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This thesis is concerned with the study of ecrystal structures by
x-ray and neutron diffraction techniques, and also with the
application of the symbolic addition method of solving crystal
structures directly from the diffraction data,

Chapter 1 contains a review of direct methods of phase
determination in diffraction experiments, the first part of the
chapter being concerned with the historical background of the
topic and the second part with the practical details of the
symbolic addition method as applied to both x-ray and neutron
diffraction data,

In Chapter 2, the crystal structure analysis of the stable
free radicsl t-butylferrocenyl nitroxide is described, and the
possibility of direct Fe...N or FQ...O bonding is discussed, The
relative orientations of the two cyclopentadienyl rings are compared
wvith the orientations of the cyclopentadienyl rings in other
ferrocene derivatives, and the dimensions of the nitroxide radical
are compared with those published for other nitroxide radicals,

Chapter 3 describes the refinement of the structure of the
11 oomblex of hexahelicene with 4-bromo-2,5,7-trinitrofluorenone,
and the resulting dimensions of the hexahelicene molecule are
compared with those predicted from molecular-orbital and valence-

bond calculations in which a planar molecule was assumed,



In Chapter 4 the determination of the crystal siructure of potassium
tri-hydrogen diesuccinate directly from neutron diffraction data is
described and discussed; the refinement of the structure of
potassium tri-hydrogen di-glutarate is described, and the structures
of these 'super-acid' salts are discussed, in particular the
dimensions of their hydrogen bonds,

Chapter 5 describes the x-ray and neutron_diffraction analyses
of the crystal structure of the neutral salt aepicoline N-oxide
hydrochloride monohydrate, and the siructure is described in terms
of the disproportionation of a neutral salt into an acid salt and a
basio salt. Particular attention 1s paid to the discussion of the
'acid salt' part of the structure,the bichloride ion Cl-H-Cl ~,

In Chapter 6, the structure analyses of the p-nitrosoaniline

derivatives 9-nitrosojulolidine and N,N-diethyl p-nitrosoaniline
are describéd, and the extent to which quinonoid-type structures
contribute to ithe resonande hybrids of these compounds is discussed.
The dimensions of their nitroso groups are discussed and compared

with those of other nitroso compounds,

(The accuracy attained in the neutron analysis of the
picoline salt was disappointing in relation to the chemical
interest of this structurees It could have been improved had

it been possible to use longer counting times,)
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CHAPTER 1

DIRECT NMETHODS OF PHASE DETERM NATICN

IN DIFFRACTION EXPERIMENTS



1.1, Introduction =~ The Phase Problem

When electromegnetic radiation falls upon matter it is scattered,
and an image of the scatteringmatter may be constructed if‘the angular
distribution of intensity, the frequency and phase of the scattered
radiation is known. In mathematical terms, if the Fourier transform
of an object is completely determined, the object itself is completely
determined, and its form may be obtained by Fourier transformation.,

Wheﬁ a beam of x-rays is incident upon a cryétal, all the atoms
in the path of the beam scatter coherently. 1In general, the scattered
vaves interfere with, and destroy one another, but in certain directions,
dependent on th; dimensions of the unit cell, they interfere constructively
to form new wave fronts. This constructive interference is known as
diffraction, and a crystal effectively behaves as a three-dimensional
grating to x-rays. The resulting pattern of diffraction maxima is the
Fourier transform of the unit.cell contents sampled at specific points in
reciprocal space - the reciprocsl lattice points,

The values of the Fourier transform at these points ~ the structure

factors - can be calculated for a structure of N atoms :

. N
- P e ¥n _
By = F-}l e b -%fjﬁexp(t?wiﬁ.gj) (1.1)
where Fh is the structure factor associated with the reciprocal point of
Miller indices (hkl), ¢, is the phase asssciated with F,, £ is the atomic

scattering factor of the jth atom, and rj = (xj, yj, Zj) is a vector whose

corponents are the co-ordinates o7 the jth atom, The intensities of the
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diffraction maxima are proportional to Fh 2,

A more general form of equation (1.1) is :

F, o= /»(;)exp(evrig-z)dr ' (1.2)

where p(r) is the electron distribution function. p(r) may be expressed

in terms of Fh by means of the Fourier inversion theorem, giving :

p(z) = _%_Z?Fhexp(-%ib_._z;) (1.3)

where V is the volume of the unit cell,

The electron éistribution can thus be described by a Fourier scries,
the coefficients of which are the Fh's. The magnitudes of the Fh's can be
readily derived from the intensities of the diffraction maxima, but ihere
is no way of deriving experimentally the phases ¢h'

Thus the diffraction experiment does not provide sufficient data to
enable the Fourier summation (1.3) to be carried out; the«ﬁh must some-

how be found before p(r) can be calculated, This is the phase problem

of crystailography.

1026 Historical Background

In the early days of crystal-structure analysis, when trial and
error methods alone were used in solving structures, it was a commonly-
held belief that a direct solution to the phase problem was impossible in

principle. Egquetion (1.3) seems to infer that for aeny given set of
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structure amplitudes Fh there may be associated an arbitrary set of

phases ¢h’ each giving rise to an acceptable electron-density function
P(;)o However, this argument overlooked the important restriction +that
P(z) rust be everywhere non-negative, and it was soon realised thast &
solution to the phase problem must exist, if only in principle.

The structure factor equations (1.1) form a system of simultaneous
equations in which the phase34$hland the atomic positions Eﬁ are the

unknowns, and the Fh are known from experiment. Normally this system

of equations is gre;:iy overdetermined by the number of experimental
data, so that it should be possible by algebraic means to solve for
either the unknown phases ¢h.or the atomic positions Ij' Since the
equationa (1.1) are not linear, simple elimination procedures cannot be
uged, and it would be an enormous computational task to attempt to solve
such a set of equations for anything other than a trivial structure,
However, the important point to emerge from the above argument was that the
phases ?h (or the atomic positions gj) ought to be expressible in terms
of the structure amplitudes Fh o

The first attempt at deriving relationships between the structure
amplitudes and atomic positions, by manipulating the structure factor
equations, was by Ott1 in 1928, His results were extended by Banerjee2
to a routiﬁe for finding the signs of the structure factors, but the
procedure was ineffective for all but the simplest structures.

An alternative and more rewarding approach to the phase problem was

Sré

adopted by A.L, Patterscn in 1934 who investigated the properties of ths
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transforn of the diffracted ihtensity distributicn., The intensity I
at any point in reciprocal space is proportional to the square of the
structure amplitude (Fh) at thet point. Since F, is a complex

quantity, we have :

(2.1)

= ?h.Fh

—

where Fh* is the complex conjugate of Fh. The transform of this product

is, by the convolution theorem, the convolution of the transform of Fh

(the electron density) with the transform of Fh* (the electron density

inverted at the origin), and can be represented as a Fourier series with

the intensities as Fourier coefficients :
P(z) = Zlgexp(-an_._r_) (2.2)

The maxima of this function (the Patterson function) represent the
interatomic vectors from which it is possible tc determine the atomic
positions,

Although a great many structures have been solved with the help of
the Patterson function, the more complex oneswith the aid of heavy atom
substituents in the crystal, no general method of solution has so fer
resulted, The Patterson functionof a structure containing only a moderate
number of light atoms tends to have many overlapping peaks, and without
some previous knowledge of the structure, interpretaticn may be very
difficult. However, the relative success of the Patterson function did
demonstrate that it was possible to extract phase information from a set

of phaseless amplitudes, and stimulated a new search for relationships
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between structure factors and phasesg,

-
In 1948 Harker and Kasper) derived inequality relationshiips

between the structure factors, which depended on the positivity of tho
electron density,. To do this, they made use of Cauchy's inequality, which

may be written :

N
2. 850 £

J=1

where the aj‘s and bj's may be real or complex quantities. In dealing
with inequalities, it was found convenient to define a normalised structure
factor, the unitary structure factor (U) which gives the structure factor

as the fraction of its maximum possible value :

R N
Uh S — = Zn.eporill_._I;j (204)
2 N =1 :
dof,
=1 °
N
here n, = f, f.
vhere 1 J/E, 3

Uh thus has a maximum value of 1,

If \/hj is substituted for aj, and \/hjepoWiQ,g.for bj in equation

(2.3) the resulting inequality is :

=1 Y\j=1

v|'U£ |2 S(%n)(ZN: n exp2rih.r 2) (2.55

Since Iexp2wiﬁ,g|2 = 1, equation (2.5) becomes
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o [ < 1
Although this result is trivial, when Cauchy's inequality is applied
to the structure factor equations for structures containing symmetry
elements, more useful inequality relationships are found. VWhen a centre

is present, the unitary structure factor equation is :

N

Ull- = ;L;%njcosZwll_.xj ' (2.6)

and applying Cauchy's inequality we have :

N N
th < ( > nj)( 3 njcos221r_}_1_.g_j) (2.7)

4 3=1 =1
5 N
or : Ull. < -;-Z nj(1 + cos21r2h.z_j) (2.8)
- 2 )
and thus U° < -}(1 + Uzn) (2.9)

This inequality can be used to show that if qh and UZE are both
sufficiently large,’U2h must be positive. Other inequalities may be
found for other symmetry elements, and MacGillavry6 published a group-
theoretical derivation of Harker-~Kasper inequalities which enabled their
straightforward determination for any space group.

Karle and Haurtman7 investigated the relations between the phases and
magnitudes of a sét of structure factors on a more general basis by
deriving a complete set of inequalities on the basis of the non-negativity

of the electron density. They showed that a necessary and sufficient

condition for the electron density to be cverywhere positive is
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F F_oo-.--o'....F_

000 _1_1_1 . -}ln

F F._ Fo = eoeePr = > 0 (2.10)
by oo BBURE,

F oooo'oo.-oo--u.-F

h, 000

The complete set of inequalities, which include all the Harker-Kasper
inequalities, may be expressed in terms of determinants of higher and
higher order, and thus of increasing complexity. Only the simpler
inequalities have therefore found practical application, but with
increasing structural complexity, they cease to be restrictive,

Several structures were solved using inequalities, but they cortsined
comparatively few atoms in the unit cell, and it would be & fair comrent
that any structure solvable by inequalities could also be solved by soue
other non-direct methodsof phase determination, Nonetheless, it was from
Harker~Kasper inequalities that all subsequent direct methods of phase
determination were evolved.

Probably the most important single advance in direct methods wss
achieved ty Sayre8 who, by examining the relations between the F's of a
structure containing fully resolved identical atoms and the F's of the same
structure in which the atoms were replaced by squared atoms, derived

equations inter-relating the structure factors. The electron density p(r)

and its square pz(g) may be expressed as :
. o ‘
p(r) = g2 Fpexp(-2rih.r) (2411)

p(r) = g2 Ry exp(-2rih.r)
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" Y th '
where —7% is the h Fourier coefficient,

Px) = %:ZG}\exp(-&ri_}g._I;) : (2.12)
h—‘

G
where Q/& is the hth Fourier coefficient of the squared structure.

It can be shown that the Fourier coefficients of the squared

structure may be found by the self-convolution of the Fourier coefficients

of the original function, Thus :

1 1
T = }JZ;VZF—FQ'— (2.13)
or ¢ = EIPF (2.14)
R B N 140

Equation (2.14) relates the Fourier coefficients of the squared structure

to those of the structure itself for a structure containing identical

atoms,

If the atomic scattering factor of an atom is denoted by f and that

of the squared atom by g, we have :

N
Fo= > fexp(2rih.r) (2415)
- j=1
N
and 6 = Y- gexp(2rih.r) (2.15)
: = J=1
- Ep (2447)

T f'h
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kpf‘_h—ls (2.18)

& =
Thus th =

<

Equation (2.18) should be valid for a structure containing egual (or
nearly equal) atoms, and was used successfully by Sayre to solve in two
dimensions the structure of hydroxyproline., The direct application of
Sayre's equation to determine signs is nevertheless too complex, especially
in three dimensions, to be generally useful,

However, Zachariasen9 (1952) and Cochran10 (1952) were quick to notice
that if the F's involved are sufficiently large, equation (2.18) can be
simplified to:

F_ll ~ FK_FQ-k (2019)

As the magnitudes decrease in value, equation (2.19) will no longer

be even approximately true, but it will still be probable that

th = B?E?ETE , (2.20)
or more generally
sF, =s FF (2.21)

where s meens 'sign of'.

Using a statistical approach, Cochran and Hoolfson11 derived an

expression for the probability that the product UkUh-k gives a positive

sign for U :

P (n,k) = 7+ Fiunh (‘%3) Uﬁu‘—‘-uﬁ‘-’il (2.22)
N 3
where o, = 2433



and ¢ =y . n2

For an equal atom structure, equation (2,22) becomes

P+(Q,_lg) = %4 %tanl'lNlU—.U Uh-_lgl

Although this simplified form of Sayre's relation (2.20))used in
conjunction with the above probability expression, was a sign;ficant
advance in the use of sign relationships, it could not be generally used
without prior knowledge of the signs of some of the Fh.

Karle and Hauptman12 (1953) developed & statistical approach to the
phase problem which yielded phase determiring formulae in which phase
information is deduced from the magnitudes of the structure factors. Trey
noted that the frobability of the sign of a structure factor being positive
is one-half as long as no other intensities are known; once a set ol
intensities is known, the probebility deviates from one-half. By a
complex mathematical procedure, which involved integrafing the atomic

-~

coordinates over all positions in the unit cell, they obtained a number of
expressions similar in form to (2.22) for the probability that the sign ¢
a styucture factor is positive, They expressed their results in terms oI

the normalised structure factor defined as:

Up
E = —— (?.2_.-)
h T2 *

The first results, which are applicable to the space group PI, mey

be expressed as :
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21 PosEy ~ s(EQB—l) (2.25)
22 toSE ~ SEE&E&_E | | (2.24)
ZB tsB ~ SEEE(E (he)/2 ) (2.27)
24t sBy ~ s}}i(z— -1)(8%, px ) (2.28)

If symmetry other than a centre is present then stronger sign-
determining formulae result. For example in the space group ]’2 /c an
additional Zl type formula may be derived :

h+l (

SEono21 ~ SZ( -1) e L) (2.29)

Since only the magnitudes of the E's are known initially,Zl or 24
must be used to initiate the phase determination. Once sufficient signs
have been determined, 22, wvhich is the same as Sayre's relationship, can be
used to determine further signs. Although Karle and Hauptman used this
method to solve several structures, it was not always successful, the main
difficulty being the unreliability of Zl and 24. The reasons for this
were pointed out by Vand and Pepinskylb (1953) and Bullough and Cruickshank'4
(1954).  If the signs of the E's are controlled entirely by X,, this is
equivalent to computing a Fourier synthesis using (E2h-1) as coefficients .-
essentially. a sharpened Patterson map with the origin removed, and the
solution, using this as a start, tends to converge on the high peaks of the

Patterson map. In the same way, using 24, the solution converges on the

high peeks of a map of the square of the Patterson density.
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In recogniticn of the inadequacies cfZH and 24, and in the light

'S5 in 1963

of their own experiences with direct methods, Karle and Karle
introduced the symbolic addition method of phase determination. Instead
of firet determining a basic set of signs using relationships such asX1
and E4, and then proceeding with 22 using this basic set, {he phase
determining procedure is initiated and carried out in terms of a small
properly chosen set of specified signs and unknown symbols using only
the 22 relationship. If x symbols are used, then in principle 2% Pourier
maps must be computed, in order to find the corréct solution, although
relations are usually found between the unknown symbols which reduce this
number, As well as being both simple and reliable, the symbolic addition
method has the advantage of being easily carried out by hand, and is now
probably the most widely used method of direct phase determination.

So far, only the case of the cenfrosymmetric space groups has been
discussed; in its more general form,12 Karle and Hauptﬁan's theory can
be extended to deal with non-centrosymmetric space-groups,. Phase
determination in this case is initiated using a formula similar to 22.

If one has three structure factors of indices h, k, and h-k, the expected

value of the phase ¢h is given by :
¢ ~ <Pk +  bnk Dk, (2.3C)
Approximate phases for additional E's can then be calculated using tlre

tangent formula :



% gﬁ?ﬂh& sin(d{lS + ?_:E)
tang = = (2.31)
i égggﬁg cos(§£'+ ¢y k)

1e36 The Symbolic Addition Method of Direct Phase Determination

for Centrosymmetric Crystal Structures

(a) Preparation of normalised structure factors

The observed structure factors (Fobs) are first put on an
absolute scale and corrected for thermal motion using either a Wilson
plot or K-curve,

Wilson16 pointed out that for absolute intensities

1y =12 =0 | (3.1)
J

and that the observed intensities, Ihobs will differ from the Ih by a
scale factor k, independent of 6§, and a temperature factor. Thus, if we
assume a temperature factor of the form exp(-Bsz), were 8 = sing/\, we

have :

I = kIhexp(~B52)

hobs

The reflections can be divided into groups covering different ranges

of s, and within each group the ratios :

. Xo o
- or - = r (3.2)
I hobs . F hobs

are conputed, A plot of log(r) VSe. 82 at the average value of 32

within each group should thus give a straight line of slope B and inter-
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cept - log ks This is known as a Wilson plot.

Ajternatively, if (3.,2) is plotted directly as a function of s at
the average value of s within each group, without assuming a form for the
temperature factor, the resulting curve will have an intercept 1/k when
8 = 0, and the shape of the curve will give the statistical temperature
correction, which need not be Gaussian; this is the k-curve.

Having put the observed structure factors on an absolute scale and
corrected them for vibrational motion using either of the abovp methods,

the normalised strue ture factors are calculated according to equation :

B 2 - Eﬂ 2
h
Gij
o j
vwhere Fh is the corrected structure factor magnitude, fj is the jth

atomic scattering factor for the jth atom in a unit cell containing N
atoms, and € is a number which corrects for space group extinctions.

The normalised déta are then separated into eight subgroups according
to the parity of their Miller indices, and listed in order of decreasing
|E| Those E's above a certain arbitrary value, usually [E| > 1.5,
are then used to generate all the possible 'triples' h, k, h-k for use with
X . For each triple, the probabilit& that ‘

2
8(2)03(_1;)05(_1}.".15_) = +1 ) (303)

is evaluated, assuring an equal, or nearly equal atom structure, using

a formula derived from equation (2.22)
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(3.4)

e+ 4 ltann &
P, = + + ¥tanh J ’E +E B

(b) Specification of an origin

The first step in the phase delermining procedure is to define an
origin, since the values of the phases depend, in general, not only on the
structure, but also on the choice of origin. For the centrosymmetric
space groups, the permissible origins are the eight centres of symmetry
in the primitive unit cell, Usually the eight centres are n;t equivalent,
since different centres may be situated differently with respect to the
- various symmetry elements, As a result, phases may be divided into two
classes: thosq which change sign with & change in origin -~ structure
seninvariants, and those which depend solely on the structure - stiructure
invarients,

The centrosymmetric space groups may have one, two, four or eight
classes of equivalent érigins and it is then necessary to assign the
values of three, two, one or zero appropriate phases, respectively, in
order to specify the origin,

The theory of structure seminvariants has been vorked out in detail

17,18,19,20 are given which divide the

for all the space groups; tables
space groups into types according to the nature of their equivalent sets
of permissible origins. Within each type of space group, the invarient

and seminvarient phases are listed, as well as the number of phases which

require to be assigned in order to define an origin. For example, in
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vthe primitive centrosymmetric space groups of the triclinic, monoclinie

and orthorhombic classes (Type 1P), three phases require to be assignred

in order to define an origin, Phases of reflections whose indices are

all even (eee) are structure invarients in this type of space group and
thus cannot be used to define an origin, Likewise, any linear combination
of three phases whose indices add up to (eee) is also structure invarient;
such phases are linearly dependent. Only combinations of three phases
which are linearly independent can thus be used to define an origin, In
making the phase assignments, the largest suitable IEhI are used, the
chcice being partly determined by the extent to which a particular h

enters into the ):2 triples.

(c) Determination of phases

Having specified an origin, one unknown symbol. is then assigred to

a suitsble large IEhI which is involved in many'Z? relationships,

o

Equation (3.3) is then used to define as many signs of the largest !Eh|
as possible, in terms of both the specified ones snd others that have |
been newly determined. Additional symbols are assigned when required to
other large |Eh| which enter into a large number on2 relationships.,
It is possible—;o proceed in this manner until the phases of all or moét
of the laréest |Eh| are known in terms of the specified signs and
unknown symbols.

As the phase deterrination proceeds, and relationships involving

smaller IEhI are employed, the probabilities determined from (3;4) will



-7 -

decrease; that is, the relationships will become less reiiable, and
Karle and hauptman recommend that a relationship should be rejected if
P+ < 0.97. However, relationships with lower probabilities can
usually be employed in the latter stages of phase determination, if
necessary, in an attempt to gein more signs,

Usually no more than three or four unknown symbols are required
during a determination, which means that, in theory, there will be 23 or
24 possible solutions respectively., Fortunately relationshipg between
the unknown symbols often arise during the phase determinution, in
favourable circumstances providing a unique solution, and in less
favourable circumstances leaving only two or four possible solutions.

Other criteria, such as the relative number of positive and negative

phases, also help in deciding which solutions are likely to be correct.

(d) Calculation of E-maps

Once one or more possible solutions have been determined, their
validity is tested by calculating Fourier syntheses. It has been found
more useful to calculate syntheses in which the coefficients are E's
rather than F's, This is because a large number of the phased E's are
derived from fairly high-order reflections which, although they have
large |E|'s; have small values for[FI which tend to be swamped in a
Fourief synthesis by a few strong low-order F's,

'E~-maps' are effectively sharpened Fourier maps, and nearly always

contain too many peaks. Chooeing a chemically sensible set of peaks is
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usually fairly straightforward for most structures, but structures
containing highly symmetrical features, such as several six-membered rings,

sometimes give rise to E-maps which have several possible interpretations.

1.4. The Direct Determination of Phases from Neutron Data

Since neutron diffraction data are normally phased initially using
the previously determined x-ray structure, a means of determining phases
directly from a set of neutron structure amplitudes would be useful when
x-ray data are not available, or when a heavy-atom structure determined
by x-rays contains poorly resolved light atoms.

It was thought initially21 that the methods applicable to x-ray
‘data, in particular the symbolic addition method, are not directly
applicable to neutron data, since certain atoms, notably hydrogen, have
negative scattering factors for neutrons; x-ray scattering factors are
always positive.

In deriving the sign relationship (2.20) from Sayre's equation (2.18)
it was shown that the phases and magnitudes of the original and squared
structures are the same for the largest normalised structure amplitudes.
In the case of neutron diffraction, where some atoms may be scattering with
negative scattering factors, the phases and magnitudes of the normalised
structure factors for the squared structure may be different from those
of the original structure, making the use of equation (2.20) invalid.

Karlezl suggested that if the structure amplitudes expected from

the squared structure could be calculated from the observed amplitudes,
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the conventional symbolic addition procedure could then be applied,
since all the atoms would have positive scattering factors as in the |
case of x-ray diffraction, This would lead to the squared structure }
from which the original structure could be derived; the structure of
glycolic acid has been solved directly from neutron datas by Ellison and
Levy22 using this 'squared structure! method,

However, it is likely that the glycolic acid structure could, in
fact, have been solved by the conventional symﬁolic addition method. To
see why this is so, let us look more closely at the effect of negative
scattering hydrogen nuclei on the structure factors obtained from a
typical organic crystal by neutron diffraction, The nuclear scattering
lengths (;) of carbon, oxygen and hydrogen are 0.661, 0,577 and -0,378

x 1012

cns. respectively, Their respective scattering powers are thus
in the ratio of 0.6612:0.577%: (0.378)° or 0.44:0.34: 0,14 - roughly
3:2:1 coupared with 36:64:1 for x-rays. It can be seen, therefore, that
the ‘heavy clements' carbon and oxygen are still the dominant scatterers,
though to the extent of an order of magnitude less than for x-rays. |, Ths
differences in the neutron structure factors of an organic structure
containing a moderate proportion of negatively scattering hydrogens and the
same structure in which the hydrogens scatter positively can thus be
predicted aé :

(a) oproportionately large differences in amplitude among a

number of the weaker F's; many may also have different signs,

(b) proportionately small differences in amplitude among the
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largest F's, and no difference in sign.

Thus, although the phases of some of the structure factors for the
squaredstructure may differ from those of the original structure, the
important point is that, as long as there is only a moderate proportion
of hydrogens in the structure, the phases of largest structure factors
will be the same in the original and squared structures.

Also, since the nuclear scattering length, S, does not change with
increasing Bragg angle 6§ , it is generally the case with neutron data
that large E's corresfond to large F's, so that the phases of the largest
E's will be the same in the original and squared structures, and it should
therefore be permissible to proceed with phase determination using the
conventiongl symbolic addition method. It has been suggested18 that the
symbolic addition method may be used with neutron data when the scattering
due to hydrogen is less than ¥ of the total scattering :

)}:Ibl;zl /:Z:'l bj2 < 1,3
atoms

That the symbolic addition method can be successfully applied to
neutron data is demonstrated in Chapter 4 where the determinations cf the
structures of potassium trihydrogen disuccinate and potassium trihydrogen
.diglutarate Are described; the proportion of negative scattering power
in these structures is 20% and 22% respectively, The first non-
centrosymmetric structure to be solved directly from neutron data - L-prclirne |

monoh&drate - has been reported18 by Verbist et al, and they conclude that
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<

*direct methods can probably be applied to neutron diffraction dats
for almost any crystal to which they are applicable to x-ray ditffration

data:
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CHAPTER 2

THE CRYSTAL AND MOLECULAR STRUCTURE

OF t-BUTYLFERROCENYI. NTTROXIDE




2.1, Introduction

The first stable organic nitroxide radical, porphyrexide (I),
was isolated and characterised by Piloty and Schwerin1 in 1901; during
the years 1912-22 Wieland2 prepared a number of relatively stable diaryl
nitroxides of type (II), with R1 and R2 = aryl, and in 1959 Lebedev

and Kazarnovski3 succeeded in isolating the first completely aliphatic

nitroxide radical (III).

HN : .
\\——-NH R, Rz
//} \\\T/// . ‘<<::::>——*T——-Bm
T ) Fe °
o o
I o m v

This was followed shortly afterwards by Hoffmann's synthesié4

of di-t-butyl nitroxide. The rapid development of e.s.r. spectroscopy

in recent years has stimulated a renewed interest in nitroxide radicals,
and a large humber have been synthesised and examined. t-Butylferrocenyl
nitroxide (IV), believed to be the first stable, neutral ferrocenyl

radical to be isolated,s is of particular interest, 1Its e.s,r, spectrun
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(Figure 2.1) has some unusual features - an a, value of 11.75 G which

N
is similar to that found in aryl-t-butyl nitroxides (about 12.0 G) but a
g-value of 2,0149 : 0.0004 which is much larger than the normal value for
aryl-t-butyl nitroxides (about 2,006). The smaller coupling (0.8G) in
the spectrum, which almost certainly arises from the 2- and 5-ring
protons, is less than half that of the ortho-protons in aryl-t-butyl

nitroxides (a ca. 2.0 G). These results indicate that the unpaired

O-H
electron is extensively delocalised and that there is considerable
interaction with the iron atom. This could occur either via the netal-

ring w-system (IVé<——*>IVB<——*>IVc).

@N ——But @*ﬁ-——au' ' %
Fe : FQ:

tncm———-

o

N, S '8 K

and/or by direct Fe-N (or 0) bonding - direct bonding between electron-
deficient carbon and iron has frequently been invoked6 to explain the

unusual stability of a-ferrocenylcarbonium ions (V).

Bu'
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oy

The structure of t-butylferrocenylnitroxide was thus
determined in order to examine the possibility of direct bonding, and

also to determine the bond lengths and angles of the nitroxide moiety.

2026 Experimental

The crystals of t-butylferrocenyl nitroxide were deep-red in colour
and needle-shaped, with the needle axis along the a-direction, The unit-
cell dimensions and space-group were determinéd from rotation, Weissenberg
and precession photographs taken with a crystal mounted along its needle

0
axis, Cu-K, radiation of wavelength 1.5418 A was used,

Cryatal Data

15.71 (2),

C, H,gNOFe, M = 272,14,  Monoclinic, & = 5.90 (1), »

(o]
= 14,38 (2) 4, B =109.25 (0,25)°. U

03
1258.2 A » 'Dﬂn = 1.42,

lo
I

z=4, D =1.43 u(Cu-K ) = 96.57 ent, Space group P, /Jc (No. 14).
: 1

k3 b

Data Collection

Intensities were estimeted visually from equi-inclinatior Weissenberg
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photographs (using Cu-K, radiation) of reciprocal-lattice nets Okl -

5kl. A crystal of dimensions 1.0 x 0,25 x 0.15 m m3

mounted along its
needle axis was used, and 1,237 independent intensities were measured
which were significantly above background, Lorentz and polarisation

corrections were applied to the data, but no absorption correctionsz

were applied.

2.3, Structure Determination and Refinement

The structure was solved by the heavy-atom method, The coordinates
of‘the iron atom were determined from a three-dimensional Pattefson
synthesis, and the signs of the structure factors obtained from the iron
contributions were used in computing an electron-density map in which all
the remaining sixteen atoms in the molecule were clearly resolved.
Structure factors based on all seventeen atoms gave an R value of 29.0%,

Using unit weights, three cycles of full-matrix least-squares
refinement of positional and isotropic temperature factors, and batch
scale factors, reduced R to 17.3%. A further four cycles of block-
diagonal refinerent with anisotropic temperature factors and an overall
scale factor, completed the refinement, and reduced R to 9.%5, with

R (XWAQ/ZWFZ) = 1.,6%, The weighting scheme used in the final three
_ )

cycles is represented by the equation ¢

W = ’[1..3}(1)(—1)? sin%){l/[‘ +p;gchl + p3ch|2]£

The final values for the three parameters were p, = 20, p, = 0.0001,
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p3 = 00,0005, The scattering factor curves used for Fe, C, N, and 0
were those from International Tables for Crystallography (1962).
The values for the atomic coordinates and vibrational parameters

are given in Tables 2.1 and 2.2 respectively, and the observed structure

amplitudes and calculated structure factors are listed in Table 2.3,

2.4 Discussion of the Structure

The structure and numbering scheme of t-butylferrocenylnitroxide is
shown in Figure2,2,and the bond lengths and angles are given in‘
Table 2.4,

The N~-O bond length is 1.263 (15) g, which is intermediate between
that of an N-0 double bond (1.20 X)7and an N-O single bond (1.44 2).7
This is c&nsistent with the three-electron nitroxide N-O bond postulated
by Hoffmann and Henderson,4 and later by Linnet8 in his double~quartet
theory of bonding. ,

The atoms C(1), N, C(11) and O are coplanar; the mean plane
through themr is represented by the equation -0.5947 x' o+ 0.7016 Y +
-0.3925 Z' = 3,2126 R, (the root mean square distance of the four atoms
from the plane is 0,005 X) and makes an angle of only 13.1° with the
cyclopentadienyl ring, The Fe....N and Fe,...0 distances are 3,112 (9)
and 3.629 (11) 3 respectively, while the C (1) - N distance is
1.393 (14) X, considerably less than the accepted C-~N single bond length
of 1.47 g. These results indicate that direct Fe - N or Fe - O bending,

if any, must be weak, and the radical thus resembles more closely models
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of the a-ferrocenylcarbonium ion9 in which electron delocalisation
occurs mainly via the metal-ring m-system,

The structural parameters of several other nitroxides have been
determined by x-ray or electron~-diffraction techniques, and the relevant
bond lengths and angles from these structures (which are labelled 1 to 7)
are summarised in Table 2.5. With the exception of di-p-anisylnitroxide
(3), which was solved in projection, the values for the N-0 distances
agree within the limits of experimental error (mean value 1.278 ¥ 0,008 K)
and apart from di-t-butylnitroxide (2) and the two five-membered ring
structures (5 and 7), the C-N-C angles are also remarkably constant
(mean value 123,3 £ 0.9°). 1In di-t-butyl nitroxide, the bulky t-butyl
groups are probably causing a widening of the bond angle in an effort to
reduce non-bonded interactions, while in structures 5 and 7, the ring
size probably prevents any widening of the C-N-C angle. ‘fhe dihedral
angle which the N-0 bond subtends with the C-N-C plane varies from 0°
(planar) to 24° (pyramidal), However, examination of the non-bonded
distances suggests1o that steric factors determine the deviation from
blanarity; in all cases except di-p-anisyl nitroxide the oxygzen makes
close 0--++C contacts,or gclose O++<*F contact , in the case of structure
(1). In t-butylferrocenylnitroxide and di-p-arisyl nitroxide,
m-delocalisation over the N-O bond and aromatic syétem is probably the
major factor in achieving planarity. The geometry of the nitroxide
radical thus seems to be fairly well defined by the structures so far

determined: in the abseunce of any steric effects, it has a planar
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nitrogen, with an N-0 distance ca, 1.28 E and a C-l=-C angle ca, 1230.
" Given the accurac& of the results in Table 2.5, it is not really wvalid
to ussess the effects of different substituents on the N-O bund length,
but they do suggest that any system into which the lone electron can be
delocalised will cause & slight increase in the double-bond character of
the N-0 bond, as would be expected.

In the ferrocenyl residue, the iron atom is symmetrically placed
between eclipsed cyclopentadienyl rings, with an average Fec+--C
distance of 2,038 * 0.007 9. The average C-C distance in the cyclo-
pentadienyl rings is 1.400 ¥ 0.011 X, and the average internal ring
angle 107,99 ¥ 1.1°  These values agree well with those of other
recently~determined structures of ferrocene derivatives.17’18’19’20’21'22’23'

The mesn plane through the substituted cyclopentadienyl ring is defined
by the equatiorn -0.3985 x' +O.8172 Y -0.4165 2' = 3.9346 X, and the
root mean square distance of the atoms from the plane is 0,014 g. The
equation of the mean plane through the unsubstituted cyclopentadienyl
ring is -0.4197 x' +0,8037 Y -0.4219 z' = 0.5533 X while the root mean
square distance of the atoms from the plane is 0.003 X. The dihedral
angle between the two rings is 1.470, vhich means that they are coplanar
within the limits of experimental error; the perpendicular distance
between the.rings is 3.31 Z. A point cf interest in ferrocene derivatives
is the conformation of the two cyclopentadienyl rings, In the case of
t-butylferrocenylnitroxide they are eclipsed; in other ferrocenes they

vary from being fully eclipsed to the fully staggered. However, as
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more ferrocene structures are solved, it is beccming apparent that the
majority of ferrocenes are nearer the eclipsed than the staggered
conformation. This is consistent with electron diffraction results®?’Z>
whichk show that the free ferrocesne molecule is eclipsed with a harrier

to rotation of 0,9 k.cal.mole~1; thus while crystal packing forces will
be the major factor in influencing the conformations in ferrocenes,

there will be a tendency to favour the eclipsed conformation where

possible. , ¢
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TABLES AND DIAGRAMS



Practional coordinates (x, y,
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Table 2.1

(o]
. coordinates (in A with X'

Fe
0

c(1)
c(2)
c(3)
c(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)
c(11)
c(12)
c(13)
c(14)

axsing,

= by,

2

z) and absolute orthogonal

czcosf + ax, and with standard deviations in parentheses).

X

0.2559
-0.0737
0.0978
0.1248
10,3198
0.2528
0.0237
-0.0605
0.3828
0.5724
0.4930
0.2731
0.2007
0.2586
0.329%
0.1180
0.4858

L
0.2165
0.3468
0.3742
0.3367
0.3381
0.2911
0.2587
0.2829
0.1656
0.1693
0.1194
0.0866
0.1156
0.4421
0.5046
0.4845
0.3966

z
0.219
0.1420
0.1162
0.0327

-0.0060

-0.0918

-0.1106

-0.0330
0.1572
0.1188
0.0334
0.0210
0.0996
0.1781
0.1171
0.2346
0.2489

1

X
1.425(2)

~0.411(11)
0.544(10)
0.695(9)
1.781(12)
1.408(15)
0.132(14)

~0.337(12)
2.132(18)
3.188(13)
2.745(15)
1.521(15)
1.118(16)
1.440(12)
1.835(17)
0.657(20)
2.706(16)

Y
3.402(2)

5.449(12).

5.880(9)

5.291(10)
5.313(14)
4.573(12)
4.,064(12)
4.444(13)
2.602(16)
2.660(14)
1.876(13)
1.361(14)
1.817(14)
6.946(13)
7.929(13)
7.612(20)
6.231(15)

Z

-0.183(2)
2.185(11)
1.480(10)
0.227(11)

-0.708(12)

-1.811(11)
-1.637(14)
-0.357(14)
1.516(13)
0.595(12)
-0.479(15)
-0.229(17)
1.041(18)
2,058(12)
1.043(16)
3.144(21)
2.633(16)
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Table 2,2

o
Anisotropic temperature parameters (Uij in 22 x 103)
with standard deviations in parentheses.

U

Uiy Uoo Uz 2Us 2Uz,

5

12
Fe 38(1)  30(1) 37(1) 2(2) 38(1) 5(2)
0 82(7) 99(8) 124(9) -101(14) 157(14) -81(12}
N 58(6)  36(5) 60(6) ~34(9) 67(10) -12(8)
c(1) 31(5)  37(6) 39(6) 11(9) 11(9) 6(8)
c(2) 47(7)  71(9) 63(8) 25(13)  78(13)  27(12]
c(3) 99(10)  50(7) 35(6) -12(11) 59(13)  25(14;
c(4) 68(9) 41(7) 57(8) -22(11) 30(13) 11(11)
c(5) 43(7) 54(7) 68(8) -28(13) 1(11) g(12}
c(6) 120(13)  76(10) 52(8) 61(15) 110(18) &7(i¢.
c(7) 60(8) 63(8) 43(7) 20(12) 16(12)  49(13.
c(8) 69(9)  53(8) 72(9) 24(14)  80(15)  41(13

c(9)  74(10) 52(7)  90(10)  44(15)  53(16)  6(14)
c(10)  81(10) 42(7)  130(14) 44(16)  120(20)  -4(14
c(11)  a6(7)  5T(T)  51(T)  =35(11)  42(11) -18(11)
c(12) 109(12) 35(7)  65(10)  15(12)  18(17) -28(14.
c(13)  114(14)  99(14) 151(18)  -186(27)  168(27) -101(22"
c(14)  83(1c) 56(8)  70(39) 32(14)  31(15)  4(14,
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Table 2,4

o
Bond lengths (A) and angles (degrees) with standard

deviations in parentheses.

Fe - C(1)
Fe - C(2)
Fe - C(3)
Fe - C(4)
Pe - C(5)
c(1) - c(2)
c(2) - ¢(3)
c(3) - c(4)
c(4) - c(5)
c(5) - c(1)
N-20
N -c(1)

N - Cc(11)

2.067(10)
2.014(14)
2.006(12)
2.056(14)
2.055(12)

Mean value

1.433(16)
1.380(17)
1.385(20)
1.415(19)
1.457(16)

Mean value

Fe - C distances

Fe
Fe
Fe
Fe
Fe

= 2.038 % 0.007

c(6) - ¢(7)
c(7) - c(8)
c(g8) - ¢(9)
c(9) - c(10)
c(10) - c(6)

= 1.400 ¥ 0.011

- ¢(6)
- ¢(7)
- ¢(8)
- Ct9)
- ¢(10)

Other bond lengths

1.263(15)
1.393(14)
1.508(15)

c(11) - c{12)
c(11) - C(13)
¢(11) - ¢c(14)

2.006(14)
2.065(13)
2.040(14)
2.044(14)
2.026(16)

C - C distances in cyclopentadienyl rings

1.402(20)
1.401(19)
1.352(21)
1.409(24)
1.367(23)

1.495(24)
1.564(20)



Table 2.4 (cont'd)

Bond angles in the cyclopentadienyl rings

c(1) —c(2) = ¢(3)
c(2) —c(3) —c(4)
¢(3) —c(4) —c(5)
c(4) —c(5) —c(1)
c(5) = c(1) = ¢(2)

c(1) -N -0
C(11)=N=0
N=—=c(1) =c(2)
N —c(1) = c(5)

N = c(11) = c(12)

108.0(1.1)
110,2(1.1)
108, 7(1.1)
106,5(1.1)
106.5(1.0)

c(6) — ¢(7) = c(8)
c(7) = c(s8) —c(9)
c(8) = c(9) = c(10)
c(9) = ¢(10) ~c(6)
c(10)=c(6) = ¢(7)

Mean value = 108,0 (1.1)

Other bond angles

116.1(1.0)
118,5(1.0)
131.5(1.0)
122,0(1,0)

111.7(1.0)

c(1) =N =c(i1)

N--c(11) = c(13)

¥ - ¢(12) = c(14)
c(12)-c(11)=c(13)
c(12)=c(11)=c(14)
c(13)=c(11)—-c(34)
125,4(0.9)

104.,0(1
111,0(1
104.6(1
106.7(1

110,8(1

106.4(1

110,2(14
110.,1(1

111.1(1

2)
.3)
.4)
.4)
.3)

1)
107.4(1.
.3)
1)
.2)
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Table 2.5‘
Structure o) (X) C-N-C (deg.) (deg.) Ref.
1 1.26%0.03 120.9%2.0 21.9 9
2 1.28%0.03 126.0%3.0  ascumed planar 10
3 1.23%0.05 124.0%5.0 0 11
4 1.291%20.007 125.4%0.5 15.8 12
5 1.277%0,008 114.7%0.7 0 13
6 1.308%0.022 121.0%1.5 24 14
7 1.267X0.008 114.8%0.5 0 15
But-ferrocenyl 1.263%0.015 125.4%0.9 0
nitroxide

Average  1.278%0.022 123.3%2.4

cps\N /CF3 (CHa)ac\ /c(cu3)3

‘ P OO
o)
1 2 3
NH
2

OH °§c/

- (3

Q‘ X %

,.". T rl. ) NO,
o o o}
4 5 6 I 7



(a)

(b)

-40-
Tebtle 2,6

0
Short contact distances (A)

o
Intermolecular contacts less than 5.6 A,

c(10)+---0(2h)  3.438  c(i7)----0(2])  3.515

o(5)++--0(2h)  3.511

Some important intramolecular contacts

0(2)+--C(16) 2.596 ¢(5)+--+C(15) 3.149
0(2)**++C(17) 3,244 Peeoo N 3,112

Feee:-0 3.629

Position I is at 1 + x, ¥, z.
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CHAPTER 3

i

THE CRYSTAL AND MOLECULAR STRUCTURE OF THE 1:1 COMPLEX

OF HEXARELICENE WITH 4-BROMO.2,5,7-TRINITROFLUORENONE.
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3¢1.  Introdusiion,

Hexahelicere (1) was first synthesised in 1956 by Hewman et al Jand

its structure‘is of great interest because of the severe overcrowding

of the terminal rings. To relieve this overcrowding, the molecule

mst assume a non-planar conformation,and the two aspects of the
structure which are of most interest are (i) the extent of the deviation
from planarity, and (ﬁ) the effect, if any, which this deviati;n from
Plenarity has on the bond lengths and angles of the molecule. Preliminary
answers to these questions were given when the structure of the 1:1
complex of hexshelicene with 4ebromo-2,5,7-trinitrofluorenocne (2) was
solved by Robertson et a12. The hexahelicene molecvle was shown to have
the expected helical structure, but because of the large number of
atoms in the asymmetric unit (100) and the large number of observed
intensities (6,254), only a limited least-squares refinement of the
structure was possible using the computing facilities then available

at Glasgow. However, the introdvction of the XRAYTO system of programs
onto the Univac 1108 computer at the National Engineering Leboratory,
Fast Kilbride, enabled the refinement of the structure to be completed,
The Qetails of this refinement are described in section 3 of this

chapter, and the resulting structural parameters are discussed in

section 4, .
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3.2 Experimental.

Crystal Data.

2C)Bygr 20 3H,N30,Br, #CHey M = 1484.0.  Triclinic, a = 9.30(2),

o = 18.90(3), a =114.9(3),_ﬁ =93.7(3), Y =98.7(3).

-1

U= 3219.04, D =1.52, Z=2, D =1.52 H(CuKg) = 24.1 ex”,

b= 20.63(3)9

Space group Py (Fo.2).

Data Collection.

The intensity data were collected using a smsll crystal of dimensions

0.25 x 0,15 x 0.15 mm3 mounted along a., Multiple-film equi-inclination
Weissenberg photographs were taken of the Okl - 8kl reciprocal lattice
nets using CuK, radiation, and the intensities of some 6254 reflections

were measured. No absorption corrections were applied to the data.

Refinement of the Structure.

The structure was solved by the heavy-atom method,and a random sample
of about 2,000 reflections were used in the initial refinement., The
hexahelicene and 4~bromo-2,5,7-trinitrofluorenone (B.T.N.F) molecules
were refined during alternate cycles of isotropic least-squares
refinement, and convergence was reached with R = 19%. The resulting

atonic paramefers were used as the starting point for the refinement



on the Univac 1108, Two cycles of full-matrix, isotropic least-squares
refinement were carried out, using the XRAY7O program ORFLS, after which
R was 18%, A difference map calculated at this stage revealed the
presence of a diffuse circle of electron density around the origin,
indicating that a disordered solvent molecule (benzene) is located at
that point in the unit cell, The omission of this solvent molecule
explains the relatively large discrepancy between the observed and
previously-calculated densities ( 1.52 and 1.49 respectively); the
density calculated with the solvent molecule included is 1.52,

The difference map also showed that one of the two BINF molecules
in the asymmetric unit was disordered about the 2-fold rotation axis
of the fluorenone residue (along the line of the carbonyl group), the
two orientations being populated approximately in the ratio 2:1.
Because of the 2-fold symmetry of the 2,7-dinitrofluorenone residue,
the only difference in the two orientations is the interchange of the
4~bromo and 5-nitro groups. The disorder was thus accounted for by
introducing two sets of atoms for the 4-bromo and 5-nitro groups, the
coordinates of each set of atoms being those determined from the
difference map., Each disordered atom was assigned an isotropic
temperature factor which had the same value as that of the corresponding
atom in thé other BTNF molecule, and a further two cycles of least-
squares refinement were carried out, during which cnly the disordered

bromine atom positional and population parameters were allowed to vary,
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with the population parameters of the disordered nitro group being
constrained to be equal to the population parameters of the appropriate
bromine atoms., The R-value was reduced to 17%,and the resvlting
population parameters for the two sets of atoms were 0.69 and 0.31.
These values were not refined during the subsequent cycles of least-
squares analysig.

The refinement was completed with four cycles of block~diagonal
least-squares analysis with anisotropic temperature factors, during
which neither of the partially-occupied nitro positions were refined,
Hydrogen atoms were included in their calculated positions (Table 3.3),
but were not refined, and electron density was included around the
origin to allow for the disordered solvent molecule, The final value of
R was 10.9%. During the final two cycles of refinement, the data were
weighted according to the following scheme:

Weight (W) = XxY
If AXFobs> Fc alo ! W = 0,000000001,
If sing>B, X = 1, else X = sin6/B.

IfC>F Y=1elseY= C/Fobs.

obs !
The final values of A, B, and C were O.1, 1.0, and 20,0 respectively.
The final fractional coordinates and temperature factors are listed in
Tables 3:1 and 3.2 respectively, while the observed structure amplitudes

and calculated structure factors are listed in Tabls 3.4, The atcmic

numbering system is shown in Figure 3.1.

The estimated standard deviations of one of the hexahelicene molecules
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~are, on average, about twice those of the other hexahelicens molecule
in the asymmetric unit; this can be attributed to a slight discrder
of the molecule, as a result of the proximity of its ring 5, in
particular atoms C(15) and C{16), to the disordered BTNF bromc and
nitro groups. The hexahelicene and BTNF molecules which are not
disordered are jointly labelled Complex 1, while the disordered

hexshelicene and BTNF molecules are labelled Complex 2,

3.3 Description and Discussion of the Structure,

A view of the structure projected along &* is given in Figure 3,2,
The unit cell contains four hexshelicene molecules and four BI'NF
molecules, with a disordered solvent molecule occupying a cavity
between adjacent hexahelicene and BINF molecules at the origin. Twe
of the hexahelicene molecules are the left-handed enantiomer and two
the right-handed enantiomer, each of the former being related to each
of the latter by a centre of symmetry., The determination of the absolute
configuration of (=)~2-bromohexahelicene by Lightner et a.13 enabled
them to show that (-)-hexahelicene has the absolute configuration

of a left-handed helix, Each BTNF molecule is sandwiched between two
hexahelicene molecules, with rings 2 and 3 of the BINF molecule lying
almost parallel to rings 1 and 2 or 5 and § of each of the adjacent
hexahelicene molecules, at approximately van der Waals distances.

[
Intermolecular C...C contact distances less than 3.5A are listed



in Table 3.5. The crystal structure is thus built up of alternate
donor (hexahelicene) and acceptor (BINF) molecules, orientated to
allow the maximum overlap of their respective me-molecular orbitals,
However, the C,..,C contacts in Table 3.5 indicate more effective
overlaps between the Complex 1 hexahelicene molecule and the two BINF
molecules than between the Complex 2 hexahelicene molecule and the
BTNF molecules,

The bond lengths of the hexahelicene and BTNF molecules are
listed in Table 3.6 , and their bond angles in Table 3.7. The
dimensions of the Complex 1 hexahelicene molecule agree well with

3 and the isomorphous 2-methyle

those determined for 2-bromohexahelicene
hexahelicene4 , end indicate that the helical conformation of the
hexahelicene molecule is achieved with little deviation of the bond
lengths and angles from their expected values., No meaningful comment
c¢an be made about the bond lengths and angles of the disordered
hexahelicene molecule because of their high estimated standard
deviations., Moreover, comparison of equivalent bond lengths and
angles in the two hexahelicene moleculées suggests that the standard
deviations of the disordered molecule are too optimistic. The
following dicussion of the bond lengths and angles in hexahelicene
is thus based on the parameters of the Complex 1 molecule only,.
Since the hexahelicene moleculs has a two-folid axis of cymmetry

(along the bond C(11) - C(24)), the bond lengths of the two equivalent



halves of the molecule can be averaged, and the resulting values are
given in Table 3,8; the average root mean square difference in the bond
lengths of the equivalent halves of the molecule is 0.0ZOK. In addition
to the mean ohserved bond lengths, Table 3.8 lists the lengths of the
same bonds as predicted by molecular-orbital and valence-bond
calculations. The molecular-orbital bond lengths (Dm.o.) were
calculated from bond-orders (p) which resulted from a m-electron
calculation5 in which a planar hexahelicene molecule was ass&med. The

relationship6 Dm 0. = 1,50 « 0.,16p was used to calculate the bond

lengths,
Hexshelicene has 21 different Kekule structures, and the double-

bond charactef of each bond in the molecule was assessed by averaging
these 21 resonance structures. The resulting bond numbers (n) - the

double-bond characters + 1 - were used to calculate bond lengths

(Dv b ) using the relationship derived by Pauling7:

D,.p.= D - (2,- D2).1.e4(n-1)/(0.s4n +0,16)

The values used for D1 and D2 were 1,504 and 1,334 respectively., The

average root mean square differences between the calculated and

[+] [+]
mean observed bond lengths are 0,019A and 0,018A for the Dm.o and

Dv b respectively. None of the differences between the observed

and calculated bond lengths listed in Table 3,8 are statistically

significant,

It is worth commenting at this point on the observation by



Lightner et a13’4 that the six bonds bordering the 'inner core' of
the helix are all longer than average. They argue that since this is
the region of the molecule most subject to distortion, a decrease in
the double-bond character of these six bonds is to be expected,
However, both the molecular-orbital and valence-bond approximations
predict longer than average lengths for the inner core bonds {Table 3.8)
from calculations based on a planar molecule,

Ingpection of the Complex 1 hexahelicene bond angles shows
that oniy the angles arcund the inner core deviate significantly
from the normal value of 1202 the largest deviation being that of
angle C(23) - C(24) - C(25) which has a value of 127

The distortion of the ﬁolecule is not evenly distributed between
the six rings. The deviations of the atoms from the mean planes
through the aromatic rings are given in Table 3.9, and show that
rings 3 and 4 are subject to the greatest distortion. Rings 2 and 5
also show significant deviations from planarity, but rings 1 end 6
are planar within the limits of experimental error. The dihedral
angles between successive mean planes (Table 3.10) show the same
trend, although the differences in the angles are not statistically
significant,

A view of the hexahelicene molecule showing its helical
structure is given in Figure 3.3. The intramolecular non-bonded

CeeoC contacts which define the pitch of the helix are given in
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Table 3.11. The shortest such contacts are C(1)...C(22) and the
symmetrically-related C(21)...C(26); both are 2,966(13)4, and
compare well with the value predicted from theoretical calculations8
of 3.0043.

The dimensions of the two BTNF molecules do not differ
significantly from those determined by Pollard?. The two benzene
rings of each molecule are twisted out of the plane of the fluorenone
residue in order to relieve the steric strain caused by the juxta-
position of the bromo and nitro groups at the 4 and 5 positions. The
nitro groups at the 2 and 7 positions are essentially coplanar with
their respective aromatic rings, whereas the 5-nitro group is forced
out of coplanarity with the aromatic ring because of the proximity
of the 4~bromo group. The equations of the mean planes of the C-nitro
groups and of the aromatic rings in the BTNF molecules are given in
Table 3.12, while the. dihedral angles between the planes are

given in Table 3.13.
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Table 3.1

all other atoms, with standard deviations in parentheses).‘

Br(1)
Br(2)
N(1)
N(2)
N(3)
0(1)
0(2)
0(3)
0(4)
0(5)
0(6)
o(7)
c(1)
c(2)
c(3)
c(4)
c(5)
c(6)

X

57836(12)

115(10)
7932(10)
7283(8)

93(11)
-893(8)
2574(9)
7415(11)
9100(9)
8427(11)
6418(11)
7392(8)
8695(9)
9644(10)
9256(10)
7943(10)
7447(13)

Complex 1

y

4977(5)

180(5)
4464(4)
1955(4)
-421(5)

390(5)
2975(4)
4931(4)
4543(4)
1926(5)
1698(5)
3618(4)
3980(5)
3595(5)
2857(6)
2477(5)
1711(5)

Z

23437(7)

2457(7)
4413(5)
2397(5)
1970(8)
2761(7)
4442(5)
4909(5)
4207(5)
2489(7)
1834(6)
5926(4)
5833(5)
5360(5)
4964(5)
5024(5)
4523(6)

X

59186(14)
76618(60)
217(12)
7335(12)

388(11)
-952(11)
1895(7)
8598(12)
6656(13)

3775(10)
2386(13)
1761(14)
2425(15)
3858(18)
4622(24)

Complex 2

y

8756(7)
15992(26)

213(6)

4228(6)

-355(5)

375(8)
2970(4)
4246(6)
4723(6)

2810(6)
2613(8)
3113(9)
3763(9)
4051(7)
4727(8)

Fractional atomic co-ordinates (x 16° for bromine and x 107 for

z

64090(8)
80593(31)
6000(7)
10049(6)

5511(7)
6162(8)
8393(4)
10262(6)

10294(6)

1995(5)
2204(?) :
2736(9)
3091(8)
2944(7)
3385(8)



c(7)

6(8)

c(9)

c(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
c(18)
c(19)
¢(20)
c(21)
c(22)
c(23)
c(24)
c(25)
c(26)
c(27)
c(28)

X

6098(11)
5118(10)
3615(11)
2672(11)
3156(9)
2114(10)
2584(10)
4067(9)
4508(11)
5917(12)
6998(9)
8445(11)
9435(10)
8969(9)
7618(9)
6606(8)
5124(8)
4682(8)
5611(9)
6977(8)
4103(10)
2761(12)

Table 3.

J
1368(5)
1746(5)
1377(5)
1757(6)
2451(5)
2827(6)
3484(6)
5751(5)
4406(5)
4654(5)
4233(5)
4436(6)
3972(6)
3291(5)
3081(5)
3560(8)
3358(4)
2764(4)
2457(4)
2860(4)

909(5)
455(5)
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z

4501(6)
5013(5)
4902(6)
5328(6)
5969(5)
6402(6)
7025(6)
7326(5)
8047(5)
8380(6)
8079(5)
8490(6)
8264(6)
7634(5)
7196(5)
7397(5)
6950(5)
6173(5)
5606(5)
5544(5)
2603(6)
24;1(7)

(cont'd)

X

5937(20)
6709(14)
8128(22)
8868(13)
8254(27)
8764(19)
8256(19)
6676(22)
5943(35)
4435(37)
3546(22)
2114(20)
1539(17)
2330(12)
3672(10)
4395(13)
5845(14)
6565(11)
5936(11)
4535(11)
4130(9)

2842(11)

y

4922(7)
4482(9)
4666(13)
4221(10)
3521(12)
2944(46)
2324(11)
2173(11)
1563(12)
1350(8)
1975(8)
1985(9)
2503(11)
3214(8)
3249(5)
2645(5)
2695(7)
3282(8)
3746(6)
3530(5)
1068(%)
581(6)

z

3278(8)
2721(10)
2657(12)
2239(10)
1653(12)
1151(16)
620(10)
404(10)
-179(12)
-533(8)
-226(8)
-511(8)
~295(8)
315(7)
648(5)
427(5)
792(8)
1472(8)
2142(7)
2323(5)
6770(6)
6293(7)



c(29)
c(30)
¢(31)
c(32)
c(33)
c(34)
C(35)
c(36)
c(37)
c(38)
c(34)

N(3)
0(6)
o(7)

N(3')
o(6")
o(7")

X

1570(9)
1611(9)
2940(9)
3361(11)
4846(9)
5653(10)
7007(10)
7562(10)
6679(9)
5350(8)
4193(8)

Table 3.1

y

701(5)
1403(5)
1863(4)
2643(5)
2896(4)
3592(4)
3709(5)
3186(5)
2486(5)
2314(4)
1656(4)

Z

2€83(6)
5232(6)
3390(5)
3989(6)
3925(5)
4279(5)
4053(6)
3480(6)
3102(5)
5331(5)
3057(5)

(cont'd)

X

1533(10)
1384(10)
2657(9)

2824(10)
4383(10)
5078(11)
6522(11)
7285(10)
6528(10)
5105(8)

4043(9)

y

779(6)
1418(6)
1864(5)
2626(6)
2842(5)
3480(5)
3535(5)
2980(5)
2339(5)
2262{4)

1691(5)

Assumed coordinates of the disordered nitro group.

7321
8574
6587

5357
6536

4714

1786
1818

1149

0857
1321

0179

8277
8234
8105

6340

6064 ‘

Population parameter

6511 ! Population parameter

fl

Z

6499(7)
7097(7)
7561(6)
8194(6)
8516(5)
9148(6)
9376(5)
9063(5)
8443(6)
8114(5)

7456(5)

0.69

0.31
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Table 3.2

Anisotropic thermal parameters (Uij x 104 for bromine,

3

Uij x 10 for all other atoms). Standard deviations are in parentheses.

Complex 1
Uyy Uso Us3 Uso U3 Upz

Br(1) 686(7) 561(5) 928(8) 161(4) 168(5) 153(4)
N(1) 53(5) 8o(5)  121(7) -6(4)  -12(4) 44(4)
n(2) 89(6) 58(4) 54(4) -10(3) -19(4) 25(2)
N(3) 35(4) 60(4) 83(5) -4(3) 14(3) 21(3)
0(1) 83(6)  71(5) 183(10)  -28(4) 4(4) 17(5)
0(2) 46(4) 96(5) 180(8) 0(3) 6(4) 55(4)
6(3) 83(4) 69(5) 93(5) 28(3) 40(3) 24(2)
0(4) 129(7) 56(4) 80(5) -9(4) ~14(4) 28(3)
0(5) 91(5) 79(4) 81(5) -42(4) ~13(4) 36(3)
0(6) 86(6) 85(5) 153(6) 26(4) 23(5) 28(5)
0(7) 114(6) 105(5) 107(5) 49(4) 62(3) 56(3)
c(1) 43(4) 40(3) 38(4) 0(3) ~4(3) 11(2)
c(2) 43(5) 60(4) 43(4) -6(3) ~2(3) 21(3)
c(3) 42(5) 75(5) 51(5) 1(4) 6(3)  17(3)
c(4) 47(5) 79(5) 52(5) 13(4) 8(3) 19(3)
c(5) 58(5) 48(4) 50(5) 11(3) 13(3) 20(3)
c(6) 101(8) 55(5) 46(5) 24(5) 10(5) 12(4)

(7) 67(6) 56(5) 53(5) 4(4) 2(4) 8(3)



c(8)
c(9)
¢(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
c(18)
¢(19)
c(20)
c(21)
c(22)
c(23)
c(24)
c(25)
c(26)
c(27)
c(28)
c(29)
- ¢(30)
c(31)

11
60(5)
78(6)
59(6)
46(5)
53(5)
52(5)
43(5)
73(6)

79(7)

57(5)
62(6)
44(5)
40(5)
39(4)
43(4)
34(4)
40(4)
51(5)
43(4)
49(5)
65(6)
41(5)
41(5)
51(5)
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Table 3.2 (cont'd)

U U U

22 33 12
47(4) 41(4) -4(3)
53(4) 49(5) ~21(4)
78(5) 56(5) ~11(4)
68(4) 42(4) ~2(3)
97(5) 66(5) 7(4)
92(5) 73(5) 24(4)
72(4) 56(4) 21(3)
65(5) 42(4) 26(4)
55(4) 59(5) 23(4)
59(4) 36(4) 7(3)
67(6) 47(5) -11(4)
75(5) 64(5) 2(4)
63(4) 58(5) 9(3)
59(4) 42(4) 14(3)
45(3) 42(4) 5(3)
51(4) 46(4) 9(3)
51(3) a4(4)  2(3)
41(3) 37(4) -3(3)
40(3) 39(4) 8(3)
64(5) 80(6) 14(3)
45(4)  91(6) -6(4)
55(4) 90(6) -1(3)
55(4) 71(5) 5(3)
46(4) 53(4) 7(3)

~8(3)
~15(4)

-9(4) -

-2(3)
6(3)
17(3)
127(3)
5(4)
22(4)
3(3)
-6(4)
3(4)
3(3)
8(3)
3(3)
6(3)
0(3)
-6(3)
5(3)
15(4)
o(5)
0{4)
6(3)
9(3)



¢(32)
c(33)
c(34)
€(35)

c(36)

c(37)
c(38)
c(39)

Br(7)
Br(2)
N(1)
N(2)
0(1)
o(2)
0(3)
0(4)
0(5)

O

c(2)
c(3)

11

63(6)
51(5)
63(5)
65(6)
48(5)
41(5)
36(4)
44(4)

46(7)
69(6)
75(7)
98(7)
93(6)
62(6)
62(4)
106(7)
146(9)
57(6)
64(7)
72(7)

22
52(4)
39(3)
42(4)
49(4)
54(4)
54(4)
43(4)
38(3)

51(7)
56(5)
98(7)
89(6)
88(6)
200(13)
89(4)
110(7)
93(6)
80(5)

119(8)

147(10)
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Table 3.2

Uss

62(5)
40(4)
48(4)
55(5)
67(5)
49(5)
48(4)
47(4)

Complex 2

67(9)
93(8)
105(8)
62(5)
145(9)
131(9)
85(4)
81(6)
83(6)
46(5)
74(6)
92(8)

(cont'd)

Uy

10(4)
3(3)
0(3)

-11(3)

-2(3)
5(3)
0(3)
0(3)

7(5)
16(4)
~-5(5)
-2(5)

-18(4)

0(6)
35(3)
-6(5)

27(6)
13(4)

1(5)

39(6)

13
14(4)

-3(3)

-4(4)
-16(4)
0(4)
9(3)
4(3)
2(3)

9(5)
17(5)
2(5)
0(4)
-27(5)
~7(5)
22(3)
-22(5)
14(5)
2(3)
8(4)
23(5)

23
23(3)

9(3)
13(3)
23(3)
26(3)
17(3)
11.(3)
15(2)

12(6)
15(4)
35(5)
26(3)
14(5)
-2(9)
48(2)
10(5)
-5(5)
27(3)
58(4)
63(5)



c(4)

c(5)

c(6)

c(7)

c(8)

c(9)

c(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
c(18)
c(19)
c(20)
c(21)
c(22)
c(23)
c(24)
c(25)
c(26)

c(27)

U11

87(8)
153(12)
221(19)
164(14)

74(7)
138(14)

49(7)
208(19)
197(20)
125(9)
170(13)
346(26)
437(36)
203(15)
162(14)

97(10)

60(7)

54(5)
105(8)
100(7)

36(5)

64(6)

72(6)

35(5)
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Table 3.2 (cont'd)
U2z U33 Ui
143(10) 91(8) 65(7)
68(6) 60(7) 24(7)
89(7) 75(7) 42(9)
65(6) 65(6) 10(7)
137(7) 152(8) ~26(5)
205(11) 149(9) -10(8)
163(10)  134(9) -24(5)
156(11) 109(10) 79(11)
237(15)  166(13) 76(12)
192(11) 130(8) 109(8)
143(10)  10%(8) 78(9)
160(11)  101(9) 119(13)
63(7) 49(7) 19(12)
76(7) 71(6) 7(8)
108(10) 55(7) -61(10)
191(54) 64(7) -47(9)
135(8) 57(5) -9(5)
71(5) 45(4) 10(3)
61(5) 37(4) -5(4)
96(6) 92(6) 53(5)
133(7) 117(7) 7(4)
67(5) 79(6) -5(4)
61(4) 38(4) 22(4)
63(4) 72(5) 17(3)

13
38(5)
-34(6)
-15(9)
-22(7)
-38(5)
-24(8)
-20(5)
40(10)
33(11)
83(5)
75(7)
109(10)
47(10)
49(7)
-8(8)
-4(6)
0(4)
5(3)
8(4)
56(4)
9(4)
16(4)
0(4)

17(3)

23
58(5)
18(4)
33(5)
19(4)

17(3)
142(4)
99(5)
102(5)
165(6)
118(5)
93(5)
10(5)
8(5)
32(4)
21(¢€)
59(5)
47(4)
27(3)
21(3)
66(3)
96(3)
44(3)
16(3)

35(3)



c(28)
¢(29)
c(30)
c(31)
c(32)
c(33)
c(34)
¢(35)
c(36)
c(37)
c(38)
c(39)

N(3)
0(€)
o(7)

N(3')
o(6')
o(7')

Uy

50(6)
26(5)
45(5)
44(5)
46(5)
59(5)
73(6)
74(6)
57(6)
57(5)
29(4)
46(5)
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Table 3.2 (conf'd)
Uso Uss Uio
69(5) 92(6) -9(4)
87(6) 84(6) -8(4)
75(5) 85(6) 10(4)
67(4) 67(5) 5(3)
73(4) 67(5) 21(3)
60(4) 54(4) 16(3)
62(4) 55(5) 9(4)
56(5) 42(5) ~2(4)
69(5) 45(5) -3(4)
64(4) 63(5) 19(3)
51(4) 62(4) 8(3)
53(4) 64(4) 9(3)

U13

-2(4)
-7(4)
13(4)

8(3)
19(3)
16(3)

14(4)

5(4)
~7(3)
14(3)

7(3)

4(3)

U23

32(4)
35(4)
35(4)
34(3)
45(3)
31(2)
26(3)
12(3)
22(3)
34(3)
24(2)
31(2)

Temperature factors assigned to the disordered nitro group.

3
Uiso (x107),

48
82

82
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Tabie 3.3

Hydrogen atom positions (x, Y, 2 X 105) calcuiated assuming
o}
a C-H distance of 1,09 A, Each hydrogen atom has the same number

as the carbon atom to which it is bound,

Complex 1
X y Z X y Z
H(1) 667 394 630 H(2) 898 457 61
H(3) 1069 389 532 H(4) 1009 257 458
H(6) 823 140 419 H(7) 514 79 410
H(9) 526 81 447 H(10) 152 153 518
H(12) 93 258 623 - H(13) 178 380 727
CH(15) 369 471 834 H(16) 627 519 891
H(18) 877 497 901 H(19) 1057 414 858
H(20) 969 290 751 H(21) 732 256 670
H(28) 268 =16 202 E(30) 54 147 340
H(34) 524 404 472 H(36) 864 331 332
Complex 2
x y Z X y Z
H(1) 423 239 153 H(2) 183 204 192
H(3) 66 295 287 H(4) 187 415 353

H(6) 410 514 384 H(7) 654 547 368
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Table 3,3 (cont'd)

x y z x ¥y z
H(9) 865 523 298 H(10) 1006 441 234
H(12) 999 304 126 H(13) 898 195 36
H(15) 658 159 1032 H(16) 408 82 901
H(18) 145 147 904 H(19) 110 282 1024
H(20) 169 323 -18 H(21) 425 377 112
H(28) 288 7 576 H(30) 31 157 719

H(34) 449 397 943 H(36) 843 303 929



182 o132 TR Y
2 ¢ 113 s
288 248 [CENTI

0212 % a2 w02
"’

7
ny =129 2,30l

18 -108
9 -
vy 20D
ALY =1 1e? ~is?
s 249 @290

o13 80 ag
.l2 7% -2
& 139 1)
218 2
a0

ShieL

=7 i7e 10
[T
=5 20v 21U

LT ATSY
Vot e
2188 1,0
3110 =114
4 Ley ave
s 72 esz
LT HE

1l 83 e

=10 74 e0 7,64
=4 453 e1gn

M tal 12 w2 vy
-3
-2
-1
2
.
.

LT Y -1 w1 130

3 ave <276

103 =18 [T L]

113 ” 2 29e N8

122 -1%8 3 1 a2

a7 92 ey s

IITT) s ez <217

”% -l s qa =192

1w 7 s 200

75 o5t v s a2

130 1ss togos =133

fos =3¢ a2 an n
19 99 =il

HEAEE RITITHY

I LI AN
w
107 le2
370 =008
1o &7

o
1 12 =130

LTI

°?T 47 eae
-t 82 108

»
H - -
2 1o m

Is sy
183 =02

Doan o

2 107 a1 10 13

s 12

Observed Structure Amplitudes and Calculated Structure Factors

Vo2
PRI
EETLEIEY)
107 en2
.

1

.

"

19

1

~70100t

1% 100 8

122 ~is7
[T
e 109

=Talleb

=12 133 ey
19% cis5é
1.

102

7et2,0

13 122 =337
=11 108 92
. 113 e82
180 <1a3

10

132
AT
282 248
107 60
17 =0
IR
200 232
132 2%
370 ee29
106 9%
"o
" 108

Til3t

4y 21y 220
.10
B3

" en
B LN

1L 108 117
NI
7 1N 1S
RTINS
% 132 =13
v 18 -222
-3 10v 421
2 n

- b4 -

Table 3.4

4 LI A chridgt
-t
- 15 108 =il
i LIC IR LYY
3 12 113 i6h
il 18y eiiz
TN

e e
197 9

ctiiat
*r.20.L
1y 127 -5
s12 12e 12
*13 27 s

8 12v =1a?

=7 103 =310

6 2000

*7e2iab

“r.22,0
r 82 -0
“selat

~10 108 108
-8 3% a1l

-7
s 15 0 a2
: 13 126 =338
-3 1z vy w7
-2 “10 253 242
. ~ 177 234
10 LU { ST
" -
[¥] iy
(2] -2
" o
1S 103 oY 1
2
LYY AN 3
.
" -8 r
156 =130 .
i%e 18 D TS 1
IZ 2]
20y =dey YIS
a3 13 80 70
2 =% 127 =108 =% 83 08
184 108 =126
sz 1oy 120
Te 158 oja8
133 [LARITS
134 =108 156 1t
[EOTY) 21y -22¢
tig 138
YA [Tt
iz “duirgl
‘% ”
190 ;82
269 2283 163 =14
=3
174
(1]
2% =282
129 =i5e
3s
=50
" Te 4106
"
320 =32% TS
E21)
113 =112

131 e
YIS

°13 1% 198

130 q2*
13 .

LTI L N

=12 72 =00
v 7 5

-7 109 =128

2 an 22
13 g0 36 -1 74 .87
TR LT v g =0
12 1% 0y =30 17 7e ERNTTINTTY
3 s e
2ot ~4020,L
IS

13 a7e =197
156

i
RTENTTERIT)

120 1%
- Te =27
R it
-
-7 I INY

14 oY

“baz2,0

-8 77 =08
-7 a1 e

13 207 0%
-4 158 122
AR

3 .

21g c228

9y =21%

: H a2 =340
s1 0 19 =437
® a8 12 192 02

1.
N

L} .
18 118 *j88

30

.13

us 252

148 =200
12y sl

RLTE WY

244 =240
o

187 =10
137 a2

S

100 290
ior =112
242 ~202
28 230
(3] 3
104 =178
112 =128

2
150 <234
$40 =430
$15  Sut
1%0 1%
179 190
2es 229
110 =130
el vz
s 1
127 =128

RN

2

s
128 =120
" ees

LLTTNS
179 192
132 =110

[T LY
383 3,0
1

[IERNTL
A TL S
LY

19 9
38 =s0)

.lb
“13
-1
-t
-r
-

137
103
126
e

oz
"s
20?7

9w =1

158

S

“Syhit
w0 7%
e 431
02 ]

12 2Ty -2y
13 s ser
1% g aav )

LRI
. wn
I
11y “lie
o

=17 4%2 188 en?
=15 183 =53
-2
-1

" -z
13% s

CRGesvevaoun-u

AR NS

o eay
127 =128
213 aes




Table 3.4 (cont'd)

10 RITT IS

3 128 *l1e s o2 ”e “2on,t - . -1
NI 111 =18 2.0 182 =138 e jen ave TN
2 idr 14 w26 3] $ s el e 18y 10 104 =109
el 897 edL elt 9y eign o 632 122
O les =172 et ev eg8 RTINS T PR
bosue =) - [T 8 18 ~ias .
2 sy ast =7 13 DRI P L YRY TIRT TS cr e et
? ez a2 [ L S T L AR 18 203 233
s o N v 1y sz
s s e =13 250 *250 -2 -2 oy 2 ERNE
H n sdebiat 52 o -t i ez w2 oin 112
7 tey 1w =10 “10 23 2 -1s -
[ERTTEETY 10 87 -4y e o e . pod
AR 212 -7 w0 a7 Y -4 a0y . N .
B Y O S “ ez N s
LIITENE YT LTS Rt 2Nl ] -
=18 238 =23e -5 v 907 sana - T an
15 225 234 -1z 83 -a0 -3 o s i !
MM R I e L ] ez Nz a7y ey ayy an
-tz 101 417 - %0 c1v e -1 243 -2 LTSRS 2]
- g vy ) 0 vy =weY -1
- 2 1 %08 muas 3 “tiléeb
e 3 2 153 4% '
- LR LT Y 3 21y 238 3. "
b4 T bew isy
-1 LY T 382 270
° 1307 4363 8 243 2%
] 802 =48y T dea many
2 a8l LR ELT )
* 979 =220
?
2 o [)
. ’
. 13 2es Iyg LRI
. -
s =201 TS
1% a2
17 89 eey 3 gzt e120 NERR
St it 166 =131
N A “nsat
.18 229 %0 i3 etz
*13 v 3¢ 12 =3.,20,4
11 a4 =324 -l B IRITY
i1 1% 110 .10 1S =127 wen
a. [} 1is =i 1n 3e2 =382
L34 Ly
o9 178
ISTINNE L]

-
-3
-
o
1 27 =63} 113
2 541007
3 EITE I
s
. 1%
. . 0" .7
-3 e 20 =3 110 =1y
-2 3 383 1l 150 =les =2 Y ¥
-t 200 221 s

292 <300 EETTE NN EINEE TR 2]

3
l
2 323 °200 =) WY ey 322l
3 w32 =982 =i 339 =dse

A 38 =Y e1d 216 226 -5 72 %s
s

.

’

.

a8
3

ladlet

238 220 =)} ” 0
. 205 25% 2208 =126 '
-t 297 =Mi8 3 3% 39 H
-3 1% v .« 187 23 3
=l 267 192 S 10901153 31 3CH =) 3oy ewze
0 314 «373 Y 202 2 [T TR s 212 =31
3 3s 30 [N TLICTTSY 2] 16 1Cs N1 6 236 "2
S 209 o238 LR TL Y i e eai2
s 4 ~as 12 % 3. 2 =247,0 11} 13y 182 16e 1Y
s 13 a2 113 = . -* 100 82 2%y 2se
A 1215 Qe 4 - iz =14 172 192 =2413,4 FISTRY 11 ATS =iey
1 * dez 11 ez a7 1”103 -es
1. ol® jre =124 TERTURIED 12y ez .18 128 12e Y PR YT
135 .13 L 19 g -1z 12e =337 o 183 =iv2
YT} -2 BUINY 132 =118 -1l 427 108 s
1R =io -1C 834 =572 112 118 7 iCa =108 »
=% 200 <223 -te L1000 -t 1% W2 Ses 874 274 =2es N
=300t =8 172 =108 e1v 185 =128 2% s =+ 25 -aes e i2s iy 2
LR ey 47y 201 =1 31 M bobie =1 v
13 136 =13 21T dae . 130 0 -1 15e  =8% 3 le?r 187 o
.12 162 =158 -5 487 eve2 3 ive =22 a8y s
T " a0e . i 1 12 13 s % =92
-1 [T I TT 3 okez 1e
-1 290 -2 . 283 e2eu “1.2CaL
32 $ 205 180
-7 . a2 4 378 20 =1) iz 0%
s 412 7123 =428 =12 ey =N
-5 o 17 ¥ 1y =0 RIS
R4l T 1 125 138 b 19v ez
-2 v sy 28 2y
.2 12 2% =28 “2itu,t 358 =les
' 10 30 12 i
2 15 213 237 .16 21a =10
by =15 122 ev NS
. “2.2.t 3 120 113
$ 105%.11,8 12 250 =230 126 1%
. “s 25 143 =1 e 251 ’
T oees Mya s23 =573
s e 295 =is
M iz ehie
13 o717 4e0
0oz e . 03 =206
1223 D - 213 =2
- v72=iCne
- s

1ced 1IN
o2 ' 13 ais 10
TS a3 <77

vz “1e7
1% 1 a2 2 1e% 2is) 12 ’
1 e 432 ell 20 =)re 3 27 =200 ey
.18 343 es o 18 23e 21 1
[} e e evnn
o 133 siae
DR T 1}
EITHY

s
s 128 ~ias
ol -3 31 -nie
-2
H 195 <102 2 12%2-1022
2 sor 197 it
3 132 =128 . 1av 1220
M M LTSt T
s e . s
o 2ir *les *2ssa.b ’ *"
? jagsercre :
o eic a3 118 =227 . I e
o 4% o ey pied
13 . 17T cpee 13 3%a o2 Pred
» ™ i
LR (T3]

132 e
123 c18 -2

raxil
53s *she
»

12 o2y
1) 128

129 72
09 o120

3%
13 o138



. - 66 =
Table 3.4 (cont'd)

He ) s LI ELACIEY AR N A 242, 18 13n =70 -
1. 1118e2158 2 881 ekt ife a6 ¢ T20 1se - 2 217 308
1)Y =i is12-1 3 N
n 309 b
N . 3
1 310 =37e i
1L3 e6S? 27 173
22 =397 .43
LIFIR 322 o -22
35?
T3] [ It
128 =103 22
let =176 122 =140 -
290 "
"” 13 )sy ele M
1" Al el 43z eiel
M LITINY =3 183541704
M L s &)
! 175 -9y 5 a2 seb
. 197 192 -110
. 2
N Licat -1
3 - Pt
2 16 120 <bie 102
[} 12 149 =172 123
0 Iv w30 ves -0
-t o2 2 177
o 2y e “1e8
-3 $:1 aet2 7 32 s
. .2 318 2y o 2ae .13l e
e ) ) 112 5 <5 18372212
. $07 =72} 14
3 530 Y83 -2
2 2ei M2 =107
- w57 =uid .1u0
-~ "
-5 k)
Al 153 12 -5
-7 126 =117 .
=t [RLTIN
“17 116 =1C0  e13 101 =%
12 jer Ly 12 108 s 150
LIYL NS 11 28 <206 AL §¥ -l12 -39
=l% o5 =22 ' 202 2,8 15
T 123 1.8 15 3 1 RIS -133
. 1 v -n
T . (1)
. s '
. . 149
b 3
2 2 .2 a2,k
\ ' -3
° - =% 129 =086
1} -5 =7 173 208
2 - [TEET
-7 2y g2 v %2 W12 s
- 12 -
-t Lade .1 L EETERYTY) 3 ger e1ep
.15 =15 e Ve e 1oz sy
“1e R R B L A BTt . o
“18 130 s .7 102 00 3
2
12130 2.Ce0 1
72 L]
PRSI IEIY T A PR VYRR YY ] ] 13427 =182
[N LIENTY 12 267 2 12435 -17
s 132 =120 1as? -les 1232 an
A dle 120 du 283 =0
3w v 2 w
)

8 M2z -teg e 2. a2

7T 136 =12 413 20 i

¢ty 10 =171 13 377 =38 eje 3Ll 43S
3 Ll e 200 28% ' 148 128 e17 43¢ N
1 450 s 7 o7

0 298 =251 ezt LTI 182 1e7

=1 17y =188 LT L) 9 1y

.2 %4 214 97 =10% s 2 189 1;¢

=3 21 28 160 160 ERRTIARITYS tus -a?

=% 107 «78 106 122 Vo2 23 123 17

-6 290 -2y ToC =254 0 1isl 1178

=7 1731 140 278 -y 22) "7 LR Y

-8 292 274 ~2 10sC-102)

- _s =27 =137 128 =iy}
<10 139 <138 353 338
=13 323 s s 70 0
=15 187 ~170 795 =849 s
e 237 127 a7
A LTS ase 610
42 22 2un
[T RS TY Tee 198 15 210 20
LTI RNYT] las W 127 16 1% "9 -
3 166 =les ase 229 158 -7 PR
2 1e2 -1ys ses D92 213 10 127 14 ~3
118 asc 129 ~ee 423 “10 100 s e
=1 180 ~14$ 173 =384 +
16 234 *282 183 $us 950 21w 2ea,, .7
s 355 3% IR Py
R 288 =528 13112 per s
18 1 12 =2 $24 =S 12 an «10
-1 & 426 1S %s 072 o1t -1
as 132 79y =0 ass .12
340 =240 5 207 ~248 -ll
160 =323 LT P2 -ls
2 7 -2e2 .S
TasaL ' 112 =io? =1
° -1?
[CENTEIINY] 1080 M
[ TY S -t
12 216 -2 e =Ly
. 2] ar a1
v 131 =248
. e 72 '
s nr a2
. iy e
3 265 284
H 9% o248
1 123 =126
ERTYIEES) 38 38
w1 13e =12% i29 =128
*d e =187 sy =lei
=3 ‘18 S21 s AN
tsgy 1512 o
2709 1oy et ? RIS
1247 1092
02 407 <413 * 425 -1y
108 PR LT ) . L0
223 132 *138 ’
- .
RN [PTRNE] ) =i H
FRTY :’IA 98 .78 4 =17 s8¢ 172 =15 J24 "1 -
i ? )
o 107 RTINS RTINS 1
L0 i
1 <l e e

L
157 hodd

‘; 18 00 it :u EIYE NN
pt ¥
3 [ LIS :; 3 0 .13 2 241
- 7 3318 =%
trene R b
1el¥eb 2 iyl
1] St -1?
? 130 =12
. a0 2 -1
[ e "i2e e
M . 120 =l
3 1el0al -2 LIRTY . 4 =138 .8
H -~ 1) - -22 135 H 158 17k
1 o12s =1er =8 1y s -8 M (LM S ar ens
. : 15318 i3t =8 eo1de 8 H 32 FITIS 1 1.0 -hi2
° -t v o282 12 -7 [ A 1 34 PR T
H - .z 3se =362 ’ - 10187 ey o 1. 7 a3 du
- =3 1085 1008 . -t - -210 o i =ive




397 3.0
s
160 =t4l
o
218 23?7
191 gy
o1z 2sg -20) LYY
. w58
DTEETS T 10 137 ~107
1) 18y =1ne 222 <38
1y 100 116 e 1 e
’
s 1v0 22,7
s s
(BRI .
[ KT 3
ol s "1 2
2 11y a2 i
- 55 L]

130 120
108 =116

RIXERY =ie

"

'

.

?

¢ 217 2 .13 20 18
S 223 2;2 =15 o7 -M02
s 230 258

3 17 -170 LTS

2 393 928

1 13 =8

0 15¢ el12
“t 20 1
“2 14 97
=3 2% 27
=4 ey -5
LI MRS PR

.
ITARTH
LTI NYY 193 .21z
AN LI W
R
.,
N e
12138 c1ee

11 2220 1oz 13

° N

M s

4 .

.

' !

.

Q

3 -

2 .2

i -3

O 13s7.1103 -

e sas

TIERILTY B}
.

s
sl =0
"W =g
153 1es
o8 =127
” ”
159 ~l9é
11 34
107 11e

LRI RN
1) 7

-
Y
-y
14

- 65'7 -

Table 3.4 (cont'd)

ne
1y 2
171 =iee
(I

3,

LAY

210 =220
198 a2
=188
87
“3%0

189
in

se7L

s =100
157
-29%
-103
.

18
w03
1

I

N2
.

i4s e1%e

(XIS

(TS
168 =200 bt d
.o

YR
7 -0
uo e
70 =ee

$.0,L

129 =197
140 =170
FI T
70 ey
121 238
7 e °”
[IIRITH) ’
W e ’
27 -1%0 .
a1 2% 3
2 e .
iy -5 3
73 e H
9 e '
LTS °
N se .

s
.o

12,

136 w147

s
[E NS
Ins =178
187 482
170 102
212 =21
227 =1%
139 =1
823 M6
151 182
w17 -a0e
82 1ee
v "
1% =15
13 72
129 =ish
LIRS LI TN
w0 17 121y o7
M4 1%y 02
78 .00 o 2ap =390
195 108 7 2cs 190
nz 102 s 208 20
270 are 8325 =3%0
276 =259 3 204 =200
253 =249 72 a2
e 3 I
%o =121 o 73
88 100 op Geg
LS KT
[ISTIE <) dn
POIE
75 <60 o5 e
2e3 =271 w8 24y
1as 452 e7 20
1e3 12y =4 d2y
208 *223  er 153
02 82
=1 327
.oy 185
128 -ie 12
75 15 13
T PR
“1e 72
o "
15 .7
Ty
in3 a2e
N
0 77
10 27
a0 e
188 =156
130
..t
.
s 120
101 =420
Syt
e 28

S0t
o7 a0e
13 -4
o e
9
S,0%.L
TR ]
102
%0
o7
LT3N

13
162
2
ive
7

“ 40 103 <13 2 1 IS
183 182

=11 252 e2%0

«12 e 122

“ls jca elld

ETERNE TR

TN
1% 227
150 2%
oese
sy 10
1% s12e
Tai20b
9 13
137 =02
% %
i aa
1o -8
[LIILY]
Sa =126
0 s
TS
[EUREEN
LAY
] os -39
. 17 =104
’ 1% an?
3 "9 o
LY EAN ) 199 .ie
2 't 1
i
Ta18.0
4 Az
2 2
7z -012
w1y
TR
12) =138
0.9,
se -ay
LTS
16 1e3 13 [ERNTUIITEY 128 2122
-1 37 30 v s A28 e
[T 31 23
S a8 *ed 103 -1
<oy 1% 87
3 o w2 o0on
2 apz ovs 2 a2
o en 48 -1
- PRI 170 220
s ae 5w
s aac 335 =l
73 esa

-i% 129 =108
LTS
12 13% 1N
Viopze eive
TR ANTY]
7 o1ae =138
* 22e 228
3 a2z 12e
2 wia =it
LY I 4
[P EY ]

1Y ao
”
5
AR

.13
2
poY

01
[T T}
s aus
ICh =1ae
s v
TR
LIRE NS




- 66 «

Table 3.5

Intermolecular C...C contacts less than 3.52 between the hexghelicene

and BTNF molecules, Standard deviations are in parentheses,

(a) Between hexahelicene (Complex 2) and BI'NF (Complex 1).

C(1) veees C(38)  3.425(16) C(3) veees C(32)  3.268(23)
C(2) seses C(31)  3.272(21) C(5) eevee C(34)  3.463(20)

(b) Between hexahelicene (Complex 1) and ETNF (Complex 1).

C(1) seees C(34)  3.390(13) C(4) esese C(36)  3.489(17)
C(2) seuee C(35)  3.401(14) C(7) oeees C(39)  3.464(15)
C(3) eeeee C(35)  3.472(15) C(9) eeees C(31)  3.455(16)

(¢) Between hexahelicene (Complex 1) and ETNF (Complex 2).

C(13) veee C(32)  3.380(19) C(17) «eve C(35)  3.347(16)
C(14) oees C(32)  3.471(17) c(18) ..o €(35)  3.385(17)
C(15) suee C(34)  3.431(18) C(19) eves C(36)  3.497(17)
C(16) vvee C(34)  3.333(18) C(20) «v00 C(36)  3.444(15)
C(17) +sue C(34)  3.456(16) C(21) oeee C(37)  3.436(16)

(4) Between hexahelicene (Complex 2) and BINF (Complex 2).

C(18) seses C(32)  3.291(21) C(19) +uee €(32)  3.257(22)
C(21) veee C(34)  3.379(16)
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Table 3.6

Bond lengths (4), with standard deviations in parentheses,

Complex 1 Complex 2
c(1) = c(2) 1.385(12) 1,426(16)
c(2) - c(3) 1.387(13) 1.341(19)
c(3) - c(4) 1.360(13) 1.252(21)
c(4) - c(5) 1.386(14) 1,468(22)
c(5) - c(é) 1,439(12) 1.338(18)
c(ée) - c(7) 1.333(15) 1.284(28)
c(7) - c(8) 1.438(13) 1.392(21)
c(8) - c(9) 1,443(13) 1,344(25)
c(9) - c(10) 1.341(15) 1.261(27)
c(10) - c(11) 1.412(11) 1,400(23)
c(11) - c(12) 1,416(14) 1.349(35)
c(12) - ¢(13) 1.351(13) 1,241(29)
c(13) ~ c(14) 1,391(12) 1.449(26)
c(14) - c(15) 1,436(11) 1.317(25)
c(15) - c(16) 1,340(14) 1.433(43)
c(16) - c(17) 1.418(14) 1.561(32)
c(17) - c(18) 1.418(13) 1,411(28)
c(18) - €(19) 1.385(15) 1,194(28)
c(19) - ¢(20) 1,385(11) 1,470(19)

c(20) - c(21) 1.360(11) 1.338(15)
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Table 3,6 (cont?d)

Complex 1 Complex 2
c(21) - ¢(22) 1.420(12) 1.425(16)
c(22) - c(17) 1.414(9) 1,471(15)
c(22) - c(23) 1.471(11) 1.444(18)
c(23) - c(14) 1,405(12) 1,399(24)
c(23) - c(24) 1.443(9) 1.378(15)
c(24) - c(11) 1.421(11) 1.543(26)
c(24) - c(25) 1,418(11) 1,451(16)
c(25) - c¢(8) 1.401(9) 1.480(16)
c(25) - c(26) 1,451(11) 1,430(15)
c(26) - ¢(5) 1.439(12) 1.463(16)
c(26) - c(1) 1,395(10) 1.391(13)
Br(1) - c(27) 1,885(10) 1,874(9)
Br(2) - C(37) 1,903(12)
N(1) - c(29) 1,506(12) 1,497(12)
N(1) - 0(1) 1,190(13) 1,189(14)
N(1) - 0(2) 1.174(14) 1.206(16)
N(2) - C(35) 1,502(11) 1.500(11)
N(2) - o(4) 1,216(12) 1,207(16)
N(2) - 0(5) 1.189(13) 1,221(17)
N(3) - C(37) 1.531(11)
N(3) - 0(6) 1,082(13)
N(3) - o(7) 1.159(12)
0(3) - c(32) 1.215(13) 1,181(12)
c(27) - c(28) 1.367(13) 1.411(11)

c(28) - ¢(29) 1.332(14) 1,371(14)



¢(29) - c(30)
c(30) - ¢(31)
c(31) - ¢(32)
c(32) - ¢(33)
c(33) - c(34)
c(34) - ¢(35)
c(35) - c(36)
c(36) - c(37)
c(37) - c(38)
c(38) - c(33)
c(38) - c(39)
c(39) - c(31)
c(39) - c(217)

Table 3.6 (cont'd)

. 70 -

Complex 1

1

1

375(11)
.369(11)
.498(10)
.433(13)
.369(10)
.375(14)
.363(13)
.403(11)
.381(12)
.42%(10)
LA71(10)
.398(12)
.398(12)

Complex 2

1.362(14)
1.370(11)
1,498(12)
1,460(12)
1.377(11)
1.357(15)
1,377(14)
1.387(11)
1.382(12)
1.417(12)
1.472(10)
1,393(13) -
1,407(11)
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Table 3.7

Bond angles (degrees), with standard deviations in parentheses,

Complex 1 Complex 2
c(26) - c(1) - c(2) 121,6(0,7) 121.,4(0,9)
c(1) -c(2) =-c(3) 120,7(0,8) 121,3(1.2)
c(2) -c(3) -c(4) 119,1(0.9) 120,3(1,4)
c(3) - c(4) - c(5) 121,9(0.9) 124,8(1.3)
c(4) -c(5) - c(6) 120,0(0.7) 116.4(1,0)
c(26) - c(5) - c(6) 118,3(0.8) 119,3(1,5)
c(4) -c(5) - c(é) 121,5(0.9) 123,9(1.4)
c(5) - c(6) - c(m) 121,4(1,0) 120,9(1,6)
c(e) - c(7) - c(8) 120,7(0.8) 125,7(1.2)
c(7) -c(8) - c(25) 120,7(0.8) 118,8(1,2)
c(25) - c(8) - c(9) 120,7(0.8) 115.8(1.4)
c(7) -c(8) -c(9) 118,6(0,7) 125.5(1.4)
c(8) - c(9) - c(10) 118,2(0.8) 124,1(1,9)
c(9) - c(10) - c(11) 121,8(0.8) 124,1(1.6)
c(10) - c(11) - c(24) 119.7(0.8) 118,8(1.8)
c(24). - c(11) - c(12) 120.8(0.7) 104,9(1,6)
c(40) - c(11) - c(12) 119.5(0.8) 13€,4(2,2)
c(11) - c(12) - c(13) 119.3(0.8) 138,1(2.5)
c(12) - ¢(13) - c(14) 121.5(0.9) 114,2(2.1)
c(13) - c(14) - c(23) 120,1(0.7) 120,7(1.4)



c(23) - c(14) - c(15)
c(14) - c(15) - c(16)
c(15) - c(16) - c(17)
c(16) - c(17) - c(22)
c(22) - c(17) - c(18)
c(17) - c(18) - c(19)
c(18) - ¢(19) - ¢(20)
c(19) - c(20) - c(21)
¢(20) - c(21) - ¢(22)
c(21) - c(22) -'c(17)
c(17) - c(22) - c(23)
c(21) - c(22) - c(23)
c(22) - ¢c(23) - c(14)
c(14) - c(23) - c(24)
c(22) - c(23) - c(24)
c(23) - c(24) -~ c(11)
c(11) - c(24) - c(25)
c(23) - c(24) - c(25)
c(24) - c(25) - c(8)

c(s) -‘é(zs) - c(26)
c(24) - c(25) - c(26)
c(25) - c(26) - ¢(5)

c(5) - c(26) - c(1)

c(25) - c(26) - c(1)

c(39) - c(27) - c(28)
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Tatle 3.7 (cont'd)

Complex 1
120,0(0,7)
121,4(0.9)
120,7(0,8)
120.,0(0,7)
118.5(0;8)

121,4(0,8)

118,4(0.8)

122,7(0.9)
119.8(0.7)
118,9(0.7)
118,8(0,7)
122,2(0,6)
117.3(0,6)
118,6(0.7)
124,1(0,7)
115,9(0.7)
117,4(0,6)
126,7(0.7)
118,6(0.7)
117.0(0.7)
124,0(0,6)
119,6(0.6)
116,5(0.7)
123.8(0.7)
118,5(0.9)

Complex 2
116,0(2.1)
131,3(2.5)
114.0(1,4)
112,9(1.6)
118,0(1.,4)
125,9(1.3)
120,5(1,5)
117.9(1.4)
123,8(0.9)
113,7(1.2)
123.3(1.2)
123,0(0.8)
119.9(1.1)
115.7(1.3)
123.9(1.2)
123,2(1.2)
108,6(1,0)
128,1(1.6)
123,3(1,1)
112,9(1,0)
123,8(0,8)
121,5(0.9)
115.5(1.0)
122,9(0.9)
120,6(0,8)



c(27) - c(28) - c(29)
c(28) - ¢(29) - c(30)
c(29) - ¢(30) - c(31)
c(30) - ¢(31) - c(39)
c(39) - c(31) - c(32)
c(30) - c(31) - ¢(32)
c(31) - ¢(32) - ¢(33)
c(32) - ¢(33) - c(38)
c(38) - ¢(33) - c(34)
c(32) - ¢(33) - c(34)
c(33) - c(34) - ¢(35)
c(34) - c(35) - c(36)
c(35) - ¢(36) - c(37)
¢(36) - c(37) - c(38)
c(37) - c¢(38) - ¢(33)
c(33) - c(38) - ¢(39)
c(37) - c(38) - c(39)
c(38) - c(39) - c(31)
c(31) - ¢(39) - c(27)
¢(29) - ¢(27) - Br(1)
Br(1) - c(27) - c(28)
c(28) - c(29) - n(1)

c(29) - N(1) - 0(1)
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Table 3.7 (cont'd)

Complex 14

121,6(0,8)
123,3(0,8)
114,3(0,8)
124,8(0,7)
107.8(0.7)
127.1(0,8)
106,5(0.8)
108,9(0.6)
122,2(0,8)
128.4(0,8)
117,2(0.8)
124,4(0,8)
117.0(0.9)
122,0(0.8)
116,9(0.7)
107.9(0.7)
135,0(0.7)
108,0(0,6)
116.2(0.7)
122,3(0,6)
118,8(0,8)
119.8(0.8)

115,6(1.0)

Complex 2

116,5(0.9)
125,4(0.8)
116,1(0,9)
123,7(0,8)
109.1(0.7)
126,9(0.9)
104,7(0.8)
109.5(0,6)
123,0(0,9)
127,4(0.9)
116,6(0.9)
124,4(0,8)
116,8(0.9)
122,7(0.9)
115.8(0,7)
107,7(0,7)
136.3(0.8)
107.7(0.7)
116,7(0,7)
122.5(0,6)
116,8(0,7)
113.5(0,9)
119.3(1.0)



Table 3.7 (cont'd)

c(29) - H(1) - 0(2)
o(1) - N(1) - o(2)
N(1) - c(29) - c(30)
c(31) - ¢(32) - o(3)
o(3) - c(32) - c(33)
c(34) - c(35) - n(2)
c(35) - N(2) - 0o(4)
c(35) - N(2) - o(5)
o(4) -1x(2) -0(5)
N(2) - ¢(35) - C(36)
6(36) - (37) - N(3)
c(37) - ¥(3) - o(é)
c(37) - ®(3) - o(7)
o(6) -N(3) - o(7)
N(3) - c(37) - c(38)
c(36) - ¢(37) - Br(2)
Br(2) - ¢(37) - ¢(38)

- T4 -

Complex 1

119,0(0,8)
125,4(1,0)
116,6(0,8)
125,2(0,9)
128.3(0,7)
119,6(0.8)
115.7(0.9)
117.7(0.8)
126,5(0.8)
116,0(0.9)
114,0(0.8)
116,7(0.8)
111,1(0.8)
131,8(1.1)

128,3(0.6)

Complex 2
115,0(1,0)
125,6(1,1)
121,2(0,9)
127.5(0.8)
127.8(0.8)_

118.5(0,9)

116.8(1.0)

115,7(1.0)
127.4(1.0)
117.0(0.9)

113,€(0.7)
123,4(0,6)
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Table 3. 8

Comparison of the mean observed boud lengths (Dobs) in the Complex 1
hexahslicene molecule with those obtained from valence-bond (Dv b )
and molecular-orbital (Dm o ) calculations assuming a planar structure,

(o]
All bond lengths are in A , and the atom numbers are those given in

Figure 3.1,
Bond | Dv.b. Dm.o. Doba.
1«2 1.38 1.39 1637
2 -3 1.42 1.41 1.39
3-4 1,38 1.39 1.37
4 -5 1.42 1.41 1,40
5«6 1445 1.42 1.43
6 -7 1435 1.38 1.34
7T-8 1.45 1.42 1.44
8 -9 1.44 1.42 1.42
9 -10 1,36 1.38 1.35
10 «11 1.44 1.41 1.42
11 =24 1.39 1.42 1.42
24 =25 | 1.44 1.42 1.43
25 =26 1445 1.43 1.46
26 - 1 1.42 1.41 : 1.41
25 « 8 1.38 1.41 1.40

26 = 5 1.41 1.41 1.41
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Table 3.9

Mean planes through the aromatic rings of the hexahelicene molecules,
together with the root mean square and maximum deviations of the atoms
from the planes (3). The planee ere defined by the equation AX' + EBY!'
+ CZ' = D, where_gf, Y', and Z2' are absolute orthogonal coordinates

o ¥*
(in £), with X' = axsinfsinY’, Y' = -axsinfcosY + bysina, 2' = axcos
- p- oy r . o— — ——

+ bycosa.
Ring Complex Deviations Equation of plane coefficients
r.m,8., maX, A B C D

1 1 0,015 0,022 =0.471 0.175 «0,865 «8.810
1 2 0,016 0,025 -0.462 0,274 -0.843 ~1.251
2 1 Oo 058 00097 -Oo 392 09339 -Oo 855 -7. 648
2 2 Oo 039 00066 -Oo 373 00400 -00837 -0. 081
3 1 0.074 0.115 «0.,205 0,472 <0.858 5,420
3 2 0.093 0.144 «0.172  0.449 -0.87T7 1.447
4 2 0,072 0.124 «0,087 0,411 <0.907 3,083
5 1 0,055 0.085 0.210 0,489 «0,84T7 =4.887
5 2 0.064 0,107 0.299 0,312 20,902 4,014
6 1 0,024 0.033 0.342 0.342 -0.875 «5.283
6 2 0,020 0,030 0.388 0,173 -0,905 3,882
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Table 3.10

Dihedral angles (degrees) between the mean plenes through the aromatic

rings of the hexahelicene molecules,

Between rings: Complex Angle
1 and 2 1 10,5
1 and 2 2 8.8
2 and 3 1 13.2
2 and 3 2 12,1
3 and 4 1 13.2
3 and 4 2 15.1
4 and 5 1 11.4
4 and 5 2 ‘ 13.5
5 and 6 1 1.4

5 and 6 2 905
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Table 3.11

o]
Intramolecular non-bonded C.,.C contacts (A) in the hexahelicene

molecuvles, with standard deviations in parentheses,

Contact

C(1) veevs C(22)
C(1) veees C(23)
C(1) eeees C(21)
C(21) voes C(26)

C(21) vees C(25)

Complex 1

2.966(13)
3.090(12)
3.046(14)
2.966(13)

3.075(11)

Complex 2

2.942(15)
3.029(18)
3.039(17)
3.015(14)

3.099(14)
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Table 3,12

Mean planes through the aromatic rings and C-nitro groups of the
BIIF molecules, together with the root mean square deviations (A)
of the atoms from the planes., The planes are defined by the equation
AX' + BY' + CZ' = D, where X', Y', and Z' are absolute orthogonal
ocordinates (in A), with X' = axeirsinY’, Y' = -axsinBeosY” +

bysina, 2' = axcosP + bycosa + cz,

Plane Complex A(z) Equation of plane coefficients
A B c D
Ring 1 1 0.043 -0.,239 0,233 0,943 -4.283
Ring 1 2 0.038 0.002 0,479 -0,876 -9.397
Ring 2 1 0.039 «0.325 0,318 0,891 4,088
Ring 2 2 0.032 0.148 0,394 <0,907 <9.757
Ring 3 1 0.019 -0.438 0,310 =0,844 <4.416
C(29)-N02 1 0.001 -0.,250 0,325 -0.912 -4.008
c(29).No2 2 0,008 0.004 0,390 0,921 =10,133
0(35).No2 1 0.007 -0.425 0,278 -0.861 =4.600
¢(35)-No, 2 0,010 0.314 0.271 -0,910 -9.648
C(37)-N02 1 0.017 0.300 0,708 -0,640 2,129

¢(37)-No, 2 0,013 =0.159 -0.174 -0.972 -14.658
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Table 3,13

Dihedral angles (degrees) between the mean planes of the aromatic

rings and C-nitro groups of the BTNF molecules.

Planes Dihedral angle

Complex 1 Complex 2

Ring 1 - Ring 2 7.5 Te1

Ring 2 - Ring 3 Te1 9.1
C(29)-N02 - Ring 1 5.5 6.4
c(35).uo2 - Ring 3 2.5 2.9

c(37).n'o2 Ring 3 51.1 39.4
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Figure 3.1 : The nunbering system applied to the hexahelicene
and BI'NF molecules,
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Figure 3.2: The crystal structure projected along the a axis, The
complex 1 and 2 molecules are labelled(t)ana(2respectively.,
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1 2 3A
|

Figure 3,3: TEe Complex 1 hexahelicene molecule viewed along
&*, showing the shoritest intramolecular contacis



CHAPTER 4

THS CRYSTAL AND MOLECULAR STRUCTURES OF THE 'SUPER-ACID' SALTS

POTASSIUM TRI-HYDRCGEW DI~SUCCINATE AND POTASSIUM TRI-HYDROGEN DI~GLUTARATE




4.1, Introduction

The acid salts of carboxylic acids

Many monobasic carboxylic acids readily fcrm crystalline acid
salts of composition MHX2, where M is a univalent cation, and HX is the
free acid (R.COOH)., It has been shown, as a result of x-ray and neutron
diffraction studies of a number of these acid salts, that they can be
classified intortwo structural types, A and §.1 In type A the two acidic
residues are equivalent, linked by a very short O¢s+Heee0 dbond across a
crystallographic element of symmetry, and the structure may be formulated
as ﬁf(zﬁz)_. Crystals of this type of acid salt have anomalous infra-red
spectra,2 the most notable features being the absence of an 0-H stretching
band above 1700 cm-% and a broad band of absorption below 1600 cmhl.

Type B acid salts have crystal structures in which the crystallo-
graphically distinct anionvzf and free acid HX can be recognised, so that
the structure may be formulated as Mf.zf.ﬂz. The acid residues are
joined by a short hydrogen bond, but in this case the oxygen atoms involved
arc not symmetry-related. The infra-red spectra of Type B acid salts
approximate to a superposition of the sbectra of the free acid and its
anion,

Dicarbéxylic acids (Hzl) form acid salts (MHY) which can also be
classified into two structural types. Type 52 acid salts, in which the
two carboxyl groups are crystallographically equivalent, each being

effectively half-ionised, are analogous to Type A acid salts of monobasic
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carboxylic acids and have the same type of anomalous infra-red spectra.

In Type B, salts, the carboxyl groups are differentiated, one being

2

ionised, the other not; this type is thus analogous to Typé B acid

salts of monobasic carboxylic acids, and has a similar infra-red spectrum.
In addition to the normal Type AQ and 22 acid salts, dicarboxylic

acids form ‘super-acid' salts of stoichiometric formula MﬁBZQ' The

crystal structures of the first two members of the series of super-acid

salts KH 5

KH,Y,,

malonate have been investigated by neutron diffraction; as expected

potassium tetroxalate” and potassium trihydrogen di-
(on the basis of their infra-red spectra), both structures contain the
unionised acid molecule H,Y and the B, Type acid anion HY. Their

2= 2

structures canfthus be more correctly formulated as,&f.H}f.H Y. The

2—
structure analyses by neutron diffraction of the next two members of the
series, potassium tri-hydrogen di-succinate and potassium tri-hydrogen

di-glutarate are now described in parts two and three respectively of this

chapter.

4.2. The Crystal Structure of Potassium tri-hydrogen di-succinate

4.2.1, Introduction

Potassium tri-hydrogen di-succinate (KHzSuccz) was first described
7/

by Marshall and Cameron in 19075 who studied its morphology during an
investigation into crystals with curved boundaries.,

Its preparation is simple: equimolar quantities of succinic acid
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and potassium hydroxide are diésolved in warm water, and crystals of
KHBSucc2 separate out on cooling or evaporation. However, although

large crystals suitable for neutron diffraction were relatively easy to
grow, considerable difficulty was encountered in obtaining small crystals
suitable for x-ray analysis - they tended to be split or bent. A full
set of neutron diffraction data were therefore collected in the hope that
the structure might be solved directly from neutron data, Since potassium
is no longer a 'heavy atom' for neutron scattering, an attempt was made to
solve the structure by the symbolic addition method, in spite of
theoretical objections that the presence of a large number of negatively-
scattering hydrogen nuclei make its application invalid. However, the
anticipated difficulties were not encountered, and the struéture was

solved at the first attempt.

4.2.2. Experimental

Crystal Data

The unit-cell parameters were determined from x-ray photographs:

o
C.H,.0.K, M = 2743, monoclinic, a = 7. 434(5), b = 18.437(10), ¢ = 9.006(5)4,

871178
109.51(0.1)0; U= 1163.5A3, D, (Marshall and Cameron, 1907) = 1.559,

]

z =4, D, = 1.56. Space group, le/b (No. 14).

The goniometric parameters given by Marshall and Cameron correspond

to a different choice of axes: QG = ~g-28; S5 & These lead to the
ratios 0.923:1:0.403, 94.7 compared with 0.936:1:0.407, 94. A cited by

Groth?
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Data Collection

Diffracted neutron intensities were measured on a Ferranti Mark II
automatic diffractometer attached to the Dido reactor at A.E.R.E.
o]
(Harwell), using a monochromated neutron beam with A= 1.172A. The

3

crystal used had dimensions 5.5(parallel to c) x5 x 3.5 mm” and was

mounted along c. Integrated intensities were measured for all 1890
independent reflections out to 8= 450 using w/26 scans; of these, 1213

with 1F|Z§s(|F|) were used in the structure analysis.  Absorption corrections
were applied to all the data using a calculated p(effective) of 1.40 cm—l;
the incoherent scattering cross;section of hydrogen was taken to be

3%.0 x 10"24 cm,

Normalised structure amplitudes ( E 's) were calculated from the

observed structure amplitudes according to the equation

_ .0 2 N
g2 . K2 /e 2B(sinb/) ) Zb-z
obs i=1 J

.th )
where b. is the scattering length of the jJ  atom, and N is the number of
atoms in the unit cell. The values of the scale factor k and overall
temperature factor B were obtained as follows: the summation of(E2-1)2

over all reflections was calculated for various physically reasonable
2

k4

values of B, the value of k being adjusted so that the average value of E

was forced to be 1.0. The best value of B, and hence k, was taken to
e . 2 ,\2 .

be that which minimised the summation (E“-1)°, These calculations were

carried out using the X~RAY SYSTEM program DATFIX; all subsequent programs
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used in the structure analysis were also from the X-RAY SYSTEM,

4.2.3 Solution of the phzase problem.

The phase problem was solved by an application of the symbolic
addition method using the programs SIGMAZ and PHASE, 1,801 22 relationships
were generated by SIGMA?_between the 224 reflections with |E| values greater
than 1.5, The reflections 621, 517, and 43§ were allocated positive signs
in order to define an origin before proceeding with the phase determination
using the program PHASE, This program finds an initial solution in terms
of the top 30-40 percent E 's -~ in this case 80 were used - which are
known as 'generators'. The subset of')'_2 relationships used in this
solution - known as the 'defining' subset - are then tested against the
full set of relationships and a count is made of the number of times each
relationship in the subset appears 'accordant' or 'discrepant' in terms of
all the‘known relationships. Any relationship in the defining subset which
appears discrepant more often than accordant can then be removed from the
solution. The program thus finds the most internally self-consistent solutiorn,
and this is usually, though not always, the correct one. In the present
case, the defining subset contained 77 relationships, of which 1 was sub-
sequently removed to yield a consistent solution. The phases of 206
reflections were determined from this solution, and an E-map computed using
these phased E's as ccefficients revealed every atom in the structure,
including the negatively-scattering hydrogens. Structure factors calculated

using the atomic coordinates determined from the E-map gave an R-value of 29



pér cent,

It was pointed out in Chapter I that application of the symbolic
addition method to diffraction data yields phases for the 'squared
structure' - +that is, the structure which scatters with the square of
the scattering factor for each atom in the original structure. Symbolic
addition will thus be successful with neutron data from a structure containing
a proportion of negatively-scattering nuclei only if the largest structure
factors of the original structure have the same phases as the corresponding
structure factors of the squared structure (or of the original structure in
which all the nuclei are considered positive scatters), and it was argued
that this was likely to be the case when only a moderate proportion of the
nuclei were negdtive scatterers,

Having successfully solved the structure by the symbolic addition
method, it was decided to investigate the extent of the agreement between
the phases of the original structure and that of the same structure with
positively scattering hydrogen nuclei. Structure factors were calculated
from the final least-squares parameters using a positive sign for the hydrogen
scattering length, and Table 4.2.11. lists these structure factors (FB+)
for the 80 reflections used in the initial symbolic addition solution along
with their structure factors éalculated using the correct (negative) hydrogén
scattering léngth (Fb—). Although the amplitudes of each pair of F + and
F. - sometimes differ by a large amount, their phases are, without exception,

b
the same, and of the 206 reflections used in the final solution, only 2
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have different signs for Fb+ and Fb—. Any errors in the phases

determined by the symbolic addition procedure are thus most likely to be

the result of différences in the amplitudes of Fb- and Fb+-’ not all of the
large FL—'S correspond to a large F£+, and since only reflections with a
large Fb+ should theoretically be used in the symbolic addition procedure,
thg reflections for which F%+~<-< Fb- have been wrongly (but unavoidabiy)
included. Phases determined for such reflections have a low probability

of being correct, and in 8 of the 11 phases which were incorrectly
determined in the present analysis (Table 4.,2.12), Fb+ is much smaller
than F%- (vy S0 per cent or more). This ‘amplitude error' effect was not,
however, important in this case, since only one of tHese 'invalid'
reflections was among the‘set of 80 largest reflections from which the
initial solution was found.

The proportion of hydrogen scattering power in potassium tri-hydrogen:
di-succinate is 20 per cent; obviously, neutron data derived from crystals
containing increasing proportions of negative scattering nuclei will suffer
to an increasing extent from the 'amplitude error' effect amongst the
largest structure factors, and the point at which the symbolic addition
procedure becomes unworkable is reached, according to Sikka7 when negative-

scattering nuclei account for more than 1/3 of the total scattering power

in the unit cell.

4.2.4 Refinement.

The structure was refined by least-squares using the program CRYLSQ.
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Nuclear scattering lengths were taken to be 0.35, 0.661, 0.579 and
~0.378 x 10-12 cne for K, C, O and H respectively. Two cycles of full-
matrix isotropic least-squares refinement were followed by thrée cycles
of block-diagonal anisotropic least-squares refinement, and convergence
was reached with R = Q086. The weighting scheme used in the last two
cycles is defined by the equation wloe 14 [(FB - 5.0)/3.0].2 Seven
reflections which seemed to be badly affected by extinction were omitted
from thevfinal stages of refinement, and these are listed in Table 4.2.5.
The final positional and vibrational parameters are listed in Tables
4.2.,)1 and 4.2.2 respectively; the observed structure amplitudes and
calculated structure factors are‘listed in Table 4.2.3 and an analysis of

their agreement is given in Table 4.2.4.

4.2.5 Discussion of the structure

The numbering scheme of the crystal-chemical unit (C.C.U.) is shown
in Figure 4.2.1; other symmetry-related units needed in the description

of the structure are as follows :-

C.C.U. x, ¥y, 2

I -l+x, ¥, 2 IV l+x, y, l+z
IT ~Xy =Yy =2 v Xy X» 1+E.
111 -x, -y, l-z VI 1-x, -y, 1-z

The principle bond-lengths and angles in the succinate residues are given
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in Table 4.2.6, Figures 4.2.2 and 4.2.3 show the crystal structure
projected along the b and ¢ exes respectively.

The two independent succinate residues are clearly differentiated,
residue R1 being the acid anion HX; and residue R2 the neutral acid
molecule HZI’ The location of the hydroxylic protons identifies the
carboxyl based on C(4) as the carboxylate anion and this is confirmed by
a comparison of the differences in C-0 bond length and C-C-0 angle in the
four carboxyl groups (Table 4.2.7). The unionised carboxyls have larger
differences in both C-0 distance and C-C-0 angle than the carboxylate
anion.

The main features of the structure are most clearly observed in
Figure 4.2.2. The structure consists of infinite chains of the §2 type
residues (Rl) linked head-to-tail along the x-direction by short asymmetric
hydrogen bonds, with the neutral acid molecules R2 attached as festoons:
each 0(3) atom of the main chain forms a short asymmetric hydrogen bond

with 0(5)-H of one R, residue, and with 0(7)-H of the next.

2

The Rl residue is in an extended form and its four carbon atoms are

coplanar, their mean plane being represented by the equation :
. o]
0.2471X' + 0.8461Y + 0.4723Z' = 1.843 A ;

: 0
the root mean square distance of the four atoms from the plane is 0.017 A.
Whereas the R1 residues fit seven atoms into a primitive translation of
o
T.43 A, the R2 residues have to fit nine atoms into this distance, and in

orderlto allow this, one carboxyl group is in a gauche conformation, with a
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dihedral angle of 57.3° about C(6) - C(7). A list of the other
important torsion angles in the succinate residues is given in Table
4.2.9.

The interatomic distances and angles in the three hydrogen bonds are
given in Table 4.2,10. The 0(1) - H-~0(4I) and 0(5) -~ H~--O(3I) bonds
are of similar length, but consideration of their O - H«++0 angles and
H:+« <0 distances suggests that the former is the stronger bond. The other
hydrogen bond is significantly longer, and its O-+«+0 distance of 2.63 ?
is similar to those found in carboxylic acid dimers.

Figure 4.2.4 shows the Nakamoto-Margoshes-Rundle relationship8 between
O - H and 0»+««0 distances in hydrogen bonds; the curve is that of Hamilton

? representing the best least-squares fit to the O - H and 0-:-0

and Ibers
distances of all the O - H***0 hydrogen bonds studied by neutron diffraction
up to 1967, and shows how the O - H distance tends to increase with
decreasing 0-+-0 distance, The six points representing the hydrogen bonds
in the present analysis and those in potassium tri-hydrogen di-glutarate
(Chapter IV, part 3) are plotted in Figure 4.2.4 and fit the Hamilton-Ibers
curve very well, considering the average standard deviation in the 0 - H
distances of about 0.016 i.

The C - H distances have a mean value of 1.089 2, with an internal
standard deviation of 0.025 i, which suggests that their least-sguares
standard deviations in Table 4.2.6 are underestimated.

The environment of the potassium ion is shown in Figure 4.2.5. Eight

. (o]
oxygen atoms surround the ion and the six K+c°-0 distances less than 2.84 A
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: o
must be genuine ionic contacts; the two K*+e+0 distances of 3.19 A

o
and 3.28 A are, however, questionable contacts, although they appear to
fill gaps in the environment provided by the other six oxygen atoems. The
Ktee+0 distances are listed in Table 4.2.10 along with the 28

0...K+0.io angles'



TABLES AND DIAGRAMS
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Table 442.1

Fractioneal coordinates (x, ¥, 2) and zbsolute orthogonal
o)

coordinates (in & with X' = axsing, Y = by, g' =

axcosf + cz, and with standard deviations in parentheses).

t t

X Yy z X X Z

Kkt 0.2696 0.0047 0.6076 1.889(9) 0.087(9) 4.802(9)

L0813  0.0640 -0.554(6) 1.498(7)  0.772(6)
.0442  0.3126 0.274(6) 0.815(9) 2.718(7)
.1209 -0.1248 3.258(6) 2.229(9) -2.287(7)
L0750 0.1123  4.263(6) 1.323(7) -0.499(6)
1740 -0.2709 -2.248(8)  3.207(7) -1.643(7)
.0887 =0.4507 =3.156(7) 1.634(6) -2.941(6)
.2120 -0.283%6 1.385(8) 3.908(9) -3.045(9)
1157 -0.3843 .158(8)  2.133(7) -3.517(10)

0
0(1) -0.0790 O
0
0
0
0
C
0
0
c(1) 0.0628 0.0626 0.1912 .440(5)  1.155(5) 1.566(5)
0
0
0
0
0
0
0
0
0

0(2) 0.0391
0(3) 0.4650
0(4) 0.6083
0(5) ~=0.3209
0(6) =0.4503
o(7) 0.1977
0(8) 0.0225

o O

c(2) 0.2547 0.0632 0.1722  1.785(5)  1.165(5) 0.919(5)
C(3)  0.2653 0.1022 0.0276 1.859(5) 1.884(6) -0.410(6)
c(4) 0.4574 0.0987 0.0073 3.205(4) 1.819(5) -1.070(5)
¢(5) ~0.3664 .702(5)  -2.811(5)
c(6) =-0.3051 .552(6)  -3.963(5)
c(7) ~0.1172  0.2328 -0.4480 -0.821(5) .292(5)  -3.743(6)
c(8) 0.04C1 0.1805 =0.3702  0.281(6) .328(6)  -3.433(5)
.0798  0.0840 -1.434(9) 1.471(11)  1.264(10)
.702(12)  -0.913(12)

1466 -0.4131 =2.568(5)
.1927 =0.5241 -=2.138(5)

W S W

H(1) -0.2047

N

H(2) -0.3841 0.1466 =0.2073 =-2.691(12)



H(3)
H(4)
H(5)
H(6)
H(7)
H(8)
H(9)
H(10)
H(11)

X

0.2931
0.2997
0.3549
0.1647
0.2349
-0.4191
-0.3031
-0.0818
-0.1311

0.1743
0.0063
0.0854
0.0807
0.1603
0.2314
0.1589
0.2646
0.2714
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Table 4.2.1 (cont'd)

z

-0.2297
0.1705
0.2799

~-0.0725
0.0349

-0.5777

-0.6233

~0.5346

[ACTEEES \C TN\ ]

!

X

.054(12)
.086(15)
486(12)
.154(12)
.646(17)
.937(13)
.124(18)
.573(16)
.918(16)

v~ N~

¥

.213(15)
.115(15)
.572(20)
.488(21)
.955(15)
.266(15)
.924(17)
.878(17)
.004(13)

Z

L797(13)
.796(18)
641(11)
.062(12)
.269(19)
.162(14)
.861(13)
.612(17)
.876(17)



0(1)
0(2)
0(3)
0(4)
0(5)
0(6)
o(7)
0(8)
c(1)
c(2)
c(3)
C(4)
c(5)
c(6)
c(7)
c(8)
H(1)
H(2)
H(3)

02
Vibrational parameters (A x 104)

Uiy

168(37)
134(25)
156(28)
168(26)
106(23)
464(37)
385(32)
308(35)
371(36)
104(19)
92(20)
145(21)
107(19)
190(21)
260(26)
218(24)
274(26)
217(43)
391(53)
303(54)

Ups

252(44)
566(38)
910(57)
799(50)
507(37)

3%9(31)

319(30)
578(49)
342(36)
369(25)
410(27)
446(29)
316(24)
277(23)
352(27)
265(25)
387(29)
489(56)
567(66)
807(87)

- YC -

Table 422

Us3

119(40)
238(29)
267(32)
335(34)

247(29)

354 (33)
221(29)
533(45)
750(56)
179(22)
213(24)
292(26)
282(25)
159(22)
238(26)
377(28)
301(28)
259(45)
446(60)
459(64)

Yo

98(32)
46(24)
-42(30)
50(28)
73(22)
-216(27)
-144(27)
-81(33)
132(28)
-29(18)
6(19)
92(20)
20(18)
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Table 4.2.2 (cont'a)

Uiq Uss Usz P Uiz Ups

H(4) 589(78) 650(85) 978(110) 249(66) 497(83) 4356(81)
H(5) 234(51) 1528(142) 136(47) =-256(70) 5(43)  -17(66)
H(6) 277(51) 1699(167) 218(56) -194(78) 82(46)  186(76)
H(7) 807(97) 571(77) 1082(112)  365(73) 714(95)  387(79)
H(8) 394(63) 659(82) 597(75)  113(58)  43(57) 329(68)
H(9) 849(102) 808(96) 391(68) -207(82) 331(T1) -5(64)
H(10) 567(80)  822(102) 767(90) -188(71) 199(72)  472(84)
H(11) 679(85) 412(66)  771(90) 3(62)  214(74) -104(66)
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Table 4.2.4

Analysis of structure-amplitude agreement,

reflections in each group.)

(a) As a function of (sin@)/A
Range ZF, ZA
0.0 ~ 0,1 13,64 1,76
0.1 - 0,2 203,44 16.15
0.2 -~ 0.3 614.40 47,62
003 - 004 1057.04 85026
0.4 - 0.5 1706.77 130,50
0.5 - 0.6 1077.05 122,06
0,6 - 0,7 28.29 3,62

(b) As a function of E,

0.0 - 3,0 1066,16 177.96
3.0 - 5.0 1684095 116059
7.0 = 9,0 590. 48 47,05
9.0 -11,0 89.06 11432
ALL 4700,64 406,98

I=

42
136
247
407
359

10

470
435
217

5

1206

I

0.129
0,079
0,078
0,081
0,076
0.113

0,128

0,167
0,069
0.043
0,080

0,127

0.086

(ﬂ is the number of

(za )&

0.352
0.384
0.350
0.345
0.320
0.340

0.362

0.379
0.278
0.249
0,626

1.255

0.337
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Table 4.2.5

Low-order reflections affected by extinction which were removed

from the final stages of refinement.

h k 1
0 1 2
0 4 0
0 4 1
0 5 1
1 0 2
1 0 -2
1 9 -1
2 0 0
2 0 -2
2 0 -4
3 0 -4



c(1)-0(1)
c(1)-0(2)
c(1)-c(2)
c(2)-n(4)
c(2)-x(5)
c(2)-c(3)
c(3)-H(6)
c(3)-u(7) °
c(3)-c(4)
c(4)-0(3)
c(4)-0(4)
0(1)-c(1)-0(2)
0(1)~c(1)~c(2)
0(2)~c(1)-c(2)
c(1)-c(2)-c(3)
H(4)-c(2)-H(5)
0(2)-(3)-c(4)
H(6)-c(3)-H(7)
¢(3)-c(4)-0(3)
c(3)-c(4)-0(4)
0(3)~c(4)-0(4)

- 103 =~

Table 4.2.6

1.317(6)
1.212(9)
1.493(7)
1.099(16)
1.087(12)
1.513(8)
1.03