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Notation

In order to facilitate ease of reading, examples of the notational form found
throughout this thesis can be found in Table 1.

Table 1: Examples of the notation used throughout this thesis.
Notation Meaning Example

Bold face uppercase letter or symbol Matrix X

Bold face lowercase letter or symbol Vector θ

Vector at time ti Concentration for all species at time ti y(ti) or x(ti)

Vector of concentrations for species “s” Concentrations for species “s” over all timepoints ys or xs

Vector of concentrations Concentrations over all timepoints for one species y or x

Lower case letter at time ti for species “s” Concentration for species “s” at timepoint ti ys(ti) or xs(ti)

x



1 Introduction

A central objective of current systems biology research is explaining the in-

teractions amongst components in biopathways. A standard approach is to

view a biopathway as a network of biochemical reactions, which is modelled

as a system of ordinary differential equations (ODEs).

This system can typically be expressed as:

ẋs =
dxs(ti)

dti
= fs(x(ti),θs, ti), (1)

where s ∈ {1, . . . , N} denotes one of N components (referred to throughout

as “species”) in the biopathway, xs(ti) denotes the concentration of species

s at time ti and x(ti) is a vector of concentrations of all system components

that influence or regulate the concentration of species s at time ti. If, for

example, species s is an mRNA, then x(ti) might contain the concentrations

of transcription factors (proteins), that regulate the amount of transcription

from DNA for that species. The regulation is described by the regulation

function f . The type of regulatory interaction depends on the species in-

volved, e.g. f may describe mass action kinetics, Michaelis-Menten kinetics,

etc. All of these interactions depend on a vector of kinetic parameters, θs.

For many biopathways, only a small fraction of θs can be measured in prac-

tice. Therefore, in order to understand the dynamics of the biopathway, the

majority of these kinetic parameters need to be inferred from observed (typ-
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ically noisy and sparse) time course concentration profiles.

Conventional inference methods typically rely on searching the space of θ

values, and at each candidate, numerically solving the ODEs and comparing

the output with that observed. After choosing an appropriate noise model,

the form of the likelihood is defined, and a measure of similarity between the

data signals and the signals described by the current set of ODE parameters

can be calculated. This process is repeated, as part of either an iterative

optimisation scheme or sampling procedure in order to estimate the parame-

ters. However, the computational costs involved with repeatedly numerically

solving the ODEs are usually high.

Several authors have adopted approaches based on gradient matching (e.g.

Calderhead et al. [8] and Liang & Wu [26]), aiming to reduce this compu-

tational complexity. These approaches are based on the following two-step

procedure. At the first step, interpolation is used to smooth the time series

data, in order to avoid modelling noisy observations; in a second step, the

kinetic parameters θ of the ODEs are either optimised or sampled, whilst

minimising some metric measuring the difference between the slopes of the

tangents to the interpolants, and the θ-dependent time derivative from the

ODEs. In this fashion, the ODEs never have to be numerically integrated,

and the problem of inferring the typically unknown initial conditions of the

system is removed, as it is not required for matching gradients. A downside
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to this two-step scheme is that the results of parameter inference are crit-

ically dependent on the quality of the initial interpolant. Alternatively, as

first suggested in Ramsay et al. [40], the ODEs can be allowed to regularise

the interpolant. Dondelinger et al. [11] applied this to the nonparametric

Bayesian approach in Calderhead et al. [8], which uses Gaussian processes

(GPs), and demonstrated that it significantly improves the parameter infer-

ence accuracy and robustness with respect to noise. Unlike in Ramsay et al.

[40], all hyperparameters that control the smoothness of the interpolants are

consistently inferred in the framework of nonparametric Bayesian statistics,

which dispenses with the need to use heuristics and approximations in the

configuration of the interpolation function.

This thesis extends and develops methods of gradient matching for parameter

inference and model selection in ODE systems in a systems biology context.

The layout of the thesis is as follows:

• Chapter 2 covers the literature of the current state-of-the-art meth-

ods for parameter inference using gradient matching. Details on the

interpolation methods the authors adopted are also included.

• Chapter 3 contains benchmark ODE systems that are used throughout

this thesis, for data generation and comparison purposes.

• Chapter 4 details the combining of the methods of Dondelinger et al.

[11] and Campbell and Steele [9], creating a new gradient matching

3



method with a parallel tempering scheme for the gradient mismatch

parameter.

• Chapter 5 has a wide-scale comparative analysis of the current state-

of-the-art methods detailed in Chapter 2 and Chapter 4.

• Chapter 6 contains a discussion of gradient matching as a probabilistic

generative model. Specifically, approximations that were not apparent

from the original publication ([49]) are presented. It is demonstrated

that they introduce large uncertainty into the parameter estimates and

make the method susceptible to identifiability problems when data are

systematically missing.

• Chapter 7 presents a new method for model selection using thermody-

namic integration and gradient matching. This new method provides a

way of performing accurate and robust model selection for ODEs using

gradient matching.

• Chapter 8 is a discussion of the work covered throughout the entire

thesis.
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2 Literature Review

Parameter inference for systems described by ordinary differential equations

is challenging and there have been many approaches developed to tackle the

problem. The simplest method would be to compare the solution of the

equations, for some given parameter set, to noisy observations of the signal

based on some appropriate noise model. Parameter estimation would be car-

ried out by minimising the discrepancy between the predicted solution of the

ODEs and the data. However, closed-form solutions typically do not exist

for many ODEs and therefore inference involving the explicit solution of the

equations needs to be conducted numerically. Robinson [43] contains an in-

troduction for obtaining explicit solutions of ordinary differential equations.

Amongst many other topics, Robinson discusses the use of Euler’s method

and the Runge-Kutta scheme as ways for obtaining explicit solutions. In-

ference could be carried out on a system of ODEs, by using either of these

two methods (with a reasonably small step-size) to numerically solve the

equations and use least squares estimation to infer the best parameters that

describe the data signal. Xue et al. [53] discuss the influence of the numerical

approximation to the ODEs (employing the 4-stage Runge-Kutta algorithm

in their studies). They argue that previous studies took the numerical solu-

tion as being the ground truth and only considered the measurement error

when estimating the parameters. The authors show that when the maxi-

mum step size of a p-order numerical algorithm goes to zero at a rate faster
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than n−1/p4 , where n is the sample size, the numerical error is negligible in

comparison to the measurement error. This should provide some guidance

in selecting the correct step-size when numerically solving ODEs.

A different integration based approach, which aims at avoiding explicitly

solving the ODEs, is to instead first smooth the data with a chosen inter-

polation method. This interpolant acts as a proxy for the solution of the

ODEs and then non-linear least squares is used to infer the parameters. It is

demonstrated in Xue et al. [53] that a sieve (a sequence of finite-dimensional

models of increasing complexity) estimator is asymptotically normal and has

the same asymptotic covariance as when the true solution is known, for the

case of having constant parameters over time. A typical example of sieve re-

gression is a spline [22]. Dattner and Klaassen [10] look at ODEs where the

systems are linear in the parameters. Taking advantage of the linearity in the

model, the authors are able to develop a two-step estimation approach that

does not require repeated integration of the system. By reformulating the

minimisation function in terms of integrals instead of derivatives, the authors

obtain closed form estimates of the parameters of the system. These esti-

mates are shown to be consistent estimators. Dattner and Klaassen consider

two types of interpolation schemes - a local polynomial estimator and a step

function estimator (which is obtained by averaging repeated measurements).

The method using a local polynomial estimator was shown to outperform

the two-step gradient matching approach of Liang & Wu [26], whilst it was
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unable to outperform the gradient matching method by Ramsay et al. [40]

(which is discussed in Chapter 2.3). The accuracy of Daatner and Klaassen’s

method using a step function estimator did not change much even when the

number of repeated measures was quite small. Bayesian smooth-and-match

is a related method, that avoids explicitly solving the ODEs and instead indi-

rectly solves the system by numerically integrating the interpolated signals.

Ranciati et al. [41] employ this approach, smoothing the data with penalised

splines, and use ridge regression to infer the parameters of the ODEs. Again,

this approach focuses on systems that are linear in the parameters. In order

to achieve a fully probabilistic generative model, the authors take a similar

approach to Wang and Barber [49] (a method that will be discussed in detail

in Chapter 6) and as a consequence the vector of observations appears twice

in the graphical model. The upshot of this is that the method is unable

to deal with partially observed systems and the two observation vectors are

coupled by a common nuisance (variance) parameter. Ranciati et al. demon-

strate that the method is fast, with a built-in quantification of uncertainty

about the ODE solution. The results obtained, for a fully observed system

that is linear in the parameters, are accurate and robust to dataset size and

noise level.

Gradient matching is the method of conducting parameter inference by min-

imising some metric governing the difference between gradients predicted

from a set of differential equations (ordinary differential equations through-

7



out this thesis) with the slopes of the tangents to the interpolants. Gradient

matching bypasses the need for numerical integration, making it computa-

tionally attractive. Methods can differ by choice of interpolation scheme and

the chosen metric for penalising the difference between gradients. Wu et al.

[52] propose a five-step approach for inference in sparse additive ordinary

differential equations (SA-ODE). The SA-ODE model is denoted as

ẋs = χs +
N∑
i=1

fsi(xi(t))

and it is assumed that the number of significant non-linear effects, fsi(·),

is small for each of the N variables even though the total number of vari-

ables in the network may be large. At step one, the data is smoothed using

penalised splines. At step two, the state variables and derivatives are sub-

stituted into the aforementioned SA-ODE model, producing a pseudo-sparse

additive model (PSA). A truncated series expansion with B-spline bases is

used to approximate the additive components of the PSA model. The num-

ber of basis functions is chosen as large as possible with the intention to

correct for this at step five. At step three, the group LASSO is used to iden-

tify significant functions in the model. The penalty parameter at this step is

estimated using BIC. The group LASSO penalty treats the coefficients from

each group equally, which is typically non-optimal. Hence, at step four, an

adaptive group LASSO is applied to allow different levels of shrinkage to exist
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for different coefficients. Finally, at step five, a regular/adaptive LASSO is

applied to account for the under-smoothing from step two (due to selecting

more bases than are probably necessary). Wu et al. demonstrate in their

simulation studies that the method is able to obtain a high true positive rate,

when the sample size is sufficiently large, and can more closely match the

true underlying signal (noise free signal) than the method by Lu et al. [28]

which assumes a linear ODE model and uses the smoothly clipped absolute

deviation penalised likelihood method of [13] for variable selection.

The remainder of this chapter contains a literature review of the interpolation

schemes and gradient mismatch metrics of the current state-of-the-art meth-

ods for parameter inference in ordinary differential equations using gradient

matching.

2.1 B-Splines

Splines are used for function interpolation, where the function of interest is

approximated by a weighted linear combination of basis functions. These

basis functions, called “splines”, are “local” polynomials, where the exact

functional form depends on the particular type of spline that is used (for

example, a truncated power basis). See Hastie et al. [23] for an overview of

different types of splines.

The advantage of spline interpolation over global polynomial interpolation is
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that the interpolation error can be made small even when using low degree

polynomials for the splines. This in particular avoids the problem of Runge’s

phenomenon, in which oscillations can occur between datapoints when inter-

polating using high degree polynomials (see Runge [44]).

B-splines interpolation takes the form

x(t) =
m∑
i=0

αiφi,d(t), (2)

where m+ 1 is the number of basis functions, d is the degree of polynomial,

αi is a coefficient and φi,d(t) is the ith basis function of polynomial degree d

evaluated at time t. For some vector of fixed points called knots (denoted

τ , where x(t) is continuous at each knot), the basis functions are calculated

with the following recursive formulae

φi,0(t) =


1 if τi ≤ t < τi+1

0 otherwise

(3)

φi,d(t) =
t− τi
τi+d − τi

φi,d−1(t) +
τi+d+1 − t
τi+d+1 − τi+1

φi+1,d−1(t). (4)

The coefficients αi are then estimated by

α̂ =
(
ΦTΦ

)−1
ΦTy, (5)

where y is the data vector of observations, α̂ is the vector containing all the
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coefficients (and αi would correspond to the (i+ 1)th position in the vector),

the form of α̂ is obtained by minimising
∑N

s=1(y(ts) − x(ts))
2 and Φ is the

matrix containing all the basis functions

Φ =


φ0,d(t1) . . . φm,d(t1)

...
. . .

...

φ0,d(tT ) . . . φm,d(tT )

 . (6)

One can aim to avoid over-fitting by penalising the 2nd derivative of the

function x(t) (known as penalised splines), making the objective function

J(x) =
N∑
s=1

(y(ts)− x(ts))
2 + λ

∫ (
d2x

dt2

)2

dt, (7)

where the dependency on α is via equation 2, λ controls the amount of trade-

off between the data fit and penalty term. In this case, the coefficients αi

are estimated by

α̂ =
(
ΦTΦ + λD

)−1
ΦTy, (8)

where the form of α̂ is obtained by minimising equation 7 i.e. α̂ = argmin
α

J(x),

D is the solution to the penalty in equation 7 (the integral of the square of

the second derivative of x). It is possible to change the penalty term in equa-

tion 7 to some other penalty form (this is known as P-splines), where the D

in equation 8 would be updated accordingly.
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2.2 Smooth Functional Tempering

This chapter details the method for parameter inference used in Campbell

and Steele [9]. In the paper, the authors discuss two types of smooth func-

tional tempering, one that needs to infer the initial conditions of the species

concentrations and one that does not. Only the method that does not infer

the initial conditions is considered here. If the initial conditions are unknown,

then they must be inferred as an extra parameter in the inference procedure,

however, the method described in this section effectively profiles over the

initial conditions, dispensing with the need to infer them. This reduces the

complexity of the procedure, which is more appealing. See the original pub-

lication Campbell and Steele [9] for details on the former procedure. The

choice of interpolation scheme for the concentrations xs is B-splines.

The posterior distribution of the parameters is

pα(i)(θ(i), σ2(i)|Y,X(i),λ(i))

∝ p(θ(i), σ2(i))p(X(i)|θ(i),λ(i))p(Y|X(i), σ2(i))α
(i)

, (9)

where Y is the matrix containing all of the data, X is the matrix containing all

of the species concentrations, the superscript i denotes those variables associ-

ated with “temperature” α(i), the likelihood, p(Y|X(i), σ2(i)) = N(X(i), σ2(i)),
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is tempered1, λ = (λ1, . . . , λn) and p(X(i)|θ(i), λ(i)) is

p(X(i)|θ(i),λ(i)) ∝ exp

[
−

n∑
s=1

λ(i)
s ||ẋ(i)

s − f (i)
s (X(i),θ(i)

s , t)||2
]
, (10)

which is equivalent to

p(X(i)|θ(i),λ(i)) ∝ exp

[
−

n∑
s=1

λ(i)
s

T∑
t=1

(
ẋ(i)
s (t)− f (i)

s (x(i)(t),θ(i)
s , t)

)2
]
. (11)

In equation 10 λ
(j)
s is the gradient mismatch parameter for species s corre-

sponding to “temperature” α(i) (similar to the mismatch parameter γ
(i)
s in

Chapter 4). The λ(i)
s is chosen in advance and fixed to each “temperature”

α(i) such that 0 < λ(1)
s ≤ · · · ≤ λ(M)

s ≤ ∞, where values closer to 0 allow the

gradients to be more different to one another and values closer to ∞ restrict

them from being different.

Sampling from equation 9 is performed using MCMC.

1Note: parallel tempering is one of the main concepts for the new method proposed in
Chapter 4 and therefore, to avoid repetition, the details of tempering can be found there.
To summarise the concept, the likelihood is raised to a power (called a “temperature”)
between 0 and 1, where the posterior becomes equal to the prior when the power is 0 (up
to some normalisation constant) and is recovered when the power is 1. Powers between 0
and 1 give a distribution between the prior and posterior. “Temperatures” closer to the
prior tend to produce less rugged distributions, making it easier for algorithms to navigate
the landscape. Different “temperatures” are randomly selected and the corresponding
parameters have a probability to be exchanged. In this fashion, algorithms can avoid
being trapped in local optima and more easily achieve global convergence. The likelihood
here p(Y|X(i), σ2(i)) is tempered in the same way as in equation 66.
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2.3 Penalised Likelihood With Hierarchical Regulari-

sation

Ramsay et al. [40] aim to conduct parameter inference in ODEs using a

penalised likelihood approach and a hierarchical regularisation in order to

tune the gradient mismatch parameter and parameters of their interpolation

scheme (splines). They perform parameter inference in a hierarchical two

level approach. At level 1, the gradient mismatch parameter is configured, in

order to ensure the estimates of the coefficients of their interpolant are prop-

erly regularised by the mismatch to the ODEs. In their paper, they adjust the

gradient mismatch parameter manually using numerical and visual heuristics,

but suggest a way it could be achieved through generalised cross-validation,

which is detailed in this chapter. At level 2a., the coefficients of the in-

terpolant are optimised. Whilst optimising for the parameters, each time

the ODE parameters and observational noise parameters are changed, they

re-optimise the coefficients of the interpolant, by penalising the differences

between the gradients, which allows the ODEs to regulate the interpolant.

At level 2b., the ODE and observational noise parameters are estimated us-

ing a sum of squares criterion. This criterion is optimised directly for the

ODE and observational noise parameters, but it is also optimised implicitly,

since the sum of squares incorporates xs, which itself was optimised at level

2a. with respect to these parameters. A flow chart of these two levels can be

found in Figure 1.
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For given value of 
the gradient 

mismatch parameter 

Estimation of the 
coefficients of the 
B-spline interpolant 

Estimation of the 
ODE parameters 

1. 2a. 2b. 

Loop to optimise 
gradient 

mismatch 
parameter 

Figure 1: Flow chart of the two level approach employed by Ramsay et al.
[40]. At level 1, the gradient mismatch parameter is specified. At level 2a.,
the coefficients of the interpolant are estimated (splines in this method) and
at level 2b., the ODE parameters are estimated. Levels 1 and 2 are then
iterated in order to optimise the gradient mismatch parameter and thus the
model. The two levels are iterated using a pseudo-delta method (see Chapter
2.3 for details).

At level 1 of the two hierarchical levels, the gradient mismatch parameter is

configured. To avoid the need for heuristics, Ramsay et al. [40] suggest the

use of generalised cross-validation, since the estimation of the state variables

for some gradient mismatch parameter λ is usually a non-linear problem

and so standard cross-validation methods are not computationally viable.

Generalised cross-validation takes the form
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F (λ) =

∑n
s=1 ||ys − xs||2[∑n

s=1

{
T −

∑T
t=1

dxs(t)
dys(t)

}]2 , (12)

where ys is the data for species s, xs is the interpolant corresponding to

species s, n is the number of species and T is the number of timepoints. A

derivation of equation 12 can be found in the appendix. The derivatives in

the denominator can be expressed as

dxs(t)

dys(t)
=
∂xs(t)

∂α

dα

dys(t)
, (13)

where α are the estimated coefficients of the splines interpolant (see equation

8). Calculating these derivatives takes the dependency of the data y and the

ODE parameters θ into account, since
dα

dy
=
∂α

∂θ

dθ

dy
+
∂α

∂y
. The estimates

of λ will be calculated by minimising equation 12 over values of λ.

Level 2a. involves estimating the coefficients of the splines interpolant using

the following criterion

J(α|θ,σ,λ) =
n∑
s=1

ws||ys − xs||2 +
n∑
s=1

λs

∫ [
dxs(t)

dt
− fs(x(t),θs, t)

]2

dt,

(14)

where
dxs
dt

is the gradient of the interpolant for species s and ws are weights

to normalise the sum of squares of different species (so that species on vary-

ing scales of measurement do not distort the sum of squares with very large
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or very small residuals that are simply a consequence of their magnitude or

unit of measurement). Large values of λs mean that the gradients have to

more closely match one another (since the difference between them will need

to tend to 0, to compensate for the large penalty a large λs would produce),

whereas small values would allow the gradients to differ more. The penalty

term in equation 14 allows the mismatch between the gradients to regularise

the estimates of the interpolant coefficients.

At level 2b., the ODE parameters are optimised using the sum of squares

criterion

S(θ|λ) =
n∑
s=1

ws||ys − xs||2. (15)

To optimise equation 15 with respect to θ, Ramsay et al. [40] find the solution

of the gradient

dS(θ|λ)

dθ
=
∂S(θ|λ)

∂θ
+
∂S(θ|λ)

∂α

dα

dθ
= 0. (16)

Since the function α(θ) is not explicitly available,
dα

dθ
is calculated by ap-

plication of the implicit function theorem of differential calculus. This gives

dα

dθ
= −

(
∂2J(α|θ,σ,λ)

∂α2

)−1
∂2J(α|θ,σ,λ)

∂α∂θ
. (17)
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2.4 Reproducing kernel Hilbert Space

Here a background is provided for reproducing kernel Hilbert spaces (RKHS),

that are used in González et al. [19], and how they compare to Gaussian

processes. RKHS interpolation is a useful tool in statistical learning, since

a property of reproducing kernel Hilbert spaces, known as the representer

theorem (details to follow), means that every function in an RKHS can be

written as a linear combination of the kernel function evaluated at the train-

ing points. This provides a computationally fast process for interpolation,

which is particularly useful in gradient matching, since the original purpose

of gradient matching is to obtain a computational speed-up over methods

involving calculating numerical solutions to the ODEs.

By Mercer’s theorem ([35]), it is possible to represent a kernel that produces

a positive definite covariance matrix in terms of eigenvalues λs and eigen-

functions νs

k(ti, tj) =
∞∑
s=1

λsνs(ti)νs(tj). (18)

These νs form an orthonormal basis for a function space

H = {f : f(t) =
∞∑
s=1

fsνs(t),
∞∑
s=1

f 2
s

λs
<∞}. (19)

The inner product between two functions f(t) =
∑∞

s=1 fsνs(t) and g(t) =∑∞
s=1 gsνs(t) in the space in equation 19 is defined as
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〈f, g〉H ,
∞∑
s=1

fsgs
λs

, (20)

which Murphy [36] shows implies that

〈k(t1, ·), k(t2, ·)〉H = k(t1, t2). (21)

This is known as the reproducing property and the space of functions H is

called a reproducing kernel Hilbert space. Now consider the minimisation

problem

J(f) =
1

2σ2

N∑
s=1

(ys − f(ts))
2 +

1

2
||f ||2H , (22)

where J(f) is the objective function and ||f ||H is the norm in Hilbert space

||f ||H = 〈f, f〉H =
∞∑
s=1

f 2
s

λs
. (23)

The desired function used for interpolation should be simple and provide a

good fit to the data. Complex functions with respect to the kernel in equa-

tion 18 will produce large norms, since they will need many eigenfunctions

to represent them, and therefore be more heavily penalised in equation 22.

Schöelkopf and Smola [45] show that the desired function must have the

following form

f(t) =
N∑
s=1

csk(t, ts). (24)
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This follows from the representer theorem, see [35] and[45]. To solve for c,

equation 24 can be combined with equation 22, since equation 24 is of the

correct form to use the reproducing property (see equation 21 and 20), giving

J(c) =
1

2σ2
|y−Kc|2 +

1

2
cTKc, (25)

where K is a matrix of kernel elements for all combinations of observed

timepoints. Minimising with respect to c gives

ĉ = (K + σ2I)−1y. (26)

Hence,

f̂(t∗) =
N∑
s=1

ĉsk(t∗, ts) = kT
∗ (K + σ2I)−1y, (27)

where t∗ is the timepoint at which one wants to make predictions and k∗ is

the vector of kernel elements for all combinations of t∗ and ts. This form is

the same as a posterior mean of a Gaussian process predictive distribution.

2.5 Penalised Likelihood With RKHS

The aim of González et al. [19] is to create a penalised likelihood function

that incorporates the information of the ODEs, then, using the properties of

reproducing kernel Hilbert spaces, perform parameter estimation in a com-

putationally fast manner. González et al. [19] consider ODEs of the form
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ẋs = gs(X,ρs, t)− δsxs, (28)

which can be represented in scalar form as

ẋs(ti) = gs(x(t),ρs, ti)− δsxs(ti), (29)

where xs is the vector of concentrations for species s, δs is the degradation

rate of the concentrations for species s, ρs is a parameter vector for species

s and gs(t) = (gs(t1), . . . , gs(tT ))T. It is important to realise the difference

between equation 1 and equation 28. Whereas in equation 1, all parameter

terms are included in the function fs(), equation 28 considers the linear decay

term separate to the rest of the ODE function gs(X,ρs, t). Now consider a

differencing matrix D, where

D = ∆



−1 1 0 . . . . . . 0

−1 0 1 0 . . . 0

0 −1
. . . 1

. . .
...

...
. . . . . . . . . . . .

...

...
. . . . . . . . . . . .

...

0 . . . . . . . . . −1 1


, (30)

and ∆ = diag
(

1
t2−t1 ,

1
t3−t1 ,

1
t4−t2 , . . . ,

1
tT−tT−2

, 1
tT−tT−1

)
. Equation 28 can then

be approximated as

Dxs = gs(X,ρs, t)− δxs. (31)
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To make it clear how Dxs is computed, as an example, consider xs =

(x(t1), . . . , x(t5))T and t = (3, 4, 5, 6, 7)T.

Then

Dxs =



1
4−3

1
5−3

1
6−4

1
7−5

1
7−6





−1 1 0 0 0

−1 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

0 0 0 −1 1





x(3)

x(4)

x(5)

x(6)

x(7)



=

[
−x(3)+x(4)

1
, −x(3)+x(5)

2
, −x(4)+x(6)

2
, −x(5)+x(7)

2
, −x(6)+x(7)

1

]T
.

(32)

Now denote R = D + δsI (where I is the identity matrix). This gives the

following penalty to be incorporated into the likelihood term:

Ω(xs) = ||Rxs − gs(X,ρs, t)||2. (33)

From equation 31, it can be seen that Rxs − gs(X,ρs, t) = 0. However,

since xs = 0 does not necessarily imply that Ω(xs) = 0, equation 33 cannot

be expressed as a norm of xs within the RKHS framework. In order to

make them compatible, the authors transform the state variables xs (and

subsequently ys). Instead, consider
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x̃s = xs −R−1gs(X,ρs, t). (34)

Multiplying both sides of equation 34 by R and taking squared norms gives

exactly the same form as equation 33 (||Rx̃s||2 = ||Rxs − gs(X,ρs, t)||2).

Similarly, the data are transformed

ỹs = ys −R−1gs(X,ρs, t), (35)

in order to correspond with the transformed states x̃s. The penalty function

in equation 33 is now

Ω(x̃s) = ||Rx̃s||2 = 〈Rx̃s,Rx̃s〉 = x̃T
s RTRx̃s. (36)

Equation 36 is now a proper norm, since when x̃s = 0, this implies Ω(x̃s) = 0.

Denote K = (RTR)−1. K is a matrix of kernel elements which define a unique

RKHS. Hence,

Ω(x̃s) = ||x̃s||2H = cTKc, (37)

where the dependency on x̃s comes via equation 24 (with x̃s = f(t)), c =

K−1x̃s (since substituting this into equation 37 returns equation 36) and

equation 37 is used as the term in the far right of equation 25. It is possi-

ble to obtain closed form expressions for the transformed state variables by
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using equations 26 and 27 (the original expressions can be recovered using

equation 34)

x̃s = K(K + 2λsΣ)−1ỹs, (38)

where Σ is the covariance matrix of the data (generalising equation 26, since

the observational error of the data may not be independent between species)

and λs is a penalty parameter.

In the case of homogeneous ODEs, where gs() = 0, a kernel in a Hilbert

space can be constructed using the Green’s function of the linear operator

R. A Green’s function (G) of a linear operator (R in this case) is a function

that satisfies RG(a, b) = δ(a − b), where δ is the Dirac function [20]. K

is the Green’s function of RTR, where RT is the adjoint operator of R.

Aronszajin et al. [3] show ||Rx̃s||2L2 = ||x̃s||2HK
= Ω(x̃s). Since the analytical

form of Green functions of RTR is not available, the differential operator

is approximated with the difference operator (D). In the non-homogeneous

ODE system, the model is linearised by feeding surrogate x̂s (using spline

interpolation, in this case) into gs(). Ω(x̃s) is still a valid RKHS norm for

the transformed variable x̃s defined in equation 34.

24



The penalised log-likelihood function is now expressed as

l(ρs, δs,Σ,αs, c|ỹs) =
N∑
s=1

[
−1

2
(ỹs − x̃s)

TΣ−1(ỹs − x̃s)−
1

2
ln|Σ|

]
−

N∑
s=1

λsΩ(x̃s),

(39)

where αs is the vector containing the coefficients from the spline interpolant

for species s. Parameter estimation using equation 39 can be carried out

with standard non-linear optimisation algorithms such as quasi-Newton or

conjugate gradients.

In the original paper of González et al. [19], the penalty parameter λs is

inferred using AIC. For a given value of λs, equation 39 is optimised to esti-

mate the ODE parameters and subsequently the AIC score of the procedure

is calculated. This is repeated for different λs values and the λs value corre-

sponding to the smallest AIC score is chosen.

As well as using this approach for estimating λs, it was found that using 3-fold

cross validation, instead of AIC, provided more robust parameter estimation.

The results for both schemes are presented in Chapter 5.
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3 Benchmark ODE Systems

The ODE systems used as benchmark models throughout this thesis, are

detailed in this chapter. Details to the specific parameter setting used to

simulate data for a particular set-up, can be found in the corresponding

chapters.

3.1 The Fitz-Hugh Nagumo system

These equations originally were used to describe the voltage potential across

the cell membrane of the axon of giant squid neurons ([14], [38]). There

are 3 parameters; α, β and ψ and two “species”; Voltage (V) and Recovery

variable (R). Species in [ ] denote the time-dependent concentration for that

species and a dot over a symbol is shorthand for the temporal derivative d
dt

of that symbol:

˙[V ] = ψ([V ]− [V ]3

3
+ [R]); (40)

˙[R] = − 1

ψ
([V ]− α + β ∗ [R]) (41)

The Fitz-Hugh Nagumo equations are used in Biomedical Engineering to

model features such as cardiac conditions (i.e. electrical excitation-conduction

in cardiac tissue [1], cardiac action potentials [12] and arrhythmias [17])

and neurodegenerative diseases (Drosophila courtship can be modelled using

these equations and used to screen genes linked to memory-deficiency and
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human neurodegeneration [7] and the system can also be used for diagnosing

Leprosy [47]).

An example of the signals produced from these ODEs can be found in

Figure 2.
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Figure 2: An example of the signals produced from the Fitz-Hugh Nagumo
ODEs in equation 40. The solid line represents the signal for species V and
the dashed line represents the signal for species R.
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3.2 The Lotka-Volterra system

This is a simple model for prey-predator interactions in ecology [27], and au-

tocatalysis in chemical kinetics [4]. Equations 42 - 44 are different candidate

forms of the Lotka-Volterra system of equations, progressively increasing in

complexity. Equation 43 has one extra parameter than the standard form

(equation 42) to account for intra-species competition and the most com-

plex version, equation 44, is described using a saturation term (similar to a

Michaelis-Menten term that can appear in biological systems described by

chemical kinetics).

[ẋ1] = θ1 ∗ [x1]− θ2 ∗ [x1] ∗ [x2]; [ẋ2] = −θ3 ∗ [x2] + θ4 ∗ [x1] ∗ [x2] (42)

[ẋ1] = θ1∗[x1]−θ2∗[x1]∗[x2]−θ5∗[x1]2; [ẋ2] = −θ3∗[x2]+θ4∗[x1]∗[x2] (43)

[ẋ1] = θ1 ∗ [x1]− θ2 ∗ [x1] ∗ [x2]

1 + θ5 ∗ [x1]
; [ẋ2] = −θ3 ∗ [x2] +

θ4 ∗ [x1] ∗ [x2]

1 + θ5 ∗ [x1]
(44)

An example of the signals produced from the Lotka-Volterra model (equation

42) can be found in Figure 3.
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Figure 3: An example of the signals produced from the Lotka-Volterra model
(equation 42). The solid line is x1 and the dashed line is x2.
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3.3 Protein signalling transduction pathways

These equations describe protein signalling transduction pathways in a signal

transduction cascade [48], where the kinetic parameters control how quickly

the proteins (“species”) convert to one another. There are 6 parameters

(k1, k2, k3, k4, V,Km) and 5 “species” (S, dS,R,RS,Rpp). The system de-

scribes the phosphorylation of a protein, R→ Rpp, catalysed by an enzyme

S, via an active protein complex (RS), where the enzyme is subject to degra-

dation (S → dS). The chemical kinetics are described by a combination of

mass action kinetics and Michaelis-Menten kinetics. A graphical represen-

tation of this system can be seen in Figure 4. Species in [ ] denote the

time-dependent concentration for that species and a dot over a symbol is

shorthand for the temporal derivative d
dt

of that symbol:

˙[S] = −k1 ∗ [S]− k2 ∗ [S] ∗ [R] + k3 ∗ [RS]

˙[dS] = k1 ∗ [S]

˙[R] = −k2 ∗ [S] ∗ [R] + k3 ∗ [RS] +
V ∗ [Rpp]

Km + [Rpp]

˙[RS] = k2 ∗ [S] ∗ [R]− k3 ∗ [RS]− k4 ∗ [RS]

˙[Rpp] = k4 ∗ [RS]− V ∗ [Rpp]

Km + [Rpp]
(45)

30



Cell signalling is a highly relevant topic in current Biomedical Engineer-

ing and can model cancers [34] and neurodegenerative diseases that include

Alzheimer’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis

(ALS) [25].

S dS

RS

R Rpp

k1

k2,k3

k2,k3 k4

V ,Km

Figure 4: Graphical representation of the protein signalling transduction
pathway in equation 45. There are 5 “species” (S, dS,R,RS,Rpp) and 6
parameters (k1, k2, k3, k4, V,Km). The system describes the phosphorylation
of a protein, R → Rpp, catalysed by an enzyme S, via an active protein
complex (RS), where the enzyme is subject to degradation (S → dS). Figure
adapted from [48].

An example of the signals produced from these ODEs can be found in

Figure 5.
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Figure 5: An example of the signals produced from the protein signalling
transduction pathway in equation 45. The solid line is S, the light dotted
line is dS, the dashed line near the top of the Figure is R, the longer dashed
line near the bottom of the Figure is RS and the dot-dashed line is Rpp.
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The following are different candidate models of the protein signalling trans-

duction pathway, all with varying degrees of complexity. Graphical represen-

tations of the pathways can be seen in Figures 6-8.

Equation 46 is a simplified version of equation 45, where now a more general

description of the activation process is considered. It is predominantly the

same process as in equation 46, but now it uses Michaelis-Menten kinetics to

describe the phosphorylation of protein R.

˙[S] = −k1 ∗ [S]

˙[dS] = k1 ∗ [S]

[Ṙ] =
−V1 ∗ [R] ∗ [S]

k2 + [R]
+
V2 ∗Rpp
k3 +Rpp

[ ˙Rpp] =
V1 ∗ [R] ∗ [S]

k2 + [R]
− V2 ∗Rpp
k3 +Rpp

(46)

Equation 47 is the least complex of the candidate models. It does not describe

the degradation of protein S to dS and hence the signal of S cannot decrease.
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[Ṙ] =
−V1 ∗ [R] ∗ [S]

k1 + [R]
+
V2 ∗Rpp
k2 +Rpp

[ ˙Rpp] =
V1 ∗ [R] ∗ [S]

k1 + [R]
− V2 ∗Rpp
k2 +Rpp

(47)

Equation 48 is the most complex of the candidate models, it describes how

the phosphatase PhA deactivates the protein Rpp. All reactions are defined

by mass action kinetics.

˙[S] = −k1 ∗ [S]− k2 ∗ [S] ∗ [R] + k3 ∗ [RS]

˙[dS] = k1 ∗ [S]

˙[R] = −k2 ∗ [S] ∗ [R] + k3 ∗ [RS] + k7 ∗ [RppPhA]

˙[RS] = k2 ∗ [S] ∗ [R]− k3 ∗ [RS]− k4 ∗ [RS]

˙[Rpp] = k4 ∗ [RS]− k5 ∗ [Rpp] ∗ [PhA] + k6 ∗ [RppPhA]

[ ˙PhA] = −k5 ∗ [Rpp] ∗ [PhA] + k6 ∗ [RppPhA] + k7 ∗ [RppPhA]

[ ˙RppPhA] = k5 ∗ [Rpp] ∗ [PhA]− k6 ∗ [RppPhA]− k7 ∗ [RppPhA] (48)
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S dS

 R Rpp

k1

V1,k2

V2,k3

Figure 6: Graphical representation of the protein signalling transduction
pathway in equation 46. A simplified version of equation 45 (and shown
graphically in Figure 4), where now a more general description of the ac-
tivation process is considered. There are 4 “species” (S, dS,R,Rpp) and 5
parameters (k1, k2, k3, V1, V2). Figure adapted from Vyshemirsky and Giro-
lami [48].

S

 R Rpp
V1,k1

V2,k2

Figure 7: Graphical representation of the protein signalling transduc-
tion pathway in equation 47. The least complex of the candidate mod-
els. It does not describe the degradation of protein S to dS. There are 3
“species” (S,R,Rpp) and 4 parameters (k1, k2, V1, V2). Figure adapted from
Vyshemirsky and Girolami [48].
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RppPhA

PhA

k1

k2,k3

k2,k3 k4

k5,k6k7

k5,k6,k7

Figure 8: Graphical representation of the protein signalling transduc-
tion pathway in equation 48. The most complex of the candidate mod-
els, it describes how the phosphatase PhA deactivates the protein Rpp.
There are 7 “species” (S, dS,R,RS,Rpp,RppPhA, PhA) and 7 parameters
(k1, k2, k3, k4, k5, k6, k7). Figure adapted from Vyshemirsky and Girolami
[48].
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4 Gradient Mismatch Parameter Parallel

Tempering Scheme

This chapter presents work published in Macdonald et al. [31].

4.1 Introduction

The nature of the ODE-based model in equation 1 renders the inference prob-

lem computationally challenging in two respects. Firstly, the ODE system

often does not permit closed-form solutions. One therefore has to resort to

numerical integration every time the parameters θs are adapted, which is

computationally onerous. Secondly, the likelihood function in the space of

parameters θs is typically not unimodal, but suffers from multiple local op-

tima. Hence, even if a closed-form solution of the ODEs existed, inference

by maximum likelihood would not be computationally viable for many cases,

and Bayesian inference would suffer from poor mixing and convergence of

the Markov chain Monte Carlo (MCMC) simulations.

Conventional inference methods involve numerically integrating the system

of ODEs to produce a signal, which is compared to the data by some appro-

priate metric defined by the chosen noise model, allowing for the calculation

of a likelihood. This process is repeated as part of an iterative optimisation

or sampling procedure to produce estimates of the parameters. Figure 9(a)

is a graphical representation of the model for these conventional inference
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methods. For a given set of initial concentrations of the entire system X(0)

and set of ODE parameters θ, a signal can be produced by integration of

the ODEs. As mentioned previously, for many ODE systems a closed-form

solution does not exist, so in practice, numerical integration is implemented

instead. Assuming an appropriate noise model (for example a Gaussian ad-

ditive noise model) with standard deviation of the observational error σ, the

differences between the resultant signal and the data Y can be used to calcu-

late the likelihood of the parameters θ. The process is repeated for different

parameters θ until the maximum likelihood of the parameters is found (in

the classical approach) or until convergence to the posterior distribution is

reached (in the Bayesian approach). However, the computational costs in-

volved with repeatedly numerically solving the ODEs are large.

To reduce the computational complexity, several authors have adopted an

approach based on gradient matching (e.g. Calderhead et al. [8] and Liang

& Wu [26]). The idea is based on the following two-step procedure. In a

preliminary smoothing step, the time series data are interpolated; then, in a

second step, the parameters θ of the ODEs are optimised so as to minimise

some metric measuring the difference between the slopes of the tangents to

the interpolants, and the θ-dependent time derivatives from the ODEs. In

this way, the ODEs never have to be solved explicitly, and the typically un-

known initial conditions are effectively profiled over. A disadvantage of this

two-step scheme is that the results of parameter inference critically hinge on
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θ σ

Y

X(0)

Explicit Solution of ODE System

(a) Explicit solution of the ODE sys-
tem, as shown in [8]. The noisy data
signals Y are described by some initial
concentration X(0), ODE parameters
θ and observational error with stan-
dard deviation σ. For a given set of
initial concentrations X(0) and set of
ODE parameters θ, the ODEs can be
integrated to produce a signal, which
is then compared to the data signal
by some metric defined by the chosen
noise model.

θ γ

Ẋ Ẋ

Y X X

σ η

GP Response ModelGP Response Model

ODE Response Model

(b) Gradient matching with Gaussian
processes, as proposed in [8] and [11].
The gradients Ẋ are compared from
two modelling approaches; the Gaus-
sian process model and the ODEs
themselves. The distribution of Y
is given in equation 52, the Gaus-
sian process on X defined in equation
53, the derivatives of the Gaussian
process Ẋ in equation 58, the ODE
model in equation 50 and the gradient
matching in equation 65. All symbols
are detailed throughout Chapter 4.

Figure 9: Graphical representations of (left) the explicit solution of the ODE
system, as shown in [8], and (right) gradient matching with Gaussian pro-
cesses, as proposed in [8] and [11]. The nodes (depicted by circles) represent
random variables and the edges represent conditional dependence from one
node to another. A directed edge from node “A” to node “B” depicts that
“A” is a parent of “B”. The conditional probability of a node can be written
as that node conditional on all of the parent nodes. The dashed lines repre-
sent that variables from the respective models are matched (see Chapter 4
for details on how they are matched).
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the quality of the initial interpolant. A better approach, first suggested in

Ramsay et al. [40], is to regularise the interpolants by the ODEs themselves.

Dondelinger et al. [11] applied this idea to the non-parametric Bayesian

approach of Calderhead et al. [8], using Gaussian processes (GPs), and

demonstrated that it substantially improves the accuracy of parameter infer-

ence and robustness with respect to noise. As opposed to Ramsay et al. [40],

all smoothness hyperparameters are consistently inferred in the framework of

non-parametric Bayesian statistics, dispensing with the need to adopt heuris-

tics and approximations. A graphical representation of the model is given in

Figure 9(b).

This chapter furthers the work of Dondelinger et al. [11] by combining adap-

tive gradient matching using GPs with a parallel tempering scheme for the

parameter that controls the mismatch between the gradients. This is concep-

tually different from the inference paradigm of the mismatch parameter that

Dondelinger et al. [11] uses. Ideally, if the ODEs provide a correct mathe-

matical description of the system, there should be no difference between the

gradients of the interpolant and those predicted from the ODEs. However,

in practice, forcing the gradients to be equal is likely to cause parameter

inference methods to converge to a local optimum of the likelihood. Forc-

ing the gradients to immediately be the same would restrict the inference

procedure to a section of the likelihood corresponding to parameters that

perfectly agree with the gradient match. However, there is no guarantee that
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these parameters are suitable for the data, see Campbell and Steele [9] for

details. A parallel tempering scheme is the natural way to deal with such

local optima, as opposed to inferring the degree of mismatch, since different

tempering levels correspond to different strengths of penalising the mismatch

between the gradients. Campbell and Steele [9] explore a parallel tempering

scheme, but in order to get an understanding as to how well utilising this

scheme improves inference, the rest of the set-up (such as choice of interpola-

tion scheme) should be as similar as possible. Hence, comparing the results

directly to the GP approach in Dondelinger et al. [11], won’t provide this

understanding, since the approach in Campbell and Steele [9] uses a different

methodological paradigm. This chapter describes the methodology for this

new combined method and compares it with the methods by Dondelinger et

al. [11] and Calderhead et al. [8]. The comparison to the method in Camp-

bell and Steele [9], as well as a variety of other methodological paradigms,

within the specific context of comparing the gradients from the interpolant

to the gradients from the ODEs, is presented in Chapter 5.

4.2 Methodology

Consider a set of T arbitrary timepoints t1 < · · · < ti < · · · < tT , and noisy

observations Y = (y(t1), ...,y(tT )), where

y(ti) = x(ti) + ε(ti), (49)
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N = dim(x(ti)), X = (x(t1), ...,x(tT )), y(ti) is the data vector of the obser-

vations of all species concentrations at time ti, x(ti) is the vector of the con-

centrations of all species at time ti, ys is the data vector of the observations

of species concentrations s at all timepoints, xs is the vector of concentra-

tions of species s at all timepoints, ys(ti) is the observed datapoint of the

concentration of species s at time ti, xs(ti) is the concentration of species s

at time ti and ε is multivariate Gaussian noise, ε ∼ N(0, σ2
sI).

The time-dependent signals of the system can be described by ordinary dif-

ferential equations

ẋs =
dxs
dti

= fs(X,θs, t), (50)

which can be represented in scalar form as

ẋs(ti) =
dxs(ti)

dti
= fs(x(ti),θs, ti), (51)

where fs(t) = (fs(t1), . . . , fs(tT ))T and ẋs is the vector containing the gradi-

ents from the ODEs for species s at all timepoints.

Then,

p(Y|X,σ2) =
∏
s

∏
t

N(ys(ti)|xs(ti), σ2
s), (52)

where the dimension of the matrices X and Y are N by T . Following Calder-
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head et al. [8], a Gaussian process (GP) prior is placed on xs,

p(xs|φs,η) = N(xs|φs,Kηs), (53)

where Kηs is a positive definite matrix of covariance functions with hyperpa-

rameters ηs and φs is a mean vector, which for simplicity we set as the mean

of Y (which is possible since we assume a stationary process).

Differentiation is a linear operation, and therefore a Gaussian process is

closed under differentiation ([46],[24][42]). Hence, the joint prior distribu-

tion of the concentrations of the species xs and their time derivatives ẋs is

multivariate Gaussian with mean (φs,0)T and covariance functions

cov[xs(ti), xs(tj)] = Kηs(ti, tj), (54)

cov[ẋs(ti), xs(tj)] =
∂Kηs(ti, tj)

∂ti
:= K ′ηs(ti, tj), (55)

cov[xs(ti), ẋi(tj)] =
∂Kηs(ti, tj)

∂tj
:= ′Kηs(ti, tj), (56)

cov[ẋs(ti), ẋs(tj)] =
∂2Kηs(ti, tj)

∂ti∂tj
:= K ′′ηs(ti, tj), (57)

where Kηs(ti, tj) are the components of the covariance matrix Kηs . The

conditional distribution for the state derivatives is obtained using elementary
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transformations of Gaussian distributions (see page 87 of [6] for details),

yielding

p(ẋs|xs,φs,ηs) = N(µs,As), (58)

where

µs = ′KηsKηs
−1(xs − φs) and As = K′′ηs −

′KηsKηs
−1K′ηs . (59)

Assuming the model for the gradients has additive Gaussian error, with a

state-specific variance γs, using equation 50 gives

p(ẋs|X,θs, γs) = N(fs(X,θs, t), γsI). (60)

Using a product of experts approach, Calderhead et al. [8] and Dondelinger

et al. [11] link the interpolant in equation 58 with the ODE model in equation

60, giving the following distribution

p(ẋs|X,θs,φs,ηs, γs) ∝ p(ẋs|xs,φs,ηs)p(ẋs|X,θs, γs)

= N(µs,As)N(fs(X,θs, t), γsI).

(61)

Equation 61 can likely introduce an instability into the model and in fact, this

is observed in the empirical results. The instability is discussed in Chapter

5, on page 90. The joint distribution is given by
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p(Ẋ,X,θ,η,γ|φ) = p(θ)p(η)p(γ)
∏
s

p(ẋs|X,θs,φs,ηs, γs)p(xs|ηs), (62)

where γ is the vector which contains all the gradient mismatch parameters

and p(θ), p(η), p(γ) are the prior distributions over the respective parame-

ters. Dondelinger et al. [11] show that the marginalisation over the state

derivatives yields a closed form solution

p(X,θ,η,γ|φ) =

∫
p(Ẋ,X,θ,η,γ|φ)dẊ

∝ p(θ)p(η)p(γ)
∏
s

N(xs|0,Kηs)

∫
N(ẋs|µs,As)N(ẋs|fs(X,θs, t), γsI)dẋs

∝ p(θ)p(η)p(γ)
∏
s

N(xs|0,Kηs) exp

[
−1

2
(fs − µs)

T (As + γsI)−1(fs − µs)

]
.

(63)

Using equation 63 and the noise model in equation 52, the full joint distri-

bution becomes

p(Y,X,θ,η,γ,σ2|φ) = p(Y|X,σ2)p(X|θ,φ,η,γ)p(θ)p(η)p(γ)p(σ2),

(64)

where p(σ2) is the prior over the variance of the observational error and
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p(X|θ,φ,η,γ) ∝ 1

C
exp

[
−1

2

∑
s

(
xTs K−1

ηs xs + (fs − µs)
T (As + γsI)−1(fs − µs)

)]
,

(65)

where C =
∏

s |2π(As + γsI)| 12 and fs is the vector containing the ODE pre-

dicted gradients for species s. Sampling is conducted using MCMC and the

whitening approach of Murray and Adams [37] is used to efficiently sample

in the joint space of latent variables X and GP hyperparameters η.

4.3 Parallel Tempering

Consider a series of “temperatures”, 0 = α(1) < ... < α(M) = 1 and a power

posterior distribution of the ODE parameters ([15])

pα(i)(θ(i)|y) ∝ p(θ(i))p(y|θ(i))α
(i)

. (66)

It is clear that equation 66 becomes the prior for α(i) = 0 and is the posterior

when α(i) = 1. For 0 < α(i) < 1 a distribution between the prior and posterior

is created. The M α(i)s in equation 66 are annealed likelihoods that are used

as the target densities of parallel MCMC chains ([9]). At each MCMC step,

all “temperature” chains independently perform a Metropolis-Hastings step

to update θ(i), the parameter vector associated with temperature α(i)
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pmove = min

1,
p
(
y|θprop(i)

)α(i)

p
(
θprop(i)

)
q
(
θcurr(i)|θprop(i)

)
p
(
y|θcurr(i)

)α(i)

p
(
θcurr(i)

)
q
(
θprop(i)|θcurr(i)

)
 , (67)

where q( ) represents the proposal distribution and the superscripts “prop”

and “curr” indicate whether the algorithm is being evaluated at the proposed

or current state, respectively. At each MCMC step, two chains are randomly

selected (uniformly) and the corresponding parameters are proposed to swap

between them. This proposal has acceptance probability

pswap = min

(
1,
pα(j)(θ(i)|y)pα(i)(θ(j)|y)

pα(i)(θ(i)|y)pα(j)(θ(j)|y)

)
. (68)

The method developed in this chapter focuses on the intrinsic slack param-

eter γs (see equation 60), which theoretically should be γs = 0, since this

corresponds to no mismatch between the gradients. In practice, to prevent

the inference scheme from getting stuck in sub-optimal states, it is allowed to

take on larger values γs > 0. However, rather than inferring γs like a model

parameter, as Dondelinger et al. [11] do, other authors (e.g. [9]) state that γs

should be gradually set to zero, since values closer to zero force the gradients

to be more similar to one another and allow the interpolants to be informed

by the ODEs. It is possible to abruptly set the values to zero, rather than

gradually, however this is likely to cause the parameter inference techniques

to converge to a local optimum of the likelihood. Hence, the gradient match-
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ing with Gaussian processes approach in Dondelinger et al. [11] is combined

with the tempering approach in Campbell & Steele [9] and this parameter is

tempered to zero.

Prior to the parameter inference, values of γs are chosen and assigned to

the variance parameter in equation 60 for each “temperature” α(i), such that

chains closer to the prior (α(i) values closer to 0) allow the gradients from

the interpolant to have more freedom to deviate from those predicted by the

ODEs (which corresponds to larger γs values), chains closer to the posterior

(α(i) values closer to 1) more closely match the gradients (corresponding to

smaller γs values), and for the chain corresponding to α(M) = 1, we want the

mismatch to be approximately zero (γs ≈ 0). Since γs corresponds to the

variance of the species-specific error (see equation 60), as γs → 0, there is

less difference between the gradients, and as γs gets larger, the gradients have

more freedom to deviate from one another. Hence, γs is tempered towards

zero. Now, each α(i) chain in equation 66 has a γ
(i)
s (where the superscript

(i) indicates the gradient mismatch parameter associated with “temperature”

α(i)) fixed in place for the strength of the gradient mismatch. Since there

is little knowledge as to optimal parameter schedules for the gradient mis-

match parameter, two scheduling ladders are considered: in log2 increments

(referred throughout as LB2) and log10 increments (referred throughout as

LB10). The specific schedules of the gradient mismatch parameter are in-

cluded in Table 2.
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Table 2: Ranges of the penalty parameter γs for LB2 and LB10. In this
thesis γs = γ ∀ s.

Method Chains Range of Penalty γ Method Chains Range of Penalty γ

LB2 4 [1 , 0.125] LB10 4 [1 , 0.001]

LB2 10 [1 , 0.00195] LB10 10 [1 , 1e−9]

Table reproduced from [30], with permission from Springer.

4.4 Simulation

For comparison purposes, the simulations and the MCMC configuration were

set up to correspond with that outlined in Dondelinger et al. [11]. For the

GP, the radial basis function (rbf) kernel was used to model both systems

of ODEs. The rbf kernel takes the form k(ti, tj) = σ2
rbf exp(− (ti−tj)2

2l2
), where

σ2
rbf and l2 are the hyperparameters (variance and characteristic lengthscale).

Fitz-Hugh Nagumo (FhN): The system can be found in Chapter 3, equa-

tions 40-41. The priors chosen for α and β were N(0, 0.42), the prior for ψ, χ2
2,

true parameters, (0.2,0.2,3) and initial values for the “species”, (-1,1), to cor-

respond with Campbell and Steele [9]. 20 datapoints were evenly spaced over

the time domain [0,10], since this produced one full period for each species.

In Campbell and Steele [9] approximately 400 observations were simulated

over 2 periods, but this felt as if it would not reflect the true sparseness of

these types of datasets and so roughly 5% of this amount was used.
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Lotka-Volterra (LV): The system can be found in Chapter 3, equation 42.

The priors chosen for all the ODE parameters were Γ(4, 0.5), true param-

eters, (2,1,4,1), initial values, (5,3) and 11 observations were evenly spaced

over the time interval [0,2], to correspond with Dondelinger et al. [11].

For both the Fitz-Hugh Nagumo and Lotka-Volterra systems, Gaussian white

noise, with standard deviation ∈ {0,0.1,0.5,0.8,1}, was added to represent

observational error. These values were chosen to correspond with similar

values to Dondelinger et al. [11]. For each system, method and noise level, 10

datasets were generated. By averaging over these, specific characteristics of a

dataset can be removed and it is possible to observe more clearly a method’s

performance. The method of Dondelinger et al. [11] (referred to as INF in

Chapter 4.5) was tested on both ODE models, as was the newly proposed

model in this chapter. Code was not available for the Calderhead et al. [8]

method and so the results obtained in the Dondelinger et al. [11] paper for

the Calderhead et al. [8] method were used. This was only available for the

Lotka-Volterra model and only for observational noise levels ∈ {0,0.1,0.5}.

The results for LB2 and LB10 were similar, so only the LB10 results are

shown.

4.5 Results

The posterior median was used as an estimator (since it is a robust estimator)

of the parameters and the sampled parameter estimates were subtracted from
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the true values

accuracy = θTrue −median(θMethod), (69)

where Method denotes the particular method used for parameter inference

and the subscript True denotes the true parameter values. For the compar-

ison of LB10 to INF (Dondelinger et al. [11]), the median was used as an

estimator of the parameters and the sampled parameter estimates were sub-

tracted from the true values for LB10 and INF and then these values were

subtracted from one another

accuracy = |θTrue −median(θLB10)| − |θTrue −median(θINF)| , (70)

where the subscript LB10 and INF denote the parameter estimates of the

LB10 and INF methods, respectively. The distributions (of true value minus

estimate) over the 10 datasets were compared. For both ODE systems, it

was found that the rbf kernel provided a good fit to the data.
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Figure 10: Parameter estimation accuracy (see equation 69) of θ over noise
instantiations, for the FhN (left) and LV (right) systems. Some outliers in
the plots have been removed for scalability. Top Row: Boxplots, over the 10
datasets, of differences between the median of sampled parameters and true
values. The dashed line is zero difference and the solid line splits the INF
(Dondelinger et al. [11])/Calderhead et al. [8] (left) from the LB10 model
(right). Bottom Row: Boxplots, over the 10 datasets, of the differences
between parameter estimation accuracy for the INF and LB10, see equation
70. The dashed line is zero difference and the p-values for a paired t-test are
shown above the corresponding boxplot.

The first row of Figure 10 shows the distribution of the estimate to the true

parameter for the INF model, Calderhead et al. [8] and LB10 model, for
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the FhN and LV systems. For zero noise, both the Calderhead et al. [8]

and LB10 models have boxplots centred very close to zero, displaying good

performance. However, when increasing the noise, the Calderhead et al. [8]

no longer has a distribution centred around zero (no part of the distribution

for noise = 0.1 and only a small part of the lower tail for noise = 0.5). For

all noise instantiations, the LB10 (and INF) has most of its mass centred

around zero. Therefore, if averaging over all datasets, for the LB10, the true

parameters are close to the estimates. The second row of Figure 10 shows

how robust the technique is. The plots show the distributions of the differ-

ences between the absolute distance of the estimator to the true parameter

for the INF model and LB10 model. These distributions are centred around

zero, indicating that there is no noticeable difference between the parameter

estimation accuracy of these two techniques. It can therefore be seen that

the new technique is robust to noise. It is worth noting that the LB10 incre-

ments were arbitrarily chosen, with the LB2 showing similar results.

As well as observing what the distributions of an estimator to the true param-

eter look like, it is also of interest to observe the full posterior distributions.

Also, different parameters may have different properties, so it would be use-

ful to observe the results split up by parameter. Hence, for observational

noise level 0.5 (a signal to noise ratio of approximately 10), boxplots for the

posterior distributions are shown in Figure 11 for the FhN system and Figure

12 for the LV system. The results across the remaining observational noise
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levels are shown in Figures 44-47 for the FhN system and Figures 48-51 for

the LV system, found in the appendix.
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Figure 11: Posterior distributions over 10 datasets for the ODE parameters
from the Fitz-Hugh Nagumo system, equations 40-41. The true parameters
have been subtracted from the posterior distributions and the horizontal line
shows zero difference to the true parameters. The observational noise level
is 0.5 for this scenario.

By examining Figure 11, it can be seen that the LB2 and LB10 methods are

slightly better at inferring parameter 1 in the Fitz-Hugh Nagumo system,
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Figure 12: Posterior distributions over 10 datasets for the ODE parameters
from the Lotka-Volterra system, equation 42. The true parameters have been
subtracted from the posterior distributions and the horizontal line shows zero
difference to the true parameters. The observational noise level is 0.5 for this
scenario.

than the INF method, when the observational noise level is 0.5. The INF

method is unbiased for parameter 3 and has a slightly larger variance than the

LB2 and LB10 methods. The methods do equally well at inferring parameter

2. Figure 12 shows the results for the Lotka-Volterra system, for observational

55



noise level 0.5. LB2 and LB10 outperform the Calderhead et al. [8] and INF

methods for parameter 1 (interquartile ranges include the true parameter).

The methods all perform similarly for parameters 3 and 4 and have different

bias/variance tradeoffs for parameter 2. The long tails for the methods INF,

LB2 and LB10 methods are a consequence of the state variable concentrations

flattening and is discussed in Chapter 5, page 90. The INF, LB2 and LB10

methods do not appear to be different to one another, overall, across the

other noise levels (Figures 44-51 in the appendix).

4.6 Comparison with an Explicit Solution of the ODEs

Gradient matching is an approximate method to full Bayesian inference which

is obtained by explicitly solving the differential equations, see Figures 9(a)

and 9(b). In order to try to assess how well gradient matching approximates

the full Bayesian inference approach, the results from Chapter 4.5 will be

compared to results obtained by explicitly solving the ODEs.

To this end, data from Lotka-Volterra equation 42 was generated and Gaus-

sian white noise with standard deviation 0.5 was added to represent obser-

vational noise. The priors chosen for all the ODE parameters were Γ(4, 0.5),

true parameters, (2,1,4,1), initial values, (5,3) and 11 observations were

evenly spaced over the time interval [0,2]. The initial values of the sys-

tem were inferred as additional model parameters.
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The results presented are summaries (i.e. histograms and boxplots) of the

merged samples from the posterior distributions of the replicate datasets.

They are, therefore, samples of an expectation with respect to the sampling

distribution of the posterior. The motivation is to free the results, to some

extent, from the particular behaviour of any one dataset.

By examining Figure 13, it can be seen that distributions for the LB10

method always show slightly more variance than the explicit solution. For

parameters 1 and 2, the results of both methods are similar. For parameters

3 and 4, the gradient matching results are of a similar distance away from

the true parameters as with the explicit solution, but the opposite direction

away from the true parameters than the explicit solution.
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Figure 13: Posterior distributions over 10 datasets for the ODE parameters from
the Lotka-Volterra system, equation 42. The top row contains the results obtained
by using the explicit solution of the ODEs. The bottom row contains the results
obtained from gradient matching, LB10 method. The vertical line represents the
true parameter value.
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Figure 14: RMS values in function space over 10 datasets, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the Lotka-Volterra system, equation 42. One value in the
plot represents the RMS value produced from one dataset and the parameter
sample from one iteration in the MCMC. The left boxplot contains the results
obtained by using the explicit solution of the ODEs. The right boxplot
contains the results obtained from gradient matching, LB10 method. The
LB10 gradient matching method produces a distribution that is about twice
the variance of the explicit solution and has a longer tail. The boxplots for
both methods show similar RMS performance (the centre of the distributions
are in a similar location), indicating that although the gradient matching
method is not as accurate as the explicit solution, the decrease in performance
is not substantial. Some outliers for the LB10 method have been omitted for
scalability.
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It is difficult to see how well the results compare to one another, comparing

them in parameter space only. To this end, root mean square (RMS) val-

ues in function space, calculated on the residuals of the true signal (signal

produced with true parameters and no observational error) minus the signal

produced with the estimate of the parameters, were produced. The results

from Figure 14 show that the LB10 gradient matching method produces a

distribution that is about twice the variance of the explicit solution and has

a longer tail. The boxplots for both methods show similar RMS performance

(interquartile range covering similar ranges), indicating that although the

gradient matching method is not as accurate as the explicit solution, the de-

crease in performance is not substantial. Some outliers for the LB10 method

have been omitted for scalability. The reason for the outliers was discovered

to be a consequence of the state variable concentrations flattening and is

discussed in Chapter 5, page 90. The results for the INF and LB2 methods

were virtually identical and therefore only the LB10 results are shown.

Comparative computational times for the explicit solution of the ODEs and

the gradient matching methods are available in Tables 12-13, in the appendix.

4.7 Conclusion

An evaluation of two alternative schemes for adaptive gradient matching:

posterior inference vs. parallel tempering of the gradient mismatch param-

eter, has been presented. The tempering scheme was originally proposed
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in the context of splines-based regression, which has been adapted to non-

parametric Bayesian modelling, with Gaussian processes. An application

to data, generated from two different systems of ODEs, shows no overall

difference between the parallel tempering and posterior inference. The sim-

ulation set-up however was not extensive, since this was an initial test of

the newly proposed method and a wider comparative analysis is required to

better understand the method’s performance and limitations. This extensive

comparative analysis is presented in Chapter 5.

When comparing the newly developed method to parameter inference with

an explicit solution of the ODEs, it was found that there was reasonable

consistency between the approaches. As expected, the results for the explicit

solution were better, showing a narrower root mean square error in function

space than the new method. The new method produces similar parameter

estimates to that of the explicit method, for parameters 1 and 2 of the Lotka-

Volterra system, equation 42. For parameters 3 and 4, the gradient matching

results are of a similar distance away from the true parameters as with the

explicit solution, but the opposite direction away from the true parameters

than the explicit solution. The RMS distribution has about twice the variance

than that of the explicit solution, but the decrease in performance is not

substantial.
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5 Comparative Analysis with the Current

State-of-the-Art Gradient Matching Methods

This chapter presents work published in Macdonald and Husmeier [30], Mac-

donald and Husmeier [29] and Macdonald et al. [33]. Software is available at

http://researchdata.gla.ac.uk/288/. Note: the implementation of the

software for the method of González et al. [19] in this chapter was carried

out by M. Niu.

5.1 Brief summary of methods

This chapter conducts a wide scale comparative analysis with the newly pro-

posed method in Chapter 4, the method in Dondelinger et al. [11] and the

methods detailed in Chapter 2.

The following is a brief summary of all the methods that are compared in

this chapter. Since many methods and settings are used in this chapter for

comparison purposes, abbreviations are used for ease of reading. Table 3

contains a key for those methods.

C&S [9]: Parameter inference is carried out using adaptive gradient match-

ing and tempering of the mismatch parameter. B-splines are used as the

choice of interpolation scheme. INF [11]: This method conducts parame-

ter inference through adaptive gradient matching using Gaussian processes.
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The penalty mismatch parameters γs are inferred. LB2: This method con-

ducts parameter inference through adaptive gradient matching using Gaus-

sian processes. The penalty mismatch parameters γs are tempered in log

base 2 increments, see Table 2 for details. LB10: As with LB2, parameter

inference is conducted through adaptive gradient matching using Gaussian

processes, however, the penalty mismatch parameters γs are tempered in log

base 10 increments, see Table 2 for details. GON [19]: Parameter inference

is conducted in a non-Bayesian fashion, implementing a reproducing ker-

nel Hilbert space (RKHS) and penalised likelihood approach. Comparisons

between RKHS and GPs have been previously explored conceptually (for ex-

ample, see [42], [36]), and in this chapter they are analysed empirically in the

specific context of inference in ODEs. The RKHS method that incorporates

the information from the ODEs in González et al. [19] obtains the ODE

kernel using a differencing operator. AIC is used to estimate the penalty

parameter λ. GON Cross [19]: The method is the same as GON, how-

ever, cross validation is used to estimate the penalty parameter λ, instead of

AIC. RAM [40]: This technique uses a non-Bayesian optimisation process

for parameter inference. The method penalises the difference between the

gradients using splines and a hierarchical 2 level regularisation approach is

used to set the tuning parameters (see [40] for details). Table 4 describes

particular settings with some of the methods in Table 3. The ranges of the

penalty parameters γs, for the LB2 and LB10 methods are given in Table

2. The increments are linear on the log scale. The M αss range from 0 to 1
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and are set by taking a series of M equally spaced values and raising them

to the power 5 (since Friel and Pettitt [15] empirically discovered that this

power yielded better results).

Table 3: Abbreviations of the methods used throughout this chapter.

Abbreviation Method Reference

C&S Tempered mismatch parameter using splines-based Campbell & Steele [9]
smooth functional tempering.

INF Inference of the gradient mismatch parameter using GPs. Dondelinger et al. [11]

LB2 Tempered mismatch parameter using GPs in Log Base New method in Chapter 4
2 increments.

LB10 Tempered mismatch parameter using GPs in Log Base New method in Chapter 4
10 increments.

GON Reproducing kernel Hilbert space and penalised likelihood. González et al. [19]
The penalty parameter is estimated using AIC.

GON Cross Reproducing kernel Hilbert space and penalised likelihood. González et al. [19]
The penalty parameter is estimated using 3-fold cross validation.

RAM Hierarchical 2 level regularisation approach using splines Ramsay et al. [40]
based interpolation.

Table reproduced from [30], with permission from Springer.
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Table 4: Particular settings of Campbell & Steele’s [9] method.

Abbreviation Definition Details

10C 10 Chains When comparing methods, it was of interest to see how
the performance depended on the number or parallel MCMC
chains, as originally the authors used 4 chains.

Obs20 20 Observations Originally, the authors use 401 observations. This was reduced
to a dataset size more usual with these types of
experiments to observe the dependency of the methods on
the amount of data.

15K 15 Knots The method in C&S uses B-splines interpolation. The
original tuning parameters from the author’s
paper were changed to observe the sensitivity of the parameter estimation
by these tuning parameters.

P3 Polynomial order 3 The original polynomial order is 5 and again, it was of interest to
(Cubic Spline) observe the sensitivity of the parameter estimation by

these tuning parameters.

Table reproduced from [30], with permission from Springer.

5.2 Simulation

The proposed GP tempering scheme in Chapter 4 is compared with the al-

ternative methods summarised in Chapter 2. For the comparison to Ramsay

et al. [40], the authors’ software was unavailable and so the results were com-

pared directly with the results from the original publication. Hence, test data

was generated in the same manner as described by the authors and used for

the evaluation of the new method in Chapter 4. For the methods in Camp-

bell and Steele [9], Dondelinger et al. [11] and González et al. [19], where

the authors’ software was obtainable, the evaluation was repeated twice, first

on data equivalent to those used in the original publications, and again on

new data generated with different (more realistic) parameter settings. For
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comparisons using the Fitz-Hugh Nagumo model, equations 40-41, the ODE

prior distributions in Campbell and Steele [9] were used and for comparisons

using the protein signalling transduction pathway model, equation 45, the

parameter priors from Dondelinger et al. [11] were used. This gives priors

that were motivated by the current literature.

Tempered mismatch parameter using splines-based smooth func-

tional tempering (C&S) [9]: The authors tested their method on the

Fitz-Hugh Nagumo system, equations 40-41, with the following parameter

settings: α = 0.2, β = 0.2 and ψ = 3, starting from initial values of (−1, 1)

for the two “species”. They generated 401 observations over the time course

[0, 20] (producing 2 periods) and Gaussian noise with sd {0.5, 0.4} was used

to corrupt each respective “species”. To infer the ODE parameters with their

approach, the authors chose the following settings: B-splines of polynomial

order 5 with 301 knots; 4 parallel tempering chains, gradient mismatch pa-

rameter schedules {10,100,1000,10000}; parameter prior distributions for the

ODE parameters: α ∼ N(0, 0.42), β ∼ N(0, 0.42) and ψ ∼ χ2
2.

As well as comparing the new method in Chapter 4 with the results the

authors had obtained with their original settings (described in the previous

paragraph), the following modifications were made to test the robustness of

their procedure. The number of observations were reduced from 401 to 20

over the time course [0, 10] (producing 1 period), which more closely reflects
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the amount of data typically available in current systems biology. In doing

so, the number of knots were also reduced for the splines to 15 (preserving the

same proportionality of knots to datapoints as before), a different polynomial

order was tried: 3 instead of 5. The method incurred high computational

costs, (roughly 11
2

weeks for a run), and so inference could only be run on

3 independent datasets. The posterior samples were combined in order to

approximately marginalise over datasets and thereby remove their potential

particularities. For a fair comparison, the new method in Chapter 4 was also

run with 4 rather than the 10 chains that were used as default.

Inference of the gradient mismatch parameter using GPs and adap-

tive gradient matching (INF) [11]: The method was applied in the same

way as described in the original publication of Dondelinger et al. [11],

using the authors’ software and selecting the same kernels and parame-

ter/hyperparameter priors for the method proposed in the present paper.

Data was generated from the protein signal transduction pathway described

in equation 45, with the same settings as in Dondelinger et al. [11]; initial val-

ues of the species: (S = 1, dS = 0, R = 1, RS = 0, Rpp = 0); ODE parame-

ters: (k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017, Km = 0.3); 15 time-

points producing one period: {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}.

As in Dondelinger et al. [11], multiplicative iid Gaussian noise (additive iid

Gaussian noise on the log scale) of standard deviation = 0.1 was used to cor-

rupt the signals and reflect the noisy observations obtained in experiments.
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The same gamma prior on the ODE parameters was chosen, as used in Don-

delinger et al. [11], namely Γ(4, 0.5), for Bayesian inference. For the GP, the

same kernel they originally used was implemented; see page 69 for details.

In addition to this ODE system, this method was also applied to the rest of

the described set-ups.

Reproducing kernel Hilbert space method (GON) [19]: The authors

tested their method on the Fitz-Hugh Nagumo data (equations 40-41) with

the following settings; initial values of (−1,−1) and ODE parameters of

α = 0.2; β = 0.2 and ψ = 3. The authors generated 50 datapoints over the

time domain [0, 20] (producing 2 periods), with iid Gaussian noise (sd = 0.1)

added to introduce error to the observations. 50 independent datasets were

created in this way.

As well as comparing to the original publication set-up, the methods were

tested on a scenario with larger observational noise. They were tested on 2

scenarios, when the signal to noise ratio was on average 10 for each species

and when the average signal to noise ratio was 5. The average signal to noise

ratio was used so that each species had the same observational error as one

another. The dataset size was reduced to 25 timepoints over the time course

[0,10], producing 1 period, and the results across 10 independent datasets

are shown.
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To observe the variation between ODE models, the method was also run

on the protein signal transduction pathway in equation 45. Data under the

same settings as in Dondelinger et al. [11] were generated; ODE parameters:

(k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017, Km = 0.3); initial values

of the species: (S = 1, dS = 0, R = 1, RS = 0, Rpp = 0); 15 timepoints

covering one period: {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100}. 2 noise

scenarios were examined; when the average signal to noise ratio was 10, and

when the average signal to noise ratio was 5. As opposed to the set-up in

Dondelinger et al. [11], additive Gaussian noise was used to corrupt the data,

to correspond with the assumed noise model.

Penalised splines & 2nd derivative penalty method (RAM) [40]:

González et al. [19] used the method of Ramsay et al. [40] to compare to

their technique. The results from the original publication of González et al.

[19] are presented. For fairness of comparison, the new method in Chapter 4

was applied in the same way as with the set-up in [19].

Choice of kernel: For the Gaussian process, a suitable kernel needs to be

chosen, which reflects prior knowledge in function space. Two kernels were

considered in this study (to correspond with the authors’ set-ups), the radial

basis function (RBF) kernel

k(ti, tj) = σ2
RBF exp(−(ti − tj)2

2l2
) (71)
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with hyperparameters σ2
RBF and l2, and the sigmoid variance kernel

k(ti, tj) = σ2
sig arcsin

a+ (btitj)√
(a+ (btiti) + 1)(a+ (btjtj) + 1)

(72)

with hyperparameters σ2
sig, a and b [42].

To initialise the hyperparameters, a standard GP regression model (i.e. with-

out information from the ODE) was fitted by maximum likelihood. It was

then checked to see whether the interpolant adequately represented the prior

knowledge. In practice, this would be available from experts involved in

the experiment. From previous observations, it is possible to gain some in-

sight into how rough or smooth a particular signal or process might be. The

initialised GP would then be inspected to see whether it is over- or under-

smoothed compared to what is expected.

It was found that the RBF kernel provided a good fit to the data for the data

generated from the Fitz-Hugh Nagumo model. However, in confirmation of

the findings in Dondelinger et al. [11], it was found that for the protein sig-

nalling transduction pathway, the non-stationary nature of the data is not

represented properly with the RBF kernel, which is stationary [42]. As in

Dondelinger et al. [11], the sigmoid variance kernel was used, which is non-

stationary [42] and found a considerable improvement to the fit to the data.

Other settings: The values for the variance mismatch parameter of the
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gradients, γs, need to be set. Since studies that indicate reasonable values

for our technique are limited (see [8], [15]), Log2 and Log10 increments with

an initial start at 1 were used. All parameters were initialised with a random

draw from the respective priors (apart from GON, which did not use priors).

5.3 Results

Tempered mismatch parameter using splines-based smooth func-

tional tempering (C&S) [9]: By examining Figures 15-17, it can be seen

that the C&S method shows good performance over all parameters in the one

case where the number of observations is 401, the number of knots is 301 and

the polynomial order is 3 (cubic spline), since the bulk of the distributions of

the sampled parameters surround the true parameters in Figures 15 and 17

and are close to the true parameter in Figure 16. These settings, however,

require a great deal of “hand-tuning” or time expensive cross-validation and

would be very difficult to set when using real data. The sensitivity of the

method can be observed by examining the other set-ups, where the results

are noticeably worse. An important point to note is when the dataset size

was reduced, the cubic spline performed very badly. This lack of robust-

ness makes these splines based methods very difficult to apply in practice.

The INF, LB2 and LB10 methods consistently outperform the C&S method

with distributions being closer to or overlapping the true parameters. On

the set-up with 20 observations, for both 4 and 10 chains, the INF method

produced largely different estimates across the datasets, as depicted by the
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wide boxplots and long tails.

Figure 15: Average posterior distributions of parameter α from the Fitz-
Hugh Nagumo model (equation 41) over 3 datasets. From left to right: LB2,
INF, LB10, LB2 10C, INF 10C, LB10 10C, C&S, C&S P3, C&S 15K, C&S
15K P3, C&S Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20,
LB2 Obs20 10C, INF Obs20 10C and LB10 Obs20 10C. The solid line is the
true parameter. For definitions, see Tables 3 and 4. Figure reproduced from
[30], with permission from Springer.
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Figure 16: Average posterior distributions of parameter β from the Fitz-
Hugh Nagumo model (equations 41) over 3 datasets. From left to right: LB2,
INF, LB10, LB2 10C, INF 10C, LB10 10C, C&S, C&S P3, C&S 15K, C&S
15K P3, C&S Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10 Obs20,
LB2 Obs20 10C, INF Obs20 10C and LB10 Obs20 10C. The solid line is the
true parameter. For definitions, see Tables 3 and 4. Figure reproduced from
[30], with permission from Springer.
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Figure 17: Average posterior distributions of parameter ψ from the Fitz-
Hugh Nagumo model (equations 40-41) over 3 datasets. From left to right:
LB2, INF, LB10, LB2 10C, INF 10C, LB10 10C, C&S, C&S P3, C&S 15K,
C&S 15K P3, C&S Obs20, C&S Obs20 P3, LB2 Obs20, INF Obs20, LB10
Obs20, LB2 Obs20 10C, INF Obs20 10C and LB10 Obs20 10C. The solid line
is the true parameter. For definitions, see Tables 3 and 4. Figure reproduced
from [30], with permission from Springer.
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Inference of the gradient mismatch parameter using GPs, adaptive

method (INF) [11]: In order to see how the LB2 and LB10 tempering meth-

ods perform in comparison to the INF method, the results from the protein

signalling transduction pathway (see equation 45) can be examined, as well

as comparing how each method did in the other set-ups. Figure 18 shows the

distributions of parameter estimates minus the true values for the protein

signalling transduction pathway. After implementing the authors’ code, it

was noted that some of the MCMC simulations had not converged. In order

to present a fair depiction of the methods’ performance, the results from the

dataset that produced the median performance are shown. For each dataset

the root mean square was calculated on the parameter samples minus the

true values. The dataset that produced the median root mean square value

is given.
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Figure 18: Results from the dataset that showed the average RMS of the
posterior parameter samples minus the true values for the INF, LB2 and
LB10 methods. The posterior distributions are of the sampled parameters
from the protein signalling transduction pathway (equation 45) minus the
true value. The horizontal line shows zero difference. For definitions, see
Tables 3 and 4. Figure reproduced from [30], with permission from Springer.
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By examining Figure 18, it can be seen that for each parameter the methods

produce distributions that are not more than twice the interquartile range

away from the true parameter. For this set-up, overall there does not appear

to be a significant difference between the INF, LB2 and LB10 methods.

For the original set-up in [19], Figure 19 shows the expected cumulative

distribution functions (ECDFs) of the absolute errors of the parameter sam-

ples for the tempering and inference schemes. P-values for 2-sample, 1-sided

Kolmogorov-Smirnov tests are given. Since the distributions are of the aver-

age error, if a distribution’s ECDF is significantly higher than another’s, this

constitutes better parameter estimation. A higher curve means that there

are more values located in the lower range of absolute error.

By examining Figure 19 and using the standard significance level of 0.05 as

a cut-off, it can be seen that the ECDFs for LB2 and LB10 are significantly

higher than those for INF. This means that the parameter estimates from

the LB2 and LB10 methods are closer to the true parameters than the INF

method, since we are dealing with absolute error. The LB2 and LB10 method

show no significant difference to each other.

As an alternative presentation, the absolute errors of the parameter estima-

tion for the INF, LB2 and LB10 methods are depicted as boxplots in Figure

20.
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Figure 19: ECDFs of the absolute errors of the parameter estimation for
the Fitz-Hugh Nagumo system (equations 40 and 41). Top left - ECDFs for
LB10 and INF, top right - ECDFs for LB2 and INF and bottom - ECDFs for
LB10 and LB2. Included are the p-values for 2-sample, 1-sided Kolmogorov-
Smirnov tests. For definitions, see Tables 3 and 4. Figure reproduced from
[30], with permission from Springer.

By examining Figure 20, it can be seen that the variance of absolute error to

the true parameters is about half for the LB2 and LB10 methods compared

to INF.

For the set-up in [9], Figures 15-17 show that the LB2 and LB10 methods

perform well across dataset size and over all the parameters, since most of the
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Figure 20: Boxplots of the absolute errors of the parameter estimation for
the Fitz-Hugh Nagumo system (equations 40 and 41). The distributions of
the absolute errors is given for the INF, LB2 and LB10 method (from left to
right). For definitions, see Tables 3 and 4.

mass of the distributions surround or are situated close to the true parame-

ters. One type of scheduling did not always outperform another. The LB2

does better than the LB10 for 4 parallel chains (distributions overlapping

the true parameter for all three parameters) and the LB10 outperforms the

LB2 for 10 parallel chains (distribution overlapping true parameter in Figure

15, being closer to the true parameter in Figure 16 and narrower and more

symmetric around the true parameter in Figure 17). The bulks of parameter

sample distributions for the INF method are located close to the true param-

eters for all dataset sizes. However, the method produces less uncertainty at

the expense of bias. When reducing the dataset size to 20 observations, for
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both 4 and 10 chains, the results deteriorate for the INF method and it is

outperformed by the LB2 and LB10 methods.

Reproducing kernel Hilbert space (GON) [19] and Hierarchical reg-

ularisation splines based method (RAM) [40]: For these sets of results,

to assess the performance of the methods, the same criterion as in GON was

used. For each parameter, the absolute value of the difference between an es-

timator and the true parameter (|θ̂i−θi|) was computed and the distribution

across the datasets was examined. For the LB2, LB10 and INF methods,

the median of the sampled parameters was used as an estimator, since it is

a robust average. Examining Figure 21, the LB2, LB10 and INF methods

do as well as the GON method for 2 parameters (INF doing slightly worse

for ψ) and outperform it for 1 parameter with the width of the distributions

of the absolute distances to the true parameter roughly 1
3

of the size. All

methods outperform the RAM method.

Looking at Figure 22, the distributions of parameter 3 for LB2 and LB10 are

about 5 times the absolute distance away than the other methods from the

true parameter. When the noise is increased, Figure 23, the GON and GON

Cross methods are slightly more robust in estimating the final parameter.

The final parameter in the Fitz-Hugh Nagumo system is the only parameter

modelling Voltage, see equation 40. This species is particularly difficult for
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Figure 21: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 50 datasets. The three sections from left
to right represent the parameters α, β and ψ from the Fitz-Hugh Nagumo
model (equations 40-41). Within each section, the boxplots from left to right
are: LB2 method, INF method, LB10 method, GON method (boxplot recon-
structed from [19]) and RAM method (boxplot reconstructed from [19]). For
definitions, see Tables 3 and 4. Figure reproduced from [30], with permission
from Springer.

the INF, LB2 and LB10 methods, due to sharp changes in the signal (see

Figure 2), as the GP currently assumes a more smooth change overall. This

results in a deterioration of the parameter estimation performance.
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Figure 22: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The three sections from left
to right represent the parameters α, β and ψ from the Fitz-Hugh Nagumo
model (equations 40-41). Within each section, the boxplots from left to
right are: LB2 method, INF method, LB10 method, GON method and GON
method using cross validation for inferring the penalty parameter. The av-
erage signal to noise ratio for each “species” is 10. The standard deviation
of the observational noise is inferred. For definitions, see Tables 3 and 4.
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Figure 23: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The three sections from left
to right represent the parameters α, β and ψ from the Fitz-Hugh Nagumo
model (equations 40-41). Within each section, the boxplots from left to
right are: LB2 method, INF method, LB10 method, GON method and GON
method using cross validation for inferring the penalty parameter. The av-
erage signal to noise ratio for each “species” is 5. The standard deviation of
the observational noise is inferred. For definitions, see Tables 3 and 4.

Examining the results for the protein signalling transduction pathway, equa-

tion 45, in Figures 24 and 25, it can be seen that the performance of INF,

LB2 and LB10 vary in accuracy. Overall, the GON Cross method shows a

more robust set of estimates. The GON method (which uses AIC to estimate

the penalty parameter) was unable to optimise for this ODE system. Given

certain values of λs, the optimiser of the log likelihood function tends to

choose kernel parameters which make (K + λsσsI) non-invertible and com-

putationally singular. In the cross validation scheme, all problematic λss are

rejected. The results for the GON Cross method are presented only, for this
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Figure 24: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The 5 sections from left to
right represent the parameters for the protein signalling transduction path-
way, equation 45. Within each section, the boxplots from left to right are:
LB2 method, INF method, LB10 method and GON method using cross val-
idation for inferring the penalty parameter (abbreviated here to Cross, for
visual clarity). The average signal to noise ratio for each “species” is 10. The
standard deviation of the observational noise is inferred. For definitions, see
Tables 3 and 4.

ODE model.

The root mean square (RMS) values in function space are also presented.

Firstly, the signal was reconstructed using the sampled parameters and the

initial conditions used to generate the simulated data, by numerically inte-

grating the ODEs, and then the true signal was subtracted (signal created

with true parameters and no observational noise added). The RMS was cal-

culated on these residuals. It is important to assess the methods on this
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Figure 25: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The 5 sections from left to
right represent the parameters for the protein signalling transduction path-
way, equation 45. Within each section, the boxplots from left to right are:
LB2 method, INF method, LB10 method and GON method using cross val-
idation for inferring the penalty parameter (abbreviated here to Cross, for
visual clarity). The average signal to noise ratio for each “species” is 5. The
standard deviation of the observational noise is inferred. For definitions, see
Tables 3 and 4.

criterion as well as looking at the parameter uncertainty, as some parameters

might only be weakly identifiable, corresponding to ridges in the likelihood

landscape. In other words, large uncertainty in parameter estimates may

not necessarily imply a poor performance by a method, if the reconstructed

signals for all groups of sampled parameters were close to the truth.

By examining Figure 26 it can be seen that the LB2 and LB10 methods

perform poorer than the rest, with an average RMS value roughly 0.5 larger.
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In Figure 27, the increased noise scenario, it can be seen that the LB2 and

LB10 methods have an average RMS value about 0.5 units larger than the

other methods.

Figure 26: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the Fitz-Hugh Nagumo model (equations 40-41). Within
each section, the boxplots from left to right are: LB2 method, INF method,
LB10 method, GON method and GON method using cross validation for
inferring the penalty parameter. The average signal to noise ratio for each
“species” is 10. The standard deviation of the observational noise is inferred.
For definitions, see Tables 3 and 4.
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Figure 27: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the Fitz-Hugh Nagumo model (equations 40-41). Within
each section, the boxplots from left to right are: LB2 method, INF method,
LB10 method, GON method and GON method using cross validation for
inferring the penalty parameter. The average signal to noise ratio for each
“species” is 10. The standard deviation of the observational noise is inferred.
For definitions, see Tables 3 and 4.
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Figures 28-29 show that the GON Cross method is slightly outperforming the

INF, LB2 and LB10 methods, with RMS distributions that are on average

0.1 units lower.

Figure 28: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the protein signalling transduction pathway (equation 45).
Within each section, the boxplots from left to right are: LB2 method, INF
method, LB10 method, and GON method using cross validation for inferring
the penalty parameter. The average signal to noise ratio for each “species”
is 10. The standard deviation of the observational noise is inferred. For
definitions, see Tables 3 and 4.
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Figure 29: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the protein signalling transduction pathway (equation 45).
Within each section, the boxplots from left to right are: LB2 method, INF
method, LB10 method, and GON method using cross validation for inferring
the penalty parameter. The average signal to noise ratio for each “species”
is 5. The standard deviation of the observational noise is inferred. For
definitions, see Tables 3 and 4.
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The wider range of estimates of the parameters (as well as the long tails

in the posterior distributions in Figures 15-17), for the INF, LB2 and LB10

methods, were observed when occasionally the time course signals would flat-

ten. An inspection of equation 65 reveals that when fs(X,θ, t) = 0 ∀s, then

p(X|θ,φ,η,γ) is maximised at xs = φs ∀s (see equation 53 for the definition

of φs). This corresponds to a flattening of the true concentration profiles,

and flat signals usually can be assumed to be a poor fit to the data. Hence,

this flattening should be discouraged by the likelihood term p(Y|X,σ) in

equation 52. However, for σ � σTrue (where σTrue is the unknown true

standard deviation of the observational error of the signals), the likelihood

term is effectively switched off, which will allow the system to converge to a

high probability attractor state corresponding to xs = φs. In practice, this

effect is observed for σ exceeding σTrue. This attractor state is further self-

enforcing by driving the length scales included in the GP hyperparameters

η to very large values, as has been observed in the simulations. Obviously,

xs = φs is unrealistic. To test whether holding the standard deviation of the

noise at the true value prevents the Markov chains from being driven to this

unrealistic attractor state, the simulations of the comparison to GON and

GON Cross were repeated, for the Fitz-Hugh Nagumo system and protein

signalling transduction pathway for signal to noise ratios of 10 and 5. The

standard deviation of the noise was held at the value that was used to gen-

erate the data, where in practice this could be estimated through a standard

GP regression. The true value was used in order to observe whether this
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approach affects the results and to what extent, under the most favourable

conditions.

Examining Figure 30, where now the standard deviation of the noise is held

fixed at the true value, the INF, LB2, LB10, GON and GON Cross methods

perform similarly for the first 2 parameters and the GON and GON Cross are

about 5 times the absolute distance closer than the other methods to the true

parameter for the 3rd. When the noise is increased, Figure 31, the methods

produce estimates that are similar to one another for all 3 parameters.

Figure 30: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The three sections from left
to right represent the parameters α, β and ψ from the Fitz-Hugh Nagumo
model (equations 40-41). Within each section, the boxplots from left to
right are: LB2 method, INF method, LB10 method, GON method and GON
method using cross validation for inferring the penalty parameter. The aver-
age signal to noise ratio for each “species” is 10. The standard deviation of
the observational noise is held at the true value. For definitions, see Tables
3 and 4.
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Figure 31: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The three sections from left
to right represent the parameters α, β and ψ from the Fitz-Hugh Nagumo
model (equations 40-41). Within each section, the boxplots from left to
right are: LB2 method, INF method, LB10 method, GON method and GON
method using cross validation for inferring the penalty parameter. The av-
erage signal to noise ratio for each “species” is 5. The standard deviation of
the observational noise is held at the true value. For definitions, see Tables
3 and 4.

For the protein signalling transduction pathway, equation 45, Figure 32 shows

that the INF, LB2 and LB10 methods are on average 2.5 times the absolute

distance closer than GON CROSS to the true parameter, over the different

parameters. Similarly, in Figure 33, INF, LB2 and LB10 perform roughly 2.5

times the absolute distance closer than GON CROSS to the true parameter,

over the different parameters.
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Figure 32: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The 5 sections from left to
right represent the parameters for the protein signalling transduction path-
way, equation 45. Within each section, the boxplots from left to right are:
LB2 method, INF method, LB10 method and GON method using cross val-
idation for inferring the penalty parameter (abbreviated here to Cross, for
visual clarity). The average signal to noise ratio for each “species” is 10. The
standard deviation of the observational noise is held at the true value. For
definitions, see Tables 3 and 4.
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Figure 33: Boxplots of the distributions of the absolute differences of an
estimate to the true parameter over 10 datasets. The 5 sections from left to
right represent the parameters for the protein signalling transduction path-
way, equations equation 45. Within each section, the boxplots from left to
right are: LB2 method, INF method, LB10 method and GON method us-
ing cross validation for inferring the penalty parameter (abbreviated here to
Cross, for visual clarity). The average signal to noise ratio for each “species”
is 5. The standard deviation of the observational noise is held at the true
value. For definitions, see Tables 3 and 4.
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The RMS distributions in Figure 34 show that the GON and GON Cross

methods are producing slightly better estimates, reflected by the distribu-

tions being around 0.5 units in RMS lower. For the increased noise scenario,

Figure 35, all methods are performing similarly.

Figure 34: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the Fitz-Hugh Nagumo model (equations 40-41). Within
each section, the boxplots from left to right are: LB2 method, INF method,
LB10 method, GON method and GON method using cross validation for
inferring the penalty parameter. The average signal to noise ratio for each
“species” is 10. The standard deviation of the observational noise is held at
the true value. For definitions, see Tables 3 and 4.
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Figure 35: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the Fitz-Hugh Nagumo model (equations 40-41). Within
each section, the boxplots from left to right are: LB2 method, INF method,
LB10 method, GON method and GON method using cross validation for
inferring the penalty parameter. The average signal to noise ratio for each
“species” is 5. The standard deviation of the observational noise is held at
the true value. For definitions, see Tables 3 and 4.
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In Figure 36, it can be seen that the INF, LB2 and LB10 methods outper-

form the GON Cross method, shown by smaller RMS distributions that are

roughly 0.05 units smaller. In Figure 37, the INF and LB10 methods do

better than LB2 and GON Cross with RMS values on average 0.05 units

smaller.

Figure 36: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the protein signalling transduction pathway (equation 45).
Within each section, the boxplots from left to right are: LB2 method, INF
method, LB10 method, and GON method using cross validation for inferring
the penalty parameter. The average signal to noise ratio for each “species”
is 10. The standard deviation of the observational noise is held at the true
value. For definitions, see Tables 3 and 4.
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Figure 37: Distribution of RMS values in function space, calculated on
the residuals of the true signal (signal produced with true parameters and
no observational error) minus the signal produced with the estimate of the
parameters, for the protein signalling transduction pathway (equation 45).
Within each section, the boxplots from left to right are: LB2 method, INF
method, LB10 method, and GON method using cross validation for inferring
the penalty parameter. The average signal to noise ratio for each “species”
is 5. The standard deviation of the observational noise is held at the true
value. For definitions, see Tables 3 and 4.
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5.4 Discussion

A recently developed gradient matching approach for systems biology has

been modified (INF) by combining it with a parallel tempering scheme for the

gradient mismatch parameter (C&S). A wide scale comparative evaluation

of this new method from Chapter 4 with various state-of-the-art gradient

matching methods has been conducted. These methods are based on dif-

ferent inference approaches and statistical models, namely: non-parametric

Bayesian statistics using Gaussian processes (INF, LB2, LB10), splines-based

smooth functional tempering (C&S), hierarchical regularisation using splines

interpolation (RAM), and penalised likelihood based on reproducing kernel

Hilbert spaces (GON, GON Cross). The set-ups have also allowed for the

comparison of opposing paradigms of Bayesian inference (INF) versus paral-

lel tempering (LB2, LB10) of the slack parameters controlling the amount of

mismatch between the gradients.

In one case, when the number of observations was very high (higher than

what would be expected in these types of experiments) and the tuning pa-

rameters were finely adjusted (which is time-consuming in practice), the C&S

method does well. When the dataset size was reduced, all settings for this

method deteriorated significantly, including the previous tuning setting that

performed well. It is also important to note that the particular settings that

were found to be optimal were different than in the original paper, which
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highlights the sensitivity and lack of robustness in the splines based method.

The GON and GON Cross methods produce estimates that are close to the

true parameters in terms of absolute uncertainty. For the Fitz-Hugh Nagumo

ODE model, the method outperforms the other schemes for one parameter,

in the case when the signal to noise ratio was 10 and 25 datapoints were

generated. For the protein signalling transduction pathway, however, this

method is outperformed by INF, LB2 and LB10. This method also has a

drawback to practical implementation, on non-simulated data. The method,

which uses a classical approach to parameter estimation (producing point

estimates), cannot immediately produce confidence intervals for the param-

eters and so quantifying the uncertainty in the parameter estimates will be

more difficult. For simulated data, this is not an issue, since it is possible

to generate multiple datasets and quantify the accuracy of the method by

observing the results across all datasets. In practice however, this is not

available. One would need to rely on other processes, such as bootstrapping,

and the effect on the accuracy and computational time is something that

needs to be investigated.

The INF method performs reasonably, by producing results close to the true

parameters across the scenarios that have been examined. However, this

method’s decrease in uncertainty is at the expense of bias.
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The LB2 and LB10 methods show good performance across the set-ups. The

parameter inference is accurate across the different ODE models and the dif-

ferent settings of those models. The parallel tempering schedule has proven

to be quite robust, as the methods perform similarly across the various set-

ups.

For some simulations, a flattening of the time course signals for INF, LB2 and

LB10 was observed. The uncertainty in the signals reduced the accuracy in

the methods. In order to achieve a robust method that provides accurate pa-

rameter estimation, we examined holding the standard deviation at the true

value. In this case, the GON and GON Cross outperformed INF, LB2 and

LB10 on one parameter in the Fitz-Hugh Nagumo system, when the signal

to noise ratio was 10. For the signal to noise ratio setting of 5, the methods

all performed similarly. The INF, LB2 and LB10 methods outperform the

GON Cross method for the protein signalling transduction pathway. Holding

the standard deviation of the noise at the true value, for the INF, LB2 and

LB10 methods, stops the likelihood term from effectively being switched off

and prevents the flattening. In practice, this parameter could be estimated

by a standard GP regression, in order to fix the standard deviation of the

noise when the true value is unknown. This is a somewhat heuristic fix to

the problem however, and a general robust solution should be the focus for
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future research.

5.5 Conclusions

The combination of adaptive gradient matching using Gaussian processes

from Dondelinger et al. [11] and a parallel tempering scheme for the gradi-

ent mismatch parameter from Campbell and Steele [9], has yielded a method

that provides accurate parameter estimates for ODEs when the true stan-

dard deviation of the noise is known. This method performs well across ODE

models and variation of the scheduling of the tempered mismatch parameter.

It has been found that the method in Dondelinger et al. [11] provides accu-

rate estimation, where the decrease in uncertainty is at the expense of bias.

The method in Campbell and Steele [9] shows a lack of robustness, due to

the difficulty in configuring the splines settings. For the method in Ramsay

et al. [40], it was found that it was outperformed by the other methods that

were looked at. The method in González et al. [19] is accurate and robust,

but can be outperformed by Dondelinger et al. [11] and the proposed method

in Chapter 4 for certain scenarios. For a signal to noise ratio of 10 on the

Fitz-Hugh Nagumo system, the González et al. method is able to outper-

form the method in Dondelinger et al. [11] and the new method, for one

parameter out of three. It was found that using cross validation as opposed

to AIC for the González method, to estimate the penalty parameter, yielded

results that were more robust.
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In order to avoid a potential drawback to the proposed method in Chapter

4 (and the method in Dondelinger et al. [11]), the standard deviation of the

noise is held at the true value, to avoid the signals deviating from the data

and flattening. This remedy was found to lead to a significant improvement

over the method with a flexible standard deviation of the error. In practice,

the standard deviation of the noise could be estimated, for example by a

standard GP regression, and general approaches to this should be the focus of

future research. It is expected that this should be a fairly robust procedure,

as work by Bishop [6] suggests that inferring the noise through standard

GP regression is accurate, so long as the GP kernel reasonably reflects the

underlying smoothness assumptions of the function being modelled.
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6 Representing Gradient Matching as a

Probabilistic Generative Model

This chapter presents work published in Macdonald et al. [32]. Software is

available at http://researchdata.gla.ac.uk/283/.

6.1 Introduction

Many processes in science and engineering can be described by dynamical

systems models based on ordinary differential equations (ODEs). Examples

range from simple models of predator-prey interactions in ecosystems [27]

or activation/deactivation dynamics of spiking neurons [38] to increasingly

complex mathematical descriptions of biopathways that aim to predict the

time-varying concentrations of different molecular species, like mRNAs and

proteins, inside the living cell [39]. ODEs are typically constructed from well

understood scientific principles and include clearly interpretable parameters

that define the kinetics of the processes and the interactions between the

species. However, these parameters are often unknown and not directly mea-

surable. In principle, the task of statistically inferring them from data is not

different from statistical inference in more conventional models. For given

initial concentrations and under fairly mild regularity conditions, the solu-

tion of the ODEs is uniquely defined; hence, the kinetic parameters could

be inferred e.g. by minimising the mismatch between the data and the

ODE solutions in a maximum likelihood sense. In practice, a closed-form
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solution for non-linear ODEs usually does not exist. Any variation of the

kinetic parameters thus requires a numerical integration of the ODEs, which

is computationally expensive and imposes severe limitations on the number

of parameter adaptation steps that are practically feasible.

The present chapter focuses on a particular approach to gradient matching

based on nonparametric Bayesian modelling with Gaussian processes (GPs).

The key insight, first discussed in Solak et al. [46] and Graepel [21], and more

recently exploited in Holsclaw et al. [24], is that for a differentiable kernel,

the time derivative of a GP is also a GP. Hence a GP in data space imposes a

conjugate GP in derivative space and thereby provides a natural framework

for gradient matching. This idea has been exploited in recent high-profile

publications, like Babtie et al. [5]. The limitation of Babtie et al. [5] is that

the interpolant obtained from the GP is kept fixed, and all subsequent infer-

ence critically depends on how accurately this initial interpolant matches the

unknown true process. The implication is that the noise tolerance is typically

low, as seen e.g. from Fig. 4A in Babtie et al. [5], and that reliable inference

requires tight prior constraints on the ODE parameters; see p.2 of the supple-

mentary material in Babtie et al. [5]. To improve the robustness of inference,

more advanced methods aim to regularise the GP by the ODEs themselves.

Two alternative conceptual approaches to this end have been proposed in the

recent machine learning literature. The first paradigm, originally published

in Calderhead et al. [8] and more recently extended in Dondelinger et al.
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[11], where it was called AGM (for ‘adaptive gradient matching’), is based

on a product-of-experts approach and a marginalisation over the derivatives

of the state variables. A competing approach, proposed in Wang and Barber

[49] and called GPODE by the authors, formulates gradient matching with

GPs in terms of a probabilistic generative model by marginalising over the

state variables and conditioning on the state derivatives. Wang and Barber

[49] claim that their proposed paradigm shift achieves an improvement over

the first paradigm in three respects: model simplification, tractable infer-

ence, and better predictions.

In this chapter, an alternative interpretation of the GPODE model is offered,

which leads to deeper insight into intrinsic approximations that were not

apparent from the original publication. It is discussed that, as a consequence,

the GPODE model suffers from an inherent identifiability problem, which

models of the first paradigm are not affected by. The theoretical analysis is

complemented with empirical demonstrations on simulated data, using the

same model systems as in the original publications, Wang and Barber [49]

and Dondelinger et al. [11].

6.2 Paradigm A: the AGM model

The description of paradigm A, the AGM method of Dondelinger et al. [11],

has already been detailed in Chapter 4 and hence should be referred to for a

description of the method. A graphical representation of the model is given
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Figure 38: Graphical model of the GPODE method, as proposed in [49].

in Figure 9(b).

6.3 Paradigm B: the GPODE model

An alternative approach was proposed by Wang and Barber [49] and termed

the GPODE model. As for AGM, the starting point in Wang and Barber

[49] is to exploit the fact that the derivative of a Gaussian process is also a

Gaussian process, and that the joint distribution of the state variables X and

their time derivatives Ẋ is multivariate Gaussian with covariance functions

given by equations (54-57). Application of elementary transformations of

Gaussian distributions, as shown e.g. on p. 93 in Bishop [6], leads to the

following conditional distribution of the states given the state derivatives:
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p(xs|ẋs,η) = N (xs|µ̃s, Ãs) (73)

where

µ̃s = φs + ′KηsK
′′
ηs

−1
ẋs; Ãs = Kηs − ′KηsK

′′
ηs

−1
K′ηs (74)

Note the difference between AGM and GPODE, where the former method

computes p(ẋs|xs,η), as expressed in equations (58-59), whereas the latter

model computes p(xs|ẋs,η), as expressed in equations (73-74). Under the

assumption that the observations Y are subject to additive iid Gaussian

noise, equations (49,52), the marginalisation over the state variables leads

to a standard Gaussian convolution integral, which is analytically tractable

with solution

p�(ys|ẋs) =

∫
p(ys|xs)p(xs|ẋs)dxs

=

∫
N (ys|xs, σ2

sI)N (xs|µ̃s, Ãs)dxs

= N (ys|µ̃s, Ãs + σ2
sI) (75)

The authors factorise
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p(Y,X|η,θ) = p(Y|X,η,θ)p(X|η) (76)

and obtain the first term by marginalisation over the state derivatives Ẋ:

p(Y|X,η,θ) =

∫
p(Y, Ẋ|X,η,θ)dẊ

=

∫
p�(Y|Ẋ,η)p(Ẋ|X,θ)dẊ

= p�(Y|f [X,θ],η) (77)

where

p�(Y|Ẋ,η) =
∏
s

p�(ys|ẋs,η), (78)

with p�(ys|ẋs,η) given in equation (75), and the fact has been used that the

state derivatives are determined by the ODEs:

p(Ẋ|X,θ) = δ(Ẋ− f [X,θ]) (79)

Inserting equation (77) into equation (76) gives:

p(Y,X|η,θ) = p�(Y|f [X,θ],η)p(X|η) (80)
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This is a deceptionally simple and elegant formulation, illustrated as a graph-

ical model in Figure 38, with two advantages over the AGM model. Concep-

tually, the GPODE is a proper probabilistic generative model, which can be

consistently represented by a directed acyclic graph (DAG). Practically, the

normalisation constant of the joint distribution in equation (80) is known,

which facilitates inference.

6.4 Shortcomings of the GPODE model

The Achilles heel of the GPODE model is equation (75), which includes a

marginalisation over the state variables xs to obtain p(ys|ẋs).

The derivations in equation (76) and equation (77) then treat ys as indepen-

dent of xs given ẋs: p(ys|ẋs,xs) = p(ys|ẋs), or p(Y|X, Ẋ) = p(Y|Ẋ); this

is consistent with the graphical model in Figure 38. Having integrated the

state variables X out in equation (75), the method subsequently conditions

on them in equation (77). The fallacy of this approach is the assumption that

the marginalisation over the random variables xs in equation (75) is equiv-

alent to their elimination. However, a marginalisation merely means that

for the purposes of inference, the variables that have been integrated out

do not need to be taken into consideration explicitly. However, these vari-

ables remain in the model conceptually. In this particular model, the data

Y consist of noisy observations of the state variables X, not their derivatives

Ẋ. Consider, for instance, the tracking of a set of exoplanets with a space
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Figure 39: Left panel: GPODE model, as proposed in Wang and Barber
[49], but explicitly presenting all random variables included in the model.
The graph is inconsistent, in that the same random variables, X, have been
assigned to two different nodes. Centre panel: Correcting the inconsistency
in the notation of Wang and Barber [49]. The model distinguishes between
the unknown true state variables X, and their model approximation X̃. Right
panel: In the ideal GPODE model, the true state variables X and their model
approximation X̃ are coupled, ideally via an identity constraint. This intro-
duces an undirected edge between X and X̃, which is no longer a consistent
probabilistic graphical model represented by a DAG. To reintroduce the DAG
constraint, Wang and Barber [49] have discarded this undirected edge, lead-
ing to the model shown in the centre panel. The disadvantage is that the
model state variables X̃ are no longer directly associated with the data. As
discussed in the main text, this leads to an intrinsic identifiability problem.

111



telescope, where the state variables X are the positions of the planets. Given

the knowledge of the initial conditions and the velocities of the planets, Ẋ,

it is possible to compute the positions of the planets X using established

equations from classical mechanics. This procedure might dispense with the

need to keep detailed records of the planets’ positions. However, it does not

imply that the positions of the planets have disappeared.

To correct this mistake, it is necessary to reintroduce the state variables

X into the model, as shown in Figure 39, left panel. However, this leads

to the inconsistency that the same random variables, X, are used in two

different places of the graph. As a further correction, it is therefore required

to introduce a set of dummy variables X̃, as shown in Figure 39, centre panel.

This is a methodologically consistent representation of the model, but leaves

open the question what the difference between X and X̃ is. Ideally, there is no

difference, which can be represented mathematically as p(X, X̃) ∝ δ(X−X̃).

However, in this way an edge from the node X̃ to X has been introduced,

as shown in Figure 39, right panel. This causes methodological problems,

in whatever definition chosen for that edge. If it is treated as an undirected

edge, p(X, X̃) ∝ δ(X−X̃), as shown in the right panel of Figure 39, based on

the symmetry of the identity relation between X̃ and X, then a chain graph

is produced. A chain graph is a probabilistic model, but not a probabilistic

generative model, and the main objective of Wang and Barber [49] was to

create one. If a directed edge from X to X̃ is introduced, based on
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p(X̃|X) = δ(X̃−X), (81)

then a directed cycle exists and this violates the DAG constraint. In order

to get a valid probabilistic graphical model, a directed edge in the opposite

direction must be introduced, from X̃ to X, based on

p(X|X̃) = δ(X̃−X). (82)

However, this structure will require the definition of the probability p(X|Ẋ, X̃),

and it is not clear how to do that. For that reason, the approximation taken

in Wang and Barber [49] is to discard the edge between X and X̃ altogether.

This simplification leads to a probabilistic generative model that can be con-

sistently represented by a DAG. However, the disadvantage is that the true

state variables X and their approximation X̃ are only weakly coupled, via

their common hyperparameters η. The consequences of this will be discussed

further on.

The upshot of what has been explained so far is that, by not properly distin-

guishing between X and X̃, equation (80) introduced in Wang and Barber

[49] is misleading. The correct form is

p(Y, X̃|η,θ) = p�(Y|f [X̃,θ],η)p(X̃|η) (83)

where X̃ are not the unknown true state variables X, but some model ap-
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proximation. This subtle difference has non-negligible consequences.

As an illustration, consider the simple second-order ODE (using ẍ = d2x/dt2)

ẍ+ θ2x = 0 (84)

which, with the standard substitution (x1, x2) := (x, ẋ), leads to the linear

system of first-order ODEs:

ẋ1 = x2; ẋ2 = −θ2x1 (85)

These ODEs have the closed-form solution:

x1(t) = A sin(θt+ φ); x2(t) = Aθ cos(θt+ φ) (86)

where A and φ are constants, which are determined by the initial conditions.

Now, according to the GPODE paradigm, illustrated in the centre panel

of Figure 39, x1 and x2 in equation (85) have to be replaced by separate

variables:

ẋ1(t) = x̃2(t); ẋ2(t) = −θ2x̃1(t) (87)

where x̃1(t) and x̃2(t) are modelled with a GP.
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Recalling that xs = [xs(t1), . . . , xs(tN)]T, equation (87) is rewritten as:

ẋ1 = f1(x̃1, x̃2; θ) = x̃2; ẋ2 = f2(x̃1, x̃2; θ) = −θ2x̃1 (88)

Inserting these expressions into equation (83), yields:

p(y1,y2, x̃1, x̃2|η, θ) = (89)

p�(y1,y2|f1[x̃1, x̃2, θ], f2[x̃1, x̃2, θ],η)p(x̃1|η)p(x̃2|η) =

p�(y1|f1[x̃1, x̃2, θ],η)p�(y2|f2[x̃1, x̃2, θ],η)p(x̃1|η)

p(x̃2|η) = p�(y1|x̃2,η)p�(y2| − θ2x̃1,η)p(x̃1|η)p(x̃2|η)

The superscript in p� is used to indicate that the functional form of this prob-

ability distribution is given by equation (75). Now recall that the variable

x2 represents the time derivative of x1 and was introduced as an auxiliary

variable to transform the second-order ODE from equation (84) into a system

of first-order ODEs: equation (85). In most applications, only the variables

themselves rather than their derivatives can be measured or observed, i.e. y2

is systematically missing. From equation (89), missing variables y2 gives:
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p(y1, x̃1, x̃2|η, θ) =

∫
p(y1,y2, x̃1, x̃2|η, θ)dy2

= p�(y1|x̃2,η)p(x̃1|η)p(x̃2|η)∫
p�(y2| − θ2x̃1,η)dy2

= p�(y1|x̃2,η)p(x̃1|η)p(x̃2|η) (90)

and

p(y1|η, θ) =

∫
p(y1, x̃1, x̃2|η, θ)dx̃1dx̃2 (91)

=

∫
p�(y1|x̃2,η)p(x̃2|η)dx̃2

∫
p(x̃1|η)dx̃1

=

∫
p�(y1|x̃2,η)p(x̃2|η)dx̃2 = p(y1|η)

This implies that the likelihood, i.e. the probability of a set of observa-

tions y1 = [y1(t1), . . . , y1(tN)]T, is independent of the ODE parameter θ.

Consequently, in the GPODE model, the parameter of interest – the ODE

parameter θ – is unidentifiable, i.e. it can not be inferred from the data.

Note that this problem is intrinsic to the GPODE model, not the ODE it-
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self. Equation (84) is a very simple ODE with a closed form solution for

x(t) = x1(t), stated in equation (86). If this solution is known, the infer-

ence task reduces to inferring the frequency from noisy observations of a

sine function. Hence, it is straightforward to infer θ from noisy observations

y1(t) = x1(t) + ε(t) alone, where ε(t) is iid noise, and no observations of

the derivative x2 = dx
dt

are required. Even if the explicit solution were not

known, it could be obtained by numerical integration of the ODEs, again

rendering the inference of the ODE parameter θ a straightforward task. How

do missing observations affect the AGM model? When y2 is systematically

missing, it is necessary to marginalise over y2 in equation (64). This will only

affect the first term on the right-hand side of equation (64), which as a con-

sequence of the marginalisation will reduce from p(Y|X,σ) = p(y1,y2|X,σ)

to p(y1|X,σ). However, this term does not explicitly depend on the ODE

parameters θ. Hence, as opposed to the GPODE model, missing observa-

tions do not systematically eliminate ODE parameters from the likelihood.

In fact, an inspection of equation (85) provides an intuitive explanation of

how inference in the AGM can work despite systematically missing values:

noisy observations of x1 provide information about the missing species x2 via

equation (85), left, using the very principle of gradient matching. Inference

of x2 then enables inference of the ODE parameter θ via equation (85), right.

It will be demonstrated, in Chapter 6.5, that AGM indeed can successfully

infer the ODE parameter θ when observations for species y2 are missing,

whereas GPODE systematically fails on this task.
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6.5 Empirical findings

The empirical analysis presented in Wang and Barber [49] suggests that

the GPODE model achieves very accurate parameter estimates. However, a

closer inspection of the authors’ study reveals that they used very informative

priors with tight uncertainty intervals centred on the (known) true parameter

values. In the present study, Wang and Barber’s [49] simulations have been

repeated, but with less informative priors, using their own software. The

inference for the AGM model has also been integrated into their software,

for a fair comparison between the two paradigms.

Computational inference. The objective of inference is to obtain the

marginal posterior distributions of the quantities of interest, which are usu-

ally the ODE parameters. This is analytically intractable, and previous

authors have used sampling methods based on MCMC. Dondelinger et al.

[11] and Calderhead et al. [8] used MCMC schemes for continuous values,

based on Metropolis-Hastings with appropriate proposal moves. Wang and

Barber [49] used Gibbs sampling as a faster alternative, based on a discreti-

sation of the latent variables, parameters and hyperparameters. For a fair

comparison between the model paradigms (AGM versus GPODE), which is

not confounded by the different convergence characteristics and potential dis-

cretisation artefacts of the two MCMC schemes (Metropolis-Hastings versus

Gibbs sampling), the AGM model has been implemented in the software of

Wang and Barber [49] to infer all quantities of interest with the same Gibbs
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sampling scheme. The basic idea is that due to the discretisation, all quanti-

ties can be marginalised over in the joint probability density, and this allows

the conditional probabilities needed for the Gibbs sampler to be easily com-

puted. For the prior distribution over the latent variables, the software of

Wang and Barber [49] fits a standard GP to the data and chooses, for each

timepoint, a uniform distribution with a 3-standard-deviation width centred

on the GP interpolant. For faster convergence of the MCMC simulations,

the noise variance σ2
s was set equal to the true noise variance, and the mean

φs equal to the sample mean. The parameters that had to be inferred (in

addition to the latent state variables) were the ODE parameters, the kernel

parameters of the GP, and the slack parameter γ for the AGM. For all sim-

ulations, a squared exponential kernel was used, and a U(5, 50) prior for the

length scale and a U(0.1, 1) prior for the amplitude hyperparameters were

chosen, respectively, as in the paper by Wang and Barber [49]. Different

prior distributions of the ODE parameters were tried, as specified in the fig-

ure captions; note that these priors are less informative than those used in

Wang and Barber [49]. Observational noise was added in the same way as

in Wang and Barber [49]. All simulations were repeated on ten independent

data instantiations.

Simple ODE with missing values. As a first study, noisy data was gen-

erated from the simple ODEs of (85), with species 2 missing, using a sample

size of N = 20 and an average signal-to-noise ratio of SNR = 10. The
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Figure 40: Inference results for the ODEs (85) with missing species. Vertical
line: true parameter value. Horizontal line: uniform prior. Histogram: aver-
age posterior distribution obtained with Gibbs sampling, averaged over ten
independent data instantiations. Left panel: GPODE model. Right panel:
AGM model.
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results are shown in Figure 40. They confirm what was discussed below

equation (91): paradigm B completely fails to infer the ODE parameter; in

fact, the inferred posterior distribution is indistinguishable from the prior.

Paradigm A succeeds in inferring the ODE parameter: the posterior distri-

bution is noticeably different from the prior and the 95% credible interval

includes the true parameter.

The Lotka-Volterra system. This is a simple model for prey-predator

interactions in ecology [27], and autocatalysis in chemical kinetics [4], see

equation 42. This model was used for the evaluation of parameter inference

in Dondelinger et al. [11] and Wang and Barber [49], and the simulations

here were repeated with the same parameters as used in these studies. First,

N = 11 datapoints were generated with θ1 = 2, θ2 = 1, θ3 = 4, θ4 = 1. Next,

iid Gaussian noise with an average signal-to-noise ratio SNR = 4 was added,

and ten independent datasets were generated this way. The results are shown

in Figure 41. The AGM model (paradigm A) shows a consistent performance

over both parameter priors: the Gamma Γ(4, 0.5) prior and the uniform prior.

In both cases, the inferred posterior distributions are tightly concentrated on

the true parameters. The GPODE model (paradigm B) sensitively depends

on the prior. The inferred posterior distributions are always more diffuse

than those obtained with paradigm A, and the performance is particularly

poor for the uniform prior. Here, paradigm A clearly outperforms paradigm

B.
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Figure 41: Inference results for the Lotka-Volterra system, equation (42).
Each column represents one of the four kinetic parameters of the system, and
the histograms show the average posterior distributions of the respective pa-
rameter, averaged over ten data instantiations. Vertical line: true parameter
value. Black line: prior distribution - uniform or Γ(4, 0.5). The top two rows
show the results for the AGM model (paradigm A). The bottom two rows
show the results for the GPODE model (paradigm B).
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The Fitz-Hugh Nagumo system (equations 40-41) was introduced in

Fitz-Hugh [14] and Nagumo et al. [38] to model the voltage potential across

the cell membrane of the axon of giant squid neurons. The model was used

in Campbell and Steele [9] to assess parameter inference in ODEs, using

comparatively large sets of N = 401 observations. For the present study, data

was generated with the same parameters, α = 0.2, β = 0.2 and ψ = 3, and

same initial values, V = 1, R = −1, but making the inference problem harder

by reducing the training set size to N = 20, covering the time interval [0, 10].

Noisy measurements were emulated by adding iid Gaussian noise with an

average signal-to-noise ratio SNR = 10, and generated ten independent data

instantiations. The results are shown in Figure 42. Here, both paradigms

show a similar performance. The GPODE model is slightly better than the

AGM model in terms of reduced bias for the third parameter, but slightly

worse in terms of increased posterior variance for the first parameter. The

results are, overall, worse than for the Lotka-Volterra system. Note that

the Fitz-Hugh Nagumo system poses a challenging problem, though; see

Campbell and Steele [9] and recall that the dataset is considerably smaller

(5%) than the one used by the authors.
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Figure 42: Inference results for the Fitz-Hugh Nagumo system, equations
(40-41). Each column represents one of the three kinetic parameters of the
system, and the histograms show the average posterior distributions of the
respective parameter, averaged over ten data instantiations. Vertical line:
true parameter value. Black line: prior distribution. The top row shows the
results for the AGM model (paradigm A). The bottom row shows the results
for the GPODE model (paradigm B). Since the results for the priors used
in Campbell and Steele [9] – a non-negative truncated N(0, 0.4) and a χ2(2)
distribution – were similar, only the results for the uniform prior are shown.
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6.6 Conclusions

Inference in mechanistic models based on non-affine ODEs is challenging due

to the high computational costs of the numerical integration of the ODEs,

and approximate methods based on adaptive gradient matching have there-

fore gained much attention in the last few years. The application of nonpara-

metric Bayesian methods based on GPs is particularly promising owing to

the fact that a GP is closed under differentiation. A new paradigm termed

GPODE was proposed in Wang and Barber [49] at ICML 2014, which was

purported to outperform state-of-the-art GP gradient matching methods in

three respects: providing a simplified mathematical description, constituting

a probabilistic generative model, and achieving better inference results. The

purpose of the present chapter has been to critically review these claims. It

turns out that the simplicity of the model presented in Wang and Barber [49],

shown in Figure 38, results from confusing the marginalisation over a random

variable with its elimination from the model. A proper representation of the

GPODE model leads to a more complex form, shown in Figure 39. It has

been shown that the GPODE model is turned into a probabilistic generative

model at the expense of certain independence assumptions, which are implau-

sible and have not been made explicit in Wang and Barber [49]. Furthermore,

it has been shown that as a consequence of these independence assumptions,

the GPODE model is susceptible to identifiability problems when data are

systematically missing. This problem is inherent in the GPODE model, and

is avoided when gradient matching with GPs follows the product of experts
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approach of Calderhead et al. [8] and Dondelinger et al. [11] (herein called

paradigm A/AGM). Unlike Wang and Barber [49], the empirical comparison

in this chapter has not shown any performance improvement over paradigm

A. On the contrary, for two systems (simple ODE with missing values, and

the Lotka-Volterra system), paradigm A achieves significantly better results.

For a third system (Fitz-Hugh Nagumo system), both approaches are on a

par, with different bias/variance characteristics.

The right-hand panel of Figure 39 demonstrates that gradient matching in-

trinsically violates the DAG constraint. This is because the function to be

matched is both the output of and the input to the ODEs, leading to a

directed cycle. The endeavour to model gradient matching with GPs as a

probabilistic generative model based on a DAG at the expense of implausible

dummy variables and independence assumptions (Figure 39, centre panel) is

at the heart of the problems with the GPODE model, as previously discussed.

It has been demonstrated that these problems can be avoided with gradient

matching paradigm A. The study in this chapter clearly suggests that for

practical applications, paradigm A is to be preferred over paradigm B. Wang

and Barber [49] argue that a principled shortcoming of paradigm A is the

fact that the underlying product of experts approach cannot be formulated

in terms of a probabilistic generative model. However, as has just been dis-

cussed, this is of little relevance, given that gradient matching cannot be

consistently conceptualised as a probabilistic generative model per se. This
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methodological limitation is the price that has to be paid for the substan-

tial computational advantages over the explicit solution of the ODEs that

gradient matching yields.
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7 Performing Model Selection via Estimation

of the Marginal Likelihood by Combining

Thermodynamic Integration and Gradient

Matching

7.1 Introduction

Parameter inference in ODEs relates to statistically inferring the size of an

effect of components in certain processes, but model selection instead aims

at discerning between different hypotheses describing the structure of the

systems.

Using a naive approach by choosing the model that simply has the largest

likelihood, results in poor model selection performance. It is clear that a

maximum of a function of a subset can never be higher than the function

defined over a total set (at most, the maximum of the subset will be the

same as the maximum over the total set). Therefore, for nested models

(which typically exist when proposing different candidate ODE models), the

maximum likelihood of the less complex model will always be equal to or

less than the more complex model. Hence, performing model selection based

solely on choosing the model that generates the largest likelihood, is spurious.
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There are two main approaches to model selection, that aim to avoid prob-

lems occurred by solely relying on the maximum likelihood of the competing

models. These are known as explanatory model selection and predictive

model selection.

Explanatory model selection is the method of integrating over the parameters

and focussing on the marginal likelihood of the data i.e. the probability of

the data per se and not the probability of the data given some parameter set.

The posterior probability of the candidate models is given by

p(M |Y) =
p(Y|M)p(M)

p(Y)
, (92)

where Y denotes the data and M represents different models.

Assuming a uniform prior over the models, equation 92 is maximised by the

term p(Y|M) and therefore explanatory model selection can be conducted

by focussing on this term. This term is known as the marginal likelihood

and is equal to

p(Y|M) =

∫
p(Y|θ)p(θ|M)dθ. (93)
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It is then possible to assess the plausibility of the competing models by

computing the Bayes factor

Bayes factor =
p(Y|Mi)

p(Y|Mj)

=

∫
p(Y|θi)p(θi|Mi)dθi∫
p(Y|θj)p(θj|Mj)dθj

, (94)

where the index i represents the candidate model and parameters associated

with model i and j represents the candidate model and parameters associ-

ated with model j. If the ratio in equation 94 is less than 1, this is evidence

in favour of model j, whereas if the ratio is greater than 1, this is evidence

in favour of model i. This is equivalent to just selecting the model that pro-

duces the highest marginal likelihood.

How then does the marginal likelihood guard against overly complex mod-

els? Given that the parameters are being integrated over rather than max-

imised, then models that have higher likelihood do not necessarily have higher

marginal likelihood. A graphical depiction of the reason behind this can be

seen, for example, in Figure 5.6 of “Machine learning. A probabilistic per-

spective” by Kevin P. Murphy [36]. A reproduction of this plot is included

in Figure 43.
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Figure 43: Reconstruction of Figure 5.6 from [36]. An illustration as to how
marginal likelihoods adhere to Occam’s razor. The y-axis shows the marginal
likelihood, p(Y) and the x-axis depicts different datasets that exist. Yo is the
observed dataset. The red line (M1) represents a model that is too simplistic
and is unable to fit to the observed dataset well. The blue line (M3) represents
a complex model. Although it can fit the observed dataset, it can also fit
many more due to its increased complexity. Hence the marginal likelihood
at the observed dataset is too low. The black line (M2) represents the true
model and it achieves the highest marginal likelihood of the candidates at
the observed dataset.

A more complex model can fit many different types of datasets and therefore

p(Y|M) will be more diffused and p(Y|M) evaluated for the observed dataset

will be smaller than a less complex model, unless the less complex model is
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incapable of modelling the data.

The main difficulty, however, in computing the marginal likelihood is that

usually the integral in equation 93 is not available in closed form, and the

techniques used to calculate it are computationally expensive.

Thermodynamic integration, successfully used in the field of Statistical Physics

and more recently introduced into the wider Statistical community by Friel

and Pettitt [15], is a promising method for computing the Bayes factors. It

uses the components that are already calculated in the parallel tempering

scheme outlined in Chapter 4 in order to compute the log marginal likeli-

hood. This can be done for the competing models and the exponent of the

subsequent difference between each pair of candidate models is the Bayes

factor.

The latter approach, predictive model selection, is a measure of out of sample

performance. However, approaches such as cross validation are computation-

ally expensive and quite often information criteria are used instead. In con-

trast to explanatory model selection, this approach does not integrate over

the parameters. Instead, it uses the likelihood, which is the probability of

the data given the parameters, and therefore model selection in this manner

can be thought of as being conducted by means of predictive performance.

This is true for most information criteria, but not for BIC, which instead
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attempts to approximate the log marginal likelihood.

The other information criteria tend to be estimates and approximations to

some externally- or cross- validated fit [16]. Cross-validation has been demon-

strated to provide an accurate way of estimating a model’s predictive perfor-

mance, however, these methods tend to be time-consuming. The natural step

would then be to approximate the method of cross-validation to some degree,

for example, AIC is asymptotically equivalent to cross-validation. WAIC on

the other hand (which is an improvement over DIC, since DIC cannot deal

with singular likelihood functions), is a recent method that is asymptotically

equivalent to Bayesian leave-one-out cross-validation [51] and is given by

WAIC(N) = −2
N∑
i=1

(log E(p(yi|θ))− V(log p(yi|θ))) , (95)

where the expectation E and variance V are taken with respect to the poste-

rior samples and N is the number of datapoints. Watanabe [50] shows that

expectation of the Bayes generalisation loss (BgL) is asymptotically equal to

E [BgL(N)] = E [WAIC(N)] + o

(
1

N

)
. (96)

Now writing the predictive distribution, leaving out yi, as
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p(i)(y) = E(i) [p(y|θ)] , (97)

then the log loss when yi is used as a testing sample is

− log p(i)(y) = − log E(i) [p(y|θ)] . (98)

Hence, the log loss of the Bayes cross-validation (CvL) is defined as the

empirical average of them,

CvL(N) = − 1

N
log E(i) [p(y|θ)] . (99)

Watanabe [51] shows that since y1, . . . , yN are independent training samples,

it follows that

E [CvL(N)] = E [BgL(N − 1)] (100)

and therefore, by using equation 96, it follows that
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E [CvL(N)] = E [WAIC(N − 1)] + o

(
1

N

)
. (101)

Hence, E [CvL(N)] and E [WAIC(N − 1)] are asymptotically equivalent to

one another.

The Kullback-Leibler divergence is a measure of “distance” between any two

distributions [54]. Terming ỹ to represent some future observation, f(ỹ) to

represent the probability density of the true model and g(ỹ) as the probability

density of the approximating model, then the Kullback-Leibler divergence is

given by

KL(f, g) =

∫
f(ỹ) log

f(ỹ)

g(ỹ)
dỹ = Ef [ log f(ỹ)]− Ef [ log g(ỹ)] . (102)

The Kullback-Leibler divergence, equation 102 can be interpreted as the in-

formation lost when g(·) is used to approximate f(·). The smaller KL(f, g),

the closer the model g is to the true distribution. In the absence of full knowl-

edge of true distribution, only the second term of KL(f, g) is relevant in com-

paring different possible models, since the first term is a function of f , but in-

dependent of the candidate model g. By the law of large numbers, as n→∞,

the average of the log likelihood, 1
n

∑n
i=1 log g(yi|θ), tends to Ef [ log g(ỹ|θ)].

Akaike [2] showed that by assuming the fitted model with the maximum
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likelihood estimate of θ as the best for the family G = {g(ỹ|θ), θ ∈ Θ} then

asymptotically

1

n

n∑
i=1

log g(yi|θMLE)− p

n
∼= Ef [ log g(ỹ|θMLE)] , (103)

where p, the number of parameters, penalises over-estimating the out of sam-

ple log likelihood. AIC is the estimator of equation 103, multiplied by −2n.

Another information criterion that is relevant to this chapter is that of BIC.

BIC is an approach that attempts to approximate the log marginal likelihood,

as a work around for the difficulties aforementioned in computing the integral

in equation 93. It is defined as

BIC = −2log p(Y|θMLE) +D(θMLE)log N

≈ −2log p(Y|M) (104)

where D(θMLE) are the number of parameters in the model and N is the

number of datapoints. BIC is asymptotically equivalent to the log marginal

likelihood and is derived in the following fashion. By using a Laplace ap-

proximation (see equation 8.52 in Chapter 8 of Murphy [36]), it is possible

to write the log marginal likelihood as
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log p(Y) ≈ log p(Y|θMode) + log p(θMode)−
1

2
log |H|, (105)

where θMode is the mode of the parameters and H is the Hessian matrix.

Assuming a uniform prior, the term p(θMode) can be dropped and θMode

replaced with θMLE, the maximum likelihood estimator. Now denote H =∑N
i=1 Hi, where Hi is the second derivative of log p(yi|θ). The next step is

to approximate each Hi by a fixed matrix H̃. This means, assuming H is

full rank,

log |H| = log |NH̃| = log (ND(θMLE)|H̃|) = D log N + log |H̃|. (106)

Since log |H̃| is independent of N , this term can be dropped also (since the

dominating term will be the likelihood for N →∞). Substituting back into

equation 105 yields

log p(Y) ≈ log p(Y|θMLE)− D(θMLE)

2
log N

= −2log p(Y) ≈ −2log p(Y|θMLE) +D(θMLE)log N. (107)

It should be noted that it can be difficult in practice to satisfy the asymptotic

assumptions of information criteria, which can often lead to poor approxi-

mations of the quantity of interest.
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This chapter first combines the method of calculating the log marginal like-

lihood using thermodynamic integration with that of gradient matching and

then demonstrates that conducting model selection using the standard com-

putational form of thermodynamic integration (now combined with gradient

matching) is suboptimal and will decrease the accuracy of the Bayes factors.

An alternative form of calculating the log marginal likelihood using thermo-

dynamic integration combined with gradient matching will be proposed and

it will be discussed that this leads to more accurate estimates of the Bayes

factors and a robust way of performing model selection in ordinary differ-

ential equation models with gradient matching. This new method will be

compared to the results of WAIC and BIC.

This chapter combines the method of calculating the log marginal likelihood

using thermodynamic integration with that of gradient matching. It demon-

strates that conducting model selection using this form is suboptimal and

will decrease the accuracy of the Bayes factors. An alternative form of com-

bining thermodynamic integration with gradient matching will be proposed

and it will be discussed that this leads to more accurate estimates of the

Bayes factors. This new method will be compared to the results of WAIC

and BIC.
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7.2 Methodology

A central objective of model selection using Bayes factors is to calculate the

marginal likelihood of a model. The Bayes factor is then computed by cal-

culating the ratio of the marginal likelihoods, or the difference of the log

marginal likelihoods, of the competing models. Thermodynamic integration

is therefore useful, as it provides a way to compute the log marginal like-

lihood for a given model, using the tempered versions of the likelihood in

equation 66. This gives a framework for the computation of the integral in

equation 93, which is one of the main difficulties in practically performing

explanatory model selection. Note that in this chapter the dependency on

the particular model is not made explicit in the notation, for ease of reading,

i.e. p(Y) = p(Y|M).

Friel and Pettitt [15] show that the log marginal likelihood can be computed

by taking the derivative of log p(Y|α(i)) with respect to the temperatures

and then integrating over the temperatures. The starting point is

d

dα(i)
log p(Y|α(i)) =

1

p(Y|α(i))

d

dα(i)
p(Y|α(i)). (108)
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The tempered posterior distribution of the latent variables and parameters

for the adaptive gradient matching method [11] described in Chapter 4 can

be written as

p(X,θ,η,γ,σ2|Y, α(i)) =
1

p(Y|α(i))
p(Y|X,σ2)α

(i)

p(X|θ,η,γ)p(θ)p(η)p(γ)p(σ2), (109)

where

p(Y|α(i)) =

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

p(Y|X,σ2)α
(i)

p(X|θ,η,γ)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2. (110)
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Hence,

d

dα(i)
log p(Y|α(i)) =

1

p(Y|α(i))

d

dα(i)

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

p(Y|X,σ2)α
(i)

p(X|θ,η,γ)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2

=
1

p(Y|α(i))

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

log p(Y|X,σ2)p(Y|X,σ2)α
(i)

p(X|θ,η,γ)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2

=

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

log p(Y|X,σ2)
1

p(Y|α(i))
p(Y|X,σ2)α

(i)

p(X|θ,η,γ)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2

=

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

log p(Y|X,σ2)p(X,θ,η,γ,σ2|Y, α(i))dXdθdηdγdσ2

= Eα(i) [log p(Y|X,σ2)]. (111)

Note that the expectation in equation 111 is for fixed temperature α(i), i.e.

the expected value of the log likelihood uses the sampled X and σ2 from the

given temperature chain. The marginal likelihood p(Y) is simply

p(Y|α(i) = 1) and the normalisation of the posterior distribution implies that

p(Y|α(i) = 0) = 1.
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The log marginal likelihood is therefore

log p(Y) = log p(Y|α(i) = 1)− log p(Y|α(i) = 0)

=

∫ α(i)=1

α(i)=0

d

dα(i)
log p(Y|α(i))dα(i)

=

∫ α(i)=1

α(i)=0

Eα(i) [log p(Y|X,σ2)]dα(i). (112)

The integral in equation 112 can be solved numerically, for example, using

the trapezoidal rule. It is important that due consideration is used in choos-

ing the discretisation of the temperatures α(i) = {0, . . . , 1}, as the largest

contributions to this integral usually come from a small region around α(i)

close to 0. This motivates the discretisation form outlined in Friel and Pettitt

[15] and the justification for the selection used throughout this thesis.

A drawback to this scheme however, is that the distribution of the data

p(Y|X,σ2)α
(i)

is tempered, whereas the distribution controlling the mismatch

to the gradients and draws of the latent variables p(X|θ,η,γ) is not. This

leads to poor mixing and convergence of the Markov chains, subsequently

leading to poorer parameter estimation, which in turn negatively affects the

accuracy of the Bayes factors. This observation was noted when originally

testing the method and the poor results motivated the alternate scheme that

is about to follow. Due to the poor mixing and convergence, the result-

142



ing poor parameter estimation and poor accuracy of the Bayes factors, this

method was abandoned in favour of the alternative method that is to follow,

and was not included for the comparisons on the simulation studies detailed

in this chapter.

Due to the aforementioned issues, it would be better to also temper the dis-

tribution controlling the mismatch between the gradients, creating less dis-

parity with the proposal distribution in the MCMC and therefore increasing

the mixing and convergence of the chains. In order to do this, it is necessary

to separate equation 65 into two parts: the Gaussian process part and the

part that penalises the differences between the gradients.

Based on equation 65, it is possible to write the joint probability of the latent

variables and parameters as

p(X,θ,η,γ) =
ζ(X,θ,γ)p(X|η)p(θ)p(η)p(γ)

C
, (113)

where ζ(X,θ,γ) is a potential function (an un-normalised probability dis-

tribution), defined by equation 63 (ζ(·) here is being used as shorthand for

the solution to the integral of equation 63), p(X|η) is the distribution of the

Gaussian process with hyperparameters η and the normalisation constant C

is defined as

C =

∫
X

∫
θ

∫
η

∫
γ

ζ(X,θ,γ)p(X|η)p(θ)p(η)p(γ)dXdθdηdγ. (114)
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Note that φ in equation 65 is just the sample mean and not sampled as a

parameter in the MCMC scheme and therefore is omitted from the notation

in this chapter. The joint probability of the whole system now becomes

p(Y,X,θ,η,γ,σ2) = p(Y|X,σ2)p(X,θ,η,γ)p(σ2)

=
p(Y|X,σ2)ζ(X,θ,γ)p(X|η)p(θ)p(η)p(γ)p(σ2)

C
, (115)

which therefore implies that the tempered posterior distribution of the latent

variables and parameters is given by

p(X,θ,η,γ,σ2|Y, α(i)) =
1

Z(Y|α(i))

[
p(Y|X,σ2)ζ(X,θ,γ)

]α(i)

p(X|η)p(θ)p(η)p(γ)p(σ2), (116)

and Z(Y|α(i)) as

Z(Y|α(i)) =

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

[
p(Y|X,σ2)ζ(X,θ,γ)

]α(i)

p(X|η)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2. (117)
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Taking the derivative of log Z(Y|α(i)) will yield

d

dα(i)
log Z(Y|α(i)) =

1

Z(Y|α(i))

d

dα(i)
Z(Y|α(i))

=
1

Z(Y|α(i))

d

dα(i)

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

[
p(Y|X,σ2)ζ(X,θ,γ)

]α(i)

p(X|η)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2

=
1

Z(Y|α(i))

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

log
[
p(Y|X,σ2)ζ(X,θ,γ)

]
[
p(Y|X,σ2)ζ(X,θ,γ)

]α(i)

p(X|η)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2

=

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

log
[
p(Y|X,σ2)ζ(X,θ,γ)

] 1

Z(Y|α(i))

[
p(Y|X,σ2)ζ(X,θ,γ)

]α(i)

p(X|η)p(θ)p(η)p(γ)p(σ2)dXdθdηdγdσ2

=

∫
X

∫
θ

∫
η

∫
γ

∫
σ2

log
[
p(Y|X,σ2)ζ(X,θ,γ)

]
p(X,θ,η,γ,σ2|Y, α(i))dXdθdηdγdσ2

= Eα(i)

[
log p(Y|X,σ2)

]
+ Eα(i) [ log ζ(X,θ,γ)] . (118)
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This in turn means that

log Z(Y) = log Z(Y|α(i) = 1)− log Z(Y|α(i) = 0)

=

∫ α(i)=1

α(i)=0

d

dα(i)
log Z(Y|α(i))dα(i)

=

∫ α(i)=1

α(i)=0

Eα(i)

[
log p(Y|X,σ2)

]
dα(i) +

∫ α(i)=1

α(i)=0

Eα(i) [ log ζ(X,θ,γ)] dα(i),

(119)

where the first line in equation 119 follows from equation 117. The log

marginal likelihood can now be expressed as

log p(Y) = log Z(Y)− log (C). (120)

C can depend on the ODE model structure and is estimated by sampling

equation 114 using MCMC. Note: since C does not depend on the data, this

term can be estimated even before the data is collected, in order to speed up

the whole process. Now define

Z(C|α(i)) =

∫
X

∫
θ

∫
η

∫
γ

ζ(X,θ,γ)α
(i)

p(X|η)p(θ)p(η)p(γ)dXdθdηdγ.

(121)

To approximate log (C) using thermodynamic integration, it is necessary to

146



compute the derivative of log Z(C|α(i)):

d

dα(i)
log Z(C|α(i)) =

1

Z(C|α(i))

d

dα(i)
Z(C|α(i))

=
1

Z(C|α(i))

d

dα(i)

∫
X

∫
θ

∫
η

∫
γ

ζ(X,θ,γ)α
(i)

p(X|η)p(θ)p(η)p(γ)dXdθdηdγ

=
1

Z(C|α(i))

∫
X

∫
θ

∫
η

∫
γ

log ζ(X,θ,γ)ζ(X,θ,γ)α
(i)

p(X|η)p(θ)p(η)p(γ)dXdθdηdγ

=

∫
X

∫
θ

∫
η

∫
γ

log ζ(X,θ,γ)
1

Z(C|α(i))
ζ(X,θ,γ)α

(i)

p(X|η)p(θ)p(η)p(γ)dXdθdηdγ

= Ẽα(i) [ log ζ(X,θ,γ)] . (122)

Note that the Ẽ signifies that this expectation has been taken with respect

to the probability distribution in equation 113 i.e. the data is not included

in the MCMC sampling. Now, it is possible to compute log (C) using ther-

modynamic integration
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log (C) = log (C|α(i) = 1)− log (C|α(i) = 0)

=

∫ α(i)=1

α(i)=0

d

dα(i)
log Z(C|α(i))dα(i)

=

∫ α(i)=1

α(i)=0

Ẽα(i) [ log ζ(X,θ,γ)] dα(i). (123)

Whilst it is possible to compute log (C) using thermodynamic integration,

given that the integrand for C should be a lot smoother than for the like-

lihood, it is possible to instead approximate equation 114 using a simple

Monte Carlo sum i.e.

C =
1

Niter

Niter∑
i=1

ζ(Xi,θi,γi), (124)

where the draws required to compute ζ(Xi,θi,γi) are sampled from the priors

p(η), p(γ), p(θ) and p(X|η), with acceptance probability 1. In the examples

looked at in Chapter 7.3, the simple Monte Carlo sum was quick to converge

and thus equation 124 was used to compute C.

7.3 Simulation

The proposed method was tested on data generated from each of these models

in turn. For ease of reading, denote equation 42 as LV1 (for Lotka-Volterra),

equation 43 as LV2 (for Lotka-Volterra intra-species competition) and equa-
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tion 44 as LV3 (for Lotka-Volterra saturation term), respectively. 10 datasets

were generated from each model in turn and iid Gaussian noise (SD = 0.5,

average SNR for each “species” = 10) was added for the LV1 and LV3 models

and iid Gaussian noise (SD = 0.2, average SNR for each “species” = 10) was

added for the LV2.

Lotka-Volterra Original Model (LV1)

Data was generated with the following parameters: θ1 = 2, θ2 = 1, θ3 = 4

and θ4 = 1. Starting from initial values of (5,3) for the two “species”, 11

timepoints were generated over the time course [0,2], producing one period.

The priors over the parameters were Γ(4, 0.5) prior. These settings were cho-

sen to correspond with the set-up in Dondelinger et al. [11].

Lotka-Volterra Intra-Species Competition Model (LV2)

Data was generated with the following parameters: θ1 = 4, θ2 = 1, θ3 = 4,

θ4 = 2 and θ5 = 5. Starting from initial values of (5,3) for the two “species”,

11 timepoints were generated over the time course [0,2], producing one pe-

riod. The parameters for this scneario were chosen so that the parameter

controlling the intra-species term (θ5) could be large enough to distinguish

the model from the LV1 model (where, as θ5 → 0, LV2 → LV1). The other

parameters were chosen to ensure the signals were smooth. The priors over

the parameters were Γ(4, 0.5) prior for θ1, θ2, θ3 and θ4 and a U(0, 9) for θ5

as there was no indication from previous work what a suitable prior would
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be for the parameter governing the intra-species term.

Lotka-Volterra Saturation Term Model (LV3)

Data was generated with the following parameters: θ1 = 2.8, θ2 = 3.5,

θ3 = 1, θ4 = 2.5 and θ5 = 1. Starting from initial values of (5,3) for the two

“species”, 11 timepoints were generated over the time course [0,2], producing

one period. The saturation term included in these ODEs should mean that

the less complex models are unable to produce signals that match the shape

of the signals produced by the LV3 model. Hence, if the model selection

method is working properly, this model should be clearly favoured over the

other two. The priors over the parameters were Γ(4, 0.5) prior for θ1, θ2, θ3

and θ4 and a U(0, 9) for θ5 (reflecting the extra uncertainty surrounding the

5th parameter).

Protein Signalling Transduction Pathway For ease of reading, equa-

tions 45 - 48 will be referred to as PSTP1, PSTP2, PSTP3 and PSTP4,

respectively. A graphical representation of PSTP1 can be found in Figure 4

and graphical representations of PSTP2-4 can be found in Figures 6-8. Data

was generated from PSTP1 as it provided a reasonable degree of complexity

and was neither the least complex model nor the most complex model out of

the four. This feature is very important, since otherwise it would be difficult

to ascertain whether the model selection method was working properly, or

whether it was biased and just happened to favour the least/most complex
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model. 10 datasets were generated and iid Gaussian noise (SD = 0.0635,

average SNR for each “species” = 10) was added. For the “species” that did

not have data (PhA and RppPhA), the rate of change was set to zero, which

implies a constant rate over time. This corresponds to a component that is

disconnected from the rest of the system. For these components, given the

constant rate of change and added Gaussian noise, the concentrations can be

thought as very slightly fluctuating around their initial values.

Data was generated with the following parameters: k1 = 0.07, k2 = 0.6,

k3 = 0.05, k4 = 0.3, V = 0.017 and Km = 0.3. Starting from initial val-

ues of (1,0,1,0,0,1,0) for the seven “species”, 15 timepoints were generated

{0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100} producing one period. These

settings were chosen to correspond with the set-up in Dondelinger et al. [11].

Other Settings The RBF kernel, equation 71, was used to fit the Gaussian

process for all the Lotka-Volterra models, and the sigmoid variance kernel,

equation 72, was used to fit the Gaussian process for all the protein signalling

transduction pathway models. This is to correspond with simulation experi-

ments that have been set-up in the current literature e.g. see Dondelinger et

al. [11]. The initial fits from the GPs using the specified kernels were plotted

against the data and showed good agreement.

In order to avoid the influence from the flattening of the signals, which was
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discussed in Chapter 6, the standard deviation of the noise was held at the

true value and a region of 3 standard deviations around an initial interpolant

was constructed for the subsequent draws of the latent variables. This was

true for every scenario of every candidate model used to compute equation

119 in this chapter. MCMC was carried out in the fashion as outlined in

Chapter 6.

7.4 Results

In order to assess the performance of the new scheme outlined in Chapter 7.2,

the method will be tested on two ODE systems and various candidate models

of each. For comparison purposes, the results of BIC and WAIC [51] will also

be provided. There are two possible ways of defining successful model selec-

tion 1. How well the results match the marginal likelihood scores computed

using a method that explicitly solves the ODEs, as this corresponds to full

Bayesian inference. 2. How often a method selects the model the data was

simulated from. This corresponds to how well a method is able to identify a

particular characteristic if indeed that characteristic does exist in the process

you are observing.

The results in this chapter will be assessed mainly on the second definition,

as computing the marginal likelihood scores using an explicit solution of the

ODEs for all simulation set-ups lies outside the scope of this thesis. How-

ever, it was possible to compute marginal likelihood scores using an explicit
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solution of the ODEs for one scenario. The marginal likelihood scores were

computed using thermodynamic integration i.e. using equation 112, but in-

stead using the likelihood obtained from the explicit solution of the ODEs.

These results will be used to try to ascertain how well gradient matching is

approximating the marginal likelihoods and gauge the model selection per-

formance by the methods.

A pattern was observed whereby the performance of the computation of the

Bayes factors using equation 120 sometimes deteriorated, whereas the results

for log Z(Y) using equation 119 showed an improved performance. This is

discussed further on. For completeness, the results of log Z(Y) using equa-

tion 119 are presented for all simulation scenarios.

Lotka-Volterra Original Model (LV1)

Table 5: Percentage of the time, across 10 datasets, a model was favoured
by a model selection method. Data generated from LV1 model.

Method LV1 LV2 LV3

Bayes factor using equation 120 100% 0% 0%

log Z(Y) using equation 119 100% 0% 0%

BIC 80% 20% 0%

WAIC 70% 30% 0%
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Table 5 contains the percentages of the time a model was favoured by a

particular model selection method for when data was generated using model

LV1. A graphical representation can be found in Figures 54 - 57, in the

appendix. The method for computing the Bayes factors using equation 120

is excellent at selecting the true model, as it does so 100% of the time. The

same conclusion can be observed by looking at the results of log Z(Y) com-

puted using equation 119, where 100% of the time, the true model is selected.

BIC and WAIC are good at selecting the true model, which they do so 80%

and 70% of the time respectively.

In order to gauge how well gradient matching is approximating the marginal

likelihoods, parameter inference using an explicit solution of the ODEs was

conducted for this one scenario (generating data from the LV1 model and

proposing the LV1, LV2 and LV3 models as candidates). Using an explicit

solution of the ODEs and computing the marginal likelihood of the data

should provide a benchmark gold standard for model selection in ODEs.

Table 6: Percentage of the time, across 10 datasets, a model was favoured
by a model selection method, using an explicit solution of the ODEs for
parameter inference. Data generated from the LV1 model. The initial values
of the system were inferred as additional parameters.

Method LV1 LV2 LV3

Marginal likelihood 60% 0% 40%
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By examining Table 6, it can be seen that the marginal likelihood scores

favour the true model 60% of the time and the more complex LV3 model

40% of the time. A graphical representation can be found in Figure 52, in

the appendix.

These results are in contrast to the results obtained from gradient matching.

It appears as if there is a performance increase in selecting the true model,

for the gradient matching method. This is counterintuitive, since gradient

matching is an approximation and should be less informative, rather than

more. One possibility for this outcome might be that really the true model

should not be chosen 100% of the time, and both the LV1 and LV3 models

are equally supported by the data. However, the results from the explicit so-

lution of the ODEs are not directly comparable to that of gradient matching.

This is because the explicit solution of the ODEs has additional parameters

that it infers: the initial conditions. Gradient matching does not need to

infer the initial conditions as it effectively profiles over them. Therefore, in

order to directly compare the results, the computation of the marginal like-

lihood scores will be repeated, but the initial conditions will not be inferred

(they will be held fixed at the true initial values).

By examining Table 7, it can be seen that now the marginal likelihood scores

favour the true model 100% of the time. A graphical representation can be

found in Figure 53, in the appendix.
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Table 7: Percentage of the time, across 10 datasets, a model was favoured
by a model selection method, using an explicit solution of the ODEs for
parameter inference. Data generated from the LV1 model. The initial values
of the system were held fixed at the true initial values.

Method LV1 LV2 LV3

Marginal likelihood 100% 0% 0%

The results show that gradient matching does an excellent job of approximat-

ing the marginal likelihood of the full Bayesian inference approach (at least

for when data is generated from the LV1 model and proposing the LV1, LV2

and LV3 models as candidates), as the conclusion to which model is preferred

in explaining the data is exactly the same between the methods. Not only

this, but they also reveal that gradient matching, an approximate method,

gets a performance increase over the explicit solution (which intuitively seems

like it should provide an upper-bound on the level of performance). This is

because the explicit solution needs to deal with initial values (which typi-

cally are unknown in practice). Estimating these in the inference procedure

introduces more uncertainty, intrinsically, when explicitly solving the ODEs.

Gradient matching does not deal with initial conditions. Hence, marginal

likelihood estimation using gradient matching appears to be equivalent to

marginal likelihood estimation using an explicit solution of the ODEs when

the initial parameters are known, and therefore it has an advantage. Imme-

diate future work will focus on seeing how consistent this is across different
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ODE structure scenarios.

Lotka-Volterra Intra-Species Competition Model (LV2)

Table 8: Percentage of the time, across 10 datasets, a model was favoured
by a model selection method. Data generated from LV2 model.

Method LV1 LV2 LV3

Bayes factor computed using equation 120 80% 10% 10%

log Z(Y) using equation 119 100% 0% 0%

BIC 90% 0% 10%

WAIC 40% 60% 0%

Table 8 contains the percentages of the time a model was favoured by a

particular model selection method for when data was generated using model

LV2. A graphical representation can be found in Figures 58 - 61, in the

appendix. The new method for computing the Bayes factors using equation

120 do a poor job of selecting the true model, as 80% of the time the new

method selects the LV1 model even though the data were generated from the

LV2 model. Likewise the results from log Z(Y) using equation 119 also show

a similar result, as 100% of time it favours the LV1 model above the (true)

LV2 model. BIC does a poor job of selecting the true model, as 0% of the
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time it favours the true model. WAIC selects the true model 60% of the time.

At first glance, it would appear that model selection using the Bayes factors

calculated using equation 120, log Z(Y) using equation 119 and BIC (and

arguably WAIC) are not able to select the true model for this scenario, since

although the data were generated from the LV2 model, the methods favour

the LV1 model. However, an inspection of the structure of LV2 can help

clarify things. When θ5 is large, the component will decrease x1. However,

θ5 could be set to zero and θ2 could made large and again x1 would decrease.

Hence, the LV1 model has a term that is able affect the signals in a way very

much the same as the LV2 model, without the need for an extra parameter.

This essentially makes the intra-species component weakly identifiable. In

order to test whether this is the case and to see whether the model selection

methods are able to identify the true model, the dependency of the system

on θ5 needs to be more substantial. To this end, data was generated with

following parameters; θ1 = 100, θ2 = 0.1, θ3 = 4, θ4 = 0.1 and θ5 = 10. The

effect this has on the system is that for x1, this “species’” concentration rises

exponentially and then plateaus, since the intra-species competition term

stops the population increasing without end. The LV1 model should not be

able to replicate this because concentrations for x2 go to zero. Hence, the LV1

model should not have a way to regulate the population concentration and

get good agreement with the data. For this set-up, iid Gaussian noise of SD

= 0.1414 was added to each “species” (average SNR for each “species = 10).
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The priors over the parameters were Γ(4, 0.5) prior for θ2, θ3 and θ4, U(0, 110)

for θ1 and a U(2, 11) for θ5 (reflecting the extra uncertainty of these two

parameters).

Table 9: Percentage of the time, across 10 datasets, a model was favoured by
a model selection method. Data generated from LV2 with parameter settings
chosen to make the intra-species component effect more substantial.

Method LV1 LV2 LV3

Bayes factor computed using equation 120 30% 70% 0%

log Z(Y) using equation 119 30% 70% 0%

BIC 100% 0% 0%

WAIC 50% 30% 20%

By examining Table 9, it is possible to observe the model selection perfor-

mance when parameter settings are chosen in order to make the intra-species

component effect in the LV2 model more substantial. A graphical repre-

sentation can be found in Figures 62 - 65, in the appendix. Now, the new

computation of the Bayes factors using equation 120 and log Z(Y) using

equation 119 select the true model 70% of the time. This is a substantial

difference from before and indicates the reason the methods were unable

to select the true model previously is because the intra-species component
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term was effectively unidentifiable (for the particular choice of the parameter

settings). It is worth noting that the parameters now chosen to make the

intra-species component effect more substantial were rather arbitrary and

it is likely that choosing other parameters that more clearly pronounce the

effect of the intra-species term on the process, might lead to an increase in

the percentage of the time the true model is selected by the new methods.

BIC is unable to identify the true model for any dataset. WAIC selects the

true model 30% of the time.

Lotka-Volterra Saturation Term Model (LV3)

Table 10: Percentage of the time, across 10 datasets, a model was favoured
by a model selection method. Data generated from LV3 model.

Method LV1 LV2 LV3

Bayes factor computed using equation 120 0% 0% 100%

log Z(Y) using equation 119 0% 0% 100%

BIC 0% 0% 100%

WAIC 0% 0% 100%

Table 10 contains the percentages of the time a model was favoured by a

particular model selection method for when data was generated using model
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LV3. A graphical representation can be found in Figures 66 - 69, in the

appendix. The new method for computing the Bayes factors using equation

120, log Z(Y) using equation 119, BIC and WAIC are excellent at selecting

the true model, as 100% of the time the methods select the true model.

Protein Signalling Transduction Pathway Model 1 (PSTP1)

Table 11: Percentage of the time, across 10 datasets, a model was favoured
by a model selection method. Data generated from PSTP1 model.

Method PSTP1 PSTP2 PSTP3 PSTP4

Bayes factor computed using equation 120 70% 0% 0% 30%

log Z(Y) using equation 119 100% 0% 0% 00%

BIC 30% 0% 60% 10%

WAIC 40% 0% 0% 60%

Table 11 contains the percentages of the time a model was favoured by a

particular model selection method for when data was generated using model

PSTP1. A graphical representation can be found in Figures 70 - 73, in the

appendix. The new method for computing the Bayes factors using equation

120 is good at selecting the true model. However, 30% of the time, the

method favours the more complex model instead. log Z(Y) using equation
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119 on the other hand, selects the true model 100% of the time. BIC does

a poor job of selecting the true model, where the majority of the time it

favours the least complex model (PSTP3) and the true model 30% of the

time. WAIC is also poor at selecting the true model, where the majority of

the time it favours the most complex model (PSTP4) and the true model

40% of the time.

Based on these results, it is clear that for this case the approximation for

C was deteriorating the new method’s ability to select the true model. The

values computed for log (C) under model PSTP4 were large and negative.

This is because due to the increased complexity of the model, it can support

many instances where the gradients from the ODEs match those from the

interpolant. This causes the distribution for C under this model (PSTP4) to

be very diffused, which in turn means that any subsequent draws from this

distribution will have a very low probability density associated with them.

Taking the logarithm of a small value (� 0.001) will result in a large neg-

ative value for log (C). Since the marginal likelihood in equation 120 is

calculated by log Z(Y)− log (C), this increases the marginal likelihood sub-

stantially. Bayes factors, however, are consistent estimators and therefore

the likelihood term (Z(Y)) should compensate for this occurrence. However,

the usual experiments conducted in current systems biology typically yield a

small number of observations. This in turn reduces the effect that the likeli-

hood term has, in the calculation of the marginal likelihood. For some of the
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scenarios that have been examined the normalisation term (C) has been sub-

ject to substantial numerical noise and therefore has been having a negative

effect on the results of the model selection. Using log Z(Y) computed using

equation 119 instead of the log marginal likelihood (equation 120) improves

the ability to select the true model.

7.5 Conclusions

The proposed method of calculating Bayes factors via equation 120 pro-

vides an accurate way of performing model selection in ODEs using gradient

matching and thermodynamic integration, when the criterion for good per-

formance is how often the true model is selected. For this criterion, the

method outperforms BIC and WAIC over all scenarios examined, apart from

when simulating data from the LV2 model with parameters; θ1 = 4, θ2 = 1,

θ3 = 4, θ4 = 2, θ5 = 5. For this scenario, however, it was demonstrated that

the particular parameters chosen created created weak identifiability between

the true model and the less complex model. When other parameters were

chosen, in order to allow the intra-species term to have a more substantial

role in governing the process, the newly proposed method outperforms both

BIC and WAIC in selecting the true model.

BIC was able to correctly identify the true model when data was gener-

ated from the LV1 model and the LV3 model only. BIC is asymptotically

equivalent to the log marginal likelihood, but the typical data size for the
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experiments in this particular area of systems biology is small (sample size

11 for the Lotka-Volterra models and a sample size of 15 for the protein

signalling transduction pathway model). It is unlikely that the asymptotic

assumptions of BIC have been satisfied for these scenarios.

WAIC was able to identify the true model when data was generated from the

LV1 model, the LV2 model (with parameters θ1 = 4, θ2 = 1, θ3 = 4, θ4 = 2,

θ5 = 5) and the LV3 model. However, when the parameters were chosen

in order to pronounce the effect the intra-species term had on the system,

WAIC was unable to correctly identify the true model. It was also unable

to identify the true model for the protein signalling transduction pathway

example. As with the case of BIC, WAIC also relies on asymptotics. It is

likely that due to the sparse dataset sizes, the asymptotic properties have

not been satisfied and this is deteriorating the performance of the method.

A discovery was made as to whether both terms in equation 120 should be

used for the model selection. For the examples looked at throughout this

chapter, only considering log Z(Y) in equation 120) leads to selecting the

true model as often as using the log marginal likelihood and in some cases

more often. The only example where it was slightly poorer at selecting the

true model than the log marginal likelihood, was when data was generated

from the LV2 model with parameters θ1 = 4, θ2 = 1, θ3 = 4, θ4 = 2, θ5 = 5

(where the log marginal likelihood selects the true model 10% of the time and
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log Z(Y) in equation 120) selects the true model 0% of the time). However, as

detailed previously, this was due to a poor choice of parameter settings that

ended up masking the effect the intra-species term had on the system. When

the effect of this term is pronounced, log Z(Y) in equation 120) performs as

well as the log marginal likelihood in selecting the true model. Hence, for the

examples looked at, log Z(Y) computed using equation 119 outperforms all

the other methods at selecting the true model. Future research should focus

on whether this is a general trend and whether the normalisation term (C)

in equation 120) can be dispensed with entirely.

Finally, the conclusions made so far are based on how often a model se-

lection method identifies the true model. However, if another model is as

adequate (or better) at explaining the data, then selecting the true model

would not necessarily be a success. A benchmark for which models are con-

sistent with data is necessary to judge this performance. This benchmark is

the marginal likelihood computed using full Bayesian inference. Computing

the marginal likelihood with gradient matching does not provide a bench-

mark, since gradient matching is an approximate method and therefore the

marginal likelihood will approximate the true marginal likelihood. In order

to see how good of an approximation gradient matching achieved, parameter

inference by explicitly solving the ODEs was carried out and the marginal

likelihoods were computed. The results show that gradient matching is able

to exactly match the conclusion of the model selection using the marginal
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likelihoods computed using an explicit solution of the ODEs, when the initial

conditions of the system is known. In fact, gradient matching demonstrates

a performance increase, as it does not require any initial conditions. Future

work will investigate whether this is consistent across different ODE structure

scenarios.
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8 Discussion

The elucidation of the structure and dynamics of biopathways is a central

objective of current systems biology research. A standard approach is to

view a biopathway as a network of biochemical reactions, which is modelled

as a system of ordinary differential equations (ODEs).

Conventional inference methods typically involve numerically integrating the

system of ODEs to produce a signal. This signal is then compared to the

data by some appropriate metric defined by the chosen noise model, enabling

the calculation of a likelihood. This process is repeated, as part of either an

iterative optimisation scheme or sampling procedure in order to estimate the

parameters. However, this is onerous as the computational costs of repeat-

edly solving the solving the ODEs are usually high.

Aimed at reducing the computational complexity, new concepts based on

gradient matching were developed. In a preliminary smoothing step, the

data are interpolated; then in a second step the parameters of the ODEs are

optimised or sampled so as to minimise the difference between the deriva-

tives of the ODEs and the slopes of the tangents to the interpolant. In this

way, the ODEs never have to be solved explicitly. A drawback to this ap-

proach however, is that the performance critically depends on the quality of

the initial interpolant. A better approach is to have the ODEs regularise the
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interpolant themselves. Not only does this have the benefit of avoiding being

solely reliant on the initial interpolant, it also allows the ODE structure itself

to affect the modelling of the system.

The work in Chapter 4 involved developing a new gradient matching method

that combined the methodological approach of adaptive gradient matching

using Gaussian processes (GPs) from Dondelinger et al. [11] with a parallel

tempering scheme of the gradient mismatch parameter from Campbell and

Steele [9]. The rationale behind this new approach is that if the ODEs pro-

vide a correct mathematical description of the system, there should be no

difference between the gradients of the interpolant and those predicted from

the ODEs. However, in practice, forcing the gradients to be equal is likely

to cause parameter inference methods to converge to a local optimum of the

likelihood. Forcing the gradients to immediately be the same would restrict

the inference procedure to a section of the likelihood corresponding to pa-

rameters that perfectly agree with the gradient match. However, there is no

guarantee that these parameters are suitable for the data, see Campbell and

Steele [9] for details. A parallel tempering scheme is the natural way to deal

with such local optima, as opposed to inferring the degree of mismatch, since

different tempering levels correspond to different strengths of penalising the

mismatch between the gradients.

A comparison between the contrasting approaches of posterior inference and
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parallel tempering of the gradient mismatch parameter was carried out on

two ODE models - the Fitz-Hugh Nagumo (FhN) system (equations 40-41)

and the Lotka-Volterra (LV) system (equation 42). There was no significant

difference between the posterior medians as estimators of the true parame-

ters, for both ODE models and all observational noise levels. Both methods

outperformed a related method by Calderhead et al. [8], in terms of the

posterior medians estimating the true parameters.

When the full posterior distributions were compared, the new method out-

performed the method by Dondelinger et al. [11] (denoted INF) for the first

parameter of the Fitz-Hugh Nagumo system, when the observational noise

level was 0.5 (signal to noise ratio of approximately 10). This was true for

both parameter schedules of the new method - denoted LB2 and LB10. For

the same noise level, the INF method produced an unbiased posterior distri-

bution for the third parameter of the FhN system, whilst the LB2 and LB10

methods produced about a third of the variance than the INF method. All

methods performed similarly in inferring the second parameter. The INF,

LB2 and LB10 methods all perform similarly to one another, overall, across

the other noise levels.

For observational noise level 0.5 (signal to noise ratio of approximately 10),

the LB2 and LB10 methods outperform the Calderhead et al. [8] and INF

methods for the first parameter in the Lotka-Volterra system, in terms of
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having interquartile ranges that contain the true parameter. For parameters

three and four, the methods perform similarly to one another. The meth-

ods have different variance/bias tradeoffs for the second parameter, and it

is unclear whether a particular method is performing better than another.

For the other noise levels, overall, there does not appear to be a difference

between the methods.

It is important to note that due to an instability in the probability model,

flattening of the concentration profiles occurs and long tails appear in the

distributions. A solution to this is identified and is later discussed.

Gradient matching does not perform full Bayesian inference, as it is an ap-

proximation to conducting parameter inference using an explicit solution of

the ODEs. Hence, in order to understand just how well the new gradient

matching method approximates the full Bayesian inference approach, it is

necessary to compare the results directly to results obtained by explicitly

solving the ODEs. In a comparison on the Lotka-Volterra system, with ob-

servational noise level 0.5, the posterior samples of the explicit solution and

the new gradient matching method are pretty similar. The root mean square

values in function space show that the explicit solution is performing bet-

ter than gradient matching (as would be expected), since the distribution is

lower for the explicit solution. However, there is reasonable overall agreement

between the distributions, suggesting that the approximation produced by
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the new gradient matching method is not far away from the truth.

A wide scale comparative evaluation of the new method from Chapter 4

with various state-of-the-art gradient matching methods was carried out in

Chapter 5. The methods are based on different inference approaches and

statistical models, namely: non-parametric Bayesian statistics using Gaus-

sian processes (INF - Dondelinger et al. [11], the new method from Chapter

4 - LB2 and LB10), splines-based smooth functional tempering (Campbell

and Steele [9] - C&S), hierarchical regularisation using splines interpolation

(Ramsay et al. [40] - RAM), and penalised likelihood based on reproducing

kernel Hilbert spaces (González et al. [19] - GON). The set-ups have also al-

lowed for the comparison of opposing paradigms of Bayesian inference (INF)

versus parallel tempering (LB2, LB10) of the slack parameters controlling

the amount of mismatch between the gradients.

The INF method by Dondelinger et al. [11] peforms well across the various

set-ups as it consistently produces estimates that are close to the true pa-

rameters. The method typically produces biased estimates, which is offset

for a reduction in uncertainty. The new method proposed in Chapter 5 is un-

biased, producing a slightly larger variance in the parameter estimates than

the INF method. The results for LB2 and LB10 are accurate and consistent

across ODE models and experimental set-up.
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An instability in the methods of INF, LB2 and LB10 was observed, where

the time course signals were prone to flattening. This had the effect of dete-

riorating the performance of the methods. In order to address this issue, the

standard deviation of the observation noise was held at the true value. The

results are noticeably different than when the noise is inferred, indicating

that flattening does have a substantial effect on the performance of the INF,

LB2 and LB10 methods. Holding the standard deviation of the noise at the

true value, stops the likelihood term in the model from becoming too weak

and the empirical findings suggest that the flattening can be avoided in this

way. In practice, the observational noise could be estimated (for example, us-

ing a standard GP regression), before conducting parameter inference using

these methods. Speculating, it seems reasonable that this approach would

be robust, as GP regression typically performs well so long as the GP kernel

is able to model the underlying smoothness assumptions of the system. This

fix would still be somewhat heuristic and future research should also involve

looking to see whether a more general robust solution can be found.

The method by Campbell and Steel [9] performed well in one scenario, for

the Fitz-Hugh Nagumo system. In this example, however, the dataset size

was large, much larger than the dataset size typical in these experiments. It

would also be time-consuming in practice to finely adjust the tuning parame-

ters. The method’s performance is critically dependent on these parameters,

which can observed in the other examples on the same dataset size, where the
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results deteriorate substantially. Also, the optimal results for this method

were obtained using different setting for the tuning parameters than in the

original publication of Campbell and Steele [9]. When the size of the dataset

was reduced to something more consistent with what would be obtained in

practice, none of the tested settings were able to achieve a reasonable per-

formance.

The empirical findings show that the GON and GON Cross methods are

robust, consistently estimating parameters close to the true parameters, in

terms of the absolute error. Using cross validation rather than AIC to infer

the penalty parameter was found to improve the robustness of the González

et al. [19] method. When generating data from the Fitz-Hugh Nagumo

system, with a signal to noise ratio of roughly 10 and 25 datapoints, the

GON and GON Cross methods are better at inferring the 3rd parameter than

INF, LB2 and LB10, and when generating data from the protein signalling

transduction pathway. In the study using the protein signalling transduc-

tion pathway equations, the GON Cross method (GON method was unable

to optimise) was outperformed by INF, LB2 and LB10. This reflects that

the approximation of GON and GON Cross, made in equation 34, is more

suitable for some systems than others. The uncertainty quantification for

GON and GON Cross has been obtained by examining the distribution of

point estimates over multiple simulated datasets. These methods are unable

produce confidence intervals and so in practice, one would need to rely on
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other implementations, such as bootstrapping, to quantify the uncertainty

in the parameter estimates. The knock on effect of this is something that

is currently unknown and the relationship that this has on the accuracy

and computational times of the methods needs to be examined. The INF,

LB2 and LB10 methods use a Bayesian framework and therefore uncertainty

quantification is obtained directly from the MCMC samples.

The method by Ramsay et al. [40] was examined using the Fitz-Hugh

Nagumo system. It was outperformed by the GON, INF, LB2 and LB10

methods, for each parameter of the ODE model.

There was little prior knowledge as to optimal parameter schedules for the

gradient mismatch parameter for the newly proposed method in Chapter 4,

and so two scheduling ladders were considered: in log2 increments (referred

throughout as LB2) and log10 increments (referred throughout as LB10). It

was found that the methods have proven to be quite robust with respect to

the scheduling, however, it would be reasonable to expect the performance

of the method to improve once an optimal way of specifying the increments

is created. This too, should be the focus of future work.

In Chapter 6, the notion of representing gradient matching as a probabilistic

generative model was investigated. In a publication by Wang and Barber

[49] a gradient matching method (herein denoted as GPODE) was devel-
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oped and it was asserted to outperform state-of-the-art Gaussian process

gradient matching methods by: having a simplified mathematical descrip-

tion, constituting a probabilistic generative model and gaining an improve-

ment in the accuracy of parameter estimation. However, as demonstrated

by the work presented in Chapter 6, the mathematical simplification of the

GPODE model was a consequence of confusing the marginalisation over a

random variable with its elimination from the model. When the GPODE

is properly represented, it is shown to have a more complex form. In or-

der to consistently represent gradient matching as a probabilistic generative

model, one needs to make independence assumptions that are implausible,

were not made clear in the original publication of Wang and Barber [49] and

have non-negligible repercussions. As a result of the independence assump-

tions of the GPODE model, the method has problems of identifiability of the

ODE parameters when the data is systematically missing. This means that

the method substantially struggles in inferring partially observable systems.

This issue does not exist when gradient matching with Gaussian processes is

followed with a product of experts approach, as with Calderhead et al. [8]

and Dondelinger et al. [11] (referred to as AGM in Chapter 6).

A simulation study was carried out and the results did not agree with the

assertion that GPODE was able to outperform AGM. On the Fitz-Hugh

Nagumo system, both methods performed on par, producing different

bias/variance characteristics. On a system with missing values and on the
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Lotka-Volterra system, AGM demonstrated a substantially better perfor-

mance than that of GPODE. The study in Chapter 6 shows that for practical

applications, AGM is to be preferred over GPODE.

The methodological approximation that gradient matching makes to avoid

explicitly solving the system of ODEs causes gradient matching not to be

able to be consistently represented as a probabilistic generative model. This

is due to gradient matching conceptually violating the DAG constraint.

Finally, Chapter 7 discusses the idea of performing model selection for ODEs

using gradient matching. The work presented details a new method for com-

puting the marginal likelihood, by combining gradient matching and thermo-

dynamic integration. Since gradient matching is an approximate method, the

marginal likelihood computed using the new method is not the true marginal

likelihood, but an approximation also.

There is more than one way to judge model selection performance and two

criteria are considered throughout this thesis. The first, is to what extent

any model selection method is able to reproduce the results obtained by us-

ing the true marginal likelihood. The true marginal likelihood shows how

consistent a model is with the data. The second, is to what extent a method

selects the true model that the data was generated from. This corresponds to

the extent a method is able to identify a particular characteristic when that
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characteristic exists in the process being observed. It is the latter criterion

that was mainly used to judge model selection performance in this thesis, as

computing the true marginal likelihood requires explicitly solving the differ-

ential equations. To do this repeatedly for all the simulation scenarios that

were examined in Chapter 7 was considered too cumbersome and hence, it

lies outside the scope of this thesis. It was, however, possible to do explicitly

solve the ODEs for one scenario and the corresponding marginal likelihoods

will be used as a benchmark for model selection performance.

The new method proposed in Chapter 7 is able to consistently and with high

accuracy select the true model. It outperforms BIC and WAIC over all sce-

narios that were examined, apart from one example where it was shown that

the chosen ODE model parameters created weak identifiability. This study

was repeated, but using parameter choices that avoided the identifiability in

the ODE system. In this example, the new method is again able to outper-

form both BIC and WAIC in selecting the true model. BIC was only able to

select the true model in two scenarios: when data was generated from the LV1

model and from the LV3 model. WAIC was able to identify the true model

when data was generated from the LV1 model and the LV2 model, when the

parameters were not chosen specifically to avoid the identifiability in the LV2

model. In the example where the parameters were chosen to avoid the identi-

fiability in the LV2 model, WAIC was unable to select the true model. Both

BIC and WAIC rely on asymptotics and it is unlikely that for the dataset
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sizes used in the experiments (which are typical of the dataset sizes in this

area of research) that the assumptions of the methods have been met. This

is likely to be the reason for the poor performance in selecting the true model.

In the benchmark study, where the true marginal likelihood values were com-

puted using an explicit solution of the ODEs and fixed initial conditions, the

new method, that combines gradient matching and thermodynamic integra-

tion, is able to exactly match which model is preferred by the data. In fact,

rather surprisingly, a performance increase is obtained by gradient matching

over the explicit method. The empirical findings show that gradient match-

ing performs at the same level as when using the true marginal likelihood and

known (fixed) initial conditions to infer the correct model. However, gradi-

ent matching does not require any initial conditions and in practice these are

often unknown quantities that need to be inferred. This finding, however,

has only been observed for one ODE set-up. The natural next step would be

to investigate how robust this conclusion is.

178



9 Appendix

Derivation of equation 12. Golub et al. [18] present generalised cross-

validation in the form

F (λ) =
1
T
||(I−A(λ))y||2[
1
T

Tr(I−A(λ))
]2 , (125)

where T are the number of timepoints, I is the identity matrix, y is the vector

of data points, Tr is the trace and A(λ) = X(XTX + TλI)−1XT. Hence,

F (λ) =
1
T
||(I−A(λ))y||2[
1
T

Tr(I−A(λ))
]2

=
1
T
||y−A(λ)y||2

1
T 2 [Tr(I−A(λ))]2

=
1
T
||y−X(XTX + TλI)−1XTy||2

1
T 2 [Tr(I−A(λ))]2

=
T ||y− x̂||2

[Tr(I−A(λ))]2

=
T ||y− x̂||2

[Tr(I)− Tr(A(λ))]2
. (126)
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Since, A(λ)y = x̂, then A(λ) = dx̂
dy

. Hence,

F (λ) =
T ||y− x̂||2[
T − Tr

(
dx̂
dy

)]2

=
T ||y− x̂||2[

T −
∑T

t=1
dx̂(t)
dy(t)

]2 . (127)

Doing this for all species yields,

F (λ) =

∑n
s=1 Ts||ys − x̂s||2[∑n

s=1

{
T −

∑T
t=1

dx̂(t)
dy(t)

}]2 , (128)

where the form is now the same as in equation 12. This is true because x

in equation 12 is the interpolant and so x̂ = x and the extra factor of Ts in

the numerator allows the method to weight different subsamples (which the

formula from Ramsay et al. [40] assumes to be equal).
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Figure 44: Posterior distributions over 10 datasets for the ODE parameters
from the Fitz-Hugh Nagumo system, equations 40-41. The true parameters
have been subtracted from the posterior distributions and the horizontal line
shows zero difference to the true parameters. The observational noise level
is 0 for this scenario.
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Figure 45: Posterior distributions over 10 datasets for the ODE parameters
from the Fitz-Hugh Nagumo system, equations 40-41. The true parameters
have been subtracted from the posterior distributions and the horizontal line
shows zero difference to the true parameters. The observational noise level
is 0.1 for this scenario.
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Figure 46: Posterior distributions over 10 datasets for the ODE parameters
from the Fitz-Hugh Nagumo system, equations 40-41. The true parameters
have been subtracted from the posterior distributions and the horizontal line
shows zero difference to the true parameters. The observational noise level
is 0.8 for this scenario.
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Figure 47: Posterior distributions over 10 datasets for the ODE parameters
from the Fitz-Hugh Nagumo system, equations 40-41. The true parameters
have been subtracted from the posterior distributions and the horizontal line
shows zero difference to the true parameters. The observational noise level is
1 for this scenario. Note that for parameter 2, a long tail was removed from
the INF results, for scalability purposes.
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Figure 48: Posterior distributions over 10 datasets for the ODE parameters
from the Lotka-Volterra system, equation 42. The true parameters have been
subtracted from the posterior distributions and the horizontal line shows zero
difference to the true parameters. The observational noise level is 0 for this
scenario.
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Figure 49: Posterior distributions over 10 datasets for the ODE parameters
from the Lotka-Volterra system, equation 42. The true parameters have been
subtracted from the posterior distributions and the horizontal line shows zero
difference to the true parameters. The observational noise level is 0.1 for this
scenario.
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Figure 50: Posterior distributions over 10 datasets for the ODE parameters
from the Lotka-Volterra system, equation 42. The true parameters have been
subtracted from the posterior distributions and the horizontal line shows zero
difference to the true parameters. The observational noise level is 0.8 for this
scenario.
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Figure 51: Posterior distributions over 10 datasets for the ODE parameters
from the Lotka-Volterra system, equation 42. The true parameters have been
subtracted from the posterior distributions and the horizontal line shows zero
difference to the true parameters. The observational noise level is 1 for this
scenario.
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Table 12: Computational times for INF and a method that numerically inte-
grates the ODEs for the protein signalling transduction pathway in equations
45. Table constructed from the boxplots in [11]. The LB2 and LB10 meth-
ods were equivalent to INF. The median time is presented alongside the
interquartile range (IQR).

Method Time for 1 ∗ 105 MCMC steps (seconds)

INF 2500 (Median) [2400 , 2600] (IQR)

Numerical Integration 12500 (Median) [12000 , 13000] (IQR)

Table 13: Number of steps until convergence for INF and a method that nu-
merically integrates the ODEs for the protein signalling transduction path-
way in equations 45. Table constructed from the boxplots in [11]. The LB2
and LB10 methods were equivalent to INF. The median number is presented
alongside the interquartile range (IQR).

Method Number of steps until convergence

INF 3.5 ∗ 104 (Median) [3.25 ∗ 104 , 4.5 ∗ 104] (IQR)

Numerical Integration 7.9 ∗ 104 (Median) [7.5 ∗ 104 , 8.25 ∗ 104] (IQR)
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Figure 52: Log marginal likelihood scores for the set-up when data is simulated
from the LV1 model and the parameters of the system were inferred using an
explicit solution of the ODEs. The initial conditions of the system were inferred
as additional parameters. The ticks on the x-axis represent the different datasets.
The triangles represent the results when proposing LV1 as the candidate model,
the circles represent the results when proposing LV2 as the candidate model and
the stars represent the results when proposing LV3 as the candidate model. The
higher the value on the y-axis, the more favoured a model is. Here, the log marginal
likelihood scores favour the true model (LV1) 60% of the time and the LV3 model
40% of the time.
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Figure 53: Log marginal likelihood scores for the set-up when data is simulated
from the LV1 model and the parameters of the system were inferred using an
explicit solution of the ODEs. The initial conditions of the system were held fixed
at the true initial values. The ticks on the x-axis represent the different datasets.
The triangles represent the results when proposing LV1 as the candidate model,
the circles represent the results when proposing LV2 as the candidate model and
the stars represent the results when proposing LV3 as the candidate model. The
higher the value on the y-axis, the more favoured a model is. Here, the log marginal
likelihood scores favour the true model (LV1) 100% of the time.

191



1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

20

25

30

Dataset Number

Lo
g 

M
ar

gi
na

l L
ik

el
ih

oo
d

Figure 54: Log marginal likelihood scores for the set-up when data is sim-
ulated from the LV1 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The higher the value on the y-axis, the more favoured
a model is. Here, the log marginal likelihood scores favour the true model
(LV1) 100% of the time (the values are slightly higher for LV1 on dataset 3
than LV2).
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Figure 55: Log Z(Y) (equation 119) scores for the set-up when data is sim-
ulated from the LV1 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The higher the value on the y-axis the more favoured
a model is. Here, the log Z(Y) scores favour the true model (LV1) 100% of
the time.
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Figure 56: BIC scores for the set-up when data is simulated from the LV1
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing LV1 as the candidate model, the circles
represent the results when proposing LV2 as the candidate model and the
stars represent the results when proposing LV3 as the candidate model. The
lower the value on the y-axis the more favoured a model is. Here, the BIC
scores favour the true model (LV1) 80% of the time.
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Figure 57: WAIC scores for the set-up when data is simulated from the LV1
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing LV1 as the candidate model, the circles
represent the results when proposing LV2 as the candidate model and the
stars represent the results when proposing LV3 as the candidate model. The
lower the value on the y-axis the more favoured a model is. Here, the WAIC
scores favour the true model (LV1) 70% of the time.
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Figure 58: Log marginal likelihood scores for the set-up when data is sim-
ulated from the LV2 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The higher the value on the y-axis, the more favoured
a model is. Here, the log marginal likelihood scores favour the true model
(LV2) 10% of the time.
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Figure 59: Log Z(Y) (equation 119) scores for the set-up when data is sim-
ulated from the LV1 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The higher the value on the y-axis, the more favoured
a model is. Here, the log Z(Y) scores favour the true model (LV1) 0% of the
time.
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Figure 60: BIC scores for the set-up when data is simulated from the LV2
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing LV1 as the candidate model, the circles
represent the results when proposing LV2 as the candidate model and the
stars represent the results when proposing LV3 as the candidate model. The
lower the value on the y-axis the more favoured a model is. Here, the BIC
scores favour the true model (LV2) 0% of the time (the values for are slightly
lower for LV2 on dataset 6 than LV1).
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Figure 61: WAIC scores for the set-up when data is simulated from the LV2
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing LV1 as the candidate model, the circles
represent the results when proposing LV2 as the candidate model and the
stars represent the results when proposing LV3 as the candidate model. The
lower the value on the y-axis the more favoured a model is. Here, the WAIC
scores favour the true model (LV2) 60% of the time.
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Figure 62: Log marginal likelihood scores for the set-up when data is sim-
ulated from the LV2 model, with parameter settings chosen to make the
intra-species component effect more substantial. The ticks on the x-axis
represent the different datasets. The triangles represent the results when
proposing LV1 as the candidate model, the circles represent the results when
proposing LV2 as the candidate model and the stars represent the results
when proposing LV3 as the candidate model. The higher the value on the
y-axis, the more favoured a model is. Here, the log marginal likelihood scores
favour the true model (LV2) 70% of the time.
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Figure 63: Log Z(Y) (equation 119) scores for the set-up when data is sim-
ulated from the LV2 model, with parameter settings chosen to make the
intra-species component effect more substantial. The ticks on the x-axis
represent the different datasets. The triangles represent the results when
proposing LV1 as the candidate model, the circles represent the results when
proposing LV2 as the candidate model and the stars represent the results
when proposing LV3 as the candidate model. The higher the value on the
y-axis, the more favoured a model is. Here, the log Z(Y) scores favour the
true model (LV2) 70% of the time.
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Figure 64: BIC scores for the set-up when data is simulated from the LV2
model, with parameter settings chosen to make the intra-species compo-
nent effect more substantial. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The lower the value on the y-axis the more favoured a
model is. Here, the BIC scores favour the true model (LV2) 0% of the time.
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Figure 65: WAIC scores for the set-up when data is simulated from the
LV2 model with, parameter settings chosen to make the intra-species com-
ponent effect more substantial. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The lower the value on the y-axis the more favoured
a model is. Here, the WAIC scores favour the true model (LV2) 30% of the
time.
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Figure 66: Log marginal likelihood scores for the set-up when data is sim-
ulated from the LV3 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The higher the value on the y-axis the more favoured
a model is. Here, the log marginal likelihood scores favour the true model
(LV3) 100% of the time.
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Figure 67: Log Z(Y) (equation 119) scores for the set-up when data is sim-
ulated from the LV3 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing LV1 as the can-
didate model, the circles represent the results when proposing LV2 as the
candidate model and the stars represent the results when proposing LV3 as
the candidate model. The higher the value on the y-axis the more favoured
a model is. Here, the log Z(Y) scores favour the true model (LV3) 100% of
the time.
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Figure 68: BIC scores for the set-up when data is simulated from the LV3
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing LV1 as the candidate model, the circles
represent the results when proposing LV2 as the candidate model and the
stars represent the results when proposing LV3 as the candidate model. The
lower the value on the y-axis the more favoured a model is. Here, the BIC
scores favour the true model (LV3) 100% of the time.
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Figure 69: WAIC scores for the set-up when data is simulated from the LV3
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing LV1 as the candidate model, the circles
represent the results when proposing LV2 as the candidate model and the
stars represent the results when proposing LV3 as the candidate model. The
lower the value on the y-axis the more favoured a model is. Here, the WAIC
scores favour the true model (LV3) 100% of the time.

207



1 2 3 4 5 6 7 8 9 10
300

350

400

450

500

550

600

Dataset Number

L
o

g
 M

ar
g

in
al

 L
ik

el
ih

o
o

d

Figure 70: Log marginal likelihood scores for the set-up when data is simu-
lated from the PSTP1 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing PSTP1 as the
candidate model, the circles represent the results when proposing PSTP2 as
the candidate model, the squares represent when proposing PSTP3 as the
candidate model and the stars represent the results when proposing PSTP4
as the candidate model. The higher the value on the y-axis the more favoured
a model is. Here, the log marginal likelihood scores favour the true model
(PSTP1) 70% of the time.
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Figure 71: Log Z(Y) (equation 119) scores for the set-up when data is simu-
lated from the PSTP1 model. The ticks on the x-axis represent the different
datasets. The triangles represent the results when proposing PSTP1 as the
candidate model, the circles represent the results when proposing PSTP2 as
the candidate model, the squares represent when proposing PSTP3 as the
candidate model and the stars represent the results when proposing PSTP4
as the candidate model. The higher the value on the y-axis the more favoured
a model is. Here, the log Z(Y) scores favour the true model (PSTP1) 100%
of the time.
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Figure 72: BIC scores for the set-up when data is simulated from the PSTP1
model. The ticks on the x-axis represent the different datasets. The triangles
represent the results when proposing PSTP1 as the candidate model, the
circles represent the results when proposing PSTP2 as the candidate model,
the squares represent when proposing PSTP3 as the candidate model and the
stars represent the results when proposing PSTP4 as the candidate model.
The lower the value on the y-axis the more favoured a model is. Here, the
BIC scores favour the true model (PSTP1) 30% of the time.
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Figure 73: WAIC scores for the set-up when data is simulated from the
PSTP1 model. The ticks on the x-axis represent the different datasets.
The triangles represent the results when proposing PSTP1 as the candi-
date model, the circles represent the results when proposing PSTP2 as the
candidate model, the squares represent when proposing PSTP3 as the can-
didate model and the stars represent the results when proposing PSTP4 as
the candidate model. The lower the value on the y-axis the more favoured a
model is. Here, the WAIC scores favour the true model (PSTP1) 40% of the
time.
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