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Abstract

There are many compelling reasons for proposing new gestural interactions: one might want
to use a novel sensor that affords access to data that couldn’t be previously captured, or
transpose a well-known task into a different unexplored scenario. The creation, optimisation

or understanding of new interactions remains, however, a challenge. Models have been used
to foresee interaction properties: Fitts’ law, for example, accurately predicts movement time
in pointing and steering tasks. But what happens when no existing models apply?

This thesis, carried out within a context of design for users with reduced mobility, pro-
poses to investigate new gestural interactions around planar surfaces involving the upper
limb only, which are the results of a dialogue and design workshops with occupational thera-
pists. For instance, the task of text-input is ported to an interaction of the upper limb through
optically-tracked virtual surfaces, the activity of arm reach rehabilitation is associated to dig-
ital gameplay for improved user engagement and the elicitation of motions users can produce
is automated through the production of audio rewards.

The core assertion to this work is that a computational approach provides the frameworks and
associated tools that are needed to model such interactions. In addition, it offers solutions to
address the challenges the creation, optimisation or understanding such interactions present.
We support this assertion through three research projects.

In Chapter 3, a closed-loop model of the interaction is used in which sensor outputs of a
RGB-D camera are transformed through signal processing into variables that can drive a
gesture typing interaction on off-the-shelf mobile devices. The need for regression and clas-
sification of processed variables is addressed by using a Kalman filter and a neural network.
In Chapter 4, the interaction is cast as an optimisation problem which should balance a
dual objective of arm reach rehabilitation and user engagement. Searching for design con-
figuration requires a low-latency measure of reference gameplay, which is constructed as a
probabilistic model of variables captured in both game space and game controller space. In
Chapter 5, a model of user motions, based on the concatenation of sensor outputs and their
derivatives, provides access to quantifiable properties: variability and repeatability. By using
a model of expected user motions, a discriminative model can be trained with synthetic data
to classify the repetitive nature of unseen user motions.

In all chapters, users studies are carried out to measure the influence of different parameters
on interactions properties. Effects of scale, in particular, are investigated. Finally, post hoc
data analyses are undertaken to shed light on effects and behaviours observed with real users.
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Chapter 1

Introduction

There are many compelling reasons for proposing new gestural interactions. When a new
sensor is released, new types of data are often made available, which can in turn be used for
interaction. For instance, the Microsoft Kinect sensor, exposing depth data and body pose
data, spawned a new set of interactions leveraging these previously inaccessible sources of
information. This sensor has been used to make inert surfaces responsive to touch interac-
tions [1] or help users learn physical movement sequences [2]. Similarly, the inclusion of
additional body parts has also created opportunities for new interactions. Making use of the
controllable degrees of freedom in rotation afforded by the hand holding a mobile device,
new techniques for map navigation have been proposed [3] and by equipping a user shoe
with a camera, new gestural input techniques have been investigated [4]. Aside from new
sensors or new body parts, new tasks, such as gesture typing [5], and new scenarios can also
inspire new gestural interactions, affording users with novel and improved experiences. In
this thesis, specifically, a subgroup of gestural interactions is focused on: those recruiting the
upper limb only and situated around planar surfaces.

Upper limb gestural interactions on planar surfaces are defined as interactions in which the
arm of the user is motioning across and in contact with a plane, such as a tabletop, and for
which the need for fine motor control of the fingers does not necessarily exist. Traditional
interactions, such as the one afforded by a mouse computer, belong to this category, as well
as interactions based on large touch sensitive displays found in public areas. Usual ways
of proposing such interactions have involved dedicated hardware to create the enabling sur-
faces. Recently, new exciting scenarios have been proposed thanks to advances in optical
tracking. Cameras have thus been used to track hand positions and classify the touching be-
haviour of fingers over arbitrary surfaces, potentially affording the same kind of interactions
as large touch sensitive screen with the added benefit of providing mobility and sensing over
the surface, opportunistically extending the interaction beyond touch and towards mid-air
interactions [6].



2 CHAPTER 1. INTRODUCTION

Upper limb interactions usually involve large dimensional areas. These have been employed
for presenting graphical information, potentially reducing visual clutter, or enabling multi-
users experiences with space sharing. They have as such demonstrated a high versatility
of usage with applications in the field of data visualisation, computer-assisted collaborative
work or rehabilitation. Given the benefits granted by large surfaces and dimensions, these
interactions often recruit more muscle groups than other interactive systems such as mobile
phones or desk computers, and in addition, the range of motions needed for interaction do
not necessarily compare with more stationary interaction scenarios, both factors highlighting
the prevalence of the user body in the realisation of the interaction. For example, different
regions have been identified on tabletops with easily reachable areas being described as more
personal than farther regions which extend towards neighbouring users or require users to
lean over the surface [7]. In mouse interaction, clutching, the act of lifting the device, is a
common strategy and arises when users reach their limits in terms of arm motion range. In
other words, upper limb gestural interactions on planar surfaces make apparent that effects
of scale and limits of the user body need to be considered for their understanding.

After an initial design phase, a new upper limb gestural interactions can be considered from
a computational perspective where an interaction model is proposed. This is apparent at
different levels. First, the interaction needs to be implemented or created. Models are com-
monly used for this task, where output of sensors are transformed into controllable variables
and system dynamics are set. The complexity of this processing step depends on the variety
and type of input data available. Extracting information from an image or a motion requires
indeed more work than from the binary output of a push-button. Second, the interaction can
benefit from the optimisation of its parameters. It is not always possible to predict what con-
figurations will favour user performance or preference. Effects of scale, for instance, should
have an impact which is seldom modelled. As a result, users studies are often employed to
map the relationships between design variables and task outcomes, but models can here also
be used to find such configurations. Finally, as the new interaction materialises, a previously
unexplored space can be studied. New effects might be uncovered, and data samples from
recorded interactions can be analysed. Fitts’ law is again here a good example, where proper-
ties emerging from the data were summarized into a powerful predictive model. Ideally, the
lessons learned at each of these stages should be fed back into the design process, enabling
iterative improvements to take place.

Through different case studies, this thesis is aiming at modelling new upper limb gestural
interactions on planar surfaces. It follows a computational approach to design, where models
will be employed to create, optimise or understand interactions.



1.1. Thesis Statement 3

1.1 Thesis Statement

There are many compelling reasons for proposing new upper limb gestural interactions. But
the lack of effective models presents a challenge for their creation, optimisation or under-
standing. The main assertion to this work is that a computational approach to design provides
the modelling tools needed to address each of these challenges.

Novel gestural upper limb interactions are approached from a computational perspective,
where discriminative models are used to enable interactions, optimisation is included as an
integral part of their design and reinforcement learning is used to explore motions users
produce in such interactions.

1.2 Research Contributions

The contributions made by this thesis are:

In Chapter 3:

• A system that affords text-input through gesture typing on planar surfaces created by
means of visual tracking.

• A discriminative model for the classification of contact between fingertip and planar
surfaces from depth image data.

• A study of the influence of scale on text-input performance and on user preference.

In Chapter 4:

• A system that affords play in rehabilitation of users with limited mobility, while en-
acting motions recommended by therapists.

• A measure of user performance suitable for optimisation, relatively user independent,
which is based on the probabilistic modelling of user input and game state.

• A formulation of the use of digital games in physical rehabilitation as a dual optimisa-
tion problem between rehabilitation goals and user engagement.

In Chapter 5:

• An automated elicitation process of user repetitive motions.

• A model for detecting and segmenting repetitive motions in real-time sensor data.

• A quantitative measure of unconstrained user motions for upper limb gestural interac-
tions on planar surfaces.
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1.3 Overview of the Thesis

The first chapter provides background information about users having sustained a spinal
cord injury. It summarises work related to upper limb interactions around planar surfaces
and gestural interactions in general. Common models, as well as modelling techniques, used
in the field of Human and Computer Interactions (HCI) are finally presented.

It is followed by three research sections, each constituting a single chapter:

• Gesture Typing through Virtual Tabletops (Chapter 3):
proposes the design of gesture typing through virtual surfaces on tabletops. The prob-
lem of fingertip touch classification is solved with a supervised learning approach and
the measure of writing performance against capacitive touch systems and as a function
of scale is conducted through a user study.

• Rehabilitation through Common Gameplay (Chapter 4):
investigates an alternative method to foster user motivation towards rehabilitation exer-
cises by using ready-made games and adaptive controls. A probabilistic model of user
behaviour is built from a dataset of reference play and is used to relate user actions and
in-game variables to game score.

• Eliciting Motions Through Positive Reinforcement (Chapter 5):
looks into modelling motions through the definition of a joint user-sensor space. The
user ability to produce variability and reliability in their motions is investigated. A
supervised learning approach is used to identify and segment repetitions.

Due to the heterogeneous nature of the focus of each research section (text-input, physical re-
habilitation and elicitation of motions), each chapter also includes a topical literature review
at its beginning or before new concepts are introduced.

The final chapter summarises the thesis’ research contributions and results, discusses the
limitations to this work and concludes with some avenues for further research.

Declaration of Originality

I confirm that the material presented here is the result of my own work without collaboration.
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Chapter 2

Background

2.1 Context

Defining a subset of HCI interactions by removing the need for fine motor control for the
fingers might seem unnatural at first glance: grasping through the presence of an opposed
thumb is considered as the most important movement in the human hand [8] and, as a com-
plex and diverse function, is usually required in the everyday interactions we have with
computing devices. Other hand functions exist however, non-prehensile movement such as
pushing, lifting, tapping or punching do not always necessitate fine finger motor control and
cover many interactions already available or proposed in the field of HCI. For instance, upper
limb interactions include the most prevalent smartphone’s single point-of-touch interaction
but excludes any multi-touch interactions where complex inter-finger coordination comes in
play. Using intermediate joints such as the wrist through tilt [3] and rotation gestures [9] also
falls into this categorisation. A good illustration of the modularity of upper limb interactions
can be found in the focused-casual continuum. Pohl et al. [10] proposed a task in which a
user is allowed three interaction techniques to steer a cursor through a tunnel: touch, hover
and gestures. Users adapted their behaviours to the required level of control, but choose the
loosest one when not given the choice. While diverse in terms of control they provide and
sensing they require, none of these techniques required fine finger motor control and can be
described solely as upper limb interactions.

Despite the de facto existence and interesting properties of the upper limb interaction cate-
gory, the main reason behind its definition resides in the presence of a user group for which
fine motor control of end-effectors has been compromised by an injury to the spinal cord. The
European project Moregrasp1[11], which has funded this research, was dedicated to improv-
ing the life of users with spinal cord injury through the use of a neuroprosthesis. The aim of

1http://www.moregrasp.eu/

http://www.moregrasp.eu/
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the MoreGrasp project was to develop a “non-invasive, multi-adaptive, multimodal user in-
terface including a brain-computer interface (BCI) for intuitive control of a semi-autonomous
motor and sensory grasp neuroprosthesis supporting individuals with high spinal cord injury
in everyday activities”. This project was organised as a partnership between different stake-
holders ranging from health practitioners, medical engineers, computing scientists and users
who had sustained a spinal cord injury, creating a rich environment for the understanding of
how technology could help mitigate the severe consequences of motor impairments. Given
the specific motor limitations of the main target user group of the Moregrasp project, upper
limb gestural interactions emerged as a suitable subcategory for research in this thesis.

Spinal cord injury

In Europe, 11,000 new cases of spinal cord injuries (SCI) are registered each year bringing
the total current population of injured persons to about 330,000. The level of the injury
distinguishes two types of impairments: paraplegia and tetraplegia, with the latter meaning
that not only the lower but also the upper extremities are paralysed. Tetraplegia is the most
common impairment with more than half of the new injuries. Injuries have different origins
and are split between traumatic, most likely to be the consequence of a fall, a road accident
or the practise of sport and leisure activities, and non-traumatic usually caused by tumours
(benign and malignant), inflammatory, vascular or degenerative causes. A bigger proportion
of male is represented in the population with traumatic SCI, while the population with non-
traumatic SCI is balanced in terms of gender. Studies [12, 13] surveying the priorities in
term of functional recoveries for the spinal cord injured population have showed a strong
dichotomy between paraplegic and tetraplegic respondents. While paraplegic respondents
signalled sexual function with the highest priority, tetraplegic respondents showed a strong
focus on the upper limb with arm and hand function recovery designated as the main factor
for improving their quality of life (Figure 2.1, right). To understand this dichotomy, two
pieces of information are needed. The map of key sensory points by Maynard et al. [14],
reproduced on Figure 2.1 (left), illustrates the procedure for identifying the level of a SCI
through probing for the presence or lack of sensation on the patient’s skin. Side to side
with the vertebrae nomenclature, adapted from [15], these provide an idea of the connection
between the level of an injury and its impact on the anatomical level. For low levels of injury,
up to lumbar vertebrae, only the legs of the patients are impacted. For very high levels of
injury, typically in the neck or above the shoulders, the nerves sending signals to the forearms
muscles that control finger motions have been partially or completely severed and can not
any longer fulfil their intended functional role.

Users with injuries at level C5 and C6 were the target group of the Moregrasp project. This
motivates restricting gestural interaction to the ones only recruiting the upper limb and not
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requiring fine motor control of the fingers. Additionally, the help of a surface to rest ones arm
has also been identified as a requirement in order to limit the reliance on shoulder muscles.

Figure 2.1: Information linking the level of spinal cord injury to the extent of loss of sensory
feeling on the body. Keypoints for assessing the level of SCI [Maynard - 1997] (left). Verte-
bra nomenclature, adapted from [Kayalioglu - 2009] (middle). Highest identified priorities
for tetraplegic users [Anderson - 2004] (right).

HCI And SCI

Users with SCI are usually not the main target in studies related to accessibility, but are often
part of a wider group presenting similar motor impairments such as those caused by strokes,
tremors or Parkinson’s disease. From an HCI perspective, mobile interaction has become a
focal point due to the prevalence of mobile phones as principal computing and communi-
cation devices. As such, studies centred around mobile interactions provide a commanding
viewpoint into how people interact with technology. There exists however very specific re-
search projects which focus has involved interactive planar surfaces. Here, a selective review
of research explicitly related to users with motor impairment, touch interaction and tabletop
rehabilitation is presented.

Beyond the intent behind mobile information needs [16, 17], which can be assumed to be
independent of the presence or not of motor disability, interaction techniques, principally
touch as a consequence of its prevalence, have been the focus of studies with users with
motor disabilities. In term of interaction, touch shines as a complex task. Qualitative re-
search, with an analysis of user generated videos from a popular social website by Anthony
et al. [18], showed that users with motor disabilities recruited different body parts, the index
finger predominantly but also their thumb, knuckles, hand or even nose, to interact with a
smartphone touchscreen and overcome physical limitations. Multitouch interaction has been
proven to be difficult for a majority of users and the issue with spurious touches, in some
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cases called “palm rejection problem” is pointed out for some users did not managed to re-
strict their interaction with the touch sensitive surface to only one point of contact. Another
qualitative study by Naftali et al. [19], with an online survey, a diary analysis and contextual
sessions, has shown that text input remains the hardest task both at home and on-the-go,
only seconded by text correction. They also point out that mobile phones are often used
while being supported by another surface (user lap or tabletop); an observation also present
in [18].

On a more quantitative level, measuring touchscreen performance for users with motor dis-
abilities has been the topic of several studies. Montague et al. [20] instrumented a Sudoku
game to capture users touch location and intent, providing the information needed for deriv-
ing successes and errors during the interaction. They showed that user performance is highly
variable between participants and between participant’s session themselves. With a focus
on users with SCI only, Guerreiro et al. [21] investigated the performance of different input
techniques including tapping and crossing target as well as linear dragging. In particular,
they found out that the performance of directional gesturing was highly dependent on the di-
rection of the gesture with movement along the screen’s diagonal being the most prevalent to
errors. Finally, Findlater et al. [22] were interested in the comparing mouse and touchscreen
performance for users with upper body motor impairment and included a control group of
users without motor impairment. They showed that touch was faster than mouse but more
error prone, that tapping was three times more prone to errors for users with impairment and
that again spurious touches were problematic.

These research studies reveal that while touch interaction on mobile is a complex task, multi-
touch interaction poses even greater challenges to users. Spurious touches is regularly iden-
tified as an issue for users with motor impairments. The same is true for input errors, in
tapping in particular. The findings from this selective literature will be used later in the
thesis as a seed for the design of the interaction presented in Chapter 3.

Aside to these touch scenarios, interactive tabletops have also been used with older users
and users with rehabilitation needs. With a qualitative study involving older adults, Piper
et al. [23] explored the accessibility and appeal of surface computing. They reported that
with surface computing, just like touch, some gestures that required two fingers or fine mo-
tor movement were problematic. Ratings for ease of use and ease of performing each ac-
tion as well as time required to figure out an action were similar to that of younger adults.
Older adults reported that the surface computer was less intimidating, less frustrating, and
less overwhelming than a traditional computer. The idea of using a surface computer for
health care support was well-received by participants. On an application level, Augstein et
al. [24, 25] with their tabletop rehabilitation project have explored different games for the
cognitive training of older adults, and also studied how health practitioners were supported in
their rehabilitation work by technology. They reported that the main two complaints for the
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therapists were focused on the technical limitations of the system and the lack of diversity in
the games proposed.

The diversity in motor disabilities users exhibited in the studies aforementioned shows that
there is more than just a binary picture when it come to impairments. There exists a con-
tinuum from non-impaired users to impaired users, and similarities between situationally
impairment users, who will for example be temporarily restricted in their movement capabil-
ities, and more permanent motor disabilities. Designing for disabilities has provided some
great opportunities. Pullin [26] demonstrated how an innovative approach transformed the
way eye glasses were perceived and provided benefits for a majority. Challenges remain
however as assistive technologies sometimes mark their users as having disabilities, Shino-
hara et al. [27].

2.2 Upper limb Interactions on Planar Surfaces

Upper limb interaction on planar surfaces are best represented in the literature on interactive
tabletops and surface computing. Such designs have usually tried to bring the virtual world
of computers onto the desk that supports them, bringing the desktop to the desk’s top to make
use of the extra real estate and connect virtual and physical manipulation of digital content.
In 1993, Wellner et al. [28] proposed Paperdesk. In their paradigm, a conventional desk
was instrumented with cameras and projectors enabling the projection of digital content onto
the planar surface and any object lying over it. Users interacted with their bare hands with
such digital content. Several use cases were envisioned, such as the interaction with a virtual
calculator that users would simply touch to action or desk sharing with the representation
of the actions of another remotely present users onto the projected graphical interface. No
mentions of the upper limb are present in this paper which focuses on the users hand only,
but reports from test users mention first that they had “more space” than a traditional work
station, showing the importance of the physical dimension when users move from a desktop
environment to a device supporting upper limb interactions. Other types of sensing have
been proposed, such as DiamondTouch by Dietz et al. [29], where large surfaces where
instrumented with capacitively coupled antennas able to detect touches from several users.
More recently and with the help of new hardware, Hilliges et al. [30] have developed these
initial ideas further. Interactive surfaces, that can sense whole hands and physical objects
placed on them, were created using large touch sensitive tabletops. Models of interaction
based on multi-touch and game physics simulations allowed tangible interactions with high
fidelity with the real world.

From a sensing point of view, surface computing and interactive tabletops present the main
drawback of requiring expensive and bulky contraptions that make their usability an issue in
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places where portability and adaptability are important.

Optical sensing has in that regards proposed some interesting solutions. Since the release
of newly commoditised hardware such as depth cameras, opportunities for new interactions
generated by optically tracked surfaces have arisen. These cameras provide a measure of dis-
tance between their sensor and any objects in line of sight, essentially adding a new dimen-
sion to every pixels of a conventional colour image. The acronym RGB-D, with D standing
for depth, has been coined to reflect this idea. When the depth information is present, it be-
comes possible to understand the scene that is being captured: the distance and relationships
between objects can be inferred and information as detailed as “a hand is hovering over the
table with a finger in position (x,y,z)” can be extracted from the RGB-D video feed.

Leveraging the Kinect sensor from Microsoft, Wilson et al. [1] first demonstrated that depth
cameras can be used as a touch sensor, opening the field to new experimentations. Harrison
et al. [31] proposed to opportunistically create touch interfaces with associated video feed-
back on various surfaces such as the palm of the hand, the arm, a notepad or a wall, affording
touch-like functionality comparable to that of a smartphone. More recently, Xiao et al. [32]
focused their efforts on multitouch interaction over a large tabletop and provided a compari-
son for the tracking performance of existing algorithms, demonstrating an improvement both
in term of tracking and touch detection. This was measured through target acquisition and
steering tasks, both executed in an open-loop manner where no continuous feedback from
the system was provided to the participant. Virtual reality have also benefited from optical
tracking [33], showcasing the versatility of this approach.

From an interaction point of view, optical tracking offers some advantages. It could for ex-
ample propose new solutions to the palm rejection problem which was identified for users
with motor impairment. This problem currently need special processing such as the one
proposed by Mott et al. [34] to be resolved. However, research with optically tracked sur-
faces has also consistently reported the need for better tracking performance which remains
inferior to that of capacitive touchscreen. The design choices made in Chapter 3, which ef-
fectively set up an anchor point for the rest of this thesis, are grounded in the learnings from
this selective literature review. For instance, the importance and difficulty of entering text
through a mobile phone interaction for users with SCI has made text input a task of choice for
the first experiment. The difficulty of performing tapping and the relative good performance
of gesturing made apparent that gesture typing could be an interesting interaction technique.
Finally, the recurrent problem with spurious touches, and the observation that mobile phones
were interacted with on the user’s lap or on a tabletop made a case for the use of optically
tracked planar surfaces.

In summary, the context of the Moregrasp project was used as a seed for the design and the
study of upper limb gestural interactions. I would argue that users with SCI act as a mag-
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nifying glass with interaction issues with technology that potentially pervade everybody’s
practise. As such, this thesis focuses on issues inspired by the impact of SCI on interactions
but is aimed at a more general audience.

2.3 Gestural Interactions

There are several ways to characterise gestural interactions. On one hand, gestural inter-
actions are simply interactions involving gestures, where gestures are defined as motions
which are carrying information [35]. Gestures elicitation studies [36], which purpose is to
identify user motions that seem to convey a recognisable intent, are a good illustration for
the diversity in terms of types of motions [37, 38] that gestural interactions support. Point-
ing, drawing, tapping in rhythms [39], performing specific poses with hands or body have
all been proposed. On the other hand, gestural interactions have also been partly charac-
terised by the task of gesture recognition. Indeed, the capture of motions sometimes relies
on sensors that do not always produce outputs readily usable for interaction, by opposition
to push-buttons for example, and the task of gesture recognition becomes an integral part of
their definition [17, 40]. It is interesting to note that pressing a button has also been viewed
through this lens: Pohl et al. [41], even if they do not explicitly use the term gesture, used
button presses to recognise users, casting this apparently simple task as gesture recognition.
In the rest of this thesis, the definition used for gestural interaction is that of an interaction
between two parties through a sensing device, involving any motions of the user body in
order to convey some information.

The most prevalent gestural interaction, pointing, is also referred to as target acquisition. In
the case of a traditional mouse and desktop interaction, pointing is the task of placing the
device in control space so as its representation in display space is positioned at a desired
location. The control space being the region where users interact, while the display space is
the region where the effect of their actions is represented. The act of selection, signalled by
an additional user action, completes the task of target acquisition.

This gestural interaction has been extensively studied through experiments where targets, of
different sizes and placed at different distances from the users, are meant to be acquired.
The user movement time for the interaction is measured, as the dependent variable, as a
function of the size and distance of a given target, the independent variables. When users are
instructed to be as fast and accurate as possible, such experiment is described as a Fitts’ task
and is deemed a spatially constrained task2. Fitts’ law [43] is derived from such experiments,
and has been used as a model for predicting the movement time. The Shannon formulation,

2A competing model has been proposed as the Linear Speed-Accuracy Tradeoff when users are instructed
to aim for a given movement time, the task is then temporally constrained [42].
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defined by MacKenzie et al. [42], relates the total movement timeMT to the intended target’s
width W , lying at a distance D through the following equation:

MT = a+ b log2

(
D

W
+ 1

)
The constants a and b depend on the pointing technique and/or device being used and are
usually measured through experimentation. An index of difficulty (ID) of the task, measured
in bits, is defined by the logarithmic term:

ID = log2

(
D

W
+ 1

)
The fraction between D and W encodes the idea that difficulty increases as a target moves
farther away, or as a target becomes smaller. An index of performance (IP ) can be defined
as the ratio between index of difficulty and movement time:

IP =
ID

MT

One of the advantage of such modelling is that the index of difficulty can be used to compare
tasks, while the index of performance can be used to compare different input devices.

Other task have also been characterised in the same fashion. Typing on a keyboard, for
example, can be viewed as a series of target acquisitions, and tasks which require users
to follow trajectories, driving a pointer through a tunnel or as navigating a menu, have been
shown to obey the “steering law” [44]. This led to the introduction of another type of gestural
interaction created by composing trajectory-based tasks and text-input. Kristensson et al. [5]
proposed gesture typing where users motion a pointer over the letters constituting the word
they wish to input, and a decoding algorithm infer the intended word. To predict the time
needed to write a word, the models proposed by Accot et al. [44] were used, which later were
revisited by Cao et al. [45].

Apart from the different tasks, other properties can also be used to qualify interactions. As
mentioned earlier, pointing refers to the task of placing the device in control space so as
its representation in display space is positioned at a desired location. When the space of
control and display are coupled or superimposed, the interaction is qualified as direct. In the
opposite case, the interaction is qualified as indirect. Pointing with a mouse on a computer
is thus referred to as an indirect interaction, the hand of the user and the representation of
the mouse pointer are not collocated, while pointing on a mobile device is direct, the user
touches the location where the target is represented. Motions performed in both interactions
are similar, the main difference relies in the extra effort required from the users to mentally
couple their motions to the visual feedback, a process which remain difficult [46]. Fitts’ law,
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which was originally developed to predict movement time in direct pointing, has also been
shown to be robust for indirect pointing. However, specific interactions have been shown
to be more adapted to one or the other mode. Forlines et al. [47], for instance, showed
that users were performing better in bimanual tasks and single-point interactions in indirect
and direct fashion, respectively. Finally, interactions can also distinguished by whether they
are qualified of relative or absolute. This relates to the mapping between the user pointer
and its representation in display space. The relative mapping links the displacement to the
representation, by opposition to the absolute mapping with establishes a correspondance.
For a relative mapping, a control/display gain (CDgain) of the interaction is defined, as in
[48, 49]. Mouse interaction is thus prototypical of a relative mapping, where clutching is
possible [50], while touchscreen interaction is representative of an absolute mapping where
the position of the pointer is equivalent to its representation. Note that all four possible
combinations of relative, absolute, direct and indirect interactions exists.

In this thesis, gestural interactions based on successive target acquisitions and indirect ges-
ture typing will be proposed, and Fitts’ law is employed to foresee some of the interaction
properties.

Different effects can be expected when gestural interactions implement these tasks. The
information throughput in pointing tasks depends on the pointing technique and/or device
being used. But using different limbs has also been shown that have an impact. Card et
al. [51] compiled several Fitts’ study involving different body parts, (Figure 2.2 (left)), in
order to produce a fair comparison. They showed that the information throughput achieved
by users was higher when they used their fingers rather than their wrists or arms, observing
that the performance of a device is more or less “set by the muscle groups with which the
device is designed to connect”. Focusing the range of required motions, effects of scale were
also investigated with the hypothesis that the performance would exhibit a U-shaped curve
with greater performance for medium values of scale. This was measured in steering tasks
by Accot et al. [52], (Figure 2.2 (right)). Their results confirmed a U-shaped performance-
scale function, although the impact of scale was less than that of the steering law’s index
of difficulty. The change in performance over a range of scale varying by a factor 16 was
evaluated to 17%. Movement scale can recruit different limb segments: a large movement
tends to be carried out primarily by the arm, while a small movement will recruit only the
fingers. As a result, it has been argued that scale should also be considered as “the basic
dimension of aimed movement”, as pointed out by Guiard [53].

In the rest of this thesis, some of these tasks will be employed for upper limb gestural inter-
actions. We expect thus to observe the effects described above. In particular, it is clear that
an interaction that is moved from one limb to another will observe a performance change in
terms of information throughput. It is also important to note that effects of scale have an im-
pact on performance throughput as well: when limit of reach or body precision are reached,
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Figure 2.2: Known effects on IP in gestural interactions. Information throughput afforded
by different body parts in a Fitts’ law task [Card - 1991] (left). Effect of different scales
for same ID on steering time in a tunnel task, exhibiting the U-shaped performance curve
[Accot - 2001] (right).

the performance suffers.

2.4 Computational Interaction

The previous section has presented gestural interactions through their properties and char-
acteristics. In particular, idiomatic tasks have been introduced such as pointing, steering or
gesture typing. These were shown to obey Fitts’ law in their overall majority. It is important
to note that some of the experiments from which this law was derived did not involve any
computing devices. In the original paper from Fitts [43], pins were transfered from one set
of holes to the other or disks were moved from one pin to another in a left to right fashion.
Despite the obvious differences between moving a disk and clicking an icon on a desktop
computer, Fitts’ law still accurately describes the observed interaction. However, because
systems of increasing complexity are now heavily used, more generic models are needed in
the field of HCI.

One such attempt has been proposed by Williamson [54], where the interaction of a user with
a system is portrayed as a continuous control process in which user intentions are sensed
through their motions via sensors, which outputs are transformed by the system for the con-
trol of the system’s state variables. A simple schematics is reproduced here for illustration
purposes, see Figure 2.3. One of the added benefit of using this model is that is formalises
the place of the sensors within the interaction and makes explicit the transformation operated
by the system between the sensors output and variables that the user tries to control. This
description is heavily drawing from the field of Information Theory, the author stating that
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“the main purpose of the interaction is to convey information”.

Figure 2.3: The interaction of a user with a system is decomposed into the user motions, the
evidence space, the goal space and the state machine with a feedack closing the loop. Note
that the feedback loop is omitted, but the human computer interaction is typically viewed as
a closed-loop control process. Reproduced from [Williamson - 2006].

Several ideas flow from this description. First of all, it is well adapted to describe gestural
interactions, as it explicitly includes the user’s body in the model. Second, it emphasises
the fact that the interaction should be regarded as a closed-loop control process and as such
stresses the importance of the feedback mechanism. This idea has long been established and
research has shown that humans are usually behaving so as to recreate a first-order system
overall [55]. Finally, it places an important place on the uncertainty in the interactions. At
every stages, inherent noise can be present. Human motions are noisy in their nature, which
was the basis for establishing Fitts’ law, but so is the sensing afforded by the sensors, and the
processing that govern the inference mechanism.

Applied to gestural recognition such modelling pave the way for a computational approach.
Many different statistical models have been employed to transform motions into a material
adapted to inference. For instance, Bevilacqua et al. [56] proposed to train Hidden Markov
Models [57] on movement examples to “follow” and locate where in the recorded movement
a sample from an unseen repetitions was taken from. Using nonlinear dynamical systems,
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Ijspeert et al. [58] proposed the “dynamical movements primitives” which, after being fit-
ted to movement examples, were capable of producing similar movement to the example
as well as variations governed by different scale and goal parameters. For the purpose of
computing the information content carried in a movement, Oulasvirta et al. [59] proposed to
fit an autoregressive model to a example of motion and its reproduction in order to analyse
the differences between the models’ coefficient which were related to a measure of infor-
mation. Finally, using biomechanical simulations, Bachynskyi et al. [60, 61] proposed to
analyse the muscle coactivation in the body of users engaged in different interactions. Dif-
ferent properties of motions are afforded by these models, such as the capacity of following
a prerecorded motion or generating subtle variations of it, or assessing their quality from an
ergonomic point of view. The computation of performance remains however complex, as al-
ready pointed out by MacKenzie et al. [42], “there are classes of movements (e.g., drawing)
that at present lack a paradigm for performance modelling.”

While Computational Interaction [62] is still in the process of being formalised, the main
idea lies in the “commitment to computational models that gain insight into the nature and
processes of the interaction itself”. The proposed definition for Computational Interaction
lists elements that such approach would typically include:

1. an explicit mathematical model of user-system behaviour;

2. a way of updating that model with observed data from users;

3. an algorithmic element that, using this model, can directly synthesise or adapt the
design;

4. a way of automating and instrumenting the modelling and design process;

5. the ability to simulate or synthesise elements of the expected user-system behaviour.

As a result, Computational interaction draws from the fields of Machine Learning, Signal
Processing, Information Theory or Control Theory. The main goal of this thesis consists in
exploring how such approach can be applied to novel gestural interactions of the upper limb
on planar surfaces for which the lack of models challenges their to creation, optimisation or
understanding.

2.5 Conclusion

The background section has introduced the context in which this thesis has been carried out
and established the connection between the findings of research on users with spinal cord
injuries and the design choices of made in the rest of this thesis. Upper limb interactions
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have been portrayed through examples taken from the fields of surface computing and inter-
active tabletop, followed by an emphasis on related work based on optical tracking. General
models of gestural interaction have been presented with known effects of scale and different
limbs on performance. Finally, a short introduction has been provided for what is defined as
Computational Interaction and the need for modelling interactions.

The following chapters of this thesis are constituted by three research projects, linked by a
continuous dialogue with occupational therapists, where new upper limb gestural interac-
tions are proposed and a computational approach is employed for the purpose of enabling,
optimising or understanding the interaction.
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Chapter 3

Gesture Typing Through Virtual
Surfaces

Summary. This chapter proposes a novel upper limb gestural interaction whose purpose
is to afford text-input through an optically tracked surface. Recent designs in the field of
optical tracking have investigated a wide range of surface type (hands, walls or notepads)
but report some limitations with regards to their ability to detect whether the user’s finger is
in contact with the optically tracked surface. A supervised learning approach based on the
processing of depth images is shown to produce competitive results with the current litera-
ture, characterised by a 96% AUC (area under the ROC curve). A user study was designed
to investigate the influence of the dimensions of the input surface on a gesture typing task. It
demonstrates that the proposed system allows users to perform text-input, albeit at a lower
rate than on a control touch tablet. Users adapted their end-effector movement speed to the
input size in order to maintain similar writing speed across sizes, but reached their precision
limit for small dimensions. Also, users expressed a preference for an interaction size that is
big enough to limit errors but small enough to minimise arm motions. Finally, from the trace
data gathered during the experiment, links between observed behaviour and control theoretic
models of target pointing are established.

3.1 Introduction

An initial meeting with occupational therapists (OTs) in the spinal unit of Glasgow’s Queen
Elizabeth University Hospital inspired the design for the first upper limb gestural interaction
this thesis proposes. A series of tools crafted by OTs and used in the ward were presented,
see Figure 3.1 and in Annexe A. These were custom-built for individual patients and their
purpose was mainly to alleviate the shortcomings of their hand motor limitations. The tool
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on Figure 3.1 was designed to allow users to hold a pen while exerting minimal squeezing
forces with their fingers, whereas the tools presented on Figure A.2 and Figure A.3 were des-
tined to facilitate interactions with touch sensitive surfaces by replacing a user finger with a
protruding extension or removing the need for the continuous muscle activation which keeps
a finger extended. The focus on touch interactions and writing is understandable consider-
ing how these are important in everyday life. Furthermore, text-input is also potent in the
digital version of everyday life: a longitudinal study of mobile interactions pointed out that
text-input apps, such as mail or messaging, accounts for as much as 40% of total phone use
time [63].

Figure 3.1: Photographies of the splint created by the OT to enable users, who could only
exert a limited force in their fingers, to hold a pen or a pencil. The material used is a plastic-
based deformable paste that can be shaped and set in form with warm water.

The production of these contraptions echoes the findings from the study involving users
with limited mobility, see 2.1. Mobile text-input was identified as a challenge, and mobile
interaction in general has been proven problematic due to the small size of screens and the
likely production of spurious touches. By putting these objects in relation with the current
literature on gestural interactions and optically-tracked surfaces, a potential design comes to
mind that would focus on the input side of mobile interaction. An optically tracked virtual
surface could extend the usable touch surface of the screen to a tabletop onto which the user
hand would rest comfortably. The virtual nature of the surface could also be used to filter
the potential spurious touches in the design of the signal processing and to limit the reliance
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on consecutive target acquisitions, gesture typing could be employed in lieu of conventional
mobile keyboard interaction.

3.2 Proposed Interaction

The proposed interaction for our optically tracked surface is represented in Figure 3.2. The
main artefact can be described as a marker-free, optically tracked surface that affords gesture
typing. A mobile device equipped with a camera opportunistically creates an additional
touch surface on the tabletop that supports it. The computing device tracks touch events
on the virtual surface and uses them as an input stream, equivalent to the ones produced by
its own touch screen, for driving the interaction. A user would engage in a gesture typing
task by motioning their finger on the virtual surface, acting as if it was a conventional touch
screen.

h

w

Figure 3.2: Idealised interaction model: a mobile device creates on-demand touch capable
virtual surfaces using visual tracking, which enable an alternative and comparable interaction
to the one afforded by its own touchscreen. The interactive surface is represented here for
illustration purposes but no visual feedback is provided to the user on the tabletop.

The interactions proposed by the touch screen and the virtual surfaces exhibit very similar
properties. They both offer an absolute mapping between the user pointer and the pointer
in control space and rely on the touch paradigm for interaction. Both interactions also re-
quire a single touch point for interaction. However, the control/display gain (see 2.3) can
be different since the virtual surface is defined by variable shapes or sizes which are fixed
through two free parameters h and w representing the height and width of the input surface.
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Moreover, one of the main difference between the screen’s surface and the virtual surface
is that the interaction they propose is direct for the former and indirect for the latter, mean-
ing that in the virtual surface case the touch point and the feedback point are not collocated
in space. Thus it is necessary to provide the user with a visual feedback of its hover and
touch position at all time as indicated by the green dot on the mobile screen in Figure 3.2.
This difference in directness is most likely to change the interaction from a open-loop to a
closed-loop interaction.

3.3 Research Plan

Despite the apparent simplicity of the proposed interaction, several challenges can be identi-
fied.

1. Little is known about the performance of optical trackers as measured by Fitts’ law
tasks.

2. Continuous interaction, such as gesture typing, has not been demonstrated with such
systems.

3. Tracking algorithms have been published but lack performance or availability.

4. Gesture typing has rarely been tested in an indirect manner1, and the influence of
CDgain or scale is unknown.

Section 2.2 provided some background regarding related work in the context of upper limb
interactions through optically tracked surfaces including a vast range of designs in that
space [1, 31, 32, 33].

Experiments that have been carried out in the current literature have focused on estimating
the system’s tracking performance in terms of the positional error and touch classification.
These are undertaken in a open-loop fashion where movement times are not measured or re-
ported. As explained in section 2.3, classical system evaluation usually measures the move-
ment time as part of a Fitts’ law modelling, which then provides a measure for the available
information throughput. This matters for evaluating the performance of a given input modal-
ity and comparing it to other input techniques. It is also important to record the interplay
between the users and the system, as users become engaged in a trade-off between speed
and accuracy, balancing the act of doing the task correctly and as quickly as possible. If the
participant is given an unlimited amount of time, there is no bound to the accuracy that can
be produced and this could give a false sentiment for how well someone would perform.

1This has recently been investigated more thoroughly by Yang et al. [64].
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The performance of these systems remains far from those of conventional touch screens. For
example, the classification of touch for the user pointer yields a rate of 3.5% false negative
and 19% false positive in [33] while the positional errors in tracking are reported in the range
of tens of millimetres in [32], one order of magnitude higher than the human performance
as measured by Holz et al. [65] in the range of the millimetre. Several reasons explain these
differences. First, as opposed to capacitive touch screens, the sensing in optically tracked
surfaces usually happens at a distance, ranging from several centimetres up to several meters
in extreme cases. As the distance between the user’s pointer and the sensor increases, the
number of pixels representing the user’s pointer decreases, reducing the amount of sensed
information that can be used to infer its position and potential contact with the surface.
Second, the techniques employed for the touch classification have used heuristic methods
for solving a complex problem where algorithmic parameters could be instead inferred from
the data itself by using techniques from the field of machine learning. For instance, the
technique presented by Harrison and Xiao relies on the thresholding of the height value of
a patch of pixels surrounding the intended user pointer, with the threshold arbitrarily fixed.
Thirdly, as depth cameras remain a relatively recent technology, research has relied on early
prototype versions of hardware far from customer-ready devices. As a result, such systems
are still at best prototypes for research in laboratories.

Currently, there exists no available tracker that would allow for the investigation of these
questions. Popular pose tracking system (Leap and Kinect for example) do not fare well
with a tabletop in their field of view. Furthermore, the need for design of a model of touch
classification also limits the possibility of using systems which do not provide access to
the raw camera data. Finally, in the optics of a marker-free design, some systems such as
Optitrack can not be considered. Therefore, we set out to build a simple prototype.

Beyond tasks principally aiming at measuring the performance of a tracking system, other
ecologically valid tasks can be used. As mentioned in section 2.3, aside from pointing and
steering tasks, gesture-based tasks can also be the basis for valuable interaction techniques.
We propose that gesture tasks constitute good candidates for optically tracked surfaces, in
particular gesture typing. Gesture typing is a relatively novel text-input technique that was
originally introduced by Kristensson et al. [5]. In order to write a word using this technique,
a user motions their pointer without interruption over the word’s constituent letters. Thus,
this design would mitigate inherent system errors, as gestures also encode information in
the relationship between samples and the decoding can usually cope with a high degree of
positional uncertainty on individual samples. Moreover, in opposition to conventional text-
input, the reliance on the touch classification is greatly limited as most of the interaction time
is spent in hovering or touching state, but transition from one state to the other only happen
during the target acquisition of the first letter. There exists some closely related research
on gesture typing in indirect interaction or on the influence of scale on gesture typing, each
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providing some prior pieces of information that will be used in the analysis of results. This
includes Vulture, the system Markussen et al. [66] proposed, that afforded gesture typing in
an indirect manner by having users motioning their finger in a mid-air interaction. Vertanen
et al. [67] have investigated the influence of input dimension on a gesture typing task, aiming
at understanding how small could the interactive surface be and whether a smartwatch could
be used as input.

In this chapter, we are interested in exploring the use of a novel upper limb gestural in-
teraction on a planar surface. From the literature, we gathered an interaction potential for
optically-tracked surfaces albeit with some challenges in term of tracking and touch classifi-
cation.

This chapter aims to answer the following research questions:

• RQ0.1: How can computational models be used to transform image data into a mate-
rial enabling touch interactions?

• RQ0.2: How does this new interaction compare to the control condition of a tablet
with capacitive touchscreen?

• RQ0.3: What is the influence of size on the text-input performance and on the inter-
action perceived quality?

3.4 Implementation

The physical setup for our interaction was composed by a depth camera mounted on a tripod
that overlooked a desk table onto which a mobile device was resting vertically (Figure 3.3).
The virtual surface is created just in front of the mobile device. We used an Intel Realsense
SR300 depth camera for this purpose. On the software side, the processing steps involved
for creating a virtual surface start with the definition of a coordinate system with respect to
the sensed environment. This is followed by the detection and tracking of the user’s pointer
position within the coordinate system, and the modelling of its categorical touching property.
In other words, the goal of the processing pipeline is to transform an input stream of colour
and depth images into a vector (x, y, t) containing the position coordinates (x, y) of the user’s
pointer over the surface and a variable t indicating whether the pointer is in contact with the
surface.

3.4.1 Processing Pipeline

The first step is derived from techniques widely used in augmented reality [68]. A random
pattern was used to indicate the desired position of the virtual surface on the tabletop and es-
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Figure 3.3: Layout of the prototype in-situ. A mounted camera overlooked the interaction
area created in front of the mobile device.

tablish a frame of reference. The homography between the pattern and the view in the colour
aligned depth stream is computed. This provides the perspective transformation between the
marker and the captured image, which represents the orientation of the camera with respect
to the scene. Despite the computation not indicating the scale under which the view was
seen, the additional information provided by the depth image allows a unique solution to be
found for the camera orientation. In other word, a single RGB-D image of the pattern on the
tabletop permit to compute the absolute position of the virtual surface and attach a Cartesian
coordinate system (0, ~x, ~y, ~z) to the virtual surface. This technique relies on the presence of
a pattern in the field of view during the setup phase, which could be alleviated with different
techniques such as those proposed in [31], but this is not the focus of the presented work.
After computation of the reference frame, the marker was removed and the following inter-
actions were considered as marker-free. Figure 3.4 shows a 3-D representation of the depth
data at this stage. In purple are represented all unclassified points, and in blue the points
that fall within the boundaries of the virtual surface. The coordinate system indicates the
surface’s origin and orientation.

The following steps involved the tracking and classification of the user’s pointer. As men-
tioned in 3.2, due to the nature of the proposed interaction (gesture typing), we are interested
in single-touch interaction only. As a result and for the sake of simplicity, we avoided mod-
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elling the hand pose or identifying individual finger to infer the intended user’s pointer2.
Instead, we adopted the convention that the closest protruding pixel detected as hovering
over the surface plane would belong to the user’s intended pointer and be used as the seed
for the further processing. As expressed within our coordinate system, a region of interest
whose limits are defined by the vertical cylinder of five centimetres in diameter that sur-
rounds the seeding pixel is selected. Figure 3.4 depicts the region of interest in cyan and
all the points within a centimetre of the seeding pixel in red. The pixels that are contained
within the cylinder but extend further away than one centimetre from the seeding pixel are
marked in orange.

In practise, this design choice forced the user to interact in a front-facing manner with the
system. Indeed, when the hand is facing the camera, our simple algorithm ensures that
the user pointer was correctly detected. Preliminary informal testing has shown that this
constraint did not prove to be an issue as the motions required by gesture typing did not
induce tilting of the wrist beyond a point where the palm of the hand, for example, would
find itself as the closest protruding point to the camera. For subsequent tests, this paradigm
was made explicit and clearly stated beforehand to the participants. Finally, even if this
design choice represents a constraint, it also provides some opportunities by allowing users
to interact with any number of bundled fingers or with a hand posture they find comfortable.

This processing step produced a segmentation of the input stream in different pointclouds
representing the virtual surface boundaries, the volume of interest within which the interac-
tion will occur and inferred intended user pointer, (Figure 3.4). The remaining information
that was extracted was the pointer position and whether the pointer was touching the virtual
surface. These two pieces of information were essentially a regression and a classification
performed on the pointcloud representing the user pointer and are the subject of the following
sections.

3.4.2 Touch Regression Model

The regression model is aiming at producing the (x, y) coordinate of the user pointer with re-
gards to the coordinate system and takes as input the pointcloud representing the user pointer
produced by the preceding step. The mean value of the pointcloud is first taken as an esti-
mate for the fingertip position. This resulting point could exhibit two types of errors in the
form of an offset associated with a noise. With regards to the offset, since the intended inter-
action is performed in closed-loop, users will continuously adapt to discrepancies between

2Hand pose modelling is a very active area of research and the latest advances such as openpose [69] which
software package is now available on https://github.com/CMU-Perceptual-Computing-Lab/
openpose have demonstrated outstanding and accessible results even though its expensive computing cost
currently prevents applications in mobile real-time interactions.

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 3.4: Schematics of the output of the processing pipeline with colour-coded segmen-
tation output.

the visual feedback they receive and their intended position. As a result and provided the
offset is constant, only one correction at the beginning of the interaction is needed to cancel
it. Regarding the sensor noise however, its unpredictable nature calls for a more complex
model.

A Kalman filter [57] was chosen to model the evolution of the estimated position in time. It
is the optimal estimator assuming the noise is Gaussian. The Kalman filter is an algorithm
that uses a linear dynamical system Fk to describe the relationship between state variables
xk and observed variable zk at time k for regular intervals in time. The state variables
are what we model, while the observed variables are what we measure. This algorithm
permits to represent noise as an integral part of the system and to track the uncertainty of the
measurement.

In mathematical terms, the following relation hold true for the hidden state xk, its precedent
estimate xk−1 and the process noise wk:

xk = Fkxk−1 +wk

where:
wk ∼ N (0,Qk)

follows a normal distribution with zero mean and covariance Qk. The relation between
the hidden state and the observed state is governed by the observation matrix Hk and the
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observation noise vk:
zk = Hkxk + vk

where:
vk ∼ N (0,Rk)

is assumed to follow a normal distribution with zero mean and covariance Rk.

For our purpose, the hidden state includes the position and the velocity of the pointer as
parameters, which lead to the constant state-transition model as:

Fk =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


Including the second derivative would be possible, however, the sufficient quality of the
results in term of tracking did not seem to warrant more complexity. The observation matrix,
which transform the hidden state into the observed variable is:

Hk =


1 0

0 1

0 0

0 0


This filtering step is meant to take into account the unavoidable human errors in tracking as
well as the tracking errors in the processing chain, quite common with optical system. These
two sources of noise are thus associated with the process noise and the observation noise.

Experiment

The free parameters are the process noise and observation noise through their respective co-
variance Qk and Rk which reflect the noise present in the measure of the observed variable
and the noise present in the hidden state, respectively. Because the values for these param-
eters are difficult to infer from the data, these are traditionally specified by hand. Here, we
decided to fix the transition noise to unity and vary the observation noise as the identity ma-
trix multiplied by a increasing scaling factor, assuming that the human noise in positioning
is lower than the tracking noise.

To find a suitable value for the observation noise, a small experiment was designed with one
dependent variable (the scaling factor of the observation noise) taking three different levels
(0.0, 1.0 and 7.0). We recorded data from three participants engaged in a shape tracing task
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similar to the one used in [32], albeit in an indirect fashion. Participant were asked to follow
a shape on the screen. A circle of radius 150px on the screen was used, corresponding to
5.21cm on the tabletop. We instructed participants to follow the circle outline for one minute
while being as fast and accurate as possible.

The shortest distance to the circle periphery was computed for each point and a normal
distribution was fitted on the resulting distribution. The results are presented in Table 3.1,
with associated distribution depicted in Figure 3.5. The overall average positional error
was less than one millimetre for all conditions. The mean value of the error appeared to
decrease with an increase of the level of observation noise. A mean value close to 0.0mm

was expected as participants continuously corrected their position with positive and negative
errors cancelling out on average. In terms of performance, the width of the distribution is
potentially more interesting than its mean as it indicates the ability of participants to stay
close to the target. For the level with no observation noise, a standard deviation of 2.0mm
was calculated, while a standard deviation of 1.5mm was observed when the observation
noise was set to 1.0 or 7.0. Because an increase in observational noise presents a drawback:
it increases the lag in the system, we chose to set the threshold for the observation noise to
1.0.
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Figure 3.5: Effect of Kalman filtering and observation noise on the tracking precision in a
shape tracing task.

Rk 0.0 1.0 7.0
µ[mm] 0.5 -0.23 0.04
σ[mm] 1.95 1.52 1.53

Table 3.1: Mean value and standard deviation for the position error in millimetres for differ-
ent values of the observation noise Rk in the Kalman filter.

It should also be noted that this tracking performance applies only to the display feedback,
but does not insure that the tracking is accurate in the control space. The camera we used
produced a slightly distorted depth image causing a planar surface (an office desk) to be
represented as slanted in the lower left corner of the image. Optical distortion correction
such as those proposed in [70] were not applied since the observed distortions were very
localised and judged relatively small in comparison with the interaction scale. Moreover, the
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closed-loop nature of the interaction allowed users to correct for such inconsistencies. As a
result, the user positional error we measured from the regression model were smaller than
those previously reported in [33] in which the mean value and standard deviation in position
error were 4.0mm and 3.4mm, respectively, for the same task in an open-loop interaction.

The following section will look into the touch classification model.

3.4.3 Touch Classification Model

When using depth cameras, the main method reported in the literature [31, 32, 33] for solving
the touch classification problem is to use thresholding on a patch of pixels that surrounds the
detected fingertips and the latest results present a performance that remains problematic for
complex tasks were continuous and sustained tracking is required. Data-driven methods,
such as machine learning techniques, have recently demonstrated their suitability for image
classification. The touch classification problem, which reduces to finding out whether the
user pointer is in contact with a surface from an image produced by a depth camera, seems a
good candidate for this task.

Supervised Learning Approach

The touch classification problem can be framed as a supervised learning approach in which
we aim to find a function f parametrised by θ that relates an input vectorX into a categorical
output Y such that:

Y = f(X, θ)

Framing the problem in a supervised framework is conditioned on the existence of a dataset
of pairs (X, Y ). The correspondence between X and Y are examples of the relationship we
wish to model. This framing allows an optimisation to take place where the cost function
Lθ(X, Y ) depending on the θ parameter is to be minimised. In other words, we are looking
for the value θ̂ of parameter θ that solves:

θ̂ = argminθ(Lθ(X, Y ))

There are different models for the mapping function f and the choice of model mostly de-
pends on the nature ofX , whether the input data are images, time series or else, the supposed
relationship between X and Y and whether we wish the model to be interpretable or not. In
the case of touch classification, the input vector X is an image recorded by a depth-camera
containing a possible touch point while the output Y indicates whether a touch point should
be detected in this image. Models based on neural networks [57] have recently been very
popular and successful solving this kind of problem. Depending on their complexity, neural
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network can require a lot of data for their training, typically in the order of thousands of im-
ages. The following section will thus delve into the properties of our dataset after detailing
how it was collected.

Dataset

Currently, there is no available dataset on which to rely to train the classification model, refer
to [71] for a non-exhaustive list of RGB-D datasets. A suitable dataset would qualify if it had
been produced with the same or comparable optical sensor, presented similar or comparable
viewing angles and included the labels we need to model. Even data from related research
studies [32] would not qualify as the sensor used were different from the one used for this
research. As a result, we propose to capture and create a dataset to be used in the training of
the classification model.

The collection and labelling of data can be made practical. To avoid having to segment
videos and annotate individual frames into our two classes; touching and non-touching, both
categories were recorded separately. To record touching category data, a continuous video
stream of a finger in contact with the surface was captured. The non-touching category
was captured as a continuous video stream of a finger hovering at different height over the
surface (from less than a millimetre to several centimetres). The labelling was performed on
a video stream basis, which allowed the annotation of hundreds of images at a time. The
quality of a dataset depends on its capability to represent all the cases that the model will
need to classify. As such, in the touching category we ensured that different orientation of
the front facing hand were recorded and the non-touching category included frames in which
the hand was out of view. For the same reason, since the dataset was produced by the same
individual, the interaction with different fingers (thumb, pinky and index) were recorded
to emulate different potential users. Finally, the sensor placement was established at two
different distances from the surface (at roughly 40cm and 80cm from the surface centre) to
account for varying camera poses. A special attention was placed on the filtering software
afforded by the camera. As it tends to remove some valuable artefacts containing information
about touch, it was turned to a minimum.

A total 6 minutes of video data was recorded, evenly balanced between touching and non-
touching categories, camera views and fingers. The final dataset contained 2 categories ×
2 camera views × 3 fingers × 30 seconds × 30 frames per seconds, equivalent to 10800
datapoints.
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Features

From this dataset and to simplify the task of the model f , some features were extracted.
The output of the processing pipeline from 3.4.1 was used as a starting point for the feature
engineering. In the detected user pointer pointcloud, points which were lying between−1cm
and 3cm along the ~z axis were selected. Their distribution was computed and discretised into
20 uniform bins. The distributions of the two categories for one video recording is shown in
Figure 3.6. The difference between the distributions is quite apparent with a density for the
touching category between feature dimension #5 and #15 much higher than non-touching
category. Note that feature #5 corresponds in the ~z to the origin axis, where the virtual
surface plane is located. The histogram operation provides a rotation and shape invariance
as well as a reduction of the number of dimensions. The simplicity of the features and their
invariance to rotation and shape is key to limit the amount of data that is needed for the
successful training of the model.
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Figure 3.6: Distribution of the features for touching and non-touching frames in blue and
red, respectively. The shaded area indicates one standard deviation from the mean value
represented as a solid line.

Neural Network and Results

Given the features have a rather low dimensionality, only twenty, whereas images usually in-
volves hundreds, and since categories appear to be easily separable when plotted aside each
other (Figure 3.6), we opted for a neural network with a shallow architecture and without
convolutional layers. The architecture is taken from code samples available with the library
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Keras [72] used for the computation. The layers were the following: an input was connected
to the extracted features and was followed by two stacks of a fully connected layer with recti-
fied linear (ReLU) activation associated with a 50% dropout layer. The network is producing
the output through a final fully connected layer with sigmoid activation. Refer to Table 3.2
for a full description. The architecture of neural network could be optimised for different
objectives, but the satisfying performance did not warrant such operation.

Layer Output Shape Setting Param #
input 20 n.a. 0
dense 64 relu 1344

dropout 64 50% 0
dense 64 relu 4160

dropout 64 50% 0
dense 1 sigmoid 65

Table 3.2: Neural network architecture with a total of 5569 parameters.

We trained our model with the optimiser rms prop [73] using the loss function binary cross
entropy. We used cross validation across different fingers to verify during training the gen-
eralisation power of our model against new users. We obtained an averaged 0.96 AUC for
the ROC with an operating point of 0.5, (Figure 3.7). For the live system, we trained on the
whole dataset for 75 epochs.
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Figure 3.7: Performance of the touch classifier with 3-fold cross validation and averaging.

Finally, this model was included in a 3-states button following a design proposed by Buxton[74],
(Figure 3.8), where it played the role of deciding for the transition “hand close” and “hand
away” as well as “pointer lift” and “pointer down”. To improve the performance of the 3-
state button and reduce further the probability of spurious touches generated by our classifier,
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we chose two different values for the operating point of the classifier which was dependent
on the state transition. The operating point was set to 0.3 while “touching”, but 0.7 while
“hovering”, effectively making the transition from touch (“state 2”) to hover (“state 1”) more
difficult than the opposite.

State 0 State 1 State 2

Out of Range Hovering Touching

Hand away

Hand close

Pointer lift

Pointer down

Figure 3.8: 3-state model for the virtual button.

Discussion

A fair comparison of the performance of our model with the performance of related systems
such as [32, 33] is difficult to make without having access to the related systems or accurately
re-implementing the proposed algorithms3. The differences in terms of sensors employed
(Kinect versus Realsense) and associated resolution, frame rate and the differences in the
sensors’ placement relative to the touch point in term of distances and angles are too great to
place the published results of different approaches on an equal footing. However, the quality
of the results obtained here showed that a machine learning approach to touch classification
is adapted. The same approach could yield improvements for relatively similar systems, such
as those mentioned in the literature, which echoes what is presented as future work in [33].

3.4.4 Conclusion

This section serves as a partial answer to RQ0 which was interested in investigating how
computational models can transform image data into a material that enables the proposed
interaction. The regression model with Kalman filtering provided a low positional tracking
error with a mean value in the order of the millimetre. A neural network applied to specif-
ically engineered features delivered a touch classification with 0.96AUC. The processing
cost in term of latency is below the frame rate of the camera which runs at 30 frames-per-
seconds and allows for real-time interaction. There exists a number of different models (both
in regression and classification) that could be employed to turn image data into touch data, as

3The source code for [32] has been made available after the completion of this work, see https://
github.com/nneonneo/direct-handtracking

https://github.com/nneonneo/direct-handtracking
https://github.com/nneonneo/direct-handtracking
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well as a number of possible model combinations, and it is difficulty to provide a fair com-
parison with other systems in this space, due to the diversity in terms of sensing conditions.
Therefore, a definitive answer is beyond the scope of this work. Nevertheless, the current im-
plementation can serve as an experimental probe to study human behaviour in single-touch
interactions afforded by marker-less virtual surfaces.

3.5 Experiment

The system developed in the previous sections affords touch-like functionality through vir-
tual surfaces and can as such provide text-input when connected to a mobile device that
supports gesture typing. The introduction has highlighted that gestural interactions, when
performed with the upper limb on a planar surface, are likely to recruit a wide range of dif-
ferent muscles groups for the production of required motions. Using this prototype, I was
able to carry an experiment to answer the remaining two research questions, re-written here
for clarity:

• RQ1: How does upper limb interaction through virtual surfaces compare to the control
condition of a tablet with touchscreen?

• RQ2: What is the influence of size on the text-input performance and on the perceived
interaction quality?

3.5.1 Apparatus

A desktop computer equipped with a processor Intel Core i7-4790 used the processing
pipeline described above and ran at 30 frames-per-seconds. The system implemented the 3-
state button model [74]. For graphical feedback, a tablet of type Android and model Nexus 7
was used. Touch events were sent to the tablet running a custom application which overruled
its input event system. In addition, hover state was displayed as a red marker at the pointer’s
position, touching was displayed through the Android debugging facility as a cross spanning
the field and continuous touch was displayed as a trace. A audio feedback is produced on
each touch down event. Both machines were connected via a USB cable forming a local area
network with sub-millisecond latency. The tablet ran a second experiment application that
displayed the target word and a standard Swype keyboard for input. Note that the user input
space was only mapped to the portion of the screen that contained the keyboard (Figure 3.2).
The presence of an Android tablet allowed for the use of commercial-grade gesture typing
with the low-latency emulated cursor from the camera-tracked finger position.
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3.5.2 Task

We used a gesture typing task. Participants were asked to input the target word presented
on the tablet’s screen using the gesture typing technique while being as fast and accurate as
possible. The input stimuli was the target word (WORD) and was a random sample of twenty
words among the fifty most common English words between two and five letters as consis-
tent with other approaches found in the literature. The presentation of WORD was two-fold.
We randomly picked five words to be always presented first and in order, as to serve as train-
ing across all conditions and then randomly presented the remaining fifteen words for each
condition. The sample used for the experiment was (BADLY, SEEM, END, ASSET, CHEW)
for training words in presentation order and (ASSET, BADLY, CHEW, DECK, DOG, END,
FIX, GATE, HERB, HIDE, HOT, IRON, LAB, LAY, ORDER, SAFE, SEEK, SEEM, WANT,
WRONG) for the testing words. This ensured the learning was consistent across participants
and LEVEL.

The first choice output from the the tablet’s decoder was retrieved and compared to the target
word. In case of an exact match, the task was marked as successful. A picture of the keyboard
used for the experiment is shown on Figure 3.9

Figure 3.9: Picture of the Android’s software keyboard that was presented to participants
during the experiment for an orientation in portrait mode.

3.5.3 Design

Since gesture typing is not a technique predominantly used by a vast majority of users, we
decided against placing some inclusion criteria related to the participant level of expertise.
As such, we paid special attention to the design of the experiment block to mitigate against
participants with little experience which presented the risk of confounding the experiment
with a strong learning effect. We designed the block in the similar fashion to Quinn et al.
[75], where the same words were entered in succession to minimize potential learning effects.
It also emulated experienced behaviours by limiting the reliance of participants on gesture
recall between tasks. Each trial began with a red flash of the screen and a display of the
target word. A counter displayed next to the word was incremented each time a successful
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attempt was recorded providing a indication of performance to the participant. The block
ended either after five successful inputs or seven total attempts.

A repeated measures within-subjects design was used in which three conditions and five
level combinations were evaluated. The first condition was DEVICE and had two levels
(TABLET and OPTICAL). This provided a fair comparison to answer RQ0.1. The second
condition was SIZE and was evaluated with three levels (SIZE 1, 2 and 4). Size is the scaling
factor in the control space and is equivalent to the inverse of the CDgain. As a result, SIZE 4

presented an interaction size four times that of SIZE 1 in both dimension. The last condition
was ORIENTATION and had two levels (PORTRAIT and LANDSCAPE). We adopt here
a 3-symbols naming convention: the first letter represents the DEVICE, the second marks
the ORIENTATION and the number represents the scaling factor as SIZE, see Table 3.3 for
details. Note that for OL2, the surface area was matching that of OP2. The presentation
order of the five combinations was randomised and presented a uniform distribution across
the participants.

The experimental design was thus: 12 participants × 5 LEVEL × 20 WORD = 1200 trials.
For each trial, we had a block of 5 to 7 ATTEMPT depending on the error rate, which equates
to a total of 6,000 to 8,400 total task samples.

For each attempt in the experiment, we recorded the time the target was presented and the
time the trial ended with its success condition. For the OPTICAL condition we recorded the
data points sent to the tablet as sampled at the camera’s frame rate.

LEVEL DEVICE width height area ratio CDgain

OP1 OPTICAL 9.4 4.7 44.2 2 1
OP2 OPTICAL 18.8 9.4 176.7 2 1/2
OL2 OPTICAL 25.6 6.9 176.7 3.7 1/1.7
OP4 OPTICAL 37.7 18.9 712.5 2 1/4
TP1 TABLET 9.4 4.7 44.2 2 1

Table 3.3: Dimensions in centimetres, area in squared centimetres, ratio and control/display
gain for all five combinations used in the experiment.

3.5.4 Procedure

A short introduction to gesture typing was given to the participants. Participants were asked
about their previous experiences, if any, with gesture typing systems. The participants then
interacted with the tracking system through a drawing application and were asked to gesture
type “hello world” three times, so that they could familiarise themselves with the system.
The CDgain was fixed to 1/2, the orientation was set to PORTRAIT and the mapping to the
full extent of the screen, which combination was not present in the subsequent trial.
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Participants were instructed to be as quick and accurate as possible when undertaking in the
task. After each level, participants were offered to take a break before moving to the next one.
Finally, participants were asked for their feedback using the NASA Task Load Index [76] to
assess the perceived workload after each completed level. They were rewarded with a choice
of candy bars on completion of the experiment. The experiment lasted on average for one
hour for each participant.

3.5.5 Participants

Twelve unpaid volunteers served in the experiment: mean age of 29 (SD=5), seven males, all
right-handed. All participants provided informed consent, and the experiment was approved
by the University Ethics Board.

3.5.6 Results

The dependent variables were the success rate, time taken per task and trace data where
available. This allowed us to compute the dependent measure error rate (ERROR RATE)
defined as the percentage of unsuccessful attempts along with the text entry rate (INPUT
RATE or Ir) measured as words per minutes (wpm) for successful tasks. This was computed,
according to Markussen et al. [66], through the formula:

Ir[wpm] = |T |/s× 60/5

where |T | is the length of the transcribed string and s is time taken per task in seconds.

The design of the experiment indicate between 6,000 to 8,400 trials depending on partici-
pants task successes, we recorded 6963.

One of the testing word (LAY) was an outlier for the ERROR RATE across all conditions.
Its mean value was at 89.5% while the WORD mean was 20.1% and no other word had an
average error rate higher than 30%. A couple of test trials with the system showed that the
tablet recogniser consistently promoted words of higher prior probability in the language
model, such as “Larry”, “last” or “Katy” over the word “lay”. As a result, for the subsequent
analysis, LAY was removed from the dataset.

Learning Effects

Participants were ask to report their experience with gesture typing. Half of the participants
(N=6) reported having used gesture typing only once before the experiment. Two partici-
pants declared having never used gesture typing before. The rest of the participants (N=4)
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declared using gesture typing at a frequency between “sometimes” up to “weekly”. No par-
ticipants declared using gesture typing more often than weekly. This level of experience in
our participants was not unexpected as gesture typing, despite being available on the most
popular mobile platforms, is not always turned on by default. Some participants reported
not being aware of the existence of the technique on their device. See Table 3.4 for a table
summary of the results.

never once sometimes weekly more often
# of participants 2 6 3 1 0

Table 3.4: Participants experience with gesture typing.

For the analysis of the potential learning effects, the OPTICAL condition was excluded as we
were interested in learning effects with our system. We also excluded the level OP1 for the
ERROR RATE as it was an outlier. The INPUT RATE and ERROR RATE were compared
as a function of the presentation in the experiment of LEVEL, WORD and ATTEMPT. The
results are shown on Figure 3.10.

A statistical analysis did not show an effect of LEVEL on INPUT RATE and ERROR RATE.
The INPUT RATE did present an average mean value of 13.6wpm with a standard devia-
tion of 3.1wpm while the ERROR RATE did have an average mean value of 10.8% with a
standard deviation of 7.4%. This result demonstrates that the design of the block with con-
secutive repetitions of the same word, as used by Quinn et al. [75], did mitigate the learning
effect across the experiment even when participants were inexperienced.

A more granular analysis of the experiment showed that WORD produced different perfor-
mance in terms of INPUT RATE and ERROR RATE, in the same manner as it was made very
apparent from the result with the WORD outlier LAY. We observed a strong difference be-
tween the first five training words and the next fifteen testing words. For training words, the
mean INPUT RATE averaged at 17.6wpm with a standard deviation of 4.4wpm whereas for
testing words the mean averaged at 16.6wpm with a smaller standard deviation at 0.4wpm.
In other words, fluctuations across the training words were observed, after which the random
presentation of the testing words reduced drastically the variance. Similarly, ERROR RATE
exhibited more variance on the training words than on the testing words with a standard de-
viation at 5.0% and 2.0%, respectively. In addition, there was a decreasing trend in ERROR
RATE throughout the training words, with the first WORD having on average 26.0%, far
from the mean value of the training words which was 14.6%. For the rest of the analysis, the
training words were excluded.

Finally, the influence of the repetition in the experimental blocks was investigated. A statisti-
cal analysis showed a significant effect of ATTEMPT on INPUT RATE (F2.21,24.35 = 32.75,
ges = 0.14, p < 0.0001). Pairwise comparison showed that the first attempt was signifi-
cantly lower than the rest of the attempts with 10.8wpm when compared to the average of
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Figure 3.10: Effect of learning across LEVEL presentation, WORD presentation and AT-
TEMPT on the INPUT RATE and the ERROR RATE.

14.1wpm for subsequent attempts. We found a significant effect of ATTEMPT on ERROR
RATE (F2.12,23.33 = 7.71, ges = 0.28, p < 0.01). Pairwise comparison showed the first and
last attempts did present a higher ERROR RATE than the rest of the attempts. These results
revealed that participants needed to adapt to every new task. They failed on average more
often on first try and were slower than the following attempts. However, it took only one try
for participants to reach a stable level of performance in terms of INPUT RATE and ERROR
RATE showing that the design of the block with gesture typing motions in succession did
alleviate the penalty incurred by gesture recall for inexperienced users. The higher error rate
for the last attempt can be explained by the fact that, if participant needed to used the seventh
attempt in the block, there was a higher likelihood in proportion that it was a problematic
WORD to produce. Due to the relatively small absolute difference between the first attempt
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and the rest, all attempts were kept for the rest of the analysis.

Outcome Effects

The influence of the testing conditions of the outcome of the task were investigated. The
values of INPUT RATE and ERROR RATE as function of LEVEL are plotted in Figure 3.11
while the data containing the mean and standard deviation for those two variables is pre-
sented in Table 3.5.

Statistical analysis showed a significant main effect of LEVEL on INPUT RATE (F1.53,16.80 =

108.19, ges = 0.75, p < 0.0001). Post-hoc analysis with Bonferroni correction showed that
only TP1 was significantly different than all other LEVEL. The INPUT RATE for TABLET
was on average 29.4wpm which is in-line with what can be expected from novice users after
the time of the experiments [5]. In comparison, for all OPTICAL levels, the average value
of INPUT RATE was at 13.6wpm, significantly lower. This reduction represented a drop of
54% in term of rate when participants moved from a conventional touch screen to an opti-
cally tracked surface. Our results were comparable to published data [66] where a reduction
of 57% (after ten sessions) was observed between the direct and indirect input modality for
their mid-air gesture technique.

Statistical analysis showed a significant main effect of LEVEL on ERROR RATE (F2.85,31.34 =

13.25, ges = 0.45, p < 0.0001). Post-hoc analysis with Bonferroni correction showed that
only OP1 was significantly different than all other LEVEL. The ERROR RATE for OP1 is
26.1% on average while the ERROR RATE for the other conditions (OP2, OP4, OL2, TP1) is
9.6% on average. The lowest value for the error rate was obtained for the level TABLET with
6.2% on average. The rest of the optical condition showed a similar variance but a higher
average at 11.9% for OP2, 11.9% for OP4 and 8.8% for OL2. The pairwise comparison
between OP2 and OP4 with TP1, for which the differences were more pronounced than with
OL2, exhibited a p-value of 0.4. These results are again comparable to published data [66]
where 19.9% of the transcribed phrases did require corrections. In summary, untrained par-
ticipants could produce a similar ERROR RATE while interacting with a tablet and through
our system provided its interaction size was large enough.

OP1 OP2 OP4 OL2 TP1
INPUT RATE [WPM] 13.8(3.2) 14.1(3.5) 13.2(3.0) 13.3(3.1) 29.4(5.7)
ERROR RATE [%] 26.1(10.9) 11.9(7.6) 11.7(7.8) 8.8(6.8) 6.2(6.2)

Table 3.5: Mean and standard deviation for INPUT RATE and ERROR RATE across testing
conditions, with maximum values in bold print.
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Figure 3.11: INPUT RATE and ERROR RATE across testing conditions with keyboard as
reference.

3.5.7 Analysis

The result section highlighted some interesting differences in performance in terms of ER-
ROR RATE when the participants were engaged with the smallest indirect level OP1, and in
terms of INPUT RATE between TABLET and OPTICAL levels. This section will analyse
further our data to understand in greater detail the reason behind these two discrepancies.
In addition to the measure of results (NPUT RATE and ERROR RATE), some information
can be extracted from the trace data recorded during the experiment. This data is composed
of the user pointer position in the control and display space as a 2-dimensional time series.
This data is more closely related to a knowledge of performance, which indicates how the
participants did perform instead of what they did achieve.

Error Rate

We computed the offset at touch down as the distance between the first recorded trace data
point and the centre of the key of the first letter for the target WORD. For this analysis,
we selected the PORTRAIT levels only and computed the distribution of the mean value
per participants (per-participant mean) as well as the overall mean value, both in control
and display space measured in millimetres (mm) and pixels (px). The results are shown
in Figure 3.12 with the numerical values summarised on Table 3.6. A linear regression of
the display offsets with per-participants mean showed a strong linear relation in the data
(slope = 11.1, intercept = 28.0, rvalue = 0.99, pvalue = 0.03, stderr = 0.47). Overall,
the participants were not capable of maintaining the same level of accuracy in display space
across the different SIZE. An average per-participant offset of 30px was observed on OP4,
while an offset of 39px was observed on OP1. Due to the different CDgain, the precision
requirements in control space were very different. Even though participants managed to
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produce a 3mm control offset in OP1, it was not sufficient to maintain the same display
performance as a 10mm control offset in OP4.

In an ideal scenario, participants would have been able to maintain the same level of per-
formance across SIZE in display space. However, the linear difference in accuracy did not
entirely account for the sharp increase in ERROR RATE for OP1, as compared to OP2 and
OP4. By computing the offset as the distribution over all participants (without averaging),
we generated an additional picture of the offset distributions as shown in Figure 3.13. The
offsets for traces that generated a correct and failed decoding are plotted in blue and red,
respectively. We observed a much higher likelihood for failure when the starting offset in-
creased. The numerical values for the overall offset are presented in Table 3.6 in the last
column. For the PORTRAIT orientation, the keyboard has a demi-key width and height of
50px and 75px, respectively. As a result, for level OP1, the starting offset was, on average,
3px greater than the width of the intended key. The much higher level of failure for OP1
should be, in part, attributed to the decoding algorithm which seemed to rely heavily on the
correctness of the first selected letter to produce a correct decoding.
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Figure 3.12: Offset on the target acquisition of the first letter of a target word in display and
control space on the left and right, respectively.

Per-participant mean Overall
control touch display touch display touch

LEVEL CDgain offset [mm] offset[px] offset[px]
OP1 1 3.07 (0.49) 39.03 (6.18) 53.2 (63.2)
OP2 1/2 5.30 (0.70) 33.75 (4.43) 44.8 (59.0)
OP4 1/4 9.63 (1.87) 30.64 (5.95) 41.0 (56.6)
OL2 1/1.7 5.52 (0.83) 41.41 (6.25) 57.1 (87.9)

Table 3.6: Touch down offset for OPTICAL computed in display and control space, averaged
per-participants on the left, with maximum values in bold print.

In addition, the starting touch offset might not be the only factor explaining failure or success
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Figure 3.13: Display offset across PORTRAIT levels for successful and failed attempts in
blue and red, respectively. The shaded area represents the key boundaries with dimension
100 by 150 pixels.

of the task; some attempts that did not present a great offset still induced a task failure, as
pictured by the red points within the key boundary in Figure 3.13. Therefore, it is likely that
the poorer accuracy exhibited for smaller SIZE, in terms of starting offset, carried through the
rest of the gesture with more subsequent inaccuracies, and as a result induced more decoding
errors than for OP2 and OP4.

Input Rate

The results for the INPUT RATE did show a statistically significant difference between
TABLET and OPTICAL, but not between OPTICAL levels. Since we did not collect the
trace data for the condition on the tablet, the analysis was focused on OPTICAL levels. For
the trace data, we computed the first, second and third derivative of motion representing
velocity, acceleration and jerk, respectively. We used a Savitzy-Golay filter, see [77] for
reference, with 15 sample window length and a 3rd order polynomial. The reported results
for speed are computed as the norm of velocity. For the subsequent analysis, only POR-
TRAIT levels are considered to allow for a fair comparison, but results for LANDSCAPE
are included for reference.

The results for the speed in control and display space are presented in Table 3.7. A statistical
analysis showed an effect of SIZE on display speed albeit with a small effect and explained
variance (F1.78,19.53 = 4.61, ges = 0.08, p = 0.03). OP1 was the condition with the great-
est average display speed with a mean at 457.6px/s, similar to OP2 with a mean speed of
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450.4px/s, while OP4 presented the lowest speed at 388.5px/s equivalent to a reduction of
15%. As suggested by the equal INPUT RATE, the control speed showed a great range of
values with an average value of 3.6cm/s for OP1, to be compared to 12.2cm/s on average
for OP4. In other words, participants were increasing their average hand speed by a factor
3.4 between the conditions OP1 and OP4. Also, the pointer display in OL2 was on average
comparatively higher than all other levels, with a mean value of 599.8px/s. This result will
be focused on in the discussion.

pointer control pointer display
LEVEL CDgain speed[cm/s] speed[px/s]
OP1 1 3.6 (0.9) 457.6 (114.9)
OP2 1/2 7.1 (1.7) 450.4 (110.7)
OP4 1/4 12.2 (2.9) 388.5 (93.4)*
OL2 1/1.7 8.0 (1.9) 599.8 (145.0)

Table 3.7: Pointer speed for OPTICAL computed in display and control space, with maxi-
mum values in bold print and statistical significance marked by asterisk.

Next, the derivative profile of the traces produced by the participants across the different
levels of PORTRAIT were investigated. The temporal evolution of the user pointer has been
previously modelled, especially in pointing task. Recently, Muller et al. [78] have investi-
gated different models for such task, revealing that differences in user behaviour dependent
on the index of difficulty.

To gain an insight into these temporal behaviours, the number of zero-crossings of the ve-
locity, acceleration and jerk were computed, refer to Table 3.8 for numerical values. These
measures can be indicative of different steering behaviours. For instance, a zero-crossing
in the speed profile indicates a change of direction which could reflect an overshooting in a
target acquisition task. A statistical analysis showed a significant effect of SIZE of number
of zero-crossings of velocity (F1.38,15.23 = 8.53, ges = 0.18, p = 0.006). Post-hoc analysis
showed that OP1 presented on average more zero-crossings than OP2 and OP4. No statistical
difference was found for the zero-crossings in acceleration and jerk, albeit OP1 did exhibit a
greater value for both measures.

# of zero-crossings OP1 OP2 OP4 OL2
velocity 8.7 (1.7)** 7.3 (1.6) 6.9 (2.0) 7.7 (1.6)
acceleration 11.9 (2.2) 10.6 (2.2) 10.5 (2.7) 11.2 (2.3)
jerk 21.8 (5.8) 19.1 (5.6) 19.4 (6.9) 20.8 (6.1)

Table 3.8: Mean and standard deviation for the number of zero-crossings of speed, acceler-
ation and jerk across testing conditions, maximum value in bold print and statistical signifi-
cance marked by asterisk.
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The signification of an increase in zero-crossing of the velocity is illustrated on Figure 3.14
where the speed profile is plotted for the word BADLY in level OP1 and OP4, represented
in blue and orange respectively. We can observe a much lower minimum velocity for OP1,
while in OP4 the speed is maintained to a higher level throughout.
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Figure 3.14: Speed profile for WORD BADLY in level OP1 and level OP4 in blue and
orange, respectively. The differences between OP1 and OP4 appear in the dynamics of the
motions, where fewer zero-crossings in velocity are observed for OP4.

3.5.8 Qualitative Data

The data from the NASA-TLX showed that for all polling categories, TABLET was the least
demanding condition, followed by OP2 in OPTICAL. OP1 was associated with the highest
mental demand and temporal demand, while OP4 scored highest in physical demand and ef-

fort. A statistical analysis showed significance for physical demand, effort and frustration but
no effect on mental demand, temporal demand or performance. The big picture that emerged
from this data was that OP1 and OP4 were requiring more efforts from the participants as
well as induced more frustration, and that OP4 in particular was particularly demanding in
terms of physical requirements. The data collected through the NASA-TLX is summarised
in Table 3.9.

In addition to the NASA TLX data, participants were also asked to rank the different levels
according to their preference with #1 as the least preferred and #5 the most preferred level.
The level on the device TABLET was the most preferred for all but one participant. The sec-
ond preferred condition were the levels with SIZE 2 with OP2 and OL2 ex aequo, followed
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by OP1 and finally OP4. OP4 was designated as the least favourite for all the participants.
The data is presented in the Table 3.10.

mental physical temporal
LEVEL demand demand demand performance effort frustration
OP1 10.3 (5.0) 9.4(4.6) 9.1(4.6) 7.3(3.6) 11.7(4.4)* 10.3(3.9)*
OP2 7.7(3.9) 9.3(4.9) 6.9(4.0) 5.4(2.9) 8.7(4.6) 6.4(4.0)
OP4 9.3(3.0) 13.3(4.1)* 8.9(3.5) 7.0(3.5) 12.8(3.2)* 10.1(3.9)*
OL2 8.8(3.5) 9.7(3.6) 8.3(3.2) 6.8(4.1) 9.8(4.1) 8.0(3.8)
T 4.6(2.6) 3.8(2.7) 5.8(3.9) 3.2(1.8) 4.2(3.0) 3.7(3.1)

Table 3.9: NASA TLX data with the minimum value in bold print and statistical significance
marked by asterisk.

preference
LEVEL ranking
OP1 2.3(1.5)
OP2 2.8(1.2)
OP4 1.0(0.7)
OL2 2.8(1.5)
T 4.9(0.3)

Table 3.10: Data from the preference ranking, with the minimum value in bold print and
statistical significance marked by asterisk.

3.5.9 Discussion

The data presented in this chapter strongly suggests that virtual surfaces created through
optical tracking are suitable for ecologically valid tasks such as gesture typing. The results
obtained are, indeed, interesting and in comparison, with a conventional interaction, they
showed that the ERROR RATE can be similar even though the INPUT RATE was reduced
by half. The results from other related research studies [52, 66, 67] can be used to put our
findings in perspective. These studies have similar findings even though they investigated
different tasks or used a different sensing technology.

Concerning the ERROR RATE, we have looked into explanations for the much higher values
for OP1. It is interesting to point out that Vertanen et al. [67] did find a similar effect in their
investigation. Beyond the apparent limitation in the user motor control, the proportion played
by the decoding algorithm was however untractable at this point.

With regards to the difference in INPUT RATE between OPTICAL and TABLET, in [66],
Markussen et al. have a discussion about the apparent slowness of their similarly indirect
input technique. They mention that the decoupling between control and display space is
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mentally taxing for the users, according to the principle of stimulus-response compatibil-
ity [46]. They also point out that the reliance on the visual feedback induces a penalty which
translate into a slower movement speed as compared to a direct interaction. Comparing
the INPUT RATE in OP1 and TP1 shows that participants were indeed moving on average
slower in the indirect conditions. We have also wondered why the participants were slower
and after investigation it appeared that the display presented a non-negligible delay in the
order of 100ms. Some recent work [79] has highlighted this issue (which can potentially
be overcome through software methods [80]). However, we have also observed different
pointer display speeds, most notably in LANDSCAPE mode where the usable display area
was bigger. This strongly indicate that the main effect bounding the user performance is not
only a delay in the feedback.

The lack of effect on INPUT RATE in OPTICAL was not expected, as scale should be a
basic component of performance [53]. Based on the effect shown in [52, 49], we did expect
to measure an effect of scale. We know that for hard tasks, the performance should present
a U-curve and given the lower INPUT RATE in OPTICAL, it appears that the task can be
deemed hard enough for the participants. One potential explanation lay in the fact that the
task we employed was more complex than pointing or circular steering and the measurements
we made were in return noisier. The scale that were chosen in these two studies are also
different. Accot reports ranges from 1 to 16, while we used 1 to 4. The range chosen was
equivalent to a paper size of A5 to A3 which we deemed sufficient for a plausible interaction
scenario. Indeed, users did indicate that OP4 was bigger than wished through their preference
rating and qualitative feedback.

One significant effect of scale we measured was the induced differences in more intrinsic
properties of the data, namely in the distribution of derivatives of the participants motions.
Some work has been conducted on the dynamics of pointing task by Muller et al. [78], where
modelling on the time series of a 1-dimensional pointing task were carried out. Adapting
such models to gesture typing would be needed to provide a further insight into our data.
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Figure 3.15: Plot of traces in display space for successful attempts of word “wrong” for
condition OP1 and OP4 on left and right, respectively.
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Finally, we were also interested in the stability of the traces, potentially indicating differ-
ences in term of user behaviour and performance. Figure 3.15 shows the position data for
OP1 and OP4 when the target word is “wrong” and the task successful. We can see the
bigger distribution on touch down around the letter W for OP1, and also distinguish some
differences in term of noise in the traces, with OP1 presenting less smooth trajectories and
potentially covering a bigger region of the keyboard. This idea will be investigated in the
last chapter.

3.6 Conclusion

In this chapter, we have proposed a novel upper limb interaction which affords gesture typing
through virtual surfaces created by means of marker-less optical tracking.

The research questions we set out to investigate were:

• RQ0.1: How computational models can be used to transform image data into a mate-
rial enabling touch interactions?

• RQ0.2: How does this new interaction compare to the control condition of a tablet
with capacitive touchscreen?

• RQ0.3: What is the influence of size on the text-input performance and on the inter-
action perceived quality?

RQ0.1 was addressed by the description of our tracking pipeline with a 3-steps process which
consisted in the signal processing of depth images to segmented pointclouds, followed by a
regression task for estimating the pointer position and a classification task for estimating its
touch property. We have shown that the regression can be improved with the addition of a
Kalman filtering stage, which reduced variance in positional errors in a steering task. We
have also shown that a model based on neural networks produces competitive results for the
classification tasks with an AUC of 96%.

A user study was designed to answer RQ0.2 and RQ0.3. We were interested in comparing
our novel interaction with the control condition of a tablet interaction. We have measured the
input rate and the error rate on the control condition and on our tracker for different levels
of input sizes. We have shown that the input rate is halved when the interaction happens on
the tracker, as compared to the reference input rate measured on the tablet. A result similar
to what has been obtained in a study on mid-air gesture typing. We have also shown that the
error rate achieved with the optical tracker is not different to the one obtained on the tablet,
provided the input size is big enough.
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We have also recorded the effect of scale on the interaction. Investigating the reasons for a
higher error rate on the smallest level, we found out that accuracy levels were not maintained
throughout the change in input size. To be precise, the offset on the first touch point was
on average higher than the half-key width indicating a recurrent mis-acquisition of the first
letter of the word. We have also shown that the user dynamic behaviour was affected by the
change in input size. The number of zero-crossings were significantly higher for the smallest
size. This result shows that some of the effects of scale could only be measured on intrinsic
parameters motions, and not measures of outcome. The interaction quality has also been
measured and participants voiced a strong preference for the control condition, followed by
the intermediate input size which produced limited errors and did not require extensive arm
motions. A strong dislike of the biggest input size was expressed by the participants, it was
ranked last.
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Chapter 4

Rehabilitation Through Common
Gameplay

Summary. This chapter proposes a novel interaction for the rehabilitation of reaching capa-
bilities of the upper limb for users with spinal cord injuries, stemming from the interaction of
gesture typing through virtual surfaces, which presents similarities in terms of user motions.
A series of design workshops is used to understand the needs of occupational therapists for
gamified interactions and leads to the creation of an input control modality that interfaces
with off-the-shelves video games. A user study is designed to understand how parameters of
the user interaction loop impact the overall user performance. It shows that it is possible to
maintain the user performance by altering the game framerate and that rehabilitation goals
can be met through an optimisation of the game controller. We then argue that a model of
user behaviour is key to afford an enjoyable user experience. A computational approach is
used to build a probabilistic model of user behaviour from reference gameplay sessions. The
probabilistic model provides in this context a low-latency measure of performance that is
essential to inform the optimisation process.

4.1 Introduction

A collaboration with a team of occupational therapists from the Queen Elizabeth University
(QEU) Hospital of Glasgow started during a workshop meeting organised within the frame
of the European project Moregrasp, see section 2.1. A demonstration of the system, de-
veloped in Chapter 3, was made to the participants and prompted questions about possible
alternative use-cases for users with spinal cord injuries. Occupational therapists identified
a similarity between gestures needed for text-input and motions needed for the functional
rehabilitation of the upper arm, adding that common exercises performed in that context
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were repetitive by nature [81] and sometimes unnecessarily “dull, tedious and boring”. The
discussion which followed focused on potential ways to remedy their patients’ motivational
issues during upper arm rehabilitation.

A common strategy in the field of HCI for fostering engagement is to leverage patients’
natural propensity for play, and the process of Gamification has in that regards been the
most widely employed approach. Gamification, as defined by Deterding et al. [82], is the
process of incorporating “video game elements in non-gaming systems to improve user ex-
perience and user engagement”, which in practise has often relied on adding badges, points
and rewards systems analogous to what is present in common games, see [83, 84] for a re-
view. The field around Gamification has grown increasingly complex and includes different
flavours and approaches; sometimes intertwined but tackling the same problem. The creation
of games, by definition in opposition to the concept of Gamification, has been proposed with
Serious Gaming and Games with a Purpose. These two approaches rely on the design of
activities similar to games with the goal of enacting a serious activity, see [85] for a critical
review. In particular, Exergaming is a subcategory of Gamification whereby physical activity
and/or exertion is elicited. The definitions of and relations between these four different cat-
egories is subject to fluctuation and debate, however a potential superset of these categories
comes with Playification, defined by Nicholson et al. [86], which focuses on the broader
element of play in the activity.

Recognising the value of video games in driving user motivation and engagement, we pro-
pose that the activity that serves as a motivator should be as close as possible to original dig-
ital games and that, if possible, already made games should be used instead of purposefully
created inspired reproductions. There are some obvious advantages to this approach: engag-
ing digital games are valuable artefacts requiring careful design and access to resources few
can afford; successful digital games sometimes transcend demographics and their familiarity
to users would make rehabilitation instructions and goals easy to understand. However, users
ought to be induced into their rehabilitation via the game’s own gameplay. The interaction
with the game should require users to perform the motions predefined by the occupational
therapists. These are however unlikely to match those needed by default from the origi-
nal unmodified game. Alterations to the player’s interaction loop will be required, so that
physical exercises become a by-product of play.

In the field of HCI, some recent research has followed the same principles. Walther-Franks
et al. [87] have proposed to use off-the-shelf games for generating motivation in exercising.
They derived a 4 step process through which such games can be adapted. It comprises the
choice of the game, the creation of a control overlay, the design of a feedback overlay and
the adaptation of workouts. In particular, they mention the challenge of “finding mappings
from control input to game-action” and take a design approach to solve this problem. Using a
character-based action game, they find 1-to-1 mapping between the avatar and the user body.
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Ketcheson et al. [88] pushed the idea further and adapted two well-known games (Half-
Life and Skyrim) for exercising. They identified three type of approaches for converting
off-the-shelves games: black box conversion, source code modification and modding. Each
relating to the degree to which the original game can be modified. In their work, they used
games where the player’s avatar is powered by pedalling a stationary bicycle with the target
heart rate as their exercising goal measured through Borg rate [89]. In addition, they used
modding to change the game dynamics and provide power-ups to users in order to balance the
game difficulty. Experiences of their users were collected through the IMI scale [90] which
provides an access the participants self-report measure of intrinsic motivation. What can be
taken away from these two attempts, is that there is an important place accorded to design,
especially the design of a new control modality, even if the goal is to use already existing
games. Also, user experiences were measured through questionnaires which, despite being
detailed and informative, present the very salient drawback of presenting results after the
experiments with a considerable time delay.

Rehabilitation research related to the task of upper limb rehabilitation for stroke patients,
who present similar symptoms to patients with spinal cord injuries, has also used off-the-
shelves games. Already in 1993, Sietsema et al. [91] investigated the effect of using a Simon
game for reach rehabilitation and showed an improvement in movement amplitude when
using the game as compared to traditional exercises. More recently, the game Fruit Ninja and
the sensor Kinect have been used in conjunction [92, 93], producing as well positive results
in clinical tests after prolonged use. Game difficulty, via modding, was adapted in [93]
to the new interaction paradigm and target audience. These findings are similar to what
can be learned from a more medically oriented field. Barret et al. [94] have reviewed the
topic of upper limb stroke rehabilitation and, even though they support the Gamification

approach, through the creation of new games, their recommendations can be understood in a
broader context and used with off-the-shelf games. They point out that goals and rewards are
important tools for motivation, just as well as challenge and difficulty, and that meaningful
play and feedback need to be provided. The six main features of importance, selected after
the frequency of occurrence in their review of published survey papers, taxonomies and
frameworks, were:

• Socialisation

• Motivational feedback

• Simple interface

• Challenge

• Appropriate cognitive challenge
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• Adaptability to motor skill level

The first five features are not exclusive properties of serious games or gamified activities and
can be easily found in off-the-shelves games through a conscious selection. However, Adapt-

ability to motor skill level, and as we will see Challenge, points toward the main problem
with unmodified games: adaptability.

In this chapter, we are setting out to propose a novel upper arm interaction for the task of
rehabilitation of patients with SCI, which also implies the design of a new control modality.
The context and activities that were carried out with OTs to inform the design of such inter-
action are first described, before a computational approach is formalised. The result from a
user study aiming at measuring the effect of the new control modality are presented before
moving into a modelling step targeting the optimisation of our design.

4.2 Context

Following the initial workshop meeting with the team of occupational therapists, various
design activities were carried out to understand the need of medical practitioners and patients.
We engaged in workshops at the University of Glasgow and at the QEU hospital to learn
about the activity of game design for rehabilitation and understand in more depth the daily
work of occupational therapists, respectively.

4.2.1 VR Design Workshop

A 2-day design workshop organised within the University of Glasgow focused on the use
of Virtual Reality (VR) for neuromotor rehabilitation. This workshop gathered of a wide
range of profiles among the attendees including design and game practitioners, PhD students
from various schools and stroke survivors. The workshop was led by an alumni from the
University of Glasgow school of medicine who practised as an NHS emergency medicine
consultant. She was assisted by a well-known international emerging medical technology
adoption and regulatory expert. The attendees were divided in small homogeneous groups,
ensuring that at least one stroke survivor was present in each groups. The goal of the work-
shop was to bring together a diverse group of participants with common interests to have
a discussion about the use of VR technology in neuromotor rehabilitation and engage in a
design activity.

The first session of the workshop was designed to give attendees some background of game
design. A simple motivational model describing four types of players was outlined, with
the killer motivated by competition, the master driven by skills learning and acquisition, the
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social whose primary interest is interaction with others virtual or non-virtual agents and the
explorer whose curiosity motivates play. We also shared experiences to other members of the
group: stroke survivors talked about their experiences of living through a daily rehabilitation
routine. They mentioned the need for feedback on the progress as an intrinsic motor for
motivation and pointed out that individual rehabilitation routine are different from one person
to another and need to be tunable in terms of difficulty depending on timely needs. They
also stressed that motivation came often from the group itself: as different patients struggle
through rehabilitation, the support provided by others was a key factor to continue engaging
in tedious recovery. On the other hand, VR specialists detailed the possibilities offered by the
current state of the technology. We also talked about gaming habits and a group discussion
about what games participants knew, played and enjoyed singled out Arcade games as a
recurring category.

The second session was aiming at refining the ideas from the first session and designing an
envision scenario. We created a paper prototype representing a VR rehabilitation session that
was latter presented to the workshop attendees. The prototype told the following story: a user
starts a rehabilitation session by wearing the VR helmet and is welcomed to an interface that
let her chose a game, an exercise or access her profile. The game menu grants access to a list
of Arcade games (Ice Hockey, Grand National, Simon or Drum Hero) with details about the
body region each game would stimulate. Similarly, the profile menu let the user chose a body
region to stimulate and access the list of compatible games, allowing the opposite operation
to the one afforded by the game menu. The user menu could also present the information
stored on purpose by her therapist and let the user access recommended exercises. For each
workout, a summary of the performance is presented in terms of score, but also includes
more detailed analysis, such as left or right arm involvement, accuracy or the evolution of
the user performance over time.

The lessons learned for this workshop were in agreement with the summary by Barret et
al. [94] reported earlier: the need for socialisation as motivation force, the importance of
feedback about the progress made or the reliance on fair challenge when playing a game
were all mentioned. It also made apparent that satisfying all needs with one system is a
challenge. For example, socialisation implies group play which could be addressed with
competitive play or collaborative play. However, competitive play poses the problem of
handicap balance between players with different limitations and collaborative play makes
the choice of games greatly reduced. One idea that I decided to keep forward was the use
of Arcade as a seed to design. Arcade games appeared familiar to the participant who had
suffered a stroke in our group, and since Arcade games usually include a succession of
different short stages they proved easy to repurpose as individual exercising sessions in the
paper prototype.
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4.2.2 Workshop with Occupational Therapists

Following the VR workshop, a collaborative activity was organised in the QEU hospital.

Rehabilitation Exercises for Arm Reach

The first goal of the workshop was to understand the routines used for the rehabilitation of
the reach of the upper limb of patients with spinal cord injuries. The target group for the
OTs were patients with high level of injury, typically at levels C5 and C6, for which the arm
functions are severely compromised, see section 2.1. The OTs used a functional approach to
the rehabilitation aiming at restoring motions that could be used for everyday tasks such as
brushing teeth, taking care of one’s hygiene or eating; activities mostly focused on the upper
arm. They described a range of games they used to elicit motions needed for this tasks. Some
games necessitated fine motor control of the hand, such as the “labyrinth marble” game [95]
which requires players to control two small knobs in rotation which in turn tilt a surface
supporting a labyrinth that a metallic marble is supposed to navigate. The motion targeted
were small rotations of the forearms. The “wire loop” game [96] was also employed. It
requires players to hold a rim and to move it along a metallic wire without ever getting in
contact with wire. Depending on the shape of the wire, which was malleable enough to be
deformed on purpose, different motions recruiting the elbow and the shoulder were elicited.

For earlier stage of the rehabilitation however, when fine motor control of the finger is absent
from the patients, two artefacts were primarily used. The first one was a skateboard, which
sketch is reproduced on Figure 4.1, onto which the arm of the patients is strapped and whose
purpose is support to the user’s arm while a back and forth motion is produced, helped by
the reduced friction produced by the skateboard’s wheels. The instructions from the OTs
were for the patients to “motion towards the window” or to “reach forward” with continuous
feedback such as “keep breathing”, “relax” or “stretch”. The issues encountered were that
the wheels under the skateboard were likely to fall from the edges of table and that the lack
of intrinsic purpose was quite apparent to their patients. The other artefact used was a plastic
roll that needed to be moved along one direction. A Velcro tape was attached to the roll
and to the table in order to increase their friction. As a result, more force was needed to
be applied by the patients to move the roll along. Here again, the simplicity/artificiality of
the task was impacting its overall purpose. These exercises did describe the motions that
occupational therapists were expecting from their patients: motions of the upper arm on a
planar surface with different directions and ranges with a friction potentially altered.

The occupational therapists did have access to video games systems (Wii and Playstation)
but declared having a seldom use of them since, even for simple games, some the motions
required for interaction could not be produced by their patients. No other digital artefacts



4.2. Context 57

Figure 4.1: Sketch on the “skateboard” drawn during the workshop. A rectangular surface
was supported by four rotating wheels which allowed movements in all directions. It was also
equipped with a pair of straps to ensure that the user’s arm was kept in place. Additionally, a
handle was positioned at one end of the rectangular plate allowing the user to grab onto the
device and help for its control.

were employed in the rehabilitation process.

Co-design

The output of the VR workshop was presented to the OTs in a final workshop. The goal was
to collaboratively define an artefact and an interaction for the realisation of an engaging upper
limb rehabilitation through reach exercises of users with high SCI. In particular, the question
of matching motions that occupational therapists needed for rehabilitation with those elicited
from a range of potential Arcade games was central. It addressed the challenge of “finding
mappings from control input to game-action” pointed out by Walther-Franks [87].

We first engaged in a brainstorming session were a list of candidates for the games and a
list of rehabilitation motions were proposed. Games such as Whack-a-Mole, Bubble Witch,
Pong or Frogger [97] were mentioned from the instruction of focusing on Arcade games.
The controls needed to implement their gameplay was then discussed. While some required
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four ways directional actions, for aiming at a target for example, others only required button
presses for triggering specific actions. A game such as Frogger would only require four
separate actions which could be executed single-handedly. It was noted that there exists a
breadth of control schemes and that to simplify the workshop, games with simple controls
should be focused on: they would be easier to match with rehabilitation exercises due to their
comparatively reduced complexity. It also became apparent that to interface with several
different games, the design of a simple control modality could be sufficient provided their
control scheme was compatible. The OTs did not have a strong opinion on the choice of
specific games, but emphasised the possibility of choosing different games depending on the
occasion.

The second discussion was targeting the different exercises the OTs would like to see imple-
mented by the games gameplay. The motions that patients were producing when interacting
with the skateboard, mentioned earlier, were used as a reference. These were long reaching
longitudinal movements which were compared to target acquisitions, similar to Fitts’ exper-
iments. This led into the matching exercise, where the motions described for game control
were pictured on the tabletop where rehabilitation usually took place. Since the instructions
from the OTs were to perform long reaching motions with the arm in contact with a planar
surface, and that they were encouraging their patients to reach always further, the idea of
placing actionable controls on different location on the surface was proposed.

In summary, the OTs expressed some specific requirements. The interaction should happen
on a tabletop and present the same properties in terms of motion as the original exercises
proposed by the occupational therapists. The difficulty of the task should be adjustable
based on the current patients capacities. It should be possible to record and analyse the
performance of a given patient after a session.

From an HCI perspective, we also expressed one requirement. The game used for motivation
purposes should be unmodified, or as close to its original form as possible, to harness its
natural capacity at engaging players. One way to achieve this while being able to control the
game difficulty is to play on the flow of time in the game space. This has the advantage of
preserving the game visuals and the game mechanics. We argue that this does not alter the
game too much, especially for arcade games, and is indeed a popular game design. Think
about Tetris, where the flow of time is constantly increasing as the levels go; or Bullet time
in current popular video games such as Max Payne1 or Red Dead Redemption2, which slows
down the flow of time to enable easier target acquisitions of enemies. Expressed from an
information theoretic viewpoint, changing the flow of time is equivalent to reducing the
information throughput required by the game for interaction. The information throughput,
in bit/s, is correlated with the number of actions per unit of time. A slow down in the game

1http://www.rockstargames.com/maxpayne/
2http://www.rockstargames.com/reddeadredemption

http://www.rockstargames.com/maxpayne/
http://www.rockstargames.com/reddeadredemption


4.3. Proposed Interaction 59

time flow will reduce the number of actions needed from the user, whose flow of time is
unaltered, for maintaining the same information throughput.

This last workshop enabled us to have enough information to propose an interaction.

4.3 Proposed Interaction

UP

LEFT

DOWN

RIGHT

: spread

Figure 4.2: Sketch of the gamepad interaction. A user controls a digital game through 4
actionable areas placed on the tabletop. Optical tracking creates the 4 virtual controls and
follows the user’s hand (left). The virtual gamepad, solely defined by the parameter spread,
maps hand positions to the four commands UP, RIGHT, DOWN and LEFT (right).

The design that was agreed upon for the reach rehabilitation of the upper limb of users
with a spinal cord injury is sketched on Figure 4.2. A user is seated by a tabletop on top of
which reaching motions are performed. An optical device serves the dual purpose of tracking
the user’s hand and creating a virtual surface which affords 4 control buttons arranged in a
cross shaped fashion on the planar surface. Each of the buttons is activated when the hand
of the user is detected within their control boundaries. Buttons are mapped to directional
commands (UP, RIGHT, DOWN, LEFT) equivalent to the arrow keys of a keyboard. When
buttons are triggered, actions are sent to a computer that runs a digital game. The computer
produces an audio feedback that indicates when controls are registered, on top of the common
game audiovisual feedback that is shown on the screen facing the user and conveyed through
headphones. In order to partake in the gameplay, users issue commands in succession by
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motioning their hand to the specific locations of the virtual controls. As for the game, Pac-

Man [98], one of the most iconic arcade games was chosen. The controls are thus connected
to the four action that the avatar in Pac-Man can perform: turning up, left, right and down.

4.3.1 Reformulation of the problem

Given the proposed interaction, a computational view of this interaction can be formalised.

Mapping Motions & Adapting Difficulty

The motions used for game control and the one targeted for physical exercising are un-
likely to be identical. When both motion sets are aligned, exercises become a by-product
of play. In most cases, a mapping between motion sets needs to be created, usually through
interaction design with the making of a new input control modality. Traditional hand-held
controllers have been replaced or augmented with motions capture systems [99], training
apparatuses [88]. These sense additional parts of the user’s body the physical rehabilitation
seeks to solicit, that can also be used for game interaction. Yet, such alterations to the player’s
interaction loop have potential negative consequences on performance: different input limbs
afford different information throughput [51]. Using arms or legs instead of fingers to interact
with a game will invariably wield inferior control. This has been repeatedly reported as a
source of frustration when the newly afforded levels of control are not sufficient for enacting
the originally intended gameplay [100].

Providing a reasonable challenge to the user is key to an engaging experience. As phrased
by Przybylski et al. [101], the “mastery of controls plays an important role in game mo-
tivation, largely as a necessary, but not sufficient, condition for achieving psychologically
need-satisfying play.” For off-the-shelf games, adapting difficulty, when implemented, has
been achieved through modifications to games: additional power-ups have been used [88]
or game content was removed [93]. Tuning these modifications is most often done empir-
ically, showing that setting their balance on gameplay remains a challenge. Additionally,
physical exercises require some degree of parametrisation, as voiced in the literature related
to rehabilitation [94]. Intensity or amplitude should be variable and specified by training
goals, configurable by therapists. Exercises should also be adaptable to patients based on
their individual capabilities, different users groups (age, injury) having different needs.

Designing an interaction that balances these objectives - a new control that elicit desired mo-
tions while providing enough control to enact gameplay and sufficient flexibility to modulate
exercise intensity - is a complex challenge.
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Computational Design

Given the complex nature of the design task, we resolve to explore computational meth-
ods. Computational design is defined by considering design activities as an optimisation
problem, where design constraints can be expressed as objective functions in the space of
possible designs [62]. Under this description, the controller and the game designs are the
variables which can be altered so that rehabilitation and engagement objectives are fulfilled.
Formulated as such, a design variable x collects what can be changed in the interaction loop:

x = [θcontrol, θgame] ∈ χ (4.1)

where χ represents a multi-dimensional design space which describes all the possible designs
for the game controller, and all the possible alterations for the games. The goal is to find
values for the parameters that minimise a cost function g:

x∗ = argmin
x∈χ

g(x) (4.2)

where the value for the cost function is minimal as rehabilitation goals are met and user
engagement is maintained. Note that an alternative but equivalent view could use an objective
function h which value increases as goals are met. The goal for the optimisation becomes
then:

x∗ = argmax
x∈χ

h(x) (4.3)

In this work, and in contrast with the literature, the objective function is expressed as a
distance to an unmodified gameplay. In other words, given unmodified gameplay provides
engagement, we are interested in finding solutions where the difference between what is
observed and what was produced in the original interaction is minimal. Also, we choose to
limit modifications of off-the-shelf games to a single continuous time rate variable and use
solely the design of the controller to optimise for rehabilitation goals.

From a computational perspective, the interaction is represented on Figure 4.3. In this par-
ticular instance, we chose to parametrise our control modality with a single parameter that
represent the distance (SPREAD) between the control regions. By changing the value of
SPREAD, the motions required by the players are impacted: an increase in SPREAD will in-
crease the range of motions or reaching. To adapt for a lower control afforded to the player
by this new control input, the time rate (T_RATE) of the game is used as an optimisation
variable. This is a simple yet robust game design pattern for single player games, commonly
used to adapt for difficulty.
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Figure 4.3: Simplified block diagram for the interaction. In blue, the loop that generates
engagement, in green the loop that satisfies the rehabilitation goals, in red the loop that
adapts the level of difficulty against a model of reference gameplay.

4.4 Research Plan

The design of a control modality will impact the overall user performance. In this instance,
we are interested in upper limb motions while games are usually played with a fingers based
controller. Figure 2.2 has shown that in a pointing task, these two limbs afford very different
performance capabilities in term of information throughput. It is safe to assume that the
trend will hold for the task of pushing controller buttons. We can also assume that Arcade
games take players close to their control limits by requiring precise and frequent input. In
other word, where players are bounded by their control ability, a reduction in this ability will
have an impact on performance. The requirement of adapting exercises could also have an
impact on performance. For example, if we model the task of pushing controller buttons as
successive pointing tasks, eliciting further reaching motions to activate the controller buttons,
or increasing D will increase the difficulty of the task, according to Fitts’ law. Here, we have
proposed to use the time flow of the game to afford users more time to perform the actions
required by the gameplay. It is however unknown what level of reduction would achieve this
objective.

The first research question is to find out what is the effect of new input control on experience
and rehabilitation goals and what is the effect of time rate on experience and difficulty.

• RQ1.0: Can the control of time rate counterbalance the effect of a new input modality
and the effect of different exercises levels?
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• RQ1.1: Can the design of the control modality manipulate the rehabilitation intensity
and impact the behaviour of users?

The question on how to tune the design will be addressed in the second part of the chapter.

4.5 Experiment with Unimpaired Participants

We designed an experiment to investigate research questions RQ1.0 and RQ1.1.

These questions can be answered without loss of generality with unimpaired participants.
Despite the differences between the targeted users who have sustained a spinal cord injury
and potential participants of the user study, the main effects should be observable with both
groups. The difference in throughput between arm and finger control, as well as the influence
of control spacing on performance might only have different magnitude between groups.

4.5.1 Apparatus

We used an Optitrack system for the tracking of the participants hand. The interaction surface
was afforded by an office desk table with a width of 78cm. The output from the Optitrack
system was redirected to another computer running the game of Pac-Man in a browser. We
used an opensource version of the game that was re-created with authenticity in mind3. The
game was instrumented to expose some of its internal state variables: the commands received
and performed by the game, the score, the number of the avatar steps taken in multiples of
10 and the avatar direction changes were logged as individual events along with their frame
number and time stamp. These measures of game state, also not automatically exposed by
the game, are in general easily accessible.

4.5.2 Task

To limit the experiment’s length to under an hour, we used the first level of the game Pac-

Man as the task. The task was completed when all the pellets were consumed in the level or
when all 3 lives had been used. It was thus not possible to fail the task.

4.5.3 Design

RQ1.0 and RQ1.1 can be answered with a factorial design that measures potential effects
and interactions of the independent variables gamepad control position (SPREAD) and time

3see https://github.com/masonicGIT/pacman for the source code and a discussion about the
accuracy of this remake.

https://github.com/masonicGIT/pacman
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flow (T_RATE) on each participant task end-score (SCORE). SPREAD was evaluated with 2
levels (10cm and 40cm) covering the expected range of motion in rehabilitation and T_RATE

was evaluated with 3 levels (Tr/3, 2Tr/3 and Tr), see Table 4.1. In practise, setting T_RATE

was achieved by altering the number of game updates per seconds. These values were chosen
to enable a comparison with the game’s original time rate and to lower the overall informa-
tion throughput requirement for lower values since we expected the challenge to be increased
when participants used their arm instead of their fingers. As the performance of individual
participants was likely to exhibit a high variance, we opted for a within subject design. To
counterbalance potential learning effects in playing the game and adapting to our novel in-
teraction paradigm, we used a balanced Latin square design. With two independent variables
(IV) SPREAD and T_RATE evaluated with respectively two and three levels, we obtained six
testing conditions.

IV levels
T_RATE Tr/3, 2Tr/3, Tr
SPREAD 10cm, 40cm

Table 4.1: Values for the independent variables T_RATE and SPREAD. Tr is the default time
rate of the original game.

Finally, to allow for the measure of a gameplay reference, a pre-test and a post-test were
included to the experiment. Participants were tested with a conditions using a keyboard
(KEYBOARD), by opposition to conditions using our system (TRACKER). The pre-test and
post-test included two repetitions. Each block was designed with three repetitions provided
the third repetition (e.g. game) was started under the 8 minute mark in that block. The design
of the experiment included thus: 12 participants × (2 SPREAD × 3 T_RATE × 1 BLOCK ×
[2-3] Repetitions + 2 PRE-TEST + 2 POST-TEST), equivalent to 192 to 264 total trials.

4.5.4 Procedure

Participants were welcomed and provided with the ethics and information sheet. Upon ac-
ceptance to participate, they received a £5 compensation. Participants were asked for demo-
graphic information and about their previous experience with Pac-Man. They were given a
short explanation about the game mechanics, such as the need for consuming all the pellets
to complete a level, the role of the ghosts and the effect of the power-ups placed at the cor-
ners of the level. They were seated in front of a table, introduced to the tracking system,
and equipped with a pair of headphones to receive the system’s audio feedback. An opti-
cal marker was attached with a stretchable band adaptable to different users’ hand physical
features. They were asked to acquire each of the gamepad controls once. The centre of
the gamepad was chosen as a full forearm extension from the table edge adjacent to their
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trunk and, laterally, equidistant from both table edges. It was indicated on the tabletop with a
protruding marker that was taped in place for each participant. The participants were encour-
aged to produce their best possible score. To produce incentive for performance, we added
an extra prize of £15 awarded to the participant that would produce the highest score in any
of the testing conditions. At the end of each condition, participants were offered a break.
Participants were responsible for advancing through the experiment by starting a new game.
They were informed when they were changing testing condition but were not told about the
current value of SPREAD or T_RATE. At the end of the experiment, participants were invited
to provide qualitative feedback during a 5 minutes discussion.

4.5.5 Participants

12 participants served in the experiment: 4 females and 8 males, 1 of whom was left-handed,
with a mean age of 29±7. The study was approved by the University of X ethics committee.
No participants presented any mental or physical disabilities.

4.5.6 Results

Data Processing

For each testing conditions, we recorded the logs from the game of Pac-Man. From these,
end-task SCORE was computed as the highest score at trial completion.

Learning effects

Participants reported their experience with playing the game of Pac-Man. All participants
reported having played before the experiment, even if some reported that they could not
remember when was the last time. We looked for some learning effect between the PRE-

TEST and POST-TEST conditions on KEYBOARD. A statistical analysis showed no significant
effect of game number on SCORE. However, we observed an increasing trend in SCORE with
a mean value of 3697 points for the first PRE-TEST game and a mean value of 5077 points for
the last POST-TEST game. The mean value over all games was 4390 points with a standard
variation of 950 points. The maximum score was obtained in the last POST-TEST level with
a value of 8200 points. Refer to Table 4.2 for numerical values.

Normalisation

We computed the values for SCORE per participants. The distribution of SCORE across
participants was diverse. Some participants, such as (0, 7 and 10), produced a very low
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PRE POST
game # 1 2 3 4 all
mean 3697 3992 4795 5077 4390
std 978 1438 1529 1705 950

Table 4.2: Mean value and standard deviation for SCORE over PRE-TEST and POST-TEST
levels and averaged over games (all) in the last column.

variance while others, such as 5, presented a much bigger range of SCORE. We computed a
normalised value for SCORE, marked as NSCORE in the following, by dividing the SCORE

value with the average value of 4390 points obtained over the PRE-TEST and POST-TEST

levels, NSCORE=SCORE/mean(SCORE). The results across participants are presented on
Figure 4.4, with the values for the mean and standard deviation of SCORE, NSCORE in
Table 4.3.
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Figure 4.4: Distributions of SCORE across the 12 participants in KEYBOARD.

SCORE NSCORE
mean 4390.0 1.0
std 950.0 0.22

Table 4.3: Mean and standard deviation for SCORE and NSCORE.

Outcome Effects

The results for NSCORE as function of T_RATE and SPREAD are plotted in Figure 4.5, while
the data containing the mean and standard deviation is reported in Table 4.4 for NSCORE.

A repeated measure two-way ANOVA on NSCORE with SPREAD and T_RATE as factors
showed a significant main effect of T_RATE (F1.47,16.15 = 22.11, ges = 0.41, p < 0.0001),
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Figure 4.5: Effect of SPREAD and T_RATE on NSCORE for KEYBOARD (K) and TRACKER.
The graph includes three parts, with KEYBOARD (K) on the leftmost subplot, and TRACKER
with the six combinations (Table 4.1) grouped by value of SPREAD on the middle and right-
most subplots. Values for SPREAD and T_RATE are reproduced on first row and second row,
respectively.

NSCORE Tr/3 2Tr/3 Tr
10cm 0.96± 0.24 0.75± 0.21 0.57± 0.22
40cm 1.05± 0.39 0.68± 0.30 0.42± 0.12

Table 4.4: Mean and standard deviation of NSCORE as a function of SPREAD and T_RATE
in rows and columns, respectively.

no significant main effect of SPREAD and no interaction T_RATE × SPREAD on NSCORE.
NSCORE was negatively correlated with T_RATE, decreasing from, on average, 96% of the
reference keyboard SCORE at Tr/3 to 57% at Tr. Although not significant, SPREAD appeared
to correlate negatively with NSCORE for T_RATE levels of 2Tr/3 and Tr, but not for T_RATE

level of Tr/3. We ran pairwise comparisons adjusted with Holm-Bonferroni on all levels
with the inclusion of KEYBOARD. It showed no differences between KEYBOARD and Tr/3.
Supporting the lack of significant effect of SPREAD on NSCORE, we found no differences
between any SPREAD values for the same T_RATE. We also found no differences between
levels (Tr, 10cm), (2Tr/3, 10cm) and (2Tr/3, 40cm). In other words, participants performed
as well using the tracker as with a keyboard, measured by SCORE, provided T_RATE was
reduced accordingly. The range of T_RATE values that produced an equivalent score is how-
ever unknown, but most likely located around a value of T_RATE close to Tr/3.
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Effect on Hand Positions

The hand positions for the lowest and highest performing participants in their worst, median
and best games are plotted on Figure 4.6. The testing conditions under which these were
produced are written in brackets over the subplots as [T_RATE SPREAD]. These traces reveal
different pointing strategies between both participants. The participant on the top row always
passed back through the centre in between motions towards the actionable areas, while the
participant on the bottom row made direct connections between actionable areas.
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Figure 4.6: Traces of hand positions. Lowest and highest performing participants on the
top and bottom row, respectively, with their worst, average and best games on column 1, 2
and 3, respectively. The inner contour of the actionable controls are equivalent to those on
Figure 4.2.

The hand distance for the rest position was also computed per conditions. It is plotted,
grouped by SPREAD, as an histogram on Figure 4.7. The distribution was bimodal, dis-
playing a resting position (leftmost mode) and a targeting position (rightmost mode). It was
fitted with a Gaussian mixture model [57] with two components. The mean and covariance
of the Gaussian distributions representing the targeting positions are reported in Table 4.5.
There was an increase in the reach from participants with a targeting position increasing from
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20.3cm on average to 25.4cm on average when SPREAD was increased from 10cm to 40cm.
The increase in reach was not proportional to the increase in SPREAD, which showed that
participants were overshooting the boundary of the actionable areas for the smaller value of
SPREAD.
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Figure 4.7: Distribution of the distance of participant hand positions from their mean position
for SPREAD equal to 10cm and 40cm, in blue and orange, respectively.

2nd Gaussian 10cm 40cm
mean 20.3 25.4
std 8.3 8.6

Table 4.5: Mean and standard deviation in centimetres for the Gaussian distributions rep-
resenting the targeting positions for both values of SPREAD 10cm and 40cm in blue and
orange, respectively.

4.5.7 Qualitative results

From the Participants

A short discussion followed the experiment where participants were asked “how did they feel
about the different conditions”. The feedback was collected on a notebook as participants
were expressing themselves, with the most salient quotes selected by the interviewer. Some
preliminary insights can be extracted from this fragmented qualitative feedback.

The mention of workout in participant feedback seems to indicate that the interaction was
having an impact on exertion. Regarding the level of physical involvement required by the
interaction, three participants mentioned that the experiment was a “workout”, one of them
being more specific and declaring being “a bit exhausted in the shoulder”. Even though all
participants were offered breaks during conditions, only one of them did effectively mark a
pause in the experiment for five minutes.



70 CHAPTER 4. REHABILITATION THROUGH COMMON GAMEPLAY

Some feedback regarding specifics on the design were that an asymmetry in terms of controls
position was expressed by three participants who voiced that it was difficult to reach the
virtual control at the top of the table, which activated the UP command, saying that it was
either “too high” or “quite difficult”. Regarding the control that was placed too high to be
easily actionable, this could call for a better placement to take into account the fact that
it is harder to reach further up than left and right. Also, one participant mentioned that
“sliding across the reference felt weird.” This refers to the protruding marker indicating the
centre of the controls. Specific skills were pointed out by two participants, one of whom
acknowledging “not being quick enough to make two turns” while the other declared she
“can’t turn off a corner”. One participant did mention not realising that the “change in
position” across testing conditions.

Some participants became involved in the experience proposed by the experiment, and were
“into the game”, had “fun” or realised that the experiment “did not feel like an hour”. How-
ever, the level of enjoyment did fluctuate for some participants across the different levels.
Some difference in the gameplay proposed was also pointed out by participants with a par-
ticular mention on T_RATE level Tr/3 were three participants described the game as “not
exciting”, “a bit too easy” or presenting “not much challenge”, while the T_RATE level Tr
was described as “horrible” by one participant.

From the Occupational Therapists

The OTs have been involved in the design process and with some testing of the system. The
first qualitative feedback was positive with regards to the motions that were elicited from
gameplay session with the system and the perceived level of enjoyment as compared to their
non-digital exercises.

4.5.8 Conclusion

This first experiment was meant to answer the following research questions:

• RQ1.0: Can the control of time rate counterbalance the effect of a new input modality
and the effect of different exercises levels?

• RQ1.1: Can the design of the control modality manipulate the rehabilitation intensity
and impact the behaviour of users?

Both questions have been answered positively. The variable time rate was shown to allow for
setting the game difficulty at a level that was producing the same score as an interaction with
a keyboard. It could thus be assumed that the user engagement would be maintained with
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that setting. A short qualitative survey has revealed that the interaction was enjoyable, even
though it was described as tiring. The position of the actionable control also had a positive
effect on the user motions with an increase in reach when the controls were set apart. The
OTs have also had the opportunity to assess the similarity between the motions produced and
the ones they were expected and were satisfied with the results.

4.6 Design Optimisation

The previous experiment answered the first research questions positively. However, the prac-
tical use of the system in-situ remains challenging. To be precise, patients having sustained
a spinal injury will likely exhibit varying performance across participants. The relationship
recorded during the previous experiment between T_RATE and SCORE should be similar but
the value of Tr/3 might not be adapted, as these were recorded with unimpaired users.

To illustrate the challenge, a hypothetical scenario can be used.

Alex is scheduled to go through a first rehabilitation session with his occupational therapist

Alice. After a quick assessment of his motor capabilities, Alice proposes to work on Alex’s

reach capability of the upper arm and engages in a session that revolves around playing the

game of Pac-Man. Some virtual controls are set on the tabletop, in lieu of the position that

Alex’s hands are meant to reach. The game itself is hard, and Alex’s reach capabilities, even

though they have been assessed during the first minutes of the meeting, are not known down

to his capacity to perform fast motions consistently. A few minutes after the game is started,

Alex starts to tire and keeps losing in game after only a few seconds of play. Following some

complaints to Alice, the speed of the game is reduced to a fraction of its value. However, the

game is now too easy for Alex: the challenge is not present any longer and he quickly loses

interest in the task.

This hypothetical scenario is meant to point out that the tuning the game difficulty in a timely
manner, beyond setting it properly in the first place can be a challenge. A naive but valid
approach to this problem would be to use the game score. After all, Arcade games, and
Pac-Man is no exception, do rely heavily on score as a principal feedback mechanism.

The score structure in Pac-Man is organised with points awarded each time the player con-
sume an object by moving over it. 240 pellets grant 10 point each, bonuses in the form of
fruits are worth anywhere between 100 and 5000 points and ghosts, which can also be con-
sumed when the player is in a power-up phase, award each between 200 and 1600 points.
The power-up phase is accessed by consuming one of 4 special pellets. The ghosts point
structure is exponential: the first one grants 200 points, the second one 400 points, then 800
points and finally 1600 points. The issue with this point structure is that the score of a given
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player heavily depends on its strategy and capacity to consume ghosts. The rate at which
point is accrued is also very variable over time, due to the presence unlikely events with big
point returns. As a result, using score to set the game difficulty might be problematic since a
complex model of the patient’s performance in Pac-Man becomes necessary.

The goal for the computational design, see 4.3.1, is to quickly find configurations that min-
imise the cost function. Here the cost function would be the difference between the keyboard
score and the experiment score. A suitable configuration is one that minimises the difference
between both scores. To assess this difference, since both variables are distributions and ex-
hibit some variance, a number of samples is required before a decision can be made. This is
a similar idea to the statistical analyses that were carried out earlier in this chapter. However,
the value for score is available only once at the end of a game. This limits the usefulness of
score as the basis for defining the cost function, due to its variation across individuals and its
sporadic availability.

Another avenue for this problem comes to mind by asking the following question: where
does motivation in games come from? Przybylski et al. [101] have looked at a motivational
model of video game engagement and distinguished two types of motivation: intrinsic mo-
tivation where behaviours are pursued for their own sake and extrinsic motivation where
behaviours are pursued to access desired end states or to avoid aversive ones. Focusing on
the former, as accepted in the literature, they point out that “activities foster greater intrinsic
motivation to the extent to which they satisfy three fundamental human needs: the need for
competence (sense of efficacy), autonomy (volition and personal agency), and relatedness
(social connectedness).” Arcade games in that space are excelling at supporting the need for
competence and address the critical need of balancing of game difficulty and player skill.
Also, Przybylski et al. elaborate that the “mastery of controls plays an important role in
game motivation, largely as a necessary, but not sufficient, condition for achieving psycho-
logically need-satisfying play.” In a related attempt to understand enjoyment in games, the
role of the game controller itself has been investigated. Using the flow framework [102],
Limperos et al. [103] compared the difference a Wii and a Playstation controller produced
on the game experience, with the Wii controller being qualified as “natural” and requiring
more involvement from the user body. They showed that the performance as defined as the
end-game score was not alone explaining the enjoyment, and that the sense of control that
users experienced was rather a much more salient indicator. In their concluding remark, the
sense of control and the need for competence were linked together.

The observations from the hypothetical scenario and the findings from these studies point to
another direction. It appears that the sense of control would provide a link to enjoyment4 but

4GameFlow [104] is a model for evaluating player enjoyment in games but it does not provide a real-time
access to measurable quantities, and is conceived as an evaluation tool for assessing games after a thorough
analysis.
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a measure for it needs to be crafted. As a result, a new research question can be investigated:

• RQ1.2: Does a measure of user behaviour inspired by the sense of control allows for
low-latency sampling and user independence?

4.7 Modelling User Behaviour

We have established that a measure of control could be useful for helping practitioners to
set the game speed via T_RATE to an adequate level. That measure should also abstracts
the potential differences between users, in terms of strategy for example, and focus on their
capability to play.

We decided to take inspiration from the notion of empowerment, stemming from [105].
In this view, users behaviour is about controlling their perceptions: the more control they
have over their perceptions, the more empowered they are by the user interface to achieve
their goals. This approach has shown to be successful in HCI, for example in a tracking
task [106] where it correlated with performance. Here, we base our measure of control on
a simple interpretation of the empowerment idea: linking user action to game outcome. We
are seeking to build a reference model of play based on distributions of variables that relate
to user actions and user effects which in turn give access to a measure of similarity between
a reference and the observed behaviour from an unknown player.

For the model of user’s action, research on text-input shows that the number of key presses in
a time interval has been successfully modelled as a Poisson distribution, and its continuous
counterpart defined through the time difference between two consecutive presses or inter-key
interval has been shown to follow an exponential distribution. The assumptions being that
events occur continuously and independently at a constant average rate λ. We do not know
whether the key presses needed for enacting the gameplay will follow the same distribution,
but due to the similarity of the input modality such model will be investigated.

For the user’s effect, the measure chosen depends on the game being played. After obser-
vations of game sessions of Pac-Man, we noticed that players with poor avatar control were
more likely to get stuck in walls with their avatar staying motionless for small period of
time. To encode this realisation, we decided to measure the Pac-Man turning time, or the
time taken by the avatar to perform a direction change. If the user’s effect is immediate, only
1 frame is necessary. If the effect is less effective, more frames will be needed. For that
model, the distribution which models the best the data is unknown and will be informed by
empirical evidence.

In summary, the inter-key interval (IKI) is the difference measured in frames between two
keypress events. It encodes the user input rate capability and is a measure regularly used in
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research related to typing. The Pac-Man turning time (PTT) is the time interval measured in
frames between direction changes of the avatar. This variable is more specific to the chosen
game, and relates to the players’ capability to avoid getting stuck at walls.

Keyboard reference model

One of the strengths of this model is its simplicity. The data needed to build it can be
collected from normal play sessions. The data used here is taken from the the PRE-TEST

and POST-TEST conditions on KEYBOARD of the previous experiment, see section 4.5. This
allows us to present the real values for our fitted models.

We decided to consider both variables PTT and IKI as continuous random variables, even
though they take discretised positive values. The shape of the distribution for PTT resembled
an Exponential distribution [57], with only positive values, a sharp peak around zero and a
decaying trend towards higher values. The probability density function (pdf) is given by:

Expon(x|λ) = λ exp(−λx)

and the parameter (λ = 2.2) gave the best fit.

The distribution of IKI seemed to be well modelled with a Laplace distribution [57]. This
distribution describes the difference between two independent identically distributed expo-
nential random variables, hinting that key presses were following an Exponential distribution
similar to PTT. The pdf is given by:

Lap(x|µ, b) = 1

2b
exp(−|x− µ|

b
)

and the parameters estimated from the data were (µ = 26.0, b = 17.3).

The empirical distributions and fitted models are shown in Figure 4.8 with the data associated
in Table 4.8. Histograms (in blue) represent the empirical distributions, with their associated
pdf shown in black. We can see that the models are approximating well the empirical distri-
butions.

RV distribution parameters
PTT Exponential λ = 2.2
IKI Laplace µ = 26.0, b = 17.3

Table 4.6: Distribution types and estimated parameters for the variables PTT and IKI.

Our reference model θref : (µIKI , bIKI , λPTT ) is thus defined by the parameters of both
distributions. The association of both variables is designed to limit the model’s reliance on
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Figure 4.8: Empirical (blue histogram) and fitted (black pdf) distributions for variables PTT
and IKI.

user specific behaviour, such as tactics or strategy and focus on the input capability and its
effect on the game state.

Given the observed play session of a user, this model can be used to estimate the proximity
between the user behaviour and our reference keyboard behaviour. We gather the observa-
tions (IKI, PTT ) over F frames into X : (xIKIi , xPTTj ) of lengths (M,N). We use the
likelihood L(θref |X) of our reference model given the observed data as a measure for infer-
ring how likely a user is to be behaving under the assumptions of our reference model:

L (θref |X) = pθ (x)

Assuming independence between XIKI and XPTT ), we have:

pθ(x) = pXIKI
(x)× pXPTT

(x)

and computing the per-sample likelihood, for an observation of N sample yields:

pθ(x) =
N∑
i

pθ (xi) /N

Finally, the per-sample log-likelihood of our model given X is then defined as:

logL(θref |X) =
M∑
i

log
(
p
(
xIKIi |µIKI , bIKI

))
/M

+
N∑
j

log
(
p
(
xPTTj |λPTT

))
/N

(4.4)

where p(xIKIi |µIKI , bIKI) and p(xPTTj |λPTT ) are the densities computed on the reference
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model. This quantity is a measure of how likely the reference model is of explaining the data
in a given observation and can be used for comparisons between different observations.

With a behavioural model for users, we can now form two hypotheses:
Ha: This measure should be more user agnostic than a measure based on the in-game score.
Hb: This measure should constitute a proxy for the level of user control.

4.7.1 Normalisation

The values for the log likelihood (LL) were computed according to equation 4.4. In the same
fashion as SCORE, one value per game was obtained. We also computed a normalised value
for LL, marked as NLL in the following, by taking the inverse of LL and multiplying it with
its average value obtained over the PRE-TEST and POST-TEST levels, NLL= mean(LL)/LL,
similar to how NSCORE was computed. Figure 4.9 shows the distribution of NSCORE per
participants across participants. It should be compared with Figure 4.4.

We observed a clear difference in standard deviation between NSCORE and NLL with a value
of 0.22 and 0.06, respectively, see Table 4.7. For NSCORE, we have five participants (1, 2,
4, 6 and 8) whose average NSCORE lies father than one standard deviation from the overall
mean, while for NLL only two participants (6 and 7) present the same deviation from the
mean. In other words, our synthetic model of behaviour is less noisy than using the score as
a measure of performance.

This result validates hypothesis Ha about the independence of NLL in terms of users. What
need to be investigated now is whether NLL do vary with T_RATE and SPREAD.
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Figure 4.9: Distributions of NLL for all participants over the PRE-TEST and POST-TEST
conditions.
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NSCORE NLL
mean 1.0 1.0
std 0.22 0.06

Table 4.7: Standard deviation for NSCORE and NLL.

4.7.2 Outcome Effects

The effect of SPREAD and T_RATE on NLL was also investigated, see Figure 4.10. It should
also be compared to the effect of SPREAD and T_RATE on NSCORE, see Figure 4.5. The
figure contains six conditions and the data containing the mean and standard deviation is
reported in Table 4.8 for NLL.
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Figure 4.10: Effects of SPREAD and T_RATE on NLL for KEYBOARD (K) and TRACKER.
The graph includes three parts, with KEYBOARD (K) on the leftmost subplot, and TRACKER
with the six combinations (Table 4.1) grouped by value of SPREAD on the middle and right-
most subplots. Values for SPREAD and T_RATE are reproduced on first row and second row,
respectively.

NLL Tr/3 2Tr/3 Tr
10cm 1.00± 0.10 0.81± 0.12 0.58± 0.10
40cm 0.89± 0.11 0.60± 0.11 0.40± 0.12

Table 4.8: Mean and standard deviation of NLL as a function of SPREAD and T_RATE on
rows and columns, respectively.

Similarly to NSCORE, we ran a repeated measure two-way ANOVA on NLL with SPREAD

and T_RATE as factors. The analysis showed a significant main effect of T_RATE (F1.96,21.58 =

83.34, ges = 0.76, p < 0.0001). The analysis also showed a significant main effect of
SPREAD (F1,11 = 72.50, ges = 0.39, p < 0.0001). We observed a negative impact of
T_RATE and SPREAD on NLL with lower values with increasing values of T_RATE and



78 CHAPTER 4. REHABILITATION THROUGH COMMON GAMEPLAY

SPREAD. We ran pairwise comparisons adjusted with Holm-Bonferroni on all levels with
the inclusion of KEYBOARD. We found that only level (Tr/3, 10cm) was similar to KEY-

BOARD. We also found some similarities between pairs (Tr/3, 10cm) and (Tr/3, 40cm) and
pairs (Tr/3, 40cm) and (2Tr/3, 10cm) showing that similar effect on NLL can be achieved
with different parameters pairs. Finally, the analysis found a small interaction T_RATE ×
SPREAD (F1.58,19.39 = 5.28, ges = 0.04, p = 0.02). The reason seems to be the relatively
high value of NLL for level (Tr, 40cm). However, the amount of data collected in this condi-
tion is comparatively smaller than other conditions: the poor user performance had the result
of shortened game sessions. This effect is thus likely an artefact.

From these results, it is important to note that for condition (10cm, Tr/3), the effect of
T_RATE and SPREAD on NLL allowed to match the behaviour of the KEYBOARD condition.
This is similar to what was observed in section 4.5.6. In other words, a completely different
model than one based on SCORE, relying instead on low-level variables of user behaviour, did
find the same solution for the computational optimisation problem. One difference between
both models is found with the condition (40cm, Tr/3) which is found to be different for NLL

but not for SCORE. The fact that NLL presents a much lower variability than SCORE could
explain this difference. However, it appear thus that there is a link between both models.

Correlation of NLL with NSCORE and Sampling Period

Given the similarities between the effect of SPREAD and T_RATE on both NSCORE and NLL,
it is opportune to check for a possible correlation between the two variables. A scatter plot
of their associated values for all measures except for the keyboard condition is plotted on
Figure 4.11 on the left. A linear regression reveals a significant relationship with (slope =

0.83, intercept = 0.14, stderr = 0.07) and a R2 value of 0.39.
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Figure 4.11: Correlation between NLL and NSCORE.
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The relationship between both variables shows that it would be possible to use one for the
other in an optimisation scenario. This result validates the hypothesis Hb which was advanc-
ing a link between our proposed model and the user sense of control. Indeed, it shows that
if the behaviour of participants, in terms of their behaviour as measured by IKI and PTT, is
maintained to a level equivalent to what was observed on a keyboard, then the score should
also be maintained. The assumption that maintaining the score to a level similar to that
of keyboard reference gameplay is central to this chapter, as score is used as the proxy for
engagement.

Finally, one of the reason for designing such model was the availability of many more sam-
ples than values for score. We measured from the TRACKER condition the time elapsed
between samples for SCORE and LL, see Figure 4.12 and Table 4.12. Obtaining one sample
for SCORE took on average 2210 frames, while one sample for LL was available every 40

frames on average. This answers the low-latency part of the last research question RQ1.2.
The measure of user behaviour based on low-level variable of gameplay provides 55 times
more samples per unit of time than the counterpart model based on SCORE.
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Figure 4.12: Distribution of time taken to measure on sample from SCORE and LL on the
left and right, respectively. LL

SCORE LL
sampling period [frames] 2210± 1057 40± 31

Table 4.9: Average sampling period in number of frames (with standard deviation) for
SCORE and LL. This represents the waiting time before a new sample is available, which
is roughly 55 times longer for SCORE than for LL.

4.7.3 Conclusion

The experiment with unimpaired participants has allowed us to establish that a new control
modality can be used without an impact on the performance as measured by the game score
provided the framerate of the game is lowered. We also verified that there is an increase in
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the arm reach of participants when the distance between the actionable areas is increased.
Finally, we established that a specifically designed measure of performance was proven to
exhibit low-latency and user independence. Reinforcing the idea that it links to the user sense
of control, it was also shown to correlate well with the user in-game score.

4.8 Preliminary Experimentations In-situ

In parallel to the laboratory experiment, some preliminary tests with users with SCI were
conducted. We also developed a portable system for testing purposes in the ward of the QEU
hospital.

Moving from a laboratory scenario to a real-world scenario usually presents a new set of
challenges, leading to some adaptations. The system is based on optical tracking, which was
relying for the previous user study on using an Optitrack system. Even though Optitrack is
state of the art with regards to precision in tracking, it is very expensive as well as bulky
and hard to setup. As a result, the system was built around a depth camera providing the
tracking of a reflective marker which was placed in the same manner on the dominant hand
of the player. A set of workshop has been conducted to ensure that the OTs were able to
install the system by themselves. The OTs expressed the need for exercises with very small
range of motions, which corresponded to users at the beginning of their rehabilitation. The
smallest condition in the previous experiment (10cm) was deemed to big. The system was
thus fitted with a graphical interface for an interactive positioning of the virtual gamepad
with its parameters as well as tuning the tracking parameters. In this version, we enabled the
parameter SPREAD to be controlled along the two principal axis of the gamepad, from 0cm

and above. The feedback from the occupational therapists was again positive with regards
to the motions that were elicited from gameplay session with the system. Ethical approval
has been obtained but no further testing has been conducted unfortunately as of the writing
of these words.

Two users with SCI were approached during a workshop organised by the MoreGrap project.
One participant had suffered from a very high level SCI and did not have remaining motor
functions in the trunk. Given the lack of upper body stability, reaching over a tabletop to
interact with the virtual control presented a problem. The portability of the system enabled
the placement of the control as close as possible to the participant. The wheelchair was
positioned sideways so that the participant’s elbow almost touched the tabletop. The control
area was also tilted to accommodate for the new principal interaction axis. This interaction
showed that every patient might require specific configurations, and that the portability of the
system was important. The other participant had been engaged in rehabilitation for more than
a year after the injury and exhibited a relatively good control of his forearm. He was capable
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of moving his hands to the specific locations of the virtual controls with precision and speed.
This participant mentioned that he could see a parallel between the physical exercises he had
to perform during his rehabilitation and the ones that were elicited by the gameplay. Note
that this participant was aware that this system had been designed with rehabilitation goals
in mind. Nevertheless, this comment is consistent with the feedback from the OTs, see 4.5.7.

In summary, both participants were capable of interacting with the system. They reported
having enjoyed the experience and saw some connections to their past experiences with upper
limb rehabilitation.

4.9 Conclusion

We had defined three research questions:

• RQ1.0: Can the user performance be maintained across different control modality
(keyboard and optical gamepad) and for different value of spread as measured by the
game score?

• RQ1.1: How do users adapt their behaviour when gamepad controls are spread further
apart, and does it increase their reach or range of motions ?

• RQ1.2: Which measure of performance allows for low-latency sampling and user
independence?

And for the synthetic measure of performance we also had emitted some hypotheses:
Ha: This measure should be more user agnostic than a measure based on the in-game score.
Hb: This measure should constitute a proxy for the level of user control.

The experiment we conducted with users without motor disabilities has provided a positive
answer to RQ1.0 and RQ1.1. We used the game framerate as a parameter for balancing the
lower user performance in their interaction with our optically tracked gamepad. The analysis
of hand position throughput the experiment showed that users did adapt their behaviours with
changes in the gamepad positions. However, we only observed a marginal increase in users
motions, whereas the changes in the gamepad positions was four-fold.

Finally, RQ1.2 was also answered positively. The purposefully designed measure of perfor-
mance exhibited less variation across users than the game score. It also correlated with the
game score and we found that when the measure of the game score was identical between the
reference system and our system, this measure of performance was also identical. In other
word, it could be used in place of the score for estimating whether a user behaves differently
than the reference.
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The preliminary experimentations we conducted in an hospital environment have validated
that the motions elicited were satisfactory from the occupational therapists point of view. We
also established that users with SCI could engage in game session with the system, provided
the interaction area was customisable. More research is now needed to verify assumptions
made about the setting of difficulty to maintain motivation.
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Chapter 5

Eliciting Motions Through Positive
Reinforcement

Summary. This chapter proposes to adapt the technique developed by Williamson et al.
in the paper Rewarding the Original [107], which induces users into exploring the space
of motions they can perform, to the particular case of upper limb interactions on tabletops.
An updated version of the original algorithm is proposed and a random search over the pa-
rameter space is ran to find a combination suitable for the sensors and motions specific to
upper limb interactions. A user study is conducted where the volume of user motions in
unconstrained upper limb interactions is measured. This is used to draw comparisons with
the motion spaces recorded in the two previous chapters. In particular, we find gesture typ-
ing motions to be more contrived than game induced motions. This exploration process
of motions spaces, which relies on positive reinforcement through audio feedback, is then
extended. From rewarding motion originality to explore variability, we seek to explore re-
liability in user motion space through the reward of motion repetitiveness. We show how a
discriminative model can be trained to detects cycles in a continuous sensor stream. An ex-
periment is designed making use of this model to elicit repetitive motions from participants.

5.1 Introduction

The previous chapter has presented the design of an upper limb gestural interaction for the
purpose of the rehabilitation of the reach capability of users with SCI. During in-situ experi-
mentations with users with severe motor impairments, see section 4.8, the need for a proper
placement of the interactive surface and its orientation were identified as mandatory to match
the region in which users could afford the motor control required by the interaction. The
issue of matching user capabilities and interaction requirements abstracts the more funda-
mental problem of understanding user capabilities in context, which at minima encompasses
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the user motions and their sensing. It is the association of both which produces the material
from which the interaction is constructed. What type of motions, which are sensed by the

system, can users produce? A general approach to answering this question has already been
proposed by Williamson et al. [107], where a process for systematically exploring the space
created by sensed user motions was detailed. Recognising that it is “challenging to work out
how to most effectively design new input systems, or how to best exploit the capabilities of
existing devices”, they propose “to consider how input mechanisms can be quantified in a
broader sense, and how factors which influence the use of these mechanisms can be analysed
within a coherent framework.”

This chapter proposes first to summarise the formalism introduced by Williamson et al. be-
fore repeating their experiment in the context of upper limb gestural interactions created
through optical sensing. Then, an extention to the technique is proposed targeting a property
of motions that was not investigated in the original paper.

5.2 Joint User-sensor Space

In the very general case of a user engaged in an interaction with a computing device, the
user’s motions are sensed by the device’s sensors, which outputs are used by the device to
infer the user’s intention, see 2.4. A feedback can be at that time conveyed back to the user,
potentially closing the interaction loop. The space of user motions, as defined by the mea-
surements made by sensors, is called in the following the joint user-sensor space. A joint
user-sensor space depends on both individual users and device’s sensors and is the material
from which interactions are constructed. Two examples of very different interactions can
help illustrate the interplay between users and sensors. During the interaction with an ele-
vator button, a user has almost full freedom of movement, however the button’s sensor only
allows for a limited amount of information to be captured, mostly through pressure and on a
rather small surface. On the other hand, a user engaged in the act of driving will find himself
situationally impaired and only afforded with very limited movements. Yet, many complex
buttons allow for a wide range of intentions to be transmitted. The amount of information
that can be conveyed during the interaction depends thus on both user and sensor properties.
Note that under this description, the purpose of the interaction is not significant, only the
process of communicating intention is considered from an information point of view.

The analogy with a communication channel was used in the original paper. For a one-
dimensional signal, the Shannon-Hartley equation computes the maximum amount of data
that can be transferred in an analogue channel subject to additive white Gaussian noise by
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relating the bandwidth and signal to noise ratio to the throughput:

C = B log2

(
1 +

S

N

)
giving a transfer rate of C bits per second from a bandwidth B and a signal-to-noise ratio
S/N . The information throughput, or transfer of information, is proportional to the band-
width of the channel and multiplied by the logarithm of the signal to noise ratio. For a signal
to noise ratio tending towards zero, the information throughput also tends towards zero.
Though simple, this model has been used successfully by Berdhal et al. [108] to compute
the estimated channel capacity of an interaction between participants and different types of
sensors.

Building on this analogy, two concepts related to properties of joint user-sensor spaces are
introduced: variability and repeatability. Variability is analogous to the channel capacity,
and in the joint user-sensor space it is the volume of possible sensed user motions. The level
of variability depends both on the user and the sensor. The variability in terms of motions is
subject to the user’s capability to produce a large range of diverse motions, while the diversity
in terms of readings is determined by the sensor’s ability to produce a rich measurement from
the observed user. Repeatability, on the other hand, relates to the signal to noise ratio. It is
defined on both motions and readings and quantify the uncertainty in the signal. For a motion
to be useful, it has to be controlled and produced on purpose.

Up to this point, motion spaces have been defined as joint user-sensor space, but no concrete
definition has been provided for motions themselves. Here again, a clear distinction is made
between information and semantics, equivalent to the difference between motions and ges-
tures. Only the sensor output is used as the basis for defining motions as the sampled and
discrete version of sensed user motions. Time derivatives of these readings, in lieu of time
stamps, are included as to provide a notion of evolution over time. This is the description
that was used by Williamson et al. [107] and is equivalent to definitions popular in the field
of robotics [109].

Mathematical Formalism

On a more practical level, a mathematical formalism can be used to define joint user-sensor
spaces and associated sensed motions. A joint user-sensor space is composed by the set of
samples from the sensor readings of measured user motions and associated derivatives. Let
each sample be a D-dimensional vector x:

x = (x00, x
1
0, . . . , x

m
0 , x

0
1, . . . , x

m
n ), (m,n) ∈ Z+
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from a sensor producing n-dimensional output with m associated derivatives, and D = m×
n.

The number of dimensions depends on the type of sensing used in the system. Images usually
have thousands of dimensions: one for each pixels and additional ones for each channels in
each pixels. Inertial measurement units (IMU) on the other hand output data with typically
tens of dimensions. For instance, the original paper was designed to capture the motions
produced by a joint user-sensor system composed of a human upper limb strapped with one
IMU, which produced readings from its accelerometer and gyroscope sensors measuring
linear and rotational accelerations, each being 3-dimensional. Such data was then submitted
to analysis (low-pass filtering, time resampling and interpolation) in order to compute the
first three derivatives of the sensor readings. The resulting data stream is a vector with 36
dimensions producing a new observation 32 times per second.

By considering now x as a D-dimensional random vector, with each dimensions being a
scalar random variable Xi, we can define the joint probability distribution which models
the relationships between dimensions. The covariance matrix of this distribution can be
measured with:

cov[x] = E[(x− E[x])(x− E[x])T ]

and is defined to be the following symmetric, positive definite matrix:

cov[x] =

 var[X1] cov[X1,X2] ... cov[X1,Xd]
cov[X2,X1] var[X2] ... cov[X2,Xd]

...
... . . . ...

cov[Xd,X1] cov[Xd,X2] ... var[Xd]


with the variance of Xi, noted var[Xi], defined by:

var[Xi] = E[(Xi − E[Xi])
2]

The covariance matrix gives access to interesting properties of the joint distribution. The
covariance between pairs of dimensions gives an indication of structure in the motion space.
The eigen vectors of the matrix follow the principal directions of the joint user-sensor space,
while the eigen values provide a measure of scale along these directions. As a result, an
estimate for the total volume Vx of the space that is being described by such distribution can
be accessed through the determinant of the covariance matrix:

Vx ∝ det(cov[x])

and can be compared to the volume produced by the distribution of another random vector.

A measure of distance can also be defined on this vector space. To take into account the
difference in variability between dimensions, the Mahalanobis distance [57] can be used. It
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is defined between two vector x and y sampled from a distribution with covariance cov as:

DM(x,y) =
√
(x− y)T cov−1(x− y)

The Mahalanobis distance DM produces a measure that is unit-less and scale-invariant. The
measure of distance between two vectors gives access to their dissimilarity or to the original-
ity of one vector as compared to a collection of other vectors. This was used in the original
paper as the measure of originality between samples taken from the joint user-sensor space.

In this section, the joint user-sensor space as been defined as a D-dimensional random vector
space, with its joint distribution and covariance matrix, and a metrics that can be used to
assess originality between two vectors has been introduced as the Mahalanobis distance.
The following section will detail the process through which joint user-sensor spaces can be
explored and characterised.

5.3 Automated Elicitation as a Search Problem

Before continuing with the rest of this chapter, it is opportune to make here a parallel between
the approach we propose and another type of well-established interactions: elicitations stud-
ies.

Elicitation are techniques which seek to gather knowledge directly from users [110]. Elici-
tation studies in HCI are usually aimed at associating motions and meaning by discovering
gestures that are guessable [36]. This relies on two fundamental parts: a search process per-
formed by users and a measure that determines the outcome of a selection. The procedure
usually involves a prompt by the experimenter who chooses a referent for which users are
supposed to perform a gesture. The internal process of search followed by participants is
captured as they think aloud. Then a measure of agreement on the proposed gestures is com-
puted by analysing the result of associations participants make between proposed gestures
and prompted referents.

In the original paper, joint user-sensor spaces have been used in a similar fashion, with some
notable differences. In lieu of gestures, motions were produced and instead of the guessable
nature of gestures, the variability of motions was sought after. The process of search relied
on placing users in a reinforcement learning scenario where rewards would be provided every
time a new motion satisfied a condition. To emphasise variability, the novelty of an observed
motion was computed as the Mahalanobis distance of the sample representing it to the joint
user-sensor space distribution that had been captured until then.

By making a connection between both type of studies, we see that our approach can be
described as a data-driven (or automated) elicitation technique, where quantitative and arbi-
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trary properties of motions can be sought after, by placing users in a reinforcement learning
scenario. This search process also can be described by drawing from the field of Artificial
Intelligence [111]. This, for instance, introduces the interplay between exploration and ex-
ploitation. As an agent is performing a search it must balance two opposite objectives which
are to explore the totality of the searchable space while exploring it thoroughly. The rest
of this chapter will build on this idea and present two application for this, by repeating the
original experiment from Williamson et al. which looks for variability and by proposing a
variant which targets repeatability.

5.4 Variability in Joint User-sensor Space

A process, named “Rewarding the Originial” (RTO), was designed to explore the variability
in joint user-sensor space. A joint user-sensor space is first chosen. For example, a body
part such as the user arm is selected and associated with a sensor such as an optical tracking
system.

The goal of the process is to elicit variability in joint user-sensor spaces. In other words, the
goal is to map the totality of the motions that can be both produced by users and sensed by the
system’s sensors. Users are placed in a reinforcement learning process in which they search
for originality in their produced motions through both exploration and exploitation. The
search is informed by a reward proportional to the originality of the current observed sample
as computed by the Mahalanobis distance with previously observed samples. For clarity, we
will call observation a sample from the joint user-sensor space that has been deemed orig-
inal and has thus triggered a positive feedback, and catalogue the set of observations. The
purpose of the RTO process is to incrementally record the catalogue. A sample is declared
an observation when the average value of the Mahalanobis distance of the sample with the K
closest observations from the current catalogue is greater than a threshold T. After each new
observation is stored, the covariance of the catalogue should be updated.

The independent variables or parameters of this process are the threshold T, the number
of neighbours K and N the number of new observations between a re-computation of the
covariance of the catalogue. Note that the covariance of the catalogue should be re-computed
each time a new observation is added, but is in practise computed every N new times for
processing cost reasons. The dependent measures registered by this process are the catalogue
of observations with their time of discovery or recording, from which the interaction volume
over time can be computed.
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Algorithm and Parameters

For the purpose of running RTO with upper limb gestural interactions on planar surfaces, the
RTO algorithm was reimplemented with a small modification. One issue with the original
algorithm, discovered during early experimentations, was that samples both very similar and
adjacent in time would be qualified as observations. This was due to the averaging of the
Mahalanobis distance with K neighbours and the intermittent computation of the covariance
of the catalogue. To ensure a more uniform sampling, another condition on the novelty detec-
tion was added in the form of a minimum threshold to the distance to the closest observation
in the catalogue. In other word, the threshold T was replaced with a combination of two
thresholds Dmean and Dmin. The algorithm’s pseudo-code is detailed below:

Algorithm 1 Modified RTO
Require: Dmean, Dmin, K,N
catalogue = []
while new x do
distances = []
for all y in catalogue do
distances.insert(DM(x,y))

end for
distancesmean ← mean(sort(distances[: K]))
distancesmin ← min(distances)
if (distancesmean > Dmean) and (distancesmin > Dmin) then
catalogue.insert(x)

end if
counter ← counter + 1
if mod(counter) = N then

recompute cov(catalogue)
end if

end while

The value for these parameters is arbitrary and were empirically set in the original paper.
Good values for these parameters allow for a reward that is not too frequent to avoid collect-
ing each and every sample, and not too seldom to avoid discouraging participants in their
exploration process. A small experiment was thus conducted to find appropriate values for
the specific case of upper limb gestural interaction on planar surfaces.

Specific case of Upper Limb Gestural Interactions on Planar Surfaces

The sensor used for this experiment was an Intel Realsense SR300 depth camera. The same
simple tracking algorithm, developed for the previous chapter, see 4.8, was used. This tracker
can follow one reflective marker at 30Hz. The camera was overlooking an office desk, placed
in such a way that regions reachable by a user were fully covered.
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This original vector stream is uniformly re-sampled at 30Hz and submitted to additional
filtering. A Savitsky-Golay interpolator on a 500ms window with a 3rd order polynomial
computes the 1st and 2nd derivatives of motion. We have thus 6 spatial dimensions: position,
velocity and acceleration on a 2 dimensional plane. In the following sections, the dimension
are marked with the letter X or Y reflecting horizontal and vertical dimension on the tabletop,
respectively. These letters are appended a number between 0 and 2 reflecting the derivative
number, see Table 5.1.

Horizontal Vertical
Position X0 Y0
Velocity X1 Y1

Acceleration X2 Y2

Table 5.1: Naming and signification of the d-dimension of the joint user-sensor space.

A computer ran the RTO algorithm in real time. The value of the originality measure was
displayed as a curve on a screen facing the interaction area. The task for participants was to
maximise the value for the originality measure over a period of 10 minutes. One participant,
the author, took part in the experiment. A reflective marker placed between the index and
middle finger was used to indicate the hand position and was attached with a stretchable
strap. We collected 18184 samples from this joint user-sensor space.

The dependent variable we were interested in is the proportion of samples that would be
considered as new observations and added to the catalogue. We ran a random search on the
recorded data to estimate the distribution of this proportion as a function ofDmean andDmin.
Note that the value for K, the number of neighbours, was set to 5, and the period at which
the covariance was recomputed was also set to 5. The result are plotted on Figure 5.1. We
observed a decrease in the proportion of samples added to the catalogue with an increase
of Dmean and Dmin, with 90% of the variation explained for values of Dmean and Dmin

comprised between 0 and 2.

We arbitrarily chose a combination for Dmean and Dmin that produced 15% of rewards on
the training dataset, see Table 5.2, similar to the original experiment.

Parameter Value
Dmean 1.33
Dmin 0.60

Table 5.2: RTO parameter values for Dmean and Dmin.
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Figure 5.1: Percentage of samples stored in the catalogue as a function of Dmean and Dmin.
Note that the white square in the top right is due to an absence of sampling data.

5.5 RTO Experiment

We designed an experiment to capture the joint user-sensor space for the specific case of
upper limb gestural interactions on planar surfaces. This constitutes a generalisation of the
interactions that have been implemented in the two previous chapters, since motions are
unconstrained by a task such as text-input or pointing. The only constraint is the process that
engages participants in a positive reinforcement loop.

5.5.1 Apparatus

The same optical tracking system as in section 5.4 was used in this experiment. A reflective
marker placed between the index and middle finger was used to indicate the hand position
and was attached with a stretchable strap. The interaction area provided by this setup was
a square of dimensions 78cm by 78cm. It was designed to exceed the participant’s reach in
the forward direction when participants had their trunk kept immobile and in contact with
the chair they were seated on.

A computer ran the RTO algorithm and provided an audio feedback each time an observed
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sample was added to the catalogue of original motions. The audio feedback was designed
as a constant sine wave with frequency at 90Hz which was smoothly pitched upwards by
another 90Hz for every new detection of an observation. This positive feedback had a linear
decay lasting 200ms. The resulting feedback indicating originality was a short upward pitch
from a constant low background noise.

5.5.2 Task

The task for the participant was to produce motions that would trigger the audio feedback
indicative of the originality of the current sensed sample.

5.5.3 Procedure

Participants were equipped with the reflective marker on their dominant hand, in between the
index and middle finger and attached with a stretchable band. Participants were placed on a
chair by a tabletop and instructed to have their back in contact with the back of the chair at
all times. The chair was placed to the side of the tabletop while staying within the tabletop’s
legs in order to have the dominant arm of the participant placed in the centre of the tabletop.
The chair was also positioned so as the elbow of the participants would comfortably rest
on the closest edge of the tabletop. The centre of the interactive region was placed one full
forearm extension towards the camera from the edge of the tabletop.

Once in place, participants were informed that their motions would provide audio feedback
based on the position, velocity and acceleration of their hand and that their task was to
maximise the increase in pitch in the audio feedback. They were subsequently equipped
with a headset that was conveying the audio feedback.

5.5.4 Design

All participants were subject to the same condition in this experiment. The task was designed
to run for five minutes, after which the experiment was concluded.

5.5.5 Participants

We recruited six participants, including two female participants, with a mean age of 35.5 and
standard deviation of 11.2 (min=23, max=55). All participants were right handed. The study
was approved by the University of Glasgow ethics committee. No participants presented any
mental or physical disabilities.
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5.5.6 Results

The data collected through the experiment were the vectors of the user-sensor space, the
original observation of the catalogue with their time of discovery and the value of the reward
for each samples. After analysis of the logs, we realised that the data for one participant was
compromised. The following analysis is carried with the remaining five participants only.

Distributions of Position, Speed and Acceleration

The position data is plotted on Figure 5.2 with summary statistics on Table 5.3.

Figure 5.2: Joint probability distribution of the hand position, speed and acceleration during
RTO.

X0 Y0 [m] X1 Y1 [m/s] X2 Y2 [m/s2]
mean -0.00 -0.03 0.01 -0.01 -0.02 -0.06

std 0.15 0.11 0.68 0.53 2.01 1.62
min -0.42 -0.36 -3.19 -2.22 -9.88 -6.22
max 0.43 0.29 3.20 2.09 8.03 6.58

Table 5.3: Summary statistics for the D dimensions of the joint user-sensor space.

A scatter plot with low transparency shows the totality of the catalogue in X0 and Y0 for
all participants. A joint distribution was computed on top of the scatter plot. The joint
distribution exhibits a higher density around the origin (0,0) indicating that participants did
adopt their starting position (back in contact with the chair and elbow on the edge on the
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table) as their rest position. This is corroborated by the mean value in X0 and Y0 at 0.0.
The joint distribution displays a higher density in the lower left corner, representative of
the flexion of the arm for right-handed participants. The marginal distributions in X0 and
Y0 were also computed. The blue and orange curves represent the marginal distribution
for the full dataset and the catalogue only, respectively. The marginal distribution in X0
is almost symmetrical and extends to the full limits of the tabletop with a minimum and
maximum at roughly 40cm. The marginal distribution in Y0 is slightly skewed towards
negative values reflecting the limit in reach of our participants. The maximum Y0 value is at
29cm as compared to a minimum value of negative 36cm.

Similar jointplots were computed for the first and second derivative of motions (X1, Y1) and
(X2, Y2). Both derivatives exhibit symmetrical distributions with a sharp peak at the origin.
The maximum values for the horizontal and vertical velocities lie at 3m/s and 2m/s, respec-
tively. In a similar way to the position data with bigger horizontal range, horizontal motions
are also favoured in terms of velocity. Acceleration data presents the same characteristics,
with maximum positive horizontal acceleration at 10m/s2 and maximum negative horizontal
acceleration, or deceleration, at 8m/s2. This slight imbalance might also find its origin in
the asymmetry of the upper limb, with different properties for the muscles responsible of the
flexion and extension of the arm. On the other hand, the vertical acceleration is symmetric
and shows a maximum norm around 6m/s2.

Distributions of Maximum Speed and Acceleration

To display the relationships between the position and its derivatives velocity and acceleration,
we computed the norms of velocity (speed) and acceleration (scalar acceleration), as the
norm of the vectors composed by the horizontal and vertical derivative components. We
stored the maximum value of speed and scalar acceleration for different value of the position
organised in 30 bins. The results of this operation are plotted on Figure 5.3 and Figure 5.4 for
four participants, allowing for a qualitative comparison between the participants’ derivative
profiles. For the speed profile we observe a concentration of high speeds in the middle
of the explored region with a constant decreasing trend as the position reaches the limit of
participants’ reach. It is worthy noting that the distribution of maximum speeds differs across
participants, most notably for the participant plotted in the lower right corner with much
lower maximum speeds than the average. For the scalar acceleration profile we obtained
a slightly different picture, with more pronounced non-uniformity in the distributions. We
noted the presence of clusters of high accelerations on the outer bounds of the position with
lower values in the middle of the tabletop.

These plots, which characterise the capabilities of individual subjects, are one piece of infor-
mation for answering the question that was asked in the introduction. What type of motions,



5.5. RTO Experiment 95

0.4 0.2 0.0 0.2 0.4
Position [m]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

1.2

1.2

1.
5

1.5

1.5

1.8

1.8

1.8

2.1

2.1

2.4

0.4 0.2 0.0 0.2 0.4
Position [m]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

1.2

1.2
1.5

1.
5

1.
8

2.
0

0.4 0.2 0.0 0.2 0.4
Position [m]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

1.2
1.2

1.2

1.2

1.61.6

1.6

2.02.
0

2.4

0.4 0.2 0.0 0.2 0.4
Position [m]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.6 0.8

0.8

0.8

0.9

0.9
1.1

1.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

d 
[m

/s
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

d 
[m

/s
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

d 
[m

/s
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

d 
[m

/s
]

Figure 5.3: Maximum value of the speed as a function of the position, for four participants.
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Figure 5.4: Maximum value of the scalar acceleration as a function of the position, for four
participants.

which are sensed by the system, can users produce? They inform about the reaching capa-
bility of users and also about the dynamics of observed user motions, which could be related
not only to their static abilities but also to a patient’s ability to exert force through the mea-
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sure of velocity and acceleration. As a result, there is some potential for using this tool in
the context of rehabilitation and for OTs to access a quantitative measure of their patients’
abilities, or as a complement to a more qualitative measure of reachable space, such as the
one proposed by Toney et al. [7].

Note also that due to the nature of the sensors, which provide an absolute measure of the
hand position and access to its derivative, the maps of Figure 5.3 and Figure 5.4 are much
more interpretable than if we were using accelerometer data. Indeed, these produce readings
that are second derivatives of the motions that generated them, making them harder to link
back to what a human could see without integration. As a result, the data we collected in the
experiment was easier to relate to the reaching capabilities of a user, as well as its maximum
capability in terms of speed and acceleration.

Volume of Captured Space

Beyond the analysis of individual properties of the D dimensions of the vectors from the
catalogue, the analysis of the volume of the catalogue, Vcatalogue, and its evolution over time
provides additional information about how participants reacted to the RTO process.

The timestamps of observations, each having produced a positive reward during the exper-
iment and added to the catalogue, were analysed. The cumulative number of observations
as a function of experiment time is plotted on Figure 5.5 (left), with associated values in
Table 5.4. The different colours represent our five participants and are kept across both fig-
ures. The average value of saved vectors in the catalogue is 1525, with a minimum at 804,
a maximum at 2087 and a standard variation at 494. We observe that the rate at which par-
ticipants did receive rewards varies across participants and across time. For example, the
red and blue curves present a continuous smooth increase throughout, while the other curves
present clearer discontinuities which appear for the green one around minute 1, for the or-
ange one around minute 2 and for the purple one around minute 3. These discontinuities
can be explained by the sudden discovery of another existing type of motions that partici-
pants did not propose until then, leading into the exploitation of that new type of motions.
For instance, such motions could be high accelerations and deceleration or farther reaching
motions. These discontinuities reflect the alternative nature of exploration and exploitation
during the systematic search of the joint user-sensor space conducted by the participants.

The number of observations is only one side of the picture. The volume of the distribution
of observations was also computed as a function of experiment time. Note that we used the
logarithm of the volume for comparison purposes. It is plotted on Figure 5.5 (right), with
summary statistics in Table 5.4. The average value for the volume explored is −9.53 with
a minimum value at −14.27 and a maximum value at −5.88. Overall, all curves present an
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Figure 5.5: Number of vectors present in the catalogue (left) and volume of the catalogue
(right) as a function of experiment time.

# of Observations log(Vcatalogue)
mean 1525 -9.53

std 494 3.83
min 804 -14.27
max 2087 -5.88

Table 5.4: Summary statistics for the number of observations and log(Vcatalogue) at the end
of the task averaged over participants.

asymptotic behaviour with a limit that seem to have been closely approached for all partici-
pants, indicating that the rate of rewards and the length of the task have allowed participants
to explore the majority of their joint user-sensor space. The curves present a similar evolu-
tion to their counterpart in terms of number of observations, when considered for the same
user. However, it is important to note that there is no direct correlation between the number
of observations and the volume of catalogue, as perfectly illustrated by the blue and green
curves. In other words, while the participant represented by the green colour did earn the
maximum number of rewards during the experiment, the associated volume is smaller than
the one uncovered by the participant represented with the blue colour, who also happened
to generate the least amount of rewards during the experiment. This difference is explained
by the different exploration strategies employed by both participants. The blue participant
did use a conservative exploration method with small steps, generating a lot of incremental
rewards, while the green participant did employ a more aggressive exploration strategy in-
volving a higher and earlier diversity of motions. The influence of the design of the audio
feedback could come here into play. The audio feedback did convey a binary measure of
originality, whereas it could have also been modulated by its absolute value.



98 CHAPTER 5. ELICITING MOTIONS THROUGH POSITIVE REINFORCEMENT

5.5.7 Comparison with other Upper limb Interactions

One of the benefit of the measure of volume in the joint user-sensor space is that is allows
for meaningful comparison between spaces. We have thus computed the same metrics for
the dataset that were collected in the previous two chapters, namely the interaction involving
gesture typing and the interaction dedicated to games in rehabilitation. The volume across
different conditions is presented on Figure 5.6, see section 3.5.3 and section 4.5.3 for the
significance of the testing conditions. We observe that the volume discovered in the RTO
experiment is bigger on average than any other volumes. For the data from chapter 3, we
observe an increase in interaction volume with an increase in the interaction size. For the
data from chapter 4, we observe an increase of the interaction volume with an increase in
T_RATE and SPREAD. The range of hand positions and level of velocity and accelerations
involved are likely responsible for this effect.
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Figure 5.6: Volume of explored joint user-sensor spaces for the RTO experiment (first box),
the gesture typing experiment from chapter 3 (group in the middle) and the game experiment
from chapter 4 (group on the right).

Next, we were interested in the relation between interaction volume and information through-
put that was afforded by the interactions from Chapters 3 and 4.

The information throughput from the gesture typing data is hard to compute due to com-
plexity of decoding technique. However, the results from the experiment indicated that the
input rate measured in word per minutes was equivalent across conditions. This signifies that
the interaction with OP1 managed to make a better use of its space than the interaction with
OP4: with a much smaller volume, the information throughput is maintained.
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For the data from Chapter 4, however, it is possible to easily compute the information
throughput reached during the interaction. The user was capable of selecting 4 different
virtual buttons via a specifically designed gamepad, each encoding one action that was sent
further to the game it was connected to. From Information Theory, we know that the num-
ber of bits encoded by selecting one action when N actions are possible and equiprobable
is given by log2(N), which here equates to 2bits of information per selection. Thus, we
computed the information throughput as the number of action selection multiplied by 2bits

and divided by the time over which the selections occurred. The results are presented in
Figure 5.7. The plot represents the information throughput IT as a function of the volume.
A linear regression shows an effect (p < 0.001), indicative of a non-zero slope, with param-
eters (slope = 0.06, intercept = 2.13, stderr = 0.014). However, R-squared is low with a
value of 0.22, indicating that most of the variance in the data is not explained by the linear
relationship between the information throughput and the volume used during the interaction.

What we can take away from these results is that the interaction volume does not correlate
well with the information throughput reached during the interaction. This discrepancy will
be discussed in more detailed in the following section where we discuss the importance of
not only variability but also repeatability in joint user-sensor space for a complete description
of the information transfer.

5.5.8 Conclusion

The RTO algorithm has been adapted to the special case of upper limb gestural interactions
on planar surfaces. The value of its parameters was informed through experimentation with
training data. A user study was designed to capture the properties of joint user-sensor spaces
of users in the context of our category of interactions. We have shown that there exists some
structure in the dataset, with non-uniform distributions of positions, speeds and accelerations
of users’ end effector. The data has also uncovered some variance between participants, most
notably with one user exhibiting lower derivatives of hand positions.

We have compared different input modalities and drawn conclusions about the volume differ-
ent interaction were putting into action. The interaction volume and the information through-
put did not show a strong linear relationship.

5.6 Repeatability in Joint User-sensor Space

We introduced the concept of repeatability in the introduction via the analogy with the notion
of signal to noise ratio from information theory, whereas variability was associated with the
bandwidth of the channel. The lack of strong relationship between the interaction volume
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Figure 5.7: Information throughput as a function of volume for the six conditions of the user
study in Chapter 4.

and the information throughput resides in the fact that repeatability was not taken into ac-
count. The remainder of this chapter is thus investigating the measure of repeatability in joint
user-sensor space. There exists a relationship between information throughput and repeata-
bility. Information throughput has been measured in Fitts’ experiments for pointing tasks,
or by Berdahl et al. [108] in their experiment on tracking tasks. For more complex gestures
however, the notion of target is hard to express. Oulasvirta et al. [59] found a work-around
by asking human subjects to repeat predefined complex trajectories. A professional dancer
was recruited and was asked to perform a well-known routine two times in succession. This
was used to model differences between repetitions, or repeatability in their motions. Here,
we propose to combine the notion of repetitions of motions to the concept of positive rein-
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forcement that was central to RTO.

The goal of creating a reward for reinforcement poses the problem of qualifying repetitive-
ness in observed motions, usually followed with the question of the segmentation of mo-
tions. The recognition, segmentation and classification of temporal data is an active field
of research and several techniques have been proven successful for offline analysis. Lu et
al. [112] have proposed to use autoregressive models for fitting the time series of human joint
angles and positions, inferring repetitiveness based on the model’s parameters stability over
time. Morris et al. [113] used hand-crafted features and machine learning techniques for
manually annotated data captured by accelerometers. Kruger et al. [114] computed a sim-
ilarity matrix and detected frame of similarity and repetitiveness by analysing its structure.
With a technique available in real-time albeit on image data, Levy et al. [115], have used
synthetic data generation and neural networks to automatically detect and count repetitions
in videos.

In this work, we propose to combine ideas from these different techniques. The need for
live recognition points towards the method used by Levy et al [115] with synthetic data and
neural networks. The idea of structure in the similarity matrix, which is a 2-dimensional
computation of distance, will be adapted to the Mahalanobis distance which has been used
until now in joint user-sensor spaces.

5.6.1 Generating Synthetic Motions

The notion of repeatability in motions is hard to define. Supervised learning has however
proven successful for classification tasks, provided a labelled dataset is available. We create
such dataset via two simple models producing motions we expect to observe from partic-
ipants. The first one models random motions which are not periodic, whereas the second
model is aiming at producing cyclical noisy motions.

Random Motions

Random motions are modelled as a low-pass filtered random walk without accumulation.
The steps are generated from a 2-dimensional Gaussian distribution, with classical param-
eters location and scale, that is repetitively sampled. Each new sample represents a new
position on a 2-dimensional plane (in X and Y) that is subsequently low-pass filtered. The
values for location and scale are taken from two uniform distribution with support over (-
0.5, 0.5) and (0.1, 1), respectively. Since the cut-off frequency of the low-pass filter is left
unchanged, the scale parameters effectively model different movement speeds. Finally, for
each sample of the pair location and scale, the resulting walk is a random sequence that can
be observed for an arbitrary numbers of steps. Figure 5.8 shows a slice of the data that was



102 CHAPTER 5. ELICITING MOTIONS THROUGH POSITIVE REINFORCEMENT

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
px

0.15

0.10

0.05

0.00

0.05

0.10

0.15

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.0

0.5

0.0

0.5

1.0

Figure 5.8: Comparison between real and synthetic motions. On the top row, selected time
series of motions observed in the RTO experiment and generated by random walk, on the left
and right, respectively. On the bottom row, motions taken from the gesture typing experiment
and generated by a random oscillator, on the left and right, respectively.

recorded in the RTO experiment, see 5.5, side-by-side to a random sample generated by the
above process for comparison.

Periodic motions

The generation of random repetitive movements is based on the modelling of a motion as
a noisy oscillator. Fourier analysis states that any movement can be decomposed as a su-
perposition of periodic functions. Repetitive motions can thus also be modelled as a sum
of oscillators. The generation of a cycle is based on using the Discrete Fourier Transform
(DFT) in real space. Because the DFT is defined for a periodic function, the inverse of the
DFT (IDFT) generates a periodic function. To create random periodic motions, we randomly
populate the spectrum of an oscillator before taking the IDFT, which generates a full oscil-
lation. The noise component is then added to this oscillation. To model the human noise
in executing the repetition, we chose to add some Perlin noise [116], as a function of the
position and the time. The maximum noise amplitude is chosen to be 30% of the maximum
amplitude in cyclical repetitions. The results produced by this process are shown on Fig-
ure 5.9 for 16 random samples. For comparison purposes, Figure 5.8 shows a motion taken
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from Chapter 3 during the gesture typing task. Even if this gesture typing motions is not
periodic, some randomness can be observed along the repeated trajectories.
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Figure 5.9: 16 samples from the random oscillation generation, with 30% of Perlin noise.

A labelled dataset of arbitrary size can be generated by continuously sampling these two
models.

5.6.2 Detecting Repetitions

One of the conditions for a successful outcome of a classification task is to provide salient
information to the model which is making the inference. This information, in the form of
features, can be engineered or it can be extracted through a process that is also learned. We
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looked at the evolution in time of the Mahalanobis distance for the two categories of motions
from our synthetic dataset. For each motions, the derivatives are computed so as to obtain
the 6-dimensional data type we have used in our joint user-sensor space. The consecutive
samples are stored in a FIFO buffer of length 120 samples and the Mahalanobis distance is
computed on this buffer at each new sample. The result of this computation is also stored
in a bi-dimensional FIFO buffer of dimension 120 by 50. The content of this buffer and
the motion that was used for its computation are plotted side-by-side on Figure 5.10 and
Figure 5.11 for cyclical and random motions.

What appears in this buffer is a curve that unfold in two dimensions. On the x-axis is rep-
resented the Mahalanobis distance of one sample against the previously seen 120 samples.
The last seen sample is at abscissae 120, which explains why the Mahalanobis distance is
close to zero on that point. On the z-axis, represented by different tones in the colour blue,
is represented the history of this computation over 50 samples. In other words, the range of
curves represents the evolution of the Mahalanobis distance of a collection of samples over
time. For repetitive motions, we observe another minimum, marked here with a vertical line
at abscissae 30, which marks the period of the motion. This collection of curves resemble a
cycloid, the trajectory a point follows when attached to a wheel. This kind of structure is not
observed when random motions are submitted to the same treatment. The structure in this
buffer seem to be salient enough to perform a visual classification. These are thus chosen as
the features for our discriminative model.
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Figure 5.10: Periodic motion and associated features on the left and right subplots, respec-
tively. The period of the motion is indicated by a vertical line on abscissae 30.

Now that the features are defined, the problem of classifying them can be addressed. The data
we described has both a space and time component. We chose to use a neural network based
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Figure 5.11: Random walk and associated features, on the left and right subplots, respec-
tively. The features for a non-periodic motion do not exhibit a strong stability along the
colour dimension at any point along the abscissae.

on 1D convolution, as their performance as been proven superior for this task [117]. The
architecture of the model is detailed in Table 5.5 and has been adapted from recommended
code samples available from the library Keras [72] used for the computation.

Layer Output Shape Setting Param #
input 5, 20 n.a. 0

conv_1d 3, 16 relu 5776
conv_1d 1, 16 relu 784
dropout 16 50% 0

flatten 16 50% 0
dense 1 sigmoid 17

Table 5.5: Neural network architecture with a total of 6577 parameters.

We generated a dataset from sampling our synthetic models of motions. We created one mil-
lion samples for the training set and two hundred thousands samples for the test set. The per-
formance given by the confusion matrix and the operating curve are plotted on Figure 5.12.

An additional test was carried out to investigate the performance of our model with different
levels of noise. An additional set of synthetic samples was generated, with noise level span-
ning 0% to 100% of the amplitude of the oscillator. The results from this sensitivity analysis
are presented on Figure 5.13. It appears that the model performance is reasonably stable
across the set of noise levels. There is however one outlier. When the noise level is 0%, that
is the motions are perfectly periodic, the performance drops. This corner case might not be
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Figure 5.12: Performance of the classification between samples generated from models of
random and noisy cyclical motions.

seen in data generated by participants, since it is unlikely that human subjects can perform
physical motions with perfect repetitions.
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Figure 5.13: Sensitivity of discriminative model to different levels of noise, spanning 0% to
100% of the amplitude of the oscillator generating the cyclical motion.

5.6.3 Segmentation

Finally, it is also interesting to segment or count the repetitions within a motions that would
have been classified as repetitive by the model developed in the previous section. For this
purpose, a simple algorithm was designed which exploits the observation that a stable min-
imum appears in the 2-dimensional buffer that stores the Mahalanobis distance. A seed for
the motion is stored as the first sample that is classified as repetitive. The Mahalanobis dis-
tance between the history and this seed is computed, and in the presence of a global minima
a repetition is declared completed. While the motion is classified as repetitive, every sam-
ple that completes a period is stored. The output of the algorithm is a list of time stamps
describing each completed cycles. The pseudo code for this algorithm is detailed below:
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Algorithm 2 Segment repetitions
in_repetition← false
while new sample do
features← transform(sample)
repet← model(features)
is_repetitive← repet > threshold
history.pop_last()
history.append(sample)
if not is_repetitive and in_repetition then

this is the last sample for the repetition
end if
if in_repetition then

this is a new sample for the current repetition
if DM(seed, history) is global minima then

this is a complete period, save the sample
end if

end if
if is_repetitive and not in_repetition then

this is the first sample of a new repetition, save the seed
seed← sample

end if
end while

This last section completes the design of the system that is needed for the recognition and
segmentation of repetitive motions in joint user-sensor spaces. With such a classifier and the
segmentation algorithm, a continuous stream of samples from the joint user-sensor space can
be analysed in real-time, its repetitive nature assessed and the number of repetitions within
a repetitive section can be counted. As a result, an experiment can be undertaken in which
participants are rewarded for the repetitive nature of their motions.

5.7 RTR Experiment

We designed an experiment with the following questions in mind:

• What kind of motions do users produce when rewarded for repetitiveness?

• What volume do repetitive motions occupy and how does it compare with the volume
observed in the RTO experiment?

5.7.1 Apparatus

A desk providing an interaction area of 78cm by 78cm was overlooked by an Intel Realsense
camera, which through custom software provided the optical tracking of a marker that partic-
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ipants were wearing in between their index and middle finger and attached by a stretchable
strap. This setup is similar to the one employed for the RTO experiment, see 5.5. An office
chair was facing the camera and the interaction area.

The computer running the tracking software was also responsible for running the signal pro-
cessing that transformed readings from the tracker into 6-dimensional vectors from the joint
user-sensor space. From the samples, our model was classifying in real-time the repetitive
nature of the currently observed motion. The audio feedback responsible for conveying the
reward to the participants was designed as such: a background sine wave at 90Hz would in-
dicate the default state (not repetitive), and would be pitched up to 180Hz when the motions
produced by the participant were deemed repetitive by the output of the classifier. Once in
repetition, the segmentation algorithm would count the number of current repetition and on
the 10th cycles a high-pitched feedback would be produced at 270Hz with a 200ms decay,
indicating the completion of the task to the participants.

In addition, the state change of the audio feedback from neutral to repetitive was delayed
with 2 full cycles. This prevented participants from being subject to the initial fluctuations
in the output of the classifier at the beginning of a repetitive cycle and from being disturbed
by the audio feedback before having locked themselves into a stable motion pattern.

5.7.2 Task

The task for participants was to produce a cyclical motion of at least ten full period. The
completion of the task was conveyed through the audio feedback.

5.7.3 Procedure

Participants were seated by the desk and equipped with a marker. They were not given any
postural recommendations. Participants were explained the task. They were instructed that
the audio feedback would reward repetitive or cyclical motions of their hand, and that the po-
sition, velocity and acceleration would be taken into account as part of the repetitive nature of
their motions. They were then informed about how the audio feedback was constructed with
the differences between the three pitches. Finally, they were also instructed to emphasise
originality across repetitive motions.

5.7.4 Design

We ran the task with ten repetitions. As it was impossible to fail or abort the task, the number
of repetitions was chosen to keep the experiment under ten minutes, provided one task was
completed per minute.
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5.7.5 Participants

We recruited 6 participants, including 2 female participants, with a mean age of 35.5 and
standard deviation of 11.2 (min=23, max=55). All participants were right handed. The study
was approved by the University of Glasgow ethics committee. No participants presented any
mental or physical disabilities. These were the same participants that took part in the RTO
experiment. They were as such familiar with the concept of reward through audio feedback.

5.7.6 Results

The data collected through the experiment was composed of the samples from the joint user-
sensor space, time stamped and evenly sampled in time at 30Hz. For each sample, the output
of the classifier was also recorded.

The experiment lasted for 4.8min on average with a standard deviation of 2.4min, a min-
imum at 2.7min and a maximum at 9.3min, indicating that all participant did manage to
produce ten cyclical motions of ten repetitions each, as measured by our algorithms. We
also computed the percentage of time the participant did produce motions that were deemed
repetitive. On average, participant motions were deemed repetitive 68% of the time with a
standard deviation of 14%, a minimum at 41% and a maximum at 84%. The participant that
took the longest time to complete the experiment was not the participant that had the lowest
fraction of time with repetitive motions. Instead, it is the difficulty to complete ten consecu-
tive repetitions of a single motion that rather explains the time taken for the experiment.

All the cyclical motions with their full ten repetitions are plotted on Figure 5.14, with one
participant per columns. The last row on the figure shows the samples that were excluded
from this segmentation process. For clarity, we did not include the unit on the individual
plots, but they are all centred on the origin, plotted with equal proportion on both axis and
the grid is sampled every 20cm. All motions thus fit within a square of 80cm by 60cm which
is similar to the interaction area that was proposed to the participants. Regarding the shapes
produced by the participants, linear motions produced by a back and forth between two
inflection points are the most common with 20 occurrences. All participants produced that
shape, with the extreme case of the participant plotted on the last column who did produce
it exclusively. Figure of 8 follows in terms of frequency of appearance with 9 occurrences
(clustered in two groups, one having sharp corners) and their presence is observed in all
participant but two. Six motions present a very small amplitude and should be considered
as false positive from our classifier. Circles are also present with four occurrences, which
could also be clustered together with one ellipse. The rest of the shapes are triangles, arrows,
squares, figures of 8 with more twists and complex shapes which result of the composition
of these elementary patterns.
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Figure 5.14: Dataset of cyclical motions collected through the RTR process plotted in X0
and Y0, one columns per participants. For clarity, tick labels are removed, squares have
dimension 20cm by 20cm and subplots’ centres are at the origin. The last row displays the
data points that were considered as not part of the task during the experiment (left). Chosen
extract of the motions produced by the elicitation process for surface computing, reproduced
and adapted from [Wobbrock - 2009] (right).

For comparison purpose, and to draw similarities between the process of elicitation in HCI,
the output of an elicitation study for surface computing by Wobbrock et al. [37] is reproduced
by the side of the motions that were produced by RTR, see Figure 5.14. The shapes selected
present some similarities, such as geometrical pattern (circle and cross) or linear and circular
motions. One main difference for the shapes omitted lies in the presence of bi-manual ges-
tures, which our experiment did not support or composite touching gestures which required
users to lift their fingers. These missing motions could however be also integrated in the
process proposed by RTR.

Finally, the volume of the joint user-sensor space occupied by these repetitions was computed
and compared to the volume of the joint user-sensor space captured in the RTO experiment,
see Table 5.6. Overall, the mean value of the logarithm of the volume was smaller for the
RTR experiment than for the RTO experiment. The variation across participants was also
smaller for the RTR experiment than for the RTO experiment. It was expected that the
repetitive motions consist in a subset of all possible motions, hence the smaller volume.
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log(VRTR) log(VRTO)
mean -11.6 -9.53

std 2.5 3.83
min -14.2 -14.27
max -8.4 -5.88

Table 5.6: Volume for the joint user-sensor spaces measured during the RTO and RTR ex-
periments.

Discussion and Future Directions

To identify repeatability in motions, the concept of cyclical motions was used and a model
has been built to produce synthetic samples of such category. The basis for this decision
comes from a study from Guiard [118] in which it is argued that motions are not a con-
catenation of movement primitives but rather should be described as oscillations. And that
despite the prevalence of pointing motions in HCI, which are usually described as half-cycle,
fully cyclical motions are potentially the more general building blocks of motions. They have
indeed been successfully modelled as such [58]. However, considering the results from the
comparison of motions elicited by RTR and an elicitation study for surface computing [37],
it is clear that more diversity in terms of motions is required to cover a bigger proportion of
what can be produced in elicitation studies. This could, for instance, include motions which
have a pause in between two full-cycles. These were not present in the dataset but could be
created.

Also, it would be interesting to see how the properties of the classification model influences
the stability of the motions produced by participants. In the RTR experiment, the threshold
for the operating point of the classifier was kept constant but it is possible to chose any
value between 0 and 1. The same idea applies to the type of data we provided the model
for its training. We chose a fixed value of for the amplitude of the Perlin noise at 30%
of the maximum amplitude of the cyclical motions. By increasing or reducing this value,
it could be possible to generate different levels of stability in the cyclical motions. For a
level of 0%, the repetitions are identical, indicating a perfect stability across time of the
motions, while for bigger value, the noise level tends to overtake the signal represented by
the cyclical motions. At the extreme, cyclical motions are undistinguishable in the noise and
their properties should be similar to those of random motions.

The audio feedback that was devised in the original experiment was conveying only the
repetitiveness of motions back to the user. In the RTO experiment, a notion of originality
was automatically fed back to the users. This allowed for a search process to take place in
which users would explore the originality in the motions they could produce. In the RTR
experiment, this feedback was lacking. Therefore, we instructed the participants to produce
repetitions that they deemed original. Including a feedback on the originality of repetitions
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as compared to previously recorded ones consists an important extension to the technique
we presented. However, more complex models of motions are needed here to provide such a
measure.

Finally, the techniques presented here are not specific to upper limb gestural interactions.
They could be applied to any other joint user-sensor space such as the ones describing inter-
actions with mobile devices.

5.8 Conclusion

This chapter has defined joint user-sensor spaces and different measures that can be used
for their quantification. Drawing from the method of elicitation used in HCI, a process for
the exploration of these spaces was revisited and applied to the specific case of upper limb
gestural interactions on planar surfaces. The volume of such spaces was compared for the dif-
ferent cases of the interactions we have proposed in the previous chapters and displayed that
the gesture typing interaction occupied the smallest interaction volume of all investigated
interactions. A weak correlation was found between interaction volumes and information
throughput which introduced the need for measuring the repeatability of motions produced
in joint user-sensor spaces. A discriminative model was trained on a synthetic dataset which
included random motions and cyclical noisy motions generated from a low-pass filtered ran-
dom walk, and the IDFT of a random spectrum with additive Perlin noise, respectively. A
user study captured a collections of motions participants deemed repetitive, which was com-
pared to the output of an elicitation study aimed at surface computing gestures.
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Chapter 6

Conclusion

There are many potent reasons for the introduction of new gestural interactions. Opportu-
nities afforded by the use of new sensors, the inclusion of novel body parts, or using a task
in previously unexplored scenario are all valid reason for the exploration of novel gestural
interactions. For instance, this thesis proposed to port text-input to optically tracked surface,
potentially making use of their low reliance of fine finger motor control and opportunities
for large interaction area. This thesis also proposed to repurpose an arm reach rehabilitation
exercise for digital game control and showed that an Arcade game such as Pac-Man can be
successfully played through an upper limb gestural interaction.

However, after an initial sketch or design phase, the introduction of new interactions results
in challenges with regards to their creation, optimisation or understanding. New sensors
often requires dedicated models for processing raw input data stream into variables users
can control, the many parameters and unexpected effects can lead to challenging optimisation
problems and user studies often reveal unexpected or unforeseen behaviours.

In this thesis, we have proposed to use a computational method to model these challenges.
We used concepts directly taken from a computing approach to frame gestural interaction
as computing problems, which granted access to tools usually employed in such scenarios.
For instance, framing the detection of touch contact between fingers and tabletops in RGB-D
image as a classification task naturally led to the use of supervised learning techniques. Using
digital games for physical rehabilitation was decomposed as a dual optimisation process
between in-game performance and user movements, for which design configuration can be
found provided an objective function with low sampling latency is available. Finally, the task
of eliciting motions was redefined as a search process in which users where guided through
by an audio feedback.
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6.1 Summary of Contributions

This thesis made a list of contributions, see section 1.2. Three types of contributions have
been made including new gestural interactions of the upper limb on planar surfaces, models
for their creation using machine learning techniques and results from tests and users studies
carried out with human participants.

New interactions have been proposed. In particular, Chapter 3 introduced the task of text
input through optically tracked surfaces using the technique of gesture typing. This was ex-
ecuted in an indirect absolute manner with varying scale and control/display gain. Chapter
4 proposed to perform the rehabilitation of arm reach through a gamified interaction. This
used off-the-shelf digital games, for instance Pac-Man, thanks to the creation of a special
input control modality which purpose was to serve as a interface to the game control mecha-
nism while requiring the motions needed for rehabilitation. Finally, Chapter 5 advanced the
idea of automated elicitation of motions specific to the upper limb on planar surfaces where
both variability and repeatability of motions were sough after. This was relying on an audio
feedback produced according to the real-time observed properties of motions.

Different models have been developed to enable these interactions. Discriminative models
have played a central role, with the use of neural networks in Chapter 3 and 5. These were
trained from datasets either collected from human participants or created synthetically from
other models supposed to simulate behaviours that were expected to be seen with human
participants. The reliance on datasets of interaction for HCI is a crucial step towards more
reproducibility. Probabilistic models of behaviours were also used, for instance in Chapter 4,
where the reference gameplay from participants was summarised as the product of low-level
variables’ distributions. These distributions were fitted to human participants data and were
employed to assess the likelihood of newly observed behaviours to be generated from the
same models.

To validate our design choices and answer our research questions, user studies and tests in
hospital settings have been conducted. In Chapter 3, the influence of scale on the perfor-
mance of text-input in an indirect absolute gesture typing task was measured. This revealed
that this interaction was slower than a control interaction on a tablet, and that the influence
of scale was measurable only on the error rate but not on the input rate. In Chapter 4, the im-
pact of a new control modality on user in-game performance was measured and was shown
to be negative according to expectations. We demonstrated that instrumenting the time-rate
of the game could counteract this effect. The influence of different locations of the virtual
control positions were also recorded and showed a positive, yet non-linear, effect on partici-
pant behaviour who overshot consistently their targets. Finally, in Chapter 5, the variability
of motions for upper limb interaction was recorded across five participants, shedding some
light on the structure of their physical ability in terms of speed and acceleration of their end-
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effectors. The maps that were produced constitute a potential tool for OTs in the quantitative
measure of human performance. The repeatability of motions was also recorded and showed
some similarities with motions elicited through conventional elicitation techniques.

In other words, the contributions in Chapter 3 add to the work of Xiao et al. [32] by intro-
ducing a new interaction to optically tracked surfaces, and by introducing machine learning
techniques to the processing needed to extract information from RGB-D images. Also, it
adds another data point to studies related to effect of scales on steering tasks [52], input
sizes on gesture typing [67], indirect gesture typing [66] or comparison between indirect
and direct input techniques [119]. The contributions in Chapter 4 are meant to extend the
frameworks proposed by Walther-Franks et al. [120] and Ketcheson et al. [88] by viewing
the use of off-the-shelf games as an optimisation process. This chapter clearly identifies the
role of the input control modality and provides a solution to the problem of balancing its
effect on user performance, which has been flagged as a long-standing issue [100]. Lastly,
the contributions in Chapter 5 offer an extension to the work of Williamson et al. [107] by
tackling the problem of classifying motion repetitions in continuous sensor streams. Also, a
clear connection with elicitation studies [36] has been established.

This thesis proposed to explore how a computational approach to gestural interactions can
address the challenges their creation, optimisation or understanding present. The list of
requirements for a computational approach is reproduced here for clarity:

1. an explicit mathematical model of user-system behaviour;

2. a way of updating that model with observed data from users;

3. an algorithmic element that, using this model, can directly synthesise or adapt the
design;

4. a way of automating and instrumenting the modelling and design process;

5. the ability to simulate or synthesise elements of the expected user-system behaviour.

We can see that all but one of the elements of this list were used. The model of touch contact
between fingers and tabletops from Chapter 3 implements the first item, while the model of
reference gameplay from Chapter 4 fits the second item. The use of the digital game’s time
rate for user experience optimisation in Chapter 4 is linked to the third item and the models
of synthetic motions such as the random walk and oscillators from Chapter 5 are relevant to
the last item. The fourth item, seeking to automate the design process, was not approached.
The design process was instead conducted through discussions and design workshops with
OTs.
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6.2 Limitations

Despite the previous list of contributions made by this thesis, there are a number of limita-
tions to this work.

Role of Motor Impaired Users in Experimental Studies

One of the main limitations lies in the relative lack of participants who have sustained a SCI
in experimental studies. This shows throughout the whole thesis but is especially prevalent
in Chapter 3, in which no physically impaired participants had the opportunity to test the
system affording gesture typing through optically tracked surfaces. During a discussion with
OTs, the feedback they provided hinted that the design of the interaction itself might not
be well adapted to users with SCI. These were accustomed to using their mobile devices
and used various mitigation strategies to interact with common touchscreens available on
smartphones, as pointed out in research studies such as the one carried out by Anthony et
al. [18]. This highlights the importance of participatory design in the establishment of a
new interaction. In Chapter 4, some participants with SCI were involved and provided very
valuable qualitative feedback validating the decisions made until then. It was however not
possible to quantify their interactions with the digital game and measure their hand move-
ments on the tabletop. This would have provided some data for measuring the potential of
this interaction for upper limb reach rehabilitation. The last chapter would also have bene-
fited from participation of users with motor impairment, especially when it comes to the data
visualised as a reachable map or maximum velocity and acceleration maps. Some differ-
ences were already observed between participants of the user study, but comparisons across
different user groups are usually very informative, such as the one produced by Findlater et
al. [22]. There exists thus some potential for extending the present work with further studies
involving participants with motor impairments. The interactions with OTs and patients in
the QEU hospital has however been immensely valuable, greatly helped finding innovative
ideas and topic for research that could benefit a larger population. This echoes the findings
from research focused on OTs [121].

Design of Experimental Studies

The user experiments presented in this thesis did recruit a relative small numbers of partici-
pants with 12 maximum users enrolled. For Chapter 3, this number was enough to uncover
some significant results. However, the conclusions drawn from for the experiment in Chapter
5 are limited in their applicability to a more general population.
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Chapter 3

The main limitation in this chapter consists in the lack of comparison of the performance of
the touch classification with other available systems or algorithms. Even though these were
published roughly at the same time as my research was carried out, the release of datasets
is unfortunately not yet a common practise in the field of HCI, preventing easily repeatable
experiments. To add to the research community, the source code and the dataset for the
detection of touch contact has been made publicly available.

Chapter 4

This chapter has been setting the tools for an optimisation of the design to take place, but
the user study has not been carried out. As a result, only the measure of performance with
low-latency has been considered as a contribution. A live optimisation of play sessions
with players having sustained a SCI would provided valuable information as to how finding
suitable configurations of design parameters can be carried out, especially in association with
OTs. Another shortcoming is the lack of user engagement modelling. This is usually done
through a lengthy qualitative procedure and was only partially done in this work through
interviews with the participants of the user study.

Chapter 5

The performance of the models used for detecting repetitions is highly dependent on the data
used for their training. The comparison with the results of the elicitation study for surface
computing [37] shows that better and more generic models are required if this technique is
meant to complement elicitation studies. This could be solved with a richer synthetic dataset
for example or by using example of motions from real participants. Also, the question of the
definition of noise in the synthetic models remains opened. The chosen technique to simulate
human motor limitations was to simply add Perlin noise to the amplitude of synthetic motion
trajectories. Given the results from the user study and preliminary tests with other input
modalities, such as a smartphone, the discriminative model appears to fulfil its intended
purpose but it is still unclear whether this noise model is realistic enough to elicit very high
quality repetitions for example.

6.3 Future Work

Each of the research activity conducted in Chapter 3, 4 and 5 do open several avenues for
research.
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6.3.1 New Avenues for Optically Tracked Surfaces

Given that continuous interaction, such as gesture typing, appear to be suitable for optically
tracked surfaces, others ecologically valid task should also be investigated. It is not unre-
alistic to imagine that such interactions could complement regular interactions with mobile
devices. These would benefit from the added real estate provide by such systems, or the
possibility to instrument the texture [122], the relief and topology [123] of the interaction
surface. Another complementary avenue for research is to leverage the ability of tracking
the user pointer when it is not in contact with the surface, opening a lot of potential for the
association of touch and mid-air input. More research is however needed before such inter-
actions are commonplace. In particular, understanding the interplay between the user and the
visual hover feedback provided on the screen is of prime importance, since it was observed
that a non-negligible offset on touch down was produced by the user motion.

6.3.2 New Avenues for Digitally-aided Physical Rehabilitation

Drawing from the limitations of this chapter, a potential research focus would consist in a
more thorough study of the parameter optimisation. The function that represents the effect
of SPREAD and T_RATE on NLL seems to be monotonic and not very noisy. Different op-
timisation technique could be employed for finding a suitable solution, but in practise these
remains to be seen. Beyond that objective, an investigation of the user engagement in relation
to low-level variables would be very interesting. In the current work, the user engagement
was assumed to correlates with the user performance. This model has some limitations and
understanding what in particular do players enjoy in their playful interaction could lead to
better design or smarter decision in the making of alternative input control modalities. This
is also related to solving the task of matching games with rehabilitation exercises. This chal-
lenge has not been the focus on the present research, and a solution was found through par-
ticipatory design sessions involving HCI researchers and OTs. But more complex or widely
different exercising than upper limb reach rehabilitation are also in need of increased user
motivation and the mapping between control and motions might not be as straightforward as
in the present work. Here, informing the design aided with a computational approach seem
to be a promising way forward.

6.3.3 New Avenues for an Automatic Elicitation Process

The need for finding motions that are suitable for gestural interaction does not yet have an
formalised approach when it comes to modelling user capabilities. The present approach
does provides with a way forward and it would be important to understand how this new data
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can be fed into a design process. For instance, the non-uniformity in distributions of maxi-
mum velocities and accelerations reached during the experiment could be used for selecting
easily performable, yet recognisable, gestures. Also, variability and repeatability were exclu-
sively targeted in this research, but other properties could be envisioned. The invention time
has been proposed as an interesting quantifiable property [107]. Understanding or defining
this in relation to the concept of a motion to be natural is a promising undertaking. Finally,
the present research was limited to upper limb motions on planar surfaces, but interactions
with smartphones or smartwatches, making use of IMUs would be very opportune to inves-
tigate.

6.4 Summary and Conclusion

Novel gestural interactions provide for valuable new experiences. Upper limb interactions
on planar surfaces, despite their defining limitations, have be shown to afford a variety of
scenarios, such as text-input or Arcade gaming. After an initial design phase, the creation,
optimisation and understanding of new interactions bring challenges a computational ap-
proach can address. It provides frameworks with strong descriptive capabilities and tools for
solving computing problems. Classification of images, optimisation and search process are
among the techniques employed here to support this assertion.

Some aspects of computational interaction design were not approached in this thesis, in
particular looking for ways of “automating and instrumenting the modelling and design pro-
cess.” This goes beyond what has been proposed in this work, but appears to be a natural
extension to the work on physical rehabilitation through games, and poses the important
question of the relationship between the task of design and computational design.
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Appendix A

Additional Pictures of Tools Created
by Occupational Therapists

The initial meeting with an occupational therapist organised at the QEU hospital provided
an occasion to photograh the various devices used to mitigate the motor limitations of the
hands of her patients. Most contraptions were custom-made and tailored to the individual
needs and physical properties of the patients, using a material that could be deformed once
heated. The resulting shapes were then fixed in place after cooling.
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APPENDIX A. ADDITIONAL PICTURES OF TOOLS CREATED BY

OCCUPATIONAL THERAPISTS

Figure A.1: Contraptions used for holding a pencil without requiring forces to be applied
by the fingers. A special extrusion is made in the centre for the insertion of a pen. Note
that the lack of flexibility of the material does not allow for different pencils to be used
interchangeably.
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Figure A.2: Contraptions used to enable interactions with a touch sensitive surface, such
as the one proposed by a smartphone or a tablet, without requiring extension of a single
finger. Many patients presented some symptoms of rigidity in their forearms muscles with a
consequence of a retraction of the fingers.
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APPENDIX A. ADDITIONAL PICTURES OF TOOLS CREATED BY

OCCUPATIONAL THERAPISTS

Figure A.3: Contraptions used to extend a specific finger, worn like a ring. This is meant
to enable the interaction with a touch sensitive surface as well. Other mitigating strategies
included the interaction with different parts of the hands.
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