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Abstract

In recent years, the large-scale, untargeted studies of the compounds that serve as workers
in the cell (proteins) and the small molecules involved in essential life-sustaining chemical
processes (metabolites) have provided insights into a wide array of fields, such as medical
diagnostics, drug discovery, personalised medicine and many others. Measurements in such
studies are routinely performed using liquid chromatography mass spectrometry (LC-MS)
instruments. From these measurements, we obtain a set of peaks having mass-to-charge,
retention time (RT) and intensity values. Before further analysis is possible, the raw LC-MS
data has to be processed in a data pre-preprocessing pipeline. In the alignment step of the
pipeline, peaks from multiple LC-MS measurements have to be matched. In the identification
step, the identity of unknown compounds in the sample that generate the observed peaks
have to be assigned. Using tandem mass spectrometry, fragmentation peaks characteristic
to a compound can be obtained and used to help establish the identity of the compound.
Alignment and identification are challenging because the true identities of the entire set of
compounds in the sample are unknown, and a single compound can produce many observed
peaks, each with a potential drift in its retention time value. These observed peaks are not
independent as they can be explained as being generated by the same compound.

The aim of this thesis is to introduce methods to group these related peaks and to use
these groupings to improve alignment and assist in identification during data pre-processing.
Firstly, we introduce a generative model to group related peaks by their retention time. This
information is used to influence direct-matching alignment, bringing related peak groups
closer during matching. Investigations using benchmark datasets reveal that improved align-
ment performance is obtained from this approach. Next, we also consider mass information
in the grouping process, resulting in PrecursorCluster, a model that performs the grouping
of related peaks in metabolomics by their explainable mass relationships, RT and intensity
values. Through a second-stage process that matches these related peak groups, peak align-
ment is produced. Experiments on benchmark datasets show that an improved alignment
performance is obtained, while uncertainties in matched peaksets can also be extracted from



the method. In the next section, we expand upon this two-stage method and introduce HD-
PAlign, a model that performs the clustering of related peaks within and across multiple
LC-MS runs at once. This allows for matched peaksets and their respective uncertainties
to be naturally extracted from the model. Finally, we look at fragmentation peaks used for
identification and introduce MS2LDA, a topic model to group related fragmentation fea-
tures. These groups of related fragmentation features potentially correspond to substructures
shared by metabolites and can be used to assist data interpretation during identification. This
final section corresponds to a work in progress and points to many interesting avenues for
future research.
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Chapter 1

Introduction

Liquid chromatography combined with mass spectrometry (LC-MS) has emerged as one of
the most popular methods of measurements in the untargeted study of proteins (proteomics)
and metabolites (metabolomics). Proteins and metabolites serve as crucial building blocks
in the body and play a vital role in the cellular maintenance of any organism. The observable
physical changes to the physical traits of an organism (phenotype) is often expressed in the
metabolome, and in this manner, metabolomics is often regarded as the -omics closest to
the phenotype. Understanding and characterising the proteome and metabolome provide
important insights into the working of any biological system.

The processing of the raw LC-MS data in a pipeline is often necessary before biological
conclusions can be drawn from the studies. The pipeline begins with peak detection, where
observed peaks having mass-to-charge (m/z), retention time (RT) and intensity values are
extracted from the raw data. In most studies, multiple samples are obtained and measured
(producing biological replicates) or alternatively a sample is run through the LC-MS in-
struments multiple times (producing technical replicates). Correspondent peaks that are the
same across multiple LC-MS runs are matched in the peak alignment step of the pipeline.
During identification, the identities of compounds that generate the observed peaks are de-
duced. At this stage, fragmentation data, produced when parent peaks are further fragmented
in a tandem mass spectrometry process, can also be used to aid in the annotations of com-
pound identity through matching against spectral databases.

In many cases, LC-MS data pre-processing is challenging. The lack of knowledge in the
complete composition of compounds in a sample means that we do not know for certain
which compounds are present in the sample. Compounds ionise differently during mass
spectrometry, while a single compound can produce multiple observed peaks, making data
interpretation difficult as there is no one-to-one correspondence between the observed peaks
and the compounds that generate them. While the m/z information of a peak is generally
preserved across runs, retention time drift means the observed RT values can vary among
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peaks produced on different instruments or even peaks produced on the same instrument but
measured at a different time period. This makes alignment difficult. Identification using
fragmentation data is also hampered by the limited coverage of spectral databases when
comparing the observed fragmentation patterns.

Peaks originating from the same compound are not independent. They are structurally re-
lated chemically e.g. through being the ionisaton product peaks of the same compound. We
reason that these structural dependencies can be used to improve alignment. In a similar man-
ner, fragmentation spectra, which provide the characteristic fingerprints of compounds, also
contain structural information where a subset of fragment peaks may correspond to a shared
chemical substructure in a class of compounds. In this thesis, we show that through gen-
erative modelling, the structural dependencies of these peaks can be revealed and exploited
to improve or enhance the alignment and identification steps. Moreover through generative
modelling, alignment uncertainties can also be quantified, allowing the user to control the
level of uncertainty they desire from matched peaksets.

1.1 Thesis Statement

Untargeted liquid chromatography mass spectrometry data pre-processing is a challenging
task that is often subject to errors and inaccuracies. Much of this can be attributed to the com-
plexity of the LC-MS data itself and also to the lack of knowledge as to which compounds
are present in the sample. However, the structural dependencies in the observed peak data
means that through generative modelling, we can explain the relationships between peaks,
allowing us to produce groups of related peaks that can be used to improve or enhance the
alignment and identification steps of LC-MS data pre-processing.

1.2 List of Contributing Papers

The work described in this thesis has led to the following publications [140, 134]:

1. J. Wandy, R. Daly, R. Breitling, and S. Rogers, “Incorporating peak grouping infor-
mation for alignment of multiple liquid chromatography-mass spectrometry datasets,”
Bioinformatics, vol. 31, no. 12, pp. 1999-2006, 2015.

2. J. J. J. van der Hooft, J. Wandy, M. P. Barrett, K. E. V. Burgess, and S. Rogers, “Topic
modeling for untargeted substructure exploration in metabolomics,” Proceedings of

the National Academy of Sciences, vol. 113, no. 48, pp. 13738-13743, 2016.
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Chapter 4 of this thesis is based on the first published paper [140], while Chapter 7 is based
on the second published paper [134]. Finally, the author also contributed to the following
work [25] but it is not a part of this thesis:

• R. Daly, S. Rogers, J. Wandy, A. Jankevics, K. E. V. Burgess, and R. Breitling,
“MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian
clustering approach.” Bioinformatics, vol. 30, no. 19, pp. 2764-2771, 2014

1.3 Overview of Thesis and Research Contributions

The contributions of this thesis are:

• A method that combines direct-matching and related peak grouping information to
improve alignment.

• A generative model (PrecursorCluster) that groups related peaks in the same LC-
MS run by their ionisation product (IP) relationships, producing IP clusters. This
is described alongside methods that use the resulting IP clusters to produce a better
alignment.

• A generative model (HDP-Align) that groups related peaks in the same and across
LC-MS runs in a flexible manner. From this model, we can extract alignment and
furthermore, it allows for the probabilities of matching of certain peaksets to be quan-
tified.

• A generative model (MS2LDA) that groups related fragmentation features in tandem
mass spectrometry data. From this model, we can extract patterns of fragmentation
features that potentially correspond to substructures shared by metabolites. A visuali-
sation module is also created to assist in the exploration of the results.

The remainder of this thesis is structured as follows:

• Chapter 2 contains a discussion of background relevant to computational mass spec-
trometry techniques. In particular, the chapter provides a brief context of how mass
spectrometry based -omics fit in the broader picture of computational biology. In addi-
tion, the chapter also explains the nature of liquid chromatography mass spectrometry
data and what necessary pre-processing steps have to be performed before the data can
be used for further analysis.
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• Chapter 3 introduces probabilistic modelling, with a particular focus on the construc-
tion of mixture models and other related generative models that are used in the rest of
the thesis.

• Chapter 4 presents an approach that combines matching and clustering information
to produce a better alignment result.

• Chapter 5 presents the PrecursorCluster model to group related ionisation product
peaks into IP clusters. This chapter also introduces ways these IP clusters can be used
to produce an improved alignment performance.

• Chapter 6 presents the HDP-Align model to perform the clustering of related ionisa-
tion product peaks within and across multiple runs.

• Chapter 7 presents the MS2LDA model to capture the structural dependencies of
peaks in fragmentation data. It also introduces a visualisation module to aid in the
analysis of the results from the model.

• Chapter 8 presents a summary of the work and contributions. It also highlights the
avenues for future research based on the work done so far.
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Chapter 2

Computational Mass Spectrometry
Analysis

This chapter provides the necessary background to understand the basic principles of mass-
spectrometry-based analysis in large-scale biological studies, including the study of proteins
(proteomics) and metabolites (metabolomics). Measurement technologies, such as nuclear
magnetic resonance (NMR) and mass spectrometry (MS), are discussed next. A particular
emphasis is given to the application of liquid chromatography mass spectrometry (LC-MS)
in the field of metabolomics. The data generated from LC-MS measurements have to be
processed before analysis, and we describe the steps involved in a typical data pre-processing
pipeline, highlighting in particular the challenges of the alignment and identification steps.

2.1 Background

2.1.1 Inside the Cell

The three major types of macromolecules that are fundamentally essential to all life on Earth:
deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins. The central dogma of
molecular biology states that DNA is transcribed into RNA, which is translated into proteins.
Since its initial proposal, the central dogma model has been challenged and expanded to
acknowledge other factors that can influence the transcription and translation processes. For
instance, the reverse flow of information from RNA to DNA is possible but was not in the
initial model. Nevertheless, the central dogma is broadly useful to explain how genetic
information can flow in a biological system, starting from DNA to RNA to proteins.

DNA is the basic storage unit of genetic information. In a rather simplified view, the flow
of information in a biological system begins from the double-helix strands of the DNA as
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the starting point. A DNA strand consists of a series of linked nucleotides subunits. Each
nucleotide is a molecule composed of a sugar molecule (deoxyribose), a phoshoric acid and
a nitrogenous base. The base in DNA can be either adenine (A), thymine (T), guanine (G) or
cytosine (C), and together they form the four well-known ‘alphabets’ of the DNA. Bases are
complementary in their pairing through hydrogen bonds, such that A pairs only with T, and
G with C. It is this pairing that produces the double helix structure of the DNA.

Regions of the DNA that code for specific proteins are called genes, however DNA is not
the direct template for protein synthesis. Rather, DNA is transcribed into RNA. The same
information is encoded in RNA as its originating DNA strand, but with the crucial difference
that the subunits (nucleotides) of RNA has ribose as the sugar molecule and uracil substituted
in place of thymine as one of the bases. In this manner, the four alphabets of RNA are adenine
(A), uracil (U), guanine (G) and cytosine (C).

After the transcription process, a class of RNA molecules known as messenger RNA (mRNA)
serves as the template for protein synthesis. Compared to the relatively inert DNA, mRNA is
biochemically active and allows for genetic information to be transferred to outside the nu-
cleus. The ribosome, a part of the translational apparatus of the cell, then reads mRNA and
translates it into proteins. A sequence of three RNA nucleotides, called a codon, encodes a
particular amino acid, which is the building block of proteins.

2.1.2 Proteins and Metabolites

Proteins serve critical roles in an organism and participate in nearly all cellular processes:
performing cellular maintenance, catalysing chemical reactions and carrying other functions
essential to life. Proteins also serve as the biochemical machineries involved in carrying
out DNA replication and the transcription and translation processes themselves to produce
more proteins. There are only 20 different types of amino acids that can be chained, through
peptide bonds, to serve as the building blocks of proteins. A short chain of amino acid
residues form a peptide, and in a longer chain, they fold into a fixed structure of a protein.
The function of a protein is directly determined by its three-dimensional structure, and hence
by the sequence of its amino acids.

Apart from proteins, numerous other chemical reactions essential for sustaining life also
happen inside a cell, including crucially, the breaking of organic compounds into energy and
the production of other cellular building blocks involved in the transcription and translation
processes. Together these chemical reactions comprise the metabolism of an organism. In
catabolic reactions, large organic molecules within a cell are broken into energy and smaller
molecules. These serve as the input to anabolic reactions, producing the basic building
blocks of a cell such as proteins and nucleic acids. Both anabolic and catabolic reactions
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Figure 2.1: The layers of -omics and their building blocks.

are usually catalysed by enzymes, and together these two reactions comprise the metabolism
of an organism. Metabolites are small molecules (usually defined as less than 1000 Da) in-
volved during or produced as the by-products of metabolism. Through the help of various
enzymes, metabolites are transformed from one form to another in a series of chemical re-
actions as part of the metabolic pathways. Some examples of common metabolites are the
various amino acids, fatty acids, vitamins, carbohydrates and many others. The overall set
of metabolites that can be found within an organism is collectively called the metabolome.

2.1.3 The Layers of -omics

As illustrated in Figure 2.1, each sub-field of computational biology focuses on the entities
and processes involved in a stage of the central dogma. Genomics is concerned with the
large-scale study of the entire DNA in an organism (the genome) and how the genes encoded
in the genome interact with each other. Transcriptomics focuses on understanding the large-
scale analysis of mRNA (the transcriptome), particularly those that correspond to protein-
encoding genes and measurements on their abundance in the sample. Proteins and their large-
scale identifications and quantifications are studied in proteomics. Metabolomics studies
the metabolome on a large scale, usually for the purpose of identifying and quantifying
the differences of metabolite compositions in a particular organism or tissue under various
experimental or physiological conditions.

Moving through the successive -omics layers in Figure 2.1 and getting closer the physically
observed properties (phenotypes) introduce greater complexity due to the increased number
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of ways of putting the building blocks of each -omics layer together. The building blocks of
the genome are the nucleotides of the DNA, while in the transcriptome, the building blocks
are the nitrogenous bases that comprise the RNA. There are only four possible bases in the
genome and the transcriptome. In proteomics, the object of interest, proteins, is a chain of
amino acid residues, with 20 possible amino acids to choose from. The small molecules in
metabolomics have Carbon, Hydrogen, Nitrogen, Oxygen, Phospor and Sulphur (CHNOPS)
atoms as their building blocks, which can be arranged in many chemically-plausible config-
urations.

Unlike the genome that is relatively static, the proteome and metabolome of an organism
are considerably more dynamic. The expression of proteins and metabolites are governed
by various complex, interacting factors. In a process called post-translational modification
[80], proteins can be chemically modified after synthesis in a way that completely alters
their structure and folding stability, e.g. through phosphorylation (the addition of a phoshate
group) or methylation (the addition of a methyl group). Metabolites expression can also
change in response to the cellular sytems cellular [91] or environmental factor [49]. As a
result, the knowledge of the DNA sequence alone is not sufficient to predict the proteins and
metabolites that may be expressed in an organism. The metabolome is considered closest
to the phenotype [35], so changes to the phenotype are often most readily observed in the
metabolome. Studying the metabolome therefore provides us with an instantaneous ‘snap-
shot’ of chemical activities that occur in the cell, leading to an understanding of how cellular
processes behave and possibly an explanation of how certain phenotypes are expressed.

2.2 Measurement Technologies

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two
widely used measurement technologies for proteomics and metabolomics. NMR and MS are
described in the following section, but here we provide a brief comparison of the two meth-
ods. The main advantage of NMR spectroscopy over MS is that its spectra have very high
reproducibility since the same compound structure always produces peaks at the same loca-
tions in the spectra. Absolute quantification of the abundance of the compounds is possible
in NMR as the signal intensity in NMR spectra is directly proportional to the concentration
of protons in the nucleus of the compounds. In MS, often only the relative abundance (with
respect to some reference compounds of known concentration) can be obtained. For small
molecule (metabolite) analysis, while the resulting spectra from NMR provide information
on the structure of the metabolites, certain regions in the spectra can also be crowded with
many overlapping metabolite signals [90], potentially hindering identification. NMR also
has a lower sensitivity than mass spectrometry, which limits the number of metabolites that



2.2. Measurement Technologies 9

can be detected from NMR spectra.

The two approaches of NMR and MS are often seen as complementary rather than compet-
itive. For more detailed comparisons of NMR vs. MS, see [90]. In the following section,
NMR is only briefly described since it is not the focus of this thesis, while mass spectrometry
is described in greater detail.

2.2.1 Nuclear Magnetic Resonance

NMR spectroscopy operates on the principle of measuring the energy absorption of nuclei in
the atom as electromagnetic radiation is applied. Atoms are the building blocks of matters,
and two or more atoms connected via chemical bonds comprise a compound. An atom has
a nucleus at the centre, which consists of positively charged protons and neutrons with no
charge. Electrons, having negative charge, are bound to the neucleus through electromag-
netic force. The overall charge of the atom is therefore determined by the number of electrons
and protons that it has. An atom is called a positive ion when there are more protons than
electrons, while the opposite is called a negative ion. The nucleus of an atom also possesses
an angular moment, called spin. A nucleus with a positive spin develops a magnetic field,
and when placed in an external magnetic field, the nucleus can either align itself with the
external field (a lower energy state) or against the external field (a higher energy state).

In NMR spectroscopy, initially most nuclei will be in their ground state of being in align-
ment with the external magnetic field, but when radio waves are applied, the nuclei in the
lower energy state can absorb the energy and move to the higher energy state (their spin flip).
When the radio waves are removed, the energised nuclei relaxes back to the lower energy
state. The fluctuation of the magnetic field during relaxation is called ‘resonance’ and can
be measured in the form of a current in the magnetic coil around the sample. From NMR
measurements, signals in the time-domain are obtained, and through Fourier transformation,
this signal is converted from the time domain to the frequency domain. Before statistical
analysis can be performed, the resulting NMR spectra are processed in a data pre-processing
pipeline. This includes steps like baseline correction, noise filtering, alignment, and com-
pound identification [4]. For identification, spectra are annotated through comparisons to
databases that contain reference spectra either developed in-house or publicly available (e.g.
BioMagResBank [132], Madison Metabolomics Consortium Database [23], and many oth-
ers). Identification is one of the greatest challenges in NMR analysis [90], although in recent
years, several methods such as BATMAN [47] and IQNMR [118] have been introduced that
aim to automate this process.
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2.2.2 Mass Spectrometry

As an alternative to NMR spectroscopy, mass spectrometry operates by ionising compounds
in the sample, producing charged ions that are separated by their mass-to-charge (m/z) ratio.
The molecular mass of a compound is the sum of the molecular mass of its elements, mea-
sured in Daltons (Da), where one Da is 1

12
of the molecular mass of the carbon element (12C).

During mass spectrometry, the compounds to be analysed (metabolites or peptide fragment)
are introduced into the ionisation source of the MS, and depending on the ionisation mode
used, these compound produce positively or negatively charged ions. They travel through
the mass analyser and arrive at the detector at a different rate due to each ion having different
mass-to-charge ratios. The detector measures the ions that arrive and produce signals in the
form of a mass spectrum, showing the relative abundance of detected ions at different m/z
ratios.

Modern high-precision MS instruments have very high resolving power, with accuracy up to
several parts-per-million. MS instruments can be ranked in ascending order by the resolving
powers of their mass analyser: (1) time-of-flight MS, (2) orbitrap MS, and lastly (3) Fourier
transform ion-cyclotron MS. In time-of-flight MS, ions are accelerated in an electric field.
The m/z ratio of an ion is measured from how long the ion reaches the detector at a known
distance. In orbitrap MS, ions are trapped in an orbital motion around an electrode. Currents
are generated from the trapped ions and, through Fourier transform, converted to a mass
spectrum. In ion-cyclotron MS, ions are trapped and excited in a magnetic field, inducing a
charge that is transformed into mass spectrum.

A higher resolving power corresponds to a better ability of the MS instrument to detect
small differences in m/z ratios. Having a higher resolving power is generally very use-
ful when trying to identify which metabolites are present in the sample as spectral peaks
close in m/z values can be resolved, allowing for e.g. a broad peak at low resolution to
be measured as multiple sharp peaks in high resolution. The difference between the ob-
served m/z value to the exact m/z value of a compound is known as the mass accuracy
of a mass spectrometry instrument, measured in parts-per-million, i.e. mass accuracy =

1, 000, 000 ∗ (observed m/z−exact m/z)
exact m/z . In this manner, compounds with identical nominal (integer)

masses but different exact masses can be distinguished, allowing for greater confidence that
a measured peak represent an actual distinct molecular species.

In direct injection mass spectrometry, the sample is introduced into the MS at a constant flow.
However the ionisation capacity of MS is limited, and in what is called the ion supression ef-
fect, compounds can compete for charges during ionisation — resulting in some compounds
not being ionised and detected in the mass spectra [114]. Separating compounds as they pass
through (elute) from the chromatographic column at a different retention times (RTs) into
the MS is often preferred. Additionally, from chromatographic separation, the retention time
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Figure 2.2: A typical LC-MS set-up. High performance liquid chromatography instruments
are used to separate metabolites (by their chemical properties) in the sample before they are
gradually introduced into the mass spectrometer.

of an observed peak reflects the underlying biochemistry of the compound and can serve
as an additional piece of information to deduce its identity [13]. Particularly in large-scale
untargeted studies, MS is often coupled to a chromatographic separation technology such as
liquid chromatography (LC), forming the combined set-up of LC-MS (Figure 2.2).

As illustrated in Figure 2.2, during liquid chromatography, the solvent containing the an-
alytes (metabolites) is introduced and pumped into the stationary phase that is part of the
chromatographic column. Metabolites elute at different times due to their different inter-
actions with the column, based on their biochemical properties (e.g. their hydrophobicity,
polarity, molecular shapes etc). In the LC-MS set-up, metabolites that elute from liquid
chromatography are then vaporised and ionised inside the mass spectrometer. Ionisation in
an LC-MS setup is usually performed via electrospray ionisation (ESI). In ESI, the sample
analyte is dissolved into a solvent and sprayed through an electrospray (a highly charged
needle) creating charged droplets. In the ionisation source, the charged droplets evaporate,
creating charged electric fields on their surfaces. Due to the strong electric field of the MS,
ions on the surface of the droplets have enough energy to separate, generating charged molec-
ular ions. The generated ions are separated by the mass analyser inside the MS instrument
according to their m/z ratios and the detected signal abundance for a particular m/z value. As
ESI requires a continuous supply of dissolved analytes, it can be directly coupled to LC. This
results in the commonly-used combined liquid chromatography mass spectrometry (LC-MS)
set-up.

In the next section, we describe the data produced from LC-MS measurements and the nec-
essary pre-processing required before the data can be used for further analysis.
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2.3 LC-MS Analysis in Metabolomics

The raw data produced from an LC-MS set-up is a collection of mass spectra from each
scan over a range of elution times. Each MS measurement of compounds that elute at the
same or similar retention time is called a scan. A mass spectrum in each scan is the two
dimensional representation of m/z values of charged ions to signal intensities (Figure 2.3C).
The sum the signal intensities across all mass spectra, called the total ion chromatogram or
TIC (Figure 2.3D) shows how compounds elute over time over all m/z values. The TIC plot
can be crowded, so given a specific m/z range to inspect, the extracted ion chromatogram
(EIC) plot shows the total signal in that m/z range vs. RT (Figure 2.3E). The m/z range
for inspection in the EIC is usually selected based on the prior knowledge of what signal a
compound is supposed to produce in the spectra.

As shown in Figure 2.3B, the raw LC-MS data can also be viewed as a 3D image, containing
peaks characterised by a set of vectors of m/z, retention time and intensity. This raw LC-
MS data is noisy, so pre-processing has to take place before analysis can be performed and
biological conclusion drawn. Generally, the main steps of LC-MS data pre-processing takes
the form of a sequential pipeline shown in Figure 2.4. Note that Figure 2.4 illustrates an
example pipeline. In practice, many variations of this example pipeline exists. For instance,
the gap filling and the peak grouping steps can be omitted, the noise filtering step can be
performed before peak alignment, the pipeline may produce no visualisations. The following
sections explain in detail the key steps of the LC-MS data processing pipeline in Figure 2.4.

2.3.1 Raw Data Importing & Peak Detection

The raw data produced from measurements are generally available in vendor-proprietary
format. An LC-MS data pre-processing pipeline that is based on open softwares usually
starts with the importing of these proprietary files into an open XML-based format, such as
mzXML [92] or mzML format [81]. Peak detection is applied to the imported LC-MS data
to produce peaks. Each peak feature is characterised by its m/z, RT and intensity values.
The CentWave algorithm [124] from XCMS is one of the more widely used peak detection
method in metabolomics. It is particularly suitable for modern metabolomics data that are
generated from instruments having a high mass accuracy. CentWave extracts regions of in-
terest from the data. Chromatographic analysis of the EIC from each region of interest is
performed using continuous wavelet transform and is used to detect candidate chromato-
graphic peaks. For each candidate peak, once its chromatographic peak boundaries have
been identified, the centroid m/z value of a peak feature is defined as the weighted mean of
the m/z values within the boundaries. Similarly, the intensity of a peak feature is defined as
the maximal intensity value in the chromatographic peak boundaries. The signal-to-noise ra-
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Figure 2.3: The resulting raw data (ion chromatograms) produced from an LC-MS experi-
ment. We can view the data as a 2D profile seen from the top (A) or a 3D profile (B). A peak
in the data is thus characterised by its intensity value on the m/z and retention time axes.
From a scan, a slice of the data on the m/z axis is the mass spectrum (C). A collection of
mass spectra is produced over the whole range of retention time. Summing over all scans
produce the total ion chromatogram (TIC) (D), while plotting the intensity values vs. RT for
a particular m/z range produces the extracted ion chromatogram (EIC) (E).
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tio of each candidate peak is calculated and if it is lower than the thresholded defined by the
user, the candidate peak is rejected. As an alternative peak detection method, the MZmine 2
[96] software suite is also widely used.

A survey of the many different approaches for peak detections can be found in [60, 16, 4],
however it is important to note that most peak detection methods are sensitive to the choice of
parameters [124], with a method potentially producing different results when its parameters
are varied. For instance, CentWave requires as user-defined parameters the mass deviation
in parts-per-million (which is usually set based on the mass accuracy of instrument), the
minimum width of the chromatographic peak and a signal-to-noise threshold. Setting a width
that is too narrow or a signal-to-noise threshold that is too high can potentially lead to missing
peaks.

2.3.2 Peak Alignment

Following peak detection, peak alignment is performed to match peaks that are the same
across samples. An alignment method takes as input multiple lists of peaks — one from
each LC-MS run — and produces as output a list of aligned peaksets. Each aligned peakset
is a set of peaks coming from different runs that are considered to be correspondent and
have to be matched. Alignment is necessary because experiments in biology usually involve
the comparison of multiple samples. Samples can be produced as either biological or tech-
nical replicates. Biological replicates are obtained from the same organism studied under
varying conditions and exposed to different factors (e.g. treatment or no treatment). Bio-
logical replicates are necessary to determine entities that are differentially expressed across
samples. In contrast, technical replicates are obtained from the same sample analysed multi-
ple times. Technical replicates are necessary to account for the variability and measurement
errors throughout the experiment. In this manner, each replicate, whether biological or tech-
nical, is measured through the LC-MS instrument. This produces an LC-MS run for each
replicate.

2.3.3 Labelled Alignment

Standards are compounds of known concentration that produce peaks at well-defined m/z
and RT values. Since they are known, peaks generated from standards can be used as the
‘landmark’ peaks to determine how retention time shift occur across samples. This simplifies
the problem of alignment for these limited number of standard compounds that can be spiked
into the samples before running them through LC-MS. Alternatively, stable-isotope labelling
experiments exploit the fact that atoms occur as isotopes. Two isotopes of the same atom are
naturally occurring elements that have the same number of protons (same atomic number)
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but different number of neutrons (different molecular masses). An element can have several
isotope species, which occur at different abundances in nature. For instance carbon has two
isotopes: 12C with molecular mass 12.000000 at 98.890% abundance in nature, and 13C with
molecular mass 13.003355 and 1.110% abundance.

When measured in mass spectrometry, isotopes in the compound produce a distinct pattern
of peaks that follow the binomial distribution. This information can be used to aid peak
alignment and identification. In a labelling experiment, two samples are prepared: one from
cells that grow in a normal medium and another from cells that grow in isotopic reagents.
The two samples are combined and measured as a single LC-MS run. A metabolite from the
normal medium and its corresponding isotopic counterpart have the same chemical formula
and structure and hence will appear at close retention time, however the distinctive pattern
of peaks produced from the isotopic metabolite makes it possible to trace the peaks back
to the metabolite that produce them [19]. This makes alignment easier. However, labelled
experiments consume expensive reagents, are more difficult to prepare and harder to compare
across laboratories and to various mass spectral databases online for identification.

2.3.4 Label-free Alignment

It is common for large-scale untargeted LC-MS experiments, where the identities of the
metabolites of interest are not known in advance, to perform alignment label-free. In these
label-free experiments, no labelling information is available that can be used to guide align-
ment. Broadly speaking, the main challenge in the peak alignment stage of label-free exper-
iments is the poor reproducibility of retention time, with potentially large non-linear shifts
and distortions across LC-MS runs produced from different analytical platforms or even the
same platform over time [97]. There is often a large amount of variation in the retention
times across the replicates. Retention time variation could be due to instrument-specific
factors (the condition of the chromatographic column itself. including flow rate variations,
gradient slope and temperature [20]) or experiment-specific factors (e.g. instrument mal-
functions or columns that need be replaced mid-experiment). Both factors are difficult to
control, even in a careful experimental setting. Consequently, most alignment methods cor-
rect for those shifts and distortions by finding a mapping function f that maps peaks from
one run to another. Depending on how they find f , alignment methods can be divided into
two broad categories: (1) warping-based methods and (2) direct-matching methods.

Warping-based Alignment Methods

Warping-based methods seek to model the RT drifts between runs. In the past, many warping-
based methods operate by aligning the whole ion chromatograms (profile data) directly be-
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fore peak detection. Since this alignment step is performed before peak detection, warping-
based methods that operate on profile data do not depend on the correctness of detected
peaks. In this manner, the profile data being aligned is reduced to a simpler form by using
the total ion chromatograms (TIC) as a representation of the entire data — frequently ignor-
ing the rich information present in the m/z dimension of LC-MS data. As a consequence,
warping-based methods that rely on profile information alone might not perform well for the
alignments of the typical LC-MS data produced from complex mixtures – frequently having
a lot of peaks of different m/z values co-eluting at similar retention times.

Many warping-based methods that operate on profile data are based on dynamic program-
ming. In dynamic programming, all possible local solutions are evaluated but computed only
for each sub-problem. In theory, this allows for an optimal global solution to be obtained ef-
ficiently. In practice, exact dynamic programming solutions are often intractable when a
large number of runs need to be aligned at once due to their high time complexity when
aligning multiple profile data simultaneously. As such, many of these methods aligns runs in
a hierarchical pairwise manner. Some examples of well-known warping-based methods that
operate on profile data are highlighted below:

1. Dynamic Time Warping (DTW) [103] performs a pairwise alignment of runs using
the RT information only. The TICs being aligned are first discretised along the RT
axes. Finding the alignment path is accomplished by setting up an alignment matrix
and obtaining the best warping path that minimises the global distance in the alignment
matrix. Three weight factors that computes the penalty for matches, expansion and
compression are defined. The optimal warping path is obtained by applying dynamic
programming principle and tabulating intermediate results in the alignment matrix (in
a manner similar to global sequence alignment for DNA sequences). The best warping
path can then be read by backtracking from the final entry of the alignment matrix to
the start.

2. Correlation Optimised Wrapping (COW) [88] operates in a manner similar to DTW
by using the discretised TICs. COW divides the RT axes of replicates into segments.
Each segment boundary can change within some user-specified slack parameter. COW
then produces an alignment by finding the path across segments that has the highest
sum of correlations. An alignment matrix is set up, and different segment boundaries
can be shifted to maximise the global correlations between the two replicates being
aligned using dynamic programming. In [20], COW is combined with a component
detection algorithm (CODA [144]) that removes noisy signal and background noise
from the mass chromatograms, aligning only regions containing high-quality informa-
tion.
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3. Parametric Time Warping (PTW) [135] produces pairwise alignment by using a sec-
ond degree polynomial for mapping time between chromatograms. Coefficients of the
polynomial are optimised by minimising the sum of squared residuals between the ref-
erence and aligned chromatograms. PTW performs much faster than COW. However,
the quadratic polynomial model proposed in PTW, while simpler to describe, might not
be sufficient to capture the complexity in non-linear retention time drifts across LC-
MS data [97]. Semi-parametric Time Warping (STW) extends upon PTW and uses a
series of B-splines as the mapping function. Optimising the warping coefficients in
STW is done iteratively.

4. Continuous Profile Mode (CPM) [77] aligns multiple LC-MS data in a time series
using a hidden Markov model-based approach. Each observed chromatogram profile is
considered to be a time series of noisy signals sampled from a canonical latent profile.
Parameters of the model are trained using the Expectation-Maximisation algorithm.
The actual alignment of observed profiles to the latent profile is done using Viterbi
algorithm. Compared to previous pair-wise methods such as DTW, CPM alignment is
more robust since it aligns multiple LC-MS data simultaneously.

Since untargeted metabolomic experiments often produce a large number of runs, all of
which need to be aligned as correctly as possible, most of the recent advances in warping-
based methods are based on aligning peaks — a reduced representation of the raw LC-MS
data obtained as the outcome of the peak detection step. Operating on peaks makes it easier
to incorporate mass, intensities and other structural information that can potentially help
improve the alignment result. By extracting a smaller set of features from complex LC-MS
raw data, often it is easier and faster to align many runs at once. To deal with the non-linear
nature of retention time shifts in LC-MS data, a approach is to attempt to fit a regression
curve on the peaks — usually using all the features observed across run or by selecting a
certain subsets of all peaks. Some examples of well-known warping-based methods that
operate on peaks are highlighted below:

1. XCMS [112] XCMS is one of the oldest tools used in metabolomics for processing
mass spectrometry data and metabolite profiling. Alignment is XCMS is performed in
two stages: peak matching and retention time correction. During the peak matching
stage, the m/z axis is divided into discrete fixed-width overlapping bins. The alignment
algorithm constructs a Gaussian kernel density estimation of the peaks inside each bin.
This results in groups of peaks (‘meta-peaks’) that are close in their masses. Groups
that do not contain enough peaks across samples are discarded. Next, during the reten-
tion time correction stage, well-behaved groups are selected as landmark peaks. The
median retention time of each group is calculated, and the deviation from the median
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for each peak is used to train a local regression model. The resulting regression is used
to correct for peak deviations.

2. OpenMS [73] OpenMS alignment works by first selecting a replicate that has the high-
est number of features. This replicate is used as the reference replicate, against which
all other replicates are aligned against (in a star-like manner). The actual alignment
process is divided into following two phases: superposition and consensus. During the
superposition phase, the alignment algorithm tries to find the parameter for an affine
transformation that maximises the number of features mapped from the reference repli-
cate to the other replicates. An object recognition algorithm, called pose clustering, is
used for this purpose. Additional information – such as m/z, RT and intensity dimen-
sion – is considered during the clustering process. The subsequent consensus phase
then produces the actual alignment between matching features across replicates, using
nearest-neighbour criteria.

3. MZmine’s RANSAC Aligner [96] The RANSAC aligner is an alignment method de-
veloped part of the MZmine 2 software suite, used for the processing of metabolomics
data. Random Sample Consensus (RANSAC) works by constructing a local regres-
sion model that maps retention time from one replicate to another. Once retention
time correction has been performed, the actual matching of peaks across runs are per-
formed greedily (using the older Join Aligner in MZmine 2). RANSAC Aligner is an
iterative, non-deterministic algorithm, so there can be variations in the final alignment
results. This non-determinism comes from the random sampling in the construction of
the candidate model using the RANSAC algorithm[36].

Direct-matching Alignment Methods

Direct matching methods, which skip the warping step and seek to establish the correspon-
dence of peaks across runs directly, can be preferred due to their simplicity, while still offer-
ing good performance [74]. Most direct matching methods consist of two stages: computing
feature similarity and using this similarity to match peaks across runs. A wide range of fea-
ture similarity measures have been proposed to compare the m/z and RT values of two peaks,
including normalised weighted absolute difference [96], cosine similarity [51], Euclidean
distance [5], and Mahalanobis distance [137]. Once similarity has been computed, feature
matching can be established through either a greedy or combinatorial matching method. Di-
rect matching approaches therefore require that the peak detection step has already been
completed, and the correctness of aligned peaksets depend on the output of the peak detec-
tion step. In fact, all steps that operate on peaks are similarly dependent on the correctness
of the preceding peak detection step. In the presence of chemical and technical noises in the
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raw LC-MS data, relying on detected peak might serve to provide informative features rather
than operating on the entire profile data [114].

Many approaches have been proposed for direct matching of peaks. Greedy direct-matching
methods work by making a locally optimal choice at each step, in the hope that this will lead
to an acceptable matching solution in the end. RTAlign in MSFACTs [33] merges all runs
and greedily groups features into aligned peaksets within a user-defined RT tolerance. Join
Aligner [96] in MZmine 2 merges successive runs to a master peaklist by matching features
greedily according to their similarity scores within user-defined m/z and RT windows. Sim-
ilarly, MassUntangler [5] performs nearest-distance matching of features, followed by vari-
ous intermediate filtering and conflict-resolutions steps. Recent advances in direct matching
methods have also posed the matching task as a combinatorial optimisation problem. Si-
multaneous Multiple Alignment (SIMA) [137] uses the Gale-Shapley algorithm to find a
stable matching in the bipartite graph produced by joining peaks (nodes) from one run with
peaks from another run that are within certain m/z and RT tolerances. [142] explores the
application of the classical Hungarian algorithm to find the maximum weighted bipartite
matching. BIPACE [51] establishes correspondence by finding the maximal cliques in the
graph. SMFM [76] uses dynamic programming to compute a maximum bipartite matching
under a relaxed bijective mapping assumption for time mapping.

As the output of direct-matching methods is the list of aligned peaksets itself, this class
of methods can be used as an independent alignment method or as a second-stage process
that follows a warping-based method. Once RT drift has been corrected in warping-based
methods, it is often easier to establish the actual correspondence of peaks. Seen differently,
if a good correspondence between peaks can be established, finding a warping function that
maps the retention time from one run to another also becomes easier. In this manner, both
approaches to alignment — whether warping-based or direct-matching — complements each
other. It is worth noting, however, that the final goal of alignment is not correcting retention
time but establishing the matching of correspondent peaks across runs. In this manner, direct-
matching methods directly addresses the core of the alignment problem, i.e. establishing
the correspondence between peaks from different LC-MS runs rather than correcting for
retention time.

Direct-matching methods can also be categorised depending on whether they require a user-
defined reference run to be specified. When such reference is necessary, the full alignment
of multiple runs is constructed through successive merging of pairwise runs towards the
reference run (e.g. MZmine2’s Join aligner in [96]. Alternatively, methods that do not
require a reference run can either operate in a hierarchical fashion – where the final multiple
alignment results are constructed in a greedy manner by merging of successive pairwise
results following a guide tree (e.g. SIMA [137]) – or by pooling features across runs and
grouping similar peaks in the combined input simultaneously (e.g. the group() function of
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XCMS in [112]).

Shortcomings of Current Alignment Methods

According to [113], several common shortcomings are shared by many alignment methods
proposed in the literature. These include methods that make incorrect modelling assump-
tions, the abundance of user-defined parameters that can be difficult to optimize in such
methods, and the lack of comparative evaluations among the methods.

Many warping-based methods make the implicit assumption that the elution order of peaks
are preserved across runs, but peaks are known to produce RT values that shift in a non-
linear manner across runs [97], resulting in different elution orders of correspondent peaks
from different runs to emerge from the chromatographic column. Warping-based methods,
which operates on the profile data (i.e. the total ion chromatograms or the extracted ion
chromatograms, see Figure 2.3), distort the signal during alignment. This may be undesirable
as it may lead to inaccurate estimates of peak intensities in the later part of the pipeline.
Direct-matching methods may make a more relaxed assumption on the elution order of peaks
across runs, but it is often assumed during matching that a peak in one run always has a
correspondent peak from another run. In practice, a single peak from one run can have
several potentially matching peaks in another run, while having no matches in another. Many
methods also require for a reference LC-MS run to be defined, and for the alignment of the
remaining runs to be performed towards that reference run. However, to our knowledge, no
studies have been done on the effect of the selection of this reference run or the effect of
varying the processing order of runs to be aligned. Finally, it is suggested in [115] that the
information of related peaks, generated from the same compound, can be used to improve
alignment, but this information is not exploited by the direct-matching methods surveyed.

Another limitation of current alignment methods lies in their lack of comparative evaluations
and benchmarking of the results. In general, performance evaluation of alignment methods is
difficult due to the lack of gold standard and evaluation criteria for benchmarking [16, 116].
Relatively few works, such as [74], exists that provide a comprehensive ground truth for
evaluation. In fact, despite the many alignment methods that exist, most methods remain
unevaluated, evaluated against a small number of alternatives or evaluated based on highly
subjective criteria [113]. For instance, 48 alignment methods developed from 2001 to 2012
were surveyed in [116], and a majority (60%) were found to include no comparative evalu-
ations to other methods at all. The lack of comparative evaluations make it difficult for the
end-user to select which alignment method to use.
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2.3.5 Gap Filling & Noise Filtering

From alignment, certain peaks might be missing in an aligned peakset. The gap filling step
aims to recover this missing signal from the raw data. A peak may be missing as it was not
detected in the peak detection step (due to having a low intensity or a poor chromatographic
peak shapes). As another possibility, gap filling can also be performed before alignment,
following the peak detection step, to recover lost signals [6]. Once gap filling is done, noise
filtering can be performed. Filtering can be performed based on many criteria, e.g. using a
threshold on the intensity to remove low-intensity peaks that are likely to be noise.

2.3.6 Peak Grouping

In the peak grouping stage, the sets of peaks that are from the same metabolite are grouped.
During ionisation in mass spectrometry, a single metabolite alone can produce multiple peaks
(e.g. isotopic peaks, adduct peaks and fragment peaks) that are all chemically-related to each
other. In what is called in-source fragmentation, the molecule ion being analysed might be
fragmented in the ion source before reaching the mass analyser, resulting in fragment peaks.
Adduct can also be formed due to the addition of another molecule, such as sodium and
potassium introduced during sample preparation and analysis, to the molecule ion. The for-
mation of adducts means that within a mass spectrum, multiple adduct peaks can generated
from the same metabolite. Among these peaks, their relationships could be explained by
a set of known adduct transformations [62]. Similarly, the presence of naturally occurring
isotopes (e.g. 13C) means a single compound can produce a pattern of peaks with m/z and in-
tensity that follow the isotopic distributions of the atomic elements of the compound [117].
Following [75], we call this set of related peaks the ionisation product (IP) peaks of the
compound. As they co-elute from the column, these IP peaks are expected to have similar
chromatographic peak shapes, and therefore they might share similar RT values. In [106], an
analogous concept of ‘derivative peaks’ is defined to be the set of peaks that elute at the same
retention time, show a strong correlation between their chromatographic peak shapes, have
mass differences that can be explained by known chemical relationships and have intensity
values that can be correlated across different runs.

The resulting grouping information from the peak grouping step might be used in a differ-
ent manner from one pipeline to another. Grouping information is usually not used during
alignment. In identification, peak groups can be used to provide information used as a data
filtering procedure, although whether this grouping information is actually used might vary
from one pipeline to another. In particular, assuming that each observed peak corresponds
to a single compound can produce many matches, with potentially a large number of false
positives, when querying for matching mass in large public compound databases (such as
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KEGG or PubChem). As such, a filtering procedure can be used to reduce the number of
possible matches. CAMERA [69] performs the annotations of ionisation product species on
groups of peaks, based on constructing a similarity graph and detecting highly-connected
subgraphs in the graph. IP peaks are annotated on the subgraphs based on how their masses
can be explained by a set of user-defined chemical rules. In [75], IP peaks are grouped
along the RT dimension using a sliding window and along the m/z dimension using k-means
clustering. The grouping induced by these methods are used as a form of data filtering by dis-
carding peaks that are deemed irrelevant. Following the idea of derivative peaks in [106], the
mzMatch software suite [107] detects IP peaks based on a greedy clustering scheme. Peaks
having the largest intensity are clustered to others sharing chromatographic peak shape corre-
lations above a certain user-defined threshold. This is repeated until all peaks are processed.
In [102], the same idea is exploited in the form of a mixture model to cluster peaks based on
their chromatographic peak shape correlations.

2.3.7 Peak Identification

Metabolite Annotation

In a general sense, metabolite annotation refers to the process of annotating a label that tells
us which peaks are associated to which metabolite. As shown in Figure 2.4, the output from
the identification step is a matrix where each row in the matrix corresponds to a biological
or technical sample, each column a metabolite, and entries in the matrix are the intensity
of the detected metabolite in each sample. Untargeted identification is challenging in untar-
geted metabolomic studies due to the vast number of metabolites present in sample and the
diversity in elements that comprise a metabolite. Unlike the genome that has four nucleotide
bases as its sole alphabets, or proteins with twenty one amino acids as their building blocks,
metabolites are harder to characterise structurally, the basic building blocks of a metabolite
are atoms (commonly CHNOPS) that can be arranged in a variety of configurations in a
single molecule alone (Figure 2.1).

The term ‘identification’ can be overloaded with many different meanings, e.g. is it the
definite annotation of a compound identity to a peak or is it the assignment of some putative
labels to the peak? The Chemical Working Group of the Metabolomics Standards Initiative
proposed four levels of identifications for the reporting of metabolite identifications [121]
that have been accepted to a varying degree by the community. In this scheme, the most
confident Level 1 identification is obtained through the comparison of the observed peaks
against those generated from a set of chemical standards (a solution containing compounds of
known concentration). A putative Level 2 identification is obtained from comparison against
publicly available spectral libraries. Level 3 identification seeks to confirm the chemical class
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of the compounds, while a Level 4 of no identification is assigned unknown compounds. In
its most basic form, both Level 1 and 2 identifications are performed by taking the neutral
masses of observed peaks and matching them against the list of masses from a database of
compounds, which may range in size from just a few hundreds of metabolites to as large as
tens of thousands of compounds or more. The database for matching may be constructed
using the chemical standards or from publicly available databases. Having a high mass
accuracy is therefore crucial for identification as it reduces the size of possible alternatives
that can be matched.

In untargeted metabolomics, the lack of knowledge in the composition of metabolites in the
sample means that, apart from the small number of metabolites confidently identified as the
authentic standard compounds, the putative annotations of metabolite identities that are as-
signed to a peak might be the result of incorrect matching against the compound database.
This leads to false positive identifications and consequently incorrect biological conclusions.
Creating a larger library of authentic standard to facilitate more confident identifications is
constrained by time and cost and can never be comprehensive enough to include all metabo-
lites of interest in an untargeted study. Another challenge of identification is even at the very
high mass accuracy of 1 ppm, the number of possible formulae matched by accurate mass is
still too large to allow for definite metabolite identifications [64]. Identification is particularly
difficult for metabolites present in low abundance in the samples. Relying on mass alone for
untargeted identification is also problematic as different metabolites may produce peaks hav-
ing the same measured m/z values, and as in the case of isomers, the same precursor mass
can therefore be matched to multiple possible formulae. Retention time drift, a main chal-
lenge in alignment, means RT values vary across different chromatography platforms and
laboratories and cannot be easily used as a characteristic identifying information in a public
compound database. Incomplete knowledge on the metabolites expected to be present in the
sample, coupled with the complexity of the sample being analysed itself, means identifica-
tion is challenging [32], with more metabolites being putatively identified (Level 2) than very
confidently identified (Level 1), but the majority of metabolites can only be identified based
on their class (Level 3) or not at all (Level 4). Even for the putatively identified metabolites,
their manual verification is a laborous and time-consuming process, often serving as the pri-
mary bottleneck in large-scale untargeted metabolomic studies [32, 24]. In particular, false
positives from identification is a major concern in the data pre-processing step.

To reduce false positives, additional information can be incorporated into the identification
process. In particular, identification can also be performed on the basis of a group of ionisa-
tion product peaks, rather than on individual peaks alone, although this is often not exploited
in many tools. As discussed before, tools such as CAMERA [69] can produce a group of IP
peaks. From this group, the precursor mass that corresponds to the molecular ion mass of
the compound can be deduced. This can be used for matching against a compound database,
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allowing for a set of peaks to be identified rather than individual peaks alone. Other sources
of information that can help identification include using the predicted RT of a compound
[22, 13, 119], but matching the predicted RT values against the observed RT data that con-
tain drifts might be challenging too. Probabilistic methods that use prior information of a
known set of formulae to annotate peaks by explainable transformations have also been pro-
posed [101, 25], but might have difficulties scaling up to large-scale experiments containing
hundreds of LC-MS runs.

Fragmentation

Fragmentation through tandem MS (MS/MS) is another way to provide further information
to aid identification. As suggested by its name, tandem MS refers to the process of doing
another MS scan directly after a first full scan is performed. MS/MS fragmentation can be
performed by two MS analysers operating in tandem or even within a single MS machine
alone with a suitable capability.

From the first scan, the ions resulting from the initial fragmentation of metabolites are se-
lected for further fragmentations. These ions are called the precursor ions. In data-dependent
acquisition (DDA), precursor ions within some small m/z windows are selected based on
some predetermined rules (such as fragmenting the top few most intense precursor peaks
in each scan). Consequently, not all precursor ions get selected for MS/MS fragmentation.
Peaks generated from the fragmentation of the precursor ions in the second MS stage are
called product ions. Fragmentation spectra of product ions are often used as the unique ‘fin-
gerprint’ identifiers of the structural composition of the precursor ions. An alternative to
DDA is the data-independent acquisition (DIA), where no selection of precursor ions needs
to be specified as all peaks within a defined m/z range are fragmented. DIA results in a more
complex fragmentation spectra due to multiple metabolites being fragmented together in the
same m/z window, and require sophisticated analysis strategy to deconvolve the signals from
the noise [131].

To aid in metabolite annotation, a fragmentation spectrum of interest can be identified through
matching against (1) a database of public reference spectra or (2) a database of theoretical
spectra generated in an in-silico manner [54]. Examples of public databases are KEGG
[66], Massbank [53] and ChemSpider [93]. Frequently, a combination of matching against
a public database and in-silico theoretical spectra is used to ensure the largest coverage of
compounds during matching. The actual matching process is often established in a greedy
manner, heuristically through agreement against a set of well-validated fragmentation rules
or combinatorially by minimising a cost/distance function. In the combinatorial case, heuris-
tic rules are still applied to reduce the exponentially-growing search space to allow matching
to run in acceptable time. However, fragmentation cannot be used in all cases as not all
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metabolomics experiments include fragmentation as part of their data acquisition process —
due to cost or other resource constraints. Publicly available databases have a limited cov-
erage in the number of submitted spectra. Often spectra in public databases are contributed
from a wide variety of instruments, further limiting potential matches as matching is often
possible only for spectra generated on similar platforms. Large variance in the mass accu-
racy and characteristics of submitted spectral library entries further limit potential matches
as a query match can only be made against spectra generated from similar platforms and
mass accuracies. Unwanted spectral peaks (due to e.g. the presence of contaminants and
noise in the sample) present in the database may also lead to incorrect spectral matching.
Fragmentation and its challenges are further discussed in Chapter 7.

2.3.8 Analysis

The last step in preprocessing of LC-MS data is the normalisation and visualisation of data.
Normalisation is essential for removing any possible variation and systematic bias to allow
for comparisons of differential levels of expressions of metabolites across samples. Statis-
tical analysis is performed with visualizations in order to draw useful inferences from data
– a step that is crucial in confirming or rejecting biological hypotheses. At this stage, the
data is normalised to correct for systematic variations before statistical analysis. Spiked-in
compounds that do not occur naturally are used for this purpose. Since the spiked-in com-
pounds are expected to have equal concentration in all samples, they can be used to normalise
peak areas in samples. Statistical analysis, such as t-test, ANOVA and principal component
analysis, can then be performed on the normalised peaks across samples. The goal of statisti-
cal analysis is to answer biological hypothesis posed by life-science researchers. During the
analysis, it is common to place the result obtained from metabolomic studies on the larger
biological context by mapping them onto some biological pathways ([145, 67]) or in relation
to other -omics studies ([68, 41]).

While targeted metabolomics focuses on a handful of specific metabolites, untargeted stud-
ies (such as in [29] and [22]) attempt to perform a global analysis of metabolites in the
samples under study. Understanding the metabolome in an untargeted study is a challeng-
ing task due to the complex interactions of metabolites in the metabolome. Identification of
specific metabolites are frequently not the final goal in untargeted metabolomics, rather it
is the discovery of metabolites or groups of metabolites that are differentially expressed or
correlated to the expression of specific physical traits being studied. Of particular interest
is the detection of metabolites that act as disease biomarkers. The presence or absence of
such metabolites can provide an indication to the corresponding presence or absence of dis-
ease in the organism [79]. Differences caused by genetic variations are also highly visible
as changes in the metabolite composition of an organism. These could be quantified through
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differential analysis that compares the expression levels (abudance) of metabolites across
samples. The resulting differential analysis provides biologists with a better understanding
of the metabolic pathways in the cell and how they respond to perturbations. Differential
analysis also underpins many practical applications of systems biology, such as nutritional
research [40], drug discovery [61] and even in an integrative approach that combines ge-
nomics and metabolomics to obtain a more comprehensive picture of living organisms [41].
Visualisation of the identified metabolites can also be performed by mapping metabolites
to well-known pathways from databases such as KEGG [59] or MetaCyc [15]. Identified
metabolites at this stage can also be integrated with the reconstructed metabolic information
from other -omics [21] to allow for a rapid generation of biological hypotheses.

2.3.9 Mass Spectrometry Analysis in Proteomics

LC-MS analysis in proteomics proceeds largely in the same manner as to the data pre-
processing pipeline in Figure 2.4. However, the key difference between proteomics and
metabolomics lies in sample preparation. In the mass spectrometry analysis of proteins, the
samples to be analysed come either in the form of tissues or as body fluids, such as urine,
plasma and serum, with each different type of sample demand an appropriate sample han-
dling protocol. Next, cells extracted from the sample are broken down, allowing proteins to
be isolated from other constituent parts of the cell, for instance the DNA, lipids and other
metabolites that are present. The purified proteins are then separated. The traditional 2-D
gel electrophoresis method allows proteins to be separated according to their size (molecular
mass) in one axis and according to their isoelectric points (the pH where the molecule carries
no electrical charges) on another. Because 2D-GE approach is tedious and time-consuming,
liquid chromatograph mass spectrometry has gotten more popular as the preferred separation
technology as it enables the large-scale high-throughput separation of thousands of proteins
in a chromatographic run. Enzymes that can cut the peptide bonds, such as trypsin, are then
used to digest proteins into shorter peptide fragments. Using certain enzymes, the cleavage
of the peptide bonds happens at specific and predictable spots, allowing well-defined and
easily identifiable peptide fragments to emerge. For instance, by using trypsin as the diges-
tion enzyme, the cleavage of the protein happens after each arginine or lysine amino acid is
encountered, unless a proline amino acid comes next.

Identification of peptide sequences in proteomics largely proceeds in the same manner as
metabolomics. Different sets of tools and public databases are queried for matching. In par-
ticular, the problem of peptide identification from fragmentation data is referred to as peptide
mass fingerprinting [105]. As proteins are cleaved into peptides that are unique, the resulting
fragmentation spectra are also expected to be unique to a protein. The theoretical peptide
spectra can then matched against a reference spectra library. In practice, the resulting frag-
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mentation spectra are not entirely unique and multiple hits can be returned from the spectra
library, particularly in the case of libraries that have a large number of records. The fact that
the peptide sequence of a protein is known and digestion enzyme produces cuts at predictable
spots means identification through a comparison to a de novo peptide sequences is possible
in proteomics. Additionally, it is also more common in proteomics than metabolomics for
an initial separation process, called pre-factionation, to be performed on the digested pep-
tides using liquid chromatography. This divides the entire sample into multiple fractions of
compounds that elute at different retention time, which can then be ran separately through
the LC-MS instrument for mass fragmentation analysis in a manner similar to metabolomics
analysis. Certain fractions can be selected for further analysis, leading to a simpler set of
data to deal with.

2.4 Conclusion

This chapter has provided the necessary background knowledge to understand the basic prin-
ciples of mass-spectrometry-based analysis as applied to large-scale untargeted biological
studies, but it is far from complete. A particular emphasis is given to the application of
mass spectrometry techniques in the field of metabolomics. For further readings on mass
spectrometry as an analytical platform, the reader is directed to more comprehensive text-
books such as [27] and [45]. For literature surveys on the different steps that comprise an
LC-MS data processing pipeline, the reader is directed to [16, 114, 42, 4] for metabolomics
and [105, 83, 114] for proteomics.

Data processing has major impact on the outcome of quantitative label-free LC-MS analysis
[17]. Even the choice of the software tools itself, with differing implementation details, af-
fect the outcome. In particular, label-free experiments pose many challenges when analysing
many LC-MS runs. Since large-scale untargeted metabolomics study can generate a huge
number of samples (see [29, 22]), having a reliable and accurate peak alignment step dur-
ing data pre-processing is important. Peaks that are improperly aligned can lead to false
positives, and especially for untargeted label-free metabolomic experiments, the presence of
even relatively small errors in any steps preceding the identification stage (including align-
ment) can result in significant differences to the final analysis and biological conclusions.
Errors or uncertainties inadvertently produced in any sub-step before identification would be
carried forward forward in the pipeline. Improper pre-processing steps can also introduce
variabilities that obscure important biological variations of metabolites themselves.

Software tools that deal with LC-MS data in proteomics and metabolomics usually operate
in a modular and serial manner, where successive transformations occur to the raw LC-MS
data as it goes through the data pre-processing pipeline. However, it is important to note that
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despite the apparently serial pre-processing manner shown in Figure 2.4, the actual pipeline
workflow employed by the user is often iterative. For example, it is often the case that certain
low intensity metabolites are expected to be present in the identification result, but are found
to be missing. This requires the user to revisit each step of the pipeline, experiment with the
numerous user-defined parameters and threshold values used for the peak detection, align-
ment, gap filling, noise filtering and identification step to troubleshoot this issue. Each step
of the example pipeline in Figure 2.4 is therefore uncertain and dependent on the steps that
come before it. However, at the moment, each step in the pipeline exists independently and
information from one step is not used to improve the performance of the subsequent steps
in the pipeline. We address this shortcoming in Chapters 4 and 5 by proposing methods that
use peak grouping information to improve direct-matching alignment performance. In Chap-
ters 6, we propose a hierarchical model that combine the grouping step and the alignment
step into one, allowing for matching uncertainties to be extracted. Finally, in Chapters 7, we
introduce a method to group related features in MS/MS fragmentation data together, allow-
ing for enhanced data interpretation. To do this, we require a way to group related peaks
together. In the next chapter, we discuss how this can be achieved through modelling peak
data in a probabilistic manner.
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Chapter 3

Generative Modelling of LC-MS Data

3.1 Introduction

As described in Chapter 2, the raw data produced from liquid chromatography mass spec-
trometry (LC-MS) measurements has to be processed through a data pre-processing pipeline
before further analysis. From the peak detection step, we obtain points on the ion chro-
matograms having mass-to-charge (m/z), retention time (RT) and intensity values. We call
each point a peak. The nature of LC-MS measurements means that a compound being anal-
ysed generates multiple peaks. At the heart of this thesis is the grouping of these peaks that
are structurally or chemically related, and using the grouping to improve other steps (such as
the alignment and identification steps) in the pipeline. The problem of finding these groups
of related peaks can be approached as an unsupervised learning problem. In the unsuper-
vised learning approach, broadly speaking our task is to separate peaks into clusters, where
members of the cluster are related through sharing some commonalities, e.g. from being the
ionisation products of the same compound or from sharing chemical substructures.

Numerous methods exist to perform data clustering in an unsupervised manner [146]. In
probabilistic modelling, one way to do this is to try and explain the generative process that
produces the observed data. This results in a generative model. Peaks generated from the
same underlying cause in the model can then be assigned to the same cluster. Modelling the
data in this manner has some advantages in comparison to other distance-based clustering
methods, such as hierarchical clustering that has also been applied to peak data [28, 37].
A generative model provides more than just clustering. It is often easier to extract from a
generative model a hint as to why the observed data points are clustered, and this insight
can be very useful in certain applications. Additionally, through specifying the appropriate
likelihood functions, generative modelling also provides a flexible way of specifying how
data points should be clustered, while prior assumptions can be incorporated into the model
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in a principled manner. Finally, generative modelling allows for the probabilities of a certain
outcome to be extracted from the inference results, which may be useful.

Generative modelling has been applied to LC-MS data. Mixture models are the building
blocks of more complex generative models. In mixture models, it is assumed that the ob-
served data can be explained by the presence of some latent variables. These variables are
‘latent’ as they are not directly observed, rather their presence is inferred from the observed
data. In [102], mixture model clustering is used to cluster LC-MS peaks in the same run
by their chromatographic profiles. The assumption made in [102] is that ionisation product
peaks that are related share similar chromatographic profiles. Given N peaks in the data, the
method computes the pairwise Pearson correlation values for the chromatographic profiles
of all peaks, resulting in an N -by-N matrix of Pearson correlation values. The likelihood
of an entry in this matrix is described by a mixture of two components: an exponential-type
distribution to describe the correlation values of peaks in the same cluster and a Gaussian
distribution to describe the correlation values of peaks in different clusters. Along a similar
line, mixture model clustering is also used in MetAssign [25] to perform the probabilistic
annotations of ionisation product types and formulae to peak data. It is assumed in MetAs-
sign that a prior knowledge of the form of known formulae is provided. Theoretical peaks are
then generated using the provided formulae. The likelihood of an observed peak is computed
based on how well the observed m/z, RT and intensity values fit the theoretical peaks.

Other applications of generative modelling on mass spectrometry data include modelling the
assignment of formulae to peaks [101, 110], modelling the fragmentation events of tandem
mass spectrometry data, where the separation is performed using liquid chromatography
(CMF-ESI, [2]) or gas chromatography (CFM-EI, [3]). However, generative modelling also
have some drawbacks. During generative modelling, we seek to model the joint distribution
of the random variables of interest. This requires making certain assumptions on the process
that generate the observed data, and it may be that our assumptions are poor approximations
of the true underlying process. In this case, discriminative models (which seek to model the
decision boundary between classes for prediction tasks) may perform better while requiring
fewer training data [58] and having fewer parameters to tune. Discriminative models, such
as logistic regressions and Support Vector Machines, have have also been applied to mass
spectrometry data for the predictions of retention time [22, 13, 119] and the characteristic
fingerprints of compounds from fragmentation data [48, 31].

3.2 Mixture Model Clustering

As an example of generative modelling, we see that during liquid chromatography, metabo-
lites are separated by their chemical properties. From mass spectrometry, ionisation product
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peaks are produced from the same metabolites. These peaks will co-elute and have similar
chromatographic profiles, including broadly similar RT values. A group of observed peaks
having similar retention time (RT) values can be therefore be modelled as being generated
by the same metabolite, and in this case, although the metabolite is not directly observed,
its presence can be inferred based on the observed data. Peaks that are related to the same
compound can therefore be clustered according to their RT values. Let our LC-MS run be
represented as y = {y1, y2, ..., yn} where each yn is the RT value of a peak.

A principled way to model a generative process is through Bayesian inference. Suppose θ
is the parameter of interest to the generative process that produces the data y. In Bayesian
inference, we begin by specifying a prior distribution over the model parameter θ. Through
the application of Bayes rule, this prior distribution is updated by the likelihood of seeing
the observed data given our prior hypothesis on θ, resulting in a posterior distribution:

p(θ|y) =
p(y, θ)

p(y)
=
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫

θ
p(y|θ)p(θ) dθ

. (3.1)

In eq. (3.1), p(y, θ) is the joint distribution between the data y and the model parameter
θ. This can be factorised into a product of p(y|θ), which is the likelihood of observing the
data y given the model parameter θ, and p(θ), which is the prior distribution on the model
parameter θ. Normalising the joint distribution by the marginal likelihood or evidence p(y)

produces the posterior distribution p(θ|y), which is the probability of model parameter θ
given the data. Inferring model parameters given the observed data is usually what we are
interested in.

Using the posterior distribution, we can make a prediction on a new peak, ynew by averaging
over all values of θ. This results in the posterior predictive distribution:

p(ynew|y) =

∫
θ

p(ynew|θ)p(θ|y) dθ. (3.2)

In many cases, the integrals in eqs. (3.1) and (3.2) cannot be solved analytically and have to
be approximated through maximum likelihood or sampling-based approaches.

We now introduce mixture modelling for this example peak data. Note that this chapter does
not introduce any original work. Instead, the materials introduced in this chapter serve as
the building blocks for the subsequent chapters in this thesis, where novel models to group
related peaks together will be introduced. A probabilistic mixture model represents each
cluster by a probability distribution, with a distribution being a component in the mixture
model. Our resulting Gaussian mixture model for the peak data follows from [98]: it starts
with a finite number of components (denoted by K) and is later extended in Section 3.3 to an
infinite mixture model, where the number of components is unbounded. An infinite mixture
model introduces the flexibility to add and remove components as needed, depending on the
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data. This is useful when we assume that a component corresponds to a chemical compound,
and the number of compounds present in the sample is not known in advance and can be
inferred from the data. The generative process for this finite mixture model can be written as
the following. The conditional dependencies of random variables in the finite mixture model
is also shown in Figure 3.1A.

π|α ∼ Dir(α)

znk = 1|πk ∼ π
µk|µ0 ∼ N (µk|µ0, σ

2
0)

yn|znk = 1, µk ∼ N (yn|µ, σ2)

(3.3)

yn

zn

π

α

N

μk
K

μ0 σ0
2

σ2

π ~ Dir(α)

yn

zn

π

α

N

μk

μ0 σ0
2

σ2

∞

(A) A Finite Mixture Model (B) An Infinite Mixture Model

Mixture Model to Cluster Peaks by RT

π ~ GEM(α)

Figure 3.1: Graphical models of (A) a finite mixture model, which is extended into (B) an
infinite mixture model, to cluster peaks by their retention time (RT) values. Circles denotes
random variables, squares denote fixed parameters, while the shaded node denotes an ob-
served peak’s RT.

We now explain the model specification in eq. (3.3). First we assume that peaks that are
related are generated by the same component in the mixture model. Let the variable k =

1, ..., K index the mixture components. The choice of which probability distribution to use
for a component is usually determined by the type of observed data. Each observed data point
yn can be considered to a random variable drawn from the generating probability distribution.
Assuming that each data point is generated by a univariate Gaussian distribution, we denote
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by yn|µ, σ2 ∼ N (µ, σ2) that yn is distributed as a Gaussian distribution having mean µ and
variance σ2 (as an alternative parameterisation, precision, i.e. the inverse variance ( 1

σ2 ) can
also be used, with a higher precision implying a narrower distribution). The probability
density function for this univariate Gaussian distribution is given by:

N (yn|µ, σ2) =
1√

2πσ2
e−

1
2σ2

(yn−µ)2 . (3.4)

For a single peak, its mixture model likelihood is therefore given by:

p(yn|µ,π) =
K∑
k=1

πkN (yn|µk, σ2), (3.5)

where πk is the mixture proportion (the positive weight for each component) and µk is mean
for that component. Here π = {π1, ..., πk} denotes the vector over all mixture proportions
that sums to one

(∑K
k=1 πk = 1

)
.

In this model, each mixture component is set to have an unknown mean µk but a known
variance σ2. The choice of setting an unknown µk but a fixed variance for σ2 is motivated
by the following reasonable modelling assumptions: (1) the retention time drift of observed
peaks is broadly similar across the compounds being measured, and (2) this parameter can
be set by the user based on his knowledge on the characteristic RT drifts of the LC instru-
ment. Each cluster mean µk is assumed to be generated independently by a prior Gaussian
distribution, parameterised by the mean µ0 and the variance σ2

0 . Let µ = {µ1, ..., µk} be the
vector over all component means. This results in:

p(µ|µ0, σ
2
0) =

K∏
k=1

N (µk|µ0, σ
2
0). (3.6)

We also require another random variable znk to store the assignment of peak n to cluster k,
i.e. znk = 1 if peak n is assigned to cluster k and 0 otherwise. Each peak is assumed to
be generated independently by exactly one mixture component (

∑
k znk = 1). For a peak,

its entire cluster assignments can be stored in a vector zn of length K, where only the k-
th entry has a value of 1 (at znk = 1). zn is assumed to be generated from a multinomial
distribution having the parameter vector π. This multinomial distribution has the probability
mass function given by:

p(zn|π) = C
K∏
k=1

πznkk , (3.7)

where C is the multinomial coefficient, given by (
∑
k znk)!∏K

k=1 znk!
. Since zn has only one draw from

the multinomial, C evaluates to 1 and can be dropped. Now, let Z be the set of all indicator
vectors for all peaks. This results in the following likelihood for all the peak assignment
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vectors:

p(Z|π) =
N∏
n=1

K∏
k=1

πznkk

=
K∏
k=1

πckk ,

(3.8)

where ck =
∑

n znk is the count of peaks assigned to the k-th cluster. Collectively for all
peaks, the joint likelihood of the observed data and the cluster assignments is:

p(y,Z|µ,π) =
N∏
n=1

K∏
k=1

[πk N (yn|µk, σ2)]znk . (3.9)

In our generative model, a prior distribution is also placed on π. Due to its conjugacy
to the multinomial distribution, a Dirichlet distribution parameterised by the vector α =

[α1, α2, ..., αk]
T is a suitable prior. This results in:

p(π|α) =
Γ(
∑

k αk)∏
k Γ(αk)

K∏
k=1

παk−1
k

∝
K∏
k=1

παk−1
k .

(3.10)

We can now state the complete joint likelihood of the model. Putting together the individual
terms in eqs. (3.6)-(3.10) and their respective independence assumptions, we obtain the joint
probability distribution of the model parameters and data p(y,Z,µ,π|α, µ0, σ

2
0), which can

be factorised into:

p(y,Z,µ,π|α, µ0, σ
2
0) = p(y|Z,µ,π)p(Z|π)p(π|α)p(µ|µ0, σ

2
0). (3.11)

3.2.1 Gibbs Sampling for a Finite Mixture Model

Given the joint distribution in eq. (3.11), we can infer the posterior distribution on the as-
signments Z, the mixture proportions π and the cluster means µ. This is given by:

p(Z,π,µ|y,α, µ0, σ
2
0) =

p(y,Z,µ,π|α, µ0, σ
2
0)

p(y|α, µ0, σ2
0)

. (3.12)

Substituting eq. (3.11) into the numerator of eq. (3.12) results in the following posterior
distribution over the parameters that we want to infer:

p(Z,π,µ|y, α, µ0, s0) ∝ p(y|Z,µ,π)p(Z|π)p(π|α)p(µ|µ0, s0). (3.13)
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In many cases for the more interesting and complex models, the posterior distribution (such
as the one in eq. (3.13) and also the posterior predictive distribution cannot be derived ana-
lytically. Various methods, such as the EM algorithm [38], can be used to perform posterior
inference in a mixture model, but throughout this thesis, we will use Gibbs sampling, an in-
stance of Markov chain Monte Carlo (MCMC) methods. Gibbs sampling approximates the
target posterior distribution by sequentially updating each random variable conditioned on
all other random variables in the model. This requires deriving the conditional distribution

of each random variable that we want to infer. In some cases, obtaining these conditional
distributions can be challenging, although the process can be simplified by the independence
assumptions of our model (e.g. in assuming that the cluster means are independent) and
through the use of the appropriate conjugate prior distributions. Here we describe the steps
required to construct a Gibbs sampler for the mixture model defined in eq. (3.3).

As the initial step in our Gibbs sampler, we initialise the cluster means µ1, µ2, .., µk and
the mixture proportion π by sampling from their respective prior distributions. Then we
sequentially sample for new values of Z, µ and π from the conditional distributions listed
below.

1. We can update zn, the membership vector for peak n, by updating its k-th entry, i.e.
znk. Simplifying eq. (3.9) to consider just one n-th peak, we obtain the following after
normalisation:

P (znk = 1|π, yn, µk) =
πk N (yn|µk, σ2)∑K
k=1 πk N (yn|µk, σ2)

. (3.14)

2. As the next step, we also need to update each µk conditioned on the membership
vectors Z and the hyperparameters µ0 and σ0. Let xk = {x1, x2, ..., xm} be the set of
peaks currently assigned to the k-th cluster. The variable m indexes over the member
peaks of cluster k, and there are Mk such peaks. Their joint likelihood is given by
p(xk|µk). As defined in eq. (3.6), we assume that each µk is independent given its
conjugate prior N (µ0, σ

2
0) . The posterior distribution on p(µk|xk, µ0) is therefore:

p(µk|xk, µ0) ∝ p(xk|µk) · p(µk|µ0)

=

Mk∏
m=1

N (xm|µk, σ2) · N (µk|µ0, σ0)

=

Mk∏
m=1

1√
2σ2π

exp

(−(xn − µk)2

2σ2

)
· 1√

2σ2
0π

exp

(−(µk − µ0)2

2σ2
0

)
(3.15)

Since p(µk|xk, µ0) is a product of Gaussians, the posterior is proportional to another
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Gaussian, parameterised by say N (µ̃, σ̃2). Combining this with eq. (3.15) results in:

exp

(−(µk − µ̃)2

2σ̃2

)
∝ exp

(−∑M
m=1(xm − µk)2

2σ2
+
−(µk − µ0)2

2σ2
0

)
(3.16)

Simplifying eq. (3.16) and completing the squares, we obtain the following parameters
for N (µk|µ̃, σ̃2):

µ̃ = σ̃2

(∑M
m=1 xm
σ2

+
µ0

σ2
0

)
, σ̃2 =

1
M
σ2 + 1

σ2
0

(3.17)

3. Finally we also need to update the mixture proportion π. Putting together the multi-
nomial likelihood and Dirichlet prior in eqs. (3.8) and (3.10), we obtain a conditional
distribution for π that is another Dirichlet distribution, parameterised by [α1 +c1, α2 +

c2, ..., αk + ck]
T . Each entry in this parameter vector is influenced by two values: the

pseudo-count contribution from αk and the actual counts of peaks currently assigned
to cluster k from ck.

p(π|α,Z) = p(Z|π) · p(π|α) ∝
K∏
k=1

παk−1
k ·

K∏
k=1

πckk

=
K∏
k=1

παk+ck−1
k

= Dir(α1 + c1, α2 + c2, ..., αk + ck)

(3.18)

In Gibbs sampling, each newly updated value is immediately used before sampling for the
next value. This sampling of each random variable is repeated until convergence. Often
a certain number of initial samples are discarded during the burn-in period. Since succes-
sive samples are correlated, a certain thinning interval is also used to reduce the number
of samples used. The resulting samples can now be used to approximate the true posterior
distribution of the model. Frequently, the marginal distribution of the random variable of
interest is studied. Particularly for our case, often we are interested in the probability of
any pair of peaks (or even a set of peaks) to be placed in the same component since, as the
subsequent chapters will show, this has a direct application to the problem of peak alignment.

3.2.2 Collapsed Gibbs Sampling for a Finite Mixture Model

As we have chosen conjugate prior distributions on the mixture proportion π and the cluster
mean µk, it is possible for us to integrate (collapse) π and µk from the model during Gibbs
sampling. This results in a collapsed Gibbs sampler (CGS) where we need not sample π and
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µk explicitly. Collapsing has also been shown to lead to a better model convergence [38]. It
will also help when we extend our finite mixture model (where the number of componentsK
is specified) to an infinite mixture model (where the number of components is unbounded)
as we do not need to explicitly sample an infinite-dimensional vector π.

Specifically in this CGS implementation, we aim to marginalise π and µk by integrating
them out from the conditional probability for znk, the assignment of peak n to cluster k.
Collapsing π introduces dependencies among all the zn random variables, so we introduce
another notation Z− to refer all other zns except the one for the current n-th peak being
sampled. Similarly, y− denotes the RT values for other peaks apart from yn. The conditional
distribution for znk in the CGS is given by:

p(znk = 1,π|Z−,y, µ0,α) ∝ p(yn|Z−,y−, µ0) · P (znk = 1|Z−,α) (3.19)

We consider both terms of eq. (3.19) separately.

1. The first term on the right hand side of eq. (3.19) is the likelihood of yn to be assigned
to cluster k. Here, we no longer need to sample for µk as we are integrating over all
values of µk using the posterior distributionN (µk|µ̃, σ̃2) defined in eq. (3.16). Instead
we can directly compute this likelihood by:

p(yn|Z−,y−, µ0) ∝
∫
p(yn|µk) · p(µk|Z−,y−, µ0) dµk

∝
∫
N (yn|µk, σ2) · N (µk|µ̃, σ̃2) dµk

∝ N (yn|µ̃, σ2 + σ̃2)

(3.20)

where µ̃ and σ̃ are defined in eq. (3.17).

As an alternative parameterisation, we can also rewrite µ̃ and σ̃2 using precision (in-
verse variance) τ = 1

σ2 and τ0 = 1
σ2
0

to replace the variances. The expression in eq.
(3.17) then becomes:

µ̃ = σ̃2

(∑M
m=1 xm
σ2

+
µ0

σ2
0

)
=
τ
∑M

m=1 xm + µ0τ0

Mτ + τ0

σ̃ =
1

M
σ2 + 1

σ2
0

=
1

Mτ + τ0

(3.21)

In the Gibbs samplers for the mixture models in the later chapters, we will use this
parameterisation using precision.

2. The second term on the right hand side of eq. (3.19) is the prior probability of assigning
the n peak to cluster k. Again we do not have to sample for π as we integrate over all
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values of π. Our desired conditional probability is given in eq. (3.22). By definition,
P (znk = 1|π) is π while p(π|Z−,α) is the posterior Dirichlet distribution defined in
eq. (3.18). This results in:

P (znk = 1|Z−,α) =

∫
P (znk = 1|π) · p(π|Z−,α) dπ

=
ck + αk∑K
k=1 ck + αk

(3.22)

A derivation for the integral in eq. (3.22) can be found in Ch. 24 of [86]. In eq. (3.22),
ck denotes the number of data points (peaks) currently assigned to cluster k, excluding
the n-th peak that is being sampled.

Eq. (3.22) reveals the clustering property of the Dirichlet-multinomial mixture model.
The larger a k-th cluster is, the greater the prior probability for the currently sampled
peak to be placed into that cluster. This is balanced by the prior hyperparameter αk.
In the absence of any prior knowledge, often αk is set to be symmetric (αk = α

K
), and

in this case, small values for αk will result in fewer, larger clusters as ck dominates,
while large values for αk will smooth the prior probabilities, reducing the influence
of ck and producing more uniform clusters. In this manner, αk plays the role of the
pseudo-count that controls how strong the influence of ck is.

Having derived the terms in the conditional distribution for znk, we can now describe our
CGS for this mixture model. We loop over each peak in a random order and remove the
information of that peak from the model. We then resample the assignment of peak n to
each of the K clusters using eq. (3.19), normalised to form a probability distribution. Upon
sampling a new cluster (znk = 1), we assign peak n to cluster k and add the information
of that peak back into the model. This consists of one iteration in our CGS. Each iteration
generates a sample, and the collection of samples can be used to approximate our posterior
model parameters.

3.3 Dirichlet Process Mixture Model Clustering

One parameter that has to be specified in the model isK, the number of mixture components.
However, in many cases, often we do not know the number of components in advance. Deter-
mining the number of clusters in general is a challenging problem. In the Bayesian context,
selecting K (and also other model parameters) constitutes the model selection process. The
Bayesian non-parametric approach provides a way to perform model selection on the num-
ber of mixture components in a principled manner by assuming that there is an infinite set
of parameters, but the observed data is generated from a finite subset of that. In this manner,
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for the non-parametric clustering approach, we do not specify the number of clusters K a-

priori but instead assume that the data is generated from a mixture of an infinite number of
components. The non-parametric clustering model then learns the number of clusters from
the data, allowing for the automatic determination of model complexity [50].

A Dirichlet Process (DP) [34] is a stochastic process that describes a distribution over prob-
ability measures, often used in Bayesian non-parametric mixture model to generate the prior
distributions over the mixture components when the number of component is unknown.
Here, we focus on providing a brief overview of Dirichlet Processes to use in the construction
of an infinite mixture model. For more details, refer to [86, 98, 50, 125].

A DP can be seen as an infinite dimensional generalisation of the Dirichlet distribution.
Formally, we say that G is a Dirichlet Process distributed with the base distribution H and
concentration parameter α, i.e. DP (H,α), if we can sample a vector [G(B1, ..., Bn)] such
that:

[G(B1, ..., Bn)] ∼ Dir(αH(B1), ..., αH(Bn)) (3.23)

for every Bn, a partition over the support of H .

Eq. (3.23) may seem rather abstract. A constructive definition for the DP is given through
the stick-breaking construction [56]. Let π be an infinite-dimensional mixture proportion
vector, consisting of the following infinite sequence of entries π = {π1, π2, ..., }. Then
π ∼ GEM(α), where GEM denotes the Griffiths, Engen and McCloskey distribution, if
we can generate the k-th entry in π with the following stick-breaking process:

βk ∼ Beta(1, α)

πk = βk

k−1∏
l=1

(1− βl),
(3.24)

To use eq. (3.24), first we see that expanding the expression for πk in eq. (3.24) results in
the following recursive definition, where each πk is a product of βk and (1−∑k−1

l=1 πl).

π1 = β1

π2 = β2(1− β1)

π3 = β3(1− β2)(1− β1)

= β3(1− β1 − β2(1− β1))

= β3(1− π1 − π2)

...

πk = βk(1−
k−1∑
l=1

πl).

(3.25)
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To start the stick-breaking process, we begin with a hypothetical unit stick (of length 1) and
generate a random variable β1 ∼ Beta(1, α). This random variable β1 is used to define the
position to break the stick initially at π1 = β1. We repeat infinitely the step of generating a
new βk ∼ Beta(1, α) and using it to break the remaining portion of the stick (1−∑k−1

l=1 πl)

at πk. The result of this process is a vector π that is Dirichlet-distributed. It can be shown
that

∑∞
k=1 πk = 1 [56]. The stick-breaking process defines an exchangeable distribution:

although parts of the sticks are generated in order and each part is conditioned on the previous
ones, the resulting joint distribution is independent of the order.

In the mixture setting, the vector π generated in this manner can be used as the mixture
proportions in an infinite mixture model. Instead of sampling a finite-length vector from the
Dirichlet distribution in eq. (3.3), we generate π from the stick-breaking process. This lets
us formulate the generative process for our data as a mixture model having infinitely-many
mixture components using the stick-breaking construction as the prior overπ, resulting in the
graphical model shown in Figure 3.1B. This also lets us specify an infinite mixture model
in term of samples from the Dirichlet Process. Given π generated as before and a base
distribution H from which we can sample, let φk be a value sampled from H (this can be,
for instance, the mean µk of a mixture component). Then G is a discrete distribution that is
also an infinite mixture model:

G =
∞∑
k=1

πkδφk , (3.26)

where δφk is the delta function that has its entire probability distribution concentrated at φk.
We use the notation G ∼ DP (α,H) to denote that G is a sample from the Dirichlet Process
parameterised by the concentration parameter α and the base distribution H [125]. In this
manner, H is the expected value of the DP, and the DP is a distribution over distributions.
A sample from the DP is a discrete probability distribution, even if the base distribution
H is continuous. The level of this discretisation is controlled by α. Small α results in a
distribution concentrated at fewer discrete values, while large α produces a distribution with
support over many discrete values.

An alternative formulation of an infinite mixture model can be given using a DP param-
eterised by α and the base distribution H = N (µ0, σ

2
0). With a fixed variance (σ2) that

represents a user-defined RT drift tolerance, the generative process for our peak RT data
becomes:

G|α,H ∼ DP (α,H)

µk|G ∼ G

yn|µk ∼ N (y|µk, σ2).

(3.27)

Figure 3.2 shows two examples of G drawn from a DP with a Gaussian base distribution,
H = N (0, 1) and varying values for α. As noted earlier, a key property of the DP is that
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Figure 3.2: Two samples of G, plotted up to 1000 discrete values, generated by a Dirichlet
Process with α = 1 (left) and α = 1000 (right) and a base distribution N (0, 1). We see that
α affects how smooth the resulting discretisation of H is in G.

G is a discrete distribution despite H being continuous. The level of discretisation of H is
controlled by α, with small α resulting in fewer discrete points with larger probabilities in G
and large α causingG to have more discrete points. Repeated sampling fromGwill generate
repeated values, which illustrates the usefulness of the DP, in particular for clustering by
setting the DP as a prior over the distribution of the mixture components.

In Figure 3.3, we illustrate the generative process in eq. (3.27). First we sample a distribution
G from the DP parameterised by α and a base distributionH . In the example of Figure 3.3A,
the base is set to N (0, 1) and G contains two unique discrete values, denoted by the red and
green crosses, each of which is also a cluster component mean µk. Every n-th data point is
associated with a µk, and each µk generates the data for its cluster by sampling for values
from N (µk, σ

2).

3.3.1 Collapsed Gibbs Sampling for a Dirichlet Process Mixture
Model

Having defined the generative process for an infinite mixture model, we now perform infer-
ence on the model parameters. In particular for Gibbs sampling, we require the probability of
the current n-th data point that is being sampled to be in a cluster (P (znk) = 1), conditioned
on the assignments of other data points (Z−). We show how we derive this by modifying the
original collapsed Gibbs sampler as the number of components K tends to infinity. Assum-
ing a symmetric prior on the Dirichlet hyperparameter, αk = α

K
, the conditional probability
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Figure 3.3: An illustration of the generative process for the DP mixture model in eq. (3.27).
First, we require a base distribution to sample for discrete values, shown in (A). Given H
and some concentration parameter α, we generate a discrete distribution G. In (B), we see
thatG contains two unique discrete values sampled fromH , represented by the red and green
crosses. Each discrete value in G φk is also a cluster mean µk. (C) The noisy observed values
are generated by sampling for µk from G, and sampling for yn conditioned on the µk.
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on the assignment of peak n to cluster k from eq. (3.22) becomes:

P (znk = 1|Z−,α) =
ck + α

K

α +N − 1
. (3.28)

As before, ck in eq. (3.28) refers to the number of peaks assigned to cluster k, excluding
the current one being sampled. Note that the denumerator of eq. (3.28) is α + N − 1

(instead of just α + N ) to exclude the current data point being sampled in this iteration of
Gibbs sampling. Taking the limit of eq. (3.28) as K tends to infinity results in the following
conditional probability for znk = 1:

P (znk = 1|Z−,α) =


ck

α+N−1
, for existing clusters

α
α+N−1

, for a new cluster
. (3.29)

The conditional probability in eq. (3.29) is often formulated as the Chinese Restaurant Pro-
cess (CRP). In this process, an analogy is proposed based on a Chinese restaurant having an
infinite number of tables. Tables correspond to clusters while customers correspond to the
observed data points. The CRP is a random process that defines the probability of a customer
to sit at a particular table, conditioned on the seating arrangements of other customers. For a
non-empty table, this probability is proportional to ck, the number of other customers seated
at a table, while for an empty table, the probability is proportional to α. Under exchange-
ablity, the joint posterior distribution in the CRP is invariant to the ordering of the items [1].
This means we can assume that the n-th data point is the last customer to arrive in the CRP,
and the conditional probability for P (znk = 1) is thus proportional to eq. (3.29). Coupled
with a likelihood for a customer to be assigned to a table, we can use this to modify our
conditional probability for Gibbs sampling, resulting in:

P (znk = 1|Z−,α) ∝

ck · p(yn|Z−,y−, µ0)

α · p(yn|µ0)
. (3.30)

The top term in eq. (3.30) corresponds to the probability of being assigned to existing non-
empty clusters. As in the finite mixture model case, this prior probability is proportional
to ck, the number of data points (peaks) currently assigned to cluster k excluding the n-th
peak that is being sampled, while the likelihood p(yn|Z−,y−, µ0) is defined in eq. (3.20) or
equivalently in eq. (3.21) when precision is used. The lower term in eq. (3.30) corresponds
to the probability of creating a new cluster with the prior probability proportional the product
of α and the data likelihood. In this particular case, due to conjugacy, we can derive p(yn|µ0),
the likelihood of yn conditioned on the hyperparameter mean µ0 directly by marginalising
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over all empty components, resulting in:

p(yn|µ0) =

∫
p(yn|µk)p(µk|µ0) dµk = N (yn|µ0, σ

2 + σ2
0). (3.31)

In other cases where it is not possible to derive the data likelihood analytically, we can
approximate it by sampling for a new µk from the prior instead and evaluating yn under the
new cluster mean [98]. This completes the necessary modification to our collapsed Gibbs
sampler. The sampling process proceeds largely as before by removing the n-th peak from
the model and performing the assignment of that peak to cluster k using eq. (3.30). If an
existing k is selected, this is the same as the finite mixture case. When a new k is selected,
we create a new cluster and assign the peak to that cluster. In this manner, the number of
mixture components is not fixed a priori, but is instead determined based on the observed
data and the choice of hyperparameter α.

3.4 Hierarchical Dirichlet Process Mixture Model Clus-

tering

While the DP mixture model allows us to cluster related peaks, the clustering process within
each run is performed separately and independently of the others. However, in some cases
it is useful to allow for clustering to be shared across runs. We call the clusters shared
in this manner to be the global clusters, as opposed to the local clusters that are found in
each file. In LC-MS data, global clusters can be assumed to correspond to compounds (e.g.
metabolites or peptide fragments) that are present in all runs, while local clusters are the
noisy realisation of such global clusters in each run. Often, the shared presence of global
clusters can be assumed when we have multiple runs generated from the measurements of
the same biological sample. In this case, the runs are called technical replicates. In other
circumstances when the runs are generated through the measurements of different biological
samples, shared compounds might also be found and can therefore be represented as global
clusters.

The Hierarchical Dirichlet Process (HDP) mixture model is an extension of the DP mixture
model that allows for such global clusters to be defined and shared across multiple runs [126].
Within each run, the observed data points are separated into local clusters, which are assigned
to the shared global clusters. In our application, the HDP mixture model is particularly useful
for alignment as being able to explain which peaks are generated by which global clusters
is the same as being able to match these peaks across runs. This application is shown in
Chapter 6 where we introduce an HDP mixture model to simultaneously group peaks within
and across runs. From the model, the matching of peaks (alignment) is constructed from the
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marginal probabilities of peaks of being assigned into the same global cluster.

To understand the HDP mixture model, first we need to define the hierarchical Dirichlet Pro-
cess. Given a concentration parameter α0 and a base distribution H , let G0 be a distribution
sampled from a DP (α0, H). Assume that each LC-MS run is contained within a file. Then
for each run j = 1, ...J , we can sample a file-specific distribution Gj from another Dirichlet
Process parameterised by αj , withG0 as its base distribution. This file-specific DP is denoted
as DP (αj, G0), resulting in:

G0|α0, H ∼ DP (α0, H)

Gj|αj, G0 ∼ DP (αj, G0).
(3.32)

As a property of the DP, G0 is a discrete distribution with probabilities that sum to 1 (regard-
less of whether H is continuous or discrete). This means G0 has a support over the discrete
values φ1, φ2, ... drawn from its base distribution H . We use G0 to represent the prior dis-
tribution over the global clusters. Each Gj is a prior distribution over the file-specific local
clusters, and sinceGj is drawn from a DP withG0 as its base distribution, eachGj is discrete
and has a support over the same discrete values as G0. This is where the sharing property
of the HDP comes about. The set of discrete values in G0, which represent the prior values
on the global clusters, are inherited (copied) as the discrete values in Gj , which represents
represent the prior values on the local clusters.

To define an HDP mixture model, we complete the hierarchical prior defined in eq. (3.32)
with a data-generating distribution. Continuing with our example of clustering peaks by their
RT values, the data now comes in J input files, each corresponding to an LC-MS run. Let
j = 1, ..., J indexes over the input files and n = 1, ..., N indexes over the peaks in a particular
j-th file. Within the j-th file, the observed data is yj = {yj1, yj2, ..., yjn}. We assume that
within a file, the noise on the observed RT values is generated by a Gaussian with mean µjk
and a fixed variance σ2. As the base distribution, we set H = N (µ0, σ

2
0). Together with the

prior in eq. (3.32), we obtain the following HDP mixture model that explains how the RT
values of peaks in multiple files can be generated:

G0|α0, H ∼ DP (α0, H)

Gj|αj, G0 ∼ DP (αj, G0)

µjk|Gj ∼ Gj

yjn|µjk ∼ N (yjn|µjk, σ2).

(3.33)

This generative process from the HDP mixture model in eq. (3.33) is also illustrated in
Figure 3.4. Note the key difference between the HDP mixture (Figure 3.4) and the DP
mixture (Figure 3.3). In particular note the addition of another level of hierarchy to the HDP



3.4. Hierarchical Dirichlet Process Mixture Model Clustering 47

φ2φ1 φ3

μjk

yjn

φi

Figure 3.4: An illustration of the generative process for the HDP mixture model defined in
eq. (3.33). Similar to the DP mixture, we have a base distribution shown in (A). Given H
and some concentration parameter α, we generate a global distribution G0. In (B), we see
that G0 contains three unique discrete values. We then generate a file-specific distribution
Gj by sampling from a DP with G0 as the base distribution. As a consequence, Gj contains
only discrete values copied from G0. In (C), the noisy observed values within each file are
generated by sampling for µk from Gj , and sampling for yn conditioned on the µk.

mixture model. Within file j, the discrete values µjk inGj are drawn from another DP having
G0 as its base. This makes it possible for clustering parameters to be shared.

3.4.1 Gibbs Sampling for a Hierarchical Dirichlet Process Mix-
ture Model

Inference for the HDP mixture model can also be performed via a Gibbs sampling scheme. In
the rest of this chapter, we describe the construction of a Gibbs sampler for the HDP mixture
model in eq. (3.33). This follows from the posterior sampling in the Chinese restaurant

franchise approach in Section 5.1 of [126]. In Chapter 6, we describe the construction of a
more elaborate Gibbs sampling scheme for the HDP-Align model.

As a preliminary to the Gibbs sampler, the following indices are defined: j = 1, ..., J indexes
over the files, n = 1, ..., N indexes peaks in a file (assume that all files have the same number
of peaks), k = 1, ..., K indexes the local clusters in a file and i = 1, ..., I indexes the shared
global clusters across all files. Within the j-th file, the observed data is the RT values of
peaks, denoted by yj = {yj1, yj2, ..., yjn}. At any point in the sampler, the set of local
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cluster parameters (means) in the j-th file is denoted by {µj1, µj2, ..., µjk, }, while the set of
global cluster parameters across all files is denoted by {φ1, φ2, ..., φi}. Note that each local
cluster parameter is a copy of a global cluster parameter in a particular file. When the global
parameter is updated, all its local copies are updated too.

We also need some further variables to count the assignments of various objects. These are
namely cjk the number of peaks currently assigned to the k-th local cluster in the j-th file
and ci the number of local clusters from all files currently assigned to the i-th global cluster.
Note that both variables should exclude the object being sampled in the current iteration of
the Gibbs sampler.

The conditional updates for the Gibbs sampler are given as follows:

1. Assigning Peaks to Local Clusters

Let the indicator variable zjnk = 1 denote the assignment of peak n in file j to an
existing local cluster k in the same file. Additionally, zjnk∗ = 1 denotes the assignment
of peak n in file j to a new local cluster k∗. For Gibbs sampling, we need to derive
the conditional probability P (zjnk = 1) given the current peak RT value yjn and other
model parameters. We denote this by P (zjnk = 1|yjn, ...), where ... refers to other
parameters being conditioned upon but not explicitly listed. Similar to the single-file
collapsed Gibbs sampling in eq. (3.30), this conditional probability is given by:

(3.34)P (zjnk = 1|yjn, ...) ∝

 cjk · p(yjn|zjnk = 1, ...)

αj · p(yjn|zjnk∗ = 1, ...)
.

The conditional prior in eq. (3.34) is also known as the Chinese Restaurant Franchise
(CRF), which can be seen as an extension of the CRP (described in Section 3.3.1)
that accommodates multiple files. In the CRF, a file now corresponds to a restaurant,
each with an infinite number of tables. A new customer arrives at a restaurant and is
assigned to an existing table with probability proportional to cjk (the number of other
customers already sitting at the table k in file j) or to a new table with probability pro-
portional to αj (the concentration parameter of the lower-level DP in file j). Across
all restaurants, a global menu of dishes is maintained. The first customer who sits at
a new table orders a dish from the global menu, which is shared by any subsequent
customers who join that table. Existing dishes are served to the table with probability
proportional to ci (the number of tables across the entire franchise already served the
i-th dish), while a new dish is created with probability proportional to α0 (the concen-
tration parameter of the top-level DP).

For the assignment of a data point yjn to a local cluster, a customer in the CRF analogy
corresponds to a peak, a table is a local cluster parameter while a dish is a global cluster
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parameter. We consider the top and bottom terms of eq. (3.34) separately. The top
term p(yjn|zjnk = 1, ...) is the probability of assigning the data point to an existing
k-th local cluster in file j having the cluster mean µjk. This is proportional to cjk

multiplied by the likelihood N (yjn|µjk, σ2). The bottom term p(yjn|zjnk∗ = 1, ...) is
the probability of assigning the data point to a new local cluster k∗. This is proportional
to αj , multiplied by the likelihood of yjn under the new local cluster. To evaluate this
likelihood, first we generate a new cluster mean µjk∗ by sampling from the top-level
Dirichlet Process DP (α0, H). Let φ1, φ2, ...φi be the currently existing global cluster
parameters shared across files. With probability proportional to ci, an existing φi is
instantiated as a new local cluster mean µjk∗ in file j. Alternatively, with probability
proportional to α0, a new φi∗ is sampled from the base distribution N (µ0, σ

2
0) and

instantiated as a new µjk∗ in file j.

2. Assigning Local Clusters to Global Clusters

As the next step of the Gibbs sampler, we can also sample the assignment of a local
cluster k (and its entire member peaks) in file j to a global cluster, allowing for multiple
data points to be moved at the same time. This

Let the indicator variable vjki = 1 denote the assignment of a local cluster k in file
j to an existing global cluster i, and vjki∗ = 1 denote the assignment of the local
cluster to a new global cluster i∗. Furthermore, at any point in the sampler, let xjk =

{xj1, xj2, ..., xjm} be the RT values of peaks currently assigned to the local cluster k
in file j, and there are Mjk such peaks.

Similar to eq. (3.34), the conditional prior for the assignment of a local cluster to a
global cluster follows the CRP, resulting in:

(3.35)P (vjki = 1|xjk, ...) ∝

 ci · p(xjk|vjki = 1, ...)

α0 · p(xjk|vjki∗ = 1, ...)
.

In eq. (3.35), p(xjk|vjki = 1, ...) is given by the likelihood of the member peaks xjk
of local cluster k in file j to be placed under a global cluster i with parameter φi, there-
fore p(xjk|vjki = 1, ...) =

∏Mjk

m=1N (xjm|φi, σ2) following the assumed independence
assumption of xjm conditioned on φi. Similarly, to evaluate p(xjk|vjki∗ = 1, ...), first
we sample for a new φi∗ from the base distribution N (µ0, σ

2
0) then evaluate the data

likelihood of xjk under φi∗ .

3. Updating Other Parameters

As the last step of our Gibbs sampler, we update each global cluster parameter φi (and
its instantiated copies in each of the j-th file). For a particular i-th global cluster, this
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depends on the observations currently associated to it via any of the local clusters. We
denote by xi the set of RT values of peaks currently assigned to the i-th global cluster
from across all the files, and there are Mi such peaks. The posterior density for φi is
given by:

p(φi|xi, µ0, ..) ∝ N (φi|µ0, σ
2
0)

Mi∏
m=1

N (xi|φi, σ2). (3.36)

As in eq. (3.17) for the single-file DP mixture case, this posterior can be simplified
into another Gaussian N (φi|µ̃, σ̃2) parameterised by:

µ̃ = σ̃2

(∑Mi

m=1 xm
σ2

+
µ0

σ2
0

)
, σ̃2 =

1
M
σ2 + 1

σ2
0

. (3.37)

Appendix A in [126] also describes how the DP concentration parameters for each αj
and α0 can be updated..

This completes the Gibbs sampler for the HDP mixture model defined in eq. (3.33). We
initialise the sampler by putting all peaks in the same file into one local cluster and assigning
all local clusters to one global cluster. The sampler then operates by repeating the following
three steps: re-sampling local cluster membership for all RT values following eq. (3.34),
re-sampling the local cluster to global cluster membership for all local clusters following eq.
(3.35), and finally updating the cluster parameters as in eq. (3.36). During the re-sampling
steps, we keep track of which existing local clusters are empty in file j via the count variables
{cj1, cj2, ..., cjk}. An empty table cannot have any new member assigned to it and can be
deleted. Upon deleting a local cluster, we also update the global counter ci that tracks how
many local clusters across all files are assigned to the i-th global cluster. A global cluster
that is empty (not instantiated in any file) is also deleted.

As the Gibbs sampling procedure above has shown (and also as can be observed from Fig-
ure 3.4), we see that within a file-specific Gj , each discrete value for µjk is copied exactly
from the discrete values of φi from the global G0. This may not be what we want. In par-
ticular, for our application, the top-level G0 is the prior distribution over global compounds,
which can be expected to correspond to metabolites (for metabolomics data) or peptide frag-
ments (for proteomics data). The sample from a file-specific DP, denoted by Gj , is the prior
distribution over the realisation of those compounds within a file. It is reasonable to expect
the discrete values in Gj to vary from G0 with some random noise that represents the RT
drift in the observed peaks. The addition of noise in this manner results in the ‘HDP with
random effects’ model [63].

Mixture models are used extensively throughout this thesis. In Chapter 4, a DP mixture
model is used to group related peaks by their RT. In Chapter 5, this is extended to a mixture
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model that groups related peaks by taking into account their mass transformations. In Chap-
ter 6, we propose HDP-Align, an HDP mixture model that resembles the model described
in [63] but incorporates other LC-MS specific information, such as the m/z and RT values,
to cluster peaks hierarchically across multiple files. Beyond clustering, the model is used to
induce alignment (matching) of peaks from different files by placing peaks into the same RT
and m/z clusters. Finally, in Chapter 7, a topic model based on Latent Dirichlet Allocation
(LDA) is proposed to decompose fragmentation spectra into a set of co-occuring fragment
peaks, allowing for better hypothesis generations in the identification of metabolites present
in the sample.

In Section 3.5, we provide a brief description to the LDA model, which is an extension to
the standard mixture model.

3.5 Latent Dirichet Allocation

In the standard mixture setting, a set of related data points that can be grouped together are
said to be explained by a cluster (a probability distribution). For instance, a set of peaks are
related through having close RT values. They can be grouped together under one cluster,
and following the generative process, we assume that all observations in the same group are
produced by a single probability distribution. In this section, we relax that assumption and
introduce Latent Dirichlet Allocation (LDA) [7], another generative model that allows for
related data points in the same group to be produced by a mixture of distributions instead.

The classical application of LDA is for topic discovery in the text domain, although LDA-
like models have been applied to continuous data [100, 143, 26]. In the text application, data
points are individual words, which can be grouped, forming a document. In a document, cer-
tain words tend to co-occur — for instance, ‘Bayesian’ and ‘probability’ are two such words
– and ignoring word orders, we can represent this pattern of co-occurrences by a multi-
nomial distribution on the counts of words in a document. In the standard mixture model
construction, a document is assigned to a cluster, and all words from the same document
are generated by sampling from the same multinomial distribution linked to the cluster. Fol-
lowing its generative assumption, the multinomial mixture therefore model provides a ‘hard’
clustering result where documents belongs to one cluster and all words in the document are
generated by that cluster alone.

An alternative to the multinomial mixture is the probabilistic Latent Semantic Analysis
(pLSA) [52], which extends the generative process by allowing for a document to contain
words drawn by a mixture of different topics. A topic in this case corresponds to a multino-
mial distribution over the entire vocabulary space and serves the same purpose as a cluster
in the multinomial mixture model. However, in pLSA, the document-to-topic proportion is
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a point estimate that is inferred from the document collection. The resulting pLSA model
trained on a particular document collection may over-fit and have problems generalising to
new and unseen documents from a different collection (having different topic proportions).
LDA extends upon pLSA by placing a Dirichlet prior on the document-to-topic proportions,
allowing for unseen documents to be account by the model in a principled way. Particularly
for smaller data, the choice of document-to-topic prior distribution in LDA is also shown to
be important and may lead to better modelling performance [138].

We now describe the LDA model for text. Let n = 1, ..., N index the unique words (vocabu-
laries) and d = 1, ..., D index the documents in our collection. We denote by wdn to the n-th
unique word in the d-th document. We also require the index k = 1, ..., K over the topics,
and let zdn refer to the assignment of wdn to any of the k-th topic. The generative process for
LDA is given as follows. For a d-th document, a multinomial θd over the K topics, which
is the document-to-topic distribution for that document, is sampled. This document-to-topic
distribution provides the mixture proportions of topics that explain the words in the docu-
ment. Each document is also associated to a zd, the vector of assignment of words to topics.
For each word in the document, zdn, the assignment of the n-th word in the d-th document to
a particular k-th topic, is sampled. Given zdn = k, the actual word is generated by sampling
from the k-th topic-to-word distribution φzdn . A prior Dirichlet distribution parameterised
by α is placed on the document-to-topic multinomials, and similarly, another prior Dirichlet
parameterised by β is placed on the topic-to-word multinomials.

The generative model for LDA can be summarised in eq. (3.38), and is illustrated in Fig-
ure 3.5

wdn|φzdn ∼Multinomial(φzdn)

zdn|θd ∼Multinomial(θd)

θd|α ∼ Dir(α)

φk|β ∼ Dir(β)

(3.38)

To state the joint distribution of the model, we need to define more notation. Let W =

{w1,w2, ...,wd} denote the entire collection of documents and Z the entire set of assign-
ment variables for all documents, Z = {z1, z2, ...,zd}. The multinomial parameter sets for
all the document-to-topic distributions are Θ = {θ1,θ2, ...,θd}. Similarly, the multinomial
parameter sets for all topic-to-word distributions are Φ = {φ1,φ2, ...,φk}. Then the joint
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Figure 3.5: Graphical model of the Latent Dirichlet Allocation model. Circles denote random
variables, while the shaded node denotes the observed word value.

probability distribution is given by:

p(W ,Z,Θ,Φ|α,β) = p(Φ|β) · p(Θ|α) · p(Z|Θ) · p(W |Φ,Z)

=

[
K∏
k=1

p(φk|β)

]
·
[

D∏
d=1

p(θd|α)

]
·
[

D∏
d=1

N∏
n=1

p(zdn|θd)
]
·[

D∏
d=1

N∏
n=1

p(wdn|φzdn)

]
.

(3.39)

Since its introduction in [7], numerous extensions have been proposed to the standard LDA
model. Here we highlight some interesting extensions that address the shortcomings of the
standard LDA model. In the LDA model, the number of topics (K) has to be chosen in
advance or estimated via some model comparison procedure, such as cross-validation. To
address this, the Hierarchical Dirichlet Process model, introduced in Section 3.4, can also
be used to perform topic modelling, while allowing for topics to be created and deleted as
necessary based on the data. Correlations among topics are also absent from the original
LDA model. This is introduced in the Correlated Topic Model [71]. Topics are also flat in
the original LDA model, which is addressed in the hierarchical Latent Dirichlet Allocation
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(hLDA) model [43]. In the hLDA model, a tree hierarchy of topics are introduced using
a nested Chinese Restaurant Process. Higher level topics in the tree corresponds to more
general concepts, while low-level topics are more specific. Lastly, topics in LDA are defined
over a set of finite words that cannot change over time,. An infinite vocabulary model [148]
extends upon this by drawing topics from a Dirichlet Process with a base distribution over
all possible words. This allows topics to contain words that change and evolve over time as
the model is continuously trained on new data in a streaming context.

3.5.1 Collapsed Gibbs Sampling for Latent Dirichlet Allocation

Similar to the mixture model case, inference in LDA can be performed via a collapsed Gibbs
sampling scheme. In particular, we are interested in the conditional probability of P (zdn =

k|Z−,W ,α,β), the assignment of word n in document d to topic k given other assignments
and model hyperparameters. This is proportional to the joint distribution given in eq. (3.39).
For collapsed Gibbs sampling in LDA, we also aim to integrate out the document-to-topic
distributions Θ and the topic-to-word distributions Φ from the joint distribution in eq. (3.39).
This results in:

P (zdn = k|Z−,W ,α,β) ∝
∫
Θ

∫
Φ

p(W ,Z,Θ,Φ|α,β) dΘ dΦ

∝
∫
Θ

∫
Φ

p(Φ|β) · p(Θ|α) · p(Z|Θ) · p(W |Φ,Z) dΘ dΦ

∝
[∫

Θ

p(Z|Θ) · p(Θ|α) dΘ

][∫
Φ

p(W |Φ,Z) · p(Φ|β) dΦ

]
.

(3.40)

The right hand side of eq. (3.40) can be separated into two parts: the prior term involving
Z, Θ and α and the data likelihood term involving W , Φ and β. We denote the prior term
by p(zdn = k|...) and the likelihood term by p(wdn|zdn = k, ...), where ... denotes any other
parameters being conditioned upon but not explicitly listed. A derivation for eq. (3.40) can
be found in [14], but here we briefly summarise the result.

For the prior term p(zdn = k|...), marginalising over all θd parameters produces:

P (zdn = k|...) =

∫
Θ

p(Z|Θ) · p(Θ|α) dΘ

=
D∏
d=1

∫
θd

[
p(zd|θd) · p(θd|α)

]
dθd.

(3.41)

After integrating the Dirichlet-Multinomial distribution from p(zd|θd) ·p(θd|α) in eq. (3.41)



3.5. Latent Dirichet Allocation 55

and simplifying the resulting expression that contains gamma functions, it can be shown in
[14] that eq. (3.41) reduces to this simple expression:

P (zdn = k|...) ∝ cdk + αk, (3.42)

with cdk the number of words from document n currently assigned to topic k, excluding
the current word being sampled. Similarly for the likelihood term of P (wdn|zdn = k, ...),
marginalising over all φk parameters produces:

P (wdn|zdn = k, ...) =

∫
Φ

p(W |Φ,Z) · p(Φ|β) dΦ

=
K∏
k=1

∫
φk

[
p(φk|β) ·

D∏
d=1

N∏
n=1

p(wdn|φzdn)

]
dφk,

(3.43)

which reduces to:
P (wdn|zdn = k, ...) ∝ ckn + βn∑

n ckn + βn
, (3.44)

where ckn is the total number of the n-th word currently assigned to topic k, excluding the
current word being sampled.

Combining the prior and likelihood terms, the following conditional distribution is obtained
for the assignment of word n in document d to topic k:

P (zdn = k|Z−,W ,α,β) ∝ (cdk + αk) ·
ckn + βn∑
n ckn + βn

. (3.45)

For each sample, we can update the multinomial parameter sets Θ = {θ1,θ2, ...,θd} for all
documents and Φk = {φ1,φ2, ...,φk} for all topics. Consider one θd, the multinomial pa-
rameter of the d-th document-to-topic distribution. This multinomial distribution has a prior
Dirichlet distribution parameterised by α and the observed counts cdk of words from docu-
ment d to topic k. Applying Bayes rule, we obtain the updated posterior which takes the form
of a Dirichlet-multinomial distribution parameterised byDir(cd1 +α1, cd2 +α2, ..., cdk+αk).
The same applies to φk, the multinomial parameter of the k-th topic-to-word distribution.

Using the expectation of the Dirichlet distribution, we obtain the updated value for θdk (the
k-th entry in θd) and also φkn (the n-th entry in φk) as:

θdk =
cdk + αk∑
k cdk + αk

, φkn =
ckn + βn∑
n ckn + βn

, (3.46)

where cdk is the count of words from document d assigned to topic k and ckn is the count of
the n-th words assigned to topic k.

The collapsed Gibbs sampling for LDA then proceeds as follows: given K topics, we ini-
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tialise the sampler by randomly assigning words to topics and setting the count variables for
cdk used in eq. (3.42) and for ckn used in eq. (3.44). We then iterate over the words in all
documents, removing any information about it from the counts and computing the condi-
tional probability of P (zdn = k|wdn, ...) using eq. (3.40). The word is assigned to the k-th
topic, so we update the indicator variable zdn and other relevant count variables to reflect
this assignment. We also obtain the updated multinomial parameters for θd and φk using eq.
(3.46).

3.6 Conclusion

In this chapter, we have described the principle of mixture model clustering, with a particu-
lar example of its application to the generative modelling peak data by their retention time
values. The mixture model starts as a finite model, where the number of clusters is specified.
With a Dirichlet Process prior, the mixture model is extended to an infinite model where
the number of clusters grows with the data. Next, a hierarchical prior in the form of the
hierarchical Dirichlet Process is also introduced to allow us to share clusters across multiple
input files. Finally, Latent Dirichlet Allocation is introduced to let us model related items in
a group by a distribution of mixture. These models serve as building blocks in the remaining
chapters of this thesis.

In Chapter 4, we explore the idea of using the information from peak grouping to improve
the direct-matching alignment step. In Chapter 5, a mixture model is proposed to group ion-
isation product peaks by the set of user-defined chemical transformations. This grouping is
again used to improve the alignment step. In Chapter 6, a model based on the hierarchical
Dirichlet Process mixture is proposed to perform the grouping of ionisation product peaks
across multiple runs, constructing alignment as a natural output and allowing matching un-
certainties of aligned peaksets to be returned to the user. Finally, in Chapter 7, a topic model
is proposed to decompose fragmentation spectra into a set of co-occuring features. This is
shown to aid data interpretation during metabolite annotations. Common to all the chapters
is the idea that peaks that exist in LC-MS data are not independent, but instead they share
chemically-relevant relationships and can be grouped. This grouping can be used to improve
other steps, such as alignment and identification, in the LC-MS data pre-processing pipeline.
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Chapter 4

Incorporating Clustering Information
into Peak Alignment

4.1 Introduction

In liquid chromatography measurements, peaks can experience non-linear shift in retention
time (RT) values across runs [97]. RT variation could be due to instrument-specific factors
(the condition of the chromatographic column itself. including flow rate variations, gradient
slope and temperature [20]) or experiment-specific factors (e.g. instrument malfunctions
or columns that need be replaced mid-experiment). In direct matching, several potential
matches may be present for a peak from one run to another, but because the elution order of
correspondent peaks may swap across runs [113], the candidate peaks nearest in distance are
not necessarily the correct match.

As described in Section 2.3.6, ionization product (IP) peaks are the set of chemically-related
peaks produced from the mass spectrometry measurement of a single compound, such as a
peptide fragment (in the case of proteomics) or a metabolite (in metabolomics). Examples
of IP peaks are isotope peaks, multiple adduct and deduct peaks, and fragment peaks. IP
peaks of the same compound have similar chromatographic peak shapes as they co-elute
from the column. Such information could potentially be used to improve matching since a
group of IP peaks in one run should generally be aligned to another group of IP peaks in the
other run. In the direct-matching approach (discussed in Section 2.3.2), correspondent peaks
from one run to another are directly matched to each other without first correcting for RT
drift (instead the assumption on RT noise is built into the distance/similarity function used
for matching). A direct matching method can take this structural information of IP peaks
into account in order to improve alignment, however none of the direct matching methods
discussed in Section 2.3.2 exploit this information.
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In this chapter, we propose clustering IP peaks that share similar RT values together. This
clustering information is used to modify the similarity score matrix used for matching to
bring groups of IP peaks that should be matched closer, with the key assumption that groups
of co-eluting peaks corresponding to the same metabolite are generally preserved across
runs. This idea is illustrated in Figure 4.1 and further introduced in Sections 4.3 and 4.3.2.

A
B

C

D

m/z

RT

E G
F

H

I

Run 1 Run 2

J

SAE = αWAE + (1 − α)WBG

SAJ = αWAJ

SBG = αWBG + (1 − α)WAE

SCH = αWCH

SDI = αWDI

Peaks

Updated weights, taking into 
account peak grouping, 

computed via Equation 2WAE

WBG

WCH

WDI

WAJ

Figure 4.1: Illustrative example of the incorporation of grouping information into the simi-
larity score. Each node in the figure is a peak feature, and dotted ovals represent groups of IP
peaks, e.g. isotopes, fragments, etc. Initially weights (e.g. WAE) are computed for pairs of
peaks (one from each run) with m/z and RT within pre-defined thresholds. These weights are
converted into an overall score by incorporating grouping information. For example, peak
pairs (A,E) and (B,G) are both within the threshold. Because A and B are in the same
group, and E and G are in the same group, the weights between pairs (A,E) and (B,G)
are upweighted. Peak J is not related to any peaks that could be matched with A’s IP peaks
and the similarity between A and J is therefore downweighted (because α ≤ 1). The same
applies to similarities between pairs (C,H) and (D, I).

As shown in Figure 4.1, initial weights are computed between pairs of peaks in the two runs
that are within m/z and RT tolerances (e.g. WAE and WAJ ). When related peak information
is added, the similarity between peaks A and E is increased due to peak A being related to
another peak (B) that is similar to a peak (G) related to E. On the other hand, the similarity
between A and J is not increased as J does not have any IP peaks that could potentially
be matched to peaks related to A. In other words, we are proposing using the structural
dependencies present between peaks in each run to modify the similarity scores and improve
alignment performance: the more peaks related to A that could be matched to peaks related
to E, the more likely it becomes that A should be matched to E.

4.2 Related Work

Direct matching is introduced in Section 2.3.2, while the grouping of IP peaks is introduced
in Section 2.3.6.
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Statement of Original Work

The work from this chapter has been published in Bioinformatics [140]. The author proposed
and implemented the idea of incorporating clustering information into a direct-matching
alignment method. The author also performed the evaluation of performance of the proposed
approach against the baseline methods.

4.3 A Direct Matching Method That Incorporates Clus-

tering Information

Our proposed alignment method combines a novel similarity score with maximum weighted
bipartite matching. This results in pairwise alignments which can be, if desired, extended to
multiple alignments with hierarchical merging strategy. In such merging strategies, having an
accurate initial pairwise alignments is important because of its influence on the final multiple
alignment results. Here, we describe a direct matching approach to performing alignment of
peaks across two LC-MS runs.

A peak feature refers to a tuple of (m/z,RT ) produced as output after the initial peak detec-
tion stage of LC-MS data. Here, m/z is the mass-to-charge value and RT the retention time
value of a peak feature. Suppose we wish to align run A containing NA peaks with run B
containing NB peaks. Alignment between two runs can be represented as a matching prob-
lem on a bipartite graph G, where nodes in the graph are the features, edges are the potential
correspondence between features and the weights on the edges are the similarity scores (en-
tries in S) between features. In SIMA [137], the Gale-Shapley algorithm [46] is used to find
a stable matching in G. A matching is stable if there are no two features in different runs
that would prefer to be matched to each other than to their currently matched partners. Since
the stable matching is computed based on ranked preference, valuable information could be
discarded as distances between features are converted to ranks. As such, we prefer to use
a method that maximises the total sum of similarity scores of matched features (maximum
weighted matching).

The benefit of maximum weighted bipartite matching in solving the peak correspondence
problem has been studied in [142] in their LWBMatch tool. LWBMatch shows that such
matching method, coupled to a local regression method, is able to align runs having large
and systematic drifts in RT values. The well-known Hungarian algorithm [70] attributed to
Kuhn and Munkres is used in LWBMatch to solve this problem. The time complexity of the
Hungarian algorithm is O(n3), where n is the number of peaks in the larger set. While the
Hungarian algorithm’s implementation can be improved to O(n2 log n) by using Fibonacci
heaps for the shortest path computation, the polynomial time complexity required in this
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scheme is often too slow to be practical for alignments of the large number of runs produced
in large-scale untargeted LC-MS studies. Consequently, we compute an approximation of
the maximum weighted matching using a simple greedy algorithm that runs in O(m log n)

time, where n and m denote the number of vertices and edges in the bipartite graph G to
be solved. The greedy algorithm is straightforward to describe: pick the heaviest edge e in
G, where e represents a potential match between nodes (features). Add e to the matching
solutionM and remove all other edges adjacent to e fromG. Repeat until all edges inG have
been exhausted. This simple greedy algorithm is known to provide a lower bound of at least
1/2 of the maximum weight in the matching [30]. From the direct matching of peaks across
two runs, we obtain a list of aligned peaksets, defined as the sets of correspondent peaks that
have been matched across runs. In the case of two runs, an aligned peakset has a size of at
most 2.

4.3.1 Feature Similarity

To define a similarity measure between peaks, we follow SIMA [137] in using the Maha-
lanobis distance between two peaks pi ∈ A, pj ∈ B where each peak is a vector of its m/z
and RT values pi = [mi, ti]

T and pj = [mj, tj]
T. The distance is given as:

D(pi,pj) =
√

(pi − pj)TΣ−1(pi − pj),

where the covariance matrix Σ is a diagonal matrix of mass-to-charge tolerance σ2
m and re-

tention time tolerance σ2
t . The diagonal covariance matrix Σ assumes independence between

the σ2
m and σ2

t components since measurement error in m/z is independent of RT. To reduce
the computational burden, entries inD are only computed when the peaks’ m/z and RT val-
ues are within σm and σt. We now define the similarity score between two peaks as one
minus their normalised distance:

W (pi,pj) = 1− D(pi,pj)

Dmax

, (4.1)

whereDmax is the maximum computed distance between peaks in the two runs being aligned.
Collectively, we call the NA×NB matrix of similarity scores between all peaks in run A and
B to beW .

4.3.2 Combining Related Peak Information

The similarity score matrix W can now be combined with related peak information to obtain
a final score, S:

S = αW + (1− α)L, (4.2)
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where L is the cluster similarity score between the two peaks in a single run (described
below), and α (0 ≤ α ≤ 1) is a parameter controlling the relative influence of the two com-
ponents. To compute L, we require related peak groupings from the two runs being aligned.
This takes the form of an NA × NA matrix CA for run A and an NB × NB matrix CB for
run B. Entries in CA and CB can be either binary (0, 1) or probability values, depending on
the peak grouping algorithm used. For example, if a greedy clustering approach is applied
to the features in run A, the ij-th element of CA will be either 1 or 0, depending on whether
the i-th and j-th features (peaks) in A are clustered together (1) or not (0). Note that in the
following, we define the diagonal components of both matrices to be zero to avoid double
counting. We then compute L as follows:

L = CA ·W ·CB. (4.3)

The resulting matrix gives cluster similarity scores such that each element Lij of L is the
sum of weight from peaks in the same cluster as i in run A to peaks in the same cluster as
j in run B. This allows us to use the matrix L to upweight the similarity scores between
peaks in the same cluster in one run that also have more potential matches to peaks in the
same cluster in the other run of the matching. Computation of Equation 4.3 is illustrated in
Figure 4.1. The ratio parameter α controls how much clustering information we bring into
the overall similarity score matrix S, with its value bounded in 0 ≤ α ≤ 1. Setting α = 1

results in a matching that uses only information fromW , the similarity score matrix. Setting
α = 0 means that the matching is performed based only on the cluster similarity score L.
From our experience, a reasonable range of values for α lies between 0.2 to 0.4.

Our proposed approach is independent of the method used to group IP peaks in each run. For
comparison, we call our method that does not use the cluster similarity score (α = 1) to be
Maximum-Weighted (MW). We then demonstrate the performance improvement from incor-
porating IP peaks information using two different clustering algorithms: a greedy RT clus-
tering approach (described in Section 4.3.3) and a statistical mixture model (Section 4.3.4).
The combination of matching with the greedy clustering is called MWG, while the alterna-
tive approach that uses the probabilities coming from the mixture model is called MWM.

4.3.3 Greedy Clustering of IP peaks

In the greedy clustering method, the most intense peak in the dataset is selected and clustered
with other candidate peaks inside a retention time window gtol. The next most intense peak
that has not already been clustered is processed, and the grouping process is repeated until
all peaks are exhausted. If chromatographic peak shapes information is available (such as for
the Metabolomic dataset used in section 4.5.2), the Pearson correlation coefficient between
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the chromatographic peak signals of the most intense peak and the candidate peaks are com-
puted. Only candidate peaks with Pearson correlation values greater than some threshold c
are accepted into the newly-formed cluster. This greedy clustering process results in binary
grouping matrices CA and CB that can be used in eq. 4.3.

4.3.4 Mixture Model Clustering of IP peaks

We can also group IP peaks together by their RT values using a mixture model. Our ob-
servation consists of a vector of N observed peak’s RT values y = (y1, y2, ..., yn), and our
aim is to partition each set of peaks into K groups of IP peaks (clusters) by their RT val-
ues. We used a Gaussian mixture model with Dirichlet Process prior (described further in
Section 3.3) to model the data. A peak is indexed by the variable n = 1, ..., N and a cluster
indexed by the variable k = 1, ..., K. Each Gaussian mixture component has some mean
µk are assumed to have a fixed precision (inverse variance) δ, corresponding to the fixed
retention time tolerance for each group of IP peaks. Let the indicator znk = 1 denotes the
assignment of peak n to RT cluster k. Then:

π|α ∼ GEM(γ) (4.4)

znk = 1|πk ∼ πk (4.5)

µk|µ0, τ0 ∼ N (µk|µ0, τ
−1
0 ) (4.6)

yn|znk = 1, µk ∼ N (µk, δ
−1) (4.7)

where π is the mixing proportions, distributed according to the GEM (Griffiths, Engen
and McCloskey) distribution (details in Chapter 3). The GEM distribution over π is pa-
rameterised by the concentration parameter γ and is described through the stick-breaking
construction:

βk ∼ Beta(1, γ) (4.8)

πk = βk

k−1∏
l=1

(1− βl). (4.9)

The mixture component mean µk is drawn from a base Gaussian distribution with mean µ0

and precision τ0. We set µ0 to the mean of the observed data, while τ0 is set to a broad value
of 5E-3. Analytical inference is not tractable here, so we use the Gibbs sampling scheme for
inference. To do this, we need the conditional probability of p(znk = 1, ...) of peak n to be
in an existing cluster k (or k∗ if a new cluster is to be created), given any other parameters in
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the model. This conditional probability is given by:

P (znk = 1|yn, . . .) ∝

 ck · p(yn|znk = 1, ...)

γ · p(yn|znk∗ = 1, ...)
, (4.10)

where ck is the current number of members (peaks) in an existing cluster k. p(yn|znk = 1, ...)

is the likelihood of peak yn in an existing cluster k. We can marginalise over all mixture
components and get:

p(yn|znk = 1...) = N (yn|µk, λ−1
k ), (4.11)

where λk = ((τ0 +σck)
−1 +δ−1)−1 and µk = 1

λk
[(µ0τ0) + (δ

∑
n yn∈k)]. Here, yn∈k denotes

the RT values of any peak n currently assigned to cluster k, and ck the count of such peaks.
The conditional probability of peak n to be in a new cluster k∗ is:

p(yn|znk∗ = 1...) = N (yn|µ0, λ
−1
k∗ ), (4.12)

where λk∗ = (τ−1
0 + σ−1)−1. In a step of the Gibbs sampling procedure, we perform the

assignment of peak n to cluster k, creating new cluster k∗ if necessary. Using the posterior
summaries across all samples drawn S∗ = 1

R

∑R
r=1 sr, where sr is the r-th posterior sample

collected after a suitable burn-in period andR is the total number of samples taken (excluding
burn-in samples), we can obtain the marginal posterior of the probability of two features
(peaks) to be in the same cluster k averaged across all samples. These probabilities comprise
the elements of CA and CB (i.e. the ij-th element of CA is the proportion of samples from
run A in which peaks i and j were in the same cluster), which can be used in eq. 4.3.

4.4 Evaluation Study

In this chapter, the performance of the proposed methods and other benchmark methods is
evaluated using precision and recall on LC-MS datasets from proteomic, metabolomic and
glycomic experiments. The proteomic datasets are obtained from [74] while the glycomic
dataset comes from [130]. These datasets provide the ground truth for alignment and have
used to benchmark alignment performance in other evaluation studies [74, 96, 5, 137, 130].
Additionally, we also introduce a metabolomic dataset generated from the standard runs used
for the calibration of chromatographic columns [22]. The runs were produced from different
LC-MS analyses separated by weeks, representing a challenging alignment scenario.

Many direct matching methods work in a pairwise fashion and produce an overall results
via some merging strategies of intermediate results. Pairwise performance therefore limits
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overall performance, and as such, in this chapter, we focus on evaluation using only pairs of
runs. Some (P2, metabolomic and glycomic) of the datasets selected for evaluation in our
experiments have more than 2 runs, so we select only 2 runs each to form a training and
testing set. The procedure for doing so is described in the respective following sections for
each dataset.

4.4.1 Proteomic Datasets

[74] introduces two benchmark LC-MS proteomic sets (P1, P2) constructed to evaluate the
ability of alignment tools in dealing with large retention time drifts. Both the P1 and P2
datasets were analysed using an automated LC-LC/MS-MS platform. Each dataset comes in
multiple chromatography salt-step fractions, obtained by bumping the salt level at every 10
minutes interval during chromatographic separation. P1 was produced from E. coli samples
digested by trypsin, and comes in 2 runs for each fraction. P2 was obtained from M. smegatis

protein extracts, similarly digested by trypsin, and contains 3 runs for each fraction. P2 was
constructed to be a greater challenge to align with runs separated by weeks. Alignment
ground truth is established in [74] by means of peptides that can be reliably identified during
the identification stage. Only identification annotations with SEQUEST Xcorr score >1.2 is
included. Annotations are then filtered by their retention times and matched across runs.

For the proteomic datasets, each fraction in P1 has two runs used for alignment, while each
fraction in P2 has three runs (we use only the first two to establish pairwise alignments).
Tables 4.1 shows the number of features for each run of the P1 and P2 datasets used for
evaluations. Both P1 and P2 represent challenging alignment cases, with large deviations in
RT values across runs. This is especially true for P2 with LC-MS runs separated by weeks
and large differences in the number of features per run. Further details on the nature of the
datasets can be found in [74].

4.4.2 Metabolomic Datasets

We use a metabolomic dataset generated from a mixture of 104 standard metabolites used for
the calibration of chromatographic columns (details in [22]). These runs were produced by
ZIC-HILIC chromatography (Merck Sequant, Darmstadt, DE) on an UltiMate 3000 RSLC
system (Thermo, Hemel Hempstead, UK), coupled to an Orbitrap Exactive mass spectrome-
ter (Thermo, Hemel Hempstead, UK) in positive mode. The metabolomic dataset is available
in different 11 runs, produced from different LC-MS analyses separated by weeks. While
these runs are not true technical replicates, they are similar enough to be treated as replicates
for the purpose of performance evaluation, and they represent a realistic and fairly challeng-
ing alignment scenario. The output from each of these runs is available in PeakML format,
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Fraction # runs # features per run (P1) # features per run (P2)

000 2
5824 5054
4782 5100

020 2
1114 3271
1021 529

040 2
1230 1483
958 678

060 2
1902 -
1440 -

080 2
1183 474
903 438

100 2
745 401
581 429

Table 4.1: No. of features in the proteomic (P1 and P2) datasets. Note that fraction 060 is
not present in P2.

which were then converted into a suitable format using the mzMatch suite [107]. Both the
original PeakML files and the converted text files can be found in our site. To generate the
actual training and testing sets, 30 randomly pairs of runs were extracted as training sets, and
another 30 pairs of runs extracted for testing sets. Table 4.2 shows the number of features in
each run of the metabolomic dataset.

Metabolomic Run # features Metabolomic Run # features
1 4999 7 6319
2 4986 8 4101
3 6836 9 5485
4 9752 10 5034
5 7076 11 5317
6 4146

Table 4.2: No. of features in the full metabolomic dataset.

Alignment ground truth was constructed from the putative identification of peaks in each of
the 11 runs separately at 3 ppm using mzMatch’s Identify module, taking as additional input
a database of 104 compounds known to be present and a list of common adducts in positive
ionisation mode (Table 4.3). This is followed by matching of features that share same an-
notations across runs to construct the alignment ground truth. Only peaks unambiguously
identified with exactly one annotation are used for this purpose, as peaks with more than one
annotations per run are discarded from the ground truth construction. The results from this
process is an alignment ground truth for a smaller subset of peaks in the runs that can be
reliably identified at high mass precision. Note that constructing alignment ground truth in
this manner does not introduce bias to the ground truth as the identification information is
not used during the alignment stage.
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Adduct Types

M+2H M+H M+ACN+H M+H+NH4
M+NH4 M+ACN+Na 2M+ACN+H M+ACN+2H
M+Na M+2ACN+H M+2ACN+2H M+CH3OH+H
2M+H

Table 4.3: List of common adduct types in positive ionisation mode for ESI.

4.4.3 Glycomic Dataset

[130] provides a glycomic dataset containing 23 runs, produced from untargeted LC-MS
study for identifying N-glycan disease biomarkers in glyomics studies. LC-MS data were
acquired from a Dionex 3000 Ultimate nano-LC system, coupled to an LTQ-Orbitrap Velos
mass spectrometer on positive mode. Alignment ground truth is established in [130] based on
a manual comparison of measured mass values with theoretical values (taking into account
hydrogen adducts) and visual inspection of potentially incorrect assignments. We randomly
extracted 30 pairs of runs for training and another 30 pairs of runs for testing performance
evaluation from the full glyocomic dataset provided by [130], which comes in 23 runs in
total. The following tables show the number of features in each run and the indices of the
pairs of files randomly selected as training and testing sets in our Glycomic experiment.

Glycomic Run # features Glycomic Run # features
1 856 13 911
2 1088 14 1144
3 922 15 932
4 808 16 1541
5 886 17 1022
6 850 18 1051
7 979 19 1119
8 1008 20 1047
9 904 21 1017

10 1043 22 990
11 1041 23 977
12 885

Table 4.4: No. of features in the full glycomic dataset from [130].

4.4.4 Experimental setup

The alignment tools evaluated have in common user-defined mass-to-charge ratio (m/z) and
retention time (RT) window parameters. These parameters act as hard thresholds that de-
termine the solution space to be explored in the m/z and RT dimensions when matching
features. Performance of all alignment procedures is highly dependent on the assumptions
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and choice of parameter values that underpin them [113]. For example, warping methods
must make assumptions regarding the mathematical form of the warping function and are
dependent on a good choice of reference run. Direct matching approaches typically need
to decide on the form of peak similarity function, and define some m/z and RT windows,
outside of which, peaks cannot be matched. Whilst the m/z window and parameters can
often be determined based on the mass accuracy of the measurement equipment, there is no
obvious way to determine the RT window and associated parameters. The optimal choice of
such parameters could have a significant influence on the final results [113], and there is no
reason to believe that these parameters should remain constant across different experiments.

Previous studies that use the proteomic dataset presented here [74, 5, 137] varied the window
parameters and reported the best performance achieved. Whilst informative, this procedure
is unrealistic due to the role of the ground truth in choosing the optimal parameter values.
To provide a more realistic estimate of performance, we also present the performance on a
separate testing set. In other words, we optimise the window parameters on one alignment
task and report the performance when using these optimised parameters on a second task
(distinct from the first task). This reflects the scenario where the parameters are set based
on performance on a previous dataset or due to information supplied from the instrument
manufacturer and tells us how critical setting these parameters is for each method.

In this chapter, training set refers to the data on which alignment parameters are optimised
and testing set refers to the independent set on which alignment performance is evaluated.
We believe that this represents a more realistic measure of alignment performance and pro-
vides us with some information as to how the different algorithms generalise to new datasets.
We addressed the lack of comparative evaluation of alignment tools as discussed in [113] by
independently reproducing key results from [74] and [137] for the Join and SIMA alignment
methods. Our evaluation studies were performed on proteomic, metabolomic and glycomic
datasets introduced before to validate the hypothesis that using related-peak information can
improve alignment performance. Since most direct matching algorithms work in a pairwise
fashion (pairs of runs are matched and the results combined), pairwise performance there-
fore limits overall performance, justifying the choice for our experiments. For the proteomic
datasets, each fraction in P1 has two runs used for alignment, while each fraction in P2 has
three runs (we use only the first two to establish pairwise alignments). Similarly for the
metabolomic and glycomic datasets, we randomly extracted 30 pairs of runs for training and
another 30 pairs of runs for testing performance evaluation.

Evaluation of alignment quality through manual visual inspection of superimposed profile
images and through the comparison of some selected chromatograms is often subjective.
This approach also might not work well for the evaluation of a large number of aligned
peaksets produced by the alignment of a large number of samples. In recent years, a number
of works [74, 5, 137, 130] have been proposed that use precision and recall (two widely used
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measures in information retrieval) to evaluate alignment performance. In this work, align-
ment performance is also evaluated in terms of precision, recall and F1-score. Looking at
pairwise matching, we can define the following positive and negative instances with respect
to some pairwise alignment ground truth:

• True Positive (TP ): pairs of peaks that should be aligned and are aligned.

• False Positive (FP ): pairs of peaks that should not be aligned but are aligned.

• True Negative (TN ): pairs of peaks that should not be aligned and are not aligned.

• False Negative (FN ): pairs of peaks that should be aligned but are not aligned.

In the context of alignment performance, precision ( TP
TP+FP

) is the fraction of aligned pairs
in the output that are correct with respect to the ground truth, while recall ( TP

TP+FN
) is the

fraction of aligned pairs in the ground truth that are aligned in the output. A perfect alignment
would have both precision and recall to be 1. In addition, we also computed the F1 score (the
harmonic mean of precision and recall) such that F1 = 2(precision · recall)/(precision +

recall). Only feature pairs present in the ground truth are considered for evaluation. The
idea of using pairwise matching to define alignment performance evaluation is not new, and
has also been done in [142]. Collectively for the purpose of performance evaluation, the set
of Precision, Recall and F1 values is referred to as a ‘measurement’.

4.4.5 Other Alignment Tools For Comparison

Our proposed approach was benchmarked against MZmine2’s Join Aligner [96] and SIMA
[137]. Our own matching method (MW) also serves as a useful baseline to demonstrate
any difference in performance with or without using clustering information. The two bench-
mark tools employ different approaches towards alignment. Join Aligner is a greedy direct-
matching method, while SIMA is a combinatorial direct-matching method, with an optional
warping step to correct RT shifts after an initial matching has been established. Users of
the MZmine2’s toolkit may have good reasons to prefer Join Aligner to the more recent
RANSAC Aligner due to its simplicity and speed. Join Aligner produces a deterministic
alignment output (so running it each time on the same input and parameters gives the same
result), in contrast to the RANSAC aligner, which is non-deterministic. Join Aligner has
relatively few parameters to configure, the most important ones being the m/z tolerance and
retention time tolerance parameters. These parameters are used for thresholding and score
calculations, and they were varied within reasonable ranges during our experiments. Sim-
ilarly, the two most important parameters used in SIMA for thresholding and computing
feature similarities are the T(m/z) and Trt parameters (equivalent to our σm and σt). We let
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these two parameters vary in our experiments. SIMA also offers an optional step to correct
for retention time distortion by constructing a smooth and monotonic warping function for
the maximum likelihood alignment path after the initial matching has been done. The utility
of this optional step is not obvious to end-users, since it requires additional parameters to
configure and relies on having an initial correspondence established. Therefore, we chose to
test only the core matching functionality in SIMA.

4.4.6 Parameter Optimisation

For every evaluated method in our experiments, we performed grid-search on the m/z and
RT windows parameters using the training set. We then used those optimal parameters to
perform alignment on the testing set, giving us the respective performance measures (Preci-
sion, Recall, F1) on the testing set. For testing set consisting of multiple fractions, we report
the average performance measures on the testing fractions.

For training using the P1 and P2 datasets in the proteomic experiments, the m/z and RT tol-
erances were varied within: {1.0, 1.2, ..., 2.0} for the m/z tolerance, and {5, 10, .., 300} sec-
onds for the RT tolerance. The parameter ranges were chosen based on reasonable estimates
of the instrument’s precision and prior RT tolerance values as reported by [74]. We kept all
the default values for the remaining parameters in each evaluated tool, if any. For MWG,
we also varied the ratio parameter α from {0.1, 0.2, ..., 1.0} and the grouping parameter gtol
from {1, 2, ..., 10} seconds and uses the combination that results in the best performance.
For MWM, the ratio parameter α was varied from {0.1, 0.2, ..., 1.0} but mixture model pa-
rameters were kept the same for clustering of all fractions in P1 and P2. When clustering
all fractions in a dataset, a broad Gaussian prior was set for the component mean µj of each
cluster j. The component precision sj was set to 5 seconds, while the DP concentration pa-
rameter γ is set to 1. We drew 2000 posterior samples (with 1000 initial burn-in samples) for
each run during the Gibbs sampling steps to construct the probability matrix of peak-vs-peak
to be in the same cluster.

For the Metabolomic and Glygomic experiments, 30 pairs of run were randomly extracted
from the M1 metabolomic dataset in [74] and from the glycomic dataset in [130]. These
were assigned to be the training sets. Another 30 pairs of runs were extracted from each
dataset to be the testing sets. Each pair of runs in the training set is assigned a partner
pair of runs in the testing set. Parameters were optimised on pairwise runs in the train-
ing set and performance evaluated on the assigned partner runs in the testing set. For
both datasets, the m/z tolerances used were {0.05, 0.1, 0.25} and RT {5, 10, 15, ...100} sec-
onds. These ranges of parameters were selected in view of instrument accuracy and RT
noise level of the LC-MS instruments that generate our metabolomic data and in [130].
The ratio parameter α was from {0.1, 0.2, ..., 1.0} and the grouping parameter gtol from
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{2, 4, ..., 10} seconds for both datasets, and for the metabolomic dataset where chromato-
graphic peak shapes information is available and used for greedy clustering in MWG, the
threshold for the Pearson correlation coefficient between peak shape signals was varied from
c = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}.

4.5 Results and Discussions

4.5.1 Proteomics Experiments

Single-fraction Experiment

Both P1 and P2 data consist of multiple fractions. In the first experiment, we investigate
the best possible performance by using the same fraction as training and testing sets. As
described in Section 4.4.6, on each training set (a fraction), we optimised the m/z and
RT window parameters for alignments. The m/z parameters are in parts per million, nor-
mally notated ’ppm’ and the range of m/z parameters used were {1.0, 1.1, ..., 2.0} and RT
{5, 10, ..., 300} seconds. Parameters that control the grouping and influence of the cluster
similarity score for our MWG and MWM methods were also optimised. The ratio parameter
α was set to {0.1, 0.2, ..., 1} for both MWG and MWM. The grouping tolerance gtol was set
to {1, 2, ..., 10} seconds for greedy clustering, while the same hyperparameters were used for
clustering of all fractions in case of mixture-model clustering (further details on parameter
range selections are in Section 4.4.6).

The results are shown in Tables 4.5 and 4.6. We see that approximate maximum weighted
matching (MW) alone performs competitively to other tools. On the P1 data (Table 4.5),
incorporating grouping information (MWG, MWM) improves F1 score performance over
MW. MWG outperforms MWM, which may be due to the fact that the greedy approach is
easier to optimise. For the P2 data (Table 4.6), which contains features with significantly
higher RT drift across runs, again we find that MW is competitive and clustering information
(MWG) improves performance for all fractions. The results here show the potential of our
proposed approach: any peak grouping results expressed in a suitable matrix format can be
incorporated into our method, and used as additional information during the matching stage.
Figures 4.2 and 4.3 show how the benefit of incorporating clustering information is realised
during matching: it allows the matching methods to explore regimes in the solution space
having higher precision and recall values. On some training fractions, both methods that
incorporate clustering information show significant increases in the best possible F1 score.
For dataset P1 fraction 000, this is an 11%-improvement for MWG and a 7.5%-improvement
for MWM. For dataset P2 fraction 100, this is a 51%-improvement for MWG and 25%-
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improvement for MWM. Smaller improvements can be observed from other fractions in the
Proteomic datasets too.

Fraction Join SIMA MW MWG MWM
000 0.63 0.64 0.64 0.77 0.71
020 0.88 0.88 0.88 0.95 0.90
040 0.82 0.83 0.85 0.87 0.86
060 0.76 0.78 0.78 0.88 0.83
080 0.90 0.89 0.88 0.92 0.90
100 0.89 0.89 0.89 0.91 0.91

Mean 0.81 0.82 0.82 0.88 0.85

Table 4.5: F1 scores for the single-fraction experiment results on the P1 dataset. The tool
with the highest F1 score for each fraction is highlighted in bold. The results for ‘All’ show
the average F1 scores of individual fractions.

Fraction Join SIMA MW MWG MWM
000 0.45 0.45 0.45 0.49 0.45
020 0.77 0.78 0.79 0.80 0.79
040 0.77 0.78 0.77 0.80 0.77
080 0.66 0.68 0.67 0.67 0.72
100 0.55 0.58 0.56 0.85 0.70

Mean 0.64 0.65 0.65 0.72 0.69

Table 4.6: F1 scores for the single-fraction experiment results on the P2 dataset. The tool
with the highest F1 score for each fraction is highlighted in bold. The results for ‘All’ show
the average F1 scores of individual fractions.

Multiple-fractions Experiment

The single-fraction experiment does not represent a very realistic scenario as the optimal
parameters were determined with respect to an alignment ground truth; practitioners might
not possess that information in real analytical situations. In this experiment, we improved
upon the single-fraction experiments by using each fraction in each dataset as the training
set and the remaining fractions as the testing set. Parameters were optimised on the training
set and performance evaluations were performed on the testing set. This training-testing
procedure produces 6 measurements for P1 and 5 measurements for P2, corresponding to
the number of training fractions in each dataset. The overall F1 score reported for each
measurement is the average F1 scores from individual testing fractions. The aim of this
experiment is to investigate how well the different methods generalise to data that may have
slightly different characteristics from that used to optimise the parameters – i.e. how critical
the particular parameter values are.
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Figure 4.2: Precision and recall training performance for all parameters (m/z, RT tolerance,
α and gtol) varied in the experiment for the fractions containing the most (a) and the least (b)
number of features in the P1 dataset.
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Figure 4.3: Precision and recall training performance for all parameters (m/z, RT tolerance,
α and gtol) varied in the experiment for the fractions containing the most (a) and the least (b)
number of features in the P2 dataset.
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Tables 4.7 and 4.8 show the F1 score across measurements. On P1, the best overall per-
formance is achieved by our methods that incorporate clustering information into alignment
(MWG, MWM). On P2, the results are less homogeneous, with no method consistently per-
forming best on all the different testing fractions. In the case of the noisiest data (dataset P2
fraction 000), our proposed approach incorporating greedy clustering (MWG) shows a de-
crease in overall testing performance instead. This is because the greedy clustering method
used is sensitive to the choice of parameters and do not generalise well across the different
fractions of P2. For instance, the best MWG’s grouping tolerance parameter for fraction 000
is 5 seconds, while it is 1 second for fraction 080. The results suggest the dependence of our
methods on the quality of groupings of IP peaks in order to generalise well on different runs.
The heterogeneous testing performance in the multiple-fractions experiment of P2 shows
that no method performs best and the choice of optimal parameters that work for certain runs
do not generalise well to others on datasets with very high RT variability.

Training Frac. Testing Performance
Join SIMA MW MWG MWM

000 0.82 0.85 0.82 0.86 0.86
020 0.78 0.76 0.78 0.79 0.75
040 0.78 0.76 0.77 0.79 0.81
060 0.78 0.78 0.77 0.84 0.83
080 0.71 0.73 0.72 0.77 0.78
100 0.75 0.77 0.74 0.76 0.78

Table 4.7: Multiple-fractions experiment results for the P1 dataset. For each training frac-
tion, the reported testing performance is the average of individual F1 scores from the testing
fractions. The top-performing method (highest F1 score) is highlighted in bold.

Training Frac. Testing Performance
Join SIMA MW MWG MWM

000 0.62 0.64 0.61 0.48 0.61
020 0.58 0.56 0.55 0.43 0.55
040 0.52 0.56 0.56 0.41 0.56
080 0.56 0.50 0.50 0.50 0.57
100 0.63 0.57 0.56 0.44 0.57

Table 4.8: Multiple-fractions experiment results for the P2 dataset. For each training frac-
tion, the reported testing performance is the average of individual F1 scores from the testing
fractions. The top-performing method (highest F1 score) is highlighted in bold.

4.5.2 Metabolomic and Glycomic Datasets

We further explore the performance of our proposed methods on the metabolomic and gly-
comic datasets. From the full dataset, we randomly extracted 30 pairs of runs as the training
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sets and another 30 pairs of runs as the testing sets. Each training set is paired to a testing set.
Parameters were optimised on the training set and the best attainable performance reported
as the training performance. Generalisation performance is evaluated on testing sets using
the optimal parameters from the training stage.

Figures 4.4 and 4.5 summarise the results from the experiments. We see that all methods
perform better on the glycomic set than on the metabolomic set. This is explained by the fact
that the metabolomic runs represent a generally more challenging alignment scenario with
significantly more features to align. MW performs identically to SIMA on both datasets due
to the similar form of Mahalanobis distance function used. This is despite the differences
in the actual matching method that establishes feature correspondences in SIMA and MW,
emphasising the fact that the actual choice of matching function might be less important than
other factors, such as the determination of similarity scores between peaks. On the glycomic
dataset, adding clustering information improves the training performance, with an increase
in the mean of the F1 scores across 30 measurements from 0.89 (MW) to 0.93 (MWG) and
0.92 (MWM). This also translates into statistically significant improvements on the testing
sets for both MWG (p=0.01, paired t-test) and MWM (p=0.002, paired t-test) over MW.

On the metabolomic dataset, where it is potentially harder to produce good clustering results
due to the larger number of peaks and the more complex elution profile, we observe im-
provements in the mean of the F1 scores from 0.83 (MW) to 0.90 (MWG) and 0.85 (MWM)
on the training sets. These are also statistically significant improvements for both MWG
(p<0.001, paired t-test) and MWM (p<0.001, paired t-test) over MW. The training results
confirm our hypothesis that indeed incorporating clustering information (by modifying the
similarity matrix used for matching in the proposed manner) can be used to help improve
matching results over the case when such information is not used. However, this does not
translate into any statistically significant improvements on the testing sets, suggesting that
for the metabolomic dataset evaluated here, our proposed methods are also sensitive to pa-
rameter choices, and the choices of particular parameters (especially for the clustering step)
that work on some runs may not generalise well to others. The results shown for running
MWG on the metabolomic data in Figures 4.4 and 4.5 takes into account the Pearson cor-
relations of the chromatographic shapes between peaks during the clustering process, since
that information is available and straightforward to incorporate into the greedy clustering
process. Results for MWG that consider only the RT values are presented and discussed in
the following paragraph.

We also compared the results for MWG on both the training and testing sets on the stan-
dard metabolomic dataset when the greedy grouping is performed using only RT informa-
tion (MWG (RT)) and when chromatographic peak shape correlations are also considered
(MWG(RT+PS)) during the grouping process. Statistically significant differences can be ob-
served on the training performance of Figure 4.6, with the mean of F1 scores for MW 0.83,
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Figure 4.4: Training performance shows the best F1 scores obtained by each method on 30
pairs of randomly-selected metabolomic and glycomic training sets.
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Figure 4.5: Testing performance shows how well each method generalise on the 30 different
testing sets, each evaluated using the optimal training parameters from its corresponding
training set.
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MWG(RT) 0.88 and MWG(RT+PS) 0.90. However, this does not translate to any improve-
ments on the testing sets, with the mean of F1 scores for MW 0.86, MWG(RT) 0.83 and
MWG(RT+PS) 0.85. Introducing clustering information when only RT information is used
during the clustering process (MWG(RT)) reduces testing performance. The training results
suggest that where additional information such as chromatographic peak shapes are avail-
able, they should be used for the clustering step in the proposed methods. However, the lack
of any statistically significant testing improvements between MW and MWG (RT+PS), sug-
gest that the optimal parameters from training runs do not generalise well to different testing
runs for the greedy clustering approach in general, especially for complex metabolomic runs,
with large number of features that tend to closely co-elute with each other.
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Figure 4.6: Comparisons in matching performance when greedy clustering with retention
time (MWG(RT)) and peak shape correlations (MWG(RT+PS)) are used.

4.5.3 Running Time

Computational times of the proposed methods are primarily affected by the number of fea-
tures in the runs being aligned and to some extent, the thresholding parameters used during
similarity score computation and feature matching. Table 4.9 reports the measured running
time for each proposed method using the parameters that give the best training performance).
For each fraction being aligned, the running times were measured three times on a standard
laptop with Intel Core i5 CPU running at 2.5 GHz, and the average value reported for match-
ing only (MW), matching incorporating greedy clustering (MWG) and matching incorporat-
ing mixture model clustering (MWM). The time complexity of the mixture-model clustering
step in MWM is O(N) where N is the number of features in the run being clustered. We
took 2000 posterior samples, discarding the first 1000 samples during the burn-in period.
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The number of samples were chosen to ensure convergence to the stationary distribution
during inference.

Fraction Total Features MW MWG MWM
000 10606 9 12 2700
020 2135 1 2 524
040 2188 2 2 540
060 3342 2 3 825
080 2086 2 2 505
100 1326 1 2 321

Table 4.9: Example measured execution time in seconds on fractions of the P1 dataset.

4.6 Conclusion

In this chapter, we have proposed a novel peak matching method that incorporates related
peak information to improve alignment performance. The method takes related peak infor-
mation in the form of peak-by-peak binary or real-valued similarity matrices and as such
is independent of the particular method used to compute these. The method fits into the
category of direct matching approaches — those alignment methods that do not perform
an explicit time-warping phase. Our experimental results demonstrate the potential of this
approach. From the training results, we see evidence of performance improvement across
all evaluated datasets by incorporating grouping information into the matching process in
the proposed manner. With the exception of the metabolomic dataset, both the greedy and
model-based clustering approaches evaluated in our experiments rely only on the RT infor-
mation for grouping IP peaks. By looking at the testing performance, our results also explore
the ability of the evaluated methods to generalise on different runs using less than optimal pa-
rameters. This is important because in the actual analytical situation of LC-MS data, neither
the optimal parameters nor the alignment ground truth is known.

Note that our method relies on grouping of IP peaks, and this introduces additional user-
defined parameters. However, as our experiments have shown, in some settings, it may be
much easier to produce good groupings of IP peaks than accurately determine RT window
parameters (the same grouping parameters were used for all evaluation datasets in the case
of mixture-model clustering). Depending on the nature of the data, parameters relating to
within-run characteristics (e.g. RT window for grouping IP peaks) may be more likely to
generalise across runs and experiments than parameters relating to between-run character-
istics (particularly RT). For example, changes in the liquid chromatography (LC) column
would likely result in related-peaks still co-eluting but could significantly change the abso-
lute RT.
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It would be interesting to investigate in greater detail any performance improvements that
can be obtained from using other peak grouping methods, such as [102] that uses a mixture
model of peak shape correlations or [25] that considers the dependencies between adduct
and isotopic peaks when clustering. Exploring alternative approximate matching algorithms
(such as the scaling algorithm in [30], which provides a (1 − ε) approximation of the max-
imum weighted matching in optimal linear time for any ε) and evaluating the benefits of
incorporating different clustering approaches into our proposed alignment method are av-
enues for future work. Finally, the different alignment methods evaluated in this chapter also
suffer from variable behaviours depending on the order of the runs being aligned [114]. This
is particularly true in the case of alignment of multiple runs (typical in large-scale LC-MS
studies), where the final alignment results are often constructed through merging of inter-
mediate alignments of pairwise runs. Different alignment methods may employ a different
merging approach, for example, Join merges the intermediate results towards a reference run
while SIMA allows the possibility of using a greedy hierarchical merging scheme. System-
atic evaluation on how the chosen merging scheme may influence alignment performance is
beyond the scope of this chapter and is an item for future work.

A limitation of the proposed approaches lies in the fact that the clustering of IP peaks are per-
formed based on RT only. The valuable information present in the m/z domain is not used for
clustering. The grouping of IP peaks based on their m/z information is less straightforward
as peaks that are related (sharing close RT values) do not necessarily have m/z values that
are close to each other. In the evaluation on the complex metabolomic dataset, we observe
that the proposed approach using RT clustering manages to improve training performance
(due to overfitting) but fails to produce any statistically significant improvement in the test-
ing performance due to its limited generalisation ability. In the next chapter, we address
this issue by focusing specifically on metabolomics and proposing a clustering model that
explicitly takes into account the chemical relationship between IP peaks in LC-MS-based
metabolomics.
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Chapter 5

Precursor Clustering of Ionisation
Product Peaks

5.1 Introduction

Chapter 4 explores the idea of using the clustering of ionization product (IP) peaks to modify
the similarity scores used for matching with the aim of improving alignment results. How-
ever, the MWG and MWM methods in Chapter 4 lies on clustering based on the retention
time alone. Valuable information present in the mass-to-charge (m/z) domain and also in the
chemical relationships of IP peaks is not used for clustering. In this work, we extend upon
the methods in the previous chapter and propose a novel Bayesian mixture model (Precursor-
Cluster) to cluster IP peaks based on m/z and RT values. The key difference from the mixture
model RT clustering introduced in the previous chapter lies in how PrecursorCluster uses a
set of user-defined transformation rules to relate peaks to a common precursor mass, allow-
ing IP clusters to be formed through the grouping of peaks that share chemically meaningful
relationships.

Building upon the clustering results returned by PrecursorCluster, two alternative alignment
methods (illustrated in Figure 5.1) are introduced for aligning IP clusters across runs: (i)
Cluster-Match, a fast direct-matching method of IP clusters that uses the posterior precursor
mass and RT values of IP clusters to compute the approximate maximum-weighted matching
of the IP clusters and (ii) Cluster-Cluster, a second-stage clustering model that constructs
alignment by means of grouping IP clusters according to their likelihood of being assigned
to the same top-level cluster (corresponding to metabolites shared across all runs). In this
manner, IP clusters assigned to the same top-level cluster are considered to be matched. The
actual alignment between their member peaks are established by grouping member peaks
that share the same IP type. The Bayesian approach in Cluster-Cluster also allows us to
incorporate additional information for alignment in a principled manner by adding likelihood
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terms. As an example, we illustrate this in Cluster-Cluster by including a likelihood term on
the different adduct types of IP peaks assigned to an IP cluster. This allows IP clusters to
be placed in the same top-level cluster — and correspondingly having their member peaks
matched — only if the characteristic adduct ‘signatures’ of IP clusters are similar.

The aim of this chapter is to evaluate whether through the proposed methods, the matching
of IP clusters can improve upon the matching of peaks alone. For the purpose of evalu-
ations, two benchmark datasets of standard and beer mixtures, alongside their associated
alignment ground truth and a list of 14 adduct transformations in positive ionization mode,
were used. Using precision, recall and F1-score as evaluation measures, the performance
of the proposed method of matching IP clusters (Cluster-Match) were compared against the
direct matching of peak features (MW) and its variant (MWG) in the previous Chapter 4 that
modifies the similarity matrix used during matching to bring together group of peaks related
by RT closer during matching. Additionally, the probabilistic matching results produced by
Cluster-Cluster is also described, demonstrating that it is possible to use its output to ex-
tract aligned peaksets with varying degrees of confidence. Cluster-Cluster were evaluated
with and without the adduct signature term to determine whether through the addition of that
likelihood term, we can obtain better alignment results.

5.2 Related Work

It is suggested in [113] that the objective function used for alignment can be improved by
operating on groupings of IP peaks rather than using individual peaks. In addition, [115]
proposes minimising an objective function that uses groups of isotopic peaks as objects to be
matched, but does not provide any implementation or evaluation on the effectiveness of the
proposed objective function. In MetAssign [25], a Bayesian mixture model was introduced
to perform the identification of a set of observed peaks based on how well they fit the theo-
retical mass spectrum of a metabolite computed from a given formula. While the groupings
of related peaks extracted from PrecursorCluster can potentially be used in a similar manner
as MetAssign to perform a more robust annotation of metabolites present the sample, here
we investigate its uses in improving the alignment step. Unlike MetAssign, PrecursorCluster
does not require a prior library of possible metabolite formulas to be specified to perform
ionization product clustering, relying only on prior chemical knowledge of which ionization
transformations are expected to be present in the data. CAMERA [69] approaches the prob-
lem of ionization product clustering from a graph-theoretic perspective. In CAMERA, peak
features are nodes in a graph, and edges are drawn between nodes if their scores are greater
than a predefined threshold. The graph is clustered to find highly-connected subgraphs, and
edges in the subgraph are annotated by known rules of chemical transformations. Unlike
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CAMERA, PrecursorCluster is a fully probabilistic model, relying on Bayesian inference to
update the probabilities of which LC-MS peak features can be explained by which transfor-
mations into IP clusters. This additional information can be used to provide an estimate to
the uncertainty of IP annotations. The Bayesian model proposed in PrecursorCluster can also
be easily extended to incorporate additional sources of information (e.g. chromatographic
peak shapes) for clustering peaks in a different manner.

Since alignment is such an important part of the data preprocessing steps, it is useful to be
able to robustly identify the uncertainty or confidence in the alignment results. In the absence
of ground truth information (typically the case in untargeted metabolomics experiment), the
user measures alignment quality through manual inspection or by comparing and visualising
the summary statistics (e.g. median, standard deviation of retention time) across different
replicates. Alignment methods that can produce matching confidence values is a big research
gap that, to our knowledge, has not been addressed by any of existing direct-matching tools.
Tools such as MAVEN [84] assigns quality scores to individual peaks by training a predictive
model on expert-annotated training data of peak quality metrics, but this does not extend
to scoring groups of peaks. Other approach like [12] computes the Pearson correlations
between intensity profiles of all peaks across replicates. Moving from these approaches
towards a robust method that can provide confidence values for groups of aligned peaks
across many label-free experiments is challenging research problem.

The subject of identifying and quantifying uncertainty has been extensively investigated in
the problem of multiple sequence alignment (MSA) for genomics and transcriptomics. The
probability on MSA alignment allows researchers to focus on regions of the genome that
are difficult to align, potentially revealing evolutionary insights as such regions have high
alignment uncertainty that can be the result of e.g. the lack of conserved sequences. [72]
attempt to quantify the alignment uncertainty of the popular MSA tool ClustalW [127],
based on evaluations using synthetic data, and concludes that between half to all columns
in their benchmark MSA results contain alignment errors. [89] construct a score that reflects
the consensus between all possible pairwise alignments in T-COFFEE, while [94] propose
GUIDANCE, a confidence measure obtained from pertubations of guide trees. Statistical ap-
proaches that provide a measure of confidence in alignment results have also been explored
by [99] and [11], where the MSA results and phylogeny are constructed simultaneously, thus
eliminating the need for a guide tree.

Despite the clear benefits of alignment uncertainty quantification in the sequence domain, the
challenge of quantifying alignment results remains relatively unaddressed for the alignment
of multiple runs in LC-MS-based-omics. Uncertainties on aligned peaksets can be used by
metabolomic researchers to flag the low-probabilities peaksets from further analysis. The
flip side of this is high-probabilities peaksets, that we are more confident of as being aligned
correctly, can be selected for subsequent analysis in the pipeline or as the focus of manual
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validation in a targeted manner if they are revealed as corresponding to metabolites having
an interesting differential change across samples. Several recent feature-based alignment
methods incorporate probabilistic modelling as part of their workflow, making it possible to
extract some form of scores or probabilities on the alignment results. These methods are
often limited to the alignment of two runs, which is not a realistic assumption in actual LC-
MS experiments. For example, [57] propose a model for pairwise peak matching. Matching
confidence can be obtained from the model in form of posterior probability for any peak pair
in two runs, however constructing multiple alignment results in [57] still requires a greedy
search to find candidate features within m/z and RT-RT tolerances to a predetermined set of
‘landmark’ peaks. [39] describe PeakLink, a workflow for alignment that performs an initial
warping using a fourth-degree polynomial. PeakLink poses the pairwise matching problem
as a binary classification problem, where a Support Vector Machine (SVM) is trained based
on an alignment ground truth derived from MS-MS information and used to differentiate
matching and non-matching candidate pairs to produce the actual alignment results. While
not explicitly included in the output of PeakLink, a matching score can be extracted from
the SVM that represents how far each candidate pair is from the decision boundary. Note
that these scores are not well-calibrated in the probabilistic sense, thus making comparisons
of matching scores less straightforward. PeakLink is also not extended to the problem of
aligning multiple runs, although [39] state that it would be possible to do so with the choice
of a suitable reference run.

Statement of Original Work

The work from this chapter has been submitted for review to BMC Bioinformatics. The au-
thor proposed and implemented the idea of clustering IP peaks by their transformations, and
also the matching of the resulting IP clusters to construct alignment. The author also per-
formed the evaluation of performance of the proposed approach against the baseline methods.

5.3 Methods

The workflow is illustrated in Figure 5.1. A novel Bayesian model, PrecursorCluster, is
introduced to group related peaks into IP clusters (Section 5.3.1). Each LC-MS run is pro-
cessed separately through PrecursorCluster — the model takes as input the list of m/z, RT
and intensity values of peak features and the list of user-defined transformations and pro-
duces as output the set of IP clusters per run. Alignment of IP clusters across runs are per-
formed through Cluster-Match (Section 5.3.2) or Cluster-Cluster (Section 5.3.3). From
Cluster-Match, a list of aligned peaksets (the set of peak features matched across runs) is
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obtained, while from Cluster-Cluster, the resulting aligned peaksets are produced alongside
the probabilities of matching confidence.

5.3.1 PrecursorCluster: clustering of ionization product peaks

PrecursorCluster uses a mixture model to group the multiple ionization products that arise
from each metabolite. We describe and evaluate the model for the positive ionization mode
data, but the method could easily be adapted to negative mode data. In a run, the n-th peak
feature is represented as the vector dn = (dmn , d

t
n, d

p
n) with dmn the m/z value, dtn the RT value

and dpn the intensity value of that peak. A list of T transformation functions of commonly-
known IP types is also required (for e.g. see Table 5.1). A transformation function tk takes as
input the observed m/z value of a peak and produces as output the precursor mass into an IP
cluster k under that transformation. This takes the form of tk(dmn ) =

dmn |c|+ce−
∑
i hiGi

n
, where

c is the charge, e is the mass of an electron, n the multiplicity of the original molecule,
and hi and Gi are the count and atomic masses of the ith adduct part. For example, for
[M +H +NH4]+, c is 2, n is 1 while

∑
i hiGi is the total atomic mass of H +NH3.

Although it is not strictly necessary, we found it useful to add some constraints to our mixture
model. In particular, we make the assumption that an IP cluster must contain the [M +H]+

ion peak and this must be the most intense peak. Although this will not always be the case,
we found good performance under this assumption. These assumptions allow us to define
the complete set of clusters — one for each peak, with the precursor mass of that cluster
computed via assuming the peak is an [M +H]+ ion. The k-th cluster is represented by the
tuple (cmk , c

t
k, c

p
k), where the cluster’s precursor mass cmk is the M+H transformed precursor

mass of the respective peak’s m/z value, and the cluster’s RT (ctk) and intensity (cpk) values are
the peak’s RT and intensity values. Having created the set of clusters, an enumeration step is
performed to determine which possible clusters each peak can belong to. A peak dn can be
assigned to a possible cluster k if (1) the m/z value of that peak can be transformed (through
any of the T transformations) into a precursor mass value that is within γm, the tolerance in
parts-per-million (ppm), from cmk , (2) the RT value of that peak is within a certain tolerance
(γt seconds) from ctk and (3) the intensity of that peak is less than the cluster’s intensity
threshold cpk. All observed peaks belong to at least one possible cluster (the one for which it
is the [M +H]+ peak).

Let znk denote the assignment of peak feature dn to a possible cluster k, i.e. znk is 1 if peak
n is assigned to cluster k and 0 otherwise. A peak can only be assigned to exactly one cluster
(
∑K

k=1 znk = 1). Following the standard mixture model construction, zn is modelled as a
multinomial distribution having the parameter vector θ, itself drawn from a prior Dirichlet
distribution having the symmetric parameter α. The likelihood of a peak dn being assigned
to a cluster k depends on the likelihood of that peak’s transformed precursor mass and RT
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Figure 5.1: The proposed workflow for alignment using ionisation product (IP) clusters..
The input to PrecursorCluster is a list of m/z, RT and intensity values. During the enumer-
ation stage, candidate IP clusters are generated from each peak through the M+H transfor-
mation. In this example, Peak 1 and Peak 4 generate candidate IP clusters with precursor
masses qa (blue) and qb (red). In the inference stage, Peak 1 and Peak 2 are clustered to qa
through transformation M+H and M+Na with probabilities 1.0. Peak 3 has a valid transfor-
mation to qa, but is not allowed to join that cluster since its intensity is> than the intensity of
the [M +H]+ peak that generated the cluster (peak 1). Peak 4 can join the qa cluster through
the 2M+H transformation (with probability 0.62) or form its own candidate M+H cluster
having the precursor mass qb (with probability 0.38.) The latter allows for Peak 5 to join
that cluster through the M+NH4 transformation (with probability 0.43). The final clustering
is established by taking the maximum a posteriori assignment for each peak feature. Non-
empty IP clusters can be aligned by matching their posterior precursor mass and RT values
(Fig. 5.1B) or through a second-stage clustering process (Fig. 5.1C). The correspondence
of peak features in matched IP clusters is constructed by grouping peak features having the
same transformation types, shown as the gray dotted lines in Figures 5.1B & C.
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values under the possible cluster’s mass and RT values. Assuming independence between
mass and RT terms, this is:

p(dn|znk = 1, ...) = p(tk(d
m
n )|znk = 1, ...) · p(dtn|znk = 1, ...). (5.1)

The likelihood of the transformed precursor mass tk(dmn ) in the mass term p(t(dmn )|znk =

1, ...) in eq. (5.1) is a product of two further terms. The first is the indicator function
I(n, t, k), set to 1 if no other peaks apart from dn are currently assigned to cluster k through
transformation t, and 0 otherwise. This allows each transformation type to appear only once
in each cluster. We assume that the mass of cluster k, µmk , has a Gaussian prior with mean cmk
and fixed precision δ. The precision is set to reflect the mass tolerance in parts-per-million
used during the enumeration of peaks to possible clusters, such that one standard deviation
(
√
δ−1) is γm∗cmk /1e6

3
. Within a cluster, we assume Gaussian noise in the mass, with the prior

mass mean µ0 set to the value of the cluster’s precursor mass cmk used during enumeration
and precision again equal to δ. The mass component of the likelihood is given by:

p(tk(d
m
n )|znk = 1, ...) = I(n, t, k) · N (tk(d

m
n )|µmk , δ−1) (5.2)

p(µmk |µ0, δ) = N (µmk |µ0, δ
−1). (5.3)

Similarly, Gaussian noise is assumed for the RT values. The k-th cluster has mean RT
value given by µtk and precision λ set to reflect the RT tolerance used during enumeration of
possible assignments, i.e. γt is 3

√
λ−1. Within a cluster, the noise is assumed Gaussian, with

the prior RT mean ψ0 set to the cluster’s RT value ctk and precision λ:

p(dmn |znk = 1, µtk, λ) = N (dmn |µtk, λ−1) (5.4)

p(µtk|ψ0, λ) = N (µtk|ψ0, λ
−1). (5.5)

A collapsed Gibbs sampling scheme is used to infer znk, the assignments of peak n to cluster
k (details in the next section). Averaging over the posterior samples, peaks are assigned to the
most likely IP cluster based on their maximum a-posteriori (MAP) probabilities. The result
from inference is the set of IP clusters, some of which may be empty and can be ignored,
while others consist of related ionization products.

PrecursorCluster can be seen as a data-reduction procedure, taking as input the set of ob-
served peak features per run and producing as output their MAP assignments into IP clusters.
Non-empty IP clusters can now take the place of individual peak features as objects to be
aligned. Each IP cluster in run j can be represented by cjk = (q̄jk, r̄jk, ūjk)., with q̄jk the
IP cluster’s posterior precursor mass value, r̄jk the posterior RT value and ūjk the adduct
‘fingerprint’ vector of length T for that IP cluster, created after the MAP assignments of
observed peaks into the cluster. This stores the binary flags on which adduct transformations
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bring member peaks into that IP cluster (1 if that transformation brings a peak into the cluster
and 0 otherwise). These posterior mass, RT and adduct fingerprint values are used during the
latter alignment stage.

Gibbs Sampling for PrecursorCluster

For Gibbs sampling, the conditional distribution of a peak dn currently being sampled to be
placed in any of the K IP clusters is given by

P (znk = 1|dn, . . .) ∝ (αk + nk) · p(dn|znk = 1, ...), (5.6)

where nk is the current number of members (peak features) in an IP cluster k, αk = α
K

the
symmetric prior on the Dirichlet distribution and p(dn|znk = 1, ...) is the likelihood of peak
dn in a cluster k. Assuming independence between the mass and RT terms, the likelihood
p(dn|znk = 1, ...) can be factorised into its mass and RT terms (see eq. 5.1). However, the
probability of a peak n to be placed in cluster k is 0 if the indicator function I(n, t, k) in
eq. (5.2) returns 0, i.e. another peak apart from n is already assigned to cluster k through
transformation t. Otherwise, marginalising over all mixture components in eq. (5.2), the
following posterior predictive distribution is obtained for the mass term:

p(tk(d
m
n )|znk = 1...) = N (tk(d

m
n )|µk, σ−1

k ), (5.7)

where σk = (δ(1 + ck)
−1 + δ−1)−1 and µk = 1

σk
[δ(µ0 +

∑
n t(d

m
n∈k))]. Here,

∑
n tk(d

m
n∈k)

denotes the sum of the transformed mass values of all the peaks (excluding the current peak
being sampled) that have been assigned to cluster k, and ck the count of such peaks. Simi-
larly, the RT term in eq. 5.4 can be marginalized into

p(dtn|znk = 1...) = N (dtn|µk, σ−1
k ), (5.8)

where σk = (λ(1 + ck)
−1 +λ−1)−1 and µk = 1

σk
[δ(ψ0 +

∑
n d

t
n∈k)], with

∑
n d

t
n∈k denoting

the sum of the RT values of all the peaks (excluding the current one) in cluster k.

5.3.2 Cluster-Match: direct matching of ionization product clus-
ters

The ionization product clustering model described in Section 5.3.1 is essentially a data-
reduction procedure, where within a single file j, the model takes as input the set of observed
peaks in a single run and produces as output their groupings into IP clusters. Given the set
of non-empty IP clusters and the peak features they contain, we can now treat IP clusters
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as a reduced set of features within a run and align (match) them across runs. We call this
approach Cluster-Match. This contrasts to the conventional approach of matching all peak
features directly to produce the alignment of peak features across runs.

As detailed in Chapter 4, in the direct matching alignment of two runs, the problem of es-
tablishing the matching between two runs can be viewed as finding the maximum weighted
matching in a bipartite graph, where a node in the graph represents a peak feature, an edge
represents a potential matching across two sides of the graph and the edge weight is the
similarity between two potential matches. The MW method in Chapter 4 is an instance of a
greedy algorithm that produces an approximation of at least 1/2 of the maximum weight in
the matching of a bipartite graph [30]. Only peaks that are within mass and RT tolerances
from each other across runs can possibly be matched (they have an edge linking them in
the graph). While simple, the results in Chapter 4 shows that the MW method is generally
competitive in performance to more sophisticated direct-matching methods, such as SIMA
that relies on constructing stable-matching. We apply this direct matching methods to match
IP clusters across runs, with IP clusters taking the place of individual peak features as nodes
in the bipartite graph to be matched. The matching is therefore performed based on the
precursor mass and RT values of IP clusters, rather than the observed peak’s m/z and RT val-
ues. Once matching has been constructed, the alignment between the actual peak features in
matched IP clusters can be established by grouping peaks that have the same transformation
type across matched IP clusters (Figure 5.1B.)

To extend the above procedure to the alignment of multiple runs, two initial runs are first
aligned to construct an intermediate merged results. Consensus features are created by taking
the average m/z and RT values of matched features, and the next run is then aligned to
the merged results. This procedure is repeated until all runs have been exhausted. This
match-merge scheme is commonly employed by other direct matching methods [137, 96]
and requires selecting a reference run. In practice, the choice of reference run is arbitrary and
its effect has not been fully investigated (in our implementation, the first run in alphabetical
sorting is used as the reference run and the same ordering of runs is always used for all
methods compared.)

5.3.3 Cluster-Cluster: across-run clustering of ionization prod-
uct clusters

The proposed pairwise matching scheme used by Cluster-Match is frequently extended to
the processing of multiple runs in a fairly ad hoc manner (as seen in the match-merge ap-
proach at the end of Section 5.3.2, also commonly used by other direct matching tools). This
approach suffers from the limitation of having to set a reference run for the matching and
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consequently, the fact that altering the ordering of runs to be processed might change the
alignment results [113]. The alternative approach of generalizing from pairwise matching
in a bipartite graph into finding the maximum weighted matching in a general graph is typi-
cally a computationally expensive operation. Producing a distance measure that works well
for measuring similarities of peaks across runs is a non-trivial problem, and such matching
procedures, whether through successive pairwise merging or operating on a general graph,
generally do not take into account the uncertainties in the matching of peak features across
runs.

Here, we propose using another clustering procedure (Cluster-Cluster) to further cluster the
IP clusters produced from the first-stage IP clustering in Section 5.3.1. In this manner, IP
clusters coming from different runs are further clustered into top-level clusters shared across
runs (Figure 5.1C). The actual alignment of peak features can then be established by (1)
looking at which IP clusters are put together into the same top-level cluster (essentially, their
matching) and (2) in a top-level cluster, grouping peak features from different runs that have
the same transformation type to establish their alignments. In this scheme, there is no need to
set a reference run. Crucially, the posterior probabilities of certain IP clusters being assigned
into the same top-level cluster provides us with an estimate of matching confidence of peak
features.

Only peaks within a certain across-run mass tolerance should be matched, so a partitioning of
IP clusters into top-level bins is performed. Across all runs j = 1, ..., J , IP clusters are sorted
by their posterior mass values {q̄jk}. The smallest unprocessed mass value min({q̄jk})
is used to initialize a top-level bin. Subsequent IP clusters (in ascending mass order) are
grouped into the bin until an IP cluster with a posterior mass that differs by γ′m ppm (a user-
defined mass tolerance across runs) from min({q̄jk}) is encountered, in which case, a new
top-level bin is started using that cluster. The process is repeated until all IP clusters are
processed.

If a top-level bin contains only one IP cluster, no possible matching can be constructed,
otherwise IP clusters in the same bin can potentially be clustered (into top-level clusters) and
therefore matched. To avoid specifying the number of top-level clusters a priori, we use an
infinite Gaussian mixture model, described in Chapter 3, to model the data. Let z̄jki = 1

denote the assignment of IP cluster k coming from file j into top-level cluster i.

Then:

π|α′ ∼ GEM(α′) (5.9)

z̄jk|π ∼Multinomial(π) (5.10)

cjk|z̄jki = 1, ... ∼ p(cjk|z̄jki = 1, ...), (5.11)
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where π are the mixing proportions, distributed according to the GEM (Griffiths, Engen
and McCloskey) distribution (details in Chapter 3). The likelihood of cjk, the k-th IP cluster
from run j, to be placed in a top-level cluster i is assumed to be factorized into independent
factors of its mass, RT and adduct signature terms:

p(cjk|z̄jki = 1, ...) = p(q̄jk|z̄jki = 1, ...) · p(r̄jk|z̄jki = 1, ...)·
p(ūjk|z̄jki = 1, ...).

(5.12)

In eq. (5.12), the mass term p(q̄jk|z̄jki = 1, ...) is defined analogously to the first-stage
clustering step (Section 5.3.1). The indicator function Ī(k, j, i) in eq. (5.13) is set to 1 if
there are no other IP clusters from run j, apart from the k-th IP cluster, that are assigned to
the i-th top-level cluster, and 0 otherwise. This ensures that there is at most one IP cluster
from each run assigned to a top-level cluster. The IP cluster posterior mass q̄jk is distributed
according to a Gaussian distribution with mean cm and precision δ̄, where the across-run
mass tolerance γ′m is set to be equivalent to 3 standard deviations in ppm. The mass of top
level cluster cm is in turn drawn from a base Gaussian distribution having prior mass mean
µ̄0 and precision σm (eq. 5.14). The µ̄0 parameter is set to the mean of the posterior m/z
values of the IP clusters in the top-level bin, while σm is set to a broad value of 5E-3.

p(q̄jk|z̄jki = 1, cm, δ̄, ...) = Ī(j, i) · N (q̄jk|cm, δ̄−1) (5.13)

p(cm|µ̄0, σm) = N (cm|µ̄0, σ
−1
m ). (5.14)

In the RT term p(r̄jk|z̄jki = 1, ...), r̄jk is distributed according to a Gaussian distribution
with mean ct and precision λ̄ (eq. 5.15). Again, the across-run RT tolerance γ′t is set to be
equivalent to 3 standard deviations in seconds. The same uninformative parameter values are
set on the prior RT mean parameter ψ̄0 and precision σt (eq. 5.16).

p(r̄jk|zjki = 1, ct, λ̄) = N (r̄jk|ct, λ̄−1) (5.15)

p(ct|ψ̄0, σt) = N (ct|ψ̄0, σ
−1
t ). (5.16)

Finally, in the adduct fingerprint term p(ūjk|zjki = 1, ...), the vector ūjk is modelled using
a multinomial distribution having a Dirichlet prior with symmetric hyper-parameter β. The
entire likelihood function of eq. 5.12 ensures that IP clusters from different runs are placed
in a single top-level cluster if: (1) they are from different runs, (2) they share similar poste-
rior precursor mass and RT values, and (3) they have similar adduct fingerprint. Inference
on model parameters is again performed via Gibbs sampling. Within each posterior sample,
peak features in matched IP clusters sharing the same transformation type are grouped (Fig-
ure 5.1C), forming aligned peaksets. The occurrences of aligned peaksets are counted and
averaged across samples to give matching confidences.
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Gibbs Sampling for Cluster-Cluster

Analytical inference is not tractable here, so we use a collapsed Gibbs sampling scheme for
inference of Cluster-Cluster. The conditional probability of P (z̄jki = 1|...) of IP cluster k in
file j to be placed in an existing top-level cluster i (or i∗ if a new top-level cluster is to be
created), is given by:

P (z̄jki = 1|cjk, . . .) ∝

 ni · p(cjk|z̄jki = 1, ...)

α′ · p(cjk|z̄jki∗ = 1, ...)
, (5.17)

where ni is the current number of members (IP clusters) in an existing top-level cluster i.
p(yn|znk = 1, ...) is the likelihood of peak yn in an existing cluster k. The top part of eq.
(5.17) is the conditional probability on existing mixture components of the model, and can
be factorized into its independent mass, RT and adduct fingerprint terms. The bottom part of
eq. (5.17) represent new components that are created as needed.

1. For the mass term p(q̄jk|z̄jki = 1, ...), we obtain the following predictive distribution
after marginalizing over all mixture components:

p(q̄jk|z̄jki = 1, ...) = N (q̄jk|µk, γ−1
k ), (5.18)

where γk = ((σm + δ̄ni)
−1 + δ̄−1)−1 and µk = 1

γk

[
(σmµ̄0) + (δ̄

∑
j

∑
k q̄jk∈i)

]
. Note

that in the summation terms of µk,
∑

j

∑
k q̄jk∈i denotes the sum of posterior mass

values of IP clusters currently assigned to top-level cluster i (excluding the current IP
cluster being sampled), and ni the count of such IP clusters.

2. Similarly, the RT term p(r̄jk|z̄jki = 1, ...) can be marginalized into a Gaussian with
precision γk = ((σt+λ̄ni)

−1+λ̄−1)−1 and mean µk = 1
γk

[
(σtψ̄0) + (λ̄

∑
j

∑
k r̄jk∈i)

]
,

with
∑

j

∑
k r̄jk∈i the sum of posterior RT values of member IP clusters in top-level

cluster i, excluding the current IP cluster being sampled.

3. Lastly for the adduct fingerprint term p(ūjk|z̄jki = 1, ...), we marginalize over the

mixture components and obtain
C(ūjk+

∑
j

∑
k ūjk∈i+β)

C(
∑
j

∑
k ūjk∈i+β)

with
∑

j

∑
k ūjk∈i the sum of

all adduct fingerprint vectors currently assigned to top-level cluster i (excluding the
current IP cluster being sampled), C(X) =

∏m
j=1 Γ(Xj)

Γ(
∑m
j=1Xj)

and Γ the gamma function.

For new components, marginalising over the base distributions for the mass term results in
a Gaussian with mean µ̄0 and precision δ̄−1 + σ−1

m . Similarly, for the RT term, this results
in a Gaussian with mean ψ̄0 and precision λ̄−1 + σ−1

t . For the adduct term, this results in
C(ūjk+β)

C(β)
.
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5.4 Evaluation Study

5.4.1 Evaluation Datasets

Two metabolomics datasets were used for performance evaluation. The Standard dataset was
generated from a mixture of 104 standard metabolites used for chromatographic columns cal-
ibration and has been used for performance evaluation in in Chapter 4. This dataset contains
eleven runs and represents a challenging alignment scenario with large RT variability (runs
were separated by weeks and generated from different instruments). A Beer dataset of three
runs from one batch that is representative of the typical biochemical diversity in a complex
metabolomics study is introduced. The beer extract was acquired from a bottle of Seven Gi-
raffes Extraordinary Ale brewed by William Bros. Brewery Company, with approximately
10 ml of the beer sampled from the bottle directly after opening. As a routine procedure in
the facility, the standard compounds were also mixed into the beer sample. LC-MS mea-
surement was then performed using a Thermo Scientific Ultimate 3000 RSLCnano liquid
chromatography system, coupled to a Thermo Scientific Q-Exactive Orbitrap mass spec-
trometer. After acquisition, all RAW files containing mass spectrometry measurements in a
proprietary vendor-dependant format were converted to the open mzXML/mzML formats.
Mass spectra were centroided and separated into positive and negative ionization modes us-
ing MSconvert (ProteoWizard). All runs for the Standard and Beer datasets were processed
through PrecursorCluster using the same parameters and the list of transformations in Ta-
ble 5.1. This list includes the common adduct transformations in positive ionisation mode,
but optionally isotopes can also be included.

Alignment ground truth for both datasets was constructed from the putative identification of
each run at 3 ppm using the Identify module from mzMatch [107], taking as input a database
of the 104 standard compounds known to be present and the transformations in Table 5.1.
Peak features with the same unique identifications are matched across runs, resulting in an
alignment ground truth for a subset of all peaks. Only peaks present in the ground truth are
considered for evaluation. The Standard ground truth accounts for 304 aligned peaksets (the
set of peak features matched across runs) spanning 1936 peak features across all Standard
runs, while the Beer ground truth consists of 108 aligned peaksets of 300 peak features across
all Beer runs.

Table 5.1: List of common adduct transformations in positive mode used for the precursor
clustering of the Standard and Beer runs.
M+2H M+H M+ACN+H 2M+Na M+H+NH4
M+NH4 M+ACN+Na 2M+ACN+H M+ACN+2H M+Na
M+2ACN+H M+2ACN+2H M+CH3OH+H 2M+H
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5.4.2 Performance Measures

Precision and recall are widely used to evaluate alignment performance [74, 96, 5, 137, 104],
and also in Chapter 4. To evaluate alignment performance on multiple runs, we propose a
generalized definition of precision and recall that extends from the pairwise definition in
Chapter 4. From an alignment method or the ground truth, a list of aligned peaksets is
obtained. For example, from the alignment of 4 runs, an alignment method returns a list
of two aligned peaksets {a, b, c, d, }, {e, f, g} as output. Here, {a, b, c, d, } is an aligned
peakset spanning 4 runs, while {e, f, g} contain peaks from 3 runs. From each aligned
peakset, we can extract a list of l-size combinations of peaks, each comprising an ‘alignment
item’. For instance, when l = 2, the example output can be enumerated into a list of 9
‘alignment items’ of all the pairwise combinations of features: {a, b}, {a, c}, {a, d}, {b, c},
{b, d}, {c, d}, {e, f}, {e, g}, {f, g}. Let M and G be the results from such enumeration from
a method’s output and the ground truth respectively. Each distinct combination of features in
M andG can be considered as an item during performance evaluation. Intuitively, the choice
of l reflects the strictness of what is considered to be a true positive item, with larger values
of l demanding an alignment method that produces results spanning more runs correctly. In
this manner, l goes from 2 to as many runs being aligned.

For a given l, the following positive and negative instances of alignment item can now be
defined for the purpose of performance evaluation:

• True Positive (TP ): items that should be aligned (present in G) and are aligned
(present in M ).

• False Positive (FP ): items that should not be aligned (absent from G) but are aligned
(present in M ).

• True Negative (TN ): items that should not be aligned (absent from G) and are not
aligned (absent from M ).

• False Negative (FN ): items that should be aligned (present in G) but are not aligned
(absent from M ).

In a similar manner to the pairwise definition in Chapter 4, precision ( TP
TP+FP

) is the fraction
of alignment items in M that are correct with respect to some alignment ground truth G,
while recall ( TP

TP+FN
) is the fraction of alignment items specified in G that are actually

aligned in the alignment results M . By definition, a perfect alignment method would have
precision and recall scores of 1. In practice, there is a trade-off between precision and recall,
where increasing recall often results in lower precision and vice versa. To summarize these
two numbers, we also report the F1 score, which is the harmonic mean of precision and
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recall, defined as F1 = 2(precision · recall)/(precision + recall). Since our alignment
ground truth is usually smaller than the set of all pairs of peaks returned by a method, only
those peaks present in the ground truth are considered for evaluation.

5.4.3 Evaluation Procedure

As the baselines for evaluation, we compare the performance of our proposed methods
against the method of direct matching of peak features (MW) and its variant (MWG) that
modifies the similarity matrix used during matching to bring together group of peaks related
by RT closer during matching – described in Chapter 4.

To evaluate Cluster-Match, the procedure in Chapter 4 is followed. 30 random pairs of
Standard runs were selected as the training set, and another 30 as the testing set. Matching
tolerance parameters were varied within reasonable ranges (details in Section 5.4.4) on one
pair in the training set, and parameters resulting in the best training performance (highest
F1-score) of one pair were used to align the associated pair in the testing set. The three Beer
runs are too few to allow separation into training and testing sets, so each method is trained
and evaluated on all three Beer runs. The direct matching of peak features (MW) and its
variant (MWG) from in Chapter 4 that incorporates grouping information (based on RT and
not mass) into the similarity matrix used for matching are used as a baseline.

To evaluate Cluster-Cluster, five sets of 2, 3, and 4 Standard runs were selected randomly as
well as all 3 Beer runs. For each data set, parameters for Cluster-Match were varied to ob-
tain the best attainable alignment performance. These are plotted alongside the results from
Cluster-Cluster on the same data using a fixed (and potentially non-optimal) set of parame-
ters. Cluster-Cluster was also run with and without the adduct fingerprint term to evaluate its
importance. More details on parameter optimization can be found in Section 5.4.4.

5.4.4 Parameter Optimization

Following the parameter optimization procedure in Section 4.4.6, the same grid search on
the m/z and Rt window tolerance parameters is used. The m/z and RT window tolerance
parameters define the maximum deviation acceptable for a candidate matching is allowed
in the bipartite graph. The choice of m/z parameter is often determined by the accuracy of
the mass spectrometry instrument and can be reasonably determined in advance. Due to RT
drift, selecting the RT window is less straightforward.

For the evaluation of feature matching (MW, MWG) vs. cluster matching (Cluster-Match)
on the Standard dataset, we performed grid-search on the m/z and RT windows parameters
using the training set. The optimal training parameters are used to perform alignment on the



5.5. Results and Discussions 94

testing set, giving the respective performance measures (testing Precision, Recall, F1). On
the Standard datasets, we varied the mass tolerance window of the methods tested within the
range {2, 4, 6, 8, 10} m/z and the RT tolerance window within {5, 10, 15, ..., 100} seconds
during the training stage. Parameter combinations that result in the best F1-score were then
used for performance evaluation in the testing stage. For MWG, additional parameters are
also required for the threshold tg on greedy clustering of related peaks and αg, the contribu-
tion on the different parts to the similarity score. We let tg vary within {2, 4, 6, 8, 10} seconds
and αg within {0, 0.2, 0.4, 0.6, 1.0} in the training stage and use the best combinations of pa-
rameter values for the testing stage. The three Beer runs are too few to allow separation into
training and testing sets, so each method is trained and evaluated on all three Beer runs using
the previously-described parameters same as the Standards.

The following parameters were used for the first-stage clustering of the PrecursorCluster
model for all the Standard runs being processed: within-run mass tolerance γm = 5 ppm,
within-run RT tolerance γt = 30 seconds. For the Beer runs, we used the within-run mass
tolerance γm = 3 ppm and the within-run RT tolerance γt = 10 seconds. The prior on
the Dirichlet distribution α is set to 1.0 and Table 5.1 shows the list of common adduct
transformations in positive ionization mode used for precursor clustering. 5000 posterior
samples were obtained from Gibbs sampling.

For the second-stage clustering in Cluster-Cluster, the following parameters were used for
all input Standard and Beer runs: across-run mass tolerance γ′m = 10 ppm, across-run RT
tolerance γ′t = 60 seconds, α′ the Dirichlet Process concentration parameter is set to 1000.0.
As relatively few number of runs are being aligned in our experiments, the large value of
alpha′ encourages more top-level clusters, each having fewer member IP clusters inside. β,
the symmetric prior on the Dirichlet prior distribution for adduct signature vector is set to
0.1. Inference is performed on each top-level bin that has more than 1 IP clusters inside, with
500 posterior samples drawn for each top-level bin.

5.5 Results and Discussions

With PrecursorCluster, the large number of peaks present within a single LC-MS run can
now be reduced to a smaller number of IP clusters, making alignment easier as fewer objects
have to be matched across runs. Section 5.5.1 presents the results of running the ionization
product clustering on the Standard and Beer datasets.

While the resulting IP clusters potentially have many uses (e.g. to the problem of annota-
tion of related peaks and the identification of metabolites), peaks assigned to any IP cluster
have now been annotated with the transformation type that brings them into the clusters.
IP clusters can therefore be aligned across runs (through direct-matching or a second-stage
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clustering process) and their member peak features (sharing the same transformation type)
matched to produce alignment. Section 5.5.2 demonstrated from our experiments how the
proposed approach of direct-matching IP clusters can improve upon the matching of LC-
MS peak features alone, while Section 5.5.3 describes how the resulting probabilities from
Cluster-Cluster can be used to robustly quantify the matching uncertainties.

Being a direct matching method, Cluster-Match performs nearly as fast as alignment by
matching of peak features alone while offering better performance. As Cluster-Cluster per-
forms Bayesian inference on which IP clusters should be put together into the same top-level
clusters, the alignment of LC-MS features can now be established without the need for a ref-
erence run. While this requires more computational time than the direct-matching alternative
(Section 5.5.4), Cluster-Cluster is able to produce confidence scores on the matching qual-
ity of aligned peaksets from the posterior summaries computed during inference. This has
a potential use in assisting the selection of high-confident aligned peaksets for subsequent
analysis in the latter stage of the LC-MS pipeline

5.5.1 Ionization Product Clustering from PrecursorCluster

A. B.

Figure 5.2: Different IP clusters in four different Standard runs, identified as Cysteic acid
(Figure 5.2A) and melatonin (Figure 5.2B). The MAP transformation type of a peak and its
probability are annotated as a labelled arrow and the bracketed number beside. According to
the ground truth, all member peaks with the same transformation type should be aligned.

Within each run, PrecursorCluster produces the maximum a posteriori (MAP) assignments
of peaks to IP clusters. An example of four IP clusters found in the Standard runs, iden-
tified as Cysteic acid, is shown in Figure 5.2A. According to the ground truth, all member
peaks across these four clusters should be aligned. Similarly, we show in Figure 5.2B four
IP clusters corresponding to the compound melatonin, whose member peaks should all be
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aligned according to the ground truth. The existence of these correspondent clusters provide
an initial indication that it makes sense of match the IP clusters. However, the complexity
of the data means that, as Table 5.2 shows, a large number of peaks cannot be clustered
to other peaks in the same run and can therefore only form an IP cluster with itself as the
only member through the M+H transformation (we call these clusters of only one member
peak the singleton IP clusters). In both the Standard and Beer runs, non-singleton IP clusters
(containing more than one member peaks) comprise approximately 6% to 10% of the total
IP clusters of that run. The distributions of the cluster sizes of these non-singleton clusters
when only adduct transformations are used are given in Figure 5.3 for the Standard and Beer
runs. We also note that for any given cluster size, the counts of IP clusters of that size tend
to differ significantly across the Standard runs, due to the varying number of LC-MS peak
features present in each Standard run. This is the consequence of the Standard runs being
produced in several batches separated over a period of time. The distributions of cluster sizes
in Figure 5.3 across the three Beer runs are more consistently reproduced, reflecting the fact
that the runs were generated within the same batch. As shown in Figure 5.3, the largest IP
clusters of the Beer and Standard runs have 6 and 7 member peaks respectively.

Table 5.2: The number of peak features and the counts of singleton and non-singleton IP
clusters in each run of the Standard and Beer datasets. A singleton cluster is defined to be an
IP cluster having only one member peak after MAP assignments, while a non-singleton IP
cluster has more than one member peaks. The last column in the Table shows the counts of
non-singleton IP clusters and also the percentage of non-singleton IP clusters from the total
IP clusters in that run.

Data # Peak Features # Singleton IP Cluster # Non- singleton IP Cluster
Std 01 4999 4327 301 (6.5%)
Std 02 4986 4341 288 (6.2%)
Std 03 6836 5755 481 (7.7%)
Std 04 9752 8011 775 (8.8%)
Std 05 7076 5801 551 (8.7%)
Std 06 4146 3655 216 (5.6%)
Std 07 6319 5272 469 (8.2%)
Std 08 4101 3579 232 (6.1%)
Std 09 5485 4789 312 (6.1%)
Std 10 5034 4304 310 (6.7%)
Std 11 5317 4574 337 (6.8%)

Beer 01 7553 6179 633 (9.3%)
Beer 02 7579 6203 631 (9.2%)
Beer 03 7240 5983 574 (8.6%)

Consistent with the number of singleton clusters, the M+H transformation dominate in the
data. Non M+H transformations comprise 8% of the total MAP transformations for the Stan-
dard dataset and 10% for the Beer dataset. In both datasets, the M+ACN+H and M+Na trans-



5.5. Results and Discussions 97

Figure 5.3: Ionization product cluster sizes for all runs in the Standard and Beer datasets.
For any given size, the number of clusters are generally more consistent in the Beer runs
compared to the Standard runs, which shows greater variability due to the differences in the
number of peak features per run.

formations are highly prevalent (Figure 5.4). The presence of the M+ACN+H and M+NH4
transformations in the Beer dataset is expected, given the use of acetonitrile and ammonium
carbonate buffers during chromatography. Similarly, the M+CH3OH+H adducts in the Beer
data can also be explained by the use of methanol during the sample preparation process.
The consistency of the example clusters in Figure 5.2 and the explainable transformations in
Figure 5.4 suggest a valid result from PrecursorCluster, providing confidence that it can be
used for alignment.

5.5.2 Improved Alignment Performance from Cluster-Match

Precision and recall values produced by the different methods (across all parameter ranges)
for the entire 30 Standard training sets and the 3 Beer runs can be found in Figure 5.5. Here,
l (the size of peakset combinations to be considered during performance evaluation) to 2 to
consider only pairwise features for performance evaluation as pairwise performance limits
overall performance in direct matching methods that employ the merge-match scheme to
construct an overall result. The results in Figure 5.5 (top row) shows that across all the m/z
and RT window tolerances varied, Cluster-Match can produce higher precision while retain-
ing similar recall values to feature matching (MW) or modified feature matching (MWG).
This increase in precision comes from the increase of true positives and the decrease in false
positives by taking into account the ionization product relationships between peak features
when constructing the matching. The results here suggest that, regardless of the parameters
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A

B

Figure 5.4: Barcharts showing the counts of transformation types in all Standard and Beer
runs, excluding the M+H transformation.

selected for the m/z and RT tolerance windows, the proposed methods of matching by IP
clusters can return a better alignment result compared to matching by peak features only.

Similar results can also be observed for the Beer dataset (Figure 5.5, bottom row). The com-
plex Beer runs being aligned have minimal RT deviations when compared to the Standard
runs, so all evaluated methods perform well, demonstrating smaller deviations in perfor-
mance values despite varying the tolerances parameters. Again a general increase in pre-
cision of the results from Cluster-Match is observed over the other two baseline methods.
MWG, which relies on the grouping of related peaks using their retention time values only,
does not appear to produce any improvements over MW. The results here suggest that on
complex LC-MS data such as the Beer data, the richer information present in the m/z and RT
values of related peak features, alongside their possible IP transformations and relationships
to the precursor peak, is essential and has to be taken into account.

Optimizing parameters on the training set and evaluating performance on the testing set mea-
sures how well a method generalizes to new and unseen data. The best Standard training and
testing F1-scores from each method are reported in Figure 5.6. Using a one-sided paired
t-test, Cluster-Match is found to be statistically greater than that of MW in both the training
(p-value=0.002) and the testing cases (p-value=0.026), suggesting that Cluster-Match gen-
eralizes better to new and unseen datasets. MWG produces even higher training F1-scores
compared to the other two methods. This difference is found to be statistically significant
using a one-sided paired t-test (p-value=0.01). The higher training performance of MWG
can be explained by the fact that the RT grouping tolerance parameter and matching ratio for
MWG were optimized during the training phase, while the same (potentially non-optimal)
clustering parameters were used for the ionization product clustering of all Standard runs. On
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Figure 5.5: All the training results obtained by varying the m/z and RT window parameters
from the alignment of the entire 30 sets of pairwise Standard runs (top row) and the 3 Beer
runs (bottom row). For MWG, the grouping parameter t and score contribution α were also
varied, while for Cluster-Match, the same set parameters of first-stage clustering was used
for all input files.
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the testing results, no statistically significant differences were found on the testing F1-scores
of MWG and Cluster-Match, suggesting that both methods generalize well.

Figure 5.6: The best training and testing F1-scores obtained from the alignment of 30 sets
of pairwise Standard runs.

5.5.3 Probabilistic Matching Results from Cluster-Cluster

Direct-matching methods such as MW and Cluster-Match can only return a definite matching
solution to the alignment problem (a peak from one run is either aligned to a peak in the other
run, or not). In contrast, the second-stage clustering process of the IP clusters employed in
the Cluster-Cluster method allows us to produce an estimate in the uncertainties of matching
of peak features, producing as the alignment result a list of aligned peaksets that have been
matched at varying levels of confidence. Figure 5.7 shows how a Precision-Recall (PR)
curve, which shows how precision and recall change together, can be computed from the
output of Cluster-Cluster on one of the sets of 4 randomly selected Standard runs and the set
of 3 Beer runs. In Figure 5.7, the PR curves are plotted alongside the results from Cluster-
Match at varying m/z and RT tolerance parameters (note that for Cluster-Cluster, we used
only one set of potentially sub-optimal parameters for the second-stage clustering). Along
both the PR curves on Figure 5.7, we see that generally, a decrease in the recall values is
accompanied by an increase in the precision values. This applies to both the Standard and
the Beer datasets, suggesting that by setting an appropriate threshold on the probabilities of
aligned peaksets returned by Cluster-Cluster, we can obtain fewer aligned peaksets (lower
recall) but at a higher confidence level of being correctly aligned (higher precision). In the
face of further uncertainties with regard of user-defined parameters from the previous parts of
the pipeline, the probabilistic alignment results returned by Cluster-Cluster allows the user to
focus on peaksets of high matching confidence for subsequent analysis. This introduces the
possibility of returning a smaller subset from the overall aligned peaksets that have a higher
confidence score of being correctly aligned — an ability that few other matching methods
can provide.

The results in Table 5.3 from running Cluster-Cluster, averaging over the sets of 2, 3, and
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Figure 5.7: PR curves obtained from running Cluster-Cluster on one of the sets of 4 ran-
domly selected Standard runs (left) and the 3 Beer runs (right). Green dots are performance
points obtained from running Cluster-Match at varying m/z and RT tolerance parameters on
the same datasets, with their distributions of the points plotted along the marginals. The same
first-stage clustering results were used as input to both Cluster-Match and Cluster-Cluster.

4 Standard runs, and on the entire 3 Beer runs, demonstrate that by setting some thresh-
old values {0.30, 0.60, 0.90} on the aligned peakset probabilities, various precision and re-
call values can be extracted. Upon aligning the sets of 4 Standard runs at threshold=0.30,
Cluster-Cluster has a lower average precision of 0.81 than the best average performance
from Cluster-Match at precision=0.87. Raising the threshold to 0.90 (consequently, decreas-
ing recall as fewer aligned peaksets are returned) produces an average precision=0.90 for
Cluster-Cluster, higher than 0.87 for Cluster-Match. On the complex Beer data, Cluster-
Cluster produces precision=0.76 at threshold 0.30. Increasing the threshold to 0.90 produces
a precision=0.94, which is again higher than the best attainable precision=0.91 from Cluster-
Match. This demonstrates how recall can be traded for precision in Cluster-Cluster; a po-
tentially useful ability in untargeted metabolomics experiments when the alignment ground
truth is not available. In this situation, analysis effort can be focused on aligned peaksets
with high confidence.

The importance of the adduct fingerprint term is shown in Table 5.3. Without the adduct fin-
gerprint, a lower average F1-score is produced by Cluster-Cluster at the probability threshold
0.90. This can be explained by the fact that excluding the adduct fingerprint term allows
IP clusters having highly similar precursor mass and RT values to be placed in the same
top-level cluster, despite each having an entirely different set of member adduct ions (and
potentially corresponding to different metabolites). More false positive alignment items are
produced, resulting in lower recall and F1 scores. Using Figure 5.2 as an example, the
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aligned peakset consisting of the four [M + H]+ peaks in Figure 5.2 has a high matching
probability (0.97) when the adduct fingerprint term is used and almost never be placed to-
gether (near 0 probability) without. Similar observations can be concluded for the ions for
other transformation types (e.g. the [M +Na]+, [M +ACN +H]+ adduct ions, etc.) shared
by the clusters in Figure 5.2. The inclusion of the adduct fingerprint term in Cluster-Cluster
is necessary to ensure that well-calibrated probabilities on the alignment results are obtained,
especially on aligned peaksets with higher matching confidence.

Table 5.3: Precision, recall and F1 values from Cluster-Cluster for randomly selected sets
of 2, 3 and 4 Standard runs (averaged) and the Beer runs for various l and thresholding
levels th = {0.30, 0.60, 0.90}. Best results from Cluster-Match and the result of running
Cluster-Cluster without the adduct fingerprint term are shown for comparison. Note that for
Cluster-Cluster, the results come from using one set of potentially sub-optimal parameters
for the second-stage clustering.

Dataset l
Best Cluster-Match Cluster-Cluster (CC) CC (with-

out adduct
term)

Avg. Prec. Avg. Rec. Avg. F1 Threshold Avg. Prec. Avg. Rec Avg. F1 Avg. F1

Standard 2 0.93 0.92 0.93
0.30 0.96 0.95 0.95 0.95
0.60 0.98 0.93 0.96 0.93
0.90 1.00 0.90 0.94 0.80

Standard 3 0.89 0.90 0.89
0.30 0.82 0.91 0.84 0.86
0.60 0.86 0.88 0.86 0.85
0.90 0.89 0.81 0.84 0.62

Standard 4 0.87 0.92 0.89
0.30 0.81 0.92 0.85 0.89
0.60 0.84 0.89 0.85 0.86
0.90 0.90 0.83 0.86 0.65

Beer 3 runs 3 0.92 0.89 0.91
0.30 0.76 0.77 0.77 0.79
0.60 0.88 0.67 0.76 0.68
0.90 0.94 0.54 0.68 0.63

5.5.4 Running time

Efficient inference is possible in PrecursorCluster as many peaks can only be placed in one
cluster and need not be reassigned during Gibbs sampling. For the Standard runs with up to
5000 peak features, less than a quarter of peak features have to be reassigned. Taking 10000
posterior samples, Gibbs sampling for PrecursorCluster requires 20 minutes to process one
Standard run on an Intel Core i5, 3.3GHz PC. Runs are processed independently and can be
parallelized. In Cluster-Match, the matching of IP clusters via MW has a time complexity
of O(mlog n) time, where n and m are the number of vertices and edges in the bipartite
graph to be solved, translating to a wall clock of less than a minute for each run. Cluster-
Cluster requires longer computational time. With 1000 posterior samples per top-level bin,
the processing of 2 Standard runs requires approximately half an hour. Each top-level bin
can also be processed in parallel.
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5.6 Conclusions

We have proposed an integrative workflow that performs the precursor clustering of ioniza-
tion product peaks and uses that to improve alignment. The PrecursorCluster model intro-
duced is a data reduction process that can reduce the number of peaks to IP clusters based
on a list of possible ionization transformation types. The clustering information extracted
from PrecursorCluster can be used to improve other steps in the pipeline too. For instance,
metabolite identification, currently the main bottlenecks in high-throughput metabolomics,
might be improved through analyzing IP clusters as the objects of interest rather than individ-
ual peak features. In this chapter, the PrecursorCluster model is optimised on metabolomics
data by focusing on the set of adduct transformations as ionization product transformations.
However this does not preclude the model from being applied to other MS-based omics as
well. For instance, adduct peaks are less of a problem in proteomics data, and since peptide
fragments being fragmented are larger than metabolites, the resulting proteomic spectra often
contains more isotopic peaks. This rule on isotopic transformations can also be incorporated
as part of PrecursorCluster.

One of the key assumption made in PrecursorCluster is that the peak with M+H transfor-
mation must be the peak having the largest intensity in the IP cluster (other peaks are not
allowed to join the IP cluster if their intensity values are smaller than the M+H peak). While
this is a reasonable assumption to make, some IP peaks do not obey this modelling assump-
tion. An alternative clustering methods that are more flexible and does not have the intensity
constraint can be considered, e.g. by allowing peaks to form IP clusters if they can be trans-
formed (within tolerance) to any potential precursor mass that other peaks also jointly ‘vote’
for. The weight of a potential precursor mass can then be updated based on the likelihood of
the set of peaks having valid transformation paths to that precursor mass.

Taking the MAP results from PrecursorCluster, we have also demonstrated how IP clustering
can be used to improve alignment. Our results show that in comparison to the conventional
direct-matching of peak features, the proposed approach Cluster-Match, which performs the
matching of IP clusters and subsequently groups member peaks having the same IP types,
allows us produce a better (more precise) alignment result. It is also noteworthy that while
Cluster-Match still makes the assumption that across runs, correspondent IP clusters always
exist, this assumption is more relaxed when it comes to the construction of the actual align-
ment of peak features. Since member peaks in matched IP clusters are grouped according to
their IP types, peaks that do not have correspondent type across runs will never be matched
together — even if they are close in distance and would otherwise has been matched in the
conventional direct-matching scheme. In this manner, Cluster-Match can potentially produce
fewer false positives in matching compared to the direct matching of peak features alone.

The proposed pairwise matching scheme used by Cluster-Match is frequently extended to
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the processing of multiple runs in a fairly ad-hoc manner and suffers from having to set
a reference run (which can be considered another parameter to set). Producing a distance
measure that works well for measuring similarities of peaks across multiple runs is non-
trivial, in particular in the merged-match scheme from the sequential processing of pairs of
runs. We propose the Cluster-Cluster method that addresses this issue by not requiring a
reference run when constructing alignment through a second-stage clustering of IP clusters.
To our knowledge, no literature has systematically evaluated the effect of choosing a different
reference run for alignment or how changing the order of runs being processed might affect
the alignment result, but we hypothesise that methods like Cluster-Cluster that does not
require a reference run will have an advantage when aligning a large dataset — typical in
modern large-scale metabolomics experiments having hundreds of runs to process.

In addition, most methods also do not take into account the uncertainties inherent in the
matching of peaks across runs. Cluster-Cluster is able to return aligned peaksets at varying
probabilities. Our experiments show that by setting a suitable threshold, we can extract
from Cluster-Cluster results alignment results having a higher precision than what can be
obtained from other methods. As future work, an interactive visualisation module can be
developed to let user visualize ionization product clustering and aligned peaksets (with their
probabilities) from a single graphical interface. Such module can be incorporated as part of
a larger metabolomics pipeline.

The proposed alignment methods described in this chapter operates in two stages: both
Cluster-Match and Cluster-Cluster requires the MAP assignment of peaks into their IP clus-
ters from PrecursorCluster before matching is performed. In the next chapter, we build upon
this two-stage process and introduce a fully hierarchical model that performs the cluster-
ing of peaks within run and across runs at once. In essence, this combines the two stage
processes into a single clustering model.
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Chapter 6

Hierarchical Clustering of LC-MS
Peaks

6.1 Introduction

The Cluster-Cluster method introduced in Chapter 5 performs the direct-matching of peaks
in ionisation product (IP) clusters that themselves have been clustered together. However, re-
lated peaks are assigned into IP clusters based on their maximum a-posteriori probabilities.
In this chapter, we expand upon the idea of alignment as a hierarchical clustering prob-
lem by proposing HDP-Align, a Bayesian non-parametric model that groups related peaks
within runs by their retention time (RT) and assigns them to global clusters shared across
runs. Within each global cluster, peaks are further grouped by their m/z values into mass
clusters, representing the various ionisation products derived from the global compound. In
this manner, the local clusters in HDP-Align correspond to the within-file IP clusters from
running PrecursorCluster on each run, while the global clusters in HDP-Align correspond to
the top-level clusters produced from Cluster-Cluster (described in Chapter 5).

The proposed HDP-Align model introduced in this chapter allows us to infer the matching
of peaks across all runs at once without the need for any intermediate merging of pairwise
runs. Similar to the Cluster-Cluster model introduced in Section 5.3.2, the proposed model
of HDP-Align also introduces the possibility of allowing the user to trade recall for preci-
sion from the alignment results by returning a smaller subset of the results having a higher
confidence score of being correctly aligned. Figure 6.1 shows an illustration of the clus-
tering process in HDP-Align. Additionally, the latent variables inferred in the model may
correspond to chemically meaningful compounds and can be used for further analysis. Us-
ing a metabolomic dataset, we demonstrate the usefulness of such latent objects by using
the mass clusters derived from the model and a set of defined ionisation product transforma-
tions to perform the putative annotations of peaks based on their potential adduct types and
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metabolite identities.

Figure 6.1: An illustrative example of how the proposed model in HDP-Align simultaneously
(1) performs the clustering of related peaks into within-run local clusters by their RT values,
(2) assigns the peaks to global RT clusters shared across runs, and (3) separates peaks into
mass clusters, which correspond to aligned peaksets.

6.2 Related Work

The goal of establishing the matching of peaks across multiple runs at once can be viewed as
a clustering problem, where a set of peaks can be grouped (by their m/z, RT and other suitable
features) into local clusters within each run (representing all of the peaks from an individual
compound), which are further grouped into global clusters shared across runs. Hierarchical
clustering has been used for the matching of peaks across runs [128, 28]. In [128], peaks are
hierarchically clustered based on their m/z values to construct matching across runs, while
in [28], peaks from the entire dataset are pooled and a hierarchical clustering scheme based
on RT only is used to group peaks into within-run local clusters, which are further grouped
into across-run super clusters. Both approaches require choosing various user-defined pa-
rameters, such as determining a suitable cut-off for the dendogram produced, deciding on
a suitable linkage method and defining an appropriate distance measure between groups of
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peaks. In [128], no chromatographic separation is performed, so only the m/z values of
peaks are used. The nature of the gas chromatography data used in [28], where retention
time across runs is more reproducible, means that even without using the m/z information,
good alignment performance can still be obtained. This will not be the case of LC-MS data,
where retention time drift is common and the highly accurate m/z information is crucial for
alignment. The proposed HDP-Align model fills this gap where both m/z and RT values,
important for LC-MS peak alignment, are used for the hierarchical clustering process. The
probabilistic approach employed by HDP-Align also allows us to extract confidence values
from aligned peaksets.

6.3 Hierarchical Dirichlet Process Mixture Model for

Alignment

The proposed model for HDP-Align is framed as a Hierarchical Dirichlet Process (HDP)
mixture model [126]. Essential modifications to the basic HDP model, described in Sec-
tion 3.4, were performed to suit the nature of the multiple peak alignment problem. Figure
6.2 shows the conditional dependencies between random variables in the HDP-Align model.

Our input consists of J input files, indexed by j = 1, ..., J , corresponding to the J LC-MS
runs to be aligned. Each j-th input file contains Nj peaks in total, which can be separated
into Kj local clusters of related-peaks. In a j-th file, peaks are indexed by n = 1, ..., Nj and
local clusters are indexed by k = 1, ..., Kj . Across all files, we assign each local cluster k in
file j to a global cluster i = 1, ..., I , where I is the total number of global clusters, using the
indicator variable v, as described in the following paragraph. A global cluster corresponds to
the compound of interest during LC-MS analysis, e.g. metabolite or peptide fragment, that
is present across runs, while local clusters are realisations of the global clusters in a specific
run. Finally, within each global cluster i, we can further group peaks by their m/z values
into A mass clusters (indexed by a = 1, ..., A). Each mass cluster therefore corresponds to
the ionization product peaks coming from the different runs that are produced by a global
compound during mass spectrometry.

We use the indicator variable zjnk = 1 to denote the assignment of peak n in file j to local
cluster k in that file. Similarly, vjni = 1 if peak n in file j is assigned to global cluster i, and
vjnia = 1 if peak n in file j is assigned to mass cluster a linked to metabolite i. Let dj be
the list of observed data of peaks in file j, dj = (dj1,dj2, ...,djn) where djn = (xjn, yjn)

with xjn the RT value and yjn the log m/z value of the peak feature. The log of m/z value is
here used as the m/z error is assumed to increase linearly with the observed m/z value [95].
θ denotes the global mixing proportions and πj the local mixing proportions for file j. The
global mixing proportions θ are distributed according to the Griffiths, Engen and McCloskey
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Figure 6.2: Graphical model for HDP-Align. j indexes over the input files (LC-MS runs),
while n indexes over the peaks in that file. k indexes over within-file local clusters, while i
indexes over across-file global clusters. In a global clusters, peaks are separated by their m/z
values into mass clusters, indexed by a. xjn is the observed RT value of peak n in file j, while
yjn is the observed m/z value. The indicator variables zjnk, vjni and vjnia are used to denote
the assignment of peak n in file j to local cluster k, to global cluster i and to mass cluster a in
global cluster i respectively. Next, tjk and ti are the RT values of the local cluster k in file j
and the global cluster i respectively, while µia is the mass cluster mean. In addition, γ, δ and
ρ as the precision parameters on the Gaussian components for the local RT clusters, global
RT clusters and mass clusters respectively. Next, µ0 and σ0 are the mean and precision of the
base Gaussian distribution for the global mixture component RT values, while ψ0 and ρ0 are
the mean and precision of the base Gaussian distribution for the mass cluster means. Finally,
α′, αt and αm are the Dirichlet Process concentration parameters.
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(GEM ) distribution (details in Chapter 3):

θ|α′ ∼ GEM(α′), (6.1)

where the GEM distribution over θ is described through the stick-breaking construction:

βi ∼ Beta(1, α′) (6.2)

θi = βi

i−1∏
l=1

(1− βl). (6.3)

The local mixing proportions πj are distributed according to a Dirichlet Process (DP) prior
with the base measure θ and concentration parameter αt.

πj|αt,θ ∼ DP (αt,θ). (6.4)

Within each file j, the indicator variable zjnk = 1 denotes the assignment of peak n in file j
to local RT cluster k in that file. This follows the local mixing proportions for that file.

zjnk = 1|πj ∼ πj. (6.5)

The RT value ti of a global mixture component is drawn from a base Gaussian distribution
with mean µ0 and precision (inverse variance) σ0.

ti|µ0, σ0 ∼ N (µ0, σ
−1
0 ). (6.6)

The RT value tij of a local mixture component in file j is normally distributed with mean ti
and precision δ. The precision controls how much RT values of related-peak groups across
runs are allowed to deviate from the parent global compound’s RT.

tjk|ti, δ ∼ N (ti, δ
−1). (6.7)

Finally, the observed peak RT value is normally distributed with mean tjk and precision γ.
The precision controls how much RT values of peaks can deviate from their related-peak
group.

xjn|zjnk = 1, tjk, γ ∼ N (tjk, γ
−1). (6.8)

The m/z value produced through high-precision MS instrument is highly accurate, and its
correspondence is often preserved across runs. Once peaks have been assigned to their re-
spective global clusters, we need to further separate peaks within each global cluster into
mass clusters to obtain the actual alignment. These mass cluster corresponds to ionisation
products. We do this by incorporating an internal DP mixture model on the m/z values (yjn)
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within each global cluster i. Let the indicator vjnia = 1 denotes the assignment of peak n in
file j to mass cluster a in the i-th global cluster. Then:

λi|αm ∼ GEM(αm) (6.9)

vjnia = 1|λi ∼ λi (6.10)

µia|ψ0, ρ0 ∼ N (µia|ψ0, ρ
−1
0 ) (6.11)

yjn|vjnia = 1, µia ∼ N (µia, ρ
−1) · I(djn), (6.12)

where the index ia refers to the a-th mass cluster of the i-th global cluster. λi is the mix-
ing proportions of the i-th internal DP mixture for the masses, with αm the concentration
parameter. µia is the mass cluster mean, drawn from the Gaussian base distribution with
mean ψ0 and precision ρ0. The observed mass value is drawn from a Gaussian distribution
with the component mean µia and precision ρ, for which the value is set based on the MS
instrument’s resolution. Additionally, we add an additional constraint on the likelihood of
yjn using the indicator function I(·) such that I(djn) = 1 if there are no other peaks inside
the mass cluster that come from the same file as the current djn peak, and 0 otherwise. This
constraint captures the restriction that a peak feature can only be matched to other peaks from
different files, reflecting the assumption that within each LC-MS run, compounds produce
ionisation products with distinct mass-to-charge fingerprints that can be used for matching
to other runs.

6.4 Inference

Inference within the model is performed via a Gibbs sampling scheme, allowing us to com-
pute the alignment probabilities through the proportion of posterior samples in which any
sets of peaks are placed in the same mass component (a) in the same top-level cluster. In
this manner, peaks coming from different runs that are in the same mass component are
considered to be aligned as they have similar RT and m/z values. In each iteration of the
sampling procedure, we instantiate the mixture component parameters for the local RT clus-
ter (tjk) and global RT cluster (ti) in the mixture model. In the internal DP mixture linked to
each global cluster i, we marginalise out the mass cluster parameters (µia). The initialisation
step of the sampler is performed by assigning all peaks in each run into a single local RT
cluster. Across runs, these local clusters are assigned under a global cluster shared across
runs. Within a global cluster, peaks coming from different runs are assigned to a single mass
cluster. The sampler than iterates through each peak feature, removing it from the model,
updating the assignment of peaks to clusters and performing the necessary book-keeping on
any instantiated mixture components. Further details on the specific Gibbs update statements
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can be found in following sections.

6.4.1 Updating peak assignments

We use the following variables to denote the count of items in any clustering object: cjk
is the number of peaks in a local cluster k of file j. ci is the number of local clusters in a
global cluster i, and cia is the number of peaks in a mass cluster a inside a global RT cluster
i. To update the assignment of a peak djn to local RT cluster k during Gibbs sampling, we
need the conditional probability of P (zjnk = 1) given every other parameters, denoted as
P (zjnk = 1|djn, . . .).

(6.13)P (zjnk = 1|djn, ...) ∝

 cjk · p(djn|zjnk = 1, ...)

αt · p(djn|zjnk∗ = 1, ...)
.

We consider the top and bottom terms of eq. (6.13) separately in the following.

1. The likelihood of the peak djn to be in an existing local RT cluster k, p(djn|zjnk =

1, ...) is proportional to cjk. This is assumed to factorise across the RT (xjn) and mass
(yjn) terms

(6.14)p(djn|zjnk = 1, ...) = p(xjn|zjnk = 1, ...) · p(yjn|zjnk = 1, ...).

The RT term p(xjn|zjnk = 1, ...) in eq. (6.14) is normally distributed with mean tjk
and precision γ, while the mass term p(yjn|zjnk = 1, ...) is an internal DP mixture of
mass components linked to the parent global cluster i of an existing local cluster k. We
then marginalise over all mass clusters in i to get p(yjn|zjnk = 1, vjni = 1...)

(6.15)
p(yjn|zjnk = 1, vjni = 1...) =

∑
a

cia
αm +

∑
a cia

p(yjn|vjnia = 1, ...)

+
αm

αm +
∑

a cia
p(yjn|vjnia∗ = 1, ...).

To compute the terms in eq. (6.15), first we consider the case for an existing mass
cluster a in the global RT cluster i. Then,

(6.16)p(yjn|vjnia = 1, ...) = N (µia, ρ
−1).

For a new mass cluster a∗ in the global RT cluster i, we marginalise out µia to obtain

(6.17)p(yjn|vjnia∗ = 1, ...) = N (ψ0, ρ
−1 + ρ−1

0 ).
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2. The likelihood of the peak djn to be in a new local cluster k∗ is proportional to αt.
Marginalising over all global clusters in the top-level DP, we get

(6.18)
p(djn|zjnk∗ = 1, ...) =

∑
i

[
ci

α′ +
∑

i ci
p(djn|vjni = 1, ...)

]
+

α′

α′ +
∑

i ci
p(djn|vjni∗ = 1, ...).

There are two terms to compute in eq. (6.18): whether peak djn is in an existing
global cluster i or a new global cluster i∗. For an existing global RT cluster i in eq.
(6.18), p(djn|vjni = 1, ...) is assumed to factorise into its RT and mass terms, so
p(djn|vjni = 1, ...) = p(xjn|vjni = 1, ...) · p(yjn|vjni = 1, ...). We marginalise over all
local RT clusters to obtain

(6.19)p(xjn|vjni = 1, ...) = N (xjn|ti, γ−1 + δ−1),

and marginalise over all possible mass clusters in the internal DP linked to global
cluster i to obtain p(yjn|vjni = 1, ...). This is defined in eq. (6.15). Finally, for a new
global RT cluster i∗ in eq. (6.18), p(djn|vjni∗ = 1, ...) is also assumed to factorise into
its RT and mass terms. Then, we marginalise over tjk and ti to obtain

(6.20)p(xjn|vjni∗ = 1, ...) = N (xjn|µ0, σ
−1
0 + γ−1 + δ−1),

and marginalise over µia to get

(6.21)p(yjn|vjni∗ = 1, ...) = N (yjn|ψ0, ρ
−1 + ρ−1

0 ).

6.4.2 Updating instantiated variables

The following expressions are used to update the instantiated mixture component parameters
in the model during Gibbs sampling.

1. Updating global cluster’s RT ti: here, tjk∈i refers only to local RT clusters currently
assigned to the global cluster i, and ci is the count of such peaks. Then

(6.22)p(ti|...) ∝ p(ti|µ0, σ
−1
0 )

J∏
j

K∏
k

p(tjk∈i|ti, δ) = N (µi, γ
−1
i ),

where µi = 1
γi

[
µ0σ0 + δ

∑
j

∑
k tjk∈i

]
and γi = σ0 + δci.
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2. Updating local cluster’s RT tjk: here, xjn∈k refers only to peaks currently assigned to
the local RT cluster k, and cjk is the count of such peaks.

(6.23)p(tjk|...) ∝ p(tjk|ti, δ−1)
J∏
j

N∏
n

p(xjn∈k|tjk, γ) = N (µk, γ
−1
k ),

where µk = 1
γk

[
tiδ + γ

∑
j

∑
n xjn∈k

]
and γk = δ + γcjk.

6.4.3 Using the Inference Results

Using the posterior samples from Gibbs sampling, we can compute various posterior sum-
maries and more interestingly, extract the alignment of peaks from the inference results
(since features assigned into the same mass cluster within the same global RT cluster are
considered to be aligned). For each sample, we record the aligned peaksets of peaks put into
the same mass cluster. Averaging over all samples provides a distribution over these aligned
peaksets. Note that across all the aligned peaksets from all samples, it is possible for the
same peak to be matched to different partners with varying probabilities, depending on how
often they co-occur together in the same mass cluster. To allow the possibility of control-
ling precision and recall from the results, we provide another user-defined threshold t, where
aligned peaksets are returned only when they occur with matching probability >t. In the
same manner as the Cluster-Cluster method in the previous chapter, varying this threshold
allows the user to use HDP-Align to trade precision for recall: a low value for t gives a larger
set of results that are potentially less precise, while conversely a high t provides a smaller,
more precise set of aligned peaksets. This is an output not available from the other baseline
alignment methods and can potentially be useful in problem domains where high precision
is required from the alignment results.

6.4.4 Isotopic Product and Metabolite Identity Annotations

As described in Section 2.3.6, in metabolomics studies using electrospray ionisation, a sin-
gle metabolite can generate multiple ionisation products peaks, (such as isotopic variants,
adducts, fragment peaks), alongside other peaks resulting from noise and artifacts introduced
during mass spectrometry [75]. Determining and annotating these IP peaks are desirable to
remove extraneous peaks and reduce the burden of subsequent analysis in the data process-
ing pipeline. Additionally, deducing the precursor mass of the compound that generates the
IP peaks is necessary to query compound library databases in order to assign metabolite
identities.
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The resulting clustering objects inferred from HDP-Align lend themselves to further analysis
in a natural fashion, as global RT clusters in HDP-Align may correspond to metabolites,
while local RT clusters may correspond to the noisy realisations of these metabolites within
each run. Mass clusters in the internal mixture of each global cluster could correspond to the
ionisation products of a metabolite. To demonstrate the possibility of obtaining additional
information beyond alignment from the output of HDP-Align, we follow the workflow in
[75] that performs IPs and metabolite annotations of peaks. This workflow is composed
of multiple key steps: peak matching, ionisation product clustering and metabolite mass
matching. A key difference of HDP-Align to the workflow in [75] lies in the fact that HDP-
Align is able to perform the two separate steps of peak alignment and potential IP clustering
simultaneously, as shown in Figure 6.3.

Given the set of potential IP clusters, we can perform IP annotations on the peaks. To do
this using the metabolomic dataset, first we take the set of clustering objects produced in
a posterior sample. For each mass cluster, we assign its m/z value to be the average m/z
values of features assigned to it, denoted by m. The list of common adducts (Table 4.3)
in positive ionisation mode is used to compute the inverse transformation for the precursor
mass that generates the observed mass. Following [75], any two mass clusters sharing the
same precursor mass (within tolerance) provide a vote on the presence of that consensus
precursor mass. The mass clusters and peaks inside them can be annotated with the adduct
type that produces the transformation type to the shared precursor mass. The set of precursor
masses deduced in this manner can also be used to query KEGG (a database of metabolite
compounds) in order to assign metabolite identities to the global compound. Note the dif-
ference from the PrecursorCluster method in the previous chapter. In PrecursorCluster, the
list of possible IP transformation rules are specified in advance as a prior information that
guides the clustering process, while in HDP-Align, we take the resulting clustering objects
and attempt to match them to the list of transformations.

6.5 Evaluation Study

6.5.1 Evaluation Datasets

The performance of the proposed methods and other benchmark methods is evaluated on the
LC-MS datasets for the proteomic, glycomic and metabolomic experiments first introduced
in Section 4.4. Unlike the PrecusorCluster model in Chapter 5 that requires a list of transfor-
mation rules, defined to be specific for metabolomics in in Chapter 5, the HDP-Align model
is more flexible as it does not require such rules to group related peaks within and across
runs.
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Figure 6.3: Comparisons on the workflow to assign putative annotations on isotopic products
and metabolites described in Lee. et al. (2013) [75] and in HDP-Align.

As before, all 6 fractions from the P1 Proteomic dataset in [74] are used. Each fraction con-
tains 2 runs of features having high RT variations across runs are used in our experiments.
From Section 4.4.3, we use the first 10 runs of the Glycomic dataset provided by [130] for
our multiple-runs experiment. Additionally, the Standard metabolomic dataset, first intro-
duced in Section 4.4.2, is also used. Here, we selected the first 6 out of the 11 runs for our
experiment and applied an intensity threshold of 5E4 to reduce the number of features. Ta-
ble 6.1 summarises the different evaluation datasets and the number of features each dataset
has.

Dataset No. runs Total Features
P1 Frac 000 2 10606
P1 Frac 020 2 2135
P1 Frac 040 2 2188
P1 Frac 060 2 3342
P1 Frac 080 2 2086
P1 Frac 100 2 1326
Glycomic 10 9344

Metabolomic 6 7477

Table 6.1: Total number of runs and features of the selected evaluation datasets.
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6.5.2 Baseline Methods for Evaluation

Alignment performance is evaluated following the definition of precision and recall in Sec-
tion 5.4.2. To summarise, every alignment method return a list of aligned peaksets. Each
aligned peakset can be broken into all the possible l-size combinations of peaks in the peak-
set, with each combination constituting an alignment item. From a method we obtain the set
of alignment items, M , while from the ground truth, we obtain the set of alignment items G.
True Positives (TP ) are items that should be matched (in G) and are actually matched (in
M ). False Positives (FP ) are items that should not be matched (not in G) but are matched
(in M ), while False Negatives (FN ) are items that should be matched (in G) but are not
matched (in M ). A method with a perfect alignment output would have both precision and
recall values of 1.0.

Following Chapter 4, we benchmark HDP-Align against two established alignment meth-
ods: SIMA [137] and MZmine2’s Join Aligner [96]. The selection of SIMA and Join as
the baseline methods is motivated by the fact that both methods are direct matching meth-
ods (thus easily comparable to HDP-Align) that work on generally any LC-MS-based omics
data. They also sufficiently differ in how they establish the final alignment results, in par-
ticular when it comes to the alignment of multiple runs. This is primarily due to the differ-
ences between both methods in the form of the distance/similarity function between peaks,
the actual matching algorithm itself and the merging order of pairwise results to construct
the full alignment results. The two most important parameters to configure in the baseline
methods are the mass and RT tolerance parameters, used for thresholding and computing
feature similarities during matching. We label these common parameters as the T(m/z) and
Trt parameters. Note that despite the common label, each method may use the parameter
values differently during the alignment process. In our experiments, we let T(m/z) and Trt
vary within reasonable ranges (details in Section 6.5.3) and report all performance values
generated by each combination of the two parameters.

6.5.3 Parameter Optimisations

HDP-Align is a complex model, with many model hyperparameters that can be tuned for
optimal performance. For HDP-Align (Table 6.2), we perform the experiments based on our
initial choices on the appropriate parameter values. These are almost certainly less than opti-
mal and can be optimised further. Nevertheless we found that the most important parameters
can be set based on empirical knowledge of mass spectrometry, while others can be left at
their default. The most important hyper-parameters are

√
ρ−1 set to the equivalent value in

parts-per-million (ppm), which is the standard deviation when separating ionisation product
peaks in the same global cluster into mass clusters, and

√
δ−1, which is the standard devia-
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tion when assigning local to global clusters. These two values can be seen as equivalent to
the tolerances when matching peaks across runs based on their m/z and RT values, and can
generally be estimated from the settings of the MS instruments. For the Proteomic dataset,√
ρ−1 is set to 500 ppm while for the Glycomic and Metabolomic datasets,

√
ρ−1 is set to

3 ppm. The local (within-run) cluster RT standard deviation
√
γ−1 is assumed to be fairly

constant and set to 2 seconds for all datasets, while the global cluster standard deviation√
δ−1 is set in the following dataset-specific manner: 50 seconds for the Proteomic dataset

and 20 seconds for the remaining datasets. The larger tolerance values are required for the
Proteomic dataset to accommodate for greater m/z error and RT drifts across runs.

Other hyperparameters in HDP-Align are fixed to the following values and we expect that
they can be left mostly unchanged on different datasets: α′ = 10, αt = 10, αm = 100. The
values of the precision hyperparameters for global cluster RT (σ0) and mass cluster (ρ0) are
set to a broad value of 1/5E6. No significant changes were found to the results when these
hyperparameters for the DP concentrations and cluster precisions were varied. The mean
hyperparameters µ0 and ψ0 are set to the means of the RT and m/z values of the input data
respectively. During inference, 10000 posterior samples were obtained with the first 5000
used as burn-in, and taking every 10-th sample after burn-in for the posterior probabilities of
peaks to be matched.

Dataset HDP
P1 Frac 000

√
ρ−1 = 500 ppm,

√
γ−1 = 2 s,

√
δ−1 = 50 s

P1 Frac 020
P1 Frac 040
P1 Frac 060
P1 Frac 080
P1 Frac 100
Glycomic

√
ρ−1 = 3 ppm,

√
γ−1 = 2 s,

√
δ−1 = 20 s

Metabolomic
√
ρ−1 = 3 ppm,

√
γ−1 = 2 s,

√
δ−1 = 20 s

Table 6.2: Parameters used for HDP-Align

For SIMA and Join, we report the results from all combinations of the mass and RT tolerance
parameters within reasonable ranges listed in Table 6.3. This follows from the range of
parameters selected for evaluation experiments in the previous Chapter 4. The ranges of
T(m/z) and Trt parameters used are based values reported on [74] for the Proteomic dataset
and [130] for the Glycomic dataset. For the Metabolomic dataset, they were chosen in light
of the mass accuracy and RT deviations of the data.
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Dataset Benchmark (SIMA, Join)
P1 Frac 000

T(m/z) = {1.0, 1.1, ..., 2.0}, T rt = {10, 20, ..., 180} s

P1 Frac 020
P1 Frac 040
P1 Frac 060
P1 Frac 080
P1 Frac 100
Glycomic T(m/z) = {0.05, 0.1, 0.25},T rt = {5, 10, ..., 120} s

Metabolomic T(m/z) = {0.001, 0.01, 0.1}, T rt = {5, 10, ..., 120} s

Table 6.3: Parameters used for the benchmark methods (SIMA, Join).

6.6 Results and Discussions

The performance of the evaluated methods methods on the different datasets are presented
in Sections 6.6.1 and 6.6.2. Additionally, an example of the further annotations for the
putative adduct type and metabolite identity that can be produced by HDP-Align is also
shown in Section 6.6.2.

6.6.1 Proteomic (P1) Results

Figure 6.4 shows the results from performance evaluation on the Proteomic (P1) dataset. We
see that both benchmark methods (SIMA and Join) produce a wide range of performance
depending on the parameter values for (T(m/z), Trt) chosen. Sensitivity to parameter values
is expected on this dataset due to the low mass accuracy in the MS instrument that produces
the data and the high RT drifts present across runs (further details in [74]). HDP-Align
performs well on several fractions (particularly fractions 040, 060, 080, 100) with precision-
recall performance close to the optimal performance attainable by the benchmark methods.
On all fractions, HDP-Align is also able to produce higher-precision results compared to
the benchmark methods by reducing recall through setting the appropriate values for the
threshold t. The primary benefits of quantifying alignment uncertainties is realised here as
the well-calibrated probability scores on the matching confidence of aligned peaks produced
by HDP-Align allows the user to choose which point along the PR curve to operate on. It
is less obvious how this can be accomplished in the benchmark methods by varying the RT
(Trt) and m/z (Tm/z) thresholding parameters, if at all possible.

The P1 datasets also represent the most challenging alignment scenario as they have the
largest RT drift and low mass accuracy in comparison the glycomic and metabolomic data.
We use the largest (P1 Fraction 000) and the smallest (P1 Fraction 100) from P1 to examine
how well our chain converges during Gibbs sampling.

Figure 6.5 (left) shows the traceplots of the number of global clusters from three randomly
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Figure 6.4: Precision-recall values on the different fractions of the Proteomic (P1) dataset.
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initialised MCMC chains when running HDP-Align on the largest P1 Fraction 000 dataset
containing 10606 features. From the jumps in the number of global clusters in the traceplots,
we see some evidence of bad mixing in the chains. This is explained by the fact that in our
sampler, we do not allow for the block reassignment of a group of peaks (that are together
placed in a local cluster) into a new global cluster. Consequently, a global cluster can only
be deleted when all its individual peaks have completely moved elsewhere. This leads to the
slow convergence and poor mixing of the model. An inspection of the distributions of global
clusters after burn-in from the three chains, shown in Figure 6.5 (right), also suggests that
the chains have not fully converged yet.
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Figure 6.5: Traceplots from three randomly initialised MCMC chains for the number of
global clusters across all posterior samples for the largest fraction (000) from the Proteomic
(P1) dataset.

Running HDP-Align on the P1 Fraction 000 data and collecting 10000 posterior samples
requires several days of walltime. The main factor affecting the running time of HDP-Align
is the total number of peaks across all runs to be processed and the number of samples pro-
duced during Gibbs sampling. In each iteration of Gibbs sampling, HDP-Align removes a
peak from the model, updates parameters of the model conditioned on every other parame-
ters, and reassigns a peak into RT and mass clusters. In practice, additional time will also be
spent on various necessary book-keeping operations, such as deleting empty local and global
clusters that are no longer required, updating internal data structures, etc.

We see from the results here that by reducing recall, it is possible to extract from HDP-
Align alignment results that have a higher precision than what the baseline methods can
achieve. However, care must be taken when using the HDP-Align model in actual analytical
situations as the reliability of MCMC inference on such a complex model can be difficult to
assess. As discussed in Section 6.5.3, the choices of user-defined model parameters play an
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important part in influencing the results. The most important are the Gaussian precisions of
the local RT clusters (γ), global RT clusters (δ) and mass clusters (ρ). It is important for these
parameters to be set sensibly based on expert knowledge on the settings of mass spectrometry
instruments that generate the data. A portion of the full dataset can be used at this point to test
the initial choices of parameters. Figure 6.4 also shows that some poor mixing behaviours
can be observed during inference, so during actual usages, further convergence diagnostics of
the model can be performed by inspecting the trace plots from running a very long MCMC
chain or from multiple parallel chains. All important variables of the model are already
exported to text format for further diagnostics, and an option is also provided to initialise the
sampler with the same user-defined random seed each time to facilitate debugging.

Inspecting the diagnostic plots Figure 6.6 for the smaller P1 Fraction 100 dataset, we observe
a better mixing behaviour. The traceplots that are less jumpy and the distributions of the
number of global clusters that are more consistent across the three chains. This may be due
to the smaller (1326) number of features in this dataset. On this dataset, HDP-Align took two
hours to process. This is a reasonable time a user can tolerate for a data analysis pipeline to
complete (although still significantly longer than the baseline methods that require seconds
to complete). Again from Figure 6.4, the results for this P1 Fraction 100 dataset show that
by trading off recall, we can obtain a higher precision than the baseline methods.
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Figure 6.6: Traceplots from three randomly initialised MCMC chains for the number of
global clusters across all posterior samples for the smallest fraction (100) from the Proteomic
(P1) dataset.
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6.6.2 Glycomic and Metabolomic Results

Figures 6.7 and 6.8 show the results from experiments on the Glycomic and Metabolomic
datasets. Similar to the Proteomic dataset, a range of precision-recall values can be observed
in the results for the benchmark methods on the two datasets. Consistent with our expecta-
tion, reducing the tolerance window on the retention time produces a smaller recall value,
however this does not necessarily result in a better alignment precision. The performance
of HDP-Align, using the same set of parameters on both datasets, come close to the optimal
results from the benchmark methods, while still allowing the user to control the desired point
along the precision-recall curve to operate on.

The results for the Glycomic dataset (Figure 6.7) also show some additional results on how
the measured precision-recall values might change depending on the strictness of what con-
stitutes an alignment item during performance evaluation. This is accomplished by gradually
increasing the value for l that determines the size of the feature combinations enumerated
from a method’s output. For example, l=2 considers all pairwise combinations of features
from the method’s output during performance evaluation, while l = 4 considers all combi-
nations of size 4, and so on. Figure 6.7 shows that as l is increased, parameter sensitivity
seems to become more of an issue for the benchmark methods, with more parameter sets
having lower precisions in the results. Across all ls evaluated, parameter pairs that produce
the best alignment performance (points with high precision and recall values) are generally
small T(m/z) and large Trt values. Examples of parameter pairs that produce the best and
worse performance for SIMA are shown in Figure 6.8. The results here appear to suggest
the importance of having high mass precision during matching. Importantly, we see from
Figure 6.7 that the performance of HDP-Align remains fairly consistent as l is increased.

The Metabolomic dataset also provides us with additional results in form of annotations of
putative adduct type and metabolite identities. A thorough evaluation on the quality of such
annotations, in comparison to e.g. the workflow proposed in [75], is beyond the scope of
this chapter and would likely necessitate using a different and more appropriate evaluation
dataset. Instead, we present an example of the further analysis performed by HDP-Align
(as proposed in Section 6.4.4) on the resulting clustering objects after inference. Figure 6.9
shows a global RT cluster where peaks across runs have been grouped by their RT and m/z
values. Within this global cluster, peaks are further separated into 6 mass clusters – corre-
sponding to ionisation products produced by the global cluster during mass spectrometry.
In Figure 6.9, mass cluster A and B contain features aligned from several runs but they do
not have any other mass cluster sharing a possible precursor mass. Mass cluster C and D
share a common precursor mass (292.12696) and can thus be annotated by the adduct type
that produce the transformation. Similarly, mass cluster E and F share a common precursor
mass at 383.14278. Queries to a local KEGG database are issued based on the precursor
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mass values, producing several compound identities that can be putatively assigned to the
global RT cluster. It is a strength of the HDP-Align approach that this putative identification
step appears very naturally from the alignment results.

Figure 6.7: Precision-recall values on the alignment of 10 runs from the Glycomic dataset
when q (the strictness of performance evaluation as described in Section 5.4.2) is gradually
increased.

6.7 Conclusion

In this chapter, we present HDP-Align, a hierarchical non-parametric Bayesian model that
simultaneously performs the within-run clustering and across-run clustering of peaks. As a
natural consequence of the clustering process, the direct matching of peaks can be extracted
from the model. In addition, the clustering objects from the model can also be used for fur-
ther analysis in the pipeline as they potentially correspond to the actual chemical compounds
that generate the generate. Similar to the two-stage clustering methods (Cluster-Cluster) in-
troduced in the previous chapter, the HDP-Align model is able to produce well-calibrated
probability scores on the matching confidence of aligned peaks (evidenced by the increas-
ing precision and decreasing recall as the threshold t is increased). This is accomplished by
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Figure 6.8: Precision-recall values on the alignment of 6 runs from the Metabolomic dataset.
The parameter values (Tm/z, Trt) that produce the best and worst performance in SIMA are
also annotated in the Figure (red boxes).
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Figure 6.9: Example analysis that can be performed on the clustering objects inferred in a
Gibbs sample from HDP-Align. The outer black oval denotes a global RT cluster (generally
corresponding to a metabolite compound), while the smaller dotted ovals within denote mass
clusters (labelled as mass cluster A,B,C,D,E, F ). peaks are denoted by the filled circle,
with the fill colour indicating the originating run of a peak. Green colours denote additional
analysis steps that can be performed on the mass cluster objects.
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casting the multiple alignment problem of LC-MS peaks as a hierarchical clustering prob-
lem. Matching confidence can be obtained based on the probabilities of co-eluting peaks to
be placed under the same mass component in the same global cluster. Experiments based
on datasets from real proteomic, glycomic and metabolomic experiments show that HDP-
Align is able to produce alignment results competitive to the benchmark direct-matching
alignment methods, with the added benefit of being able to provide a measure of confidence
in the alignment quality. This can be useful in real analytical situations, where neither the
optimal parameters nor the alignment ground truth is known to the user.

A primary weakness of HDP-Align lies in the long computational time required to produce
results. This is due to the slow mixing of the chains, as the consequence of our incremental
Gibbs sampling that samples one variable at a time. The split-and-merge MCMC algorithm
for the HDP proposed in [141] may help to improve sampling performance and is an avenue
for future work. The actual running time for the sampling can also be improved by taking the
lessons from the Cluster-Cluster approach introduced in the previous chapter, for instance it
may be possible to partition the data into subsets of peaks based on their retention time as
only peaks within a certain RT tolerance should ever be clustered and matched to each other.
The key insight of the HDP-Align model lies in the way related IP peaks are modelled as
within-file clusters in a single run but the model also allows these within-file clusters to be
generated by globally-shared clusters spanning multiple runs. The results presented in the
current chapter suggest the method shows enough promise to warrant the effort to speed it
up.

Additional sources of information present in the LC-MS data, such as chromatographic peak
shapes, can also be used to improve alignment performance and subsequent analyses that
follow. The mixture of mass components used in HDP-Align with a more appropriate
mass model, such as that in MetAssign [25] that specifically takes into account the inter-
dependency structure of peaks. Alternatively, it may be possible to build the transformation
rules employed by the PrecursorCluster model (from the previous chapter) into HDP-Align.
However, such modifications will introduce even more complexity to an already complex
model, requiring a more sophisticated inference scheme and perhaps an even longer running
time.

Through comparisons against benchmark methods, our studies have also investigated the ef-
fect of sub-optimal parameter choices on alignment performance. While beyond the scope of
our paper, we agree with [113, 116] that thorough investigations into the influence of numer-
ous configurable parameters (prevalent in nearly all LC-MS data processing pipeline) on the
resulting biological conclusions are of utmost importance. This should be followed by the
development of methods to minimise or automatically-tune such configurable parameters.
Despite the abundance of new methods proposed for LC-MS data pre-processing, relatively
few studies have been done on the subject of quantifying uncertainties and alleviating the bur-
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den of parameter optimisations during actual data analysis. One way to minimise the number
of parameters is through the integration of multiple steps in the typical LC-MS pipeline into
fewer steps. Our proposed model in HDP-Align can potentially be extended in this manner,
as evidenced by the metabolomic dataset results where we directly use the clustering objects
inferred from the model to perform further analysis on putative adduct and metabolite type
annotations. While the proposed annotation approach in Section 6.4.4 is fairly simple, it can
be easily extended to more sophisticated annotation strategies, such as in CAMERA [69].
This will be particularly useful when we aim to extend the proposed model in HDP-Align
into a single inferential model that encompasses many intermediate steps in a typical LC-MS
data processing pipeline.

Our experiments of taking the clustering objects from HDP-Align and using them to assign
metabolite identities to the clusters through matching to a compound database also shows the
potential of HDP-Align in assisting compound identification by allowing identifying labels
to be assigned to a group of matched peaks from several runs at once. Identification of
metabolites, particularly in large-scale untargeted experiments, is a challenging problem. In
the next chapter, we propose exploiting a different kind of structural information, present in
mass spectrometry fragmentation data, to aid identification.
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Chapter 7

Substructure Discovery in Tandem
Mass Spectrometry Data

7.1 Introduction

As the results from Chapter 5 shows, the ionization product (IP) types of many observed
peaks are often unknown and therefore the molecular mass of metabolites that generate these
peaks are also unknown. This makes identification difficult as mass is often a required in-
formation when querying metabolite identities against publicly-available databases, such as
KEGG [66] and PubChem [10]. In addition, while modern mass spectrometry instruments
can be highly accurate up to 3 parts-per-million (ppm), even a mass accuracy of 1 ppm is
not sufficient to reliably determine the elemental composition (formula) of a metabolite [65]
during database queries. The presence of isomers (metabolites having the same formula
and mass but are structurally different from each other) suggests that when relying on mass
alone, the same peak might be incorrectly matched to multiple isomeric metabolites. Reten-
tion time (RT) might help to distinguish certain isomers that have different elution profiles,
but RT drift, a main challenge in alignment, means observed RT values can vary across dif-
ferent chromatographic platforms and cannot be easily used as a characteristic information in
public databases during identification. Apart from the small number of metabolites present in
a standard solution that can be identified with a high degree of confidence (as they produce
measured peaks having reliably known m/z and RT values), information on the mass and
RT values alone are not enough to establish the identity of many metabolites in untargeted
studies.

Fragmentation spectra are the results of chaining two stages of mass spectrometry steps. In
data-dependent acquisition, a precursor or parent (MS1) peak is selected according to a cer-
tain criteria, frequently the top-N most intense peaks in a scan, for further fragmentation.
This produces for each fragmented parent peak a distinct pattern of fragment (MS2) peaks.
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Fragmentation patterns can be used to aid identification through the matching of a query
spectrum to a database of reference spectra. In recent years, a growing number of fragmen-
tation spectra databases have been made public, including METLIN [111], ChemSpider [93]
and MassBank [53]. However, mass spectral databases are not comprehensive and contain
only a small number of known metabolites. The large variance in submitted spectra fur-
ther limits potential matches as sensible results can only be obtained when matching spec-
tra generated from measurement platforms having similar characteristics (for e.g., produced
through the same ionization method under a similar mass accuracy). According to [24], ap-
proximately 2% of spectra in an untargeted metabolomics experiment can be matched and
subsequently identified – a small number in contrast of the vast collection of metabolites that
comprise the metabolic pathways of an organism.

Multiple metabolites can share the same chemical substructure. For example, carboxylic acid
(Figure 7.1) is a generic substructure shared by many amino acids and organic acids, such as
acetic acid (CH3COOH) that is commonly found in vinegar or butyric acid (CH3(CH2)2COOH)
that is present in butter. During fragmentation in positive ionization mode, the neutral car-
boxyl group (COOH) breaks from the parent ion, forming CO and H2O (the extra hydrogen
in H2O comes from the addition of a positively charged proton, H+, during ionization). From
this, we can expect to observe a characteristic neutral loss in the spectra of metabolites that
share carboxylic acid as a substructure. In a fragmentation spectrum, this will be represented
by a fragment peak that is 46 Da smaller than the mass of the parent peak. Thinking gen-
eratively, observing a neutral loss of 46 Da therefore provides a hint that a fragmentation
spectrum is generated from the measurement of a metabolite that contains carboxylic acid as
a substructure.

Figure 7.1: The carboxylic acid substructure. In the diagram, R refers to the residue, which
is the rest of the metabolite attached to this substructure.

As illustrated by the very simplified example above, the knowledge of the constituent sub-
structures that comprise a metabolite, particularly of the larger and more specific substruc-
tures, can be used to provide a hint as to the overall identity of the metabolite. Classification
method, such as Support Vector Machine, decision tree and neural networks [136, 55, 48, 31],
have been trained to learn spectral features that represent substructures and predict the pres-
ence or absence of substructures from fragmentation spectra. Combined with information
from the parent peak (such as the m/z, RT values and IP types if available), this provides ad-
ditional information that can aid in the identification of metabolites that cannot be resolved
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through the traditional method of spectral database matching alone.

A common shortcoming of these classification approaches higlighted before is the need of the
supervised training of the classifier (classification-based approaches may fail to generalise
well to new dataset produced from different analytical platforms). Based on the assump-
tion that fragmentation spectra contain fragment peaks that represent shared substructures
of metabolites, we propose a workflow that applies the Latent Dirichlet Allocation (LDA)
model to spectral fragmentation data. The proposed workflow produces the decomposition of
fragmentation spectra (equivalently a document in standard LDA) into the set of Mass2Motifs

(equivalently a topic in standard LDA). Here, a Mass2Motif is defined to be the recurring set
of fragment peaks and neutral losses that potentially correspond to a biochemically-relevant
substructure shared by many metabolites. Unlike the classification-based methods high-
lighted earlier, the decomposition of fragmentation spectra into Mass2Motifs is achieved in
an unsupervised manner. The MS2LDA workflow is introduced in Section 7.4.

7.2 Related Work

Clustering is commonly used for group fragmentation spectra that are similar to each other.
Clusters of spectra can be used for identification by forming a consensus spectrum and
matching it against spectral databases. Molecular networking clusters MS1 peaks by their
MS2 spectral similarity such that one identifiable metabolite in a cluster facilitates structural
annotation of its neighbors [147, 87, 133]. However, only MS2 spectra with high overall (e.g.
cosine) spectral similarity are grouped in Molecular Networking. Consequently Molecular
Networking may fail to group molecules that share small substructures. In particular, spectra
may be placed in different clusters if they share a small number of fragment peaks that re-
lated to a common substruture, but their overall global similarities are too different. Even for
spectra placed into the same cluster, often manual analysis (by eyes) is required to select the
characteristic fragment peaks that represent a potential substructure and are shared by mem-
bers of the clusters. Another package, MS2Analyzer [78] mines MS2 spectra given the prior
knowledge on the fragment patterns of interest to be specified in advance. While generic
features, such as CO or H2O losses, will be common to many experiments, sample-specific
features can be easily overlooked if they have not been specified a priori.

The assumption that spectral consist of building blocks that correspond to substructures is
alluded in certain works but not directly mined from the data. Prior knowledge on substruc-
tures have been used for the annotations of a small number of moelcules in fragmentation
data [122] and for metabolite classification in GC-MS [108, 55]. In CSI:FingerID [31], a
fragmentation tree is used to predict (using Support Vector Machine) the molecular ‘finger-
print’, computed through the implicit assumption that fragments share substructures, of an
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unknown compound. The resulting fingerprint is used to improve the matching of spectrum
of the unknown compound against a vast chemical database (PubChem). Implicit in these
methods are the assumption that recurring patterns of fragment peaks and neutral losses val-
ues explain the presence of common biological substructures (e.g. a hexose unit, or a CO
loss) shared by metabolites.

Latent Dirichlet Allocation has not been applied to metabolomics or mass spectrometry data,
but it has been applied to other fields of computational biology in e.g. genomics [18], metage-
nomics [149], and transcriptomics [100]. In [18], DNA sequence from genomics studies is
decomposed into recurring patterns of N-mers nucleotides. A topic in this context corre-
sponds to the set of N-mers (e.g. ‘ATGC’ as an instance of a 4-mers) that co-occur together
across the different genomic sequences of a species, and the objective of the study is char-
acterise the sets of N-mers that corresponds to conserved genes of the species. Similarly in
[149], a metagenomic read (essentially a DNA sequence) is decomposed into its topic dis-
tribution. The unsupervised decomposition of metagenomic reads into topic distributions is
used to improve the binning (clustering) of reads from the same species. In [100], a sam-
ple or gene from transcriptomics studies is decomposed into multiple processes in a manner
similar to how a document is decomposed into different topics in traditional LDA for text.

7.3 Statement of Original Work

The work discussed in this chapter, of which the author is a joint first author, has been
published in the Proceedings of the National Academy of Sciences [134]. Justin van der
Hooft (JvdH) performed the measurements of the Beer samples through mass spectrometry,
generating the set of fragmentation data that can be used for topic modelling. The author
contributed to the design and development of the MS2LDA workflow. This includes the de-
velopment and optimisation of the feature extraction process, the implementation and testing
of inference via LDA and also model validation against multinomial mixture model.

JvdH then analysed the results from MS2LDA for biochemical significance. Throughout the
analysis, the author and JvdH worked closely together. To assist JvdH in his analysis, the
author proposed and developed the visualisation module, MS2LDAVis. To improve the vi-
sualisation module, the author integrated elemental formula annotation functionalities. This
includes writing a wrapper in MS2LDA to call SIRIUS [9], a Java-based elemental formula
annotator. Cristina Mihailescu (CM), an Msc student, implemented another Python-based
elemental formula annotator, which was also customised and integrated into MS2LDA by
the author.

JvdH then performed molecular networking analysis on the same dataset, which was used
for comparison to MS2LDA results. The author performed the identification of metabo-
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lites through matching to reference standard compounds and also the differential analysis of
Mass2Motifs, and with JvdH validated the results.

7.4 A Workflow for Substructure Discoveries and An-

notations

Substructure discovery through the MS2LDA workflow consists of two stages: i) the data
conversion stage, which prepares the acquired fragmentation data into suitable input format
for the workflow, followed by ii) the Mass2Motif discovery stage, which performs topic
modelling via LDA to discover mass fragmental patterns, assigns potential candidate ele-
mental formulae to MS1 and MS2 peaks, and visualises the Mass2Motifs in an interactive
environment. The key insight of MS2LDA lies in emphasising the parallel between text and
mass spectrometry fragmentation data (Figure 7.2A-B). As a text analysis pipeline relying
on LDA to decompose documents into topics based on frequently co-occurring words, so
MS2LDA decomposes fragmentation spectra into their constituent building blocks of fre-
quently co-occurring fragments and neutral losses (referred to as Mass2Motifs). The com-
plete workflow is illustrated in Figure 7.2C.

Acquired fragmentation data cannot readily be used for the purpose of pattern searching
via LDA and has to be converted into a suitable format. As input, the MS2LDA workflow
accepts the combination of a single full-scan file for the MS1 peaks and a separate fragmen-
tation file for the MS2 peaks. The data conversion process starts with the detection of MS1
peak in the input .mzXML file obtained from full-scan mode spectra using the CentWave
algorithm from the XCMS library [112]. This constitutes information on the parent (MS1)
level. Fragmentation data, in the form of .mzML file obtained from tandem MS mode, are
processed using an R script based on the RMassBank package [120].

A linking step is required to match the most intense MS2 spectrum in a scan to a parent MS1
peak. Matching is performed via a greedy search within a specified retention time tolerance
window, selecting the top few most intense peaks for the matching. This simulates the gen-
erative process that produces the spectral data in data-dependant experiments. A filtering
step, based on RT and intensity, is applied to remove noisy peaks. Any MS1 peak not having
paired MS2 peaks is also discarded for further processing. The aim of the filtering step is
to exclude identical fragmentation spectra produced by low-intensity MS1 peaks that were
fragmented multiple times, potentially forming spurious and uninformative Mass2Motifs on
their own.

Following the bag-of-words assumption, LDA does not consider word orders but instead take
into account only the number of times word co-occur in a document. The next step is trans-
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A. Classical LDA for Text

Filed the day after the FCC issued its landmark Open 
Internet Order, the lawsuit challenges the FCC's 
power to classify internet providers as common 
carriers under Title II. "These rules will undermine 
future investment by large and small broadband 
providers, to the detriment of consumers," The 
National Cable and Telecommunications 
Association argued in a brief in support of the 
lawsuit. "[The order] willfully ignores the hundreds of 
billions of dollars invested in reliance on the prior 
policy."

Business topic
Internet topic Sony’s smartphone business is in dire need of a 

reboot — something to jumpstart the company’s 
mobile ambitions after years of being ignored by US 
carriers. Competitors like Samsung and Huawei are 
producing the very best devices they’ve ever made 
while Sony has been dealing with having its phone 
outright cancelled. The refrain is getting tired, and 
success still eludes, which brings us to the Xperia X. 
This is Sony’s latest try at that resurgence, this time 
marked by the company taking its US ventures a 
little more seriously, launching both here and in 
Europe simultaneously.

Business topic
Mobile topic

Document 1 Document 2

B. MS2LDA for Fragmentation Spectra
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C. MS2LDA Workflow
i. Data Conversion

4. LDA Inference 5. Candidate Elemental 
Formula Assignment 6. MS2LDAVis Visualisation

ii. Mass2Motif Discovery

Spectra contains

Document contains

Figure 7.2: A. LDA applied to text decomposes a document into its topic distributions (e.g.
football, business and enrivonment topics). B. Similarly, MS2LDA decomposes a fragmen-
tation spectrum into its topics (Mass2Motifs) that can be characterised as asparagine, hexose
and adenine related. Each fragmentation spectra comprise of one or more Mass2Motifs. C.
Schematic overview of the MS2LDA workflow.



7.4. A Workflow for Substructure Discoveries and Annotations 134

forming spectral data into a bag-of-word count matrix (illustrated in Figure 7.3), with entries
in the matrix the co-occurrences of discrete MS2 features (‘words’) in the fragmentation
spectra linked to a parent MS1 peak (‘document’). From each fragmentation spectra, two
types of features can be extracted: fragment features and loss features. Fragment features
are the discretised m/z values of MS2 peaks, while loss features are formed by discretising
neutral losses. A neutral loss, defined as the mass differences between a precursor MS1 peak
and each of the child MS2 peaks in the spectrum, corresponds to the removal of a specific
neutral fragment from the molecular ion.
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S2
 fe
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Figure 7.3: The matrix of co-occurrences of fragment and loss features (rows) in each frag-
mentation spectrum linked to a parent MS1 peak (columns). Entries of the matrix are the
counts of the feature from the normalised (0 - 100 scale) intensities.

Discretisation is performed via a greedy binning process. To group continuous m/z values
and create fragment features, a priority queue is used that efficiently maintains the ordering
of m/z values of peaks upon insertion. Successive items are popped from the priority queue
in ascending order, forming a group of contiguous features — until the next encountered
item has an m/z value larger by a predefined tolerance in parts-per-million from the average
values of the group, in which case a new group is created. The average m/z values of a group,
rounded to 5 decimal places, becomes the discrete representation of fragment peaks in their
originating spectra. The count of a fragment feature in a spectrum is computed by dividing
the MS2 peak’s intensity value to the largest intensity in the spectrum and multiplying by an
scaling factor of 100 (equivalent to the discretisation resolution). In this manner, MS2 peaks
with larger intensity values are represented more often in the spectra. Neutral loss features
are discretised and computed in a manner similar to fragment features. The resulting matrices
for fragment and loss features are concatenated and used as input to LDA.

In the context of fragmentation data, the standard LDA model as applied to substructure
discovery is described next. The observation on the n-th fragment or loss feature in the d-
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th fragmentation spectra (wdn) is conditioned on the assignment of feature wdn to the k-th
Mass2Motif multinomial distribution. This corresponds to the topic distribution over words
in the original LDA model. This assignment is denoted by the indicator variable zdn, so
zdn = k if feature wdn is assigned to a k-th Mass2Motif. The k-th multinomial distribution
that a feature is assigned to is characterised by the parameter vector φzdn , with φzdn drawn
from a prior Dirichlet distribution with a symmetric parameter β.

wdn|φzdn ∼Multinomial(φzdn) (7.1)

φk|β ∼ Dir(β) (7.2)

The probability of seeing certain Mass2Motifs for each d-th fragmentation spectra is drawn
from a multinomial distribution with a parameter vector θd, corresponding to the topic de-
composition of a document in the original LDA model. This parameter vector θd is in turn
drawn from a prior Dirichlet distribution having a symmetric parameter α.

zdn|θd ∼Multinomial(θd) (7.3)

θd|α ∼ Dir(α) (7.4)

A collapsed Gibbs sampling scheme is implemented in Python for inference (details in Sec-
tion 3.5). The output from inference is a set of Mass2Motifs and assignments of Mass2Motifs
to each MS1 peak.

MS2LDAVis

Given its hypothesis-generating nature, the analysis of Mass2Motifs to characterise and
examine their correspondence to actual biochemical substructures is an iterative and ex-
ploratory process. This is made possible through the MS2LDAVis module, an interac-
tive web-based visualisation build upon the combination of Javascript and the D3.js library
(http://d3js.org). MS2LDAVis is extended from the topic modelling visualisation interface
LDAVis [109] used in the text domain, but our adaptation introduces fragmentation-specific
views that are not available in the original interface. Implementations of LDAVis are avail-
able in both the ‘R’ and Python programming languages. We opted to base MS2LDAVis
on the Python implementation of LDAVis as it allows for a cleaner integration with the rest
of the pipeline, which is also coded in Python. Additionally, MS2LDAVis has also been
integrated into a Web application available at http://www.ms2lda.org. This application is de-
veloped in Django (a Python-based Web framework) and is a work in progress that aims to
provide an accessible web interface for topic decompositions of fragmentation spectra and
annotations of the resulting Mass2Motifs. All these integrations, while still possible, will be
more difficult if we had based MS2LDAVis on the ‘R’ implementation of LDAVis. As such,

http://d3js.org
http://www.ms2lda.org
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the Python port of LDAVis provides a suitable starting point to develop our extensions.

A. Main MS2LDAvis screen

B. Pop-up Network Graph

Figure 7.4: Screenshot of MS2LDAVis. See text for explanations of the different panels.

Similar to the original LDAVis, the left panel of MS2LDAVis module shows a global view
of the model, whilst the right panel zooms into a specific Mass2Motif (see Figure 7.4A).
However, unlike LDAVis where topics are displayed on the left panel through multidimen-
sional scaling that projects topics to two dimensions, the two axes in MS2LDAVis panel are
the log-degree and the h-index of Mass2Motifs. The degree of a Mass2Motif as the number
of fragmentation spectra explained by the Mass2Motif at the user-defined threshold tθ on
the fragmentation-spectra-to-Mass2Motif distributions (θ). The h-index of a Mass2Motif is
defined in a similar manner to the conventional h-index for scientific publications of a re-
searcher. A Mass2Motif has an index of h if it has h fragment or loss features obtained after
setting a user-defined threshold tφ on the Mass2Motif-to-features distributions (φ), each of
which occur in the set of thresholded spectra at least h times. Intuitively, a Mass2Motif with
high degree but low h-index may potentially correspond to simple substructures that occur
in many fragmentation spectra, while a Mass2Motif with high h-index but low degree are
more unique and complex substructures shared by fewer MS2 spectra.

Selecting a Mass2Motif on the left panel of Figure 7.4A changes the specific information
displayed on the right panel. Fragmentation spectra that can be explained by the currently
selected Mass2Motif (above the threshold tθ) are plotted, and clicking the Previous MS1 and
Next MS1 buttons allows the flipping through consecutive spectra plots. Fragment and loss
features that can be explained by the selected Mass2Motif (above the threshold tφ) that also
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occur in the plotted spectra are highlighted in bold. Two barplots can be found on the bot-
tom right panel: the Mass2Motif Feature Frequencies displays the counts of each fragment
or loss features within the entire fragmentation spectra explained by the currently selected
Mass2Motif, while the Global Feature Frequencies displays the counts of the fragments or
loss features within the complete data set that can be explained by the currently selected
Mass2Motif.

To complement the main visualisation view, inference results can also be visualised in a
pop-up network graph (Figure 7.4B) by clicking the Show Graph button. In the network
view, Mass2Motifs and fragmentation spectra, represented by their parent MS1 peaks in the
graph, form the nodes in the graph, and edges are drawn between the nodes if a spectra can
be explained by a Mass2Motif above the threshold tθ. To minimise clutter in the graph, a
slider is provided to filter nodes based on their degree values. Nodes in the graph can also
be annotated and coloured according to user specifications before the visualisation interface
is called. The two complementary views are linked such that clicking a Mass2Motif node on
the network graph will select the corresponding Mass2Motif on the main view and vice versa.
The network graph is particularly useful in exploring the relationships between Mass2Motifs
and investigating which spectra can be explained by multiple Mass2Motifs.

To aid data interpretation, putative elemental formulae is displayed on the plots of fragmen-
tation spectra explained by a certain Mass2Motif (top-right panel, Figure 7.4). Two methods
are integrated within MS2LDA to assign candidate elemental formulae. SIRIUS [9] employs
a dynamic programming approach, termed ‘Round Robin’ [8], to solve elemental formula
assignment as an integer decomposition problem. SIRIUS is freely-available and, as it is
written in Java, can in theory be run platform-independently on any Windows, Unix and
Mac environment (in practice, library dependencies have to be satisfied before SIRIUS can
run). Integration of SIRIUS into the MS2LDA workflow is achieved by wrapping calls to
the Java classes of SIRIUS through a separate sub-process, passing it a temporary MGF file
that corresponds to a fragmentation tree. SIRIUS assigns elemental formulae to each frag-
mentation tree independently, which may lead to mass fragments of similar m/z value being
assigned an elemental formula in some spectra, but not in all.

As an alternative to elemental formula annotation via SIRIUS, CM developed EF-Assigner,
a pure Python implementation of an elemental formula assigner based on the Round Robin
algorithm on which SIRIUS is based on. In EF-Assigner, candidate formulae are filtered
using an implementation of the 7-golden rules, a set of heuristic rules introduced in [65] to
remove chemically-unlikely elemental formula compositions from the candidate list. The
advantages of EF-Assigner are its easy integration with the rest of the workflow (it is also
written in Python) and it can assign elemental formulae to an entire group of MS2 peaks as
represented by their discrete fragment and loss features at once. Unlike SIRIUS that uses the
complete information of the precursor ion and fragments peaks in a spectrum for annotation,
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EF-Assigner assigns the elemental formulae for the MS1 peaks and MS2 fragment and loss
features independently. The author included EF-Assigner in the MS2LDA workflow, passing
it the necessary MS1 peaks and MS2 fragment and loss features for annotation. EF-Assigner
is also modified to limit the maximum atom occurrences of certain elements in a candidate
formula. For a greater annotation coverage, a second stage process is implemented. After an
initial pass of EF-Assigner using a list of common chemical elements of CHNOPS, unanno-
tated MS1 peaks and MS2 features are then re-annotated using an expanded list of possible
elements that includes less common elements, such as the C-13 isotope of Carbon, Fluorine
and Chlorine.

7.5 Evaluation Study

7.5.1 Evaluation Dataset

To evaluate MS2LDA, four beer samples representative of complex mixtures of diverse bio-
chemically relevant compound classes (such as amino acids, nucleotides, and sugars) typi-
cal in metabolomics studies are used. The beer extracts, acquired from one home-brewed
beer and three different commercially available beers, are shown in Table 7.1. One of the
beer samples (Beer3) is also used for the evaluation of the alignment methods in Chap-
ter 4. Approximately 10 ml of beer was sampled from each bottle directly after opening. As
well as the four individual extracts, a pooled aliquot of the four beer extracts was prepared.
A Thermo Scientific Ultimate 3000 RSLCnano liquid chromatography system, coupled to
a Thermo Scientific Q-Exactive Orbitrap mass spectrometer comprise the overall LC-MS
setup.

Following mass spectrometry, blank runs, quality control samples, and 3 standard mixes
containing 150 reference compounds were run to assess the quality of the mass spectrometer
and aid in metabolite annotation and identification [22]. The pooled sample was run prior to
and across the batch to monitor the stability and quality of the LC-MS runs. Beer samples
were run in a randomized order. Immediately after acquisition, all RAW files containing
information stored in a proprietary vendor-dependant format were converted into the open
mzXML format. Mass spectra are centroided and separated into positive and negative ion-
ization modes using the command line version of MSconvert (ProteoWizard). Fragmentation
files were also converted into .mzML formats using the GUI version of MSconvert. Accurate
masses of standards were obtained well within 3 ppm accuracy and intensities of the quality
control samples (a beer extract and a serum extract) were as expected.
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Label Source
Beer1 A home-brewed bottle of German Wheat Beer.
Beer2 A bottle of ‘Jaw Glyde Ale brewed by JAW Brew.
Beer3 A bottle of ‘Seven Giraffes Extraordinary Ale brewed by William Bros. Brewery Company.
Beer4 A bottle of ‘Black Sheep Ale brewed by Black Sheep Brewery.

Table 7.1: A list of the Beer samples used for evaluation.

7.5.2 Model Comparison

We performed model selection via a 4-folds cross validation approach on one of the data file
(Beer3 positive ionization mode). This data file contains 1422 fragmentation spectra (i.e.
documents) over 4496 fragment or loss features (i.e. words). During MCMC inference via
Gibbs sampling, the log likelihood of the model is monitored to ensure that convergence has
been achieved. For each test fold being held out in the Beer3 data file, an estimate of the
model evidence is also computed after training the model on the remaining training folds in
the file. The number of Mass2Motifs was also selected in this manner from cross-validation.

A crucial difference between LDA and the multinomial mixture-model (clustering) lies in
the modelling assumption that a document is a mixture of one or more topics (LDA) as op-
posed to each document having exactly one topic (clustering). To validate one of our key
assumptions of Mass2Motifs represent biological building blocks (i.e. fragmentation spec-
trum contains more than one Mass2Motifs), we compared the LDA model to a multinomial
mixture model that can also be used for the clustering of fragmentation spectra. A com-
parison of LDA to a multinomial mixture model was performed by the author to assess and
validate model fit, evaluated based on perplexity on the held-out data. Perplexity measures
how well a probability distribution or probability model predicts a sample. First we define
some notations. Letwd denotes the d-th spectra, comprised of the entire set of fragment and
loss features in that spectra. During cross-validation, spectra are divided into training and
testing folds. We denote the set of spectra in the testing fold as W t = {w1,w2, ...,wd}.
The perplexity ofW t is given by:

perplexity(W t) = exp

(∑
d log(P (wd)∑

dNd

)
Here, P (wd) is the marginal probability of a testing spectra wd after integrating over all the
parameters of the model. This is approximated via an importance sampling method in [139].
Nd is the number of features in each testing spectrawd. Following [44], the hyper-parameters
were set to α = K/50 and β = 0.1 during cross-validation. For mixture model clustering, a
non-informative Dirichlet prior (α = K/50, where K is now the number of clusters) is set
on the proportions of the mixture components and another Dirichlet prior (β = 0.1) is set
on cluster-specific word distributions. The Gibbs sampler for LDA and multinomial mixture
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model is run for 1000 samples, discarding the first 500 for burn-in. The last sample is used
computing the posterior estimates. Minimal differences were found when the inferred model
parameters were averaged over samples in comparison to simply using the last sample.

7.5.3 Biochemical Analysis

JvdH performed analyses on each of the beer samples described in Section 7.5.1. Each
beer sample was processed independently of the others through MS2LDA. The aim of the
analysis was to structurally characterized and annotate any chemically-relevant Mass2Motifs
that potentially correspond to actual substructures shared by metabolites.

Validation to Reference Standard Molecules

Mixtures of known standard molecules were run along the beer extracts. On the beer data,
the resulting accurate of these standards molecules were within 3 ppm accuracy, making
their identification possible. As the identity of these molecules is known, we can use them to
validate our structurally annotated Mass2Motifs. Given the database of exact mass and RT
values of the standard molecules, a simple greedy matching scheme is used to establish the
identity of MS1 parent peaks in MS2LDA. For each database entry of a standard molecule,
we loop over all MS1 peaks in MS2LDA finding peaks that match the accurate mass of the
standard molecule within the mass tolerance of 3 ppm and RT tolerance of 5 seconds. If
there are multiple candidate MS1 peaks, the peak nearest in mass to the database accurate
mass is selected. As these identified MS1 peak have linked spectra that are explained by
characterised Mass2Motifs, this allows JvdH to validate the consistency of characterised
Mass2Motifs against the identification information of reference standard molecules.

Comparison to Spectral Clustering

Molecular Networking [147, 87, 133] analysis can be used to compare inferred Mass2Motifs
from MS2LDA against the clusters produced through the cosine clustering of fragmentation
spectra. Spectral clustering (molecular networking analysis) of the four Beer samples was
performed by JvdH using the Global Natural Products Social (GNPS) environment. The
resulting fragmentation spectra for each Beer’s .mzXML file was clustered using the MS-
Cluster module with a precursor mass tolerance of 0.25 Da and a MS/MS fragment ion
tolerance of 0.005 Da. Clustered fragmentation spectra originating from different files are
merged to create the consensus spectra (consensus spectra containing less than 2 spectra were
discarded). A graph network is created where nodes are consensus spectra and edges are
drawn if the cosine similarities between nodes are above 0.55. For identification, spectra in
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the graph were searched against GNPS’ spectral libraries, with a cosine threshold of 0.6 and
having at least 4 matched fragment peaks. The resulting graph was exported into Cytoscape
and visualised using the FM3 graph layout. Comparison against MS2LDA results were
performed manually by JvdH. We also examined the data to find exemplar spectra that can
be used to highlight the differences between MS2LDA results and spectral clustering.

Differential Analysis of Mass2Motifs

By linking MS2LDA analysis with the fold changes of MS1 peaks, the differential expression
of Mass2Motifs can be assessed. This allows for the comparison of biochemical changes
across groups of samples based on which metabolites can be explained by a Mass2Motif.
As we hypothesise that more fragmentation spectra can be explainable by MassMotifs — in
comparison to the number of spectra that can be annotated or identified through conventional
matching to spectral library — the presence of shared substructures can reveal a shared
pattern of differential expression among the set of metabolites explained by a Mass2Motif.
This is possible even if these metabolites do not share a large degree of overall spectral
similarity, which is often a necessary prerequisite in the identification of groups metabolites
that share the same substructure.

The full-scan (MS1) LC-MS run for each Beer extract was processed using an in-house
metabolomics pipeline based on XCMS [112] and MzMatch [107]. A peak table, contain-
ing information on the MS1 peak intensities, was exported to .csv files and linked to the
parent MS1 peaks in MS2LDA through a greedy matching scheme that establishes the cor-
respondence of parent peaks in MS2LDA to the MS1 peaks in the exported peak table within
a specified m/z and RT tolerance values (3 ppm, 30 seconds). If there are multiple possi-
ble matches, the one with the nearest m/z difference is selected. Following this, for each
Mass2Motif, a matrix is constructed where each row is a linked MS1 peak that can be ex-
plained by that Mass2Motif and the columns are intensity values from the different case and
control groups. This matrix is used as input to our implementation of PLAGE [129]. PLAGE
is selected as it is evaluated to be the best method in [123], however this does not preclude
using any other methods surveyed in e.g. [123] from being applied to the differential analysis
of Mass2Motifs.

7.6 Results & Discussions

7.6.1 Model Comparison

Figure 7.5 shows the perplexity for the two models on one of the Beer extracts (Beer3) as a
function of K, the number of Mass2Motifs (for LDA) or clusters (for the mixture model). The
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mixture model is essentially equivalent to LDA with each spectrum being forced to consist
of only one Mass2Motif. As such, if LDA is indeed finding structural features as conserved
patterns of fragments and losses, it should explain the data with fewer Mass2Motifs than
the mixture model. This is because the mixture model has to create separate Mass2Motifs
for all observed combinations of structural features. The lower perplexity in Figure 7.5
demonstrates that LDA provides a better model fit on the held-out data compared to multino-
mial mixture model due to its lower perplexity. This validates our assumption that allowing
multiple conserved blocks to be present in small molecule fragmentation data is a better rep-
resentation of the biochemical properties of the fragmented molecules. The perplexity result
on the held-out data in Figure 7.5 suggests a reasonable value for K to be in the range of
200 to 400, at the elbow of the curve where increasing the number of topics does not result
in further decrease of perplexity.

Figure 7.5: Results of model comparisons of LDA and multinomial mixture model on the
Beer3 data. The lower perplexity values for K > 100 demonstrates that LDA provides a
better model fit on the held-out data when compared to the mixture model.

7.6.2 Biochemical Analysis

With K the number of Mass2Motifs set to 300 and other hyperparameters set to be the
same as in cross-validation, Mass2Motifs were extracted for each Beer data and charac-
terised by JvdH for biochemical relevance. As discussed in Section 7.4, the distributions
over the features that make up the Mass2motifs and the distributions over Mass2motifs for
each fragmentation spectrum can be thresholded in MS2LDAVis for results interpretation.
For analysis, the threshold values of 0.05 and 0.01 for tθ and tφ were set, but they can easily
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File Total MS1 peaks Linked to at least one structurally annotated M2M %
Beer1Pos 1282 951 74
Beer2Pos 1567 1160 74
Beer3Pos 1422 1055 74
Beer4Pos 1363 930 68

Table 7.2: Mass2Motif coverage of MS1 peaks by percentage of MS1 peaks that can be
explained by at least one structurally annotated Mass2Motif for the files acquired in positive
ionization mode.

be varied. The selection of these threshold values was based on JvdH’s expert knowledge to
allow for the extraction of a chemically-plausible set of features that comprise a Mass2Motif.

In the subsequent analysis that follows, Mass2Motifs with degrees 10 (i.e. that were present
in ten or more spectra after thresholding) were manually inspected and annotated at different
levels of confidence through integrating multiple supporting evidence such as the matching to
a database of known reference standard compounds and spectral matching of the MS2 spec-
tra containing the associated fragments and/or neutral losses to the reference spectra in Mz-
Cloud (www.mzcloud.org). Key fragment or loss features from the annotated Mass2Motifs
in one sample were then searched against the list of Mass2Motifs in other samples and their
correspondences established if those key fragment or loss features were present in both.

Across the four Beer data, an average of 70% of spectra (Table 7.2) include at least one an-
notated Mass2Motif, with Mass2Motifs related to the same substructure consistently found
across multiple beers (e.g. hexose-related Mass2Motifs were present in all positive ioniza-
tion mode files with degrees from 58 to more than 100), despite the fact that each sample
was processed through the workflow independently. Between 30 to 40 Mass2Motifs in each
of the Beer sample could be structurally annotated as corresponding to a diverse set of bio-
chemical substructures, including amino acid related (i.e. histidine, leucine, tryptophan,
and tyrosine), nucleotide related (i.e. adenine, cytosine, and xanthine), and other molecules
such as cinnamic acid, ferulic acid, ribose and N-acetylputrescine. In general, the more
Mass2Motifs present in a particular spectrum, the more specific our annotations can poten-
tially become. An exhaustive identification effort to characterise all spectra (metabolites)
present in the data was not attempted by JvdH, as it would be a major undertaking on its
own, however it is noted that annotating just 30 to 40 of the discovered Mass2Motifs pro-
vide some structural biochemical insights into 70% of the spectra. This suggests that a large
percentage of metabolites can be automatically classified according to function (based on
presence of functional groups or as a part of biological pathways).

As an example of the biochemical insights that can be obtained by an expert from MS2LDAVis,
Figure 7.6 shows three of the eleven spectra that include Mass2Motif 19, characterised as
corresponding to ferulic acid substructure. Ferulic acid is a compound found in the hard
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outer layer of grain (the bran) of cereals (an ingredient of beer) and is expected to be shared
by the metabolites in beer as a substructure. Across the three spectra, we see conserved
fragment and loss features shared by the spectra explained by Mass2Motif 19, with the most
conserved features highlighted in Figure 7.6D. Unlike MS2Analyzer [78] where the prior in-
formation on the fragment features of interest has to be specified in advance, the discovery of
conserved features in MS2LDA is performed in an unsupervised manner. In addition, JvdH
verified that the loss˙176.1086 feature in Figure 7.6B is an informative feature related to
the complete ferulic acid substructure. While this is easily observed from the visualisation,
information on conserved patterns of neutral loss will be difficult to extract from any other
tools apart from MS2LDA. The entire results in Figure 7.6 shows that through MS2LDA, we
can extract a biochemically relevant pattern present in just eleven of the entire set (>1000)
of spectra, although the individual spectra can be quite different.

In a comparison to metabolite identification via spectral library matching using the NIST
MS/MS database for small molecules (http://chemdata.nist.gov/mass-spc/msms-search/) and
MassBank [53], only one from the eleven spectra explained by Mass2Motif 19 returns a fer-
ulic acid related hit. This is despite the clear presence of fragment and loss features corre-
sponding to ferulic acid substructure across the eleven spectra. Similarly, the beer metabo-
lites explained by Mass2Motifs related to histidine, tyrosine, and tryptophan were subjected
to spectral matching. In the verification by JvdH, matches to reference spectra were found
for 33 spectra with 15 matches consistent with their characterised Mass2Motifs. These re-
sults demonstrate how MS2LDA effectively recognizes core substructures in mass spectral
data and can serve as an aid to the classification and annotation of metabolites. Critically, it
does this by matching only small portions of the spectra (substructures) rather than relying
on complete spectral matches. In summary, for this subset of four Mass2Motifs, spectral
matching allows classification of 45% of the associated metabolites whereas MS2LDA is
able to functionally annotate all of them. In addition, MS2LDA can annotate and group
spectra based on neutral losses (e.g. the loss of a free carboxylic acid group) which is not
possible via spectral matching.

Validation to Reference Standard Molecules

Of the 45 molecules we were able to identify as standard molecules in one or more of the beer
extracts, 38 can be explained by one or more annotated Mass2Motif, and 32 of the annotated
Mass2Motifs correspond to known biochemical features that are consistent with the standard
molecules. This demonstrates that characterised Mass2Motifs represent conserved patterns
of metabolites’ fragmentation spectra in authentic standard mixtures. Figure 7.7 shows some
examples for these fragmentation spectra coloured by characterised Mass2Motifs. The spec-
tra for phenylalanine (Figure 7.7A) and histidine (Figure 7.7B) share Mass2Motif 262, and
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A B

C D

Figure 7.6: Three spectra, from the beer3 positive ionization mode file, each of which in-
cludes Mass2Motif 19, annotated as the plant derived ferulic acid substructure. A-C high-
light mass fragments and neutral losses (arrows originating at the precursor ions) included
in Mass2Motif 19 (fragments not explained by Mass2Motif 19 are light grey). Ferulic acid
substructure is illustrated at the top of D, while the boxplot in D shows how common each
fragment or loss features (representative of the substructure) are found in the 11 spectra ex-
plained by Mass2Motif 19 found in the dataset. Features highlighted in bold are consistently
present in Mass2Motifs inferred across the four beer samples.

indeed feature loss 46.0054, which has been verified by JvdH as informative that a car-
boxylic acid group (CHOOH) is lost from the molecular ion during fragmentation, is a com-
mon characteristic of phenylalanine and histidine. Similarly, other Mass2Motifs (115, 241)
in Figures 7.7A and 7.7B are related to phenylalanine and histidine compounds. Finally,
Figure 7.7D is the MS2 spectrum of adenosine, which consists of an adenine molecule con-
jugated to a ribose sugar molecule. The two associated Mass2Motifs 156 and 220 correctly
represent the two biochemically relevant substructures (i.e., adenine substructure and a loss
corresponding to a ribose sugar).

Note that in our analysis on these standard molecules, the inferred Mass2Motifs were char-
acterised first without any prior knowledge on the identities of standard compounds, but we
still observe a high level of agreements between the identifications of standard compounds
and the independent characterisation of Mass2Motifs which explains identified spectra. This
suggests an alternative to the usual procedure where identification is performed first and the
common substructures, shared by the small set of identified compounds, are deduced. In
the complementary approach, characterised Mass2Motifs can be used as a starting point for
analysis. The large number of spectra that can be explained by Mass2Motifs are further ex-
amined and their putative identities deduced through collaborating multiple evidences, such
as substructure annotation, matching against standard database, MS2 spectral library, etc.
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Mass2Motif Annotation Degree Fragment or Loss Fea-
tures

Elemental For-
mula

115 [phenylalanine-
CHOOH]-based sub-
structure.

28 fragment 120.0808,
fragment 103.0546,
fragment 91.0541

C8H10N,
C8H7,
C7H7

156 [ribose (pentose, C5-
sugar)-H2O]-related
loss.

22 loss 132.0421 C5H8O4

202 [tryptophan-NH3]-related
substructure.

15 fragment 118.0654,
fragment 117.0571,
fragment 91.0541,
fragment 130.0645,
fragment 188.0706

C8H8N,
C8H7N,
C7H7,
C9H8N,
C11H10NO2

211 N-acetylputrescine sub-
structure.

24 loss 59.0370,
fragment 114.0912,
fragment 72.0447,
fragment 60.0448

C2H5NO,
C6H12NO,
C3H6NO,
C2H6NO

214 amine loss. 57 loss 17.0247 NH3
220 adenine substructure. 32 fragment 136.0629,

fragment 119.0351
C5H6N5,
C5H3N4

241 histidine substructure. 21 fragment 110.0718,
fragment 156.0769,
fragment 93.0450,
fragment 95.0608

C5H8N3,
C6H10N3O2,
C5H5N2,
C5H7N2

262 combined loss of H2O
and CO – indicative for
free carboxylic acid group
(COOH).

90 loss 46.0053 CH2O2

Table 7.3: Annotations of the Mass2Motifs associated to the fragmentation spectra of the
peaks generated by the standard molecules shown in Figure 7.7. The degree of a Mass2Motif
indicates the number of MS2 fragmentation spectra in Beer3 positive ionization mode data
having the fragment or loss features that can be explained by the Mass2Motif.
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A B

C D

Figure 7.7: Mass2Motif spectra of identified standard molecules A) L-histidine, B) L-
phenylalanine, C) L-tryptophan, and D) adenosine, with their characterized motifs (see Ta-
ble 7.3) indicated by colours.

Comparison to Spectral Clustering

Spectral clustering approaches (e.g. Molecular Networking) can also help in molecular anno-
tation by propagating identifications through the network. For example, if one spectrum can
be identified, it can be used to putatively annotate the spectrums neighbours in the network.
MS2LDA differs from this approach in three key ways. Firstly, MS2LDA does not require
any complete spectra to be identified (they can be putatively annotated from Mass2Motifs).
Secondly, MS2LDA does not require a high degree of total spectral similarity to allow spectra
to share annotations; it just relied on the presence of a shared Mass2Motif. Finally, because
spectra can include multiple Mass2Motifs, they can be given multiple annotations while in
spectral clustering, each spectrum can only belong to one cluster. A key characteristic of
MS2LDAis the ability to decompose MS2 spectra into multiple (potentially biochemically
relevant) components. For example, in each of Figures 7.7A to 7.7D, we observe the spectra
being decomposed into 2 or more Mass2Motifs. To our knowledge, no other methods can do
this in an unsupervised manner without training spectra consisting of known structures or a

priori knowledge of interesting combinations of fragment and/or loss features.

Similarly in MS2LDA, a fragmentation spectrum can now be described by one or more
Mass2Motifs. Figure 7.8 demonstrates this with an example of a subset of the network
produced by MS2LDAVis, consisting of spectra explained by two Mass2Motifs characterised
as ferulic acid and ethylphenol. All but one spectrum can be explained by just one of the
Mass2Motifs but one spectrum is generated by a molecule that contain both substructures
and can therefore be explained by both Mass2Motifs. In the Molecular Networking analysis
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by JvdH, this spectrum is placed into the ethylphenol cluster, but its relationship with ferulic
acid is lost. This results in a much less specific annotation of that spectrum. In contrast,
the knowledge on the presence of both Mass2Motifs in the spectrum allows JvdH to assign
it a putative compound identification of feruloyltyramine ([C18H20NO4]+) despite spectral
matching producing no relevant hits. In general, the more Mass2Motifs present in a particular
spectrum, the more specific our annotations can potentially become.

M2M_19

M2M_58

Parent ions

Mass2Motifs

Parent ion 
containing 

Mass2Motif 19

Parent ion 
containing 

Mass2Motifs 
19 and 58

Parent ion 
containing 

Mass2Motif 58

Annotated structural feature of 
M2M_19

Ferulic acid substructure

Annotated structural feature of 
M2M_58

Ethylphenol substructure

Parent ions

[C18H20NO4]
+

Combination of M2Ms 
leads to putative 

annotation of 
Feruloyltyramine 
(314.1386 m/z)

Figure 7.8: Mass2Motifs 19 and 58 were found to be representative of ferulic acid and
ethylphenol, respectively. 11 fragmentation spectra can be explained by M2M 19, while 42
spectra can be explained by M2M 58. However, one spectra (shown as a gray node in the
Figure) can be explained by both Mass2Motifs, but this is not possible in spectral clustering.

The same spectral clustering result is also reproduced in Figure 7.9 where a matrix of cosine
similarities of the spectra, placed in the ferulic acid based cluster and the ethylphenol based
cluster (from Molecular Networking). Two distinct groups of spectra, based on their cosine
similarities, can be seen — corresponding to each cluster. Members of each cluster can
also be explained by a single Mass2Motif (the ferulic acid cluster by M2M 19, and the
ethylphenol cluster by M2M 58). However, one spectrum (the last row in Figure 7.9) can also
be jointly explained by the two Mass2Motifs. In cosine clustering, this spectrum would have
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to go into one cluster or the other based on its cosine similarity and valuable information
is lost. Since a compound consists of multiple substructures, allowing each spectra to be
explained by multiple Mass2Motifs naturally results in a greater potential of producing a
more comprehensive characterisations of the substructures of a compound.

Similarities of 
spectra of parent 
ions just including 

M2M_19

Similarities of 
spectra of parent 
ions just including 

M2M_58

Similarities for 
spectrum of parent ion 

with M2M_19 and 
M2M_58

Figure 7.9: Cosine clustering results of spectra drawn from the ferulic acid based cluster and
the ethylphenol based cluster (similar to M2M 19 and M2M 58). The last row represents a
fragmentation spectrum that contains both substructures, but in the clustering approach, the
spectra will be placed into one of the clusters based on its cosine similarity. In LDA, this
spectrum can be explained by Mass2Motifs that characterise both substructures.

Differential Analysis of Mass2Motifs

We have shown that MS2LDA analysis can group molecules according to a shared Mass2Motif.
As spectra can include multiple Mass2Motifs, so molecules can belong to multiple functional
groups. In transcriptomic studies, it is common to consider the shared differential expres-
sion (DE) of a group of transcripts that are related through the sharing of the same Gene
Ontology classification. The equivalent case in metabolomics are metabolites that share the
same functional substructures and can potentially be mapped onto related pathways. The
presence of the same functional substructure across these metabolites naturally suggest that
their spectra can be described by the same Mass2Motif. If all metabolites sharing the same
substructure are differentially expressed across samples, hypothesis can be generated as to
the underlying biochemical significance causing the expression changes. From performing
differential analyses on the expressions (intensity values) of metabolites having spectra ex-
plained by the same Mass2Motif, it is therefore possible to assess the biochemical changes
of groups of metabolites across samples. Note that this does not depend on the small num-
ber of metabolites having spectra that can be identified through spectral matching, instead it
relies on the much larger sets of MS1 peaks having spectra that can be jointly explained by
a Mass2Motif.
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Using PLAGE [129], we assessed the DE of each Mass2Motif based on the intensity changes
of the relevant MS1 peaks between beers 2 and 3. Figure 7.10 shows MS1 intensities of
metabolites explained by two Mass2Motifs (characterised as guanine and pentose loss) with
high PLAGE scores. In each case, the change in intensity across the two beer extracts are
very clear (note that PLAGE considers changes in both directions when scoring). Within
the molecules having spectra explained by the guanine Mass2Motif, we could annotate 5-
guanine containing metabolites and identify 2 to through matching to reference standards
(Figure 7.10A). For the pentose Mass2Motif, we could annotate 8 and identify 5 pentose-
containing metabolites from the Mass2Motif (Figure 7.10B). These biochemically relevant
metabolites show interesting patterns in the DE between the two beers. As an example of
how MS2LDA differential analysis can support hypothesis generation for an expert, JvdH
noted that in Beer3, the free guanine is present more often, whereas in Beer2, the conjugates
of guanine are more abundant (Figure 7.10A). This reflects the differences in the chemical
components of the two beers. Similarly, as metabolites can include multiple Mass2Motifs,
JvdH observed that the four spectra (in Figures 7.10) annotated as guanine-related metabo-
lites (i.e., guanosine, two methyl-guanosine isomers, and a pentosyl-hexosylguanine) are
also connected to the pentose loss Mass2Motif, which itself was also differentially expressed
between the two beers. Indeed, the structures of those metabolites all share both a guanine
and a pentose substructure. A comparison made by JvdH to Molecular Networking results
revealed that in the standard spectral similarity approach, these spectra were distributed over
10 spectral clusters. In other words, the interesting structural and intensity similarity between
these molecules exposed by MS2LDA would not be found via spectral clustering.

Figure 7.10: Log fold change heat-maps for the A) guanine and B) pentose loss Mass2Motifs.
Each row is an annotated parent MS1 peak and columns represent different beer extracts.
Bold names for parent MS1 peaks could confidently be matched to reference compounds,
while italic names are for those that are annotated at a lower degree of confidence.
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7.7 Substructure Discoveries Across Many Fragmen-

tation Files

Metabolomics dataset consist of fragmentation spectra in multiple input files, where each
file is generated from measurements of a technical or biological replicate. Manual inspec-
tion of the results revealed that many Mass2Motifs, related to the same substructures, are
consistently present in two or more beers. This is despite each file being processed inde-
pendently through MS2LDA. For example, the hexose-related Mass2Motifs are present in
all positive ionization mode beer files with degrees from 58 - 100 in each beer. Other larger
Mass2Motifs, such as histidine, ferulic acid, etc., are also found across the beer files. The
results suggest that we can jointly model the presence or absence of Mass2Motifs across
many input files at once.

While our initial motivation for modelling Mass2Motifs across files is to eliminate the te-
dious matching of Mass2Motifs from one file to another, modelling the presence of Mass2-
Motifs across multiple files also opens interesting avenues for research. For instance, from
such a model, spectra from different files but explained by the same Mass2Motifs can be
rapidly flagged for validations to obtain their substructure characterisation. The posterior
probability of observing a Mass2Motif in each file can also be compared, providing an es-
timate as to the presence or absence of certain substructures in each file. This information
might be useful for further analysis. In [133], substructure analysis (through Molecular
Networking) is applied in a clinical setting to discover patterns of fragment peaks, which
correspond to substructures shared by drug metabolites. The results from [133] revealed that
substructure information help in the identification of many drug metabolites. As discussed
before, Molecular Networking groups related spectra by their cosine similarities, and the
manual validation to extract key fragment peaks that explain why certain spectra are grouped
together is time-consuming. This is a limitation not shared by our proposed model (that
jointly models Mass2Motifs across mutiple files) if we were to apply the model to this kind
of dataset.

7.7.1 Multi-file LDA Model

Here we introduce an extension of the standard LDA model that allows for Mass2Motifs,
the distributions over fragment and loss features, to be shared across files. Within each
file, fragmentation spectra have their own file-specific probabilities of observing certain
Mass2Motifs. When only a single input file is provided, the proposed extended model re-
duces to the standard LDA model. The conditional dependences of this model, which we
call the multi-file LDA model, is shown in Figure 7.11 and described below.
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Figure 7.11: Graphical model of the multi-file LDA model. The addition to the standard
LDA model is the plate on F that denotes an index over the files, f = 1, ..., F . Circles
denotes random variables, while the shaded node denotes the observed word value.

We follow the notations used for the standard LDA model in Section 7.4, but expand them
slightly to index the different files. wfdn refers to the n-th fragment or loss feature in the d-th
fragmentation spectra in file f . Each wfdn is assigned to the k-th Mass2Motif, a multinomial
distribution over the entire vocabulary of fragment and loss features, through the indicator
variable zfdn, so zfdn = k if feature n from fragmentation spectra d in file f is assigned to the
k-th Mass2Motif. The probability of seeing certain Mass2Motifs for each d-th fragmentation
spectra in file f is then drawn from a multinomial distribution with a parameter vector θfd .
This parameter vector θfd is in turn drawn from a prior Dirichlet distribution having the
parameter vector αf . Note that unlike the standard LDA model, each file now has its own
prior Dirichlet distribution parameterised by αf and all documents in the same file has their
document-to-topic distributions drawn from the same prior Dirichlet specific to the file.

zfdn|θfd ∼Multinomial(θfd) (7.5)

θfd |αf ∼ Dir(αf ) (7.6)

As in the case of standard LDA, the k-th multinomial distribution for a Mass2Motif is still
characterised by the parameter vector φzfdn , with φzfdn drawn from a prior Dirichlet distribu-
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tion that is global to all files, parameterised by the vector β.

wfdn|φzfdn ∼Multinomial(φzfdn
) (7.7)

φk|β ∼ Dir(β) (7.8)

Inference in the multi-file LDA model is again performed via a collapsed Gibbs sampling
scheme. The conditional probability of P (zfdn = k|wfdn, ...) of the assignment of feature n in
spectra d file f to Mass2Motif k is given by eq. (7.9).

P (zfdn = k|wfdn, ...) ∝ P (wfdn|zfdn = k, ...)P (zfdn = k|...) (7.9)

where ... denotes any other parameters being conditioned upon but not explicitly listed. Sim-
ilar to the derivation of standard LDA, we can marginalise over all φk parameters in the
likelihood term, P (wf

dn|zfdn = k, ...) of eq. (7.9), to obtain:

P (wfdn|zfdn = k, ...) ∝
∑

f c
f
kn + βn∑

n

∑
f c

f
kn + βn

(7.10)

where
∑

f c
f
kn is the total number of the n-th feature from all files currently assigned to

Mass2Motif k (this count excludes the current feature being sampled in the current iteration
of Gibbs sampler). For the prior term P (zfdn = k|...), marginalising over all θfd parameters
produces as in the standard LDA:

P (zfdn = k|...) ∝ cfdk + αfk (7.11)

with cfdk the number of features from document n in file f currently assigned to Mass2Motif
k, excluding the current feature being sampled. Putting the prior and likelihood terms to-
gether, the following predictive distribution is obtained for the assignment of feature n from
document d file f to Mass2Motif k:

P (zfdn = k|wfdn, ...) ∝ (cfdk + αfk) ·
∑

f c
f
kn + βn∑

n

∑
f c

f
kn + βn

(7.12)

In each iteration of the Gibbs sampling, the information on the current feature n in spectra d
file f being sampled is removed. Reassignment of the feature to a Mass2Motif is then per-
formed by sampling zfdn from the distribution specified by eq. (7.12). Given z, the predictive
distribution for the d-th spectrum over the Mass2Motifs, θfd , is obtained from the expectation
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of the Dirichlet-Multinomial distribution defined in eqs. (7.5)-(7.6):

θfdk =
cfdk + αfk∑
k c

f
dk + αfk

(7.13)

where cfdk is the count of features from spectra d in file f assigned to Mass2Motif k.

For each spectra, the multinomial count vector cfd , of features from the spectra that are as-
signed to the different Mass2Motifs, is a sample from the Dirichlet-Multinomial distribution
defined in eqs. (7.5)-(7.6). Given all the cf1 , c

f
2 , ...c

f
D vectors in the file, the parameter αf of

the Dirichlet-Multinomial distribution of spectra-to-Mass2Motifs in file f can be estimated
by maximizing the log likelihood, log

∏D
d=1 p(c

f
d |αf ). An iterative procedure to approximate

this is described in [85].

In a similar manner to standard LDA, each k-th Mass2Motif, the predictive distribution over
features, φk, can be obtained as the expectation of the Dirichlet-Multinomial distribution
defined in eqs. (7.7)-(7.8):

φkn =
ckn + βn∑
n ckn + βn

(7.14)

where ckn is the count of the n-feature from all files that are assigned to Mass2Motif k.

7.7.2 Results & Discussion

On the dataset of four Beer extracts in positive ionisation mode processed through multi-
file LDA using the same hyperparameters as the individual LDA. For data interpretation,
initially, the same threshold values on tθ and tφ were selected as the previous single-file
analysis (0.05 and 0.01 respectively). Table 7.4 shows the results of five global Mass2Motifs
that could be matched to the individual LDA results in Section 7.6.2. The results in Table 7.4
shows that multi-file LDA produces comparable results on the Mass2Motifs composition.
This is entirely expected given that the four Beer extracts used for evaluation share similar
metabolic profiles and correspondingly, have many substructures in common.

Information from all files now contribute to the inference of global Mass2Motifs. The
fact that global Mass2Motifs that are consistent with our previous characterisation in Sec-
tion 7.6.2 still emerge suggests the same underlying patterns of fragment and loss features
to be present in each Beer extract. Figure 7.12 shows four example fragmentation spec-
tra originating from different Beer extracts — jointly inferred by multi-file LDA as con-
taining the Mass2Motif characterised as the ferulic acid substructure. While this can be
achieved from independently running LDA on each file, the tedious matching process of
common Mass2Motifs across files can now be eliminated. Inspections on the degree (the
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Mass2Motif Annotation Top Features Above
Threshold

M2M 17 Ferulic acid substructure fragment 177.05478,
fragment 89.03865,
fragment 145.02844,
fragment 117.03319,
loss 58.98941,
fragment 163.03887,
fragment 149.05998,
loss 88.09967

M2M 155 Histidine substructure fragment 110.07161,
fragment 156.07687,
fragment 83.06041,
fragment 93.04511,
fragment 82.05246,
fragment 209.10558,
fragment 95.06057,
loss 167.08663,
fragment 81.04494,
loss 191.0615

M2M 115 Leucine substructure fragment 86.09653,
fragment 132.10165,
fragment 69.07013,
fragment 332.112,
fragment 143.11763

M2M 95 Water loss substructure loss 18.01031,
fragment 314.0859,
fragment 296.07259

M2M 232 Asparagine substructure fragment 136.06231,
loss 162.03459,
fragment 119.0354,
loss 162.00534,
fragment 137.04623

Table 7.4: Five global Mass2Motifs inferred from multi-file LDA. For each Mass2Motif, the
top features above threshold are listed. Features characterised as key to the substructure from
the previous individual LDA analyses are shown in bold.
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number of spectra associated to a Mass2Motif above the user-defined threshold tθ) of the
five Mass2Motifs in Table 7.4 revealed that with a minor adjustment to tθ, the same sets of
fragmentation spectra previously associated to the listed Mass2Motifs can all be recovered.

Ferulic acid substructure found in multiple Beer extracts

Beer1

Beer3

Beer2

Beer4

Figure 7.12: Fragmentation spectra from different Beer extracts found by multi-file LDA to
contain the same Mass2Motif 17 characterised as the ferulic acid substructure.

From each posterior sample, we can also obtain the updatedαf for the different Mass2Motif
across all files. As αf is the asymmetric parameter that serves as the pseudo-count in
the Dirichlet-Multinomial distribution of spectra-to-Mass2Motifs, a high value of αfk for
a particular k means that a specific Mass2Motif is more likely for each spectra in file f .
Figure 7.13 shows the plot of posterior alpha values for the Mass2Motifs characterised as
the ferulic acid, histidine and leucine substructures. Inspections of the comparisons in Fig-
ure 7.13 may lead to interesting biological hypothesis that explains e.g. why the ferulic acid
substructure is more likely for the spectra in the third beer file compared to the others.

7.8 Conclusion

We have introduced MS2LDA, a pipeline that simplifies fragmentation data by exploiting
the parallels between MS fragmentation data and text documents. The pipeline performs all
steps required in the analysis: the preparation of a co-occurrence matrix of fragment and loss
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A B C

Figure 7.13: Posterior alpha values for the A) ferulic acid, B) histidine and C) leucine
Mass2Motifs across the different beer files.

features in fragmentation spectra, the LDA analysis, and the graphical visualization of the
resulting output. Evaluation of the workflow on beer extracts result in numerous informa-
tive patterns of concurrent mass fragmental and neutral loss, termed Mass2Motifs, which we
could annotate as biochemically-relevant substructures. The MS2LDA approach is markedly
different from other advanced spectral analysis tools as multiple Mass2Motifs can be associ-
ated with one metabolite, and determination of the key mass fragments or neutral losses that
are part of a conserved structural motif is unsupervised. The application of LDA to mod-
elling the fragmentation spectra produced by mass spectrometry instrument is exhaustively
explored in this chapter. We have shown how spectra comprise of multiple substructures
which can be explained by characterised Mass2Motifs. Through comparison to Molecular
Networking, we demonstrated through examples how MS2LDA allows us to explain parts of
a spectrum, producing a better functional annotation in contrast to spectral clustering where
a spectrum can only be placed in one cluster. The differential analysis of parent ions having
fragments sharing Mass2Motifs introduces the possibility of assessing changes in the expres-
sion levels of metabolites — sharing substructures explained by a characterised Mass2Motif
— despite the identities of the metabolites unknown. This is particularly useful in the case
of untargeted metabolomics experiments.

As future work, we envision developing a larger library of characterised Mass2Motifs from
data sets produced on a diverse range of analytical platforms and different sample types. A
challenge to this approach lies in the fact that mass spectrometry instruments have varying
accuracy and therefore require different binning thresholds. One possible solution is define a
common space of chemical vocabulary; rather than using binned fragment and loss features;
a Mass2Motif can now be defined as the distribution over chemical formulae words. Such
an approach is hampered by the fact that de novo elemental formula assignment itself is a
difficult problem, with large uncertainties as to the correctness of annotated formulae of a
fragment or loss feature. A probabilistic model of formula annotation that can offers con-
fidence values on the formulae annotation of a fragment or loss feature might be useful in
this scenario as formula annotation uncertainties can then be incorporated into Mass2Motif
formation in MS2LDA. Non-parametric model such as the Hierarchical Dirichlet Process
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[126] can also be applied for topic discovery by letting the number of Mass2Motifs to be
learned from the data itself. This allows for a truly flexible system of substructure annotation
where Mass2Motifs can be obtained from training the model on large public fragmentation
databases, such as HDMB or MassBank. In a similar manner as our analysis in this chapter,
the resulting Mass2Motifs can be characterised. New and unseen fragmentation spectra can
be run using the pre-trained models with these characterised Mass2Motifs, allowing for the
rapid identification of the substructure that comprise a fragmentation spectra.

An extension of the standard LDA model, in form of the multi-file LDA model, is also
proposed in this chapter to handle Mass2Motif inference from multiple data sets. Such a
model can be used in large-scale clinical and metabolomic studies. In this model, the prior
information on which prior Mass2Motifs the user expects to see can be included into the
MS2LDA workflow, allowing the LDA inference on certain known Mass2Motifs that are
expected to be present in the sample while allowing others to be inferred from the data.
Other LDA-based techniques developed for text (e.g. hierarchical LDA [43]) are also likely
to offer benefits as we hypothesise that Mass2Motifs can be defined in a hierarchy. For
instance, generic patterns such as the loss of CO2 may lie at the top of the hierarchy of
Mass2Motifs, while the more specific Mass2Motifs are formed at the bottom. It is anticipated
that visualisation and the meaningful presentation of inference results will be a challenging
task in such a model.
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Chapter 8

Conclusion

LC-MS based omics, such as proteomics and in particular metabolomics, play a major role
in modern systems biology. However, there are many challenges in data pre-processing steps
before LC-MS data can be analysed. In particular, the information from the peak grouping
step is often not used in the alignment and identification stage. More broadly, the presence of
a grouping structure means that a set of peaks can be structurally related. Generative models
can be used to induce the clustering on the peak data, revealing the latent structures that exist.

In this thesis, we have shown that using this structural information can help in alignment and
identification. Using generative modelling, we showed that grouping can be used to improve
alignment (matching). In particular, we improve a direct matching method by incorporating
grouping information. IP clusters, corresponding to groups of peaks that are related through
being the ionisation product peaks of the same metabolite, can also be matched directly –
either via a direct matching scheme or through a second-stage clustering method. A gener-
ative model also can be constructed that models all peaks across all files at once, producing
alignment as a result as well as useful latent structures. From fragmentation data, identifica-
tion can be enhanced by taking into consideration the grouping of fragmentation peaks that
potentially correspond to substructures.

8.1 Summary of Contributions

This thesis makes a number of contributions, motivated by our thesis statement in Sec-
tion 1.1, which is restated here:

Untargeted liquid chromatography mass spectrometry data pre-processing is a challenging
task that is often subjected to errors and inaccuracies. Much of this can be attributed to
the complexity of the LC-MS data itself and also to the lack of knowledge as to which
compounds are present in the sample. However, the structural dependencies in the observed
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peak data means that through generative modelling, we can explain the relationships between
peaks, allowing us to produce groups of related peaks that can be used to improve or enhance
the alignment and identification steps of LC-MS data pre-processing.

We have supported this thesis statement by the following contributions:

1. In Chapter 4, we present a method to perform the grouping of related peaks by reten-
tion time (RT) and combine this grouping information with a direct-matching method.
We demonstrate on benchmark datasets how this information can be used to improve
alignment.

2. In Chapter 5, we expand upon the grouping process in Chapter 4, where only the RT
information is used, and propose a model that takes into consideration mass informa-
tion when grouping related peaks. Through a set of transformation rules, our model
produces IP clusters, where member peaks can be explained by their ionisation product
transformations. We show in Chapter 5 that IP clusters can be matched directly in place
of peak features, and this produces an improved alignment performance. Additionally,
uncertainties in the matching can be quantified through a second-stage clustering of
the IP clusters.

3. In Chapter 6, we expand upon the work in Chapter 5. Instead of having to fix the
MAP cluster assignment of peaks to local clusters in the same file, we introduce a
hierarchical model that allows for peaks across multiple files to be grouped. We show
that modelling the data generatively in this manner and performing grouping allows us
to produce alignment (matching). From the model, highly confident matched peaksets
can be extracted, which may be useful in some analytical cases.

4. In Chapter 7, we look at fragmentation data, produced from tandem mass spectrome-
try process. We show that we can discover co-occuring patterns of fragment and neu-
tral loss features that could be characterised into substructures shared by metabolites.
This aids in exploratory data interpretation during the identification of compounds in
metabolomics data.

8.2 Future Work

There are a number of interesting areas for future work that could follow from the results in
this thesis. They are discussed in the following sections:
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8.2.1 Improved Generative Models to Cluster Related Peaks

Generative modelling of peaks are demonstrated in Chapters 4 and 5 where we build a model
to cluster peaks in the same file by their RT values and explainable mass transformations.
However, there is more information present in the LC-MS data that is not used in our model.
In particular, peaks elute from liquid chromatography and produce chromatographic profiles
(the retention time value of a peak is a point along the chromatographic profile). Most of the
chromatographic profiles of these related peaks will be similar. In [102], a mixture model is
proposed to cluster using chromatographic profiles. This is shown to produce improvements
over the greedy approach of clustering peaks. We might also want to incorporate this infor-
mation into our models, for example by changing the PrecursorCluster model from Chapter 5
and adding another likelihood term for the correlation of the chromatographic profiles. Fol-
lowing [102], we might use a two-component mixture to describe this likelihood: the first
component corresponds to the likelihood of peaks to be in the same cluster, while another
component describes the likelihood of peaks to be in different clusters based on their chro-
matographic correlations. The proposed implementation in [102] uses Gibbs sampling, and
we foresee that modifying our inference procedure to accommodate this new likelihood term
would be straightforward.

The proposed PrecursorCluster model in Chapter 5 also makes a fairly strong assumption that
the most intense peak in the cluster must be the [M + H]+ peak. This assumption may not
always hold — we have seen cases where valid clusters do not have their most intense peaks
as the [M + H]+ peaks. Relaxing this assumption means more clusters may be obtained,
but depending on the data, we might also see more false assignments of peaks to clusters.
Performing validations on the results with and without this constraint will be challenging
and require a close collaboration with a life scientist who possesses the necessary expert
knowledge to validate the data. This however might point to a more flexible method where
peaks can be clustered without having to make such a strong assumption.

8.2.2 Using the Generative Models for Identification

The proposed models in this thesis are generally validated against the alignment ground
truth, i.e. we consider that the models produce a sensible clustering of related peaks if
we can take the resulting groups and use them to obtain a good alignment performance.
However, that is not the only use of the output from the models. In particular, the set of
related peaks that have been grouped together and can be explained as being generated from
the same latent variable (corresponding to a compound) might be used for identification. We
have explored a preliminary form of this idea in Section 5 where we hand-pick clusters that
correspond to cysteic acid and melatonin, and also in Section 6 where we take some global
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RT clusters and annotate them by their putative compound identities. Note that once we
have assigned a putative compound identity to a clustering object, being able to annotate the
entire set of peaks that are members of that cluster is a natural consequence of the clustering
output of the model. It is worth investigating whether such an approach might bring an
improved discriminative power to identification compared to identifying peaks one-by-one,
which is the conventional approach. However, the lack of gold standard for identification
means that this will be an extensive endeavour that again requires a close collaboration with
a life scientist.

8.2.3 Data Visualisation and Interpretation

As the MS2LDAVis module in Chapter 7 shows, the interpretation of complex inference
results can be daunting to the average user. Having an easy-to-use visualisation interface
that displays the most pertinent information in a user-friendly manner shifts this burden of
interpretation from the user to the system. This is important when developing tools that we
hope will be used and adopted by the community at large. One of the problems with the
probabilistic matching results returned by the Cluster-Cluster method in Chapter 5 and the
HDP-Align method in Chapter 6 is that the results do not lend themselves to easy interpre-
tation. The conventional way of presenting a list of aligned peaksets is in the form of a
table, where each row corresponds to a consensus peak (derived from the aligned peakset)
and the columns are the observed intensities in the different LC-MS runs. From our output,
we now obtain aligned peaksets at varying probabilities, but how about other information
that we obtain from inference? From the inferred clustering structures, we obtain more than
just alignment as we can also extract for example, the inferred ionisation product types from
PrecursorCluster and the entire top-level global RT clusters from the HDP model. Display-
ing this information in a manner that is useful to the user requires careful consideration. For
instance, we might decide to supplement the usual tabular view of a peaklist with a graphical
visualisation showing how peaks are explained through which ionisation product transfor-
mations and their probabilities.

8.2.4 Topic Modelling of Fragmentation Data

In our study, the multi-file LDA model proposed in Chapter 7 is applied to a metabolomics
dataset containing four beer LC-MS runs. However a larger dataset (from 30 up to 100 LC-
MS runs) from a clinical experiment involving drug studies is available from our collabora-
tors. Some initial analyses have been performed as the dataset was run through the multi-file
MS2LDA pipeline. Results from this experiment can be used to validate that indeed we can
find useful Mass2Motifs that correspond to substructures shared by drug metabolites. The
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proposed inference procedure in Chapter 7 relies on Gibbs sampling, which has difficul-
ties scaling to a large number of files due to its long running time, so for this analysis, we
performed variational inference [7] instead.

Our LDA models (both the single- and multi-file version) assumes that the number of Mass2-
Motifs K is known and has to be defined by the user or estimated through a cross-validation
procedure (as what we have done in Chapter 7). Setting K that is too large may lead to
overfitting with many small, overly specific Mass2Motifs, while setting a value for K that
is too small leads to underfitting with large and generic Mass2Motifs. Hierarchical Dirichlet
Process has been used as the prior in a non-parametric topic model [126] and provides a
principled mechanism to let the number of Mass2Motifs to be learned from the data. This can
be implemented next. Along this line, we have also seen that Mass2Motifs form hierarchies,
with generic substructures, such as the loss of CO that is shared by multiple Mass2Motifs.
This suggest that a hierarchical extension of the LDA model can be considered to model the
data [43].

The problem of transferring Mass2Motifs that we have learned from one dataset to another is
also something we need to consider as this will allow inferred and characterised Mass2Motifs
to be stored in a database and applied to new, unseen data, allowing for rapid explorations
of the unknowns . One way we can do this is by fixing the topic-to-word probabilities
for the selected Mass2Motifs and using them when running LDA on the new data. This
approach, however, is rather ad-hoc, and a more principled approach can be considered. For
the transferring of Mass2Motifs to work, a common vocabular space over the words have
to be defined on the existing data used for training and the new data. Rather than using the
discretised fragment and loss features (as what we do now) that heavily depend on the mass
accuracy of a particular instrument, we may explore alternative binning procedures that use
the elemental formulae as the ‘words’ in the LDA system. The MS2LDAVis module can
also be extended to allow for Mass2Motifs expressions in the different files to be compared
easily. All these are the necessary building blocks that contribute towards the development
of an online interactive system that the community can use to submit validated topics and
apply them new dataset for a rapid exploration of the ‘fragmentome’ on new and unseen
fragmentation data.

8.2.5 Applications to Other Areas of Spectral Analysis

Throughout this thesis, much of the attention has been given to the analysis of liquid chro-
matography (LC) coupled to mass spectrometry data. However, other separation technolo-
gies, such as gas chromatography (GC), can also be used. GC is generally faster than liquid
chromatography but requires the compound under analysis to be vaporised, so only volatile
compounds can be separated by GC [45]. The models introduced in this thesis to group ion-
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isation product peaks can be readily adapted to GC data, particularly since chromatographic
peaks produced from GC separation tend to have higher resolutions and are more repro-
ducible (so retention time drift is less of a problem). Another separation technique that is
gaining popularity is ion mobility spectrometry, where ions are first separated by their elec-
trical potential in a carrier buffer gas. The main advantage of ion mobility is high speed of
separation, in the order of tens of milliseconds, allowing for very high throughout separation
and mass spectrometry measurements [82]. The models introduced in this thesis can poten-
tially be applied to ion mobility MS data as well, although further studies must be taken as
the characteristics of the resulting ionisation product peaks might differ.

8.3 Summary and Conclusions

Data pre-processing is a challenging task in LC-MS preprocessing pipeline. In this thesis,
we have shown how generative models can be used to explain the relationships between
related peaks, allowing for groups of related peaks to be extracted. We have shown how
starting from this premise, we could propose new methods that improve on alignment and
enhance identification. In alignment, this is accomplished through the grouping of related
peaks into ionisation product (IP) clusters, whether based on retention time (RT) alone or by
considering the mass relationships between peaks as well. More accurate alignment can be
constructed by taking into account this information on the IP clusters — as opposed to the
normal case of matching by peak features alone and not taking the structural dependencies
of these peaks into account. Modelling LC-MS runs hierarchically also allows us to group
IP peaks within and across multiple runs at once and, while in this thesis, we use the results
to produce a probabilistic matching of peaks, the inferred latent structures might be used
for other steps in the data pre-processing pipeline as well. Finally, we look at fragmenta-
tion data and demonstrate that by modelling the structural dependencies of fragment peaks,
we produce a method that aid in data interpretation and the characterisation of complex frag-
mentation spectra. The latter represents an active research that directly addresses the primary
bottleneck of data pre-processing of metabolomics data in an untargeted manner.

Although there is a lot of work to be done still, we believe that the thesis presents a com-
pelling case to the benefit of generative modelling of peak data. The structural information
that is present in mass spectrometry data is often neglected in alignment and identification via
fragmentation data. Our results show that this results in useful information that can be used
to improve the quality of the preprocessing pipeline and enhance data interpretation of untar-
geted metabolomics datasets. Implementations for all the methods introduced in this thesis,
alongside the evaluation datasets, are publicly available online. From Chapter 4, a Python
implementation of the method that combines clustering information to improve alignment
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can be found at http://github.com/joewandy/peak-grouping-alignment. The PrecursorClus-
ter model alongside the methods for matching of IP clusters introduced in Chapter 5 have
also been implemented in Python and can be found at http://github.com/joewandy/precursor-
alignment. The HDP-Align model introduced in Chapter 6 has a Java implementation that
can be found at http://github.com/joewandy/HDP-Align. The MS2LDA workflow from Chap-
ter 7 is developed in Python and available at http://github.com/sdrogers/MS2LDA.

http://github.com/joewandy/peak-grouping-alignment
http://github.com/joewandy/precursor-alignment
http://github.com/joewandy/precursor-alignment
http://github.com/joewandy/HDP-Align
http://github.com/sdrogers/MS2LDA
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Saint-Flour XIII1983. Springer, 1985, pp. 1–198.

[2] F. Allen, R. Greiner, and D. Wishart, “Competitive fragmentation modeling of ESI-
MS/MS spectra for putative metabolite identification,” Metabolomics, vol. 11, no. 1,
pp. 98–110, 2014.

[3] F. Allen, A. Pon, R. Greiner, and D. S. Wishart, “Computational prediction of elec-
tron ionization mass spectra to assist in GC-MS compound identification,” Analytical

Chemistry, vol. 88, pp. 7689–7697, 2016.
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ment procedures for {LC}-{MS} proteomics and metabolomics measurements,” BMC

Bioinformatics, vol. 9, p. 375, 2008.

[75] T. S. Lee, Y. S. Ho, H. C. Yeo, J. P. Y. Lin, and D.-Y. Lee, “Precursor mass predic-
tion by clustering ionization products in LC-MS-based metabolomics,” Metabolomics,
vol. 9, no. 6, pp. 1301–1310, 2013.

[76] H. Lin, L. He, and B. Ma, “A Combinatorial Approach to the Peptide Feature Match-
ing Problem for Label-Free Quantification.” Bioinformatics, pp. 1–7, 2013.

[77] J. Listgarten, R. M. Neal, S. T. Roweis, and A. Emili, “Multiple alignment of contin-
uous time series,” in Advances in Neural Information Processing Systems, 2004, pp.
817–824.

[78] Y. Ma, T. Kind, D. Yang, C. Leon, and O. Fiehn, “Ms2analyzer: A software for small
molecule substructure annotations from accurate tandem mass spectra,” Analytical

Chemistry, vol. 86, no. 21, pp. 10 724–10 731, 2014.

[79] M. Mamas, W. B. Dunn, L. Neyses, and R. Goodacre, “The role of metabolites and
metabolomics in clinically applicable biomarkers of disease,” Archives of Toxicology,
vol. 85, no. 1, pp. 5–17, 2011.

[80] M. Mann and O. N. Jensen, “Proteomic analysis of post-translational modifications,”
Nature Biotechnology, vol. 21, no. 3, pp. 255–261, 2003.

[81] L. Martens, M. Chambers, M. Sturm, D. Kessner, F. Levander, J. Shofstahl, W. H.
Tang, A. Römpp, S. Neumann, A. D. Pizarro et al., “mzML – a community standard
for mass spectrometry data,” Molecular & Cellular Proteomics, vol. 10, no. 1, pp.
R110–000 133, 2011.

[82] J. A. McLean, B. T. Ruotolo, K. J. Gillig, and D. H. Russell, “Ion mobility–mass
spectrometry: a new paradigm for proteomics,” International Journal of Mass Spec-

trometry, vol. 240, no. 3, pp. 301–315, 2005.

[83] D. A. Megger, T. Bracht, H. E. Meyer, and B. Sitek, “Label-free quantification in
clinical proteomics,” Biochimica et Biophysica Acta - Proteins and Proteomics, vol.
1834, no. 8, pp. 1581–1590, 2013.

[84] E. Melamud, L. Vastag, and J. D. Rabinowitz, “Metabolomic analysis and visualiza-
tion engine for LC-MS data.” Analytical Chemistry, vol. 82, no. 23, pp. 9818–26,
2010.



Bibliography 174

[85] T. P. Minka, “Estimating a Dirichlet distribution,” Annals of Physics, vol. 2000, no. 8,
pp. 1–13, 2003.

[86] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[87] D. D. Nguyen, C.-H. Wu, W. J. Moree, A. Lamsa, M. H. Medema, X. Zhao, R. G. Gav-
ilan, M. Aparicio, L. Atencio, C. Jackson et al., “MS/MS networking guided analysis
of molecule and gene cluster families,” Proceedings of the National Academy of Sci-

ences, vol. 110, no. 28, pp. E2611–E2620, 2013.

[88] N.-P. V. Nielsen, J. M. Carstensen, and J. Smedsgaard, “Aligning of single and mul-
tiple wavelength chromatographic profiles for chemometric data analysis using corre-
lation optimised warping,” Journal of Chromatography A, vol. 805, no. 1, pp. 17–35,
1998.

[89] C. Notredame, D. G. Higgins, and J. Heringa, “T-Coffee: A novel method for fast and
accurate multiple sequence alignment.” Journal of Molecular Biology, vol. 302, no. 1,
pp. 205–17, 2000.

[90] Z. Pan and D. Raftery, “Comparing and combining NMR spectroscopy and mass spec-
trometry in metabolomics,” Analytical and Bioanalytical chemistry, vol. 387, no. 2,
pp. 525–527, 2007.

[91] A. D. Panopoulos, O. Yanes, S. Ruiz, Y. S. Kida, D. Diep, R. Tautenhahn, A. Her-
rerı́as, E. M. Batchelder, N. Plongthongkum, M. Lutz et al., “The metabolome of
induced pluripotent stem cells reveals metabolic changes occurring in somatic cell
reprogramming,” Cell Research, vol. 22, no. 1, pp. 168–177, 2012.

[92] P. G. Pedrioli, J. K. Eng, R. Hubley, M. Vogelzang, E. W. Deutsch, B. Raught, B. Pratt,
E. Nilsson, R. H. Angeletti, R. Apweiler et al., “A common open representation of
mass spectrometry data and its application to proteomics research,” Nature Biotech-

nology, vol. 22, no. 11, pp. 1459–1466, 2004.

[93] H. E. Pence and A. Williams, “Chemspider: an online chemical information resource,”
Journal of Chemical Education, vol. 87, no. 11, pp. 1123–1124, 2010.

[94] O. Penn, E. Privman, G. Landan, D. Graur, and T. Pupko, “An alignment confidence
score capturing robustness to guide tree uncertainty.” Molecular Biology and Evolu-

tion, vol. 27, no. 8, pp. 1759–67, 2010.

[95] V. Perera, M. D. T. Zabala, H. Florance, N. Smirnoff, M. Grant, and Z. R. Yang,
“Aligning extracted LC-MS peak lists via density maximization,” Metabolomics,
vol. 8, no. 1, pp. 175–185, 2012.



Bibliography 175

[96] T. Pluskal, S. Castillo, A. Villar-Briones, and M. Orešič, “Mzmine 2: modular frame-
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C. A. Labate, and R. Z. Vêncio, “ProbMetab: an R package for Bayesian probabilistic
annotation of LC–MS-based metabolomics,” Bioinformatics, vol. 30, no. 9, pp. 1336–
1337, 2014.

[111] C. a. Smith, G. O’Maille, E. J. Want, C. Qin, S. a. Trauger, T. R. Brandon, D. E. Cus-
todio, R. Abagyan, and G. Siuzdak, “METLIN: a metabolite mass spectral database.”
Therapeutic Drug Monitoring, vol. 27, no. 6, pp. 747–51, 2005.

[112] C. a. Smith, E. J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak, “XCMS: process-
ing mass spectrometry data for metabolite profiling using nonlinear peak alignment,
matching, and identification.” Analytical Chemistry, vol. 78, no. 3, pp. 779–87, 2006.

[113] R. Smith, D. Ventura, and J. T. Prince, “LC-MS alignment in theory and practice: a
comprehensive algorithmic review,” Briefings in Bioinformatics, 2013.

[114] R. Smith, A. D. Mathis, D. Ventura, and J. T. Prince, “Proteomics, lipidomics,
metabolomics: a mass spectrometry tutorial from a computer scientist’s point of
view,” BMC Bioinformatics, vol. 15, no. 7, p. 1, 2014.

[115] R. Smith, J. T. Prince, and D. Ventura, “A coherent mathematical characterization of
isotope trace extraction , isotopic envelope extraction , and LC-MS correspondence,”
BMC Bioinformatics, vol. 16, no. Suppl 7, p. S1, 2015.

[116] R. Smith, D. Ventura, and J. T. Prince, “Novel algorithms and the benefits of compar-
ative validation.” Bioinformatics, vol. 29, no. 12, pp. 1583–5, 2013.

[117] R. K. Snider, “Efficient calculation of exact mass isotopic distributions.” Journal of

the American Society for Mass Spectrometry, vol. 18, no. 8, pp. 1511–5, 2007.



Bibliography 177

[118] X. Song, B.-L. Zhang, H.-M. Liu, B.-Y. Yu, X.-M. Gao, and L.-Y. Kang, “IQMNMR:
Open source software using time-domain NMR data for automated identification and
quantification of metabolites in batches,” BMC Bioinformatics, vol. 12, no. 1, p. 1,
2011.

[119] J. Stanstrup, S. Neumann, and U. Vrhovsek, “Predret: Prediction of retention time
by direct mapping between multiple chromatographic systems,” Analytical chemistry,
vol. 87, no. 18, pp. 9421–9428, 2015.

[120] M. a. Stravs, E. L. Schymanski, H. P. Singer, and J. Hollender, “Automatic recali-
bration and processing of tandem mass spectra using formula annotation,” Journal of

Mass Spectrometry, vol. 48, no. 1, pp. 89–99, 2013.

[121] L. W. Sumner, A. Amberg, D. Barrett, M. H. Beale, R. Beger, C. A. Daykin, T. W.-
M. Fan, O. Fiehn, R. Goodacre, J. L. Griffin et al., “Proposed minimum reporting
standards for chemical analysis,” Metabolomics, vol. 3, no. 3, pp. 211–221, 2007.

[122] D. L. Sweeney, “A Data Structure for Rapid Mass Spectral Searching,” Mass Spec-

trometry, vol. 3, no. Special Issue 2, pp. S0035–S0035, 2014.

[123] A. L. Tarca, G. Bhatti, and R. Romero, “A comparison of gene set analysis methods in
terms of sensitivity, prioritization and specificity,” PloS One, vol. 8, no. 11, p. e79217,
2013.

[124] R. Tautenhahn, C. Böttcher, and S. Neumann, “Highly sensitive feature detection for
high resolution LC/MS,” BMC Bioinformatics, vol. 9, no. 1, p. 1, 2008.

[125] Y. W. Teh, “Dirichlet Process,” in Encyclopedia of Machine Learning. Springer,
2011, pp. 280–287.

[126] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet Processes,”
Journal of the American Statistical Association, vol. 101, no. 476, pp. 1566–1581,
2006.

[127] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice.” Nucleic Acids Research,
vol. 22, no. 22, pp. 4673–80, 1994.

[128] R. Tibshirani, T. Hastie, B. Narasimhan, S. Soltys, G. Shi, A. Koong, and Q.-T. Le,
“Sample classification from protein mass spectrometry, by peak probability contrasts,”
Bioinformatics, vol. 20, no. 17, pp. 3034–3044, 2004.



Bibliography 178

[129] J. Tomfohr, J. Lu, and T. B. Kepler, “Pathway level analysis of gene expression using
singular value decomposition,” BMC Bioinformatics, vol. 6, no. 1, p. 1, 2005.

[130] T.-H. Tsai, M. G. Tadesse, C. Di Poto, L. K. Pannell, Y. Mechref, Y. Wang, and
H. W. Ressom, “Multi-profile Bayesian alignment model for LC-MS data analysis
with integration of internal standards,” Bioinformatics, vol. 29, no. 21, pp. 2774–2780,
2013.

[131] H. Tsugawa, T. Cajka, T. Kind, Y. Ma, B. Higgins, K. Ikeda, M. Kanazawa, J. Van-
derGheynst, O. Fiehn, and M. Arita, “MS-DIAL: data-independent MS/MS deconvo-
lution for comprehensive metabolome analysis,” Nature methods, vol. 12, no. 6, pp.
523–526, 2015.

[132] E. L. Ulrich, H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin,
M. Livny, S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie,
R. Kent Wenger, H. Yao, and J. L. Markley, “Biomagresbank,” Nucleic Acids Re-

search, vol. 36, no. suppl 1, pp. D402–D408, 2008.

[133] J. J. Van Der Hooft, S. Padmanabhan, K. E. Burgess, and M. P. Barrett, “Urinary
antihypertensive drug metabolite screening using molecular networking coupled to
high-resolution mass spectrometry fragmentation,” Metabolomics, vol. 12, no. 7, p.
125, 2016.

[134] J. J. J. van der Hooft, J. Wandy, M. P. Barrett, K. E. V. Burgess, and S. Rogers, “Topic
modeling for untargeted substructure exploration in metabolomics,” Proceedings of

the National Academy of Sciences, vol. 113, no. 48, pp. 13 738–13 743, 2016.

[135] a. M. van Nederkassel, M. Daszykowski, P. H. C. Eilers, and Y. V. Heyden, “A com-
parison of three algorithms for chromatograms alignment.” Journal of Chromatogra-

phy A, vol. 1118, no. 2, pp. 199–210, 2006.

[136] K. Varmuza and W. Werther, “Mass Spectral Classifiers for Supporting Systematic
Structure Elucidation,” Journal of Chemical Information and Modeling, vol. 36, no. 2,
pp. 323–333, 1996.

[137] B. Voss, M. Hanselmann, B. Y. Renard, M. S. Lindner, U. Köthe, M. Kirchner, and
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