) and E( FS); these correspond
ry

to the evaluation of S( F) when the 3s and 3p
orbits are taken to be single Slater functions with

7exponents given by the s.c.f. F results and
Slater’s rules respectively. For the former
kgs ss 2.76, = 2.25 and the latter 2.05.
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Table 15
Variation of the Coulombic energy of Sulphur 

with the d orbital exponent.

k3d 0.40 0.50 0.60 0.70 0.80

F0Ud) 0.1033 0.1291 0.1549 0.1807 0.2065
F2(dd) 0.0545 0.0681 0.0818 0.0954 0.1090
P4(dd) 0.0355 0.0444 0.0533 0.0622 0.0711
*0(sd) 0.1332 0.1662 0.1988 0.2308 0.2621
P0(pd) 0.1332 0.1660 0.1982 0.2295 0.2597

-E(CZ) 0.2752 0.2975 0.3043 0.2978 0.2801
-e (7f ) 0.2737 0.2957 0.3022 0.2954 0.2773
-E(H) 0.2712 0.2926 0.2984 0.2909 0.2722
-e (7f m) 0.2734 0.2934 0.2958 0.2818 0.2530
-e (7f s ) 0.2740 0.2954 0.3005 0.2912 0.2694

It is to be seen that all the variant forms
for the energy exhibit a minimum around a value of
0.60 for Craig and Zaulirs result is established.
More precisely E(CZ) as found to be minimised for

= 0.599, 3min(7F) occurs at = 0.596 and
E • (H) at k~, = 0.591. Further,this d orbital m m  5a
appears to be quite unperturbed when the 3s and 3p 
orbitals are altered.
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The Shape of the 3d Orbital
Since the time the Craig and Zauli method 

was proposed,it has been well established that a 
single exponential function provides but a
primitive replica of the 3d wave function for

3 2S(sp d ). In order to ascertain whether their result
concerning the size of the free atom orbital might
be attributed to the use of such a function,
Hartree’s equation for the 3d orbital has been
solved in a potential field appropriate to the 3p,
3s sind core functions employed by Craig and Zauli.

Figure l!7 illustrates the result of such a
calculation. Curve A is the now familar Hartree-

3 2 7Fock 3d orbital for S(sp d ) F and curve D the 
true Hartree orbital. These were compared in 
Chapter IV. The new result is represented by curve 
B whilst curve C is the analytic function obtained 
by Craig and Zauli. Curve B and D are very similar, 
strengthening an earlier conclusion that the shape 
of the 3d orbital is scarcely affected when the 
wave function for the other electrons -are modified. 
Yet curve B is quite a different shape from C,

although the values of r and r for the twomax
curves are not too dissimilar. For the former r
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Table 14
Variation of E(7F) and E(^l) with d orbit 

exponent (a.u.)

k3d 0.8 0.9 1.0 1.1 1.2

-I'(3d) 1.2804 1.3957 1.5012 1.5971 1.6833
?Q(sd) 0.2621 0.2923 0.3213 0.3489 0.3998
FQ(pd) 0.2597 0.2884 0.3156 0.3412 0.3650
Fo(dd) 0*2065 0.2323 0.2581 0.2840 0.3098
F2(dd) 0.1090 0.1226 0.1363 0.1499 0.1635
F4(dd) 0.0711 0.0800 0.0889 0.0978 0.1066

G2(ls^d) 0.0000 0.0000 0.0000 0.0000 0.0000
G2(2s,3d) 0.0007 0.0014 0.0024 0.0038 0.0059
G1(2p,3d) 0.0006 0.0011 0.0020 0.0033 0.0051
Gg(2p,3d) 0.0003 0.0007 0.0012 0.0019 0.0030
G2(3s,3d) 0.0386 0.0574 0.0792 0.1029 0.1275
G-^p^d) 0.0703 0.0997 0.1317 0.1645 0.1966
G3(3p,3d) 0.0423 0.0601 0.0795 0.0995 0.1191

-e (7f ) 0.3859 0.4012 0.4132 0.4209 0.4231
-EC1!) 0.3317 0.3321 0.3279 0.3188 0.3041



is 3,12 $. as compared with 3.04 X, and r ismax
2.37 X. whilst for the Craig Zauli orbit rmax
occurs at 2.60 X. Curve A stands apart. Consequently 
in order to reconcile the Hartree-Fock result with 
a solution obtained by the Craig-Zauli method,as 
could be suspected at the outset,one needs to 
introduce the exchange terms*

The Influence of Exchange
According to Craig and Zauli fon the inclusion 

of exchange for the 3d orbital the exponent 
increment is not greater than 0.03.1 Viewed from the 
present position,this estimate,supporting their 
original premise,must certainly be erroneous.
Table 14 confirms this statement. Here the energies 
of the ^F and ^1 terms for S(sp^i^) are tabulated 
as a function of the d orbital exponent. The 
variation of these energies with k ^  as compared 
with the energy without exchange s(H) is portrayed 
in Figure 18.
E(7F) = 2I'(3d)+2F (3s,3d)+6F0(3p,3d)+F0(3d,3d)

-8/49 Fg(3d,3d)-l/49 F4(3d,3d)-2/5 G2(ls,3d) 
-2/5 Gg(2s,3d)-4/5 G1(2p,3d)-18/35 Gg(2p,3d) 
-2/5 Gg(3s,3d)-4/5 G1(3p,3d)-18/35 G3(3p,3d)
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EC1!) = 2I’(3d)+2r (3sf3d)+6F (3p,3d)+P (3d,3d)
+4/49 Pg(3d,3d)+1/441 F.(3d,3d)-2/5 Gg(ls,3d) 
-2/5 Gg(2s,3d)-4/5 G.(2p,3d)-18/35 G„(2p,3d) 
-1/5 Gg(3s,3d)-4/5 S ^ p ^ d ) -3/35 G (3p,3d)

The exchange integrals 
G.(nl,n,l') =

r2k
P(nl;r1 )P(n’l'5^ ) 111*̂  ̂— £+i* P(nl;r^ P(n,l';rs)dr2

\
+ P(nl;r1 )P(n'l';r1 )dr1 _1_ P(nl;rg)P(n'l’;rg)drg

**2are readily computed.
7 1It is found that the F and I energies are 

minimised for k ^  = 1.18 and 0.86 respectively. This 
represents an increase ^of 0.59 and 0.27 upon the 
exponent which minimises the energy without exchange
E(H) and may he compared with the s.c.f. result for

3 2 7S(sp d ) P which yields a single d orbital 
exponent of 0.98. The discrepancy between the s.c.f. 
result and that obtained by the Graig Zauli approach 
applied to the free atom is thereby resolved.

The Effect of the Ligand Field in SF «̂
Naturally when one allows for the presence of 

six fluorine atoms octahedrally orientated about 
the central sulphur atom the expression for E(CZ) 
acquires additional terms. These represent the 
interaction between the sulphur core of potential
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V(s) and the fluorine nuclei of potential V(f), 
designated as (S+;P),the fluorine,fluorine interactions 
which will vary according as the two atoms are cis 

(F^;F3) or trans and ttie ef>fec’t "tiie
ligands upon the valence 
electrons. It is so 
possible to evaluate the 
coulombic energy Q of SF^,
for a variety of

5 2configurations of the central atom. Thus for S(sp d )
Q = Eg + Ep +12(P1;P3) +3(P1;P2)

+ (3s i - | + V(S) | 3s)+ 3(3p | -f +V( S)13p) 
+2(3d| +V(S) | 3d)+ 6(3s | V(F) I 3s)

+ 1 8 (3p | V(P) | 3p)+ 2(d | V(P) I d  )

+ 4t|(d0 I V(F)|d0)+|(d2 | V(P) | dg)]
+ 2(dg | V(P) | dg)
+ ^(dj, |V(P) I dg)+ f(dn |V(P) I dn)]I - ■ - 5 3 '  - 4.' ” 0  i • ' - Q ‘

+3J(3p,3p) + J(3d,3d)+ 3J(3s,3p)+2J(3s,3d)
+ 6J(3p,3d)

Eg and E^ are the energies of the sulphur core and 
the six ligands respectively.

One point perhaps requires elaboration* The 
two d electrons are considered to be in the orbitals
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Table 15
Atomic and Molecular Integrals (a.u.)

v = 2 3 s •°5 k3p = 1.59; kg. - 1.22.

(3p Hg 3p) 2.3851 (3p V(P) 3p) 0.0685
(3a Hg 3d) 1.6994 (3p V(F~) 3p) 0.2562
J(3p,3p) 0.3881 (3dQ V(P) 3dQ) 0.3005
J(3d,3d) 0.3029 (3dg V(P) 3d2) 0.0057
J(3s,3p) 0.4424 (3dQ V(P") 3dQ) 0.0536
J$3s,3d) 0.3719 (3dg V(P") 3dg) 0.2572
J(3p,3d) 0.3507

(PlJPg) 0.0054 (P";P5) 0.0016

(FiJPg) 0.0036 (p£;Pa) 0.0011

(S^jP) 0.1594 (S6*;?-) 1.9977



d 2 o ^ The interaction of F.. and Fp x -y z" l a
with the electron in dg2 is (dQ jV(F)jd ). To
obtain the interaction with the other four fluorines
one has hut to transform d 2 into d 2 and d 2.z y x

V  = |(3y2 - r2)

““I V-f W*
whence (dy2 IV(F) |dy2)= |(dQ |V(F) jd^+fCdg|V(F) |d )

Similarly the interaction of the six fluorine atoms 
with the electron in dx2_y2 is 2(dg|V(F)|dg) +
4[ ICdglVCPjIdg) + f(cyv(F)|d0)].

By interpolation in the tables given by Craig 
and Zauli,the value of all the pertinent integrals 
are obtained. They are listed in Table 15. For the 
sulphur configurations to be considered it is 
assumed that the valence orbitals remain unchanged 
and have orbital exponents of kgg = 2.0, 
k3p = 1.59 and =- 1.22.

In Table 16 the energies for a number of 
configurations of S in SF^ are annotated. It is 
interesting to observe that the popular configuration 
invoked for this molecule involving d orbitals,

S(sp3d^),is matched energetically by one in which
+ 2 3there is no d orbital participation namely S (s p )•
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Table 16
Energies of Configurations of SF

Configurations
of

Sulphur

S(s2p4) 
free atom
S(sp3d2)
S+(sp3dx2_y2)

S+(sp3dz2)

S+(s2p3)
S(s2p4)
s(82p3d)
S(s2p2d2)

« " *£ - Es
Present
Evaluation

-9.06

-10.19
-10.05

-9.96

- 10.20
-10.27
-10.35
-10.44

a.u.

Craig and 
Zauli

-9.03

-10.18
- 10.02

-9.95



2 2 2But of all the configurations noted S(s p d ) is 
the most favoured,being lower in energy than 
S(sp3d2) by 6.80 e.v.

An ancillary feature to be observed is the 
large contribution to the energy which is forth­
coming from the penetration integrals,involving the
interaction between the d electrons and the ligands.

3 2Considering S(sp d ),this amounts to no less than
24.99 e.v. for each d electron.

It is not uncommon in performing semi-empirical
molecular orbital calculations to disregard the
penetration integrals and equate the diagonal
matrix elements of the Hamiltonian a.. with valencen
state ionisation potentials,as was mentioned in 
Chapter III. One may recall that for neutral species 

au = +
where Ii is the valence state ionisation potential, 

the neutral atom penetration integral,and 
the coulomb repulsion between the electrons j 
occuppying orbital i. Prom Table 15 it is not 
difficult to obtain a crude estimate of in
the case of S(sp3d2) Fg. For S(sp3d2) the orbital 

energy of a 3d electron is found to be + 0.75e.v. 
As has been demonstrated it is not strictly
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permissible to identify this with an ionisation
potential and in this sense the estimate of a*,3d,3d
is only approximate. Since the coulomb repulsion
integral J(3d,3d) is 8.24 e.v. ^  is evaluated
to he 20.12 e.v. Therefore to base a semi-empirical
molecular orbital calculation solely on 1 ^
would in this instance be a dubious procedure.

In the pres#ence of the ligand field it is to
3 2be noted that the 3d electrons of S(sp d ) may 

become energetically on par with the other valence 
electrons. This role for the penetration integral 
has been commented upon in a recent communication[92].

Conclusion
The most serious deficiency in the Craig-

Zauli method is the neglect of the exchange terms.
For the free atom calculations this may be overcome
by incorporating an exchange potential into the
theory and in pilot calculations I have obtained
tolerable agreement with the results obtained by
the proper procedure. For molecular calculations it
is not at all clear how one should proceed,to retain
the inherent simplicity of the approach and yet 
allow for exchange interactions in a satisfactory
manner. A second flaw is the lack of orthogonality
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between the valence orbitals of the central atom 
and the Is orbital of the fluorine atoms. The 
consequence of such non-orthogonality has been 
demonstrated to be quite serious in a recent study 
of lithium hydride [93].

When all this has been said,there is no 
denying that this work by Craig and his collaborators 
has yielded some valuable insight into the manner in 
which d orbitals might possibly participate in the 
bonding of second row elements. Perhaps its most 
valuable contribution has been to provide a continual 
and significant stimulus to the subject throughout 
the last decade. For myself, I find the model 
physically unappealing but extremely tractable.
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CHAPTER V I I

SOME CONCLUDING REMARKS

How are we to enrich our creative powers?
Not "by subscribing to architectural reviews, 
but by undertaking voyages of discovery 
into the inexhaustible domain of nature.

Le Corbusier.

In retrospect,I feel the most significant 
achievement of this study has been the 
enlightenment of the concept of the valence 
state and the vanquishing of the uncertainty 
which had previously pervaded any discussion on 
the shape and energy of the 3d orbital possessed 
by the latter elements of the Second Row. The 3d
orbital of these elements in d^ configurations are

2extremely diffuse,but for d and higher orbital 
occupation numbers they may be quite compact.
For the free atom their energy is always small 
compared with the other valence orbitals and is a 
function almost solely of the state of ionisation 
of the atom,being independant of atomic number.
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This depen&ance on the state of ionisation is well 
illustrated in Figure I where the pseudo 3d orbital 
energies for S, S+ and S2+ are -2 e.v,, -10 e.v* 
and -17 e.v. respectively. The self consistent 
field calculations yield orbitals whose energies 
are just this order of magnitude as has been seen 
in Table 8, With regard to atomic number it might be
added that the Hartree 3d orbital of oxygen

3 2 22s2p 3d is very similar to that for a sulphur d
configuration.

Although certain features of the work presented 
have been pursued by Craig and Thirunamachandran, 
the two studies do indeed complement each other.
With regard to the shape of the 3d orbital the 
difference in approach is obvious. Here self 
consistent field wave functions have been calculated 
whilst the authors mentioned have used double 
exponential analytic functions to achieve their aim. 
When one considers the valence state of sulphur the 
two methods of advanee are fundamentally different. 
Craig and Thirunamachandran employ the techniques 
of valence bond theory whilst I have utilised a 
basic equation given originally by Dirac. He 
shows that for a configuration of n electrons
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having a total spin S the Hamiltonian for the 
system may he written in the form

H = £  H .P p P
where H are numerical constants and the matrices P,P
labelled by S,are irreducible representations of the 
symmetric permutation group.

When one considers the question as to the 
mechanism by which 3d orbitals might participate 
effectively in the bonding of second row elements it 
is very easy to ruminate. As has been seen much 
effort has been directed towards assessing the 
relative sizes of the valence orbitals of these 
elements,for the free atom and in a ligand field. 
Perhaps the first point to consider is,whether there 
is any need for a mechanism. My own view is that 
with respect to orbital size,it is probably not 
necessary to invoke any mechanism since the valence 
orbitals appear to be matched as well as is to be 
expected in the valence state. Though if one commences 
with a highly diffuse orbital it is quite natural 
to find,as have Craig and Zauli,that the orbital is 
considerably deformed by a ligand field. They have 
concentrated entirely on radial variations in size 
but it is quite likely that if one were to intro&iice
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an angular dependance in the effective nuclear 
charge,the resultant orbital in a ligand field 
would bear little resemblance to its free atom 
counterpart. Craig and Zauli have also suggested 
that the nonexistence of SH^ is probably due to the 
inability of the hydrogen atoms to produce a 
suitably contract 3d orbital. This conclusion seems 
to be at variance v/ith Carter*s study of PH^ where 
a highly diffuse 3d orbital of phosphorus was found 
to be considerably contracted in this hypothetical 
molecule[94]*

A mechanism for d orbital participation seems 
to be required when one considers the relative 
energies of the valence orbitals. As indicated 
earlier the energies of d orbitals may be considerably 
enhanced in SP^ by the ligand field. Alternatively 
the energies of the valence and ligand orbitals 
might be brought on par by charge transfer. Clearly 
both effects are likely to be operative,and to 
exclude one in favour of the other would be 
foolhardy. The latter does provide a simple 
explanation for the nonexistence of SH^ and the 
ability of fluorine to promulgate the second row 
elements under review,in high states of oxidaiion.
For fluorine has a far greater intrinsic ability to
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draw charge off the central atom of a molecule 
than has hydrogen, and. having obtained such a 
negative charge is a much smaller anion.

A major obstacle in understanding the 
bonding of the second row elements in high oxidation 
states has been the gradual acceptance that a 
satisfactory theory may be based upon the concept 
of hybridisation. Indeed to change a chemists 
thought processes on the subject would now be 
extremely difficult. Nevertheless the time has now 
come when the hybridisation concept must be discarded 
if subsequent developments are not to be stifled in 
the manner indicated at the opening of this study.

If it may so be termed,the 3d orbital which 
is involved in the bonding of the elements Si, P,
S, Cl or Ar is unlikely to bear any similarity to 
the free atom orbital. It is to be viewed in the 
same way as the participation of a 2p orbital of 
hydrogen is considered in the hydrogen molecule.
This one may recall was shown in Chapter I to be 
grossly deformed on passing from the free atom to 
the molecule. The use of such a shrunken orbital, 
in Mulliken's terminology,is in effect to introduce
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various higher excited state wave functions into 
the system[95].

The concept of hybridisation must now give 
way to the concept of polarisation.
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Synopsis

The core of the studies presented here is 
the calculation of numerical self consistent field 
wave functions for the second row elements Si, P,
S, Cl and Ar in excited configurations which involve 
the 3d orbital. In many discussions of the bonding 
in molecules which contain these elements asstheir 
central atoms,it is maintained that the 3d orbital 
may have an important role. To take a classic 
example,on the basis of the concept of hybridisation 
Pauling has interpreted the bonding in sulphur
hexafluoride in terms of the formation by the

3 2sulphur atom of sp d hybrids. Later it was observed
that the maximum in the 3d wave function,if taken
to be of a Slater type,lay well beyond the S - P
internuclear distance. On further investigation,
the use of the Slater 3d orbital in this context
was judged to be quite acceptable and an elaborate
theory was developed to bring the 3d orbital into
a form suitable for bonding.

This situation persisted to the time this
work was commenced,though on occasions it had been
suggested that perhaps the Slater 3d orbital is 

a
not.suitable representation for the 3d wave /\
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function of S(sp3d2).
In the opening chapter of this thesis,the 

course of such disputations is placed in 
perspective against a "background of the chemical 
thought prevailing at the period and the problems 
involved are formulated* For a satisfying solution 
it is found to be necessary to perform a series of 
self consistent field calculations,and to investigate 
more fully the concept of the valence state.
Chapter II treats in detail the theory of the self 
consistent field and the manner in which atomic 
calculations are performed. This is followed by a 
study of the valence state concept utilising the 
theory of the symmetric permutation group. Some 
very interesting results are obtained.

The subsequent two chapters are concerned 
with the shape and energy of the valence orbitals 
possessed by the elements mentioned when in high 
oxidation states. It is discovered that many 
affirmations which have been made on the subject 
of the 3d orbital are unfounded and indeed quite 
erroneous. This is rather surprising in view of 
the admirable investigations performed on this 
topic by Craig and his collaborators during tne
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past decade. Their theories are therefore closely 
examined in Chapter VI and discrepancies explained.

On reaching the closing pages it is possible 
to suggest in what manner a *3d orbital* might 
assume a role in the bonding of the second row 
elements under review. Finally a plea is made that 
the concept of hybridisation must now give way to 
the concept of polarisation if the development of 
chemical thought is not to be inhibited.
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Appendix I

This appendix contains the value of the 
integrals, and Ĝ , occuring in the energy 
expressions for the multiplets quoted in the 
Hartree-Fock calculations. The first column of 
a Table indicates the orbitals concerned and 
the second column gives the value of k. In the 
third column the coefficient for the integral in 
the expression for the total energy is tabulated, 
whilst the value of the integral is listed in the 
fourth column. It is to be noted that when k=0 
the second column is absent.
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Silicon 5s23p3d 5F

Is Is 1
Fq INTEGRALS 

8*4427 Is 2s 4 2.2747
Is 2p 12 2*4161 Is 3s 4 0*6082
Is 3p 2 0.5058 Is 3d 2 0*1890
2s 2s 1 1.6116 2s 2p 12 1.6525
2s 38 4 0.5650 2s 3p 2 0.4724
2s 3d 2 0.1889 2p 2p 15 1.7171
2p 3s 12 0*5676 2p 3p 6 0.4751
2p 3d 6 0.1889 3s 3 s 1 0.4288
3s 3p 2 0*3830 3s 3d 2 0.1824
3p 3p 0 0*3492 3p 3d 1 0*1780
3d 3d

2p 2p

0

2

0.1317

INTEGRALS 
1.200 0.7904 3p 3d 2 -0.057 0.0567

Is 2s 0
Gk INTEGRALS 

2.000 0.1835 Is 2p 1 2.000 0.3215
Is 3s 0 2.000 0.0127 Is 3p 1 0.333 0.0159
Is 3d 2 0.200 0.0000 2s 2p 1 2.000 0.9902
2s 3s 0 2.000 0.0271 2s 3p 1 0.333 0.0191
2s 3d 2 0.200 0.0012 2p 3s 1 2.000 0.0344
2p 3p 0 1.000 0.0241 2p 3p 2 0.400 0.0234
2p 3d 1 0.400 0.0017 2p 3d 3 0.257 0.0010
3s 3p 1 0.333 0*2489 3s 3d 2 0.200 0.0315
3p 3d 1 0.400 0.0586 3p 3d 3 0.012 0.0334
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Silicon 3s3p23d 5g

Po INTEGRALS
Is Is 1 8.4423 Is 2s 4 2.2722
Is 2p 12 2.4183 Is 3s 2 0.6142
Is 3p 4 0.5320 Is 3d 2 0.2097
2s 2s 1 1.6096 2s 2p 12 1.6524
2s 3s 2 0.5701 2s 3p 4 0.4948
2s 3d 2 0.2096 2p 2p 15 1.7192
2p 3s 6 0.5728 2p 3p 12 0.4979
2p 3d 6 0.2096 3s 3s 0 0.4341
3s 3p 2 0.3976 3s 3d 1 0.2008
3p 3p 1 0.3692 3p 3d 2 0.1964
3d 3d 0 0.1458

Fk INTEGRALS
2p 2p 2 1.200 0.7917 3p 3p 2 0.200 0.1898
3p 3d 2 0.057 0.0658

Gk INTEGRALS
Is 2s 0 2 ..000 0.1831 Is 2p 1 2.000 0.3222
Is 3s 0 1.000 0.0130 Is 3p 1 0.667 0.0176
Is 3d 2 0.200 o.uooo 2s 2p 1 2.000 0.9900
2s 3s 0 1.000 0.0277 2s 3p 1 0.667 0.0211
2s 3d 2 0.200 0.0018 2p 3s 1 1.000 0.0350
2p 3p 0 2.000 0.0266 2p 3p 2 0.800 0.0260
2p 3d 1 0.400 0.0025 2p 3d 3 0.257 0.0014
3s 3p 1 0.667 0.2638 3s 3d 2 0.200 0.0405
3p 3d 1 0.400 ‘0.0686 3p 3d 3 0.074 0.0397
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Silicon 3s3p3A2 5G

PÎ INTEGRALS 0
Is Is 1 8.4426 Is 2s 4 2.2750
Is 2p 12 2.4202 Is 3s 2 0.6300
Is 3p 2 0.5816 Is 3d 4 0.2804
2s 2s 1 1.6121 2s 2p 12 1.6545
2s 3s 2 0.5841 2s 3p 2 0.5359
2s 3d 4 0.2800 2p 2p 15 1.7209
2p 3s 6 0.5869 2p 3p 6 0.5397
2p 3d 12 0.2800 3s 3s 0 0.4479
3s 3p 1 0.4238 3s 3d 2 0.2617
3p 3p 0 0.4035 3p 3d 2 0.2564
3d 3d 1 0.1993

P.fc INTEGRALS
2p 2p 2 1.200 0.7926 3d 3d 2 0.1633 0.093;
3d 3d 4 0.020 0.0583 3p 3d 2 -0.0286 0.101'

G]k INTEGRALS
Is 2s 0 2.000 0.1835 Is 2p 1 2.000 0.3227
Is 3s 0 1.000 0.0135 Is 3p 1 0*003 0.0217
Is 3d 2 0.400 0.00002 2s 2p 1 2.000 0.9913
2s 3s 0 1.000 0.0286 2s 3p 1 0.333 0.0259
2s 3d 2 0.400 0.0044 2p 3s 1 1.000 0.0365
2p 3p 0 1.000 0.0325 2p 3p 2 0.400 0.0320
2p 3d 1 0.800 0.0061 2p 3d 3 0.514 0.0034
3s 3p 1 1.000 0.2879 3s 3d 2 0.400 0.0755
3p 3d 1 0.600 0.1134 3p 3d 3 0.049 0.0668
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Phosphorus 3s23p85d 4F

PQ INTEGRALS
Is Is 1 9.0618 Is 2s 4 2.4796
Is 2p 12 2.6599 Is 3s 4 0.6937
Is 3p 4 0.6081 Is 3d 2 0.1815
2s 2s 1 1.7585 2s 2p 12 1.8139
2s 3s 4 0.6407 2s 3p 4 0.5625
2s 3d 2 0.1814 2p 2p 15 1.8991
2p 3s 12 0.6445 2p 3p 12 0.5669
2p 3d 6 0.1814 3s 3s 1 0.4866
3s 3p 4 0.4486 3s 3d 2 0.1762
3p 3p 1 0.4184 3p 3d 2 0.1739
3d 3d 0 0.1246

Fk INTEGRALS
2p 2p 2 1.200 0.8783 3p 3p 2 0.200 0.2134
3p 3d 2 0.057 0.0449

Gk INTEGRALS
Is 2s 0 2.000 0.2041 Is 2p 1 2.000 0.3673
Is 3s 0 2.000 0.0159 Is 3p 1 0.667 0.0224
Is 3d 2 0.200 0.0000 2s 2p 1 2.000 1.0824
2s 3s 0 2.000 0.0326 2s 3p 1 0.667 0.0250
2s 3d 2 0.200 0.0012 2p 3s 1 2.000 0.0412
2p 3p 0 2.000 0.0319 2p 3p 2 0.800 0.0315
2p 3d 1 0.400 0.0016 2p 3d 3 0.257 0.0009
3s 3p 1 0.667 0.2975 3s 3d 2 0.200 0.0237
3p 3d 1 0.400 0.0413 3p 3d 3 0.068 0.0236
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Sulphur 3s25p4 5P

F INTEGRALS o
Is Is 1 9.6810 Is 2s 4 2.6827
Is 2p 12 2.9012 Is 3s 4 0.7535
Is 3p 8 0.6473 2s 2s 1 1.9039
2s 2p 12 1.9732 2s 3s 4 0.6950
2s 3p 8 0.5995 2p 2p 15 2.0787
2p 3s 12 0.6998 2p 3p 24 0.6046
3s 3s 1 0*5254 3s 3p 8 0.4778
3p 3p 6 0.4408

Fk INTEGRALS
2p 2p 2 1.200 0.9649 3p 3p 2 0.600 0.2202

INTEGRALS
Is 2s 0 2.000 0.2244 Is 2p 1 2.000 0.4132
Is 3s 0 2.000 0.01786 Is 3p 1 1.333 0.0242
2s 2p 1 2.000 1.1726 2s 3s 0 2.000 0.0356
2s 3p 1 1.333 0.0255 2p 3s 1 2.000 0.0446
2p 3p 0 4.000 0.0329 2p 3p 2 1.600 0.0327
3s 3p 1 1.333 0.3126
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Sulphur 3s^3p^3d

Fq INTEGRALS
Is Is 1 9.6812 Is 2s 4 2.6839
Is 2p 12 2.9023 Is 3s 4 0.7765
Is 3p 6 0.6956 Is 3d 2 0.1805
2s 2s 1 1.9049 2s 2p 12 1.9742
2s 3s 4 0.7138 2s 3p 6 0.6396
2s 3d 2 0.1803 2p 2p 15 2.0797
2p 3s 12 0.7190 2p 3p 18 0.6456
2p 3d 6 0.1803 3s 3s 1 0.5423
3s 3p 6 0.5062 3s 3d 2 0.1752
3p 3p 3 0.4765 3p 3d 3 0.1733
3d 3d 0 0.1205

Ffc INTEGRALS
2p 2p 2 1.200 0.9656 3p 3p 2 0.600 0.2427

INTEGRALS
18 2s 0 2.000 0.2246 Is 2p 1 2.000 0.4135
Is 3s 0 2.000 0.0191 Is 3p 1 1.000 0.0283
Is 3d 2 0.200 0.0000 2s 2p 1 2.000 1.1733
28 3s 0 2.000 0.0379 2s 3p 1 1.000 0.0297
2s 3d 2 0.200 0.0014 2p 3s 1 2.000 0.0476
2p 3p 0 3.000 0.0382 2p 3p 2 1.200 0.0382
2p 3d 1 0.400 0.0018 2p 3d 3 0.257 0.0010
3s 3p 1 1.000 0.3374 3s 3d 2 0.200 0.0215
3p 3d 1 0.400 0.0356 3p 3d 3 0.257 0.0203
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Sulphur 3s3p^5d 5F

INTEGRALSo
Is Is 1 9*6806 Is 2s 4 2.6811
Is 2p 12 2*9039 Is 3s 2 0.7862
Is 3p 8 0.6967 Is 3d 2 0.1939
2s 2s 1 1.9027 2s 2p 12 1.9736
2s 3s 2 0.7216 2s 3p 8 0.6402
2s 3d 2 0.1937 2p 2p 15 2.0813
2p 3s 6 0.7270 2p 3p 24 0.6463
2p 3d 6 0.1937 3s 3s 0 0.5498
3s 3p 4 0.5091 3s 3d 1 0.1869
3p 3p 6 0.4762 3p 3d 4 0.1842
3d 3d 0 0.1265

Ffc INTEGRALS
2p 2p 2 1.200 0.9665 3p 3p 2 0.600 0.2418
3p 3d 2 -0.057 0.0462

Gk INTEGRALS
Is 2s 0 2.000 0.2241 Is 2p 1 2.000 0.4142
Is 3s 0 1.000 0.0197 Is 3p 1 1.333 0.0285
Is 3d 2 0.200 0.0000 2s 2p 1 2.000 1.1726
2s 3s 0 1.000 0.0391 2s 3p 1 1.333 0.0298
2s 3d 2 0.200 0.0020 2p 3s 1 1.000 0.0489
2p 3p 0 4.000 0.0383 2p 3p 2 1.600 0.0383
2p 3d 1 0.400 0.0025 2p 3d 3 0.257 0.0014
3s 3p 1 1.000 0.3379 3s 3d 2 0.200 0.0267
3p 3d 1 0.400 0.0443 3p 3d 3 0.257 0.0254
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Sulphur 3s3p55d2 7F

FQ INTEGRALS
Is Is 1 9.6812 Is 2s 4 2.6839
18 2p 12 2.9070 Is 3s 2 0.7912
Is 3p 6 0.7139 Is 3d 4 0.3798
2s 2s 1 1.9051 2s 2p 12 1.9761
2s 3s 2 0.7262 2s 3p 6 0.6549
2s 3d 4 0.3786 2p 2p 15 2.0841
2p 3s 6 0.7316 2p 3p 18 0.6613
2p 3d 12 0.3787 3s 3s 0 0.5541
3s 3p 3 0.5187 3s 3d 2 0.3441
3p 3p 3 0.4892 3p 3d 6 0.3336
3d 3d 1 0.2611

Ffc INTEGRALS
2p 2p 2 1.200 0.9680 3p 3p 2 0.600 0.2501
3d 3d 2 0.163 0.1173 3d 3d 4 0.020 0.0723

Gk INTEGRALS
18 2s 0 2.000 0.2246 Is 2p 1 2.000 0.4151
Is 3s 0 1.000 0.0199 Is 3p 1 1.000 0.0299
Is 3d 2 0.400 0.0001 2s 2p 1 2.000 1.1741
2s 3s 0 1.000 0.0392 2s 3p 1 1.000 0.0312
28 3d 2 0.400 0.0111 2p 3s 1 1.000 0.0492
2p 3p 0 3.000 0.0399 2p 3p 2 1.200 0.0401
2p 3d 1 0.800 0.0139 2p 3d 3 0.514 0.0078
3s 3P 1 1.000 0.3470 3s 3d 2 0.400 0.1125
3p 3d 1 0.800 0.1653 3p 3d 3 0.514 0.0968
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Sulphur 3s3p53d2 -4

PQ INTEGRALS
Is Is 1 9.6813
Is 2p 12 2.9055
Is 3p 6 0.7078
2s 2s 1 1.9032
2s 3s 2 0.7345
2s 3d 4 0.3250
2p 3s 6 0.7403
2p 3d 12 0*3251
3s 3p 3 0*5160
3p 3p 3 0.4815
3d 3d 1 0.2171

P. INTEGRALS
2p 2p 2 1.200 0.9671
3d 3d 2 -0.082 0.0941

Gk INTEGRALS
Is 2s 0 2.000 0.2243
Is 3s 0 1.000 0.0211
Is 3d 2 0.400 0.0000
2s 3s 0 1.000 0.0417
2s 3d 2 0.400 0.0081
2p 3p 0 3.000 0.0401
2p 3d 1 0.800 0.0101
3s 3p 1 0.333 0.3411
3p 3d 1 0.800 0.1278

Is 2s 4 2.6819
Is 3s 2 0.8037
Is 3d 4 0.3259
2s 2p 12 1.9744
2s 3p 6 0.6484
2p 2p 15 2.0826
2p 3p 18 0.6549
3s 3s 0 0.5590
3s 3d 2 0.3007
3p 3d 6 0.2914

3p 3p 2 0.240 0.2439
3d 3d 4 -0.002 0.0574

Is 2p 1 2.000 0.4147
Is 3p 1 1.000 0.0301
2s 2p 1 2.000 1.1729
2s 3p 1 1.000 0.0312
2p 3s 1 1.000 0.0521
2p 3p 2 1.200 0.0402
2p 3d 3 0.514 0.0057
3s 3d 2 0.200 0.0828
3p 3d 3 0.086 0.0740
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