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1. INTRODUCTION

I81. The photoproduction of mesons at nuclei.

The problem of investigating the angular
distributions and cross—sections for the production of
mesons by high energy electromagnetic radiation at various
nuclei has been receiving a great deal of attention from
both theoretical and experimental physicists in recent
years. Much of the earlier work in this field was
concerned with the photoproduction of mesons at hydrogen
since analysis of the results of experiments on this
reaction gives important information about the properties
of mesons and the nature of the meson-nucleon interaction,
which is partially obscured by other factors in the
results obtained from work on the photoproduction of
mesons at complex nuclei. The theoretical analysis of
the dependence of the cross—-section for the photo-
production of mesons at nuclei on these various factors
is, however, of considerable interest and forms the
principal subject of the work to be outlined in the
following chapters. Although much of the discussion
is confined to the particular case of the elastic
production of neutral mesons at helium, many of the

results and methods are readily applicable to this and



other possible photoproduction processes at nuclei
containing any number of nucleons.

There are three main factors which must be
taken into account in the theoretical analysis of the
cross—-section for the photoproduction of mesons at
complex nuclei. The first factor is the form taken
by the initial and final nuclear states. The initial
state of the system is, of course, given, but the final
state is determined by the charge of the meson which is
produced and the manner in which the nucleus is dis-
integrated (if at all) with the result that there are
usually a number of competing processes which can occur.
The cross-sections for these processes may differ quite
considerably owing to the variation in the magnitude of
the form factor, which includes the effect of +the initial
and final nuclear momentum distributions, the operation
of the Pauli Exclusion Principle, the difference in the
binding energies of the final states and the Coulomb
interaction of the outgoing meson with the residual
particles. In helium, for instance, the following

reactions are possible.



Y+H€h-——> He'+we ov\{—\— He* —> H4nar®

—> Héanawe —> D 2nart
—> H bt —> p+3naT
— DD —> Hetpy™
—> D+ prnawe —> Dby
—> 2p+2n4 T —> N+ 3paT

From a theoretical point of view the elastic photo-
production of neutral mesons from helium (Y*Jﬁét9¥uf+ﬁ°)
is the most interesting of the above processes, since
the initial and final nuclear states are relatively
gsimple both in their spin and space dependence which
considerably reduces the mathematical labour involved
in the handling of the wave-~functions and thus allows
a more detailed investigation of the other factors
involved to be undertaken. From the experimental
point of view there is, as will be seen in the next
section, considerable difficulty in selecting out the
elastic production process at high energies, although

it is the dominant process at energies just above

threshold.
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The second factor which is of importance in
the analysis of the many~body photoproduction problem
is the method by which the wave-equation for +the system
is solved. It is, of course, impossible to solve this
wave-equation exactly and the most suitable form of
approximation must be found. The most convenient
method of approach is to describe the transition
operator for the many-body problem in terms of trans-
ition operators involving only two particles and to use
phenomenological forms for the matrix elements of the
latter. Such a description is the Impulse Approximation
of Chew, which is described in some detail in Chapter II
and which is applied to the problem of the elastie
production of neutral mesons at helium in Chapter III.
Chapters IV - VIII are devoted to the development and
application of a method of reduction of the transition
operator which includes some of the effects neglected
in the impulse approximation.

The third main factor which occurs in the
analysis of the problem is the form to be adopted for
the matrix elements of the two particle transition

operators. In the application of the impulse
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approximation it is necessary to know the matrix element
of the transition operator for the photoproduction of a
meson at a single nucleon and the choice of +this matrix
element is extensively discussed in Chapter III. When
the corrections to the impulse approximation are
considered, the matrix element of the transition
operator for the scattering of a meson by a nucleon is
also needed, and the most suitable choice for this matrix

element is examined in Chapter VI.

I‘§ 2. Experimental results on the photoproduction of
mesons at hydrogen and helium.

The best form for the matrix element of the
single nucleon photoproduction operator is determined in
Chapter III by comparison with the experimental results
on the photoproduction of mesons at hydrogen. The most
recent results in this field have been submitted from
Walker et al (36) and Tollestrup et al (34), who
examined the production of charged mesons at hydrogen,
and from Oakley and Walker (30) and Walker et al (35),
who examined the production of neutral mesons at hydrogen.

The two groups engaged in the investigation

of the production of charged mesons used different
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techniques for finding the angular distribution of the
mesons produced. The first group (Walker et al (36))
determined the distribution of mesons at a given angle
and energy by vpassing them through a magnetic spectro-
meter which selected mesons of the required energy, and
these were then passed into a chamber containing two
ligquid scintillation counters. The energy range of
the photon covered was 200 - 470 NMeV. The second group
(Tollestrup et al (34)) detected and identified the
mesons by measuring their range and ionisation in a
scintillation counter telescope over an incident photon
energy range 230 -~ 450 leV and at several laboratory
angles.

Both groups analysed their results in the
form

dﬂ+ /\ +B cosO +C+Cog
where €5 is the meson angle in the centre of momentum
system, and the coefficients f\+ ’ E3+ and C;+deduced
from the two experiments were in fairly good agreement.

Four experimental methods can be used to
measure the cross-section for the neutral meson

photoproduction reaction

Y +p —> p+w° ;1&°—>2\{,




(i) Both of the decay Y’ -rays may be detected
in coincidence.

(ii) The proton and one Y —-ray may be detected
in coincidence.

(iii) One Y’ -ray alone may be detected.
(iv) Only the recoil proton may be detected.

Walker et al (35) used method (ii) in their experiment
on neutral meson production at hydrogen. Method (iv)
was employed by Oakley and Walker (30) in their
experiments and appears to be the most satisfactory

of the four possible methods, provided that the photo-
production process is the sole contributing factor to
the proton flux which is measured. Oakley and Walker
examined the reaction over an energy range 260 - 450 MeV

and expressed their results in the form

%&L: P\O+B°Cose 4 COCogle

where 63 is the meson angle in the c.m. systenm.

The values of A+ and Ao deduced by these
workers are employed in Chapter III paragraph 4, where
the most suitable form of the single nucleon photo-
production matrix element is examined.

Not many experimental results on the elastic

photoproduction of neutral mesons at helium are at




present available. The principal results up to the

time of writing have come from Osborne and de Saussure

at the Massachusetts Institute of Technology (31, 32)

and Goldwasser et al at Illinois (21). The latter
detected the meson by measuring both the decay Yu-rays
in coincidence and examined the reaction from threshold
up to a meson energy of about 50 NMeV. Their resulis
indicate that in this range and for equal neutral meson
energies in the c.m. system the differential cross-section
for production in helium is about four times that for
production in hydrogen at an angle of 80° to the incident
beam in the laboratory system.

Osborne and de Saussure at M.I.T. used the
beam from an electron-synchrotron with a peak energy of
about 350 leV. The electrons were made to strike a
thin tungsten wire and the resulting beam of photons
after being defined by a lead collimator was passed into
a tank containing medically pure helium at a pressure of
one atmosphere. Photographic plates were arranged
inside the tank with one edge parallel to the direction
of the beam in such a way that particles would be
incident upon them at grazing angles. The energy and

direction of the particles were deduced from observation
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of the tracks. The photographic plates were developed
so that only those tracks caused by doubly charged
particleé could be discerned and thus the only reactions

which had to be considered were:

(1) y+ He' —> He'+y

(11) { & He* —> Hel+n
(iii) Y+ He' —> T +He*+nucleon
(iv) v+ He' — T +H e

The cross-section for the Compton scattering process (i)
is small while the energy of the recoil nucleus\%ef in
the process (iii) is low with the result that most of
these nuclei are stopped before they reach the photo-
graphic plates. The recoil nuclei from the reactions
(ii) and (iv) cannot, however, be distinguished. A

low energy run with a maximum energy of 160 MeV was
carried out and it was deduced that the distribution

of the recoil nuclei in the reaction (1) was proportional
to 8in*© in the laboratory system. Now because of
the kinematics of the elastic photoproduction process

the recoil ¥%eﬁ nuclei do not occur at angles of greater
than 60° in the laboratory system and hence if the

background of %%e? tracks can be assumed to have a
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distribution of the form A4 gin~ O then A may be
deduced by counting the tracks between 60° and 180° and
the background can then be subtracted in the range 0 =
0 to 60°. This subtraction procedure is the weak point
in the experiment and their results may well be suspect
on this account. The results obtained by de Saussure
and Osborne (32) for the differential cross-section for
the elastic photoproduction of neutral mesons at helium
at 900 in the laboratory system are compared with the
corresponding theoretical results in Chapters III and

VIII.



- 11 -

II. THE IMPULSE APPROXIMATION

As a fairly large proportion of this thesis
is concerned with the application of and corrections to
the impulse approximation, it was thought worth while to
give a brief preliminary survey of the development of the
approximation and of some of its previous applications.

Essentially, the impulse approximation consists
in replacing the transition operator for an interaction
between a particle and a complex nucleus by the sum of
the transition operators for the interactions between the
incident particle and the individual nucleons within the
nucleus. This approximation was first introduced by
Chew (9) in his analysis of the elastic scattering of
mesons at deuterium and was later employed by Chew and
Lewis (13) in their investigation of the photoproduction
of mesons at deuterium. However, the method was not
put on a firm theoretical foundation until Chew and
Goldberger (12) clearly brought out the reiationship
between the total transition operator for the photo-
production reaction and the individual nucleon operators
in such a way that the terms neglected in assuming the
impulse approximation could be interpreted and analysed.

This was a generalisation of some previous work along
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these lines by Chew and Wick (14) and Ashkin and Wick (1).
Chew and Goldberger (12) discuss in some detail
the errors caused by omitting the effect of the potential
binding the nucleons during the interaction and also of
the multiple scattering of the incident particle within
the target nucleus. They define the total transition

operator for the scattering of the particle at the nucleus

to be _r-+ where

TV Ve LY

Here ** ¥<‘+\) ¥< is the total kinetic energy operator
for the nucleons.

\J is the nuclear binding potential.

N
\/= 2;\4‘ is the interaction potential between
Kl the incoming particle and the nucleus.

It is assumed that V may be expressed
as a sum over all the nucleons
(K=\oo-o. N ) of V. the inter-

action potential between the incident
particle and the K* nucleon.

\"\°®Q= EQ i}q s Where @Q is the initial state of
the system and ¢ is a small positive constant (29).

The transition operator for scattering at the

single nucleon (k) is defined to be

t =\ N 2.2
+\/E e~ - \/ ¥
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where EZQ is an eigenvalue of the operator ¥< .
After some manipulation of the operators they

show that (their eq. (25))

T= Z{ o+ V N‘_ Wil

_\{\Jr E-\—LE H \A _V 9 \\l 2.3

where t+ = \/ LQ+
kK K

K

Omigsion of the second and third terms in

equation (2.3) leads to the impulse approximation
4 N
< .t
K=\

By repeated use of an identity relationship

between the operators _ and \

Eotie-H-V Eqrie-K-V,

the second term in equation (2.3) can be expanded as

a power series in \J and may thus be associated with
the correction due to the binding energy of the nucleons.
In a similar manner the third term may also be developed
into a series, the first term of which may be inter-
preted as representing two consecutive scatterings of

the incident particle within the target nucleus, the
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second as representing three such scatterings and so on.
This last term then describes the multiple scattering of
the incident particle within the target nucleus. The
formal methods developed by Chew and Goldberger, although
they separate out the various corrections to the impulse
approximation, suffer from the defect that a pertubation
like expansion of the terms must be carried out before
evaluation of the matrix elements of the terms is possible
and such an expansion may not be wvalid.

A considerable number of calculations on the
photoproduction of mesons at deuterium have been
performed using the impulse approximation(13),(18),(19),
(23), @8).. Chew and Lewis (13) examined, in particular,
the elastic production of TN° mesons at deuterium and
derived the differential cross-section for this reaction,

da CL‘\" 2
I 3 KO =2

¥ L Upe
where F(\:\: g u(g\e dQ is the form factor,
-0
U\g)is the ground state wave function of the
deuteron,

X? is the momentum transferred to the deuteron
during the reaction,

and Clo, gc are the energy and momentum of the meson.

The scattering matrix element for the photoproduction
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of neutral mesons at a single nucleon (S\ is taken to

be of the form (CL\T'S\\;) = Q\'\\K+L , where Q(SS is

the spin operator of the '§5 nucleon and ¥£‘ and \_ are
functions of the photon energy, momentum and polarization,
and of the meson momentum and energy. It is assumed here
that the scattering matrix elements for production of a
neutral meson at a proton and neutron are egual both in
magnitude ana phase. The differential cross-section
‘(2.5) calculated on the basgsis of the impulse approximation
gives results which tend to be rather higher than the
experimentally observed points (8).

Some calculations on the elastic photoproduction
of R® mesons at helium have been carried out by Osborne
and de Saussure (32) in connection with the interpretation
of their experimental work on this problem. They
employ the impulse approximation and an independent
rarticle model for the nuclear wave-functions but do
not obtain satisfactory agreement between their theor-
etical and experimental results. The theoretical
cross—section for the elastic photoproduction of neutral
mesons at helium has also been studied by Yamaguchi (38).

He hasg calculated the differential cross-section for

this process on the basis of the impulse approximation
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and using an Irving-type wave function (22) for +the
helium nucleus, at photon energies of 166 and 200 MeV.
His results at 200 MeV are consistent with the corres-
ponding results presented at the end of Chapter III.

The theoretical results computed by Osborne and

de Saussure and Yamaguchi appeared while the calculations
outlined in Chapter III were s+till in progress and are
included in the more comprehensive analysis outlined in

that chapter.
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III. THE APPLICATION OF THE TINMPULSE APPROXIMATION TO
THE CALCULATION OF THE DIFFERENTIAL CROSS—-SECTION
FOR THE LLASTIC PHOTOFPRODUCTION OF NEUTRAL MESONS
AT HELIUM.

It is not expected that the impulse approx-
imation will give very satisfactory results when applied
to problems involving the A -particle since this nucleus
is a tightly bound structure. The multiple scattering
of the meson within the helium nucleus will probably
alter the differential cross-section for the reaction
considerably, particularly in the region of energy
where the scattering phase-shifts are large, while the
binding energy correction may be quite important at
energies near the threshold for meson production.
However, it happens that the differential cross-section
which includes the effect of the multiple scattering of
the meson is most easily expressed in terms of the
differential cross-section derived on the basis of the
impulse approximation so that a knowledge of the latter
is essential in deducing the former. The elastic
process is selected for reasons which have already been
outlined in Chapter I, namely that the calculations for
this process are the least complicated by the nuclear

wave-functions used in the description of the initial
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and final nuclear states so that a more detailed
investigation of some of the other aspects of the

problem can be made.

III§ 1. Reduction of the total transition operator

The initial state of the system consists of
a photon of momentum Y and energy V (in unitsh = ¢ =1),
and an A -particle at rest in the laboratory system. The
final state contains a neutral meson of momentum gk and
energy q, and an «-particle recoiling with momentum D .
The rest mass W of the meson is taken to be 135 MeV.

Let T be the transition operator for the
Photoproduction of mesons at helium and let T4 be the
transition operator for the photoproduction of mesons
at a single nucleon (i)

Then according to the impulse approximation
T=T1+T2+T3+T4 301

The protons are denoted by the subscripts 1 and 2, the
neutrons by the subscripts 3 and 4.

The matrix elements of the operator T must
be taken and averaged over the initial and final

momentum distributions of the nucleons, for although
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the nucleons are treated as 'free' during the interaction,
they still retain the momentum distribution imposed upon
them by the nuclear binding potential.

Let the nucleons initially have the configur-
ation space wave function W (\1L,34)  and the
momentum space wave function & (%, k5%, k)
where ¥ , % , % , ¥ are possible initial momenta for
the nucleons, and let the nucleons finally have the
configuration space wave~function “29 (\1-,3&\
and the momentum space wave-function ¢ (W k-, k)
where X\ , % , % , and X, are possible final momenta for
the nucleons.

All the wave-functions are normalised and
depend upon the spin as well as the space coordinates
of the nucleons. They are anti-symmetric under the
interchange of 1 and 2 and of 3 and 4 in compliance with
the conditions of the Pauli Exclusion Principle.

Taking the appropriate matrix element of the
operator T and averaging over the initial and final
nuclear momentum distributions of the nucleus, the
following expression is obtained for the transitien
probability amplitude for the photoproduction of a meson

of momentum % by a photon of momentum V .
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Q)T = gd\g"d\sld\s;d\s't,d\gd\gd\ssd\gk Pl i) X
L 81+ k) 8- 660\ i) <, e L T )
+ S~k Sliarg-te-) Sk Sl (g e Tl Ly
601 Sl ) Ol g 6 Sl (4 WG\ Tl
+ 816 6l 1) SISl 1 L, KT, )

K oo k) 32

Since it is assumed that momentum is trans-
ferred only to the nucleon at which the photon is
incident, the remaining three nucleons being left

undisturbed
(Tl = gdk diadied| 4 (g ook k) kearg Tl L)
C\D K- %»k;,\<t§4%kn+lﬂ WKy
+ 4)(_(&,\5; ARCERNCREEIRRNRS
+ Cb Vo Ko Y m )L g Kk g Ty, @i\
%Pl ko k) 3.3
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The next step in the simplification of the above
expression is to neglect the dependence of the matrix
element { g%\ Tly %)  on the nuclear momenta \S(_ and
\SL s Which allows the matrix element to be removed from
underneath the integral sign. This is equivalent to
assuming that the matrix element may be evaluated as if
the nucleon were at rest before the reaction and the
recoil of the nucleon could be neglected. The second
agssumption is the usual adiabatic approximation in which
the nucleon is considered to have effectively infinite
mass. The first assumption neglects the motion of the
nucleons within the nucleus. The average value of the
nucleon momentum \5.\ is zero so that if the matrix element
of T‘ is expanded as a power series in \(- the first
term to contribute to the integral over k will be the

term containing \< and this should give a much smaller

contribution than i;he integral over the term in the
expansion which is independent of \5‘3 .

With these assumptions the matrix element
4%\5_'\4-\);2&\T3\\L)\53> reduces to (gVO\T)\\l,O> which is
abbreviated to <CL\T)\\)> o The matrix element

may now be written

_ *
T = 2 (addsa, Glongk) 3
X (cL\T\\\D ¢'\(\S\,\<_x'x\\és ,\Sg)
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where the matrix elements <CL\T‘)\V> are retained under
the integral sign because they contain the spin operators
@ (})which do not commute with dP@ or (\)-\ .

When d& and q)-k are replaced by their Fourier
transforms the expression for {q\T|y) becomes

L . .
" -RR )
G\ Tiv)= Z \dv_\dgdgdﬁ&\) (231 e (e Y YWL3L) 3.5
-
where szg(&-\-@)riﬁm is the coordinate of the

centre of mass of the o -particle.

In the above formalism distinction has been made
between the matrix elements <CK\T‘)\\’> ,\=\--~L  for the
different nucleons. Present experimental evidence seems
to indicate that the matrix elements for production of
mesons at protons and neutrons are the same both in

megnitude and phase (26, 32). Assuming this equality

(Tl = z &cm dndrdn U0 e \D'&(QL'X\.\S(&L‘}\ o 95 W)
(T = > KCXL\ dudnds U0 e \Q&( qu)- Kl Qe W)

=1

Bef W\\QVQ <q'\T‘\\)> - q- “\ \éo_‘_\—_o 3.6

choice must be made for the o -particle wave-function.
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IIY § 2. Nuclear-wave functions

The o -particle wave-function which has been
denoted by \\) (12;34) contains both a configuration space
and spin wave-function. The spin wave-function is
particularly simple as it is the combination of four
angular momentum wave-functions of the typey (\“ -t;\
whiech has total angular momentum zero and is 1n addition
anti-symmetric under the interchange of particles 1 and 2
and of 3 and 4. The required wave-function is X4(12)

X4(34) where

Xk('t;\\r;: (Y : 0\/ () -—\/ Q\\\/ *m) 3.7

L
and \/J;‘ (L) is the spin wave function of a single
-y

nucleon (i) corresponding to spin up and \7/1. (1) is

2
the spin wave function corresponding to spin down. Then
U (22;34) =005, m,m )%4(12) T4G4) 3.8

Here k\) (n,m, o ,75) is a symmetric configuration space
wave-function (t:.3 is the position coordinate of the '3“—‘
nucleon) . Two types of functions have been considered
in looking for the best representation ofq)( T ,n,% )

firstly Gaussian wave-functions (22) of the form
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}A“G \RATE I 5% o oy ‘\“"su) 3.9

L\)\\'\ ArSAYY \';,) - N:\.

L
Vi; is a normalizing factor,r\—-r -L. is the relative

coordinate of mucleons L and 3 ,Xand Mae 1is a
parameter which is adjusted to give the best fit to
the binding energy or radius of the o -particle. The
use of these functions lead to integrals which may be
fairly easily performed. The Fourier transform of

(3.9) is for instance

LAY
Pk o o ) = O8] Bl i B2, gt 5 3.10

Wk

Their principal defect lies in their bad asympotic
behaviour as they fall off too rapidly with increasing
geparation of the nucleons. Experiments on the
scattering of protons at carbon and oxygen (15) have
illustrated, however, that the Gaussian wave-functions
represent the behaviour of these heavier nuclei guite
well, but it is doubtful whether they give an equally
true picture of +the lighter nuclei.

In order to better the asymptotic behaviour
of these functions Irving (22) examined wave-functions

of the type
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L
e Pas(vd 4 fg + R A+ Rl )
L\)(g)\;,\gﬁ, = N . 3.11
- T n
(R ¥ mg 4 T 46l 47

N is integral or half integral and Maz is chosen to
give the best fit to the binding energy or radius of the
o{~- particle. The value n =—‘7: leads to the simplest
mathematical analysis and is adopted from now on.

The Fourier transform of(3.11) (with nzli Y is

Bl eide) = R Blerever N L — e
" (par + o)

1L
where N; is a normalizing constant and o(‘-——{—\(\a\kfktic\d‘%\(t)

The parameters N, and [\,, may be fixed either
by computing the binding energy or +the radius of the
A - particle using the appropriate wave-function.
Adopting the former course Irving (25) has found the
following set of values for

| -

= 1.7 x 10"13cm, giving a binding energy of 28 MeV
her for He4.

= 2.0 x 10-13cm, giving a binding energy of 20.5 MeV
for He4.

AN
et

and - = 25 x 10"13cm, giving a binding energy of 12.5 leV
P 7 for He4,
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The value L = 365 x 10-13 cm leads to a value of
23 MeV for /gf; binding energy of the o - particle.

par and Wi have also been evaluated by the
second method. The root mean square of the radius (R)
of the o~ particle is defined to be proportional to the
radius of the circumscribed sphere of the tetrahedron
whose sides are equal to the root mean square separation
of the nucleons \6} s the constant of proportionality k?o\)
being greater than or equal to unity. From the geometry

of the figure

L
2

5
R: QO_ELS s 907/\ 3.13
3% T%
An elementary calculation shows that Sc=3— , S1= —
lL WG 31}.&41

Hofstadter et al (24) have estimated the value
R = 1.4 x 10-13 cm for the r.m.s. of the radius of the
o~ particle. Then

™

\
—_ = Mx 10":L3 ecm < 3.7x 10—13 cm 3.14a

TVE N £ =
A =150 x 10713 em < 1.50 x 10713 en 3.14b
Wi Qo

If the mean values of the separation of the nucleons and
the mean value of the radius of the A- particle are used

in the evaluation of Wae and Pay instead of the r.m.s.
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values of these quantities, then

L =333 x1013em £ 3.33 x 10713 cm 3.15a
Kace €°

and L =239 x 10713em < 1.39 x 1013 cm 3.15Db
Hax Po

The values of -t; calculated from the binding energy
&

and radius of the « -particle are in fairly good agree-
ment ( o=\ ) but there is a slight discrepancy between

\
the two different valuesfor — . The impulse
AT

approximation calculations have been performed using the
1 =3.3x10-13cmand L+ =1.7 x 10-13 cm,
Mtee Mg

for the nuclear parameters, although it may be that

values

the value - = 1.4 x 10-13 cm corresponds more closely
T
with + = 3.3 x 10-13 cm.
Me

III § 3. The matrix element for the photoproduction
of a meson at a single nucleon

The most convenient form of the matrix element
for the photoproduction of a meson at a single nucleon
for the purpose of employment in the impulse approx-
imation calculations is one which is both relatively
simple in form and gives results which agree with the

most recent experimental results on the photoproduction
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of mesons at hydrogen. Chew (11) has developed a matrix
element which satisfies these criteria quite well,

Chew uses the non-relativistic approximation
t0 pseudo-vector coupling between the meson field and
the nucleon, which is considered to be fixed at the origin
(*static' approximation). The resultant interaction
Hamiltonian is 3

W= sy £ <<kz A\ Z_‘Cxq..ﬂ P, (7) 3.16
mx A=t
Here e(r) is the source function of the nucleon, T, is
a component of the isotopic spin operator of the nucleon
(equation 6.5), dpkis a component of the meson wave
function, g 1is the spin operator of the nucleon and 9 is
the coupling constante.

In his treatment of the scattering of a meson
by a nucleon (the matrix element for the photoproduction
process is closely related to the matrix element for this
process)s, Chew (10) neglects the recoil energy of the
nucleon with the result that the integrals involved in
the equations for the matrix elements diverge at high
energies. If the nucleon had instead been treated
relativistically the energy denominator would have

ensured the convergence of the integrals at high momenta.
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To eliminate this divergence Chew introduces a cut-off
momentum above which V(k\ the Fourier transform of the
source function e(rﬁ, is zero and below which V(K) is
unity. If the cut-off momentum is denoted by Kmax, the
corresponding cut-off energy isWpax = (Kmax2-+th% )&'
and the theory contains two constants ﬁf.and Wpaxy wWhich
must be determined by comparison with experiment.

By applying to the static approximation
renormalisation procedures originally developed in
connection with relativistic quantum electrodynamics by
Dyson (17), Chew reduces the effective value of the
coupling constant Q with the result that many graphs
which previously gave large contributions can be neglected
or treated by perturbation methods. However, certain
series of graphs remain in which resonance is possible
in the intermediate states and these must be summed to
give integral equations. These graphs are characterised
by the fact that a meson appears alone with the nucleon
in the intermediate states of the transition. The
integral equations may be resolved into isotopic spin
and angular momentum states by the use of projection
operators and from the solution of the separated equat-

ions the scattering phase shifts may be calculated.
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Of these the phase shift é)% for the total angular
3

momentum % , total isotopic spin % , state, is the

largest and by equating the values for S calculated

EE)
from his theory and the corresponding experimental
values at certain energies Chew arrives at the values
¢ = 0.058 and W, .= 5.6 M for the coupling constant
squared and the cut-off energy.

The relationship between the matrix elements
for photoproduction and scattering of a meson at a
single nucleon may readily be found.

Iet € =\l —‘\K \\ be the transition
operator for the scatterc;\ng of a meson at a nucleon
where N is as defined in (3.1%).

Here a=E-H,+ric » H.is the sum of the
free field Hamiltonians and ¢ 1is a small positive
constant (in accordance with the formalism of Lippmann
and Schwinger (29)).

If T is the transition operator for the
photoproduction of a meson at a single nucleon and H

is the interaction Hamiltonian between the photon field

and the nucleon and meson fields then

T =l H) + (e —'“_“\’\W—g (v 3.17

\

H

|
a-h a—"n a
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since \‘\ may be itreated as a small pertubation. The
factor ——\TX O describes the interaction between the
nucleon :g,;ld its surrounding cloud of virtual mesons
before the electromagnetic interaction and is taken
into account by using physical quantities corresponding

to 'real' nucleons rather than Ybare' nucleons. Hence

T=o_' _
QCL-—-\K\H

= H+1LlH

on eliminating h . Hence taking matrix elements

3.18

ATV = (i) + § S () 229
R

alQ
Here |V) is a state containing a nucleon and a photon
of momentum NV and \CP is a state containing a nucleon
and a meson of momentum Qk (in the c.m. system). The
matrix element of | is the sum of two terms, the first
of which is the Born approximation and the second of
which takes into account the effect of the scattering
of the meson at the nucleon after its production. This
latter term is most important in the resonance region
(200 MeV £Qo& 400 MeV), where the scattering of the
meson through the J= Bi y L= 3’1 (3 = total angular
momentun, 1 = total isotopic spin) state is dominant,
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The various partial waves may be selected out by using
a multipole expansion of the vector potential B
occurring in the interaction H .

Chew (11) considers corrections to the Born
approximation arising from scattering of the meson
through the \}i‘%J state. The Born approximation
for charged meson production is

(T = Imie 236 (qe 2ada-wiae) > 3.20
o g g et

d is the spin of the nucleon, ¢ +the polarization
~ vyector of the photon.

¥V ,V are the energy and momentum of the photon q~° and gc
of the meson.

<CL\T«_-\\}> is taken to be approximately

1) . L+
QT =2rie £ qe
ma o)t
while the Born approximation for the production of

neutral mesons {q\T2\V) is zero. Angular momentum
conservation shows that the meson scattered in the J= 3?:
state may arise from a magnetic dipole or electrie
quadrupole elec‘bx:omagnetic transition. General

angular momentum arguments (5, 11, 20) lead to the

following expressions for the matrix elements for
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charged and neutral meson production

(q\T‘“ W=ie ?&G Ar (g; ¢ A 2M, xgéu(e
MR (({\)}L

22
FMA ke - (M- EYgatan) ’
Q v
and

(QUTV) = (e 26 2x (7\\\'\ Lgks +(MrE Nas)ea) (MrEYgeiadB - 23
o (g qV q qu

M\ and E are the effective matrix elements for the
transition through the k_- ,_-\ state due to the magnetic
~ dipole and electric guadrupole interactions respectively.

Salzmann (11) assumes the forms:

S
M, = m, ™Y o 5\“633 3.24a
<o
Ef‘ € “‘(;" e\&“ &N &33 3.24b

for M\ and F_k where m, and €, are real energy
independent constants. |

If it is assumed that the photon is incident
along the negative z axis and that the nucleon is lying
at the origin then the following expressions are obtained
by averaging the matrix elements (3.22) and (3.23) over
the photon polarization (¢.=O since ye = O and
E-;Z= i‘i="{f_9 {Zé\j=Q).
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W;k\ = ATl - %\)_, [*m\{ _WR_\\);\‘_KRC\COS&%SW\&SBCOSG
N sw\&y}m\( L \ms 6+ \_\_ \sm@> 3.25a
N C\CL
\\.._\X = IRt sintd,, SO 3.25b
Py, (\DCQ‘

\ \.4_9\]-““‘ = L\'KLO}W\\” C,_E’_;& S\\'\L&s&@\ \ og’-e _\_(\ A+ %_:\_\Ls\'“'l e) 3.25¢
L,

i

lbr-omy Y
Pt

where (Q\T'WV) =g Kevly | {q\Tolvy = ¢ Kot Lo ,ol=2ex™
and cos = QQL_

~€.W\’-c()3,:§\'\f\L e 3.25d

The above relg¥aonships (3.25) have been derivedon the
assumption that the nucleon recoil energy can be
neglected, i.e. that the nucleon has infinite mass.
To allow for the finite mass of the nucleon equations
(3+25)are taken to be correct in the centre of
momentum system of the photon and the nucleon. Hence-
forth quantities measured in the c.m. (centre of
momentum) system will be distinguished by the
subscript c. The relationships between quantities
in the c.m. and laboratory systems are derived in
Appendix A.

As the principal object of the problem is

not to examine the validity of the single particle
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matrix element developed from any specific theory but
rather to investigate the best method of reducing the
transition operator for the interaction into terms of
transition operators involving only two particles, and
t0 examine the effect of using different momentum
distributions for the nucleons in the o -particle,
the constants f ,» M, and €, are treated as variable
parameters and their optimum values are determined by
comparison with recent experimental results.

If dq is the differential cross-—section

an. .
for the photoproduction of charged pions in the c.m.
system and Cckf’l is the corresponding guantity for
]

neutral pion product:l.on then

day - A +BLcosB8. +Cycog B
Y + EX
X L %
where P\+ = Q(X\ X,y K’)\_\,_\_(H_e;)))

Bi= -2 m,(1- €
Cy = dmixp-af-4 {1+ &}-R)

3.26

Yi‘r =%
mﬁ\)c_
I‘{ = _& W 6
q;.
X = o5&, s,

m&ﬂc : 3.27
A% L A 4B cos€, + C,contb,
A,
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where M, = arwd ey +(\+ %‘“\1)

[+

B,=0

Co= i 20-&Y-4-(r &) %= % st

X_*;_ and X‘i differ slightly on account of the difference
between the masses of the charged and neutral mesons.
The energy relationship C\OQ:\JQ has been used
in obtaining these cross-sections. This is a fairly
good approximation in the c.m. system where the initial
and final energies of the nucleon are practically equal.
The most accurately determined guantities
experimentally are A_\_ and Ao , and from these the
constants ¢ and m?‘(\+l@{\+ %\j’) can be determined.
The experimental results which give the most
reliable values for the cuantities P\+ and Ao over
the required energy range have already been discussed
in Chapter I § 2. The theoretical results for A*and AO

can be calculated using Chew's coupling constant (¢=

&
O-05%) and the functions (M,E) = (m,&,) ml(]\f@ on

w0 833. The differential cross-section for neutral
pion production at 90° in the c.m. system calculated

in this way is much lower than the experimental values
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at all energies. Moreover, the ratio AQ{ % s where
Ao is the Oakley and Walker experimental result, is
by no means constant, contrary to the prediction of
the Chew theory, particularly at high energies

(V> 210 MeV) where the ratio systematically decreases
with increasing energy. Various trial functions for
M, and F_L of the form \_’3“- e}g“s{né)% have been
tegted and the value of n wchich gives the best agree-~

ment with the experimental results is N= 51

I &
then M, = & Zsibym '“CT‘G;» 3.29a
<
t '\8
_ I MRVe 3.29b
EL =& 5561‘ c’-’b.

" .
where m'\’“ and €, are constants with the dimensions

of an energy. Incorporating these new values

ot (L |1 Ia
A+~o~y‘ + Lo m, (\-\—“,;K\sf %{W\Jf 3.30a
[ all L
ang Ag= Lalm 1 {1y %‘\l\)‘wg 3.30D
where \J?’:)&‘ = _i:,
‘“r,,\'
V= X sm RS \’c sm’%
and = L et where (:' is chosen to give the best

fit to the experimental results.
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The ratio Aol‘y‘;_ turns out to be very

nearly constant at energies above }y = 200 MeV with a
slight tendency to decrease at higher energies, although
not nearly so pronounced as the corresponding tendency
in P\b/ )C; at these energies. On the other hand
below 200 MeV Ro }Y;. drops quickly as might be expected
since <in 633 behaves like 0@'_ near threshold. In this
region of low meson kinetic energy the experimental
results are much better fitted by a \l‘?—% dependence for

AO s although with somewhat largercvalues of m, and

€, than those derived Dby Chew, However, the energy
range ¥ = 200 - 350 MeV is the more important from the
point of view of the present investigation, and
consequently the energy dependence j%_ leading to
the expression (3.30b) for M. is adopted. The average
value of the ratio P\o/\j‘; = udlm‘}(\+ﬁ(\+ %j‘)
over the range V = 180 to 260 MeV turns out 'bt\) be
2.9 x 10722 (1ev)3 (cm)?.

The theoretically calculated form for the

differential crosgs-section for the production of
positive mesons based on equation (3.26) (with Chew's

values for &\, W\, and €,), agrees fairly well with
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the experimental data of Walker et al (36), although
the theoretical results are rather too low at high

photon energies. Moreover the ratio

{ Ay-20tmi (1 ()] [ o
shows a systematic increase at the higher end of the
energy range which suggests that the contribution of
the 'scattering' part of the matrix element is not
large enough in'comparison with the contribution of

the Born approximation. The ratio

oy ol +g
KP\* 2wy (\ L*(\+ -@Wx
is more nearly constant and leads to an average value
e -
of QA = 7\'(,)(\075 (MQ\JY(Q«\Y‘ (Chew's corresponding
value is o =32 ¥\O T (Mev) (cm) )«  Then

X

\ 5 '
wy = 9 (Mev) when & = O 3.31a
oy
Y
and ’m\‘-.-. \\ % (MQ\I}I \Q\(\Q‘(\ 9_’1 = \ 3.31b

o0y
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III § 4. The differential cross-section for the
elastic photoproduction of mesons at helium

It has already been shown that (equation

(3. 6))
\)> Z Kdﬁ dﬁ.d“d\'u k\)‘- \L 3A\LQ(S\ K ‘\'\_o\
\..— Qb \\) K\lg‘“\-\ 3432
where Ck V> G(\) K.+ \le . Using (3.8) the

above express:.on reduces to

(T = Z X )l . ket L) X a0} aw)

&dn dndr,dr Y & 5w e R Wlo s 5
= L\ g dndndnds Wl oo ) 6’:&'&“&%& Wi o ,0,w)
The matrix element [ _ for the photoproduction of
neutral mesons accompanied by spin flip of the nucleon
does not contribute to the elastic photoproduction
process.
Now - Wlon,ow) is a function only of the

relative coordinates $; = L -1 of the nucleons and

) y

not of the centre of mass coordinate R = lnenrnen)

Hence introducing the change of coordinates
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R= 1 (GFLAESE) |, 2200 , u=5-T . $.=C, -5,
the expression for (q\T\V} becomes
(VT = L () Sl-a-D)F 3.33
~L (RS st )

where F = &dﬁxdiadéq wltsﬂ_},émig e b 33 4

is the form factor and ?.:\L—gc

v is normalised such that® =\ when p=O .

Then
dg SIE-E) S(p-D) el fMEr
dqu (1T)

Here a@\gag is the differential cross—-section for the

production of a meson of momentum, gc by a photon of
momentum Y , such that the A -particle recoils with
momentum Q .

EY- is the final energy ot the system and EL

the initial energye.

Then £ = Vi+hM-¢,

2
and T = q A+LM- O
¢ C\o L\M LV ™

go( is the binding energy of the £ -particle.

_ é _ L\t
Q\(l (110‘ W ) al
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ana dg o\ o \oWLF 3.35
A w4+ Aﬁ'&q(({_\,cos 9)
Qo+ \y-ql*
™M

It will be observed that the above energy relationship

with = 3.36

(3.36) is inconsistent with the corresponding energy

relationship for production of a meson of momentum %;at
W -g

™
must be assumed that Chew's formulae for M, and ©,

a single nucleon, namely V = q9*. and hence it

or the slightly adapted formulae (3.29) are still valid

off the energy shell., The deviation from the energy

_ A
shell is not large as the recoil factors jl%;%i- and
-a\x
l!;i%_ are in general both fairly small in the

energy region considered. By writing the functions
M, and € in the form (3.24) and M| and €, in the
form (3.29) it has already been assumed that only

'‘on the energy shell' scattering contributes to the
integral in (3.19) and it is, therefore, the Born
approximation matrix element (Q\H\V) which must be
evaluated off the energy shell.

The form factor F. will now be computed.
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(a) Employing Gaussian Wave-Functions

The Gaussian wave-function as defined in

equation (3.9) is
\
Plom,mm) = N

Using the coordinate transformation

.«
y M (T 47 End kTl boh 4T

R =4 (nrnanin) JQ=-u L{nrhin)
& = -ty () ) g™ "N
U Berrd errled) ~3ikg
(apapage " SEHRRNE
then FQ_ = e
(dgagdg €M fuigd)
= o ‘D 3.37

(b) Employing Irving-type Wave-Functions

The Irving-type wave-function as defined in

equation (3.11) is

~ Pt (T AR AT AT AT u\;)”“

k\)k‘:\‘:};ﬁ;{‘i\ = N}—L =

hy
3
T (rearganianiinsan ) -

and the corresponding form factor Fl is given by (using

the same coordinate transformation as in (a))

-3 \ 2, L'L . .
| dgapa BRI -3ing
4 g‘ g? (3¢ B 620 €

“pugr (b 3 g a2t
| agagdy 2 s (g8 g

(b g 2 42¢3)
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which reduces to

— -\
\—1=_7_ (‘i’&&g} _ ___,\____(\5+l+0x1+33x“)>
k% e X.L (\’\’X}S‘B 3 038
\
where )( = ﬁ
etz
It is easily verified thatlw § =1, which is, of course,
X0
required by the normalisation condition on F .
Equation (3,35) may now be written:
% 2
do _ le A(qu)ILdIF 3.39
Al ()
where
Alg)= e 3.40
|+ X (q-VeosB) )
R LkMq
an
L | et Ve sd, awnO, 3.41a
W= e
oo Ve siovd, sweQ 3.41p
qocté
The value of ‘m\' will depend on the value assumed for
& o Two cases are considered:
'
s
(2) =y =9 (Mev)*wWhen _e_{\zo
oy
and (b) W =mg = W% (Mew)* when .@3\=\
™y
. \eratmy Bg gNe) st b, sint © 3.42a
Then L = \Lﬁ*d‘tﬁ%‘(c\cp\,\@ Sty sit © 3.420

\breo™ iy B {qe,q,c) stwd s © 3.42¢
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where Bk%,%\k\ = 3.43a
Qoeqe

and R LQKQ)QL \)Q\ Ve 3.43D
C\_occ{_c,

and F may assume the forms F and FI given by equations
(3.37) and (3.38).

The meson energy corresponding to a given photon energy

is calculated from the overall energy conservation .

condition (3.36).
Np™ CC-—’). qVCog o

V = Qo+
it M

The recoil factor is relatively small and the equation

may be conveniently solved for C\o by successive
approximations to give
Qo = V-4, 3.44

where

é)\ =L “\T\_\_\\)L_‘“RB(_ \) g& ("_ \)Cose
l'\'M( ) \ ) k\)'a. IBL

Combination of the three possible values of \Lo\l
with the two possible values of F gives rise to six

different expressions for the differential cross-section

which are detailed below.
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(1) da(y = bhormi AB\F [ sin & sived 3.45a
Qlﬂ-t\ ,

(i) o9 ) = bl ARV " sine &, sint © 3.45b
Al

(1i1) dg @) = bl o AR\ Fel svr-S,y, st O 3.45¢
TEN

(1v) 49 (1 = bhalmi AB IEL siwd, sivO 3.454
Al -

(v)  da(g)= Lo my ARG sinté, si© 3.45e
dflq

(vi) da (L) = bh o™y AB‘\E\lS\WS& s O 3.45F
Al

The value of bLlio*m: , using = 0.05%, elz\{\?( and
my=-58 is  TAx\o™ (Mev) (cmy .
The value of bha!™wl™ , using o'*=7LL x\3*® (Mev) (cm*
and my = \4-q W\e\v.‘)%~ is 37x\0™ (Mew (em)*
The value of Gha Wy , using o*=2Lx\O (Mev (cmy:
and  wq= W6 (Mewft 18 23 A\G (MevVlemy:
The values ﬁ:G=g.3x\d‘%m, and “‘:1 =\7%\0 wm. are
used in the evaluation of the form factors, although
there is some indication that the latter may be slightly
too high.

The cross-sections (i) - (vi) are calculated
over the range 180 - 320 MeV of the energy of the

incident photon in the laboratory system at intervals

of 20 MeV and at meson laboratory angles of 450, 600,
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90° and 135°. From the results at these éngles,
together with the fact that the cross-section is zero
at 00 and 180° an estimate of the angular distribution
can be made except near the upper end of the photon
energy range, where the maximum of the angular
distribution occurs below 45° so that the angular
distribution is not well determined at these high
energies by the set of angles examined.

The behaviour of the scattering phase-shift 6§5
above meson kinetic energies of about 180 MeV is not
accurately known. The phase-shift is a linear function
of the meson energy in this region and an estimate of &B
for energies greater than 180 MeV can be obtained by
linear extrapolation. This approximation affects the
differential cross-section at 90° for photon energies
greater than 280 MeV; at 450 and 600 for photon
energies greater than 300 MeV; and at 1350 for photon
energies greater than 250 MeV.

The form factors E; and F& are most
conveniently calculated as functions of ¥>k=\¥—ﬂj)
the range of P being chosen to include the maximum
and minimum values of \y—%ﬁ in the energy range and

at the angles examined. Within this range the form
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factor F; turns out to be greater for a given value of P

than the form factor F& .
The results of the calculations on the

differential cross-sections (i), (ii) and (iii) for

the elastic photoproduction of neutral mesons at helium

are presented graphically in figures (3.1) to (3.4), in

da dq
which the differential cross-sections &?i(lj af'(Z)
@ -ty
and dae (3) are plotted as functions of the incident

AfLq
photon energy at laboratory angles of 450, 600, 90° and

1350, The experimental points determined by Osborne
and de Saussure at 90° are included for comparison in
figure (3.3). The angular distributions for various
rhoton energies and for each form of the cross-section
may readily be deduced from this set of curves. The
corresponding set of curves representing the cross-~
sections 5%%54), 135555) and E§§g§), which
include the factor \F| instead of |F\' are very
similar to the curves in figures (3.1l) to (3.4), the
main difference being that the former are smaller in
magnitude than the latter by about thirty percent at
each angle and energy. The shapes of the curves

representing corresponding cross-sections calculated

on the basis of Irving and Gaussian wave-functions
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are practically identical and, in particular, the maxima
occur at nearly the same energies. The difference in
magnitude would be decreased by using the value (3.14Db)
for Mat which may correspond more closely to the value
of ki used in the calculation of FCT .

A glance at the graphs reveals that the
differential cross-—sections differ considerably in
magnitude. Of the three, Qﬁ'(S), which has been
calculated on the assumptioncﬁhgé the electric quadrupole
contribution to the single particle matrix element is
negligible, is the largest at each angle and energy,
while the cross-section é%%'(l) is a factor of two
or three smaller, as would be expected, since the
single nucleon photoproduction cross-section derived
using Chew's form for Vﬂ‘ and =, and his constants
is considerably lower than the corresponding cross-—
section derived from the adapted forms of Vq\ and‘;k
and constants which are evaluated by comparison with
experimental results. The maximum of the curve QS (1)
tends to occur at slightly greater energies than tﬁé%x
of the other two, since the function X5 (equation
(3.27)) does not fall off so rapidly at high energies

as the function V9 (equation 3.30)).

Comparison with the experimental results of
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Osborne and de Saussure (32) at 90° (fig.(3.3)) seems
to indicate that the cross-section 5%%(3) gives the
most satisfactory agreement between theory and experi-
ment. The theoretical results are somewhat lower than
the experimental and fall away more rapidly on either
side of the maximum, which occurs at approximately the
same energy (250 MeV) in both cases. However, as
pointed out in the introductory paragraph to this
Chapter, it is not expected that the impulse approx-
imation should give very satisfactory results for this
reaction and the inclusion of some of the corrections
to the impulse approximation should render the
comparison between theory and experiment more

profitable.
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IV. AN INTRODUCTORY SURVEY OF PREVIOUS WORK ON
THE MULTIPLE SCATTERING OF MESONS AT NUCLEI.

In the discussion of the impulse approximation
(Chapter II) brief reference was made to the various
errors which are implicit in this method. Several
authors have examined the nature of these errors and
estimated the magnitude of the correction to the
impulse approximation solution which arises from them.
Chew and Goldberger (12) have systematically reduced
the transition operator for the scattering of a particle
at a complex nucleus and have interpreted the terms which
are neglected in assuming the impulse approximation.
Watson (37) has examined the general problem of +the
scattering of a meson at a complex nucleus, and Brueckner
and Watson (7), Chappelear (8), and Brueckner (4), have
examined the particular case of the scattering of a
meson at two nucleons in some detail.

Chew and Goldberger (12) show that one of
the principal errors in assuming the imrulse approx-
imation arises from the neglect of the multiple
scattering of the particle within the target nucleus

and manage to separate this effect in the term



- 54 —

Y.\ +V Eotile— H \/](\/—Vk\)(w:—\) (equation (2.3)).

However, as it stands, the matrix element of this term
cannot be evaluated since the operator EiQ+L£—¥ﬂ5;V
still appears in the denominator. The authors show
that, by use of an operator identity, this term may

be split up into a term which describes double scatter-
ing of the incident particle and a series of terms
which contain higher order effects. Presumably by
repeated application of the operator identity, terms
describing three consecutive scatterings of the incident
particle and so on may be isolated, but this method of
development of the multiple scattering term is equivalent
to a perturbation treatment of the problem which is not
valid at small separations of the nucleons and a
different approach which describes the multiple-
scattering effect in terms of integral equations is
advisable.

Watson (37) has adopted such an approach in
his discussion of the multiple-scattering of mesons at
complex nuclei, and the application of the multiple
scattering correction to the impulse approximation
solution for the photoproduction of mesons in complex

nuclei. Much of his discussion is concerned with
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the solution of the multiple-scattering equations for
large nuclei and the relation of this solution to the
corresponding solution derived on the basis of various
optical models for the nucleus, but his method of
obtaining and the approximations made in his derivation
of the equations are of considerable interest from the
point of wview of the methods developed in Chapter V.
Watson assumes that the reaction is induced
by particles whose energies are large compared with
the binding energies of the nucleons in the nucleus
and on this basis can neglect the nuclear binding
potential. The total Hamiltonian H which he employs

is written in the form

H=H +R+V+H' 4.1

where ¥%° is the sum of the free field Hamiltonians,

R is the operator which permits re-absorption
of the mesonR=SRuwhere Ry, 1is the operator
for absorption of a meson by a pair of nucleons
and the summation over M is taken over all
possible nucleon pairs,

V==V, where \/ is the scattering potential
between the meson field and the % nucleon,

and H’' is the interaction Hamiltonian between the
photon field and macleon and meson fields.
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Watson assumes that once the meson has been absorbed by
an operator Fi%, the interaction is finished, since he
neglects the vpossibility of spontaneous re-emission of
the meson by the operator F{ . The operator F{ also
gives rise to a scattering term sz;F{%iF{’ which is
a many body scattering operator.

The Hamiltonian (4.1) leads to a transition
operator T , Which, treating \ﬂ‘ as a small perturbation,

is given by

T = (H+RA) + 0 L H) 4.2
Qa
where the operator O satisfies the equation
.-0. =\ + é(R‘\’\/\.ﬂ. 4.3

The above eqguation is most readily solved in terms of

the auxiliary equation _
ﬂgz \+_\__\/.Q5 404’
)

where b=a-A and Q=E-H e .(Lippma.nn and
Schwinger (29))

and Q- 0+LR0 (L L A) 4.5
a 3 b
The formal solution of (4.4) is
Q=1+l 2 0 4.6a
Nly=1+L 2 € 0 () 460

D ohFl T
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(4.6) represents a set of coupled integral equations.

Here ‘
L=V +\/\\D V&\/

which Watson shows is approximately equivalent in the

range of meson energy considered to the operator for

the scattering of a meson at a free nucleon

t oy \/”‘(\-\_\/\ Q- \/\/

Suitable phenomenonologlcal forms are chosen
for the matrix elements of the operators R, D and'to‘.
Watson does not attempt to obtain the general solution
of the multiple scattering equations (4.6), but examines
approximate forms of the solution for large numbers of
nucleons. If re-absorption of the meson is not
permitted (R = 0) the equations (4.2) - (4.6) reduce
t0 forms which are similar to those considered in
Chapter V.

Brueckner and Watson (7) have discussed the
multiple scattering of a meson between two nucleons in
their investigation of the potential which gives rise
to nuclear forces, while Brueckner (4) has investigated
the magnitude of the correction due to multiple scatter-
ing effects to the impulse approximation solution for

the scattering of a meson by two nucleons. Chappelear
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(8) has extended Brueckner's treatment to include the
multiple scattering effects in the elastic photo-
production of neutral mesons at deuterium. Although
the work of these authors differs quite considerably
in detail, the equations involved, the approximations
made and the form of the solutions obtained are
fundamentally the same in each case. As the treatment
of the multiple-scattering problem described in
Chapters V and VI was originally based on Chappelear's
approach to the two-nucleon problem, a summary of his
work is now given. The various approximations which
he makes during the development of his solution are
presented without comment which will be reserved until
the corresponding approximations are made in dealing with
the general many-body problem.
The following definitions are needed in the
analysis which follows.
Let hj,2 De the interaction termsin the Hamiltonian
between the meson and the nucleon fields
(the nucleons are numbered 1 and 2),
Hl,g be the interaction terms in the.Hamiltonian
between the meson and nucleon fields and
the photon field.
Tet h = h) + hp, H =Hy + Hy, B+ = h + H and H = Ho + H

where Ho is the sum of the free field Hamiltonians.
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Then T the transition operator for the problem is

T-_—_ H‘ 4 H‘ H‘ where o= E —Ho-t-(g 4,7
Ck—
(Lippmann and Schwinger (29)).

The corresponding transition operator for the single

nucleon photoproduction problem is

Tﬁ. = (h‘k-*- Ht\ + (\'\'L“\'Hl\———l——-———(\“'\'\'\’\l\ 4.8
-\ —H,

and L= h i+ L _\n 4.9
-1

is the transition operator for the scattering of a meson

at a single nucleon. Then treating 4 , \-\\ and \—\las
small perturbations and retaining only those terms which

are linear in them | is equivalent to

T= (\\*“iv\m‘*“‘ﬁ\ﬂw Q\“ \
Lc\\—hg (1-—\(\ \M Q_\\\ 4.10

Chappelear makes the approximation of putting the factors

+{\+\r\

+y VW \ :
&\ Y “\g\ +Q—\\\(\ ((;\;),}in the above expression equal
to unity on the grounds that they are largely taken
into account by use of +the correct wave-function for

the deuteron.
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i“

Then
A - A
T:CA\KQ\\T\‘PO\ Q\NTI .
a-h L a-n, G-l Ay, .
\
The operator ”HWV\‘ must be expressed in terms of the

single nucleon transition operators J(,\ and tx and the
matrix element of the resultant expression evaluated.
Owing to the relative simplicity of the two nucleon
problem, the reduction process may be carried out in

a fairly straightforward manner which is not applicable

to the general problem, Elimina'tim} \'\; by the relation-
i

ship W = N L ‘equation (4.17) becomes
‘a
T= T +T +(1=22) 4.12
where T—\\ =j\T\ 4.13a
-\_\f—jﬁtx_\_T‘ 4.13D
<
j-\ = (\‘t\i— L 4,1l4a
o o
Ya= Wt b Lt L \ 4.14D
o o

The form adopted for the matrix element of t‘L is

¢ T
(%\t\\qq = \D‘(CL"\ qt\%.e, L%—'%) ' 4.15
C% and g‘\ are the initial and final momenta of the
scattered meson and \j)\k({’q is dependent on the meson

energy and also contains the isotopic dependence of
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the scattering operator t‘\ .

Three assumptions have been made about the
nature of the scattering transition in order +to derive
the form (4.15) for the scattering matrix element;
firstly that only ‘on the energy shell' scattering
need be taken into account; secondly that there is
a resonance in the (%_ , 3‘-’1 ) state of angular momentum
and isotopic spin (Brueckner and Watson (5)) and
lastly that there is no spin flip of the nucleon.

The form chosen by Chappelear for the matrix

element of the photoproduction operator T'L is

H-gls 4.16

(QTY) = (a+yiq)e

0('\ and ¥L are energy dependent and are also
matrices in charge space. The contribution of the
term o to the total photoproduction matrix element
turns out to be small and hence this term may be
neglected.

Using (4.15) the integral equations (4.14)
may be solved for Yi and Ya and the matrix elements
of T“ and T\L deduced. The results are

W-9n
@WTW=e 4=y Hmhé&i‘\; g&mﬂ 417
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and {q\Ta\V)= - e qg‘)[__ b ( X+ Cj(\+\>\> Q‘n\ @@‘)}4 18

1-op &t

- is the relative separation of the
nucleons

i

where _e

b =b-&c0 evaluated on the energy shell

h=Froer
e e
'LR (’ de €d eu“’
“‘9 o dg ¢

and 9o and gc are the energy and momentum of the
meson on the energy shell.

In order to obtain a numerical result
Chappelear introduces phenomenological forms for )F\
and ‘D'L in the equations (4.17) and (4.18) and a matrix
representation for the isotopic spin operators. He
then averages the matrix element (4.12) over the ground
state wave-function of the deuteron which is chosen
to have the configurat:.on sgace gependence

o) (e
where o = 45.5 leV.

Chappelear has calculated the angular
distributicn of the mesons at two photon energies
which correspond to meson-nucleon scattering phase

shifts (Sss of about 45° and 90°. He finds that the
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multiple scattering depresses the cross—section by
roughly the same factor at all angles. The experi-
mental results obtained by Silverman and Stearns(33)
tend to agree rather better with the cross-section
which includes the multiple scattering effect than
with the impulse approximation cross-section.
Unfortunately, no experimental results are available
in the region of forward angles (< 90°) where the
difference between the theoretical cross-sections is
more marked, so that it is not possible to different-
iate with any assurance between the validity of the
two methods.
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V. DERIVATION OF THE MULTIPLE SCATTERING EQUATIONS.

8 1. The Integral Equations

In Chapter IV it was seen that various authors
have managed to estimate the magnitude of the multiple
scattering effect in two special cases; firstly when
only two nucleons are involved, in which case the
reduction of the total transition operator is very much
gimplified, and secondly, when the nucleus is large,
in which case it has been shown that the solution of
the multiple scattering equations can be identified
with the solution of the multiple scattering problem
derived on the basis of optical models for the nucleus.
In this Chapter a method will be examined whereby the
multiple scattering equations for any number of particles
may be reduced to a series of linear simulteaneous
equations, with the aid of approximations similar in
character to those employed by Chappelear (8).

The multiple scattering of a meson between
A nucleons, numbered 1 to A, is considered. The

following definitions are required:

hy,. A = interaction terms in the Hamiltonian
between the meson field and the nucleon
field.
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H\’l--.,\ = interaction terms in the Hamiltonian
between the meson and nucleon fields
and the radiation field.

Mo = \('\'\'\K“\'\"\V where K is the kinetic energy
operator for the nucleons

Wy is the free field Hemiltonian
for the meson field, and

HV is the free field Hamiltonian
for the radiation field

a=E-H. +ig
where ¢ 1s a small positive constant and b is the
eigenvalue of Ho corresponding to the initial state
of the system

H=h+H

for the problem 5.1
) ig the transition
T Qe (\“L*’H‘)operator for the photo- 5¢2
Cx—\f\u H; production of a meson at
nucleon L ,
za.n('i’(,-\=h;-\—‘(\-‘——‘——--»\yL is the transition 5.3
a-"Ny operator for the interaction

of the meson field with
nucleon L .
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It will be observed from the above that there has been
no potential explicitly included for the binding of
the nucleons.

The transition operator | may be written as

T=o__' (W+W) 5.4
o-\-H

Since the coupling between the radiation and nucleon

and meson fields is weak only those terms which are
linear in ¥{ need be retained as the contribution of
terms quadratic or of higher powers in \4 is negligible.
The term independent of %ﬂ does not, of course,
contribute to the photoproduction process at all and

is, therefore, omitted.

To this approximation

T=a_' H ' a

Ao—h a-n 545
= 2ol W ' _«
=l - a-h
and in a similar manner Tl reduces to
Ty =Q \ H'\ \ A 5.6
a-W -

Equation (5.6) is used to eliminate k«i from (5.5).
Then A

T=2 o' -")LT Ll o 5.7
=\ o-" a o 0%
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(- R
Now the operator Jla-wl 1 q
& a—n

above describes the exchange of mesons between the

in equation (5.7)

nucleons before the interaction -Wl and these
processes may be taken into account by using a
reasonable wave-function for the nucleons initially.
It is also possible that a virtual meson which is
produced at one of the nucleons by this operator
might not be re-—-absorbed at another until after the
interaction —Tl . If the binding of the nucleons
is neglected during the photoproduction reaction
this type of process need not be taken into account,
and a fairly good approximation to-W‘ nay be obtained
by putting-%:(CVW“)Ezgx;C* equal to unity and using
the correct wave-function for the initial nucleus.

Then

A
T-= za._‘__.(cx—‘m\é_—ﬂ 5.8

= o-h
The meson-nucleon scattering operator is

tt. hu‘\'\ﬂ\ Qx—\r\;h("

{
=Q \\L
a-"ny

5.9
= J('st'\’to[\.
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Where t = Qe h-t— . 5.10a
and ’(,Q-\= 0-———\————- . 5.10b
Q“\‘\i*\a\’\‘\

ts‘u. can describe the scattering of a meson or the
absorption or production of an even number of mesons,
while T, can describe the absorption or production
of an odd number of mesons, |
The total transition operator T can be

expressed ag
T-= zy‘T‘ 5.11
{=\ ‘

where Vi = 0__..1{;'(0_.\\ b -é
5.12

1}

'— (bt = (- he)

I-hihi \“nihd a

The interaction V; produces a single meson and the
second term in the above expression for )/; can only
represent the production or absorption of an odd
number of mesons and hence must give rise to a photo-
digintegration process or a process involving the
multiple production of mesons and neither of these
reactions is being considered. Thus for the photo-

production of a single meson
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g3 = ————(i=hihL) 5.13
For reasonably high photon energies the
binding energy of the nucleons is small in comparison
with the energy of the photoproduced meson, and hence
processes which lead to the exchange of virtual mesons
between the nucleons while the photoproduced meson is
being scattered’between the individual nucleons may be
neglected. To this approximation not more than one
meson is being exchanged between the mucleons at a given
time, and the problem of expressing the operator ¥i
in terms of the operators +ti 1is considerably simplified.
A typical term from the expansion of yi in
powers of hj can be written as
Tor = U g -4 OV - 0y
where \Jv{= h?%ihﬂf U,P(L can represent the following
reactions:

(1) The absorption of a meson at nucleon 4 followed
by the absorption of a meson at nucleon p .

(ii) The production of a meson at nucleon 4 followed
by the production of a meson at nucleon p.

(iii) The absorption of a meson at nucleon 4 followed
by the production of a meson at nucleon .

(iv) The production of a meson at nucleon 4 followed
by the absorption of a meson at nucleon p .
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It is assumed that the potential hy has
been renormalised, so that graphs contributing to the
self energy of the nucleons need not be considered.
This, together with the assumption that the binding
energy can be neglected during the multiple scattering
procegs, implies that only those graphs which describe
the exchange of the photoproduced meson between the
nucleons or the scattering of the photoproduced meson
at one of the nucleons need be retained for consider-
ation.

The term sz may be written

T =0 - -
The case Ck1=¢>is considered. The operator V
contains an even number (2M) of annihilation (4) and
creation (C) operators (A + C = 2M). Since one
meson is present initially, V must give rise to an
odd number of mesons (C - A + 1 =2(C = M) + 1), If
this number is greater than one the graphs which can
"result from the action of the operator \)kﬂcontribute
either to self-energy effects, which have been taken
into account in the renormalisation of hj, or to
processes in which two or more mesons are simult-

aneously being exchanged between the nucleons and
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these have been excluded by the assumption that the
binding energy of the nucleons can be neglected (these
conclusions are not necessarily correct in the caseCL=¥>)
and hence V nmust give rise to a single meson. For
similar reasons it can be shown that \\q-cannot produce
a second meson but must absorb the meson produced by
the operator V. This immediately excludes the
possibilities (ii) and (iv) in which a meson is
produced at the nucleon CL . The possible reaction
(i) assumes that at least three mesons must be present
as a result of the action of the operator V and for
the reasons outlined above, must also be excluded.

The process described in (iii) (again QfF¥>)
is only important for close separations of the nucleons,
where the weighting factor arising from the integration
over the initial and final nuclear wave-functions is

small, and can, therefore, be neglected. Then

|3 i ul 5015
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Therefore, from equation (5.13)

|
sl

But from equation (5.10a)"

|
U= Tp T G
S\.Q
= 2.8y | 5.17
where "zi _ 5.18
\~\-t5‘o'
and hence substituting (5.17) for u.( )
\
in (5.16) : 5.19
Je= ~A+\+ ﬁz

and the problem reduces to the solutlon of the integral
equations(5.18) and (5.19).

As the binding energy has been neglected,
matrix elements of +tg3 which correspond to the
production or absorption of two or more mesons can
be omitted, and only the matrix element which
corresponds to the scattering of a single meson

need be retained.
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V § 2. Single nucleon transition matrix elements.

Before the integral equations (5.18) and
(5.19) can be solved suitable forms must be chosen for
the matrix elements of the operators T, and W} .
At the present stage these matrix elements are defined
only to the extent necessary for the solution of the
integral equations and a more detailed examination of
their energy dependence and isotopic spin dependence
will follow at a later stage (Chapter VI).

The choice of the single nucleon scattering
matrix element is determined by the following series
of approximations and limitations:

(1) only scattering 'on the energy shell' is taken
into account. 'Off the energy shell scattering'
will be of greatest importance at small nucleon
separations where the weighting factor arising
from the integrations over the initial and final
nuclear wave-functions is small.

(2) A phenomenological form for the matrix element
derived from a phase shift analysis of the meson-
nucleon scattering differential cross-—-section
which involves only s~ and p-wave mesons (see,
for example, reference (2)) is assumed.

(3) In the above form all the phase shifts except 533
are put equal to zero (Brueckner and Watson (5)).

(4) The possibvility of spin-flip of the nucleon is
neglected.



- T4 -

The validity of these approximations will be examined
more closely in Chapter VI.

Incorporating these approximations, the matrix
element of the operator +tgi 1in momentum space is
represented by:-

Q1D = Bla) W 5.20
where 9 and G are the initial and final momenta of
the meson and txkgg)is a function of the energy of the
meson and is also a matrix in isotopic spin space.

The postscript m.s. serves to differentiate the
momentum space matrix elements from the corresponding
configuration space matrix elements which will be
introduced shortlye.

The form of the matrix element of the
single nucleon photoproduction operator Ti has
already been extensively discussed (Chapter III).

Two forms of(cd‘l‘ﬂo}with slightly different energy
dependences and values for the coupling constant and
multipole strengths were described, but both of these

have the general dependence

QT = divxig 5.21
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where V 1is the momentum of the incident photon, q:is
the momentum of the meson, and dkand.i§(are functions
of the photon energy and are also matrices in charge
space. ¥¢ depends in addition on the photon polar-
isation vector and the nucleon spin §(i) (equations
(3.22) and (3.23)).

To ascertain the forms of the matrix elements
(5.20) and (5.21) in configuration space, the discussion
is temporarily limited to the particular case A = 4
and analysis along the lines of Chapter III equation
(3.2) to equation (3.5) is carried out. The argument
may easily be extended to include any value of 4, but
a considerable degree of simplification in the notation
is gained by restricting the discussion to the case
A = 4. The matrix element of a typical operator Tuhl L
T1 which might arise from the expansion of the operator
y1 T1 is averaged over the initial and final momentum
distributions of the four nucleons. = The matrix

element may be expanded as

(gl bk Ty, = (4 28 qatdg >Wk o

CHIPATH S <<\\T\v>

and the required average written as
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da: dg, kd\k_\d\&xd\sd\g (g Kb g, Kok g Yo
(g s

X koe\tsg\ (\1.7“\ < _\_. ( Ckl\t $1\ (lb ms

XL (i Bl
oy s )

where the notation is similar to that of equation
(3.2).
Replacing the momentum space wave-functions

by their Fourier transforms the expression becomes

chqy d A Y k 143)13
g &‘_\\3 (%:\‘\ dndndndoy (\)cr UAN ARG WD o \n a\( (\\<C\1\ts’“\ct>ms,

g, W | - i
e e C—L@@\T\\\Dme b Wilo o ow)

- d \ q 2 - = *
' - K ‘(%,\\’: 6%;\3 \Q\: d\‘:} ds‘}d\l‘! “)Q &‘:‘ AR )\:‘!\<C\_3\t$s\c\x> C{—\C\ 1)< q'x\tsx\ C\b

X i‘mW\T\\W W, (o2, 0 )

*
y &dﬁ drdndn Y loenm) {gltag Loy T Wilnee m)
where the configuration space matrix elements <{q\tsi\q.)

and (q\\TL\\J> are defined by

We-q)% Weq)x
(Qltalq) =(qltsdqy), £ R ‘D(kc@ Qe ¥ 5422

VA

and (q\ TV =(q] T;\v)mS,€ uﬁ;‘\‘i——uag%\ e 5.23
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In the above discussion the matrix element of the
operator % is taken to be diagonal in momentum space

and of the form

Cq\ S \apy = (ary Slgyp) é&ﬁ ,Where alg)=E-wlgyve? 24
>
on the assumption that the recoil energy of the nucleon
may be neglected (adiabatic approximation)ﬁok@F (Q;+m§j&
(=Quw ) is the‘energy of the meson.

V § 3. Reduction of the Integral Equations

The auxiliary integral equation (5.18) for
the operator zj can now be solved with the aid of the
scattering matrix element (5.22). Equation (5.18) can
be re-arranged to give .
\

Z'L-—-\"_Ztsga 5.25

e dqizday = (uw) blgg)

(& dqizaaQied g Qm
Substituting (5.22) for <£K tmkqé> and introducing the

5.26

auxiliary function

Si\g\r_\\) = g QQ} <c\'\\1\\(\> gca.

(5.26) becomes

Gk 5,27

\ L 1(

izl = =g — &\q% ol 5-28
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This equation may be solved for Lc‘u by multiplying
each side by AR Q%QLC‘%“ and integrating over q, .

(Y
This leads to the resul$
SLLC‘L‘): G-\Q“ él%g 5.29
where G = "'—-:-'?’: | 5630
and 3 =1 “b_icod 5031
‘o“”\ocL alq) t
and hence
(i) = QR Bla-g) -bilg) Gee q‘ﬁ"\r‘%@é(‘&w o
The operator Zz; can now be expressed in the form
=\ "'t‘;tici 5433
where \q& %\‘_
LY
{q\Esi\ay = Wil WGe Q% 5.34
= G (c\\\ti\c@

since \3( and G-Lcommute. The factor Gr;acts as a type
of renormalizing constant. In terms of the 'normalized!

-
scattering transition operators tS-L the operator ji is

\

) \
=y R W-tag >+35
- 5 RYN
- _ﬁ.._\.“_w; k _t‘;t -\__ 5 . 3 Sb
O\"ts Q

wWiere U, = 2_ ’Lr
),\
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Comparison with the expression (5.15) for‘ Y reveals
that (5.35b) could be obtained direetly from (5.15)
by the substitution of the renormalized operators t;
for the scattering potential W, (i=\----A).

The integral equation (5.35a3) is most

conveniently written as

Yo = Zi +Z smyk 5.36

which has matrix elements
<({\\j 7 (Q\\\ZL\C@ + z e BQCB\\\QQB 5.37
- _ (2% Q) \ |
with %.\SKQ(Q_ g o QKCL\ q(“S QU «’\‘WACLD 5438
The set of equations which the R's satisfy may be

deduced by multiplying each side of equation (5.37) on
| ')(Ct\
(2R)® @ lqy)

The reduction of these equations to their simplest terms

(a,L.
the left by — ue Oy and integrating overg..

involves the evaluation of an integral of the type

_ dq, \Dx(ct.\’
. - g(m o ¢ (~ NBq) =T 5.39
& dy b @ o YB3V
(q&Y;\Jk@Y&Ag Oy K\ ) |

]

by 8%
N TS S em e
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where all the energy dependent quantities are evaluated

on the energy shell.

) '\.(‘C‘Sk U:L‘:\\(
CTo 1dae L dLd 5‘3
b \u@\g\(%w\t@gﬂkcxs\«‘; 7
- & d e\c‘.t)\‘ :
where G) = \')J-d r)\( dv:)k "3\; e
and CS.)\( - —\j\( a})\(%\( o

Using (5.40) the 'R' equations become

G R =T 1) =D WG (QS\(R\\\C\}\-\- 053\4%\3@‘& \qu) 5,43

_ )#k
since .3\«-"'- &d(‘(:‘&_ ‘D\ACC) kol QOK&Q()

Y ) alg)

= @&08)7 « Y (5. 3\3

% «m “1:‘

C/k (cb Z‘\C\> 544

The matrix element of the transition operator T can
be expressed most conveniently in terms of functions

which are closely related to
L. 46
and (ii) LAS S(l “Ek\e, 5e4
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and the simulteneous equations satisfied by these

functions may readily be deduced from equation (5.43).

(1) Equations for the i

"'L‘LA

Multiplying each side of (5.43) by—- e (q‘l\%)
on the right and integrating with respect to gé
leads to

\( L\(J‘-E-( )\4\\3 G ( )\(S\S“\—CS\(Is\(\E)kS_\\D)
= e\ LT
g Uj';‘) ~\k\g()e- A k‘;@%\
B C“ —S"G"X-‘— \“6&)\\3;&&(—& “r QJ&%LVQ()%:)SX 5¢47
by (5.44), (5.32), (5.40) and (5.31).
If the change of variables \\ = 3(5 -\-&53(_\) is

introduced the set of equations (5.47) assume the

simple form

R :
Pyt \Z (1= 8 bl + ooy = 0w
for L=\-----A, k=\.

5.48

(ii) Equations for the (g

In a similar manner to the above a set of
equations may be obtained for the functions \z%by a

suitable transformatlon of (5.43), giving
L \- 61\0\()\( \:\(&\(\0('\
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which may be further simplified by the change of
variables m;i =Gi)\,:\&

M+ }2 (\ *63\3\3\((9)&;3 *%\«Mﬁ;«%\\) =-i(\- Su)lo, g et 550
a for L=\---A k=\_...A.
The total transition opera'tor T is related %o \; by
T = 5_7'\_ |
e\ TV = }_(q\\j TV where Y is the

momentum of the 1nc:.dent photon and gc\ is the moment-

um of the observed meson.

STy = Zﬂ : (e g Ty .
A
Z‘KCXQ" Q\z\qz + Ze A 3G()qY Rl\kq(\\ 5452
9(L'\'¥. \ekl g\jr'k

by (5437) and (5.23)

V.' (c\\\“’\\» 2_6. &o( Qk%“-\—?_e EV&CI C,\,\LLQ

553
HGlape “"*+>_ & ¥Gyq s
x

A
=5 (e kg“&”r}_efc’“' +E& 554
=t y=
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LVR gc\‘

c L\ T Wy = ZZ @8 +c¥m\ } 5.55

The renormallzatlon constants G do not appear either
in the above expression for the pjrobability amplitude
for the photoproduction of a meson at the A nucleons
or in the equations (5.48) and (5.50) for the functions
E(X and MS respectively. This lends considerable
weight to the interpretation of C; as a type of
renormalization constant.

The multiple scattering problem has now been
reduced to that of solving a series of linear simult-
aneous equations in the components of the vectors EL& and

MLS . These equations contain the matrices bk 1n
charge space which may be of considerable dimensions
even when A is small (see for example Chapter VI, where
the matrices b\( are examined for the particular case

= 4)., The principal results of this paragraph are
summarised in equations (5.55), (5.48) and (5.50),

namely

(q\T\v) —22_ A Qﬁ')){ou&ﬁ qv\mgsr&\x 5.56

A =loy=y
where Pm z \- 6\\<\bk((')\<‘>u3‘\‘%\<%x\<&‘%\s ‘\b \(6 5457
=
A
Jr?:\ \\- 69&‘0\&%3\}&3%\3\; <Lr%m(\\\ 5.58
= —UDA T G (\ é)L\Q



- 84 -

Henceforward, the equations (5.57) will be referred to
as the 'P' equations and the equations (5.50) as the

'M' equations.

V § 4. The multiple scattering equations for the
scattering of a meson at A nucleons.

The multiple scattering equations for the
scattering of a meson at A nucleons are very similar
in character to the multiple scattering equations for
the photoproduction of a meson at A nucleons, because
of the basic similarity of the total transition
operators for these two interactions. The total

transition operator for the scattering reaction is

_ \

where N and QO are defined at the begimning of this
Chapter.

With the aid of the approximations which led
to the expression (5.16) it can be shown that

)
G=—u
A 5«60
\—ikQ

where only those terms which can represent the scatter-
ing of a single meson at the individual nucleons have

been retained.
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Fow from (5.33) z,=\-t +

but from (5.17) 2(:\—\&%;

[ ] V,
e @ \'k.\.ztS\.
\
and hemce O = ———————-—t‘;
(\\ - trs’c)'i
=% Si
, =1\
h e/ _ \ ".
whex S&—-‘(ijz;lt%&
5Q

elements of the operator SL by methods similar to
those employed in the previous paragraph it can be

shown that

A l L AT (R ¥
{q\Si\q) = z De s ’th\ IL\K%\
=1

j=4

A
Tuled v 2 0l e rapmlp Te) = Suonge °

for (=\-.--A
and K=\---A

5.61

5.62

5.63

Solving the integral equation (5.63) for the matrix

5.64

5
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VI. THE ISOTOPIC SPIN AND ENERGY DEPENDENCE OF THE
MESON-NUCLEON SCATTERING AND SINGLE NUCLEON

PHOTOPRODUCTION MATRIX ELEMENTS

So far the matrix elements {q,\Us\q) and
<§&YTAv> have been defined only to the extent necessary
for the derivation of the multiple scattering equations.
To facilitate the further examination of the equations
and their solutions the isotopic spin and energy
dependence of these matrix elements will now be

determined.

VI § 1. Isotopic spin formalism

The concept of isotopic spin arose from the
observation that nuclear forces are charge independent.
For this reason the proton and neutron may be considered
as two states of the same particle, the nucleon and
similarly the prositive negative and neutral mesons may be
considered as three states of the one particle, these
‘states being differentiated by the 'Z component of the
isotopic spin' which is closely reléted to0 the charge
of the particies. The role of isotopic spin in the
theory of nuclear structure is analogous to that of

spin in the theory of atomic states, insofar as it
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is related to the number of permissible gquantum states
available to the particles., Pursuing this analogy
further a two-dimensional isotopic spin space may be
associated with the nucleons in which the protons have

the represenﬁation
C>

and the neutrons have the representation
-1
i it O
Y\— Y_\f OTK\.X 6.2
s v
\{n\
the quantum number W in the spherical harmonic .
A
being chosen such that the charge CL of the nucleon
is given by ({:‘m&-li. (6.1) and (6.2) define the
isotopic spin wave-functions of the nucleon.
In a similar manner a three dimensional
isotopic spin space may be associated with the three

possible charge states of the meson in which the

mesons have the 'wave-functions'.

T =" orf\ ;K=Y or{O ',T\"E\f:\OV_O

o O L
the value of ™\ in this case being equal to the

charge of the meson.
Operators in isotopic spin space are defined

in analogy with the shift operators in angular momentum
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theory (see, for example, reference (3) p.782). 4An
arbitrary phase factor occurs in the derivation of the
result of acting with these operators on the angular
momentum wave-functions and is chosen to be zero here
in order to allow the combination of isotopic spin
wave-functions by means of Clebsch-Gordan coefficients
(16). The isotopic spin operators for the nucleons

are defined as follows

Ttt={0 |\ -){.—_Xoo L=\ ol 6.1

o O \ Ol o -1\
If T,=TT ;L= -1) 1 T=T | 6.5
then [t;,t-)]=2‘\a;3\<t\< 6.6

where the commutator bracket [ ,] and the symbol EL‘S\(
have their usual meanings. The corresponding

operators for the mesons are
T 3 -\ g0

oo o\l | 00 0o o0 6.7

O 0O o\ o o o-\
r L= L=UT-%) 4= 4, 6.8
then Y_Q\anﬂ:Li\va 6.9

In terms of meson annihilation and creation operators

( Qs ‘D\< and C, amihilate positive, negative and
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_\. -
neutral mesons of momentum \5_ yrespectively) Q, ’ ’L

and Qo may be written
(CX\S \(‘\’C b\(\ Q, (C'\( \(+B\<C\<\ Q’ kC\\(C\\( \DE)6'10

If the vector Q is defined to have components

\
ooy U=- (C\\(Ar\b\s\ U, = Cy 6.1
then Q» can be convenlently expressed as

- %
L=1Uxp” 6.12

The components of Q satisfy the commutation relationship
‘:UL *] & all other commutators being zero.
The values of the commuta‘l:ors [’dePl are
required for the further development of the properties
of isotopic spin. 433(3:\)1)%) are components of the meson

field operators defined by

Py= A,.@)* ), &= x( }dP P, 6.3

* .
q> ’ ép and Cbo are the usual operators associated with
charged and scalar meson fields. If the evaluation of
these commutators is attempted using the expansion

Kx -k x
Q o ~~> it is found that the
<b Z(’L\/ﬁo Y.( \(e +\Y)
values obtained are such that the components of the

vector liT;_-\—&—_ do not commute with 1,@. Now it is



- 90 -

egsential for the development of the properties of

. . . \ i 3

isotopic spin that the commutators [IT\+Q))1'¢] should
be zZero. There are two possible courses open in order

to obtain the required values for the commutators {Q,bq)')‘}.

(1) The isotopic spin operator for the meson may be
re-defined as L = &QQXR\(‘P)L where T\ is the momentum
conjugate to g\g e With this definition, however, meson
isotopic spin wave-functions cannot be correctly combined
with nucleon isotopie spin wave-functions by means of
Clebsch-Gordan coefficients. Instead the required
combination rules may be obtained by operating on the
state \\\)(N» , representing the isotopic spin state
of N nucleons, with the operator (‘gkq - ~--~--+1&N§>,¢
which gives rise to a combination of isotopic spin
states representing N nucleons and one meson, with

the same isotopic spin as the initial state \K\)(ND .
Other states with different total isotopic spin may

be constructed by using the orthogonality relationships
between states with the same z-component of, but
different total, isotopic spin. The combination
coefficients obtained in this way have the same

magnitude as the corresponding Clebsch-Gordan
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coefficients but differ in sign in certain cases,

\

(2) The field operator O may be expanded as

$ = Z e \)1( ~\\$¥‘ \D*ém) 6.14

The transformatlon <qk_9-—qkimplied by this re-

definition leaves the results which lead to the

Physical 1nterpretat10n of cxk unchanged (e.g. %&k<lk} 6
N quk

relatlonshlps with Q. (as defined in equation (6.7)),

e This form of dp leads to commutation

which ensure the conservation of the vector quantity

\
L =7 T+ &_ o These commutation relationships are

L8, Pq) = Leper Br 6.15

The interaction Hamiltonian between the
nucleon and meson fields is on the PS-PS theory
(Kemmer (27)) (that is pseudoscalar mesons with pseudo-

scalar coupling of the meson and nucleon fields)

Hi=qW¥ ey 6.16

e g

If the system contains N nucleons and P mesons the

interaction terms in the Hamiltonian are

ky
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H NP = q CQ Yo VR - F T -+ ska@\\\) 6.17

The isotopic spin of this system is defined to be

A A
T=%2 ww+ Z &y 6.18
~ n=\ \):\
It follows immediately from the commutation relationships
\ Qkk&\f\g\bﬁ = t%&\b e\.\k dpk&a\ 6.19b
Yn&m,!&xm =0 6.19%

that each component of | is conserved during the inter-
. kS

action \-\A\\P} o Now -_\-_,é ’ 1;_ and \"\L commute with each
other and, hence, two new quantum numbers W, \OVIQ and
1 may be introduced which are conserved during the

interaction \—‘\'\\N)P) y Where

(T ) = QLT me)s DY m =T DY (T m)6. 20

and Q) \1)‘(‘(\Q\ is the isotopic spin wave-function of the
meson-nucleon system. If A = number of nucleons, Z =
number of protons, M; = number of positive mesons, and

M- = number of negative mesons, then mcf Z—%—\- M;M.
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With the definitions and properties of isotopic
spin which have been established it is now possible to
construct the charge matrix bk . The gradient
coupling Hemiltonian defined in equation (3.16) has the
same isotopic spin properties as the Hamiltonian defined
in this Chapter (equation (6.16)) and hence isotopic
spin is conserved by the scattering transition operator
t{\. If \DK\C\B is written as b\c&\cK\(\ where C_'k\q is an
energy independent matrix in charge space and b&co is a
scalar in charge space, then each term in C(\«) must
contain one annihilation and one creation operator for
the meson which is scattered and the most general form

of C(K) satisfying this requirement is
3
C(\(\ = >__ o{'\'BU‘\\)'; 6.21
Y=t

where o :.oc\;)k\\T\\\q H»\-\mn(\qwuxmtsk\q iy W T, K)
and the o(-kgkoq ,Q=\---- [, are scalars in charge space.
Imposition of the condition that isotopic spin is to be
conserved during the transition KE(_(\Q )[]:o}determines

that c(ky=a Qs+ T L

, Where a is a constant 6.22

The operator \)\)*is equal to Qo -‘\-‘D&\)’L)‘. s

and is effectively unity.
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One of the assumptions made when the general
form of the matrix element <cl.\\tf~i\ctl> was derived
was that the scattering takes place through the 3=3’i,1=%
state. Hence, the constant a is to be chosen so
that C(\() projects out the lz—\i state and, therefore,

a satisfies the equation

(L\eiJi lo + Tl Q\\ﬁi\} O 6.23

where k\): is the isotopic spin state with z-component

of isotopic spin v and total isotopie spin T . Then

Go = B - (e e
W= (W - & )

where (n,ﬁ‘r) , for instance, is the isotopic spin
state of a2 neutron and positive meson. (6.23) gives
= 2. Therefore
olq)= \D(COUA o L) 6.25
where b(cOcontains the energy dependence of the

transition

VI§2. Matrix representations for the scattering
operators in charge space.

As an illustration of the methods of finding

the most suitable matrix representation of the operators
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C(\), the particular example of the elastic photo-
production of neutral mesons at helium, which is %o
be studied in greater detail in subsequent Chapters,
will be examined. The particular example of a meson
which is initially produced at nucleon P and after
several scatterings between the nucleons is eventually
scattered out from nucleon (\ is considered. Let \L)
be the initial isotopic spin state of the four nucleons
and H:> be the final spin state of the nucleon-meson
system. Then if the isotopic spin operator associated
with the photoproduction operator Tb is dlp) the
isotopic spin dependence of the matrix element for
this particular transition is

R\l e L dip\D

N

N 6.26
=) CHQM- - <neldlring - Lo Al

NNl
Here \«(\)an\_---N‘)is a complete set of basis states

for the description of the isotopic spin states of
four nucleons and a meson. There are forty evight
such basis states altogether, but consideration of
charge conservation (1.5:0\) immediately reduces the
number of these for which C has non-zero matrix

elements to fourteen.
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Tt Q= <A , dBe= < dipiy

Then (6.26) is closely related to the matrix product

W

M = 'm“_ _C%“... Qg | X-- Pc@\\\ - Qg (K- Fdw); ‘6.27

)
'
' ) t \ \ y

| W | _C.(CL\ Wy qc\\\u}i Lqﬁ\u,\ -~(-(5\Ju.,m .d”\\’\‘d

M, )
1 \()= Z A no where the f\; are constants
i=|

and M ¢\, then the matrix element (6.26) reduces to

{§\ Al = Zm o 6.28

The matrix elements of the operators C\l) and

CX\'Q are evaluated in two representations.

(i) The First Matrix Representation of the Operator

The basis states in this representation which

give non-zero matrix elements are

T TR TOF, TR, T e, T30 Tehr, T,
TTOT TR TR TLor TR THOR 6429

™

33 (al)is an isotopic spin eigenstate of four nucleons
with charge quantum number M and total isotopic spin J.
These states are built up according to the following

scheme.
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M
1 nuecleon \./1.
*
[o] / M
2 nucleons \/ ,
oLy Ly
" e N / N N
3 nucleons \(l . \/l N 1
9% : At LA
N N\ v
Ne Y™ 0 N M NG W
4 nucleons oty Ty o e w0 TwS 3

T TOTENG e TRTHoNe IBTEIE) RO

Four 14 x 14 matrices for C(1), C(2), C(3) and C(4)

are obtained in this representation.

(ii) The Second Matrix Representation of the Operator C{U)

The dimensions of the matrices in the first
representation may be considerably reduced by taking
into account the conservation of the total isotopic
spin I during the scattering process. In order to
obtain this reduction a second representation of the
meson-nucleon states is employed in which the basis
states Y;ﬁ& are eigenfunctions of 1_1=(1+’£§1
and 13= _)—5'\' JLS with eigenvalues L and O respectively.
The relationship between the two sets of basis states

is given Dby



- 98 -

Y. = Jolre 6.30a
7= Jowe 6.30b

Yo\

To)= L (IHL)TY ~THORCHTTOTY (=122 6,300

\\M— (TWORT-TV OFY) =\,3 6.30d
Y,f “(Oz }1( IO+ JT(L)N"A—T\‘(L\K*) (=\)7;)3 6.30e
Y= L D (31{3‘1(\31&‘—23‘5_(\\1@3«3;"3;‘(\\1?*) 6.302
PNOE \zL(S OLENA (\\T\*) 6.308
Yo, = ;x(s ST T] mv*) 6.30h

From the properties of the operator C(i)it follows that
the only non-zero matrix elements of c({)in the second
representation occur between states with :[==\ s namely
(6.309), (6.30b), (6.304) and (6.30f), which reduces the
dimensions of the matrix C{Oto 6 x 6. It is, however,
necessgsary to evaluate all the matrix elements in the
first representation as they are needed in the formation
of the second matrix.

The matrices C(1),C(2),C(3) and C(4) computed

in the second representation are
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VI § 3. The isotopic spin and energy dependence of
the matrix element {(\T\V)

The form adopted for the single particle
photoproduction matrix element,<K{YTAV)k5 , for example,
is that proposed by Chew (11) or the sliéhtly adapted
form extensively discussed in Chapter III. In either

cage the matrix element may be written
(%\T\\\D\“‘g"—;— &—(_(\\ (}j\;—\- <t (\\ \D*Ie\s) o
2% k-‘iikkt‘h\ ok + U(\\\D*\S\ + Q’\s\ % q 6.32

~

where o as before is either

AT
or xied  gg 6.33b
\«\T\ kqo\ﬂl)"

and X’ is either

Biria LQ‘LM\&_L% +(\\'\\+EQ@&_J_%—(M\—EL\@@& 3 6.342a
v qV

g @\o\‘\%‘ Q v
or Prial k’li M LXg + (M E,L\E_[_\___llgi - (M\LE&@:\_& > 6.34b
o, (gl v v N

The various quantities appearing in the above equations
have already been defined in Chapter III, equations
(3.20), (3.24), (3.25) and (3.29). W.QQ is the

V=2

enhancement term due to scattering through the I=%,3 %

state and the operator Oé_(\ = —\i{({'(\\ ok -\—'E*K\\b*k\%- .
x -~ - 2

as might be expected, projects out the If—-\i component
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of isotopic spin, that is (&\) \O \\?7 O and
(“) _L: \\ Obx\“\\ =0

The matrix elements of the operators
O (\\ = (—C—t\\ C\*\( + T (\\ \DD 6.35a
and }(3\— \1 Wad +1+(3\bk\+C\< \’\ ly 6.35b

must be computed between the six basis states which
define the matrices C_(\)\ and the ground state of the
o -particle. The spin-isotopic spin wave-function

of the -particle is

W, = AP LPE) L) PEY KW Y

(; A oy nE) AN Any | 6.36
ALY PO A P (A0 BB By bl
B W BN AN By

where A g (é are the space spin wave-functions for

spin up and spin down respectively, and \3 , N are
the isotopic spin wave-functions for the proton and

- neutron respectively.

Then Y __\G (Sl LY LT, LY -3y, 20 L ()T, ()
+ ST T, ) 6.37

where

SIaL) = olell) (B3 B + ALY Ayl ) €38
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and 1 k(\x\ = —\7}1 Q\>Umb,\ —v\\\\‘PU.\\ is the singlet

isotopic spin wave-function for two nucleons 639

or ), = 75, L Slwan T30 -5 St BT+ T(0)
T S\\u;),s}(%“l?zu) —S‘;(\))\ 6.40

The required matrix elements are readily evaluated. The

matrix for Qlk\) in the second representation is for
2

instance

~<\l:;,‘(\\\o%h(\\\\w ) = JC,LS(\LBL\) — \ ] —a s(\g)m ) \ ] 1(,* Sl ;_5):\ 1
NRACINITA © 3 S
4\(‘;“(0\04\\\\\) D o | T™ 2%
Qe o SO o e 1 A
Yoy =5 Y ©

L <0100 O - LO. 6._5 |

and similar expressions can be obtained for the

- remaining seven matrices.

VI § 4. The energy dependence of the scattering
matrix element {ulTsil4r

In paragraph 2 of this Chapter the matrix
element <C\\‘\t‘SL\C\}> was reduced to
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(quleg) Q> = dlg) 2+ Tw, @(%% ekkq‘f%‘:‘ 6442

The dependence of the function > on the meson energy
will be deduced by comparing the differential cross-
section for meson-nucleon scattering derived from (6.42)
with the corresponding cross-section derived from a

phase shift analysis. The particular reaction \D\-K*—%\;Jrﬂ“"

(or (‘N*',ﬁ’f‘)\) is chosen for this comparison. Then

P TRV pre) = Chre | L Ut ) el \omd e s
=3
ey = 3b Qe WHE e
R RY

which leads to the differential cross-section

da ! (g( Xé’k 1 Qe ‘
_— = - -D (ﬂ‘o( \\ lQcas’@ — 6.45
dgad (D) gy .

in the laboratory system for the reaction prKF—>P+Rb. L
is the recoil momentum of the nucleon. The recoil
energy of the nucleon has been neglected. Integration
over Q and Qo leads to (putting C\\oz%o:%)

dS (et ool g bt

o = O¢ 6.46
dq(“ﬂ‘ )= \ {g\ qcos e 4

The corresponding cross-section constructed from a
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phase shift analysis (reference (2) p.67) is, in the

centre of mass system of the incoming meson and the

nucleon,
dg (e * -
) = — b larbeosdd —Hd‘sm‘@& 6.47
i il \ !
where O = ngs-—\  6.48a
b =08 6.45b
2wh,, b
C o= e me 6.48¢

Q is the contribution of the s-waves mesons to the
scattering amplitude, > arises from scattering of p-wave
mesons without spin-flip of the nucleon, and C arises
from the scattering of p-wave mesons with spin-flip of
the nucleon. Now only scattering through the (%)%.)
state was considered in the derivation of Qc&\\tﬂ\q’,)
and this is equivalent to the approximations &,>&, >0
in the energy range considered (meson kinetic energies
from zero up to about 180 Mev). In this range |&;\{20°
and |8, € \g° and hence the approximation is no%

unreasonable. Eqguating 63 and 65\ to zero

Q= O s \“): L\.eksz’e’S\‘f\éz’.5 ,C= ’)\QL&}BS‘W\S}S 6.49
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&, . 2
C}\G K'“‘\' ‘K’( \Q ‘)S\(\&)&b\ (L\COSIGC'\'S“\IQQ\ 6.50

Allg 4
If spin-flip is neglected the expression becomes
& . X
da ()l e ""Sm Oul keoe®, 6.51
cm

This last anprox:Lmat:Lon is poor near Q.=90 and ©.=210°
although the differential cross-section is much smaller
at these angles than it is near O.=0%r \$0O°,  The
transformations between the c.m. quantities and the
corresponding quantities in the laboratory system are

(to a close approximation)

v °§;
Hence (6.51) gives

L cosB _ (L i‘i}cos@) 6.52
M

C’\G kT\* 1‘\*\ Q(SBSS\‘Y\&N L\COS}'G(\ 4+ f_{f)s 6.53
ol ¢ ™

Comparison of equations (6.46) and (6.53) show that

S 5
@_@a 2 Qk 555“’\833 (\ + C\_"Y” 6.54

(2R) | 3 qQ ™

and therefore

(qltsd g = 28 Lo d) e®55inbss (14 i:\% 6.55
T E < ™
K Qe UGe-9)1q
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VII. SOLUTION OF THE MULTIPLE SCATTERING EQUATIONS

81. Solution for two nucleons

It is of some interest to obtain the solution
of the equations for the multiple scattering of a meson
at two nucleons, firstly because comparison with the
results obtained by Chappelear (equations (4.17) and
(4.18)) affords a check on the derivation of +the
equations, and secondly because the form of the
solution for the two nucleon problem acts as a guide
to the form expected for the solution of the equations
for larger values of A. The case A = 2 is the only

one in which the exact solution may be obtained easily.

(i) Solution of the 'P' equations for A = 2

The 'P! eqﬁations for the case A = 2 are

(with i = 1)
P..‘_‘ + b\(?\x‘f\}*’ 0)\).‘_& k‘:‘}&\) = ¥\ T.la
P,\J: + b’-“’z\e\y\' Cﬁu"?;.\(‘—k\-%» = O T+1b

together with a similar set of equations obtained by

interchanging the subscripts 1 and 2 in the above.
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I =g, fo= = ¢ s o= = 9

R+ (R rqelgR) =y, 7.2a
P v \DLWBH}@\{:%\B =0 7.2b
This last se'l: of equations has the solution
and‘?} = _\‘C\:Q Q?xﬁg(\%‘abb) on Wg(@sﬁ T.3b

where h =¢ + Qlcj

and these results agree with the results obtained by

' Chappelear's method in equations (4.17) and (4.18).

The impulse approximation solution is simply B =){_\

and P\L o .

(ii) Solution of the 'M' eguations for A = 2

In the notation of the previous paragraph

the 'M' eguations become

\\A\( + \D\(G M\f\' Cj? Lg‘}:\)’)} =0 T.4a
Mt bz(ﬁﬁ&ﬁro\% (g-%\\\ = 'beo&\Qg 7.4b
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Hence ‘\L\“: 'LQ b b),b W’b «, T.5a
- \

and ool T.5b

=T Q\ \slb\\x*

The impulse approximation solution is ‘:_'\“= \\j}‘f O.

The transition probability amplitude for the
photoproduction of a meson at two nucleons is obtained

by substituting the functions (7.3) and (7.5) together

P

with the corresponding solutions for Mu y M T

NLL’

and EA_ in the expression (5.55) for <CL\T\\)>°

VII § 2. Solution of the multiple-scattering
equations for A = 4.

The four nucleon 'P' equations derived from
equation (5.48) with 4 = 4 and i = 1 may be written

in the following simplified notation

Y+ 5 H B +rbH Y £ H ¥ = ¥ 7.6a
SN ¥, G FB R =0 7.6b
by Hu BN e Y L+ b H x=0 7.6c
by He B H G+ B R X+ Y= O 7.64

where X« , Xo , X andXu= P\\ Pa PL P TeT

respectivelye.
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\—\\,H13H5> H‘\)\V\S) HQ - \—\\1)\’\\%\-\\‘1) H’-M\r\uﬂ H3‘+ 7.8

respectively

and T.9

Hg X = Q’»&X +C§'\3‘l‘\\l'\.1)
\D\ ’ \_),_, \3} and b“ are (equation (6.31)) matrices in
charge space with dimensions 6 x 6 if the photoproduction
of neutral mesoﬁs is considered. The labour involved

in the manipulation of these matrices during the process
of solving the set of equations (7.6) is prohibitive if
adequate computing facilities are not available, and
hence the charge exchange processes are neglected at

this gstage in order to obtain a numerical result which
will at least give a qualitative indication of +the
magnitude of the multiple scattering correction. It

ig difficult to estimate the error caused by this
approximation, but it is probably no worse than that
incurred by neglecting the spin-flip term in the scatter-
ing matrix element, which is a comparable type of
approximation. Hence neglecting the charge exchange

terms the expression for &)Ag)becomes

<

T.10

, by .
bya) = AR L+ T € Paindan 4 %
v Yo 3 qQ ( M>
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But the matrix element of the operator T.(\){, between
states which contain a neutral meson is always zero

and, therefore,

Lr '\833 ‘
\DL\CO == ﬁB e =\ L 7.11
L D
where A 1is a function of the meson energy defined by
A = L\.s’mé%(\.\. -C&’-\%— 7.12
| M

The photoproduction matrix element {q|T \V)
is also considerably simplified by this approximation,
since there is now no production of s-wave mesons. The
simplified form of <CL\T\\\)> is

H-qm 7.13

(U Ty =xge
where )G has been defined in equation (6.34). The
fact that oA does not appear in this expression for the
photoproduction matrix element means that the 'II'
equations for the simplified problem need not be solved.
| The set of equations (7.6) has now been
reduced to a set of twelve linear simultaneous equations
in the components of the vectorsXi---X,. The simple
appearance of the set of equations (7.6) is deceptive

as the algebra of the operators H‘dL'&\—--‘o)is guite complex.



- 112 -

Equations (7.6¢) and (7.6d) can be solved to give X, and
X,u in terms of Xy and X, since these equations regarded
as equations in Y, and Xy are similar in type to the
deuteron 'P' equations discussed in 3 1. However, the
equations for X and X which result from substituting
for x» and X4 in (7.6a) and (7.6b) the solutions of
(7T.6¢) and (7.6d) are quite ummanageable and it seems
advisable to look for some approximation whereby the
equations (7.6) can be simplified.

in order to investigate the relative importance
of the terms in these equations it is necessary to know
the magnitude of the functions €3\< and Ak for various

separations of the nucleons. F«\( has been defined

)
(equation (5.41) ) to be

@ g ek

(Lo Xl d e
1K m r)k dr)K ik
Qo ew&‘_)\‘ . 7.14
= — = \—-\( T *
w W=

ahd multiplying by b)(cO
\D€ _ _E\_ '\\635"'\.1.3\(\& . ‘
U \‘\73\5 7.15

= A Byetaity
where ?>\J§\<

k= Cmv

( Y "g\jl

7.16
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Similarly Ak has been defined (eguation (5.42)) to be

LA d ¢
Y = T dry X 7.17
b M3 3iqnyerand)
P4 W e
and therefore X
N \kﬁu'\'\j')\() a - ,
bSCSS\“S“ =_E}e (-\+15\))K+&§}-)\<\ 7.18
T
Lk&bﬁ)\gm-tq&‘%t\ Lo Vs L
- A}e S K (\-\- Bj3k+2\- ))\4) T.19

To obtain a rough estimate of the magnitude of the
coefficients of X' in the equations (7.6), the mean
\ 2
value of .G is taken to be — D ¢y v
Gy ) 3 )
The impulse approximation solution to the
problem is X, '_')f and X% =%X,=%=0. This solution
will be valid when \b')%\(\ and J_g \\D)CSB\‘YSU are N
much smaller than one. In the region Q % h)ké LX\o am,
220 «V<2L0 Me\/_;bhe moduli of these functions are
roughly comparable in magnitude and take on the values;
0 abry=0 ; \olr= O em. 5 3 at =\ X\0
and -\ of x.‘s\(:?)\)(\()_\}Cm . In the region Ty >|5x\0™cm,
k\} £ 20 \\'\e\l.), the solution is tending towards the

impulse approximation solution, while for small values



- 114 -

"

of Y‘;k (73\4 <\O_\3Cm.\) the impulse approximation is
certainly inaccurate. As the root mean square radius
of the d- particle is only 1.4 x 10713 cm. it appears
that the impulse approximation solution for the elastic
Photoproduction of neutral mesons at helium will have
little more than qualitative significance.

For small FX\( ((\O‘ch) the functions
\D)QS\( and % bscy\. " \-._3\: assume the approximate form

_B_s and are proportional to Y‘,;\? . ,Then \XS\

( 33\\})\‘)_,, ) will be proportional to —Alk and will
be negligibly small for the greater part of this
region. It is necessary then in deriving an
approximate form of the equations (7.6) to look for

a set of equations whose solution tends to the impulse
approximation solution for VB\K P AR \O_BCm, , and is

negligibly small for X":)k {\OPaem. . Such a set of

equations is

YoM+ Hoer W) = Y 7.20a
L =-bHy 7.20b
X =-bHyx  7.20e

X =-bH,x, 7.20d
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It is obvious that this set of equations (7.20) tends
towards the impulse approximation X=Xy dXa=X=2=0
for large nucleon separations. It may also be shown
that for ‘)\<< \o° e, \X\\ is proportional 'to :J‘ik
and \)al\, \¥%| and \XA\ are proportional to —Jk

It would seem then that the solution of the approx-
imate set (7.20) has the same general trends in
behaviour as the solution of +the complete set (7.6),
although, of coﬁrse, it is difficult to compare their
detailed behaviour particularly in the region

0" & 9(4 WNO M . The indications are that the
magnitude of ), as derived from (7.20) will be

underestimated in this region of nucleon separation.

The equations (7.20) have the solution

X, = _‘€_>§ v .‘F_Z%_@s o lgpY) 7.21a
X, =— bgi‘**z@p‘“ H“%Jr% )} 7.21b
X, = b{%¥+ % o Pu\ 9)*\(%*,%_ )} 7.21¢
X = -b {%nf v @i%“(%gg(% y 26 » 7.21d

L\:\

where € =\ -B(EEre) | G=6 b= G=f,  T.22

\ .
QT ANE =D SmT s S T 7.23
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oL'L = \S.CS\(GU\'\“L\ L= \’1)?) T.24

.= Yo st L=\, T.25
0= Q\?Lcose3 L QB=00.osBy, G 0=000sD, .26

N == o+ o) +§ ( Qprsi-Oy gprsint B, pprsin )
- exlef %"( \ 4+ 2c0s0,cos0,cos S, —COS’G\ ~o2§ - cOs"@b\)

7.27
Ay = ?L-(eh D)+ pLprsiat6, . 7.28
R, = 6= (ere o) © 4+ gRprsine ©, 7.29
Ry, = =00t 0DF & ororsinr B, 7.30

A =6 ?k((; wsO, ¥ Qg‘(c@s@\ w0sO,—cos 63\\ Te31
A= Qg (Feos®y + Q,’:(COSQ\ cos 93—co~59,)) T+32

An}_—. Q,’Qs(&ose\ X—Q\"(cos@kwsez—cose» 7.33
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VIII. THE MULTIPLE SCATTERING CORRECTION TO THE

DIFFERENTIAL CROSS~SECTION FOR THE ELASTIC
PHOTOPRODUCTION OF MESONS AT HELIUM

8 1, The photoproduction matrix element

By equation (5.55) the matrix element

of the total transition operator T is ,
: boh ge :
LK\_]_.{\— .\')
(T =5 5 e g R 8.1

and this must be averaged over +the initial and final
wave-functions of the o- particle.

Let W (;3h)= X X, 3w Wien,n pe
the of- particle wave-function where w\g,g)g)\l} is
a symmetric, normalised, configuration space wave-
function.

Then the transition probability >ampli-!;ude M
is

-~

DR

M = Kdn dudnds, “)l(t\&)ﬁ,m e Xi\\').\)(‘kbu\
b

2_ \L( «\Sx K\ﬁx 3\-\\

L\’

where D is the recoil momentum, and \3 the centre of

8.2

mass coordinate of the « -~ particle. Each term in

(equation (7.21)) depends linearly on )F , and ¥ can
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be written as X = XS ‘W\W\\ where ¥ kg(\\) is dependent

linearly on the spin operator J(i) of the L‘-t-‘ nucleon

and )(o is independent of J(i). Then

KX e XX =0 8.3
md RN e Y =y 8

k@@(b\ is identical with Le,of equation (3.23) Therefore

24
- — RC\ M V X€
¥° “\T\ C\\l\" q'\) 8043
or ¥o - ZvLKQ M )LX € 8.4b
My C\VT’*—

Then
M = \d@_ dudndr K\)L(n FAY F\Q etw‘ QLT\)QC \ 8.5

From the symmetry of th:t.s expression it can
be seen first of all that each nucleon contributes

equally to M and hence MU reduces to

Zetg‘t G\ 846

DX
M = L\-\dv\d\ndud\uk\) 5 5) QL Q¥

and secondly that the contributions of nucleons 2, 3

and 4 to the integral in (8.6) are equal., Therefore,

- D G
M=k drdndodn PHuppme o 6.7

x (€ 3¢ g i)
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A Gausgsian wave-function is chosen %o
represent the - particle (equation (3.9)) and the

coordinate transformation

R =L 0 piin) =05, %=5-0 ;5-0-1n 8.8

P

is used to give

' LGbsshisl) s srssrss)
™M= L&QF\}&SL-—Q%—D\Ngd%d%d%e Kildlsshisd) U st o )

i), kbalsesige
X &e Al —3(%M3g~ . é\ﬁ\

849

where it is understood that X and Xa depend on Xe

(and not on )(_: ¥°+ \{,Kq_}).

VIII § 2. The tetrahedron model for the o-particle

The integrals in the expression (8.9)for
the transition probability amplitude M are difficult
to-perform primarily because of the dependence of X,
and X. on the angles between the relative coordinates

S 9 S and R of the nucleons. In order to evaluate
the expression (8.9) for M integrations over nine
variables would have to be performed by numerical

methods. If a change of variables were introduced
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such that the angles 9. , GL and 63 of equation (7.26)
were three of the new wvariables, it is possible that
the numerical work might be reduced to the evaluation
of a six-dimensional integral, but the amount of
calculation involved would still be prohibitive. It
is obvious that the qualitative nature of the matrix
element (qj”{\v>»as developed in Chapter VII does not
warrant such an extensive programme of numerical
calculation, and hence it is advisable to investigate
the possibility of finding a model for the A- particle
which would reduce this programme conSiderably.

The model developed with this end in view
is the tetrahedron model for the o-particle. In
this model it is assumed +that the nucleons are placed
at the vertices of a regular tetrahedron which is only
allowed to expand or contract in such a way that the
sides remain equal. These restrictions remove five
’ of the nine original degrees of freedom of the -
particle (neglecting the motion of the centre of mass
of the nucleus). The angles E% ’ O, and E% are now
each 60° with the result that, since X, and X. are
dependent only on these angles, only one numerical

integration, namely that over the relative separations
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of the nucleons, remains to be done. The tetrahedron
assumptions outlined above in fact increase the
gsimilarity of the A -particle problem to the deuteron
problem both in the nature of the nuclear wave-function
employed (which is dependent on only one relative
separation in each case) and in the nature of the
solutions to the multiple scattering equations.

The symmetry of the model may be more fully
exploited by changing the system of axes. Let the
original set of axes be Ox,Oy,0zwith the nucleon 1
lying at the origin O , the axes being fixed by the
directions of the incident photon and the observed
meson in a way which is not specified at the moment.
The new z axis 07.‘, with direction cosines (sinOcos C‘P ’
sin O sindp , COS O ) with respect to the original set
of axes, is chosen to be the axis of +the tetrahedron
passing through O (i.e. Oz' makes equal angles with S ,

S, and S, ); the new x axis OX' is chosen to lie in
the plane z Oz' and to be perpendicular to Oz (fé)dzq()c’)
and the new y axis C)j‘ is chosen to complete the
right—hénded orthogenal set OX, Q‘j‘ , Oz

The new set of axes have the following

direction cosines with respect to the original set
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Ox' (Q\,m\ms (cosBcos®, cosd s -sin 9) 8.10a
Oj‘;(’iz)ml)n,);(—s\h@ , wsd |0 ) 8.10b
Oz (& my0,) ')(s\'r\ecos(b)s'\nesimb,cose) 8.10¢

while with respect to the set OX, Oj', Oz , & ,%ands,

have direction cosines
A\ AN 2%
s, (%) cos) >K3\) s\ 5 ) 8.11a
5. ( (,j‘cos(b o-y), { J—\ sin(LO-V) (%;%'5 8.11b

A (‘L) Cos (oo‘\'Q)\) k ) L:‘,‘\Uoo *\\’5 )( l) 8.1l1lc

that is with respect to the new axes ., $. and $jhave
spherical polia.r coordinates Ls,co%‘{%ﬁk\)) ,{sscoé‘@jx) \')_Oi—\\))
and KS) o (%Y,IL\QJ\-&\)) respectively. With respect to
the original axes §,, S:and S have spherical polar
 coordinates (s‘,e.,(\a\, (sl,@,_,q),,) and (s4,0,,Py).

Hence in the evaluation of the transition
probability N, chk@ds}dss is replaced by

%

\ skds\ sm@d@\ld@& d\kg 8.12
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The relation between the two coordinate systems is given

by

sinB,coed = —‘g,i (cose cosPeos\-sinPsinl) + Vi Bcosc\)) 8.13a
sinB,swmd,= —\gi\cosg sindcosl) +cos dgs‘m\\) ¥ 0 Sinép) 8.13b
CC)SG\:—\g_k (—six'\ecos(\) ¥ ?\L’*cos e) 8.13c

with the corresponding relationships for 9,__, dpx and
63 , dps obtained by replacing q) in the above
relationships by\?ﬁ) +\) and 2k0°+\\) respectively.
With the simplifying assumptions of +the
tetrahedron model the Gaussian form of the A- particle

wave-function reduces to

L -Mpgst

Here A4y 1s an adjustable parameter which is chosen
so that a reasonable fit is obtained to the radius of
the A— particle when it is described by the above wave-
function. In Chapter III it was shown that the
relationship between the root mean square radius Rcm‘s‘

and the root mean square separation of the nucleons
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Tms, 18 A
Ry

Rems = o =3, Sems » a7, 8.15

Stms calculated on the basis of the tetrahedron model

I
is (-l: Y‘ while Sy Obtained with the use of Gaussian

B
wave-fun::'bions is k}__ \Yi . Then by (8.15)
% M}cr‘

and the values of [(4q Which give the best fit to the
radius or binding energy of the A- particle have already
been discussed (equations (3.13a), (3.14a)). Using the
wave-function (8.14) to represent the o- particle the
transition probability amplitude M\.a for the elastic
photoproduction of neutral mesons at helium, evaluated

on the basis of the impulse approximation and the

N

tetrahedron model is
Ly S™ b ,
5B dB

M, = LRy Sl-g- DN \s"d\s e 5,17
%\Lu'%\z &

\dc\pe A lxe)

where
-\\;\'W = K s*dsew”s K s 0 dgx dd %mcw 8.18
(s} & o .
Ly 3 "'P\aLT

and ;' is a unit vector along the Oz' direction.



- 125 -

Then by selecting the Oz axis to be parallel to Y—g
Mia = b DD 6009~ D) () N e
X KNS‘CXS e \lmsx’)o(\%\k\%)
1RY Sl-4-D) (g )N
hRY S \4-R) (g N, S

X \ox*cb( éxlxo\}{giu 8.20

8.19

I

by (8.16)

-
oM = RS -g D) (g @ WSk
oM
= h(xy Slug-D) o e wopk 8.21

Mm'is identical with the impulse approximation
solution obtained when the - particle is represented

by a Gaussian wave-function, as may be seen on comparison
of (8.21) with (3.33) and (3.37). It does not seem
unreasonable to hope, therefore, that the tetrahedron

- model will also give a solution for the multiple
scattering correction to the impulse approximation,

which is not far removed from that obtained by

o0
integrating over the full configuration space g dadhs.ds,

—~e0
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VIITI § 3. The multiple-scattering correction to the
impulse approximation for the elastic photo-
production of 1x° mesons at helium on the
tetrahedron model.

On the tetrahedron model +the definitions
(7.22) to (7.26) are altered to
: e\'—‘ ek:gsz :L’Oo Y /(=S =S,=5 Q\"(;x'—"@s =€

GERTPEG HAhmhod =0 8.2

Ay =Ry = AW i Q’“(l@— Ql) | 8.23
Ay = Raa= Py = 4 (26-30)(26-00) 8.24
A =4 -V (6209 8.25
h‘)_ = &\_3 = &2.’5 = QL = C 8.26
ROOA RN (e e-e)

Ay = B = Ay = AE-He =9 8.27
AR N (e e

Hence the solutions to the equations (Y, and X, )
which are required in the evaluation of the matrix

element are
(g% = % L) + _\{ (B-CV L))+ g i e ) Hg phey)
¥ %,% l42 y2) e
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where z' as before is a unit vector in the direction Oz

and (G0) = (G +gta) 8.29
where (Q(t\\ =-Y%e \c@g,\ 8.30

-_b
and {gfa)=- 20 K%@BQKBQ&QA-\PHC&@«L@&%\xs\ .31
The matrix element M (8.9) may be conveniently separated
into
M= MM () sMa k) 8.32
00 “Lpdzs~( R
where M\‘-'- s LRy CS(SL-C{—D\ NT & sds e K:\hede
" \“\d O \kcm) é%o\w\w%) (4 8433
. © o0 e~ (R
and M) =T -~ OIN, (oo € k sin©dO
wo(w h g awere) g s
x &0d<§>\od\\)e Rt (05 5,34

(=12
to facilitate the evaluation of the integrations over

the angles 9 ’ Cb andk\) .

The calculations are rather simpler for the
meson anglé of 900 in the laboratory system and the
evalué.tion of the matrix element M is restricted to

this particular case.
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(i) Evaluation of M\, for mesons produced at 90°
in the laboratory system

From (8.33) M, = L\\’LF\B 6&{—%—Q§NT1‘ 8.35a
where T, = \"‘;ds e T, 8.35b
3 = \Ksmede ¥, 8.350

o -z} '
(= age WS 5350

R
and \_ = d X 80353
n \ xo wkgc ,,3 |

1
The OZ_ axis is chosen to be parallel %o 6;:(}‘_5?'_@ ,
(;:g-g(\. Then by substituting (8.28) for (%@

it can re g.dily be shown that
\(\ - é‘Lé\SQOSe ( 1R &QQX‘AD +'3 = %‘@Es“\l@
’ "\' FST\LCKLXQL E \1&03"9 —5\“1935 8 036

with D =

and E:

(2+(2-C)eY) 8.37

AN
¢
€ (B+3C)¢ 8.38
Now CLz‘(oz.'—‘- (—g&?—\\?—:@) = — WP—’&—%—\ since >€°.\L= O (\F‘\?\\
-'6\ 0sO
Ce K= e T R g (1D 3E Sied .
-2E 4® (LeostB -6\&9})
vl
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and J, = Lml(q(\go\&o(&\s\kDJrE) +E(\+3%} ]Lké\s) 6=\&\ 8.40

For the production of mesons at 90° to the incident
photon beam in the laboratory system and over the range
of photon energy considered (200-260 MeV) the factor
k\-\-?; %) is approximately zero, and therefore

TR
1, = Ay L(D,0%0)+(E 0%

oo =L y2
where {G) ‘U)(\H = & Xdx e 3 G 3‘(\\]\0(“ 8.42
¢ \
=—— = 3 - 8.43
b Pate eXvA
and 7\ = él}-‘ 8.44
L3 e,

Slbt)is the spherical Bessel function of order Q_ .

(ii) Evaluation ofokt\\for mesons produced at 900
in the laboratory system.

From (8.34) M \g) = \IKIR\BCSKXL—QFD\\\\T\;&’C\\ 8.45a

00 “\Lp s>
where T = \ gdse —Sx\t\) 8.45b

o

‘Xa.kt\\ = gﬁ s dB K)&‘-\\ 8.45¢
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e = (B e WA G
and ) = \ A (4 k) e—‘x%‘-ﬁ 8.45e

In this case the Oz axis is chosen to be parallel to
the vector gt and the O\J axis parallel to y
(since QC\Lzo ) so that \{\ = O, since 3{_.51:0 « Then

(2% ascosD
L) =-r lqpae D 0T D2 o) 846

where D\ =bHe D , 8.47a
E' =\%el 8.470b
and oy = Qs 8.43
3%

\\/\A’u)may be obtained to a sufficiently close approx-
imation by retaining only the first two terms in the
expansion of Y, lelisin 9\. JalX) is the cylindrical
Bessel function of order v . Then
AR —-T\(q(\p(df). gtes LD —? vsint0)
+5E(o§‘e\ o4 S\(\@S& 8.49

e 520,654y, 6 =g 09
and  Ad)=swnBdd Cl(? y
~iés

The expansion of the plane wave €  in terms of

spherical harmonics and spherical Bessel functions
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is employed

e zzm\ws\\/ OY, (68)

8 =0 m=
Qs
and € can be represented to a close approximation

in the energy region under consideration by retaining
only these terms up to and including{=2L . Since the
meson is produced at 90%only terms with w=Ogive a non-

zero contribution to M, \L\). Then

T o) = _ bl u}\ (D070} -4 (B o +{E 00} -t {E 0¥2]
(L e >
— o (DL ety - ﬁi&‘,z‘,&}g -2

where the significance of the bracket notation &C‘( Q\J Y\g
éx -

1.3 Mg

has been explained in equation (8, 42) and N =

(1ii) Evaluation of M,\)for mesons produced at 900
in the laboratory system.

Using a notation analogous to that of the
previous section it may readily be deduced that
-y \qgcose i
) = ~2nbgerqe L4180 +5 @008 T, (weind)
-3 L(l%«—d snBcosd J, letvsind)

(80 8 Tl

8053
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If the approximations of section (ii) are introduced,
namely expanding the cylindrical Bessel functions up
to the power o and retaining only the L= o, \.,Cmdl

terms in the mul+tipole expansion of éL :2, then
L= -lkrlge] 5 10070} - { B Sl + L {Eoto) - ("0
2‘ i (el
~ Ecosé 1{01\1\5——‘1{ IARE - & LB
- PleoeNELD 0 0 SO0 E Do LE 730]

8.54

where D“ = bcj sq‘D | 8.55
E'= bcsc}E 8.56

and cosd= —2—1 8.57

Hence collecting together the results of equations
(8.41), (8.52) and (8.54), and neglecting some of the
terms included in these equations because their con-
tribution to M is relatively small, the expression for

M becomes

M = LR Elu-g - DIN| ARAa¥)
(UL
| {DohojHE Sy DS BET 4 5
+4 00 00 - {0 oo+ Y oy -2 e o7

PR e Rl Bt el
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in which A=1Z = 4L . 8.59
b b Hacr N
é3\3( _,}_1 2 1L
N = ,IZL;M > 6\—K$\ Wy Y4 B 8.60
I T I E A VI
Y = ok 2P vk o) e
COSé: ‘5 CL\ L 8.62
Wy +Eq)x
Y N 1 —EX n
and &G,Q ,n% = \ xdy e )M\o( 8.63
0 .
From (8.36), (8.37), (8.26) and (8.27)
- K 8.64
D 26 - p*
C - ¢ 8.65
(26-¢2)(6-2¢Y)
where ¢ = \-——3(‘53\" 8.66
and 0" = 2UoeXbgst) + (.‘oo)sl\” 8.67

(7.16) and (7.19) give . N
be = A e\k&,ﬂ—z—tm\z}“_\'f)x 8.68

3
-

i\ﬂ \-833-\-2—*.(\ _\—\7—‘:73_ i
e s L Lzé) g6
Wr 57y " 8.9

NI R,
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The above expression for I becomes very
much simpler at energies just above the threshold for
production of neutral mesons. In fact it can be shown
that M is independent of energy in the range Oéc‘.é 50
MeV of meson momentum which corresponds to the range
\314N £\4T MeV of photon energy. It is not, however,
expected that the multiple scattering correction as
developed here will give accurate results at these
low energies as the binding energy of the nucleons will
play an important part. The result is included for
the sake of completeness and because the behaviour of
the func-tions,D, E ’ D‘ ’ E.' ’ D“ and E" near thres-
hold is quite interesting. 1€ \V\1 ¢ 1s defined by

M = LR 8lu-g-DIN_ k(g

l

( L Wc‘

Th
o M = (DrExE 0% 0} 8.71

near threshold

! — |
Since in this region D x-3D, E'=-3E and NG|

|
After some reduction MMS may be presented

in the form

\ - -A_ > Ay
Miys = | doorcre ¥y pucaeaes Jrlgcm ) 8.2
V5% (Q-ar-vr)

+g§ ((\_’f‘:ﬁ) Y Q—-\i LoW\\] + )c.e’—s ’:0\\5&)@\)

3 R
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where =Re_3‘D€

_
X 8.73
\
and o = Db X M 8.74

@ (1 B

™
)
A is independent of meson energy in the region under

examination.

The third term in equation (8.72) arises
from the contribution of 'poles' of O ,E and E' at
= 'L’-( x=\-33 ) and the fourth term from poles' of £
and €' at r=\lx= \S) (equation (8.83)).

The matrix element II of equation (8.32) may

-

be written in general as

= L\_(’)\r\&y_-q:—D\N v b Mye 8.75
(i

and hence the differential cross—section for the elastic

photoproduction of neutral mesons at helium (including

the multiple-scattering correction) C_X_QMS is given

by dﬂ‘l
-—dENS _ __L CLC\,O \b ( L\:Rx“-o\ )L\MI \’v 8 76
C\ﬂi () \ & i%«—céct—\! cos0) (\'LH}CSL Ms



- 136 -

The matrix element Mm of equation (8.17) may be written

as

M., L () Sly- C.FD\N ktle M'\A 8.77
()
. | 00 N _ngx ‘
where M\A:S Axre ° dx \°K\m 8.78
(o) X d '
and the differential cross-section 24 4. derived on the

-basis of the impulse approximation is \’

dG’ _ Le \b( L )1\ ! \1 8.79
dD. @2 |+ L%\\X CL(cL—\)cose) (e Y2

The ratio of the two cross-—sections of equations (8.76)

and (8.79) is
dU /dg‘ \Mms\ £.80
A/ a0 T M F

VIITI §8 4. Calculation and discussion of results.

The expression (8.58) for MMS is
evaluated for incident photon energies of 220, 240 and
260 MeV, which correspond to meson phase shifts (&,ﬂg
of about 139, 20° and 27° respectively, while the
expression (8.72), which is valid near the threshold

of the reaction, is evaluated at an incident
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photon energy of 140 MeV, where (S is wvery small.

5

— I — !l
and ¢t are calculated ag

©D,E,D,&,0D

functions of 7z = x over the range O &£X &L of X
LA pug

at intervals of .2 except in the range \4&YX &) where

the interval is chosen to be «1 because of the rapid
variation of the functions in this region, and the
required integrals are computed numericallye.
The behaviour of the functions L , E , D |,

E| ’ D“ and E" is practically independent of the angle
at which the meson is emitted since C\O and hence CL and
6% depend on the angle e only through the relatively
small recoil factor - (equation (3.36)). The

following general trei;l‘;\s in the behaviour of these
functions can be deduced from the calculations carried
out at © = 90°. It is found that the contribution
to MNS from the three nucleons not involved in the
electro-magnetic interaction is small in comparison
with the contribution from the nucleon at which the
photon ig incident, largely because of the cancellation
of terms involving D\ ’ £ ’ Du ’ E" . This
cancellation process is brought out guite clearly in
the expression (8.71) for the matrix element near

threshold, and is also important at higher meson
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energies. It also turns out that the contribution
of & to M\«s is small in comparison with that of D ’
partly because the positive and negative contributions
from & at different geparations < of the nucleons tend
to cancel out and partly because || is smaller than \D|
in any case. The form of the function U , then, is the
dominant factorv in determining the magnitude of the
multiple~-scattering cross-~section.

It is interesting to examine the change in
behaviour of the function D as the energy of the photon
is inereased from threshold to 260 MeV. At threshold

energies

D= _k 8.81
-

except near the point ¢ = 2* (which corresponds toX = 1.33),

v = A 23 8.82
¢ '

and is practically independent of energy since 3\1‘_32_)33

" is a constant in this region. | %
\
When v =2+(1+€) ¢ «|
€
ReD=- . 8.83a
LhE %
and \ D & 8.83b
MU=
where Blers %)

& = (b L)«



- 139 -

The general form of the real(ReD)and imaginary
(\mD) parts of O near threshold as deduced from equations
(8.81) and (8.83) is sketched in figure 8.l.

&

Fig. 8.1.
As the photon energy is imcreased the
maxima and minima of the functions ReD and WD are

progressively reduced in magnitude and at the same
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time the bases of the peaks spread out over a larger
range of X . The abscissae of the maximum and minimum
points do not alter much as the energy changes, since

in the photon energy region considered the behaviour of
the functionsbve and \)cﬁslat these nucleon separations

is determined, to a great extent, by the factor %3
which does not vary a great deal in this energy region.
These trends in 'the behaviour of U are illustrated

in figure 8.2, in which the real and imaginary parts

of D at V = 220 and 260 MeV are plotted.
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The real part oft)(9£j33 is negligible at all
the energies examined in the range O & X £\3 (or O &S
*’;\%I\\G\Zm),At a nucleon separation of 2L X \O %, , ReD
is very nearly equal to 2, the remaining functions
being zero, and this corresponds to the impulse approx-
imation solution to the problem of the scattering of a
meson at four nﬁcleons. The multiple scattering of
the meson through the (Bi)%)state then appears to
suppress the production of the meson up to a separation
of the nucleons of \'3X\O0 “cwm. and for larger separations
the photoproduction process is fairly well described by
the impulse approximation. The reduction in +the cross-
section due to this suppression at low energies is
partly compensated for by the contribution of the

imaginary part of D to the matrix element.,
dows / ddia

AL
at the energies \ = 140, 220, 240 and 260 eV are

The values for the ratio calculated

_tabulated below.

V{Mev) 140 220 240 260
dms / dia ,

- vy -6 *53 38 .16
W/ g 3 53 3

Fig. 8.3.
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The ratio is nearly constant for energies near thres-
hold and then drops rapidly with increasing photon
energy.

Using the above values for the ratios of the
cross-sections it is possible to compute the multiple-
scattering cross-sections 9-\9“5“\ corresponding to the
impulse approxima-bion cross—gections g, \\\ of eguations
(3.45), iirnsKS) ’ C.X.G_\ﬂ (2) and the experimental results

of Osborne and de Saussure are compared in Fig. 8.4.

I, X ro'“c:M75TE R.

|
|

F

7/3%?;?}

] 1 i

180 200 220 240 260 280 300
. V (MEV)
0=90
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As can be seen from the graph the theoretically
derived cross~sections, particularly the multiple-
scattering cross-section, are considerably lower at all
photon energies than the experimentally observed points.
The experimental results of Osborne and de Saussure
seem to be rather on the high side, since even if the
dependence of the theoretical cross-section on the form
factor and the multiple-scattering correction factor
were excluded, the resulting cross-—section would not
be more than about \C54$C“¢//steradian at 240 MeV and
90o meson angle, which is barely large enough to fit
_ the experimental results.

It is of some interest to compare, for various
nucleon separations, the qualitative behaviour of the
multiple-scattering correction factor for the photo-
production of a meson at four free nucleons with the
corresponding correction factor for the multiple-scattering
~of a meson at two free nucleons which has been discussed
in detail by Brueckner (4). If it is assumed that only
the function D(S)contributes to the multiple-scattering
matrix element for four nucleons and that{)(s}is independ-

ent of the angle at which the meson is produced, the ratio



- 144 -

of the total multiple-scattering cross—-section Gks(s\

t0 the total impulse approximation cross-section q%$s\

at the separation & of the nucleons, is given by
Guwsle) DY 8.84

T () b _
The behaviouwr of this ratio at V = 220 MeV (§,,=\3")

is compared in figure (8.5), with the ratio of the

total multiple-scattering cross—section for the
scattering of a meson at two free nucleons T, (S)

t0 the corresponding impulse approximation cross-section

G%(s} as computed by Brueckner (4) at E%5= 300.

Ir | Ous

‘F\C&%LS‘
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The similarity in behaviour of the two ratios

. . . J-
is quite marked. The ratio :f undergoes the same
F
changes in form as the ratio I when the energy
Tin

of the scattered meson is increased, although the
latter changes the more swiftly of the two (for
instance the form of the ratios is comparable when 655=
130 in the case of %?f' , and 6g5= 300 in the case of
%? Y. The similarié; between the two ratios has
p;Lbably been emphasised to some extent by the approx-
imate form of the multiple-scattering equations (7.20)
(in which the possibility of the meson being scattered
between the nucleons 2 and 3, 2 and 4, and 3 and 4 has
been neglected) and by the tetrahedron model, since
the effect of these two approximations has been to
freat the four nucleons as three deuteron like particles
which have the nucleon 1 in common.

It is obvious that the results for the
- multiple-scattering cross-section which have been
deduced in this Chapter can have no more than a
gualitative significance. The three approximations

of neglecting the charge exchange processes, assuming

a modified form of the multiple scattering equations
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(7.20) and adopting a very much simplified model for
the o - particle have been introduced in order +to derive
a result which would give a qualitative indication of
the correction to the impulse approximation due to
multiple-scattering effects without involving an
excessive amount of numerical work, and with adequate
computing facilifies the complete solution of the four
nucleon problem on the basis of the sets of equations
(5.48) and (5.50) would probably be quite feasible.

The approximations which have been made in
the derivation of the multiple-scattering equations
have already been discussed in some detail and are
comparable to those employed by Brueckner, Watson and
Chappelear in their examination of allied problems.
The principal merit of +the multiple-scattering
equations lies in the fact that the problem which was
originally described in terms of integral equations
is reduced to the solution of a series of linear
simultaneous equations which, in theory, may readily
be found. It seems quite possible that the method
by which the equations were obtained could fairly

easily be developed to include s- as well as p-wave
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meson scattering and 1= 37: in addition to 1= 32-— isotopic
spin states. The problem of making some allowance for
'off the energy shell' scattering would be considerably
more difficult, although even this might be possible
for simple forms of the 'off the energy shell' scatter-
ing matrix element. However, these approximations and
otherg which wefe employed in obtaining the multiple-
scattering equations have all been justified to a
certain extent and it is not unreasonable, therefore,
to hope that these eguations include the major part of
the correction to the impulse approximation solution
for the photoproduction or scattering of mesons at
nuclei in the energy range 200 to 400 NMeV of the

incident particle.
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APPENDIX A.

In the examination of the single nucleon
photoproduction matrix element which was carried out
in Chapter III it was found that the various energies
and momenta which appeared in the matrix element derived
by Chew (11) had to be transformed from the centre of
momentum system of the photon and nucleon to the
laboratory system, in which the nucleon is at rest.
The relationships involved in this transformation are
described below.

Let V , V be the momentum and energy of
the photon and gc ’ C\o be the momentum and energy of
the meson where c;t,\),zct\;cose, all these guantities
being measured in the laboratory system. The
corresponding quantities in the centre of momentum
(cem.) system are differentiated by the subscript c.
M and WMy are the rest masses of the nucleon and
xﬁeson respectively.

The velocity of the c.m. system relative to
the laboratory system is

\/,____\~'____ Al

P

~ M+y
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and employing this velocity in the Lorentz trans-
formation between the two systems the following
relationships between quantities in the c.m. and

laboratory systems may be deduced

Ve = _Mv
(M3 MY
qfx = (golMp) - qVcosB)
(M LvM)E
Qe = (o (M) 4k vE- LoV (M) cosB +c@x!lcosl9\l’f
(ME+ Ly M-

( -qoV + @ (Msv) cosB)
(- (M) ey~ LG4V (M) CosB +qvcos: 9\3‘

w0sO

I

I

swb. = L sinB

Qe

kX
s, = Ve s

(Locc\’c‘f

A.2

A3

A.4

A5

A.6

AT
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