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Prefatory Note.

This original investigation was commenced in the year 193C and was 

almost completed in the summer of 1938, but, with the ominous shadow of war 

in the background, the Author had to abandon it in favour of a more urgent 

investigation of the structural requirements for Air-raid Shelters at this 

University. Under the present emergency conditions, it has not been found 

possible to publish it,but it is hoped that this may be accomplished at 

ail early date.

At the start of the work, few solutions were available for line end 

concentrated loads, but since the year 1939, several important contribution 

on the same subjeot have been made, mainly by American authors, which 

afford interesting comparisons with some of the arithmetical solutions.

The comparisons are contained in an Appendix.

The work was carried out in the James Watt Engineering Laboratories 

of this University, and acknowledgments are hereby made to Professor 

Gilbert Cook, Regius Professor of Civil Engineering and Mechanics, and to 

Dr Alexander Thom for their advice and encouragement.

The test plate, 1evers,and the material for the manufacture of the 

heavier connecting blocks in the apparatus were gifted by Messrs Sir 

William Arrol & Co., Ltd., and the framed structure was welded by my 

colleague Dr James Orr. I thank them for their kindly co-operation.

Engineering Department , 
The University,
Glasgow.
February, 1944.
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Notation.

'rectangular coordinates»

vertical deflection of plate, positive in the direction of 
increasing z.

uniformly distributed load per unit of area, 
or,
uniformly distributed load per unit of length in the case of 
line loading. •

’ concentrated load.

Moment of Inertia per unit of length.

Modulus of Elasticity.

Poisson’s Ratio.

thickness of plate

Flexural Rigidity of Plate, « I E/(l 
Laplace operator («̂ [i + *jyg% )

Vsw

Constant, p/K
S

Flexural couples per unit of length normal to the direction 
indicated by the subscript.

Shearing Force per unit of length normal to the direction 
indicated by the subscript

Reaction per unit of length normal to the direction indicated 
by the subscript.

Torsional couple per unit of length 

Corner Load

Linear dimensions related to the size of the network. N 
and N/2 is the dimension of each small square.

4 n,

Other symbols are defined in the text.

References to other publications are given at the end of this volume.

The Fields are contained in Volume 2.

Boundary torques are shown in the following manner, the usual right-hand 
screw convention being used.

The torques shown cause 
uplift at all corners of 
the plate.

Plan of Plate.
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Introduction.
In the first part of this Thesis, arithmetical methods of analyses 

are applied to problems of thin flat plates or slabs subjected to transverse 
loading. Three types of loading are considered, viz.,uniform pressure, 
uniformly distributed line loads,and concentrated loads. Boundary correction 
values, which replace the usual complementary functions of the more 
orthodox analyses,are also established1and their uses illustrated for 
clamped and simply-supported edge conditions.

The solutions to the various problems are given in a series of Fields
which are contained separately in Vol.2. On each Field, two sets of values
ar© marked, one representing half the sum of the curvatures and the other
the deflections at the points in question.

A testing machine, whereby concentrated loads are applied to plates or 
slabs, is described in Part 2. The experimental tests which were made for 
the purpose of checking the solutions for line and concentrated loading 
are also recorded in this section.

The theory underlying the problem is dealt with adequately in the 
standard treatises on the mathematical theory of elasticity, and the 
fundamental differential equation and the expressions for flexural and 
torsional couples, shearing forces, etc.,are assumed without further 
proof, use being made of them as required.

This investigation is an endeavour to obtain general solutions for 
some of the^tandard loading conditions, which can be adapted to suit 
degrees of fixity intermediate between the fully clamped and simply- 
-supported edge conditions, and also to provide a means of estimating 
deflections, bending moments, etc., in plates of polygonal shape. Skew 
slabs may also be included in this category.

The arithmetical method of solution of equations of the type 
■yNr ■ Constant has been used in preference to alternative orthodox methods 
involving trigonometric series, and the method has been extended to cover 
line and concentrated loading. It is not claimed that the arithmetical 
method is quicker than the orthodox analytical methods,but it is best 
suited to this particular investigation since values throughout the entire 
area of the plate are required. The Author is not aware of any other method 
which could be applied to the unsymmetrical boundary correction fields.

When the correction fields were completed, it was noted that the 
values were reciprocated on the various fields and that the usual Theorem 
of Reciprocal Deflections was valid also for bending moments and shearing
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forces. If this had been known beforehand, the labour would have been 
reduced considerably. The correction fields are reproduced as they were 
when the above theorem was discovered. The discrepancies which appear 
in some of the values are small and o->f no practical significance.

Uniformly distributed loading is considered in the first instance. 
This is followed by the series of V*w * 0 fields which were refeered to 
previously as boundary correction fields since that is their real purpose. 
Line loading, point or concentrated loading^and some applications based 
on the principle of superposition^are then considered in turn. In respect 
of the latter, it is fairly obvious that values from different fields 
may be added to* or subtracted from, one another, provided the same shape 
of field and size of network are used in all cases.

The square plate or field is used throughout since this forms the 
most convenient basis for all other simply-supported plates. The fine 
network is also chosen for this reason and not because of its increased 
accuracy.



Part 1.
A rectangular element of a thin plate subjected to a downward 

pressure p is shown in Fig.l. and My are the flexural couples per
unit length for planes normal to the axes of x and y. Sx and Sy are the 
shearing forces per unit length,and T is the torsional couple per unit
length for the same two planes

p__JL_

If the vertical deflections w are small in comparison with the plate 
thickness and the effects of direct stress and shearing force are neglected 
in computing the strain energy in the bent plate, the fundamental 
differential equation which then underlies the problem of a thin plate 
subjected to transverse loading is,

v

In the above, ©- is Poisson's Ratio and E and I are respectively the 
Modulus of Elasticity of the plate material and the Moment of Inertia of 
the plate per unit length.

It can also be shown that,
r 2k

CO kly\| ’L"3>x

K “&XvV Vw'
C K (V^w).

where K, the flexural rigidity of the plate, is I E/(l - ©—  ),
If p,E and I are constant throughout, the fundamental differential 

equation reduces to * p/K.
i.e., » Constant.

Many solutions to problems associated with this fundamental equation 
have been obtained by making use of trigonometric series. These are 
referred to later as orthodox methods of analysis. An arithmetical method 
o€ solution developed by Thom has also been applied successfully in 
various fields of hydro-dynamical and aeronautical research. In this 
investigation it is used throughout and, whilst a brief description of 
the method as applied to the problem of the flat plate is given later, 
for fuller details reference should be made to Thom's original 
publications.
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The Arithmetical Method of solution of ySr = constant.

Denoting the constant by C* (i.e. C = p/K in the particular case 

of the flat plate), then the equation becomes V*w = C. This may be 

re-written ve(yew) = C, and, if 2^ = Vsw, then 

Ve£ - C/2.

Considering a square of side 2 n, Fig,2, 

the central value 5. ■ 5. neC/4, .... ...(la),

where C *= the mean of the corner values.

Corresponding formulae for the w values are

\  ~i (nS 2 )
= wm - (ns £c ),................... Clb)»

ir2!H
w,

| kiwT
w4
4 n

w*4 Fiq.2

where w_ » the mean of the corner w values.m

w,
5xw,

k

w7

wc

5*

WL

w*

w. W//

Rg.5.

r(2a)

AlsOjfor a square of side 4n, Fig. 3,

« S . -  ( « . * ? , ♦  + * ( $ , ♦  $ 4 *  V
and,
12WC = (W, + W , + W 5 t W y) + W 4^Wt + W g) - - 4 n 4 C  ....(2b)
Or, if £ and / are represented by a and b respectively, and

•saAA ^ev«.*
w , and w by A and B, the above formulae may be re-written in short, oM eve* '

(2c)

>(2d). 

.(3a).

12^ - f a  + 2 ^ b  .  8 A ,  ....................... .................................................

and,

12 f A + 2^B - 32 ns£c - 4n4  ....................... .

And, finally, for a square of side 8 n, Fig.4,

476 £ = 9f a + 32^b + 46^c - 1152 nsC, ......................

and,

476 we = 9 j A  + 32^ B + 46^0 - 16 ns (18v + 28e + 104^ + 36 neC),...(3b) 

where a,b,e,v and e denote5 values^and A,B,C ake w values at the points 

shown in Fig. 4.

(£ values are written above the lines and to the right of the point in 

question, w values being immediately below the £ values).
h  ---- 8 * -------— *|
A. b,
A, 6, c,

ii V. e, Vx

e*. S. Ci
^4 w.

br y4 e, Vi
&r

*A. ■K---- ___ b*

Fig. 4.

b4
64.
a ,



A solution is obtained by choosing, -when necessary, plausible values

for ̂  and w in the first instance and. obtaining rev values for these,

square by square, using the above formulae until, finally, the changes in

the values are small enough to be neglected* The % values should be settled
u * tbefore proceeding to the w values. An exact solution is , however, not

Hiobtained, but, as in the analogous Joint-Relaxation Method of Structural
,, (5)Mechanics, the solution can be carried to a. degree of accuracy which is 

consistent with the assumptions which are made in the basic approach to 

the problem.

A good choice of initial or plausible values}as they have been 

described above, m i l  reduce greatly the somewhat tedious arithmetical 

work, and, although no hard end fast rules can be given, values which 

have been settled say to the first place of decimals for the coarser 

networks m i l  aid in the selection of plausible values for the finer ones. 

The process is described more fully in the following example.

Square piiftte of uniform thickness, simply-.supported along all 

four edges and loaded with a uniform pressure.

For the plate A B CD, of side 8 N, Fig.5, the boundary conditions 

are as follows,

Deflections and Bending Moments are to be zero at all points on the 

boundaries, AB,BC,CD,DA. i.e. the £ and w values are zero on these 

boundaries, and plausible values therefore need not be selected.

Fi a. 5,

t. A i,

t. 5c

{, i* s,

8
*
VI

ao
_r4-
£

zoo

For the £ field, using Formula (3a),

476J ~ 0 - 1152 Nfi C, (Note.This vail be a settled Sc
value for this particular 

£ » - 2.42 NSC. network).
* r  rou

A plausible value is now selected for .and the value of S./^y applying

Formula (2a) to the corner square, ^ i s  then recalculated and the process

repeated until the values of and2̂  have settled. The squares are then

subdivided, plausible values being inserted where necessary, and the value;

recalculated, row by row, until a second, and more accurate^ £ field is
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The w -values are obtained in a similar manner. In this case 

Formulae (2b) and (ob) are used, the part involving tho £ values 

being first evaluated and noted against each point for reiterative 

use.

Field No, 1 shows the values obtained when the plate has been 

divided into 256 squares. It may be noted that £ has settled to 

- 2,3618 N2 C, whereas the first value obtained above was - 2,42 N2C, 

When subdividing the fields into smaller squares, care must be 

taken to use the correct value of n in the equations© Thus,with 

reference to point A on Field No, 1, the £ and w values are as shown 

in Figure 6, (Throughout this work 8 N is used to denote the side of

the plate)• N

 4  r\

0 o o

o A •2029 NZC •3374 N aC
0 •7264 N*C 1*4027

0 •3574 N*C •5846 N%C
O 1*4027 N4C Z-7\Sb N*C

Fig, 6,

Using Formula ( 2a) ,

12£c * -(0,5846 + 4 x 0.3374) N2 C - 8 n2 C
* - 1,9342 N2 C - 8 n2 C, 

and; for N = 4n,
12 - - 1.9342 N2 C - 0,5 N2 C,

= - 0 . 2029 N2 C.
Using Formula (2b),

12 w - (2,7156 + 4 x 1.4027)N4 C - 32 ne(-0.2029 Ne C) - 4 n4 C 6
* 8.3264 N4 C + 0.4058 N4 C - ^ N 4 C.
= 8.7166 N4 C.

w * 0.7264 N4 C. c
Similarly?for N = 4 n, Formulae (3a) and (3b) become,

476 £ * 9 £ a + 32^b + 46 Jc - 72 N2 C............................. (3c)

476 w « 9 ? A  + 32 f B + 46^C - N2 £ 18jv + 28^e + 104 + 2.25 N2 cj ..., (3d)

(The part inside the bracket in (3d) is evaluated from the settled £

field)o



Comparison of Field No. 1 with Analytical Solutions.
0)The following expression is given by Prescott for the deflection 

of a square plate of side A t -  

T fcW  i_  * T l  fi. si„ 32. + - I _ t , u  3_0i ii. 3 A  + .....

+ T4'-' ^  ^  ^  ’-^ -1

♦ * * * * * ] ♦ • • • •

+ etc.

This gives the central deflection w, for the centre point of 

the plate distant x = A/2, y = A/2 from the origin^ 16.65 N4 C, 

whereas the corresponding value from Field ho. 1 is 16*72 N4 C*

Also, at the centre of Field No.l, £ = - 2.3618 Ns C.

+ \ y » )  = 2 £ ' - 2 x 2.3618 H® C.
Ny X

'*J at the centre of the plate, and henceFrom symmetry, —  -

\ - b  - - KM. y ' ox-
= ( 1 +*■) 2.3618 p Ne

=• ( 1 +^“) 0.0369 p As, where A is equal to 8 I,

The above Analytical solution gives a corresponding value of

( 1 +cr) 0.0368 p A2.
Another solution, for &. plate 2a by 2a by thickness t, is given 

(4)
by Professor Inglis as,

where A = 0*052178 snd A. * - 1.308959 x 10“6 I 5
Foro- = 0o3, this gives a flexural couple at the centre of amount 

0.1915 p as and a central deflection of 0.065 a4 C9 whereas the 

corresponding vodues from Field No.l. are 0.192 p ae and 0.0653 a4 C, 

respectively*

It may be seen?therefore, that the arithmetical methbd compares 

favourably with analytical methods^and Field No. 1. is therefore a very

complete solution to the particular case of the simply supported square 

plate carrying a uniformly distributed load*



10
Bending Moments, Shearing Forces, Torque etc., are obtained from the 

£ and w values thus !- 

Bending Moments
^  % «■^ r o wr V w  V w  “]

Since M„ - - + -  7 ^  ] >
and, r"^, V w  "1

My • ~ <  + J J
"t)*Wit is therefore necessary to separate the components and of

the £  values.

They can be estimated by using a suitable formula for mechanical 

differentiation of the w field, e.g.,

the Stirling formula,where the differences are symmetrical as regards the 

direction of increasing and decreasing arguments,

-fcPO 5 ^  [ & 2 foo ~ -Ji & * & )  + *§3* - ■—  < ^  (D 0

or, the Gregory-Newton formula,

fV) « w*[ -  b'fai * %  fa« -f  (02).
Alternatively, graphical differentiation of the w curve may usefully be 

employed.

!/Vhichever method is adopted, the sum of the estimated quantities will, 

in general, differ from the 2 £ value at the point In question because of 

the limitations of the methods* But since the $ values are obtained by 

squaring, it is recommended that fuihl weight be given to them. The estimated 

quantities should therefore be adjusted to give the required sum. Thus,if
*Vw yw  vestimations a and b are obtained for and at a point where the £ value 

is c , the adjusted values would be a( 2c/a+b) and b( 2c/a*b).

Shearing Force.

The shearing force per unit of length is,

sx = K T* ( ),
= 2 K JlL , since 25= V2w.0 K

Similarly, Sy * 2 K .

In this case, the values of and ~  are obtained by mechanical"bs ^y
differentiation of the 5 field using the Gregory - Newton formula,

ifo *  t  -k -  ] ......................... :  ( 0  5)

Torque

The torsional couple per unit of length- is,
VvV

T = . K (1 .

The gradients and are obtained by means of ( D 3 ) above,
V wand by plotting them to scale the values of can be estimated

graphically.

Note >  In tKe difference formulae , D, ,Dj, oinol Dj f V") represents e^uo.1 increme nts of X or vj,
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Shearing Force s-long the Boundary,

The boundary -values of 'ey are noted on Field llo.l. The shearing force

values at corresponding points are therefore as in Fig.7.

Bound&ry Shear
S .

z z Z
Sk- f t _ f t -

* N*9 Ko Ok
zft-
VftN
r\»

z
a.N
*

2ft_
oovp

ZQ-
Ow*
N

z
01
o
g
rvi

4 N
Fig.7.

I
The analytical solutions^ previously referred to, give a corresponding 

value of 2.704 p. N as the maximum shear at the centre of the support.

A useful check on the values shown in Fig.7, is obtained by integrating 

along the boundary. Using Simpson*s Eule for areas, and the above values, 

64.1 p N2 is obtained, whereas the total load applied to the plate is 

64.0 p  N2.

Torque along the Boundary.

The estimated values of T are shown in Fig.8. This is a maximum at the 

corners of the plate where a value 3(1 -^) p N2 is reached.

Torque T 
per u r u f  ©F lehgfh X  ** 3
I (4) tvi rv»

tl
2

Z  f t -ft- V
T  ‘

2
f t -

T

Hz
Q-Vi

r»2
ft-
T

nz
ft-r•

c*z
G -T%

z
Q -T1 <O — ovn o M oM vCD NMk Ok u

r» 6 o N

Fia. 8 4  N

E.eaction along the supports and Corner Load.

At first sight, it would appear that the shearing force along the 

boundary must also be the reaction on the support,gincp,as noted above, 

the total applied load, 64 p N2, is obtained by integrating the shearing 

force along the boundary.

It is well known; however, that a plate, loaded and supported as 

specified in this problem, will not remain in contact with the supports 

throughout their entire length unless the corners are held down.

The reason for the above behaviour is explained by considering the 

torque along the boundary. A thin section of the plate in contact with the 

support is shown in Fig. 9. P P R,
S* 1 3* | |

Fl'q. 9.
14. 1 9fc ■ 7
PI P .\  V

The torque on an element of length Sx is T , where T is the torque per 

unit of length.



Equflibrium of the element is maintained by applying equal and opposite 

point loads P at the diagonal corners of the element so that

P = T Ifrji, , and therefore P = T.

Similarly^for the adjoining elements, P^ = *= Tg , etc. etc.

The induced reaction is therefore (p - ■ ip/«*

* $ T/Jxt pep unit of length.
dTAn amount equal to —  —  should therefore be added to the shearing force
dx

to give the reaction on the supports.

The expressions for Reaction thus become*

R * * s* +
/ Vw

’  ̂T>*u
r *blw

I k W
V w  

"4 Jw

( R tfioiei M  * 0, define the boundary condition*i‘o£ a free edge ).X TC

It is therefore neeessary to find the gradients of the Torque curve* 

ahskthe graphical method is sufficiently accurate for this purpose.

The induced reaction values, for the square plate under discussion, 

are shown in Fig,10.

Z
. ^    _o_

T' b T  T  T  b b

~z Z z 2 Z Z Zn- Q— n_ Cu a,
Ti T« Ti V* T• T■

o ON 00 to 1 o N Nvo oa S' A a
o o o 6 o o o

«>»<r»

F iq . 10 4-M

The total reaction on the supports is therefore the sum of the values 

at corresponding points on Figs. 7 & 10.

Comer Load

For the corner loadfPc , which must be supplied at the comers of the

plate, it is necessary to consider both boundaries at right angles to

one another, and hence,

P s 2 T , where T = Torque at corner,per unit of length. This gives, c c o
for the simply supported square plate, Pc * 6 ( 1 -»*) p Hs,

* .094 ( 1 - 0*) W, where W is

the total load on the plate.

The various quantities discussed in the above are plotted to scale 

on Diagram No,l. Deflection Contours are also plotted to scale and

these,together with the £  and w values on Field Ho. 1,complete the 

useful design data for the square plate as specified.
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Solution of y%r = Q 

The method of procedure in general use when analytical solutions 

are required to problems of thin flat plates bent by transverse forces 

may be briefly described thusi-

An algebraic expression, known as the particular integral, which 

satisfies the fundamental differential equation = p( 1 - a*? ^IE, 

is found in the first place<> To this is added another algebraic expression, 

the complementary function, for v^w * 0, so that the complete solution 

to the problem is obtained*, The solution is said to be complete if the 

loading and boundary conditions are satisfied. In general, the loading 

conditions are looked after by the particular integral and those of the 

boundaries by the complementary function.

With the arithmetical method of solution, the same procedure can be 

followed, as may be seen by an inspection of the various squares formulae 

hitherto used, and, if settled fields of ̂  and w values are available 

which satisfy v'V = 0, these can be made to do the same duty as the 

complementary functions in an orthodox analysis.

Fields Nos. 2 to 43 give £ and w vaL ues for v*w = 0, when £ values 

are applied at certain points on the boundaries of a square plate of side 

8 N. The squares formulae applicable to them are.- 

122 = T a  + 2lb     (2e),w

12 w * 1 A + 2? B - 2 Ne§c................ (2f)P

476 * 9^a + 32£b  + 46^c  .(3e), and,

476 wc « 9?A + 322,B + 46£c - Ns ( 18jv + 28je + 104$e )...... .,(3f>).

In work of this kind, a calculating machine is a necessity, but the

labour can also be reduced greatly by adopting a routine system from the

start•

Thus, with reference to Fig.11, row 1 is completed using Formulae 

(2e) & (2f) and this is followed in turn by rows 2, 3, etc., Formulae

(3e) & (3R) being applied to all points except the end ones in each row.

In all cases the work is carried out from left to right.

Row Z



I s

After one complete traverse of the field is made, the differences 

between the original and the new values are abstracted to a separate 

sheet to give a field of differences© The work is then carried out 

on the difference field, a table of corrections for differences being 

prepared beforehand. It is advisable9howeber, to transfer the 

difference corrections from the difference field to the actual field 

at frequent intervals^ and then re-calculate to obtain another new set 

of differences.

"When Fields Nos. 2 to 10 are settled to a reasonable degree, each

in turn can be grouped to give the symmetrical arrangements shown in

Fields Nos. 11 to 19. The latter,being symmetrical about the diagon&i^ 

can be settled more or less completely with a minimum of labour as 

compared with the former.

A check on the accuracy of the work is afforded by the summation of 

£ values from corresponding points on each of the Fields, 11 to 19. This 

is diown on Field "No. 20. The £ values should have summed to 10 units

at every point on the F i e l d . m a y  be noted that this is realised as

far as practical purposes are concerned,the range being 9.994 to 10.001.

A check on the w values is also obtained by comparing the summation 

of corresponding w values on Fields 11 to 19 with the values obtained 

by multiplying the values on Field No. 1 by 40. The reason for this

is explained by reference to Formula (la), viz.,

-  S ." .
The w values on Field No. 20 can therefore be obtained from the basic 

squares Formula, w q *“ wm ” nS

The values marked in red on Field No. 20 are 40 times the $ 

values of Field No. 1, C being taken as unity. The differences 

between both sets of values are negligible.

Fields No. 2 to 10 are further corrected by distributing the
jf

small differences obtained by subtracting the original and settled 

values of Fields Nos. 11 to 19. If these corrections are small, the 

Fields may be taken as being settled.

Fields Nos. (21-28), (29-35), (36-43)-, for different groupihg of 

the tf values on the boundary are obtained from Fields Nos. 2 to 10.



Theorem of Reciprocity.

A most useful extension of the ordinary theorem of reciprocal
deflections is revealed on Fields Nos. 2 to 9.

With reference to Fig. 12, it may be notedfby comparing the above
Fields, that when a £ value of -10 units is applied at the point A^,
the £ and w values along the row B, B 2 are the same as those at
corresponding points along the row A 2 when the £ value of -10 units
is applied at the point B, •

B. A,____________

B* A*
Fig.12.

The following alternative method, whereby Fields 2 to 9 are built 
from Fields No.2 and part of No.3, reduces considerably the arithmetical 
work, and, if the full significance of the above Theorem had been 
appreciated at the start of this investigation, it would have been used 
instead of that already described.
Alternative Method of obtaining Fields Nos,2 to 9.

Field No. 2 and the left- hand half of Field No.3 are obtained in the 
previous manner. The remaining Fields are then obtained from these by 
using superposition and other legitimate devices.
( Two diagrams on tracing cloth sure provided in the pocket of the back 
cover. These are useful when superimposing one field, or part thereof, 
on another to get a new field.)
When a Field is completed, the values which are reciprocated are transferred 
from t£at Field to the other respective Fields in the first instance.
To complete the Fields several methods are available but the following 
has been proved to be satisfactory in praotice.

(L and R are used below to denote the left and right- hand halves 
of the Fields.)
Field No.3 l*is superimposed on Field No.2 so that the £ values ontUe 

boundaries coincide. Field No. 9 R is then obtained by subtracting the 
values on the Fields.



Field No.2 is superimposed on Field No.3 L as shovm in Fig.(a)

The values necessary to complete Field No* 9 are then obtained by
Jsubtraction.
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Fig. (a).

Field No.f L is superimposed on Field No*2 so that the £ values 

on the boundaries coincide. Field No*3 is then completed by subtracting the 

values on the Fields*

Field No*8 L is obtained by folding Field No* 3 about the first line 

to the right of the centre line, Fig.(b), and then subtracting 

corresponding values*

10r — r
b!>i°i

» u for s,
j o'

Fig*(b). I V

Field No*8 L is superimposed on Field No*2 so that the £ values o k  

the boundaries coincide. Field No* 4 R is then obtained by subtracting 

the values on the Fields.

Field No.4 is completed by superimposing Field No*8 L on Field No.2 

as in Fig.(c) and then adding the values over the length d*

10
1 J l I l ------ 1-------1------oo
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Fig*(c)

Field No«4 L is superimposed on Field No*2 so that the £ values on 

the boundaries coincide. The values necessary to complete Field No*8 

are then obtained by subtraction*

The values on the end rows of Field No.3 R are re-written, end for 

end, and placed on Field No.4 as in Fig.(d)* The values necessary to 

complete Field No* 7 L are then obtained by subtraction.
+
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Fig. (d).

Field No. 7 L is superimposed on Field No.2 so that the $ values on 
the boundaries coincide. Field No*5 R is then obtained by subtraction*



Field No. 7 lb is superimposed on Field No. 2 as in Fig. (©)• Field 

No,5 is then completed by adding the values over the length d.
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Fig.(e) C«

Field No .5 L is superimposed on Field No, 2 so that the £ values on 

the boundaries coincide. Field No.7 is then completed by subtraction.

Field No. 6 L is obtained by folding Field No.4 about the second row 

to theright of the centre line, Figp(f)pand then subtracting the values 

over the length d.
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Fig.(f).

Field No. 6 L is superimposed on Field No.2 so that the £ values on 

the boundary of each field coincide. Field No.6 R is then obtained by 

subtracting the values on the fields.

It may be noted,that symmetrical arrangements„ as on Fields Nos. 36 

to 42. are readily obtained by superimposing portions of Field No.2 on 

one another. It appears^however^that Field No.3 L is necessary in addition 

to Field No.2 when dealing with the unsymmetrical cases discussed above. 

Rectangular Fields.

Rectangular Fields. 8 N by 4 N p etc.p etc.* are readily obtained 

by folding Fields Nos. 2 to 10 about their centre lines and then 

subtracting corresponding values. These Fields are not reproduced in this 

ThesiSjbut they were used in the solution of the problem which follows 

later in connexion with the point load at the quarter-point of an axis 

of symmetry (page 49) „

Triangular Plates.

By folding Fields Nos 2 to 10 about their diagonals and then 

subtracting corresponding values, Fields similar to the above are obtained 

for a right-angled isosceles triangle.

Uses of the » 0 Fields.

The uses of the various vSv ~ 0 fields are demonstrated in the 

following practical problems.
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w = 0*

= 0
1 * 1
“b'U = 0

•

Square plate of uniform thickness, clamped along the edges and 

loaded with a uniform pressure.

The conditions to be fulfilled in this particular problem 

are as follows; -

V*w = constant,

at all points on the boundaries*

Field No. 1 satisfies all the conditions except the last two,
->w

but the gradients and can be altered by applying £ values to 

the boundaries of this Field* The problem therefore resolves itself 

into finding the $ values which will make the gradients Field No* 1 

zero on the boundaries*

The gradients on the boundaries of Fields Nos. 11 to 18, and Field 

No. 1, as obtained by mechanical differentiation are marked on the 

respective Fields•

If a, b, c, **«h, are the required values of £ at the points
)

shown in Fig* 13g, the following eight equations are obtained.

L a C  *  d c b ^T
K j

4  j F‘9' 13 9

0.382a+e.648b+C.481c+0.388d+0.312e+0.239f+0.16ag+0.083h = 3.481 *,„.l 

0.524a+0.622b+0.520c+0.398d+0.316e+0.241f+0.164g+0*084h = 3*421 . ..*2

0.240a+0o519b-K).542c+0.451d+0.332e+0.248f+0.169g+0.087h = 3*243 ___ 3

0.194a+0.388b+0*452c+0.i73d+0.389e+0.268f+0.180g+0.092h = 2.954 ....4 

0.157a+0.316b+0.334c+0.389d+0.418e+0.327f+0.201g+0.103h = 2.547 .*..5 

0.120a+C*241b+0.250c+0.269d+0.328e+0.358f+0.264g+0.125h * 2*035 ...*6 

0.081a+0*164b+0.169c+0.181d+0.203e+0.262f+0.297g+0.193h = 1.429 *...7 

0.041a+0,083b+0.086c+0.092d+0«110e+0.116f+0*181g+0.242h =0*741 ....8 

(The actual gradients on Fields Nos. 11 to 18 and Field No. 1, have 

been divided by 2 when forming the above equations).

Since the gradients are obtained by mechanical differentiation,

any attempt to solve these equations using recognised methods such as
(?)that described by Morris is likely to result in absurd values being 

obtained for the quantities a to h, and the following trial and error 

method is to be preferred.
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Initial Values of b, d# f, and h, in terms of the other 

unknowns are taken as follows 

b = 0.75a + 0<>25e

d = 0.75c + 0.375e - 0.125a

f = 0,75e + 0.375g - 0.125c

h - 0.75g - 0.125e.

These values are substituted in equations 1# 3, 5̂  and 7?to give 

4 equations for 4 unknowns« which are solved by direct elimination 

on the calculating machine. The values of a, c, s 1and g, so found 

' are then substituted in equations 2, 4, 6,and 8, from which new values 

are obtained for b, dt f, and h. These now replace the approximations 

used initially, and the above process is repeated until the desired degree 

of accuracy is obtained. A plot of the approximate values of a, b, c, d, 

etc., should be made from time to time to ensure that they lie on a 

regular curve. This precaution prevents wrong values from being obtained. 

The values finally selected are,

a = 1.668 

b « 1.632 

c - 1,502 

d = 1.298 

e * 1.028 

f = 0.718 

g = 0,403 

h «= 0.089,

and a comparison of the actual and substituted values of the previous 

equations is given in the table below.

Equation Required Value Value obtained by 
substituting the above.

1 3. 486 3.481

2 3. 425 3.421

3 3. 242 3,243

4 2. 945 2. 954

5 2. 539 2. o4 7

6 2. 029 . 2.035

7 1. 427 1,4 29

8 0. 743 0.741

Settled Fields, of £ and w values, for the^ values, a to h ,

on the boundary, are then obtained from. Fields Nos* 11 to 19.



These are then added algebraically to Field No. 1*

The solution thus obtained, for the clamped square plate 

loaded with a uniformly distributed load is shown on Field No.44. 

Bending Moments»

The maximum value of the fixing moment occurs at the centre 

points of the supports and is equal to-3.336 p I2, per unit of length.

At the centre of the plate, = (1 + ®~) 1.125 p N2, per

unit of length.

Deflection.

The maximum deflection at the centre of the plate 5,173 N4 C. 

This is less than one-third of the deflection of the simply supported 

plate.

Shearing Force along the Boundary,

The values at various points on the boundary are shown in Fig. 13. 

These are obtained as previously described for the simply supported 

plate. ^
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Fig. 13,

No special significance is attached to the small negative shear

at the corners of the plate since it may be due to imperfections in

the solution to the problem. The total applied load of 64 p N2 is

however obtained by integrating ,as formerly, along the boundaries.

Contours of deflection, together with the distribution of shearing

force and bending moment along the boundaries,are shown in Diagram ]ffn# 2. 
(page z z )
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A solution to the problem of the clamped plate is given by 
(4)

Professor Inglis and, in the discussion of his paper, an. interesting 

resume7of the historical development of this special problem is contributed 

by Professor A, N. Krilloff, An extract is as follows;-*

U The problem, of which Professor Inglis has just exposed his 

beautiful solution, is of long date. The fundamental differential 

equation was given by Mademoiselle Sophie Germain in 1812, if I remember 

rightly. Some ten years afterwards this problem was taken over by 

Navier, the founder of the mathematical theory of elasticity, who worked 

out the solution for the supported rectangular plate. Then it was treated 

by Pcfisson, and by Kirchhoff, who in 1850 gave the general boundary conditions. 

Some twenty-five years.ago the problem of the clamped plate v̂ as 

proposed by the Academie des Sciences, of Paris, as a subject for their
i t  f *highest mathematical distinction, the Grand Prix de mathematique. This 

fact illustrates the difficulty of the problem and its importance.

Several of the most celebrated mathematicians took part in the competition, 

among them-. Monsieur Jacques Hadamard, Signor Tullio Levi Civita, Herr 

Dr, Korn, and the late Walter von Ritz, The prize was awarded to 

Monsieur Hadamard,

As : All these authors considered the problem from a purely abstract 

mathematical point of view, their investigations could hardly be used by ; 

practical engineers and constructors, because the solutions were not 

adapted for numerical computation. Only the method of von Ritz yielded 

practical applications, but the numerical work was very laborious.

About the same time Professor B. M, Koialovitch, of St, Petersburg, 

took this problem as the subject of his dissertation for the degree of 

Doctor of Mathematics, Being a professor at the Technological Institute, 

he considered the practical applications also, and developed a method of 

successive approximations for the numerical calculations, which he

illustrated by the clamped 1 \  2 plate as an example,, .

 About the year 1908 Professor S.P, Timoshenko and his pupils at the

Polytechnic Institute of St, Petersburg applied Ritz»s method, and 

modified it in such a manner as to greatly simplify the calculations.

Their investigations are published in the Transactions of the Polytechnic 

Institute, in Russian, of course, which means for Y^estern Europe almost
i *the same as Chinese!
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tA comparison between the results obtained from Professor Inglis 

solution and those given by the arithmetical method is tabulated below.

Inglis Arithmetical

Max, central deflection 5.186 p N4/K 5.173 p N4/K

Max, B,M. at centre of support -3.3715 p Ne -3.336 p N2

Max, B.M, at centre of plate, 
( = 0.3)

+1.466 p N2 +1.463 p Ns

Max, Shear at centre of edge 3,6728 p N 3.57 p N

Negative Shear at corner of plate -0.6244 p N -0,36 p N

It may be noted that, with the exception of the negative shear at the 
corners of thejplate, the agreement between the respective values is good, 
The^deflections throughout the|plate surface also compare very favourably 
with those given by Professor Inglis.



25
Square plate, simply supported along the edges end loaded with 

a uniformly distributed load, applied along a centre line.

A sauare plate, A,B,C,D, of side 8 U, simply supported along the 

edges AB,BC,CD,DA, and loaded with a load of amount W, uniformly 

distributed along the centre line a-a, is shown in Fig. 14.
*

&
A

-&■ * L o a e l L't rsm

t
2,
*

*  v k
\ \ f  » 8

.

p  N
2

1
Z> c

Fig. 140

The boundary conditions to be fulfilled in this problem are, 

w = 0 and £ = 0 at all points on the boundaries.

In this example, the solution is obtained by making use of the 

particular integral and complementary function methods. For the 

first part, the supports AD and BC are considered to be removed and 

the plate is regarded as a simple span loaded with a central load W. 

The curvatures and deflections throughout the released boundaries are 

then eliminated by applying equal and opposite values from the V*w = 0 

fields.

For a beam, of unit width and span L, loaded with a concentrated 

load of amount p, Fig. 15, the deflection w of a point distant y from 

the centre is given by the equation,

1 ...
[P

a Vg «  L/* -r-

Fig. 15.

Using 8 N instead of L and replacing El by K, the particular 

integral for the plate is, —

w  * ~ z k  * % ]  + 32p N /3< , wl,,ere 1° : gNl •



^ end w values, as tabulated below, are obtained from the 

above.

¥
values. 

- pN/K
w values

pN°/£
0 loOGO 10.666

0.5N 0.875 10.427

loON 0.750 9.750

1.5N 0.625 8.698

2* ON 0.500 7.333

2. 5N 0.375 5.719

8. ON C.250 3.917

3 • 5N 0.125 1.990

4. ON O.COO 0,000

To make the £ and v values everywhere zero on the boundary, 

a settled field for v w = 0 is required with the boundary values 

shown in Fig. 15. 4 Q Fig. 14)
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Fig. 16«

This Field may be obtained,either, by gathering values from 

Fields Nos, 21 to 28,or,by squaring in a similar manner to that 

already described. If the first method is adopted, the ̂ -^alues 

are obtained first. The w values are made up of two parts,

(a) those produced by the $ values on the boundary, and

(b) those due to the v values on the boundary. With regerd to 

(b), the 10 on the boundary of Fields Nos. 21 to 28 is regarded 

as a w value and the £ Field is used.

Thus, to find the £ and w values at the caatre point of the 

Field outlined in Fig. 16.
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Field Fo. 1/10 C e n t r a l  V a lu e

2>, F ie ld s  21 t© 2 8

Boundary V a lu e  
a i g. 1 o *

Col. 2 *  Col.5.

21 .0518 1,000 0,0518
22 ,1007 0*875 0*0881
23 .0935 0.750 0.0701
24 .0817 0*625 0*0511
25 .0671 0.500 0.0336
26 ,0512 0*375 0,0192
27 • 0 o44 0.250 0.0086
28 •0175 0.125 0.0022

Total 0,3247
The required £ value is therefore 0.3247 p N/l£.

w values

(a)

(b)

1 2 3 4
Field No. 1/10 Central Value Boundary Value CoU*Col.3.

w, Ft'oU* 2' to 28 Fig. 16*

21 .4721 1.000 0*4721
22 .9217 0.875 0.3065
23 .8658 0.750 0.6494
24 .7704 0.625 0.4815
25 .6472 0.500 0.3236
26 .5036 0.375 0.1889
27 .3447 0.250 0.0862
28 .1763 0.125 0.0220

Total 3.0302
I 2 3 4

Field No. 1/10 Central Value Boundary Value C.l.2*Co\-3,
}, Ft’oU* 21 to 28 Fig.16.

21 .0518 10.666 0.5530
22 .1007 10.427 1.0500
23 .0935 9.750 0,9116
24 .0817 . 8* 698 0.7106
25 .0671 7,333 0*4920
26 .0512 Cl rri o •U o 1 1«̂ 0.2928
27 .0344 3*917 0.1347
28 .0175 1.990 0.0348

Total 4-1795 w
Adding (a) * (h) , the required w value is - 7,2097 p N*/k.

The remaining values at points throughout the field are obtained 
in the same manner, and,. vrhen the field is complete^ it is added 
algebraically to the field of the particular integral.

The final Field is dhown in Field No.45. It may be noted 

that the £ and w values are zero at all points on the boundaries 

and the fundamental equation y'Sv = 0 is satisfied at all points 

except those on the load line.

The £ and w values for points on the load line can be calculated, 

if desired, from the following formulae,

12$t -?a + 2Zb - P »A .................... (2g)
12we = 2 A  + 22b - 2 Ns£ - p N3/16 K ............... (2h)

The above are obtained thus:-

For a square of side 4 n, Fig. 17, loaded with a line load of amount

p per unit of length across the centrp line 1-1, the central £ value

is obtained by considering squares 1 to 4 in turn.
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4 m *l
4 m  = + b + £  + bs e 2 I?c i

4 n i = a + b + £  + b3 3 3 e
V

4 m = a + b + ^ + b4 4 4 c 3
.\ 4jm = Ja +2^b + 4 £ , and for the central square, shown in ac
dotted line in Fig. 17,

4jĵ  - P n/^;^y analogy with a beam with fixed ends.

If N = 4 n,

4 - P N/4K, and therefore,

16 £c = 4 m - p N/K,

= Ja + 2jb + 4 ^  - p N/K.

12 t  *?a + 2jb - p N/K.  ............... ...... (*9)£
Similarly, for the w values, taking squares 1 to 4 as above,

4^M = 2 A + 2^B + 4 w - 4 n2fm, and, for the central square,
4 v *= T M  - 4 n2j> , and therefore,• • c w ’
16 we « 42m - 16 n2£fi

*= 2 A + 2£b + 4 w c - 4  n2Jm - 16 n2^

12 w. = IA + 2jB - 2 N2^  - p N3/l6 K . ______________ _ _(2k )

An example, illustrating the use of formulae (2g) and (2h)1is 

as follows,-

The central square of Field No. 45 is reproduced in Fig.18.

It will be remembered that the values are negative and the w 

values positive.
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12 £fc = ^ a  + Z lh  -  p N/K

.\I2^- - 8.1036 p N/12 K 

= - 0.6753 p N/K.

12 *r ■ ?A + 2jB - 2 N2^  - p N3/16 K

la * - 2.2016 toW/K
2Zb = - 4.9020 "

-pN/K= - 1.0000 -
Total - 8.1036 *

wc * 41.5001 p Na/12K 

* 3.458 p N3/K.

{ A  « 13.1920 ptf3/* 
2SL B » 27.0200 

- 2 N2 * i1.3506 «

41.5626 ••
- p N3/16K .0625 •

41.5001 -

Deflections, shearing forces etc., are obtained from the 

settled Field No. 45, in a similar manner to that described for 

the simply supported plate.

The maximum deflection, at the centre point of the plate, 

is 3*457 p N3/K = 0.432 WNS/K, whereW is the total applied load.

Bending Moments at the centre of the plate.

At the centre p o i n t , = - 0.6753 p N/K, and therefore,

- 1-3506 p N/t .

In this example,.^-j% and are unequal, but by using the expression

D ljOn page lO , they are estimated as 0.875 p N/K and 0.466 p N/K respect- 
Y w-ively,*^jbeing at right angles to the load line.

The bending moments, M and M are then,
° y x . *

M = ( 0.875 + p*  0.476 ) p N, per unit of length,y
Mx - ( 0.476 + ** 0.875 ) p N, per unit of length.

Shearing Force alon^ the boundaries.

The shearing forces S and S are shown in Fig. 19.y
The maximum intensity occurs at the centre point of the boundaries at 

right angles to the load line. This maximum value is 1.37 p, per unit 

of length, where p ~ W/8N.
The applied load, 8 p N, is obtained by integrating the values along

the boundaries.



Shearing Force along; the boundaries
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Torque along the boundaries

The torques per unit of length, along the boundaries of the plate,®*® shown
in Fig.20. Nt'-*
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.'ho corner load = 2 T = ( 1 ~<r») 0.944 p ?T,c
= ( 1 * &.) 0.11B W, w.her< ¥ = total load on the elate.



Reaction along the boundaries.
"&T I T

The reactions, R = S * >177 s and R = S + srZ , are obtained in x x y y
the same manner as previously described for the uniformly loaded plate.

The maximum values are,

Rx * (2.02 -«*0.65)p, at the centre point of the boundary at
right- angles to the load line,

and,

R * (0.43 -®-0.18)p, at the centre point of the boundary parallel to 
* the load line.

Contours of deflection are plotted on Diagram No.3 , and the distrib­

ution of Shearing Force, Torque,and Reaction,along the respective 

boundaries, are shown to scale on Diagram No.4  •
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f t O - 4 1 2  p N

— Scales —
o 5 h o
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Square Plate of side 3 li, simply supported along the four edges,and 

loaded with a uniformly distributed load along a line parallel to an edge 

and distant 2 S therefrom,
A B C D, Fig, 21, represents a square plate of side & N, simply 

supported along the edges and loaded -with a uniformly distributed load 

of amount W along the line b-b.

&A ]

lo Loobd L \vse
’ V? » 8

D Fig,21* *

2
't

2
b

2CM

The boundary conditions in this problem are the same as in the 

preceding one and the method of solution is also similar. y

With the supports AD and BC removed, then,for a beam of span L and’ 

unit -width, loaded with a concentrated load p at the quarter point of the 

span, the following expressions for deflection are available- Fig.22.

 J i  ,_____.
U/4 . 3lA

— C\ I ’ s lo

For sections on the long segment distant y from
b *  + Z<».le -  a

Fig.ZZ.

w  - X E  L C I .

end, for sections on the short segment distent y, from D,

_ (  a t  t 2a.b -
' 1 6  U ^ G
Substituting 2N for a, end 6N for b, and using the flexural rigidity

K for the plate, the above become,
w  > .E* ( 4 0 N *  - y*);

Wi =  - I v  C2 ’  •, V w
“Tic -t,

h  =  --IE* „  2 &  .
* 4 K

The ̂  and w values, at regular intervals of T $/2 f a.re obtained from 

the above end are as tabulated on the next page*



3 $
b:;cti on ^ Values

- P’V k.
w values

■'t
0 0 0

C. 5N Go 1075 1.7314
1. ON 0  e 3 7 5 0 3,3750
1.5N 0,5625 4.8281
2. ON 6 . ON 0.7500 6 . 0 0 0 0

0 CM 0.6675 6.3177
5. ON 0,6250 7.2917
4. 5N 0,5625 7.4531
4. ON 0.5000 7  'Z'Z'Z'z
3. 5N 0.4375 6.9635
3 * ON 0.3750 6.3750
2.5N 0.5125 q c o q o
2 . ON 0.2500 4.6667
1.5N 0.1875 3.60S4
loON 0,1250 2.4583
0.5B 0.0625 1,2448
0 0 0

The corrects ons fox* the above boundary values are obtained in the 

seme manner as in the previous example. By adding these to the particular 

integral fields the solution to the problem is obtained,. This is shown 

on Field Noc4§- £ Because of thellack of symmetry in this case, the labour 

necessary in grouping correction values from the t w = 0  fields is very- 

great. In actual practice., however, only a few values 8.1 ong the load 

and centre lines would be required for design purposes).

It may be noted that the £ and w values along the line 1-1 on. Field No.

45 are reciprocated along the line 2-2 on Field No, 46. Field No.45

can therefore be built up from Field No,46 thus*. -

A section through the centre line of Field No.46 is shown in Fig. 25a. 

By extending this to AC and BD as shown in red,a field is obtained for

a rectangular plate, 24 U by 8  N, loaded with two upward loads at J and Q

and a downward load at F, A and B being points of contra-flexure. If the 

L and w values on the part EF are added algebraically to those in the part 

HG, Field No,45 is obtained.

Deflection. The maximum deflection is 2.49 p N 3 /F. This occurs at a point

on the centre line of the plate approximately mid-way between the load and 

the centre point. Deflection Contours are plotted to scale on Diagram No.5, 
Shearing Force. The shearing force values at points on the boundaries are 

shown in Fig.25. A maximum value of 1.523 p, per unit of length, is reached
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Torque and Rgaction along the Boundaries.The maximum torsional couples 

per unit of length occur at the corners of the plate nearest to the lead 

line. At these corners the torque* :ar€ (1 -*-)0.5 pN, at the others 

( 1  _<x) 0,24 pN. The corner loads are therefore, ( 1 -**.)• 1.20 pN and 

(1 ~cv) 0,48 pH. The maximum reaction, per unit of length,is equal to 

(1,353 - 0,5 6  ex., p.

The distribution of shearing force, reaction, torque etc., are 

plotted on Diagram No.6 ,

Other useful solutions, with two line loads in various positions on 

the plate, are readily obtained by using superposition methods similar to 

that previously described and illustrated on page 3 5,
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Diagram A/̂ > S
■r

S q u a r e  P la t e . ,  o f  s id e  8  A /  a n d  u n ifo r m  t h ic k n e s s . 
s /m fo/y su /ofo o r te d  a t  th e  e d g e s  a n d  lo a d e d  w i th

h n ec\ u n i fo r m ly  d > s t r j  jo u fe d  f t n e  j o a d  a c ro s s ___________________

j o a r a l l e l  To a r t  e d g e  a n d  d i s t a n t "  22 A /  t h e r e f r o m .

D e f l e c t i o n  C o n t o u r s

2-5

Line

Length of s/de - & N

Mo*x  / m u m  D e  flect/on - 2- S jo

T ' o f a !  L o a d  -  3  /o / V
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D ! ac] r  nn N°- G

M a x -
=r /■ 323/o

M a x . Value

sS h c & r / r> g  F o rc e  
M c x x  - V a / u e  • O-0^ 4.Q-o*) O Z+foN

I n d u c e d  . 
k e  a c  ft o n

Square P/ex te . of s/de 8  A /  c\nd on/ form tf/elCn ess, simjo/y 
Su/oported at ~tUe edctes and loaded with cx uru forrnly 
dis/r/buted /me lo&d across ck hne joaralle / to an

crnci distant 2  A /  therefrom.

—  Scex/es —

D istribution o f  shearing fo rce , reacf/on 
and to rque along the edg<fe s

= [I -C-) 0-IS W

C o r n e r  Load Pz_ 
* (j - °~) O  •O b  rV

x>

\ l
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Square plate of uni form thickness, simply supported along 

the edges and loaded with a central concentrated load of 

amount .

The fundamental equation for the deformation w in this 

problem is V4w = 0« This applies to all points except under 

the load.

The £ and w values are zero on the boundaries*

"With a point load, the stresses at the point of contact 

are infinite, but a point load exists only in a mathematical 

sense* In every practical case the load is distributed over 

an area of contact. The problem is then solved by assuming 

that the load is uniformly distributed and that V^w = a constant 

is the fundamental differential equation throughout the area of 

contact. Or, the load may be concentrated as a line load over 

a small length of the plate, in. which case the formulae developed 

previous iy are applicable.

The results depend to some extent on the size end shape of 

the area of concentration, but the method which is described later 

is readily extended to meet most cases provided the solutions are 

known for the particular area or length assumed. If the loaded 

area is a square, the solution for the fully loaded simply supported 

square plate is necessary^ if a circular or elliptical area is 

assumed, the solution for the fully loaded simply-supported circular 

or elliptical plat©, -'is necessary, etc., etc.

To get a solution to the specified problem a value of £  equal to 

- 10 units is applied in the first instance at the centre point of a 
square field of side 8N and a settled field obtained for vs£ = 0,
In this case the formulae applicable to every square but the central 

square are (2e) and (3c), The central value, £ ~ - 10, is kept

constant and no squaring is made on the central square. From the 

settled £ field, the w values satisfying v4w * 0 are obtained using 
formulae (2f) and 3(d), but, in this case squaring is allowed to take 

place across the central square0 The settled fields thus obtained 

are shown on Field No, 47.

The § field represents to some scale the required £  field for 

the concentrated load W, but the w field requires further modification 

since no account was taken of any load term -//hen squaring across the 

central square.

The boundary values of —— , b'ield No. 47, also represent to seme^x
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scale the shearing force along the supports, and the central load, 

which must be applied to give £ = - 10 at the centre, is therefore
obtained by integrating them along the boundaries.

Using Simpson’s Rule for areas, the value of ̂  ~1« 333 x 11.356

The central £ value, for a load W at the centre, is therefore,

\o f Vz _______\
“ l 1-555 * H-55bj * slnoe £ ■ l/2(vew).
£ = - 0a331 W /K is the required value at the centEe of the plate

loaded with the concentration YiT*

The remaining £ values throughout the field are obtained pro rata

from Field No® 47, and are shown in Field No. 48*

In view of later remarks, it may be noted at this stage, that if

the load W were assumed to be uniformly distributed as a line load over

the length N/2 of the plate, the £ value as obtained from Formula (2g)

would have been - 0*328 W/K*

The w values are then established as followsi- 

A preliminary field is prepared using 0*0331 x (the w values on 

Field No„47)* This field is then corrected for the load term in the 

squares formula*

Thus, in the square of side 4 n, Fig. 24, the concentrated load 

is applied at the centre point D.
A. b,
A,
I (vs,
!M, 1 1 1

__
__
1

S
S

H 
••

> 4 1 Load ..ic '• 2
*4 1 H 

1
W« 1

1

4
<*4

|*Um4
1

J M ,
M,

b .  5

AaA.

K
B.

I ^
r-

Fig. 24*

By taking the squares 1 to 4 in turn, as formerly,

4 £ m = ̂  a + 2 £b + 4 ̂  .

In the central square V4w /^0, and therefore,

= (mA + mg + m3 + m4 ) - Z, where Z is a load term*
c

- £m - Z,

16^*= £a + 2 £ b ~ 4 Z + 4 £ fi 

,*, 12 %)c~ ?a * 2 E b • 4 Z.  .........   ...(a)

Similarly, for the w values,

12 = fA + 2£B - 32 n2£c ~ 4 n2 Z..................(b)
For N = 4 n, (a) and (b) become,
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and ,

12 w. « * A  + 21B - 2 - W 2 Z/4.........  (2 k).

To correct for the last tern io the above, Ne Z/48 is subtracted 

from the central value in the preliminary field and the field adjusted 

to suit this deduction by the method o'f differences.

The Z value is found by applying (2j) to the central square.

(i.e. the £ values on Field No. 48.) Therefore,

12 x 0.331] (4 x 0.1476) - ( 8  x 0.170-3)] - 4 Z/(.*/w)

y. Z « + 0.5049 W/K, and,

N2Z/48 = 0.0105 W Ns/K.

The final fields are' shown on Field No.48.

Bending Moments under the Load.

As mentioned earlier, infinite stresses are produced by a 

mathematical point load, but finite values are obtained by assuming 

that the load is distributed over an equivalent small area. In the 

following analysis it is assumed that;-

(1) the equivalent area is a square of side C,

(2 ) the thin plate theory is valid throughout the equivalent area,

(3) the £ and w values of Field No, 4-8 are sufficiently accurate 

at all points except the load point.

The central square, A B C D, of side N, loaded with a uniform 

concentration over the square of side C is shown in Figure 25.

5 tet »orv5 O £

’i’Ulfi.Kt* K

COUfeU*

 N

w.

w Supports,

\ Ar Lv*\ tv-Jt".

The Igal&teA @0,$ is regarded as being eouivalent to,the sum of.

(a) a square plate bent by couples applied along the boundaries,

V*Sv ~ 0 , being the fundamental equation, and,

(b) a square plate simply supported along the bounde.ri es end loaded 

with the loading in square C, V^w = a constantt being the fundamental 

equation.

In (a), the boundary values are taken from Field No. 46, and 

the central £ value is calculated from the available squares formulae. 

For (b) the solution is obtained by applying the load over the whole 

area. A B C D, in the first instance.
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Thus, the central square with the- £ values o'f Field No. 48 

is shown in Fig. 26.

•1476 •1703 '1476

•1703 •1703

• 1476 •1703 •1476

Fig. 26.

(a) calculated from Formula (2e) = 0.1627 W/K.

(b) From Field No. 1, the £ v&lue at the centre

of a uniformly loaded square plate of side N = 0.0369 W/K

Adding (a) and (b) the £ value of 0.1996 V//K is obtained at the

centre of a square plate of side 8 N when a load is concentrated

over a central square of side N. By symmetry, M = M , and therefore ,x y
if A is used instead of 8 N to denote the full plate dimension, ;-v- .. 

for a ratio C/A = 1/8, = M_ = (1 + o - ) 0.1996 W, per unit of length.
X o

This is repeated with a larger square from Field No. 48, say, for 

example, of side 2 N, Fig. 27.
1* 0-903 • 1097 <••67 '•087 |'0903

•1097 •1087

'1167 5. ' 1167

'•087 •1087

'0903 '1087 •1167 '1087 '0903| Fi ip. 97 1Fig. 27*

Again, the £ value is found from Formula (3c). This gfves 

= 0.11Q4 W/k. To this is added 0.0369 W/K, and therefore for 

a ratio C/A = 1/4, U% = M = (1 +*-) 0.1473 ¥, per unit of length. 

Incidentally, (0.1473 + 0.1104 ) gives the coefficient 0.258 for the 

ratio C/A * 1/16, and, ( 0.1473 + 0.1627 ) gives the coefficient 0.31 

for C/A *= 1/32.

In the above manner, bending moment coefficients for ratios C/A 

ranging from a very small finite value to unity are obtained. These 

are plotted on Diagram No. 7 .
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If Ihe load is c one exit r if ad. ov'jr a circular crea of d~ smster P, a 

cylindrical section of tic plate is isolated in the first instance.Fig,28,
*

X
X  Loa<

(M
* w \

X
Lo a A W

1 fssssysssi 1
V I k-A

ta
Fig. 28 1 Fig. Z5a.

If the circle is not too large in diameter, it is reasonable to 

assume that the value of £ at the centre, produced by the boundary 

couples, part (a), is the seme as the £ value at the point where the 

circle cuts the x or y axis.

At the centre of a simply-supported circular plate, the radial and 

tangential flexural couples are both equal to (3v«qW /|6TT, where W  is 

the total uniformly distributed load.

The bending moments under the load are found thusi- 

For D = N and ©w = 0.5,

M , part (a), v*w = 0, = 6.17 (l +©»-) W * 0,221 Wa
M, , part lb), y4w = constant, - (3 + CN-) w/l6ir = 0.0657 W b 1 ' 1
/ for a ratio D/A = 1/8, M = M * 0.2867 Wx y
This is repeated with D = 2 N and D = 4 N for ratios D/A = 1/4 and 1/2,and 

these values are then used, as formerly, in conjunction with an isolated 

square section. Fig. 28 a., to obtain the solutions for smaller values of 

the above ratios. The results thus obtained, with different vdlues of 

Poisson’s ratio, are plotted on Diagram No. 6 .
(£)For a high concentration of load, Yfestergaard gives,

f
D@ - 2 J0.4 D + h*= - 1.35 h , where h Is the plate thickness,

as the equivalent diameter D of the loaded disc to be used with the
‘0

thin plate theory. For a point load, the equivalent diameter is therefore 

0.65 h.

If the lead i*-concentrated over a short length of a centre line, 

the same procedure may be followed using the previous line load solution. 

Thus, for a loaded length L end. a ratio L/A e 1/8,
( i  + c r)  0 * 1 6 1 7  W  *  (0 8 7 S c* 0 ‘4-7(o) ̂ /S *  ( o - Z 7 Z  + O Z Z Z  oJ)\N9

end, for L/A = 1/4,
u =(iHo-ii04 w  -r (o-87S + O'4 7 ^)^6  * (0-22 r 0-17^) W .

The above are slightly inaccurate because of the assumptions of symmetry 

when computing the flexural couples produced by the £ values on the

m ,-

boundary of th? >latsd square. a line load, the field;
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symmetrical about the respective centre lines and not , in addition, 

about the diagonals as in Field No.48.It is thought, however, that the 

inaccuracy is negligible and Diagram No„9 has been prepared accordingly 

to meet the case of the line load concentration.

Deflections.

It is of interest to note the effect of distributions of load on the 

deflection values of Field No.48.

-Considering, in the first instance, a uniform distribution throughout 

the central square of side N. As formerly, this portion of the plate 

is isolated from Field No.48 and is as shown in Fig.29.
•!476 4703 •!47&
'70S •7X0 ■7OS

'\70i % 4417 '(701 I values have units -W/K
729 '723 w values do. do, W N2/K

-1474 '1703 '1474'701 ■7 29 '703

Fig.29.

Applying Formula (2f), w_ = 0.7475 W  Ns/K, where wa is the deflection 

as in case (a), page 4\ .

Also, for a square of side N, the central deflection produced by the 

uniformly distributed load * ■ 16.7206 WNe/(64)sK » 0.0041 W N 2 /K.

wa + w ] 5 s 0.7516 W N2A  is the required deflection at the centre of 

the plate loaded as above.

Or, if A and C are used to denote, as formerly, the plate and loaded square 

dimensions, then, for C/A = 1/8, w = 0.0118 W A2 /K.

It follows from the above that (0.7475 + 0,0118)W N2/K is the deflection 

at the centre of the plate when the load is distributed over a square of 

side N/8 .

i.e. for C/A * 1/64, w * 0.01185 W As/K.

Similar calculations give central deflection values of 0.0114 W A.2/K and 

0.0099 W A2/K for C/A ~ 1/4 and 1/2 respectively. The above values 

are plotted below and it may be noted that deflections are not particularly 

sensitive to changes in the area of concentration of the load,
0.015r

0.010

©

0.005
P

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9Ratios C/A
Contours of Deflection and the distribution of Shearing Force, Torque 

etc., along the boundary are shown in Diagram No.10.

1.0
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M a x .  Deflection,o-7b3 *L£L

_ D  tagrg  nn N - - 10

S q uare. Plate, o f  umf-orrn T h i c k n e s s , S/n^/ofy su p  /oprTed 
a t the  edg es and loaded w ith a cen f r a !  Co no eri frc\ fed\ 

load /V.
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Square plate, of uniform thickness, simply supported aIong the 

edges and loaded with s concentrated load at the ouarter point 

on an axis of symmetry.

The solution to this problem must satisfy the same requirements 

as in the preceding case of the central concentrated load. It may be 

obtained in the same manner, but advantage may also be taken of the 

available vSv - 0 fields and the previous solution on Field No. 48,

The latter method is described below,

E F G D , Fig, TO, is a part of Field No. 48, forming a rectangle 

8  TT by 6  IT, in which the £ end w values are zero along EG, FD, EF.

To complete the square of side 8  IT, the portion A 3 F E, shown in red^ 

is added.

E

c —  “T D  ~
Fig, 30.

The £ and w values in the added portion must satisfy the fundamental 

differential equation and must not produce any discontinuity along the 

line EF, These requirements are met by producing the field C D F E to 

AR -with values of £ and w equal numerically but of opposite sign to those

at corresponding points in the part ED.

The preliminary field thus obtained is shown in Fig. 31, It 

satisfies the loading but not the boundary conditions. The boundary 

values are corrected by applying equal and opposite values and a 

correction field is built up from Fields Hot. 2, 36, 37, 38, ...43,

In this case,however, the equal and opposite nature of the boundary 

values along AB and CD, makes it possible to use the rectangular fields,

8  N by 4  N s referred to previously*on page 18.

By adding the preliminary and correction fields algebraically, 

the solution to this particular problem is obtained. This is Shown 

in Field He, 49.
Deflection contours, obtained from the above field, are plotted 

on Diagram Ho. \1 , and the distribution of shearing force,etc., along 
the boundaries, on Diagram No. 12.

. L<W w“ , 11

D

zc*

2

J

Fig. 30,
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Bending Moments under the Load,

The bending moments under the load are obtained in a similar

manner to that previously described. In this cashowever> y

and it is necessary to separate these components from the ^ values

in order to compute the respective bending moments M and, M •x y
Thus, for the square of side N with the load concentrated over 

a central square of side N/4, the£ and w values at the boundary, 

abstracted from Field No* 49, are shown in Fig. 32.

•5 4 7

ig. 52.

The Zf v a lu e  a t  th e  c e n tre  o f  th e  s q u a re , F o rm u la  ( 2e) ,  = ~ O ' 1 4 3 4 '

and th e  w v a lu e  a t  th e  c e n t r e ,  Fo rm u la  ( 2 f ) ,  = ' 5 0 5  W N 7 * .
\Vy

The data n e c e s s a ry  to  e v a lu a te  — 2- a n d —— , a re  th u s  a v a i la b le ,  and 

by a r i t h m e t ic a l  d i f f e r e n t i a t i o n  o f  th e  w v a lu e s ,  

jL+L * - 0' \b 8111(1
VjM “ - 0 - 1 5 %  .

From Diagram No* 7 * 1>or C/A = 1/4, = (1 + o- ) 0.15 W,

The maximum bending moment under the load is therefore,

M = (0.16 + 0.13c-) + 0.15 (1 +C~) if per unit of length,
mf

-  (Q31 + 0PZB<r) W per u n i t  o f  length*
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S q oare Pid te un-form t hie K n <r S S } s imply S  u jojoorted 
at The cdqes and loaded <at The quartet joo/nt with) a 
Concentrated load /V.

— Deflection Con to urs

Length of side ■ 8 A/

Mas. Deflection = 0-548 IV N 2/ K
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D /c*Q r a m  f\!°- ~   */      .
S cfu a  r e  P l a t e , n t  <->nt f o  r rn thic.K. n ess f S / m fo /y  jf  u/Q/o o r  t e  d  
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Square Plate of side 8 IT simply supported along the boundaries
and symmetrically loaded with four concentrated loads each of 

amount W at the quarter points.

The loaded plate is shown in Fig. S3,

- f

Fig. 33,

The £ and w values are obtained directly by adding the values 

from four fields similar to Field No, 49, In this case the field 

is symmetrical also about the diagonals^and a closer approximation 

is readily obtained by further squaring. The settled field is shown 

on Field No. 50.

Deflection contours etc., are plotted on Diagram No,13#
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Sauare Piste of side 3 II. loaded completely with a uniformlv. A—. —  ..      ... . — f— . ... ■  ....   .. «f—  ------- —__   - ■ -V-

jiistributed load, simply supported on the boundaries and propped 

at the centre end quarter points so that dsflactions are zero at 

all supports«>

The plate is shown in Fig, 34, the intermediate props being at

the points E, F, G, H and J ,
X

& Support

Tot*l W  * & 4 p N ^
cmif-ermiy fltistnbuftfM 
over the jol̂ fe.

5upportBovnM^r
Fig, 34,

The solution to this problem is obtained by combining the previous 

solutions of Fields Nos, 1, 48 and 50.

With the props removed^the deflections at the centre and quarter 

points,from Field No. l?are 16.7206 p N4/K and t2»0$5Q p N^/K respectively.

If the loads on the central and quarter points are A and B respectively7 
then,

0.763 A + 1.3625 B = 16.7206 p Ns, and, '

0.467 A + 1.3854 B = 12.0950 p Ns.

A = 3.406 p N2, and,

B * ?. 582 p H 8, •
t

Of the total load W on the plate, W = 64 p N2, 0.0534 W is taken by

the central prop, 0.1183 W by each of the quarter points props and the

remainder, 0.4734 W is carried on the boundary supports.

The and w values are obtained by multiplying the values on Field 

No. 48 by 3.406 p N̂ . and those on Field No. 50 by 7.582 p N^.and subtracting 

the sum of the fields thus formed from Field No. 1. The resulting field 

is given on Field No. 51.

Deflection contours etc., are plotted on Diagram No.14 •

/Bending Moments.

The maximum negative bending moment occurs over the quarter point 

supports?and the value of this bending moment is ascertained, as formerly, 

by considering the area of the support in contact with the plate. 'In 

this case, because of the lack of symmetry and the wide variations in the 
£ values it is necessary to subdivide the loaded square in order no obtain
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a more accurate estimation of the quanta ties — ! and than that which 

would be given by applying Formulae (2e) and (2f) to the isolated square. 

It is simpler^therefore,to determine the values of the Bending Moments 

from the separate fields^viz., Fields Nos. 1, 48 & 50, and to add these

algebraically. If the prop reaction at F is uniformly distributed over a

square area of side N/4, the following are obtained;-

Mx * - ( 1.52 + 1.04 ) pi?,
and,

My * - (1.04 + *-1,52 ). p Ne, per unit of length, where the

subscripts x and y denote the flexural couples for planes perpendicular to 

the axes of X and Y shown in Fig. 54.

Shearing Force, Torque etc.

The boundary values of these quantities are given onDtag.M0,|4. They 

were obtained by mechanical differentiation of Field No. 51, but^in this 

case, the squares were sub-divided for a distance N from the boundary.

( This problem is interesting also from the constructional side of 

reinforced concrete where floor slab shuttering may be removed a few days 

after the concrete has been poured provided the floor is propped to 

avoid excessive deflection. Over-propping may result in a reversal of the 

bending moments with dangerous consequences unless double reinforcement 

is provided ). . „
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Rectangular plate, 8  N hy 4 N, simply-supported on the boundaries 

end loaded with a line lead along the long axis of the plate* Fig. 35 »

|— -    8 h  —  • — *-|
i,

z
it Load W * 8ip^ r4
X,

z

Ft*. 35
The solution to this problem is shown on Field No® 52. It is obtained 

by folding Field No. 46 about its centre line and subtracting corresponding 

values.

Deflection contours, etc., are plotted on Diagram No* 15 •
The maximum bending moments are at the centre point of the piate, 

the values being,

M . = (0.812 + 0*119©“ ) p N, end,y
M * (0.119 + 0.812©“ ) p N, per unit of length.

Rectangular plate, 8 N by 4 N, simply-supported on the boundaries and 

loaded with a concentrated load at the centre point*

The solution to this problem, is shown on Field No. 55. It is 

obtained by folding Field No. 49 about its centre line and subtracting 

corresponding values.

Deflection contours etc., are plotted on Diagram No* 16 «

The beiiding moments under the load are calculated as in the case 

of the concentrated load at the quarter-point of the square plate*
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Effect of the size of the network on the accuracy of the results,,

It is noted previously,that a network of 16 squares gives a £ value 

of -2,42 C Ns at the centre of the simply-supported square plate loaded 

with a uniformly distributed load, This is about 2.5 greater than the 

true value, and a similar network gives the central deflection also about
t.5 / in excess of that obtained by using 256 squares. As these are limits 

which are in accordance with the design requirements of many practical 

problems, it is of interest to investigate further the effects of the size 

of the network on the accuracy of the results.

For the vSv = 0 fields, Nos,3 to 10, a coarser network is readily 

obtained by folding them about their respective centre lines and subtract­

ing corresponding values. Fields Nos, 54 to 58 and 59 to 61 are the 

resulting fields for networks of 64 and 16 squares respectively, and 

Field No, 62 gives the solution to thejparticular problem of the concentrated 

load at the centre of the simply-supported square plate when a network of 

64 squares is also used, ihe latter was obtained by extracting the values 

from a central square of side 4 N from Field Noc48 and liquidating the 

boundary values by means of Fields Nos, 54 to 58.

A comparison of the results obtained from Fields Nos,48 and 62 is 

as foil07/s I —
Square plate of side A, Central Concentrated Load W

‘Description Network 
256 squares

Network 
64 squares

'/i0difference.
Max.,Deflection. 0.01192 WAe/A 0.01222 WAS/Li 2,5
Bending Moment M =M 

(C/A - 1/16). x “
0.253 (li-<r)V? 0.255 (1-+ <r-)W cur-i

Max. Bouhdary Shear 0.4144 W/A 0.384- W/A 7,3

The agreement between the respective values is very good with the exception 

of the shearing fokces or other quantities which are computed from the 

gradients of the £ and w fields. It may be noted.however, by comparing the 

actual £ and w values of Fields Nos.48 and 62, that a very close agreement 

between the respective values of shearing force, torque,etc. ,may be 

obtained by subdividing the boundary squares of Field No.62 when 

determining the boundary g r a d i e n t s a n d ^  by arithmetical differentiation. 

In the above comparison, no subdivision of the boundary squares was made.

It is concluded therefore, that for many practical problems, especially 

those relating to simply-supported rectangular plates, the network 

hitherto used is unnecessarily close and the increase in accuracy is not 

■justified by the amount of additional labour which must be expended.

The main reason for using the fine network in the previous exsnrles
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was not to afford the above comparison but to provide a selection of 
s -itled fields having different loading conditions from which portions,

ay be cut, together with a comprehensive 

of V4v = 0  fields for liquidating the boundary values on the primary field. 

It is possible to get e direct solution by solving several sets of 

simultaneous equations in the first instance, but when the number of 

unknowns becomes large it is probably simpler to revert to the usual method 

of squaring. Ir this event, a judicious selection from one or more of the. 

available V w = 0  fields will leave small residuals only or the boundaries 

which are more easily eliminated than the full boundary values.

Fields Nos 54 to 53 are also usefully employed in squaring the 

correction fields. A rectangular plate, lengthy breadth ratio 1,5/1, 

simply-supported at the edges end loaded with a central concentrated load,Wt 

is shown in iig.34« This part is taken from Field No.48 and has the 

overall dimensions of 411 by 6 H, each small square being of side IT/2.

T: uLimmste trie tboundary values, or the residuals if the availab'

correction fields are used, plausible values are selected in the first 

instance for the points on the line GH and these jtogether with the 

values on the boundaries AG,HD^a.nd DA enable £ and w values to be 

computed for points on the line EF by using the values on Fields Nos.54 to 

58. Square EFCB is then taken and new values obtained for the line GH and 

this process Is repeated until the changes in the values on GH and EF 

are negligible. Intermediate values are then filled in using the above 

Fields and the correction field Is added to the primary one.

S

F
Fig, 34,

H

Fields Nos.59 to 61 are also useful for filling in values in isolated 

squares»

S 1 abs continuous over several supports. 50
It may be seen by reference to Fig, 3 lit hat if the boundary values 

on that field are liquidated by adding a similar field with the values 

reversed end for end, a settled field is obtained which has a load 

at each of the quarter points of the Y axis. Fig,37*
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Fig.37

y

r *
X X

& 4 *

V

Fig.58.

Similprrly by extending the original field for various distances, other 

fields having the double load symmetrically placed on one of the centre 

lines are readily obtained. It follows,also,that if these fields are in 

turn extended in the other direction, settled field are made available 

which have 4 concentrated loads symmetrically placed with respect to the 

X and Y axes. Fig.38*

It is easy,therefore, to get solutions for slabs which are fully loaded 

and supported at the edges and at intermediate points, but although this 

loading gives the worst conditions at the intermediate supports it does 

not meet the case of partial loading which produces the most unfavourable 

effects at the centres of the intermediate panels. In the latter case^ 

it is advantageous to combine the results from different sizes of plates, 

each of which has been divided into the same size of network. This is 

demonstrated in the following example.

A flat slab floor, A B C D, is shown in Fig.39. This floor is supported! 

at the edges and at intermediate columns,E to M, which prevent deflection 

of the floor at these points and do not resist bending moments but merely

take direct load, 
A

B

D

+E

f  4-L

1
2 N 2 N ZH B

w , E H V<

F

S / S ,rl LHs

G J Mm 1
D

Fig. 39. Fig.59a.
For a uniformly distributed load throughout the entire floor area., it is 

necessary to solve 3 equations to find the loads on the columns E,H^and I , 

and to combine three fields with the primary one as in the previous 

propped plate problem.

For superimposed loading on any part of the floor, the most 

unfavourable conditions at the centres of the panels occur when the areas 

shown hatched in Fig.39a are loaded only. To obtain a primary field in
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intermediate supports removed,it is necessary to use quare fiel'd
of side 2N which has been settled, with a network of 16 squares. By

extending this field as in the previous examples, i.e. using a series of

spans -with .upward and downward loads alternatelyf.. the field shown in

Fig. 39b is obtained, which, when combined with Field TIo.l gives the field
/

shown in Fig. 39c. It is only necessary to halve the' £ and v; values on this 

field in order to get the required primary field.

A further difficulty arises in the case of the column loads. The loads 

on each of the columns at F,H,L end J are equal and,similarly,.,for E and M, 

and G arid K. It is therefore necessary to obtain the solution for a plate 

or slab loaded with two loads symmetrically placed on a diagonal. Fig.39P. 

This Is found by- using the previous method of alternate upward and downward 

loads as illustrated in Figs.39d,39e and 39f.

The necessary data for finding the loads on columns E,H,K and I are now 

available and the method of procedure is similar to that previously 

described e

h -  --

z
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i
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T O  
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Areas-loaded with 
downward loads 
are shown in black

Areas loaded with 
upward loads 
are shown in red.
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66
Bean's as intermediate supports.

A very common type of bridge decking or warehouse floor consists of 

ribs and slabs1 and it is possible to extend the previous solutions to 

meet this important practical case. .

Tt is interesting to compare,in the first instance, the results 

of the line load solutions with those for a series of equal concentrated 

loads W applied thus I-

(a) along a centre line of the square plate, Fag.40.

(b) along a line parallel to the centre line, Fig.40a.

(c) along the' longer centre line of the rectangular plate, Fig.40b.

l5lo*<j, W
1 1 M  II i
N/Z

i I ■ i I i I

Fig. 40

7

8 N — H

i-wS, W15 Ioau_. tf,■ 111111 h i m  n
N/2

Fig.4Ob.

A line of'values' from Field No.48 is shown in Fig,40c,
71
c-XScooCO

0 b c a e f 0 b J
0 \ B I.0 3 D * E 5 F 6 6 7 H 8 1

Fig.40c
; }
’Values for the points 1 to 8 are readily obtained for the specified loading 

conditions thus.

1. U+H)
2. (j+h) + (h+g) = (j+2h+g)

3. (j+2h +g) + (g+f) = (3+2ht2g+f) 

ete.,etc,,

8. 2(b+c+d+e+f-*-g+h) + j.

Similarly for the deflection values and also for the rectangular plate, 

Field No.53.

The fields thus formed are not reproduced in detail but the loaded 

line £ and w values are tabulated below together with quarter line values 

for (a) and (c) and centre line values for (b). A comparison is also made 

‘with the line load solutions on the assumption that the concentrated load 

t  is distributed over a length TT/2.
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Case (a), 15 loeds each of amount W and uniformly spaced at intervals W/jj

along the centre line.

1 .Centre line values • L
6  1.5013 .7383 .9895 1.1353 1.2395 1.3097 ‘i.3503 1.3636 bf/K
C 11.492 2.381 4.111 5.148 5.971 6.567 6.928 7.049 W*/K

Assureing is distributed over ale ngth N/ 2 .
0 | o 2507 .3942 .4943 .5676 .6197 .6549 .6752 4 ■ .6816 pN/K
0 1 o 1'i O 1,441 2.056 2.574 2.986 3.234 3.464 3.524 pT3/:,

Centre line values, Field No.45.
0 .2482 .3906 .4901 .5625 . 6141 • 6488 . 6 6 8 8  <’. 6753 pN/K
0 1.735 1.417 2 . 0 2 1 2.530 2.930 3,221 3,400 3,457 pN3/K

& ax. D 1  f f e r e n c e £ values = 
•w values = ’/. ■

2. Values along a li.ne mi d-way between the centre line and the edge and

psrallel to the load line.

Assuming IT is distributed over a length ¥,/2 . k
10 | « O' oO 2 .1163 .1652 o 2 0 od .2364 .2532 .2711 1 '.2754 pN/K
|G 1 .462 .902 1.300 1.644 1.920 2.123 2. 246 2.278 pN*/fc

C orr e sponding value s 
|0 ,.0598

, Field 
.1154

No.45. 
.1638 .2037 .2342 .2557 ,2683 -̂.2725 pN/K

C 1 .455 .880 1.279 1 . 613 1.887 2.085 2.206 2,244 pN3/li

Mex.Di fference 5  values = 
vi values .=

n *»/
1.5^ .

Case (b). Similar loading as above but load applied along the quarter line.

1. Load line values, assuming W is distributed over a length N/2.
rp O r~ .3527 .1349 .4919 • *..* - j _L i*/ .5569 .5715 1 0 5762 pN/K
0 . 506 r. r?p, 1,373 1,709 1.968 2 c 155 2.263 12.305 PN3/L

espendin
0

g values 
.2275

, Field 
*.A Q r• * i 2. t VU

1.0 .4 6  

.4308 .4373 .5260 .5512 ,5655 1 2  5702 pH/L
o .495 .950 1 .347 1.569 1.923 2,105 2.213 2.249 pN3/K

Man. Difference £ values = 1
-:V values - 2,5 7 .

Centre line values as in 2 above.  —  r
Cass (c) Similar loading as above applied along the longer centre line of

a rectangular plate SIT x 411,

l.Load line

I--
values, 
.2033

assuming If is c 
.3113 | .3751

. 1 stribu 
.4162

ted over 
.4426

a leng 
.4589

th N/ 2 .
.4678 |.47C6 pH/K

lo
Correspondin

IQ

.265

g values 
. 2054

.498

Field
|zp.p/j_

< 2 0 1  6 KJ KS X

Ho. 53 
.3713

.840

.4120

.951

.4380

1.026

.4537

1.071 

,4625 ^

1,086 pN3/K

U.S53 pH/ll
|0 1 .256 .483 . 372 .815 .917 . 9 p- ° 1.032 1.046 pN3/ii

2 . Values al 

load line an

ong a li 

d an edt; 

.0663

ne para 

-e.j

.1217

llel to 

.1624

the loa 

.1902

d line t 

.2035

md mi d - 

.2199

way be tv

i.2261

re on the 

.2281 ply il
h

Correspondin
0

.173

g Valuer 
.0658

.329

, Field 
.1206

.462

II o. 5 3. 
.1607

.567

.1382

, 645 

.2061

.693

.2173

.729 

. 2235

.740 pN3/K 

'.2254 rll/L
o \-\vi
M*.*. Dtff’crctx

'319 I-4-47 1-548 1-622 
1 , 2 - ~ g vaIu£, e t%

'675
J w  VA

•70 3 
uti * 5'5#-7!5 pN'/k/c



sufficiently close to justify the method being applied to ether line 

loading conditions and especially to slabs which are continuous over 

intermediate beams. The total loads are not quite the same in both of the 

above cases, there being a small difference due to small lengths N/4 at

each end of the line not being loaded in the W system. It is assumed,

however, that any load on these end portions is transferBed to the boundary 

supports without affecting the slab, and although further refinements 

will eliminate the discrepancy they are hardly justified from a practical 

point of view. The beam loading is therefore considered as being equivalent 

to a series of concentrated loads spaced N/2 apart and the amount of 

each concentration is obtained by equating slab and beam deflections at

each assumed point of concentration.

For the primary field, three loading conditions are necessary, viz.,

(a), all spans loaded,

(b),alternate spans loaded,

(c),adjacent spans, and thereafter each alternate span, loaded,

and it is only in the simpler symmetrical cases of two or three intermediate 

spans that solutions are readily available.

The problems are also considerably more difficult when the boundary 

supports deflect under load. The simply supported plate is,in fact, 

analogous to the statically determinate beam in the sense that the £ and 

w values being zero on the boundaries are known beforehand. For a free edge 

the boundary conditions are,

and for a slab supported on a flexible beam which does not resist torsion,

free or deflected boundary, but from certain preliminary investigations 

■with test fields, the Author is inclined to regard the arithmetical method 

as not being particularly suited to this special case. Since the technique 

of the method has not been fully developed, it is not possible to give a 

definite opinion in the meantime.

where IE is the flexural rigidity of the supporting beam©
Trial and error methods ultimately yield the correct £ and w values on the
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Part 2, - Experimental Work.

Description of Apparatus.

A testing machine, specially designed for applying loads to 

plates or slabs is shown cbn Drawing No, lj 70.

The supporting frame is 6 ft, long, 3 ft, wide and about 4 ft. high, 

and is made from 6 in. by 3 in. by 12 lb/ft. rolled steel joi«ts welded 

together to form a rigid structure©

The supports for the plate to be tested are T sections, 2 in, by 

2 in. by 1/4 in. thick, resting on top of the frame and held in position 

by small set screws© To provide a complete bearing throughout the 

required boundary supports it is necessary to file the vertical legs of 

the T’s to suit the irregularities in the test plate. It is important 

to make sure that the proper support conditions are realised as far as 

it is practicable, and considerable care is necessary with this part of 

an experiment.

Rectangular plates, 6 ft, by 3 ft. maximum:size, with or without

intermediate supports, are readily accommodated in the testing machine.

The loading device consists of a screw straining machine carried

on two 7 in. by 3 in. by 14.22 lb/ft, rolled steel channels underslung

on the steel frame. The load is applied to the test plate by means of

bridle beams made from rolled steel channels of the same section as the

above. These span across the plate and frame and are connected at their

ends by turnbuckles which permit adjustments for height to be made.

The load is transferred from the upper bridle beam to the test plate,

either by means of an arrangement of beams and rollers in the case of

a line load,or by packing and a central strut in the case of a concentrated

load. The lower bridle beam is connected at its centre to a weigh-bar

which is attached to the short a m  of a lever, ratio 2 to 1, with its

fulcrum on a block fixed to the supporting dfoannels of the straining

machine. The longer a m  of the lever is connected to the straining

machine. The latter is described in a publication by Professor Gilbert 
17)

Cook who kindly granted the use of this part of the apparatus for the 

plate tests. Small increments of load can be applied by means of a worm 

wheel on the straining machine.

The weigh-bar is made from mild steel. It was calibrated in a 

10 ton Buckton testing machine, the extension on a 4 in. gauge length 

measured by means of an Ewing Extensometer giving the load on the weigh- 

bar. The calibration values for the weigh-bar used throughout the 
experiments are given in the following table and the calibration curve
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is plotted on Drawing No. 2  ̂p*ge *T2.

Diameter of Weigh-Bar, 3/4 in. (nominal).

Extensometer Reading 
Divisions

Load
lb.

33.6 1000

48.5 5000

59.6 * 8000

The above calibration was checked from time to time to ensure that no 

variation had developed during the repeated loading and unloading of 

the test plate.

The deflection of thejloaded plate is measured by means of Ames 

Dials which are graduated in thousandths of an inch. All dials used 

in the experiments were compared with a standard dial which had been 

checked previously in a dividing machine. The dials showed remarkable 

agreement and no corrections were necessary.

The dials are attached to traveller blocks on a movable traverse 

frame which is supported and locked in position on a carrier frame.

Supports for the carrier frame are provided by angle cleats fixed to 

the main frame of the structure. Adjusting screws through the cleats 

are also provided to give a four point bearing. Any point on the plate 

surface, except the load points, is thus reached with comparative ease.

The general arrangement of the above is shown on Drawing No. 3  ̂ page 73. 

Method of Testing.

The surface of the test plate was divided into squares of 4.5 in. 

side by means of fine pencil lines,and the deflections at the corners of 

the squares thus formed were measured in the following manner.

A- small amount of load was applied initially to eliminate any 

irregularities in the seating of the plate and this load was maintained 

on the plate throughout the complete test. The deflection dials were 

then set to zero and a test load was applied to the plate. The difference 

in the dial readings, before and after the application of the test load, 

gave the deflection of the point on the plate surface. The loading was 

then returned to th^>riginal value and the dials were read again to ensure 

that no creep or other errors had taken place during the test. The dials 

were then moved to other points and the above process was repeated until 

the complete plate area had been explored.

Throughout the tests on steel plates no troubles of any kind were 

experienced with creep or other errors. The extensometer and dial zero
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readings agreed perfectly, and,eventually, the precautionary measurements 

mentioned above were dispensed with and the dials were moved to other 

points while the test load was on the plate. In this case the dials 

recorded the rise in the plate when the load was removed.

The repeated loading and unloading of the plate was unavoidable 

and, as a further precaution against errors in load measurement, a dial 

was kept in the same position throughout the test. The most convenient 

place for this dial was at the centre point of the load line, the dial 

being underneath the plate and easily re a d in conjunction with the 

extensometer. A movement of the traverse frsme altered the reading 

on this dial but the readings before and after the movement were made 

the same by'adjusting the zero on the dial. In this way the introduction 

of errors because of the repeated loadings was reduced to a minimum.

The following experiments were made with a steel plate 3 ft. square 

and 1/2 in. thick.

Square plate, simply supported along the edges end loaded with a

uniformly distributed load applied across a centre line.

An attempt to get the specified loading conditions was made with
7S

the arrangement shown in Drawing No. 4/* This arrangement had the 

advantage of being easily erected but preliminary test with it gave 

measured deflections considerably less than the theoretical values.

The theoretical solutions are based on the assumption that only the 

bending and torsional stresses induce the strain energy stored in the 

plate, the effects of shearing and direct stresses being neglected, but 

they are accepted as being good approximations provided the deflections 

are small in comparison with the plate thickness.

To ascertain the cause of the above discrepancy, the deflection of 

the centre point of the plate,for various increments of load was measured
/ r**e 76

and the results are plotted on Diagram No. 5/. No corrections have been 

made for the sinking of the supports under load in this case. The break 

in the deflection-load curve suggested that some shift had taken place 

during the test. At one stage in the loading of the plate a sharps 

metallic noise was heard, but this was attributed to the settling of the 

straining machine beams and no sjoecwf notice was taken of it. On 

further investigation it was found that it was produced by a movement of 

the load blocks resting on the plate?and it is therefore probable, that 

after a certain stage in tho loading was reached, part of the load increment 

passed directly to the supports by arch action and did not affect the
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plate under test.

Accordingly, to eliminate these frictional troubles the V notches

were machined out and larger diameter rollers were provided as shown

in Drawing No. 6 , 0 ^ 9 6  78.

The load-deflection curve for the centre point with this loading
I 7 (e

arrangement is also plotted on Drawing No. S [* ^  will be seen that

the deflection is more nearly directly proportional to load.

The distribution of load was not checked, but, as far as all

practicable requirements are concerned^no great errors are introduced

by making the assumption that the loads on each lower roller are equal.

During the preliminary testing it -was noticed|also, that the corners

of the plate rose off the supports and only the central portions for a

length of about 1 0 . 5  in. on either side of the centre lines remained in
p * g c 73

contact. Corner clamps, as illustrated in Drawing No.'S,A, were provided 

and no further troubles were experje need in this respect.

Measurements of the deflections of all points on a square net work 

of 4.5 in. side were taken for an applied load of 5650 lb. The deflections 

of corresponding points agreed extremely well and the mean values are 

shown in Fig. No. 41 •

1.05 1.55 2.3 3.0 3.0

1 . 6 2 0 . 0 35.4 45.1 CO o CO

2 . 6 38.0 66.7

l

85. 6 92.2

3.1 52.1 92.3 1017.7 126.8

3.5 60.0 104.5 132.3 141.0
L o a d L i n e

Deflections in thousandths of an inch. Load = 5650 lb.

Fig. 4 f .



78

Drovv|ng N a 6

<5 CDO



79
Comparison of measured and calculated deflections.

Because of the deflections of the supports under the test load, 

a direct comparison of the measured and theoretical deflections 

is not available* A comparison may be obtained^ either^ by correcting 

the measured deflections for support yield, or, by correcting the boundary 

of the theoretical solution to agree with the test conditions. The former 

method has been chosen and the corrections were obtained from Fields Nos,

21 to 28, The effects of curvaturej?on the boundaries were neglectedtbut., 

it is thought that this is not a serious omission since the boundary 

deflections are comparatively small.

The corrected field is shown in Fig, 42, the corrected measured 

deflections being in all cases written in black above the line.

The values in red, below the line, are those obtained from the 

theoretical solution to this problem, Field No, 45, and they are based on 

the assumption of equal central,measured and calculated, deflection^the 

amount of the load and the flexural rigidity of the plate being ignored

in the meantime, (i.e. the deflection values on Field No. 45, are
„ 138-3 „ vmultiplied by ~  *4-0 ).

A useful check on the solution of the fundamental differential 

equation is afforded by comparing the black and red values. It may be 

noted that the agreement between them is practically complete.

To calculate the theoretical values, the modulus of elasticity, and 

Poisson^ ratio for the plate material must b© known. Assuming these as 

30 x 106 lb/in2 and 0.28 respectively, then for a square plate of 3 ft, 

side and 1/2 in. thick, loaded with a total load of 5650 lb. the value
if

~ 0.0421, The theoretical deflections are therefore 

obtained by multiplying the coefficients of w on Field No, 45 by the above 

value. The values thus obtained are marked in green on Fig. 4%  •

The theoretical deflections are in excess of the measured values at 

all points on the plate surface. At the centre point this difference 

amounts to 6,7 thousandths of an inch, (i.e. about 4.6 per cent, of the 

theoretical deflection.)
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Comparison of Measured and Theoretical Deflections, 

Steel plate, 3 ft, square and 1/2 inch thick, simply 

supported on the four edges and loaded with a central

line load of 5650 lb*
<

fr

18.0 32.7 42.1 45.8
18. 3 33.4 43.3 46.5
I9'3 35't 4S-S 49 '0

35.8 64.2 82,8 89.4
35.5 64.6 83.5 89.8
37-4 68'0 87'8 94'4

CD.o>*4! 8S.7 115.0 124.1

CO«O'.V1 90.0 115.0 124.0
52'5 9 4'5 IZ0' 8 1 5 0 - 0

Jr
57.2 101.3 129.6 138.3 load
56.8 1 0 1 . 8 129.0 138.3 line
53-6 10 6 '5 ISS'S 14 S’O

Measured deflections, corrected for boundary deflection, are shown in b1ack. 

Red values are based on equal calculated end measured deflections of the 

centre point.

Theoretical deflections are shown in green.

Deflections in thousandths of an inch.

Eig. 4 Z
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Steel plate. 5 ft, square and 1/2 inch thick, simply supported

along; the edges and loaded with a uniformly distributed load

along; a line parallel to one edge and distant 9 inches therefrom.

The.steel plate was kept on the same supports as in the previous

experiment and the straining machine and the beam and roller arrangement 
I 78

on Drawing No* were moved to give the specified load position.

Corner clamps were also presided to prevent corner uplift*

The doad-deflection curve, for the point of maximum deflection 

on the plate, is shown oh Dir*wm£ No* 7 , k *  This has not been corrected 

for sinking of the supports under load.

The deflections of the corner points on a 4*5 inch square net work 

were measured in the same manner as in the preceding experiment and the 

average values for corresponding points are given in Fig. 43. The 

total applied load in this ca.se was 7540 lb.

0.4 1*1 • 5 2.8 3.5

1.4 13.5 23.9 31.3 34.2

2.0 26.2 i£s» CO 0 CO 60.7 66*0

2.5 38.6 68.6 88.5 95.0

2* 5 49.0 87.0 111.5 119.5

2.5 55,5 97.8 123.3 132.0

2.5 52.5 91.2 CO e <—1r—1 120.0 Load

2.5 32*4 55.5 68.5

Line

72.5

1.5 2.7 4.5 4.5 4.5

thousandths of an inch. Total

Fig. 43.

load * 7540 lb.
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Comparison of measured and theoretical delfections.

The correction values for the boundary deflections, again 

neglecting the effects of curvatures, may be obtained by summing 

values from Fields Nos* 2, 29 to 35, and 36 to 43, but the labour 

involved is very great and they are obtained more readily by direct

squaring using the methods and formulae already described for the
' ln + . _4 r  (.Field* 54  to 5 8  < in e t beensolutions of V w  = 0. . . . c . ■

tKr\Oi be utcd  itneTeao or The a.vove)
The corrections thus obtained are drown in Fig* 44 •

0.4

1.4

2,0

2.5

2.5

2.5

2.5

2.5

1.5

1.1

1.6

2.0

2.3

2.5

2.6

2.8

2,9

2.7

2,0

2 .2

2.4

2.6

3.0

2.8

S .5

4.5

2.4

2.4

2.5

2,6

2,9

3.8

4.5

5.5

2.7

2.5

2,7

2.5

2.9

3.3

3.8

4.5

Line

Corrections for boundary deflections in thousandths of an inch.

Fig. 4.4,
Applying the above corrections to the measured values on Fig. 43 ,
the values parked in black above the lines in Fig. 4 5 , are obtained.
The values marked in red on the same Figure are again based on the

assumption of equal theoretical and measured deflections of the point

of maximum deflection. (i.e. the red values are obtained by
129* 1multiplying the coefficients of w on Field No. 46 by 2*447 **

The agreement between both values is very good.

With E and c- 30 1 IQ6 lb/in? and 0.28 respectively, then for 
a square plate of 3 ft. side and 1/2 incivthick, loaded with a line

load of 7540 lb, the value of I E = 0.0562. Multiplying
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the coefficients of w on Field No. 46 by the above valuep the 

theoretical deflections are obtained and are marked in green on Fig. 45 . 

It may be noted that they are greater than the measured values at all 

points on th3  plate. At the point of maximum deflection the difference 

is 10.5 thousandths of an inch which is equivalent to 7.5 per cent of 

the measured value.

-i-

11.9
12.1
131

24.2
24.-2
K o ' l

36.3
36.0
35-9

46.5
46.1 
49'8

52.9
52.6

49.7
49.3 
53'3

29.5
28.7 
31 'O

21.9
22.3 
24'I

44.6
44.3
4g-0

66.2
65.8
7 M

84.4
84.0 
90'8

95.0
94.3
lOl'S

88.2
86.7

52.0
50.6
S4'8

28.9 31.5
29.0
304

58.3

31.4
33'9

63,5
57.9

86.0

62.5
& J ' S

92.5
85.3
92'Z

108.9
108.2
1I7'0

120.4
120.1 
130'0

108.6
109.0 
118 o

64.7
63.9
69'Z

Note.- To accommodate 
the rows of figures the 
distances at right-angles 
to the load line are 
exaggerated on this 
figure.

92.1
99'S

116.8
116.5
\ Z ( o ' 0

129.1
129.1

116.7 Load
116.7 
\ Z&>  1

68.7

Line

68.3
7 3 - 9

Measured deflections, corrected for boundary deflection are shown 

in black.
Red values are based on equal calculated and measured deflections of 

the cmtre point. *

Theoretical deflections are shown in green.

Deflections in thousandths of an inch. Total load - 7540 lb.

Fig. 45*



Steel plate, 5 ft. square and 1/2 inch thjck, simply supported

along the edges and loaded with a coneentr8.ted load at the centre
of the plate®

1 81
The loading arrangement is shown on Drawing No. 7^, the load being 

distributed over an area of 1 square inch of the plate area.
Corner clamps were provided to prevent corner uplift*

The deflections were measured over the same net work and in the 

same manner as previously described. The load deflection graph for the 

centre point of the p3a te is shown in Diagram No* 7 • This, also,has not 

been corrected for sinking of the supports.

The mean values, for an applied load of one ton, are shown on irig.46,

,0.3 0.5 1.2
i

1.5

%

1.6

0.5 12.2 23.1 30.8 32.8

1.2 23.1 43.0 58.0 64.1

1.5 30.8 58.0 79,8 89.5

w 1.6 32.8 64.1 89.5 103.0
i

1

Deflections in thousandths of an inch Central Load * 2240 lb*

Fig* 46*
The correction values for the boundary deflections are readily 

obtained from Fields Nos. 11 to 19.

The corrected measured values are marked in black on Fig. 47 •

The values, marked in red are based on the previous assumption of 

equal theoretical and measured deflections of the centre point of the 

plate. It may be noted that the agreement between both sets of values 

is very good.
The theoretical solution, Field No. 48, gives the central deflection, 

for a high concentration of load, = 0*765 W Ns/K.
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With E and <r~ equal to 30 x 106 lb/in? and 0.28 respectively,

then for a plate 3  ft. square and 1 / 2  inch thick, loaded -with a load

W = 2240 lb.,the value of W IJS/K is equal to 0.134 inches.

Multiplying the coefficients of the w values on Field No. 48$ by 0.134,

the theoretical deflections,shown in green, are obtained. The maximum

theoretical deflection is 0.1025 inches, which is about 1 per cent greater

than, the corrected measured value.

The agreement between the various values is very good in this
/ 81

particular case. The load deflection graph on shows that the

variation of deflection with load is very nearly linear for a range of 

central deflections from zero to 0.160 inches.

11*3 21.9 29,4 31.3
11.4 21.9 29.0 31.9
II'S' 22' \ 29'2 32 1

21.9 41.8 56,7 62.8

21.9 41.5 56.2 62.0
22'I 4 1'8 56<G G2'5

29.4 56.7 78.5 8 8 . 2

29.0 56.2 78.0 8 8 . 0

29' 2 56'6 7 8-S S8'6

31.3 62.8 8 8 . 2 jLOl.7
31.9 62.0

4
8 8 . 0 101.7

32' 1 £2 -S 88 G . loZ'3

Measured d e f le c t io n s , c o r re c te d  f o r  boundary  d e f le c t io n ,  a re  shown in  

b la c k .

Red v a lu e s  a re  based on e q u a l c a lc u la te d  and m easured d e f le c t io n s  o f  th e  

c e n tre  p o in t  o f  th e  p la t e *

T h e o r e t ic a l  d e f le c t io n s  a re  shown i n  £ re e n .

D e f le c t io n s  i n  th o u s an d th s  o f  an in c h .

F i g c  4 7
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Steel plate, 3 ft. square end 1 / 2 inch thick, simply supported 

along the edges and loaded with a concentrated load at the 1/4 point 

on an axis of symmetry.

The loading arrangement of the preceding experiment was used also 

in this case, and, since both experiments are similar the test results 

only are given. Corner uplift v/as again prevented.

The load-deflection curve,for the point of maximum deflection of
f f w  **•the plate, is shown on Drawing • This has not been corrected

for the boundary deflections.

The average#of the measured deflections at corresponding points 

throughout the plate surface,for a total load of 3690 lb., are given in

Fig. 4 8  .

0 0.5 0.8 2.0 3.5

0.9 10.5 19.5 26.5 29a

2.1 21.0 38.1 50.4 55.0

2.3 30.3 5 5 o 7 73.9 80.8

2.3 36.7 70.0 93,7 103.0

2.3 39.5 74.6 104.7 117.5

2.3 34.0' 65.8 95.2

0.19.0 (Max.) 

113.0

1.6 20.5 40.0 58.1

Load Point 

67.2

0,8 0,8 2.8 4.4 4.5

Deflections in thousandths of an inch. Total Load » 3690 lb.

Fig.48o
The corrections for the above boundary deflections are shown in 

Figo 48 • These are obtained in a similar manner to those for the line 

load across the quarter of the plate.
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0 v * U ■ :: %
0̂ 0 /) e O

0,9 1.3 1 . 6 Eol 2*4

2 * 1 2 . 0 2 * 1 2.3 2,4

2.3 2.3 2.3 2.4 2.4

2.3 2.4 2.5 2*5 2.6

2,3 2.3 2 , 6 2 . 8 2.9

2,3 2.3 2 . 6 3.1 3,2

1 * 6 1.9 2 . 6 3,4 3.7

0 . 8 0 . 8 2 * 8 4.4 4.5

Corrections for boundary deflections in thousandths of an inch.

Fig. 49 .

Comparison of measured, and theoretical deflections*

• The corrected measured values are shown in black on Fig, 50. .. -

The values in red,on the seme figure, are based, as formerly, on equal 

theoretical and measured deflections of the point of maximum deflection, 

(i.e. the red values are obtained by multiplying the w values of Field Ho, 

49 by ). In the central portion of the field, the red values

are less than the corrected measured values by 2 thousandths of an inch, 

but near the load point they are in good agreement.

Using the previous values of E and 0s* , W Nfi/K = 0,221 inches, and, 

multiplying the w coefficients of Field Ho, 49 by this value, the 

theoretical deflection?, in inches, are obtained,, These are marked in 

green on Fig, 50 <* The maximum deflection is about 4*6 per cent greater 

than the measured value.
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9.2
9.7
\0'Z

19.0
19.0 
19- 9

28.0
27.9
29-Z

34.3
34.6
3&'2

36.5 
38' 2

>1*7
3 1 . 7
35'2

18.6
18.4 
10 2

17.9
17.7
\ S £

36.0

23.6
24-7

48.1
35.7
37-4

53.4

47.1
49-4

71.5
52.6 
55- I

67.5

69.9
73-1

91.2
65.9
£ 9 ' 0

72.0
71.6
75-1

63.2
62.9
65-9

37®4
37.2
30'O

24.4

89.5
93'8

1C1.9
100.5 
I OS’Z,

92.3
06-5

54.7
54.3
57-0

Note.-

26.7

To accommodate the rows of 
figures the distances along 
the y-axis are exaggerated on 
this Figure.

25.5
2 6 - 7

52.6
51.3
53'g

78.4
76.4 80-O

100.4
98.6
l o V O

114.6
113,6 
It 9 - 0

M15.9, 115.9., 121 2 

109.8 joo'iKf
L09.8
IIS'O

63.5
63.1
£<5'l

Measured deflections, corrected for boundary deflection, are shown in 
black.

Red values are based on equal calculated and measured deflections of the 

point of maximum deflection.

Theoretical deflections are shown in green.

Deflections in thousandths of an inch. Total Load = 3690 lb.

Fig. 5 0  e
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Conclusion.

The main purpose of the foregoing experiments is to afford a comparison 

between the deflection values of the arithmetical analyses and those from 

actual tests with line and concentrated loading. It was expected that the 

theoretical values, as in other recorded experiments^, would be greater 

than the test results and that the difference would increase with load, 

but the Author was unable to find any record of■experimental work which 

would furnish a comparison throughout the entire surface of the loaded 

plate.

The agreement between the two sets of values, marked in black and 

red respectively, leaves little doubt about the efficiency of the 

arithmetical method of analysis. When a fine network is used, the method 

is somewhat long, and tedious, but it gives a solution for the entire 

surface of the plate which is, in effect, analogous with influence lines 

for structural frameworks, etc. This is an extremely valuable property 

where moving loads are concerned and should not be overlooked.

By making use of the Theorems of Reciprocity and methods of super- 

-position mapy important problems are readily solved once the values on 

the primary, field are known. The fields themselves prove the Reciprocity 

Theorem, and an analytical proof is therefore considered as being 

superfluous. It may be noted from Fields TIos. 45 & 4-6 and 48 & 49 that 

the theorem is valid for deflections,bending moments,and shearing force.

The arithmetical method may also be used with advantage where simply- 

-supported plates of polygonal shape or floor slabs with. re-entrant angles 

are concerned, and many interesting solutions for the isoceles right- 

-angled triangle are obtained by folding the square fields about their 

diagonals and subtracting corresponding values.

It is not claimed that the method is suitable for 8.11 classes of 

practical problems. With coarser networks, however, many closer 

approximations than those in current use may be made without undue labour, 

and in this respect, it may be mentioned that all degrees of fixity, from 

the fully clamped to the simply supported edge condition, are readily 

handled.

It is hoped that the Fields may also prove useful in other brahches 

of research where solutions ofP&rsdamental differential equations of a 

similar type are necesseny.

— o— o— 0— 0--0--



Appendix

As mentioned in the Prefatory Note, several publications are now 

available v/hich make it possible to compare the various results.

Line Load across the centre of the plate.

(a) Square plate of side a and thickness h * 0*3.

w * 0.0736 p a3/E h3  (Timoshenko)^ ̂m&x»

Corresponding value, arithmetical method, 0,0736 p a3/E h3.

(b) Rectangular plate, 2a x a x thickness h, line load applied along

the centre line of length 2a# <%. - 0,3.

w * 0.1779 p a3/E h3    ..(Timoshenko)^max.
Corresponding value,arithmetical method, 0.179 p a3/E h3.

M = 0.107 Wy
M * 0.044 W

X

(do.)

Corresponding values, arithmetical method, 0.106 W and 0,045 W.

Concentrated Load at the centre of the plate.

Square plate of side a , thickness h,cw« 0.3

wmax. ' 0.1265 Wa2/Eh3 ................. ........... (do.)
Corresponding value, arithmetical method, 0o13 Wa2/Eh3.

Rectangular plate, 2a x a x  thickness h,^.= 0.3.

w * 0.1803 fa2/Eh3, ............................ (do.)

Corresponding value, arithmetical method, 0,189 Wae/Eh3.

Partially Loaded Plate.

JFor the load W concentrated over a square of side C, the values of the f t
f P W + i

coefficients on Diagram No. 7^are in complete agreement with Timoshenko s 

for the range C/A c 0.1 to C/A * 1.0 .

For the line load, Diagram No. 8,A the f t coefficients are less than Timoshenkos

for the smaller ratios of L/A but they agree at L/A « 1. It was mentioned

on page 44 that assumptions of symmetry had been made, and that slight errors

had been introduced as a result. The maximum difference is at L/A = 0,1, 

Diagram No,8 gives f t = 0.36 wheceas Timoshenko's value is 0.378.

A complete solution for the simply supported square plate with a
Uo)

concentrated load at its centre is given by Holl • The Marcus method, 

based on the membrane analogy# was used in this case^and a network of 

64 squareg was taken. A comparison of the several results is interesting 

in view of the closer mesh of 256 squares on Field No, 48,
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In this example the dimensions of the plate are 2a by 2a by thickness

h and the thickness/span ratio, h/2a, is 0 . 1 0 . 0 * 2 0 .
(.10

In another publication, Holl gives the following values for the equivalent 

diameter DQi-

De = 0*055 A for point loads, where A is the plate length or span*
Dg = 0*060 A, when the actual load is concentrated over a circle of

diameter D * 0,02 A = 0,2 h.
Dq = 0,074 A, as above, D * 0*060 A * 0*6 E.
De = D , for values of D greater than 0,08 A.

It is assumed that these values have been used instead of Westergaard's.

Quantity Holl Arithmetical
Max.deflection 0.0522 Was/fc 0.0478 Wae/K

Mx — My 0.3499 W 0.345 W

Max. Shear, boundary. C.2205 W/a 0.2072 W/a
Max. Reaction. 0.368 W/a 0.368 W/a

Max. Torque, boundary. 0,0688 W/a 0.0704 W/a

Corner Load. 0.1376 W 0,1408 ¥.

With the exception of the maximum deflection, the quantities are in 

good agreement. It may be noted that Timoshenko's value for the maximum 

deflection of the above plate is 0*044? Was/K.
The Marcus method is apparently very similar to the arithmetical one. 

The membrane analogy on which it is based is,

(a) the deflections of a membrane loaded with loads proportional to those 

on a given plate may be considered as the sum of the principal moments of 

the actual plate,

and,

(b), a second membrane may be loaded with elastic weights proportional 

to these moment sums, and, subject to appropriate boundary conditions, 

the deflection of the latter membrane will be proportional to the 

deflections of the actual plate under the given load system.

It is easy to prove that this gives the same formulae (la) and (lb)

for the single square of side 2n but thereafter the methods differ— -the

arithmetical method groups the squares whereas the Marcus method uses

' fiijite differences to get two sets of simultaneous equations. In the
(JO)

example given by Holl it was necessary to solve 2 sets of equations 

for 10 unknowns in each case, and in view of this^it- does not appear to 

the Author as being simpler or quicker than the arithmetical method.used 
in this Thesis,



Tests of Plaster-Model slabs subjected to concertreted l&ads
whave been made by Nevmark and Lepper. These give an interesting 

comparison with the theoretical analysis for the concentrated load 

on a simply supported square plate*

It is claimed by the above authors, that when specimens of pottery 

plaster are made under the proper conditions the stress-strain relation 

is practically linear up to the point of rupture; the material, is 

relatively weak in tension; and failure seems to occur at a limiting 

tensile stress, but for practical purposes may be considered to be 

nearly independent of the magnitude of the other principal stresses*
"WTjen plaster is used for tests the necessity for measuring strains is 

eliminated, since the intensity of the maximum tensile stress occurring 

in the test specimen is equal to the strength of the plaster, and this 

fairly definite stress corresponds to the ultimate load, on the specimen 

just before rupture. One may determine relative stresses for given loads 

on different specimens by a comparison of ultimate loads***

The values of Poiseon*s ratio, determined as the ratio of lateral 

to longitudinal curvature of certain test beams, varied from 0*15 to 0.26 

for seven tests with an average of 0.20.

As a result of these experiments^ a coefficient, which may be 

interpreted as the maximum moment due to a unit load of 1 lb. at the 

various load positions^was determined. In the case of a plaster slab,

12 inches square and 1 inch thick, loaded with a coneentrated load at the 

centre over a circular area of 1 inch diameter, the coefficient is given 

as 0.331, and for similar loading at the quarter point of a centre line 

the coefficient is 0*267.

The corresponding values from the arithmetical analyses, using 

Westergaard*s formula for the equivalent diameter^ are 0.305 and 0*29 

respectively.
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BASIC CURVE METHODS IN ROAD-CURVE DESIGN
By W. M a c G r e g o r * , B.Sc.

Discussed in writing, April, 1942

T r a n s i t i o n  Cu r v e s

To those who are familiar with the advantages to be gained 
by using basic curve methods in the design and. setting-out of 
road bends, it is strange indeed that despite the numerous 
papers which have been published in recent years on liighway 
alignment and design, none has dealt with the subject from the 
aspect of the basic curve. In new road schemes, the running, 
chainage should be maintained throughout the works, and, 
although much has also been written about this for the case 
where circular curves alone form the bend, little attention has 
so far been given to it when transitions are introduced. It 
will, in general', be agreed that setting-out methods that will 
allow any point or station on the bend to be readily located are 
to be preferred to others. In this respect, basic curve methods 
will meet all requirements, and their use will also give a quick 
solution in location problems, such as making the bend pass 
through a pre-selected point. It is not the intention to describe 
any new type of transition in the present paper, or to dispute 
the accepted methods of design. The spiral and the lemniscate 
will be, described from the aspect of the basic curve and formulae 
correlating speed and curvature will be given for both.

The basic curve method was introduced by Thom,1 who 
pointed out that in transition work all spirals have the same

*O f th e  U n iversity  o f Glasgow  
1See bibliography, p . 330. *
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form and differ only in their size or scale and in the length of 
curve which is used. The basic curve is defined by its equation. 
Its linear quantities are non-dimensional, but it may best be 
visualized as being a model of the full-size curve to a scale of 
1/K. Lengths on the full-size curve are therefore obtained 
by multiplying the corresponding basic curve values by K. 
This applies equally to the lemniscate and to the spiral, but 
to avoid confusion in the respective formulae, the use of K  will 
be restricted to the spiral and the multiplier for the lemniscate 
will be denoted by J. The basic curves are shown together in 
Tig. 1, the numbers marked thereon being the so-called lengths

•so * X

| £

Fig . 1.

from the tangent point B to the point in question. These, 
when multiplied by K or J  respectively, give the distances on 
the full-size curve. It will be proved later that, for the same 
initial rate of change of acceleration, J = y /3K, and to give a 
comparison between the lemniscate and spiral, scales in the 
ratio y/3 : I have been used hi plotting the respective curves.

In improvement schemes especially, the multipliers, K and 
J depend mainly on the extent of the ground available, whereas 
in new road design, the optimum values can be found by con­
sidering the requirements of speed and curvature in addition 
to those of the site. The speed and curvature requirement herein 
adopted is the rate of change of acceleration. This quantity
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will be denoted by C ft. per sec. per sec. in 1 sec., and it will 
be assumed that the speed of the vehicle is constant throughout 
the bend in question, v and V being used for speeds in ft. per 
sec. and miles per hour respectively.

The Centrifugal Ratio, F. On a vehicle travelling in a curve 
of radius E  at a speed v, the radial acceleration is r2/R . 
If the centre of gravity of the vehicle is at height h above road 
level and 6 is the width of wheel base, then on level road 
surfaces, overturning of the vehicle will occur if (v2/g~R)h> 6/ 2 , 
and side-slip will take place when (v2/g R )>  g, the coefficient of 
friction between the tyres and the road. I f  g < 6/2 A side-slip 

<-'will take place first; this is the general tendency with road 
vehicles. On roads superelevated at an angle y to the horizon­
tal, v2/gR  must not exceed (g+ tan  y )/( l — g tan y) or slipping 
will result.

The important ratio, v 2/gR , has come to be known as the- 
Centrifugal Ratio, and throughout this paper it will be denoted 
by F. Substituting 32-2ft. per sec. per sec. for g and keeping
It in ft. and V in m.p.h.,

F = V 2/15R . (1)

Extensive research is being constantly carried out by the Road 
(Materials and Construction) Board of the Department of 
Scientific and Industrial Research on- the development and
maintenance of non-skid surfaces, and much valuable data
has been published from the results of tests on various types 
of surfacing materials under wet and dry conditions.2 An- 
excellent resume of this work has been given by Pidgeon.3 Jn  
general, it appears that a value of F =0-25 is about the maximum 
which should be used in the design of modern roads ; with this 
the radial acceleration is 8 ft. per sec. per sec.

The Rate of Change of Acceleration. C. As a result of experi­
ments on railway curves, Shortt4 suggested that a value of 1 ft. 
per sec. per sec. ip 1 sec. was about the maximum rate at which 
the acceleration could be acquired without the passengers, in 
a railway carriage experiencing a sensation of discomfort. This 
value is the standard in present-day railway practice, and many 
engineers have adopted it also for the design of road curves. 
In road work, however, it is not a universal standard. Many 
feel that it is too low ;• that it gives transitions which are unduly
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long ; and that values of about 2 ft. per sec. per sec. in 1 sec. are 
not only permissible but indeed desirable. In 1939, a com­
prehensive review of the position was made by Orchard5, and 
since the publication of that paper the validity of C as a factor 
in the design has been questioned.6 It should not be over­
looked that, apart from its validity from the aspect of comfort, 
the value of C serves as a useful and convenient means of 
measuring the sharpness of a bend. More experimental work, 
with all types of transport vehicles, must be made before the 
position is finally cleared and a maximum permissible value of 
0  established. In the meantime, therefore, the choice of value 
.must be left to the discretion of the engineer.

Fig. 2.

T h e  S p i r a l  T r a n s i t i o n  Cu r v e

Referring to Fig. 2, the basic spiral is defined by the equation 
dQ/ds—s, where s is the distance measured along the

basic curve. (2)
/.  rs= 1, r being the radius of curvature at the point

distant s from the origin , (3)
For the full-size curve, S = K s, R = K r, and the above become

^0/r fS = s /K = S /K 2, (4)
and R S = K 2. (5)

Since K is constant numerically, the radius of the full-size spiral 
is therefore inversely proportional to the distance along the curve; 
'Consequently the centrifugal ratio F will vary at a uniform rate
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when the vehicle is on the transition. Integrating (2) and (3), 
respectively,

0=s2/2, (6)
= S 2/2 K 2. ' (7)

It may be noted that the multiplier K  for the spiral is, in effect,
the length of the full-size curve which gives a deviation angle
9 =  i  radian.

For the rate of change of acceleration, G, we have,

C=^(v2/R)=v3/K2, (8)
and therefore, provided the speed of the vehicle is constant, 
C will also be constant throughout the length of the transition.. 
Re-Writing (8), and changing the speed units to m.p.h.,

K = 1-7’75V (V3/C) ft. (8a)
If  Q denotes the rate of turning of the steering wheel in degrees 

per sec., and G and B are, respectively, the gear ratio of the 
steering wheel and the length of the wheelbase of the vehicle, 
then,

Q=26-7 GBC/V2. (9)
From this it will be noted that if the steering wheel is turned 
at a steady rate, the vehicle will describe a spiral curve. Since 
G and B are not uniform for all transport vehicles, Q is best 
used, not as a prime factor in the design of the bend, but rather 
as a check on the selected value of C.

With selected values of V and C, the multiplier K  is obtained 
from (8) or (8a), but to complete the data for the design of the 
bend the length of the transition or the limiting radius mush be 
ascertained. These depend on the value of F, and on the 
magnitude of the actual deviation angle between the straights. 
Each bend must therefore receive individual consideration 
before the optimum values are fixed.

It may be possible to form the bend entirely with two trans­
itions, each being the mirror image of the other about the line 
bisecting the intersection angle between the straights. On 
these wholly transitional bends, however, the driver of the 
vehicle has no respite from turning the steering wheel. On 
entering the curve he must turn the wheel throughout the entire 
length of the first transition and thereafter unwind until the
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next straight is reached. The majority of motorists do not like 
this arrangement, and it should not be used indiscriminately. 
Even a short length of circular arc between the transitions is 
in certain respects an easement curve, and, in the Author’s 
opinion, it adds to the appearance.

On the other hand, it should not be overlooked that the 
layout which develops the maximum permissible values of C and 
E, will approach the intersection point of the straights more 
closely than any other arrangement; incidentally, this will 
also be the shortest length of curved road but, paradoxically 
as it may seem, the longest route. This important site require­
ment may well justify the wholly transitional layout, but in the 
past the Author has noted a tendency to use this arrangement 
simply because the calculations • are to some extent simplified.

Nevertheless, it is -most helpful in the preliminary work to 
know if a particular bend can be made wholly transitional 
with the selected values of F and C. Since, in this event, each 

, transition must contribute equally to the deviation angle, the 
limiting value of the latter is,

20 =  a=(^F)2/aC radians. (10)
An arrangement of the above which is more suited for practical 
use is,

a=40508 F 2/VC, where a is the limiting value of the
deviation angle in degrees, (11)

and a further modification, which is useful in certain problems, is
K = V 2V V 1 1 3 ,5 F. (11a)

If the deviation angle of the bend under consideration is less 
than the limiting value found from (11), the bend can be wholly 
transitional and the value of F used in the substitution may not 
even be developed. If, however, it is greater, an intermediate 
length of circular arc will be necessary. At their junction, 
transition and arc must have the same radius and a common 
tangent. The locus of the common centre of curvature will 
be the line bisecting the intersection angle between the straights 
(Fig. 4).

The length of the spiral throughout which the value of F will 
not be exceeded, and which is, in fact, the length of the spiral 
which can be used as a transition, is readily found by substi-
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tuting K 2/S  for the radius R in (1). This gives,

S =  15F(K/V)2. (12)
Care must be taken when using (12), for whether this length 
will be used in whole or in part depends, as already noted, on 
the magnitude of the actual deviation angle.

Fig. 3 shows in graphical form the relationship between the 
design factors V, C and F, the multiplier K  and the limiting 
length of the transition S. It has been constructed by using 
(8a) and (12) and instructions in its use are given in the ac­
companying footnote. The higher values of C and F have been 
included, not because they are likely to be used in road practice, 
but because they show very clearly the effects of an increase in 
speed, and may therefore be useful to those who may wish to 
carry out further investigations of the maximum value of C. 
It is thought that the diagram, apart from its use in the pre­
liminary work, will give a clearer perspective of the factors 
which form the basis of the design of transition curves.

In setting-out circular curves, the advantages of the degree 
system are too well known to require further amplification. 
A curve of D° is one in which an arc of 100 ft. subtends an angle 
of D° at the centre. It will be noted that a slight departure 
from usual custom has been made by using the arc and not 
the chord length of 100 ft. The relationship between R and D 
is therefore, R =5729-58/D  ft., and in the preliminary work the 
approximation,

D =86000 F /V 2 . (la)
may be used as an alternative to (1).

A certain amount of latitude can be allowed in fixing the 
values of K, S or R in order that calculations and setting-out

The intersection, o f  the  vertica l line corresponding to  the  speed standard  
with tlie  curve o f  the  selected  value o f  C gives the  m ultipliers K  and J. 
Thus, for V = 4 0  m .p.h . and C = 0 -5 ft. per sec. per sec. in 1 sec., 
K =  635 ft. and J =  1100 ft.

The in tersection  o f th e  curve o f F  and the straight line drawn through  
the origin to the  poin t as found above g ives the  lengths S and P  through­
out w hich the  value o f F  w ill n o t be exceeded. Thus, for V = 4 0  m .p .h ., 
C = 0 ‘5 ft. per sec. per sec. in 1 sec. and F = 0 ‘1, S and P  are b oth  equal, 
to 378 ft. I f  Prof. R oya l-D aw son ’s un it chord sy stem 7 is used, the length  
of the u n it chord is very  nearly  K /6 .
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may be facilitated. Whatever adjustments are made to these 
quantities, the fundamental relationship, R S = K 2, must be 
strictly observed.

Tangent Distances. When the values of K, S and R have 
been finally settled, and the deviation angle a between the 
straights has been measured by theodolite, accurate calculations 
must be made to determine tangent distances, etc. Referring 
tc Fig. 4, which mows the centre line of the road for the general 
case of a bend that requires an intermediate length of circular 
arc, sufficient data is required to establish the points B, E. H, 
J, C, G and F. The importance of these points demands that

C \ r '\rci*\°‘r Curve G 
I R /*"

T h e  \ c e n ! r e  oF 1/he 
C i r c u l a r  Arc  iiafs o n  

' t h i s  l i n e /

Fig. 4.

pegs, when once fixed, should be referenced carefully so that 
they can be replaced quickly in the event of their being moved 
or destroyed during the execution of the works. (

The value of 0 is obtained from (6) or (7), it being a matter 
of choice whether the calculations are made for the basic or the 
full-size curve in the first instance. The deviation angle for the 
circular arc (a—20) readily follows. (In the wholly transitional 
layout, the points C and G would coincide and the above pro­
cedure would be reversed, s or S being obtained from (6) or (7) 
respectively, by substituting 0 —a/2 .)

The sub-tangent lengths, CE and EG—R tan (a /2—0).
For the spiral (Fig. 2),

X = K :r = K V 2 0  (1—02/lO + .0 7 2 1 6 —06/9360 + .............)

and Y = K y = K y /20 (0/3—03/42-f-05/132O—............ )
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Substituting 0 = s2/2 , these become

X  = K s(l —s4/4 0 + s 8/3456 —s12/599040 + ............ )
and Y = K s(s2/ 6 —s6/3 3 6 + s 10/42240—........... .)

. tan 9 =  Y /X  = 0/3  + 03/lO5 + 65/5997 / 0 7/198700 7........
The rather formidable aspect of the above expressions has 
doubtless restricted the general use of the spiral in the past. 
Adequate tables are now available, those by Thom1 being 
specially prepared to suit the basic curve method of design. 
They give values of x, y  and 9 , for values of s ranging from 
zero to 2-4, at intervals which are sufficiently close to give 
interpolated values of 9 to single seconds of arc.

When X  and Y have been found,
HC = Y /s in  0, H A —HF cos (a/2—0.)/cos a/2,
H C '= Y /tan  0, A F = H F  sin 0/cos a/2,
HF = H C +C F , B A = B C '—C'H +H A.

The points can now be located and pegged and the running 
chainages of B, C, G and E obtained.

The Shift Method of Obtaining Tangent Distances. If no 
transitions had been inserted, the circular arc would have been 
tangential to the straights, but with transitions, Fig. 4, the 
minimum distance between the extended curve and the straights 
is known as the shift N, and the distance from tangent point 
to the shift point is M which can, for convenience, be called 
the shift point distance.

N = Y —R (l— cos 0), (13)
and M = X —R sin 0. (14)
The tangent distances are therefore,

A B = A E = (R + N ) tan a/2+M . (15)
This method is undoubtedly quicker than the previous one but 
no intermediate checks on the field work will be available until 
the complete bend has been set out. It is, however, very useful 
when the shorter transitions lengths are used.

Setting-out the Curves. The transitions BC and EG will usually 
be set out with the theodolite stationed at the tangent points
B and E respectively, Fig. 4. Intermediate points on the
transitions are located by turning the deflection angles from 
the straights and chaining the distances along the curve. To
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avoid confusion with the total length of the transition, and Sr 
will be used to denote the distances of the intermediate points on. 
the basic and full-size curves respectively, and the deflection 
angles to these points will be distinguished by a similar sub­
script. The values of <px may be obtained by substituting the 
values of Sj or Sj in the previous series. This is laborious and 
is not suited for work in the field. Thom1 gives the ap­
proximation,

<p1; in minutes of arc=573sf—l-213sf—............ ;
this is sufficiently accurate for values of s x not greater than 1.

I f  the running chainage is to be maintained, the S x distances 
will be known in the first place. These depend on the chainage- 
of the tangent point and on the station interval and are readily 
reduced to basic curve values by dividing by K. If the running

Tanqerit Osculating

| m . IEQ1 K1

Fig 5. Fig. 5 (a).

chainage is not to be maintained, the basic curve distances! 
may be selected to facilitate the setting out. With the tables1-' 
the calculations can be made in the field and the curves set out! 
with little delay. -

The intermediate circular curve would be set out in the usual 
way. Except to point out that, if the shift method of obtaining! 
tangent distances has been used, the tangent at C would be located! 
by stationing the instrument at this point, sighting back on B,| 
transiting and turning through an angle (0—<p), no further! 
explanation need be given.

The Law of the Osculating Circle. An osculating circle at a, 
point P on the spiral is the circle which is tangential to- the! 
spiral at P and which has the same radius of curvature as the; 
spiral at this point (Fig. 5). The law states that the rate of 
divergence of the spiral from the osculating circle is approxif 
mately the same as the rate of divergence of the spiral froffi



BASIC CURVE METHODS IN ROAD-CURVE DESIGN 313
the tangent at the origin. The following demonstration may 
be of interest to students versed in the Mechanics of Struc­
tures.

An important theorem, used to determine beam deflections, 
states that the deflection of Q from the tangent at P, where P 
and Q are points on a beam subjected to bending, is equal to 
the moment of the area of the portion of the bending moment 
diagram between P and Q about the point Q divided by IE, 
where I and E have their usual significations. '

Considering the spiral as a bent beam, and using the well- 
known relationship M /I=E/K>, the bending moment at the 
point distant S from the start of the curve is M = IE S /K 2. The 
bending moment diagram is therefore a straight line, Fig. 5(a). 
Let P and Q denote also the distances of the points along the 
spiral. The deflection of the point Q from the tangent at P is 
aQ and, from the above, aQ =(2P +Q )(Q —P )2/ 6K 2.

For the osculating circle at P, of radius K 2/P , the deflec­
tion of a point (Q—P) : distant from P is a6= P (Q —P )2/2 K 2.

bQ—aQ—ab—(.Q—P)3/ 6K 2, which, by comparison with the 
previous expression for Y, is approximately the same as the 
deflection of a point, distant (Q—P) from the origin, from the 
tangent at the origin.

This law is of extreme value when obstacles interfere with 
the line of sight from the instrument stations at B or E in. Fig. 4, 
since it will allow points on the spiral to be located from another 
point on the curve. Thus if P is to be the new instrument 
station, and Q the point to be located, the deflection angle from 
the tangent at P to the pond; Q, is equal to the deflection angle 
for a length (Q—P) of the spiral from the straight at the begin­
ning, plus the deflection angle from the tangent for a length 
(Q—P) on the osculating circle. The latter has a radius of  
K2/P  and consequently the osculating circle deflection angles 
are, in minutes of arc, 1719 P(Q—P )/K 2. If, however, the 
point to be located is Q', lying between B and P, the deflection 
angle from the tangent is equal to the osculating circle deflection 
angle minus the spiral deflection angle. The tangent at P  
would be located by sighting the point B and turning through 
the angle (6*—q>„).

The rules are not. strictly accurate and corrections, in seconds 
of arc, have been given by Thom.
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T h e  L e m n i s c a t e  T r a n s i t i o n  Cu r v e

In recent years the lemniscate of Bernouilli has been used 
by road engineers not only as a transition curve but also in the 
complicated clover-leaf flyover junctions. Referring to Fig. 6,

HB
Fig. 6.

B C = P , the polar ray to the point C ;
R  =Radius of curvature at C ;
BM is the axis of the lemniscate, and on the full-size curve this 

is equal in length to the multiplier J  ;
CH is the tangent at the point C ;
9 is the polar deflection angle for the ray BC ;
0 is the angle turned through by the curve in length BC. 
The equations for the full-size lemniscate are,

P = 3 R  sin 29, (16);
and P —J V 'sin-29 . (17|
Another important property of the lemniscate is that the angle; 
0 is exactly 39 . For the basic lemniscate BM is unity and the! 
above become,

.p —3r sin 29 , (18);

and • P =  V  sin 29. (19)
From these it follows that,

pr  (compare r s = l  in the basic spiral) (20)
and, P R = J 2/3  (compare R S = K 2 in the full-size spiral) (21)

To Determine the Multiplier J  for the Lemniscate. For the
lemniscate, by successive differentiation, the rate of change of 
acceleration, C, is (3v3/ J 2) cos 29 . C is therefore not constant
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in value, but is a maximum at the beginning of the curve where 
<p is zero, and thereafter decreases until zero value would be 
obtained if <p=45° were-reached. A certain amount of easement 
in the rate of turning of the steering wheel (9), is therefore 
obtained with the lemniscate.

Using the maximum value of C as the criterion,

J  =  a/3  {v3/ C )  ft., .(22)
or, with m.p.h. units,

J= 3-075V (V 3/C) ft. (22a)
A comparison of these with (8) and (8a) shows that, for equal 
values of C, J = -\/3 K , and, accordingly, the scale to suit the 
lemniscate is shown on the right-hand side of Fig. 3.

The maximum length of the lemniscate which may be used 
as a transition is decided, as in the case of the spiral, by the 
centrifugal ratio F. Substituting J 2/3 P  for the radius R in (1), 

P = 5 F  (J /V )2. _  (23)
A comparison of (12) and (23) shows that, for J = - \ /3K, the 
lengths S and P, in the spiral and lemniscate respectively, are 
the same. Fig. 3 can therefore be used for both curves. It may 
be noted, however, that S is a curved length whereas P is a 
chord length.

For wholly transitional bends, the formulse equivalent to (11) 
and (11a) of the spiral are readily obtained by substituting 
9=  a/6 in the lemniscate equations (16) and (17). This gives 

sin a /3 = 2 3 6 F 2/VC, (24)

and J = V 2-\/(sin a/3)/5F . (24a)
It may be noted that sin a/3 replaces a/3 in the corresponding 
spiral formulae. The remarks concerning the selection of the 
values of K, S and R apply equally to the lemniscate values 
J, P and R, the relationship P R = J 2/3  being strictly observed.

Tangent Distances, etc. Once the essentials J, P and R have 
been finally fixed, the various tangent distances, etc., can be 
determined as follows :
With the notation of Fig. 7, cp is found from (17) or (19), then

B H = P  sin 29/sin  39, and H C = P  sin 9/sin  39 .
The sub-tangent lengthfor the circular curve CF = R  tan (a /2—39). 
Triangle HAF can now be solved for the lengths HA and
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AF, and the tangent distances AB and AE obtained by adding 
the lengths BH and HA.

(In the special case of a wholly transitional bend the procedure 
is reversed, 9= a/6 .being substituted in (17) or (19) to get the 
lengths P or p  respectively. The tangent distance for the basic 
curve is then p  cos 29/cos 39 ; this, when multiplied by J, 
gives the full-size tangent distance.)

Shift Methods. In view of the ease with which the tangent 
distances, etc., can be obtained from the properties of the 
lemniscate, it is only where the check points C and G are not,

Fig. 7

to  be located beforehand that any advantage is to be gained! 
by using the shift methods. For the full-size curve, Fig. 7j 
the shift is,

N = P s i i i9—R(1— cos 39)
= R (3  cos 9— cos 39—2)/2, (25)

and the shift point distance is
M =R (3 sin 9 -(-sin 39)/2 . . (26)?

=  (P cos 9) /2 -fR  sin39. (26a)
The tangent distances are

A B = A E = (R + N )ta n a /2 + M . (27)
The Length of the Lemniscate. To distinguish the lemniscate, 

from the spiral the length of the curve will be denoted by I or li 
instead of s and S. For the basic lemniscate

d l= r  d6=3r dy.
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This integral can be obtained in the form of an mfinite series
which, unfortunately, does not converge rapidly for the higher 
values of 9, and the arithmetical work involved precludes its 
use as a really practical formula. An approximate expression 
for the length has been given by Prof. Royal-Dawson.7

It may be noted, however, that by making the substitution, 
cos2A = sin  29, in (28),

These are elliptic integrals of the first kind, the modulus being 
45° in each case. The first one is known as the complete integral
and has the value 1-85407468...........  Tables of values of the
second to twelve decimal places are published8 for values of A, 
at 1/2° intervals, between the limits 0 and 90°. Values of I and 
9 which have been obtained by the Author on the above basis 
are given in Table I. The corresponding values of p  and r have 
not been included since they can be obtained from tables of the 
natural trigonometrical functions by using the relationships, 
p  =  V  sin 29= cos A, and r =  (sec A)/3.

Setting-out the Lemniscate. To maintain the running chainage 
the lengths L along the curve will be known when the chainage 
of the tangent point B is found. These become basic curve 
lengths on dividing by J, and the deflection angles may then 
be found by interpolation in Table I, linear interpolation being 
sufficiently accurate for all practical purposes. f

If the running chainage is not to be maintained, equal curve 
lengths corresponding to something of the order of 0-05 to
0-10 of the basic curve would be satisfactory, the values of 9 
being again found from the Table. It may be noted, however, 
that at the beginning of the curve the values of 9 are small 
and the difference between the curve length and polar ray is 
of no practical significance. Accordingly - the approximations 
29=sin  29 and l= p  may be made in (19), which then becomes

The approximations compensate one another to a certain 
extent and (19a) is sufficiently accurate for values of 9 not 
exceeding about 4°. A comparison of the true and approximate 
values is interesting. For a length of 0-4 of the basic curve 
(19a) would give a deflection angle of 4° 35' 2", whereas the

1 f  M  2 dA  A . dA

y ' 2 - i0 V I —£ s in 2A J s in 2A_ ■

9  = 1719 I2 minutes of arc. (19a)
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true value as found by interpolation in Table I is 4° 34' 47"; 
The error in the approximation is therefore some 15" of arc, 
and for a multiplier of 1430 ft. this would produce an error in 
alignment of less than 1 in.

Allowance for Curvature. By keeping the peg interval small, 
the difference between chord and curve length is negligible as 
far as practical setting out is concerned. It is only in the higher 
values of cp that the differences become appreciable. It may be 
of interest to record that, if for an estimate of the length of 
the basic curve from 0 to 45° deflection angle, a chord length 
of 0-05 had been used instead of a curve length the error in the 
estimation would have been of the order 1/2400, which, in 
surveying work, represents an accuracy more than sufficient

sin Afan f
-  cos A

Fig. 8.

for ordinary chaining purposes. And, in addition, at station
1-00 on the basic curve, deflection angle 27° 44' 16", the differ­
ence between this angle and that of the point which would 
have been obtained if twenty chord lengths each of 0-05 had 
been used instead of curve lengths, is less than 1 ' of arc.

Setting out the Lemniscate from a Point on the Curve. Ope 
great disadvantage of the lemniscate, as compared with the 
spiral, is that the osculating circle law is not sufficiently accurate 
unless the points P  and Q, Fig. 5, are close to each other. Re­
ferring to Fig. 8 , let the curve be set out from the tangent point 
B on the straight, as far as the station F. To complete the 
setting-out of the transition with the theodolite stationed at 
F the deflection angles, from the polar ray BF produced, to 
the remaining stations must be calculated. Thus for station W, 
the deflection angle is (A-j-y), where A is the difference between
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the original deflection angles from the straight at the beginning 
of the curve. Expression (29), Eig. 8, will give the values of y 
directly, but it is not specially suited for accurate logarithmic 
calculation, and the following method may be preferable. By  
solving triangle BWF, and taking logs, we have, 

log sin (A + y)—log sin y= (log sin 2cpw—log sin 2cpF)/2. (29a)
If an approximate value is known for y to begin with, this 
can be solved very quickly using trial and error methods. 
y=(2cpF+Z ), where Z=1719 p  81, minutes of arc, p  and 81 being 
the basic curve polar ray BF and the basic curve length FW  
respectively, is a good approximation provided the lengths 
81 are not too large. (It underestimates the value of y as 81 
increases.)

Fig. 9.

On the other hand, when W is between F and B, expression 
(30), Fig. 9, should be used instead of (29), and the deflection 
angle from the tangent at F is (2cpF—y). The alternative, 
corresponding to (29a), is 

log sin (A + y)—log sin y=(log sin 2cpF—log sin 2cpw )/2 (30a)
and in this case the approximation for y is y—(2cpF— Q), 
where Q=1719 81 (3p— 81), minutes of arc, and p and 81 are 
as already defined.

It may be noted in comiection with the above, that Q is the 
angle as found from the osculating circle law, whereas Z is the 
deflection angle for a length 81 on a circle having a radius three 
times that of the osculating circle at the point F. An example 
which illustrates the above is included in the Appendix.
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T h e  C u b i c  P a r a b o l a  T r a n s i t i o n  C u r v e

This curve is the first approximation to the spiral, and, with 
the same notation, its equation is Y = X 3/ 6R S = X 3/ 6K 2.. 
For low values of 9, the following approximations hold with 
sufficient accuracy for practical purposes : X —S ; the shift=  
S2/24R  ; the shift point distance is S /2. From these it will he 
seen that the transition bisects the shift. Tangent distances 
are found as formerly, and the curve may be set out by offsets 
from the straight, or by deflection angles <p, as before, the 
values of 9 and 0 being obtained from the expressions tan 9=  
Y / X = X 2/ 6K 2, and tan 0 = X 2/2 K 2, respectively. The cubic 
parabola is not suitable for the higher values of 9, in fact the 
radius of curvature increases after the point corresponding to 
9= 8° 3' is reached.

M o d e l  Cu r v e s

An excellent idea of the position of the bend can be obtained 
graphically by using a scale model of the basic curve. This will 
ensure that the proposed values of the multiplier and radius 
or length of transition will meet the site requirements in addition 
to those of speed and curvature, and will allow amendments 
to be made to these quantities before the final calculations 
are begun. In this way, not only may unnecessary work be 
avoided, but, in addition, an excellent check on the accuracy 
of the arithmetical work itself will be available. The basic 
curve, together with the locus of the centres of curvature, can 
be drawn to a suitable scale on tracing paper or cloth, but the 
durability of a celluloid model should not be overlooked.

For purposes of illustration, the lemniscate will be taken 
as the transition in question, but the remarks apply equally 
to the spiral. The Author has found a basic model whose axis 
is 10 inches in length, to be sufficient to cover all combinations 
of transition and arc likely to be met in practice and to give, 
with careful work, accuracies to a foot or so. The model curve 
is shown in Fig. 10 and the data for its accurate construction 
is given in Table II.

For direct use the proposed values of P and It are converted 
into basic curve values by dividing by J. These are marked care-
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fully on the basic model and the latter is then positioned on an 
accurate drawing of the straights so that the respective straights

coincide and the centre of curvature point corresponding to r 
is on the line bisecting the intersection angle between the 
straights. With this point as centre, the circular arc is pencilled-
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in lightly with compasses. In the special case of a wholly tran­
sitional bend the centres of curvature line will be tangential 
to the line bisecting the intersection angle. Tangent and other 
distances from the intersection point may now be measured 
with the basic curve scale, and these when multiplied by J  will 
give the corresponding lengths on the full-size bend.

In improvement schemes especially it may happen that the 
bend must pass through a definite point. Here the multiplier 
is found primarily from the site condition and not by considering 
F and C, although, when the multiplier has been fixed, the 
latter considerations fix the speed standard for the bend. In 
this event the use of the model will allow the optimum value of 
J to be selected. Let the point through which the curve must 
pass be Q, Fig. 7. Q may be fixed in position by measuring the 
angle BAQ and the distance AQ. Many combinations of tran­
sitions and circular arc will satisfy the site condition, but, 
with respect to speed and curvature, the optimum arrangement 
may be found by placing the basic model in the manner previously 
described on an accurate drawing of the straights to which has 
been added the line corresponding to the direction AQ. The 
intersection of the model bend with this line fixes the basic 
length corresponding to AQ. This basic length and also the 
radius of curvature r at the end of the transition are scaled 
from the drawing with the basic curve scale. The multiplier 
J  is then the actual distance AQ divided by the corresponding 
basic length, and the radius of the full-size circular arc is R = Jr. 
The speed standard for the limiting values of F and C can now 
be found. Various positions are thus fried until the optimum 
arrangement is found. The calculations and setting out are 
then made in the usual manner. If, however, it is found that, 
due to inaccuracy in the graphical work, the curve does not 
pass through Q, but through Q' also on the line AQ, and the 
error QQ' is too great to be ignored, the multiplier should be 
altered in the ratio AQ/AQ'. All lengths, tangent distances 
radius, etc., are proportional to the multiplier and the necessary 
alterations are readily made.

Analytical solutions are possible, but these are very laborious, 
and, except when Q happens to be at the centre of the bend, 
when the algebraic work is simplified considerably, they cannot 
be recommended.
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W i d e n i n g  a t  B e n d s

“ The calculations for the layout of the bend should in general 
be made for the line corresponding to the centre line of the 
carriageway under consideration. To , get the kerb lines the 
centre line may be moved parallel to itself as shown in Fig. 11.

Q

Fig. 11.

In this way the widening of the carriageway is automatic, and 
the same setting-out table can be used for the kerbs. The 
distance between the kerbs, measured in a direction parallel 
to the line bisecting the intersection angle between the straights, 
is constant and equal to W sec a/2, this being the normal width 
at the centre of the bend. If additional widening is required 
the simplest method is to increase the multiplier on the inside 
curve. To illustrate this point, let ZQ be the additional width 
required, i.e. ZQ—(Wc—W sec a/2), where Wc is the required 

.width of carriageway at the centre of the bend, The new 
multiplier is then J(AQ/AZ), the distances being calculated 
from the original layout, or they can be often obtained with 
sufficient accuracy from the basic model. The increase in 
tangent distance, BB', is T(ZQ/AZ) where T is the original 
tangent distance AB. The increase in chord length is found in 
a similar way. For large deviation angles the additional widening 
produced by the parallel shift method may be excessive. Thus, 
for a carriageway of normal width 30 ft., and a deviation angle 
a of 60°, the increase in width by the parallel shift method 
would be 4-64 ft. In this case, the scale of the inside curve 
will need to be reduced ; this should not escape attention when 
the values are being originally selected.
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R e v e r s e  B e n d s

These are mainly confined to improvement schemes and in 
consequence the limits of the land available have to be con­
sidered in their design. A typical example is shown in Fig. 12;

a2 being greater than a1} and, although 
the lemniscate notation has been used 
for purposed of illustration, the spiral 
can be applied with equal facility.

It should not be assumed that two 
wholly transitional bends will give the 
best solution without in the first instance 
assessing the relative merits of several 
alternative arrangements. If the devia­
tion angles are unequal, two wholly 
transitional bends of the same scale or 
multiplier will result in a greater value 
of F being reached on the bend with the 
larger deviation angle. It is true that 
the calculations are simplified if wholly 
transitional bends are used, and it is 
possible to obtain this arrangement and 
equal values of F at the same time by 
the use of different multipliers. (24a) 
shows that J  is proportional to V sin a/3 
and simple proportion will give the 
desired result. This arrangement, how­
ever, departs from uniformity and cannot 
be recommended.

A more logical method would- be to 
provide the same values of C and P 
throughout, and these conditions can 
only be fulfilled by- having the same
length of transition on each bend. The

best combination of transition and arc can be obtained with the 
model curve in the manner previously described, but the basic 
tangent lengths must then be known before the multiplier can 
be found. In the preliminary work these may be scaled from
the drawing. Denoting these by t 1 and t2 respectively, it is

Fig. 12.



BASIC CURVE METHODS IN ROAD-CURVE DESIGN 325
readily seen from Fig. 12 that the multiplier is D /( t1r\-t2), where 
D is the actual distance AA' between the intersection points, 
minus a length which will allow the kerbs to be accommodated. 
If the parallel shift method is adopted, the deduction is 
W (tan a2/ 2 — ta n o i/2 )/2 . It will be understood that the 
final values of t 1 and t2 must be calculated ; the model curve 
has only been used to facilitate the selection of the basic quanti­
ties p  and r. When J  has been found the speed standard can 
be obtained from Fig. 3. The drainage of the hatched portion 
of the roadway in Fig. 12 may require special consideration 
when the gradient of the road is flat.

S u p e r e l e v a t i o n

Throughout the bend the adverse camber on the outside 
must be replaced by superelevating or banking the roadway. 
The most usual method of effecting this is to keep the crown of 
the road at its normal profile level and to raise and lower the 
outer and inner channels and kerbs respectively. For small 
amounts of superelevation the inside camber may be preserved 
over the length where its slope is greater than the required 
cross-fall. The change-over from the normal cambered section 
to the superelevated one must be worked in carefully at the 
beginning of the transition to give an appearance pleasing to 
the eye, and for this purpose parabolic vertical curves on the 
kerbs can be used. The lengths of these depend on the scale 
of the transition and the amount of superelevation to be pro­
vided. Excellent examples are given by Collins and Hart9, 
and further details need not be discussed here.

On flat gradients a minimum cross-fall of \  in. per ft. width 
should be provided to give adequate drainage to the road. The 
maximum amount, however, depends on the classes of vehicle 
the road has to serve. The extremely dangerous conditions 
Which would be brought about by the combination of excessive 

•cross-fall, slippery road surface and wind pressure, should be 
considered, and in no case should the safety of slow moving 
traffic, such as a horse-drawn cart of hay, be endangered. For 
this reason cross falls greater than 1 in. per ft. width are 
rarely exceeded. Assuming that the coefficient of friction
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between the tyres and the road were zero, a cross-fall of 12 F in, 
per ft. would be required to prevent side-slip. Even if it were 
possible to provide this amount, it is illogical to base any! 
argument on a condition which could only arise on ice-bound; 
roads. In any event, for the higher values of F, a third of thisj 
quantity, say 4 F  in. per ft., is about the maximum quantity 
that can be apiplied.

In fixing the amount of superelevation several other factors 
should be taken into account. Of these the chief is the effect 
of gradient on the relative positions of the wheels of the vehicle, 
The outer wheels of a car travelling on an up-grade will be higher 
up the grade than the inner ones and an effect equivalent to 
an increase in superelevation is obtained. The reverse is true 
when the car is travelling on the down grade.

V e r t i c a l  C u r v e s

For the purpose of providing transitions at all changes of; 
gradient the parabolic curve is most commonly used. Gradients! 
are usually expressed in the tangential percentage system,'; 
and for purposes of definition a gradient of i  a per cent, will* 
be taken to mean one which rises or falls through a vertical! 
height of a ft. in a horizontal length of 100 ft., the latter distance! 
being measured in the direction of the running chainage. The[ 
grades are, in general, fixed by considering drainage and control! 
levels through which the finished road must pass, but at bridge! 
crossings, especially those of large span and skew, it is often; 
possible to fix the tangent grades after the vertical curve itself; 
has been determined. By making the centre of the bridge! 
coincide with the highest point of the curve, the bridge design; 
is simplified and unnecessary dead load in the form of concrete; 
or other filling is eliminated. Simultaneous changes in horizontal; 
and vertical alignment, especially at summits, should be avoided; 
wherever possible.

To connect the gradients of -|-cj per cent, and —b per cent.,. 
Fig. 13, by means of a parabolic curve, the length L must be! 
known. This is the projected length on the horizontal plane,; 
not the curve length, and it is fundamental if a parabola with 
a vertical axis is to be used that, no matter what values!



BASIC CURVE METHODS IN ROAD-CURVE DESIGN 327
a and 6 have, the tangent points must be equally spaced 
a horizontal distance of L /2  on each side of the intersection 
point. Disregard of this leads to hybrid curves.

In summit curves the length L should be fixed by considering 
the visibility, E, for a height of eye of h ft., as shown in Fig. 
14(a). The Ministry of Transport requirements in this respect, 
based on a value of 3 ft. 9 in. for h, are as follows10:

Trunk roads, E —600 ft. ; Class I roads, E — 500 ft. ;

Denoting the algebraic difference of the percentage grades by 
G, then L=ZG , where Z is a multiplier in feet units. Strict 
attention must be paid to algebraic conventions when determining 
the numerical value of G. Thus, for the case shown in Fig. 13, 
G =(a)—(—b)=a-\-b. Referring to Fig. 14(a), with the origin 
at the highest point, the general equation of the parabola is 
y = —cx2, where c is constant numerically. Differentiating this 
expression,

The gradient at any point on the curve may be scaled or 
calculated from the diagram shown in Fig. 13. The highest 
point on the curve, or the lowest in the case of a sag, is aZ and

Class II roads, E = 4 5 0  ft. ; unclassified roads, E = 300  ft.

/
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Fig. 13.

d y /d x= — 2 cx and dhy/dx1——2c.
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6Z ft. distant from the respective ends of the curve ; these 
can therefore be located at once.

At x = —«Z, d y /d x = a / 100 ; and at x = Jr bZ, dy/dx = —6/100. 
a/100=2c«Z  a n d —6/100 =  —2c6Z.

By subtracting the above, c =  l/(200Z), and the general equation 
of the curve is therefore,

y = ± x */{200 Z), _ (31)
the -f  sign being used for sags, and — sign for summits.

The radius of curvature is approximately It =  100 Z ; this 
is sufficiently accurate for all curves likely to be used in practice. 
(When drawing vertical curves on the profile, the radius of the 
curve in inches is approximately 100 Z n /m 2, where 1 in. = m  ft. 
and 1 in. = n  ft. are the scales for chainage and height respec­
tively.)

ioolyc

Fig. 14.

To determine the multiplier Z. Substituting the values E/2', 
and h, for x and y  respectively, in (31), E =  -\/(800AZ)

For h —3-75 ft. this becomes
Z = E 2/3000 ft. (32)

For the various road classes, (32) gives values of Z of 120, 83, 
67-5 and 30 ft. Strictly speaking, (32) is valid only when L 
is greater than E, and on flat gradients it will underestimate 
the visibility. In this event, Fig. 14b, either E /2 = «Z /2 A1006/a 
or E /2 =  6Z/2 +  100A/6 may be used instead. To avoid 
unnecessary complication, it is suggested that the value of the
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steeper gradient be taken. From the aspect of visibility a vertical 
curve will not be necessary when the steeper gradient is less than 
200A./E per cent. Substituting the values of E for the appropri­
ate road classes, the limiting gradients are : Trunk roads, 
1-25 per cent. ; Class I, 1-50 per cent. ; Class II, 1-67 per cent. ; 
unclassified, 2-5 per cent.

On sags and summits, where visibility is no longer a factor, 
Z is found by limiting the amount of the radial acceleration, 
v2/R , to a value of 2 to 3 ft. per sec. per sec. Replacing R by 
100 Z, then, for speeds in m.p.h. and an acceleration df 2-6 ft. 
per sec. per sec.,

Z = V 2/120 (33)
.'. for V = 60  m.p.h., Z should not be less than 30 ft.

In the Author’s opinion the minimum length of curve, irre­
spective of visibility or speed requirements, should not be less 
than 200 ft. I f  an arbitrary length is chosen Z can be obtained 
from Z = L /G .

. Finished Road Levels. Finished road levels may be calculated 
from (31), it being remembered that the highest point is aZ ft. 
distant from the start of  ̂the curve. This method, however, 
is not readily applied to the case where the curve connects two 
gradients of the same sign. The finished levels in this case 
are more readily determined by the method of vertical offsets 
from the grade line produced. With the notation of Fig. 13, 
the offsets are proportional to the squares of the distances 
from the tangent points, and the expression,

0=aq2/200Z (34)
will give the required values.

Channel Grading. On gradients flatter than 1 in 200, channel 
grading may be used to give proper drainage to the road. In 
general, if the limiting gradient is d per cent., chamiel grading 
over a length of dZ feet on each side of the turning point of the 
curve will be necessary.

The Author gratefully acknowledges the assistance and 
advice which he has received in the preparation of this paper 
from Prof. G. Cook, D.Sc., F.R.S. No less is he indebted to 
Mr. V. R. Paling, B.Sc., who has also checked the numerous 
formulse and calculations, and assisted in correcting the proofs.
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T a b l e  I — B a s i c  L e m n i s c a t e

'0 dcp

J ° V s i n  2<p ’
CUH Ji. =

A I Deg.
9
Min. Sec

90° 0 0 0 0
89-5 0-008727 0 0 08
89 0-017452 0 0 32
88-5 .0-026177 0 01 11
88 0-034900 0 02 06
87-5 0-043619 0 03 16
87 0-052336 0 04 42
86-5 0-061049 0 06 24
86 0-069757 0 08 22
85-5 0-078459 0 10 35
85 0-087156 0 13 03

84-5 0-095847 0 15 47
84 0-104530 0 18 47
83-5 0-113205 0 22 02
83 0-121872 0 25 32
82-5 0-130530 0 29 17
82 0-139178 0 33 18
81-5 0-147816 0 37 33
81 0-156444 0 42 04
80-5 0-165060 0 46 50
80 0-173664 0 51 50

79-5 0-182256 0 57 06
79 0-190834 1 02 36
78-5 0-199399 1 08 20
78 0-207951 1 14 20
77-5 0-216487 1 20 33
77 0-225009 1 27 01
76-5 0-233515 1 33 43
76 0-242005 1 40 39
75-5 0-250479 1 47 00
75 ' 0-258935 1 55 14

p — cos A ; r= (secA )/3 .

<P
A I Deg. Min. Sec.

74-5 0-267375 2 02 52
74 0-275797 2 10 43
73-5 0-284201 -2 18 48
73 0-292586 2 27 07
72-5 0-300953 2 35 38
72 0-309300 2 44 23
71-5 0-317628 2 53 21
71 0-325936 3 02 32
70-5 0-334223 3 11 56
70 0-342491 3 21 32

69-5 0-350738 3 31 21
69 0-358963 3 41 22
68-5 0-367168 3 51 35
68 0-375350 4 02 00
67-5 0-383512 4 12 38
67 0-391651 4 23 27
66-5 0-399768 4 34 28
66 0-407863 4 45 40
65-5 0-415935 4 57 04
65 0-423985 5 08 39

64-5 0-432012 5 20 26
64 0-440015 5 32 23
63-5 0-447996 5 44 31
63 0-455954 5 56 50
62-5 0-463889 6 09 19
62 0-471800 6 21 59
61-5 0-479687 6 34 49
61 0-487552 6 47 49
60-5 0-495392 7 00 59
60 0-503209 7 14 20
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T a b l e  I — cont’d

A I Deg.
9
Min. Sec. A I Deg.

9
Min.

59-5 0-511003 7 27 49 44r5 0-734061 15 17

59 0-518773 7 41 29 44: 0-741155 15 34

58-5 0-526519 7 55 18 43-5 0-748229 15 52

58 0-534242 8 09 16 43 0-755283 16 10

57-5 0-541941 8 23 23 42-5 0-762317 16 27

57 0-549617 '8 37 40 42 0-769331 16 45

56-5 0-557268 8 52 05 41-5 0-776326 17 03

56 0-564897 9 06 39 41 0-783301 17 21

55-5 0-572502 9 21 22 40-5 0-790257 17 39

55 0-580083 9 36 13 40 0-797194 17 57

54-5 0-587642 9 51 13 39-5 0-804112 18 16

54 0-595176 10 06 21 39 0-811012 18 34

53-5 0-602688 10 21 37 38-5 0-817893 18 53

53 0-610177 10 ‘ 37 02 38 0-824757 19 11

52-5 0-617642 10 52 34 37-5 0-831602 19 30

52 0-625085 11 08 14 37 0-838430 19 48

51-5 0-632505 11 24 01 36-5 0-845240 20 07

51 0-639902 11 39 56 36 0-852033 20 26

50-5 0-647276 11 55 58 35-5 0-858809 20 45

50 0-654628 12 12 08 35 0-865568 21 04

49-5 0-661958 12 28 25 34-5 0-872310 21 23

49 0-669266 12 44 49 34 0-879037 21 42

48-5 0-676551 13 01 20 33-5 0-885747 22 01

48 0-683815 13 17 57 33 0-892441 22 20

47-5 0-691057 13 34 42 32-5 0-899120 22 40

47 0-698277 13 51 33 32 0-905783 22 59

46-5 0-705476 14 08 30 31-5 0-912431 23 19

46 0-712654 14 25 34 31 0-919064 23 38

45-5 0-719810 14 42 44 30-5 0-925682 23 58

45 0-726946 15 00 00 30 0-932286 24 17

Sec.
22
50
24
04
50
40
37
39
45
58

15
37
04
35
12
53
38
28
23
21

24
31
41
56 .
15
37
03
33
06
43
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A I Deg.

T a b l e

9
Min. Sec.

I—cont’d 

A I Deg.
9
Min.

29-5 0-938876 24 37 23 14-5 1-131123' 34 48
29 0:945452 24 57 06 14 1-137389 35 09
28-5 0-952014 25 16 53 13-5 1-143649 35 29
28 0-958562 25 36 43 13 1-149902 35 50
27-5 0-965097 25 56 35 12-5 1-156149 36 11
27 0-971619 26 16 31 12 1-162391 36 32
26-5 0-978128 26 36 30 11-5 1-168627 36 53
26 0-984625 26 56 32 11 1-174857 37 14
25-5 0-991109 27 16 37 10-5. 1-181082 37 35
25 0-997581 27 36 44 10 1-187302 37 56

24-5 1-004041 27 56 54 9-5 1-193517 38 17
24 1-010490 28 17 07 9 1-199728 38 38
23-5 1-016927 28 37 22 8-5 1-205935 39 00
23 1-023353 28 57 40 8 1-212138 39 21
22-5 1-029768 29 18 00 7-5 1-218337 39 42
22 1-036173 29 38 23 7 1-224532 40 03
21-5 1-042567 29 58 48 6-5 1-230724 40 24
21 1-048951 30 19 15 6 1-236913 40 45
20-5 1-055325 30 39 45 5-5 1-243099 41 06
20 1-061689 31 00 16 5 1-249283 41 28

19-5 1-068044 31 20 50 4-5 1-255464 41 49
19 1-074389 31 41 26 4 1-261643 42 10
18-5 1-080726 32 02 03 3-5 1-267820 42 31
18 1-087054 32 22 43 3 1-273996 42 52
17-5 1-093373 32 43 24 2-5 1-280171 43 13
17 1-099684 33 04 08 2 1-286344 43 35
16-5 1-105987 33 24 52 1-5 1-292516 43 56
16 1-112282 33 45 39 1 1-298687 44 17
15-5 1-118569 34 06 27 0-5 1-304858 44 38
15 1-124850 34 27 17 0 1-311029 45 00

Sec.
08
01
55
51
47
46
45
45
47
49

53
57
03
09
16
23
32
40
50
00

11
22
33
45
58
10
22
35
48
00



334 BASIC CURVE METHODS IN ROAD-CURVE DESIGN

T a b l e  II— M o d e l  C u r v e  V a l j e s

9
Degrees P X y r x' y ' Ref.

0 0 0 0 00 00 0
1-5 0-229 0-166 0-157 1-457 1-459 0-114
3 0-323 0-240 0-216 1-031 1-035 0-162 1
4-5 0-396 0-301 0-257 0-843 0-851 0-198 2
6 0-456 0-354 0-287 0-731 0-743 0-228 3
7-5 0-509 0-404 0-310 0-655 0-672 0-254 4
9 0-556 0-450 0-327 0-600 0-621 0-277 5

10-5 0-599 0-493 0-339 0-557 0-584 0-298 6
12 0-638 0-535 0-347 0-523 0-555 0-317 7
13-5 0-674 0-575 . 0-352 0-495 0-533 0-334 8
15 0-707 0-612 0-354 0-471 0-516 0-350 9
18 0-767 0-683 0-348 0-435 0-492 0-377 10
21 0-818 0-747 0-333 0-408 0-478 0-401 11
24 0-862 0-805 0-309 0-387 0-470 0-420 12
27 0-899 0-855 0-278 0-371 0-466 0-435 13
30 0-931 0-899 0-241 0-358 0-465 0-448 14
33 0-956 0-935 0-199 0-349 0-466 0-457 15
36 0-975 0-963 0-153 0-342 0-468 0-464
39 0-989 0-984 0-103 0-337 0-469 0-468
42 0-997 0-996 0-052 0-334 0-471 0-471
45 1-000 1-000 0 0-333 0-471 0-471

I f  the  axis is m ade 10 inches, these  va lu es should  
be m ultip lied  b y  10 in. F ig . 10.

A p p e n d i x

jExample 1. Referring to Fig. 7, a= 38°30'0" . Determine 
a layout for the centre line of a road to suit the following re­
quirements :

Speed standard, 60 m.p.h. ; C and F, 1 ft. per sec. per sec. 
in 1 sec. and 0-20 respectively; lemniscate transitions are to 
be used, and the running chainage is to be maintained. Statipn 
interval 100 ft.

Preliminary Work. From Fig. 3, for V = 6 0  and C—l, the 
multiplier J  is 1430 ft. and for F =0-20, the length P==567 ft.

sin 2cp=(567/1430)2=0-157 (slide-rule value), and 29= 9° 2'. 
The maximum value of a for a wholly transitional bend
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is therefore 27° 6' and the bend cannot be wholly transitional 
for the specified values of F and C. (This is an alternative 
method to (24).) An intermediate length of circular arc will 
therefore be used. For V = 60 , and F = 0-2 , the degree of the 
curve (la), is 4-76°.

Since the running chainage is to be maintained, J  will be 
made 1428-57 ft. ; this has as its reciprocal 0-0007, and the 
conversion to basic lengths is thereby facilitated. The degree 
of the curve will be altered to 4-5°, the radius of this is 1273-2 ft. 
P is therefore, from (21), 534-28 ft.

At this stage the model curve should be used in the manner 
described. From this it is found that the basic tangent distance 
is 0-502 and the distance from the intersection point to the 
centre of the bend is 0 060. Multiplying these by J, distances 
of 717 and 85-6 ft. respectively are obtained. Assuming these 
are satisfactory from the point of view of site requirements 
the final accurate calculations may now be made.

Final Calculations. These were made with 7-figure loga­
rithms but economy of paper precludes them from being given 
in detail, and only the final result in each step will be given.

Substituting the selected values of P and J  in (17),
9 = 4 °  1' 13",

and therefore,
29= 8° 2' 26" ; 39= 12° 3' 39" ; 69= 24° 7' 18" and 

(a—69)=14° 22' 42".
Solving triangle BHC,

B H = P  sin 29/  sin 39= 357-66 ft., 
and H C = P  sin 9/  sin 39=179-27 ft.
The sub-tangent distance

C F = R  tan (a /2— 3<p) =160-60 ft.
H F =H C +C F =339-87  ft.

From triangle HAF,
H A = H F  sin H F A / sin H AF=357-17 ft., 

and AF = H F  sin 3<p/ sin HAF =75-22 ft.
The distance from A to the centre of the bend is
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The tangent distance A B = (H A + H B ) =714-83 ft. It may bt 
noted that the basic model gave 85-6 and 717 ft. for these 
quantities.

The various points can now be located from the straights 
and the running chainage of the tangent point B found on tbs 
ground. Assuming that the chainage of B is 4 + 33+  i.e. B ij 
433-5 ft. from the beginning of the work, the curve lengths 
and chainages of the intermediate tangent points are as follows! 
For 9= 4 ° 1' 13", interpolation in Table I gives for the bask 
curve length, Z=0-37473.

/ .  L =J7=535-33 ft., 
and for the circular curve, the total angle to be turned through 
is 14° 22' 42", which means a length of

100x14-37833/4-5=319-52 ft.
The chainages of the various tangent points are therefore : 

Chainage of B =433-5.
Chainage of C =433-5+535-33 = 9 + 68‘83.
Chainage of G=968-83 +319-52=12 + 88-35.
Chainage of E =1288-35+535-33=18 +  23-68.

The deflection angles for the curves may now be found. These 
are as tabulated.

For the first transition curve,

Chainage L ength  L ft. Basic length l-= L/J 9
4+33.5 0 0 0
5+°° 66-5 0-04655 0° 3' 44"
6+o° 166-5 0-11655 0° 23' 21"
7+00 266-5 0-18655 0° 59' 49"
8+°° 366-5 0-25655 1° 53' 7"
9+oo. 466-5 0-32655 3° 3' 14"
Q+68.83 535-33 0-37473 4° 1' 13"

the circular curve,
Chainage Are length ft. Deflection Angle Vernier Setting

9+68.83 0 0 359° 17' 65"
10+00 31-17 0° 42' 5" 0° 0 ' 0"
ll+oo 131-17 2° 57' 5" 2° 15' 0"
12+0° 231-17 5° 12' 5"

ooCO%

12+88.35 319-52 7° 11' 21" 6° 29' 16"
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For the second transition,

Chainage Length L Basic lengt h I— L /J 9
J g+23.68 0 0 0
I 8 + 0 0 23-68 0-016576 0° 0' 28'
I 7 + 0 0 123-68 0-086576 0° 12' 53'
16+00 223-68 0-156576 0° 42.' T
I 5 + 0 0 323-68 0-226576

CO

0

1 4 + o o 423-68 0-296576 2° 31' 10'
13+0° 523-68 0-366576 3° 50' 51'
1 2 + 8 8 - 3 5 535-33 0-37473 4° 1' 13'

The first transition curve will be set out from the point B, 
the deflection angles being referred to the tangent at B. The 
circular curve will be set out from the station C, the deflection 
angles being referred to the tangent at C. In this case the special 
vernier settings shown in the table eliminate the need to set to 
seconds at the intermediate stations. The line of sight would 
be directed along the tangent at C, that is, the line CF in Fig. 7, 
with the vernier reading 359° 17' 55". The second transition 
would be set out from E, the deflection angles being referred 
to the straight at E. Being a left-hand curve from the instru­
ment man’s point of view these will need to be deducted from 
360°.

Example 2. Given that the deflection angles 9 to stations 
corresponding to 0-8, 0-9 and 1-30 respectively, on the basic 
curve are 18° 5' 22", 22° 42' 50" and 44° 22' 6" Find the 
values of y to locate stations 0-9 and 1-3 with the instrument 
set up at 0-8

By direct substitution in (29) the required values are 38° 22' 58" 
and 47° 34' 2" respectively.

To illustrate the alternative method, however, y =  
36° 1 0 '4 4 " + 1 7 1 9  p$l minutes of arc. At 0-8 , ^ = 0 - 7 6 8  and 
for 0-9, SZ =0-10. y = 3 6 °  10' 4 4 " + 2 °  1 2 '= 3 8 °  22' 44", a value
which is only 14" in error. For 1-30, however, 8Z = 0-50  and the 
first approximation for y is 36 ° 10' 4 4 " + l l ° = 4 7 °  10' 44". 
Keeping in mind that the rule underestimates the values 
a first approximation y = 4 7 °  12' 0" will be tried. Then 
from (29a),
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log sin 88° 44' 12" =9-9998944 
log sin 36° 10' 44" =9-7710789

0-2288155

(a—b)/2 =0-1144078 
log sin (y-f-A)—log sin y= (c) 

Try y= 47° 12'
A= 26° 16' 44"

(y + A )= 7 3 ° 2 8 '44"

log sin 73° 28' 44" =9-9816895 
log sin 47° 12' 0" =9-8655362

Difference for 1' 
Do. do.

(c), above 

Error

0-1161533
0-1144078

=00017455

Correction=17455/794=

Repeating the above with y= 47° 12'+22'==47° 34', it will bj 
found that the error in this value of y is about 2" of arc.

Example 3. Given that the levels at A and B, chainage1 
161+ 16 and 171 + 16, the two controlling points at a bridg 
crossing, must be 410-63 ft. above datum level, determine th[ 
chainages and levfels at each end of a parabolic vertical cud 
to give approach grades of +3-16 and —2-40 per cent., tb 
visibility to comply with the requirements of the Ministry o' 
Transport for Trunk road schemes.

From (32), Z =120 ft., and therefore the length of the cud 
will be ZG=667-20 ft. This is greater than the visibility am 
(32) is therefore valid. The distances of the highest point df 
be aZ and bZ from the tangent points, that is, 379-20 an| 
288-00 ft. respectively.

From the site requirement the chainage of the highest poh 
will be midway between A and B, i.e. at chainage 161+ 66 ft 
The chainages of the beginning and end of the curve are there­
fore 157+ 86,8 and 1 6 4 + 54.

The general equation of the curve (31) is y —x 2/ 24000, anf 
the level of the highest point=410-63+(50)2/24000=410-734 ft
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above datum level. The level at the beginning of the curve

=410-734—(379-20) 2/24000 =404-74,

and the level at the end of the curve
=410-734—(288)2/24000=407-28.

The intersection point of the grades will be at chainage 
161+20-40 ft., the level of this point being 415-28 ft. Finished 
levels on the curve can be found from (31).

Discussion

Mr. E. H. C o r n e l i u s  : The Author has stated in his opening 
paragraph that it is not his intention “ to dispute accepted 
methods of design.” This uncritical attitude is responsible, 
perhaps, for some of the conclusions reached and inferences 
drawn which need the following constructive criticism.

The Multipliers are simply the parameters of the curves dis­
cussed. As such they possess many interesting properties other 
than serving as mere multipliers. However, the Author’s 
handling of curves by means of their parameters is the nearest 
approach yet made to what has become standard practice in 
the case of the circle, which is recognised by either of its two 
parameters, the radius or diameter. Specifications will be 
simplified very materially when it is possible to use the parameter 
as the full and complete description of the curve designed for 
any deviation point whatever be the deviation angle. This 
is quite possible in the case of the lemniscate which needs only 
the parameter, J, to describe the curve as fully as the radius 
or diameter would describe a circle.

The Centrifugal Ratio. For the safety of vehicles, the highway 
engineer’s true criterion for maintenance of his road is the 
amount of reliance he can place on frictional resistances. It is 
unwise to cloak this by the use of the centrifugal ratio in the 
manner described. Writing g as tan 9 , the Author’s equation 
becomes tan (y + 9) = + 2/gr)(l/R). It is written in this form to 
extend the use of the parameter or multiplier which is the 
constant, (v2/gr), of a curve of curvatures of the original curve. 
A very simple geometrical construction will separate y from 9 
and, then, tan cp becomes valuable as a figure by which a judg­
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ment can be formed as to the safety of the road. If, moreover! 
tan 9 is used, not as a coefficient but merely as a reliance oj 
friction, it becomes a useful criterion for the purpose intendei|

The Rate of Change of Acceleration, C. The equations state! 
to be, for the spiral C = v3/ K 2 and for the lemniscate C =  (3i>3/J( 
cos 29, are obtained by t he scalar differentiation of the radii 
accelerations, A, from the equation A = v  2/ R . The fundamenti 
property of A is that it is a vector quantity and therefore thj 
rate of change cannot be obtained by scalar differentiation! 
In the case of the lemniscate this has led to the erroneous coif 
elusion that C “ is a maximum where 9 is zero and thereaftt| 
decreases until zero value would be obtained if 9 = 4 5  werj 
reached.” Just the opposite is the case as may be seen ii| 
writing A = a 2/R  in the form A = r 2(l/R) where (1/R) is tlf 
curvature and v is the constant velocity. At the beginning oj 
a lemniscate the curvature is very small whereas when 9=+ 
is reached its change becomes very rapid comparatively. Coffi 
sequently C =  vectorial dA /dt over a period of one second! 
very small at the beginning of the curve becoming a maximvi 
in the vicinity of 9= 45°. The Author’s Fig. 3 will requiit 
alteration materially.

The correct method of evaluating C =  vectorial dA /dt is lij 
drawing the Hodograph of Accelerations. For the lemniscatj 
this is shown in Fig. 15 and follows from a simple geometrical 
construction which depends on the axiom that equal vector) 
have equal magnitudes and either the same or parallel direction: 
and on the properties of the lemniscate that

(i) The vectorial, tangential and intrinsic angles are in tlj 
ratio of 1 : 2 : 3 .

(ii) The magnitudes of radial accelerations when plottej 
along the vectorial angles, a, describe the lemniscate of accelers 
tions, A  =  (3 v 2/ J )  y / sin 2 a  whose parameter is (3 r 2/ J ) .  Hen 
v is the constant velocity and J  is the parameter of the lemni; 
cate of the path.

(iii) Parallel directions through the centre C of the lemniscai 
of the path to the radii of curvature (perpendicular to tangent 
will be found along rays through C drawn 90° out of phase wilj 
the intrinsic angles swept by tangents with the axis of referend

The hodograph of accelerations is obtained by plotting tli 
values A =  (3r2/J )-\/s in  2a of the lemniscate of acceleratioi
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along rays through the centre or origin -of the lemniscate of the 
path at angles sweeping (90°+3a) with the axis of reference.

L e m n i s c a t e  o f  P a t h

L e m n i s c a t e  of  
A c c e l e r a t i o n s

a'
Ho d o g r a p h  o f  

" A c c e l e r a t i o n s

C A =param eter, J . Ga =  Cct' =  3v2/ J .
PQ =  SA — v ft. CP — 3 J  sin 2a

C Q = J v/s in 2 ( a + 8 a ) .  C T = (3i-2/J )  j  s in 2 a =  CT'.

C U =(3v2/ j )  V ^ n ~ 2(^ + 8^ j =  CU'. ,
dA

Arcs a'S' and T'U' are v ec to r ia l over otie second.
dt

CN is the axis of reference.
-  N CT'= (9 0 + 3a). <LT'CU'=38a.

Fig. 15,

Che arc of the hodograph between two radius vectors one second 
>part subtends at the origin an angle which is 38a when the
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constant velocity, v, during that second, describes the arct 
the lemniscate of the path subtended by the angle 8a. It is tt 
length of the arc of the hodograph which in one second girt 
the value 0 —vectorial dA /dt. j

The Law of the Osculating Circle. The inference that tl 
bending moment diagram of a beam bent in the shape off 
spiral must be a straight line is not tenable. In fact, it is pi 
bably another spiral whose parameter is the product of tl 
parameter of the beam spiral and the flexural rigidity, E l. 1 
the relation M /I= E /R , M = E I(1/R ) and (1/R) is the curvatm 
of the beam spiral. I

The Lemniscate Transition Curve. The Author sugges} 
evaluating the parameter or multiplier of the lemniscate of tf 
path from the rate of change of radial acceleration, C. This? 
a  very tedious process and quite the wrong way to use C. |  
correct function is as a test of results obtained independent!

Denoting the vectorial angle by a to avoid confusion wif 
the angle of friction, cp, the Author’s equations (16) and (If 
become

P = 3 R s in 2 a  (16) and P = J - \/s in 2 a  (11
— :------------  . ICombining these two, J = 3 R y / sin 2a. This gives the valr

of the parameter J when R is known and R is found frot 
tan (Y4 -9) = 2;2/gR . j

Using the lemniscate as the curve of the path, the procednj 
for design would be somewhat as follows :

(i) Decide on values to be given to tan y and tan 9 . j
(ii) Select the point on the curve where R is likely to be' 

minimum and evaluate R from tan (y -j^ ^ vV ^ R -
(iii) Evaluate J from J = 3 R \ /  sin 2a and adjust it to suit tf 

conditions obtaining at the site. |
(iv) Plot the curve and draw the lemniscate and hodograf 

o f accelerations and evaluate C(max). This is the test. I
Since drivers like to just feel the curve, C may safely be alloflf 

to go as high as 4 ft. per sec. per sec. in 1 sec. Passengers ^ 
are not preoccupied with driving may experience some sli$ 
discomfort but the criterion of safety is that the driver must) 
just able to feel the curve and must be permitted to do tl 
without discomfort. (Shortt’s standard of unity is from tj' 
point of view of the passenger.)
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(v) When a final decision regarding J  has been reached, then 

multipliers or parameters of the lemniscate of curvature, 
( 1 / R ) = ( 3 / J ) V  sin 2 a  and of the lemniscate of superelevation, 
tan (y - |-9) =  (v 2/ g ) ( 3 / J ) - \ / sin 2 a  may be found quite readily 
as the equations indicate the multipliers of the lemniscate of 
unit parameter whose radius vectors are p  =  \ /  sin 2a .

(vi) The design is completed by separating tan y from tan 9 
for selected points along the curve located by the vectorial 
angle a, and so finding the gradient of superelevation of the 
inner and outer kerbs.

Model Curves. The scale model of the basic curve is very  
useful in ensuring that the curve suits the conditions obtaining 
at the site. There its utility appears to cease. .Tf, however, the 
scale model be used as a unit curve, a simple alteration of the 
scale results in the evaluation of such other multipliers as may 
he necessary. The vast difference in magnitudes must receive 
careful consideration. For example, if the parameter of the 
lemniscate of the path be 1 ,0 0 0  ft. then at 60  m.p.h. the lemnis­
cate of the superelevation will have a parameter of only 
0-726. Again the Cartesian co-ordinates of the lemniscate of the 
path will be very small in the vicinity of the origin compared 
with the parameter.

Superelevation. The correct amount of superelevation is 
dependant principally on the amount of the reliance on friction. 
The effect of the relative positions of the wheels is negligible 
because the length of the wheelbase is small compared with the 
radius of curvature. On the other hand, the reliance on friction 
(itself a superelevation) is, when used logically, a valuable 
corrective to any tendency to use excessive superelevations 
and extravagant radii of curvature. Frictional resistance to 
rolling is smaller than to slipping. Consequently it is illogical 
to cater for high speeds needing high reliances on rolling friction 
while denying frictional resistances to side slipping at those 
or indeed any speeds. The superelevation gradient is calculated 
very easily in the case of the lemniscate once a decision has been 
reached as to the maximum superelevation desirable.

Vertical Curves. The parabolic vertical curve has the vital de­
fect of possessing at its junction with a straight a finite curvature. 
The change of curvature from the zero of the straight to the

2 b
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finite of the curve is instantaneous and consequently there must 
be a shock or blow disruptive to the road. It is illogical tf 
prescribe conservative values for C, the rate of change in radial 
acceleration, for horizontal curves and to allow it to rise U 
unpredictable heights in vertical curves. f

The justification for a parabolic curve seems to be that tli( 
parabola is the path of a particle projected with some initial 
velocity when unden the influence of gravity alone. It is not 
known ' generally that the lemniscate can be justified on tit 
ground that a particle under the influence of gravity alo» 
will travel along a lemniscate in the same time as it takes if 
travel along a radius vector. In the case of a lemniscate tiuii 
and therefore power are saved on gradients and, since tti 
curvature is zero at the centre or origin, a junction with a straigM 
can be made without the development of disruptive shocl 
The evaluation of the rate of change in radial acceleration is si 
direct as in the case of horizontal curves. Incidentally a( 
interesting corollary is that lemniscate cambers will drain roal 
as quickly as straight crossfalls while limiting the steepnes 
of the incline in the most used part of the cross section. I 

General. The Author’s approach to the problem of designiif 
road curves may be regarded as a decided advance on tip 
methods employed up to date. The multiplier or paramefe 
should be capable of defining a type of curve as completely i. 
the radius or diameter defines a circle. This is true in the caS 
of the lemniscate. I

It is important to realise the value of C, the rate of chang; 
in radial acceleration, as a test of the design. The test can 1* 
applied to both horizontal and vertical curves and it is logic) 
to apply it in this way. When the multiplier or parameter ha; 
been fixed then such matters as visibility on vertical curve 
and the length of the curve are settled automatically. t 

In all cases the important dimension is the minimum radii 
of curvature. Little can be done until this has been evaluate! 
and it is best found from considerations governing the supei 
elevation desirable and the reliance to be placed on frictions 
resistances. In this connection it is important to realise the 
the circle cum transition curve is unnecessarily wasteful at 
on the site does not look any better than the wholly transitions 
curve.
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In these comments the lemniscate has been used freely 

because it lends itself to a greater extent than any of the other 
curves to handling by the method of multipliers. Indeed, the 
unit curve, p —s /  sin 2a, is capable of solving graphically most 
of the problems in highway curve design.

Prof. P. G. R o y a l - D a w s o n  : This paper affords an excellent 
study of transition principles from a purely mathematical stand­
point. It is perhaps open to question whether it is not too 
exclusively mathematical in outlook for easy assimilation by 
the average engineer engaged in location work : what the latter 
needs is a method giving a series of simple polar deflections for 
equal chords of easily determinable length, and involving 
minimum ready-reckoning for each individual curve. This 
question hinges primarily on the choice of a unit of measure­
ment. Taking the lemniscate, the Author’s unit is the major 
axis, from which he deduces, by recourse to elliptic integrals, 
a most valuable series of curve lengths with their corresponding 
polar deflections, embodied in Table I. This is an essential 
prelude to the study of the lemniscate, but Table I as it stands 
is obviously not adapted for direct field use. It was from similar 
considerations that the writer evolved his “ unit-chord ” system, 
taking as the unit of measurement a polar ray of 16 minutes 
deflection, thus obtaining for a quarter-chord sequence the 
simple square-law series 1', 4', 9', 16', 25', etc.,-for all transitions, 
without modification up to 4°, and needing only slight correc­
tions thereafter for the majority of road curves. By this method 
the major axis becomes 10-3648 units, by which the Author’s 
figures should be multiplied to produce like results.

The Author’s choice of unit for the spiral is more 'subtle. It 
involves two factors, r s = l  (where s is used instead of I), that is 
R S = rK sK =K 2, a constant. The Author rightly points out 
tfiat the writer’s unit is very nearly K /6 . In short, the unit 
length (<s=l) is equivalent to the writer’s 5-9841 units, so that 
the latter’s constant R L=(5-9841)2=35-81. Incidentally, it. 
will be found that the ratio 10-3648/5-9841 =  -\/3, which con­
firms the Author’s comparison of basic unit lengths.

From a practical point of view, considering the material 
similarity of the twro curves for a considerable portion of their
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length, there is no reason why the same unit should not be used 
for both. The spiral is so divided in Table XV of “ Road 
Curves,” from which it will be seen that the polar ray at 45 ■ 
is 10-0199 units, as compared with 10-3648 for the lemniscate,' 
Again, if a 10-inch model (1 unit= 1  inch) be taken, it will be 
found that at 7-534 inches (the 15° mark on the lemniscate) 
the lateral difference is only 0-006 inch (less than the point of a; 
sharp pencil), while for a 36-inch model (1 unit=3-6 inches) 
the corresponding lateral difference is only 0-022 (about l/50tli( 
inch. So that for drawing office purposes the contours of the 
curves are practically identical within a range of 15° (equivalent 
to a 90° bend).

The Author’s diagram, Fig. 3, is ingenious, but its utility) 
or otherwise to the engineer would depend upon the method 
to which he was accustomed. On the other hand, the basil 
lemniscate, Fig. 10, with its attendant locus of centres of cur{ 
vature, has a definite element of usefulness in helping to dej 
termine the main features of a proposed curve on a scale plan 
especially in showing whether a central circular arc would b( 
necessary or not, in a given case. In principle it goes a stej 
further than the process described in pp. 39 and 40 of “ Road 
Curves.” , :

Regarding the value of “ C ” to be adopted for design put; 
poses, the writer’s views have been fully expressed,11 so no mod 
need be said on the subject, except to point out that the questioi 
is not one of “ experiment,” in the backyard sense of the term’ 
but of intelligent observation of actual traffic movements oil 
the open road. , ;

Turning to other points the Author suggests that on a wholli 
transitional curve the driver has no respite from turning tty 
steering-wHeel, and that the majority of motorists do not lit! 
this arrangement. As regards the first suggestion, it will bi 
found that in actual practice the driver takes a respite when 
ever he wants it, whatever the curve may be, and that in fad 
the whole operation of steering consists of intermittent haffl 
movements interspersed with respites or rests while foUowin! 
the general course of the curve. The second objection seem 
to be largely imaginary, existing in the minds, not of motorist 
as such, but mainly of engineers accustomed to the “ spiral 
degree ” method of setting out, with its inevitable centra
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circular arc. The ordinary motorist who has no personal know­
ledge of the technology of any curve on which he happens to  
find himself, cannot tell one from another, except as between 
long and short, flat and sharp, symmetrical and irregular, 
according to environment.

On the question of maintaining a through chainage when 
staking out a transition curve, in theory this is quite feasible, 
whatever unit may be used, but it cannot be pretended that it 
facilitates the construction of the transition, as the Author’s 
own worked-out example shows, nor that it even serves any useful 
purpose. Chain pegs, like milestones, are merely records of 
through distances which are liable to be changed at any time 
by realignment schemes in other portions of the route. The 
incorporation of through chainage as an integral part of the 
setting out of transition curves is therefore in general a waste 
of time and labour, except perhaps in the case of curves which 
are mainly circular and of large radius, when the transition is 
comparatively short, entailing little calculation.

With regard to setting out transitions from intermediate 
points, if these points are restricted to half or quarter chords, 
as in the writer’s unit-chord system, the required deflection in 
both directions can be read off direct from tables up to 9 unit 
chord points in “ Road Curves ”12 and for further distances in 
“ Motorways.”13

On the question of vertical curves the Ministry of Transport 
requirements quoted by the Author are probably under revision. 
So far as summit curves are concerned, the writer’s independent 
investigations give the following desirable values of Z according 
to speeds, for 60 m.p.h, 165 ; for 45 m.p.h., 93 ; and for 30 m.p.h., 
41. In regard to sags or valley curves, for which the use of 
transitions is advocated, the writer has evolved definite figures 
for the impact factor, which tend to show that the minimum 
radius for 60 m.p.h. should be not much less than 3,000 ft., and 
preferably much more. If transitions are not used, the circular 
radius should be round about 9,000 ft. This means Z = 9 0  
against the Author’s, proposed 30, which seems a somewhat 
low figure for a non-transitional curve at that speed.

Mr. H. W. S. H u s b a n d s , M.C. : If it is desired to use the 
spiral or lemniscate the basic curve method is no doubt useful,
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but the writer sees no necessity for their use. As a railway 
engineer he has always used a circular arc and cubic parabola 
transition, which is sufficiently accurate over the short length 
necessary for the transition curve. The use of spirals and 
lemniscates is surely an unnecessary refinement, and a curv̂ ' 
transitional throughout is a contradiction in terms ; if then 
is not even a small length of circular arc, it must result ini 
kink at the centre. The absurdity of lengthening the route i  
order to continue to a much sharper minimum radius with j 
so-called through transition is apparent, and it is satisfactory 
to  note that the Author prefers-a main circular arc. The writer 
considers a circular arc with constant acceleration to be safe 
than a transition with changing acceleration, but agrees witi 
the Author that a rate of change of 2 ft. per sec. per sec. in J. sec- 
is permissible. i

The parabolic vertical curve can be set out very simply to 
bisecting the perpendicular from the interesection point to the' 
chord joining the tangent points and quartering the offset & 
the centre of successive chords. It might be mentioned tha- 
the parabola is practically indistinguishable from a circle fit 
angles of deflection less than about 15°. I

Mr. H. A. W a r r e n , M.Sc.(Eng.) : The paper forms a usefi; 
summary of principles and formulae relating to transition 
curves in present orthodox practice. It is, however, not easj 
to see in what way the Author’s “ basic ” methods are in ant 
way more basic, or simple,, or useful than those outlined it 
previous and similar publications.14 The chief points for crifr 
cism are the continued use of “ maximum rate of gain of cents 
fugal acceleration ” as a design factor, and the insufficiet 
attention paid to its value and the effects of its value on desigf 
It is easy to say “ the choice of value must be left to the di 
cretion of the engineer ” and then proceed with the mathematics 
presentation of the spiral and the lemniscate, but this is real 
very little help to the practising engineer.

The simplest experiments15 with actual road vehicles to; 
show that the value of C can reach 50 ft. per sec. per sec. in 1 sec.f 
higher, practically to infinity, without any danger or eve 
discomfort whatever, and that the idea that C cannot mu(; 
exceed unity is completely illusory. The reason why the vat
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of c  is a prime consideration is that when the higher values 
are used the length of the transition curve necessary becomes 
.so small that other considerations such as the smooth applica­
tion of superelevation without undue vertical acceleration, 
provide the limiting factor in design and influence both the 
shape and the length. Moreover the shapes of the lemniscate 
and the spiral for short length transitions are so indistinguish­
able from the cubic parabola that the bulk of the elaborate 
mathematics for setting out the former curves is rendered 
useless, especially when it is remembered that there is in any 
case no compulsion on the motorist to follow the kerb lay-out 
at all. One cannot avoid the feeling that the practical highway 
engineer looking to papers such as this for guidance will find 
,an abundance of mathematics but little that will help him in 
assessing the prime factors affecting design. In the matter of 
transition curves in general there is need for less theorizing 
and more experiment.

The numerical example No. 1 given in the Appendix will be 
used to illustrate these remarks on how far from reality is the 
standard of C = l.  The radius of the curve entered is 1,273 ft., 
and assuming a wheel-base of 7-8 ft. and a steering gear ratio 
of 6 to 1, the angle turned by the steering column will be 2 -1°. 
The length of the transition curve according to the paper is 
535-3 ft. and the speed is 88 ft. per sec., so that the time occupied 
in turning the steering column is 6-1 secs. The motorist is thus 
asked to take 6-1 secs, over the negligible task of turning the 
steering wheel through 2-1°. I f  he does not occupy this time 
he will not keep constant distance from the kerb which has 
been laid out with such precision on C =  1 principles. In actual 
fact the wheel turns through the 2-1° by a mere “ twitch ” practi­
cally instantaneously, and since' a transition is traced only 
whilst the wheel is being turned, the length is reduced to a 
very small value. The necessity or even desirability of trans­
itions at high speeds is much overrated, but at low speeds, 
where the wheel can be turned through very large angles and 
therefore requires considerable time, the provision of transition 
curves becomes a practical desirability, as for example at .90° 
street intersections. Curiously enough this aspect has received 
the least attention.



350 BASIC CURVE METHODS IN ROAD-CURVE DESIGN

Author's Reply

Mr. M a c G r e g o r  : Mr. Cornelius has made an extremeljj
valuable contribution to the paper and it will well repay anyone; 
to make a close study of his remarks on superelevation and thd 
extended use of multipliers. The reason for the statement to1 
which he has taken exception was that the Author did not wislf 
to add to the controversy already in existence between two’ 
well-known writers on curve design until experiment and ex-; 
perience had proved conclusively that the new basis of design' 
was better than the old. Petrol rationing has, however, made! 
it impossible for the experimental work to be carried out. The 
chief point of difference is in the meaning attached to the rate’, 
of change of acceleration C. Mr. Cornelius has stated that the 
equations, C = r3/K 2 and C —(3r3/J 2) cos 29, are wrong because! 
they have been obtained by scalar differentiation, and that the 
conclusions reached therefrom are also wrong. At the beginning! 
of the lemniscate the curvature is small, whereas at o =45° the 
curvature is relatively large, but—and this is the important 
point—the rate of. change of curvature is a maximum at the 
beginning. A glance at the basic model, Fig. 10, will show this: 
to be the case. Mr. Cornelius has seemingly confused curvature; 
with rate of change of curvature. The vectorial rate of change 
of acceleration is quite irrelevant to the problem. This mhy! 
be seen by considering the change in acceleration and its effect’, 
on the comfort of the passenger when the vehicle is travelling; 
with speed v in a circle of radius R. The acceleration, is then, 
constant in magnitude and is equal to v 2/R  ; it is directed 
towards the centre of the circle and therefore the hodograph 
of acceleration is another circle also of radius v2/R . The scalal 
rate of change of acceleration is zero, since the acceleration is; 
constant in magnitude, but the vectorial rate of change is ?;3/R2-; 
Once the circular part of the road bend is reached, the passenger; 
has adjusted himself relative to the car and feels a constant; 
pressure on certain parts of his anatomy. By giving him time 
on the transition to brace himself to meet this force he experk 
ences no discomfort unless the force is great, and by keeping 
the value of the centrifugal ratio, F, below 0-25, the force 
exerted by the car on the passenger will not exceed one- 
quarter of his weight. On the transition he has had to adjust,
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himself to meet the increase in force only, and the direction of 
the line of action does not worry him, for it appears to be constant. 
For the spiral, v3/K 2 is Shortt’s formula, since RS = K 2 and 
the acceleration is acquired at a uniform rate. In the lemniscate 
the rate of change of acceleration is not-constant. This may 
be seen by referring to the lemniscate of accelerations in Fig. 
15. Here CT represents the radial acceleration at P, CU that 
at Q and Ca that at A. It is obvious that if the distances PQ 
and SA on the lemniscate of the path represent the distances 
travelled by the car in 1 second, then the rate of change of 
acceleration (scalar) in the vicinity of PQ is considerably greater 
than in the vicinity of SA. It may also be noted by reference 
to Prof. Rbyal-Dawson’s remarks that Fig. 3 requires no altera­
tion on this account. The process of determining the multiplier 
is therefore not a tedious one, for it consists simply of reading 
the value from Fig. 3. Mr. Cornelius will no doubt revise his 
design methods in the light of the above and the laborious 
task of drawing hodographs of acceleration need be done no 
longer. Whether the designer chooses P and R in preference 
to J and R makes little difference to the problem, the funda­
mental property P R = J 2/3  must be observed in both cases. 
In the demonstration of the law of the osculating circle by 
analogy with beam deflections, the bending moment diagram 
plotted on a base S is a straight line. ’The law can, of course,, 
be proved from the usual theorems of curvature.

The mathematical reader will have no difficulty in following 
Mr. Cornelius’s description of the extended use of the multiplier 
and basic curve to superelevation problems. His treatment 
of superelevation is perfectly logical and the Author agrees 
that it is illogical to cater for high speeds, needing high reliances 
on rolling friction, while denying frictional resistances to side 
slipping at those or indeed any speeds.. His method would 
not apply over the portion of the transition where p is in itself 
greater than v 2/g~R. This might be taken to indicate that the 
procedure of introducing the superelevation so that it is sweet 
to the eye is legitimate. The engineer must use his own discretion 
when selecting p and it is probable that once the maximum 
value of y has been found he will grade, in the superelevation 
without further reference to p. The Author considered the  
question of fitting transition curves to vertical curves but came
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to the conclusion that in view of the large radii generally used 
they would be an unnecessary refinement. Settlement of the 
bank material would also affect them and consequently he dif 
not pursue the matter any further. The interesting property 
of the lemniscate to* which Mr. Cornelius has referred would 
appear to be true only for the case where the axis of the lemnisi 
cate is inclined at 45° to the vertical. j

The Author appreciates the criticism of his paper by Pro! 
Royal-Dawson. It will in general be agreed that Prof. Royal; 
Dawson has been mainly responsible for the introduction o' 
scientific principles into road curve design and the Author had 
found his publications to be of immense value. Regarding the 
relative merits of basic curve and unit-chord methods, it at 
depends on the system to which one is accustomed and on tit 
weight placed on the maintenance of the running chainage: 
In new works, alterations in the alignment of the route wi| 
seldom occur and the Author has found that there is less like! 
hood of mistakes being made if the running chainage is main; 
tained. Profiles and cross-sections have to be taken and grad; 
levels calculated before the contract drawings are completed; 
and the levelling party will have less trouble if pegs are put! 
at even chainages. In improvement schemes there is not tl 
same need to retain the running chainage, but, as in the fid 
case, Table I, together with a slide rule, will give the engine! 
all the information he requires for setting out the lemniscate 
He can take any length of chord he pleases provided he respect 
the difference between curve and chord length. Thus for choif 
lengths of 50 ft. on a lemniscate with J = 1,000 ft., he woul 
find by interpolation the values of 9 corresponding to Z =̂ O*0i 
0-10, 0-15, etc. j

Since the engineer who uses the spiral is unlikely to chan( 
over to the lemniscate and vice, versa, the Author does nt 
think there is likely to be any confusion of the multipliers 1 
and J. He cannot agree that the same unit should have bee 
chosen for each curve ; the selected units appear to him to 1 
the natural ones for the respective curves. The similarity t 
the curves- over a considerable portion of their lengths has bee, 
commented upon, and, as Prof. Royal-Dawson points out, tl 
•difference between the curves can hardly be detected on; 
10-in. model. In this connection, it should be noted that P«
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Royal-Dawson is referring to his own 10-in. model which has 
an axis length of 10-3648 in. The Author’s basic model has 
an axis length of 10 in. exactly and the 15° mark will therefore 
be at 7-269 in. along the curve. The spiral enthusiast can, of 
course, obtain his basic model by using the tables1 referred to. 
The Author should also have stated that there is no need to 
go on decreasing the radius so that a bend can be made wholly 
transitional. It is axiomatic that the smaller the centrifugal 
ratio the safer the bend, and this can be met in most cases by 
introducing a length of circular arc.

Prof. Royal-Dawson’s remarks on vertical curves should be 
noted for future reference." The determination of finished 
road levels on a sag curve will be somewhat tedious in com­
parison with the non-transitional case and the Author therefore 
recommends the use of the higher multiplier.

The Author agrees with Mr. Husbands that a cubic parabola 
is sufficiently accurate for the shorter length transitions in 
railway work, but in roads the minimum radius of the bend 
may be considerably smaller than that in use on railways and 
the use of the spiral and lemniscate is then justifiable. The 
method of quartering referred to by Mr. Husbands will be 
familiar to most engineers. In general, however, grade levels 
have to be computed for odd chainages and the Author has 
found direct substitution in equations (31) or (34) to be the 
quicker method.  ̂ -

Mr. Warren’s chief point of criticism is that the Author 
has continued to use C as a design factor when he, from the 
simplest experiments with actual road vehicles, has deduced 
that the value of C can reach 50 ft. per sec. per sec in 1 sec. or 
higher, practically to infinity, without any danger or even 
discomfort whatever. The experiments are described in Mr. 
Warren’s paper15 ; in brief, they consisted of measuring by 
tacheometric means the track of a car when turns ranging from 
“ natural ” to “ forced ” were made in a large car park. The 
track was recorded by means of a sharp, thin trail of water 
which issued, about one inch above the ground, from flexible 
tubing connected to a drum of water mounted in the passenger’s 
seat. The vehicles passed through a straight lane formed by 
two parallel steel bands, 100 ft. long, and spaced about 2 ft. 
wider than the wheel track of the vehicle being tested. At
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the end of this lane ranging rods stood on either side and inf 
mediately the posts were passed the driver was supposed to 
turn in a comfortable path. The instrument was stationed at 
the point of intersection of the water trail and the line joining 
the ranging rods, and tracks which showed that the vehicle 
had turned slightly before or after the posts were not recorded

From a plot of the observed values to a scale of 1 in. =  10 fti 
Mr. Warren found that elusive quantity, the third derivative 
of a curve, or, in engineer’s language, C. His values, although 
given in some instances to two decimal places, are inconsistent' 
and range from 0-79 to 58-4 ft. per sec. per sec. in 1 sec. Asa 
result he concluded that “ unless the above results can bt 
explained away, present designs based on C—1 are just so mud 
scrap.” The results require little explaining away, for anyon! 
with experience in graphical differentiation would have told 
him that the values of C obtained in this manner might bi 
inaccurate to the extent of several hundred per cent. It would 
thus be easy to dismiss the subject, but since the practical 
highway engineer may accept Mr. Warren’s invitation to plot; 
the results and see for himself, it may be better to point out; 
the idiosyncrasies of the experimental evidence.

By plotting the deflection angles on a base of radius vector, 
then, with the notation used in the present paper, if a lemniscate 
of axis length J ft. has been described, P = J y '  sin 29, and a 
curve similar to (a), Fig. 16, would be obtained. If no transition 
is introduced and the vehicle describes a circular arq, the chore 
becomes proportional to the sine of the deflection angle and 
curve (a) will be almost a straight line. If, however, the radiur 
increases from a finite value, then a curve similar to (b) will k 
obtained. It should be noted that curve (a) is concave up 
wards whereas curve (b) is convex upwards. The curves 1, % 
4, 6 , 8 and 9 in Fig. 16 are those obtained from Mr. Warren's 
experimental data. It will be seen that curves 1, 4, and 6 shot 
signs that some form of transition may have been followed 
and it is significant that these were described as “ natural’! 
turns. For 4 Mr. Warren deduced that C=58-4 ft. per see; 
per sec. in 1 sec., whereas for the “ easy and comfortable) 
turn 2 his value' was (5-16). The brackets are his, and they! 
signify that the value was obtained by guessing the shift, thougt 
perhaps the description of the turn may have misled him intd
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imagining that C should have been low on that account. The 
Author would have concluded that, if the data were free from 
experimental errors, C must have been infinite in run 2. Runs 
8 and 9, for which the published values of C are 18 and (4-34) 
were described as “ forced ” and “ very comfortable ” respec­
tively. The Author would also have concluded that 9 was even 
more forced than 8 ; that C could quite well have been infinite 
in both instances ; and that Mr. Warren should have sufficient 
justification to revise the opinion expressed by him that “ once it

25°-'

20-

15°-

5°

80 IZO40 60 
P ~ ? e ef

20 100

Fig. 16.

is realized that it is impossible for the road vehicle to turn other 
than by a transition curve, the . most humorous absurdity of 
laying out the kerb otherwise will be apparent to everyone.”

In the Author’s opinion the data are not free from experi­
mental errors, but there are so many potential sources of error 
that he is unable to say which has made the major contribution. 
jSkidding may explain the type (b) characteristics, but from 
the general outline of the curves in Fig. 16, especially 2, 
it appears however that the instrument was stationed not at 
the tangent point but at some point along the curve. Mr.
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Warren’s insistence on the instrument station being on the lin( 
joining the ranging rods was most unfortunate. Other factor! 
which merit some attention and correction are the centrifuga 
and aerodynamic effects on the fine jet of water. It migi 
well be that only when the vehicle was travelling along tH 
straight or on a circular curve, when conditions would becom 
stabilized, that anything like the path of the car was describe 
by the jet. The Author is therefore unwilling to advise anyon 
to discard the present basis of design until further experiment 
with all types of transport vehicles and drivers have pointr 
the way to a better basis of design, and he agrees with Pro 
Royal-Dawson that the experiments should consist of intelliger 
observation of actual traffic movements on the open road.

Mr. Warren’s remarks on how far from practical reality i 
the standard C = l ,  appear to the Author to be a logical ca? 
for the continued use of this standard when site conditio! 
permit. The driver of the vehicle is given 6-1 secs to meet tl 
changing curvature of the road, hi fact it is not beyond tl 
realm of possibility that with proper superelevation the ci 
will round the bend itself. By using low values of C the averaf 
highway engineer will find that he has sufficient length in tl 
transition, to work in the superelevation without having f 
resort to a transition of the form y = Aa4—Ba;5. At any raf 
no matter which value is used for the multiplier, or how it Bf 
been obtained, the basic curve method of design will facilitat 
the setting-out o f the spiral, lemniscate and cubic par aboil 
this is but one of its many advantages.
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1-3/8 256,7 3-0>8/ 4 6/3 5329 5  830 6-/22 6-2/7
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• 8 8 2

5 2 4
- 9 2 0
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/ 8 3
/ 3  S i

/ * *
/ ‘3 * *

7 * 0
i  3 7 3 * -----------------a M ---- --►

0 9 7 /*& 2 0 / 2 0 2 ■/9S 182 7 7  4 7 7/ t
4 3  £ • 8 / 4 /■ /0 2 / -3oj / 4 2 8 / S o  3 / - S 4 3 J S S S t

.... 0 * 8  
4 1 8

/ 1 4  
• 7 9 4

- IS 7 
1 / 0 3

175  
/  3 3 4

1 8 /
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F i e l d  N °  4 0

VV o

to £■

■4Sb 1-J>*9. 2-<*S8 /■ ISfa '6/5 3/S ■2/0 * (93 J v a U i
•S>4 1094 1-497 /■4/3 l-llo / o3 /

'
9 St 93fa to

■$i4 J 072 I-37S 1/91 ‘7S2 ■492 363 ■32b
- 79 S 1-497 /■96S 2-099 ,/-99oy-9SS /■?72 h 7 4 4

3b9 b*3 9S-+ 92? (,8 c ■ £2 7 ■43/ -_foo
■84b i £1 4 2-HO 237b\2-43b\2-4021 I 2 3SB 2 3 4 0

■249 •454 S7S (oo ■S’S4 4 8 9 ■43 7 ■417
9i<i / S43 2 09b 2-447 2-b24\2S9/ 2 -70S 2-706

-no ■3/3 409 -45/ •44 f 4 2 4 404 394
■7<*o / 4 4 4 /■998 2-39S 2 644 2-J9/ 2 844 2-862-

• 120 ■ 2 2 S 30/ \ 3 4 4 ■3bo -3b / J S ^ /3S4
■(>90 1-323 '/■£££ \ 2-2 6 S 2 S£/ 2 73/ 2-8 2b 2 -8 £b

OS 7 ■ (bb 229 263 ■290 3 0 2 3 0 4 S304
(6 IS /■ i92 /69o 2998 2 383 2-S79 2-093 2- 111

Obb - )2S ■ns •2// ■234 ■248 ■2 £4 ■2£b
S4-S /■OS 7 i-SoS J-fffO .2-/(>£ 2 J(,S 2-479 2-SI 8

'OSo 09b ■134 •/*4 •/** 202 ■209 ■2/0 IO JO
•473 ■920 /'3/S /-bsS \/-2>/S 2/0 7 2-2/7 2-2SS (I

' 039 ■074 ■ 104 ■/2^ v: / £o_ 76/ /S9 lL7o -* - - - 8 N .----- —•40/ ■ 794 /■/2F 1-422 f-bSS /-822 /■923 /■SSb

■029 ' OS 7 079 7 0 0 ■ n s ' 12 S ■/32 >34
33Z 649 •337 /■/?s / 282 / S2 b /-b/3 /■&4Z

■ 02 i ' 042 OfaO ■ OlS ■08b • 036 ■loo -103
■2 64 £/7 74 7 9 4b /■/OS /■22Z 1-294 /3/8

• 0/ fa • OZ.P 043 ■OS 4 - 062 - 0 6 3 072 0 7 4
797 39 b £ S 7 •70* 923 • 9 >b ■970 9 9 8

■Oio ■ OfB 027 •035 040 ■044 ■04b 04b K cn* Diaqrar^
73/ 2 9b 37/ •47/ SSI •6/o •647 • bS8
■004 0 0 9 • 014 •0/7 • 020 02 2 ■013 •023
ObS n S U S •236 •275 Jo4 '3 2 3 330

lV tVng, ^ v o. i u £  5 6\rt -\Cf t nc w  va i U£ 6 £\r c + vc , O d v'fc& v£r$<\
Mwlt’l *tUe ^ ur>iti N 2 To ê tT w u^«ts  .
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