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CHAPTER I

X-RAY ANALYSIS OF CRYSTAL STRUCTURES
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1. Diffraction of X-Rays by Crystals

1.1 X-Ray Scattering from a Single Atom

The atomic scattering factor f represents the proportion of
the X-ray beam which is scattered without increase in wave length
by the electrons of a particular atom. For small scattering angles,
this factor approaches z, the atomic number, but the value falls off
rapidly with increaéing angle because of interference from phase
differences in the waves scattered from each individual electron,
and also an increase in the proportion of incoherent scattering.

The value of f for an atom is equal to the sum of the fe's for

each electron; where fe is given by

fo = ]W/k‘ BGREE vy @)

[\

where \yU;l is the probability that the electron is in a given
oo °
region v and I‘WI dv = 1 . The amplitude of f depends
0
on the phase difference caused by displacement of the scattering
' s . ik s.x .
electrons from the atomic centre, given by e == where r is a
vector representing the position of the electron with respect to
the atomic centre, g is a vector normal to the plane of reflection
and k = 2m/A . Scattering curves have been calculated for

various atoms and ions, first by Hartree (1928) and later by

Pauling & Shermzn (1932), McWeeny (1952), =znd others.



1.2 X-Ray Scattering from an Array of Atoms

In a crystal, the atoms are arrayed in a regular three

dimensional array.
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When a monochromatic beam of X-rays strikes this array or lattice,

the beam will be scattered separately by each atom. These
scattered waves will interfere so as to cancel each other out

except when the difference in path length between different waves

is an integral multiple of the wave length. In the diagram, where

=R and g are vectors of magnitude 1/h representing the incident
and reflected beam from two lattice points Al and A2, the path

difference is AlN - AQM where Al

Reinforcement would occur when (r.s - g.go) = integer. For

- I = .5 =T, .

N - M N (z.s - z.8)

a three dimensional lattice where the distance between points, r,
could be expressed as (ua + vb + wec), a b and ¢ being unit
translations along the axes, then (ua + vb + we)(s = §0) must

be integral as must each component of the equation.

Thus a(s - §O) = h
b(s-g) = k (2)

|
S

c(s - s_)



where h k and f are integers. These are Laue's equations for
X-ray reflection. Bragg (193%) showed that these integers are
identical with the Miller indice;'., which are direction ratios of
normals to the crystal planes.

The vector g - g, represents the normal to a pl'ane which would
reflect g, into g. This is referred to as the plane of reflection.
If the angle of incideﬁce to the plane is @ , the angle between g

and g is 2 @ and

|2-5| = SR (5)

The spacing between planes of index h xd is given as 4, the

projection of‘a/h b/k or C/l on |s- s, | such that

) g (4)

jw

s

5,

From this, and equations (2) and (3), it may be shown that for
reflection to occur

A= 2d4dsin@ (5)

This is Bragg'!s equation, which forms the basis for the study of

the structure of crystals by X-ray methods.

PAl



2 Structure Pactors

The structure factor of a reflection obtained by impingement
of X-rays on a given set of planes of a crystal is a measure of the
number of electrons in the reflecting plane. This gquantity would
reach its maiimum value if all the atoms were exactly on the plane,
however interference due to phase differences from scattering by
atoms located away from the planes causes diminution in the observed
amplitudes. The values of the structure factors observed for all
the refleéting planes thus depends on the arrangement of the atoms
in the lattice.

The structure factor F(hk.£) for a reflecting plane in a
structure containing j atoms is relgted to the atomic scattering

factor fj by the equation

Fhed) = 2 £, exp £2ﬂi(h3c-éi+ x L, 4 21)) (6)
T

where *9/a, Y9/b ana 2J/c are the coordinates of the atom with
respect to the axes a, b and ¢ of the unit cell. This expression
is complex, showing that phase change has occurred during reflection.
This change in phase angle cannot readily be determined, and cannot
be measured experimentally.

The structure factor may be expressed in terms of sine and

&



cosine functions ¥ = A4 + iB where
A = 2 f.cos2mn¥E + k& 4+ £ 35 (7
3 J a b c
and B = 2 £, sinemhE + kL 4+ €5 (8)
3 3 a b e}

This expression may be simplified for a particular case by the use
of space group symmetry for a centrosymmetric structure B = O.
Other symmetry relations may also be applied. These give rise to
systematic absences characteristic of particular space groups.
Expressions for all the space groups have been published
(Lonsdale; 193%6)(Henry and Lonsdale; 1952).

Although the phases of structure factors are not determined
directly, the amplitudes |Fo| may be derived from the observed
integrated intensities,I,of coherent X-ray scattering from the
crystal planes. In a perfect single crystal in which all the
planes are correctly orienfated, ]Fol is proportional to the
intensity of the reflected beam. In practice, however, most
crystals are of the mosaic type, that is, they contain small
regions of perfection slightly out of alignment with one another.
Reflections from planes-in mosaic crystals are such that |F0|°¢ Vf..

As a single crystal is rotated in the X-ray beam, the reflection

is not instantanecus as the crystal turns through the Brago angle



for a plane, but due to wvariation in the orientation of the crystal
planes, may occur over several seconds of arc. The integrated
reflection from a plane, that is, the‘ total energy reflected as
the crystal turns through the Bragg angle, is given as Ew/ Io,

-

where E is the energy reflected by a crystal rotating with an

angular velocity of win a beam of intensity Io' For a small
crystal,
in] 31-5
Hw
ol =/ R(©)d6 (9)
o 6-¢

where R(@) is the ratio of the power of the diffracted beam to
the incident intensity, @ is the Bragg angle and + € the limits
of the angle of reflection.

\

The integrated intensity is related to the structure factor

by the expression

2
Ew 24 3 2 2

NN e 1+cos” 26
T T sin2 ® ‘FF( 2)( 2

o ) dv (10)

where N is the number of atoms per unit volume, N is the wave
length of the X-radiation, e and m are the charge and mass of one
electron, and ¢ is the velocity of electromagnetic radiation.
Included in the expression is a polarization factor (l+0032 2 6)/2
which corrects for the fact that the incident beam is not polarized

with the electric vector perpendicular to the plane of incidence,



and the Lorentz factor 1/sin26 which corrects for the speed at
which the given lattice point passes through the reflecting sphere.

These correction terms are normally combined.

3, Temperature Factor

3.1 Isotropic Thermal Vibrations

The structure factors so far considered have been geometricalj
that is, account has been taken of diminution of intensities due
to phase differences in scattering from point atoms, but motions
of the atoms themselves have not been described. At any temperature
higher than OOK, atoms in a crystal are not at rest, the amount of
vibration increasing with temperature. Thus an atom which from
crystal symmetry would be in position to scatter in phase with
another would in fact be slightly displaced, at random, from the
lattice point.

If the vibration is isotropic and the lattice points uncoupled,
the diminution of diffracted intensity due to phése change caused

by this displacement may be given by

1 2 o
a- e—B sin 9(2

_ 2 =2 '
where Bo 8= u” | ; (12)

(239

ERNCED
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Here ,‘—,-,2 is", the mean square amplitude of the vibration and Bg is
the Debys temperature factor (Debye; 1914).

For all non-cubic crystals, the vibration is not isotropic.
The amplitude must then be expressed with respect to the axes of

the ellipsoid of vibration.

2,2 Anisotropic Thermal Vibrations

If an atom vibraztes anisotropically, the mean square amplitude

of vibrgtion is given by

3

S vu. .l L. (13)
i= :

where uij is a symmetric tensor ando_e is a unit vector characterizing

the direction of vibration (Cruickshank; 1956&). The temperature

exponent thus becomes

T) = e 2m(EL Tys 0] (1)
J

2 sin ©

where s is a reciprocal vector equal to /7\, . This may be

written in the form

Txl) = exp - (/311};.2 +ﬁ22k2 +ﬂ5312 +/12hk +/’13hl +ﬁ23k«£)

(15)
where, for example
2
Sl % ¢
%11 = 2m2” U,

,
3
{2

, 1
A1z = AN (26)

<
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where a* and b’t are reciprocal axes.

The atoms in a molecule do not vibrate independently. The
thermel effects may in some cases be described in terms of rigid
body motions of the molecule as a unit. If this is the case the
motions may be resolved into vibrational and rotational components,
T and W, given with respect to the centre of mass (Cruickshank; 1956b).

These are represented by two 3 x 3 matrices

v, 4 L, | (17)

- 3 3 ' ‘
and e = Z Z ;s 2y 3 : (18)

where 132 is the mean square amplitude of libration about an
axis a. The values of the molecular motions 'I'ij and W, . are

related to the atomic vibrations Uij by the relationships:

'

2 2
v = < — On
11 'I‘ll + z w22 + ¥ w33 2yz w23
2 2
U" = 'TI —
5o Too + z wll + X w33 2X7% wl}
U = 7'2 2 —
33 T33+3w11+xw22 2xyw12
¥ = T 2 + Xz, + yz W (19)
19 = Tqp T FTW3z3 = 2 W, T XIW,L + JI 4
2
. = — [od w U-)
II23 ‘1‘23 yzw, , + xzml2 x 23 + Xy 1%
951 = Tl} - XzW,, + Yz, + xyta.)23 - Y,w 13

where x y and z are coordinates with respecct to molecular axes.
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4. Representation of a Crystal by a Fourier Series

Any finite, continuous, periodic function may be expressed in
terms.of a Fourier series. It was suggested by Brageg (1915) that
the variation of electron density, y in three dimensions throughout
a regular crystal may be considered as such a function.

The relationship may be expressed by:

0o ,
1 1 1 1 1
9(X9yaz) = z Z Z. c(h ,k 71) exp 27i(h x + k y +*£ z) (20)
1 t
' kA= -o0
The Fourier coefficients C may be related to the structure factors

by the equation:

F(h,k, L) c(h'k'.l')v : (21)

il

where V is the unit cell volume. The electron density may thus

be described by

= ™M
~ ™18

9 (xy7,2) = % z P(h,k, L) exp —2ni(h§ + k% +.£§) » (22)
AL =-0o0

For computational purposes, this summation is resolved into its real

and imaginary parts, to give

¢ (x,7,2) = %[F(OOO) + 27;'.1 Z}{E(AO cos 2 (hx + ky +4z)

+ B sin 2 (hx + ky +yez))] ; (23)

where the P(000) term is equal to the total number of electrons in

the cell.



It is only recently that the use of electronic com@uters has
made practicable the evaluation of triple Fourier series.
W.L. Brageg (1929), however, showed that some structures could be
determined by analysis of projections of electron density down each
of the axes in turn. For the 010 projection, for instance, fhe

expression simplifies to
?(X,z) = %zh% P(h0.2) exp ‘—ZTri(hx +Az) (24)

which may be readily summed.
This method is particularly applicable to the solution of
molecules, whose atoms may be completely resolved in projections,

but it is subject to inaccuracies if atoms overlap.

5 Methods of Structure Determination

5«1 The Phase Problem

The main concern in the solution of a crystal structure, from
X-ray data is in the determination of the phase angles of the

reflected waves where

Ao(hk,e)

|Fo(hk.£)| cos ¢ (hk.2)
’ (25)

"

and B_ (hk.L) )Fo(hk,e)l sine( (hk.2)

Normally according to Friedels law (1913), it may be assumed that

lle



2.

F(hxk£f) = ©F(hkl) ; vhen the electron density will be

regl at every point and may be expressed as

o (xyz - &[ro00) +zh5.'§§ |F(nc )] cos (2 Tr(nxricyela) - o (nil))
- (26)

The values of & cannot be determined experimentally.
If the structure is centrosymmetric about the origin, then
sin® = 0; thus & must be either zero or T, and cose& = +1.
Some methods used for phase determination include use of sign
relationships (Karle and Hauptmann, 1950), isomorphous replacement
technique, Cork, (1927), Hargreaves, (1957), and by indirect means

such as analysis of Fourier transforms or Patterson functions.

5.2 Fourier Transforms

The transform G of a set of points related to the origin by a

set of wvectors z, is a continuous function whose value is given by:
N
M(s) = 2 £ exp 2Tir .s , (27)
n=1 " -

where s is a vector in reciprocal space, and fn is the weighting
factor of éach point. If the point set is centrosymmetric, the
4équation may be reduced to:

(6(s) = 2%1 f  cos 2% (hx + ky +.42) (28)



13.

where x, y and z are related to arbitrary anges and h, k and L may
have any value. If the set has no centre of symmetry, the transform
is complex, and the real and imaginary parts must be computed
separately.

The transform of a repeating lattice of finite size is another
lattice in reciprocal space. When a large number of points is
considered, then the transform will have finite values only at
points corresponding to reciprocal spacings of the original lattice.
"If the repeating pattern is a unit cell, then the transform of a
large number of cells, i.e. a crystal of finite size, would have
finite values, oorrespopding to the structure factors, only at the
reciprocal lattice points. |

The use of Fourier transforms for the elucidation of crystal
structures is largely confined to the study of molecules which may
be resolved in projection. These have transforms of constant
section which may be readily evaluated. The molecule is
represented by a vector set of point atoms whose origin is chosen,
if possible, at a centre‘of symmetry. The transform of this:
vector set in two dimensions is a continuous function on to which

the weighted reciprocal lattice may be fitted.

5.3 The Patterson Function

Patterson (1934) suggested a new method for the determination

of atomic positions. If g(x,y,z) and ? (x+u,y+v,z+w) are two
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regions of electron density g at points x, y, 2z and x+u, y+v, z+w,

then:

a nb ac |
P (u,v,w) = %‘[{/ g(xyz)P(xﬂl, y+v, z+w) dxdydz (29)

The values of P are large only when f has maxima at both

points. A peak in P (uvw) at Ups Vs W corresponds to two maxima

1
in Q (x,y,2) whose distance apart is given by a vector with

components Uy, vy and w Peaks in the map therefore represent

1
interatomic vectors for every pair of atoms in the crystal.

Since for every vector, there will be a corresponding one of
opposite sign, the function is necessarily centrosymmetric. The
electron density may be expressed .in terms of F(hkA), and P (uvw)

being a periodic function may be represented by a Fourier series,

therefore the integral may be reduced to:

P (u,v,w) = %—% Zk§ \Folz(h,k,,e) cos 2 (h}ai. + k% +£4'01) (30)

If the summation is on an absolute scale, then the height of

.a peak Pij for a vector between two atoms of atomic number zq and

z, is given by

y 03 : | (31)

where Po is the height of the origin peak.
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This method was first applied to projections. If atoms were
point sources it would be possible to resolve all the vectors in
two dimensions, however, the maxima obtained agre diffuse, and the
considerable overlap serves to make complete interpretation
difficult. Imperfect resolution may in some.cases be obviated by
the introduction of appropriate sharpening functions. Application
of the method to three dimensions, made possible by the use of
computers, has aided the solution of Patterson maps of complex
substances whose interatomic wvectors could not be resolved in

projection.

6. Methods of Structure Refinement

6.1 Difference Syntheses

For a centrosymmetric structure, the electron density determined
from summation of & Fourier series using as coefficients the signed
Fo's, is subject to error from series termination as well as from
random errors of measurement. The true atomic positions may thus
not correspond to the peak maxima. More accuracy may be obtained

. . 2 . e
by choosing coordinates such that @ = z W(Fo - Fc) is minimized.
n
For any atom i, € is minimized when

29 29 29
Bxi - Dyi - 321 =0 (32)




If in the Fourier summation the coefficients FO are replaced by

— F‘ i i = — °
(FO -C} the resulting map is D ?o 9c (Cochran, 1951) The
function ? is minimized with respect to the atomic coordinates when
the slope of D at the atomic centre is zero. If %% £ 0, the atom

must be moved up the slope by a distance 65%9 where

ax, - -@) /2% (33)

Brrors in the temperature factor B will alter the wvalue of D
at the atomic centre. If B is too high, at the atomic centre
g(y< ?o’ thus in the difference map the atom would lie on a peak.
The value for the temperature factor may be improved by applying
the formula

A(°D/Rr?),

A, - ~ (34)
J 21"‘&‘1.54

n

- where A is the area of projection fj is the atomic scattering
.th .

factor of the j atom and s = 2 sin®/N .

An atom vibrgting anisotropically would appear in an Fo map
to be extended in the direction of maximum vibration. A
calculation of D based on the mean isotropic temperature factor
would show positive values where the observed vibration is greater
than calculated, and negative where the calculated value is greater.

The resulting @, - @, mep would thus exhibit z saddle Pig.V )

/
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whose centre coincides with the atomic centre.

6.2 Method of Least Squares

When a number of experimental values have been obtained for
a function, it is possible to fit a suitable equation to these
values by minimizing the squares of the discrepancies of the points
observed from those calculated from the equation, if there are more
observed values than there are variables in the equation. For the
accurate determination of a crystal structure in three dimensions
it is necessary to obtain values for 9n+l unknowns where n is the
number of atoms in the asymmetric unit. These comprise three
positional and six temperature parameters, plus an overall scale
factor. Since the number of independent reflections measured is
generally much greater than the number of parameters sought, the
method of least sguares may be applied.

The function minimized is D = 2w Aik.z where
‘&hkl = KF_-F, (fof:the centrosymmetric case), w representing
a suitable weighting function and K the scaling factor.
Considering the positional parameters, a change in the value of
any coordingte x of an aztom n byFa gquantity & X, would change the

calculated structure factor by‘iri- A‘Xn, the total change
n

accruing from shifts of 2ll coordinates of N atoms being
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) ch DFC DFC
AT = i(ﬁ bx + 37, Ay + >z, Az ) (35)

Correct shifts would thus be those which cause the value of & Fc
to approach K Fo - FC.

A number of observational equations A may be formed, as in
equation (35) for the values of each reflecting plane. To find
the best value of & Fc, cach observational equation A is multiplied
in turn by the weighted coefficient of each unknown. The sum of
the A eguations, eazch multiplied by the coefficient of a given
unknown yields the normsl M‘vatlon for that unknowvn. The normal

equations are of the form

2
r F P P
C D [¢] b C D C
%W(Fo‘l‘"c) %, ) n*t¥x%, By, n *
5. 2 2% ]
Dxn Dz 0 % Xn kB A‘XB + SyB AyB + DzB AZB) (56)

where Z represents the sum over all but the nth atom.
B

These equations are frequently simplified by exclusion of cross
terms which may be oomparatlvely small. In three-dimensional
analyses, where, in an ordered structurﬂ there shairld be no

Fo D
overlay of atoms, terms of the form z BX >x may be neglected.
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o 3%

dx bzn

are eliminated if the axes are orthogonal, and may be neglected

Terms representing interaction between coordinates

if the angles are close to 900. The normai equations are thus

simplified to

‘ F F
2 w(EF -F) %xo -2 w(—%;g) Ax (37)

A n A n

Similar expressions may be obtuined for other parameters.
Successful use of the method requires that A.Fc be
sufficiently small at the beginning of the refinement that the
function (37) is linear (Hughes; 1941). In practice, the
coordinates must lie within the tru Foufier peaks. Advantages
of the method are that terminsgtion of series errors are eliminated
and better resolving power may be obtained in projection than is
possible from the use of Fourier methods. Original coordinates
must, however, be better and, ideally all the signs of structure

factors should be correct.



CHAPTER II
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THE CRYSTAL STRUCTURES OF SCRBIC AND CROTONIC ACIDS




20.

Introduction

X-ray crystallography has, in the past three decades,
developed into an increasingly powerful method for the
investigation of organic compounds. Though the main
emphasis at present is directed toward the solution of the
molecular structure of large molecules, e.g. natural products,
there are other problems confronting the chemist to which
the X-ray method may be applied.

A certain amount of controversy exists over the question
of bond delocalization in non-aromiatic compounds. Butadiene,
CHZ: CH-CH: CHZ’ the simplest alternant poly-unsaturated
compound has been studied in the vapour phase by electron
diffraction with a view to resolving the problem (Shomaker
and Pauling 1939). The bond lengths deduced from these
studies were 1.35 + .028 for the double bonds and 1.46 + .03R
for the single bond. From these results and from theoretical
studies these workers concluded that the observed shortening
. of the formal single bond from the normal length of 1.543,
such as was found in the similar compound butene-2,

CHBeCH: CH»CHB, (Brockway and Cross 1936) was indicative of
conjugation. Other compounds which could admit of resonance
forms were also observed to have shortened C-C bonds,

Crotonaldelyde, CHB'CH: CH-CHO, was found to have g bond
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length of 1.46 + .03% for the formal single bond adjacent

to the carbonyl, while the methyl C-C bond length was 1.528
l(Mackle and Sutton 1951). These workers also found similar
shortening in acroleip CH2= CH-CHO.

Recent theoretical calculations (Dewar and Schmeising 1959)
have shown that an Sp2 - sp2 carbon-carbon bond length of 1.483
may be a pure single bond. The presence of shorter C-C bonds
could, however, indicate the possibility of resonance in the
ground state.

All the above compounds were studied in the vapour phase
by electron diffraction. It was therefore considered of
inferest to examine some similar compounds in the solid state
by X-ray diffraction, which method allows a fuller study of
the more complex molecules.,

Trans-crotonic acid (Auwers and Wissenbach 1923) and
trans, trans-sorbic acid (Doebner 1890, 1900) are the first
two members of a series of unsaturated carboxylic acids*Of“the
general formula CH3~(CH= CH)N-COOH. These are the simplest
compounds crystalline at room temperature containing systems
in which conjugation could possibly occur. Cis-crotonic
(isocrotonic) acid(M.P. 15°C)is known (Auwers 1923) as is
cis, trans-sorbic (M.P. 35°C) (Eisner, Elvidge and Linstead 1953)
but because of their instability and their low melting points,

they are less suitable for X-ray investigation at room temperature.
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Trans- forms of the higher homologues have also been
prepared for N = 3 - 6, 8 (Kuhn 1937).

The investigations of sorbic and crotonic acids
was thus undertaken with a view to comparing the observed
bond lengths with results obtained from eléctron diffraotioﬁ

and theoretical studies.




1. Methods of Computation

Three methods were used for the summation of Fourier

series. Hand calculations were carried out using
Beever-Lipson strips (Beevers and Lipson 1934). TUse
was also made of RUFUS (Robertson 1954, 1961), an
analogue computer which represents sine and cosine
functions by systems of gears linked to revolution
counters. All three-dimensional summations, and the
two dimensional Fouriers for crotonic acid were carried
out on the DEUCE computer. |

The Fourier programme (Rollett 1961) is suitable
for two and three-dimensional summations. These are
computed at intervals of 1/24Oth of the cell edge or
any desired multiple thereof. Three-dimeéensional
summations are carried out in sections of constant z.

Structure factors were calculated using Facit and
| Olivetti hand calculators and later using DEUCE. The
structure factor and least squares refinement programme
. (Rollett 1961) refines positional thermal and scale
parameters, The thermal parameters, which may be
inserted as isotropic values are nevertheless refined
anisotropically for the values obtained from the

expression
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2~ B »sin 0 = ,- (/allh +/22k +/d_331 +/623k£+/31 hl+,€12hk)

The programme is divided into two sections. The first
calculates structure factors for each reflection included
in the data, punching decimally the index of the reflection,
[Fol - |Fc\, |Fc\) cos ® and sin o , meanwhile accumulating
totals for the least squares normal equations. Atoms
included in the structure factor calculation may be omitted
from the least squares refinement; e.g. hydrogens. The
final totals, are punched in binary at the end of the
structure factor calculation. These are used as input
for a second programme which solves the normal equations.
The full matrix is not computed, a block diagonal scheme
being employed. Thus 3 x 3 matrices are calculated for
each atomic position, 6 x 6 matrices for each vibration
and a 2 x 2 matrix for the scale factor. The second term
in this matrix is Q , an overall vibration parameter. This
method has been shown to produce satisfactory convergence
(usually) without undue use of machine time. The output
consists of the new positional thermal and scale parameters
and optionally (a) X IF) 2IF oA > IF, - F, and
the quantity which is being refined, Z w A2 where w

is the weighting function applied to the reflection. If atoms
are misplaced the wvalues of‘Gjivmay exceed the available computer

storage, thus giving failures.



The full parameter shifts may be used, but provision

is made for the output of new parameters shifted by only

4 or 4 of the predicted value. This slows the convergence

but admits closer control, especially at an early stage of
the refinement.

A second optional output (b) consists of the least
squares totals for each atom, suitable for reconstruction
of the normal equations and for calculation of standard
deviations.

All other calculations were carried out either with
hand calculating machines or using programmes written for
the DEUCE computer.

A programme for reducing‘intensity data to structure
amplitudes, correcting for Lorentz, polarization and
Tunell factors was written by J.G. Sime. Dr Sime also
prepared mean plane and mean plane Fourier, bond length;‘

- bond angle and thermal analyses programmes.

A mean plane programme which minimizes the weighted

squares of the distance from the plane was prepared by

D.G. Watson.

e



2. Previous Work on Sorbic Acid

A preliminary study of the sorbic acid structure was
carried out by Lonsdale, Robertson and Woodward (1941).
Cell dimensions were obtained and intensity data collected
for the principal zones. From the abgences, and lack of
hemi hedry, the space group was assumed to be C2/c, with
eight molecules in the cell, linked through their carboxyl
groups as hydrogen-bonded dimers. From the stronger Bragg

reflections, diffuse reflections and studies of magnetic

anisotropy it was concluded that the molecules were inclined

at an angle of 25° to 550 to the unique b crystal axis,
with the chain length extended at an angle of 10° to 15°
to the a axié. A set of structure factors was calculated
for a trial structure based on these conclusions, using
standard single and double bond lengths and angles for
the molecular model. The discrepancy was 35%: iﬁdicating
that the structure as postulated was substantially correct.
No further refinement of the hO_{ zone was carried out,
nor were the other zones investigated.

Laue photographs of sorbic acid showed the presence
of both broad diffuse patches, characteristic of layer
structures, and fine streaks characteristic of long chain

molecules. Additional studies of the diffuse reflections

£0 o



were reported by Lonsdale and Smith (1941-2). Comparison

of Laue photographs taken at room temperature and liquid

air temperature showed that almost all the diffuse reflections

disappear on cooling the crystals. This indicated that the
non-Laue spots were caused by thermal vibrations of the

molecule rather than packing disorder.

3. Crystal data

Sorbiec acid, C6H802’ M.W. 112.12, was purified by
steam distillation and recrystallization from water and from
acetone to a melting point of 134°C (134.5°C Heilbron and
Bunbury 1953). For X-ray study, crystals were obtained
as clear well formed needles by slow evaporation from
acetone solution.

Unit cell dimensions were obtained from rotation and
precession photographs. The crystals are monocliniec.
The values obtained compared with those found by Lonsdale,

Robertson and Woodward (1941) are given in Table I.

Table 1

L R+W
g 20.01 + .028  20.00 + .058
b 4.020+ .0058  4.03 + .028

¢ 15.82 + .028  15.83 + .038
(102.5° + .2° 102.5°

27.
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. For eight molecules in the unit cell, the calculated

density is 1.198 g./cc., compared to the observed value

of 1.185 g./cc.

4. Space Groups

Reflections are systematically absent in the ho /4
zone when either h or £ is odd and in OKO when k is
odd. In the general case absences occur when (h+k) = 2n+l.
Since these absences are found for both C2 and C2/c, the
space group camnot be determined unequivocally without
some other indication of the space group symmetry. It
was assumed in the earlier work (Lonsdale et al, 1941)
that the structure was centrosymmetric, the space group
being thus €2/c. This postulate was in agreement with
the general observations on mono-carboxylic acids, which
tend to form centrosymmetrical dimers. No further proof

was given.

5. Intensity Data

A crystal .15 mm x .2 mm x 1.0 mm mounted in a thin
walled pyrex capillary was set about the unique b axis.
A five-film hO £ Weissenberg series was recorded in a
32 hour exposure using the Robertson (1943) multiple film
technique with Cu KX radiation from a Phillips sealed tube.

To obtain reflections with high values of sin @, a larger
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crystal .5 mm x .55 mm x 3 mm also mounted in a sealed
capillary was used for a second five-film series, exposed
to unfiltered copper radiation for 10 hours.

Weissenberg series were also taken of crystals
mounted about the a and ¢ axes. For the HKO series a
section cut from a long needle measuring .2 mm x .18 mm x .65 mm
was used for a 10 hour exposure to Cu K& radiation.

Another crystal section .22 mm x .31 mm x .30 mm mounted
about the g axis was used in a 10 hour exposure to Cu K &
radiation to collect OK£ data.

Upper layer line data about the b axis were collected
on an equi-inclination Weissenberg camera using a new crystal,
2 mm X o25 mm x 2 mm. Two 4-film series using 1 hour and
10 hour exposures were taken for each of the nld h2f and
h3.£ nets. Inclination angles () for these layers are
11020‘, 22032' and 3609' respectively. Although h4. @
and h5£ nets both fall within the copper sphere these
werevnot obtained becausq/lb became too large for the
permitted angular shift of the camera.

To obtain correlating series a crystal .18 mm x .26 mm x 3 mm
sealed in a thin walled capillary was mounted in a precession
camera. A PW 1010 stabilized X-ray generator with a
molybdenum tube and zirconium fiter was used as a source
of radiation for a series of timed exposures. With the

camera set at a 300 precession angle and using an appropriate



layer line screen, six films were exposed for each of the

hkO.hkl and hk2 zones, with graduated exposure times
2
3
were taken on Ilford Industrial G X-ray film.

of 6z min., 20 min., 1, 3, 9 and 27 hours. All photographs
Intensities were estimated visually using wedge and
standard spot techniques. Data from Weissenberg series
were corrected for Lorentz and polarization factors; the
‘upper layer lines were corrected also by the Tunell rotation
factor (1939). The film factor for the upper zones was
increased to allow for the longer X-ray path length through
the film (Rossmann 1956). The data from precession series
were corrected for Lorentz and polarization factors by the
use of charts prepared Ey Waser (1951) and Grenville-Wells
and Abrahams (1952). The linear absorption coefficient for
sorbic acid, for copper radiation is .851 mm.-l. This is
sufficiently small for errors due to absorption to be
neglected.

The values of the structure factors obtained from the
precession series and HKO and OK.£ Weissenberg series were
used to interrelate the data from the vafious b-axial zones.
When more than one series was recorded for any one zone,
scaling of the structure factors was based on data estimable
in both series,

An estimate of the reliability of the intensities was

obtained by the method of Ibers (1956), suitable for small

30.



numbers of observations:

c(F) = c(F, -F ) (38)
max min

where C is a constant depending on the number of independent
observations. For two observations, C = .89, The average

5‘F0 for planes recorded more than once is
o F, = .06TF, (39)

The values of Fo are listed in Appendix Ia.

6. Determination of Centrosymmetry

A number of statistical tests have been devised for
the detection of symmetry. Three of these have been

spplied to sorbic acid.

6.1 N(z) Test

The N(z) test, developed by Howells, Phillips and
Rogers (1950) compares the fraction of reflections, N(z),
having intensities less than oertéin fractions z of the
average value, with theoretical distributions for centric

and acentric structuﬁs. For the acentric case

N (z) = 1 - exp(-2) (40)
while for the centric distribution

Ny (z) = erf(a/2)® (41)
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These expressions apply for random distribution of scattering
matter in a cell.

For sorbic acid, the corrected intensity, data were
divided into three ranges of Sin 8; .20 - .55, 55 - .75
and .75 - .90. Refiections having values of Sin O below
.20 and abo&e .90 were discarded. The total numbers of
reflections in each range were 385, 265 and 161. N(z)
was evaluated for each range for z = .1 to 1.0 (see aquendix).
The average value of N{z) for tlie three ranges, weighted
according to the number of reflections in the range, is

given in Table (II).

Table II

z = .1 .2 3 4 5 6 .7 .8 .9 1.0

N(z) = .293 .456 .555 .700 .734 .753 .783 .797 .829 .829

Comparison of these values with the theoretical curves for
the acentric and centric cases (Fig. I ) indicates that the

structure is centrosymmetric.

6.2 Variance Test

The variance of a set of observations is defined as

32.

the mean square deviation from the average value. Wilson (1951)

observed that the variance of observed intensities may be
used as a method for detecting centrosymmetry. For an

acentric structure, the distribution of intensities is
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such that for a structure containing N atoms, of which

the ith atom has a scattering factor fi

N .
1) <@-2%) - 5°%- z £} (42)

- N
where z = i?é::j fifjfk?e exp i(Gi + o, - Oj - se) (43)
3y

in which 6 = 27(hx + ky +.£2z) and £i0 £ , and £,

3 Tk
represent the scattering factors of four non-identical
atoms. The corresponding expression for the centric
case is
2 2 I 4
M G-2)) - 2% - 3.12'1 £, (44)
1=

The second term in both equations may be neglected if N

N 4 22
is large because S e, (45)
i=1

thus the expression may be written

2
<(IZ-§) > = ¥ (46)

For an acentric cell V = 13 for the centric case V = 2,

As with the N(z) test, higher values may be obtained if
there are subsidiary non crystallogrphic symmetry elements

(Rogers and Wilson 1953).
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For sorbic acid, the weighted average variance taken
over the same ranges as the N(z) test, is 2.987 (see appendix).
The higher value is possibly attributable to parallelism

within the sorbic acid molecule.

6.3 The N(x) Test

A method developed by Sim (1960) utilizes the structure
amplitudés rather than the intensities to determine a function
N(x), which is the fraction of reflections with |F] /average \F|
less than or equal to x. For a structure containing only
light atoms, the cumulative distribution for an acentric

structure is given by

N = 1 - exp [3T] (47)

For the centric case, the expression is

;M) = 2¢ [2(2“')'% %] (48)

where (P represents a Gaussian distribution function.

The curves for the two cases, compared with that obtained
from the hO£ zone of sorbic acid are shown in Fig. II.
The values obtained for sorbic acid are listed in Table III

(sim 1960).



Table III

x = 0 .2 4 .6 .8 1.0 1.2 1.4
N(x)

]

7. The (010) Projection.

T.1 Fourier Transform

From the axial dimensions (a = 20.01%, b = 4.028%, ¢ = 15.828)

it seemed probasble that the sorbic acid molecules were lying in
the unit cell roughly parallel to the (010) plane. The length
of the b axis, which is only slightly greater than the
carbon-carbon Van der Waals distance of 5.43 indicates that
there should be no overlap in a projection upon (010). Under
these circumstances, it was thought possible to determine the
signs of structure factors in the hO£ zone from analysis
of the appropriate Fourier transform.

A simplified model of the molecule dimer was constructed,
with C - C and C - O bonds taken as 1.4%, and the hydrogen
bonds linking the carboxyl groups as 2.8% (Fig. III).

A Fourier transform

T(X*Y*) = 2F wecos 2T (X’ES + Y’E/7) (49)

was evaluated (Fig. IV). X* and ¥¥ are the reciprocal

0 147 .275 376 459 .5é7~ .670 . 725

1.6

L] 826
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Simplified Dimer for Transform
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dimensions, g and ﬂ? , non integral distances in reciprocal
space and w the weight given to each atom. The value of w
was taken as 100 for carbon and 120 for oxygen. The
summation was carried out using Beevers-Lipson strips (1934).
The weighted reciprocal net was fitted to the transform as
shown in Fig.lV. Signs were determined for eighty of the
larger structure factors. Using the signs so obtained,
with the corresponding values of the structure amplitudes
obtained from the corrected intensities, the Fourier

series (equation 50) for the hOf =zone was summed at
intervals of 1/6Oth along each of the a and ¢ axes. No
attempt was made to put the structure factors on an absolute
scale, therefore although the positions of the peak

maxima could be determined, the actual values of the peak

heights were not significant.

Q(nol) - %ZFO(hOI) cos 2T (hx + £L3z) (50)

The map of the electron density showed resolution of
all the atoms except the carbon of the oéiboxyl group.
Atomic coordinates were chosen and structure factors
determined, using an isotropic temperature factof Bg = 3,5,

The agreement factor was 43%. This agreement factor, R,

defined as

26.



sl - 7] )
2 \(xF )|

R = 100 (51)
where F0 and Fc are the calculated and observed structﬁre
factors and K is a suitable scaling factor, is used as a
rough check of the accuracy of the proposed structure.

All the signs shosen from the transform were later

proven to be correct.

7.2 Refinement of the (010) Projection by Fourier Methods

Structure factors for the hO,e zone were calculated
from the contributions of the carbon and oxygen atoms

using the equation:

P =8
c .
i

8
f, cos 2 ™ (hx + £ 2) (52)

1
where fi is the scattering factor of an atom in the asymmetric
unit. The scattering curves for carbon and oxygen were
obtained from Hoerni and Ibers (1954). These were modified
by the introduction of a temperature factor Bg = 3,5 (see
section I. 3.1).

The signs from the first set of calculated structure

factors (Fc) were applied to the observed structure

amplitudes ( \FO[ ), which were then used as coefficients



for a further Fourier summation. Terms for which the
calculated value was less than one-third of the observed
were omitted, as the signs of these structure factors were
most liable to change during the refinement of the atomic
coordinates. When after another cycle the agreement

factor had fallen below 30%, difference syntheses were used.
In the Fourier summation, the structure factor was replaced
by a term Fo - F,. As shom in section I. 6.1, the atomic
positions may be refined by moving them up the slopes of the
resulting difference density map. At this stage, the
positions of the four hydrogen atoms along the unsaturated
chain were determined geometrically. These were included in
the structure factor calculations, using McWeeny's (1951)
scattering curve for hydrogen.

When the agreement index had fallen to 17.5%, it was
observed that the difference map showed marked evidence of
thermal anisotropy (Fig. V), indicating that further
refinement of the structure required application of
anisotropic temperature factors. Although it was apparent
that the terminal carbon atom had a much greater amplitude
of vibration than the remainder of the atoms, it was

decided, as a first approximation to treat the molecule

as a vibrating unit.
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The scattering factors corrected far anisotropic

vibrations could be expressed as
£ = f_ exp (-['gugsinz(cp-lp)] sin” o) (53)

(sim, 1955), where & and rG are constants, 2 sin © and ¢
are polar coordinates of a point in the reciprocal lattice
and Y is the angle between the direction of maximum
vibration and the ¢ axis. By plotting the observed
structure factors against the calculated geometrical
structure factors for various ranges of sin 6, a number of
graphs were obtained. Straight lines were fitted to the
points by the method of least squares. The slopes of the
lines so obtained were then plotted against Q . A curve

of the form:

Bhe = ® + @ sin’ (9P -Y), (54)

where B is the temperature factor, was fitted to the points
by least squares methods. The curve so obtained (Fig. VI)

agreed with the equation:

B2 = 1.450 + .688 sin2(<p - 22) . (55)

i.e. the direction of maximum vibration is inclined at 22°

39.
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from the ¢ axis, and is therefore approximately at right angles
to the chain length. The maximum value of Bg was 5.08, and
the minimum 3.45A2.

Structure factors were calculated using the values of
Bg from the graph, and including the hydrogen atoms of the
methyl group. The introduction of anisotropic temperature
factors improved the agreement to 15.5%. A difference map
calculated at this stage showed that most of the anisotropic
motion had been satisfied except for that about the terminal
carbon atom where the gradients of the saddle were atill
steep. A similar treatment was therefore applied to 06
alone, the rest of the molecule remaining unchanged except
for slight positional corrections. For C6 the curve obtained

(Fig. VI) satisfied the eguation.

Bn2 = 1.262 + 1.682 sin’(@- 173).  (56)

This gave to BQ a maximum value of 7.0 at right angles
to the 05 - QG bond, and a minimum value of 3.0 in the
direction of the bond. Application of these values to
the next structure factor calculatioh lowered the discrepency

to 13.7%.
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7.3 Least Squares Refinement

Further treatment of the hO£ 2zone was carried out
later on the Deuce computer using a block diagonal least
squares refinement (Rollett 1960). Coordinates were
obtained from the final differences map, and an isotropic

temperature factor B, = 4.2 was introduced. This was the

e
average value obtained from the graph (Fig. VI ). The
programme has facilities for the input of isotropic or
anisotropic temperature factors, though the actual refinement

is anisotropic (see section IT.1). A weight, w, was applied

to each structure factor such that for reflections for which

‘Fo|> \F\ , where |F*| = 8 [Fmin) , Vw = _li'-o_l
|Fol

while for reflections having lFOl pA lF"l NT = i .
F

F* was given the value of 64. The quantity minimized in the
refinement waszw A2 where A is the modulus of the
difference between the calculated and observed structure
factors. Half shifts were employed (see section IL.1).

The positional, vibrational and scaling parameters were
refined to an agreement factor of 10.9% after 9 cycles, the
time for one cycle being approximately thirty minutess

the final x and z coordinates are listed in Table IV.

With the signs from the final hO.£ structure factor

41.
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Table IV

Final Fractional Coordinates - 010 Projection

x/ a z/ [+
08421 00284
.03611 .09166
«08923 «06539
15822 +12073
;21500 «10042
+28415 «15591
+33998 13681
+41195 19340
03658 - +03333
.15070 +18679
22680 ' 04129
.283io | .21919
34850 407239
.38190 »20119
«42800 22819

«452%0 » 015999
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calculation and the observed structure factors, a Fourier
synthesis was computed to show the electron density of the
sorbic acid molecule in projection on to (010) (Fig. VIII).
A difference synthesis (Fig. IX) shows no outstanding
features, indicating that reasonable values have been
obtained for all parameters. The standard deviation of
electron density,d @, (Cruickshank 1949) is .29e3’2;

A further set of structure factors was calculated,
including only carbon and oxygen atoms. Summation of
a Fourier series using as coefficients (FO - Fc) where F,
was based on carbon and oxygen alone, would yield a map
showing the positions of the hydrogens. These appear
(Fig. IX) as diffuse positive regions with peak heights
up to .7 electrons. The hydrogens in the methyl group
in particular appear as a smear of electron density from

which individual atomic positions cannot be resolved.

8. The (001) Projection

From the (010) projection in which the molecule
is well resolved, it was possible to obtain accurate
values for the x and z coordinates. From these, fhe
projected bond lengths were calculated. If the molecule

were approximately planar, then comparison of the projected



bond lengths with the expected values should determine
the tilt of the molecule. In this manner, a set of
relative Y coordinates was obtained. There were two
possible configurations in the hkO projection, orein
which the bonds in the carbon chain were directed alternately
up and down, and a second in which they were all tilted
upward. Considering the molecules to exist in centro-
symmetric pairs about the origin, and assuming a hydrogen
bond distance of 2.65%, absolute Y coordinates could be
obtained for the oxygen atoms, to which the rest of the
molecule could be related. In the space group C 2/0,
the origin for the hk0 2zone could be chosen at either
0, 0, O or %, % , 0 with relation to h0.4 . This gave a
total of four possibilities. Structure factor calculations
for all four structures gave very poor agreement, the best
being nearly 50%.

The paucitj of data in this zone, however, 24 observed
reflections out of 42 within the copper sphere, made attempts
at refinement in projection difficult. It was therefore

decided to collect full three dimensionsl data.

44~
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9. The Structure in Three Dimensions

9.1 Trial Structures

Structure factors were calculated on Deuce for the
hl£ net, for the four possible structures examined in
the (001) projection. In all cases, the R factor was
greater than 60%. This result was not entirely unexpected.
Because the b axis is very short (4.028), a small aberration .
in the y coordinates of any atom would result in a comparatively
larger shift in y, thus any error between theoretical and
actual bond lengths would be magnified. It was thus
apparent that the problem would have to be solved by some

other method.

9.2 Three-Dimensional Patterson Synthesis

Since the projected atomic coordinates were known with
some accuracy, it was possible to construct a theoretical
Patterson map for the (010) projection (Fig.XI ). Peaks
in this map would thus correspond to the projections of the
interatomic vectors. In order to find the Y coordinate of
the vector peak, it was therefore only necessary to compute
the vector density along a line through and perpendicular to
the projected vector peak.

Sections through the three-dimensional Patterson map

were computed, using as coefficients the squared structure
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Theoretical (010) Patterson Projection for one

molecule of sorbic acid.

Line sections through the three-dimensional Patterson
map were computed perpendicular to 010 through the
points marked.

FIG. XI
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amplitudes for the 837 observed terms. For better
definition, the peaks were sharpened using the modification
function shown in Fig. XII, This function was chosen to
give mild shaipening while avoiding appreciable diffraction
ripples. The effect on a simple model structure is shown
in Fig. XIIo. Graph A represents an unsharpened Patterson
peak for a theoretical one dimensional cell containing one
atom at the origin. Graph B shows the modified peak.
Using the Fourier programme for the Deuce computer, line
sections were calculated at intervals of 1/240th of the cell
edge up the y axis. Fig. X1

Analysis of the positions of the peaks yielded a
self-consistent set of Y coordinates for the carbon and oxygen
atoms which were used for the subsequent three-dimensional

refinement. Coordinates used are listed in table V.

Table V

EZb coordinates from Patterson sections

o, =.06250 o5  +10410
o2 23720 04 «17500
¢y 16660 05 06670

c . 20000 Cg. .12920
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9.3 Structure Refinement

Using the Y coordinates obtained from the Patterson
synthesis, structure factors were calculated for the hl.{
zZone. An isotropic temperature factor was used with B0 = 4.24&1,
the average value obtained from the graph (Fig. VI). Agreement
seemed good, being 23% on the scaled structure factors. Two
cycles of least Squarés refinement, however, did not lower
the discrepancy materially, and solve failures occufed when Y
the temperature factors became too high (see sectionII, 1),
Structure factors calculated for the same coordinates
for the hS,l zone did not give such good initial sgreement
(35%), however, two least squares cycles on half shift
(seé section II.1) lowered the discrepancy to 24%. Coordinates
and temperature factors from the second cycle were used.for
structuré factor calculations for the h2/ zone., The
predicted scale factor, which appeared to be too high, was
altered to a more reasonable value from comparison of Z Fo
and 2 Fc for the second h34 cycle.
The first structure factor calculation for the h2.4
zone gave an agreement factor of 31%, falling to 23% after
one cycle, Coordinates and anisoti'Opic temperaturé
factors from the h2.2 cycle were then applied to a

recalculation of the hl.Z zone structure factors. The
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new R factor for this zone was 24.5%.

Since it was apparent from theée results that the
structure would probably refine further calculations were
cerried out on the full three-dimensional data. The
coordinates used were those obtained from the last h1.£
cycle. The scale factor for the second h24£ calculation
was retained, but the hO£ zone data were rescaled before
inclusion with the upper zones. Throughout the course
of the refinement it was observed that the predicted scale
factor tended to be too high. It was altered at the
beginning of each cycle to correspond to the value found
by comparison of ZFO and ZFC.

For the first full three-dimensional least squares
cycle, only the observed terms were included. The overall
agreement was 21.7%. For the next cycie, the original
scale factor was retained but the coordinates and
temperature factors were allowed to shift (see section II.1.).
Half shifts were used througﬁout.

All the unobserved reflections in the copper sphere
were included for the second cycle, increasing the time per
cycle from 2 to 2% hours. For these unobserved terms, the
intensity was assumed to be half the lowest observed’value.
As this meant the inclusion of 370 unobserved terms, it was
expected that the R factor would rise slightly. This was

indeed the case. However, after two more complete cycles,



the discrepancy fell to 18.5%. At this stage the individual

zonea were rescaled to the calculated values. The socale

factors used are listed in Table VI.

Table VI

no4  1.0886
hlZ 9419
h2 4 .8916
h3d  1.0420
h4 l unchanged

h5.4 unchanged

For scaling, h4£ and h5{ were considered together, as both
contain very few reflections.

The rescaled data were used as input for the sixth
structure factor calculation. For this cycle, five of the
eight hydrogen atoms were included. The positions of the
hydrogen of the Carboxyl group and those joined to the
unsaturated chain could be determined approximately as they
were assumed to be coplanar with the carbon skeleton. The
mean plane of the carbon atoms was calculated using the
method of least squares. Using the x and z coordinates of
the hydrogen atoms from the (010) projection, Y coordinates

were found by substitution in the equation of the plane:

49.



X ¢ 4.8658 Y - 3.4277 Z - .6356 = O (57)

calculated with respect to the orthogonal axes a b and c\
In this equation X = x + z cosﬂ Y=-yeand 2 =1z sinﬂ
where x,y and z are the atomic coordinates in angstroms
and /6 is the cell angle. The coordinates so determined
are listed in Table VII. The methyl group hydrogens

were not included.

Table VII

*/q /o %/
H .03658 .09109 -.03332
B, .15070 41648 .18679
B, .22680 -.08040 .04129
H, .28310 .37448 .21919
8 .34880 -.11550 .07239

The agreement factor for the sixth cycle with rescaled

data and including five hydrogens was 16.3%. As the R
factor fell by less than one per cent in a further cycle,
there seemed little point in continuing without the addition

of the remainder of the hydrogen atoms.

50.
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The values of (FO - Fc) obtained from the seventh
cycle were used as coefficients for a three-dimensional
difference Fourier synthesis. Sections were computed
for the regions around the carboxyl group and the methyl
group. Nine sections through ¢ were calculated parallel
to (001), at intervals of 1/60 of the cell edge (.2637R)
from 8/60 to 16/60 inclusive. The sections were taken
from y = 0 to 30/30, (.134% intervals) and from x = 56/120
to 66/120 in 1/120ths (.16678). The three hydrogens of
the methyl group were fitted on to the contours obtained.
As expected, they were staggered with respect to the planar
hydrogen atoms of the unsaturated chain. Four sections
were taken through the hydrogen bond parallel to (001)
from z = 2/60 to z = 5/60 inclusive. The summation was
carried out over the full length of the y axis at intervals
of 1/30th and from x = 27/120 to ©2/120. Goordinates
obtained from these sections were related to those of thev
parent molecule by the symmetry %, 4, O. Examination of
the hydrogen coordinates showed that the hydrogen was
associated with O_. rather than O,. From this, it follows

2 1

that C];—Ol was doubly bonded and C 1—02 singly.

The coordinates obtained are listed in Table VIII.
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Table VIII

*/a /o /o
Hl -.00420 .17000 .05420
H6 43300 . 36445 21250
H7 «44200 «29000 .16230
H8 .40200 -.03555 25000

When these atoms were introduced into the structure
factor calculations, very little change in discrepancy
resulted. The R factor after the eighth cycle was 15.5 %
for the total data in the copper sphere and 13.9Zfor the
observed reflections. At this point hydrogen coordinates
for H2 - HS’ the hydrogen atoms of the unsaturated chain,

were revised using the equation of the plane for the eighth

cycle.

X+ 4.972 Y - 3.464 2 -.5980 = O (57)

The coordinates are listed in Table IX.
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Table IX

*/a Y/ /o

H2 .17208 .27909 .19066
H3 21344 -.07699 .06567
H4 .28555 «37298 .21258
H5 «34780 -.10550 .09239

A caloculation of standard deviation of positional
parameters after the tenth cycle indicated that the mean
atomic shifts were less than the standard deviations of
the coordinates (Table X), therefore the refinement was
terminated. The progressive decrease of R and :E'wz§2
during the course of the refinement is given in Table XI.
The agreement factor for the final observed structure
factors is 13.3%. The coordinates used for this calculation
are listed in Table XII. A Fourier projection upon (100)
based on the final coordinates is given in Figure XIV,

The overlap and lack of detail in this projection is

manifest.



Cycle

Table X

Coordinate Shift , Final Cycle
T

Ax/a 6 x/a Ay/b sy/o
00004 00012 00036 200007
00004 »00016 000012 .00112
00004 00022 00002 00126
00005 .00023 00021 .00131
+00005 00019 00055 00016
200002 00023 00025 000059
00007 200023 00080 00135
00000 00026 00017 000149
Table XTI
R aﬁa 2 wl\z
R S wal Cycle R
21.7% 124 6 1643
(obs. only)
21.3 104 7 15,7
(a1112;2ms) 93 8 1506
18,5 84 9 1545
17.3 73 10 1505

Az/c

00004
«00010
200002
00014
200000
«00008
«00001

000005

zwAé
64
61
58
58

57

13.8 obse

54

s z/c

00014
«00021
200027
200027
«00023
000028
+00030

00035



Final Fractional Coordinates

Table XII

x/a
.08439

03662

«09000

«15599

+21602
«28320

34176

«41225

/v
-~ .06441
+23966
.12368
21923
J11212
219980

.07961

.16330

z/o
«00261
009174
«06591
«13810
«10389
015427

«13983

«19203
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10. Standard Deviation

The standard deviations of atomic positions were

calculated using the expression (Dunitz and Rollett 1956):

> w2 %
(n-S)Zw( §

6'-§ =

where :Evvll 2 is the sum of the weighted discrepancies
for each reflection, n is the number of reflections, s,
the number of parameters to be refined and S is an
atomic parameter, positional or thermal.

The values of ZWA2 and of the weighted derivatives
were obtained from the output of the least squares
refinement programme (see appendix). The total number
of reflections considered, n, was 1207. The number of

parameters, 9a + 1, where a is the number of atoms in the

asymmetric unit, was T73. The values obtained were increased

by 1.025 to allow for the monoclinic angle of 102.5°
(Templeton 1959). The standard deviations of atomic

coordinates are listed in Table XIII. The standard

deviation of electron demsity (Cruickshank 1949) is .24 32-3.

Do'

(58)



11. Molecular Geometry

The bond lengths within the sorbic acid moleéule,
calculated from the orthogonalized coordinates (Table XIV),
are listed in Table XV. The corresponding bond angles are
given in Table XVI. These values are not corrected for
errors caused by thermal oscillation of the molecule. (see

sections I. 3.2; II. 1.4).

12. Hydrogen Positions

The final hydrogen positions are listed in Table XVII,
with the lengths of bonds involving hydrogen given in
Table XVIII. The mean value of the C - H bond lengths
is 1.063 + .0278 (Crumpler and Yoe 1940). The standard
deviation of any single C - H bond, .073, may be considered
to be due to errors in position of the hydrogen atoms,

as these could not be located accurately.

H8.



Table XIV

Orthogonal Coordinates

&)

X

1.67886

»41822

1.57428
2.71535

3.96461

5.13568
6.35633
7.58736

- 425892
96343
49719
. 86130

. +45072
.80320
«32003
«65647

z
-+04031
1.41691
1.01797
1.82404
1.60457
2.38268
2.15966
2,96588
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Zable XV
0
Bond lLengths (A)
1.240 + 0051 C, = 04
1,309 + +006 c, - 05
1.4491 007 C. - 06
1.34011-_.006 O=-H=~0
Table XVI
Bond Angles
- 122.1 + o5 CT-CBaC
122.3 + C, =C, =-C
34+ o5 4
115.7 # «5 C -Cs-c
123.9 * 5

1.450 + .006
1l.332 & 0007
1.510 + .007

2,650 + .004

126.0 + 5
12442 + o5

125.3 + .5

60.
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Table XVII

Ve

Final Fractional Coordinates - Hydrogen Atoms

*/é
- 00609
.17208
«21344
028555
+34780
42500
41677

«40858

¥/v
.12584
«27909
~ «07699
«37298
~ 10550
. 28332
#41320

~ +08333

Table XVIII

z/e
004325
»19066
+06567
221258
«09239
«25416
»19882

020297

- e
Bond Distances Involving Hydrogen 9]

1.116 1
1.148
2966

1.148

o
1.082 A
{
1,075
1.012

1.012

Average C -~ H distance 1.063 2
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13. Molecular Plane

The mean plane of the molecule was determined in
two ways; first using a method which minimized preferentially
the X component of the deviation from the plane, A, and later
by a least squares minimization of the perpendicular distances
of atoms from the plane, B, (Shomaker et. al. 1959).

The plane A given by the first method is:

X + £4.926 Y - 3.400 Z - .T167 = O (59)

Plane B through the molecule is given by

1626 X + .7950 Y - .5844 Z - .04T6 = O (60)

The deviations from the plane B, which are listed in Table XIX
are slightly smaller than those for plane A, the root
mean square deviati ons being .03462 for A and .02503
for B. The interplanar angle is 1.70.
The planarity of the molecule may be determined bj

the X 2 test (Fisher and Yates 1957).

7(2__2_6_?. (61)

- 6‘5‘2

where A is the deviation of an atom from the plane and

G ¢ is the standard deviation of position of the atom.



The probability of the atom lying on the plane, which,

for any 7{ 2, varies with the number of degrees of freedom,
may be determined by consulting tabulated values of X 2.
The number of degrees of freedom is n - 3 where n is the
number of atomic parameters.

For plane B through the molecule, n - 3 = 5

2
X = .004996/25 x 10 = 200 (62)

Another plane was calculated through the carbon atoms

alone.

Q7261 X 4+ 75538 Y - 59642 Z - .05249 = O (63)

For this plane X ° = 42. Forn -3 = 3 degrees

of freedom, the probability that all the carbon atoms

are coplanar is still very low, however they appear to

lie more closely on the plane than do the oxygen atoms.

The root mean square deviation of the carbon atoms from

the carbon plane is .01353. Deviations of carbons and
oxygens are listed in Table XX. The plane of the carboxyl

group is given by
.18680 X + 1.31885Y - Z + ,06818 = O (64)

The angle between the carbon plane and the carboxyl group

is 3.60.
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Table XIX

 Deviations from the Plane of the Molecule (i)

[}  J
Ol + 0038 A 03 - ,0182 A
0‘,2 + .0416 04 ~ 0343
Cl - 0090 05 + 0209
_02 - 00290 06 + .0242
Table XX

.
Deviations from the Plane of the Carbon Atoms (A)

o, + .0161 & ¢, + .0156 &
0, - 20999 Y + 40202
c, ¢ 0060 G - .0159
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An electron density section evaluated in plane A is
shown in Figure XV, This is plotted with respect to the
axes f and g in the molecular plane (Broadley et. al 1959).
To determine these axés the plane was recalculated with

1
respect to a set of orthogonal axes a , b, ¢ to give

1926 X'+ 4.9260 Y - 3.5358 2 - .7167 = O  (65)

! ] !
where X = x sin Y =yand 2 = z + x cos and.
ﬂ 1 1 ' 1 t ﬂ 1
the coefficients of X Y and Z are A B and C .

The angle between the b crystal axis and f is given by

-1 A
tan O -3.1° = @ A (66)

!
The angle between the a crystal axis and g is given by

)
tan~ f, - -54.3° = o (67)

The lengths of f and g are obtained from

cos 54.3
' .
g = —E— = 19.565 % (69)



The angle between f and g is given by

cos ™t [(-sin 0)(- sin@)) = Y - 87.6°

Contours are plotted at intervals of 192-3. The mean

plane Fourier map shows clearly the high degree of anisotropic

motion of the atoms, which is masked in the projection by
the fact that the molecule is fore shortened along the

direction of maximum anisotropy.

14. Thermal Motion

It was observed from difference maps at an early
stage of the refinement that the atoms of the sorbic
acid molecule were vibrating anisotropically. For the
difference maps, the molecule was considered as a vibrating
unit (see section II. 7.2), however, in the least squares
refinement the vibration parameters of each atom were
treated separately. Isotropic B values were assigned
to the atoms for original input (see sectioﬁ II. 9.3),
but these were converted to the corresponding ,/3 ij's
(equations 15, 16) which were then refined in conjunction

with the atomic coordinates.

(70)

66,
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In the refinement programme, correction is made for
the variation in scattering factor of symmetry-related
atoms. When an atom vibrates anisotropically, the motion
may be described in terms of an ellipsoid of vibration.

If the atoms are related by a centre of symmetry
there is no change in scattering factor as is also the
case if the ellipsoid of vibration is directed along the
principal axes of the crystal. For atoms related by
two fold axes or mirror planes, however, the axes of their
ellipsoids are not parallel, and a correction must be made.

For sorbic acid, this corresponds to a change in
sign of the terms /312 a.ndﬂ% (Rollett and Davies 1955).

The final values of the anisotropic temperature factors
are listed in Table XXI. The standard deviations of th

/Gij's, also listed in Table XXI, were calculated as in
2

equation 58 (see appendix); the values of (gp[:—) being
obtained from the least squares output. :

In their paper, Rollett and Davies described a method
for the determination of the axes of the ellipsoids of
vibration. This method was used to compute the directions
of the axes of the ellipsoids of the atoms of sorbic acid
with respect to the crystal axes (Table XXII). The root

mean square deviations, U, from the axes, with the corresponding




Table

XXI

Anisotropic Temperature Factors (xlO-2 )

.Kgll

271 +
«265 +
0265 +
$292 +
270 +
«290 +
«259 *

191 +

.005
<005
.006
.008
.007

.008

812

150 +
<240 +
338 +

2128 +

- 033 £

- 0132 i

o311 #

- 0150 i

+055
«057
071

074

073

077

/652

10.396 +

11.910 +

T.720 +

7,560 +

7071 +

7.066 +

9.025 +

8.810 +

/3 23

~1.696 +

-

-

0227 +
619 +
391
414 +
J012 +

2191 +

132
« 217
«232
«236
«218
« 221
+185

«273

J067
-079
+090
088
.086
+090
100

«115

ﬂ%

485 +
635 +
442 +

«466

I+

434 +
466 +
531 +

«683 +

ﬂ]_}

137 +
0242 +
<173 +
«136 +
41+
J142 +
<137 +

113 +

+009
«010
.011
«010
.01l
012

»016

010
.012
.014
.015
.013
.015
015

019

68



Table XXII

Orientation of the Axes of Ellipsoids of Vibration

1.

e
1.
2.
3e
1.
20
3
1.
2.
3e
1.
2«
S
1.

e
I,
2e
3o
1.
2e
S0

with respect to Crystal Axes

a

93.6°
14845
6065

89.8

145.9
5648

110.1
15443
19+4

102, 2
139.8
56 66

8662
160.6
70.6“

6562
50.1
44.1

13.8
103.7
77«9

98¢5
T406
26.1

1.
2.
3
1.
2.
5
1.
26
3e

1.
2e
3
1.
2e
Se
1.
20
Se

1.
20
S
1.
2
e

b

95.3°
58.5
36,1

141.5
69.8
70.4

135.9
6443
67.9

91.1

51.1 .

40.9

48,0
735
3544
8l.7
138.2
4842
103.6
163.8
8445
1l.1
80,8
T1le4

1.
2.
Fe
1.
20
2
1.
20
3
1.
2o
30
1.
26
e

3

6e4°
90.3
Ti.1

51.5
6349
40.0

5267
89+9
24,8

12.3
9809
69.2

137.7
80.1
61,6

15306
79.9
71863

8709
8l.7

1343
82,9

161.9
7202

69-




Table XXIIT

R.M.S. Deviations from the Principal Axes {K)

8
o 457
02 492
¢y 374
02 384
cy 1349
C4 323
05 «318
c <426

9.2
5.3
56
4.6
3.9
3.8

6.9

b
;303
«303
«308
<319
327
«364
397

o342

8,0
3.5 A
3¢5
3.6
3.8
4.0
5.0

6.0

4.4

¢
-330
«361
«336
341
331
«345
36T

+386

T0.

4.3
4.4
4.2
4.6
5.1

5.6
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values of B are given in Table XXIII,

The value of U is compounded from the interval normal
modes of vibration of each atom and the rigid body vibrations
of the molecule as a whole. These rigid body motions msy
be resolved into vibrational and rotational components
(T + W ) with respect to a set of molecular axes (Cruickshank 1956)
(see section I. 3.2).

For further analysis of the molecular ﬁotions, the °
atomic coordinates were transformed to molecular axes
(Table XXIV).,. These were chosen with the origin at the
centre of mass of the sorbic acid molecule. The axis of
minimum inertia, determined by least squares, was taken as
the x axis. The molecule being planar, the x and y axes
were at right angles in the plane, with the z axis
perpendicular (Figure XVI).

It was observed by Higgs (1955) that there is a
linear relationship between ﬁz and the square of the
distance of the atom from the centre of mass. This
would, of course, hold only for atoms of one chemical
type. When this was applied to the carbon atoms of
sorbic acid (Figure XVIII) 3% for the atoms C, to G,
lay along a straight line, though the value of ﬁz for C2 is

high, indicating possibly that the centre of vibration of the

molecule does not quite coincide with the centre of mass
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Variation of Atomic Vibration Amplitude
with distance of the atom from the
molecular centre of mass.

FIG. XVII
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of.the monomer. The linearity of the graph does, however,
lend confirmation to the validity of application of
Cruickshank's treatment to the molecule,

The root mean square displacements of the atoms in
the direction of the molecular axes are related to T and W
by the equations (1. 19). In the case of a planar molecule,
coordinates may be chosen such that 2z = 0 The formulae
1.19 are thus considerably simplified, and the normal

equations which in the general case are of the twelfth

order, may be reduced to three fourth order equations

B 2 6. B 7]
100 y Gt "1
2
10 x T22 022
1 - Xy T12 12
4 4 22 2 22 _
i Xy YT || REAS PR PP R PN
B 2 2 I1Mm ] B 7
- i)
1 y X 2%y T33 33
2 2
y4 xzy -2xy3 mll y U33 )
= oo (1)
4 3 o 2y R
x -2x"y 20 x 33
2.2
) -2xyU
i v | %12 | ~2%VUs3 J
~ - - -
2 .
1 0 -x Xy 51‘23 U23
2
l xy -y Tl3 ) U13
4 22 3.3 - 2
X' +X Yy -xXy'-x"y w§3 X U23+ny13
4 2.2 2
i y +x ¥y ] _ﬁi i ny23-y U13 _
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The values of Tij and Gﬁij obtained from the solution
of the normal equations, together with their standard
deviations, are listed in Table XXV. The estimation

of the accuracy of determination of T + W was derived

from the expression

T2y = T (72)

pp'l is the appropriate

diagonal element of the inverse of the left hand matrices

where AP represents only Tij or «ﬁij C

in equations (71), and

o 2(m) - TP - o2 /(v -n)  (73)

where t is the total number of observed Uijland n the number
of parameters to be determined. The values of anlc were
obtained by the solution of the equations 1.19 using the
predetermined Tij and «ij' The calculated and observed Uij
are compared in Table XXVI.
From the Uij it appears that there is no preferred

direction of vibration, the mean displacements being .22A,
.21% and .26 along the x y and z molecular axes. The cross

terms are all small, on the order of one tenth.the value of

the diagonal terms. This serves to indicate that the
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Table XXV

Ty (x1072 42)

4.916%,212 | « 796 tk.212 '

0322 £,219
4.334 -.'.-.290 4382 ,291

6,005 % .352

wij. (deg.z)
110.42'-: 14.55 17.31%3.51 1.85 € 4.97
1.61%1.06 .65%1,03

5639 21,02




Pable XXVI

-0 o
htomic Vibration Amplitudes (x1072 42)

Ull 11
5140 5e232
4.920 40994
4.927 4.921
5,516 4.945
50063 4,930
5.458 44926
40958  4.954
3,836 4,917

uigres) wlgpe-)

«590 384
1.668 1.089
1.093 +«751
«490 +818
.419 .834
259 707
1.000 1.052
. 866 749

(obs.) U(calc.)

(obs.)
U22 U

40182
54100
4.823
44631
54020
4.926
6.331

8,028

(obs.)

2% v

U
«605
«478
515
0049
0346
.026

«559

- .199

(cale.)

22

4.882
5475
4.776
4.354
4.443
5.095
6.095

T.921

(calc.)

23
e242

423
408
392
<416
391
o137

«346

U

(ObSo)
33

9.879
11.466
6.351
6.923
54687
64190
7¢129

7073

(obs.)
U13

0197

- <772

<041

- 0081

- 359

- o517

0079

- 0913

U

(calc.)
Uss

10,036
90789
50941
6.750
6.562
50872
8,976

6.789

(calec.)
13

- 0335

..413

«318

- 0329

- ¢332

- +314

= 0358

- 0318

[Ve




molecular axes chosen coincide closely with the principal
axes of vibration.

The main component of molecular motion is an oscillation
of 10.5° about the axis of minimum inertia. The cscillations
about the y and z axes, 1.27 and 2,32 are comparatively small.
The standard deviations found forcﬁbz and ugj are sufficiently
large that only oscillations about the long x axis need be
considered significant with respect to alterations in bond
lengths. The cross terms «&3 and «%3 are small, indicating
that the axes of oscillation tend to coincide with the
molecular axes. The large value of Qiz may be accounted
for by the fact that the atoms in the chain are all close
to the long x axis, thus giving large standard deviations

11 1

The large standard deviations may also be accounted for

to the values of W sz and ﬁis (Cruickshank 1956 c).

by the effects of interval vibrations of the atoms which

cannot be resolved from the rigid body motions (Higgs 1955).
The considerable oscillation about the long axis

of the molecule would have the effect of shortening the

apparent distance of the atoms from the axis

(Cruickshank 1956 b) (Figure XVIII).
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A

Figure XVIII
Whereas the true atomic position would be represented in

«

the diagram by x, the measured coordinate would be x'
where Ox is perpendicular to the axis of rotation and

OA and OA' are the limits of oséillation. Knowing the
amplitude of the oscillation it is thus possible to
calculate the true coordinate. Since all the atoms in
sorbic acid except O, lie close to the axis (Fig. XVI)
the shifts are small, being for the most part within the
limits of accuracy of the coordinates. The Ci-dl bond
is, however, considerably lengthened. The revised bond
lengths are given in Table XXVI. The bond angles along
the chain are all slightly decreased with the exceptions
of O1 - C1 - O2 , which is increased. The corrected
bond angles are given in Table XXVIII. These, and the

bond lengths are shown diagrammatically in Figures XIX

and XX.



Table XXVII

Revised Bond Lengths (K )

1.260 A €5 = ¢,
1.318 ¢, = G
1.454 g = G
1,346

Table XXVIII

Revised Bond Angles

1229 €= G5
122.4 c3 - c44
° -
115.0 c4 05
123,5°

[ ]
1.454 A
1.339

1.513

-C %25.5‘

4 .

- Cg. 123.8°

124,8%

(D
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15. Intermolecular Contacts

The closest approaches to neighbouring molecules
are listed in increasing order of length up to a distance
of 4 ] (Table XXIX). The equivalent positions of the
molecules concerned are: molecule O; x, y, 23
molecule 13 X y 2z ; molecule 2; x, l+y, 2 ;
molecule 3; 4-x 4-y -z ; molecule 4; X, l-y, -32;
molécule 53 4-x, 3+y, %-z; and molecule 6; 1-x, y, #-3.
These intermolecular contacts are also shown diagrammatically
in Figures XXI and XXII.

The shortest distance is the hydrogen bond between

O2 of molecule 0 and O, of molecule 1, related to the

1
first by a centre of symmetry. 0f the non-hydrogen
bonded contacts, the shortest is that between 02 of

molecule O and O, of molecule 4. This is 5.363, which

1
is greater than the sum of the Van der Waals radii for
oxygen, 2.83. The carbon carbon distances are all

greater than 3.4%.




Table XXIX

Intermolecular Distances less than 4&

Q
=
1
= hfaq HHOEH
H H

1>
O\ :
ONH
Laa]

ViH N
H

Cc, -0

o-

<

o, -0

Q
'
Q

VH R
[

2.65 &
3.36
3440
3.41
3.43
347
3449
3453
354
354
3.62

375

H O\
< HH

<

(.
-

w
- —
H ¥
H —

3.76 &
3,76
3.61
3.88
3.90
593
%.96
3497
%98

3.98

2,98

%.98

8l.
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16. Analysis of Molecular Diménsions

The lengths of the carbon-oxygen bonds in the
carboxyl group confirm the earlier conclusion (see
section 7.3) that the hydrogen is associated with 0,5
Cl--o2 being considerably longer than the doubly-bonded
Ciol . The carbon-oxygen bond lengths are within the
normal limits for single and double bonds as found in
free acids (Table XXX), though they vary slightly from

the average values.

Table XXX
¢i=0 =%,
° ’ °®
Sorbic Acid 1.256 A 1.318A
/J- Ionylidene 1.244 1.325 (Eichhorn and
Crotonic MacGillavry 1959)
Succinic 1.249 1.311 (Broadley et al 1959)
Average values 1.23 1.36 (Tables 1958)

It is noteworthy that the carbon-oxygen double bond is
not 9éalle1 to the carbon-carbon double bonds as might
have been expected. Other conjugated acids also show

this effect (Crotonic,/—Ionylidene crotonic), which may
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be explained by the steric effect of the hydrogen on 03
whose presence would cause slight overcrowding if the
hydroxyl group which has a smaller C - C ~ O angle was
directed on the same side of the molecule.

The double bonds 02 - 03 and 04 - 05 are of normal
length, averaging 1.3423. This compares with the normal
ethylenic bond length of 1.3373 (Tables 1958).

The C - C bond of the terminal methyl group appears

to be a pure single bond, however the C. - 02 and C, - C

1 3 4
bonds are significantly shorter than normal single bonds.
Dewar and Schmeising (1959) give a minimum value of

1.479 for an sz - sz hybrid single bond, whereas the
lengths of both bonds in sorbic acid are 1.4543. This
could indicate some degree of conjugation both with the
carbon-carbon double bonds and with the doubly-bonded
oxygen of the carboxyl group. The near-planarity of

the entire molecule (section 13) lends support to the
possibility of such conjugation throughout the molecule.

The bond angles along the carbon chain are all slightly
larger than the theoretical Sp2 bond angle of 1200, the
average value being 124.40. Crotonic acid and

/6 -Ionylidene crotonic acid also have bond angles slightly

greater than 120°. This is probably due to the steric
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effect of the hydrogen atoms along the chain which would
tend to force the carbon atoms apart by inocreasing the
bond angles. The sum of the Van der Waals distances
for two hydrogens is 2.43 (Pauling 1960) compared with
the values of 2.46 - 2.498 for the hydrogen-hydrogen
distances along the planar chain. Slight deviations
from planarity would also serve to increase the distance

somewhat.
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IIb Crotonic Acid

1. Crystal Data

Crotonic acid C4H602’ m.p. 71 = 720, was crystallized
by slow evaporation from aqueous solution as thick clear
needles. Unit cell dimensions were determined from
measurements of rotation and Weissenberg photographs
corrected for film shrinkage.

Crotonic acid is monoclinic.

Table XXXI
a 15.32 + .02 &
b 4.021+ .005

16.17 + .02

P
A 107.6 +.1°

It may be noted that in the axial system chosen, ¢ is
longer than 9_,. whereas it is custumary in monoclinic
systems to consider a to be the longer of the two
non-unique axes. The choice was made in order to preserve
the analogy with the structure of sorbic acid. It was
immediately apparent from the Weissenberg photographs

of the hO4 =zone that the structure of the two acids
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were very similar. In sorbic acid, the unique axis
is 4.023 and the ¢ axis is 15.823, both comparable

to the b and ¢ axes of crotonic acid. The g axis is
longer, 20.013 as compared to 15.323, corresponding to

the greater chain length of sorbic acid.

2. Space Group

From Weissenberg photographs of the hOf and hI.
nets of crotonic acid, it was apparent that all odd
reflections with indices were absent from the hO4 zone,
whereas for the upper layer absences occured when
h+k = 2n+ 1. A precession photograph of the hkO
zone indicated that OkO reflections were absent for odd
values of k. These absences correspond to either of the
space groups'%g\opwgglp. From consideration of the cell
dimensions it was apparent that there were eight molecules
per unit cell, corresponding to a density of 1.204 g/oc
{found 1.192 g/cc at 22°). If the structure were non-
centrosymmetric then the asymmetric unit would contain two
moleculesfgg has .only four equivalent positions. From

the close resemblance of the structure to sorbic acid it

was highly probable thﬂt/EZZQ was the correct choice.




This was confirmed after the collection of the three-

dimensional data by the application of statistical tests.

3. Intensity Data

A large clear needle of crotonic acid which showed
good extinction when examined under polarized light was
cut to a size suitable for X-ray examination. As the
substance had a high vapour pressure, the corystal section,
2 mm, X .4 mm. x 2 mm,, was sealed in a thin-walled pyrex
capillary.

Using four-film packs (Robertson 1943), in a Nonius
camera, equi-inclination Weissenberg series were taken
about the short b axis using CuKo¢ radiation. Three h0.£
series were recorded, with 1 hr., 6 hr. and 24 hr. exposures;
two of each of hI.Z and h2.£ ; exposed for 3 hrs. and 24 hrs.
respeétively; and one h3{£ series with a 48 hr. exposure.
The h4 £ net was not obtained because the equi-inclination
angle was too large for the camera.

The intensities were estimated visually using a step
wedge. The film factor for the hO.4 series was 3.3.
This was increased for the upper layers to compensate for

the longer path length through the film (Rossmann 1956).

87.
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The data were corrected by the application of Lorentz and
Apolarization factors, and, for the upper layers, the

Tunell” factor (1939).

4. Statistical Tests

A.1 Variance

The corrected hOf hif and h2£ intensity data were
divided into three ranges of sin 03 .20 -. .55, .55 - .75
and .75 - .90. Any reflections lying outside the scope
of these ranges were discarded. The total number of
reflections considered in each range was 149, 194, and 288,

The weighted average variance calculated over the

three ranges is 2.43.

4.2 N(z) Test

N(z) was evaluated for each range for z = .1(.1)1.0.

The weighted average values for the three ranges are listed

in Table XXVI.
Table XXX IT

2 = -l 02 -3 04 ¢5 06 07 .8 ’9 1.0

N(z) .232  .425 497 .598 .653 .692 .723 .756 .780 .780

]

As both tests indicate that the structure is centrosymmetric
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5, The 010 Projection

By analogy with sorbic acid, crotonic acid was assumed
to have the eight molecules in the unit cell arranged as
four pairs linked through their carboxyl group as hydrogen
bon@ed dimers, the centre of the dimer coinciding with a
crystallographic centre of symmetry. A set of coordinates
was chosen, based on the final sorbic acid parameters, but
altered slightly to compensate for the difference in the
monoclinic angle. A temperature factor of BO = 5 was
applied for the calculation of a set of structure factors,
whose discrepancy between observed and calculated values
was 66%. Although this value was not encouraging, the
signs éf 54 terms were combined with the corresponding
observed structure factors for an (010) Fourier projection.
Calculations were carried out on the Deuce computer, requiring
five minutes for the 90 structure factors and 4% minutes for
a 30 x 30 10 £ Fourier. The atoms, apart from the terminal
carbon atom were ﬁoorly resolved in the first Fourier projection,
however, it was possible to obtain a new set of coordinates.

Structure factors calculated from coordinates obtained
from the Fourier projection gave a discrepancy of 57%. When
a third structure factor calculation failed to better the
agreement (this was later diécovered to be caused by a

computer failure), an error synthesis was computed.




The coefficients (Fo - Fc) for the 96 observed reflections,
were used for the Fourier summation. The resulting error
map indicated, as expected, that there was no gross
misplacement of the atoms, although certain large shifts
were indicated, particularly for C3' The carbon atoms of
the double bond, 02 and 03, were shifted so as to decrease
the angle between the double bond and the single bond of
the methyl group. A further set of structure factqrs gave
an agreement of 41% for the observed terms.

A second errof synthesis was computed to examine the
effects of the coordinate shifts. The second map was
similar to the first indicating that the shifts, though in
the right direction, were not large enough. A further
cycle indicated that shifts were again too small, and
examination of the third error synthesis showed that the
angle of the molecule to the a axis must be increased.
Accordingly, the values of the z coordinates for 02’ 05
and C4 were increased by up to .2%. Smaller shifts were
applied to the atoms of the carboxyl group.

After the sixth structure factor calculation, the
discrepancy had fallen to 25%. Further refinement of the
projection was carried out by least squares procedures,
Coordinates taken from the fifth difference map, combined

with an initial isotropic temperature factor of 4.5 were

used as input to the least squares programme. The initial

90.
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R factor, with the lowered value of B, was 22%. After

°]
three cycles on half shift the discrepancy had fallen to 14.6%.

At this stage, the positions of the six hydrogen atoms
were calculated from their probable location with respect
to the carbon and oxygen atoms. Introduction of these
hydrogens increased the time for a structure factor caloculation
from eight to fifteen minutes. After five more cycles, in
which the R factor and 2w ? (see section ITa 1.) fell
increasingly slowly, the refinement was terminated at a
discrepancy of 12.9%. The final coordinates are listed
in Table XXXIII. |

The signs obtained from the last structure factor
calculation were assigned to the corresponding observed
structure amplitudes for the computation of the final electron
density map Fig. XXIII. Contours are plotted at intervals
of 1e/82. This shows good resolution of the carbon and
oxygen atoms. The differences between observed and
calculated values of the signed structure factors were
used as coefficients for a second Fourier summation to show
the residual errors (Fig. XXIV). A further set of structure
factors was calculated, based on the coordinates of the carbon
and oxygen atoms alone, The values of Fo - Fc resulting from
this calculation, when used as Fourier coefficients, yielded a
map showing the hydrogen positions (Fig. XXV). Contours on

both F_ - F_ maps are at intervals of .2e/8 with negative




Final Fractional Coordinates - 010 Projection

Table XXXIII

/e

. 11049
+05456
.12365
«21146
«28952
.38709
~ 400654
+20900
«29400
+39800
;41800

46100

z/o
.00716
«09598
07262
«13491
.12517
«18248
+05679
«19759
06179
«23249

oé3699

«15449

92.




c/4

Crotonic Acid (Old) Projection.

Electron density map. Contours af intervals of

le/A2 ; zero contour broken.

Pigure XXIII




Crotonic Acid (010) Projection

(Fo - Fc) map. Contours at intervals of O.29/A2.
Negative contours ————

Zero contours =-=:=.=




c/4

Crotonic Acid (010) Projection

Hydrogen map. Carbon and oxygen contributions
subtracted out. Contours at intervals of O.2e/A2.
Negative contours e—e=-=

Zero contours =.=:=.=-

Figure XXV
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contours dashed. The hydrogen atoms appear as diffuse
regions of electron density superimposed on the residual
errors. These are relatively small, indicating that the

majority of parameters have been successfully determined.

6. The Structure in Three Dimensions

It had already been determined by comparison of the
h0f zone structure factors that the structures of sorbic and orotonic
acids were closely allied. Upper layer reflections also
showed this similarity. The b-axial lengths of both
compounds being virtually identical, a set of Y coordinates

were chosen based on the sorbic acid coordinates (Table XXVIII).

Table XXXIV

Y-coordinates for three-dimensional refinement

0, -.06421 c, . 23000
02 .23%688 C3 .07500
Cl .10424 04 .21500

These, combined with x and z values from the 010 projection
were used for the calculation of structure factors for the

137 observed h2.£ reflections. The agreement was 39%.
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Following a method described by Rossmann, (Rossmann et. al. 1959)
a few rapid least squares cycles were computed (time ~ 8 min./cycle).
This method is useful for structures in which most of the atoms
are close to their correct positions, particularly when two

of the positional parameters for each atom are known. The
magnitude of the shifts in the thermal parameters indicates
which atoms are misplaced. The coordinates of these atoms

may then be altered by hand from consideration of bond lengths,
Three cycles of refinement on the h2.£ zone lowered the
discrepancy to 29%. None of the atoms were showing the large
shifts of thermal parameters characteristic of wrongly placed
atoms, however an isotropic temperature factor of Bg = 4.5

was reintroduced and three more cycles completed to bring

the agreement for h2.£ to 24% and lower the value of 2wi?
from 51 to 18. The coordinates so obtained were used for

a calculation of the hl.f reflections, for which R = 27%.

A second calculation gave R = 23.5%. After a single
calculation of the h3.4£ net structure factors for scaling
purposes, all the observed data were included in a structure
factor calculation using coordinates from the final n1.4

cycle. The overall agreement was 33.6%. This fell

slowly on refinement to a value of 20%. At this point,

twelve of the strongest low order reflections whose

calculated values were consistently higher than the observed,
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were removed from the refinement. The planes removed were
‘those which would most likely suffer from extinction.
Hydrogen atoms were included. The refinement then proceeded
without incident to a discrepancy of 13.4% for the observed
reflections., The progress of the three dimensional
refinement is shown in Table XXXV. Refinement was terminated
at 13.4% at which point the mean atomic shifts were less than
the staﬁdard deviation of atomic position (Table XXXVI). The

final coordinates are listed in Table XXXVIT.

65 Standard Deviation

The standard deviations were calculated from the least
squares output by the method described in section IIa 1
(see appendix II). The final value af}ivwdﬁz for crotonic
acid was 42. The total number of reflections iﬁoluded was
848, therefore (n-s), the number of reflections less the
number of parameters was 79%. The standard deviation of
atomic positions is given in Table XXXVIII. The values
obtained from the least squares output were multiplied by

1.05 to allow for the monoclinic angle (Templeton 1959).




Table XXXV

- R and 216-2

96.

Cycle R T wa? Cycle 3 Swa?

1 33.6% 197 7 21,9 7

2 51.8 191 8 21.3 66

3 29.1 161 9 20.9 63 Extinstion

(<122 @ oY
4 2646 134 10 18,9 45
5 26.3 122 11 18,7 42
13.9 obse
6 25.8 104
Table XXXVI
Coordinate Shift _ Final Cycle
A x/a ox/a Ay/b 6 y/b Az/o & z/c

0, 00015 00025 00005 .00115  .00012 .00023
0, .00000  .00024 00014  .00111  .00007  +00024
C, +00014 000034 200003 .00013 00000 «00032
¢, .00018 00038 00012 .00134 600003 +00033
C; 00044 00038  +00025 00137 J00004 600322
C,  .00018  ,00038 400010 00157 00006 200039




Table XXXVIII

Final Fractional Coordinates

x/a

«11113

+05270

.11960
«21103
+ 28855

058281

y/b
= o07010
21225
-09319
_.17140

206175

«13052

00703
.09833
07373
+13465
212416

018348

9.



Table XXXVIII

o
Standard Deviation of Atomic Position (A)

?:
1.7025
8073
1.8%23
342330
4.4206

568646

:
1.6582
+035280
1.4729
2.5766

" 3.8153

4.9703

T x
0038
+0039
.0056
;0062
0061

00061

, - .
Orthogonal Coordinates  (A)

4
- 42819
«8535
3771
26892
«2483

05248

Table XXXIX

sy
#0042
0047
«0057
10057
0058

<0067

Y
- .2619
8535
3771
.6892
«2483

«5248

@
«1137
1.5900
1.1922
2.1773
2.0077

2.9669

01084

1.5160
1.1368
2.0760
1.9143

2,.8289

0039
«0042
+0057
0055
0055

00065

98,




99.

7. Molecular Geometry

The uncorrected bond lengths for crotonic acid, calculated
from the orthogonalized coordinates (Table XXXIX) are listed
in Table XL. These, and the bond angles given in Table XLI,
are, even more than the dimensions of the sorbic acid moleculs,
subject to correction to allow for thermal motion (see

section IIa 14). The standard deviation of bond length o~ d.,

calculated from the expression
ca = (caf + oB) (74)

where O Al and O 132 are the mean standard deviations of
position of two atoms, are given in Table XXXIV. The standard

deviation of bond angles (G"9) was calculated from the expression

2 1 g2
o 2(q) o) | 2 - - 2 088 21 ) + C  (15)
d“ AB G

2
4" 4B dyg d¢ % gg d

where O A,0'B and O'C are the mean standard deviations of

position of three atoms and d is the distance between two

atoms (Cruickshank and Robertson 1953). The values obtained

are listed in Table XXXV.
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Qa.ble XL

Bond Lengths ()
1.237 4 006 A C, = C 1.325 + .008 A

1,297 + 007 03 - 04 1.498 + .009

1,482 i .008 0-H -0 2.635 + 006




CROTON IC ACID CROTONIC ACID
Bowp LENeTHS (£)  BND ANGLES (DEG.)

FIG. XXVIII FIG. XXIX
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8. Hydrogen Positions

Hydrogens could not be located with accuracy. The
final positions are listed in Table XLII,, The bond .
lengths involving hydrogen, given in Table XLIII are thus
subject to considerable error, the standard deviation of
each individual C-H bond being .138. The mean value of

the C-H bond distance is 1.06% + .05 (Crumpler and Yoe 1940).

9, Molecular Plane

Planes were calculated (Shomaker et al.1959) through
the molecule as a whole, and also separately through the
carbon atoms and the carboxyl group. Application of the 7‘.2
test (sectn. IR1l3) to the plane through the molecule yielded

a value of
X2 -Sa2e(x)? = 5 (76)

For 6 atoms, for which the number of degrees of freedom.is
6 -3 = 3, the probability that the atoms lie strictly on
a plane is thus very low (Fisher and Yates 1957). For
deviations of the four carbon atoms from the carbon plane,
however, X 2. .059 for 4 - 3 = 1 degree of freedom. This

corresponds to a probability of 80% that the carbon atoms



Table XLII

Final Fractional Coordinates ~ Hydrogen A toms

x/w

had 000657

+20910
«28533
42815
38581

«42574

y/b
«15354
035784

- 01134
«14799
039669

- +03104

Table XLIII

. L .
Bond Distances Involving Hydrogen fA)

.981 A C, ~ H4

4
- 1,109 04 - H5
0884 C4 -H6

. -]
Average C ~ H distance 1.06A

®
1.231 &
1.082

1,035

z/o
«05676
+18461

07172

013238

«19401

« 22713

102.
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are coplanar. The equation of the plane of the carbon atoms

with respect to the orthogonal axes a b g' is given by:

+22424X - .81360Y - .53645Z - .02463 = 0 (11

where X = x + 2 coig s Y=y and 2 = z sin/@ . The deviations

of carbons and oxygens from this plane are listed in Table XLIV. .

Table XLIV

Deviations from the carbon plane (&)

o) +.0291 & c, +.0006
- ; .000

0, .0400 Cy +.0007
- "". 0

¢, .0007 ¢, 0007

The plane of the carboxyl group with respect to the

same axial system is
.36301x + 1.66836y - z - .02694 = O (78)

This forms an angle of 5.75° with the carbon plane.
The electron density was determined in the plane of the

carbon atoms (Fig. XXV). This is plotted with respect to

the axes f + g in the plane (Broadley et al 1959). The

plane was recalculated in terms of another set of orthogonal

]
axes g 2 c




Crotonic Acid

Electron density map in the plane of the molecule,

Contours at intervals of le/A3; one electron

contour dashed.,

Figure XXVI
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.05151X + .81360Y ' - .57915Z - .02463 = 0  (79)

t 1]
where X = x si&d Y =yand 2 =12 +x coi/d and A' B’ and
1]
C are the coefficients. The angle between the b orystal
- '
axis and f, tan 1 K/d is 54° 33 .  The angle between.g' and
-1 0. o ! 9
g, tan”~ B/C is 5 5 . The lengths of f and g are 6.933 A
']
and 14.660Arespectively. The angle between f and g is
- ' ' !

cos™ (sin 54° 33" sin 5°5') - 85° s2',

This map reveals an even higher degree of anisotropy
than was displayed in sorbic acid (Fig. XV). This is in

agreement with the results of calculations on thermal motion.

10, Thermal Motion

The values of the anisotropic temperature factors
obtained from the least squares refinement, with their
standard deviations (see section IIb .6) are given in Table XLV. ..
The axes of the ellipsoids of vibration of the atoms of
crotonic acid were determined by the method of Rollett
and Davies (1955) (Table XLVI). The root mean sguare
amplitudes of vibrations along these axes are listed in
Table XLVII. The eccentricities of the ellipsoids so described
are slightly greater than those for sorbic acid (Table XXIII)
though the lengths of the major axes are comparable.

If, as a first approximation, the molecule may be



Table XLV

Anisotropic Temperature Factors (x10’2 )'ﬂ

/An

+553 + 012
«475 £ .013
-442 + .018
+649 + 021
.708 + ,021

«431 + .020

ez

574 + 4010

620 + ,011

<376 + 4013
578 £ .014
«634 + 015

- 302 + ,016

/22

6.967 +
9.983 +
2,910 +
3.526 +
3.905 +

64653 +

/2

~1.946 +
=2.533 &
0130 +
.001 +
613 +

o521 +

.021

«025

+026

.029

.029

039

.008

.010

.014

012

013

.018

A 33

580 + .012
667 + 014
521 + ,018
0467 + 4017
505 + 018

o751 + 4024

/13

«526 + .018
o424 + ;021
.214 + .030
o464 + 029
«638 + .030

0065 o 0039

105.

-



Table XLVI

Orientation of the Axes of Ellipsoids of Vibration

1.
2e
3

1.

Ze

1.

Je

1.

2e

3

1.

Za.

Se

1.

3

. with respect to Crystal Axes

110,3°
47.2
59.2

90.3
13644
49,0

102.0

. 167.2

89.4

102.1
15.1
85.2

271
TTe8
4943

101.2
7840
31.2

1.
3e

1.
2e
e

1.
2.

Be

1.

S

2.
S

1.
2
Se

b

83,8°
131.0
41.8

11848
527
62,7

98.7
837
26.9

16.4
86.0

599

83.1
16443
T4+5

179
7440
65.6

2.
3e

1.

2.
e

3o
1,
Ze
S

I.

b

21.3°
70.8
64.7

28.8
70.8
53.2

14.8
101.1
63.1

100.9
101.2
30.6

116.,0
8043
44.8

T6e3
159.8
T1.8
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Table XLVII

R.M.S. Deviations from the Principal Axes (;)

.140
.352
.149
.163
292

+324

Coordinates with respect to Molecular Axes

G

®a

1.6 A
9.8
1.8

2.1

6.7

843

b
«309
<167
«258
«270
«170

«209

Ber
7.5 A"
2.2
5.2
5.8

23

3.5

Table XLVIII

«255
242
«220
0225
«216

«230

@)

- 98571

-1.77257

- +82300

+53256

1.64572

3.04138

Y
~1.32162
. 78418
- 209641
+50391
- .21476

«33246

+04799

~e 06673

=,00127

»00125

»00150

-+00092

3.8

4.0

4.2

107.
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assumed to move as a rigid body, the vibrations of the

atoms may be resolved into translational and rotational
motion of the molecule as a whole (Cruickshank 1956a).

The positions of the atoms were calculated with respect to
molecular axes whose origin was taken at the molecular

centre of mass (Table XLVIII). The x axis is directed along
the long axis of the molecule, with the y axis at right angles

in the plane and the z axis perpendicular (Fig. XXVII).
Figure XVII

e /\\// X

Y

From the observed root mean square displacements (Uij)
Of‘thé atoms with respect to the molecular axes, leaét
squares normal equations may be derived (sections I 3.3 and IIa 14)
for the determination of T + @), the translational and rotational
components of the molecular motion. The values of T + W so0
obtained, wﬁth their standard deviations are listed in Table XLIX..
Using these values, the equations (I (19)) were then solved
for Uij' The observed and calculated values of Uij are
compared in Table L. . The fair. correlation of these

values indicate that the treatment of the crotonic acid

molecule as a vibrating unit is probably valid.




109.

Table XLIX

Tij (x10724?)

5.087 # «440 1830 + o435 - o704 + o474
2,941 + «579 - +925 & 584

ij
1863 + 27.0 4403 £ 940 1.0 £ 13.5
18.9 + 5.1 1ol + 4e6

16,0 + 4o4




Table L

Atomic Vibration Amplitudes (x10™2 4°2)

(ObSo)
Uyp

5.068
4,640
4724
6.078
60267
5.294

(obs,)
Uy2

2.699
2.502

.438
1.925
2.859

«039

U(oalc.)

U

11

60056
50433
5.093
5228
5113
50149

(cales)
12

1.105
24595
1.786
1.682
2,024

1.272

(obs.)

U22

2.126
24956
5,100
‘3-567
44412
84909

(ObSQ)
25

bl ov908

U

- 755
1,480
- 716
- o084

—10410

(calc.)

U22

30493
4.691
3.315
3,098
4.434
8,039

(cale.)
23

- .622

U

- 619
- #945
- 4929
-1f024

~1.214

(ObSc)
Us3

8.795
11.855
3,085
3.627
2,797
50695

(obs.)

U13

~1.101
-1,036
- 4892
- .219
- o712

- 4515

(calc.)
33

9.074
11,178
24350
3,000
4900
56352

(Calco)
13

- o771
- 910
- »702
- o712
- 719

- +671
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The cross terms of the Tij's are small with respect to
the diagonal terms, indicating that the molecular axes
chosen are closely coincident to the true axes of vibration
of the molecule. The values of Mﬁl 032 + &13 are larger
because the atoms are close to the x axis, resulting in a
large error for these terms (Cruickshank 1956c). The
effects of internal vibrations, which cannot be determined
accurately, also contribute to the error (Lonsdale 1961)

The vibrational movements are fairly uniform, though,
as expected, slightly larger along the chain length.  The
mean displacements ére .223, .18% and .132 in the x,y and 2z
molecular diregtions respectively. The oscillations about
the x axis are exceptionally large; approximately 13.50,
which would have considerable effect on the bond lengths
(Cruickshank 1956b). Oscillations about the other axes
are 4.1° and 4.2° respectively. The molecular dimensions
were. revised to include the effects of oscillation about the
molecular axes. (Cruickshank 1956b). The values obtained
for bond lengths and angles are given in Tables LI = and LIT..

These are shown diagrammatically in Figures XXVIII and XXIX,




‘Jable II

Revised Bond Lengths

0y

%,

0y

%,

o

0, - ¢

0, - ¢

0, - ¢

¢, - G
C. -G

-0, 125.3

-c 1.250 &
-C 1.303
-C, 1.498
-C 1.327

- C 1.502

Table III

Revised Bond Angles

2 .
- C, 121.7°
- ¢, 113.1°
, - Cs o 122.9°
-c, o 125.4°
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1l. Intermolecular Contacts

The closest approaches to the surrounding molecules
are given in Table LIVe'. They are listed in inoreasing

order of length up to a distance of 4.03. The equivalent

positions of the molecules included are listed in Table LIII, .

Table LIII

Equivalent positions of neighbouring molecules

Molecule O Xy ¥y Z
Molecule 1 Xy ¥y 2
Molecule 2 X, l+y, 2z
Molecule 3 X, 5V, 2
Molecule 4 X, l-y, z
Molecule 5 $-x, B+y, $-2
Molecule 6 1-x, ¥y , -3

The closest approaches are shown diagrammatically in
Figures XXX and XXXI.

The shortest distance between neighbouring molecules
ocours in the hydrogen bonded carboxyl group; between 02
of molecule O and 0, of molecule 1 which is related to
molecule Ovby a centre of symmetry. The distance between
C, of molecule O and 0 of molecule 1 is 3.388. This is
slightly greater than the sum of the Van der Waals radii

for carbon and oxygen (3.12 Pauling 1960).
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Table LIII

' °
Intermolecular Distances less than 4 A

2,63 A 03- 01' ' 3,61 A |
I 3.38 0~ C7" 3,74
3.39 o, o 3474
: 3.43 0~ Cf 3,76
- 3.48 ¢~ 0 3.79
. 3.52 A R |
; 3.54 0, 0" 3.67
f 3,56 ¢, cff 3.98
T s
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12. Analysis of Mole cular Dimensions

The revised bond lengths found for the carboxyl group
of crotonic acid _( Table LI ) are not inconsistent with
those found for other carboxylic acids. The shortening of
the single carbon-oxygen bond (1.303A4) from the average
value of 1.363 and corresponding slight lengthening of the
double bond (1.2508 , average 1.23%) possibly indicate that a
certain degree of hybridization occurs, or that a fraction
of the dimers is packed with carboxyl groups arranged in the
opposite sense. The latter would, however, tend to be
prevented by the steric effect of the hydrogen atom on 02.
The length of 1.498% found for the 05C, bond, which
corresponds to the normal Sp2 - sp2 single bond distance,
coupled with the value of 1.3273 found for the double bond
seems to indicate that conjugation does not play a large
part in the determination of the molecular dimensions. The
oxygens of the carboxyl group are not, of course, coplanar with
the carbon skeleton, though the angle of tilt, 5.7°, is
sufficiently small that some orbital overlap could

still occur,

The revised bond angles found for crotonic acid (Table LII)
are consistent with those obtained for sorbic acid and
ionylidene crotonic acid, both around the carboxyl

group and along the carbon chain.




IIc Discussion

1, Bond Length

The bond lengths of the two acids,studied compare
favourably with each other and with those found for
other similar carboxylic acids. The main point of
difference occurs in the Cl - 02 bond; that is, the
carbon-carbon bond to the carboxyl group. The value
obtained for sorbic acid is 1.453 while that for crotonic
is 1.502. As the standard deviations of these bonds is
less than .013, these differences are possibly significant.
The sorbic acid molecule has a longer double bond system
which may result in some conjugation along the chain.

A survey of a number of unsaturated acids shows that,

in general, the C; - C, bond is shortened (Table LV),. .

1
Table LV

Cl - 02 Bond length of some unsaturated acids
Bond length (&)
Tiglic acid " 1.44 (Porte and Robertson 1959)

Chlorocrotonic 1.44 (Mammi et. al. 1960)
Maleic C1.44 (Shehat 1952)
Sorbic 1.45

Salicylic 1.458  (Cochran 1953)



Acrylic 1.46 (Nitta 1960)

/d—Ionylidene crotonic  1.46 (Eichhorn and MacGillavry 1959)

Furoic 1.47 (Goodwin and Thompson 1954 )
Benzoic 1.48 (Sim et. al. 1955)
Crotonic ~1.50

This shortening may be sufficient to indicate a certain
amount of hyb?idization in some of these compounds, particularly
in those molecules with a C1 - 02 bond length less than 1.453.
It must be noted, however, that for cyclooctatetraene which
is sufficiently non planar to preclude overlap of the
orbitals, electron diffraction studies show a C - C bond
distance of 1.462 + .001% (Bastiansen et. al. 1957). This
distance, though shorter than Dewar's (1959) calculated value
of 1.4793 must thus be included as a lower limiting value
for pure sz - Sp2 single bonds. Thus in crotonic acid,
~as in the other instances in which the‘Ci-C2 bond has been

found to be greater than 1.463 resonance must play a limited role.

2. Molecular Motion

Most of the organic structures investigated by X-ray
analysis are studied at room temperature, that is, relatively
close to their melting points. Sorbic and crotonic acids

present two interesting examples of structures with

-




relatively loose intermolecular forces and correspondingly
great freedom of motion for the individusl molecule. Crotonic
and sorbic acids melt at 72°C and 13400 respectively, thus
crotonic acid in particular would be expected to show a

high degree of thermal motion. This has been confirmed.
Crotonic acid has been found to have an oscillation of
amplitude 13.5o about the long axis of the molecule, compared
with the smaller but still considerable value of 10.5° for the
higher melting point of sorbic acid. These results are
consistent with those obtained for./é'-Succinic acid which

is a dibasic acid melting at 189—9000. This acid crystallizes
in infinite chains linked by hydrogen bonding through the
carboxyl groups at each end of the molecule. This structure,
which would still have little resistance to rotation about

the chain axis has been found to have an oscillation sbout
this axis of approximately 9° (Broadley et al 1959). Though
the values of the individual temperature factors obtained

from the refinement of crotonic and sorbic acids may be
subject to error (Lonsdale 1961), nevertheless the syntheses
°f th§se values in the determination of the motion of the
molecule as a whole should yield a result whose order

of magnitude, at least, is significant. The correlation

of the values obtained for these three acids with their

molecular size and melting point appears to confirm this
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conclusion. Some of the observed effects of oscillation about
the long axis may be accounted for by internal twisting
vibrations however these should have a comparatively small
influence at room temperature (Cruickshank 1960).

These results also agree with those predicted from
observation of the thermal diffuse reflections for sorbiec
acid (Lonsdale et. al. 1941). Laue photographs of sorbic
acid exhibit a pattern of broad diffuse reflections corresponding
to planes parallel to the chain length, and thin diffuse streaks
in directions perpendicular to the chain.

These streaks indicate the existence of transverse waves
travelling through the crystal normal to the chain direction,
resulting in a movement of chain against chain.(Amor8s and Canut 1957).
The observed oscillation of the molecules about the chain axis
appears to confirm this.

The apparent slight deviation from planarity may result
from these thermal vibrations of the molecule. Allene,
butatriene and dimethylacetylene which would be expected to be
strietly linear have been observed in investigations by
electron diffraction to exhibit slight bending due to thermal

motion (Bastiansen and Traetteberg 1960).
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Structure Factors for Sorbic Acid
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Structure Factors for Crotonic Acid
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' APPENDIX II

SOME PROGRAMMES WRITTEN FOR THE DEUCE COMPUTER




APPENDIX II

Some Programmes Written for the Deuce Computer

Deuce is a binary digital electronic computer containing

both fast access and slow access information stores. The
fast stores consist of 21 mercury delay lines capable of
holding 1, 2, 4 or 32 32-digit binary numbers, having an
access time of 32 to 1024 microseoonds. The slow store
comprises a magnetic drum holding 8192 32-digit binary
numbers, having access time of 13 to 48 milliseconds.

Input and output can be in the form of punched cards
or punched tape,

Programmes may be written in basic machine language
or may utilize a simplified coding scheme such as STAC
or Alphacode. STAC (Sf.orage Allocation and Coding)
translates decimally punched instructions to basic machine
language. The STAC control also includes instructions
which facilitate the testing and development of a

programme,

130.
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Programme I

This programhe; using the STAC control system calculates
the variance (V) of modified intensities ( Fo 2) and also

computes values for the N(z) test.

Input

The input, on punched cards, consists ofs

1. The values of Rij for the cell

2. The limits of the desired ranges of sin20 into which
the FO 2 data should be divided - four ranges are
allowed

3 The modified intensities

4. A "last card"

Output
1. The values of V for each range
2. The number of reflections included in each range

3. The values of N(z) for z = 0(.1)1.0 for each range

Time

Thirty reflections per minute

Method

The programme calculates sin2 © for each reflection

as it is read, and assigns the Fo2 to the appropriate




storage. When all the intensities have been read, one
range at a time is recalled to the fast store, and 2. I
and 12 are accumulated. For the variance, the
function computed is

2

v = AL
(AvI)®

The second part of the programme, which may be omitted,

computes the proportion of intensities N(z) in each

range less than a given fraction of the average intensity

for that range. TUnobserved terms must be inocluded.
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Flow diagram for Programme I

Reads binary R

¥
Reads sinzé range limits

¥

Reads 1 card with hk £ and I

ij'®

' 2

v

Is this last card?
¥ No

Calculates sin20
¥

Tes | Is sinZO less than minimum?
& Ho

gfi__ Is sinZO within range
sends 1o

Yes

. limits?
appropriate
store Yo
—>| Calls range in sequence from store [¢ <
Yes stops;single shot for
Is range empty P ’next range
JrNo
Cumulates £I E I .
¥
. No
Is this I last in range
Jr Yes
Calculates variance (V)
K3
2 2
Punches (AvI)®, AvIT|V
¥
No °
Is this last range?

l Yes




l

Calls ramge in seguence from store

b
Ld

1]

Calculates (fractiom of average I) = (=)
g = .1{.1)1.0

!

Reads I from range

w

+

Tesis magnitude with respect to z ranges

12

Counts wp in appropriate counter Hos. I to X

1

%o Is this last I

] Tes
Finds progressive sum of coumters I to X

3

Calculates li{s) for each =

¥

Punches 1 card: number of I's in range

] 2

Punches 10 cards with H(z)
z = .1(1.)1.0

¥

To Is this last range

JL Yes
STOPS
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Programmes II and III

These programmes, written in basic DEUCE language,
were designed as supplements to the least squares refinement
programme. Input and output are on punched cards.
Programme II calculates the standard deviation.of

positional and thermal parameters.

Input

1, The number of degrees of freedom, (n-s); ZwA2
and cell dimensions
2. Optional output (b) from least squares programme

containing the sppropriate derivatives (see section II.1l).

Qutput

Four cards per atom .
1. 6% oI o %
2. O x Sy g z

3. OB  ofy o B33
4 &y Tl ol

Time

Approximately 10 seconds per atom.
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Method

The programme calculates the expression

ZIAZ t

°5- () (%)’

for each parameter, then computes O x O’y and O z by
multiplying by the appropriate cell parameter (no correction

is made for nonoblique axes).

e y
s w e P A SV (o H
{ Lalswistes atawderd deviavlon |
%g #f therzal PEPEWRLYTH ;

" ¥
e et ey ,

&

T Punchen P ooervds wiln

3
]

H
H
2
4 e
H ge> £E.
i# S
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Flow Diagram for Programme II

. Reads EWA2 and ne-s

!

Reads cell dimensions

i

Reads 15 cards with Least Output from Least
Squares totals for 1 atom Squares Programme

4

Calculates standard deviation of
coordinates

!

Punches 2 cards with

& %fa &Yy &%
6 x oy 0O 3

!

Calculates standard deviation
of thermal parameters

1

Punches 2 cards with

6 fB1 & By ofs;
Tﬂgj °'ﬁ13 o A3,
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Programme III calculates the standard deviation of electron

density.

Input

1. Complete structure factor output from structure factor
programme (including unobserved terms)

2. The appropriate volume or area (for projections)

Output
o(e)

Time
200 reflections per minute. (This is the limit of

card reading time for DEUCE).

Method

Forms progressive sum of (Fo - Fc)2 then calculates

; %
¢ - 32(T@, -7)°
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Flow Diagram for Programme IIT

Reads one card of output
from structure factor programme

Ts this last card J—oo

No

2
Cumulates ( Fo- FG)

Reads fractional volume |
of cell from last card I
4

Caloculates & 9
d

Punches O 9
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