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I .  INTRODUCTION

I $ 1* The photoproduction of mesons at n u c le i .

The problem of in v e s t ig a t in g  the angular 

d is tr ib u t io n s  and c r o s s -s e c t io n s  fo r  the production  of 

mesons by h igh  energy electrom agnetic  ra d ia tio n  a t variou s  

n u c le i has been r e c e iv in g  a great deal o f a tte n t io n  from 

both th e o r e t ic a l  and experim ental p h y s ic is t s  in  recen t  

y ea rs . Much of the e a r l ie r  work in  t h i s  f i e l d  was 

concerned w ith  the photoproduction of mesons at hydrogen 

sin ce  a n a ly s is  of the r e s u lt s  of experim ents on t h is  

re a c tio n  g iv e s  important inform ation about the p ro p ertie s  

of mesons and the nature o f the meson-nucleon in te r a c tio n ,  

which i s  p a r t ia l ly  obscured by other fa c to r s  in  the 

r e s u lt s  obtained from work on the photoproduction of 

mesons a t complex n u c le i .  The th e o r e t ic a l  a n a ly sis  of 

the dependence of the c r o s s - s e c t io n  fo r  the photo­

production of mesons a t n u c le i on these various fa c to r s  

i s ,  however, of considerab le in te r e s t  and forms the 

p r in c ip a l su b jec t of the work to  be ou tlin ed  in  the 

fo llo w in g  ch a p ters. Although much of the d iscu ss io n  

i s  confined  to  the p a r tic u la r  case of the e la s t i c  

production o f n eu tra l mesons a t helium , many of the 

r e s u lt s  and methods are r e a d ily  ap p licab le  to  t h is  and



-  2  -

other p o ss ib le  photoproduction p rocesses at n u c le i  

con ta in in g  any number of n ucleon s.

There are three main fa c to r s  which must be 

taken in to  account in  the th e o r e t ic a l a n a ly s is  of the 

c r o s s -s e c t io n  fo r  the photoproduction of mesons at 

complex n u c le i .  The f i r s t  fa c to r  i s  the form taken  

by the i n i t i a l  and f in a l  nuclear s t a t e s .  The i n i t i a l  

s ta te  of the system  i s ,  o f course, g iv en , but the f in a l  

s ta te  i s  determined by the charge of the meson which i s  

produced and the manner in  which the nucleus i s  d is ­

in teg ra ted  ( i f  a t a l l )  w ith  the r e s u lt  th a t there are 

u su a lly  a number of competing p ro cesses  which can occur. 

The c r o s s -s e c t io n s  fo r  th ese  p ro cesses may d if f e r  qu ite  

considerab ly  owing to  the v a r ia t io n  in  the magnitude of 

the form fa c to r , which in clu d es the e f f e c t  of the i n i t i a l  

and f in a l  nuclear momentum d is tr ib u t io n s , the operation  

of the P au li E xclu sion  P r in c ip le , the d ifferen ce  in  the 

binding en erg ies  of the f in a l  s ta te s  and the Coulomb 

in te r a c tio n  of the outgoing meson w ith the r e s id u a l  

p a r t ic le s .  In  helium , for in sta n c e , the fo llo w in g  

re a c tio n s  are p o s s ib le .
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-VK+

-> d + 2n 4-T \*

-> He+lp+'K

-» D x+21pt^ ' 

n+3^4-7T

From a th e o r e t ic a l  p o in t of view  the e la s t i c  photo­

production of n eu tra l mesons from helium ( y t H e ^ H e ^ 0) 

i s  the most in te r e s t in g  of the above p ro ce sse s , sin ce  

the i n i t i a l  and f in a l  nuclear s ta te s  are r e la t iv e ly  

simple both in  th e ir  sp in  and space dependence which 

considerably  reduces the m athem atical labour involved  

in  the handling of the w ave-functions and thus a llow s  

a more d e ta ile d  in v e s t ig a t io n  of the other fa c to r s  

involved  to  be undertaken. From the experim ental 

p oin t of view  there i s ,  as w i l l  be seen in  the next  

s e c t io n , con sid erab le  d i f f i c u l t y  in  s e le c t in g  out the 

e la s t i c  production  p rocess at high en e r g ie s , although  

i t  i s  the dominant p rocess at en erg ies  ju s t  above 

th resh o ld .

y  + H e — > H e+ ix 0 or y +  H e1*

— > He+n-vi\°

- ^ D N - t i V r x 0 

— >  d ’+V-'-n+'K0 

— 7>2 'p+2n+T\°
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The second fa c to r  which i s  of importance in  

the a n a ly s is  of the many-body photoproduction problem  

i s  the method by which the w ave-equation for the system  

i s  so lv ed . I t  i s ,  o f cou rse, im possible to  so lv e  t h is  

w ave-equation e x a c tly  and the most su ita b le  form of 

approximation must be found. The most convenient 

method of approach i s  to  describe the tr a n s it io n  

operator fo r  the many-body problem in  terms of tran s­

i t io n  operators in v o lv in g  only two p a r t ic le s  and to  use 

phenom enological forms for  the m atrix elem ents of the 

l a t t e r .  Such a d esc r ip tio n  i s  the Impulse Approximation 

of Chew, which i s  described  in  some d e t a i l  in  Chapter I I  

and which i s  applied  to  the problem of the e la s t i c  

production of n eu tra l mesons at helium  in  Chapter I I I .  

Chapters IV -  V III are devoted to  the development and 

a p p lica tio n  of a method of red u ction  of the tr a n s it io n  

operator which in c lu d es some of the e f f e c t s  n eg lected  

in  the impulse approxim ation.

The th ird  main fa c to r  which occurs in  the 

a n a ly s is  of the problem i s  the form to  be adopted fo r  

the m atrix elem ents of the two p a r t ic le  tr a n s it io n  

op erators. In the a p p lica tio n  of the impulse
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approximation i t  i s  n ecessary  to  know the m atrix element 

of the t r a n s it io n  operator for the photoproduction of a 

meson a t a s in g le  nucleon and the choice of th is  m atrix  

element i s  e x te n s iv e ly  d iscu ssed  in  Chapter I I I .  When 

the co r rec tio n s  to  the impulse approximation are 

considered , the m atrix elem ent of the tr a n s it io n  

operator for  the sc a tte r in g  of a meson by a nucleon i s  

a lso  needed, and the most su ita b le  ch o ice  for th is  m atrix  

elem ent i s  examined in  Chapter VI.

1 ^ 2 .  Experimental r e s u lt s  on the photoproduction of 
mesons at hydrogen and helium .

The b est form fo r  the m atrix elem ent of the 

s in g le  nucleon photoproduction operator i s  determined in  

Chapter I I I  by comparison w ith  the experim ental r e s u lt s  

on the photoproduction of mesons a t hydrogen. The most 

recen t r e s u lt s  in  t h is  f i e l d  have been submitted from 

Walker e t  a l  (36) and T ollestru p  e t  a l  (3 4 ), who 

examined the production of charged mesons at hydrogen, 

and from Oakley and Walker (30) and Walker e t  a l (3 5 ), 

who examined the production of n eu tra l mesons at hydrogen.

The two groups engaged in  the in v e s t ig a t io n  

of the production of charged mesons used d if fe r e n t
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techniques fo r  f in d in g  the angular d is tr ib u t io n  of the 

mesons produced. The f i r s t  group (Y/alker e t  a l  (36)) 

determined the d is tr ib u t io n  of mesons a t a g iv en  angle 

and energy by p assin g  them through a magnetic sp ectro ­

meter which se le c te d  mesons of the required energy, and 

these were then passed  in to  a chamber con ta in in g  two 

l iq u id  s c in t i l l a t i o n  co u n ters. The energy range of 

the photon covered was 200 -  470 MeV. The second group 

(T o llestru p  e t  a l  (34)) d etected  and id e n t i f ie d  the 

mesons by measuring th e ir  range and io n isa t io n  in  a 

s c in t i l l a t i o n  counter te le sco p e  over an in c id en t photon 

energy range 230 -  450 MeV and at se v e ra l laboratory  

angle s •

Both groups analysed th e ir  r e s u lt s  in  the

form

A ++ B +c o s 0 + C +c o ^ e

where 0  i s  the meson angle in  the centre of momentum 

system , and the c o e f f ic ie n t s  A^. , and C^.deduced 

from the two experim ents were in  f a ir ly  good agreement.

Four experim ental methods can be used to  

measure the c r o s s - s e c t io n  fo r  the n eu tra l meson 

photoproduction r e a c t io n

y + ' p — -̂r0— »2y_
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( i )  Both of the decay v  -ra y s  may be d etected  
in  co in c id en ce . '

( i i )  The proton and one v  -ray  may be d etected  
in  co in c id en ce . ’

( i i i )  One y  -ray  alone may be d etec ted .

( iv )  Only the r e c o i l  proton may be d etec ted .

Walker e t  a l  (35) used method ( i i )  in  th e ir  experiment 

on n eu tra l meson production at hydrogen. Method (iv )  

was employed by Oakley and Walker (30) in  th e ir  

experim ents and appears to  be the most s a t is fa c to r y  

of the four p o ss ib le  methods, provided th at the photo­

production p rocess i s  the so le  con tr ib u tin g  fa c to r  to  

the proton f lu x  which i s  measured. Oakley and Walker 

examined the r e a c t io n  over an energy range 260 -  450 MeV 

and expressed  th e ir  r e s u lt s  in  the form

^ v B ° c o s 0  + G ° co^ e  
where G i s  the meson angle in  the c.m . system .

The v a lu es  of f\_  ̂ and f \ 0 deduced by these  

workers are employed in  Chapter I I I  paragraph 4, where 

the most su ita b le  form of the s in g le  nucleon photo- 

production  m atrix elem ent i s  examined.

Not many experim ental r e s u lt s  on the e la s t i c  

photoproduction of n eu tra l mesons at helium are at
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p resen t a v a ila b le . The p r in c ip a l r e s u lt s  up to the  

time of w ritin g  have come from Osborne and de Saussure 

a t the M assachusetts I n s t itu te  of Technology (31 , 32) 

and Goldwasser e t  a l  a t I l l i n o i s  (2 1 ). The la t t e r  

d etected  the meson by measuring both the decay y -  rays  

in  co incidence and examined the r e a c tio n  from th resh o ld  

up to  a meson energy of about 50 MeV. Their r e s u lt s  

in d ica te  th a t in  t h is  range and fo r  equal n eu tra l meson 

en erg ies  in  the c.m . system  the d if f e r e n t ia l  c r o s s -s e c t io n  

fo r  production in  helium  i s  about four tim es th a t fo r  

production  in  hydrogen at an angle of 80° to  the in cid en t  

beam in  the lab oratory  system .

Osborne and de Saussure at M .I.T . used the 

beam from an e lectron -syn ch ro tron  w ith  a peak energy of  

about 350 MeV. The e lec tr o n s  were made to s tr ik e  a 

th in  tungsten  wire and the r e s u lt in g  beam of photons 

a fte r  being d efined  by a lead  co llim a to r  was passed in to  

a tank con ta in in g  m ed ica lly  pure helium  at a pressure of 

one atmosphere. Photographic p la te s  were arranged 

in s id e  the tank w ith  one edge p a r a lle l  to  the d ir e c t io n  

of the beam in  such a way th at p a r t ic le s  would be 

in c id en t upon them at grazing a n g les . The energy and 

d ir e c t io n  of the p a r t ic le s  were deduced from observation
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of the tracks* The photographic p la te s  were developed  

so th a t only those tracks caused by doubly charged  

p a r t ic le s  could be d iscerned  and thus the only r e a c tio n s  

which had to  be considered  were:

( i )  y + We — ^  H ^ + y

(ii) Y + He1* — > Hei +n
(iii)  Y + He1* —> T\ +-Hel+«'uc\eon
(iv) Y +• He" —>^°+H e1'

The c r o s s - s e c t io n  fo r  the Compton sc a tte r in g  process ( i )  

i s  sm all w hile the energy of the r e c o i l  nucleus He* in  

the process ( i i i )  i s  low w ith  the r e s u lt  th a t most of 

these n u c le i are stopped before they reach the photo­

graphic p la t e s .  The r e c o i l  n u c le i from the re a c tio n s

( i i )  and (iv )  cannot, however, be d is t in g u ish ed . A 

low energy run w ith  a maximum energy of 160 MeV was 

carried  out and i t  was deduced th a t the d is tr ib u t io n  

o f the r e c o i l  n u c le i in  the r e a c tio n  (u) was p roportional 

to  s in 1 © in  the laboratory  system . Now because of 

the k inem atics of the e la s t i c  photoproduction process  

the r e c o i l  H e? n u c le i do not occur a t angles o f g rea ter  

than 60° in  the lab oratory  system and hence i f  the 

background of He? track s can be assumed to  have a
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d is tr ib u t io n  of the form A s i n “0  then A may be 

deduced by counting the track s between 60° and 180° and 

the background can then be subtracted  in  the range 0  =

0 to  60°• This su b tra c tio n  procedure i s  the weak p o in t  

in  the experiment and th e ir  r e s u lt s  may w e ll be su sp ect  

on t h is  account. The r e s u lt s  obtained by de Saussure 

and Osborne (32) fo r  the d i f f e r e n t ia l  c r o s s - s e c t io n  fo r  

the e la s t i c  phot opr oduct ion  of n eu tra l mesons a t helium  

a t 90° in  the lab oratory  system are compared w ith the 

corresponding th e o r e t ic a l  r e s u lt s  in  Chapters I I I  and 

T i l l .
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I I .  THE IMPULSE APPROXIMATION

As a f a ir ly  la rg e  proportion of t h is  th e s is  

i s  concerned w ith  the a p p lica tio n  of and co rrec tio n s  to  

the impulse approximation, i t  was thought worth w hile to  

g ive  a b r ie f  prelim inary survey of the development of the  

approximation and o f some of i t s  previous a p p lic a t io n s .

E s s e n t ia l ly ,  the impulse approximation c o n s is t s  

in  rep lacin g  the tr a n s it io n  operator fo r  an in te r a c tio n  

between a p a r t ic le  and a complex nucleus by the sum of 

the tr a n s it io n  operators fo r  the in te r a c tio n s  between the  

in c id en t p a r t ic le  and the in d iv id u a l nucleons w ith in  the  

n u cleu s. This approximation was f i r s t  introduced by 

Chew (9) in  h is  a n a ly s is  of the e la s t i c  sc a tte r in g  of 

mesons at deuterium and was la te r  employed by Chew and 

Lewis (13) in  th e ir  in v e s t ig a t io n  of the photoproduction  

of mesons a t deuterium. However, the method was not 

put on a firm  th e o r e t ic a l foundation  u n t i l  Chew and 

Goldberger (12) c le a r ly  brought out the re la tio n sh ip  

between the t o t a l  t r a n s it io n  operator fo r  the photo­

production r e a c t io n  and the in d iv id u a l nucleon operators  

in  such a way th at the terms n eg lected  in  assuming the 

impulse approximation could  be in terp reted  and analysed . 

This was a g e n e r a lisa t io n  of some previous work along
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th e se  l i n e s  by Chew and Wick (14) and Ashkin and Wick (1 ) .

Chew and G-oldberger (12) d is c u s s  in  some d e t a i l  

the  e r r o r s  caused by o m it t in g  th e  e f f e c t  of th e  p o t e n t i a l  

b ind ing  the  nucleons during  the i n t e r a c t i o n  and a l s o  of 

the m u l t ip le  s c a t t e r i n g  of th e  in c id e n t  p a r t i c l e  w i th in

the t a r g e t  n u c le u s ,  They d ef in e  the t o t a l  t r a n s i t i o n

o p e ra to r  f o r  the s c a t t e r i n g  of th e  p a r t i c l e  a t  the  n u c leu s  

to  be T + where

T + = V  +  V  p—  1 u  • --V 2 .x
E0L+ v t - n o- V

Here H c = k  -vU , K  i s  the  t o t a l  k in e t i c  energy  o p e ra to r
fo r  th e  n u c le o n s .

\J is  the nuclear binding p o ten tia l.
V = I V k i s  the  i n t e r a c t i o n  p o t e n t i a l  between

k̂ i the  incoming p a r t i c l e  and the  n u c le u s .  
I t  i s  assumed t h a t  V may be ex p ressed  
as a sum over a l l  the nucleons 
( k - \  N ) of Vk the i n t e r ­
a c t io n  p o t e n t i a l  between the in c id e n t  
p a r t i c l e  and the  k" nuc leon .

, where i s  th e  i n i t i a l  s t a t e  of

th e  system  and £  i s  a sm all p o s i t iv e  c o n s ta n t  (29) •

The t r a n s i t i o n  o p e ra to r  f o r  s c a t t e r i n g  a t  the  

s in g le  nucleon   ̂\<̂  i s  d e f in e d  to  be

t * = y  4 -V - .......... ' - v  2*2
k *  k E <+ U . - K - V k w
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where i s  an eigenvalue of the operator K •

A fter some m anipulation of the operators they  

show th a t ( th e ir  e<q. (25))

T + =  l ( t ‘ + v  w 7 v [ u ' u f l

+  2 .3cx o

where t"'” = V  L0+
k vc k
Omission of the second and th ir d  terms in  

equation  (2 .3 )  lea d s  to  the impulse approximation
. +  N

T
Vfal

By repeated  use of an id e n t ity  r e la t io n sh ip  

"between the operators  -------- --—- and ^
E ^ ^ -H o - V  E ̂  v ( .t -K -V k

the second term in  equation  (2 .3 ) can "be expanded as

a power s e r ie s  in  U and may thus be a sso c ia ted  w ith  

the co r r e c tio n  due to  the binding energy of the n u cleon s< 

In a s im ila r  manner the th ird  term may a lso  be developed  

in to  a s e r ie s ,  the f i r s t  term of which may be in te r ­

preted  as rep resen tin g  two con secu tive sc a tte r in g s  of 

the in c id en t p a r t ic le  w ith in  the ta rg e t  n ucleu s, the
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second as rep resen tin g  three such sc a tte r in g s  and so on. 

This l a s t  term then d escr ib es the m u ltip le  sc a tte r in g  of 

the in c id en t p a r t ic le  w ith in  the ta r g e t  n u cleu s. The 

formal methods developed by Chew and Goldberger, although  

they separate out the various co rrectio n s to the impulse 

approximation, su ffe r  from the d efec t th a t a pertubation  

l ik e  expansion of the terms must be ca rr ied  out before  

ev a lu a tio n  of the m atrix elem ents of the terms i s  p o ss ib le  

and such an expansion may not be v a l id .

photoproduction of mesons a t deuterium have been 

performed u sin g  the impulse approxim ation(13) ,0-8), (19), 

(23)» (28).. Chew and le w is  (13) examined, in  p a r t ic u la r , 

the e la s t i c  production of 1 \°  mesons a t deuterium and 

derived the d i f f e r e n t ia l  c r o s s -s e c t io n  for  t h is  r e a c tio n ,

ue uxeron,

^  i s  the momentum tran sferred  to  the deuteron  
during the r e a c t io n ,

and <^f ^  are the energy and momentum of the meson. 

The sc a tte r in g  m atrix elem ent fo r  the photoproduction

A considerab le number of c a lc u la t io n s  on the

i s  the form fa c to r

fu n ctio n  of the
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of n e u t r a l  mesons a t  a s in g le  nucleon  ( ^  i s  ta k e n  to  

"be of the  form < cL\ t >w > = , where i s

the  s p in  o p e ra to r  of the \j$> nucleon  and K and are 

fu n c t io n s  of the photon  energy , momentum and p o l a r i z a t i o n ,  

and of the  meson momentum and energy . I t  i s  assumed here 

t h a t  th e  s c a t t e r i n g  m a tr ix  e lem ents f o r  p ro d u c t io n  of a 

n e u t r a l  meson a t  a p ro to n  and n eu tro n  are  equa l "both in  

magnitude ana p h ase . The d i f f e r e n t i a l  c r o s s - s e c t io n  

(2 .5) c a lc u la te d  on the  b a s i s  of the impulse approxim ation  

g iv e s  r e s u l t s  which tend  to  be r a th e r  h ig h e r  th an  the  

e x p e r im e n ta l ly  observed p o in ts  (8 ) .

Some c a l c u l a t i o n s  on the e l a s t i c  ph o to p ro d u c tio n  

of "In0 mesons a t  helium  have been c a r r i e d  out by Osborne 

and de Saussure (32) i n  co n n ec tio n  w ith  the i n t e r p r e t a t i o n  

of t h e i r  e x p e r im en ta l  work on t h i s  problem . They 

employ the  impulse approxim ation  and an independent 

p a r t i c l e  model f o r  the n u c le a r  w ave-functions  bu t do 

n o t o b ta in  s a t i s f a c t o r y  agreement between t h e i r  th e o r ­

e t i c a l  and ex p e rim en ta l  r e s u l t s .  The t h e o r e t i c a l  

c r o s s - s e c t i o n  f o r  the  e l a s t i c  p h o to p ro d u c tio n  of n e u t r a l  

mesons a t  helium  has a lso  been s tu d ie d  by Yamaguchi (38)• 

He has c a lc u l a te d  the  d i f f e r e n t i a l  c r o s s - s e c t i o n  f o r  

t h i s  p ro c es s  on th e  b a s is  of the  impulse approxim ation
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and u sin g  an Irv ing-type wave fu n ctio n  (22) fo r  the 

helium n u cleu s, a t photon en erg ies of 166 and 200 MeV.

His r e s u lt s  a t 200 MeV are c o n s is te n t  w ith  the co rres­

ponding r e s u lt s  presented  at the end of Chapter I I I .

Ihe th e o r e t ic a l  r e s u lt s  computed by Osborne and 

de Saussure and Yamaguchi appeared w hile the c a lc u la tio n s  

o u tlin ed  in  Chapter I I I  were s t i l l  in  progress and are 

included in  the more comprehensive a n a ly s is  o u tlin ed  in  

th a t ch ap ter•
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I I I .  THE APPLICATION OP THE IMPULSE APPROXIMATION TO
THE CALCULATION OF THE DIFFERENTIAL GROSS-SECTIOH 
FOR THE ELASTIC PHOTOPROLUCTIOH OF UEUTRAL MESONS

AT HELIUM.

I t  i s  n o t  e x p e c te d  t h a t  th e  im p u lse  a p p ro x ­

i m a t io n  w i l l  g iv e  v e r y  s a t i s f a c t o r y  r e s u l t s  when a p p l i e d  

to  p ro b lem s  i n v o l v i n g  th e  d  - p a r t i c l e  s i n c e  t h i s  n u c l e u s  

i s  a  t i g h t l y  hound  s t r u c t u r e .  The m u l t i p l e  s c a t t e r i n g  

o f  th e  m eson w i t h i n  t h e  h e l iu m  n u c le u s  w i l l  p r o b a b ly  

a l t e r  th e  d i f f e r e n t i a l  c r o s s - s e c t i o n  f o r  th e  r e a c t i o n  

c o n s i d e r a b l y ,  p a r t i c u l a r l y  i n  th e  r e g i o n  o f  e n e rg y  

where th e  s c a t t e r i n g  p h a s e - s h i f t s  a re  l a r g e ,  w h i le  th e  

b in d in g  e n e rg y  c o r r e c t i o n  may be q u i t e  im p o r t a n t  a t  

e n e r g i e s  n e a r  t h e  t h r e s h o l d  f o r  m eson p r o d u c t i o n .  

However, i t  h ap pens  t h a t  th e  d i f f e r e n t i a l  c r o s s - s e c t i o n  

w h ich  i n c l u d e s  t h e  e f f e c t  o f  th e  m u l t i p l e  s c a t t e r i n g  of 

t h e  m eson i s  m o st  e a s i l y  e x p r e s s e d  i n  te rm s  o f  t h e  

d i f f e r e n t i a l  c r o s s - s e c t i o n  d e r i v e d  on th e  b a s i s  of th e  

im p u lse  a p p ro x im a t io n  so  t h a t  a knowledge o f  th e  l a t t e r  

i s  e s s e n t i a l  i n  d e d u c in g  th e  f o r m e r .  The e l a s t i c  

p r o c e s s  i s  s e l e c t e d  f o r  r e a s o n s  w h ich  have a l r e a d y  b e en  

o u t l i n e d  i n  C h a p te r  I ,  nam ely t h a t  th e  c a l c u l a t i o n s  f o r  

t h i s  p r o c e s s  a r e  th e  l e a s t  c o m p l ic a te d  by th e  n u c l e a r  

w a v e - f u n c t io n s  u s e d  i n  th e  d e s c r i p t i o n  o f  th e  i n i t i a l
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and f in a l  nuclear s ta te s  so that a more d e ta ile d  

in v e s t ig a t io n  of some of the other a sp ects of the  

problem can be made.

I l l ^ 1 . Reduction of the t o t a l  tr a n s it io n  operator

The i n i t i a l  s ta te  of the system c o n s is ts  o f  

a photon of momentum V and energy V ( in  u n i t s = C =1), 

and an -p a r t ic le  at r e s t  in  the laboratory system . The 

f in a l  s ta te  con ta in s a n eu tra l meson of momentum ^  and 

energy ĉ 0 and an ^ -p a r t ic le  r e c o il in g  w ith momentum D  . 

The r e s t  mass of the meson i s  taken to  be 135 MeV.

Let T be the tr a n s it io n  operator fo r  the 

photoproduction of mesons a t helium  and l e t  Ti be the 

t r a n s it io n  operator fo r  the photoproduction of mesons 

at a s in g le  nucleon ( i )

Then according to  the impulse approximation

I  = + T2 + 3 .1

The protons are denoted by the su b scr ip ts  1 and 2, the 

neutrons by the su b scr ip ts  3 and 4 .

The m atrix elem ents of the operator T must 

be taken and averaged over the i n i t i a l  and f in a l  

momentum d is tr ib u t io n s  of the nucleons, fo r  although
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the nucleons are trea ted  as *free' during the in te r a c tio n ,  

they s t i l l  r e ta in  the momentum d is tr ib u t io n  imposed upon 

them by the nuclear binding p o te n t ia l .

Let the nucleons i n i t i a l l y  have the con figu r­

a tio n  space wave fu n ctio n  an& ^ e

momentum space wave fu n ctio n

where are p o ss ib le  i n i t i a l  momenta fo r

the nucleons, and l e t  the nucleons f in a l ly  have the 

co n fig u ra tio n  space w ave-function  

and the momentum space w ave-function

where V\ , 1̂. , W , and ^  are p o ss ib le  f in a l  momenta for  

the n ucleon s.

A ll the w ave-functions are norm alised and 

depend upon the sp in  as w e ll  as the space coord inates  

o f  the n ucleon s. They are anti-sym m etric under the 

interchange of 1 and 2 and of 3 and 4 in  compliance w ith  

the con d ition s of the P a u li E xclusion  P r in c ip le .

Taking the appropriate m atrix element of the 

operator T and averaging over the i n i t i a l  and f in a l  

nuclear momentum d is tr ib u t io n s  of the nucleu s, the 

fo llo w in g  exp ression  i s  obtained fo r  the t r a n s it ie n  

p ro b a b ility  amplitude for the photoproduction of a meson 

of momentum Q by a photon of momentum •
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[  ^ ( W + ^ - k < ^ , k ; i T l\ uJk,>

+ & lW -W ^ k ^ -k i-^  6 lk ' - k î ik i-y 4!'\(% ^ L \k X ^

+ Mk'-W') M <M kj,+ ^ .- k j -^  &.( \ k \  Ni^>

+  6 U l-k ^  6 ( k i - y

*  3 ,2

Since i t  i s  assumed th a t momentum i s  tran s­

ferred  only to  the nucleon  a t which the photon i s  

in c id en t, the remaining three nucleons being l e f t  

undisturbed

. .  < \\T \V >= ( dk, dkidWi.dk k[  k + ^ -^ )ki;kik k \ 1kvi-ci:\T,l ̂ k )

He

-v-

* c ^ . v ^ W )  3-3
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The 33ext step  133. the s im p lif ic a t  1033. of the above 

exp ression  i s  to  33egleet the depende33ce of the m atrix  

element (  on "the 33.uclear momenta k  ̂ and

k- • which a llow s the m atrix element to  he removed from
— V,

underneath the in te g r a l s ig n . This i s  eq u ivalen t to  

assumi3ig th a t the m atrix element may he evaluated  as i f  

the nucleon were a t r e s t  before the r e a c tio n  and the 

r e c o i l  of the nucleon could  he n eg lec ted . The second  

assumption i s  the u su a l ad iabatic  approximation in  which 

the nucleon i s  considered  to  have e f f e c t iv e ly  i3 if in ite  

m ass. The f i r s t  assumption n e g le c ts  the motion of the  

nucleons w ith in  the n u c leu s. The average value of the

nucleon momentum k- i s  zero so th at i f  the m atrix element
T ^of i s  expanded as a power s e r ie s  in  the f i r s t

te3mi to  con trib u te to  the in te g r a l over k- w i l l  be the

term con ta in in g  and th is  should g ive a much sm aller

co n tr ib u tio n  than the in te g r a l over the term in  the

expa3ision which i s  independent of k-̂  .

With these assumptions the m atrix element

reduces to  ^ W , o )  which i s

abbreviated to  Beatrix elem ent

may now be w r itten

<<\\T\v> = X .J d V J dWdVJdku 3 .4

*  W ,\ V >
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where the m atrix elem ents are re ta in ed  under

the in te g r a l s ig n  because they con ta in  the sp in  operators 

which do not commute w ith  or •

When and (̂ )- are replaced  by th e ir  Fourier  

transform s the exp ression  for  becomes

ST I *■ Û -qV-
(^ \T \v )=  l^ d tid v 1.dr>d u l^ ia '3 i^e <\\TA\j)e 3 . 5

r - '
where R = - k E 5-VVĵ  i s  the coordinate of the

cen tre o f mass of the o( - p a r t ic le .

In the above formalism d is t in c t io n  has been made 

between the m atrix elem ents  ̂ f ° r  *fcke

d iffe r e n t  n u cleon s. Present experim ental evidence seems 

to  in d ica te  th a t the m atrix elem ents fo r  production of 

mesons at protons and neutrons are the same both in  

magnitude and phase (26 , 3 2 ) .  Assuming th is  eq u a lity

(<d\Tlv> = X  (d Vi dv j . dv j d^e 11 €̂ L_̂ si
)“» ’

w W e .  < ct \ T i \ v )  =  <Tll'A \< t, + L £> 3 , 6

Before the a n a ly s is  can be carried  any fu rth er  a su ita b le  

choice must be made fo r  the o(, -p a r t ic le  w ave-function .
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I I I  § 2 . Nuclear-wave fu n ctio n s

The << -p a r t ic le  w ave-function  which has been  

denoted by Vp (1 2 ;3 4 ) con ta in s both a co n fig u ra tio n  space 

and sp in  w ave-function . The sp in  w ave-function  i s  

p a r tic u la r ly  sim ple as i t  i s  the combination of four 

angular momentum w ave-functions of the type 

which has t o t a l  angular momentum zero and is  in  a d d itio n  

anti-sym m etric under the interchange of p a r t ic le s  1  and 2 

and of 3 and 4 . The required w ave-function  i s  X^(12) 

^4.(3 4 ) where

3 *7

and Y 1- ( V) i s  the sp in  wave fu n ctio n  of a s in g le

nucleon ( i)  corresponding to  sp in  up and 'Y x( i)  i s  

the sp in  wave fu n ctio n  corresponding to  sp in  down. Then

IjJ (12;34) = lp (v v )ri i n 5nl )X4 (12) X4 (34) 3 .8

Here Ip (  ̂n.  ̂rj, ,Vk) i s  a symmetric co n fig u ra tio n  space

w ave-function  ( jr i s  the p o s it io n  coordinate of the ^  

n u cleo n ). Two typ es of fu n ction s have been considered  

in  look in g  fo r  the b est rep resen ta tio n  ofl|J( x\ )»

f i r s t l y  Gaussian w ave-functions (2 2 ) of the form
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- +*>£++rjj+Ti -vr̂ )

coordinate of nucleons i and , and i s  a

parameter which i s  adjusted  to  g ive the b est f i t  to  

the binding energy or rad ius of the - p a r t ic le .  The 

use of these fu n ctio n s lea d  to  in te g r a ls  which may be 

f a ir ly  e a s i ly  performed. The Fourier transform  of 

(3 *9 ) i s  fo r  in stance

Their p r in c ip a l d efect l i e s  in  th e ir  bad asympotic 

behaviour as they f a l l  o f f  too ra p id ly  w ith  in creasin g  

separation  of the n ucleon s. Experiments on the 

sc a tte r in g  of protons a t carbon and oxygen (1 5 ) have 

i l lu s t r a t e d ,  however, th at the Gaussian w ave-functions  

represent the behaviour of these heavier n u c le i quite  

w e ll , but i t  i s  doubtfu l whether they g ive an equally  

true p ictu re  of the l ig h te r  n u c le i.

of these fu n ction s Irving (22) examined w ave-functions  

of the type

" 3 . 1 0

In order to  b e tte r  the asym ptotic behaviour
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jl-g :.....    _  3 .1 1l\)lD ,r^S') =  ~ a
U£ * r\-̂  -V̂ \̂ \  Vr* -Vfil -V̂ h)

K\ i s  in te g r a l or h a lf  in te g r a l and |A-n i s  ehosen to  

g iv e  the b est f i t  to  the binding energy or radius of the 

oi- p a r t ic le .  The value Y\ =• lea d s to the s im p lest  

m athem atical a n a ly s is  and i s  adopted from now on.

The Fourier transform  o f (3 .11) (w ith  ) i s

— '—  3 . 1 2

|J-
where i s  a norm alizing constant and eC- -  ^

The param eters jÂ  and (A^ may be f ix e d  e ith e r  

by computing the binding energy or the radius of the 

o^- p a r t ic le  u sin g  the appropriate w ave-function .

Adopting the former course Irving (25) has found the 

fo llo w in g  s e t  of va lu es fo r

\ TO
— = 1*7  x 10 -'em, g iv in g  a binding energy of 28 MeV
fa  fo r  He4-.

~  = 2 .0  x 10-13cm, g iv in g  a binding energy of 20.5 MeV
fa  fo r  He4-.

and — = 2*5 x 10~^3cm, g iv in g  a binding energy of 12-5 MeV
fa  fo r  He4.
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The value -i- = 3*65 x 10“*13 cm lead s to a value o f
/V<5r

23 MeV for  the binding energy of the o C -p a r tic le .

(Xtx and have a lso  been evaluated  by the

second method* The root mean square of the rad ius (R) 

of the p a r t ic le  is  defined  to be proportional to  the 

radius of the circum scribed sphere of the tetrahedron  

whose s id e s  are equal to  the root mean square sep aration  

of the nucleons , the constant of p ro p o rtio n a lity  (fo) 

being g rea ter  than or equal to u n ity . From the geometry 

of the fig u re  ^

P„»' 3 .15

An elem entary c a lc u la t io n  shows th a t  ^ > sx =

H ofstadter e t  a l  (24) have estim ated  the value  

R *  1*4 x 10-13 cm fo r  the r.m .s* of the radius of the 

o(- p a r t ic le  • Then

—  = “ -̂x 1 0 - 13  cm <  3 . 7  x  1 0 cm 3 .14a

-1- = ii^O x io -1 3  cm ^  1 .50  x  10  ̂ cm 3.14b
^Ux fo

I f  the mean v a lu es  o f the separation  of the nucleons and 

the mean value of the radius of the d,- p a r t ic le  are used

in  the ev a lu a tio n  of \Kclq, and in stead  of the r .m .s .
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v a lu es  of these q u a n tit ie s , then

—  = 3 , 3 3  x  lO -^cm  4  3 .33  x 10_13 om 3 . 1 5 a
fo

and — = 1ji39 x 1 0 1 .39  x  1 0 ~3-3 cm 3 . 1 5 "b
^  fo

The v a lu es of -3- ca lcu la ted  from the binding energy  

and rad ius of the < -p a r t ic le  are in  f a ir ly  good agree­

ment ( f0 -  \ ) but there i s  a s l ig h t  d iscrepancy between

the two d if fe r e n t  v a lu esfo r  —  . The Impulse

approximation c a lc u la tio n s  have "been performed u sin g  the 

va lu es — = 3 . 3  x 10-3-3 cm and 3_ -  1 . 7  x 10-3-3 cm,
lAaLGj Ĵoi£

fo r  the nuclear param eters, although i t  may be th a t

the va lue -3- » 1 .4  x 10~3-3 cm corresponds more c lo s e lyfut
w ith  3_ = 3 . 3  x 1 0 ~3-3 cm.

I I I  % 3# The m atrix element fo r  the photoproduction  
of a meson a t a s in g le  nucleon

The most convenient form of the m atrix element 

fo r  the photoproduction of a meson a t a s in g le  nucleon  

fo r  the purpose of employment in  the impulse approx­

im ation c a lc u la tio n s  i s  one which i s  both r e la t iv e ly  

sim ple in  form and g iv e s  r e s u lt s  which agree w ith  the 

most recent experim ental r e s u l t s  on the photoproduction
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of mesons a t hydrogen. Chew (11) has developed a m atrix  

elem ent which s a t i s f i e s  th ese  c r i t e r ia  q u ite  w e ll .

to  pseudo-vector coupling between the meson f i e l d  and 

the nucleon, which i s  considered  to  be f ix e d  a t the o r ig in  

( ’ s ta tic*  approxim ation). The re su lta n t in te r a c tio n  

Hamiltonian i s

a component of the is o to p ic  sp in  operator o f the nucleon

the coup ling  co n sta n t.

In h is  treatm ent of the sc a tte r in g  of a meson 

by a nucleon (the m atrix elem ent fo r  the photoproduction  

p rocess i s  c lo s e ly  r e la te d  to  the m atrix element fo r  t h is  

process)^  Chew (10) n e g le c ts  the r e c o i l  energy of the 

nucleon w ith  the r e s u lt  th a t the in te g r a ls  involved  in  

the equations fo r  the m atrix elem ents d iverge a t h igh  

en e r g ie s . I f  the nucleon had in stead  been trea ted  

r e l a t i v i s t i c a l l y  the energy denominator would have 

ensured the convergence of the in te g r a ls  a t high momenta.

Chew u ses  the non-re 1 at iv  i s  t i c  approximation

3 .1 6

Here i s  the source fu n ctio n  of the nucleon, i s

(equation  6 . 5 ) ,  (ix i s  a component o f the meson wave' A
fu n ctio n , <T i s  the sp in  operator of the nucleon and 9 i s
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To e lim in ate  th is  divergence Chew in troduces a c u t -o f f  

momentum above which V(^ the Fourier transform  of the 

source fu n ctio n  >̂(r) , i s  zero and below which y{V) i s  

u n ity . I f  the c u t -o f f  momentum i s  denoted by Kmax, the
2 r Vcorresponding c u t -o f f  energy is(jOmax = (Kmax + Vyŷ  ) 

and the theory con ta in s two con stan ts (- and U)max, which 

must be determined by comparison w ith experim ent.

By applying to  the s t a t ic  approximation  

renorm alisation  procedures o r ig in a lly  developed in  

connection  w ith r e l a t i v i s t i c  quantum electrodynam ics by 

Dyson (1 7 ), Chew reduces the e f f e c t iv e  value of the 

coup ling  constant £ w ith the r e s u lt  th a t many graphs 

which p rev io u sly  gave large co n tr ib u tio n s can be n eg lected  

or trea ted  by p ertu rb ation  methods. However, c e r ta in  

s e r ie s  of graphs remain in  which resonance i s  p o ss ib le  

in  the interm ediate s ta te s  and these must be summed to  

g iv e  in te g r a l eq u a tio n s. These graphs are ch a ra cter ised  

by the fa c t  th a t a meson appears alone w ith  the nucleon  

in  the in term ediate s ta te s  of the t r a n s it io n . The 

in te g r a l equations may be reso lv ed  in to  iso to p ic  sp in  

and angular momentum s ta te s  by the use of p ro jec tio n  

operators and from the so lu t io n  of the separated equat­

ion s the sc a tte r in g  phase s h i f t s  may be c a lc u la te d .



Of th ese the phase s h i f t  fo r  the t o t a l  angular
3 3momentum 2 > t o t a l  i s o to p ic  sp in  ^  > s t a t e ,  i s  the

la r g e s t  and by equating the va lu es fo r  c a lc u la te d

from h is  theory and the corresponding experim ental

v a lu es at c e r ta in  en erg ies Chew a rr iv es  at the va lu es

= 0 . 0 5 8  and 5 . 6  x(\K fo r  the coupling constant

squared and the c u t -o f f  energy.

The r e la t io n sh ip  between the m atrix elem ents 

fo r  photoproduction and sca tter in g  of a meson at a 

s in g le  nucleon may r e a d ily  be found.

l e t  " t  =  V \  - v - W  - - - 7 -  V \  b e  t h e  t r a n s i t i o n  

< \ - V \

operator fo r  the sc a tte r in g  of a meson at a nucleon
. 4

where n i s  as defined  in  (3 . 1^)•

Here a = E “ V\0Vl<L > H 0i s  the  sum of the  

f r e e  f i e l d  H am ilton ians and i s  a sm all p o s i t iv e

c o n s ta n t  ( in  accordance w ith  the form alism  of lippmann 

and Schwinger ( 2 9 ) ) .

I f  T i s  the tr a n s it io n  operator for the 

photoproduction of a meson a t a s in g le  nucleon and H 

i s  the in te r a c tio n  Hamiltonian between the photon f i e l d  

and the nucleon and meson f i e ld s  then

T  =  ~  - (.'nvV\') , 17
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since V\ may be trea ted  as a sm all p ertu b ation . The 

fa c to r  — -—  <X d escrib es the in te r a c tio n  between the
(X-Y\

nucleon and i t s  surrounding cloud of v ir tu a l  mesons 

before the electrom agnetic in te ra c tio n  and i s  taken  

in to  account by using  p h y sica l q u a n tit ie s  corresponding  

to  1 real* nucleons rather than rbare' nucleons. Hence

T  = a _ J  .H
a -V v

3.18
= H + t - L HCX

on e lim in a tin g  Vi • Hence taking matrix elem ents

( q \ T \ v )  = <Ĉ \H\M> +  \ (\W\m)  3 . 1 9

Here \\)^ i s  a s ta te  con ta in ing  a nucleon and a photon 

of momentum \Ĵ and \C|> i s  a s ta te  con ta in in g  a nucleon  

and a meson of momentum ^  ( in  the c.m . system ). The 

m atrix elem ent of T  i s  the sum of two term s, the f i r s t  

of which i s  the Born approximation and the second of 

which takes in to  account the e f f e c t  of the sc a tte r in g  

o f  the meson a t the nucleon a fte r  i t s  production . This 

la t t e r  term i s  most important in  the resonance reg ion  

(200 MeV 400 MeV), where the sc a tte r in g  of the

meson through the T -  ^  > X = -1̂  (T = t o t a l  angular 

momentum, X =• t o t a l  iso to p ic  spin) s ta te  i s  dominant.



-  32 -

The variou s p a r t ia l  waves may be se le c te d  out by u sin g  

a m ultipole expansion of the vector p o te n t ia l  

occurring in  the in te r a c tio n  W •

Chew (11) con sid ers co rrectio n s to  the Born 

approximation a r is in g  from sc a tte r in g  of the meson 

through the s t a t e .  The Born approximation

fo r  charged meson production i s

( q l T £ \ m) =  I i a e  t  \  3   ̂2Q

OT i s  the sp in  of the nucleon, the p o la r iz a tio n  
v ecto r  of the photon.

V ,V are the energy and momentum of the photon Q0 and Q 
^ of the meson. L

\v> i s  taken to  be approximately

< ^ T ?\v>  = Z ^ e 2z £  i $..%

w hile the Born approximation for  the production of 

n eu tra l mesons zero* Angular momentum

conservation  shows th a t the meson sca ttered  in  the T =  

s ta te  may a r ise  from a magnetic d ipole or e le c t r ic  

quadrupole electrom agnetic tr a n s it io n . General 

angular momentum arguments ( 5 , 1 1 , 2 0 ) lead  to the 

fo llo w in g  exp ression s for the m atrix elem ents for



charged  and n e u t r a l  meson p ro d u c tio n

<c^n+ to> = ie £ _ f  2s .
w-K (c^>y q>>

4- 3 *22
Q\) QN) >

and v L

< \ 1 T »  =  t e 2 f  I E  E ^ ( g ^ 4 M rE,^ 1 ^ . 2 3
Cy\J N̂) <̂\J '

VAv and are the e f f e c t iv e  m atrix elem ents fo r  the

tr a n s it io n  through the >1̂  s ta te  due to  the magnetic

d ipo le and e le c t r ic  quadrupole in te r a c tio n s  r e s p e c t iv e ly .

Salzmann (11) assumes the forms:

V\| = W\( 3 .24a
CP-

t  x  e i&*  v n  k  3 .2413
3

fo r  and where w\x and e x are r e a l energy  

independent co n sta n ts .

I f  i t  i s  assumed th a t the photon i s  in c id en t  

along the negative z a x is  and th at the nucleon i s  ly in g  

at the o r ig in  then  the fo llo w in g  exp ression s are obtained  

by averaging the m atrix elem ents ( 3 . 2 2 ) and (3 .23) over 

the photon p o la r iz a tio n  ( £_ = O sin ce y.e = O and
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= -  IA -t-

\ V ml̂ H ^ - 3 W B + 3 * 2 5 a

v°\
\V . t  =  swvLSv ,sm’-0  3 .25b

*• ^

\ g \ XftN| -  Ltl \ ^ m l’-Xs\v\1-Ss:, ( l t \ - ^ co$'1'®-v(\v 3 .25c

1 LoL = l U ’-Ohvv1 —  « ' A ^ t f 0  3.25 a
*■ VI*

where <A.\T*\v)  = t f . K * t <<\\Tb\\)) = c.Ko-vLo > a S
and cos©  ~ ^  

qjj
The above r e l a t i o n s h i p s  (3-25) have been derived  on the 

assum ption t h a t  the  nucleon  r e c o i l  energy can be 

n e g le c te d ,  i . e .  t h a t  the  nucleon  has i n f i n i t e  mass*

To allow  f o r  the  f i n i t e  mass of the nuc leon  e q u a tio n s  

( 3 . 2 5 ) a re  ta k e n  to  be c o r r e c t  in  the c e n t r e  of 

momentum system  of th e  photon  and the  n u c leon . Hence­

f o r t h  q u a n t i t i e s  measured i n  the c.m . (c e n tre  of 

momentum) system w i l l  be d is t in g u is h e d  by the 

s u b s c r ip t  c .  The r e l a t i o n s h i p s  between q u a n t i t i e s  

in  th e  c.m . and la b o r a to ry  systems are d e r iv ed  in  

Appendix A.

As the p r i n c i p a l  o b je c t  of th e  problem i s  

n o t  to  examine the  v a l i d i t y  of the  s in g le  xoartic le
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m a tr ix  elem ent developed from any s p e c i f i c  th e o ry  h u t 

r a t h e r  to  in v e s t ig a te  the h e s t  method of red u c in g  the  

t r a n s i t i o n  o p e ra to r  f o r  the  i n t e r a c t i o n  in to  term s of 

t r a n s i t i o n  o p e ra to rs  in v o lv in g  only two p a r t i c l e s ,  and 

to  examine the  e f f e c t  of u s in g  d i f f e r e n t  momentum 

d i s t r i b u t i o n s  f o r  th e  nucleons in  the - p a r t i c l e ,  

the  c o n s ta n ts  f  , and e ^ a r e  t r e a t e d  as  v a r ia b le  

param eters  and t h e i r  optimum v a lu es  are  determ ined by 

com parison w ith  r e c e n t  ex p erim en ta l r e s u l t s *

f o r  th e  p h o to p ro d u c tio n  of charged  p ions in  the  c.m*

I f  i s  the d i f f e r e n t i a l  c r o s s - s e c t i o n
cUl«c

system and d a i s  th e  co rrespond ing  q u a n t i ty  fo r

n e u t r a l  p io n  p ro d u c t io n  th e n

-V COS 0 C 4 - C p  C O ^ 0 c

6SL
where fVy = Ql ( x *  -V ['I +  \  [ \ ^where

3.26

6)4- — -  W\ J \ -
vr\\1

1

xt  ■= - i -  ««& » * « '
X\p£- 3.27

804  ckr0 -  /\o 4. B0cos0C 4 - Cc cosx0C
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where Kc =

B 0 = O

\ c
"XX and d if f e r  s l ig h t ly  on account of the d ifferen ce  

between the m asses of the charged and n eutral mesons.

The energy r e la t io n sh ip  0^ ^ \ ) c has been used  

in  ob ta in in g  th ese c r o s s - s e c t io n s . This i s  a f a ir ly  

good approximation in  the c.m . system where the i n i t i a l  

and f in a l  en erg ies  of the nucleon are p r a c t ic a lly  eq u al.

The most accu rate ly  determined q u a n titie s  

experim entally  are f \  ^  and / \  0 * and from these the 

con stan ts C\X and -^\-V  can determined.

The experim ental r e s u lt s  which g ive the most 

r e lia b le  va lu es fo r  the q u a n titie s  f\ ^ and A 0 over 

the required  energy range have already been d iscu ssed  

in  Chapter I % 2 . The th e o r e t ic a l r e s u lt s  for Aj^and f \ 0
can be ca lcu la te d  u sin g  Chew's coupling constant ( f  =

; &
0 -0 5 %) and the fu n ctio n s (M V,E ) = ( ft\, £x) Vc e  **

• £ ^S\Y\ o ^ # The d i f f e r e n t ia l  c r o s s -s e c t io n  for n eu tra l

pion production at 90° in  the c.m . system ca lcu la te d

in  t h is  way i s  much lower than the experim ental v a lu es
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at a l l  e n e r g ie s . Moreover, the r a t io  , where

/ \ 0 i s  the Oakley and Walker experim ental r e s u lt ,  i s  

by no means con stan t, contrary to  the p red ic tio n  of 

the Chew theory, p a r t ic u la r ly  at high en erg ies  

(V >  210 MeV) where the r a t io  sy stem a tica lly  decreases  

w ith in creasin g  energy. Various t r i a l  fu n ction s fo r

and E  of the form —-  have been
1 X (\c *

te s te d  and the value of which g iv e s  the b est agree­

ment w ith  the experim ental r e s u lt s  i s  ^

then M* = e  3 .29a
X4-

E .  = e  3-2*>
IX. /X.where N\\ and are con stants w ith  the dimensions

of an energy. Incorporating these new va lu es

/ \ + = o t y  +  3 .30a

and f \b= Lto!1 ’n\'̂ (>\ v ^ \ v  3,301:>

where v

v̂ »
and <X = X c  r where r i s  chosen to  g ive the b e s t  

f i t  to  the experim ental r e s u l t s .
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The r a t io  /\o j turns out to he very

nearly  constant at en erg ies  above v  = 200 MeV w ith a 

s l ig h t  tendency to  decrease at higher e n erg ie s , although  

not n early  so pronounced as the corresponding tendency  

in  / \ c I X^ at th ese  en er g ie s . On the other hand 

below 200  MeV h 0 J drops quickly as might be expected

since behaves l ik e  near th resh o ld . In th is

reg ion  of low meson k in e t ic  energy the experim ental

r e s u lt s  are much b e tte r  f i t t e d  by a — dependence for  

/ \  , although w ith  somewhat la rg er  va lu es of and

than those derived by Chew. However, the energy 

range \  = 200 -  350 MeV i s  the more important from the

p o in t of view of the present in v e s t ig a t io n , and 

consequently the energy dependence lead in g  to  

the exp ression  (3.30b) for  f\ 0 i s  adopted. The average 

value of the r a t io  = l+ a ‘i WNliL( \  + 1

over the range V = 180 to  260 MeV turns out to be 

2 .9  X 10“ 22  (MeV) 3 (cm)2 .

The th e o r e t ic a lly  ca lcu la te d  form fo r  the 

d if f e r e n t ia l  c r o s s - s e c t io n  for  the production of 

p o s it iv e  mesons based on equation (3 .2 6 ) (w ith Chew’ s 

va lu es fo r  CX , Xws and Cx ) ,  agrees f a ir ly  w e ll w ith
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the  ex p e rim en ta l  d a ta  of Y/alker e t  a l  (3 6 ) ,  a l though  

th e  t h e o r e t i c a l  r e s u l t s  are r a t h e r  too  low a t  h ig h  

photon  e n e rg ie s .  Moreover the  r a t i o

shows a  sy s tem a tic  in c re a se  a t  the h ig h e r  end of the  

energy range which su g g e s ts  t h a t  the  c o n t r ib u t io n  of 

th e  1 s c a t t e r i n g 1 p a r t  of th e  m a tr ix  elem ent i s  n o t  

la rg e  enough i n  com parison w ith  the c o n t r ib u t io n  of 

th e  Born approx im ation . The r a t i o

i s  more n e a r ly  c o n s ta n t  and le a d s  to  an average v a lu e

value i s  c\x =. * VO15 ) •  Then

\  U K }  I

of (Chew's co rrespond ing

vc\\=. \ly^  8±- ~ O
vc\\

3 .31a

and 3.31b
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I I I  \ 4 . The d i f f e r e n t ia l  c r o s s -s e c t io n  fo r  the
e la s t i c  photoproduction of mesons a t helium

I t  has already been shown that (equation

(3 .6 ))
(

< <\\Tlv> = 1   ̂dudadndn; ̂
3 *32

where <Cc^\T^\v') = Q l^ .K 0 ’̂\wo . Using (3 .6 ) the

above exp ression  reduces to

<cLVT\v> = £

t  ( d x id u d r,,d u % ,vĵ rj]& ^

= k o \ dvj d u d * > ^  ,U* fe) ^ ~ ,r± £>

The m atrix element for  the photoproduction of 

n eu tra l mesons accompanied by sp in  f l i p  of the nucleon  

does not con trib u te to  the e la s t i c  photoproduction  

p ro cess .

Now Vy i s  a fu n ctio n  only of the

r e la t iv e  coord inates S- = £ ^ -r \  of the nucleons and 

not of the centre of mass coordinate R  —

Hence introducing the change of coordinates



B  = t  U + C x + c ^  , v = r >,-5 . t u = c 4- i » , %h= c k- r ,
the  e x p re s s io n  f o r  ^ (\ \ T \ V >) becomes

<CL\T\V> = k U M  3.33

where F = ( 3 . 3 4

i s  th e  form f a c t o r  and ip.

E  i s  no rm alised  such th a trE  =■ \ when — O .

Then
do- = J _  & IE.-EA S(fe-D') Vt \L c\x\f F
dc^dQ (x-k)x v 

Here cto’ i s  th e  d i f f e r e n t i a l  c r o s s - s e c t i o n  f o r  the

p ro d u c t io n  of a meson of momentum, by a photon of

momentum ^  , such t h a t  the  ck - p a r t i c l e  r e c o i l s  w ith

momentum O  .

E. i s  the  f i n a l  energy of th e  system and Ei,

the  i n i t i a l  en e rg y .

Then E-t = V-V-

and e , -  = cy t-k M -^ -V - D*
1 M

i s  the b in d in g  energy of the  o( - p a r t i c l e

\  \  \  \  \  V-
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and -  }  —    \lo\Lo\ \F1 3*35
CUI^ [\-k) \ 4. Iq-vCosB'i

w ith  \. _  ^ 3 .36
v ~ <\o 4- \\L-q\

I t  w i l l  be observed  t h a t  the above energy r e l a t i o n s h i p

(3.36) i s  i n c o n s i s t e n t  w ith  the co rrespond ing  energy

r e l a t i o n s h i p  f o r  p ro d u c t io n  o f  a meson of momentum a a t
\^-%\xa s in g le  nucleon , namely \j = Q0-V    and hence i t

^ 1 H
must be assumed t h a t  Chew's formulae fo r  vA\ and E^

or th e  s l i g h t l y  adap ted  formulae (3*29) are  s t i l l  v a l i d

o f f  th e  energy s h e l l .  The d e v ia t io n  from the energy

s h e l l  i s  no t la rg e  as th e  r e c o i l  f a c t o r s  ■ and
\\L-%\X a re  i n  g e n e ra l  bo th  f a i r l y  sm all in  the

energy re g io n  c o n s id e re d .  By w r i t in g  the fu n c t io n s

and E  i n  the  form (3 .24) and and E in  the

form (3 .29) i t  has a lre ad y  been assumed t h a t  only 

'o n  the  energy s h e l l '  s c a t t e r i n g  c o n t r ib u te s  to  th e  

i n t e g r a l  in  (3 .19) and i t  i s ,  t h e r e f o r e ,  the  Born 

approx im ation  m a tr ix  elem ent which must be

e v a lu a te d  o f f  the  energy s h e l l .

The form f a c t o r  F  w i l l  now be computed.
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(a) Employing Gaussian Wave-Functions

The Gaussian w ave-function  as d efin ed  in  

equation  (3 . 9 ) i s

Using the coordinate transform ation

R - -k  ̂ 5  ̂= -r\ -v*l-(j\v̂ vrû

= - ^  ■Ar > K= Arfls

c  ( W  e
then = — --------------------- — ------------------

( ,d $ d £ d £

= g  US>|6 c, 3 .37

(b) Employing Irv in g -typ e Wave-Functiona

The Irv in g-typ e w ave-function  as defined  in  

equation  (3 . 1 1 ) i s

5 ------------------------- rr
~ (. Y\v -VVy^Wx̂

and the corresponding form fa c to r  F  ̂ i s  g iven  by (using  

the same coordinate transform ation  as in  (a))

F  -  > €____
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which reduces to

x '  X ^ J r X y
V = - 1  ( ^  t a F x  _  _ _ l _ ( \ 5 - t - 4 0 x H 3 3 x ,')\ 
1 k't \  X1 XW\ JrXF /

where x  = '
% [Aoil

I t  i s  e a s i ly  v e r i f ie d  th a t E_ = 1 ,  which i s ,  of
x̂ >o _

required  hy the norm alisation  con d ition  on r •

Equation (3 .35) may now be w ritten :

_  I k  Av(cyv) \\_0\v\F r

where

and

t o )

\ \  ^  ^ - v t c o s e )

\Ui\V-w\> Me svtffc svrf-0t
h i  = { it v f

lloAX'M',) X  sw1Si i s\h’-0 c 
V \ o

The value of w i l l  depend on the value assumed/

Two ca ses  are considered:

(a) w\l=V(\ =. (Wo^a‘voVu*\ e_x - o
i W

and (b) w\xl = vx\vl =  U‘% iMexl'R vo\\£<\ e> = \
W

( \(oftxO>vt\̂  svrf ©
Then \L0\ = < \kxxaix<orQ B v̂cx1̂  svtf- 0

3.38  

course,

3 .39

3 .40

3 .41a  

3.41b  

f  or

3 .42a

3.42b

3.42c
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where 3 .4 3 a

and CCV)<L 3 .43h

^Ot^C
and p may assume the forms and given  by equations

(3 .37) and (3 .3 8 ) .

The meson energy co rrespond ing  to  a g iven  photon energy  

i s  c a lc u l a te d  from the  o v e r a l l  energy c o n s e rv a t io n  

c o n d i t io n  (3 .3 6 ) .
\)x-v c^-T. cog ©

% v \
The r e c o i l  f a c t o r  i s  r e l a t i v e l y  sm all and the e q u a tio n  

may be co n v en ien t ly  so lv ed  f o r  Ĉ Q by su ccess iv e  

approxim ations to  g ive

Qc = V - 8 v4-£>x 3 .4 4

where

Combination of the  th re e  p o s s ib le  v a lu es  of IL0V 

w ith  the two p o s s ib le  v a lu e s  of f- g iv e s  r i s e  to  s ix  

d i f f e r e n t  e x p re s s io n s  f o r  the  d i f f e r e n t i a l  c r o s s - s e c t i o n  

which are  d e t a i l e d  below.
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( i )  da ^  s\\V0 3 .45a
d J \

( i i )  dg I n \ =  t  U 0^n\£ f\ B> \ fcV" & *s SVY\X 0 3 •  45b
d i \

(i i i )  dg io\ -  t>k o!V^ (\B>V \BcÂ svk1-6** s\<\x 0  3.45c
d ^

(!▼) dg n v = t k o t ^ l \ B  \^i\% sW&^siK1© 3.45<l
d <

(v) d s  =. 3 .45e
d ^

(v i)  dg (( \ -  u  a% u (\£>\V^smxS svtf 0  3 . 45f
Clfl^

The value of k k ^ ^  > u sin g  O-OS^, e x- \ j \ 3 f l  and

Vv\̂ = • 5$ i s  1A Mcf1  ̂ (Mev^cvrO^.

The value of , u sin g  a a = X*(© * \ 0 L* (Mev^Ccw^

and = Ik'A (HeM.'̂ - i s  ?> ~I * \o_1A (Mevf (cm)1

The value of G k& ^a > u sin g  <xa = I  k % Ô-1*lvAtv\l t̂w.y>

and xi\\l= \\ b i s  X3> M o'U

The v a lu es  —  xAo ĉ v̂ and -d~ — \ ~] x \o^cm. are
f-Uo*

used in  the ev a lu a tio n  of the form fa c to r s , although  

there i s  some in d ic a t io n  th a t the la t t e r  may he s l i g h t ly  

too h igh .

The c r o s s - s e c t io n s  ( i )  -  (v i)  are ca lcu la te d  

over the range 180 -  320 MeV of the energy of the 

in c id en t photon in  the laboratory system at in te r v a ls  

of 20 MeV and at meson laboratory angles of 45°> 60°,
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90° and 135° • From the r e s u lt s  at these a n g les ,

togeth er  w ith  the fa c t  th at the c r o s s -s e c t io n  i s  zero 

a t 0° and 180° an estim ate of the angular d is tr ib u t io n  

can be made except near the upper end of the photon 

energy range, where the maximum of the angular 

d is tr ib u t io n  occurs below 45° so th a t the angular 

d is tr ib u t io n  i s  not w e ll determined a t these h igh  

en erg ies  by the s e t  o f an gles examined.

The behaviour of the sc a tter in g  p h a se -sh ift  6> 

above meson k in e t ic  en erg ies of about 180 MeV i s  not 

a ccu rate ly  known. The p h a se -sh ift  i s  a lin e a r  fu n ction  

of the meson energy in  th is  reg ion  and an estim ate of £> 

fo r  en erg ies  g rea ter  than 180 MeV can be obtained by 

l in e a r  ex tra p o la tio n . This approximation a f f e c t s  the 

d if f e r e n t ia l  c r o s s - s e c t io n  a t 90° fo r  photon en erg ies  

greater than 280 MeV; at 45° and 600  for  photon 

en erg ies  grea ter  than 300 MeV; and at 135° fo r  photon 

en erg ies  greater than 250 MeV.

The form fa c to r s  and Fx are most

con ven ien tly  ca lcu la te d  as fu n ctio n s of — 

the range of being chosen to  include the maximum 

and minimum v a lu es  of in  the energy range and

a t the angles examined. Y/ithin t h is  range the form
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fa c to r  turns out to  be greater fo r  a g iven  value of 

than the form fa c to r  Fx •

The r e s u lt s  of the c a lc u la tio n s  on the 

d if f e r e n t ia l  c r o s s -s e c t io n s  ( i ) , ( i i )  and ( i i i )  for  

the e la s t i c  photoproduction of n eu tra l mesons at helium

are presented  g ra p h ica lly  in  f ig u r es  (3 .1 ) to  ( 3 .4 ) ,  in
dUrwhich the d i f f e r e n t ia l  c r o s s -s e c t io n s  —  (1 ) 7 -r ( 2 )

ckr d ^ ^ ^and —  ( 3 ) are p lo tte d  as fu n ction s o f the incident
d-d^

photon energy at laboratory angles of 4 5 ° ,  6 0 ° , 9 0 ° and

135 ° .  The experim ental p o in ts  determined by Osborne

and de Saussure a t 90° are included fo r  comparison in

fig u re  (3*3). The angular d is tr ib u tio n s  fo r  variou s

photon en erg ies  and fo r  each form of the c r o s s -s e c t io n

may r e a d ily  be deduced from th is  s e t  of cu rv es. The

corresponding s e t  of curves rep resen tin g  the c r o ss -  
^  C\C5" / _ % , ,se c t io n s  — (4 ) , rr (5) and T7d 6 ) ,  which 

include the fa c to r  \FX\ in stead  of IF&\ are very  

s im ila r  to  the curves in  f ig u r e s  (3 .1 ) to  (3 • 4) 9 the 

main d ifferen ce  being th at the former are sm aller in  

magnitude than the la t t e r  by about th ir ty  percent at  

each angle and energy. The shapes of the curves 

rep resen tin g  corresponding c r o s s -s e c t io n s  ca lcu la te d  

on the b a s is  of Irv in g  and Gaussian w ave-functions
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are  p r a c t i c a l l y  i d e n t i c a l  and, i n  p a r t i c u l a r ,  the  maxima 

occur a t  n e a r ly  th e  same e n e rg ie s .  The d i f f e re n c e  in  

magnitude would be dec reased  by u s in g  the va lue  (3*14b) 

f o r  |Uur which may correspond more c lo s e ly  to  the value 

of used  in  th e  c a l c u l a t i o n  of ^ .

A g lance  a t  the  graphs r e v e a ls  t h a t  the 

d i f f e r e n t i a l  c r o s s - s e c t io n s  d i f f e r  c o n s id e ra b ly  in  

m agnitude. Of the th r e e ,  ^  (3 ) ,  which has been
Ctk<Lc a l c u l a t e d  on th e  a s s u m p t io n  t h a t  th e  e l e c t r i c  q u a d ru p o le

c o n t r ib u t io n  to  the  s in g le  p a r t i c l e  m a tr ix  elem ent i s

n e g l ig ib l e ,  i s  the l a r g e s t  a t  each angle and energy,

while the  c r o s s - s e c t i o n  —  ( l )  i s  a f a c t o r  of two
cUlc^

or th ree  s m a lle r ,  as would be expected , s ince  the

s in g le  nucleon  p h o to p ro d u c tio n  c r o s s - s e c t i o n  der iv ed

u s in g  Chew’ s form f o r  and and h is  c o n s ta n ts

i s  c o n s id e ra b ly  lower th a n  the co rrespond ing  c r o s s -

s e c t i o n  d e r i v e d  from  th e  a d a p te d  fo rm s  of and EL

and c o n s ta n ts  which are  ev a lu a ted  by comparison w ith

experim en ta l r e s u l t s .  The maximum of the  curve (1)
clflLo

tends  to  occur a t  s l i g h t l y  g r e a te r  e n e rg ie s  th a n  t h a t  

of the  o th e r  two, s ince  the fu n c t io n  X ^  (eq u a tio n  

( 3 .2 7 )) does n o t f a l l  o f f  so r a p id ly  a t  h igh  e n e rg ie s  

as the  f u n c t io n  (e q u a t io n  3 *3 0 ) ) .

Comparison w ith  the experim en ta l r e s u l t s  of
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Osborne and de Saussure (32) a t 90° ( f i g . (3*3)) seems
c\oto  in d ica te  th a t the c r o s s -s e c t io n  —  (3) g iv e s  the 

most s a t is fa c to r y  agreement between theory and exp eri­

ment. The th e o r e t ic a l  r e s u lt s  are somewhat lower than 

the experim ental and f a l l  away more rap id ly  on e ith e r  

s id e  of the maximum, which occurs at approximately the 

same energy (250 MeV) in  both c a s e s . However, as 

pointed  out in  the in troductory paragraph to  th is  

Chapter, i t  i s  n ot expected that the impulse approx­

im ation should g ive  very sa t is fa c to r y  r e s u lt s  fo r  th is  

re a c t io n  and the in c lu s io n  of some of the co rrec tio n s  

to  the impulse approximation should render the  

comparison between theory and experiment more 

p r o f ita b le .
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IV. AN INTRODUCTORY SURVEY OF PREVIOUS WORK OK
THE MULTIPLE SCATTERING OF MESONS AT NUCLEI.

In the d iscu ss io n  of the impulse approximation  

(Chapter II) b r ie f  reference was made to  the variou s  

errors which are im p lic it  in  th is  method. Several 

authors have examined the nature of these errors and 

estim ated  the magnitude of the co rrectio n  to  the 

impulse approximation so lu tio n  which a r is e s  from them. 

Chew and G-oldberger (12) have sy stem a tica lly  reduced 

the tr a n s it io n  operator for  the sc a tte r in g  of a p a r t ic le  

a t  a complex nucleus and have in terp reted  the terms which 

are n eg lected  in  assuming the impulse approximation. 

Watson (37) has examined the general problem of the 

sc a tte r in g  of a meson at a complex nucleus, and Brueckner 

and Watson (7 ) , Chappelear (8 ) , and Brueckner (A), have 

examined the p a r ticu la r  case of the sc a tte r in g  of a 

meson at two nucleons in  some d e t a i l .

Chew and Goldberger (12) show th a t one of 

the p r in c ip a l errors in  assuming the impulse approx­

im ation a r is e s  from the n eg lec t of the m u ltip le  

sc a tte r in g  of the p a r t ic le  w ith in  the ta rg e t nucleus  

and manage to  separate th is  e f f e c t  in  the term
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(equation  ( 2 .3 ) ) .

However, as i t  stan d s, the m atrix element of th is  term 

cannot he evaluated  sin ce the operator E.0L'Vl€.“ H C5—V 

s t i l l  appears in  the denominator. The authors show 

th a t, by use of an operator id e n t ity , th is  term may 

be s p l i t  up in to  a term which d escrib es double s c a tte r ­

ing of the in c id en t p a r t ic le  and a s e r ie s  of terms 

which con ta in  higher order e f f e c t s .  Presumably by 

repeated  a p p lica tio n  of the operator id e n t ity , terms 

d escrib in g  three con secu tive sc a tte r in g s  of the in cid en t 

p a r t ic le  and so on may be is o la te d , but t h is  method of 

development of the m u ltip le  sc a tter in g  term i s  eq u iva len t 

to  a p ertu rb ation  treatment of the problem which i s  not 

v a lid  at sm all separation s of the nucleons and a 

d iffe r e n t  approach which d escrib es the m u lt ip le -  

sc a tte r in g  e f f e c t  in  terms of in te g ra l equations i s  

a d v isa b le •

Watson (37) has adopted such an approach in  

h is  d iscu ss io n  of the m u lt ip le -sc a tte r in g  of mesons at  

complex n u c le i , and the a p p lica tio n  of the m ultip le  

sc a tte r in g  co rrec tio n  to  the impulse approximation 

so lu t io n  for the photoproduction of mesons in  complex 

n u c le i .  Much of h is  d iscu ss io n  i s  concerned w ith
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the so lu t io n  o f the m u lt ip le -sc a tte r in g  equations for  

large n u c le i and the r e la t io n  of t h is  so lu t io n  to  the  

corresponding so lu t io n  derived on the h a s is  of various  

o p tic a l models fo r  the nucleus, hut h is  method of 

obta in ing  and the approximations made in  h is  d er iv a tio n  

of the equations are of considerable in te r e s t  from the 

p oin t of view of the methods developed in  Chapter V.

Watson assumes that the re a c tio n  i s  induced 

by p a r t ic le s  whose en erg ies  are large compared w ith  

the binding en erg ies of the nucleons in  the nucleus  

and on t h is  b a s is  can n eg lec t the nuclear binding  

p o te n t ia l .  The t o t a l  Hamiltonian H which he employs 

i s  w r itten  in  the form

where Y\b i s  the sum of the free  f i e l d  H am iltonians,

R  i s  the operator which perm its re-ab sorp tion
of the me son R = S-Rjjiwhere R .̂ i s  the operator
fo r  absorption  ox a meson by a p a ir  of nucleons 
and the summation over jA i s  taken over a l l  
p o ss ib le  nucleon p a ir s ,

v = ^ v ,  where i s  the sc a tter in g  p o te n t ia l  
between the meson f i e ld  and the ^  nucleon,

and VY is  the in te r a c t io n  Hamiltonian between the 
photon f i e l d  and nucleon and meson f i e l d s .
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Watson assumes t h a t  once the  meson has been absorbed by 

an o p e ra to r  Rja? th e  i n t e r a c t i o n  i s  f i n i s h e d ,  s in ce  he 

n e g le c ts  the  p o s s i b i l i t y  of spontaneous re - e m is s io n  of 

the meson by the  o p e ra to r  R  . The o p e ra to r  R  a lso  

g ives  r i s e  to  a s c a t t e r i n g  term  (\ — R  ^k ioh  -*-s

a many body s c a t t e r i n g  o p e ra to r .

T h e  H a m i l t o n i a n  ( 4 . 1 )  l e a d s  t o  a  t r a n s i t i o n  

o p e r a t o r  T  ,  w h i c h ,  t r e a t i n g  H  a s  a  s m a l l  p e r t u r b a t i o n ,  

i s  g i v e n  b y

T  =  l H , + R A / ' ) ( U A l H ' ' )  4 .2
a

where the  o p e ra to r  IT  s a t i s f i e s  the  e q u a tio n

S i  =  1 + l l R W Y f l  4 .3
<x

The above e q u a t io n  i s  most r e a d i ly  so lved  in  term s of 

the  a u x i l i a r y  e q u a t io n

Jl* =■ \ -V A_ V i l  4.4
b

where — CL—A an& CX—E " H 0-K<c (Lippmann and
Schwinger (29))

and S i  \  4- _ L R ) .0 . I  \  4- _ L  hi\ 4 . 5

a  ‘ s b  ;

The f o r m a l  s o l u t i o n  o f  ( 4 . 4 )  i s

A  = U i l t A W  4 . 6 a
s b  ^   ̂ w

A U v  u i l  t  f t  K )  4 •613
b  x
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(4 .6 ) rep resen ts a s e t  of coupled in te g r a l eq u ation s. 

Here t = V + V -----— V

which Watson shows i s  approximately eq u iva len t in  the 

range of meson energy considered  to  the operator fo r  

the sc a tte r in g  of a meson at a free  nucleon

S u itab le  phenomenonological forms are chosen  

fo r  the m atrix elem ents of the operators R, & and . 

Watson does not attempt to  obtain  the general so lu t io n  

of the m u ltip le  sc a tte r in g  equations (4 .6 ) ,  but examines 

approximate forms of the so lu t io n  fo r  large numbers of 

n u cleo n s. I f  re -a b so rp tio n  of the meson is  not 

perm itted (R = 0) the equations (4 .2 ) -  (4 .6 ) reduce 

to  forms which are s im ila r  to  those considered  in  

Chapter Y.

Brueckner and Watson (7) have d iscu ssed  the 

m ultip le s c a tte r in g  of a meson between two nucleons in  

th e ir  in v e s t ig a t io n  of the p o te n t ia l which g iv e s  r i s e  

to  nuclear fo r c e s , w hile Brueckner (4) has in v estig a te d  

the magnitude of the co r rec tio n  due to  m u ltip le  s c a t te r ­

ing e f f e c t s  to  the impulse approximation so lu t io n  fo r  

the sc a tte r in g  of a meson by two n ucleon s. Chappelear
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(8) has extended Brueckner1 s treatm ent to  include the 

m ultip le  sc a tte r in g  e f f e c t s  in  the e la s t i c  photo­

production of n eu tra l mesons at deuterium. Although 

the work of th ese  authors d if fe r s  qu ite considerably  

in  d e t a i l ,  the equations involved , the approximations 

made and the form of the so lu t io n s  obtained are 

fundam entally the same in  each ca se . As the treatm ent 

of the m u lt ip le -s c a tte r in g  problem described  in  

Chapters V and VI was o r ig in a lly  based on Chappelear’ s 

approach to  the two-nucleon problem, a summary of h is  

work i s  now g iv en . The various approximations which 

he makes during the development of h is  so lu t io n  are 

presented  w ithout comment which w i l l  be reserved  u n t i l  

the corresponding approximations are made in  d ealing  with  

the general many-body problem.

The fo llo w in g  d e f in it io n s  are needed in  the 

a n a ly s is  which fo llo w s .

k l,2  ■fc*16 in te r a c t io n  terms in  the Hamiltonian  
between the meson and the nucleon f ie ld s  
(the nucleons are numbered 1 and 2 ) ,

H i,2 "frfr3 in te r a c t io n  terms in  the Hamiltonian  
between the meson and nucleon f i e ld s  and 
the photon f i e l d .

Let i  = h i + h2, H = %  + H2, H1 = h + H and Ht = H0 + H1 

where H0 i s  the sum of the free  f i e ld  H am iltonians.
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Then T  "the t r a n s i t i o n  o p e ra to r  f o r  the problem i s

T ^ H  + H .—5 where a  =. E  — H 0+-l£. 4-*7
cx— W °

(Lippmann and Schwinger (29))*

The co rresp o n d in g  t r a n s i t i o n  o p e ra to r  fo r  the s in g le  

nucleon  p h o to p ro d u c tio n  problem i s

T- =  ( V v t V V ^ A -  ____\____4.8
(X-Vv— VÂ

a n d  — V \ ; A - V \  L _ _ V \  4 . 9

(X-V\
i s  th e  t r a n s i t i o n  o p e ra to r  f o r  the  s c a t t e r i n g  of a meson 

a t  a s in g le  n u c leo n . Then t r e a t i n g  H  , W and \ \  as 

sm all p e r tu r b a t io n s  and r e t a in in g  only those  terms which 

are  l i n e a r  i n  them T  i s  e q u iv a le n t  to

+  ( U K - i - f \ {  \ + - h x V l  ( l  v  J J k

I  Oh 4  l  < x - V  3 1 1  a - V \
4 .1 0

Chappelear makes th e  approxim ation  of p u t t in g  the f a c t o r s

( \ * J _ V d W - L _ v A  v .
CX Vy CX-V\ ) V ^ A ) i n  ’fehe al30ve e x p re s s io n  equa l

to  u n i ty  on the  grounds t h a t  they  are  l a rg e ly  ta k en  

in to  account by use of the  c o r r e c t  w av e-func tion  f o r  

the  d eu te ro n .
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Then

T=aJ_(aJ_YT4+Qj_faJL_V\ 
a - V \ l  o . - V \ , j  a - v A  a - V g  

\
The operator   t— must he expressed in  terms of thea —V\
s in g le  nucleon tr a n s it io n  operators X̂ K and Xj  ̂ and the

m atrix elem ent of the re su lta n t exp ression  eva luated .

Owing to  the r e la t iv e  s im p lic ity  of the two nucleon

problem, the redu ction  process may be carried  out in

a f a ir ly  straightforw ard  manner which i s  not ap p licab le

to  the gen eral problem. E lim ination  V\c by the r e la t io n -  
\

ship  \ \  —I—; equation (4 .17 ) becomes
a

T =  T,v +  T vx 4 .1 2

where 4 .1 3 a

l x =N/xtxlT, 4 . 13b
J a

, -u *

> =
The form adopted fo r  the m atrix element of t L i s

4 .1 5

and ^  are the i n i t i a l  and f in a l  momenta o f the 

sc a ttered  meson and i s  dependent on the meson

energy and a lso  conta ins the iso to p ic  dependence of
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the sc a tte r in g  operator .

Three assumptions have been made about the

nature of the sc a tte r in g  tr a n s it io n  in  order to  derive

the form (4 .15) for  the sc a tter in g  m atrix elem ent;

f i r s t l y  th a t  only 1 on the energy sh ell*  sc a tte r in g

need be taken in to  account; secondly that there i s

a resonance in  the ( ,  \  ) s ta te  of angular momentum
2. * -

and iso to p ic  sp in  (Brueckner and Watson (5))  and 

l a s t l y  th at there i s  no sp in  f l i p  of the nucleon.

The form chosen by Chappelear fo r  the m atrix  

elem ent of the photoproduction operator i s

m atrices in  charge space. The con tr ib u tion  of the 

term to  the t o t a l  photoproduction m atrix elem ent 

turns out to  be sm all and hence th is  term may be 

n eg le c ted .

Using (4 .15) the in te g r a l equations (4 .14) 

may be so lved  fo r  \jx and and the m atrix elem ents 

of \  and deduced. The r e s u lt s  are

4.16

and Y- are energy dependent and are a lso

4 - 17
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■ud<«\\Ttt\v>= -  e l“

where P = ^x-ti i s  the r e la t iv e  separation  of the
i ~ nucleons

\>L = V\(c^ evaluated  on the energy s h e l l

V\ = H q o 1-
- J \ tq P

, 4 .19
IK f df f wp

q _ _ A « ±  i i i l  4 .20
1 i/v  ̂ df f f

and <̂ c and ô_ are the energy and momentum of the 

meson on the energy s h e l l .

In order to  obtain  a num erical r e s u lt  

Chappelear in troduces phenomenological forms for  ^  

and in  the equations (4 .17) and (4 .18) and a m atrix  

rep resen ta tio n  for  the iso to p ic  sp in  operators. He 

then averages the m atrix element (4 .12) over the ground 

s ta te  w ave-function  of the deuteron which i s  chosen  

to  have the co n fig u ra tio n  space dependence

where o( = 4 5 . 5  MeV.

Chappelear has ca lcu la ted  the angular 

d is tr ib u t io n  of the mesons a t two photon en erg ies  

which correspond to  meson-nucleon sc a tte r in g  phase 

s h i f t s  <S of about 45° and 90°. He f in d s  that the
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m u ltip le  sc a tte r in g  depresses the c r o s s -s e c t io n  "by 

roughly the same fa c to r  at a l l  a n g les . The ex p er i­

mental r e s u lt s  obtained by Silverman and Stearns (33) 

tend to agree ra th er  b e tte r  with the c r o s s -s e c t io n  

which in clu d es the m u ltip le  sc a tter in g  e f f e c t  than 

w ith the impulse approximation c r o s s -s e c t io n .

U nfortunately , no experim ental r e s u lt s  are a v a ila b le  

in  the reg io n  of forward angles (< 9 0 ° )  where the 

d ifferen ce  between the th e o r e t ic a l c r o s s -s e c t io n s  i s  

more marked, so th a t i t  i s  not p o ss ib le  to  d if fe r e n t  

ia te  w ith  any assurance between the v a l id it y  o f the 

two methods.



V. DERIVATION OF THE MULTIPLE SCATTERING EQUATIONS.

% 1« The In teg ra l Equations

In Chapter IV i t  was seen  that various authors 

have managed to  estim ate the magnitude of the m u ltip le  

sc a tter in g  e f f e c t  in  two sp e c ia l cases; f i r s t l y  when 

only two nucleons are involved , in  which case the 

redu ction  of the t o t a l  tr a n s it io n  operator i s  very much 

s im p lif ie d , and secondly , when the nucleus i s  la r g e , 

in  which case i t  has been shown th at the so lu t io n  of 

the m u ltip le  s c a tte r in g  equations can be id e n t i f ie d  

w ith the so lu t io n  of the m ultip le  sc a tter in g  problem 

derived on the b a s is  of o p tic a l models for  the n u c leu s.

In t h is  Chapter a method w i l l  be examined whereby the 

m ultip le sc a tte r in g  equations fo r  any number of p a r t ic le s  

may be reduced to  a s e r ie s  of lin e a r  sim ultaneous 

eq u ation s, w ith  the aid of approximations s im ila r  in  

character to  those employed by Chappelear (8)•

The m u ltip le  sc a tter in g  of a meson between 

A nucleons, numbered 1 to  A, i s  con sid ered . The 

fo llo w in g  d e f in it io n s  are required:

k l . . . A  = in te r a c tio n  terms in  the Hamiltonian
between the meson f i e ld  and the nucleon  
f i e l d .
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R s  in te r a c tio n  terms in  the Hamiltonian
1 between the meson and nucleon f i e l d s

and the ra d ia tio n  f i e l d .

v» -  K + \ v \ - ..........* V n

H  = -------- + H r

' \ 0 — K V VA-r +  V-\v where K i s  the k in e t ic  energy
operator for the nucleons

WTs i s  the free  f i e l d  Ham iltonian  
fo r  the meson f i e l d ,  and

i s  the free  f i e l d  Ham iltonian  
fo r  the ra d ia tio n  f i e l d

<X = E -  H 0- K e

where £_ i s  a sm all p o s it iv e  con stan t and E  i s  the  

eigenvalue o f H 0 corresponding to  the i n i t i a l  s ta te  

of the system

H = V* -v-H

i s  the tr a n s it io n  operator  
cx —VV f ° r  problem 5*1

T  _ n \ (w iXK- \ t r a n s it io n
i - u ----------- vut-v-ni)operator for  the photo- 5 .2

C i-E -H ;. production  of a meson at
nucleon L ,

andVVt,*vVvt—-— Vq i s  the tr a n s it io n  5 .3
(X -E  operator for the in te r a c t io n

o f the meson f i e ld  w ith  
nucle on I •
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I t  w i l l  be observed from the above th a t there has been  

no p o te n t ia l  e x p l i c i t ly  included for  the binding of 

the n ucleon s.

The tr a n s it io n  operator ~T may be w r itten  as

T = a  ' IV\+VV) 5.4
a  -V\-V\

Since the coupling between the r a d ia tio n  and nucleon  

and meson f i e l d s  i s  weak only those terms which are 

l in e a r  in  H need be re ta in ed  as the co n tr ib u tio n  of 

terms quadratic or of h igher powers in  H  i s  n e g l ig ib le .  

The term independent of H  does n o t, of course, 

contribute to  the photoproduction p rocess at a l l  and 

i s ,  th ere fo re , om itted .

To th is  approximation

T = a_L_ B ' a
(\-V\ 5 .5

-  a
h a-V <x-H

and in  a s im ila r  maimer p  reduces to

\  -  a _ l ____________H ;_ J  <X 5 .6
a-V u a - V

Equation (5.6)  i s  used to  e lim in ate  B\;_ from ( 5 . 5 ) .

Then ^

T = 1  a _ i_ ( 1 (a-V) _L_ <x 5.7
a  a  a-W
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| v C l — V\' \ \ pi j *Now the operator —  v u  i n equation (5#7)
cx a -Y \

above d escr ib es the exchange of mesons between the

nucleons before the in te r a c tio n  and these

p ro cesses may be taken in to  account by u sin g  a

reasonable w ave-function  fo r  the nucleons i n i t i a l l y .

I t  i s  a lso  p o ss ib le  th a t a v ir tu a l meson which i s

produced a t one of the nucleons by t h is  operator

might not be re-absorbed at another u n t i l  a f te r  the

in te r a c tio n  I f  the binding of the nucleons

i s  n eg lected  during the photoproduction rea c tio n

t h is  type of process need not be taken in to  account,

and a f a ir ly  good approximation to  T  may be obtained

by p u ttin g  —  —L__(i equal to  u n ity  and u sin g
a  Cx-V\

the co rrect w ave-function  fo r  the i n i t i a l  n ucleu s. 

Then ^

5 .8
a-Y\ a  

The meson-nucleon s c a tte r in g  operator i s

a
5 .9
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Where t ,  = C l— ■ ' ..... - h .— Yv. 5 .10a
*• a - V i h ,  ‘ cl

and = a ------- 5.1013
a i

t  c,L can d escribe the sc a tte r in g  of a meson or* the 

absorption  or production of an even number of mesons, 

w hile t a  ̂ can describe the absorption  or production  

o f an odd number of mesons.

The t o t a l  tr a n s it io n  operator T  can be 

expressed as

T =  t * T ,  5 . i i
uv

where y  = a — —

% 1 2
The in te r a c t io n  T ; produces a s in g le  meson and the  

second term in  the above exp ression  fo r  can only  

rep resen t the production or absorption  of an odd 

number of mesons and hence must g ive r i s e  to  a photo- 

d is in te g r a t io n  p rocess or a process in vo lv in g  the 

m u ltip le  production of mesons and n e ith er  o f th ese  

r e a c t io n s  i s  being con sid ered . Thus fo r  the photo­

production of a s in g le  meson
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5 - «' a a
For reasonably h igh  photon en erg ies  the

binding energy of the nucleons i s  sm all in  comparison

w ith  the energy of the photoproduced meson, and hence

p rocesses which lead  to  the exchange of v ir tu a l  mesons

between the nucleons w hile the photoproduced meson i s

being sc a tter ed  between the in d iv id u a l nucleons may be

n eg le c ted . To t h is  approximation not more than one

meson i s  being exchanged between the nucleons a t a g iven

tim e, and the problem of expressing the operator y i

in  terms of the operators t i  i s  considerably  s im p lif ie d .

A ty p ic a l  term from the expansion of y i  in

powers of hj can be w r itten  as 

=  .............

where C&n reFresej:rt 'ttie fo llo w in g
r e a c t io n s :

( i )  The absorption  of a meson at nucleon fo llow ed
by the absorption  of a meson at nucleon •

( i i )  The production o f a meson a t nucleon ^  fo llow ed
by the production of a meson at nucleon .

( i i i )  The absorption  of a meson a t nucleon fo llow ed
by the production of a meson at nucleon •

( iv )  The production of a meson at nucleon fo llow ed
by the absorption  of a meson a t nucleon |p .
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I t  i s  assumed th at the p o te n t ia l hj has

been renorm alised , so th a t graphs co n tr ib u tin g  to  the 

s e l f  energy of the nucleons need not he con sid ered . 

T his, together w ith  the assumption th a t the binding  

energy can he n eg lected  during the m u ltip le  sc a tte r in g  

p ro cess , im p lies th a t only those graphs which describe  

the exchange of the photoproduced meson between the 

nucleons or the sc a tte r in g  of the photoproduced meson 

a t one of the nucleons need be re ta in ed  fo r  con sid er­

a t io n .

con ta in s an even number (2M) of a n n ih ila tio n  (A) and

c r e a tio n  (C) operators (A + C = 2M) • Since one

meson i s  presen t i n i t i a l l y ,  V must g ive r is e  to  an

odd number o f mesons (C -  A + 1 = 2(C -  M) + 1 ) .  I f

t h is  number i s  greater than one the graphs which can 

r e s u lt  from the a c tio n  of the operator U ^ c o n tr ib u te  

e ith e r  to s e lf-e n e r g y  e f f e c t s ,  which have been taken  

in to  account in  the renorm alisation  of h j , or to  

p ro cesses  in  which two or more mesons are sim u lt­

aneously being exchanged between the nucleons and

The term T, may be w ritten

i s  con sid ered . The operator V
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these have been excluded by the assumption th a t the 

binding energy of the nucleons can be n eg lected  (th ese  

con clu sion s are not n e c e ssa r ily  co rrec t in  the casec^=\^) 

and hence V must g ive r i s e  to  a s in g le  meson, For

s im ila r  reasons i t  can be shown th a t cannot produce

a second meson but must absorb the meson produced by

the operator V. This immediately excludes the 

p o s s i b i l i t i e s  ( i i )  and (iv )  in  which a meson i s  

produced a t the nucleon • The p o ssib le  r e a c t io n

( i)  assumes th a t a t le a s t  three mesons must be present 

as a r e s u lt  of the a c tio n  of the operator V and fo r  

the reasons o u tlin ed  above, must a lso  be excluded.

The process described  in  ( i i i )  (again  )

i s  only important fo r  c lo se  sep aration s of the nucleons, 

where the w eighting fa c to r  a r is in g  from the in te g r a tio n  

over the i n i t i a l  and f in a l  nuclear w ave-functions i s  

sm all, and can, th ere fo re , be n eg le c ted . Then

= 6 h u v 5 .14

and UL » —
ft (X

= I U\ 5 *15
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th e r e fo r e , from equation  (5 .13)

Yi = — i 5 *16^  l _ £ u . - L v
\ a

But from equation  (5 .10a)^ ‘
 \_

\ -v-1 St~ st a
= 5.17

\i-t- J. ^'St a

where 7L\ » --------- - 5 .18
\4 - t  -Lv ^ Wi a

and hence su b s t itu t in g  (5 .17 ) fo r  u ' ^ - \ ___P\)
in  (5 .1 6 ) = ------- —K— x .  5 .19

-A  + \ + l z ,

and the problem reduces to  the so lu t io n  of the in te g r a l  

eq u a tio n s(5 .18) and ( 5 . 1 9 ) .

As the binding energy has been n eg lected , 

m atrix elem ents of t s i  which correspond to  the 

production or absorption  of two or more mesons can 

be om itted , and only the m atrix element which 

corresponds to  the sc a tte r in g  of a s in g le  meson 

need be r e ta in e d .
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Y § 2 . S ingle nucleon tr a n s it io n  m atrix elem ents* 

Before the in te g r a l equations (5.18)  and

(5.19) can be so lved  su ita b le  forms must be chosen fo r  

the m atrix elem ents of the operators and .

At the p resen t stage these m atrix elem ents are defined  

only to  the ex ten t necessary fo r  the so lu t io n  of the 

in te g r a l equations and a more d e ta ile d  exam ination of 

th e ir  energy dependence and iso to p ic  sp in  dependence 

w i l l  fo llo w  a t a la t e r  stage (Chapter V I ) •

The ch oice of the s in g le  nucleon sc a tte r in g  

m atrix element i s  determined by the fo llo w in g  s e r ie s  

of approximations and lim ita t io n s :

(1) Only sc a tte r in g  ’ on the energy sh ell*  i s  taken  
in to  account. * Off the energy s h e l l  scattering*  
w i l l  be of g r e a te s t  importance at sm all nucleon  
sep aration s where the w eighting fa c to r  a r is in g  
from the in te g ra tio n s  over the i n i t i a l  and f in a l  
nuclear w ave-functions i s  sm all.

(2) A phenom enological form for the m atrix elem ent 
derived  from a phase s h i f t  a n a ly s is  of the meson- 
nucleon sc a tte r in g  d if f e r e n t ia l  c r o s s -s e c t io n  
which in v o lv es  only s -  and p-wave mesons ( see ,  
fo r  example, reference (2))  i s  assumed.

(3) In the above form a l l  the phase s h i f t s  except 
are put equal to  zero (Brueckner and Watson ( 5 ) ) .

(4) The p o s s ib i l i t y  of s p in - f l ip  of the nucleon i s  
n eg lec ted .
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The v a l id i t y  o f th ese  approximations w i l l  be examined 

more c lo s e ly  in  Chapter VI.

Incorporating these approxim ations, the m atrix  

elem ent of the operator t s i  in  momentum space i s  

represented  b y :-

< ^ 1 ^ =  U  ^  5 .20
where and are the i n i t i a l  and f in a l  momenta of

the meson and i s  a fu n ctio n  of the energy of the

meson and i s  a lso  a m atrix in  iso to p ic  sp in  sp ace.

The p o s ts c r ip t  m .s . serv es  to  d if fe r e n t ia te  the 

momentum space m atrix elem ents from the corresponding  

co n fig u ra tio n  space m atrix elem ents which w i l l  be 

introduced sh o r t ly .

The form of the m atrix elem ent of the 

s in g le  nucleon photoproduction operator Ti has 

already been e x te n s iv e ly  d iscu ssed  (Chapter I I I ) •

Two forms of(c^l£\\))with s l ig h t ly  d iffe r e n t  energy 

dependences and va lu es fo r  the coupling constant and 

m u ltip o le  stren gth s were described , but both o f  these  

have the gen eral dependence

( <̂ \Xi ^  ̂  ̂ \  5.21
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where V i s  the momentum of the in c id en t photon, i s  

the momentum of the meson, and and ^  are fu n ctio n s  

of the photon energy and are a lso  m atrices in  charge 

sp ace. depends in  ad d ition  on the photon p o lar­

is a t io n  v ec to r  and the nucleon sp in  (X(i) (equations

(5 .20) and (5 .21 ) in  co n fig u ra tio n  space, the d iscu ss io n  

i s  tem porarily  lim ite d  to  the p a rticu la r  case A = 4 

and a n a ly s is  along the l in e s  of Chapter I I I  equation  

(3 .2 ) to  equation  (3 .5 ) i s  carried  o u t. The argument 

may e a s i ly  be extended to  include any value o f A, but 

a considerab le degree of s im p lif ic a t io n  in  the n ota tion  

i s  gained by r e s t r ic t in g  the d iscu ss io n  to the case  

A ss 4 . The m atrix element of a ty p ic a l operator  

®1 which might a r ise  from the expansion of the operator 

y i  Ti i s  averaged over the i n i t i a l  and f in a l  momentum 

d is tr ib u t io n s  of the four n u cleon s. The m atrix  

elem ent may be expanded as

(3 .22) and ( 3 .2 3 ) ) .

To a scer ta in  the forms of the m atrix elem ents

and the required  average w r it te ------
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°few

cu<^
where the n o ta tio n  i s  s im ila r  to  th a t of equation  

( 3 .2 ) .

R eplacing the momentum space w ave-functions  

by th e ir  Fourier transform s the exp ression  becomes

\  S v ^ d * d ~Â

* 4 ^ ' V T A m> l\), b  £  ,r> ̂

where the co n fig u ra tio n  space m atrix elem ents <^v\tvL \cb) 

and ( q ATAvA are d efin ed  hy

Av%)& . AVAte
< b \ U < ^ « ^ , \ u . \ ^ e  = b t ^ ^ e  5 .22

and AqVTL\M> = < c l \T i \ v ) ^ e Ŵ - * U + V ^ ^ B 5 .23
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In the above d isc u ss io n  the m atrix elem ent of the

operator i  i s  taken to  he diagonal in  momentum space a
and of the form

on the assumption th a t the r e c o i l  energy o f the nucleon
x a_may he n eg lected  (ad iah atic  approximation).U)\c^=

( ) i s  the energy of the meson.

Y  ̂ 3* Reduction of the In teg ra l Equations

Ihe a u x ilia r y  in te g r a l equation (5 .18 ) for  

the operator z.j can now he solved  w ith  the a id  of the 

sc a tte r in g  m atrix elem ent (5*22). Equation (5*18) can 

be re-arranged to  g ive

X i - \ — Z v t ^  5 .25

S u b stitu tin g  (5 .22 ) fo r  \t<a\ <\*) and in troducing the

a u x ilia r y  fu n c tio n

5 .26

(5 .26) becomes

<<\A2.lVC& = ^  5 *2 8
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This equation  may tie so lved  fo r  S ^ q A  by m u ltip ly in g
\ -iOxVvach s id e  by — and in te g ra tin g  over Q. •

( I T v Y  ^  ^(1*1
This lead s to  the r e s u lt

5 .29

where G: = ------   5.30
\ + Tc

and Ti # — , 5 .31
U x V L alc^

and hence

H v V ^ r  G , e  % ^  5 *32

The operator can now be expressed  in  the form

x t = \ - t r 3 -  5 -33-si CL
where

= G i

5 .34

sin ce  b i and G t commute. The fa c to r  a c ts  as a type 

of renorm alizing co n sta n t. In  terms of the ’ normalized* 

sc a tte r in g  t r a n s it io n  operators the operator sj l i s

I

' “

5.35a

= a — '— ( a ~ t rsA _L 5.35b
a-trs a

A
v i 'n e v e t s - l t ^ - .  

b '



Comparison w ith the exp ression  (5*15) fo r  re v ea ls  

th a t (5 .35b) could  he obtained d ir e c t ly  from (5*15)
t c

si

fo r  the sc a tte r in g  p o te n t ia l U/*. ( i  = \ — l\ ) •

The in te g r a l equation (5 -35a) i s  most

con ven ien tly  w r itten  as
h

) ,  = 5 .3 6
1=1

which has m atrix elem ents
/\ .

+  %  e  ^  5 ,37  

w ith  e l^ % < ^ \N ) i\c ^ >  5 .38

The s e t  o f equations which the Rf s s a t i s f y  may be

deduced by m u ltip ly in g  each sid e  of equation  (5 .37) on

the l e f t  by — 1  and in te g ra tin g  over Ĝ .
U'K? a ^  ^ ~

The redu ction  of th ese  equations to  th e ir  sim p lest terms

in v o lv es  the ev a lu a tio n  of an in te g r a l of the type

■  -  ^

I u vr \ i  /i C7 \  e ̂   ̂ - i i
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where a l l  the energy dependent q u a n tit ie s  are evaluated  

on the energy s h e l l .

= 5 *40

V* C ' d c Anwhere h\, = — — — —  5 .41
r  K : TjV( (Xty ^

“ * 5 ‘ 42
Using (5 .40) the *R* equations become 

G V ^  = XivA%) 5 .43

sin ce

l "  5 -“

The m atrix elem ent of the tr a n s it io n  operator T can 

be expressed  most con ven ien tly  in  terms of fu n ctio n s  

which are c lo s e ly  r e la te d  to

l l )  5'1 ■ 5.45

and ( i i )  V_^= q v̂ e ^ V~ ^  5 .46
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and the sim ultaneous equations s a t i s f i e d  by th ese  

fu n ctio n s may r e a d ily  be deduced from equation  (5*43).

( i )  Equations fo r  the
\ -coi.q

M ultip ly ing  each side of (5 .43) 

on the r ig h t  and in te g ra tin g  w ith  resp ec t to  

lea d s to

t § f e  ( c ^
& 3'i.G^c -  5 .47

by (5 .4 4 ) , (5 .3 2 ) , (5 .40) and (5 .3 1 ) .

I f  the change o f v a r ia b le s  = G i s  

introduced the s e t  of equations (5 .47) assume the 

sim ple form
ft c

+  T .  ( \ =

' fo r  L=^\...... ft, V = \........ft.

5 .48

( i i )  Equations fo r  the W i

In  a s im ila r  manner to  the above a s e t  of 

equations may be obtained fo r  the fu n ctio n s by a 

su ita b le  transform ation  of (5 .43)» g iv in g

GyA-cV; -V- 5 .49
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whi c h may be f u r t h e r  s i mp l i f i e d  by t he  change of  

v a r  i a bl e  s  M ^ = G  ̂  ^

tA — ̂ = - b(,\ -  ̂ 5 .5 0

fo r  l =A — ..... ( \ .

The t o t a l  t r a n s i t i o n  o p era to r  T i s  r e la t e d  t o  by

* =t>Tc 
A. ^

•* •  <<\ x \ T W ) = ^ < \ v\ ' f vT i\\> ) where ^ ^  th e  

momentum o f  the in c id e n t  photon  and c v̂ i s  th e  moment­

um of th e  ob served  m eson.

. \< c \ , \T W >  = I  5 .5 1

= 1  + X e  5 *52

hy (5 .3 7 )  and (5 .2 3 )
A W ir A

/ .  <c(i\T\v> = l e " 5 [ U e H^ b A e ^ Q ^ , U i )  ^

4- e ^ i  e 'l^ G ^ . % |

= 1  [ ^ e ' C%~ 4 - t e H'r̂ ^ E §  5 .54
L=\
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. <̂ \T\v> = 1 1  + 5‘55
\r\  ) A  3 3

The renorm alization  con stan ts G. do n ot appear e ith e r
i

in  the above exp ression  fo r  the p ro b a b ility  amplitude 

fo r  the photoproduction of a meson a t the A nucleons 

or in  the equations (5 .48) and (5 .50) for the fu n ction s  

R. and M*. r e s p e c t iv e ly . This lend s considerab le  

weight to  the in te r p r e ta t io n  of as a type of

renorm alization  co n sta n t.

The m u ltip le  sc a tte r in g  problem has now been 

reduced to  th a t of so lv in g  a s e r ie s  of l in e a r  sim u lt­

aneous equations in  the components of the v ec to r s  and 

P R  • These equations con ta in  the m atrices V> in  

charge space which may be of considerable dimensions 

even when A i s  sm all (see for example Chapter VI, where 

the m atrices are examined fo r  the p a r ticu la r  case 

A = 4 ) .  The p r in c ip a l r e s u lts  of th is  paragraph are 

summarised in  equations (5 .5 5 ) , (5 .48) and (5 .5 0 ) ,  

namely ^

<Cfc\T\v) = i  I  e  5 .56
ft

5.57where ( \ -

JL .

5 - 58
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Henceforward, the equations (5*57) w i l l  he re ferred  to  

as the 1P* equations and the equations (5-50) as the 

*M* equations*

Y \  4* The m u ltip le  sc a tte r in g  equations for the 
sc a tte r in g  of a meson a t A nucleons*

The m u ltip le  sc a tte r in g  equations fo r  the

sc a tte r in g  of a meson at A nucleons are very s im ila r

in  character to  the m u ltip le  sc a tte r in g  equations fo r

the photoproduction of a meson a t A nucleons, because

of the b asic  s im ila r ity  of the t o t a l  t r a n s it io n

operators fo r  th ese  two in te r a c t io n s . The t o t a l

tr a n s it io n  operator for  the sc a tte r in g  re a c tio n  i s

S = V \ + w ^ - w  5 < 5 9

where V\ and <\ are d efined  a t the beginning of th is  

Chapter.

With the aid  of the approximations which le d  

to  the exp ression  (5 .1 6 ) i t  can be shown th a t

S  =  7 — TT u  5 .60
' <x

where only those terms which can represen t the s c a t te r ­

ing of a s in g le  meson a t the in d iv id u a l nucleons have 

been r e ta in e d .
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How from (5 .33 ) 2 l = \ —t rA  

but from (5 .17 ) =* \ —
(X

Uq = "trSv 5 .6 1

and hence S =  — !--------t r.
-  ^ •k  

“ I  S i
V.~\

where n '

5 .62

Q  ! t r - 5 .63
v~  \ - t r ^' a

S olving the in te g r a l equation  (5 .63 ) fo r  the m atrix  

elem ents of the operator S  '̂  by methods s im ila r  to  

those employed in  the previous paragraph i t  can be 

shown th a t

< ^ \ < ^ = 1 1  5 .6 *

where
(\

f  or L - l ....... ft

and k - \ -  ft.
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V I* TH£ isotopic spin  and energy dependence of the
MESON-NUCLEON SCATTERING AND SINGIE NUCLEON 

PHOTOPRODUCTION MATRIX ELEMENTS

So fa r  the m atrix elem ents and

have been defined  only to the ex ten t necessary  

fo r  the d er iv a tio n  of the m u ltip le  sc a tte r in g  eq u ation s. 

To f a c i l i t a t e  the fu r th er  exam ination of the equations  

and th e ir  so lu t io n s  the iso to p ic  sp in  and energy 

dependence of th ese  m atrix elem ents w i l l  now be 

determ ined.

VI § 1* Iso to p ic  sp in  formalism

The concept of iso to p ic  sp in  arose from the 

observation  th a t nuclear fo rce s  are charge independent. 

For th is  reason the proton and neutron may be considered  

as two s ta te s  of the same p a r t ic le ,  the nucleon and 

s im ila r ly  the p o s it iv e  negative and n eu tra l mesons may be 

considered  as three s ta te s  of the one p a r t ic le ,  these  

s ta te s  being d if fe r e n t ia te d  by the *2 component of the 

is o to p ic  spin* which i s  c lo s e ly  r e la te d  to  the charge 

of the p a r t ic le s .  The r o le  of iso to p ic  sp in  in  the  

theory of nuclear stru ctu re i s  analogous to  th a t of 

sp in  in  the theory of atomic s t a t e s ,  in so fa r  as i t
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i s  r e la te d  to  the number of p erm issib le  quantum s ta te s  

a v a ila b le  to  the p a r t ic le s .  Pursuing th is  analogy 

fu rth er a tw o-dim ensional iso to p ic  sp in  space may be 

a sso c ia ted  w ith  the nucleons in  which the protons have 

the rep resen ta tio n

° r i a  6 , 1

and the neutrons have the rep resen ta tio n

r i  “ f f l
the quantum number Vn in  the sp h er ica l harmonic 11 

being chosen such that the charge of the nucleon  

i s  g iven  by c^-rtNA'l. (6 .1 ) and (6 .2 ) d efine the 

is o to p ic  sp in  w ave-functions of the nucleon.

In a s im ila r  manner a three dim ensional 

is o to p ic  sp in  space may be a sso c ia ted  w ith the three  

p o ss ib le  charge s ta te s  of the meson in  which the

mesons have the 1 w ave-fu n ctions’ .
fi \Y > T \°s7°orjO ^

°oi i ;
the value of in  t h is  case being equal to the

6 .3

charge of the meson*

Operators in  iso to p ic  sp in  space are defined  

in  analogy w ith the s h i f t  operators in  angular momentum



-  88 -

theory (s e e , fo r  example, reference (3) p .782) • An 

arb itrary  phase fa c to r  occurs in  the d er iv a tio n  of the 

r e s u lt  o f actin g  w ith  these operators on the angular 

momentum w ave-functions and i s  chosen to  be zero here 

in  order to  allow  the com bination of iso to p ic  sp in  

w ave-functions by means of Clebsch-Gordan c o e f f ic ie n t s  

(1 6 ) . The iso to p ic  sp in  operators for the nucleons

are defined  as fo llo w s

> x ” i o - o3

I f  -  T ^ T "  ; Tx= t U ' - T * )  3 ^  = To 

then L T'^xQ = 2.1 €-u\<Xy

X * =

y ■y

6 .4

6.5

6 .6

where the commutator bracket £ > and the symbol £ v

have th e ir  u su a l m eanings. The corresponding

operators for  the mesons are

I t - 1- O \ O 
o  o  I
O O 01

0  o  o
1 o o  
Lo  \ O

° \ o o  
o  o  o
p  O

then ^

6.7

6.8  

6.9

In  terms of meson a n n ih ila tio n  and cr ea tio n  operators 

( CXy , and a n n ih ila te  p o s it iv e ,  negative and
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"V* —

n eu tra l mesons of momentum k >r e sp e c t iv e ly )  L , 

and (L0 may be w ritten

^ = = lo =  6 .10

I f  the v ec to r  U  i s  defined  to  have components

' I = x\. J U r  -  t a V ■> U , =  C K 6 -11
then  t  can be con ven ien tly  expressed as

S ^ y * u ‘

The components o f U  s a t i s f y  the commutation r e la t io n sh ip

V A U )* l = &u a l l  other commutators being zero .
" M  J

The v a lu es of the commutators are

requ ired  for  the fu rth er  development of the p ro p ertie s  

of iso to p ic  sp in . are components of the meson

f i e l d  operators defined  by

V= i v l ' +  < $ ); > 4>» = <& 6.13

<̂ > , <jp* and dpc are the u su a l operators a sso c ia ted  w ith  

charged and sca la r  meson f i e l d s .  I f  the eva lu a tion  of 

these commutators i s  attempted u sin g  the expansion

U  = zL (xvwvcf- ~ +  & L )  i-t i s  found th a t the
v a lu es'o b ta in ed  are such th a t the components of the

v ec to r  "L-v 4c no,t commute w ith  Now i t  i s
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e s s e n t ia l  fo r  the development of the p ro p ertie s  of 

iso to p ic  sp in  th a t the commutators should

he aero . There are two p o ss ib le  courses open in  order 

to  obtain  the required  va lu es fo r  the commutators

(1) The is o  to p ic  sp in  operator fo r  the meson may be 

re -d e fin ed  as where 7\ i s  the momentum

conjugate to  0  . With t h is  d e f in it io n , however, meson 

is o to p ic  sp in  w ave-functions cannot be co r r e c tly  combined 

w ith nucleon iso to p ie  sp in  w ave-functions by means of 

Clebsch-Gordan c o e f f i c ie n t s .  Instead  the required  

com bination r u le s  may be obtained by operating on the 

s ta te  \^ ) ( ^ >  f rep resen tin g  the iso to p ic  sp in  s ta te

of IT nucleons, w ith  the operator -V-------------

which g iv e s  r i s e  to  a combination of iso to p ic  sp in  

s ta te s  rep resen tin g  N nucleons and one meson, w ith  

the same iso to p ic  sp in  as the i n i t i a l  s ta te  •

Other s ta te s  w ith d iffe r e n t  t o t a l  iso to p ic  sp in  may 

be con stru cted  by using the orth ogonality  r e la t io n s h ip s  

between s t a te s  w ith  the same z-component o f ,  but 

d iffe r e n t  t o t a l ,  iso to p ic  sp in . The combination  

c o e f f ic ie n t s  obtained in  t h is  way have the same 

magnitude as the corresponding Clebsch-G-ordan
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c o e f f ic ie n t s  but d if f e r  in  s ig n  in  c e r ta in  c a s e s .

(2) The f i e l d  operator <̂ ) may be expanded as

^  =  ^  ' * )  6 , 1 4 ̂ (IV U)\<

The transform ation  im plied by t h is  re ­

d e f in it io n  le a v e s  the r e s u lt s  which lea d  to  the 

p h y sica l in te r p r e ta t io n  of unchanged ( e — b
N  = Ou ,Ql ) • This form of (fc> lea d s to  commutation 

K & *
r e la t io n s h ip s  w ith  ^  (as defined  in  equation  ( 6 .7 ) ) ,

which ensure the con servation  of the v ec to r  quantity

I = T l + t  • These commutation r e la t io n s h ip s  are ~ L ~

= ^ H r c^r 6.15

The in te r a c t io n  Hamiltonian between the 

nucleon and meson f i e ld s  i s  on the PS-PS theory  

(Kemmer (27)) (th a t i s  pseudoscalar mesons w ith  pseudo­

sca la r  coup ling  of the meson and nucleon f ie ld s )

=  6>16 

Here ^  = r i \ n  ^ T + \y = r v \n  e t c .

W J \ o _ .

I f  the system  con ta in s N nucleons and P mesons the 

in te r a c tio n  terms in  the Hamiltonian are
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V \in ,? ') =  Cl ly  X x^ V r - 6 .17

The iso to p ie  sp in  of t h is  system i s  d efined  to  he

1 - t X x > n l  U v)  6 -18

I t  fo llo w s immediately from the commutation r e la t io n s h ip s  

[ T Lia \T ^ o i \  = X  V 6 .19a

6.19b

— O 6.19c

th at each component of X  i s  conserved during the in te r -
'"'W

a ctio n  W A h . p )  . How , X  and VA C commute w ith  each  

other and, hence, two new quantum numbers ^ o r l ^  and 

X may be introduced which are conserved during the 

in te r a c t io n  » where

1  • so

and i s  the iso to p ic  sp in  w ave-function  of the

m eson-nucleon system . I f  A = number of nucleons, Z =

number of protons, M+ = number of p o s it iv e  mesons, and

M- = number of negative mesons, then YW = 21 -  B.-V H ~M .
Q. X -V -
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With the d e f in it io n s  and p ro p ertie s  of iso to p io

sp in  which have been e s ta b lish e d  i t  i s  now p o ss ib le  to

con stru ct the charge m atrix . The grad ien t

coupling Hamiltonian defined  in  equation (3 .16) has the

same iso to p ic  sp in  p ro p ertie s  as the Hamiltonian defined

in  t h is  Chapter (equation  (6 .1 6 ))  and hence iso to p ic

sp in  i s  conserved by the sc a tte r in g  tr a n s it io n  operator

I f  b ^ c^  i s  w r itten  as where C(\<  ̂ i s  an

energy independent m atrix in  charge space and b(cj^ i s  a

sc a la r  in  charge space, then each term in  c(̂ W) must

co n ta in  one a n n ih ila tio n  and one crea tio n  operator fo r

the meson which i s  sc a tter ed  and the most gen eral form

of C W  s a t is fy in g  t h is  requirement i s
3

c{Y) = 6 .21

where ^  V

and the  are sc a la rs  in  charge space.

Im position  of the co n d itio n  th at iso to p ic  sp in  i s  to  be 

conserved during the tr a n s it io n  jX~\ — determ ine3

th a t =
, where a i s  a constant. 6 .22  

The operator i s  equal to  ^b^ b^ A c^ C ^
and i s  e f f e c t iv e ly  u n ity .
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One of the assumptions made when the general 

form of the m atrix elem ent was ê r v̂e<^

was th a t the sc a tte r in g  takes p lace through the 

s t a t e .  Hence, the con stan t a i s  to  be chosen so 

th a t C(W) p r o je c ts  out the s ta te  and, th ere fo re ,

a s a t i s f i e s  the equation

where i s  the iso to p ic  sp in  s ta te  w ith  z-component

of is o to p ic  sp in  Xr\ and t o t a l  iso to p ic  sp in  T • Then
1

( (  \ W  I \
6 .24a

' V X  6 -2tb

where (yXIV^) » f° r  in sta n ce , i s  the iso to p ic  sp in  

s ta te  of a neutron and p o s it iv e  meson. (6 .23 ) g iv e s  

a = 2 . Therefore

6 ‘25
where fc> (^ conta ins the energy dependence of the 

tr a n s it io n

71^2. Matrix rep resen ta tio n s  fo r  the sc a tte r in g  
operators in  charge space.

As an i l lu s t r a t io n  of the methods o f fin d in g  

the most su ita b le  m atrix rep resen ta tio n  of the operators
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C^t), the p a r ticu la r  example of the e la s t i c  photo­

production of n eu tra l mesons at helium , which i s  to  

he stud ied  in  grea ter  d e ta il  in  subsequent Chapters, 

w i l l  he examined. The p a r ticu la r  example of a meson 

which i s  i n i t i a l l y  produced at nucleon Ip and a f te r  

se v era l sc a tte r in g s  between the nucleons i s  ev en tu a lly  

sca ttered  out from nucleon i s  con sid ered . Let \'Cy 
he the i n i t i a l  is o to p ic  sp in  s ta te  of the four nucleons 

and he the f in a l  sp in  s ta te  of the nucleon-me son

system . Then i f  the iso to p ic  sp in  operator a sso c ia ted  

w ith  the photoproduction operator i s  the

is o to p ic  sp in  dependence of the m atrix elem ent for  

t h is  p a r tic u la r  t r a n s it io n  i s

< f \ q o y . .x i r v . - .d O p ) \ c >

r,  6 *2 6
=  2 _ - < . ^ \ c i r t \ ^ ........

Here  a complete s e t  of b a s is  s ta te s

fo r  the d escr ip tio n  of the is o to p ic  sp in  s ta te s  of 

four nucleons and a meson,. There are fo r ty  e ig h t  

such b a s is  s ta te s  a lto g e th e r , hut co n sid era tio n  of  

charge con servation  = immediately reduces the 

number of th ese  fo r  which C has non-zero m atrix  

elem ents to  fo u rteen .
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l e t  C ( ^ =  < ^  cfco\V> , =  < \ \  d ^ U >
Then (6 .26) i s  c lo s e ly  r e la te d  to  the m atrix product

\ i •
X~ cWh '' c(t\ |H 

1
* -

5 i

d a v -  <*0^

1% \
6.27

i f  \ 0 - Z A i  \Hl)> where the /\^ are con stan ts
l= i

and H l4 \l+ then the m atrix elem ent (6 .26) reduces to
M

6.28

The m atrix elem ents of the operators C(L) and 

are evaluated  in  two rep r ese n ta tio n s .

( i )  The F ir s t  M atrix R epresentation  of the Operator

The b a s is  s ta te s  in  th is  rep resen ta tio n  which 

give non-zero m atrix elem ents are

3 “ (0) ir ,3I&Yk° 3 1 ‘to if, 3 (dm, 3J if •, T ° 3 “ U y, 3? toW ;

3''l\U+J?h\t\*,3?te>YR+ i3xtoif JU'Wj 6-29

1  U)is an iso to p ic  sp in  e ig e n sta te  of four nucleons 

w ith charge quantum number M and t o t a l  iso to p ic  sp in  J . 

These s t a te s  are b u il t  up according to  the fo llo w in g  

scheme •
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1 nucleon

2 nucleons

3 nucleons

4 nucleons

Four 14 x 14 m atrices for C ( l) ,  C (2), G(3) and 0(4) 

are obtained in  th is  rep resen ta tio n .

( i i )  The Second M a tr ix  R e p r e s e n t a t i o n  o f  th e  O p e ra to r  C-(l) 

The d im e n s io n s  of th e  m a t r i c e s  i n  t h e  f i r s t  

r e p r e s e n t a t i o n  may be c o n s i d e r a b l y  r e d u c e d  by t a k i n g  

i n t o  a c c o u n t  t h e  c o n s e r v a t i o n  o f  th e  t o t a l  i s o t o p i c  

s p i n  X  d u r in g  th e  s c a t t e r i n g  p r o c e s s .  I n  o r d e r  t o  

o b t a i n  t h i s  r e d u c t i o n  a seco n d  r e p r e s e n t a t i o n  of th e  

m e s o n -n u c le o n  s t a t e s  i s  em ployed i n  w hich  th e  b a s i s  

s t a t e s  a r e  e i g e n f u n c t i o n s  of X  —

and X  = ) , -v  w i t h  e ig e n v a l u e s  X  and O r e s p e c t i v e l y .  

The r e l a t i o n s h i p  b e tw ee n  th e  two s e t s  of b a s i s  s t a t e s  

i s  g i v e n  by
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Y°(\Y= 6.30a
»|0\

X ° ^ ~  7 o W lX °  6.30b

Xv y = i  c = ^ 3  6 .30c
&
L ( I^ tY )  1 = ^ 3  6 .3 0 a
2S

Y °1 0 =  J _ ( ^ ; W l Y + ^ ^ W V + 3 ^ a ^ 'V) t = \ JX3 6.306
(ô~

X ^ \  = — (^XlO-K-ZTt(Y-K°-vX’'j;'U'>TCV) 6 .3 0 f»)1\ .
\ 0 J-

1  (T U \)tT - 7 ; ' ^ T x+)  6 .30g
x>

Y U Y =  J_ ( 7 x U l f + ^ 1 1 1 ^ 4 - ^ 1 ^ * )  6.30b.
5Y

From th e  p r o p e r t i e s  of the o p e ra to r  C ic ) i t  fo l lo w s  t h a t  

th e  only  non-zero  m a tr ix  e lem ents  of c(C) in  the  second 

r e p r e s e n ta t i o n  occur between s t a t e s  w ith  1  = \ , namely 

(6 .30s}, (6 .3 0 b ) , (6 .30d) and ( 6 .3 0 f ) , which red u ces  the 

dim ensions of the m a tr ix  c (0 to  6 x 6 .  I t  i s ,  however, 

n ec e ssa ry  to  e v a lu a te  a l l  the  m a tr ix  e lem ents in  the  

f i r s t  r e p r e s e n t a t i o n  as  they  a re  needed in  th e  fo rm a tio n  

of the  second m a tr ix .

The m a t r ic e s  C ( l) ,C (2 ) ,C (3 )  and C(4) computed 

in  the  second r e p r e s e n t a t i o n  a re
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VI % 3 . The i s o t o p i c  s p i n  a n d  e n e r g y  d e p e n d e n c e  of 
t h e  m a t r i x  e l e m e n t  < A V T \ . W )

The form adopted f o r  the  s in g le  p a r t i c l e  

p h o to p ro d u c tio n  m a tr ix  elem ent, , f o r  example,
v m.s.

i s  t h a t  proposed  by Chew (11) or the  s l i g h t l y  adapted  

form e x te n s iv e ly  d isc u ssed  in  Chapter I I I .  In  e i t h e r  

case the m a tr ix  element may be w r i t t e n

x ^ V ) o C

+ ( ^ U ^ <̂ x + ^ y + c V \ H  6 , 3 2

where a s  b efo re  i s  e i t h e r
I tCicx 6 .33a

Q .l 6.33bor

and v i s  e i t h e r

Q l i a  (T v M iM i:  6 .34a
<\>> V V

or iV iO i ' ( iL M 'V .d  -V ( ,H ^ E ) ! ,W ,\ i \ l -K Lg ^ ig.SM \  6.34h
v  ^  1

The v a r io u s  q u a n t i t i e s  appearing  in  the above eq u a tio n s  

have a l re a d y  been d e f in ed  in  Chapter I I I ,  eq u a tio n s

(3 .2 0 ) ,  (3 .2 4 ) ,  (3 .25) and (3 .2 9 ) .  i s  the

enhancement term  due to  s c a t t e r i n g  th rough  th e X = - ^ _ ) 3-^~ 

s t a t e  and th e  o p e ra to r  0 %{S) = l i  ( t ' ( A C i \  + tH ^X V )4- C.XX, 1- ̂  ~ —
as m ight be expec ted , p r o j e c t s  o u t  the component
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of i s o to p ic  s p in ,  t h a t  i s  ,"^\0>\^>") = O and

C ^ \ o i» = o

The m a tr ix  elem ents of the  o p e ra to rs

0 * 0 ^  a  U 'lty  a \_  + X+l\ \  6 .35a

and = \ =Ulv 6 *35 t

must he computed between the  s ix  b a s i s  s t a t e s  which 

d e f in e  the  m a tr ic e s  an& the  ground s t a t e  of the

o( - p a r t i c l e .  The s p in - i s o to p ic  s p in  w ave-func tion  

of th e  d  - p a r t i c l e  i s

6.36

felv) f>WVW
jlC^nU)

where d  f ' (?> a re  sPaee s p in  w ave-func tions  f o r

s p in  up and sp in  down r e s p e c t iv e ly ,  and ' p , «  a re  

th e  i s o to p ic  s p in  w av e -fu n c tio n s  f o r  the  p ro to n  and 

n e u t ro n  r e s p e c t i v e l y .

Ih en  _L (S Uv.1 ̂ X H(a)Iki>q -^V>U)X,Cvi')lKW)

+  s ^ v x ^ x ^ l ^ V )  6,37

where
S^v/iK") =  (J>($ (3 W> + 4 3 U l ^  6 *38
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i s  the s in g le t  

iso to p ic  sp in  w ave-function  for  two nucleons 6.39

-V ^  6.40

The required  m atrix elem ents are re a d ily  eva lu ated . The

m atrix fo r  C H \)iii the second rep resen ta tio n  i s  for  3lX
in stance

<XW o,h)\\t}<y [V‘ 1
p 0

[\ ip \ + ^ sM
o Vi

o

t4̂ -ir*-

o
6,

O
O

41

and sim ila r  exp ression s can he obtained fo r  the 

remaining seven m a tr ices .

VI § 4* The energy dependence of the sc a tte r in g  
m atrix e lem ent ______

In paragraph 2 of th is  Chapter the m atrix  

elem ent wets reduced to
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^  ^  6.42

The dependence of the fu n ctio n  t> on the meson energy  

w i l l  be deduced by comparing the d i f f e r e n t ia l  c r o s s -  

s e c t io n  fo r  meson-nucleon sc a tte r in g  derived from (6 .42 )  

w ith  the corresponding c r o s s -se c t io n  derived from a 

phase s h i f t  a n a ly s is . The p a r ticu la r  rea c tio n

( or  i s  chosen for th is  comparison. Then

= <'p'R+\X'VX(t+r+X'4+'')+X»!o\'pKt)6.43
=  3

“ * = ^ < 0  6 -44

which le a d s  to  the d i f f e r e n t ia l  c r o s s -s e c t io n

—  = ^  ~  6.45

in  the lab oratory  system  for the re a c tio n  . O

i s  the r e c o i l  momentum of the nucleon . The r e c o i l  

energy of the nucleon has been n eg le c ted . In teg ra tio n  

over D  and ĉ vo lea d s to  (p u ttin g  0 ^  = ĉ0)

^  q l ^ p l  Qt'Cosx0 .  6*46
dSL^

The corresponding c r o s s - s e c t io n  con stru cted  from a
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phase s h i f t  a n a ly s is  (referen ce (2) p .67) i s ,  in  the 

centre of mass system  of the incoming meson and the 

nucleon,

^  ̂  ^ \a-v\>cosB c\ + \c W m x0 c\  6.47

where CX -  C — \ 6 .48a

= X e  -V €  -  O 6.48h

c  = e  - e  6 . 48c

OL i s  the co n tr ib u tio n  of the s-waves mesons to  the 

sc a tte r in g  am plitude, a r is e s  from sc a tter in g  of p-wave 

mesons w ithout s p in - f l ip  of the nucleon , and C a r is e s  

from the sc a tte r in g  of p-wave mesons w ith  s p in - f l ip  of 

the nucleon . Now only sc a tter in g  through the 

s ta te  was considered  in  the d er iv a tio n  of 

and t h is  i s  eq u iva len t to  the approximations 8 ^  6 ^ 0  

in  the energy range considered  (meson k in e t ic  en erg ies  

from zero up to  about 180 Mev) • In t h is  range 

and- \ &m\  ^ and hence the approximation i s  not

unreasonable. Equating 8^ and 6 M to  zero

a -  O  , \^= U € l&“ s\A 6 a  , c =  1 e 6 . 4 9
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—   ̂ ^  ŜvrvS&A ( L\cos1 ©c -\-Svo10 ^  6.50
' \̂C

I f  s p in - f l ip  i s  n eg lected  the exp ression  "becomes

^  (jÔ iv0) _  \ keo^x0 c 6 .51
dftqc Sc“

This l a s t  approximation i s  poor near ©c -  So° and 0 C-X1OC

although the d i f f e r e n t ia l  c r o s s - s e c t io n  i s  much sm aller

a t these angles than i t  i s  near 0 C-O ° o r  \%0° . The

transform ations between the c.m . q u a n tit ie s  and the

corresponding q u a n tit ie s  in  the laboratory system are

(to  a c lo se  approximation)

q ^
^  &

Hence (6 .51) g iv e s

6.53
d i \ '

Comparison of equations (6 .46) and (6 .53) show th a t

W  __ 2l ^ ( \ "V 6 .54
(JaC) *  M

and th erefore

( ^ 7  =  2x  U i ^ ( x \ L ) e ^ v A S ^  i u  6 . 5 5
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V II. SOLUTION OF THE MULTIPLE SCATTERING- EQUATIONS

§ Sol ut i on fo r  two nucleons

I t  i s  of some in te r e s t  to  obtain  the so lu t io n  

of the equations for the m u ltip le  sc a tte r in g  of a meson 

at two nucleons, f i r s t l y  because comparison w ith  the  

r e s u lt s  obtained by Chappelear (eequations (4-17) and 

(4*18)) a ffo rd s a check on the d er iv a tio n  of the 

eq u ation s, and secondly because the form of the 

so lu t io n  for  the two nucleon problem a cta  as a guide 

to  the form expected  fo r  the so lu t io n  of the equations  

fo r  la rg er  v a lu es  of A. The case A = 2 i s  the only 

one in  which the exact so lu t io n  may be obtained e a s i ly .

( i )  S o lu tion  of the tPt equations fo r  A = 2

The * P* equations fo r  the case A = 2 are 

(w ith i  = 1)

Ri +  O^v^ra.^pi) =  V, 7 .1 a

R i +  W l + o^rylru .R,V) =  O  7 . lb

togeth er w ith  a s im ila r  s e t  of equations obtained by 

interchanging the su b scr ip ts  1 and 2 in  the above.
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K  Ca =^ > t a -   ̂ , V "  ° ^ = °S

H fa - V ^ C ^ ^  7.2a

fn- -V W(f^> -VO, £ U ,W)\ = 0 7.213

T his l a s t  s e t  of e q u a tio n s  has the  s o lu t io n

P. = - 1—  U i  +  o (o .v ^  7 -3a
\  \ - W x V -  *  ¥

and v

? = 7 -31

where h  = f  4-

and th e se  r e s u l t s  agree w ith  th e  r e s u l t s  o b ta in ed  by 

Chappelear* s method in  e q u a tio n s  (4 .17) and (4 .1 8 )•

The Impulse app rox im ation  s o lu t io n  i s  sim ply  R^^-v 

and = O  .

( i i )  S o lu tio n  of the *Mf equations fo r  A = 2

In  th e  n o ta t io n  of the  p rev io u s  p arag rap h  

the  fMf e q u a tio n s  become

Mu +- M V1+  f  = 0  7 . 4a

7 .4 b
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Hence M u= i p b , ----- — —- b ^ ,  7 .5 a
~ u f  V b ^ W  

“ 4 7 ' 5b

The impulse approximation so lu t io n  i s  M^= O .

The tr a n s it io n  p ro b a b ility  amplitude fo r  the 

phot ©production o f a meson a t two nucleons i s  obtained  

by su b s titu tin g  the fu n ctio n s (7 .3 )  and (7 .5 ) together  

w ith  the corresponding so lu t io n s  for  Pu

and P ^  in  the ex p ressio n  (5 .55) fo r  ^c^\T W ).

YII § 2 . S o lu tio n  of the m u lt ip le -sc a tte r in g  
equations fo r  A = 4 .

The four nucleon fP* equations derived  from 

equation  (5 .48) w ith  A = 4 and i  = 1 may be w r itten  

in  the fo llo w in g  s im p lif ie d  n o ta tio n

X\ 4- "X\ -V =  ^  7 .6 a

W ^ X j-V b x \\x >  \ \ X jj = 0  7 .6b

t>2>PxXl'V‘ \>2,V\ U Xb ^ ^  ~  ^  7 .6 c

^VA^^-V Xu—O 7 .6d

where X  , ^  , X) and Xy = R , ^  P^ 7 .7

re sp ec tiv e ly *
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7 .8

r e s p e c t iv e ly

7 .9

b>* 9 t>3 and are (equation  (6 .3 1 ))  m atrices in

charge space w ith  dim ensions 6 x 6 i f  the photoproduction  

of n eu tra l mesons i s  con sid ered . The labour involved  

in  the m anipulation of these m atrices during the p rocess  

of so lv in g  the s e t  of equations (7 .6 ) i s  p ro h ib itiv e  i f  

adequate computing f a c i l i t i e s  are not a v a ila b le , and 

hence the charge exchange p rocesses are n eg lected  at 

t h is  stage in  order to obtain  a numerical- r e s u lt  which 

w i l l  at l e a s t  g iv e  a q u a lita t iv e  in d ica tio n  of the 

magnitude of the m u ltip le  sc a tte r in g  c o r r e c t io n . I t  

i s  d i f f i c u l t  to  estim ate the error caused by th is  

approximation, but i t  i s  probably no worse than th at  

incurred by n eg lec tin g  the s p in - f l ip  term in  the s c a tte r ­

ing m atrix elem ent, which i s  a comparable type of 

approximation. Hence n eg lec tin g  the charge exchange 

terms th

7 .1 0
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But the m atrix elem ent of the operator i 0 between 

s ta te s  which con ta in  a n eu tra l meson i s  always zero  

and, th ere fo re ,

=  —  —  e &il i= \ - - - /+  7 . 1 1
i°  X

where A i s  a fu n ctio n  of the meson energy defined  by

k = 1+smS^W 7.12

The photoproduction m atrix elem ent 

i s  a lso  con sid erab ly  s im p lif ie d  by th is  approximation, 

s in ce  there i s  now no production of s-wave mesons. The 

s im p lif ie d  form of i s

(< l\T a v >  = q a  e  7 .13

where has been defined  in  equation  (6 .3 4 ) .  The

fa c t  th a t does not appear in  th is  exp ression  fo r  the 

photoproduction m atrix elem ent means th a t the 'M* 

equations fo r  the s im p lif ie d  problem need not be so lv ed .

The s e t  o f equations (7 .6 ) has now been  

reduced to  a s e t  of tw elve lin e a r  sim ultaneous equations  

in  the components of the v ec to r s  The simple

appearance of the s e t  of equations (7 .6 ) i s  deceptive  

as the algebra of the operators - k ]is q u ite  complex.
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Equations (7 .6c) and (7.6d) can be so lved  to  g ive X-s, and 

Xi* in  terms of X and Xx sin ce th ese equations regarded  

as equations in  Xj and Xi, are s im ila r  in  type to  the  

deuteron *P' equations d iscu ssed  in  % 1 . However, the 

equations fo r  and Xz. which r e s u lt  from su b s titu tin g  

fo r  an& ^4 in  (7 .6a) and (7.6b) the so lu tio n s  of 

(7 .6c) and (7.6d) are q u ite  unmanageable and i t  seems 

advisab le to  look  fo r  some approximation whereby the  

equations (7 .6 ) can be s im p lif ie d .

Xn order to  in v e s t ig a te  the r e la t iv e  importance 

of the terms in  th ese equations i t  i s  necessary to  know 

the magnitude of the fu n ctio n s and for variou s  

separation s of the n u cleon s, has been defined  

(equation  (5 .41) ) to  be
= _ i q  d 

]V to  r)V r̂ v

-  ^  7 ' 14
to r^3

and m u ltip ly in g  by VxfcA

i l i

where ')  '

7 .15

7 .16
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S im ila r ly  has been defined  (equation  (5 .4 2 )) to  be

( ' x .   cl c
V  _  r)V dr^ \ 7 .1 7

and th erefo re  ^  ^

= - 1 e  “ +  + ^  7 .18

To obta in  a rough estim ate of the magnitude of the 

c o e f f ic ie n t s  of in  the equations (7 .6 ) ,  the mean

value o f ) i s  taken t0  be i ^ j ^ V
The impulse approximation so lu t io n  to  the 

problem i s  Xt ?=. ^  Xx = x 3 — X,- O . This so lu t io n  

w i l l  be v a lid  when and \b}Cy^tjy\ ar®

much sm aller than one. In the reg io n  O  -  CŶ ' ,

2,10 ^_\K2_tO MeV.the moduli o f these fu n ction s are 

roughly comparable in  magnitude and take on the va lu es;  

oo a t = O ; \ a t =. \ o \ r f t .  ; * 3  a t rjK =. \ % X \0
and *\ a t \ * VO'̂ Cvw . In the reg ion  ^  > \.c>x \o"’Vicm.

 ̂V ^  the so lu t io n  i s  tending towards the

impulse approximation so lu t io n , w hile fo r  sm all v a lu es

- \ 2>
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o f  r ^ (  vy <. \0  JCm.̂  the impulse approximation i s

c e r ta in ly  in a ccu ra te . As the root mean square rad iu s

of the o{- p a r t ic le  i s  only 1 .4  x 10 cm. i t  appears

th a t the impulse approximation so lu t io n  for the e la s t i c

photoproduction of n eu tra l mesons a t helium w i l l  have

l i t t l e  more than q u a lita t iv e  s ig n if ic a n c e .

For sm all r-  ̂ \ 0  the fu n ctio n s

\>t-^  and assume the approximate form

A  and are p rop ortion al to  v.J* • Then \"X\\

( \ =.\ __ 1+. ) w i l l  be p roportional to  —  and w i l l
J r\

be n e g lig ib ly  sm all for  the greater part of t h is

reg io n . I t  i s  n ecessary then in  d eriv in g  an

approximate form of the equations (7 .6 ) to  look for

a s e t  of equations whose so lu t io n  tends to  the impulse

and i sapproximation so lu t io n  fo r  ^  \S  A \0  cyyy , 

n e g lig ib ly  s: 

equations i s

n e g lig ib ly  sm all fo r  <^\0 '5cm. • Such a s e t  of

Xj + =  )L 7 .2 0 a

=-'bUlX! 7 .20b

Xj = -'c .U xXi 7 .2 0 c

^ u = - 'o V \ 3x , 7 .2 0 d



-  115 -

I t  i s  obvious th a t th is  s e t  of equations (7*20) tends 

towards the impulse appro xim ation X  ~ , Xx =. X> = -  O

fo r  large nucleon sep a ra tio n s. I t  may a lso  be shown 

th a t fo r  r.w lO cm \Xt\ i s  p roportional to  - 7
' 1 ~ N'l ^and \Xi\ » \X>\ and \Xm\ are proportional to  —^

A
I t  would seem then th a t the so lu t io n  of the approx­

imate s e t  (7 .20 ) has the same general trends in  

behaviour as the so lu t io n  of the complete s e t  (7*6), 

although, of course, i t  i s  d i f f i c u l t  to  compare th e ir  

d e ta ile d  behaviour p a r t ic u la r ly  in  the reg ion  

\0  O^cm . The in d ic a tio n s  are th a t the

magnitude o f X v as derived  from (7.20) w i l l  be 

underestim ated in  th is  reg io n  of nucleon sep aration . 

The equations (7 .20) have the so lu t io n

j  ! f  +

where f  = \ -&  ( f > ^ ^ ^  > k ,- f w

7 .2 1 a

7.21b

7 .2 1 c

7.21d

7 .22

7.23
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■= L = \ , 1 3  7 .2 4

K  = L= \,1 3  7 .25

H  = ^ q c o s 7  > ', £ .£ =  ^ jC ose, 7 .26

-  I \ -Vicos 0 , Cos Bxcos©j -cos1-©, -o x ’- q -  COS1 © ;,)

7 .27

■ =  7.28

^ s m x0 x 7.29

= 9X-1  f\l+ -V- Sif\x 0J 7 . 30

IV  = ?' tos©j + a’-lcosqcose^-cose^^ 7.31

l\ft =. ^,^j( f  c o s© ^ -V iCos©icos01-co s  e j  7.32

\ y = ? ^ U  cos 0 \ •V ^tcos^cosQ j-oos© ^) 7.33
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V III . THE MULTIPLE SCATTERING CORRECTION TO THE 
DIFFERENTIAL CROSS-SECTION FOB THE ELASTIC 

PHOTOPRODUCTION OF MESONS AT HELIUM

§ 1 , The photoproduction m atrix element

By equation  (5*55) the m atrix elem ent 

of the t o t a l  t r a n s it io n  operator T i s

( ^ T W )  »  1 1  8 a

and th is  must he averaged over the i n i t i a l  and f in a l  

w ave-functions of the o(- p a r t ic le .

l e t  be

the o(~ p a r t ic le  w ave-function  where *̂s

a symmetric, norm alised, co n fig u ra tio n  space wave- 

function*

Then the t r a n s it io n  p r o b a b ility  amplitude M 

i s   ̂ ^

where O  i s  the r e c o i l  momentum, and R the centre of

mass coordinate of the o(~ p a r tic le *  Each term in

(equation  (7*21)) depends l in e a r ly  on ^  , and can
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be w r itten  as ~ ^-V wliere ^ l$Wi) dependent

lin e a r ly  on the sp in  operator <J(V) of the nucleon  

and ;̂0 i s  independent of 5 .(1) .  Then

= o  8*3a 

« *  8,315

^C^^^is id e n t ic a l  w ith  L-^of equation  (3 .23) Therefore

M y * *
M y Y  qm
_5 ,

or v ^ - ^ 52-' H  }IX£ 8-4''b
' <̂ v

Then

M =  8 ,5

From the symmetry of t h is  exp ression  i t  can

be seen  f i r s t  of a l l  that each nucleon co n tr ib u tes

eq u a lly  to  M and hence M reduces to
U_

^  = Iv ^ d v id r id v id ^ ^ i^ ^ e . ^ ^ 8 *6

and secondly th a t the co n tr ib u tio n s of nucleons 2, 3

and 4 to  the in te g r a l in  (8 .6 ) are eq u a l. T herefore,

M = k ^ d i i d a d r i d ^ ^ ^ ^ ^ ^ e ^ ^ ^  8 .7



A Gaussian w ave-function  i s  chosen to  

rep resen t the <*- p a r t ic le  (equation (3• 9)) and the 

coordinate transform ation

where i t  i s  understood th at Xi and X*. depend on

V III ^ 2 ,  The tetrahedron  model for the o (-p a r tic le

the t r a n s it io n  p ro b a b ility  amplitude M are d i f f i c u l t  

to-perform  prim arily  because of the dependence o f Xi 

and X l on the an gles between the r e la t iv e  coord inates  

Sv , and ^ of the nucleons. In order to  evaluate

the exp ression  (8 ,9 ) fo r  M in te g ra tio n s  over nine 

v a r ia b le s  would have to  be performed by numerical 

methods. I f  a change of v a r ia b le s  were introduced

i s  used to  g ive

M =  k  U itf N \ d sjd s .d ^ e

V f* (,9,

8 .9

The in te g r a ls  in  the exp ression  (8 .9 )fo r
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such th a t the angles 0 i , and 0  of equation (7 .26)  

were three of the new v a r ia b le s , i t  i s  p o ss ib le  th a t  

the numerical work might be reduced to  the ev a lu a tio n  

of a s ix -d im en sion a l in te g r a l, but the amount of 

c a lc u la t io n  involved  would s t i l l  be p r o h ib it iv e . I t  

i s  obvious th at the q u a lita t iv e  nature of the m atrix  

elem ent as developed Chapter VII does not

warrant such an ex ten siv e  programme of num erical 

c a lc u la t io n , and hence i t  i s  advisab le to  in v e s t ig a te  

the p o s s ib i l i t y  o f fin d in g  a model fo r  the o(- p a r t ic le  

which would reduce th is  programme con sid erab ly .

The model developed w ith  t h is  end in  view  

i s  the tetrahedron model fo r  the o ( -p a r t ic le . In 

th is  model i t  i s  assumed that the nucleons are placed  

at the v e r t ic e s  o f a regu lar tetrahedron which i s  only  

allow ed to  expand or con tract in  such a way th a t the 

s id e s  remain eq u a l. These r e s t r ic t io n s  remove f iv e  

of the nine o r ig in a l degrees of freedom of the o(- 

p a r t ic le  (n e g lec tin g  the motion of the centre of mass 

of the n u c leu s). The angles , 0^ and 0^ are now 

each 60° w ith  the r e s u lt  th a t , since X  and X. are 

dependent only on th ese a n g les , only one numerical 

in te g r a tio n , namely th a t over the r e la t iv e  separation s
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of the nucleons, remains to be done. The tetrahedron  

assumptions ou tlin ed  above in  fa c t  increase the  

s im ila r ity  of the cX -p a r t ic le  problem to  the deuteron  

problem both in  the nature of the nuclear w ave-function  

employed (which i s  dependent on only one r e la t iv e  

separation  in  each case) and in  the nature of the 

so lu tio n s  to  the m u ltip le  sc a tter in g  eq u ation s.

The symmetry of the model may be more f u l ly  

ex p lo ited  by changing the system of axes. l e t  the 

o r ig in a l s e t  of axes b eO x ,O j ,Oz_with the nucleon 1 

ly in g  at the o r ig in  O , the axes being f ix e d  by the 

d ir e c t io n s  of the in c id en t photon and the observed  

meson in  a way which i s  not s p e c if ie d  a t the moment.

The new z a x is  Ozl, w ith d ir e c t io n  c o s in es  (sinO cosC ip , 

s in  © s in d p  , cos 0  ) w ith re sp ec t to  the o r ig in a l s e t  

of axes, i s  chosen to  be the a x is  of the tetrahedron  

passing through O ( i . e .  O z.1 makes equal angles w ith  % ,

Sx and );  the new x a x is  Ox' i s  chosen to  l i e  in  

the plane z O z 1 and to  be perpendicular to  Oz.1 ^x‘O x ,= SO ) 

and the new y a x is  O sj i i s  chosen to  complete the 

right-handed orthogenal s e t  O x(,O ^1, Ox‘.
The new s e t  of axes have the fo llo w in g  

d ir e c t io n  co s in e s  w ith  resp ect to  the o r ig in a l s e t
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O x '-U i •> ( cosB cos^  CosQ s'm §> -sm Q) 8 . 10a

0-j' ] , cos<)p , 0  )  8 . 1 0 b

Oz' \ I L, ( s vt\ 0  cos<Y sm©sw\<̂ > 5 cos 0 ) 8 .10c

while w ith  resp ec t to  the s e t O x 1, O V , Oz1 , % , Si. a n d  s 3

have d ir e c t io n  c o s in e s

( liY c o s l\)  smV\) } \ ^ x) 8 .11a

kx. 8.11b

% sw\i<o°+^^, (^ y ) 8 .11c

th at i s  w ith  resp ec t to  the new axes Si , S3, and Sshave 

sp h er ica l p o lar  coord in ates (s,c o s \xo+ty) 
and^SjCoi'^Y^lt^O-V^)) r e s p e c t iv e ly . With re sp ec t to  

the o r ig in a l axes St , Sjl and % have sp h erica l po lar  

coord inates ( s V)0 X)<^, (,sX)0 X)<}f)  ̂ and (<=>*,

Hence in  the ev a lu a tio n  of the tr a n s it io n
t o o

p ro b a b ility  M, \ d lstd szd si i s  rep laced  by
-*o

 ̂ svd s ^  sm Q d Q ^  d^) 8 . 1 2
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The r e la t io n  between the two coordinate system s i s  g iven  

by

SV(\B»cos<^v= - ^ c o s 0 coscipcosty -sm<^s\nl^dXSm0cos(^) 8 .13a

S\v\ 0 ŝw(3p̂ = ^^cosB sm <̂ )cOsiy -Vcosĉ smV̂  V2>S\n B 8.13b

t o s Q ^ - k  ( -s \v \0 c o s li)  -V 27-c.os 0^ 8 .13c

w ith  the corresponding r e la t io n sh ip s  fo r  0 ^ ,  and

obtained by rep la c in g  V̂) in  the above 

r e la t io n s h ip s  by\*IC?+V\) and '2li0o4-iy r e s p e c t iv e ly .

With the s im p lify in g  assumptions of the 

tetrahedron model the Gaussian form of the ct\- p a r t ic le  

w ave-function  reduces to

=  8 *14

Here i s  an ad ju stab le  parameter which i s  chosen

so th a t a 5reasonable f i t  i s  obtained to  the rad iu s of 

the p a r t ic le  when i t  i s  described  by the above wave- 

fu n c tio n . In Chapter I I I  i t  was shown th a t the  

r e la t io n sh ip  between the root mean square rad iu s R c.<yyS 

and the root mean square separation  of the nucleons
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S Vttvs c a lcu la te d  on the "basis of the tetrahedron model 

i s   ̂  ̂x w hile obtained with the use o f Gaussian

wave-f u nctions i s  ( .  Then by (8 ,15)
V<W

K c t  -  " b -  ^  8 , 1 66 X

and the v a lu es  of pu<v which g ive the b est f i t  to  the 

rad ius or binding energy of the cL- p a r t ic le  have already  

been d iscu ssed  (equations (3.13a) > (3 .1 4 a ) ) .  Using the 

w ave-function  (8 .14 ) to  represent the cL- p a r t ic le  the 

t r a n s it io n  p r o b a b ility  amplitude M^ftfo r  the e la s t i c  

photoproduction of n eu tra l mesons a t helium , evaluated  

on the b a s is  of the impulse approximation and the  

tetrahedron model i s  ^

\A Vft=  6 l i - ^ . - Q ' ) H x U ’- d s e aiAi' s  ^ s w 0 d 9  g
o

where

b T= \  S''ds£a^’Ŝ \\A 0 d 0 l d<ip C'dVy 8.18

TV*
“  I S

i n  ,
and X i s  a u n it v ec to r  along the w x  d ir e c t io n .
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Ehen by s e le c t in g  the O x  a x is  to  be p a r a l le l  to

( l l t f  & {)L-\-'d)(^\AJ=T\1-

8 a 9
»o J

: * 8 -2°  

hy (8 .16)

-1 .V 1
m ,r =

=  Lv (x-rY  & \ _ 0  e  vw> h * ,  8  • 2 1

r\. i s  id e n t ic a l  w ith  the impulse approximation Vn.
so lu t io n  obtained when the c^- p a r t ic le  i s  represented  

by a Gaussian w ave-function , as may be seen  on comparison 

of (8 .21) w ith  (3 .33 ) and (3 .3 7 )•  I t  does not seem 

unreasonable to  hope, th erefo re , th at the tetrahedron  

model w i l l  a lso  g ive  a so lu tio n  fo r  the m u ltip le  

sc a tte r in g  co rrec tio n  to  the Impulse approximation,

which i s  not fa r  removed from th a t obtained by
(°°

in teg ra tin g  over the f u l l  con fig u ra tio n  space \ d s id s td s j ,
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V III ^ 3 .  The m u lt ip le -sc a tte r in g  co rrec tio n  to  the
impulse approximation fo r  the e la s t i c  photo­
production of -ft° mesons a t helium on the 
tetrahedron model.

On the tetrahedron model the d e f in it io n s

(7*22) to  (7 .26) are a ltered  to  
. © \ = ©v=0^= ;kO° i = =■£*=• s  X ■={% -  e.

0 ^ \ — — ̂  ' 5 U \  - o L -^  — oL^ — o i  -}  ̂=  ̂ ^  8 .2 2

^\x~  ftvs =■ hxh= ^ ( l f -  8.23

/X W = hxx = (.If-- ■ * > ^  8.24

A  8.25

ftpL =. ft» = £ha = ______ ?___  =. £  8.26
ft ft l\

-ft'i =  A?. = ft» =  TJr-'b?1- _ ^  g >27
ft ft ft

Hence the so lu t io n s  to  the equations ( Xv a îd Xx. )

which are required  in  the ev a lu a tio n  of the m atrix  

elem ent are

( c ^ f t  =  A- I <4^  4 - 1  le r C X

 ̂ ^ t c  / ,s, 8 . 2 8
4-

r
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where as before i s  a u n it  v ec to r  in  the d ir e c t io n  Oz!

+ 8 ‘29

where, = ~W U:X l> 8 .30

8 -3 i

The m atrix elem ent M (8 .9 ) may be con ven ien tly  separated  

in to

8 . 3 2

(
oo ^
sxd s £  I s mQ d ©

* \“ d $  CA> ( « , )  6.33
‘o >o ,• i°̂  ~V)lUa\sv ( K

and = W (7a) 6( \l~ 0^ UT sxd^ £  I sva© d 0

8 . 34

L - ^ \
to  f a c i l i t a t e  the ev a lu a tio n  of the in teg ra tio n s over 

the an gles ©  , and 1̂ ) .

The c a lc u la tio n s  are rather sim pler fo r  the 

meson angle of 90o in  the laboratory system and the 

ev a lu a tio n  o f the m atrix elem ent M i s  r e s tr ic te d  to  

t h is  p a r ticu la r  c a s e .
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( i)  E valuation  of M\ fo r  mesons produced a t 90° 
in  the lab oratory  system

From (8 .33 ) M, =  f tU r f  6 0 1 - ^ - ^ ) ^ ! ,  8 -35a

v  (00 x  i -ywhere Xv = V s  CXS £  J\ 8.358

\  = ls(<\0d9K, 8.35c

K, -  8 . 35a
'o

and L\ — 8.35e

The O x  a x is  i s  chosen to  be p a r a lle l  to  6 i= .^ y'Jp  , 

^ = V -C ^ * Then by su b s t itu t in g  (8 .28) fo r  

i t  can r e a d ily  be shown th a t

K t= e L6'scose { •V3r\x(c ^ ^ t6 m 1-0

A- OX. E. ^ X cos^ Q -sw 1-©^ 8 . 3 6

w ith  D  = A- 8 *37

E  8 . 3 8and

Now C ^ o r =  iA > A ^ » ) _ _  s in c e  ^„.nl= 0 ( V = - \ ^

. ’ . K v =• e  XD-V^Esw\x0  ^

-" iE  U ^ K lc o s1©
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41

and 3, = l ^ ^ 0l& 4P + E ) £>v=\&\ 8 • «

For the production of mesons a t 90° to  the in c id en t  

photon he am in  the laboratory system and over the range 

of photon energy considered  (200-260 MeV) the fa c to r  

i s  approximately zero , and therefore

( . / oo —3— v ̂  w
where 1 G , OjXvl =  \ X^'X-S. ^ G  8 -42

O
q x  \

X = y -  =  ZT-\ 8 .43

and NJl = ° q  8 .44

^ b ^ i s  f*16 sp h er ica l B e sse l fu n ctio n  of order £  •

( i i )  E valuation  of N x lt^ o r  mesons produced a t 90° 
in  the lab oratory  system .

From (8*34) 8 .45a

=  \ £  A A O  8.45bwhere

* 3 it^  =  c  s\<\ © d © 8.45c

’o
K
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'o
8.45d

and flTv .

V-1&3 = \  <4^ i X̂i) e  S-45e

In t h is  case the Ox. a x is  i s  chosen to he p a r a lle l  to

the v ec to r  and the O^j a x is  p a r a l le l  to  )i
(s in ce  ) so th a t N^j^O, sin ce O  • Then

\4ta=-7\ (r^ )e ^ ?tos0ToU»tveXo'+x'cô e')8-46
where O' 8 .47a

E ‘ = E e t  8.47b

and / _ ^  8.48
3^

MAAmay be obtained to  a s u f f ic ie n t ly  c lo se  approx- 

im ation by r e ta in in g  only the f i r s t  two terms in  the 

expansion of i s  c y l in d r ic a l

B esse l fu n ctio n  of order v\ • Then

(c\ A . C j~ D  (

+ 3  E cos1-©^-^sv^©^  ̂ ^

where 6 ^ 0 , 6 ^  ( ^ V , 8 -50

and d X L - s\n  0  d© d d )
- 1 6  s

The expansion of the plane wave E, in  terms of 

sp h er ica l harmonics and sp h er ica l B esse l fu n ctio n s
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i s  employed

ft „ j n. ^  ixA{-O \te-l 1 '
and E can be represented  to  a c lo se  approximation  

in  the energy reg io n  under con sid era tion  by re ta in in g  

only these terms up to  and in clu d in g  . Since the

meson i s  produced a t 90°only terms w ith  w \-O give a non­

zero co n tr ib u tio n  to  Then

^dVô - ^ o;oAi\ H £ cao]-{-cAe' o^

52

where the s ig n if ic a n c e  of the bracket n o ta tion
6x 3Ay

has been exp la ined  in  equation  (8 , 42) and ^ » •  x

( i i i )  E valuation  of Md^-Vor mesons produced a t 90° 
in  the laboratory  system .

Using a n o ta tio n  analogous to  th at of the

previous s e c t io n  i t  may re a d ily  be deduced that

\ - J t 3  = -  X U sm 6 ]

-  A 1 Cl&t c) ̂ \ 0  cos0 3̂  U\sm 0) q _ .
^  0 . 5 3

- I S  ~ C ) S(x\x0  Tx ( 1  S\<\0 )
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I f  the approximations of s e c t io n  ( i i )  are introduced, 

namely expanding the c y lin d r ic a l B esse l fu n ctio n s up

Hence c o l le c t in g  togeth er  the r e s u lt s  of equations 

(8 .41)* (8 .52 ) and (8 .5 4 ) , and n e g le c tin g  some of the 

terms included  in  these equations because th e ir  con­

tr ib u t io n  to  M i s  r e la t iv e ly  sm all, the expression  fo r  

M becomes

T (sv & t-  A  
[  & 6 \ o ' , o ' * o \ - M E ' t f o }  8 > 5 8

to  the power and r e ta in in g  only the O , \

terms in  the multipole expansion of 0  , then

-  £ « * & (  i  \ . e M

P x U ° ^ l\V !o ' X o i , ,

where

and cosS = —  
o

8 . 5 7

+■k  W p 'i, o \
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in  which oC =  -^"Z- = 9QL
to ÛCr

v  ^

c o s 6  = -----------—-----------

ana  ̂ x M x e ^ ^ o t '
c>

From (8 .3 6 ) , ( 8 .3 7 ) ,  (8 .26 ) ana (8 .27)

° * 1 T ?

E  -  ^
1 x t - f V ^ - x f )

where f- = \ ~  3 1'oet'

ana Px =  2 '0 o e \'o ^ S l)| +

(7 .1 6 ) ana (7 .19) g ive
b e  =  A  e ^ ^ - W z ^  A  

Z-£

V =  i  e  K ^ ' )

8 .59

8.60  

8 .61  

8.62

8.63

8 .64

8.65

8.66

8.67

8.68  

8.69
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The above exp ression  fo r  M becomes very  

much sim pler at en erg ies  ju st  above the thresh old  for  

production of n eu tra l mesons. In fa c t  i t  can be shown 

th a t M i s  independent of energy in  the range 

MeV of meson momentum which corresponds to the range

MeV of photon energy. I t  i s  n ot, however, 

expected th a t the m u ltip le  sc a tte r in g  co rrectio n  as 

developed here w i l l  g ive  accurate r e s u lt s  a t these  

low en erg ies  as the binding energy of the nucleons w i l l  

p lay  an important p a r t . The r e s u lt  i s  included for  

the sake of com pleteness and because the behaviour of 

the f u n c t io n s ,^ , E , D* , E* , D" and E near th res­

hold i s  qu ite in te r e s t in g . i s  defined  by

M = — !—  H MS 8 . 7 0

Then ^ O v C + -^ E \0 N)' ,o \  8 . 7 1
near thresh old

Since in  t h is  reg ion  D  and 'jx-'J

A fter some reduction  M may be presented
MS

in  the form

K ws= ij d x x Le  8 . 7 2

+  kE ( +

^  x=V»>
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where r
_
~ X1 8 .73

and X' =■ I ?  ^  8>74
<\? ( \ V

\A '
»

<X i s  independen t of meson energy i n  the  r e g io n  under 

exam ina tion .

The t h i r d  term  in  e q u a tio n  (8.72) a r i s e s  

from the  c o n t r ib u t io n  of 1 poles* of O  , E  and E '  a t  

V - l j -  ( X =-W b ) and the f o u r th  term  from ’p o le s 1 of E  

and E a t  r~ \^ X = \-5 )  (eq u a t io n  ( 8 .8 3 ) ) .

The m a tr ix  elem ent M of e q u a tio n  (8 .32) may 

be w r i t t e n  in  g e n e ra l  as

M =  t o t M' 8 *75 
MS

and hence th e  d i f f e r e n t i a l  c r o s s - s e c t io n  f o r  th e  e l a s t i c  

p h o to p ro d u c tio n  of n e u t r a l  mesons a t  helium  ( in c lu d in g  

th e  m u l t i p l e - s c a t t e r i n g  c o r r e c t io n )  ms i s  give*1

Tsy

=  1    \ b ( W K M U \ y f  8 i 7 6

^  \ + ^ - v c o s e )  \ { \ i ^ ) V  Ms
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The m atrix elem ent of equation  (8 .17 ) may he w r itten

as

M = M' 8 . 7 7

*
1 (0(5 -4rXv

where M ^= \ 2 - ^ e  8 . 7 8

0 dcrand the d i f f e r e n t ia l  c r o s s -s e c t io n  — deri ved on the
dflq

b a s is  of the impulse approximation i s  x

_  _L _____ 5 1 ______  \u f  kE dU  \  iM' i2- 8 . 7 9

U T1  1 +  d v U _ VCOS0 )  u a ^ l j '

The r a t io  of the two c r o s s -s e c t io n s  of equations (8 .76) 

and (8 .79) i s

dcr /dcr 1h'WsIx 8.80
d \ / d n ^ =  K l

V III § 4 . C a lcu la tio n  and d iscu ss io n  of r e s u lt s .

The exp ression  (8 . 5 8 ) for  M i s
M S

evaluated  for  in c id en t photon en erg ies  of 220, 240 and 

260 MeV, which correspond to  meson phase s h i f t s  

of about 13°, 20° and 27° r e s p e c t iv e ly , w hile the 

exp ression  (8 .7 2 ) , which i s  v a lid  near the threshold  

of the re a c tio n , i s  evaluated  at an in c id en t
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photon energy of 140 MeV, where 6 ^  i s  very sm all.

D , E , Q ‘ , E* , D*and E w are calculated as 
functions o f  z.  -  ■ over the range of X

at in tervals of .2 except in the range \ 4= . \  where 
the in terval is  chosen to he »1 because of the rapid 
v aria tion  of the functions in th is  region, and the 
required in tegrals are computed numerically.

The behaviour of the fu n ction s D  , E  , 0 '  ,
E /  , O l and  E*' i s  p r a c t ic a lly  independent o f  the angle

a t which the meson i s  em itted  sin ce and hence and

S  depend on the angle 0  only through the r e la t iv e ly

sm all r e c o i l  fa c to r  -p- (equation (3 .3 6 ) ) .  The

fo llo w in g  gen era l trends in  the behaviour of these

fu n ctio n s can be deduced from the c a lc u la tio n s  carried

o u t  a t  0  = 90°. I t  i s  fo u n d  t h a t  th e  c o n t r i b u t i o n

to M from the three nucleons not involved in the 
MS

electro -m agn etic  in te r a c tio n  i s  sm all in  comparison 

w ith  the co n tr ib u tio n  from the nucleon at which the 

photon i s  in c id e n t, la r g e ly  because of the c a n c e lla t io n  

of terms in vo lv in g  D* , t*  , O* , E  • This 

c a n c e lla t io n  p rocess i s  brought out quite c le a r ly  in  

the exp ression  (8 .71) fo r  the m atrix element near 

th resh o ld , and i s  a lso  important at higher meson
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e n e r g ie s . I t  a lso  turns out that the con trib u tion  

of E to  MWs i s  sm all in  comparison w ith th a t of D , 
p a r tly  because the p o s it iv e  and n egative co n tr ib u tio n s  

from E a t d if fe r e n t  separation s s of the nucleons tend  

to  ca n ce l out and p a r tly  because \E\ i s  sm aller than \D\ 
in  any c a se . The form of the fu n ctio n  D , then, i s  the

dominant fa c to r  in  determ ining the magnitude of the

m u lt ip le -sc a tte r in g  c r o s s -s e c t io n .

I t  i s  in te r e s t in g  to  examine the change in  

behaviour of the fu n ctio n  D as the energy of the photon 

i s  increased  from thresh old  to  260 MeV. At threshold  

en erg ies

D  -  — —  8 . 8 1
2 . - R

except near the p o in t c =3/*" (which corresponds t o x =  1.33).

p — _o. 8 .82
<e *-5

and i s  p r a c t ic a lly  independent of energy s in ce  sW\Qy>
(4i s  a constant m  t h is  reg io n .

th en  r = 2>(.\+€.,\

R e .D =  8 . 8 3 a
£

and 4 p. 8 . 8 3 b

where

& =
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The gen era l form of the real(ReD^and imaginary 

IWnD') p a rts  of D  near thresh old  as deduced from  equations 

(8 .81 ) and (8 .83 ) i s  sketched in  fig u re  8 .1 .

F ig . 8 .1 .

As the photon energy i s  increased  the 

maxima and minima of the fu n ction s R eO  and\m D  are 

p ro g ress iv e ly  reduced in  magnitude and at the same
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time the bases of the peaks spread out over a la rg er

range of X  . The ab sc issa e  of the maximum and minimum

p o in ts  do not a lt e r  much as the energy changes, sin ce

in  the photon energy reg ion  considered the behaviour of

the fu n ctio n s  and bcxs^at these nucleon separations
Ai s  determ ined, to  a great ex ten t, by the fa c to r  —  ̂

which does not vary a great deal in  t h is  energy re g io n . 

These trends in  the behaviour of O  are i l lu s t r a t e d  

in  fig u re  8 .2 ,  in  which the r e a l and imaginary p arts  

of D  a t V = 220 and 260 MeV are p lo t te d .

_  ReD

  IM D1/ A
i t  U
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The r e a l part of i s  n e g lig ib le  at a l l

the en erg ies  examined in  the range [or
^ A t  a nucleon separation  of X * \0  V3Cm. j R e O  

i s  very n early  equal to  2 , the remaining fu n ctio n s  

being zero , and th is  corresponds to  the impulse approx­

im ation so lu t io n  to  the problem of the sc a tter in g  of a 

meson a t four n u cleon s. The m ultip le  sc a tte r in g  of 

the meson through the s ta te  then appears to

suppress the production of the meson up to  a separation  

of the nucleons of Modern. and for  la rg er  separations  

the photoproduction process i s  f a ir ly  w e ll described  by 

the impulse approxim ation. The reduction  in  the c r o ss -  

se c t io n  due to  t h is  suppression  at low en erg ies i s  

p a r t ly  compensated fo r  by the co n tr ib u tio n  of the 

imaginary part of D  to  the m atrix elem ent.

The v a lu es  fo r  the r a t io  /  ^1^ ca lcu la te d
dSl^/ dSu

at the en erg ies  NJ = 140, 220, 240 and 260 MeV are 

tabu lated  below .

M(Mey') 140 220 240 260

cUk/ cUl*
.63 •53 • Lk

> 00 •16

F ig .  8 .3
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The r a t io  i s  n early  con stan t fo r  en erg ies  near th r e s ­

hold  and then drops ra p id ly  w ith  in creasin g  photon 

energy.

Using the above v a lu es fo r  the r a t io s  of the  

c r o ss -se c t io n s  i t  i s  p o ss ib le  to  compute the m u lt ip le -  

sc a tte r in g  c r o s s - s e c t io n s  corresponding to  the

impulse approximation c r o s s -s e c t io n s  — [\\ of equations
dcr M d i U  M

(3 .4 5 )fc 9 — \(\ an& experim ental r e s u lt s
dilc! dilc^

of Osborne and de Saussure are compared in  F ig . 8 .4 .

A

%. K.
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As can be seen  from the graph the th e o r e t ic a lly

derived c r o s s - s e c t io n s , p a r tic u la r ly  the m u ltip le -  

sc a tte r in g  c r o s s -s e c t io n , are considerably  lower a t a l l  

photon en erg ies  than the experim entally  observed points*  

The experim ental r e s u lt s  of Osborne and de Saussure 

seem to  be rath er on the h igh  s id e , sin ce  even i f  the 

dependence of the th e o r e t ic a l c r o s s -s e c t io n  on the form 

fa c to r  and the m u lt ip le -sc a tte r in g  c o rrec tio n  fa c to r  

were excluded, the r e su lt in g  c r o s s -s e c t io n  would not

the experim ental r e s u l t s .

I t  i s  of some in te r e s t  to  compare, for  various  

nucleon sep a ra tio n s, the q u a lita t iv e  behaviour of the 

m u ltip le -sc a tte r in g  co rre c tio n  fa c to r  fo r  the photo­

production of a meson at four free  nucleons w ith the 

corresponding co rrec tio n  fa c to r  fo r  the m u lt ip le -sc a tte r in g  

o f a meson at two free  nucleons which has been d iscu ssed  

in  d e t a i l  by Brueckner (4 ) .  I f  i t  i s  assumed th at only  

the fu n ctio n  D (s')con trib u tes to  the m u lt ip le -sc a tte r in g  

m atrix elem ent fo r  four nucleons and th a t i s  independ­

ent of the angle at which the meson i s  produced, the r a t io

be more than about

90° meson an gle , which i s  barely  large  enough to  f i t



-  144 -

of the t o t a l  m u lt ip le -sc a tte r in g  c r o s s -s e c t io n  CTl s ^

to  the t o t a l  impulse approximation c r o s s -s e c t io n  <3^1^

at the sep aration  S of the nucleons, i s  g iven  by
crMslsi _ 8.84
&uv w

The behaviour of t h i s  r a t io  at V = 220

i s  compared in  fig u re  (8 .5)»  w ith the r a t io  of the 

t o t a l  m u lt ip le -sc a tte r in g  c r o s s -s e c t io n  fo r  the 

sc a tte r in g  of a meson at two free  nucleons 

to  the corresponding impulse approximation c r o s s -s e c t io n  

C T p a s  computed by Brueckner (4) a t = 30°.
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The s i m i l a r i t y  i n  behaviour of the two r a t i o s
<Tri s  q u i te  marked. The r a t i o  —  undergoes the  same

changes in  form as the  r a t i o  Hbs when the  energy
<3“m

of the s c a t t e r e d  meson i s  in c re a se d ,  a l though  th e  

l a t t e r  changes th e  more s w i f t ly  of the two ( fo r  

in s ta n c e  the  form of the r a t i o s  i s  comparable when 8 ^  = 

13 in  the case of and S. = 30° in  the  case of

—1 ) . The s i m i l a r i t y  between the  two r a t i o s  has

p robab ly  been em phasised to  some e x te n t  by the  approx­

imate form of the  m u l t i p l e - s c a t t e r i n g  eq u a tio n s  (7.20) 

( i n  which the  p o s s i b i l i t y  of the  meson being  s c a t t e r e d  

between th e  nucleons 2 and 3, 2 and 4, and 3 and 4 has 

been n eg le c te d )  and by the te t r a h e d ro n  model, s in ce  

the  e f f e c t  of th e se  two approxim ations has been to  

t r e a t  the fo u r  nuc leons  as th re e  d eu te ro n  l ik e  p a r t i c l e s  

which have the nucleon  1 in  common.

I t  i s  obvious t h a t  the  r e s u l t s  fo r  the  

m u l t i p l e - s c a t t e r i n g  c r o s s - s e c t io n  which have been 

deduced i n  t h i s  Chapter can have no more th a n  a 

q u a l i t a t i v e  s ig n i f i c a n c e .  The th re e  approxim ations 

of n e g le c t in g  the charge exchange p ro c e s s e s ,  assuming 

a m odified  form of the m u l t ip le  s c a t t e r i n g  eq u a tio n s
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(7 .20) and adopting a very much s im p lif ie d  model fo r  

the o -̂ p a r t ic le  have "been introduced in  order to derive  

a r e s u lt  which would give a q u a lita t iv e  in d ic a tio n  o f  

the co r re c tio n  to  the impulse approximation due to  

m u lt ip le -sc a tte r in g  e f f e c t s  w ithout in vo lv in g  an 

ex cess iv e  amount of num erical work, and with adequate 

computing f a c i l i t i e s  the complete so lu t io n  of the four  

nucleon problem on the b a s is  of the s e t s  of equations 

(5*48) and (5 .50) would probably be qu ite f e a s ib le .

Che approximations which have been made in  

the d er iv a tio n  of the m u lt ip le -sc a tte r in g  equations 

have already been d iscu ssed  in  some d e t a i l  and are 

comparable to  those employed by Brueckner, Watson and 

Ghappelear in  th e ir  exam ination of a l l i e d  problems.

Che p r in c ip a l m erit of the m u lt ip le -sc a tte r in g  

equations l i e s  in  the fa c t  th at the problem which was 

o r ig in a l ly  described  in  terms of in te g r a l equations  

i s  reduced to  the s o lu t io n  of a s e r ie s  of lin e a r  

sim ultaneous equations which, in  theory , may r e a d ily  

be found. I t  seems q u ite  p o ss ib le  that the method 

by which the equations were obtained could f a ir ly  

e a s i ly  be developed to  include s -  as w e ll as p-wave
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meson sc a tte r in g  and X -4 ^  in  a d d itio n  to  I -  ^  is o to p ic  

sp in  s t a t e s .  The problem of making some allowance fo r  

1 o f f  the energy s h e l l ’ sc a tter in g  would be considerably  

more d i f f i c u l t ,  although even th is  might be p o ss ib le  

fo r  sim ple forms of the ’ o ff  the energy shell*  s c a t te r ­

ing m atrix elem ent. However, these approximations and 

others which were employed in  obtain ing the m u ltip le -  

sc a tte r in g  equations have a l l  been j u s t i f ie d  to  a 

c e r ta in  ex ten t and i t  i s  not unreasonable, th ere fo re , 

to  hope th a t these equations include the major part of 

the co rrec tio n  to  the impulse approximation so lu t io n  

fo r  the photoproduction or sc a tte r in g  of mesons a t  

n u c le i in  the energy range 200 to  400 MeV of the 

in c id en t p a r t ic le .
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APPENDIX A.

In  the exam ination of the s in g le  nucleon

photoproduction m atrix element which was carried  out 

in  Chapter I I I  i t  was found that the various en erg ies  

and momenta which appeared in  the m atrix element derived  

by Chew (11) had to  he transformed from the centre of 

momentum system  of the photon and nucleon to  the 

laboratory  system , in  which the nucleon i s  a t r e s t .

The r e la t io n s h ip s  involved  in  th is  transform ation  are 

described  below.

being measured in  the laboratory system . The 

corresponding q u a n tit ie s  in  the centre of momentum 

(c.m .) system  are d if fe r e n t ia te d  by the su b scr ip t c .

meson r e s p e c t iv e ly .

The v e lo c it y  of the c.m. system r e la t iv e  to  

the laboratory  system  i s

Let V , V toe the momentum and energy of 

the photon and , ĉ 0 toe the momentum and energy of 

the meson where G .M = QVC.OS0* a l l  these q u a n tit ie s

M  and TC\Tk are the r e s t  masses of the nucleon and

V A .l
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A.2

and employing th is  velocity  in the Lorentz trans­
formation between the two systems the following 
re la tionsh ips between quantities in the c.m. and 
laboratory systems may be deduced

Mc -  My
(.K'VlvM t’-

c j o c =  A#3

(.K-VLvmY*-

n c — ( -VWi r CosQ■V<\1VlxCOS1~6b A ^

CDS0C = ______ ( -<l»v -t- cos8)___________  A>5
( <q (.vavvY- Avtv v ̂  - Ic^ y  (,M+\)')co<.0 -vc^-yKo^B^

SU\6C =  A s m ©  A. 6

swf0c = 1 Ĉ c s\<\x0  A.7
v v  V i< -C
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