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Abstract 

Investigating and exploring mechanisms of adaptive divergence is key to 

understanding how complex morphological traits have evolved. Exemplar 

systems of adaptive radiation, whereby numerous species have diverged from a 

common ancestor in a relatively rapid timeframe, can be used to test ideas 

about adaptive divergence. Adaptations of the trophic morphology are often the 

focus of divergence in adaptive radiations, but the evolution of such traits is not 

yet fully understood. With extensive variation in craniofacial shape, the Lake 

Malawi cichlids are an excellent system which can be used to investigate the 

evolution of trophic morphology. Traditional studies of divergence tend to focus 

on the relationship between shape and ecology, but an evo-devo approach which 

encompasses multiple aspects such as morphology, genetics, function and 

development can address questions about the evolutionary process in more 

detail. Furthermore, investigations which look at smaller scale patterns of 

divergence, such as between ecologically similar species or between sexes, can 

be especially enlightening as this can uncover more subtle aspects of variation. 

Ecological sexual dimorphism, whereby sexes diverge in ecologically relevant 

traits such as the trophic morphology, can represent one such type of subtle 

variation. This thesis explores the evo-devo of the trophic morphology with an 

interdisciplinary approach by considering multiple levels of adaptive divergence 

and their contribution to evolutionary process. Chapter 1 sets out of the context 

of these investigations and the background for this work.  

Firstly, the genetic basis of the mandible is explored in Chapter 2 to uncover 

new candidate genes. The mandible represents the first point of contact with 

the environment and as such is a key vertebrate trait, yet the complexity means 

the underlying genetic architecture is not fully understood. By investigating the 

genotype to phenotype relationship in high detail, I found a candidate gene not 

previously characterised in cichlid craniofacial studies, zeb1. Furthermore, there 

was strong evidence of sexual dimorphism in mandible shape and mapping 

highlighted regions for quantitative trait loci on the sex-determining 

chromosome. Following on from this, Chapter 3 utilised an engineering 

technique, finite element analysis, to assess how the mandible copes with 
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external compressive loading that would be expected during feeding. This 

analysis identified key structural adaptations in both species to enable them to 

cope with stress during feeding, and notably there was strong dimorphism 

between sexes. The final experimental chapter, Chapter 4, assessed phenotypic 

plasticity through a diet treatment experiment with the main aim to investigate 

sexual dimorphism in plastic response. Despite strong sexual dimorphism in 

morphology and function, plastic responses did not differ between the sexes. 

This is in spite of the fact that females are mouthbrooders, but this does not 

appear to place constraints on phenotypic plasticity. Discussed in detail in 

Chapter 5, the work presented in this thesis suggests that adaptive divergence 

between species and sexes could both be important to the evolution of the Lake 

Malawi radiation. By using an integrative approach which considers multiple 

mechanisms of divergence, this can enhance our understanding of the evolution 

of complex traits and the evolutionary process itself.  
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“All we have to decide is what to do 

with the time that is given us.” 

J.R.R TOLKIEN 
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Chapter 1:  General Introduction 

 

1.1 Adaptive Phenotypic Divergence 
Adaptive divergence involves the evolution of species or populations adapted to 

different ecological niches from a common ancestor. Related to this, adaptive 

radiations result in the evolution of multiple species within a lineage over a 

rapid time frame (Schluter, 2000). Notable examples of adaptive divergence 

include three-spine sticklebacks (Gasterosteus aculeatus) in British Columbia 

where there are six instances of sympatric species pairs that are morphologically 

differentiated to specialise in benthic and limnetic habitats and feed on 

different types of prey (Rundle, Vamosi and Schluter, 2003). In these pairs, the 

limnetic specialist, which generally feeds on plankton, has a narrower mouth 

and more, longer gill rakers and is generally smaller in size than the benthic 

specialists, which tend to feed on larger invertebrates (Schluter and McPhail, 

1993; Schluter, 1996; Bolnick and Lau, 2008). Similar phenotypic divergence 

along a benthic/limnetic axis has taken place in Arctic charr (Salvelinus alpinus) 

in postglacial lakes in Iceland and Scotland (e.g. Snorrason et al. 1994; Adams et 

al. 1998). While such adaptive divergence has been the focus of a large amount 

of empirical research, it is important to recognise adaptive changes can also 

occur at other levels of biological organisation; sexes can adaptively diverge to 

suit different niches, a phenomenon known as ecological sexual dimorphism 

(hereafter ESD). However, ESD has rarely been investigated making it unknown 

how widely this phenomenon may contribute to processes of adaptive divergence 

and radiation (Shine, 1989; Cooper, Gilman and Boughman, 2011).  

Adaptive divergence in populations may represent an early step of the three-

stage model proposed to explain the process of species formation via adaptive 

radiation (Streelman and Danley, 2003). In this model the first stage involves 

divergence based on habitat, such as in the stickleback example above where 

divergence occurs between benthic and limnetic habitats (Rundle, 2002; 

Streelman and Danley, 2003). The next stage of the model involves divergence in 

trophic morphology such as in the numerous trophic adaptations in African 
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cichlids including piscivores, planktivores, insectivores and molluscivores (Fryer 

and Iles 1972; Albertson et al. 1999; Streelman and Danley, 2003). The final 

stage of the model involves a diversification of phenotypes for communication. 

African cichlids are notable examples of this, whereby differences in male 

mating colouration is prevalent and proposed to be as a result of sexual 

selection (Deutsch, 1997; Streelman and Danley, 2003; Kocher, 2004). Whilst this 

model represents a general example of how adaptive divergence can proceed 

toward speciation, it is important that fine-scale, ecologically salient variation 

at different levels be considered as contributors to the process of adaptive 

radiation as a whole (Parsons et al. 2015 and references therein). 

Disruptive selection, usually thought to be due to ecological differences between 

habitats, can drive evolutionary divergence that reduces competition between 

individuals (Cooper, Gilman and Boughman, 2011). Sexual dimorphism can evolve 

because of differences in reproductive effort between sexes or due to 

differences in ecology. However, ESD, as a type of adaptive divergence, can 

result in a reduction of competition between sexes. As ESD can also be the 

product of the same ecological circumstances as adaptive speciation, and 

whichever of the two forms evolves first may reduce the disruptive selection 

needed for the other to evolve, this has led to the suggestion that both 

processes are “two sides of the same ecological coin” meaning that the two 

would not be expected to co-occur in the same population (Bolnick and Doebeli 

2003; Cooper, Gilman and Boughman, 2011). Positive assortative mating is 

thought to be incompatible with ESD because females cannot choose both a male 

ecologically similar to herself while still maintaining sexual dimorphism within 

the species (Bolnick and Doebeli, 2003). However, ecological modelling has 

predicted that speciation may be compatible with ESD if the traits that the 

mates prefer do not have an ecological function (Bolnick and Doebeli, 2003). 

Therefore, ESD has probably been neglected due to concerns that it cannot co-

exist with speciation.  

Previous studies of adaptive divergence have often focused on “form to ecology” 

relationships. For example, beak shape in Darwin’s finches and how it 

corresponds to diet which in turn informs which environments are inhabited was 
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first reported by Lack (1947); these ideas formed the basis of research on the 

adaptive radiation. Establishing the link between form and ecology then led to 

functional work in this group; research on the bite force, and therefore crushing 

ability, of these finches found a correlation between multiple measures of beak 

shape with biting force and this brought about multiple studies assessing various 

aspects of the relationship between function, form and ecology in more detail  

(Herrel et al. 2005, 2009; Soons et al. 2010). Functional studies can offer ideas 

on why morphological change occurs. To gain a further understanding of the link 

between morphology, function and ecology, Wainwright (1994) suggests the use 

of performance testing. According to Wainwright (1994), an organism’s 

performance is its ability to behave and carry out tasks, with the phenotype of 

the organism determining the boundaries of performance. These boundaries 

determine the resources that individuals can utilise and result in fitness 

consequences. For example, performance testing of feeding specialisations can 

involve comparing species with different trophic morphologies and diets and 

assessing how successful they are when their diets are reciprocally switched 

(e.g. Bouton, Van Os and Witte, 1998). This provides a means for determining 

how phenotypes react with different environments or resources. 

Performance testing has been used extensively in Anolis lizards (e.g. Losos and 

Sinervo, 1989; Losos, Warheitt and Schoener, 1997; Losos, 1998) to produce 

predictions about how certain morphological features function and have an 

effect on an organism’s performance in its environment (Wainwright, 1994). The 

Anolis lizard radiation in the Caribbean Islands provide an excellent example of 

how functional morphology studies can be carried out in conjunction with 

research on adaptive divergence (Losos, 1990; Losos and Irschick, 1996). Each 

island possesses a similar set of ecomorphs which have evolved independently 

and are divergent in morphology, ecology and behaviour (Losos, 1998). They all 

differ in fore-limb, hind-limb and tail length, as well as body shape and size; all 

of these features impact on how they perform in the environment (Losos, 

Irschick, and Schoener, 1994). The limb length and body size effects how the 

animal can perform on different surfaces in its environment; studies have shown 

how the function of having long legs and heavy bodies in Anolis lizards is to 

perform better on wide perches and jump farther than those with shorter legs 
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(Losos, 1990). The relationship between function, form and ecology is now well 

understood in the Anolis lizard radiation and this should now be used as a 

starting point to explore other examples of adaptive radiation and potential 

cases of ESD.  

Adaptations in trophic morphology have been key to many examples of adaptive 

radiation (e.g. Geospiza, Haplochromines). Specifically, the shape and structure 

of the jaw is subject to bite force limits that determine prey use (Wainwright, 

1994). For example, an investigation of feeding ability in species of Caribbean 

wrasse (Halichoeres sp.) showed that the pharyngeal jaw has a functional role 

through its crushing strength which constrains the dietary choices (Wainwright, 

1988). Furthermore, it was suggested that the fish specialised for crushing hard-

shelled prey effectively did so at the expense of being competent in feeding on 

soft bodied prey (Wainwright, 1988). This highlights the important role trophic 

morphology has in determining diet as well as the potential trade-offs in 

function that can result from specialisation. Studying the relationship between 

function, morphology and ecology can form an important part of research into 

the evolution of morphological specialisation in examples of adaptive 

divergence.  

Similarly, examples of ESD display features consistent with functional change, 

but explicit investigation from this perspective has been largely unexplored. 

Functional studies could be vital for determining the prevalence of ESD by 

determining whether sexual dimorphisms, which are commonly observed, 

provide functional advantages. Currently, functional morphological studies are 

increasingly merging with engineering by adopting powerful techniques to 

understand biomechanical variation. Additionally, how form and function are 

genetically controlled and develop is becoming an increasingly hot topic as it can 

provide additional insights into the evolutionary process (Irschick et al. 2013). 

Taken together, an interdisciplinary approach can be especially powerful for 

discovering the underpinnings of adaptation and raises exciting new questions 

and opportunities for further study.  
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1.2 Utilising Biomechanical Modelling to Investigate 
Function 
To comprehensively analyse the relationship between form and function, and 

how this relates to ecology, biomechanical modelling is an emerging technique 

that can be used. Indeed, Polly et al. (2016) proposed a framework that 

combines the techniques of morphometrics and biomechanical modelling to 

answer the evolutionary questions. Using biomechanics as a means of 

investigating an ecologically important trait can provide greater insight into why 

adaptation has occurred. For example, biomechanical modelling techniques such 

as finite element analysis (FEA) can combine three-dimensional (3D) shape of 

any object with the modelling of force transfer. FEA divides the structure of a 

three-dimensional model into separate areas called elements which are all 

joined together at their vertices, referred to as nodes. The model is then turned 

into a mesh by the FEA to represent the geometry of the shape. The mesh is 

then assigned both material and structural properties to control how the model 

will change under stress. By applying forces and constraints relevant to the 

organism, function can be examined. The stress and strains experienced can 

then be displayed on the model in different colours to reflect in the magnitude 

(Panagiotopoulou, 2009). FEA has proven to be a useful tool for analysing 

relationships in form and function in evolutionary biology where it is applied to a 

wide variety of biomechanical and functional studies including adaptive 

divergence (Panagiotopoulou, 2009). 

Given that the face interacts directly with prey through foraging, it is not 

surprising that the craniofacial region is a key component for many examples of 

adaptive divergence. Therefore, determining the biomechanics of feeding 

morphology using newer techniques (e.g. FEA) can provide a more 

comprehensive understanding of adaptation. Techniques such as 3D modelling 

and FEA represent a major recent improvement over standard methodology (i.e. 

simple linear measures based on lever mechanics) as they offer a more direct 

way of testing and visualizing function in terms of force transfer across an entire 

form. This can enhance traditional measures of function and force inferred from 

shape and muscle mass to approximate biomechanical abilities. For example, 
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when Wainwright (1987) estimated the feeding ability of the Caribbean hogfish 

Lachnolaimus maximus (a mollusc crusher), the value for the maximum potential 

crushing force of the pharyngeal jaw was inferred from calculations of potential 

force capability performed on muscles associated with biting (Wainwright, 

1987). Measuring the muscles associated with the jaw to estimate theoretically 

maximal bite force could have resulted in an underestimation of the true bite 

force as this method has a high level of error associated with measurements 

(Huber, Weggelaar and Motta, 2006).  

Research has moved towards incorporating FEA, which although an indirect 

technique, is much more comprehensive in how it takes account of form. As a 

technique for analysing the biomechanics of form and function, FEA is 

advantageous to use because both force and stress, as well the material 

properties of the bone can be modelled together (Ferrara et al. 2011). By 

including these details, FEA is particularly useful for investigating the 

biomechanics of natural variation in animals. For example, in Darwin’s Finches, 

FEA modelling by Soons et al. (2010) has shown that species with deep and wide 

beaks are able to dissipate stress better than those with long beaks. In addition, 

having this beak shape allows for the reduction of areas which would normally 

be under high stress; they are then able to crack hard seeds with a reduced risk 

of the beak breaking. In sharks, FEA has been utilised as a means to understand 

the link between jaw mechanics and feeding; in a comparison between great 

white (Carcharodon carcharias) and sand-tiger (Carcharias taurus) sharks, 

Ferrara et al. (2011) used FEA to show that differences in bite force and bite 

velocity between the two species are related to their diets and dentition. 

Therefore, FEA proves an important technique to incorporate into studies of the 

adaptive divergence of function, form and ecology.  

While FEA can be advantageous, it also presents some drawbacks in practice. For 

example, FEA models often do not feature directly derived material properties 

for the structure under study which compromises accuracy (Korioth and Versluis, 

1997). This problem can be eliminated by experimentally testing material 

properties but is often difficult and rarely conducted. For example, Hulsey et al. 

(2008) used FEA to determine the stress inflicted on the pharyngeal jaw of a 
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Herichthys minckleyi (a neotropical cichlid) morph when eating hard prey and 

had to use bone material properties which were described for similar structures 

in other vertebrates as there were none described for this species. The storage 

of samples used in evolutionary research (i.e. neutral buffered formalin and/or 

ethanol) alters the material properties, meaning it is often necessary to use 

previously defined material properties for other species (Peterson and Müller, 

2018). Keeping the properties constant between specimens can allow a 

comparison relating solely to the morphological changes and the resulting stress 

patterns (Peterson and Müller, 2018). When using different material properties 

to perform FEA, the pattern of the stress and strain is similar to what it would 

be with accurately measured properties, but the quantitative numbers and 

magnitude will differ (Strait et al. 2005).  

In addition, FEA modelling is often not properly validated by experimental 

testing (Korioth and Versluis, 1997). For example, Dumont, Piccirillo and Grosse 

(2005) used FEA for modelling bone stress during biting in bat skulls, a task that 

would have been difficult in vivo as it requires surgical placement of strain 

gauges within the mouth of the bats which could produce a negative impact on 

normal feeding behaviour. However, the authors stated that although FEA is an 

effective alternative, the results should still be compared with in vivo analyses 

of bone strain to confirm the results from modelling (Dumont, Piccirillo and 

Grosse, 2005). Similarly, to investigate how the skull of two species of Lake 

Malawi cichlids coped with stress during biting, Cooper et al. (2011) used FEA 

and reported that a species which had short faces with steeply descending 

profiles had a more robust neurocranium which was capable of handling this 

stress. Part of this study involved modelling the expected bite force of the jaws 

but because there was no data available from direct testing, an estimation of 

the bite force was used. While FEA can serve as a substitute for direct testing, it 

is likely to be more informative when combined with traditional simpler 

methods, and whilst some complications exist, proves a step in the right 

direction to understanding how form and function interact. 
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1.3 Reasons, Prevalence and Mechanisms for Sexual 
Dimorphisms 
Differences between the phenotypes of males and females of a species are 

common in nature and defined as sexual dimorphism. ESD is a special case of 

sexual dimorphism and is thought to evolve when males and females face 

different selection pressures in shared, ecologically relevant traits. However, 

because the same genome must remain compatible in sexually reproducing 

species, this is often termed sexually antagonistic selection (Cox and Calsbeek, 

2009). Sexually antagonistic selection has been explored in Soay sheep where 

horn phenotypes are subject to different selection pressures in males and 

females. Males with reduced horns (referred to as scurred) produce fewer 

offspring per year than those with normal horns, however in females, the 

scurred horn phenotype is advantageous (Robinson et al. 2006). Sexual 

dimorphism can however potentially overcome the genetic conflict caused by 

sexually antagonistic selection (Cox and Calsbeek, 2009).  

Fortunately, investigations of ESD can be readily expanded through a set of 

criteria proposed by Selander (1972) to detect ecological causes for sexual 

dimorphism. These criteria suggest that sex-based modifications of the size or 

shape of trophic morphology, which would not be expected to result from sexual 

selection, is the most reliable way to conclude an ecological role in sexual 

dimorphism. However, Shine (1989) suggests that these criteria are too difficult 

to use in practice because it may exclude cases where there is ESD in traits 

other than the trophic morphology (for example, body size) or cases where the 

trophic morphology has diverged in response to ecology but also relates to 

reproduction. Any instances of sexual dimorphism related to reproduction that 

have not evolved under sexual selection, such as one sex using the mouth for 

nest building, could be considered ESD by Selander’s (1972) criteria (Shine, 

1989). For example, the buccal cavity volume of male coral reef cardinalfish 

(multiple species of the family Apogonidae) were found to be larger in males 

than females in five out of seven species investigated by Barnett and Bellwood 

(2005) and this was only attributed to the fact that males are mouth-brooders; 

this could be considered as ESD using the criteria above despite the fact that no 
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trophic aspect was considered. The function of the trophic apparatus, whether it 

be a foraging or reproductive role (or both), is not fully understood in cases of 

adaptive divergence. Recent work by tkint et al. (2012) investigated the trade-

off between mouthbrooding and feeding performance in a ‘biting’ and a 

‘sucking’ species of haplochromine cichlids. The authors observed a trade-off 

between feeding performance and mouthbrooding in the two species and 

suggested that there were potentially numerous selection factors acting on 

males and females during the African cichlid radiation events. It would also be 

challenging to conclude that differences in trophic morphology are solely due to 

ecological reasons if there are foraging and reproductive pressures that rely on 

the same anatomy. It is therefore possible that the criteria above are not 

applicable in practice (Shine, 1989), and that the evolution of ESD encompasses 

a mixture of factors relating to both ecology and reproduction with functional 

trade-offs between these factors playing a key role in the evolution of trophic 

traits.  

Perhaps the most convincing examples of ESD in nature involve a series of 

studies in hummingbirds. Temeles and Roberts (1993) found that in rufous 

hummingbirds, female bills were 10.5% longer than males and that this is related 

to a difference in foraging ability; however, they concluded that despite strong 

evidence of ESD, reproductive factors and sexual selection may have also played 

a part in this dimorphism. Similarly, in hermit hummingbirds, the bill is 60% 

more curved in females than in males with evidence indicating that this is due to 

differential use of plants for food (Temeles, Miller and Rifkin, 2010). Finally, 

males and females of the purple throated carib hummingbird (Eulampis 

jugularis) feed from dimorphic Heliconia flowers that correspond to the shape 

and size of their bill (Temeles et al. 2000). In addition to the hummingbird 

examples, other taxa demonstrate evidence of ESD suggesting that it is 

potentially widespread in nature. For example, in Anolis lizards, there are sex 

differences in diet, behaviour and microhabitat use linked to differences in body 

shape (Butler and Losos, 2002; Butler, Sawyer and Losos, 2007). This is notable 

since Anolis are an exemplar system for the study of adaptive radiations. For 

other reptiles, sexual dimorphism in head size and shape is prevalent in snakes 

and is likely due to ESD as sex-based dietary differences have been recorded for 
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Arafura file snakes and twelve other species (Shine, 1991; Houston and Shine, 

1993). These findings from hummingbirds, snakes and lizards strongly suggest a 

wider prevalence of ESD and support the need for research of ESD in the context 

of adaptive divergence.   

Tests for the presence of ESD in fish have been especially rare. In skates 

(Rajidae), some species can display sexual dimorphism in tooth shape whereby 

female teeth are adapted for crushing whereas male teeth are adapted for 

tearing; these trophic differences are suggested to reduce foraging competition 

(Feduccia and Slaughter, 1974). Additionally, sticklebacks, which provide model 

examples of adaptive divergence, show evidence of ESD. Cooper, Gilman and 

Boughman (2011) reported that differences in head shape between sexes was 

greater than between eco-morphs and concluded that sexual dimorphism is 

likely linked to differences in feeding, but sexual selection may also be involved. 

Similarly, following an examination of ten populations of threespine 

sticklebacks, Aguirre and Akinpelu (2010) reported sexual dimorphism in trophic 

morphology suggesting niche divergence between the sexes. Differentiating 

between ESD and dimorphism due to sexual selection is challenging, however, 

investigating the functional aspects of dimorphic characteristics could help to 

distinguish between the two factors. Whilst clear and unambiguous cases of ESD 

are limited, the evolution of sexual dimorphism may actually be the result of 

multiple factors such as ecological divergence and sexual selection acting 

together (Bolnick and Doebeli, 2003).   

 

1.4 The Genetic Basis of Adaptive Variation 
Evolution is often defined as genetic change over time. Therefore, exploring the 

genetic basis of divergence in relation to morphology, and how this impacts on 

function and resource use, is key to understanding the evolutionary process of an 

adaptive radiation (Irschick et al. 2013). While it is important to elucidate the 

genes responsible, it is also of interest to know how the different morphologies 

initially arise. In terms of developmental timing, traits which are functionally 

simplistic are thought to develop early on compared to complex and integrated 
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morphological traits (Irschick et al. 2013). Therefore, examining the 

development of different morphological traits can improve our understanding of 

the evolution of function. Evolutionary change in function can be relatively 

simple; in the structures that make up the bat wing, small changes in expression 

of a handful of important genes during development and the evolutionary 

process of bats have resulted in large changes in bone morphology (Sears, 2008). 

Thus, there is a growing movement toward combined studies of development, 

function, and genetics within the context of adaptive divergence (Irschick et al. 

2013). 

So far, studies focused on determining the genetic basis of adaptation have 

largely implied functional changes without direct tests of “form to function”. 

For example, both Cam1 and bmp4 genes have been identified to have a role in 

determining the shape of the mandible. Further study shows that both of these 

genes are involved in the early development of beak shape in finches, and in the 

mandible shape of cichlids (Abzhanov et al. 2004; Albertson et al. 2005; Parsons 

and Albertson, 2009). Furthermore, the Cam dependent pathway is likely to have 

been involved in the evolution of beak length (Abzhanov et al. 2006). Cam1 is 

specifically predicted to play a role in the shaping and remodelling of the jaw 

(Parsons and Albertson, 2009). For bmp4, Albertson et al. (2005) concluded that 

it has a role in controlling the biting or crushing morphology of the cichlid 

mandible. Similarly, in finches, bmp4 expression shows a strong association with 

deep and broad beaks used for crushing seeds (Abzhanov et al. 2004). 

Additionally, the ptch1 gene has recently been shown to associate with adaptive 

changes in the mandible of cichlids (Roberts et al. 2011); it remains to be 

determined if this gene is important for morphological divergence in other 

adaptive radiations. Whilst we understand to a certain extent the roles of these 

particular genes, the genetic and developmental basis of adaptation is a route 

that needs to be explored in conjunction with tests of biomechanical function 

and how this relates to different morphologies.  

Whilst genetic control of the jaw has been explored between species, this area 

has seldom been covered for sex. As stated previously, one reason is that it is 

difficult to provide evidence that ecological factors are responsible for 
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differences between the sexes. There is also a degree of genomic conflict 

involved in the evolution of sexual dimorphism whereby the same genes code for 

the same traits in both males and females (Leinonen, Cano and Merilä, 2011). 

Populations of three-spine sticklebacks show sexual dimorphism in certain traits; 

however, despite the fact that the genetic basis of these sexually dimorphic 

traits (body shape and armour) is similar in both sexes, this has not prevented 

their evolution. It has been reported that traits for body shape and size have 

been genetically mapped to the sex chromosome suggesting that differential 

gene expression between sexes for these traits could provide a resolution to  

genomic conflict (Leinonen, Cano and Merilä, 2011). Similarly, in Lake Malawi 

cichlids, there is a sexually antagonistic trait in the form of colouration; the 

orange blotch (OB) phenotype is advantageous to female fitness but not to 

males. To overcome this genomic conflict, rather than sexually dimorphic gene 

expression, Roberts, Ser and Kocher (2009) have suggested that this OB locus is 

under tight genetic linkage with an important female sex determining region. 

The problem of genomic conflict is important to the evolution of sexual 

dimorphism, how organisms overcome this will prove an important area to 

investigate with regards to understanding the genetic basis of adaptive variation 

and more specifically, ESD. 

 

1.5 Environmental Influences on Adaptive Variation  
Whilst elucidating the genetic basis of phenotypic traits is important, how the 

environment influences adaptive phenotypic variation is becoming a key area of 

evolutionary research. In the majority of studies exploring the relationship 

between the genotype and phenotype in natural populations, the percentage of 

variation in the phenotype that can be explained solely by the genotype is 

relatively small (Hu and Albertson, 2017). In addition to understanding the link 

between the genotype and phenotype, the field of evo-devo seeks to also 

understand how developmental processes can bias or constrain evolutionary 

change (Raff, 2000; Brakefield, 2006). Epigenetics, first described by 

Waddington (1942; 1957), includes factors above the level of the genotype that 
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can also influence how the phenotype develops (Jamniczky et al. 2010; Hu and 

Albertson, 2017). For example, the biomechanical environment an organism 

experiences during development can influence the resulting phenotype. This is 

the case for bone shape which is influenced by mechanical forces experienced 

over ontogeny (Young and Badyaev, 2007; Klingenberg, 2010). Similarly, recent 

work by Hu and Albertson (2017) demonstrated an epigenetic mechanism in 

adaptive craniofacial variation in Lake Malawi cichlids whereby different 

biomechanical conditions in the form of gaping behaviour of the larvae (both 

natural and experimentally induced) had an effect on craniofacial shape. 

Nonetheless, genes underlying traits are a major part of understanding the 

process of evolution, however it is clear that environmental effects during 

development are also crucial to phenotypic variability and adaptive divergence.  

The production of multiple phenotypes from one genotype in response to 

variable environmental conditions, termed phenotypic plasticity, provides 

organisms the chance to respond to environmental variability and is therefore an 

important factor to consider with regards to adaptive divergence (West-

Eberhard, 1989; Murren et al. 2015). Within the field of evo-devo, numerous 

theories for the role of phenotypic plasticity in adaptive radiation have been 

suggested. Dating back over a century ago, the Baldwin effect (originated by 

Baldwin 1896, 1902), represents a key theory of phenotypic plasticity whereby 

plasticity allows for adaptation to the environment and this variation is then 

acted on by the process of natural selection (Crispo, 2007). Additionally, genetic 

assimilation asserts that a plastic trait can become canalised when the 

environment stabilises with the trait expressed regardless of environmental 

conditions (Waddington 1953; West-Eberhard 2003). If the environment 

continues to vary, then this trait can remain phenotypically plastic, thus 

resulting in polyphenism within a population (Waddington 1953; West-Eberhard 

2003; Parsons and Albertson 2009). The spadefoot toads (Spea sp.) display 

polyphenism and represent one of the most notable examples of adaptive 

divergence through phenotypic plasticity whereby either a carnivorous or 

omnivorous phenotype develops depending on prey density (Pfennig 1990; 

Pfennig and McGee, 2010). Given that fish and amphibian taxa which show 

polyphenism in response to competition for resources have a greater species 
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richness than those that do not, it has been suggested that phenotypic plasticity 

could be the key process that accelerates an adaptive radiation (West-Eberhard 

2003; Pfennig and McGee, 2010; Pfennig et al. 2010)).  

The role of phenotypic plasticity in the process of adaptive radiation has been a 

key topic of discussion in the especially within the context of the extended 

evolutionary synthesis (EES). The EES is an updated conceptual framework which 

posits that factors such as developmental bias and plasticity are key to how 

evolution progresses (Laland et al. 2015). The EES attempts to move away from 

the traditional gene-centric view and has been a recent, albeit controversial, 

topic of discussion within the field of evolution (see Laland et al. 2014). Indeed, 

the plasticity-first hypothesis is the idea that adaptive traits are generated and 

advanced by phenotypic plasticity; although this idea is somewhat controversial 

(see Levis and Pfennig (2016) for discussion). Adaptive radiation is the evolution 

of multiple species over a rapid time frame from an ancestral population in 

response to differing ecological conditions (Schluter, 2000). If environmental 

conditions change, plasticity can provide a rapid change in phenotype and 

therefore promote diversification (West-Eberhard 2003; Pfennig et al. 2010). 

Phenotypic plasticity could aid survival and provide a quick phenotypic response 

in new environmental conditions, therefore enabling the process of adaptive 

radiation to occur (Pfennig et al. 2010). The “flexible-stem” model proposes 

that plasticity in an ancestral group represents the phenotypes present in the 

subsequent adaptive radiation (West-Eberhard 2003; Pfennig et al. 2010). The 

flexible stem model has been supported in exemplar adaptive radiations 

including threespine stickleback (Wund et al. 2008), and the focus of this thesis, 

African cichlids (Parsons et al. 2016). In their paper, Wund et al. (2008) 

examined the plastic response of marine stickleback (the ancestral population) 

and reported a plastic response in phenotype similar to the freshwater benthic 

and limnetic ecotypes. It is evident that phenotypic plasticity could therefore 

play a key role in the radiation process.  

Given that ESD is a type of adaptive divergence, it is logical to hypothesise that 

there could be dimorphism in phenotypic plasticity between sexes. In beetles, 

some traits relating to sexual selection, such as weapons and ornaments, exhibit 
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sexual dimorphism in plasticity which is controlled by links to sex-determining 

loci and the condition of the organism (Zinna et al. 2018). However, relatively 

few studies on phenotypic plasticity within the context of adaptive radiation 

consider this possibility. Sexual dimorphism in plasticity could have functional 

and ecological consequences if the trait in question is under divergent selection. 

In the case of ESD, in a trait that has ecological consequences it would therefore 

be logical to suggest that a difference in plastic response to a changing 

environment between sexes could contribute to ESD.  

 

1.6 African Cichlids as an Evo-Devo Model  
To examine adaptive divergence in relation to function, the cichlid fish which 

inhabit the East African Great Lakes are an excellent model as they show 

extensive craniofacial variation across their adaptive radiation (Cooper et al. 

2010). This diversification has allowed for the exploitation of different 

environmental niches and food sources. These niche specialisations can include, 

but are not limited to, planktivores, insectivores and mollusc crushers (Albertson 

et al. 1999). Species are separated into two broad foraging categories; suction 

feeders who feed on mobile prey, and biters, who feed on hard prey (e.g. 

molluscs), or algae attached to rocks (Albertson and Kocher, 2006). Suction 

feeders are characterised by long, slender jaws whereas short, broad jaws are 

possessed by biters (Albertson et al. 2005). The two focal species of this thesis, 

Labeotropheus fuelleborni (LF) and Tropheops “Red Cheek” (TRC), are both 

algal feeders but differ in their feeding mode; LF are algal scrapers whereas TRC 

pluck and twist to remove strands of algae from rocks (Parsons et al. 2015; 

Albertson and Pauers, 2018). Both species are biting feeders, but the subtle 

differences in morphology and foraging behaviour mean they are an excellent 

choice for exploring finer scale patters of divergence (Figure 1-1; Parsons et al. 

2015). As the extent and axis of morphological variation in this radiation is well 

known, they provide an excellent model to test ideas about form and function 

and how this relates to ecology.  
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The variation in craniofacial shape of African cichlids can be utilised for genetic 

studies because they are closely related and share a common genetic 

background (Powder and Albertson, 2016). This means they are an excellent 

laboratory model to test ideas about the genetic control of adaptive divergence 

(Albertson and Kocher, 2006; Streelman, Peichel and Parichy, 2007). Indeed, 

recent data has showed that Lake Malawi cichlids have a lower genetic diversity 

than laboratory reared zebrafish (Danio rerio) (Loh et al. 2008). This high 

phenotypic variation in conjunction with low genotypic variation means that 

African cichlids are an excellent choice for population genomics and quantitative 

trait loci studies to investigate the relationship between the genes linked to 

phenotypic variation (Powder and Albertson, 2016). Furthermore, as this 

variation is similar to craniofacial disorders in humans, a common birth defect, 

potentially understanding the genes involved in mandible shape and 

development in cichlids will not only enhance our understanding of evolutionary 

ideas, but could have a clinical benefit as well (Parsons and Albertson, 2009).  

Sexual dimorphism is prominent in African cichlids, but there has been 

comparatively little investigation into ESD. So far, most research has focused on 

sexual dimorphism in body size and of the few studies which consider sexual 

dimorphism of trophic morphology, the focus has been on how this relates to 

reproduction and sexual selection (e.g. Oliveira and Almada, 1995; Herler et al. 

2010). Recently, Parsons et al. (2015) reported sexual dimorphism in craniofacial 

shape in the F2 generation of LF and TRC hybrids and suggested that this 

dimorphism has been an important part of the Lake Malawi cichlid radiation as it 

aligns with the divergence between species, and the adaptive radiation as a 

whole. This evidence suggests ESD needs further investigation in African cichlids. 

Notably, Lake Malawi cichlids use their mouths for specialised foraging, while 

females also use their oral cavity to brood their young. This provides a key 

element for cichlids to contribute to our understanding of ESD, as sexes are 

likely to differ in their degree of trade-off between foraging and reproductive 

uses for their mandible; this is also pertinent to the idea of sexual dimorphism in 

plastic response. Comparisons between males and females in shape, function, 

and plasticity could therefore be indicative of ESD and perhaps enhance our 

understanding of how adaptive radiations occur. 
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Figure 1—1: The two focal species of this thesis: a) Labeotropheus fuelleborni and b) Tropheops 
"Red Cheek". Photographs taken in the University of Glasgow aquarium facilities. 
 

1.7 Conclusions  
To conclude, the genetic basis of shape and function in the craniofacial region of 

examples of adaptive radiation have yet to be determined in detail. Adopting an 

approach which combines the biological questions with functional techniques 

should provide more insight into these processes. Traditionally in the study of 

adaptive divergence, functional morphology studies have been overlooked in 

favour of a more simplistic methods to relate form to ecology. It is timely that 

the study of adaptive divergence and ESD move toward integrative studies of 

how form, function, genes and ecology are interrelated as this would provide a 

greater insight into the evolutionary process. African cichlids are an excellent 

evolutionary model which can be tested in the laboratory and as such, they 

provide a way to test evolutionary ideas and questions about adaptive 

divergence and ecological sexual dimorphism that may be applicable to other 

forms of adaptive radiation. 

 

1.8 Outline of Thesis 

In Chapter 2, I use an F2 hybrid population (from LF and TRC) to investigate the 

genetic basis of mandible shape using µ-CT scanning in combination with 3D 

geometric morphometrics and genotype information. I test for sexual 
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dimorphism in mandible shape and use quantitative trait loci (QTL) mapping to 

investigate candidate genes of interest involved in the adaptive divergence of 

the mandible. I then use whole mount in-situ hybridisation (WISH) to test for 

evidence of differential candidate gene expression between LF and TRC at a 

crucial point of development of the mandible. 

In Chapter 3, I use 3D morphometrics to investigate the morphology of TRC and 

LF to test for sexual dimorphism in mandible shape in the two parental species 

of this thesis to complement the data presented in Chapter 2. In addition, I use 

finite element analysis (FEA) to explore how the mandible copes with loading 

which could be encountered during foraging to test questions about interspecific 

and intraspecific divergence using finite element meshes created from 3D 

models of TRC, LF and F2 mandibles.  

In Chapter 4, I investigate phenotypic plasticity in craniofacial shape with a diet 

treatment experiment, morphometrics and then assessments of functionally 

relevant traits to approach phenotypic plasticity from a novel angle by 

considering whether there is a sexually dimorphic aspect to phenotypic plasticity 

in African cichlids.  
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Chapter 2: Exploring the Genetic Basis of Adaptive 
Divergence in the Cichlid Mandible 

 

2.1 Abstract 
To enhance our understanding of the process of adaptive radiation, it is 

necessary to consider a range of contributions from different levels toward 

divergence patterns. In this chapter, the genetic basis of phenotypic divergence 

is explored using an F2 hybrid cross between Labeotropheus fuelleborni and 

Tropheops “Red Cheek”. These two Lake Malawi cichlids occupy a similar 

ecological niche but use different tactics to exploit food. While most studies in 

this context would only focus on divergence between species, this chapter also 

considers the possibility of ecologically relevant sexual dimorphism. Using a 

novel method in combination with geometric morphometrics, patterns of shape 

variation in the mandible were quantified and tested for associations with 

genotypic variation through a quantitative trait loci (QTL) mapping approach. 

The major axis of shape variation related to the width of the jaw in the F2 

hybrids and this was likely attributable to species differences, however there 

was also strong evidence of sexual dimorphism in mandible shape which could be 

ecologically relevant. Following on from the subsequent QTL mapping, 

population genomic data confirmed that a QTL region containing the candidate 

gene zeb1 was subject to selection in this cross. With regards to sexual 

dimorphism, a QTL on the sex determining loci for these species (LG7) appeared 

in the majority of these models suggesting a key role for sexual dimorphism in 

the evolution of the cichlid mandible. The results presented in this chapter 

suggest that the Lake Malawi radiation is likely to be comprised of multiple 

levels of variation which could explain the success of the adaptive radiation.  
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2.2 Introduction 
A central focus for evo-devo is to gain an understanding of the mechanisms that 

generate adaptive variation (Hendrikse, Parsons, and Hallgrimsson, 2007). 

Adaptive radiations, whereby multiple species evolve from a common ancestor 

adapted to different ecological niches, are ideal for exploring such mechanisms 

(Schluter, 2000; Irschick et al. 2013). However, the emergence of new species 

through ecological processes is unlikely to be an instantaneous process. 

Therefore, both interspecific and intraspecific phenotypic variation can inform 

our understanding of adaptive mechanisms. Indeed, for Darwin’s finches, the 

major axis of divergence between species relates to beak morphology which 

ranges from long, shallow and pointed beaks to short, deep and blunt beaks, but 

there is also subtle, significant variation in beak shape nested within species on 

the same island (Foster, Podos and Hendry, 2007). Therefore, such variation 

could initiate adaptive radiations and represent an important level of 

biodiversity (Parsons et al. 2015).  

Adaptive radiations commonly involve change in trophic morphology in relation 

to ecological niche. Such changes determine the type of food consumed, and the 

efficiency with which it is processed (Parsons and Albertson, 2009). Craniofacial 

variation has been especially notable for this within the adaptive radiations of 

African Rift valley cichlids. Specifically, cichlids diverged along a morphological 

axis common to a variety of fish taxa with short jaws evolving for biting 

specialists who feed on hard prey, and the evolution of longer jaws for suction 

feeding on mobile prey (Albertson et al. 2005). Within this main axis of Malawi 

cichlid divergence lies smaller differences in feeding techniques between species 

with a similar ecology (Ribbink et al. 1983; Albertson, 2008; Parsons et al. 

2015). For example, several species focus on foraging of algae, but using 

differing tactics. A likely key to this type of divergence are functional changes in 

the mandible regarding its shape and structure (Westneat, 1995).  

The mandible itself represents a major vertebrate innovation and is usually 

among the first areas of contact with prey. This makes movement of the 

mandible especially important for ecological success and it is likewise a site of 
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major muscle attachment within the head (Kassam, Adams and Yamaoka, 2004; 

Conith, Lam and Albertson, 2019). Understanding variation in such craniofacial 

traits have in turn been a focus of a number evo-devo studies with several genes 

being implicated for the production of adaptive variation (e.g. bmp4, caM1, 

ptch1 and Wnt) (Albertson, Streelman and Kocher, 2003a; Abzhanov et al. 2004, 

Abzhanov et al. 2006; Roberts et al. 2011; Hu and Albertson, 2014, 2017; Liu, 

Rooker and Helms, 2010; Parsons et al. 2014). Surprisingly, the mandible itself 

has rarely been the focus of such studies on the genetic architecture of adaptive 

phenotypic variation. Given its vital role in feeding, gaining an understanding of 

what determines variation in this structure can greatly contribute to our 

understanding of adaptive processes.  

An emerging view within adaptive divergence research is that sexual dimorphism 

can represent an important level of variation. Specifically, it is now apparent 

that differences between sexes can evolve in relation to alternate ecological 

conditions resulting in “ecological sexual dimorphism” (hereafter ESD) (Shine, 

1989). This raises the notion that ESD could be a key feature of many adaptive 

radiations. However, males and females generally share the same genetic 

variation within a population resulting in genomic conflict which perhaps limits 

their specific evolutionary responses (Cox and Calsbeek, 2009). Nonetheless, 

sexual differences in reproductive effort could result in adaptive divergence of 

ecological traits (tkint et al. 2012). While some clear examples of ESD exist in 

nature, in most cases disentangling the cause of sexual dimorphism is 

challenging. For example, sexual dimorphism is most often thought to evolve as 

a result of sexual selection, such as through secondary sexual characters or 

through differing demands on reproduction and life history, rather than through 

demands on foraging ecology. This means that the contribution of ESD to 

adaptive radiation is relatively unknown. Taking the traditional view, theoretical 

models show that sexual dimorphism can evolve exclusively from ecological 

selection pressures (Slatkin, 1984); it should be more widely considered that 

ecological divergence could interact with sex (Bolnick and Doebeli, 2003). 

Currently, ESD is not widely studied within the context of adaptive radiations 

likely because both types of divergence are considered “two sides of the same 
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ecological coin” (Bolnick and Doebeli, 2003; Cooper, Gilman and Boughman, 

2011). In other words, this means that ESD and traditional ecological divergence 

cannot co-occur because they result from the same ecological conditions 

(Bolnick and Doebeli, 2003). Contrasting this idea are a number of empirical 

examples of ESD that occur in the presence of broader patterns of adaptive 

divergence. For example, Cooper, Gilman and Boughman (2011) reported sexual 

dimorphism in adaptive craniofacial shape variation for threespine sticklebacks 

(Gasterosteus aculeatus) that exceeded differences between ecological species. 

Additionally, McGee and Wainwright (2013) reported sexual dimorphism in the 

kinematics of the trophic apparatus in anadromous threespine stickleback, in 

particular jaw protrusion, which has been shown to affect suction-feeding 

performance (e.g. Schaeffer and Rosen 1961; Motta 1984; Holzman et al. 2008; 

Holzman et al. 2012). Such sexual dimorphism is likely functionally and 

ecologically relevant as differences in jaw protrusion are often identified in 

cases of divergence in fish (Motta 1984; McGee and Wainwright, 2013). Indeed, 

McGee and Wainwright (2013) suggest that sexual dimorphism in feeding 

mechanics could facilitate rapid divergence in a novel environment by 

anadromous stickleback populations because small-scale ecologically relevant 

variation already exists between the sexes. The traditional view of ESD is that it 

is more likely if the trait in question is exempt from sexual selection, however in 

sticklebacks it is clear that both ecological and reproductive differences persist 

between the sexes and these aspects could have acted together in the evolution 

of sexual dimorphism (Shine, 1989, 1991; Bolnick and Doebeli, 2003). Therefore, 

for the Lake Malawi cichlid radiation, intraspecific variation in trophic 

morphology could be both ecologically and reproductively important, and in 

combination with interspecific differences, has potentially contributed to their 

explosive radiation. 

This chapter investigates the genetic basis of shape variation in the mandible in 

high resolution while also assessing aspects of sexual dimorphism in relation to 

ESD. Ecologically relevant sexual dimorphism in craniofacial shape has been 

characterized in cichlids along with general sexual dimorphism in body size, 

colouration and reproductive effort (Kocher, 2004; Parsons et al. 2015; 

McWhinnie and Parsons, 2019). Given that Lake Malawi females are 
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mouthbrooders, I predicted that this could impose constraints on their ability to 

utilise the same food sources as males and lead to sex-based phenotypic 

differences in the mandible. I also expected that males would have a wider 

mandible than females as previous work indicates that males have a phenotype 

adapted for biting more than females, and a wider mandible confers a greater 

biting advantage (Parsons et al. 2015; McWhinnie and Parsons, 2019). If sexual 

dimorphism follows the trend of divergence within the radiation this would 

suggest ecological relevance in line with ESD.  

For sexual dimorphism to evolve, resolutions to the genomic conflict it causes 

are needed. Therefore, QTL mapping which takes both species and sex 

differences into account could highlight new areas of interest in the genome 

especially in light of ESD. Specifically, if sexual dimorphism is important to 

adaptive divergence in the mandible I would then expect to find QTL on LG7 as 

this is the hypothesised sex-determining region in cichlids (Ser, Roberts and 

Kocher, 2010). Close physical linkage to sex determination loci on a chromosome 

likely provides an easier target for selection to overcome sexual conflict when 

there are nearby loci that can provide adaptive value as is the case for certain 

sexually dimorphic colour patterns (Roberts, Ser and Kocher, 2009). However, 

through epistatic interactions with sex in the genome, some distantly located 

loci may also form targets for selection that resolve sexual conflict. Therefore, I 

also expected to find different QTL when sex was modelled as a covariate which 

could indicate areas of the genome undergoing selection from sexual conflict. 

 

2.3 Methods 

2.3.1 Details of the F2 intercross  

To examine the genetic basis of mandible shape, an F2 experimental cross 

between two species of Lake Malawi cichlids was used. Whilst they occupy a 

similar ecological niche, both parental species exhibit distinct differences in 

mandible shape; Labeotropheus fuelleborni (LF) has a wide, short jaw for 

scraping algae whereas Tropheops “Red Cheek” (TRC) has a short, narrow jaw 
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for plucking algae off of rocks (Parsons et al. 2015; Navon, Olearczyk and 

Albertson, 2017). Both are “biting” feeders but do this in different ways meaning 

they are an excellent for exploring finer scale patterns of ecological divergence. 

LF are highly specialised feeders that scrape algae whereas TRC “nip” and 

“pluck” algae from rocks (Parsons et al. 2015; Albertson and Pauers, 2018). 
Specifically, an LF female from Makanjila Point was crossed with a TRC male 

from Chizumulu Island with F1 siblings interbred to create F2 individuals. The F2 

were initially reared in 10-gallon tanks and then moved into 40-gallon tanks to 

accommodate growth when they were between one and two months old. Fish 

were reared until sexual maturity and then euthanised, fixed in 10% buffered 

formalin, and stored in 70% ethanol. Sexing was based on external colouration, 

vent size and internal dissection in a subset of individuals. Further details on 

rearing can be found in Parsons et al. (2015). 

 

2.3.2 µ-CT Scanning of the mandible  

Shape variation was quantified in the mandibles of F2 hybrids through a series of 

steps. First, the mandible was isolated by disarticulation from the upper jaw 

with surrounding tissue being carefully removed to allow detachment from each 

specimen (n = 244). The jaws were then rehydrated by stepping them through 

different concentrations of ethanol solution (70%, 50% and 25%) for transport to 

the University of Glasgow where they were transferred and stored in 1X PBS. To 

allow for the quantification of 3D shape, each mandible was subjected to µ-CT 

scanning using a Bruker Skyscanner machine (model 1172; Bruker, Billerica MA) 

located at the University of Strathclyde, Glasgow, UK. Each mandible was 

scanned individually using a standard procedure that included removal from the 

storage solution approximately 5-10 minutes before scanning. This ensured that 

mandibles were hydrated and “wet” for the scanning process to obtain a model 

that was as realistic as possible to in vivo conditions. Mandibles which had 

separated down the midline during removal, in transit, or when handled during 

the scanning process were not scanned (n = 43). Across specimens, the 

parameters of the µ-CT scans were kept constant at 70kV and 10 µm resolution 

using the largest camera. This resolution provided an appropriate balance 
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between the quality of the scan, file size and time management. To ensure that 

each slice was aligned properly after scanning, raw images were reconstructed 

using NRecon (version 1.6.9.18); each model was reconstructed separately but 

the reconstruction settings (smoothing, ring-artefacts reduction, and 

misalignment correction) remained constant across specimens. 

 

2.3.3 3D Model Generation 

3D models of mandibles were created for shape analysis using the software 

ScanIP (Version 7.0; available at: https://www.simpleware.com/). Specifically, 

for each specimen a stack of .bmp image files was loaded into ScanIP and a 

“Pixel Skip” value of 3 was chosen for each axis to reduce the file size of the 

raw data to a manageable value (from an initial 500-750MB to between 15-20MB 

per specimen). While such down sampling reduces the number of triangles in the 

model, this also reduces detail. Once the .bmp stack was loaded, the “Recursive 

Gaussian” filter was used at a value of 1.0 on each axis to remove noise from the 

model and to smooth the appearance. Following smoothing, the “Interactive 

Threshold” function was used to highlight the region of interest relating to bone 

density values recorded by the scanning process. Upper and lower threshold 

boundaries based on greyscale values were set manually to define the area of 

interest for each scan. The “Flood Fill” function was used to create a mask that 

included only the connected areas on the model to remove excess scanning 

artefacts. To create a model, this mask was then classified as a new surface 

model and a series of options had to be considered. The “Smart Mask 

Smoothing” option was chosen to apply topology and volume preserving 

smoothing functions. Then “Decimate and Reduction in %” was selected to 

reduce the number of triangles in the model to (~300,000) to keep the triangles 

consistent across models and further reduce the file size of the output. The 

model was then exported and saved as an STL (stereolithography) file and loaded 

into the software MeshLab (available at: http://meshlab.sourceforge.net/) to 

export as a .ply file. All models were created to the same coordinate scale to 

ensure consistency.  
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2.3.4 Morphometrics of Mandible Shape 

Mandible shape was quantified in 3D using a two-stage process. First, each 

model (represented as a .ply file) had a set of 20 landmarks (as in Figure 3-2) 

manually placed on homologous points of the surface using Landmark Editor 

(Available at: http://graphics.idav.ucdavis.edu). Landmarks were chosen to 

reflect the shape of the whole mandible based on previous studies (e.g. 

Albertson and Kocher 2001 and Parsons, Marquez and Albertson, 2012) and were 

saved as a pts (points) file. All data was then imported and processed with 

packages run within R version 3.4.1 (R Core Team 2017). Second, to increase 

detail of localised shape variation, a novel method was employed using Face3D 

(unpublished R package: Bowman, Vittert and Katina, in prep). This method, 

based on the principle of the “shape index” (Koenderink and van Doorn, 1992), 

automates the process of landmark placement using the topography of the 

surface itself to create a curve comprised of numerous points using anatomical 

landmarks as boundary points.  

Using the initial set of 20 landmarks (used in Chapter 3), curves were created 

using the landmarks as start and end boundary points. After the landmarks were 

selected, the shape index algorithm was then run on the 3D model to create 

curves between two landmark boundary points by following the topography of 

the surface. Due to the complex nature of the surface of the mandible, the 

curves were tested to ensure they could be reliably created across all samples. 

As this was not the case, the five best curves were selected. This resulted in a 

final data set of 5 curves (using 10 landmarks from the initial set as the bounding 

Figure 2—1: Processing of a 3D model of an F2 hybrid specimen. In the left panel, an 

unprocessed image ‘stack’ from the µCT data stack is shown. The right depicts a completed 

model as viewed in ScanIP.   
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points) and 10 remaining landmarks (3, 6, 7, 8, 9, 12, 15, 16, 17 and 18 from 

Figure 3-2) across the entire model surface for each mandible (Figure 2-2). 

Each curve ranged between 20 to 100 points and this was homologous across 

samples. 

 

In some samples damage made bilateral placement of some landmarks and 

curves challenging. Therefore, to complete landmark placement approaches 

were used on some samples (around 30%) to restore bilateral symmetry by mirror 

image reflecting parts of the 3D model (Gunz et al. 2009; Mitteroecker and 

Gunz, 2009, Zelditch, Swiderski and Sheets 2012b). To achieve this any missing 

landmarks/curves were filled in based on their bilateral homologues using 

custom code based on functions from StereoMorph (Olsen and Westneat 2015; 

Olsen and Haber 2017). Models with many parts missing, or parts missing on both 

sides, could not be accurately reflected or the curve algorithm did not work 

accurately, and so were removed from the dataset (n = 25). Once missing 

landmarks were added to create a “complete” model, the symmetric variation 

of the shape was extracted for each specimen using code from Face3D. 

Following these corrections, a Procrustes superimposition was performed using 

the gpagen function in geomorph on the landmark data to rotate, transform and 

scale to a common centroid size and orientation (Zelditch, Swiderski and Sheets 

2012a; Adams and Otárola-Castillo, 2013). I then minimized allometric effects on 

Figure 2—2: Landmarks and curves used for the morphometrics analysis. Landmark points were 

placed on the surface in landmark editor and the curves were created using Face3D. Mandible 

anatomy is described in more detail in Chapter 3. 
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shape using a multivariate regression of Procrustes coordinates on geometric 

centroid size using the procD.allometry function in geomorph (Adams and 

Otárola-Castillo, 2013; Adams, Collyer and Kaliontzopoulou, 2019). 

 

2.3.5 Statistical Analysis of Mandible Shape 

To determine major trends in mandible shape for F2 hybrids, I employed a 

principle components analysis (PCA). To represent the relative proportion of 

variation explained by PCs I produced a scree plot which indicated a drop in 

explained variation after the first four PCs (see Zelditch, Swiderski and Sheets 

2012a). Therefore, to test the effects of sex on F2 hybrid shape, an ANOVA was 

then conducted for each of the first four principal components (accounting for 

80% of the shape variation). Sexual dimorphism in mandible shape was also 

assessed using a discriminant function analysis (DFA). Although selection of PC 

scores to include can be an arbitrary process, a suggested “rule of thumb” for 

discriminant analysis is to divide the sample size by 4 to get an indication of how 

many to use (Zelditch and Swiderski, 2018). Therefore, this analysis was 

conducted on principal component scores representing 99% (PC 1-44) of the 

shape variation with sex as a grouping variable using the MASS package (Venables 

and Ripley 2002).  

 

2.3.6 Genotyping and Linkage Map Construction  

To facilitate genetic mapping, genotyping was conducted on F2 hybrids; further 

details can be found in Parsons et al. (2015). Briefly, restriction site-associated 

DNA sequencing (RAD-Seq) was applied and reads were aligned to the reference 

Maylandia zebra version 0 genome (Brawand et al. 2014); further details of this 

work, and a resultant genetic map, can be found in Albertson et al. (2014). 

Additionally, RAD-Seq was applied to wild-caught LF and TRC to inform our 

genetic map of population genomic data. Briefly, initial sequencing identified 

42,724 SNPs and a linkage map was created using SNPs with an Fst value greater 
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than 0.57 as this indicates a high level of divergence between populations in 

cichlids, making it likely that the quantitative trait loci (QTL) findings would be 

evolutionarily relevant (Mims et al. 2010, Parsons and Albertson 2013). This 

resulted in a genetic map of 946 loci over 24 linkage groups (numbered 

according to Lee et al. (2005)), and a map size of 1453.3 cM.  

 

2.3.7 Quantitative Trait Loci (QTL) Analysis 

To assess potential relationships between genotypes and phenotypic variation I 

conducted a quantitative trait loci (QTL) analysis using the qtl (Broman and Sen, 

2009) and shapeQTL (Navarro 2015) package in R 3.4.1 (R Core Team 2017). This 

involved two main approaches including multiple QTL mapping (MQM) following 

the approaches of Broman and Sen (2009) and Arends et al. (2010), and 

multivariate QTL mapping following Maga et al. (2015) and Navarro and Maga 

(2016). Both methods are related in that they rely on a similar statistical 

approach. MQM mapping within the qtl package offers an automated procedure 

combining regression and interval mapping (Arends et al., 2010). The shapeQTL 

package offers Haley-Knott regression QTL mapping and is an extension of the 

qtl package that has been specifically created for multivariate shape data.   

MQM was carried out on PCs 1 and 2 as they represented the highest proportion 

of variation in the dataset. To begin, standard interval mapping was conducted 

to identify QTL with LOD scores greater than 1. These QTL were then iteratively 

tested as cofactors in subsequent QTL models and kept or removed on the basis 

of their ability to improve the overall model. Permutation tests (n = 1000) were 

then run for each model to provide a genome-wide threshold LOD score at the 

90% and 95% significance level. For significant QTL, locations were refined to the 

95% confidence interval using the bayesint function in r/qtl. This function 

calculates the approximate Bayesian credible interval from the output of the 

QTL mapping and provides a range on the chromosome where the QTL is likely 

located. This range can then be used for further investigations such as candidate 

gene searching.  
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As shape is a multivariate trait, I also performed a quantitative trait loci analysis 

using a multivariate approach that included models both with and without sex as 

a covariate. This approach allowed for the effects of sex on the genetic 

architecture of mandible shape to be discerned. The first multivariate tests 

included the first two principal components representing 44% and 21% of the 

variation respectively. The next tests were conducted using the first four PCs 

and represented variation before my previous scree plot levelled off (Zelditch, 

Swiderski and Sheets 2012a) and accounted for approximately 80% of the 

variation. After PC10 the proportion of variation explained by each additional PC 

decreased to below 1%. Therefore, to maximize shape variation without further 

complicating the model, the final test included the first ten PCs accounting for 

90% of the total variation.  

Effect sizes, or percentage of the variation explained by the QTL, were 

calculated for the models. For the multivariate models, the effects sizes were 

calculated using the functions fitqtlShape and effectsizeShape which compute 

the regression projection scores of the qtl vector and calculates the percentage 

of variation explained by the qtl (Navarro pers. comm.). Effect sizes from the 

MQM models were calculated using the following equation (Parsons et al. 2016):  

Σ(1 − (10^ − ((2/)) ∗ (,-.)))) 

Equation 2-1: The formula used to calculate the effect sizes of the MQM qtl whereby n is the 
sample size (176) and LOD is the logarithm of the odds score from model. 

 

2.3.8 Population Genomics, Fine Mapping and Candidate Gene 

Searching   

To increase the precision for locating candidate genes, population genomic data 

using wild-caught LF (n = 20) and TRC (n = 20) at 42,724 SNPs was used in 

tandem with QTL results. To identify locations under the greatest degree of 

selection within the 95% confidence interval of the QTL, markers with the 

highest Fst values were identified as this indicates regions undergoing 

particularly strong selection and are therefore divergent between species. As 
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LG18 appeared on multiple models from both the MQM and multivariate 

approach, this was selected for follow-up work. Fine-mapping using population 

genomic data narrowed down a region within the 95% QTL confidence interval, 

which ranged between positions 0-21 cM (depending on the model) spanning 14 

of the population genomic markers. 

Candidate genes found within this region were then identified using cichlid 

genome browsers (http://cichlid.umd.edu and http://em-x1.gurdon.cam.ac.uk) 

with the search region around each marker limited to 5kbp. When a gene was 

located near a QTL, cross-referencing with the online databases Ensembl 

(https://www.ensembl.org/index.html) and UniProt (http://www.uniprot.org) 

was conducted to identify details of the genes and assess their relevance to 

mandible, craniofacial shape, or bone development. To assess shape changes at 

the nearest markers closest to the top candidate identified from the QTL 

analysis, a DFA was conducted on principal component scores representing 99% 

(PC 1-44) of the shape variation with genotype at the nearest marker to zeb1 

(from the PC1 and PC2 MQM models) as a grouping variable again using the MASS 

package in R (Venables and Ripley 2002). In this cross, the AA genotype 

represents LF and the BB represents TRC.  

 

2.3.9 Follow up: Investigating Candidate Gene Expression  

To explore the anatomical location of expression for the candidate gene zeb1 

and investigate potential interacting genes, whole-mount in situ hybridisation 

(WISH) was used. I chose a key point in development when the mandible is 

beginning to form and genes that likely interact with zeb1 are expressed (stage 

16, approximately 4-5 days post fertilisation (Fujimura and Okada, 2007). Three 

genes were selected for WISH: zeb1, the candidate gene for mandible shape 

identified in this chapter; bmp4, a craniofacial candidate gene already identified 

as being expressed in cichlids at this stage (Albertson et al. 2005); and col1a1 

which is an osteogenic marker expressed where bone is beginning to develop (Hu 

and Albertson, 2014). Both bmp4 and col1a1 were selected as they are active 

during jaw development in cichlids therefore if zeb1 was expressed at the same 
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time in a similar location, this would increase the evidence for zeb1 being a 

suitable candidate involved in mandible development. 

Probes were designed using custom forward and reverse primer sequences for 

zeb1 and bmp4 in Primer3 (available at: http://bioinfo.ut.ee/primer3-0.4.0/); 

the probe sequences from Navon, Olearczyk and Albertson (2017) were used for 

col1a1. The primers (listed 5’ to 3’) used to create the probes were as follows: 

bmp4 F: AATATGCCAAGTCCTGCTGG bmp4 R: CACCCGACTGTAGCCGATAA 

Col1a1 F: GCGGTGAGTACTGGATTGGT   Col1a1 R: CCTCGGCTCTGATCTCAATC 

zeb1 F: TCGGTAGGAACAGGTGGAAC      zeb1 R: GTCACAGGCTTGCACTCAAT 

Probes were synthesised first through a polymerase chain reaction (PCR) with 

cichlid cDNA (converted from RNA which was extracted from embryos between 4 

and 6 days old) before being transcribed and precipitated into RNA using a mix 

containing RNA polymerase and digoxigenin (DIG) which binds to the probe. The 

protocol followed for WISH was based on methods described by Albertson et al. 

(2005) and Jacobs, Albertson and Wiles (2011). Embryos were collected at stage 

16 (approximately 25 TRC from three different broods and 20 for LF from two 

different broods, divided between each probe and the control), euthanised and 

stored in 4% PFA for up to 7 days, before dehydration through a methanol series 

and stored at -20°C.  

For the WISH, embryos were then rehydrated through the methanol series and 

digested with a 40µg/ml solution of proteinase K. Following digestion, embryos 

were then re-fixed in PFA and left in pre-hybridisation solution at 70°C. Pre-

hybridisation solution was then switched for the probes and embryos incubated 

at 70°C overnight. The control embryos were taken through the exact same 

protocol but did not receive the probe at this stage and were instead left to 

incubate overnight in pre-hybridisation solution. The next morning, the probes 

were removed and placed back into storage and the embryos were taken through 

a series of washes with varying concentrations of pre-hybridisation solution and 

saline sodium citrate solution (SSC) at a constant temperature of 70°C. Following 

this, embryos were left to rock at room temperature for up to 3 hours in a 
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blocking solution comprised of animal serum, blocking reagent and maleic acid 

buffer (MABT). Following this, embryos were then blocked in solution containing 

Anti-DIG antibody overnight at 4°C. After blocking, embryos were washed six 

times in TST solution at pH 9 and stored in TST overnight at 4°C. Then, embryos 

were washed twice in NTMT at pH 9 and then embryos were added to a staining 

mix (20µl of solution in 1ml of NTMT) and the plate was covered with tinfoil and 

left to rock until colour developed. The colour reaction was stopped by washing 

in PBS and embryos were dehydrated using a methanol series to reduce 

background staining. Embryos were then rehydrated and cleared using varying 

concentrations of glycerol and PBST for a day before photographing in 75% 

glycerol using a dissecting microscope (Leica M165, Leica, Wetzlar, Germany) 

mounted with a digital camera (Leica DFC450 C, Leica, Wetzlar, Germany).  

 

A 

B 

G C 

D 

F 

E 

Figure 2—3: Embryos at stage 16 corresponding to 4-5 dpf; based on the staging of Nile Tilapia 
(Oreochromis niloticus) by Fujimura and Okada (2007) and an adapted staging guide for Lake 
Malawi cichlids (Albertson pers. Comm.). All larvae were the result of natural matings in the 
aquarium facilities at the University of Glasgow. Key features: heart beat (a); circulation (b); 
head is lifted (c); no jaw (d); darker eye pigment (e); no caudal fin rays (f). As hatching occurs 
between late day 3 and early day 5, some embryos may still be inside the chorion (g).   
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2.4 Results  

2.4.1 3D Morphometrics 

From the ANOVA, sex had a significant effect on PCs 2 and 4 but not PCs 1 or 3 

(Table 2-1). The shape changes across PC1 resembled those of the two parental 

species; at the positive end of the axis the mandible was shorter and wider (like 

LF), whereas at the negative end the mandible was relatively longer and 

narrower (like a TRC) (Figure 2-4). Although there was considerable overlap in 

PC2 scores for each specimen, the negative scores were mostly male with the 

mandible being wider at the anterior but becoming relatively narrower at the 

posterior for females (mostly positive scores). For the discriminant function 

analysis correct classification for males was 87% and for females 83% (Figure 2-

5). Along the LD1 axis there were subtle differences in mandible shape with 

males (negative scores) having broader and more “U” shaped mandible relative 

to females (positive scores) which had a more “V” shaped, narrower mandible 

(Figure 2-5). The female mandibles were also wider than the males between the 

articular web on either side (Figure 2-5).  

Table 2-1: Results from ANOVAs conducted for the first four PC scores to test whether sex could 
influence mandible shape variation. The percentage of shape variation explained by each PC 
score is noted in brackets next to the model. 
 

 

 

 

 

 

 

    
** P < 0.001

Model  DF SS F value P value 
PC1 (44%) ~ SEX 
Residuals 

1 
174 

0 
0.25 

0 0.99 

PC2 (21%) ~ SEX 
Residuals 

1 
174 

0.008 
0.11 

13.29 <0.001** 

PC3 (8%) ~ SEX 
Residuals 

1 
174 

0.00084 
0.045 

3.189 0.076 

PC4 (7%) ~ SEX 
Residuals 

1 
174 

0.00379 18.92 <0.001** 
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      +        PC1           - 

      +          PC2   - 

Figure 2—4: Variation in mandible shape explained by the first two PC axes from the dorsal 

view. PC1 is depicted in the upper panel and shows that negative scores result in a wide 

mandible relative to positive scores. In the lower panel PC2, which was affected by sex shows 

that a positive score corresponds to a narrower mandible (mostly females) relative to the 

negative scores (mostly males). 
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Figure 2—5: Sexual dimorphism in mandible shape as identified by a discriminant function analysis from the dorsal view and relative to a common consensus 

configuration of landmarks (grey landmarks). The left panel represents shape variation in males (green landmarks, and bars within the frequency histogram) 

whereas the right panel represents females (purple landmarks, and bars in the frequency histogram). Shape differences from the consensus have been magnified 

by a factor of 5 to enhance interpretation.  

 

Males Females 
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2.4.2 Quantitative Trait Loci (QTL) and Identification of Candidate 

Genes 

Both the PC1 and PC2 from the MQM models had a QTL on LG18, while a QTL was 

present on LG7 for the PC2 model but not PC1. The effect size for the QTL on 

LG7 was higher (10.7%) than the QTLs on LG18 (6.7% for both models) (Table 2-

2; Figure 2-6). For the multivariate approach a QTL was also found on LG18 

using the first two PCs both with and without sex as a covariate. The 

multivariate model for four PCs indicated a QTL on LG18 (with an effect size of 

0.23%) when sex was a covariate. A QTL was found on LG10.2 for both of the 

four PC models. The multivariate models including ten PCs, had an additional 5 

QTL unique from other models except for a QTL on LG7. The latter QTL was 

however present with and without sex as a covariate. In addition, the ten PCs 

model indicated an additional QTL on LG16 when sex was a covariate.  

For LG18, Fst values were greater than 0.9 in 9 of the 14 genetic markers within 

the confidence intervals indicating selection is likely occurring in this region 

(Figure 2-7). The confidence interval was used as a starting point for 

investigations, and zeb1 (located at position 6.75 cM on the genetic map on LG18 

with an Fst value of 0.95) was identified as potential candidate gene for 

mandible shape variation. From the DFA at both of the nearest markers to zeb1, 

the mandible shape at the negative end of the LD1 axis, representing the AA 

genotype (LF in this cross) was wider than for the BB genotype (TRC in this cross) 

reflecting the shape differences that would be expected at the species level 

(Figure 2-8).  
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Table 2-2: QTL mapping results from the multivariate and MQM tests. For the multivariate models, all tests were run with and without sex as a covariate. Across 

models, LG18 and LG7 have the most QTL relating to mandible shape. Genome locations and 95% confidence intervals are included for each QTL. (LG = Linkage 

group; Pos = Position on the linkage group; LOD = Logarithm of the odds). 

Model Method LG Pos LOD Score Interval (cM) Nearest Marker Effect sizes 

PC1 MQM 18 0 3.15 0 – 15 109.46112 7.9% 
PC2 MQM 7 

18 
21 

5 
10 
0 

5.15 
3.18 
2.94 

0 -15 
0 -19 
0 -17 

193.987462 
41.248320 

210.488716 

12.6% 
8.0% 
7.4% 

PC1 & PC2 
 

PC1 & PC2 with sex 
as a covariate 

Multivariate 
 

Multivariate 

18 
 

18 

1.54 
 

1.54 

4.30 
 

4.59 

0 – 14 
 

0 - 16 

215.432511 
 

215.432511 

0.2%/0.02% 
 

0.06%/0 

PC1 – PC4 
 
 

PC1 – PC4 with sex as 
a covariate 

Multivariate 
 
 

Multivariate 

7 
10.2 

 
10.2 
18 

28 
1.44 

 
1.44 
1.54 

5.72 
4.73 

 
4.47 
3.85 

2 -34 
0 – 10 

 
0 -11  
0 - 21 

21.2195347 
94.1628475 

 
94.1628475 
215.432511 

1.8%/0.27% 
0.65%/1.52% 

 
0.18%/0.46% 

0.23%/0 
PC1 – PC10  

 
 
 
 
 

PC1 – PC10 with sex 
as a covariate 

 

Multivariate 
 
 
 
 
 

Multivariate 

1 
5 
6 
7 
17 
 
1 
5 
6 
7 
16 
17 

30.85 
60 
47 
5 
17 
 

30.85 
60 
47 
5 
38 
42 

5.06 
4.34 
4.66 
6.39 
4.87 

 
4.80 
4.36 
4.57 
4.39 
3.84 
4.90 

14 -39 
56 – 70 
23 – 50 
1 – 33 
9-64 

 
12 – 46 
56 – 71 
24 – 50 

0 -34 
35 – 57 
9 - 62 

 

7.4421711 
10.6870455 
20.1015081 
193.987462 
154.63018 

 
7.4421711 

10.6870455 
20.1015081 
193.987462 
42.1183857 
154.63018 

0.21%/0.001% 
0.03%/0.94% 
0.02%/0.42% 
0.31%/0.03% 
0.01%/0.61% 

 
0.25%/0.08% 

3.2%/1.5% 
0.18%/0.83% 
0.61%/0.13% 
0.46%/0.59% 

0.77%/0% 
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Figure 2—6: The genetic map for the F2 hybrid population (n = 176) with 95% confidence intervals for QTL derived from the multivariate and MQM models for 

mandible shape. For the multivariate models, all tests were run with and without sex as a covariate. The coloured lines associated with each model represent the 

95% confidence intervals for each QTL. LG18 (0-21cM) had the most QTL across models relating to mandible shape. 
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zeb1 

95% CI 

Figure 2—7: The top panel provides a line plot of Fst values (green) while the middle and bottom 

panels provide LOD scores on LG18 for PC1 (red) and PC2 (blue) MQM models respectively. The 

QTL confidence intervals are represented by the dark grey box for comparison of the LOD scores 

for the QTL with population genomic trends. The vertical line across panels indicates the location 

of the nearest marker to the highest LOD score within the QTL confidence intervals on LG18. 

Notably, Fst values reach an extended peak within the QTL region. 
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AA 

AA 

BB 

BB 

Marker 1: c109.46112 

Marker 2: c41.248320 

Figure 2—8: Scatterplots showing the classification of mandible shape based on genotypes from two markers flanking peak LOD scores for QTL (AA in blue, AB in 

yellow, and BB in red). Classification was derived from the LD1 and LD2 scores from a discriminant function analysis for each marker. Each row of panels provides a 

depiction of shape change by modelling landmark variation along the LD1 identified for each discriminant function analysis. In this cross, an AA genotype is LF and 

BB is TRC. The top panels represent the shape for and AA and BB genotype associated with marker c109.46112 (identified from the PC1 MQM model) for expected 

shape with an AA or BB genotypes while the lower panels represent shape changes associated with marker c41.248320 (identified from the PC2 MQM model); for 

both, the nearest candidate gene was zeb1. The consensus form is shown in grey and the modelled shape differences were magnified by a factor of 3 to enhance 

interpretation. 
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2.4.3 Investigating Candidate Gene Expression  

Both bmp4 and zeb1 were expressed all over the craniofacial region in TRC and 

LF, however, there was no clear band of expression of zeb1 or bmp4 in the 

mandible in either species. Col1a1 was primarily expressed in the developing 

bone in the pectoral fin and in the spine, with some expression visible in the 

mandible and craniofacial region (Figure 2-9). Control embryos for both species 

showed no evidence of gene expression.  

 

 

Labeotropheus fuelleborni Tropheops “Red Cheek” 

Figure 2—9: Expression patterns of the bmp4, zeb1 and col1a1 with a focus on the mandible on 

Labeotropheus fuelleborni (LF) and Tropheops “Red Cheek” (TRC) and embryos at stage 16 (4-5 

days post fertilisation). The sample size was approximately 25 TRC from three different broods 

and 20 for LF from two different broods, divided between each probe and the control. The 

black arrow indicates expression in the mandible. 
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2.5 Discussion  
Understanding the genetic architecture of phenotypic traits can lead to a deep 

understanding of how adaptive variation is generated (Hendrikse, Parsons and 

Hallgrimsson, 2007; Irschick et al. 2013). I aimed to address the genetic basis of 

the mandible in a high degree of detail by taking into account the contribution 

of different mechanisms of divergence (both species and sex) and implementing 

new methodology to enhance existing knowledge of craniofacial variation in 

adaptive radiations. The major axis of variation in mandible shape (PC1) was not 

affected by sex and with its effects on shape mostly related to mandible width, 

it likely reflecting shape variation between the parental species. This suggests 

sex-based variation is not driving the main pattern of adaptive divergence in 

cichlid mandibles.  

The major difference in mandible shape between TRC and LF was width with my 

QTL findings suggesting that genetic mechanisms in several genomic regions play 

a role in determining variation for this trait. Specifically, the identification of 

zeb1 as a candidate gene provides supporting evidence that it contributes 

toward mandible width (Figure 2-8). Although not previously investigated in 

cichlids, zeb1 is known to be is associated with neural crest derived tissues, this 

includes the craniofacial region, and epithelial mesenchyme transition, which is 

crucial for the emergence of morphological structures and other key processes 

such as palate formation (Thiery et al. 2009; Shin et al. 2012; Zhang, Sun and 

Ma, 2015). Furthermore, mice with a zeb1 mutation exhibit craniofacial 

abnormalities including secondary cleft palate (Takagi et al. 1998; Shin et al. 

2012).  

Key to the cichlid radiation is the presence of sexually dimorphic colour 

patterns, and previously, zeb1 has also been implicated as a potential regulator 

of pigmentation in cichlids (Kocher, 2004; Albertson et al. 2014). Pigmentation is 

well known to be determined by NCCs, therefore, mutations in zeb1 could have 

pleiotropic effects on both sexually dimorphic craniofacial morphology and 

pigmentation in cichlids. During key periods of craniofacial development, 

differences in the congregation of NCCs differs between cichlid species with 

differing jaw morphologies, but such approaches have not yet been extended to 
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periods of pigmentation development (Albertson and Kocher, 2006). Future 

avenues for research could look at the role of NCCs in sexually dimorphic 

pigment development and craniofacial shape and establish whether they are 

linked through a common developmental mechanism. If they are linked, this 

could highlight the importance of sexual dimorphism to the process of the 

African cichlid radiations.  

Alongside craniofacial variation, cichlids are diverse in tooth phenotypes with 

widely spaced unicuspids in plankton-feeders to tightly packed tricuspids in algal 

scrapers (Albertson, Streelman and Kocher, 2003b; Streelman et al. 2003). Such 

phenotypes could also be linked to variation in zeb1 through its pathway 

interactions. Interestingly, in mice, zeb1 has been implicated in tooth 

development and is mediated by bmp4 (Shin et al. 2012). Bmp4 is posited as a 

key factor in craniofacial divergence in adaptive radiation; higher bmp4 

expression during development is associated with a biting morphology in both 

Darwin’s finches (Abzhanov et al. 2004), and African cichlids (Albertson et al. 

2005; Albertson and Kocher, 2006). Indeed, bmp4 has been implicated in the 

control of cichlid dentition phenotypes (Streelman et al. 2003; Fraser, 

Bloomquist and Streelman, 2013). As the genomic location immediately 

surrounding zeb1 appeared to be under strong selection, it is reasonable to 

suggest that zeb1 is a candidate gene for adaptive divergence in the mandible. 

However, specific expression of zeb1 or bmp4 was not observed in the mandible 

of TRC or LF at stage 16. I would predict a difference in zeb1 expression 

between the two species because of the difference in mandible width and it 

appears from the QTL that zeb1 contributes towards jaw width (Figure 2-8). 

Nonetheless, if no expression in the mandible of either species exists at this 

stage it is possible that zeb1 could still be important. A logical next step would 

be to assess multiple developmental stages where mandible development and 

differentiation occurs. Given that zeb1 plays a role in NCC processes, it is 

possible that zeb1 expression could be apparent at earlier stages than I 

examined here. Furthermore, given that the bmp4 probe did not work as reliably 

as expected (Albertson et al. 2005), there could be an issue with the probe 

design conducted here.  
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Although smaller in magnitude compared to species differences, sex differences 

look to be following a trend that would aid in either a benthic or limnetic 

foraging strategy (Albertson et al. 2005). Specifically, female mandibles were 

narrower across the width of the jaw (from one side of the mandibular lateral 

line foramina to the other) and had more of “V” shape than males. Such shape 

variation would be expected in limnetic feeders, while the wider, more “U” 

shaped male mandibles would be expected to be found in benthic feeders. 

However, the female mandibles were wider than the males between the 

articular web on either side of the mandible. This could be due to hybridization 

or modularity of allelic effects on the cichlid mandible (Parsons, Marquez and 

Albertson, 2012). Furthermore, the female in the initial parental cross was an LF 

therefore this trend could reflect variation inherited from the original cross. 

How shape variation in the mandible might influence function and ability to 

handle external forces during feeding will be the subject of Chapter 3. 

The type of sexual dimorphism in shape I identified is likely to be ecologically 

relevant and align with the ideas of ESD. However, it is unclear what ESD 

represents within the African cichlid radiations. It could be that ESD is a form of 

adaptive nested variation within the Malawi radiation. In a previous study on this 

same F2 cross, Parsons et al. (2015) suggested ESD in the lateral aspects of 

craniofacial shape with males possessing a steeper craniofacial profile that 

would like be more adept for biting relative to females. Similarly, sex-based 

differences in mandible shape have been reported for TRC and Maylandia zebra 

(MZ), with females possessing a longer, thinner jaw in comparison to males 

(McWhinnie and Parsons, 2019). In both cases these sex-based differences did 

not account for the majority of the variation supporting the idea that ESD is 

nested within broader patterns of divergence (Foster, Scott and Cresko, 1998; 

Riopel, Robinson and Parsons, 2008; Parsons et al. 2015).  

Such sexual dimorphism could suggest an issue of genomic conflict involved with 

the determination of mandible shape. Further evolution of sexual dimorphism in 

the mandible could be limited by genomic conflict hence why it would represent 

smaller, more subtle divergence than what is occurring between species. For 

sexual dimorphism to evolve, especially for functionally important variation, 

there has likely been selection in favour of resolutions to genomic conflict (Cox 
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and Calsbeek, 2009). In some of the multivariate QTL models, the results 

differed when sex was included as a covariate and when it was not; a QTL on 

LG18 appeared for two multivariate models and a QTL on LG16 was present from 

the ten PC model (Table 2-2). Adding sex as a covariate limits the effect of sex 

on the model and therefore the QTL that appear under these conditions could 

represent areas under genomic conflict and the effect of these regions are 

perhaps covered by conflicting sex effects. Furthermore, the data suggests that 

some QTL for mandible shape could be linked to the main sex determining region 

in cichlids (Cox and Calsbeek, 2009; Parnell and Streelman, 2013). The sex 

determining region appears to be frequently involved with the genetic basis of 

mandible shape (LG7 appearing in 75% of all models); this even included findings 

of QTL from models that included sex as a covariate. The need to resolve 

genomic conflict arising from sexually antagonistic selection on mandible shape 

could be why LG7 frequently appears in QTL models. Linkage to the sex 

determining region could help resolve sexual conflict and allow selection for 

sexually dimorphic craniofacial traits as these loci could co-segregate together 

more frequently and allow for the evolution of sexual dimorphism.  

Although not investigated here, it is possible that there are important candidate 

genes for craniofacial and mandible divergence in the sex determining region. 

Indeed, in Lake Malawi cichlids (including LF) sexual conflict in colouration exists 

whereby females have a characteristic “orange blotch” (OB) phenotype which 

acts as camouflage against the background of the rocky habitat (Roberts, Ser and 

Kocher, 2009). Sexual selection plays a key role in the Lake Malawi radiation and 

this relies on male colour patterns; in contrast to females, the OB phenotype is 

therefore predicted to confer a negative effect on male fitness (Van Oppen et 

al. 1998; Roberts, Ser and Kocher, 2009). The resolution of this sexual conflict is 

in the form of tight linkage of the locus responsible for the OB phenotype (Pax7) 

with a sex determining region on LG5 (Roberts, Ser and Kocher, 2009). 

Therefore, the prevalence of LG7 in the QTL models presented here could 

represent a resolution to the sexual conflict resulting from divergent selection 

pressures facing the sexes. Interestingly, LG7 also appears in other QTL studies 

on cichlid craniofacial variation suggesting a key role for sexual dimorphism in 

adaptive craniofacial and mandible divergence (teeth shape: Albertson, 
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Streelman and Kocher, 2003a; mandible mechanical advantage: Albertson et al. 

2005; maxilla bone architecture: Albertson, Cooper and Mann, 2012; 

craniofacial shape: Parsons et al. 2015; and snout size: Conith et al. 2018).  

 

2.6 Conclusions  
Most radiations are characterised by rapid and diverse evolution of trophic 

morphology as this determines diet and the ability to process food. Therefore, 

understanding the molecular basis of their evolution can shed light on the 

process of adaptive radiation. African cichlids display an extensive range of 

variation in craniofacial shape and studying the genetic basis of this is key to 

understanding how key vertebrate innovations, such as the mandible, have 

evolved. This chapter presents a new candidate gene not previously 

characterised for the mandible, zeb1. As well as looking at divergence between 

species within a radiation, I also assessed the contribution of sexual dimorphism 

in mandible shape. There were fine-scale, ecologically relevant differences in 

mandible shape between the sexes suggesting that ESD is an additional source of 

divergence. Furthermore, the prevalence of LG7, the sex-determining region in 

this cross, in the QTL models suggests a linkage to this region as a resolution to 

the sexual conflict. In addition, as QTL models which had sex as a covariate 

revealed additional QTL, this suggests that the sexual conflict has not been fully 

resolved. It is likely then that the Lake Malawi cichlid radiation is therefore 

comprised of the main axis of divergence between biting and suction feeders 

followed by smaller, nested levels of variation within ecological niches between 

species and sexes; this could explain why this radiation has been so successful.  
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Chapter 3: Interspecific and Sexually Dimorphic 
Functional Divergence in African Cichlid Mandibles 

 

3.1 Abstract  
For vertebrates, the mandible often provides a direct link with prey during 

foraging making understanding this trait especially important. The mandible has 

most often been examined at the interspecific level but to deepen our 

understanding of why divergence occurs it should be a priority to examine 

intermediate phenotypes as well as other levels of variation. Therefore, this 

chapter explores functional variation in the mandible from three different 

perspectives: 1) interspecific divergence using Tropheops “Red Cheek” (TRC), 

and Labeotropheus fuelleborni (LF), two species that are members of the Malawi 

cichlid radiation, 2) at the level of hybrids between TRC and LF which possess 

intermediate phenotypes, and finally 3) at the level of sexual dimorphism. For 

each level, finite element analysis (FEA) was used to assess function through the 

modelled ability to handle external loading likely to be experienced during 

feeding. Loading was placed across different widths of the mandible to simulate 

how each species would encounter external forces during their respective 

feeding modes, plucking and scraping. The FEA highlighted different structural 

adaptations in TRC and LF which aid in dissipating stress during feeding. 

Furthermore, males possessed a wider mandible than females and appeared to 

be better at handling loading suggesting that they possess an advantage for a 

biting mode of feeding. The hybrids showed high levels of stress across the 

mandible, but the female showed less stress than male. This suggests a wide 

range of variation in the ability to handle loading in the hybrids. Together, these 

results suggest that interspecific divergence is maintained by functional 

advantages that are favoured by divergent selection and that divergence 

between sexes is ecologically relevant.  
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3.2 Introduction  
The relationship between form, function and ecology reflects how an organism 

utilises its environment and is a key component adaptive divergence 

(Wainwright, 1996; Schluter, 2000). Related to this is the process of adaptive 

radiation which results in a multitude of species which have diverged from a 

common ancestor and are adapted for different ecological niches (Schluter, 

2000). Indeed, this process is thought to occur as a result of competition for 

food and habitat that then drives selection and explosive divergence (Schluter 

and McPhail, 1993; Skulason and Smith, 1995). As a result, divergence in trophic 

morphology has been suggested as key to the adaptive radiation process as it 

represents a means for direct interaction between an organism and the prey 

resources of an environment (Streelman and Danley, 2003).  

For teleosts, adaptive divergence has occurred frequently along a 

benthic/limnetic habitat axis. This has resulted in similar patterns of 

morphological change across lineages that relate to the biomechanics of feeding 

performance (Albertson et al. 2005; Skulason et al. 2019). The feeding efficiency 

of an organism is in part limited by the shape of trophic morphology as this 

places constraints on the shape and size of prey that can be consumed and the 

speed or strength of the movements used for capture (Wainwright and Richard, 

1995). A clear example is found in sunfish whereby pumpkinseeds (Lepomis 

gibbosus) feed on hard-shelled snails and in turn possess stronger and larger 

pharyngeal jaws and associated muscles in comparison to the bluegill (Lepomis 

macrochirus), which feeds on zooplankton (Mittelbach, 1984; Mittelbach, 

Osenberg and Wainwright, 1992; Wainwright, 1996). While this example 

highlights interspecific differences, understanding how functionally relevant 

morphology and biomechanics can vary at other levels of biological variation 

form an important component of adaptive divergence research (Wainwright, 

1994; Cooper et al. 2010). 

Specifically, divergence is most often studied between species while divergence 

within populations in the form of polymorphisms or ecomorphs is seen as a step 

toward speciation. However, relatively few studies of functionally relevant 

differences between sexes have been conducted. This may miss a crucial source 
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of variation for adaptive divergence. Sexual dimorphism is often considered only 

within the context of secondary sexual characters but there is an idea that  

adaptive differences can occur between sexes (Shine, 1989). This phenomenon is 

known as ecological sexual dimorphism (ESD) and how it contributes to broader 

patterns of divergence has only rarely been considered empirically. Nonetheless, 

sex differences in trophic morphology have been documented for some taxa and 

suggest a link to resource use (Selander, 1972; Shine, 1989; Temeles and 

Roberts, 1993; Temeles, Miller and Rifkin, 2010).  

So far examples of ESD (discussed in detail in Chapter 1) have a limited 

demonstration of functional variation. In the threespine stickleback 

(Gasterosteus aculeatus), sexual dimorphism in trophic morphology is evident 

with jaw protrusion, a functionally relevant trait in the context of feeding 

performance, differing between sexes (McGee and Wainwright, 2013). Notably, 

sticklebacks possess sexual dimorphism in parental care with males building 

nests with their mouths, while females would seem to only need to commit their 

mouths to foraging. Thus, interactions between functions could alter both the 

shape and biomechanics of trophic structures. Mouthbrooding could provide an 

important influence on how ESD unfolds in the trophic morphology of other 

fishes such as reef cardinalfish (family Apogonidae) and cichlids (Barnett and 

Bellwood, 2005; tkint et al. 2012).  

During feeding, trophic morphology can be subject to mechanical loading which 

causes bone to remodel itself. This can enhance adaptation with the bone-

specific response known as “Wolff’s Law” (Wolff 1892; Owen et al. 2012). 

Specifically, with increased mechanical loading, more bone is deposited by 

osteoblasts while decreased loading causes reabsorption of bone through the 

action of osteoclast cells (Witten and Huysseune, 2009). Such load-induced 

dynamics can create a constant cycle in addition to normal bone turnover that 

allows bone to change shape and structure in response to different mechanical 

loading regimes (Lanyon et al. 1982; Owen et al. 2012). With different foraging 

modes and associated craniofacial morphologies it is likely that the mechanical 

loading of specific bones will vary between species and possibly sexes. Indeed, a 

biting mode of feeding is likely to result in craniofacial bones being subjected to 

overall higher levels of mechanical loading likely leading to an increase in bone 
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deposition relative to a suction mode of feeding (Parsons et al. 2014). Bone is 

also fundamentally shaped by mechanical loads imposed by basic functions 

during development. For example, Hu and Albertson (2017) reported that 

increased length of the retroarticular process of the mandible was associated 

with high levels of gaping behaviour in African cichlid larvae. Therefore, 

exploring how bone responds to mechanical stress can shed light on how it can 

influence adaptive responses to the environment.  

For trophic morphology the mandible forms a direct link between the organism 

and its environment. Indeed, the shape of the jaw is a useful predictor of 

function, feeding ecology, and performance in fishes (Westneat, 1995; 

Wainwright et al. 2004; Albertson et al. 2005). The mandible can directly limit 

the prey shapes and sizes that can be eaten as well as the power and rate of  

movements that are required to capture prey found in the water column 

(Westneat, 1995). There are general mandible morphologies that are associated 

with evolution along the benthic/limnetic habitat axis. Short, wide jaws 

facilitate biting, whereas suction feeding benefits from long, thin gracile jaws 

(Albertson et al. 2005). Furthermore, these shapes relate directly to the 

mechanical advantage of the mandible; this is calculated for both opening and 

closing using a ratio between the lengths of the in-levers (closing or opening) 

and the out-lever of the mandible (e.g. Wainwright and Richard, 1995; 

Westneat, 1995; Wainwright et al. 2004; Albertson et al. 2005). A higher 

mechanical advantage results in strong but slow movements for biting (often 

used for benthic feeding), conversely, suction feeding requires a low mechanical 

advantage for rapid but delicate movements (often used for limnetic feeding) 

(Albertson et al. 2005). Our understanding of the function of the mandible from 

its outward anatomical variation between species provides a strong basis for 

deeper investigation of this complex structure.   

Finite element analysis (FEA) is a tool that is proving to be useful for assessing 

the performance of complex structures under mechanical load and for assessing 

links between form and function (Ross, 2005; Polly et al. 2016). FEA can be used 

as a tool in evolutionary biology to assess how anatomical structures cope with 

loading and address a range of different research questions (Polly et al. 2016). 

Various different ecological scenarios can be tested with FEA such as testing the 
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ability to resist bites from predators (e.g. Rivera and Stayton (2011)), biting in 

different ways (e.g. Dumont, Piccirillo and Grosse, 2005; Pierce, Angielczyk and 

Rayfield, 2009) and structural adaptations for feeding (e.g. Hulsey et al. (2008)). 

Research has moved towards building a synthesis between morphometrics and 

FEA as this could be a powerful way to investigate form and function 

relationships at different levels within an evolutionary context (Polly et al. 

2016).  

With extensive and well-documented variation in craniofacial and mandible 

shape (e.g. Albertson and Kocher, 2001; Cooper et al. 2010; Powder et al. 2015), 

African cichlids are an excellent model with which to explore functional 

divergence using FEA. Furthermore, by combining FEA with investigations of 

morphological differences between the sexes, this can provide insights into 

whether sexual dimorphism is likely to be ecologically relevant. Previous cichlid 

research has shown that males possess steeper facial profiles relative to 

females, and in line with a morphology associated with a biting mode of feeding 

(Parsons et al. 2015). However, as in other cases, confirmation of ESD was 

difficult as there are no criteria which are reliable in practice and other factors 

may be involved in the evolution of sexually dimorphic trophic structures (Shine, 

1989). However, given the link between the shape of trophic morphology and its 

ecology, testing for sexual dimorphism in functional performance in the high 

level of resolution that FEA allows could potentially strengthen a case for ESD.   

Additionally, African cichlids are also an excellent model with which to test for 

performance trade-offs between phenotypes. Their recent divergence and 

shared genetic background allow for cichlids to be hybridised in the laboratory 

to create phenotypes that are intermediate between parental species. Such 

hybrid phenotypes are generally predicted to have a lower fitness which 

supports the idea of disruptive selection (Mayr 1963; Grant and Grant, 1992; 

Hatfield and Schluter, 2006). However, in some cases hybrids may actually 

achieve higher fitness and provide variation for further adaptive divergence 

(Arnold and Martin, 2010). Indeed, for African cichlids hybridisation is often 

posited as a facilitator of evolvability and rapid divergence (Seehausen, 2004; 

Albertson and Kocher, 2005; Parsons et al. 2011). Therefore, this chapter 
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provides an opportunity to assess the functional consequences of hybridisation 

within the context of interspecific divergence and adaptive radiation. 

This chapter assesses functional variation of the mandible between species and 

the sexes in relation to the mandible shape. Rather than attempt to recreate in 

vivo loading, this study is a comparative analysis of the ability of the mandible 

to cope with external compressive loading that would likely be experienced 

during feeding by Tropheops “Red Cheek” (TRC) and Labeotropheus fuelleborni 

(LF). For the interspecific comparison I predict that as Labeotropheus 

fuelleborni which possesses a classic biting mode of feeding, will be superior at 

handling mechanical loading relative to the Tropheops “Red Cheek”. With 

regards to sexual dimorphism, I predict that sexual dimorphism will be present 

in mandible shape and that FEA will show males to be superior at handling 

mechanical loading. Finally, for hybrids I predict that they will not out-perform 

either parental species in line with previous studies on adaptive divergence 

(Mayr 1963; Grant and Grant, 1992; Hatfield and Schluter, 2006).  

 
3.3 Methods  

3.3.1 Specimen Preparation and µ-CT Scanning 

Both parental species are algal feeders but likely reduce competition through 

different foraging modes within the same ecological niche (Concannon and 

Albertson, 2015). Specifically, LF scrapes algae off of rocks whereas TRC plucks 

and ‘nips’ the algae off (Albertson, 2008; Albertson and Pauers, 2018). Within 

each species there are suggestions that there are sex differences in foraging 

locations as males are highly territorial (Ribbink et al. 1983). In addition, males 

use their mouths for biting and aggressive interactions include males locking 

their jaws together (Ribbink et al. 1983; Danley, 2011). Furthermore, as females 

are mouthbrooders, this could impose functional constraints on the mandible. To 

examine and quantify variation in mandible shape between LF and TRC, a 3D 

morphometric approach was conducted. 

Firstly, 20 adult fish of a similar age and size were selected from aquarium 

populations held at the University of Glasgow and sacrificed with an overdose of 
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benzocaine solution following Home Office guidelines; fish were then frozen at   

-20°C until dissections took place. In line with ASPA animal welfare regulations, 

to reduce the number of animals euthanised, some of the fish selected had died 

of natural causes. The sample size comprised of approximately equal numbers of 

each sex confirmed by colouration, internal dissection of gonads and vent size 

(Moore and Roberts, 2017). To remove the mandible, it was disarticulated from 

the maxilla and the quadrate of the skull and then carefully dissected out. 

Mandibles were stored in 1X PBS to maintain hydration during the scanning 

process. As in Chapter 2, µ-CT scanning was conducted using a Bruker 

Skyscanner 1172 (Bruker, Billerica MA). The µ-CT scanning parameters remained 

constant at 70kV and 10 µm resolution using the largest camera for all 

mandibles. Processing of the raw images was carried out using NRecon (version 

1.6.9.18) to ensure alignment of each µ-CT image slice. Settings, including 

‘smoothing’, ‘ring-artefacts reduction’, and ‘misalignment correction’ remained 

constant across specimens. One TRC model was removed from the sample due to 

poor model quality. For TRC there were 9 specimens, (female = 4 and male =5), 

and for LF there were 10 specimens (female = 5 and male = 5). 

 

3.3.2 3D Model Generation for Morphometrics 

To create 3D models for shape analysis, ScanIP (Version 7.0; available at: 

https://www.simpleware.com/) was used on the processed images from above. 

For each sample, the stack of µ-CT image slices was loaded with a “Pixel Skip” 

value of 3 to reduce triangles on the model (reducing file size from ~1GB to 50-

100MB per specimen). To reduce noise and smooth the model surface, the 

“Recursive Gaussian” filter was used with settings adjusted an individual basis 

depending on need.  Each model was then segmented using the “Interactive 

Threshold” function to highlight regions of bone based on greyscale values from 

the scanning process, followed by the “Flood Fill” function which created a mask 

that included only connected areas of the model to remove scanning artefacts. 

The final steps of model creation involved smoothing the surface topology and 

reducing the number of triangles before exporting as an STL (stereolithography) 
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file. Before morphometrics could commence, the STL file was converted to a 

PLY file using MeshLab (available at: http://meshlab.sourceforge.net/).  

 

3.3.3 Morphometrics and Analysis of the Parental Species 

Mandible shape for both LF (n = 10) and TRC (n = 9) was quantified using 3D 

morphometrics; all analysis was conducted using R version 3.4.1 (R Core Team 

2017) using the geomorph package (Adams and Otárola-Castillo, 2013; Adams, 

Collyer and Kaliontzopoulou, 2019) unless otherwise stated. Firstly, using 

Landmark Editor (available: http://graphics.idav.ucdavis.edu), 20 homologous 

landmarks reflecting functional relevance were manually placed on each model 

surface (e.g. Albertson and Kocher 2001 and Parsons et al. 2012) (Figure 3-1; 

Figure 3-2). Prior to analysis in R, landmark data in the form of pts files, were 

converted to a TPS file using Simple3D (IMP Software available: 

http://www.philadb.com/an-behav/imp/) (Zelditch, Swiderski and Sheets 

2012a; Zelditch, Swiderski and Sheets 2012b). Shape analysis began with a 

Procrustes superimposition which rotated, translated, and scaled landmark data 

to a common size using the gpagen function. To ensure downstream analysis of 

shape only encompassed the bilaterally symmetric component of shape 

variation, asymmetry was also removed using the bilat.symmetry function 

(Klingenberg, 2015). Because the two different species had different allometric 

trajectories for mandible shape (tested by proc.allometry), an allometric 

correction was not conducted (Klingenberg, 2016).  

To assess aspects of divergence between species and sexes in mandible shape, a 

series of steps were conducted. The effects of species, sex, and their interaction 

were assessed using a Procrustes ANOVA on landmark coordinates. Following 

this, to test a priori groupings of species and sex in the parental species, a 

discriminant function analysis was conducted using lda from the MASS package 

(Venables and Ripley 2002) on the first 5 principal components (90% of the 

variation). A principal component analysis (PCA) using plotTangentSpace was 

conducted on Procrustes coordinates to reduce the shape variables for the DFA. 

Generally, when the sample size is lower than the shape variables, the suggested 
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number of PCs to use is the number of samples divided by 4, which in this case is 

why 5 PCs were chosen as the shape variables for the DFA (Zelditch and 

Swiderski, 2018). 

 

 

 

 

 

 

 

Figure 3—1: The labelled anatomy of the cichlid mandible from the lateral view based on Barel 
et al. (1977) and Parsons, Marquez and Albertson (2012). 
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3.3.4 Specimen selection for Finite Element Analysis 

To explore aspects of hybrid biology and sexual dimorphism for the finite 

element analysis, one F2 specimen of each sex of an intermediate shape 

between the two species were needed. F2 landmark data (for fully intact 

models) from Chapter 2 (n=120) was appended to the TRC and LF landmark data 

from above; gpagen was used to conduct a Procrustes superimposition on the 

landmark data and bilat.symmetry used to extract the symmetrical component 

of the shape variation. To determine specimen position in shape space, a DFA 

was conducted using F2, LF and TRC as grouping variables. As before, 

plotTangentSpace was used to perform a PCA reduction and all resulting PC 

Figure 3—2: Landmarks used for morphometrics analysis. Each landmark represents a 

functionally relevant area of the mandible and selection was based on previous work on cichlid 

mandibles (Albertson and Kocher, 2001; Parsons, Marquez and Albertson, 2012). Landmarks 

represent the following anatomical locations: 1) dorsal tip of the midline; 2) ventral tip of the 

midline; 3) left lateral rostral tip of the articular excavation; 4) left lateral dorsal posterior tip of 

the primordial process; 5) left lateral dorsal edge of the lateral facet rim; 6) left lateral ventral 

edge of the lateral facet rim; 7) left lateral most rostral edge of the region ventral to the lateral 

line foramina; 8) left lateral ventral obturated foramen; 9) left lateral posterior tip of the 

coronoid process; 10) left lateral mandibular edge foramina; 11) left lateral ventral edge of the 

mandibular edge foramina; 12) right lateral rostral tip of the articular excavation; 13) right 

lateral dorsal posterior tip of the primordial process; 14) right lateral dorsal edge of the lateral 

facet rim; 15) right lateral ventral edge of the lateral facet rim; 16) right lateral most rostral 

edge of the region ventral to the lateral line foramina; 17) right lateral ventral obturated 

foramen; 18) right lateral posterior tip of the coronoid process; 19) right lateral mandibular edge 

foramina; 20) right lateral ventral edge of the mandibular edge foramina. 
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scores were used for the DFA. A canonical variate plot was then created from 

this analysis based on the LD1 and LD2 scores to allow for a single male and 

female specimen to be selected from the middle of the F2 distribution (Figure 

3-3). Two TRC and two LF specimens of each were selected for FEA based on the 

quality of the original model as not all would have been suitable.  

 

 

 

Figure 3—3: Scatterplot from a discriminant function analysis (DFA) on mandible shape used to 

aid specimen selection for the finite element analysis (FEA). Tropheops “Red Cheek” (TRC) is 

depicted in green, Labeotropheus fuelleborni (LF) in pink, and F2 hybrids are in yellow. The 

inset box indicates a magnified view of the F2 hybrid specimens; the two circles in the 

magnified box indicate the models which were selected for the FEA. 
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3.3.5 Mesh Creation for Finite Element Analysis  

While the specimens used for FEA were identified from morphometrics, the 

models used for morphometrics were different to those used for the FEA. This 

was because there are a number of steps that need to be followed to produce a 

model specifically appropriate for a finite element model (Richmond et al. 2005; 

Ross, 2005; Panagiotopoulou, 2009; Peterson and Müller, 2018). Once specimens 

were selected, the meshes were created from the original geometry of the 3D 

model following a voxel-based approach using the software ScanIP (Version 7; 

available at:  https://www.synopsys.com/simpleware.html). This method takes 

each voxel in the 3D model and converts it into a finite element mesh joined 

together at nodal points resulting in the generation of a mesh which accurately 

reflects the shape of the structure of interest (Rayfield, 2007; Panagiotopoulou, 

2009). Tetrahedral elements were selected for each mesh generation over 

quadratic elements due to their lower computational demands; for biological 

structures there are minimal differences in results between the two element 

types (Dumont, Piccirillo and Grosse 2005). Completed meshes were checked 

visually and the mean in-out and edge length aspect ratios of elements 

calculated by the software were reviewed to ensure the elements were as 

uniform as possible (Stayton, 2009). The in-out aspect ratio and edge length 

aspect ratio relate to the shape of the individual elements that comprise an FEA 

mesh. To ensure a quality FEA mesh, elements should be as close to a ‘perfect’ 

triangle as possible; elements which are too elongated can result inaccurate 

results (Stayton, 2009). The documentation within the software recommends a 

value greater than 0.1 for the mean in-out aspect ratio and less than 10 for the 

mean edge-length ratio for a high quality FEA mesh.    

Each element was then assigned material properties (Young’s modulus and 

Poisson’s ratio) which define how the mandible would behave under loading. The 

Young’s modulus relates to the elasticity of the material and is the measure of 

the deformation of the material as a result of a given axial load, whereas the 

Poisson ratio is defined as a measure of the lateral strain divided by the axial 

strain which represents how the material will expand or contract to maintain 

volume (Richmond et al. 2005). The bones were assigned homogenous material 

properties to allow the focus to be on the shape of the mandible and for 
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simplicity as the bone density did not differ between species (also reported by 

Albertson, Cooper and Mann, 2012). For each element of a given mesh, the 

Young’s modulus was assigned 6 GPa based on existing experimentally tested 

material property information for fish bone (Horton and Summers, 2009; Cohen 

et al. 2012) while a Poisson’s ratio of 0.3 was assigned as this has been used 

previously in vertebrate FEA modelling of bone (Dumont, Piccirillo and Grosse, 

2005; Hulsey et al. 2008). Although asymmetry was removed for morphometric 

analysis, it was retained for FEA models as it is a natural component of mandible 

development and likely to influence mechanical loading (see Stewart and 

Albertson (2010)).  

 

3.3.6 Finite Element Analysis 

To examine the ability of the mandible to cope with loading, each model was 

tested with compressive loading on the teeth. The focus was how this bone 

copes with compressive loading that could be experienced by the fish in their 

natural environment during scraping and plucking. Therefore, bite forces 

originating directly from the muscles attached to the mandible were excluded 

from this analysis. Using Abaqus CAE (available at: 

https://www.3ds.com/products-services/simulia/products/abaqus/abaquscae/), 

each mesh was assigned the same boundary conditions to prevent it from moving 

into space whilst also allowing for natural movement and loading conditions. The 

boundary constraints for each model were placed along each ascending arm of 

the mandible as this is where the adductor mandibulae, involved in jaw closing, 

attach. Multiple nodes were used for the boundary constraints as using a single 

node can result in unrealistically high stresses and strains in the surrounding area 

(Richmond et al. 2005). The left side of the mandible was constrained in all 

three directions (x, y and z) whereas the right side was constrained along y and z 

so as to allow realistic lateral movement for flexibility and deformation during 

loading (Figure 3-4). To reflect species differences, different loading scenarios 

were conducted for each mesh (Figure 3-4). The four loading scenarios 

represented the compressive stress a mandible would likely encounter during 

foraging in the two species. This included force being applied equally across four 
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different distances across the width of the mandible (approximately 25%, 50%, 

75% and 100%). LFs likely use the full width (75%-100%) of the mandible during 

scraping and are substantially wider and straighter than TRC which are rounder 

and narrower and likely only use a small proportion of the width (25-50%) of the 

mandible when plucking. 

Previous FEA modelling on the cichlid craniofacial apparatus has used a wide 

range of forces for loading scenarios. Cooper et al. (2011) tested bite force 

transmission through the skull and used 15N, which was suggested as an 

approximate value for bite force of an adult cichlid; Hulsey et al (2008) tested 

structural adaptations to molluscivory and used 1600 N, the maximum force a 

molariform can apparently withstand, and Peterson and Müller (2018) used 

between 0.02 to 0.5N to test bite force in developing embryos. After preliminary 

tests I elected to use 1N to simulate external, compressive loading on the 

mandible (adjusted for scale depending on the surface area of the mesh as 

described in the next section) as this produced stress values within the range 

that would be expected from FEA results in bone (the majority of the elements 

had stress values below 15MPa). As there is no existing data on bite force or 

loading on the mandible during feeding, values for loading in FEA have to be 

estimated. As this was a comparative analysis, the actual loading values are not 

necessary, with only the stress patterns being relevant (Rayfield, 2007). The 

results of the FEA analysis represents the stress, strain and deformation of each 

element of the mesh under the loading conditions (Richmond et al. 2005; Ross, 

2005; Panagiotopoulou, 2009; Peterson and Müller, 2018). The von Mises stress is 

reported in this chapter as it is a reliable predictor of fracture in bone (Dumont, 

Grosse and Slater, 2009). 
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Figure 3—4: Graphical representations of the cichlid mandible from the lateral (A) and ventral (B) aspects. The lateral aspect (A) shows constraints on (shown in 

purple) the ascending arm for both sides of the model and the loading locations (in green). The ventral aspect (B) shows the location of modelled compressive 

forces (shown in green) and applied on to the teeth across four different, approximately symmetrical, spans across the mandible. The constraints anchor the mesh 

for the FEA; each model was constrained fully in all three directions on the left side and free to move along the X axis on the right side to allow for some natural 

flexibility. The orientation and coordinate system used is represented by the axes in the bottom right corner of each diagram. 
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3.3.7 Scaling of Mesh Loading  

To accurately compare performance in response to force, the forces used were 

scaled according to the surface area of the mesh for each specimen selected for 

the FEA. This allowed any inferences about performance to be attributed to the 

shape of the structure rather than size related differences (Dumont, Grosse and 

Slater, 2009). However, although the optimal option would be to rescale each 

model to the same surface area, this can be both time-consuming and 

challenging. Instead, I followed the recommendations of Dumont, Grosse and 

Slater (2009) by ensuring that the applied force to surface area ratio was 

identical for each mesh. Therefore, the applied load from the model with the 

lowest surface area was used as a reference, and the force for each model was 

calculated using Equation 3-1. This resulted in each model having the same 

force-to-surface-area ratio to account for size differences between specimens. 

Surface area, rather than measures of model volume, were used as they are 

more accurate for scaling purposes when the structures in question differ in 

shape, as they do in this study (Dumont, Grosse and Slater, 2009). 

FB = (SAB/SAA) x FA 

Equation 3-1: SA represents the surface area of both the reference (SAA) and target (SAB) 

models, FA is the force used for the reference model, and FB is the force to use for the target 

model. 
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3.4 Results  

3.4.1 3D Morphometrics  

Both species and sexes showed significant differences in mandible shape, 

however, there was no interaction between these factors which suggested that 

the level of sexual dimorphism was similar in both species (Table 3-1). From the 

Procrustes ANOVA, Species explained the greatest variation in mandible shape 

(57%) compared to sex (7%). A priori groupings of species were confirmed as the 

DFA (Figure 3-5a) showed a correct classification rate of 100% for both LF and 

TRC. Evidence for sexual dimorphism was strong in both species with the correct 

classification rate being 100% and 89% for males and females respectively 

(Figure 3-5b). The major shape difference between groups was width, with LF 

mandibles being wider than TRC, and males having wider mandibles than 

females (Figure 3-5).  

 

Table 3-1: The results of a Procrustes ANOVA conducted on shape coordinates to test for species 

and sex differences in mandible shape. P values were obtained through permutation procedures. 

Asterisks highlight statistically significant P values. 

 

*P <0.05, **P<0.01, ***P<0.001 

 

Factors DF Sum Sq Mean Sq R Sq F  Z P  

Species 3 0.115890 0.115890 0.57340 26.1845 3.2590    0.001*** 

Sex 3 0.014972 0.014972 0.07408 3.3828 2.3677    0.016* 

Species:Sex 3 0.004858 0.004858 0.02404 1.0977 0.6491    0.251 

Residuals 9 0.202109 0.004426 0.32848    
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Figure 3—5: Frequency histograms for groupings derived from a discriminant function analysis using A) species with Tropheops “Red Cheek (TRC) in green and 

Labeotropheus fuelleborni (LF) in pink and, B) sex with females in blue and males in yellow. Associated mandible shapes are shown either side of the frequency 

histogram with mean shape represented by the grey landmarks; differences have been magnified by a factor of 5 to aid interpretation. 
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3.4.2 Finite Element Analysis  

All meshes had a similar mean aspect ratio and mean edge length ratio and the 

elements and meshes were of a high quality (Table 3-2).  

Table 3-2: Mesh statistics for each specimen examined using Finite element analysis. Mesh 

loading and scaling is described in Section 3.3.7. 

Model Surface Area 
(mm2) 

Nodes Mean In-Out 
Aspect Ratio 

Mean Edge 
Length 

Aspect Ratio 

Load (N) 

LF Female 168 99,765 0.79 1.71 1.42 

LF Male 402 289,588 0.80 1.68 3.44 

TRC Female 185 87,173 0.76 1.79 1.57 

TRC Male 171 82,359 0.78 1.72 1.45 

F2 Female 140 81,878 0.79 1.72 1.19 

F2 Male 118  62,529 0.75 1.83 1 

 

With regards to the parental species models, when compared with LF, both TRC 

models had more areas of stress across the mandible when loading was applied 

across the entire width and approximately 75% of the width of the jaw to 

simulate how an LF would forage (Figure 3-6 and Figure 3-7). Additionally, all 

four models showed stress laterally on the mandible at differing degrees, in 

particular at the edge of the articular web where the values of stress are 10 MPa 

and above, indicating fracture and failure would occur in this region. The LF 

models showed minimal stress across the dentary region of the mandible 

whereas the TRC models showed slightly more stress across this region when 

loaded in this way. The “wings” of the mandible in LF showed minimal stress 

when force was loaded across 100% and 75% of the width. This suggests LF 

possesses structural adaptations for dissipating load across the width of the 

mandible.  

Placing load across 50% and 25% of the width of the jaw was intended to 

simulate how a TRC would come into contact with loading during feeding (Figure 
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3-8 and Figure 3-9). Under these conditions, the TRCs showed stress across the 

dentary region and laterally on the jaw but had minimal stress across the 

midline. This “ridge” area of low stress was not present to the same extent in 

LFs and could represent a structural adaptation for coping with load across the 

relatively narrow width of the mandible in TRC. Comparatively, the LFs also 

exhibited higher stress laterally and in the dentary region than for the first two 

scenarios but the stress patterns in this area were not as intense as in TRC. 

Females had a higher level of stress across the mandible than the males. This 

pattern was particularly evident in the TRC female which showed high levels of 

stress (>7 MPa) across the mandible for all loading scenarios. Both sexes were 

similar in how they dissipate stress with both LF males and females having low 

levels of stress across the dentary region and the “wings” during loading 

scenarios using 75% and 100% of the jaw width, and both TRC males and females 

had a reinforced “ridge” along the midline.  

F2 hybrids showed high stresses across the articular web on both sides of the 

mandible for all loading scenarios and the stress patterns for each scenario for 

both hybrids were similar to the TRC female. However, the hybrid female 

showed very little stress across the dentary region when loading was across the 

full width of the jaw but possessed a similar stress pattern to the TRC male for 

the loading scenarios where the force was applied at 50% and 25% of the width. 

The hybrid female showed very little stress across the midline whereas the 

hybrid male showed major asymmetry in stress patterns across the mandible 

despite asymmetry in mandible shape accounting for less than 14% of the 

variation in the shape. 
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Figure 3—6: Results for each of the models for the 100% loading scenario shown from multiple 

angles (ventral, left lateral, dorsal and posterior views). The colours displayed on each model are 

the finite element analysis (FEA) results and represent a gradient of stress from low values (blue) 

to high (red); grey represents the maximum stress value (in MPa). In each Figure, the colour scale 

for the Von Mises stress is consistent across all models to allow for comparison; as grey is the 

maximum stress value this is variable across each model. Black arrows indicate the “ridge” for 

the Tropheops “Red Cheek” (TRC) and the “wings” in the Labeotropheus fuelleborni (LF). 
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Figure 3—7: Results for each of the models for the 75% loading scenario shown from multiple 

angles (ventral, left lateral, dorsal and posterior views). The colours displayed on each model are 

the finite element analysis (FEA) results and represent a gradient of stress from low values (blue) 

to high (red); grey represents the maximum stress value (in MPa). In each Figure, the colour scale 

for the Von Mises stress is consistent across all models to allow for comparison; as grey is the 

maximum stress value this is variable across each model. Black arrows indicate the “ridge” for 

the Tropheops “Red Cheek” (TRC) and the “wings” in the Labeotropheus fuelleborni (LF). 
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Figure 3—8: Results for each of the models for the 50% loading scenario shown from multiple 

angles (ventral, left lateral, dorsal and posterior views). The colours displayed on each model are 

the finite element analysis (FEA) results and represent a gradient of stress from low values (blue) 

to high (red); grey represents the maximum stress value (in MPa). In each Figure, the colour scale 

for the Von Mises stress is consistent across all models to allow for comparison; as grey is the 

maximum stress value this is variable across each model. Black arrows indicate the “ridge” for 

the Tropheops “Red Cheek” (TRC) and the “wings” in the Labeotropheus fuelleborni (LF). 



 

 71   

Figure 3—9: Results for each of the models for the 25% loading scenario shown from multiple 

angles (ventral, left lateral, dorsal and posterior views). The colours displayed on each model are 

the finite element analysis (FEA) results and represent a gradient of stress from low values (blue) 

to high (red); grey represents the maximum stress value (in MPa). In each Figure, the colour scale 

for the Von Mises stress is consistent across all models to allow for comparison; as grey is the 

maximum stress value this is variable across each model. Black arrows indicate the “ridge” for 

the Tropheops “Red Cheek” (TRC) and the “wings” in the Labeotropheus fuelleborni (LF). 
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3.5 Discussion  

Although TRC and LF share a similar ecological niche, mandible shape and its 

ability to handle loading differs substantially. In the results presented here, the 

majority of mandible shape variation can be attributed to interspecific 

differences. Specifically, LF possess a much wider mandible than TRC which, 

when coupled with my FEA results, may confer a stronger ability to handle 

mechanical loading (Figure 3-5; Albertson and Pauers, 2018). Sexual dimorphism 

in mandible shape was evident in both species but with a much smaller effect 

than interspecific differences. Furthermore, sex-based variation in mandible 

shape reflected a similar trend to the interspecific differences with females 

possessing a much narrower mandible than the males. Given that a wider 

mandible increases the ability to bite and gather large amounts of algae, 

whereas a narrower mandible is better for suction feeding, such sexual 

dimorphism is likely to have ecological consequences (Albertson and Kocher, 

2001).  

There is evidence of sexual dimorphism in both parental species similar to that 

found in another species of Lake Malawi mbuna (Maylandia zebra) (McWhinnie 

and Parsons, 2019). It is likely that sexual dimorphism in mandible shape is 

widespread throughout the Malawi radiation. However, because I found that the 

level of sexual dimorphism for shape was the same for both species, this could 

represent an ancestral condition for cichlids, or that both species have reached 

an evolutionary maximum. This could also suggest that further sexual divergence 

in mandible shape may be limited. Despite this, if sexual dimorphism is an 

ancestral condition, then the presence of sexual dimorphism in cichlids may 

have provided a source of variation that facilitated an initial divergence into 

benthic and limnetic ecomorphs. Therefore, in Lake Malawi cichlids, if such 

sexual dimorphism is ancestral it may have biased early stages of adaptive 

radiation toward a benthic/limnetic habitat axis as has been suggested in 

threespine sticklebacks (McGee and Wainwright, 2013).  

Divergence in feeding ecology between the species has likely been driven by how 

the mandible handles loading. Indeed, previous work has shown the ability of the 

neurocranium to resist biting forces on the vomerine process of the skull with 
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the steeper face of LF displaying lower stress than Maylandia zebra (MZ) which 

possesses a shallower face for suction feeding (Cooper et al. 2011). The 

responses in the LF mandible also show they were relatively better at dissipating 

stress when loading which mimicked their foraging mode was applied. Part of 

this may be due to LFs possessing a much wider jaw than TRC and the extended 

“wings” which protrude from the dentary region, and likely represent a unique 

foraging adaptation in Labeotropheus. This specialist adaptation to biting and 

scraping and the ability of the LF to handle stress efficiently could mean that 

this species ‘shields’ itself from environmental influence. Given that a benthic 

diet should create more external stress on the mandible, it could be expected 

that LF would experience a great deal of bone remodelling (Parsons et al. 2014). 

However, with such an efficient ability to dissipate external loading from 

feeding, remodelling might be negated in LF and could explain why they show 

slightly lower levels of morphological plasticity (Parsons et al. (2014), and 

investigated in Chapter 4).  

Foraging tactics likely have a strong influence on patterns of mechanical loading. 

As TRC employs a nipping technique to pluck pieces of algae (Albertson, 2008), 

they would be unlikely to use the full width of the jaw like LF to contact food. In 

correspondence with this, the TRC FEA models showed minimal stress across the 

midline in all loading scenarios. This feature became particularly prominent 

when loading was applied that mimicked their foraging tactics. Given that this 

midline efficiency was not evident to the same extent in either of the LF 

models, this could be due to a structural adaptation. Indeed, TRC exhibited a 

‘ridge’ of enhanced bone deposition across the midline which may be responsible 

for this increased efficiency. As previously mentioned, mechanical loading on 

bone induces remodelling through Wolff’s Law (Wolff 1892; Chen et al. 2010). 

Therefore, in TRC, this area across the midline has perhaps been historically 

subjected to increased remodelling of bone as a result of the feeding method 

employed. Given that LF and TRC specimens were both wild caught or first-

generation lab reared and had been fed the same food for long periods, this 

suggests that these potential adaptations are now part of the normal 

developmental process in both these species. When such an environmentally 

induced trait becomes part of normal development it suggests that genetic 
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assimilation has taken place (Pfennig et al. 2010). Similarly, in ostriches the 

callouses develop in their feet as part of normal development prior to hatching. 

Thus a trait which would normally be considered as one requiring environmental 

induction has now become a part of the genetic architecture and the phenotype 

(Gilbert, 1991).  

Females performed comparatively worse at handling mechanical stress in both 

species. As the force to surface area ratio was the same for all models, the 

higher levels of stress indicate that the female mandible in both species would 

be unable to cope with the same force as the males. This could be due to the 

different uses for the mandible between sexes, with males showing high levels of 

aggression and fighting amongst each other for mates. This fighting occurs by 

locking jaws and biting, in turn providing greater mechanical loading in males 

relative to females (Ribbink et al. 1983). Mouthbrooding by females is also likely 

to place functional constraints on the craniofacial apparatus that males are not 

subject to. For example, a recent study reported that mouthbrooding in cichlids 

from Lake Victoria resulted in functional trade-offs for females (tkint et al. 

2012). In this study, the necessity for space to mouth-brood in females has 

resulted in a better “biting” phenotype and a higher estimated bite force in 

males (tkint et al. 2012). Interestingly, that study also reported morphological 

differences between males and females similar to the sexual dimorphism in TRC 

and LF species. It is currently unknown how widespread sexual dimorphism is 

within the Lake Malawi radiation, but other studies have reported sexual 

dimorphism in the trophic morphology without considering the idea that this 

could be related to ESD (Oliveira and Almada, 1995; Herler et al. 2010). Such 

sexual dimorphism could increase the phenotypic variation in a population, and 

as my data shows, lead to functional divergence in response to loading on the 

mandible. Therefore, both reproductive and ecological differences could have 

additive effects that result sexual dimorphism.  

The F2 hybrid models showed high stress patterns visible in the dentary region 

and the articular web of the mandible, with the female showing less stress than 

the male. In addition, the male showed asymmetry in the stress patterns in 

comparison to the female and this could be a result of the hybrid encompassing 
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phenotypic features of both the LF and TRC. Indeed, for all scenarios, it appears 

the F2 female handled stress better than the TRC female. Therefore, there 

could be wide variation in ability to handle loading on the mandible in the F2 

hybrid population and this could explain why my hypothesis was not supported. 

The F2 female showed evidence of both a “ridge” and protrusions like the 

“wings” but this was not as noticeable in the male. In cichlids, hybridisation can 

result in novel transgressive morphologies which are remarkably different from 

either parental species (Albertson and Kocher, 2001; Genner and Turner, 2005). 

Furthermore, hybridisation can lead to a decrease in phenotypic integration in 

the craniofacial region which could therefore promote evolvability through the 

production of new phenotypes (Parsons, Son and Albertson, 2011). However, 

extreme variation in ability to handle stress could confer a negative functional 

advantage and explain why the Lake Malawi species complex has not collapsed. 

Given the wide variation in phenotypes, it could be that there is potentially wide 

variation in the ability to cope with stress and loading by the mandible in the 

hybrids; this requires further investigation beyond the scope of this chapter. 

Only two models were used for the FEA in this chapter, and it is likely further 

specimens would need to be modelled to fully explore the functional 

consequences of hybridisation in further detail.  

The ability of cichlids to adapt to subtle differences in feeding ecology could 

explain the unprecedented success of the African Great Lakes adaptive 

radiations. Given that there are no major differences in bone density in mbuna 

cichlids (Cooper et al. 2011; Albertson, Cooper and Mann, 2012), this suggests 

the differences in ability to handle stress are adaptations reflected by the shape 

of the mandible and internal bone architecture (Albertson, Cooper and Mann 

2012). Therefore, analysing variation within the internal bone architecture in 

the LF and TRC mandible would be an informative area for future research, and 

along with shape variation, could explain differences in ability to handle stress. 

This would also be a fruitful area for research in terms of sexual dimorphism as 

potential differences in internal bone architecture could provide further support 

for ESD. 
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3.6 Conclusions 

Understanding the relationship between form, function and ecology is a key 

component of adaptive divergence research and exploring variation at an 

interspecific and intraspecific level can help increase our understanding of 

divergence. The results presented in this chapter highlight that both LF and TRC 

possess different structural and morphological adaptations for dissipating stress 

during feeding. As for the hybrids, they showed similar stress patterns to the 

TRC female, but with males showing an asymmetrical stress pattern with some 

areas of the mandible showing more stress than in the female; it is likely that 

there is a wide variation in ability to handle stress and this could confer a 

negative advantage within the radiation. As for sexual dimorphism, stress 

patterns also differed between males and females within each species indicating 

that males are able to cope with greater external forces than females. As males 

had a mandible better suited for biting and would likely experience more force 

during foraging, this lends weight to the idea of adaptive divergence between 

the sexes within the Lake Malawi cichlid radiation. The functional and 

morphological trends reported in this chapter suggest the differences between 

the sexes are ecologically relevant suggesting a role for ESD in the Lake Malawi 

radiation. However, it is important to note that the sexual dimorphism in the 

mandible may be have resulted from a combination of divergence in 

reproductive behaviour and foraging. Nonetheless, as adaptive radiation could 

be a combination of different levels of small-scale variation, sexual dimorphism 

could be a key contributor to this process, and this should be held in higher 

consideration for adaptive radiations. 
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Chapter 4: Testing for Sexual Dimorphism in 
Phenotypic Plasticity of Craniofacial Shape and 
Functionally Relevant Traits in African Cichlids 

 

4.1 Abstract 

Phenotypic plasticity is the ability of a genotype to produce multiple phenotypes 

in response to different environmental conditions and has been suggested as 

playing a key role in adaptive divergence (Wimberger, 1992; van Snick Gray and 

Stauffer, 2004; Pfennig et al. 2010). To assess phenotypic plasticity in an 

attempt to understand the contribution of plasticity to the possibility of 

ecological divergence between the sexes, a diet treatment experiment was 

conducted using two species (Labeotropheus fuelleborni and Tropheops “Red 

Cheek”). Plasticity in craniofacial shape and three functionally important traits 

were measured. These experiments did not show evidence of sex-based 

differences in plasticity for either species in any of the traits measured. This 

suggests mouth-brooding does not constrain plasticity in females as hypothesised 

and that ecological divergence between sexes does not rely on phenotypic 

plasticity. This could also mean that ecological sexual dimorphism is not 

important to the radiation, but the results presented in Chapter 3 contradict 

this idea. The species did not markedly differ in plastic response in craniofacial 

shape which also differs from the hypothesis. Jaw protrusion showed a plastic 

response in both species but there were no differences between treatments in 

the other two traits measured suggesting that plasticity is focused in the area 

which directly interacts with the environment. Phenotypic plasticity has 

contributed to the variation present in the radiation and although sexes differ in 

craniofacial shape, there is no evidence of an interaction between the two.  
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4.2 Introduction  

A fundamental goal of evolutionary biology is to understand how adaptive 

phenotypic variation arises. Recently, evolutionary thinking has expanded 

beyond the traditional view of genetic determinism as the driver of evolution to 

include environmental factors such as niche construction and phenotypic 

plasticity as important sources of adaptive variation (Laland et al. 2015). 

Plasticity is defined as the ability to produce multiple phenotypes from a single 

genotype in response to environmental conditions. Plasticity is commonly seen 

as provider of variation in the steps during the process of adaptive divergence 

and radiation (Pfennig et al. 2010). For example, the “flexible stem” hypothesis 

posits that adaptive divergence begins with plastic responses in ancestral 

populations that set the direction for further divergence (West-Eberhard 2003); 

this is supported with evidence from threespine sticklebacks (Gasterosteus 

aculeatus) (Wund et al. 2008) and African cichlids (Parsons et al. 2016).  

While plasticity is usually considered as a contributor toward broad adaptive 

processes it is underappreciated how it might also contribute towards different 

levels of divergence. For example, sexual dimorphism is a common occurrence 

within vertebrates that could be enhanced by plasticity. Related to this 

ecological sexual dimorphism (ESD), whereby adaptive divergence evolves 

between sexes resulting in the occupation of different ecological niches (Shine, 

1989), can evolve and form adaptive variation that is nested within broader 

patterns of ecological divergence (Foster, Scott and Cresko, 1998; Riopel, 

Robinson and Parsons, 2008; Parsons et al. 2015). However, an ecological cause 

for sexual dimorphism is challenging to show because it is difficult to separate 

from size variation between sexes, different nutritional requirements, sexual 

selection, or differences in reproductive output (Slatkin, 1984; Shine, 1989; 

Bolnick and Doebeli, 2003). Nonetheless, there are some clear examples of ESD 

recorded in snakes (Camilleri and Shine, 1990; Houston and Shine, 1993; 

Vincent, Herrel and Irschick, 2004), hummingbirds (Temeles, 2000; Temeles, 

Miller and Rifkin, 2010), and Caribbean Anolis lizards (Butler and Losos, 2002; 

Butler, Sawyer and Losos, 2007). Indeed, in the case of threespine sticklebacks, 

head shape can have little overlap between the sexes, with adaptive variation 
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associated with sexual dimorphism exceeding differences between ecological 

species in some populations (Aguirre et al. 2008; Aguirre and Akinpelu, 2010; 

Cooper, Gilman and Boughman, 2011). Therefore, given that phenotypic 

plasticity is viewed as a general contributor to adaptative divergence, it is 

reasonable to predict that plastic responses are also sexually dimorphic. 

Changes in trophic morphology are key to many cases of ecological adaptation. 

Ecology can often be inferred from craniofacial morphology, but analysis of 

functionally relevant traits can more precisely assess adaptive responses 

(including plasticity and ESD) to the environment. For example, ecological 

adaptation along a benthic/limnetic habitat axis is characteristic of many 

different fishes (Wainwright, 1996; Adams and Huntingford, 2002; Rundle, 2002; 

Cooper et al. 2010). A steep craniofacial profile with short jaws is a more 

benthic phenotype as it confers an advantage for powerful bites, whereas a 

sloping profile with long jaws facilitates the fast movements required for suction 

feeding in a pelagic habitat (Cooper et al. 2010). Adaptation to these habitats is 

often assessed through direct functional assessments of feeding performance 

that are correlated with diet and prey use (Wainwright 1988). Alternatively, 

measurements from relevant anatomical traits can be used indirectly to infer 

functional performance based on biomechanical principles (Wainwright and 

Richard, 1995).  

In fishes, jaw protrusion is highly relevant to feeding kinematics and can be used 

to predict suction feeding ability. Furthermore, it has been used extensively to 

explore the link between morphology and ecology in damselfish (Cooper et al. 

2017), sticklebacks (McGee and Wainwright, 2013), and cichlids (Hulsey and 

García De León, 2005; Matthews and Albertson, 2017). Specifically, limnetic 

foragers have greater jaw protrusion than benthic foragers which aids in the 

capture of food from the water column by increasing suction abilities (Motta, 

1984; McGee, Schluter and Wainwright, 2013; Matthews and Albertson, 2017). 

Feeding kinematics can also be influenced by plasticity as in the Lake Victoria 

cichlid Neochromis greenwood when raised on either an algal or zooplankton 

diet (Bouton, Witte and Van Alphen, 2002). In this case, fish raised on the algae 

treatment possessed a greater bite force, inferred through measures of the 
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musculature attached to the mandible, and through an increased angle between 

the ascending and dentigerous arms of the maxilla (Bouton, Witte and Van 

Alphen, 2002). 

Other traits of importance to fish feeding adaptations and function are the 

retroarticular (RA) process of the mandible, and the interopercle (IOP) link, 

which extends from the IOP bone to the insertion of the IOP ligament on to the 

RA. The IOP directly transmits motion to the mandible through 

the interoperculomandibular ligament which inserts on to the posterior point of 

the RA of the mandible (Figure 3-1; Westneat, 1990). Therefore, both traits 

form two primary links in the teleost opercular four-bar linkage model with 

lengthening and shortening of these links being highly relevant for functional 

predictions (Hu and Albertson, 2014, 2017b). For example, a short RA and long 

IOP results in a reduction in the mechanical advantage of jaw opening (MAO) 

which leads to a faster jaw rotation during opening; this is associated with 

suction feeding (Hu and Albertson, 2014; Westneat, 2003). Mechanical advantage 

relates to the force transmission capability of fish jaws and is often used as a 

means to identify differences between benthic and suction feeders (Barel, 1983; 

Westneat, 2003). A higher mechanical advantage results in greater force 

transmission which is more favourable for biting (Albertson et al. 2005). 

Conversely, a long RA and short IOP leads to a higher MAO, but with a reduction 

in jaw opening speed, and usually occurs with a benthic mode of feeding (Barel, 

1983; Westneat, 2003; Hu and Albertson, 2014).  

It has been suggested phenotypic plasticity plays a key role in the rapid and 

explosive radiation of African cichlids (Wimberger, 1992; van Snick Gray and 

Stauffer, 2004). Given previous indications of phenotypic plasticity in African 

cichlids (Bouton, Witte and Van Alphen, 2002; van Snick Gray and Stauffer, 2004; 

Parsons et al. 2014, 2016), and evidence of sexual dimorphism in mandible and 

craniofacial shape (see data from Chapter 2 and 3, Parsons et al. (2015), and 

McWhinnie and Parsons (2019)), it is logical to hypothesise that plastic responses 

may differ between sexes. The potential for sexual dimorphism in plasticity links 

to constraints that females may face due to mouth-brooding. In line with this, 

tkint et al. (2012) calculated theoretical bite force in two Lake Victorian cichlid 
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species and found males had an increased bite force compared to females. Such 

dimorphism could be the result of different selective pressures on the sexes as 

females are mouth-brooders and males use their mouths for fighting (Ribbink et 

al. 1983; Konings 2001; Parsons et al. 2015). Therefore, constraints on females 

due to mouthbrooding could also act as a limiting factor for plastic responses 

and contribute to differences in ecology between sexes.  

To assess the plasticity of craniofacial morphology in relation to sex and 

function, I performed a diet treatment experiment using the two focal species; 

Tropheops “Red Cheek” (TRC) and Labeotropheus fuelleborni (LF). I predicted 

that males would be more plastic than females as a consequence of the 

constraints placed on craniofacial morphology by mouthbrooding (tkint et al. 

2012). Previous work has shown that a benthic diet results in a steeper face and 

shorter jaw compared to a limnetic diet which induces a more sloping face with 

longer jaws. Also, LF has previously been reported as possessing a more robust, 

less plastic, phenotype than TRC  (Parsons et al. 2014). To extend these findings 

more directly toward ecological consequences I measured functionally relevant 

traits. Therefore, I also predicted that a limnetic diet would result in greater 

jaw protrusion, a shorter RA, and longer IOP link than the benthic treatment 

(Westneat, 1995; McGee, Schluter and Wainwright, 2013; Hu and Albertson, 

2014; Matthews and Albertson, 2017), and that females would show less 

plasticity in these traits than males. By considering how multiple contributors to 

variation could influence adaptive radiation, this chapter examines phenotypic 

plasticity from a novel perspective.  

 

4.3 Methods  

4.3.1 Fish Husbandry and Rearing  

Cichlid broods were collected in early 2017 for LF and late 2017 for TRC from 

females after 3 days post fertilisation (dpf). A total of 101 fish from ten broods 

were collected for TRC, and 115 fish from four broods were collected for LF. 

Each brood was raised separately in a 1L conical flask with 1-2 drops of 
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methylene blue to prevent fungus and an air stone to ensure the embryos were 

adequately aerated. Water changes were conducted regularly with broods being 

raised in the same water as their parents in the University of Glasgow Aquaria 

facility. At around 20 dpf the yolk was nearly completely absorbed, and broods 

were moved into a small tank (~25L) to feed independently. Each brood was 

raised in a separate tank and fine mesh was placed over the outflow pipe to 

prevent fish from escaping. After a further 4-6 weeks, fish were moved into a 

larger (~125L) tank. In total there were four treatment tanks for each species; 

two for the benthic treatment and two for the limnetic. To limit potential 

effects from density, each family was divided approximately equally across four 

treatment tanks with each tank containing between 22-26 fish.  Each tank 

contained the same enrichment (no substrate on the bottom and the same 

number of ceramic pots and tubes) and used the same water supply.  

 

4.3.2 Diet Treatment Experiment  

To test the impact of different biomechanical demands on development,  

treatment groups were fed one of either a limnetic or benthic diet based on 

previous methods (Parsons et al. 2014, 2016). The content of food was kept the 

same to limit the possibility of nutritional effects on morphological plasticity 

(Wimberger 1993). A limnetic treatment, given to two of the groups, consisted 

of a ground mixture of flake food, algae wafer and freeze-dried daphnia which 

was then sprinkled into the water column to elicit suction feeding. The benthic 

treatment, given to the two treatment groups was the same mixture but air 

dried on lava rocks. During feeding these rocks were placed at the bottom of the 

tank to elicit a biting mode of feeding. Each treatment tank was fed twice daily 

for approximately 6-7 months until fish were within the size range of a mature 

cichlid (approximately 4-8 cm SL) and sexual dimorphism in colouration and 

spawning activity had begun. Fish smaller than this were not included in 

downstream analysis as they were difficult to dissect (n = 4). Due to space 

constraints, only one species could be on the plasticity experiment at a time. 

Once the treatments ended, fish were euthanised following UK Home Office 
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Schedule 1 guidelines, labelled, and stored in 10% neutral buffered formalin 

(NBF). Fish were sexed by assessing the internal anatomy, colouration and 

venting; male colouration is bolder, and their anal and genital vents are the 

same size whereas female colouration is dull, and the genital vent is larger in 

size than the anal vent (Moore and Roberts, 2017).  

 

4.3.3 Morphometrics  

Following fixation, the craniofacial region was dissected to reveal musculature 

and allow functionally relevant landmarks to be collected for geometric 

morphometrics. Craniofacial landmarks were selected based on previous work 

(Cooper et al. 2010; Parsons et al. 2016) to ensure that they were relevant to 

the evolution and functional anatomy of cichlids. Fish were secured to a wax 

dish with a scale and ID tag and photographed laterally from a fixed distance, 

with their mouth closed, using a mounted Canon EOS 1100D camera (Canon (UK), 

Surrey) and then returned to 10% NBF for storage. 

For landmark digitisation, the tps suite of software was used (available at: 

http://life.bio.sunysb.edu/ee/rohlf/software.html). Prior to digitisation and to 

reduce intra-observer variability, the ID tags were removed from the images and 

the photographs were randomised so that landmarks could be added to the 

images blind to the treatment group. Landmarks were digitised for each 

specimen (Figure 4-1) with a scale factor measured for each image. Following 

digitisation, the landmarks were then analysed in R version 3.4.1 (R Core Team 

2017) using the geomorph package (Adams and Otárola-Castillo, 2013; Adams, 

Collyer and Kaliontzopoulou, 2019). Before any analysis could take place, the 

landmarks were subjected to a Procrustes superimposition that translated, 

rotated and scaled the landmark configurations to a common centroid size, 

position and orientation (Zelditch, Swiderski and Sheets 2012a). Procrustes 

coordinates were then used for all downstream analyses. To explore allometric 

patterns in the two species, procD.lm was used to assess the relationship 

between size and shape, using a linear model, in the two species. Then, 

plotAllometry was used on the model fit to visualise and compare the allometric 
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patterns in the two species. As the allometric slopes were not parallel, a 

common allometric regression could not be applied and allometric effects 

remained in the shape coordinates (Klingenberg, 2016).  

 

To simultaneously assess the effect of species, diet, sex, and their interactions 

on shape a Procrustes ANOVA, using the procD.lm function, was conducted on 

Procrustes coordinates. To explore shape changes in relation to plasticity and 

test whether specimens could be classified using a priori groupings (treatment 

and both sexes of each treatment for each species), a discriminant function 

analysis (DFA) was conducted on all of the PC scores, generated by 

plotTangentSpace from the Procrustes shape coordinates, using the lda function 

Figure 4—1: The landmarks selected for morphometrics based on functional and ecological 

relevance (Cooper et al. 2010, Parsons, Son and Albertson, 2011, and Parsons et al. 2016). 

Landmarks represent the following anatomical locations: 1) Dorsal end of the occipital crest; 2) 

Posterior tip of the premaxilla; 3) Anterio-ventral point of eye socket; 4) Posterio-ventral point 

of eye socket; 5) Maxillary-palatine joint; 6) Muscle insertion on the maxilla ; 7) Tip of the 

tooth on the pre-maxilla; 8) Tip of the tooth on the mandible; 9) Retroarticular of the 

mandible; 10) Posterio-ventral corner of preopercular bone; 12) Origin point of muscle insertion 

on the pre-opercular; 12) Posterio-ventral corner of muscle origin; 13) Articular-quadrate joint; 

14) Maxillary-articulation joint; 15) Muscle insertion on the articular process of the mandible. 



 

 85 

in the MASS package (Venables and Ripley 2002). To visualise shape changes 

relating to diet between sexes and species, the function shape.predictor (also 

from geomorph) was used. This function estimates shape configurations, using 

the Procrustes shape coordinates, to produce deformation grids showing shape 

change and is based on a linear factor, in this case the linear discriminant axis 

from the DFA.  

A useful measure to test for differences in variance among samples or for testing 

differences in mean shape is utilising the partial Procrustes distance (PPD). As 

described by Webster and Sheets (2010), the partial Procrustes distance (PPD) is 

a morphometric distance and is the amount of difference in shape between two 

landmark configurations; variation within a group can be measured as the 

average PPD from the mean configuration. Therefore, to test the hypothesis that 

species and sexes would differ in plastic response to diet treatments, PPD were 

calculated and compared using TwoGroup from the IMP suite of software 

(available at: http://www.philadb.com/an-behav/imp/) with 900 bootstraps. 

The software calculates the PPD between two groups of landmark configurations 

and provides a 95% confidence interval for this distance. Four groups can be 

compared at same time. Firstly, the PPD between groups 1 and 2, and groups 3 

and 4 is calculated. Then to compare the difference between the two PPDs 

relative to one another, a bootstrapping procedure is used to test for 

significance and then a confidence interval for the difference in distances 

between the pairs is provided; if zero is not part of the distribution then the null 

hypothesis that the distances are not different can be rejected (Webster and 

Sheets, 2010). In the context of this chapter, three different tests were 

conducted. Firstly, the PPD between the TRC benthic and limnetic groups was 

calculated and compared with the PPD between the LF benthic and limnetic 

groups. Then the PPD between the TRC benthic and limnetic males was 

calculated and compared with the PPD between the LF benthic and limnetic 

males. Finally, the PPD between the TRC benthic and limnetic females was 

calculated and compared with the PPD between the LF benthic and limnetic 

females.  
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4.3.4 Measurement of Functionally Relevant Traits 

To assess plasticity on functional traits fish were photographed from a lateral 

view with their mouth open following McGee, Schluter and Wainwright (2013) 

and Matthews and Albertson (2017). To allow the jaws to be opened easily, fish 

were first digested in a 1% trypsin solution (1g of trypsin in 350ml saturated 

sodium borate and 650ml distilled water) following Pothoff (1984) and left to 

rock gently. The trypsin digestion stage allowed for a more natural range of 

movement from muscles and ligaments than what results from formalin storage 

(McGee, Schluter and Wainwright, 2013). The jaw was opened by first securing 

the fish on a wax dish and using forceps to gently relax the ligaments and open 

the jaws, and then by using a metal rod to press onto the neurocranium to 

encourage the jaws to open as naturally as possible (McGee, Schluter and 

Wainwright, 2013). Lateral photographs with the mouth open and upper jaw 

protruded were captured using a Canon EOS 1100D camera. Two landmarks were 

digitised on each photo (Figure 4-2A), representing the length of jaw 

protrusion; this was the linear distance from the proximal (landmark 1) to the 

distal (landmark 2) point of the premaxilla (Matthews and Albertson 2017). The 

distance between the two landmarks was calculated and then standardised for 

size using a linear regression of the standard length for each specimen. The size-

standardised residuals were then used in an ANOVA using species, treatment, sex 

and their interaction as explanatory variables.  

To test the prediction that the IOP and RA would be more plastic in response to 

diet treatment in males and in TRC, fish were taken through a clearing and 

staining protocol following Pothoff (1984). Firstly, fish were stained with alizarin 

red at a ratio of 1:40 in 1% potassium hydroxide solution (KOH) to highlight areas 

of bone to make it easier to identify the IOP link and the RA. After staining, fish 

were stepped through a series of KOH and glycerol changes following Pothoff 

(1984) to clear excess stain and then photographed again with the mouth closed. 

As before, landmarks were placed to identify these areas (Figure 4-2B) and 

inter-landmark distances were calculated for each trait as described above. 

However, the fixed link of the opercular four-bar was also measured (shown in 

black in Figure 4-2B) and used to standardise for size. Both the RA and IOP were 



 

 87 

calculated as a ratio of the fixed link following Hulsey and García De León (2005) 

as this is a relevant way of removing size variation from the measurements of 

links in the four-bar (Hulsey and Wainwright, 2002). The ratios were then used in 

separate ANOVAs using species, treatment, sex and their interactions as factors.  

 

4.4 Results  

4.4.1 Morphometrics of Phenotypic Plasticity  

Both species showed evidence of phenotypic plasticity in craniofacial shape as a 

result of the two treatments; the final samples sizes were 94 fish for TRC and 

101 fish for LF. However, a significant interaction showed that plasticity differed 

between species (Table 4-1). For the discriminant function models 91% of the 

Figure 4—2: The three functionally relevant traits measured (JP = jaw protrusion; IOP = 

interopercular link; RA = retroarticular process) as shown on TRC specimens, are indicated by a 

white line, and the fixed link (used as a ratio to factor out size for the IOP and RA) of the 

opercular four-bar linkage is indicated in black. A scale bar is added for reference for each 

image. A is a trypsin digested specimen of TRC, and B is a TRC specimen after Alizarin staining 

and KOH clearing. The landmarks used in A are: 1) proximal point of the premaxilla and 2) distal 

point of the premaxilla. The landmarks used in B are: 1) articular-quadrate joint; 2) 

retroarticular of the mandible; 3) posterior edge of the IOP bone; 4) opercle-neurocranium joint. 

1 
2 

1 
2 3 

4 
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benthic and 92% of limnetic TRC specimens were classified correctly whereas 

classification rates were slightly lower for LF where 88% of benthic and 84% of 

limnetic specimens were correctly classified (Figure 4-3). The partial Procrustes 

distance (PPD) between each treatment was similar in each species with no 

significant difference when the two species were compared (CI of difference 

between species treatment group pairs = -0.013 to 0.012). Similar shape changes 

occurred for each species with the benthic treatment resulting in a steeper face 

relative to the limnetic treatment and the mandible appeared slightly shorter in 

the benthic specimens in comparison to limnetic treatments (Figure 4-3).  

 

Table 4-1: Summary of output from the Procrustes ANOVA model for assessing phenotypic 

plasticity and sex effects on craniofacial shape. P values were obtained through permutation 

procedures. 

 

Factors DF Sum Sq Mean Sq R Sq F  Z P  

Species 2 0.21723  0.217226 0.21764 58.1864 7.8778 0.001** 

Treatment 2 0.03991   0.039908 0.03998 10.6898 5.3844 0.001** 

Sex 2 0.02546 0.025457 0.02551 6.8189 4.6977 0.001** 

Species:Treatment 2 0.00772 0.007722 0.00774  2.0683 1.9495  0.030* 

Species:Sex 2 0.00396 0.003963 0.00397  1.0615 0.4031    0.333  

Treatment:Sex 2 0.00250 0.002498 0.00250   0.6690 -0.6718   0.752 

Species:Treatment:Sex 2 0.00319 0.003194 0.00320  0.8555 -0.0448 0.530 

Residuals 180 0.69812 0.003733 0.69946    

*P < 0.05; **P < 0.01, ***P < 0.001 
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Table 4-2: The partial Procrustes distance and associated 95% confidence intervals between 

groups after 900 bootstraps between each treatment for both species. 

 

Species Groups Partial Procrustes 

Distance 

95% CI 

LF Benthic and Limnetic 

Benthic Males and Limnetic Males 

0.031 

0.033 

0.025 to 0.043 

0.0250 to 0.048 

 Benthic Females and Limnetic Females 0.031 0.025 to 0.047 

TRC Benthic and Limnetic 

Benthic Males and Limnetic Males 

0.032 

0.034 

0.026 to 0.042 

0.026 to 0.053 

 Benthic Females and Limnetic Females 0.033 0.028 to 0.046 

 

Although there was sexual dimorphism in craniofacial shape this did not differ 

between species and there was no difference in plastic response between sexes 

for either species (Table 4-1). Classification success for sex based on DFAs was 

LF Benthic  

TRC Benthic  

LF Limnetic 

TRC Limnetic 

Figure 4—3: Frequency histograms displaying the classification rate of diet treatment with 

accompanying deformation grids depicting associated shape variation for each species. For 

Labeotropheus fuelleborni (LF) the benthic specimens are represented in red and the limnetic 

are in blue, while for Tropheops “Red Cheek” (TRC), the benthic specimens are represented in 

orange and limnetic in purple.  
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similar for each sex and species (LF = 92% of benthic males, 93% of limnetic 

males and 96% of benthic females and 95% of limnetic females; TRC = 96% of 

benthic females, 92% of limnetic females, 100% of benthic males and 100% of 

limnetic males). In addition, there was no significant difference in PPD between 

the treatment groups for either sex within each species (Table 4-2; Difference 

between LF sex pairs= -0.019 to 0.014; difference between TRC sex pairs= -0.018 

to 0.015). Shape changes were similar for each sex undergoing the benthic and 

limnetic treatments with benthic fish having a steeper profile than the relatively 

sloping profile of the limnetic fish (Figure 4-4). Together this shows that plastic 

responses did not differ between the sexes for either species. 
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Figure 4—4: Frequency histograms for sex derived from DFA models using treatment as a 

grouping variable for each sex and species. For Labeotropheus fuelleborni (LF) the benthic 

specimens are represented in red with the limnetic in blue. For Tropheops “Red Cheek” (TRC), 

the benthic specimens are represented in orange with the limnetic in purple. The shape changes 

associated with each DFA model are depicted with deformation grids to the right and left of the 

histograms. 

  

LF Benthic Females 

LF Benthic Males 

TRC Benthic Males 

TRC Benthic Females 

LF Limnetic Females 

LF Limnetic Males 

TRC Limnetic Males 

TRC Limnetic Females 
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4.4.2 Plasticity of Functional Traits  

For functional traits, the two species differed in jaw protrusion length (Table 4-

3; Figure 4-5). Further, the ANOVA model revealed treatment effects, but no 

interaction between species and treatment (Table 4-3). For both species, jaw 

protrusion was greater for the limnetic treatment than for the benthic, but this 

difference did not appear as pronounced for LF where there was considerable 

overlap between the two treatments (Figure 4-5). There was no significant 

difference in jaw protrusion between the sexes or between any interactions. For 

the two other functional traits, the ANOVAs revealed no plasticity in length for 

the RA, however there was a significant difference between species in RA length 

and IOP length (Table 4-3). In addition, there was no difference in RA or IOP 

length between the sexes and no significant interactions involving sex its 

interactions (Table 4-3).  
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Table 4-3: The results of ANOVA models examining size-corrected jaw protrusion residuals (n = 178), relative retroarticular (RA) length (cm) (n = 192) and relative 

interopercular (IOP) length (cm) (n = 192). Asterisks denote statistically significant P values. 
 

*P < 0.05; **P < 0.01, ***P < 0.001 

Trait Factors DF Sum Sq Mean Sq F P 
Jaw Protrusion Species 1 0.10193 0.10193 119.947 2e-16** 
 Treatment 1 0.01756 0.01756 20.663 1e-05** 
 Sex 1 0.00010 0.00010 0.120 0.729 
 Species:Treatment 1 0.00183 0.00183 2.156 0.144 
 Treatment:Sex 1 0.00006 0.00006 0.068 0.795 
 Species:Treatment:Sex 1 0.00154 0.00154 1.813 0.180 
 Residuals 171 0.14531 0.00085   
       
Relative RA Species 1 0.03286 0.03286 188.363 2e-16*** 
 Treatment 1 0.00029 0.00029 1.643 0.202 
 Sex 1 0.00010 0.00010 0.566 0.453 
 Species:Treatment 1 0.00012 0.00012 0.681 0.410 
 Treatment:Sex 1 0.00000 0.00000 0.010 0.921 
 Species:Treatment:Sex 1 0.00019 0.00019 1.081 0.300 
 Residuals 185 0.03227 0.00017   
       
Relative IOP Species 1 0.02052 0.020515 20.669 9e-06** 
 Treatment 1 0.00007 0.000067 0.067 0.7960 
 Sex 1 0.00276 0.002759 2.779 0.0972 
 Species:Treatment 1 0.00030 0.000298 0.301 0.5842 
 Treatment:Sex 1 0.00000 0.000000 0.000 0.9912 
 Species:Treatment:Sex 1 0.00016 0.000161 0.163 0.6872 
 Residuals 185 0.18363 0.000993   
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A) 

B) 

C) 

Figure 4—5: Comparison of functional morphological traits between cichlid species (Tropheops 

“Red Cheek” (TRC), and Labeotropheus fuelleborni (LF)) and benthic and limnetic foraging 

treatments after size correction. The distribution of the data for each trait is shown and the 

black dot represents the mean value for each trait. In panel A) jaw protrusion residuals are 

provided for each treatment and species (n = 177), while B) shows relative retroarticular (RA) 

length (cm) for each treatment for both species (n = 193) and C) shows relative interopercular 

(IOP) length (cm) for each treatment for both species (n = 193).   
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4.5 Discussion  

I have approached phenotypic plasticity from the novel angle that it may differ 

with sex. In both cichlid species, sex differences in craniofacial shape were 

significant but not related to plasticity. This contradicts my hypothesis that 

males would be more plastic than females and suggests that sexual dimorphism 

in plasticity is absent despite evidence of ecologically relevant divergence 

between sexes in this group. This suggests that phenotypic plasticity is likely not 

important for the maintenance of ESD in this group and suggests that ESD would 

not be initiated, or at least extended by a plastic contribution as models for 

conventional adaptive divergence would suggest (Pfennig et al. 2010; Levis and 

Pfennig, 2016). It is possible that ecological divergence between the sexes in 

African cichlids is likely to be based on a wholly genetically determined process 

that is robust to environmental influences.  

Both species exhibited phenotypic plasticity in craniofacial shape. However, 

while the difference in plasticity between the species was significant it was 

relatively small, with the interaction term accounting for only 0.77% of the 

variation. This differs from a previous investigation of plasticity in these species 

(Parsons et al. 2014) where TRC was substantially more plastic, but this could be 

due to my larger sample size or the use of a different LF strain. Nonetheless, a 

reduction in plasticity in LF could be due to their highly specialised phenotype 

for scraping algae and the general idea that increases in specialisation lead to 

reductions in phenotypic plasticity (Skulason and Smith, 1995; Parsons et al. 

2014). Furthermore, LF exhibit accelerated bone deposition partly through 

increased Wnt signalling which establishes the craniofacial phenotype early on in 

ontogeny; this results in a more developmentally canalised phenotype which is 

likely more robust to environmental fluctuation (Parsons et al. 2014). However, 

other research has shown evidence of plasticity in LF in response to diet 

treatment (van Snick Gray and Stauffer, 2004). Therefore, it could be that there 

is population level variation in plastic responses especially as LF are one of the 

few widespread species along the rocky shoreline of Lake Malawi (Ribbink et al. 

1983; Parsons et al. 2014). 
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Jaw protrusion, an important kinematic trait, showed a plastic response to diet 

in both species with benthic fish having a shorter jaw protrusion than limnetic-

reared fish which would likely incur a reduced ability to suction feed (Motta, 

1984; Waltzek and Wainwright, 2003). Overall, TRCs possessed greater jaw 

protrusion than LFs which would be expected given that LF is a specialised biter 

with an exaggerated fleshy snout which extends over the maxilla (Conith et al. 

2018). Previously, it has been suggested that this flap over the maxilla results in 

a reduction in the ability to protrude the upper jaw to facilitate the transmission 

and generation of greater forces during feeding (Concannon and Albertson, 

2015). Jaw protrusion was the only functional trait to show evidence of 

plasticity, making it especially interesting for future study. Given that it is 

arguably more directly linked to foraging, it may be adaptive to maintain greater 

levels of plasticity in this trait due to longer-term fluctuations in prey in the 

environment. 

However, there was a lack of plasticity or dimorphism between sexes in jaw 

protrusion. Given that jaw protrusion is arguably one of the most important 

traits involved with adaptive divergence in fishes, and has been proposed as a 

key innovation in the evolution of vertebrate suction feeding, this could have 

substantial evolutionary consequences (Wainwright et al. 2015). In anadromous 

threespine sticklebacks, McGee and Wainwright (2013) reported sexual 

dimorphism in traits relevant to feeding mechanics, particularly jaw protrusion. 

In this case, it was suggested that ecologically relevant sexual dimorphism could 

enable sticklebacks to quickly adapt into limnetic and benthic eco-morphs when 

colonising new habitats. Given my findings, it may be that sexual dimorphism in 

cichlids does not represent the same underlying mechanisms found in wider 

patterns of adaptive divergence. Instead, ESD may provide an alternate form of 

divergence from a mechanistic perspective, that phenotypically resembles wider 

patterns of divergence between species. This idea is supported by cichlid males 

tending to possess a more “biting” phenotype relative to females with their  

“suctioning” facial shape, a pattern that is aligned with the main trajectory of 

divergence within lake Malawi (Parsons et al. 2015). To address these ideas, 

future research investigating the mechanisms of divergence at both a 

population-level scale, coupled with sexual dimorphism would be especially 
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enlightening. At this point the data suggests that ESD is not influenced by 

plasticity but it remains to be seen in other systems.  

No evidence for phenotypic plasticity or sexual dimorphism was detected in 

either the RA or IOP functional traits. Given that sexual dimorphism in shape was 

apparent, this suggests that such variation can exist with minimal effect on 

some aspects of function. However, there may be some limitations in the power 

of my study to detect changes in these traits. As an algal scraper, LF would 

require a higher mechanical advantage, and therefore a relatively longer RA 

than TRC and my data matched this prediction. Similarly, a relatively shorter 

IOP is concomitant with biting (Hu and Albertson, 2014), but I found that LF had 

a significantly longer IOP than TRC, albeit with considerable overlap in length 

visible between the two species. The IOP has been measured and compared in 

these cichlids but instead of the length of the link, it was a ratio between the 

width and length of the bone (Hu and Albertson, 2014). Therefore, although an 

important component of the teleost opercular four-bar (Hu and Albertson, 

2014), this suggests that measuring the length of this link is unreliable when the 

species have similar ecologies and therefore likely similar functional demands. 

Both the IOP and RA links in cichlids are influenced by ptch1, a member of the 

hedgehog signalling pathway (Roberts et al. 2011; Hu and Albertson, 2014). This 

pathway is key for cichlid craniofacial development, with increased expression 

in LF leading to a longer RA and shorter IOP relative to a suction-feeding 

generalist Maylandia zebra (Hu and Albertson, 2014). However, in more similar 

trophic morphologies like those possessed by TRC and LF, whereby both have 

short jaws relative to other members of the adaptive radiation, mechanisms may 

differ. Tropheops are still segregating alleles at this gene which has led to 

variation in RA length, and thus mechanical advantage of jaw opening (MAO) 

(Roberts et al. 2011; Hu and Albertson, 2014). The more recently derived allele 

is associated with a more limnetic phenotype through a reduction in the RA 

length and MAO (Roberts et al. 2011; Hu and Albertson, 2014). The derived allele 

found in TRC is less sensitive to foraging environment for the MAO than the 

ancestral LF allele, suggesting that this trait is becoming less plastic which is 

consistent with my results (Parsons et al. 2016).  
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Finally, the lack of sexual dimorphism in plasticity in my results could also be 

due to its underlying mechanisms. In a study of the genetic basis of plasticity in 

a hybrid cross of LF and TRC, the authors only reported one trait out of nine that 

mapped to the sex determining region (Parsons et al. 2016). This was the ventral 

aspect of the fish extending from the mandible to the pelvic fins. Given that this 

included variation in the buccal cavity (where developing eggs are held), it could 

be suggested that plastic responses in this region would differ between sexes. 

Therefore, this aspect should be a consideration for future inquiry. 

Whilst my data does not point towards sex-based differences in plasticity, there 

was clear evidence for sexual dimorphism in shape. It was expected that 

mouthbrooding would act as a functional and ecological constraint for females 

and cause sexual dimorphism in plasticity. This is because mouthbrooding likely 

involves a different set of functional requirements that may be at odds with 

foraging. Given that “biting” requires more force and mechanical advantage, the 

associated larger jaw muscles could reduce space required for mouthbrooding 

(tkint et al. 2012). Evidence that mouthbrooding has resulted in functional 

consequences is also suggested by superior bite force in males (tkint et al. 

2012). Such consequences could drive different adaptive strategies between 

sexes in African cichlids and set limits on the range of phenotypes possible 

within their adaptive radiations.  

As well as a lack of differences in plasticity between sexes, my results did not 

extend to functional differences between sexes therefore suggesting that ESD is 

not an important factor in cichlid sexual dimorphism and evolution. However, 

Chapter 3 contradicts this interpretation with clear, sex-based differences in 

the ability of the mandible to handle external forces. Therefore, this could 

instead suggest that my current measures of function are inadequate for 

investigating ESD. This could be due to the relatively small changes that ESD may 

incur in comparison to species differences that these measures have been used 

to investigate in cichlids (e.g. Roberts et al. 2011; Hu and Albertson, 2014). 

Indeed, there is no clear relationship between the magnitude of change in a 

trait and the degree to which it affects fitness; work in African finches 

(Pyrenestes) has reported that a width change of 1mm in the mandible can 
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result in a 50% change in fitness (Smith, 1993; Parsons et al. 2011). Furthermore, 

in sticklebacks, where functional work has shown evidence of sexual 

dimorphism, in some populations ecological divergence between the sexes 

exceeds that between species pairs (Cooper, Gilman and Boughman, 2011; 

McGee and Wainwright, 2013). This is not the case in cichlids therefore this 

could mean that ESD is not an important component of the radiation. 

Nonetheless, this result does not dismiss the possibility of ESD in Lake Malawi 

cichlids given the results of Chapter 3.  

 

4.6 Conclusions 

For Lake Malawi cichlids, it has been suggested that plasticity is still actively 

evolving (Parsons et al. 2016). However, my evidence suggests that plastic 

responses are not sexually dimorphic and therefore not important for the 

maintenance of ecological divergence between the sexes. Given the differing 

selection pressures sexes likely face, and the trend for females to possess more 

of a “suctioning” phenotype suited to carrying eggs, it would be of interest to 

assess whether the absence of a sexually dimorphic plastic response has negative 

consequences for females and mouthbrooding (tkint et al. 2012; Parsons et al. 

2015). Whilst the results suggest that plasticity is not an important factor in 

maintaining divergence between sexes in cichlids, this would be interesting to 

investigate in a system where there is strong evidence of ecological sexual 

dimorphism. In some populations of threespine sticklebacks where the sexual 

dimorphism is more important variation than between species pairs (Cooper, 

Gilman and Boughman, 2011), sexual dimorphism in plastic responses would be 

an enlightening topic to explore. 
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Chapter 5: General Discussion 
  

5.1 Summary of Thesis  

I have investigated various aspects of adaptive divergence in African cichlids, an 

exemplar evolutionary system, including genotype-to-phenotype relationships in 

the mandible, the ability of the mandible to cope with stress and loading, and 

phenotypic plasticity in craniofacial shape and functionally relevant traits. 

Whilst this thesis considers divergence between species, which is a common 

component of adaptive divergence research, I also investigated the possibility of 

ecological sexual dimorphism (ESD) in all of these aspects and considered how 

this intersects with a wider adaptive radiation process.  

In Chapter 2, I quantified the mandible shape of an F2 hybrid population and 

reported sexual dimorphism in mandible shape that was potentially ecologically 

relevant. I then used this data in combination with genotype and population 

genomic data and reported a new candidate gene for mandible shape, zeb1. In 

Chapter 3, I investigated differences in mandible shape between species and 

sexes in the two parental species for the F2 cross and reported sexual 

dimorphism in both Tropheops “Red Cheek” (TRC) and Labeotropheus 

fuelleborni (LF). I then used two finite element models from each of the 

parental species for each sex and two from the F2 population to investigate how 

the mandible reacts to loading that could be experienced during foraging. I 

reported evidence of sexual dimorphism in stress response in both species with 

males able to cope with greater loading on the mandible than females. 

Furthermore, I discussed unique structural adaptations in LF with the “wings” 

and in TRC, the “ridge”, which seem to be adaptations to their respective 

feeding modes. In the hybrids, there was asymmetry in the loading pattern in 

the males and both sexes contained aspects of variation relating to the parental 

phenotypes. This finding suggests that there could be a wide range of stress 

responses in hybrid populations that provide functional consequences. In 

Chapter 4, I conducted a diet treatment experiment to investigate the 

possibility of sexual dimorphism in plasticity. Specifically, I measured the 
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plasticity of craniofacial shape and three functionally relevant traits. I found no 

evidence of sexual dimorphism in plastic response for either set of traits 

suggesting that plasticity is not required to maintain divergence between the 

sexes. In this final discussion chapter, I will discuss how the results reported in 

this thesis relate to existing literature and their contributions to the field of evo-

devo in general. In addition, I will discuss limitations of the studies conducted in 

this thesis as well as some suggestions for future directions for research.  

 

5.2 Exploring Mechanisms of Adaptive Divergence   

5.2.1 Adaptive Radiations  

Adaptive radiation is an evolutionary process whereby multiple species diverge 

from a common ancestor to allow them to exploit different ecological niches 

(Schluter, 1996). As these adaptations often result in morphological divergence 

and lead to a wide variation of phenotypes, adaptive radiations lend themselves 

to research focused on understanding the evolution of complex, morphological 

traits. There are numerous examples of adaptive radiation where divergence in 

morphology has been studied, some examples which have been discussed in 

detail throughout this thesis include Darwin’s finches of the Galapagos islands, 

the Anolis lizards of the Caribbean and the Cichlids of the African Great Lakes 

(Fryer and Iles, 1972; Grant, 1986; Schluter, 1996, 2000; Losos, 1998). As well as 

studying the link between form and ecology, understanding the functional basis 

of adaptive traits is a key part of understanding the evolutionary process of 

divergence (Losos, 1990). In the Anolis lizards, a difference in limb length 

amongst ecomorphs translates to a functional trade-off between being able to 

move fast along wide perches, or move carefully and efficiently along narrow 

perches and thus divergence in how they navigate their environment (Irschick, 

2002). Furthermore, because of the wide variation in phenotypes, adaptive 

radiations are also useful systems for exploring the genetic basis of important 

morphological traits such as the craniofacial skeleton. Conceptually, the field of 

evo-devo is now beginning to move towards a more integrative approach for 
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studying the evolution of morphological traits by exploring genes, function and 

morphology and how they link together (Irschick et al. 2013).  

As well exploring the evolution of morphological traits, understanding variation 

within an adaptive radiation can also shed light on the process itself. In addition 

to the major axis of adaptive divergence in a radiation, for example the biting 

and suctioning axis of divergence present in numerous fish taxa (Albertson et al. 

2005), there can also be smaller scale divergence that can contribute to the 

overall process adaptive radiation. Such divergence is termed “nested variation” 

and can result in small, but ultimately important phenotypic differences (Foster, 

Scott and Cresko, 1998; Parsons et al. 2015). By studying potential examples of 

nested variation, not only can we increase our understanding of the process of 

adaptive divergence and adaptive radiation, but we can also discover more 

about the evolution of complex morphological traits. 

 

5.2.2 Ecological Sexual Dimorphism  

In addition to the widely studied interspecific level, ecological divergence can 

exist between the sexes, otherwise known as ESD (Shine, 1989). A cause for 

ecological divergence between the sexes can be difficult to confirm because 

sexual dimorphism can also be the result of sexual selection, sexual size 

dimorphism or differences in reproduction or parental care between the sexes 

(Bolnick and Doebeli, 2003). The hypothesis of ESD is more likely when the 

trophic morphology differs between the sexes but is not undergoing sexual 

selection and the ecological divergence is not due to differences in body size as 

this would indicate niche divergence (Shine, 1989; Bolnick and Doebeli, 2003). 

ESD as a type of adaptive divergence has received limited attention although 

some notable examples in two key adaptive radiations, the Anolis lizards and 

threespine sticklebacks suggest that ESD could be widespread in nature (Butler 

and Losos, 2002; Cooper, Gilman and Boughman, 2011). Furthermore, sex 

differences are rarely taken into account in studies on adaptive divergence or 

radiation. The contribution of ESD to the wider process of adaptive radiation is 

unknown, but it could be a type of nested variation; indeed, adaptive radiation 
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could be a culmination of different levels of nested ecological divergence 

between species and sexes (Parsons et al. 2015).  

 

5.2.3 Phenotypic Plasticity 

Phenotypic plasticity, the ability of a genotype to produce multiple phenotypes 

in response to environmental conditions, is believed to be a generator of 

variation that leads to adaptive divergence (Pfennig et al. 2010). Furthermore, 

phenotypic plasticity could have a key role in the process of adaptive radiation; 

the ‘flexible stem’ model proposes that plasticity in the ancestral population, 

which ultimately reflects the pattern of divergence exhibited by the radiation, 

helps to facilitate the radiation process (Wund et al. 2008; Pfennig et al. 2010). 

Yet to be considered is the impact of plasticity on other mechanisms of adaptive 

divergence such as sexual dimorphism. If males and females differ in their 

plastic response, and therefore their ability to react to changing environmental 

conditions, this could contribute to adaptive phenotypic divergence between the 

sexes. Sexual dimorphism results from a difference in selection pressures (Cox 

and Calsbeek, 2009). Dimorphism between the sexes could be due to a 

combination of factors including ESD, sexual selection and parental care (e.g. 

Shine, 1989; Bolnick and Doebeli, 2003). If males and females are ecologically 

divergent but the phenotype of one sex is also constrained by another factor, a 

reduction in plasticity for that sex could alleviate any conflict that could arise 

from having flexibility in the phenotype. For example, in some African cichlids, 

females are mouthbrooders and consequently have a reduced bite force 

compared to males (tkint et al. 2012). Therefore, a reduction in plastic response 

could enable female cichlids to retain a phenotype which allows them to carry 

eggs efficiently whilst also reducing competition for resources with males.  
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5.3 Contributions to the Field and Limitations to 

Consider 

By using multiple methods, including morphometrics, genetics and functional 

work, this thesis has adopted an integrative approach to answer evolutionary 

questions about adaptive divergence. Understanding the genetic basis of 

divergent traits is not only key to understanding how a complex morphological 

trait evolves, but also how the process of adaptive radiation itself proceeds 

(Irschick et al. 2013; Parsons and Albertson, 2013). In Chapter 2, the genetic 

basis of the mandible was explored using 3D morphometrics, quantitative trait 

loci (QTL) mapping and population genomic data. The work conducted in 

Chapter 2 complements the existing knowledge the genetic basis of the 

mandible has been studied using 3D morphometrics and multivariate QTL 

mapping in African cichlids. Although there have been previous studies of the 

mandible in cichlids using a QTL approach (Albertson et al. 2005; Parsons and 

Albertson, 2009; Parsons, Marquez and Albertson, 2012), By studying fine-scale 

phenotypic divergence between two species that share a similar ecology, this 

work has highlighted a new candidate gene, zeb1, for cichlid craniofacial 

studies. Furthermore, I reported sexual dimorphism in the mandible shape and 

QTL models that differed depending on whether sex was included as a covariate 

or not; this suggests that sex has had a role in the evolution of the cichlid 

mandible. These results can be applicable to other systems as craniofacial 

development is a conserved process amongst vertebrates (Powder and Albertson, 

2016); further work would be needed in other systems to complement this and 

to further elucidate the role of zeb1 in the evolution of the mandible.   

To further substantiate zeb1 as candidate gene, comparison of gene expression 

between species and sexes would be of interest. Furthermore, there was no 

evidence of clear gene expression in the mandible in the TRC or LF samples but 

rather expression was throughout the craniofacial region. This does not mean 

that zeb1 is not a reliable candidate, but that further work in more 

developmental stages is required. Given that zeb1 has been implicated with 

neural crest cells (NCCs) which are present early in development then earlier 

developmental stages, such as between days 2 and 4 when the head is first 
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appearing, should be investigated. With regards to sex, a limitation is that 

expression zeb1 would not be able to be investigated until sexual maturity due 

to the ambiguity around sex determination in cichlids (discussed in Appendix 1). 

Despite the general acceptance that these cichlids possess a sex determination 

system on LG7, at present there is no molecular approach for determining sex in 

Lake Malawi cichlids (Ser, Roberts and Kocher, 2010). In Astatotilapia calliptera, 

another Lake Malawi cichlid, the link between sex and genotype at various 

markers on LG7 was strongest at the marker nearest the gene gsdf which is 

responsible for sex-determination in other fishes (Peterson et al. 2017). Indeed, 

one marker in particular matched completely with sex in two Lake Malawi 

cichlids A. calliptera and Metriaclima mbenjii and could be an important 

candidate for sex determination in LF and TRC.  

To answer questions relating to functional divergence between species and 

sexes, finite element analysis was conducted in Chapter 3. A technique growing 

in popularity in the field of evo-devo, this can be used to assess functional and 

structural adaptations in response to loading scenarios (Rayfield, 2007). Rather 

than looking at biting force transmitted from muscles through the bone, this 

chapter was a comparative analysis of how the mandible of different species and 

sexes cope with loading that would be expected during foraging. Both LF and 

TRC showed differences in stress patterns across the mandible as expected and 

the results reported in this chapter identify some morphological adaptations to 

handling loading. As LF scrapes and bites algae off of rocks it is reasonable to 

suggest they utilise the full width of the jaw when feeding as this could allow 

them to capture more food. Notably, presence of “wings” on the mandible 

which probably allows them to distribute the loading across an increased 

mandible width (see Figures in Chapter 3). On the other hand, TRC plucks algae 

and has a relatively narrower mandible in comparison as it likely only uses a 

small portion of the width of the mandible to feed on the strands. In Chapter 3, 

both TRC models showed minimal stress across the midline of the mandible 

compared to LF when loading was placed on a narrow width of the mandible. As 

well as differences in shape and function, the two species also differed in their 

plastic response with LF possessing a slightly more robust phenotype than TRC 

after the diet treatment experiment in Chapter 4; although there was more 
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plasticity in LF craniofacial shape than expected (Parsons et al. 2014). LF 

possesses a highly specialised phenotype, and their mandible morphology is 

unique in comparison to other species such as TRC and Maylandia zebra 

(Albertson and Kocher, 2001). The ability to dissipate stress when scraping has 

perhaps come at the expensive of having a more flexible phenotype. The results 

from Chapter 3 contribute to our understanding of adaptive divergence and 

suggests that small-scale variation between species can be an important 

component of the radiation process.  

There are a few limitations to consider for the FEA work conducted in Chapter 

3. For FEA to be biologically relevant, accurate material properties should be 

applied and the final results validated (Panagiotopoulou, 2009). Material 

properties describe the elasticity of the bone and ideally should be 

experimentally derived (Peterson and Müller, 2018). However, whether accurate 

material properties are required or not is dependent on the question and using 

material properties from a similar species is acceptable (Peterson and Müller, 

2018). The material properties applied in Chapter 3 were based on 

experimentally derived results in tilapia (Oreochromis aureus) (Cohen et al. 

2012) and they were kept consistent across samples because previous work has 

shown little difference in bone density between cichlids (Albertson, Cooper and 

Mann, 2012). Research has shown that altering the material properties may 

affect the quantitative stress and strain values but the distribution of stress on 

the model is the same (Strait et al. 2005). Therefore, when the goal is a 

comparative, structural study, as in Chapter 3, holding the material properties 

constant across samples is acceptable. To properly validate the results of FEA, 

the data should be compared to in vivo stress and strain data (Dumont, Piccirillo 

and Grosse, 2005). However, this can often be challenging in practice as it can 

involve placing a strain gauge on the bone (Richmond et al. 2005); this would be 

incredibly difficult to do in cichlids as the smallest commercially available strain 

gauges (approximately 0.3 x 1.96mm2) are too large to fit on a cichlid face 

without interrupting natural feeding behaviour. Nonetheless, as the work 

presented from the FEA in Chapter 3 is a comparison of the structure and ability 

of the mandible to cope with loading, these limitations are not major.  



 

 107 

The possibility of ecological divergence between the sexes has received limited 

attention within the context of adaptive divergence yet the evidence presented 

in this thesis suggests it should be a more important consideration in 

evolutionary studies. Sexual dimorphism in mandible shape was reported in 

Chapters 2 and 3 and in Chapter 3 the finite element analysis (FEA) showed 

that male TRC and LF mandibles showed reduced levels of stress in response to 

loading in comparison with the females. This aligns with the idea of male 

cichlids having more of a “biting” phenotype than females (tkint et al. 2012; 

Parsons et al. 2015; McWhinnie and Parsons, 2019). The results from Chapter 3 

show a functional consequence of divergent phenotypes between the sexes and 

suggest this is ecologically relevant and is likely a case of ESD. As a concept, ESD 

is difficult to show unambiguously and this is especially true in cichlids. As 

discussed throughout, female cichlids are mouthbrooders and males use their 

mouths for fighting; as a result, females would benefit from having less 

musculature in the head region to add more space in to hold eggs, but 

conversely males would benefit from being able to be better biters for these 

aggressive interactions (tkint et al. 2012). As a result of these different selection 

pressures and potential ESD between the sexes, the prediction in Chapter 4 was 

that females would show a reduction in plasticity in comparison to males after a 

diet treatment experiment. My results contradicted this prediction and showed 

there was no difference in plasticity between the sexes. This suggests that 

phenotypic plasticity does not contribute to divergence between sexes and that 

sexual dimorphism in mandible and craniofacial shape is under genetic control.   

With this in mind, it is difficult to establish whether ecological divergence 

between the sexes in cichlids has evolved secondarily to differing selection 

pressures. It is currently unknown how sexual dimorphism contributes to the 

process of adaptive radiation with evidence of ecological differences between 

the sexes in Anolis lizards (Butler, Sawyer and Losos, 2007), and threespine 

sticklebacks (McGee and Wainwright, 2013). The evidence of ecologically 

relevant differences in shape and function between the sexes presented in this 

thesis show that sexual dimorphism could play a key functional role in radiation 

and show the importance of considering sexual dimorphism in an evolutionary 

context.   
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5.4 Understanding Mechanisms of Adaptive Divergence  

By exploring mechanisms of adaptive divergence, we can enhance our 

understanding of how complex morphological traits evolve. Adaptive radiations 

are excellent models with which to study this as they are characterised by a 

diverse range of phenotypic variation (Schluter, 2000). By investigating the 

genetic architecture of these complex traits, this can provide an understanding 

of how the process of adaptive radiation arises (Irschick et al. 2013). The three-

stage model of adaptive radiation posits that vertebrate radiations follow a 

generalised trend of divergence in habitat, trophic morphology and then sexual 

selection (Streelman and Danley, 2003). Therefore, as the process is posited to 

be broadly similar in all taxa, findings from studying divergence in the African 

cichlid radiations can be applicable to other key radiations. Currently it is 

unknown exactly how this process proceeds, but the work conducted in this 

thesis suggests divergence between sexes could form part of the divergence in 

trophic morphology stage. Indeed, adaptive radiations could be comprised of 

multiple layers of fine-scale divergence (Parsons et al. 2015), therefore 

exploring sexual dimorphism in tandem with exploring interspecific adaptive 

divergence could be important to broaden our understanding of this process. 

Notably, radiations exhibit a wide range of phenotypic variation and we can 

enhance our understanding of how complex traits, such as the craniofacial 

skeleton, evolve by studying adaptive divergence within a radiation. The 

craniofacial skeleton represents a primary point of contact with the environment 

and determines what food can be eaten and how efficiently it can be consumed; 

the mandible in particular is a key innovation in vertebrates (Parsons and 

Albertson, 2009). Despite this importance to evolution and adaptation, the 

underlying genetic architecture of craniofacial traits is relatively unknown due 

the complexity of the variation (Roberts et al. 2011; Irschick et al. 2013). An 

insightful way to explore the evolution of a morphological trait, such as the 

craniofacial skeleton, is to compare candidate gene expression across species 

which exhibit divergence in morphology but share a common genetic background 

as in cichlids (Parsons and Albertson, 2009). Furthermore, development of the 

craniofacial skeleton is conserved across vertebrates meaning that findings from   
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cichlids (and other radiations) could be relevant and applicable to other 

vertebrate taxa (Powder and Albertson, 2016).  

As well as enhancing our understanding of the evolutionary process, 

understanding mechanisms of adaptive divergence has broader implications for 

human health and disease. African cichlids in particular exhibit a wide range of 

craniofacial phenotypes which represent both normal and clinical craniofacial 

variation in humans (Albertson et al. 2009; Powder and Albertson, 2016). By 

exploring adaptive divergence of the craniofacial skeleton, particularly the 

mandible, this can help elucidate more candidate genes of relevance to human 

craniofacial disorders (Albertson et al. 2009).  

 

5.5 Future Research Directions 

The mandible is a key vertebrate innovation and whilst there are a number of 

candidate genes for the development of the mandible, there are still many 

avenues to explore. Future research should look towards exploring the newer 

candidate genes (including zeb1) in more depth using small molecule 

experiments, where the normal development of the mandible is perturbed by a 

chemical agonist/antagonist (Parsons et al. 2014), and perhaps qPCR to quantify 

expression levels in different species. This thesis has looked at small scale 

adaptive divergence between TRC and LF, but this work could be expanded to 

include another species on the other end of the Lake Malawi feeding dichotomy, 

Maylandia zebra (a suction-feeding generalist) to comparatively explore zeb1 

further. By expanding and looking at additional species, this would help us 

further understand how the mandible and craniofacial morphology has 

diversified (Irschick et al. 2013). 

With regards to sexual dimorphism, while I show sexual dimorphism in mandible 

shape in TRC and LF, and there are multiple examples of sexual dimorphism in 

African cichlids in the literature as discussed throughout this thesis (e.g. tkint et 

al. (2012); Parsons et al. (2015); McWhinnie and Parsons, (2019)), it would be 

interesting to investigate whether this dimorphism is widespread across Lake 
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Malawi cichlids and if a similar pattern is observed in the major adaptive 

radiations of Lake Victoria and Lake Tanganyika. This thesis has only considered 

sexual dimorphism in two species but broadening this investigation to assess 

whether or not some species are more sexually dimorphic than others would be 

an interesting avenue to explore.  

Although there was no evidence of sexual dimorphism in plasticity, an 

experiment leading on from the work conducted in Chapter 4 could elucidate 

what effect plasticity has on mouthbrooding in female cichlids. I would expect 

that mouthbrooding would be negatively affected by plasticity; such an 

experiment could assess the number of eggs a female can hold at a time and 

compare this with fish which have been under a different diet treatment. It 

could be that high levels of plasticity in females leads to trade-offs in 

mouthbrooding ability. It could also be that other aspects of the craniofacial 

region not examined in Chapter 4, such as the ventral view of the fish, do differ 

in plasticity between sexes. The ventral view can be used as a way to infer 

width of the mandible and the part of the buccal cavity of the fish, where eggs 

are held. A hypothesis would be that females are able to respond to fluctuating 

environmental conditions in the same way as males by having a reduction in 

plasticity in the ventral view (and therefore, the buccal cavity). This could act 

to reduce the potential negative impacts of plasticity on the ability to mouth-

brood, if any exist. 

 

5.6 Conclusions 

A central focus for the field of evo-devo is understanding the mechanisms 

underlying adaptive phenotypes. With a wide range of craniofacial variation that 

has evolved over a relatively short time frame, African cichlids from Lake Malawi 

are an excellent system with which to test and explore this. I have utilised an 

integrative approach to investigate evolution of the mandible and craniofacial 

skeleton and considered adaptive divergence between both species and sex. By 

mapping the relationship between genotype and phenotype, this work has 

identified a new candidate gene in the genetic architecture of the mandible, 
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zeb1. Despite sharing a similar ecology, TRC and LF differ in shape and how their 

mandible reacts to applied loading probably experienced during feeding. Sexual 

dimorphism in mandible shape was present in the hybrid cross and both parental 

species and alongside the results from the FEA this suggests male and female 

phenotypes are divergent in an ecologically relevant way. However, there was 

no difference in plastic response between the sexes suggesting phenotypic 

plasticity does not play a role in maintaining divergence between the sexes. As 

male and female cichlids face differing pressures on their craniofacial skeleton 

relating to reproduction, it is challenging to disentangle whether ecological 

divergence between the sexes has evolved as consequence of this. Nonetheless, 

sexual dimorphism has likely played an important role in the evolution of the 

cichlid craniofacial skeleton, and specifically the mandible. Taken together, the 

work presented in this thesis shows that small-scale divergence between species 

and sexes can be important both functionally and ecologically and could explain 

the success of adaptive radiations. 
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Appendix 1: Sex Determination: A Genomic Puzzle 
in Cichlids 

Note: This is my contribution to the book chapter “An evo-devo view of post-genomic African 

cichlid biology: enhanced models for evolution and biomedicine” in collaboration with K.J. 

Parsons and T.A. Armstrong which has been submitted for review and publication.  

The topic of sex determination has captured the attention of evolutionary 

biologists for decades. African cichlid genomics is now quickly enhancing our 

understanding of the variety of sex determination systems present in nature.  

Cichlids challenge the main consensus for sex determination which involves 

separate sex chromosomes (Charlesworth 1991, Hodgkin 1992). Likewise, it can 

be argued from a range of research that sex determination is not as clear cut in 

humans as was once thought. For example, differences of sex development 

(DSDs) in humans are relatively common with a one in 5,500 incidence rate, with 

clear chromosomal abnormalities being involved in some instances but also range 

of genetic and environmental mechanisms contributing in others (Kousta, 

Papathanasiou and Skordis, 2010). Thus, the range of mechanisms for sex, as 

well as sex-linked traits in cichlids provide potential clinical, as well as 

evolutionary relevance.   

Under the broadest conventional mechanism sex chromosomes are structurally 

different with only minimal opportunity for genetic recombination between 

them. Most commonly male heterogameity exists; whereby males possess the 

heterozygous chromosomal combination XY and reduced levels of genetic 

recombination whereas females are XX and have increased levels of 

recombination. A possible but less common situation is female heterogameity 

whereby, females are heterozygous with the chromosomal combination ZW, but 

males are homozygous ZZ. The above conventions are assumed to be the most 

common, since the genetics of sex determination has focused on mammals and 

model organisms (Batchtrog et al. 2014). However, several other mechanisms for 

sex determination exist across taxa with fish (including cichlids) showing a 

relatively large range of mechanisms. For example, an individual’s sex can also 

be determined by environmental mechanisms; factors including pH and 
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temperature determine sex in Apistogramma cichlids ( Römer and Beisenherz, 

1996). Sex determination can also be dependent upon a complex of genes (i.e. 

polygenic sex determination). So far complex polygenic systems for sex 

determination have been found in widely different species of fishes. In polygenic 

sex determination, the genes involved are likely to be spaced across the genome 

(Liew et al. 2012), while providing more targets for selection this also increases 

the probability that they are subject to environmental influences. Polygenic 

mechanisms for sex determination have been documented in European seabass 

(Dicentrarchus labrax) where a factorial mating study carried out by Vandeputte 

et al. (2007) showed evidence of a polygenic system where there is both a 

genetic and environmental component. Similarly, in zebrafish (Danio rerio) the 

exact workings of the sex determination mechanism is relatively unknown; 

however, a recent study by Liew et al. (2012) suggests a polygenic system which 

is primarily genetic with a small input from environmental factors. It is clear 

that perhaps most challenging for future research will be cases whereby complex 

interactions between genetic and environmental factors determine sex. These 

uncommon mechanisms of sex determination remain a largely open set of 

questions for genomic approaches to address in cichlids.  

But why do fish exhibit a more diverse range of sex-determining mechanisms 

than other groups (e.g. mammals)? This question is largely unanswered, but 

perhaps the range of mechanisms present within cichlids will provide more 

comparative power than more distantly related groups. At a basic level, 

chromosome cytology studies show that sex chromosomes themselves are 

relatively more difficult to distinguish in fishes than in mammals, suggesting 

perhaps that recombination is more likely. For African cichlids, there are a wide 

variety of mechanisms of sex determination which can vary between species and 

in the case of Lake Malawi, have evolved fairly recently in the timeline of the 

radiation (Ser, Roberts and Kocher, 2010). Recent findings from seven species of 

Malawi cichlids suggest that ‘B chromosomes’, revealed by genomic sequencing, 

are only present in females and thus could be important for determining sex 

(Clark et al. 2016). Similarly in Lake Victoria, twelve species are known to 

possess ‘B’ chromosomes in addition to the standard ‘A’ chromosomes that 

function in sex determination (Yoshida et al. 2011;  Kuroiwa et al. 2014). A 
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single B chromosome provides two potential mechanisms for their maintenance 

in these populations. These driving mechanisms are biased toward females in 

other plants and animals with B chromosomes and include nondisjunction or 

preferential segregation in a mitotic division prior to the germ-line, or another 

mechanism whereby preferential segregation takes place during meiosis I. 

Currently, preferential segregation during meiosis 1 appears to be the favoured 

hypothesis (Kuroiwa et al. 2014) but a better understanding of what causes B 

chromosomes to be exclusively present in females is needed to appreciate their 

evolutionary impacts. 

For African cichlids, environmental sex determination has been documented in 

both Nile Tilapia (Orechromis niloticus) and the orange chromide 

(Etroplus maculatus) (Barlow 2008). The orange chromide example is noteworthy 

because this species is basal to extant lineages of cichlids which suggests that 

perhaps environmental sex determination is an ancestral condition. More 

specifically, the sex determination system of the Nile Tilapia is believed to be 

predominated by male heterogameity with a major sex-determining locus. In 

addition, it appears that other loci are involved because not all families display 

evidence of sex linkage to this marker (Lee, Penman and Kocher, 2003). There is 

also evidence that temperature and social conditions can have an effect on sex 

determination in the cichlids. In Nile Tilapia, sex determination is not 

exclusively controlled by genetic factors (Barlow, 2008). Work by Baroiller et al. 

(1995) demonstrated that high temperatures can overrule genetic factors and 

that sex determination in this species is a combination of environment, sex 

chromosomes and interactions between the two. To date, environmental inputs 

have surprisingly been largely ignored in studies of sex determination focused on 

African cichlids from the Rift Lakes. We suggest that incorporating the G-P-E 

view may aid researchers currently undertaking the difficult task of uncovering 

the mechanisms of sex determination at a genomic level. 

Currently, studies more specific to Rift lake cichlids have focused on major sex 

determining systems. For example, data from Ser, Roberts and Kocher (2010) 

show that 19 species of Malawi Maylandia cichlids exhibit both male and female 

heterogameity across species. During this study, single pair lab-based crosses 
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were made for each species to allow a detailed investigation of the sex 

determination systems present. Notably, for the species Metriaclima pyrsonotus, 

Ser, Roberts and Kocher (2010) reported that both systems were found to 

segregate within a single family. In this case, the ZW system is epistatically 

dominant to the XY system when both of the dominant loci involved in sex 

determination (Z and W) are present within an individual. Additionally, a 

number of families of several species showed no linkage of sex to markers to 

their usual locations on linkage groups 7 (associated with male heterogameity) 

or 5 (associated with female heterogameity), which suggests that any number of 

genes on different chromosomes could be controlling sex determination (Ser, 

Roberts and Kocher, 2010). Further genetic mapping studies have confirmed 

such additional mechanisms for sex determination in Lake Malawi cichlids as a 

study on two mbuna species by Parnell and Streelman (2013) reported the ZW 

locus on LG5, two XY loci on LG 7 and two additional loci detected on LG 3 and 

LG 20 which interact with these and influence sex determination.   

What would cause such a range of sex determining mechanisms to evolve in 

cichlids? It has commonly been suggested sex determination could evolve to 

resolve sexual conflicts. Such resolutions are favoured because of sexually 

antagonistic selection whereby a trait that is beneficial to one sex can have a 

detrimental effect on the other leading to genetic conflict (van Doorn and 

Kirkpatrick, 2007; Bachtrog et al. 2014). To investigate genetic conflict in 

Malawi cichlids, Roberts, Ser and Kocher (2009) examined the ‘orange blotch’ 

(OB) colouration that is present in 20 species. The OB phenotype is found almost 

entirely in females and is considered a method of camouflage by disruptive 

colouration; conversely this phenotype has a negative effect on males that rely 

on bright colouration to attract mates. The gene associated with the OB 

phenotype is Pax7 and as there are no differences in the coding sequence of 

Pax7, Roberts, Ser and Kocher (2009) suggest that the OB phenotype is the result 

of cis-regulatory differences in Pax7. To resolve sexual conflict, it was suggested 

that the OB (Pax7) locus is tightly linked to a dominant female sex determiner 

(W). The OB-linked ZW sex determination found on LG5 is epistatically dominant 

to the male heterogametic system found on LG7, which is understood to be the 

ancestral condition for sex determination in Lake Malawi cichlids (Roberts, Ser 
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and Kocher, 2009; Ser, Roberts and Kocher, 2010). The linkage between the OB 

phenotype and ZW locus has been confirmed by Parnell and Streelman (2013). 

In the case of the OB phenotype, there are two potential paths to the resolution 

of the sexual conflict. First, the sexually antagonistic selection needed at the OB 

locus could have allowed for the appearance and linkage with a female sex 

determiner (W) nearby on LG5 to provide a resolution. Or, the OB polymorphism 

may have emerged near a newly evolving sex determiner which then allowed for 

the resulting OB-W linkage to evolve and exist alongside the original ancestral 

system (XY) (Roberts, Ser and Kocher, 2009). However, it is also possible that 

the OB phenotype has evolved subsequently to, rather than driving the evolution 

of the ZW mechanism (van Doorn and Kirkpatrick, 2007). The OB phenotype and 

its linkage with sex determination has provided a solution to sexual conflict of 

this sexually antagonist trait.  

Linkage with sex determination could be also be the case for a variety of other 

traits in African cichlids (Roberts, Ser and Kocher, 2009). Work by Parsons et al. 

(2015) on a F2 hybrid cross of Labeotropheus fuelleborni and Tropheops “Red 

Cheek” (Lake Malawi cichlids) found evidence of sexual shape dimorphism in the 

craniofacial region potentially related to ecologically relevant differences 

between the sexes; males of this hybrid cross had a steeper craniofacial profile 

compared to a gradual, sloping profile in females. Furthermore, QTL analyses 

performed suggested that loci involved with craniofacial shape are often linked 

to sex determining loci on the same linkage group or are epistatically influenced 

by sex. For example, the QTL for the discriminant function scores (the axis of 

sex in this study) was located on LG7, the same linkage group as the sex 

determining loci. At this QTL, the T. “Red Cheek” allele (male in the original 

parental cross) resulted in a steep ‘male-like’ craniofacial profile whereas the L. 

fuelleborni allele (female in the parental cross) resulted in a more sloping 

‘female-like’ profile. Notably, it has also been suggested that QTL for 

morphological plasticity are also linked to sex determining loci on LG 7 (Parsons 

et al. 2016). Therefore, cichlids may utilize a number of interactions between 

sex and morphology to resolve genetic conflict between the sexes. Although 

further details have yet to emerge genetic conflict may bias the direction of 
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adaptive divergence as patterns of sexual dimorphism align with the major 

trajectory of morphological divergence in Malawi (Parsons et al. 2015). Avoiding 

such biases could explain why so many mechanisms for sex determination persist 

in African cichlids, and potentially explains why speciation events in African 

cichlids have been far more numerous than in other adaptive radiations.  
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Appendix 2: Conference Abstracts 
 

Talk at 2nd Biennial Meeting Pan-American Society for Evolutionary 

Developmental Biology, August 2017, University of Calgary 

Note: This abstract was also submitted and presented as a poster at the UK Evo Devo Symposium, 

September 2017, Natural History Museum London. 

 

Understanding connections between adaptive phenotypes and the mechanisms 

underlying them provides a central focus for evo-devo. The changes in these 

connections can occur through adaptive divergence, a phenomenon usually 

studied between species. Ecological sexual dimorphism (ESD) represents another 

form of adaptive divergence that evolves between sexes due to alternate 

ecological conditions and can result in differences in trophic morphology, a key 

feature of many adaptive radiations. Here, I explore adaptive variation in 

trophic morphology using the African cichlid mandible. Sexual dimorphism in 

colour and body size is prevalent amongst cichlids, suggesting sexual selection, 

but potential adaptive differences between sexes are rarely considered. 

Therefore, I combine techniques from evo-devo and engineering to test for 

evidence of ESD. In this project, I use 3D measures of shape and QTL mapping to 

determine the genetic basis of differences between species and sexes. In 

addition, as it has been well established that phenotypic plasticity is itself an 

evolvable trait, I examine whether developmentally plastic responses to 

alternate foraging environments are influenced by sex, and test whether these 

sex-specific developmental responses are adaptive. Taken together, this 

research addresses ESD from a developmental and genetic perspective to provide 

a wider understanding of how adaptive divergence proceeds.  
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Poster at 7th Meeting of the European Society for Evolutionary 

Developmental Biology (EED) June 2018 at National University of 

Ireland 

Note: This poster won a prize and was scored in the top 10 for submissions at the conference. 

 

Understanding connections between adaptive phenotypes and the mechanisms 

underlying them provides a central focus for evo-devo. Changes in these 

connections can occur through adaptive divergence, a phenomenon usually 

studied among species. Ecological sexual dimorphism (ESD) represents another 

form of adaptive divergence that evolves between sexes due to alternate 

ecological conditions and can result in differences in trophic morphology, a key 

feature of many adaptive radiations. Here, I explore adaptive variation in 

trophic morphology using the genotype to phenotype relationship of an African 

cichlid mandible. Sexual dimorphism in colour and body size is prevalent 

amongst cichlids, suggesting sexual selection, but potential adaptive differences 

between sexes are rarely considered. Therefore, I combine techniques from evo-

devo and engineering to examine shape and biomechanical function to test for 

evidence of ESD. Further, I use 3D measures of shape of the mandible combined 

with multivariate quantitative trait loci mapping (QTL) to determine the genetic 

basis of differences between species and sexes. These results are complemented 

by population genomic data to provide candidate genes for functional 

investigations including gene expression assays and small molecule experiments 

during key periods of jaw development. Taken together, this research addresses 

ESD from a developmental and genetic perspective to provide a wider 

understanding of how adaptive divergence proceeds. 
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