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PREFACE.,

The wave traln theofy of heat conduction in solids in
the sense in which the term is used in the present work, was

propounded by Dr. G. Green of Glésgow in a2 paper in the Phil-

*
osophical Magazine in April 1927. This paper was followed at
b4
regular intervals by seven others, four by Dr. Green and

-r-
three by the writer.

In the original paper which may be regarded as the most
fundamental, the solutions for certain standard conduction
problems were obtalned on the hyvpothesis of this mode of
heat transference as a form of wave motion. The medium was
conceived of as being traversed by systems of temperature
wave trains, and such matters as the reflection of these trains
at fixed boundaries, and thelr bransmission across surfaces of
diécontinuity of medium were fully investigated.

The facility with which wave train solutions of the

* see ‘foel'ndii f\.3. Chap.I.

¥ Phil. Mag. x% (May 1933) 5 xvin (Quly 1934) ;  xviii Suppl, (Nov.1934)
In the sequel vefercnces to these papers ave urdicated by RI, I, T



heat-conduction eguation - and summations of such solutions -
could be obtained, easily adjustable to take into account
'quite ccmplicated boundary conditions, prompted the general
survey of the whole field of investigatbtion usually covered in
the standard works on the subject. This survey is represented
by the papers of the series numbered G. II, III, IV, V, and

R. I, IT, III.

. ... Jn papers G. II, III, and IV Dr. Green had dealt fully
with problems of heat flow in rods, spheres and cylinders.
lany particular cases were fully worked out and in addition
some results of a general character were obtained, the special
aspects of which were left over for fubure consideration. At
the suggestion of Dr Green these aspects were taken up by the
writer and their discussion forms the matter of the papers

Re. I, IL, and III. of the series.,

These three papers in their published form hardly do
justice to the subjects with which they deal. At the time of
their compilation for the press the results obtained appeared
to represent applications only of the fundamental theorems
and processes explained in the previous papers, and while many
considerations of physical and mathematical interest arose in
the course of their investigation, these could not be dealt

with satisfactorily in the restricted space allowed by the

*5¢¢ ¢g GI f 800 ; GIL 44 2555258, 260 Special caoeo of lhe qeneral
problew  fuily Solved GI pp Tibok seq, Ove heated usr Chapter B of Hhes
lork by e agplication of [fust priciles Sec alse fostmote p ¥
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publishers. Moreover, with the experience gained in the latter
part of the period over which the work has been spread, it
became'apparent that certain improvements in the treatment of
some of the earlier problems were required. Thus for example,
thé solutions of all the problems involving rods, cylinders or
spheres reduce to the evaluation of a type of contour integral.
The treatment of this integral in the published papers was not
altogether satisfactory. It 1s hoped that this matter has now
been represented in a more acceptable manner.

The thesis now submitted, incorporating all the writer's
contributions to the literature, represents a more or less -
continuous work. - The separate introductory statements
necessary in the case of published writings appearing at wide
intervals, are no longer required and have been omitted. On
the other hand, a fullness of treatment formerly possible only
in the writer's notebook has been introduced and allows the
inclusion of further illustrative examples, a fuller descripfion
of the processes and a greater degree of mathematical detail,
These improvements were regarded as necessary and their inclusion
should help to make the work more readable.

The first chapter is of introductory character and
pregents such a selection of fundamental processes and results

as are required in the later chapters. Here, as elsewhere,

P



the indebtedness of the author to the writings of Dr. Green
is apparent and the necessary acknowledgment is indicated.

| Chepter II is devoted to the study of one-dimensional
fiow. The brief treatment of the semi-infinite solid in which
se#eral well-known results are derived does not appear in any
of the published papers. The discussion of the finite rod
when one end is kept at a uniform temperature, is substantially
that giﬁén in the corresponding published paper but the pro-
cesses are more fully explained and the integration treatment
more satisfactorily disposed of.

Included also in this chapter is the theory of the cooling
of a rod from a given initial state under prescribed end con-
ditions. TThis part of the work forms a section of Dr. Green's
third paper but its inclusion in a chapter having pretensions
to completeness seemed warranted. The inclusion seems
further warranted by the fact of the agreement of the results
with those obtained by Green using analysis differing at least
in detail from that used by the writer.

The investigation of the flow of heat across a surface of
separation of two media 6f different conductivities seemed to
be more satisfactory when an initial heat distribution was
prescribed than when —-as in the original paper - a definite

temperature was maintained at a boundary surface. It is shown



however, that the results in the latter caée can be readily
deduced from those in the former. The whole of this section

of the chapter, dealing with two-medium problems has been
rewritten. Certain useful resulbts that lead to simplifications
of what Would otherwise be complicated summation processes,

have been exhibited as definite theorems and may be found useful
in dealing with other problems of this class.

There is also included in this chapter, as in the corres-
ponding published paper, an original investigation of the theory
of a well known experimental method of measuring conductivity;+

Chapter I11 deals with radial flow in a sphere. This
subject has been so fully dealt with in one of the other paper;E
that no more work of a fundamental character was included than
that required to give the necessary theorems to be used in the
main - though restricted - problem of the chapter. Thus the
treatment does not differ considerably from that given in the
author's second paper. ‘he revised treatment of the contour
integrals reguired to give the complete solution of the problem,
leads to the same results exactly as those previously obtained.,

The fourth chapter deals with radial flow in infinitely
long cylinders. Conslderable space is given to the study of

linear and cylindrical surface sources; from the solutions

représehﬁing sources of the latter type many well known results,

* QT - 215 ef seq,

¥ NB. When the wrder fint approndred DY Greew for aduice as to o definde L of
Study m Mathemokical Puysics, this problems (Sce p 37) was Hie one oviqusally
duqqeteds e tnvestigation led s due cowrse b e poper T



usually obtained by entirely different methods, have been built
up. The Bessel Function analysis 1s of special interest and

is shown in a degree of detail quite Imisossible in the corres-
ponding published part of the work. Of special note are (1),
the discussion of flow in a cylindrical tube, the inner

surface of which is kept at a constant temperature, - as by
steam circulation - while at the outer surface heat losses

take place by radiation; and (2-), the treatment of the cylin-
drical core surrounded by a coaxial sheath of different conduct-
ivity. These problems, clearly of some practical importance,
have not previously been solved.

The section of this chapter on spherico-cylindrical
analogues serves the purpose of linking together as a mathemati-
cal unity the various parts of the work, while the brief refer-
ence to permanent sources gives some indication of how the
methods we have employed in connection with heat-conductIon
might be applied to obtain results in other branches of

Mathematical Physics.

“mp  IlkJet
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CHAPTER T.

INTRODUCTORY.

One of the commonest problems in Mathematical Physics
is that of determining the "state" at any point in a medium
when the general law indicating how that state varies from
point to point is given, and when definite initial and bound-
ary conditions are specified. The "state" may be literally
the mere disvlacement of a particle of the medium from an
equilibrium configuration or it may be the divergence from
some normal condition at points in the medium due to the exist-
ence of special circumstances at other points in the medium
or at its boundaries. Frequently it is defined by means of
a differential equation, the solution of which, modified %o
take into account the initisl and boundary conditions, may be
regarded as the objective of the investigation.

In many cases it happens that the state can be explained
on the hypothesis of the medium as the vehicle of systems
of wave trains. The problem, e.g., might be that of finding

the motion of a bounded mass of liquid arising from a single



impulse applied at a point on the boundary. In such a case
we might regard the complicated after effect at any point
in the medium as due to the propagation through it of the
wave of disturbance initiated at the impulse centre. If
the liguid were of infinite extent there would be little
difficulty in accounting for the effect at any point. The
single analytical expression for this initial wave would
give the representation regquired. In practical affairs
however, we have to take into account the existence of the
boundaries of the medium. When a system of wave trains of
any type 1is incident on a boundary there arises the compli-
cation of the reflected trains. Rarely indee@ will the
prescribed condition at a boundary be accounted for by the
incidence on it of the primary disturbance train. We must
therefore postulate a system of reflected trains of such a
type that the resultant effect of the incident and reflected
systems at the boundary shall be the maintenance of %he
condition specified there. Depending on the geometrical
form of the wave fronts in the incident train and the form
of the boundary, the determination of the reflected system
may be a matter of great difficulty. If we suppose that
this difficulty has been overcome it becomes possible, using
the correct combination of incident and reflected systems
to represent fuliy the effect at any point in the medium

due to the originai disturbance,



The process implied in these remarks is that usually
adopted in connection with the sblution of problems in
Hydrodynamics, Acoustics, or Electromagnetic Theory. In
these branches of Mathematical Physics a wave genesis of
transmitted effects seems a most natural one when we con-
sider how many of the phenomena are governed by the funda-

mental wave-equation
. 2
T~ eoy

The conception of flow of heat in a conducting medium
as a form of wave motion has recently received much attention
at the hands of G. Greenje In cases where effects are due to
applied surface temperatures or heat distributions of period-
ic type the conception is a perfectly natural one. General
physical considerations would suggest that the propagated
effecté are likewise periodic and that the mode of trans-
mission is the train of waves emanating fromthe temperature
or heat source. Even when the physical property in question
is not vibratory it can freguently be represented by a summ-
ation of periodic terms each of which can be identified
with a wave train passing through the medium., The problem
of the mathematical theory is the determination ofthe pab-

ticular summatiom of wave trains that will give the effects

¥ Pmil. Mag. . Swppl. (Apvil 1927), T 5 v. (April 1q28), IL ;  ix (Feb.1930), 1L ;
% Suppl. (Aug. 1430, IV | % (0ch 19390, ¥, In Hie sequel
references fo these papers will be denofed by GI, QI ete.



correctly at all points and at all instants of time and
will account satisfactorily for the bdundary and initial
conditions,

To illustrate what is meant by a temperature wave-
train in a conducting medium we take an example from one-
dimensional flow. The matter forms more correctly a part of
the next chapter but is introduced for the purpose of draw-
ing attention to some general considerations of great imp-
ortanée in all later parts of the work.

In one-dimensional flow the differential equation to
be solved is

o __ . *v
o T K dx?*

the notation being that usually adopted in heat-conduction

- m

theory.

If we suppose that vr varies with the time according
to the factor qu where k represents the frequency of a
periodic vibration, and search for solutions of the type
efka » Vbeing a function ofx alone, it is found that V

mast satisfy the equation

2 * .
XN _ikyoo , - @
ax* % .

the solutions of which are given by V=& -

Thus we have, GLbeing some constant,

kb — iR . R
v o= Qﬁf xJ:- ngkk+xJ:j

1 V=

--(3)



The real and imaginary parts of v,and v, are likewise solutions

of (1) and are exhibited as

. ‘ : —x k& _
CRM®), I(w) =8¢ xJ- {cos (hb’x\l;%)’ sm(kt-—x'jzz’c )} .. @
Ik
R(V:), T(va) = BoexJz"{ cos (kL """gc )} sm(klc +x J‘%‘; )} .. (5)

Each of the two solutions expressed in (4) represents a con-
tinuous train of waves of determinate length and frequency
advancing in the positive sense of = . The amplitude dgg:;;:i\dv
as the depth advanced. &4n examination of the form taken by
the first of (4) o.g. shows that the solution R(V;) is that for
the case of flow in the semi-infinite medium when the face x=0
is kept at the temperature e,ws kt.

Similarly the two solutions contained in (5) represent
trains of the same character advancing in the negative sense
of x « There are thus four fundamental trains altogether,
two representing effects propagated in the positive direction,
the remainling two effects propagated in the negative direction,
It will be showﬁ 1aterrthat in all the other types of regions
of spacé considered'thefe are the féur fﬁndamental ﬁave-trains
having waveéfronts of ?he aﬁproériéte geometrical form and
corresponding in all othér respects to the plane waves obtained

hereo.



The gsolutions (4) and (5) are appropriate in problems

* involving finite or semi-infinite rods when a temperature is
prescribed at one end. The question of the correct manner of
combining such solutions to represent flow in specific cases
is that of placing the necessary restriction on the parameter
k. 1n problems involving fihite rods e.ge it will be found
that when the boundary conditions are taken into account only
certain values of & with corresponding solutions of the types
(4} and (5) are admissible. When these values of k are deter-
mined there still remains the question of the amount in which
the various periodic terms corresponding to the admissible
values of k appear in the solution. Numerous illustrations

of hoﬁ these guestions are’investigated are given in the later
chapters.

THE INSTANTANEOUS PLANE SOURCE.

As a sultable introductory case we might show that the
ordinary solutions for plane instantaneous temperature and
heat sources can be expressed in terms of the fundamental
wave trains., When it is recalled that any initial state e.g
-can be represented by the appropriaste distribution of instant-
aneous (t=o0) sources the possibility of expressing all solutions
of whatever type in terms of wave-trains is at once realised.

We begin by considering the solution v of (1) given by



it ’Ko

- "k © <8
Vz_f__e.j etkL 4R = 9°S e J—coo(h.t'-—ac,f ,‘)Ak

8. [ 7oA

L °j * pin (Rt~ xJ“)o(k - - (6)
o

The integrals appearing here have been evaluated by Green™

without resorting to contour integration. The following .

demonstration is given for the purpose of introducing a process

of which frequent use is made.

- Bo — KN L"ka

Let the function N = 2tkA

be integrated along the contour in the A plane (A= E+in = pz )
consisting of (fig.l.)

(v) the line 9:—1-:‘_?- from o to B where O0B=R,

(2) the arc BA of the circle IAl=TR

(37) the real & axis from A to O.

Since §(A) has no singularity within the contour, we have

j FAYAA = o.

s8ac

A
L

2=

;}ig.;l.

%* GX. 4 78b.
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OW (O] A= g@ = g‘-‘:’ 5 A= _ng

x

oB o

R b t 2—0(: §T
j{-(k)d«h - ZK«OOI e Kt s x gdg

R _

2;60 i E,os(.d,g- f)+£sm(oct§"-%§ﬂid§

(-]

-%9 L ;xJ“ [cos (ht- x{;‘%) + ¢ ‘é"’(“’ "‘J};«)]dk T

"

whenn R —>» 0.

Ow iy A= Re? and
e L R%e*%do )

IF(A)A«X 2wib J © _ktR?*(c0020 +isin20)— (xR (cos8 +5cnb)
- °
I

4-

BA

The. modutus of this lask integral is
XO é_urR m29+xRo@0R1de — _K'LRZsze_xRAM z.da

- o
b 4

x o
éj‘ -nthcoo20—acR29/IfR%w’ e é_!z_j' —kERZ o — 2R(E - )Rz‘%
° [-4

2 ~ =R —kb R22¢/7T 4 xR AT
Re g

A

&

L
2
(<]
-th’-)
‘-" -

=—0_ (¢
22wt R™ xR)(

BA

‘ : _ © ez
Fenaty X SN = chre, [ ! ik §omix
| | =)

Ao

igdg
a-?—‘-";’vhj ;‘“ZMg EdE — Qna.j < eonns 545

e . o
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FKE - % 2 *
re. S:;motk =——box o -éﬂ.{ L X o ™ efdm}
) 2 rKt? It (At Ké

Thus, noting that the infegral round the contour is zero we

have, on equating real and imaginary parts

: [ :k; x"'
ot By g F
™ E 2k k3 2 o
Tt} = e T ain(bb-x[E Yk o RO § 1 x J “dxl. 3
. TAE (ke Kb A

The interpretation of the results (7) and (g) is postponed

until we investigate a solution of (l_) of a slightly different
type from those given in (#) or (5)

The solution referred to
is

» : th-xj%
x>0; w=_% e

2K % .
kb B L@
x <O, V.= i | e
2K [u
w
These results give
(-K PYTA — %,_;“"

) Ukt
X /x=0
The solutions 4, and ¢, accordingly represent flow in an infin-

ite medium due to the existence at the plane =0 of a heat

¥* These results are obkained by differentiating with regard to < the
heo well- knoww integrals

2
[ 1 —
weoj < corxE dE = Dol o *F

w
mceor il onxfd§ = 21_«5?90 e :’%"—J 2*_&@“ dec,

See e.g. Maoc Robert, Funchions of & Com‘o\ex Variable (1q17). b- 73



¢
source emitting at the rate of qe
second, half of the emission taking place in the posijive dir-

ection the other half in the negative direction.

Now consider the solution given by

T enK

g Y X - 4k
o

Ll. 1

o [
e — ad :
v 21rK.J;

Al

Y ”
27K
o

JI@
{ -
fht-

ofE -3

units per unit drea per

 0°1

)]

The evaluation of the integrals appearing here has been given

*
by Green but it is again instructive to obtain the results by

the contour integral process explainéd in connection with (6)

above.

“‘Wé,bonsider the integration roynd the contour of fig.t

of the function given by

.f( A =

Thus we find

jjc(x)au 9%
™K

oB

=%
2K

A

¥ e
K

oo -a.c.g_...c wt§z-xb _ T

o

° o '
(= -ik +i(kt—xE-E

k'l'.l.
vo

= the expression on the right of (1.

% ibid.



Also it can be shown that when R—>o the integral along tHe- -
arc BA—>0 .

Along oA

gt 7 L
fi(x)auz_&_&j g
2 e . kS X
X Xx
P R
2Kt KAt R

where we have made use of the results given in the footnote

.

tO p. q‘ [ 4
Thus, when we make use of the fact that the integgal

round the contour is zero, we have
“g
R = 3% e coogkl:—xk—f‘l}olk;.___ Y e—"d 2)
2nK |7 k% e 4 2K It

o0 _ I _ 2 x| 2
Te) = 89 S .Aow{kt-xf—'“— —aldk o — Q& SR,
K T I ETE N Kn At

Jo o

The result on the right of (12) is recognisable at once
as the well known solution for the instantaneous plane source
of strength q at x=0 . The equivalent solution -~ that expressed
by the integral - indicates how effects due to such a source
are ultimately explainable in terms éf the fundamental wave-

trains given in (9).

Commenting further on these results we observe

SN P



(V). The solution on the right of (12) gives =0 whent=o0, x40,

This gan be readily shown using the evaluated form, or from

the equivalent integral form, viz:-

o JE
| S E D)™
®_x§

=247l ¢ (cooxg-.o»&vxg)d;;‘,

=0  as nq‘uinzd‘: X Y0,
(i1). The solution on the right of (|3) gives a certain temp-

erature distribution when b=o. When *—> 0 , the upper limit

of integration ;J;T: becomes very great ashd the value of the

integral is sufficiently given by the first few terms of its

asymptotic expansion. Thus the solution becomes

v="33_ )kt 9.act)3/"+ |9_(ngg_sf'+”-}
T KWAE x x3 x?
Nk 1. i’ when t—o, x4 o0,

K

The same res 1t is obtained from the integral form of the

solution, viz:-

o .
I .
i Le, R st(xjé;_E-l—g)%.

, x:{;o.

© _x£
=K | e (sinxE4cosxf)dE — _ A 1
' ~K . wK x

(i), When X=0 the solution on the right of (12) becomes

¥ s ¢.g. Bromwich, Tnfinile Series (1908) - 352.




V:_i___m s t* 0.
2K At

while the corresponding solution of (13) is
Xx=0, Ar=O0 t4o.

>

It appears,in fact,that we have the purely mathematical results
. o - :
| =teBa-
j _om(kt.. de= o0,
(4

/JT{
Whenece j' Amht mkld,k, = [T d«l}(

2t °

- results known on other grounds to be correct.

INSTANTANEQOUS AND CONTINUOUS DOUBLETS.

The interpretation of the result (7) obtained at an earlier
stage is now considered. 1If we have an instantaneous plane
'source of strength q per unit area at x=o and a sink of corresp-

onding strength at x=-ax the effect at any point is given by

_x x*
v Qaxx  JTERE _ Mx AR
4K frrct3 4K frentd

where we suppose that as Ax— o, qincreases in such a way that
%Aaméyadeflnite 1limit M the strength of the doublet
It now becomes apparent that th& solutlon given by (7)

is that corresponding to an instantaneous doublet of strength




4

2K0s "located" at x=0. The definite integral form of that re-
sult shows how such a doublet is explaina‘ble in terms of the
fundamental wave-trains.

If the doublet is conbinuous, i.e. 1f heat is supplied
at the uniform rate of 9 units per unit area at the face x=0
and at an equal nega’cive rate at x=-axthe result is given by

Box ~3 t—t} P
2w ), E-Y"

¢
[ o%"ﬁ[omzxd&}

It is apparent from this form that so long as %70 the effect

U=

of the continuous doublet is the same as if the face x=0 were
kept at the uniform temperature 9, throughout.

The result (%) aopears so far to be only of theoretical
importance. It stands in the same relationship to (7) as (I3 )?
does to (12). All the problems discussed in the following E
pages bear directly on the results (7) and (12). The corres-

ponding investigations based on the solutions (8) and (¢3)

have not yet been carried out,.

SUMIMARY of CHAPTER I.

 Expressions for the instantaneous initial plane source, and
the instantaneous or continuous plane doublet are obtained
in terms of the fundamental wave-trains. Since any initial

temperature state prescribed throughout a mediam can be




represented by the appropriéte'distribution of instantaneous
sources and any initial or continuous surface temperature
by the corresponding distribution of initial or continuous
doublets, the possibility of obtaining the solution of any
problem in heat conduction i%terms of wave trains is thereby
indicated. |

The instantaneous source and doublet solutions are
particular cases of the general solution

e S Lu-xf_jc(k)am .

©

*

the heat source solution being that obtained when

g

and the doublet solution that obtained when
-}(k,) = COV\S" = 90_

The gquestion of the peflection or transmission of wave
trains is considered in the succeeding chapters. By sultable
choice of (K, the traln.at xJ—

Q)
may be made to represent a train reflected or transmitted
at a boundary however simple or complicated the boundary

condition may be.

*Forchwu’w\ discussion of solutions of His type see H.Baremoan "Favtial

Ditferential Equations of Mathamokical Physics "G1q32 21 ek deq.
al b 9 9



CHAPTER II.

PROBLEMS INVOLVING ONE-DIMENSTONALFLOW.

The typical case considered is that of a rod of finite
or semi~-infinite length and of uniform cross section. The
direction of heat flow is that of the length of the rod. The
flow may be due to one end of the rod being maintained at some
préscribed temperature or again it may be dﬁe to the cooling
off of the rod from a given initial temperature on account of
hest losses of a known character from the boundaries.

Many practical methods of determining conductivity
depend on temperature observations on a heated rod. The full
theory of some of these methods is a sultable subject of enquiry
in the present connection and one well-known method is
examined at some length.

In the earlier problems discussed the rod is of ome
material throughout its length. Opportunity is taken at a
later stage of investigating the case of a rod consisting of

two sections of different conducpivity. It is found that the
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wave-train analysis of heat flow is’ spéciaily"éﬁitéﬁléy in” such
cases as this where we have a surface of separation of two

different media.

(). The: Semi-infinite Rod,

Some aspects of the semi-infinite rod have already been
considered. To introduce the subject of reflection of temper-

ature wave trains we consider the case represeni:ed by
U= o0, t=o0, ‘& &= o, '
v=0, Xx=0;
at the plane x=x, at t=0 an instantaneous source of strength
q,\per unit area.
Let us suppose to begin withthat the source is periodic
and of strength q'e"kt per unit aréa‘. Then first effectgs are

accounted for by the wave train solution given by

Rb—(x~x) [
x<x, v = q Q,“ (> x)Jtc

[ 18 ZKF_E_R
5%, Y=

It will be found that these expressions satisfy the required

Jk"""‘""'ﬂ% < - - (%)

conditions at the surface x=%,viz.

S ) avo- 31),‘ _— “akb
N = and -K(‘a_x __«)__ qe

] ax - - - - (' 5)
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If any addition be made to elther of the expressions in (w)
to represent secondary effects, it is clear that an equal
addition must be made to the other if these conditions are to
be maintained. Thus e.ges it is apparent that the train 4; on
arrival a}p the plane =x=o0 violates the zero temperature con-
dition there. We must therefore suppose that a corresponding
reflected train is set up, the joint effect of the incident-
reflected pair at this surface being the maintenance of the

required condijpion., A suitable form of train is clearly

9 th-(x.-t-x)@
- e .
zK;i%&

Thus we find that all the conditions are satisfied by the

gsolution
L | E
Rt ( ~(x~%) —=(x,+x) AR )
. * "U.z_gl._..._.e" < l JN -_— ' < .1
X< X%, @ — .
2K L&

A - - - (’ L)

RL . —(x—c) B~ ik
x.)x,., %g 4 Q“’ {Q«(x xu)J:-Q(x+xg) n}

If now we take the solution given by
©
R ;;-j (- %) dk
(4

it is clear that -we will obtain that for the joint effect of |
the instantaneous source of-strength q, at x=xand the equal |
"image" sink at Xx=-X, th;se sources now being supposed placed
in the doubiy infinite mediﬁm with no boundary at #=0. The

effect is physically the same as that due to the original



source in presence of the reflecting boundary.
If we write J%s (A and apply the integeatlon process

to ¥, in (1b) we find that the required solution is given by

‘1’ y -'fozk"xi'k .
e 2( sin 2 AxdA

Jops

x?x_‘ b4 M;zR

PN
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=R%%£_fe—mzt-xcx LeinxhdA  _ L .

Jon

where the path of integration is the line OB of fig.l.
By adopting the method explained in connection with the corres-
ponding evaluation in Chapter I. we find that the required

solutlion is

(00 -

: k -th’».uxé ..

e>x, =RI|e T isinxEdE

Jo

NOO0 __‘d:g'l.
Za¥%| o sinx§oinxédE

T wKY

c-xy  _ (x+x)
LY X Pt P T
2Kk '

with, clearly, exactly the same result for the reglon a<x,.
If e.g.an initial state is prescribed throughout the rod
given by , , . et
4t=o0, ar=f(x) 052 = oo
we replace q by T'S-{(x,)dx'and integrate with regard to x, from O s oo,

In this way we obtain



A=

J I \{ %x—' g'%f} dx,

QJ—

*
gj. :Hx+2~hctcc)e doa —j j‘.(-x+2ﬂoc)¢ alpc} L))

24»«1 2 J%k
It is of interest to notice the form taken by this result

when the integration with regard to x, is effected .prior to
that with regard to £ . From (i8) we see that the required

form is
~-KEE*

. % 20

= &jdgjﬁx.)pri.pd»x.idx,. L

™ (]
© ©

_With t=o 1in this equation,we have at once Fourier's well

known integral theorem

If now we take the particular case F(x)=constant =

Jo

the result (19) yields <

. Q..
AT = 2% e e d«z - - - < (20)
R ,
It should be noted also that if we take the solution given by
X
¢ 2 Nﬁ:i"‘l‘hc} - 2l
Vo= Vil I\TFL ’ | ~ - - 7( ).

We}have the solution corresponding to flow in the semi-infinite

80lid originally at the uniform temperature zero, when the
Vo
face x=0 is kept at the temperature Athroughout. In writing

down this solution we have been guided by the general princi-

ple that if v is a solution~of

- The vesulr in this form is gwen by Byerly,,' Fourier's Series et (1893) 1»8!:-'.




3 dxt
V=0, X=0, v, t=o
then mo= H(x) v is a solution of

o A
- == K LW
ot dx*

uw=0, L=0, w=f0), x=0 ; $'@=o0

The rod of finite length a.

We examine in the first place some solutions obtained
by supposing that the end =0 of the rod is kept at the
periodic tvemperature:e,ofkk. The condition obtaining at the end
x=a may conveniently be stated later.

As we have seen in the previous chapter, a temperature
wave train is propagated along from the heated end of the rod
giving a first effect at distance = indicated by

v = 9,,czuu.-:‘°“rlg - - 22)

This train arrives at the boundary x=a with the value Boékb—wg
It is exceedingly improbable that this is the temperature
condition prescribed there. We must therefore suppose thaf%;he
train (22) is reflected at the boundary, thereby setting up a
negatively travelling traih whose effect v, ia given by

LRL — (2a—) JL&
v, = Al E ,

Y C ) §
where A is a constant depending on the condition at the surface
X=a, The total effect at any point (including ®=® ) is now
given by (V;+%) . It is apparent however that the train (23),

converging towards x=o0 would on its arrival,violate the condit-
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ion at that surface (viz. 1= o.e—b ) e

We must therefore again suppose that there is a corresponding
reflécted train. If we call this reflected trainw, it is clear
that a necessary condition is that atx=0, v, and v; should just
neutralise one another. Clearly then v; is given by
th-(zau—x)\!%

'1.73 = -—AB°¢

In writing down the expressions for v, and v; we have been

(24)

guided by the physical consideration of phase equality at the

boundary in any incident-reflected pair.
, 24
Continuing the process, we see that when the train ()
arrives at x=a it again sets up a negatively travelling train.

" Denoting it by we have

. - -)i
) ‘UJ}=—A29°Q:LM (4a x,]: ,

So far the effect at any point is (Ui+v,+uy+v,), but it is

(25).

apparent that the process we have indicated goes on indefinitely.

The complete system of trains within the medium is conveniently

visualised by means of the following scheme. (p= B,ebkt).

Positive Trains, Negative Trains.
T -
-(2@-—::),3%
(2043) Ji& Ape |
—(20+3)J5c

—Ape " ‘ R
~Gar & —pp e IE

+Ape * '




Thus for the total effect of the periodic temperaturewaotpkt

x=0 we have
% ka;-(zmn)rii © Rt~ —x)JiR
v= 0o 1A% VK g T ARt -na 0 ... (@b
(4 '
The result (2b) is perfectly general. For special cases,
depending on the nature of the condition at the end x=a we
modify it by giving to A the appropriate form.

(1)« Phe end x=a kept at zero temperature.

if v,, v,,, represent respectively any incident train and the

corresponding reflected train We/' ave

_ X= Q,

| A, = 0.
whence A(+A)Y= o or A=-—1t.
In this case the result (26) becomes

2 pt- i 2 ikt (2na-x) ik
o 9o§¢bu (2m+x)J: -'92:@*_‘: (2na x.)J_&_

© - ,_c--(?.")

This is the form of result required when the periodic temp-
erature Q,edw is maintained at %*=0 .The real or the imaginary
part of the right hand side of (27) is taken according as this
temperature isfeoskl orfswikt ,

Impoftant results are obtaine}d from (27) when we take:the

. [ L
solution ¥ indicated by :
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The solution required 1is -

00 ”'kt-(zmmc)ﬂ.‘ Rt ~(2na -X) sk
= %Zj ¢ J':dk -Q'E_r;bk ¢ '[:alk
' 4 R

o . ,

- . - (28)
' Jo

Using the result (74, Chap.I., taking the real part of each

side, we have

—— T 2

4ict

Y (ana+x)e - Z(?.m-x)cz

_(2na+x) - _(ena-x)* '
R = } <-(29)

s

If weflenote the terms of the first summation byS,S,8. &c,
and those in the second summation by &b, £y &c, we see that S.
represents an instantaneous doublet of strength 2K, at x=0 |,
t, an equal and opposite doublet at the image of 8§, in the plane
x=a , S an egual positive doublet at the image of 4 in the
plane =0 and éo on. ThHe series in fact give the distribution
of doublets in an infinite medium equivalent to an original

doublet of strength 2KB, at X=0 in presence of the boundary

x=a kept at zero temperature. See fig.2

.
_3a| - -aaiw R —-al | “ 0’ | &

-Fag.' 2.

B

T

The result (2‘-'1) may be rewritten in the form
; lx+2na) } )
R = J—Z (ac-n-zna)c, -, € &)



25

which,by adaptation of a well known transformation,can be

exhibited

o0 _n"ﬂ"‘b
"N = 2k8o § it " g MK R &1
R(v) = a Z, a ° 'y @)

We can build up from this solution that corresponding to
a continuous doublet of strengtthegf(t)at the end x=0 of the rod,
operative from the instant t=o onwards, A1l we have to do
is to replace § by Ht)dt' , £ byE-tYand integrate with regard
to t from o tot . In particular, if (8= constant = 4, ,say,

the result would become

'_2kve & W i WX t-é“gw(knb')dt'
- o it
V= o Z a‘A«wv.L‘“a‘._o
80 . -_“;"ﬁ"w(:
= 2P Lo (- ) - 09
; ~

When ¥ is indefinitely great i.e.when the steady state has

become established this result takes the form
V= 2% 5 L s aEx
™ 4N o
This state however is that given by the system

P 0 5 v= vy ;T
Yo 5 VU= Vs X=0 ; V=0, x=a.

whence V' — "8(' - _;,__)‘ .

Thus the result (32) may be shown

[} [ 4 - " -
x 21k KWz .
Vo= "o('-a:,———t"Z'e " aim WX .. .(33).

The identity of the two forms for v'sgiven by

* Seec <.g. Carslaw p-159.
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V= o) = 20 foie sz

is simply a restricted case of Fourier's Theorem.

The method we have adopted above of building up solutions
from the fundamental equation (2b) is only suitable in cases
where the reflection constant A is of very simple character.

In the cases that we go on to consider,this constant - or, as
we should more properly d931gnate it - this overator,may be a
more or less complicated anctlon ofk .As a consequence the
integrations corresponding to those we have in (29) would become
almost intractable., We accordingi?fgdﬂéeful alternative
procedure for the obtaining of the results shown above , prinsg
cipally with a view to its adoption in the further problems

to Dbe investigaﬁed.

The procedure consists in summing the infinite serieg in
(2b) before considering the solutions obtained by means of the
& integrations. Thus, writiﬁg tA for J%k in (26) we find that

this result takes the form
uhk —LxA 00

v=0,e Z( TArS —2naii — 0, uhk-lrbx’\z(-)A —2nacA
WRE —Cach db(:-(u- DA
i eo@ . + A—ege ] s )
1 --I-P\g,'za?‘A o | -+ Af‘lal«k
: —CXA A =l(a-0A
== °°th_ e + Ae ¢ - - - (3%)

I+ A A
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This again is a fundamental result. - If e.g. as in the case

discussed above A=-—1, (34) becomes

ke ~txA - (20-X)A
av _"9 Q« L2 =2 =
{ - e'-gow)s o

=0, Linfa=A . 8)
A A

Again the result v defined in (28 ) takes the form .

I '\!"= 2;‘49090 Q.'KA Sow(a-x)A Ad‘A | . .. . GL’)
™ e scnwal. -

where the path of integration is the infinite radius 6= ~1—"-‘ in
the A plane. (A=R¢‘9). A
Now integrateb the function
| &(5\)= 'y KR ANAR-XIA 4 A
- Sur QA

round the contogr consisting of the path ol” , the arc BA,

and the real axis A0 indented at the points given byalA=ni;
see fig.3 . V '

We demonstrate in the first place that when R-)oo the Value of

the integral along the arc BA——)O .

hen R is very great it can be readily shown that



!ﬁw (a-w)k\_'__:._ cooh{(a-x)ﬂsmg} T
SW““’A Ve coo&v{ov&ouﬁ.a} _ ks
~@~x)Roun b _ '
=L ; =Z <90
-2 Ainb
xRoumb
- ¢
i ° _ktR%09284+xRoind
accordingly we have E jﬂA)dA P J e R2

~K

2

the convergence of which whenR—»00 has already been demonstrated.
Thus when R->® gnd when the radii of the indents —> o,

I;cmx - {{é)dé + 5 | §oda.

oB cndent
The value of the integral round the indent at aA=wi is

S A
-l W o Tar v WitE%
| (O -a{- e .&.Am bR
Thus from (3b) thave

2

’V"‘ o.mooj ok §? s (ov-x)€ §d§ 4 230902 n —%“‘wwm )

T, T Ssinag - o a
or, taking the real part of this result, that which gives the
solution for the case of the instantaneous doublet of strength
2K6, at x=0, ‘ - _@z‘w
v = i%z !’."%te, & AM."L&.“_.

in agreement with the fesult obtained by the former method.,
From this point onwards the procedure is exactly as previously
indicated. While we have used the _doqblet mode of expression,
it need hardly be repeated that everything is just as if the

, 2}
end x=0 of the rod were kept at the temperature ;throughout.
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(ii). The ond %= of the rod radiating to a medium at zero

temperature,

Analytically this conditlion 1s expressed by
- (38)

X=Q@, - K%‘—;x ’LU’
where fy is the coefficient of surface emissivity.
If we take as typlcal train emanating from the end x=0 kept at
“ '*‘L’ . N
the periodic temperature 9°¢ » and as continuation reflected

from the surface x=a the following expressions respectlvely

—2UA —(2a-x)CA . :
| pe , Apc@ePR L (s [R)
we find that A , to satisfy the above condition is given by
A KiA—Q C e (39)
Kid+ h

We have now to modify the fundamental result (34) by giving to
A the above form. Properly reduced we find that the required

result is.

o=0 ei«"ﬂ: KA cos (@~ 4P s (a—a)A )
° KA cosahdeh 0cnal

Proceeding at once to the solution nr'.-_-%!Fr&kz , whose
©
real part represents the effect due tothe instantaneous

doublvet of strength 2K at x=0,we have

U e.;rae,jg‘“"‘ KAcos@-aAsbuloimia-zih ads . . @,
e KA cos al+f suval

where the path of integration is aéain the line OBof fig. I.

The integration is effected by integfating the'function

KAcoo(a-A 4 fvovvi@-x)A , —*Xt
AN =
Fo KA cosah+ fa suical Ae




round a contour like that in fig.3 , the only difference being ‘
that the semi-circular indénts ‘ére round the poiﬁt’é given by
the positive roots of the equation

p KAcos ad +h omal = 0. . . .@2

Using the same theory as in corresponding previous evaluations

we have )
g 00 2
FdA .—_j $(Eydg +T) ¢ KX KAces a—a)A +hsmia— A
o8 o : < { KAcosah +hoviral}
kX't
Sf‘@)dé ""'Z“‘ KX+ l2)A sin xA .. @Y
o f h(K+ah)+aK2?

where the summation is with regard to all the positive roots
of the equation (42),
Thus, confining our attention to the real part of the

result (43), we obtain

RW') = 2&6,2(1 nA‘t (K24 WA sin xA oL “@4)
' f(K+ah) 4+ aKA*
The effect of the continuous doublet of strengthcz_ke,at =0 is
given by
g =ZBZ KO 4 (- Sin xA 0_{‘6’3&) @

h(K+ah)+a k>
The corresponding "steady state" solution is obtained by making
t—>x . This state however, obtained from first principles is

= { -
¢ . ( K +ak)
Thus v; can be exhibited in the form




¥ _wNt 232 [2 i ' »
1);:90%'..7(%% "ZZ‘Q' (K24 h?) w;xk } TS

M (K+ak)+aKX

The equivalence indicated by

e 2’§ (KN4 1) sinxh
Riah — 4 hlK+a+rakn A

the summabion being with regard to all the positive roots of

2

the equation (42) is,in fact, a well known result.

In the foregoing problems relating td the finife rod the flow
has been due to the maintenance of a prescfibed temperature at
one end, the temperature at all points of the rod except at this
end being-initially zero. A return to this class of problem
is made later in the discussion of a practical methbd of
determining conductivity.

It is equally important that we conside® the case where an
initial temperature state is prescribed throughout the rod.
?he results for certain simple initial temperature distributions
are ;§adily obtained from those shown above by using the prin-
ciple indicated in connection with the corresponding investiga-
tion involving the semi-infinite rod. (see p.20). Ffor general
purposes however it is necessary that we indicate in outline

aretveated
how such problemshby the application of first principles.

© % sce 13 Carstaw piv '14-zks¢‘q‘.



Cooling of a finite rod from a given initial temperature state.

fet the initial atate of the rod be given by

t=o, V s () 0Lx=2 o ... (A7)

)
The condition obtaining at the ends x=0 and x=a of the rod may
conveniently be specified later.
The procedure is indicated by the following steps which are
considered in the order named.

(+). the effect due to a pefiodi}_:_ source of strength q}éht

per unit area at the plane x=x,is fouhd.

(). Prom this effect, that due to an instantaneous plane

"source of strength q at x=%, is obtained.

(iii) . If q De re;};)laced by lé-f—(x.)dao, in the result giving the
effect (i )A" we obtain that due to the initial temper-
ature state prescribed above.

As previously indicated (P17), the first effects of the periodic

gource at x=x, are given by

c<x q eu\%-—(fr-.-x)cx _ e-(x.-x)éx

a F—
' CTON F
. . , .- -@®)
x>, v, % e"kt‘(x TN — P“- (o=, )EA ‘
® 2KiX -
where oA =Aﬁ:’§ 5 P = % z&k(:‘
K ' 2KiA

Similarly, as previously remarked, if any-addition be made to

elther of these trains to represent secondary reflection effects,

¥ imsert " omd thio resuth inteqrated wah veqavd tox, from o0 fo o
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an equal addition must be made to the other so that the dual
condition at the source surféce may be maintained. Thus we
begin with the original negative train ’and write down the
contributions made by it and its continuations by reflections
at the surfaces x=o and x=a to vband v, the resultant effect

in both partsx§x, of the field.

x < ¢, ' x> I,
- (%, ~ xX)A
3

- A - y
Fpe (=, +%) Fpe (2, 4+ X)A

- ~20)iA . .
AFpe (2at+x-o AFf{‘“""‘"x)‘A

AFQFQ’—(m-i-x,-}-K)\A ’ AF"‘S z-(za+x,+m)ib«
Q:-(Wx,-x)\A

s & -

A% ot m )

where A and F are the reflection coefficients applicable at the
boundaries x=a , X=0 respectively. v |
Thus, resulting from the original negative train alone

we have the partial effects

- A {F@.xék al)

x<x| 9 pe e -
| —AF ¢ 2alA
: _xiX § = - (2a-x)%
2Sx, , sz =Y {?— +A®' }
: I — AF 2>

Similarly if we tabulate the original positive train and its

various continuations by reflection at x=a.and x=o0we obtain

X < X, X > X
. - p ¢-(x—x.)»x '
;(?a'x.,?").& AP ;(zw-x- EATHY

AF'P Q-('zq. +x - WA




Hence the partial effect arising from the original positive

train is
~(2d ~2IN ~elA A
x<®, , Ape gFQ +_g,tx!} 9 .
: | —AFe 2N
A 7 —oxi) ~(20-2)A
x>x , Pq’x' L2 = +A¢('2° hi .

I —AFe™ 72N

Thus the total effect due to the periodic surface source is

given by
—xih | XN —ax, 0N  ~(2a~Z A
x<x,, vy=2Fe +¢ ~ {P@ +Arz‘ = } ‘
| ~AF ™
—xi\ ~(za~x)A . :
xyx,, U==2_+Ae _ gpex'”)'-c- FPJWA}
| -~ AF 224X
-~ L 1 - (o - el /
1o X <x,, Ui = PiFe, xb}\-j- ex‘A}{ ¢ a, X+Ae (20 ::,)«A} o @)
I —AFe~2a<)

= pp(x,%) say, ,
o >x, ¥ = f’"’("‘b""’)» ,

These results are perfectly genersl. For special cases we give
to A and F forms aprropriate to the conditions prescribed at
x-a and =0 . A4S previously we tske two cases :-

(t). Both ends at gzero temperature.

(2). Both ends radiating to a medium at zero temperature.
In the first case we readily find A:ﬂ-’-’: -1

so that the first of (44) becomes

-~ —(2a-x)
It _¢(2u x,)c’\}

2&M&A{ .o )
x< v, = P- —_ o % , -
s RO | st




with a corresponding form for .

In the second case we find I\zF-—K"—L\:i
K«.A-l—‘tv

and the first of (44) becomes after necessary reduction

x<cx, wv=pit (KA cos A + fu ovnaA)§ KA cos(a-x)A +H sinda—x)AY . .(s).
! 2KhA cos a + (W~ K2A2) suiraX

— P F(k), Sm)(,

Froeceeding now to the results for the case of the instantaneous
source at ac:..—ao,weﬁind that these are

(1). 8nds at zero temperature

M:_ QK e-;oﬂ: Qu,ovkapm(a.-x‘),\ dA ... (52
v KAt e At QA

where the path of integration is the lineoBof fig.l
The evaluation of the integral is again effected by an integrat-
tion round the complete contour of fig.3
It is found also that Tthe real part of the result is thut.which
arises from the integrals round the: indents at the points given
by @A=w®, Thus the result required is |

X <X, 'U’--LZ e-m‘ LAmxkowu:o.k , A=nw .. . (5Y)

with, clearly, exactly the same result for the region XX, .

(2). Ends radiating to medium at zero temperature.

In this case we have

-3
= 2; ¢ VU EAYA (D
oB

For the evaluatlon of- the 1ntegral here we take as closed

contour the path of f1g.3 on the understanding that the indents



are round the points glven by the/positive,roots of the equation
4;(”‘.; akA b cosal -(K"/\"-—’mz) mal = 0, V .. (56)

At a root of this equation the factor KAecos(a-2)A+hocn(a-x)A
of the numerator of F(N) becomes KAcosxA+haocnaxA.
Thus when we btake the real part of the result (54),giving the

solution for the case of the instantaneous source at ®=ux,

we obtain, wmeting that at a root of (553, d'y= —{a,(l(%’-l—h,’)-i—ZKk}

v o= g._gg_»_i é""""" (Khcos oA+ ovnxA)KAcosx A+ homand) g
T K 4 o (KN4 W) +2Kh
where the summathon is with regard to all the positive roots of
the equation (55).

Finally,corresponding to the initial distribution given by
v=§=x), t=0, o0Ex=a,

we have (3). Ends at gero temperature.

from (53),

n Q
o - Kt .
= 2 ar " ., NI ®) oA NWINLy ] o Coe
v “Zc o 225 J;{( ) = dx, 67
Clearly witht=0 , this result reduces to the familiar half-

range Fourier series for f(x).

(2). Radiation at both ends.

from (sb).

V= zi e"‘”"(K% cos A+ hprim och)
1

[ 7
& (K ) 4 2Kk j F&X)(Khcosx A + {LAM‘X)‘L;’ )
v o N ,.

The form taken by this result when t=0 is a well known theorems.

¥ Corslarw. ibid,




Investigation of the theory of an eipefimental method of

determining conductivity.

1

The investigation may be regarded as an application of the

theory given on pp2l-3labove, where we have considered the flow
of heat in a rod, one end of which is maintained at a constant
temperatﬁre while at the other end heat losses take place
according to some simple law.

One end of a rod of relatively low conductivity is kept

?

at a constant temperature from the commencement of the experiment,

- To the other end is soldered a copper ball. It is assumed that

the whole ball instantaneously takes the temperature of the end
of the rod %o which it is fixed. Part of the heat passing

from the rod to the ball is used in raising the temperature of
the ball, while the remaining part is radiated from the surface
of the ball to a medium which we may suppose kept at zero
temperature. Thus we have, if & is the cross sectional area

of the rod, M the mass of the ball, S the specific heat of the
ball,Stim surface area of the ball,ﬁiim coefficient of surface
emissivity , o

3
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* sece TH.Gray, Proc. Roy. Soc. 18qu.  Methods based onm Har of Gray hove been

M use m the phgsiccul Laboratory ot Glasgow University for some time,
(8ee__ Jostnole T uhod. pV above.)




The problem to be solved 1s that in vgrhich the end x=o0
of the rod is kept at a‘cdhsfant temperature 6, while the
pondition at the end =x=a is that specified in the equation(59),
The 'proc‘edure to be adopted is that indicated in several prev-
jous cases. 'hus the soluﬁion for heat Tlovw in the rod dve to
the instantaneous creastion of the temperature B, at x=0 at the
instant =0 is given by

: o= MS gkxzt" e.i,ock.‘_AEC(za-x)k
™
o8

AdA .-« (60)

1+ Ag 2

where A is the coefficient in any wave train reflected from the
surface =a under the condition expressed by (59). By téking as

incident and reflected trains respectively the forms
CRA~ CocA LRE~A (20-)A
), e , Ab, e

we find guite readily that A is given by
] h . . .
A= Kf""(’(" q,%xA?) )
A KA + (v —9e®)
‘hen this velue of Al is inserted in the integral in (o), the

result we then have is

o= g,i,w,eoj Py "N KA cos(@-x)A 4 (v -9%2%) avn (a~)A )‘ AA- .. (62)
™ Je KA cos aA+(v-qeR)auvn ol

By using the contour of fig. 3 where the understanding is that
the semicircular indents are round the points given by the

positive roots of the equation

RIS . EM aA == - KA
Faemr o @

we find that the above result yields after reduction




e ‘ N
U= ZKB,ZA";Q'K’ Ao - S e e (64)

where A = K 'ff\"‘ 4+ (p-a KAL)
a;{ K224 (o —queX’ )’} + K(p+9x)

and where the summation is with regard to all the positive roots .
of the equation (63). | ‘

‘ When the temperature 9 is maintalned at the end.;x 0
from the 1nstant £=0 onwards the 1ast result above is replaced

by
—WATEY AL :
1r==zeo§LAm(h-e/K )i&iﬁ&i

| ‘ =N, -
o= eo(l “R%W)~2902Am‘e B -AA_M';CA R - (65

where we have again availed ourselves of the device of filling
in the first term from the direct conéiderétion of the steady
state.

"o estimate the practical importance of the result (e5),
we must consider how many terms of the series need be retained
having regard to the numerical values of the various constants
in#olVed. For the sake;of definiteness ﬁe make a brief
arithmetical examination, taking values suggested by the
apparatus used by Gray in the original investigation._Thusve.g;

for an iron rod- selecting a relatively poor conductor-



" K=0-1b7 , k= 0.20tb , Q=628 ; radius of rod 0-2 ;
radius of copper ball 275 ; h=00003 , with these values

we find that the equation (b3 ) becomes

o b-28A = — 0001358 NN
O- 001845 - A™

The first relevant root of this equatidn is given by
A=0:04534 ; and the suco{ding roots approximately by Au=‘~!iL'
n=1,2,34% bto a degree of acciuracy that increases as M increases.
Thus 1f it 1is the intention to observe the temperature at
x=a , l.e. the temperature of the ball, we see that for this
value of x all the terms on the right of (65) after the second
" are practically zero. In fact we may exhibit this result in

the form

— K srwals ~AE !
Va— eo{m 2A.'T€ - } <. (67

or numerically

- . ':
\, = BO{O-IOqu —o0-10bge 0-0004145 +-- }

It wounld seem quite a justifiable conclusion from the

practical point of view to take as a working formula
2.
_ K -K,)\,L}
Vw-eoi K+p,a - Ble

The comparison of this result with that obtained by assuming

. W)

~ as in ordinary‘ laboratory practice - a uniform temperature
gradient along the bar, is of considerable interest. If in

59 t o=Va for U d i i
(59) we pu __o_a_g/,, or S and vlntegrate this equation we get
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or numerically,with the same data as before,

Na = BO{O-IOH.Q 0-tonqe oooulsst}

. The conclusion reached in (b%) would seem to indicate
some such process as follows,for the determination of the
constants K and W .

We notice that Keol(K-i—h«a) , the steady temperature, can
be observed directly or inferred from a temperature-time
curve. Let the value be 8off . Then p=KEF-)fa . Next we

2
have 30=ch 59 KNt

— ?

9

so that if we take the ratio 9,/?,_ of the values of %‘—: at two

instants b,b, we get

2N

2

Ene g

4, and 9, may be determined from the temperature-time curve,
and in this way w\, calculated, Finally, A is the smallest
root of the eguation

ban oA = ——KA = —_—CPA
fe-qeX® - cp E=0) — qa>

in which all the quantities are now known. The root may be
obtained graphically and, since we know k> , x can now be cal-

culated. The value of h is obtained by putting the calculated



value of « in the formulé_f::K(§—ﬁﬁm .

In view of possible applications of the theory given,
it should be remembered that the conclusions reached apply
oniy4to apparatus of the particular design specified. For rods
of different length and section and for a ball of greater 6r
smaller surface area we would hdve to consider again the
special form taken by the genéral result (by). The assumption
also that the entire ball at once takes the temperature of the
end of the rod would require further examination. In that res-

pect the theory is still incomplete.

B e



PROBLEMS INVOLVING CHANGE OF MEDIUM.

The case contemplated is that in which we have a rod of
length (a+b), one section of which,from *=0 to X=a is of one
material, the other section from X=za to x=b being of another
material of different conductivity. The first section is
referred to as medium I and has conductivity and diffusivity
K, and «, respectively. The second section is denoted by medium
IT and to fhis the corresponding constants K,, k, applye.

| The problem ultimately to be solved is indicated by the

following system.

osxsa; W= 1 agegps ?‘_"-_.x,al"* : L (T0)
b=o, YV=§@), ozxia =), aS=3b,

The temperature condition applying at the exposed surfaces x=o
and x=b may conveniently be specified later.

We begin by considering the effect of a periodic surface
source of strength qe,"kbper unit area at the surface ®=xwithin
Mediu_m.-I. This effect, so far as the first medium is concerned
has already been found. (See the result (49) above.)

For convenience the result is reproduced.

x< ‘U" P{FQ’ ag;('k_'_ zﬂ)}{ ~ac, U + A -—(')_q_.xl)‘)x}
| —AF e~ 2%

- . L)),

x>xs ,\,;z._ p %}hz Same expression, x, Lu\-zrchaqud.}



In thes;a expressions the various symbois and opgrgtgrs rhyave
the meanings previously assigned to them. |

So far as the second medium is concerned we have now to
take into account that each positively travélling train com-
prised in v, is on arrival at the boundary x=a partially trans-
mitted to medium II. The transmitted train by repeated reflect-
ions at the boundaries x=b and x=a builds up the complete
first~effect system in medivum;-;II.

Theorem. (1 ). Any posif;ively travelling train OL{L&?' in
medium I builds ul.o by partial transmission at x=a the effect 42
in medium II given by

. Vp = A'OL C- -—%’:
where A is the coefficient for transmission at x=a, B and C'
are the coefficients for reflection at the surfaces x=b and x=a
respectively within the second medium.
{= fa+pp-a}in 5 o= =

p (b=x)iA M o-miA

V= ¢ + B ,
So= '—BC'Q,.»(Qb‘za)‘:A

The theorem 1s readily established. . The original transmitted

train is R v '
: + Al -a)oA -
Ade o )‘,’

The first reflected train from x=b is A'Bocz-“m-"’ (2b-x-a)A

-

The next train, that reflected from X=a is A'BCxe M AM(Eb+x—-30)A



The corresponding ‘expressidps for the further trains set up by
reflections at the boundaries are easily written dqwn. If the
positive and the negative trains be summed sepa‘rately, the
result as stated above is at once obtained. .
Theorem., (2). Any negabtively travelling train Be ~plb-x)EA

in medium II when partially retransmitted across the surface

x=o gives an effect v in medium I-where

-L
=BCe ._g___ ’
(]
C being the coefficient for retransmission,

and <§> Fec + t=A

?

S= | —AF 2
The proof follows at once by writing down the transmitted

—~2)CA - *\ .l >
continuation of the train Be. (-l as CBe M(0-0)eA—(a-2)iX

.

Reverting now to the problem proper, we now observe that
all the positively travelling elements in the effect v,

indicated in (7! ) above,may be regarded-as one comprehensive

train

By the theorem I sWe see. that the partial’ ‘transmission of this

train across the surface xa—a. gives the effect v, in medium: IT

where

v, = Ape zi_



Again all the'negatively té&elling trains comprised in this
sum comstltute the 31ngle train
¢ Be —ph(h=2YA
S'Sﬂ-
and by theorem II,the retransmission of this train across the

-Ape

surface x=a gives the first secondary effect 4, in medium I

where

. -2t
~'U;2_—_—pABCe __é&_.

SP Sa.
Continuing the bfocess"and noticing that the positively travelling

—-ixA
element incp is Fefx,we find that the next-order effect in

medium II is

The process continues indefinitely. 3ne followihg table

shows the successive order effects in the two media.

Effect No. Mediuwm T | - Medium IL .
| { P% {e—xtx + AE(WGL)LX} A‘P é" 4)' :l,
;% | S| SQ_ '
2 pABCT D PATRCF DY
o . )y V2 1 V2
; ~4b
- 3 A’B"C" 4 .c_b'sé; PAasBzCze 5£ ﬂ:
S3S2 S3s?

It is at once seen that the successive order effects in medlum IT

are given by the terms of ‘an infinite geometrical progression.

If the anomalous first effect in medium I be excluded a like

rem ie 3 s : e .
ark applies to this medium also. This effect is partly



reduced to conformity by rewriting it in the fgrmt““; 

P'é-"- Fc—xiA -I-Q,ka ‘_zch +AF¢-(2¢.\;-£)|A
F | | —AF e~20¢A

=P &.i _Pie&xk
Fs| F ’
Thus summing the series we have

vaeh ‘ ‘
4r==-pjhz + ﬁﬁh; Sa 9 . - - (72)
' F F=F §,S; —~ ABCFe~2" -

‘ PR 4 1 » B
U= Ko Q¥ gt e a

i
These results apply when the periodic source is located in
medium I. For general purposes it is equally important that

we obtain the corresponding results when the source is in

- medium IT. It is unnecessary to reproduce the details of the

analysis for this case; we remark that the anticipatedl

reciprocity between the sets of results is fully borne out and

: these results
is at once apparent in the final form plee— take. jmms we have
lal

i *

] -“a
V=Cpe wld) 3.

. —ABCFe 2t s a9
m{b-x)x '
V,= —p Wi ¢ —+ pAAL S -
% - (s
) el B B $,S.—ABCFe 2" ().
(P"'zxz,u;x“ )

The results we have obtained are perfectly general. Particular
problems are solved by giviﬁg to the reflection constants Fand B
forms appropriate to the conditions prevailing at the boundaries

x=0 and x=b . The coefficientsA,A,CC’ applicable at x=a

% Ay = MO o b=




are independent of the ond conditions and always have the same

form. Thus if we take forms for W, and v, indicated by

Source S U= bex4-AfﬂMﬂﬂw\
in Medium I, ’
1 Uy = A'{M"‘-Mx'aw'\
—pm(b-x)CA - - ’ o .
Source j Up= ¢ pb=y¢ +Ce polbrx-2ayid R
v Mediwm I, o

v Cz-p,(b—-a,){,x —(a~-2)CA
1=

We have to choose the various constants so that at oc=a we may

have

v=

KOV K 2%
1dx~ 29x

In this way we find

A= Kl—Kn&= -1 ; C= 2'(2&:. = 2.
K'+ Kz}b T+ | K|+Kn}& a1 ._K.L 76)
. = - - (7
A' — 2 K, —_ 20 o C“" "‘A- — —?—:—l.‘ Ki"’
K+ Koy @t T T T

with, clearly, such simple relationships as AC'—CA'=—I.

Next let us consider the case

Both ends of the rod kept at zero temperature.

In this case we readily find that the coefficientd Fand B
are given by F=B=-I
also Y= 2 oua p(b-x)A
¢ = 2?/34@ A

with corresponding forms for  Ab, and &,.



Similarly S =1 -l-AfzaM\: . 5= "+c.¢-2,~(b~a)ox"

When these simplified forms are inserted in (72),(73),14)(75) we

find,after considerable reduction that these results may be

shown ss
U= ‘bc&"k‘k 20 A0 XA Son(a-xY\coap{b-a)A wm(g—x)ﬂ\AMMb-aA,
Source in 2K, A £
- -G

Medium T . cht . : . '

, . %zﬂ__ztomxik s (b-x)A . . -9

2K,iA £
where $N) = s adcoopu(b-a)A + Tcos ad aumu(b-a)A. - - (8D)
Cht .
also : V= 2iainmlb-x)h QXA - . - . (M
Source in 2Kzpi) £
Medium I/ y= q,ebkt: 20 ouriopn (o)A Sin A Cos sX~AJA 4-0"CoI AN Supa(X—a)A
2Ky pid EACN)
~--&)
Likewise when we proceed to solutions representing
instantaneous initial sources, obtained by taking the real
part of the solution of the type
o0
v= ij vdk
. (~]
‘we obtain from the first of the above set
o\t {sin@-cNecoomlo-mA 1
=2 _le  2isnx)\ geos(a-oummlib=ar ]ty . (g5

where the path of integration is the line OB of fig., | .
To evaluate the integral we take as a closed contour that of

fig. 3 ,on the understanding that the indents are round the




Jo

points given by the roots of the equation ‘
Nz simaX cosp(b-A +-Tcosah ot mb-a)A = O ... (99

It is found that the real part of the required integral is that

which arises from the sum of the integrals round the semi-

circular indents.
At a root of (83) we find that the expression
Sin(a-x)Acod (b~ A +T cos(@-x)A sin p(b-a)A
becomes .
. Stw&('b-a,)k A A
AL AN
while the corresponding expression in (80) becomes

— St aA 4
dun pr (b-a)A divupr(b—x)h

Thus the complete set of results required is

Thst U= 29K, i e""nle" AU A A acA o&wp(b_a)A (84)
Sourece Kap 5 svnaA £ (A) '
n
Medium T V= 29K i Q’”"‘zt v A dun m(b-x)A (2
sz ‘ f"(ﬁ) 5)‘-
Tnsk { v, = — 2% - 5"1"% v p(b-x)A ounach (86
Source Kape 4 5}'(9‘) .
m ’
Mediom I = = 205 . e-"-’?“ i (b= )A s (b-2)A sural (37)
Kaopr 5 Sew p(0-A - ' (A) '

where the summations are with regard to all the positive roots
of the equation (8%3).
These results are of very gérieral character in the sense

that we can obtain at once from them the solutions correspomd-
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ing to any initial distribution prescribed throughout the whole
rod. If e.g. the initisl state is that given by

=0, Y=¢(x), 02xza ; W= asxsb
we replace q, in (8#) and (3b) by%dﬁ,(ﬁc,)dx, and integrate with
regard to a from o to @ ; replace q in (85) and (37) by %@(x,)dxl
and integrate with regara to x, from a tob . ‘I‘h‘e total effect
in the first medium is then obtained by adding the first and
third of these results, that in the second medium by adding the
second and fourth.

We show the form the results take for two selected cases,
(1)e |
(h(x)z Cbz(x): const — 'lfo Say,

It is found that at a root of (83)

FO= _ o sinulo-adr _+ plb-adoiv'a)
: Suvah sin p (b-a)A

and finally the total effect in the first medium due to the

PR

initial temperature a4, throughout the whole rod is given by

00 —K‘Alt . . &
v=205c¢c duapt(b-a)d s 2covivm(b sumaAl ..
: °Z| G sin m(b-a)A + m(b-a)sinal A § mb-h+ } &3).

and v, the total effect in the second medium is given by

[ . Agt . . .
(14 =z1,’ e " Aumal OWH‘b-—x)A ,l_— T ‘ b A AN e 84),
2 ; o S oA+ silb- oA { b (b-a)A 4 MvaA} 1¢

(2).

S ,‘,' -— sz }
T K(b-a)+Kaa

e = 0,§_ Ki(b=2)
% { K,(b-a)+ Kav




When the integration process is worked out for this case we

find that the required results are

U =-20 ié“ﬁ%‘c T eodec oA S xA .e . (qo)
°S %X(cofp(b-a)k +<rco|'aA) A
2 kX geostcar b-adh _ pinpu(b-A
n=-205 ¢ gcooec A cosee mlb-a) M (b —x). ... (q1)
=R T o sreota) A |

If now we take the solution given by
V= qx) -y
V2= 472(3:‘)"' U
we find thatV,,V, satisfy the conditions
V=6, x=o0. V,=0, t=0
Vv = v T=Q
VI= o, t= 0, ' i

Thus V,, Vo are the solutions for the case where the enfi *x=0 is

Vz:: 0’ X = 'G

kept at the constant temperature 6, throughout, the whole rod
being originally at the temperature zero. The result, in the
form shown, ié in entire agreement with that obtained directly
for this problem in the author's Phil. Mage. paperj*

In the above illustrations it is assumed that both ends

of the rod are kept at zero temperature. We now indicate

briefly the corresponding results for the case

Both ends radiating to a medium at zero temperature.

We readily find Fo A= _ _ Pt
(\+H, .
B= VA“ 2 —— -2"82
A+ Hy -

% RIT. nas+.



where kﬁweﬁﬁ-’ ’ mez'?%:ui JH;= %':'. H,= b

22
MKz

f, and b, being the emissivities at the ends x=o and x=b
respectively. The subsidiary angles 6,0, are introduced merely
to simplify the remaining parts of the analysis.

Thus after meduction we find
S,S,~-ABcFe 2t = ~ (e=b-a)

(1-m20 c“{""*a‘“f‘-‘*“‘b'“ﬂ} { Sin (640N cod(8,+uch) +u-coo(9.+aA)am(9,+pck)}

Also S,¢ becomes :
~C§0,+0,4pecAy . . ' .
e t6 S 17 4W(91*ﬂ){(|-ﬁ)m(91+wﬁ)+u(l +A) odw(92+)w:A)}
whence we have
oY) = 5£w(9.+xk){coo(ez+mﬂ +WAWL(9,+WX)}
1 -2, —ai
$,5,~ABCFE @] 5n(8)+0R)coo (BartmcA) + T coa (B-+aA) auin (8, +mkA)|
Thus ultimately the result (72), giving the effect in the first

‘medium may be shown as

U= P 20 0in(8,+ 1)) 5o (-3 co s (0, 4McA) + @ coo(a-XIA 4 vin (B +uch)

F, (A 69
where .F.(i): saw(9.+aA)m(eg+,MA)+o-coo(e,+aA) odv(e,_-;-,@x). ... @3
Similarly the result (73), giving the effect in the second
medium due to the periodic source in the first, becomes
- G?P_.uM@' +2) Amge,,-;-»(b-x»}, : -« - (9.

Fi (A)
In the same way. when the periodic source is in the second

medium we find from. (74.) .and (75 ). that the effects are given

by/



0= o' 26 acin (8, +8) S £ s + prlo-xonk it
R o - o

v p':u,oiw { B4yl x,)).} om {B, +aArdcos Iu.(a::-?)t +Teon{B+an} Suipf-a)A @6
' A
)

Finally the solutions for the corresponding instantaneous sources

are given by

st | ¢ W, = — 29 i Pl M(G.j»x..ﬂm(t’ﬁ;i)om{ez-pmx} @n
Source MRz 4 suin (0,4-an) F'(A)
m 1
Medivuon T | gz 295 S & (N osnfOtpulb-2)A3 (48)
MKz 1 F;I(A)

Tnst o 200 & 5 500 0, 4 plb—x)AT 0 (0, 46A) (99)
U= =T )

,Souwc_e. . MRy :

Modivm T y=— 9:42’:' i &N sin {8 +alb-xA] sindBs+pb-00A} s (B +ad) oo

\ q 1

sin § 6, +mcA} F'(A)

where the summations are with regard to all the positive roots

of the egquation F(NY=o0

1. the eq,wdﬁoﬂ A - Hy bana 40 Hy — A tanal = O.
A+ Ha banpuch Hg_-Abw/u(A

From the solutions indicated above we could obtein as

previousl¥y those correspomding to any arbitrary initial heat

distribution.  The details for the working out in any particular

case become very laborious. The principal interest, clearly,

is the strikizl'lg form analogy between the set{ of results (97)-(100)

and the set (84)-(B7) . (learly the latter could be deduced

from the former by writing 6,=8,=0. throughout.,
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This section. of the chapter is concluded with some
observations on the types of problems whose complete solutions
can conveniently be obtained from the various sets of results
arrived at above. |

The result (87) e.g., giving the effect in medium II of
a given initial heat distribution in that medium could be used
£o calculate the insulation afforded by placing the end of that
medium in contact with a layer of low conducting lagging.

The lagging corresponds to medium I in the analysis given

gabove. The temperature gradient at x=-a within medium II at

any instant can be calculated and its wvalue in the circumstances
compared with what it would be if the end were kept at zero
temperature, or radiated according to any other law. The
calculation of the protection afforded for wvarious thicknesses
of the lagging and various values of the relative conduct-
ivities would give results of practical wvalue.

Similarly the result (87) could be used to estimate the
inefficiency of a heater over the end of which has formed g
layer of low conducting scale. The temperature gradient at
x=a - a measure of the heat passing to the heater proper -
could be calculated and this resﬁlt compared with the direct
heat current at x=a if thére were no low conducting layer.

Again the result (3b) could be used to calculate the



epoch or distance of any initial temperature "disturbance" at
a remote point in medium IT say. If e.g. a layer at distance
ax, in medium IT was brought suddenly at some past instant to a
given high temperéture B, say, all the other parts of the two
media being at zero temperature, it is clear that observations
of the gradient at x=o in medium I now would enable us to infer
the epoch of the original disturbance. The relation of this
problem to the classical "Age of the Earth" problem invest-
igated by Kelvin is at once apparent. In the original calcul-
ations a uniform conductivity throughout the Earth was assumed,
Later calculations by Perry and Heaviside were based on the
assumption of an inner nucleus of one materisl surrounded by
a concentric layer of different conductivity. The plane flow
results of the present chapter are not, howeﬁer, at once
applicable to the classical problem; the necessary spherical
analysis is given in a later chapter.

The present chapter isvconcluded by an examination of the
case where medium II in the genera;-problem-diséussed above

extends to infinity.




The second mediumfextendingﬁtg infinitz;

It is possible to deduce the results for this case from
those already obtained by simply making b infinitely great but
it is more instructive to investigate the problem from first
principles. The case is simpler in the respect that wave trains
on transmission from medium I to medium II across the surface
of separation at x=o proceed without interruption to infihity.
There is thus no complication corresponding to retransmission
effects from medium II to medium I.

If, therefore we have a periodic source at x=2x within
medium I the total effect in this medium is given by what was

called the first-effect in the previous investigation.

- { - - - J .
Thus; - x<x,, ,U;._._P{F:L xx.;.z»xk}{z -{:’Az (2a x.)‘A} L Gen
¢ b —AFe~ 2
= pH(= =)
x>x‘, UL: P}(x,,m) ... (lo'z)

Clearly also we have

A+ ei«x.i}c-cféx-p(x-a)&
| - AFg-2avx

When the periodic source is located in medium II we have

V= Al P{Fz-‘;x‘

(o)

the corresponding results

v= Cp & S N T i)

)

| —AF29x - (109,



'S —(x+z-2a)M
Ogesx,, U= p +Cp'e

-(x,-a:);wh

~-2QUA = (%, 4 X -2 LN '
+ FACP' o - . - (105)

) = AF e~2042

s> » '1;20:_ Same expression, -r,f, (Mi'erc,h.anqed.,

The first term in Uﬂi. is recognised as the original negative
train emanating from the gsource, the second as the positive
train set up by the pertial reflection of the first at the
surface x:d, the vthird as the positive train set up by the
partial retransmission from medium I of the trains reflected
at the surface ®=0 on ingidenoe of the transmitted part of the
original negative brain.
If we confine our attention to the case where the end

of the rod is kept at zero temperature we have F=-|, while

the various other_reflection and transmission coefficients
- have the forms already found, In these circumstances the above

results become after some reduction

(kt % 20-2)A
o= 2 2iouiner @ +AS .?c') .
Source | Z215,CA [ + Ae~29¢A R
in ] = 9 ‘wz,uoowxﬁ Gcoo(a-x.)k.pt.m,w(a-x,)}‘ . =06
2K, iA rrcoow)\.‘.comax ,
U, = Same cxpression, T, interchanqed.




RE .. ~alh —p(x-ayh
Y, = (1+A) Ye 2 AT AC

Source 2K,ix |+ Ae—20%A ;
N .
MediumX| crqle‘u’uouwxd_ s (x-a)X . . . (to7)
- 2K A 0 Cod AN + ¢ AL aA B
ikt =LA —pafoe,~aYA
( v =0-A) X _ 2iamxh £ -
; 2K prin | + Ac—2aix
t = 900 auiach Q'Mx‘-a)d « - . (108)
| 2Kzpuih  TCooaA + Lomad. '
Source ‘ o
l o= g RE { e.(:q-—x)/wvi_{_ c'e-(z,-yx—za)ﬁd’\
(X% () 2K2fbbk
Mediuwm I | ‘ ‘ — ACe

~2aiA — (3, +x~2a)paLA }

|+ Ac~2aiA

- ﬂ:@"‘w ?‘Le-f‘(x-““‘)"b‘ Sinal coop(x~a)A 4+ Teos al sinpm(x-a)h
2Kapmid 4 TCod A 4C Juin AN

.- . (109)

v;o.___ Same expression 1,1, interchanqed.
N

Proceeding next to the solutions representing the corresponding
instantaneous initial sources, that arising from the first of

of the gbove set is

v - (110)

—~KCN L
=391 2iouvxh Too(@-TIA+i s (amxdA 44
TRy TCOS AN 4L A aA

o8
with three others ariéiﬁg resp’ectigé‘ly_ifrom (‘07)f£l°4)-
The contour of integration is again the line 6=-T in the A
plane

To evaluate the integrals we must investigate the roots of



the equation o , B .
: U Tcosah gl dmak =0, 0 AT TR TINY

This equation may be rewritten

z(wx-'-'Mr)b- I-q
FTa
—& logl=C_
whewnce oM = — Wi 5 W% e

If 0! the logarithm is a real negatiire numbers;

if >1 the logarithm 1s that Of—g:.' and the real part of
this log. is again negative. Thus in either case, all the roots
of the egquation (111) lie in the upper half of the A plane.

If we assume that the integral along the arc of infinite radius

is zero, the integral along the line o8 may be replaced by

that along the real axis. Hence we have

s Y @-x)E + o g
v .—__“'ﬁ.f e 20wzl T03(A-XIE Floim(a~x)S 45 (1z)

K, ° Teodral +iamal

When we take the real part of this result which is the part

required to represent the instantaneous initial source welihave

00 2.

‘ K, o T2cos’al + antal

Similarly

Lo 2
V= zq,oc.crj e'“g,omx,é qma,émmx-—a)é + o af copm(x-a)s ds
K, T2eod%aé + anad

14

These results apply when the source is in the first medium.

In the same way we obtain, when the source is in the second



medium

v, = 205 ’l-xl—. zMxé u-cooaué/.miu;b(x,-a)g-f-ama%cosp(x,—a)& d.i‘
e ), T2coa%n§ +ouinvaf 15)

{crma,% Auip(E,-0)E 40 af cospulx,-a)§ } X

V= 29K, "K"'g {fmagomy(x—a)§+oma€m;~(x-a)§} 4d£
v Kyp O2cov’af + dun’af.
o

(1e).

An immediate verification of these resultys is obtained if we
take the special case K=K,,k=«k,. It will be found that all

four results reduce to

2q [ -wkts®
= e
v=2e |

which is the correct form of solution for the instantaneous

sunx,§oumxEdE, : 17)

source in the semi- infinite medium,when the face at a finite
distance is kept at zero temperature.

The full investigation of the solutions (113¥-M6) which
we leave as definite integrals is not in the meantime attempted.
Evaluations by successive approximation based on such assump-
tions as (1 ),0=I+€ where € 1is small, (2), o very small,
(3), ¢ very large,could ‘be obtained ﬁithout a great,deél of
difficulty.




CHAPTER TII.

PROBLEMS INVOLVING SPHERICAL FLOW.

ihen there is complete symmetry about a point,as for
example when we have a point source in an infinite mediﬁm,or
at the centre of a finite sphere whose surface is kept at zero
temperature the fundamental equation of heat conduction takes
the form
= %zar(*z%g) R)

By writing Av=w this equation becomes

dw _ %
ot X dr*

The wave Prain solutions of this latter equation have been
fully investigated in the previous chapters. If w is any such
‘solution then ‘-r“ represents the corresponding spherical wave

train solution. Thus the solutions of (18 ) required are
onb=rfE

eékl: +rJ% ()

<>

V=

<>

%:



The real and imaginary parts of v, represent temperature trains
travelling outwards from the centre of the sphere, the real
and imaginary parts of 4, trains coﬁverging inwards on the
centre., If e.g. the flow is due to a periodic point source

of strength qoe"ke at the centre of the sphere we reguire

'kt
24,V v
: -4y K<<= )= CLQ
T‘;[_*,o ( ar) °
Thus we find

A= 41?0 | Y-

7~

Hehce,since only the diverging train is required,the solution

is . ik
v= 4§K"ebkt~ﬁ’“ ' (120}
"

If ,on the other hand,the flow is due to a uniform distrib-
ution of periodic point sources over the spherical surface r=1
the rate of emigsion being q;zcu per;flunit area, both the
converging and the diverging trains are required. Thus we

might exhibit the solution as

LRJ:-("?-"')J;E
r<r, v.= Ae¢
' ' T J"T‘ (21
Rt —(r-m e
¥S>1%, 'U"a - .A?e," r <

These forms clearly satisfy the condition Usz=v,r=7 . There is

however, the further condition - -~ 1

aUg a‘t’; Lu )
— [ ot - — [~ . :
K(3v— 5% )r_r % 2 (122)
From this we readily find A= %

Ty

A5

Y
7



It is clear howe\ie;}‘, that the sblﬁfiﬁ*qn v, whero

Qv cht -(“‘:““)J %

<1 o v, = e

v ZKn]T_'L‘

is an incomplete representation. The expression becomes infinite

like -',‘: at the origin and would accordingly indicate the presence
of a source there, contrary to hypothesis. We must therefore v
suppose that the converging train 4 is reflected at r=o,o0r,

what is the same thing - passes through the origin, emanating

as the corresponding diverging train U;‘., , where

oRE — (141 B
e

Aqr,
U= !
2¢ 3
2w 3
the constant A being chosen so that the r=o condition is

satisfied. Fhis condition may be stated

29 —
cL v 5',.(1’;54'1}%) = 0.
r—>o0
whence we readily find A= —I.

Accordingly we have

SRE — (=T . .
<%, U= W o o _an RE-Ganh
2KrcA ; 2KrcA
Q7 2L dumrh e"""“‘“ﬁ“" A= }1 : 12.3)
2KriA ? ’j S (

It will be seen however that the addition of the term 4}, to wvj.
: Lo e D ' v ¢

as given in (123) violates the conditionsat the source surface r=v.
These however,are at once restored if we add U’,{. likewise to o
. (<]

thus we obtain




Yor's W= a4y, e&kby—(f-".‘)%- 4x e‘;kb_(ﬂ,';)i,x

2 Kxrth 2KvcA
= An2iouivmd CRE—reh (123"
2KylA

It will be noticed that 4, as given by this equation reduces to
the correct form for the central point source when®-o . If

we suppose that this limit is reached in such a way thatt,.'n‘ﬁ;’q,—-)‘lm

the result becomes
Qo Rt —riA
e
4Ky
in agreement with (#20) above.

U=

The result (123) applicable to the case of the spherical
surfage source can be obtained by integrating the solution (120
for the point source,over the surface of the sphere of radius 7

o ,
‘
A\
tig. 4.

It is clear that the effect at P due to a surface distribution

¥4
of density q,eb is given by

iy . .
r=.3 | 2ry oan b db e“""“""
4K J P

P = 4% - 277, cosb

. kb oTHY% . o
= -LYe e"’“" dp. = D15 2L0mAY; e"”"“’“‘
2KriA ) 2Ky

as required.



#hen the point at which the effect is required is inside the
sphere r=v the only difference is that the limits in the last
written integral are f-v and v4r ; this has the effect of inter-

changing r and v, in the evaluated result.

Instantaneous point and spherical surface sources.

Consider the solution of (#m$) given by
0 - TP,
e 9 eukl L% dk - .- (24)
WKy Jo , '
The integral appearing here is evaluated by integrating the

function —RkA A
| ;f(k)-—;zfﬂr?;e‘ " 2k

round the conmtour of fig.l.

The integral in (12#) is equivalent to

Lg X e-n‘k"-t-—vck AdA

ARKr Joa .
It can be shown that the integral along the circular arc BA—>o
asR—>o . Thus, since the integrand has no singularity within

the conbtour we have

. o
_ taK _;cX‘l:-*r'tAA . -kEEL i
vetag o Pl 28)
°oB (o

When we take the real part of this result we have
2

— q’m -nbg‘ . ) - -3 :
by o [ 2 avnrfSa = 3¢ (126)
o 8 K]K"‘K«ts

This is at once recognised as the solution for the case of

the instantaneous point source in the infinite medium.




" In the same way if we take the solution

) B o w - - ‘A Ty
ye On J CRETA it g . G2
2arkr ) A

and evaluate the integral by the method just indicated we

obtain ¢ 3t pih 00 oo
e b | SRR G pid dA = Gen | ST gl surEdg - (29)
Kr Le. wKr )

and on taking the real part of this regult

© egn _n-mt (ﬂ:ﬂf)z »
v=3%%| ¢ '{C‘”(“'r*‘)i- m("i”)g}d? = _InVK o EE }"@"”
wKr ), 2K frrt

This is the well known solution for the case of the instant-
aneous surface source within the infinite medium.

It is again possible to deduce this last result by
integrating the instantaneous point source solution over the
surface of the sphere of radius +#; .

FProm a figure it is at once appareﬁt that the result required
is
1J’=.___2_"_"_YL_.__
K3 t? A
.,.m_wﬁ_j
2K drt

wheve  p*= v’4+1,=2vycos0.

T P
j e Aun BAB.
7‘-&-‘\';» . )
_£_.df

r-v, 2kt

From these. observations we. at once obtain the result in the form
given in (1249). |
‘The deduction of the solutions for spherical surface

~ sources from those for point sources of eithér the periodic




or instantaneous tjpe suggests that llkewise from the point
source solution we might deduce that for the infinite plane

source of given surface density.

It is readily seen from a figure that the required result is
ckt
- taking the periodic source of strength qe per unit area-

ebk{, - PLA : P'Lz r2.+ xg,,

00
v= | S2rxrdr
41t Kp

o

CRE (® —pih

x
(ki —vcA
-_-_j___ e" v as requi red.
2KiA

In the same way from (126) we could deduce the result

for the instantaneous plane surface source.

With the wvarious spherical results so far obtained (120),023),
(126),329) , we have all the material for the building up of solutions
of problems in which the isothermals afe concentric spherical
.surfaces. It will be found that when the boundary conditions
do not involve the temperature gradient,the anslysis in any
narticular problem is practically the same as that for the
correspdnding plane flow case. Thus e.g. the case of a finite
sphere . cooling from a given symmetrical temperature state
owing %o its surface being kept at zero temperaﬁure correépohds

in all respects to that of a finite rod both ends of which are



. b9

kept at zero temperaﬁuré. Fundamentally this is due ﬁo tﬁd
considerétions already commented on ; (1).the fact that the
simple factor % converts a plane wave train into a spherical
traigfand (2). the fact that when a train is reflected at the
centre of a sphere the reflection takes place under the con-
dition which when analytically expressed is the same as the
expression for the zero temperature condition when =&E=® the

.*-
trains in question are plane.

Consider e.g. the case of the periodic source of strength
q‘c}kt per unit area at the surface 7=y, within a sphere of
radius & . If we start with the fundamental converging and
diverging trains as given by (123)4(23) A emanating from this
source, and follow out a course like that adopted in the
compilation of the table on p.&i , we find that the effect at
any point, the resultant of the original trains and all their
continuations by reflection’at thesurface r=a and at the centre

~

Eed
is given by~

Q. R  _hy —(za-m)A
ne _2isunar & +Ac
2ZKriX 1 +Ae-20iA

<y, V=

(130).

T, Y= I e 51 same expression, 1T, i Merchanqed._}

l

where A is the reflection constant for the surface r=q, .

If we take as a typical incident-reflected pair

¥ 8ee p 62.
+ }L 64.
8

4 e conesponding plane flow vesults $ 34
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% { e—(v—‘r)»x T A‘e.'(qa- r—'r'-)"x}
‘ZKVU\

we f£ind (1) for the surface r=a abt zero temperature.

A=-—1.

(%) for the case of radiation at the surface r=a to

a medimm at zero temperature.

.  _ &
—K 3 :‘I’V 7 A= - ' A .
~ A - (G- £)
As previously, the solution given by R#Ivdk is that for the
(~]

instanté.neous (k=0 ) surface source of strength q per unit area
at *=1, . The result for the zero temperature surface condition
need not detain us. Clearly it is obtained at once from (53)
by multiplying that result by "_1‘:

| With the second form of A shown above the required form
is

Acos@-1— (5~ %)/aana(a-n)k

dA. (3y)
Acosah—(L— %) AuaA ?

~x X2
v, =RIN e 2i0unhr
K
oB

the path of integration again being the line ©B of fig. 3 .
The evaluation is eff‘ected by contour integration taking the
closed pathbf flgof‘b and regarding the indents as being round
the points glven by the roots of the equation

Acosal — (é. - %)/MMOA = 0. (139).



The real part of the pesult is that which arises from the

integral round the indents and is exhibited i}x/the final form

g 2960 Z O oA ovihe ZEA(K-ah)”

X\ . 133)
AVAY, oAy R — R (o) (

“Kra?

where the summatfion is with regard to all the positive roots
of the equation (IBQ)T

From this result that corresponding to any arbitrary
initial heat distribution prescribed thfdlighout the sphere
can be built up. If e.g. we havel=o, w=f(), all we require
to do is to replace (lin (133) by."gf(n)drland integrate with regard

tor, fromo toa .

The sphere of one material surrounded by a concentric sheath

of different conductivity.

This problem has been fully solved by Green forrthe case where
the outer sheath is of finite extent? The treatment need not
be reproduced here. Tt is sufficlent to remark that the
procedure to be adopted resembles very closely that given in
Chapter II where we have dealt with the corresponding plane-

flow problem. There/is no fundamental difference between the two

cases. The conditions at the surface of separation in the

¥ G.IL p 299 ek seq;

T The Solution in Hhis ?omm (s gquven by Carsiasw . hid, ‘v(sq.



spherical case , involving as they do the temperatvure gradient,
are rather more compiicated ( see.p. 73 ) but the correspondence
between the results obtained ir;/the two cases at every stage is
unmistakable. We therefore éonfine our attention to the special
case where the outer medium is of infinite extent.

The problem is fully represented by the system

oL Ty %%-—J‘avzm i T, &l%zx,ﬁ’ia e (13
r=o, l’l‘zv‘z ond BV Kzaa‘Uz T . -(|35)
r

We begin by writing down the results for the case of the peri-
odic source of strength clef’ht per unit area at the surface T=".

It will be realised from what has already been said that these
results can be inferred at once from the corresponding set
relating to the plane analogue of the present problem. (see p.5% -)

Thus we have

okt A5 —(2a-1)ix
( T<T, 9 q- q'""’ 24 aiAr. 2 +Ae ' (136)
! 2K, riA | + A 2aiA
Source ‘_
w - <%, Y= e’ §5me expression , v,m mi'erc‘nahqed}
! 2K roA
Mcdjwwvl, '
' ckt = AbA = (r—a)mil
» 47‘ )= _A_ﬂ_,_v_‘_«z;___ 2idAr & - (37
- 9.'(3/&4’0 l +A =2l

i z -

where e vanoos coustanl's amot opembrs have lhe meanings

Previously ds's';g’ioéd'v to thew,



e —{n-apih—aih o wirh

Ta=_Sam e 39)

1= .
g 2Krih | + A2
ource .
n Q<t<t, =& M Ie.m_ﬂmx—}' Clem (T2t
Mediuwm TT . : Al & 2an = (T4 —2a)ik
—_ AT } (139)
an ikt , . od
ry, %= e %mmz expression, 1,17 mberchang }
> . ZK,’A«'TUA '

We have now to investigate the forms of the reflection
and transmission coefficients A,A',c,cﬂ . Taking as typical
incident-reflected pair and transmitted continuation V, and v,

respectively where

ubb (r- 'r)nA+ ‘L’f e'h(:-(’)a—r-.ﬁ?dk

— T
Y= ® AsRorar
LRE— (@~%)iA—pa{r-a) A
Upe A e M
2Ka pLyed

!
the source being infthe inner medium, we find that the conditions

(135) yield

K= Kape 4+ (Ki-Ka) | ' 2Ka 4
A = d ’ A —_— 7& (‘, °)
where d= K +Kp = m"'_‘r (K-K2)-

Likewise when the source is in the outer medium the

typical solutions taken are :
o= g!"r.'e':'u { e—(",-*‘)ﬂ‘%\ + C'ef«:-w—uamx}
2Kz,uwu‘k
Car e‘éktn-(‘r,-a,)pii—(a-v)ifk
2K, rih
and the conditions (135) yield



i —K,+Kgfu+a']"—x(f{|-'Kz). C= 2K, (141

¢= 4 - 2 a4

From the results (13¢)—-(13a) , representing the effects
in the two media due to the postulated periodie sources we
obtain at once a further set to represent the corresponding

instantaneous sources by taking solutions of the type

Y

00 *
o= a;-r-j vdk = R %""Jv,xou |
° ob

Thus from (136) we}aave

-, A% T ~(2a-)cA
v-.-.-ﬁ’.ﬁi‘ikm viouwAr ¢ +Ae

and this result becomes,when the above form of A is inserted

e 20 [ % K|°°’-’(“-"'.)A~(K.—Kz)9£‘-"’-%§ﬁli + e SR
' 1TK, 7 R
o8 .14
where d'= K cos ak —(K—K,) "“:;’)‘ + CK,prduioA
« - - (143)

The evaluation of the integral appearing here, and the three
others like it arising from (134)—(139) demands an investigation
]
of the roots of the equation d=0 . If we rewrite the equation

in. the form

wta,kz KI-KL_L___LKZ ¢ J
—Kan ——# (142

and put o\ = x+Ly where x and 4 are real we find, on equating

real and imaginary parts

* tne path o} integration being as usual fhe infinike radius B=-

T
i the A plang. 1




Sin 2% - _ Ki-K2 = .
cosh 2y-cop2x K, x%*t+y?

|

Cosh 2y-cod 2% Ky x%4y2? Ky } O

and by combining these

Yo 2x ~x o2y Ko o
Coolv 2y — 00322 Ki J

Corresponding to each solution (%,4) of the first tﬁo of these
equations regarded as a simultaneous set we obtain the complex
solution aA:m-&-:',j of the equation (m-3'). The oribginal form of
4 makes it plain that x=y=0 1is inadmissible. Also the
second equation shows that Y=o is inadmissible and thereby
dismissges the possibility’ of (m-‘:)') having real roots. dn the
other hand the first equation is satisfied by &=0 and consequent-
ly suggests the possibility of pure imaginary roots. Such a
root of (m-’b') would be of the form Ly where 4 satisfies

cotiy 4 = K.;Kq_ s+ KQ' 5
the roots of this equation depend on the magnitude of the
constants involved and presumably could be found by a graphical
method. We are only concerned however with such roots of (m3')
as may lie within the closed contour formed by the real axis,
the infinite radius B= ..%f and the arec of infinite radius, i.e.
the contour of fig.l! . The real part x of any such root is

positive. It is apparent therefore from the third of the

equations (i) ,since
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coshv 24 ~¢0s2% 20 . for all values of x andy,

the expression

2x3(Au;ix — »AW;‘J.) is negdtive.

Thus since = is positive,the factors
qj awo\, (/.)MQ& Amh,zg)

are of opposite sign. It 1s clear that the braciceted. term ls
negative for all values of x and« and consequently Y must be
pogitive. In this way we have shéwn that all the roots of the
equation (43) 1ie in the upper half of the A plane.

The integral in (#42) taken along the line OB , if we
assume convergence along the arc of infinite radius , may be

replaced by the integral along the real axis. Thus (1p2)

yields ) ,
o 5 [ S8 it Kioo0@-0E = (k) L e avin -
K d(g) 4 0

Taking only the real part of this result as required to reuresent
the instantaneous source at the surface T=v, , we obtain

v= 2% Kz f - A5 o Th |
™ Jo {K@oo af ~(K-K2) Mg“_@.}".;- KZptaicn'at

d.
, e 1 (146)
In the same way from the results U31—(13a) we obtain by repssting

the argument used above, and ‘after necessary reduction in sach

case



{ K cos ak —(K~ K,_),%‘é }M,A,(r-—a)g

.’w o3 .
Uwz zq;:lvn e-“{«g . .% -+ Kg,w {,)mag:oo/u(r—w)i d& .14
Js {K,coowg—(l(l—- Ka)ﬁ”ﬁ_é‘i} K ok
» 0
= 29510 e""'kgt s 15 sow {M(’r:-“)i +4} ds (147"
- wr Jo » R
where Reood = Kcos %3 —(K,sz)A-“.—g-'-g’i 5 Rané= Kzﬂp»ﬁ.wi,:

The pair of results (wb) and (1) apply when the source is in
the inner medium. In the same way we obtain, when the =ource

is in the outer medium - adopting the notation just introduced

o 28,54 ”e-lc,l:g" s oM{p(’r.-ab&-l-c{v} d&. 8>
T xe R

2 m"’gtgl . .
%z;i‘l‘»(_"ﬁje oinr-ayuis §lovinda-ams +91d3 (149)

(<}

The full investigation of the integrals appearing in (i46)-
(149) 1is not in the meantime attempted. Some useful idea of
' 13 dotained
the kind of results to be expected, however,Aif we consider
their approximaté evaluation. Of various possible approaches

we take that suggested by the special case K=Kj,. po=| . It

is readily verified that in this case all four results reduce

to the form »
—WbE
0:.%’?.‘;:_"' o " s dvivr S o dé. (150).
i Jo

which is the correct form of solution for the ‘case of the source




at the surface f=% in the infinite medium.

If e.g. there is an initial heat distribution between the
surfaces fn=a and T=b given by q,=+ﬁ , the temperature at
any subsequent time is given by

b Pkt : !
v=—2—'&—-§ dw,ge aim Ar, su Ar dA .. - (5
ov o

Following from the special case represented by the result
(150), it seems natural to take next that in which there is a
small difference between the conductivities of the twa media.

If, accordingly, we write

i
= Ki y O = Ki=Ka 5 = I+¢€)
Kz}‘v KQ_M

where o'f¢ and € are small quantities, we find e.g. that the

result (146) becomes

°0 2.
— 2%k | S :
‘U;-._TTW e MY, OVAT
J
o
X{l—ecoom)\+0"-“&aiﬂ}d;k, < - 052)

to the first order of small gquantities. To interpret the

various parts of this result we rewrite the second term as

o0

-k, N . .

-E&_‘Eﬂg e 7 suivAr { A (20 + A — om(?.awr.)k}d/x ,
1“ lr . . T

and the third term as-

o0 2,
Vq"q.qu. {Wlx LA Ap ) 802 (2a-HA - CM(ZC\«-&“)Al dam o
wKyr |} ’ M j




3

- W'q: LA
TKra
2a-1,

This term can again be rewritten

) ‘9.0--‘-"‘ -

_s_‘!'_f_r_.x J“‘“Mer i AE dE dA.
wKra o 20-7,

2047, o .
d%j N aimAf ornArdA.

[+

Thus, to the order of small quantities adopted, the effect
at any point in the.inner medium, on the understanding that there
is now no discontinuity of medium at r=a, , is the same as that
due to the following system of spherical sources in infinite
continuous media.

(i ). The original surface source of strength q in the in-

finite medium of conductivity K| ;

(ii)s o surface sink of strength —;-L-éq,‘ﬁ/(?.a--l-ﬂ) at the surface
r=2a+v, » together with a surface source of strength
_kecm/(za—r;) at the surface r=(2a~v), both in the
infinite medium of conductivity K, ;

(). a continuous distribution of surface sources between
the surfaces r=2a-v; and T=2a+% of strength varying
inversely as the distance from the cent(é\g.

In the same way we could treat the results (144),(48) (41,
with a view to finding the various solutions in terms of ele-
mentary sources. As we are only concerned with the géneral

character of the solutions at present, the details for the




other caseé need not be féproduced.

With a view to obtaining partial verification of the
general results (36>-039) or (146)—(149) , Obtained as the
solubion of our problem, the forms taken by these results for
such cases as (w) Kz=0 ,%<a | (b) Kj=0 , %> &, should be
considered , and the results compared with those obtained by
the direect application of first'principles. It will e found
that the results deduced from the general ones here obtained

reduce to the required form in every casee.

The same problem treated in terms of Bessel Functions,

Reverting again to the results (146)-(049 , and having
regard to certain analogies existing between the solutions of
spherical problems and the corresponding cylindrical ones,
pointed out by Green in his fourth paper*., it might be useful
to show that the results we have obtained here are confirmed
when we adopt the special method and notation of that paper.
The notation referred to is that of Bessel's Functions of
half-odd-integral order. It is found that when the fundamen-
tal spherical wave trains are expressed in terms of these func-
tions the summation processes required when we wuse circular

functions are no longer necessary.

* G-IV p 24t



ihen there is symmetry about a point, the only functions

required ore Those of the Ky and 1s type and their derivatives.

L
2

Thus
-2z

. z -z

K@) =T 5  I,0@=rl=(a-¢)
2 ) 2T0Z d

#ith this notation we find that the two fundamental wave trains

emanating from the periodic source at the surface T=1% in the

inner medium are given by

v—%(f-)“"*x (B m(fEe).

<o = BRI ).

Paking the first of these as pr K%OAﬁ) , the meaning of

r - . . (150)

p being apparent, and representing the continuations‘by reflec-
tion and transmission respectively by

Ap 4-""5 I_.i (tav) : A e v K‘z (pidr),
we remark that the first of these, travelling towards the centre
of the sphere, is reflected there, setting up the corresponding
reflected trein of the K% type. As has already been pointed
ouét however, the converging train of the :Eu type includes as
pvart of itgself a train of KL type of just the amount required

to satisfy the condltlon at ¥=0. We can, therefore,

represent the temperature in the inner medium completely by

¥ GI¥ p 236,
+ ibid



. SRR YRS e R SR
>N, = pr "K_ii'(tl)\i')-b—A‘p'r "I.i (tAv) , (1s1)

and that in the outer medium by

V= A’P 1‘-% Ky (MiAr). R '_(15'1)

We have now to find A and A by téking into account the
conditions at the surface Y= ,stai:ed in (135) aboveo

Noting that
d_(t, @an} = i EiG o,
%r‘l"li (OM)} = - iA'r-'EI%(‘Ar),
we find that A and A are given by

A= Ky. K3 (Aa). Ky (wiha) — Kop. Ky (A K2 (mina) vSa,y,

X R |
.. 5
A= K, $ Ky (Ma)La(Aa) 4+~ K%(\'AGBI.;._(U\@)} —_Ki =9
A’ tAad’
where ' . .
: d = K|I%(k/,\ab KliOMAaD-l-K,_p.Ijz,((AG) K%(Ma‘), .. @59
From these observations we have e.g.
L.
. _ Im v \* vkt y ¢ X y }
V= - ("F") Q I;i(mn)gKJz(tAr)-(-.‘fli(&Ar)} « » 155)

If now we use the forms

we find , after the necessary reduction



—p Ao

'_ e (K K\ OMAA |, - :
d= W§K'MM (K, K’)——-_a/,\ +LK,P~A~WM}1
, — — LA
d Ky () 4+ Ty (AY) 4!: Fewm K,cos (@a=r)A

—(K=K,) 351&%:!& + LKm /ww(a—r)k} .

When tThese fofms are inserted in (156) and when the subsequent
integration with respect to A is performed we are at once led
to the result (ib) above. In the same way we could verify the
remaining results (W1-q) .

This analysis, together with the results of Green's
investigations of the analogies already referred to, suggests
that ultimately evaluation of the integrals in (#b) —(449)
may be effected by working out in full the corresponding
cylindrical problem and then replacing the Bessel PFunctions
of integral ofder that appear in the solution’by those of the
half-odd~integral order as required fof ﬁhe spherical case.

The essential part of the analysié for the cylindrical problem

is given in" the next chaptere.




CHAPTER IV,

PROBLEMS INVOLVING CYLINDRICAL FLOW,

We confine our attention in the first instance to prob-
lems where the effects are symmetrical about an axis (r=o0).

In the circumstances the equation of heat conduction becomes

w_ [y .LQL’) , (156)
ot —-.’(4( 31‘"+ r ar

" .

: ckb
Testing this equation for solutions of the type e R, where R

is a function of r alone we find that R must satisfy

2R 1 3Rtk p_ g
W""FEF“"’ER-O' (s

The solution of this equation is

_ ' R 15
R = AT ({Ev)+BK (&), 59
where the I, a_ﬁd K, functions are the modified Bessel Functions

of zero order of the first and second kinds respectively.

Thus

T@=1+ 25 424 2
=t st aEm Y emet s

i

Gray, Mathews and MacRobert | Bessel Functions (1922) p 20 ek seq;
In the 5¢1u¢|' this work s denoted by GMM.



Ko@) = (fog2-¥)T o) — Log 2T (2) + Z z =+ (+-&)+ = ,,“} s (143 +5)+- - (160

2“#1
where ¢ is Euler's constant. Jhen the variable =z is large,
these functions are sufficiently indicated by the first few

terms of their asymptotic expansions. Thus

z

2 1% 1% 3%
L@ N i' tat et }
AR ekl PR 23>
K= Jzze b @t e }

It is apparent from these expansions that the K,(@) function is.
infinite like -3032 at z=0 and has the value zero when z is
infinite. On the other hand the I function is finite at z=o
and infinite at z=oco .

From these remarks we conclude that the two fundamental

diverging cylindrical trains are the real and imaginary parts

()

and the two fundamental converging trains the real and imaginary

L () .

The Line Source in the Infinite Medium.

of

parts of

We might show e.g. how the well-known solutions for the
periodic and instantaneous line sources can be expressed in

terms of the fundamental train solutions we have just found.




3t

Suppose that along the axis ¥=o0 heat is being generated at the
rate of q,eaw units per unit length. GClearly only the diverging
trains are involved in this case. The required solution is
given by

= AT A 5 [E=iA

provided A is chosen to satisfy
kb
- 3u ) = qe
L ( Kun',ar)._ qe

y—>0
By actually differentiating K(? as given in (iko), we find that

LZKJ(Z)=-—| . Hence clearly A-_-..._ﬂl— and the solution required

2eK
to represent the periodic line source is
, = oM ([ 4)
V= por e K.( <T) | (b1

The instantaneous line source.

Consider the solution

= Y:LMK,( F-.%")dh (1b2)

27K

o

™K

- kXt
= iﬂf—j e K GAD AdA
oK’

the path of integration being the infinite radius OB of fig.!

Introducing the Jo, Go functions, we have
Ko(IAr) = Go(-Ar) = Go(Ar)—Ttv Jo(AY)
so that the solution iz}huestion is

2K
o

The integrand has no Singularity within the closed contour of

. —1A%
V= “‘“je %Gow)—mtl:&v)}ux 1b3)

* GM.Mp 23 7 ' —
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A
figo.\ so that if we assume that the integral is zero along the

arc of infinite radius, we have

g (08 . : 1w
U= 2K j e { G.(Tg)—ﬂbJ;(TZ)}gd,g, : ( Y
o

The imaginary part of G.(r%) is E,;-_—TJL(rg) so that when we take the

real part only of the last result we obtain

g -l i‘ ) ,
v=_2 J ¢ LerEEdE (s)
-y ey ‘
T4kt TAA)
- % . € (
4Kt
*

by an adaptation of a well-known theorem. This result is at
once recognised as the solution for the instantaneous line
source in the infinite medium. The definite integral form of
solution as given in (1b2) shows the infinite combination of
fundamental cylindrical trains required to represent such a

source.

The cylindrical surface source in the infinite mediume.

Suppose that at the surface T=v heat is being emitted
at the rate of %eikt per unit area. To represent the effect
at any point we require both the diverging and the converging
fundamental trains. Thus we take the solution given by

r< T, U, = Aq’ebk/&l',(CAr)

r>%w, V= A\,Cbeékt Ko(tAT)

¥ GMM 4 b9,

(167)




44
where the constants A and A are chosen to satisfy the conditions

at the surface r=v viz.

{ ) vkt
U= 1k an -K{ =~ v\ e,b
¢ ¢ r-Ld ar ) ‘],

These give .
AL, (LAn) = A' Ko (iAN)
Ko {A K (GAR) + AT, ()] = 1

whence A —_ A _ _AT(A)+AKGAY _ VKA _ 1
Ko(Ag)  To(CAr) (KOI +I°K')lAV; !/ tAl‘ K

where we have made use of such well known Bessel Function
properties as

—Ko=K, ; I'=I ; KOT,I+TEKE)= V.
Thus the required solution for the periodic surface soubce at
r=v, 1is

. o AmI e
r<t, = Lo KEALEAD
tb$)

K
ckk
% 3. Y= %e L eag)K can.

It is Worth& of note that the expression for A, violates no
condition at the axiS1=o;(compare the analysis for the corfes-
ponding spherlcal case D.bu‘)and that'ﬂ reduces to correct form
in the limiting case When r-§o>.k If we suppose that this limit
is reached in such a way that 2wy q tends to a definite limit

que find that ¢, then takes the form required to represent the

e W - o . e e earen i e e e, g il
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axial line source as shown in (lbl) gbove.

It is also of interest to show that when » and 1, are
very great with (%) finite,the above expressions for the
converging and diverging trains representing the cylindrical
veriodic surface source reduce to the correct forms for the
corresponding plame trains. In the circumstances the Bessel
Functions are sufficiently represented by the first terms of

their asymptotic expansions. Thus

. Q,z : . . ﬁ Q,.z
Io (‘Z) = JQﬂ_z—' ? Ko(z) = E’z'

so that the above expression for U;,0.8. bocomes

-\
kb e 4 e Ar
AN e .
K N2w A g 2rwoAr
=. Q as required,

The instantaneous surface source.

The solution in this case is obtained from (1#8) by

taking ® er
r<n, A= %’%S ¢ K,(ART(AD Ak
-%‘%&j : - K (CAI, (ADA A | (169)

the path ef integration a,géin being the infinite radius ©8 of fig.t




Making use of the identbtity
T (cAR) K (M) = T, (AR) G (- A¥)

and using the same argument as in the evaluation of the integral
in (#2) we hdve
2. w;f' " ks
V= ‘::K lj € I(ﬂi){G,(fg)—ma;(cg)}SaLg ’ (170).

(+]
and, on taking the real part of this result

[ 4

-KkLE?
U= 'li"zij ¢ : T(n8T(rE)YEAE. a7n. .
©
I
- 4n ot ~ (172).
=_Mie T, )

2Kt

*
by an adaptation of a standard theorem,

The result obtained is in agreement with the known
solution of this problem. It has been obtained by Green using
the wave train theory but a different analysis:f

It is of interest to show that the result can also be i

obtained by integratihkg the instantaneous line source solution
over the cylindrical surface of radius ¥ . Using fig.4,on
the understanding that the circle represents a section of the
cylinder of radius % , we see that the effect at P at distance

* of the instantaneous line source of strength 1nd8 per unit

length on the surface T=1 is

-P
andd o A :

¥ QMM b1 ' 1
t GILfTo7-



@

where =t - 20008,

Thus the effect required is

kS

g
_q,L 3-4 M
4Kt o
45T ,
qr ~ gt | Licood
=1 __¢ e de.
2w KE o
L ¥

= 2;L e ™ 1;(5%%)

in agreement withv07z) above.

In the present comnection we might go a step further and
show that the line sourcé solution cén itself be obtained by
integrating the point sourée solution along an infinite line;
thus ultimately the surface source solution is expressible in
termg of the poimnt source, The necessary demonstration is

| +
given by Green and need not be reproduced here.

Reflection of cylindrical trains,

Consider the case of a periodic surface source of strength
qgkk per unit area at the surface fT=% within the solid
cylinder of radius & . First effects within the cylinder are
given by the solution shown in (18). It is clear however that

the arrival of the train U, at the surface T=a will in general

violate the temperature condition at this surface. We must

% GMM 4. bb.
+ G.IV p23q9.
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therefore smippose that the train is reflected at this surface,
initiating a reflected converging train, the total effect in
the region #>7, being obtained by superposing this reflected
train on the original diverging train 4, . Clearly also,as has
been indicated in corresponding plane and spheriqal aases this
train must also be aaded to ¥; so that the source condition at
the surface T=1, may be maintained.

A suitable form of reflected train is
U,=A W RE T oA
K
where the constant A depends on the condition at the surface r=a .

(). The surface =0 Lkept at zero temperature.

If the reflection takes place under this condition we

require

I, (M) K (Aa) +AT (A)=0 ; whence A= aIACXn}%M a73)

o(Aa

With this form we find that (V;) becomes

LR v, = q":' ¢ ::rgi::") {K (eAR)T (eAa) --I,(LM;)K,(L'ML)} (179)

Introducing the notation
fo(A‘Y‘, Aﬂf) = Ko(%?)L(‘Aa) -I‘,(tAr) Ko (e Aa)

" = Go(ADT(Ad)— To(AVG,(A0) = —f(AaAn),  (75)

the sbove result becomes
r<n, | 'U’{.‘ = "}R-e g:ogf; f (A'(],Xa) 76




interchanging ¥ and ¥, in the various Bessel Functions., J

The corresponding result for the region *»r, 1s obtained by

(p). Radiation at the surface r=a .

If the train 4, on arrival at the surface *=a is reflected w

under the condition that there is radiation to a medium at zero

temperature we have

T=a, -Kaa‘: ho

Applying this to V given by
= Lo (CANYKo(Ar) + AT (cAr)

we readily find

A I ( r) Kb'x Kl (‘Aab ~’e\l Ko (‘Aa) (|77)
KiA I, EAa) +Fy To (A) ‘

and with this form of A,(V;) becomes
KA L (AT, (A + T (MK, (Aa)]

0. =35 L ) 4 MK (AL AR T, () KefAal]
K KA I,(Aa) + £ o (Do)

<Y

Introducing the notation
¥
$(Aa,An)= L KADT.(A%) + T Aa) Ko(Am) ] (178)
= Gi(Aa)Jo(AT) -'JT(AGDGJA‘TJ,
the result Y; assumes the form

KA S (Aa Ar)~ A f,(Aa, Ay)
KAT(Aa) — To(da)

(179)

T, = q‘“ e»b I o (CAY).

with, as formerly a corresponding result in the region *»% got

by interchanging * and 1 in the Begsel Functions.

* I, (it s LT K = LG8 = - TRHH - ¢ Gi(#)




Instantaneous surface source at =71 .

(®). In the case of the zero temperature surface condition,
the required solution is that given by the real part of

where

r<

=
~»

AF= 4r, J;(/\") (1%0)
v uKK A7) )“H"""Md’v

- 20K 9T e JZ(M‘) Ar?\ AdA , (80
oB
the path of integration being the line OB of fig.! .

The evaluation is effected by integrating the function
~k A

, 2L XqQT To(Ar) Ar_ A)A
Foy= 25 e S5y S 029

round the closed contour of fig.3 ,on the understanding that the

indents are round the points given by the roots of the equation
TJo(Aa)y=o0. (1%2)
Assuming that the integral along the arc of infinite radius

vanishes, we find that the real part of the required integral
comprises two parts, (1), that arising from the integrals
round the indents and (2), that arising from the integral
along the real axis>of the imaginary part of F(A) . Disposing
of the latter part first, we observe that if A is real,as it

is along the real § axis we have
$o(1 5 0a8)= Go(nE)T@ B~ To (% 3)Go(a])

: : i t is -
of which the imaginary part 1 6%&&&%&&-%%ﬂhabQ=Q

P e

e




a9 |
Adcordingly the real part of the result arising from the source

(4) is zero.

- earer s

The integral round an indent at A where Js(Aa)=o0 is

-~ 24K 'l‘,'e-K)‘ t Jo(Ar) fo(*"lyk@).ﬁ ) 1
WK a T (A0) | |

By using the general theorem

QA To(Aa) =T (A Go(Ad) = Aq.

we see that at a root of (182), GolAa) = — Aa‘:r(m ,

and §,(A5,3a)  becomes  — Jo(A)Go(Aa) = _l‘zl_’_\ﬂ_ .
Aa J;(Aa)

and the evaluation round the indent

2akn o o (Ar) To(a)
K a® ;2o

Thus the final result is

e 29K .,_q,.w, 295 $ $ N BT | (193)
a*Ji*(Aa) ‘

where the summation is with regard to all the positive roots

of the equation (13%).

([5). In the case of the radiation condition at the surface

*=o the result required ie

v _- 2iqey | o A%:‘:(A\-) Kaf(AaAn) — R (hahn) AdA.
==K | _ KA Ji(Aa)—& T, (Aa)
e (1868

In this case we must understand that 'the inder;ts in fig.3d are




o

round the points given by the roots of the equation
KA (A)— b Te(Aay=0, (1$5)
The argument used in the evaluation is thé same as that given
in connection with (181) above. It is readily shown that if §
is real,the imaginary part of
| KE §, (o vE) - W f(af %E) is zero.

The part of & arising from the integral round an indent is

— T 209K7; e—-x)«"‘tj(xr) KA&(A@;*"'&"&J'Q(A"WA?') A
K ° .
™ HiT0d - hTaw)
Also, at a root of (185 ),we have
4 {300~ 700} = KarTo(Aa) +haT (Aa)

= -2 _(K2*+ 22 To(Aa)
KA

also KA;{;(Aw,An)—%&('»\wAf.) becomes

K Jo(A1)
T (At § KAG, (Aa) ~ W GolAa)} = — s

With ﬁhese simplifications we find that the required result iS

©  _ykAt -
K2t ToA LAY .
v= 2R Gl it (86

where the summation is with regard to all the positive roots

of the equation (135).

‘Effects due to a prescribed initial heat distribution.

If e.g. we have $=0, v=§n), 0£vLad,the results are



(). The exposed surface at zero temperature.

a
g -wAt T
U= zz. e m X ) T(Ag) i dy;- (I%';')

(4] 13
the summation being with regard to all the positive roots of
the equation (i$2).

(b). Radiation at the exposed surface.

0 ~xA%t 242 : g
A= KA Jo(Ar) f d 1$3)
22¢ G T Tagar | FWEGnndn (

L]

the summation being with regard to all the positive roots of the
equation (185). |

The results (137) and (198) are kno@n from other consider-
ations to be corfect?ﬁ The special forms they take when *=o0
give well known theorems in the expansion of functions in

special types of Bessel's Series.

The surface of the cylinder kept at a prescribed

temperature.

It is of interest to investigate this caseAfrom first princi-
ples, beginﬁing with the train converging in&ards‘from the
surface rﬁaintained at the periodic temperature O,tht and follow-
ing out an argument similar to that adopted in cdnnection with
" the correspohdingAplané problem, but tﬁe solﬁﬁioﬁ can be

obtained at once from that given in (187).

3¢t e.g. Garntacs .17
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Consider V given by

B KNG @ ‘ .
V=4(rv)~2 Jo(A1) ' »
f( Z," = 30 ), T RO ndr (rea)

This solution satisfies the heat conduction equation provided
Vi(r)y=0
Qiso V;-'-O, t=='b 5 V=f(a:_), rT=Q
V=§(v), t=o ; and Voo r=o0,
Viiry=0 gives f(r)= A 803 T4+ A, | say,

The  only way of satisfying these conditions is to take f(*r)=1
so that the required solution is

2 kNt
Vo= 'U;,{l —25e¢ o .M__ : (190)
' o Ji(Aa)

in agreement with the known result of this problem.

Problems involving heat flow in the infinitely long

hollow cylinder.

The internal and external radii being a,b respectively
we consider the two following cases.

(¢). An initial temperature prescribed throughout the
cylinder;. the exposed surfaces. fza. and T=b kept at
zero btemperature.

(). The inner surface T=a maintained at a prescribed

temperature; radiation at the surface T=b ,




We begin again by considering the fundamental trains
emanating from a periodic surface source of strength qpbhb at
the surface 7=% . Representing these by

v< A, pTolide)  and  r>7%, ¢ K GAN

Ly

where
"

ckt
P, P = 3R’le {Ko(wn‘.),I,('bMﬂ} ’

we next Wriﬁe down the various contributions tg¢ v the resultant
effect at any point, made by the complete system of trains set
up by the fundsmentals,by their repeated reflections at the

surfaces‘ r=a and *r=p . In this way we have, following up the

original converging train pI_(LAV),

T< , >
PTo(iAr)
: AFKo(cAn A p Ko(0Ar)
ABp I (cAr) ABp I (MY
AR p K, (AR 4 A*Bp K (CAr) |
A8’ I,(\Ar) ‘ A™B%p 1, (vAr)
A3B2p Ko (VAY) <o

where A and B are the reflection coefficients for the surfaces
r=a and v=b . Thus the ﬁotal partial effect due to the

original converging train is

P Io(t”\t‘) 4+AKo(tAr) . av‘d 1 > ’ AP Ko(tAr) +-BIo(lAr) .

T<T, AR | —AB



o0

In the same way if we tabulate the effects in both parts of the

field due to the originsl diverging train and perform the

summations we get

vt , B Ze(AD+AK.(Ar)
| ¢ KoliAr) + BLo (iAr)
ST, p K(m.)f,é,( ¥

Thus we obtain the total effects due to the Qeriodic sourcev

at r=1 as

<t V= I°(‘”"? ‘iﬁ‘é:“’m (p+ Bp')

(1q1)

ryn , V= Ko(iAr: tEIBo(‘Ar) (Ap+¢')

With the surfaces r=a, vr=b at zero temperature we find

A =— Tol(Aa) s B= — Ko(Ab)
- Ko (Do) To(iAb)
Thus the first of (qt) becomes,af'ter necessary reduction
r<rt, 1’—: qu e“u &o(m;Ar)-}c(An7Xb) 3 (|q,.)
! K :Fo(ﬁal_,ﬁb)

the cormesponding result fdr the region ~>v, being obtained
by interchanging v and~, in the § functions.

The result corresponding to (192) for the case of the

instantaneous source of strength q, per unit area at the surface

=1 obtainéd as in various previous cases is
gaq,m-.[ -WNE L (aa A f(nAb) 4 . 0a3

- e
V= =32K £ (Ao, Ab)
o

The integration is effected ‘by using the contour of fig. 3,




+

For a discussion of e roots of thi

or

—

‘the indents beingyu;nderstood to be at the positive roots of the

equation *

4o (Am ALY = Go(Ad) To(ALY~Te(Ad) Go(Ab) = © (1)
The theory of the evaluation of the integral appearing in (193 )
is the same as that given in previous cases. At a root of (19 )

we have " .
- AP) Go (A1) 4 b, (Aa)G; (AD)
j—;iamm; — 0 GAGYTo(Ab) ~bGe(ANT;(AB) 4 aT;(Al)Go (Ab) 4 bT(Aa)

To(Aa) — Jo (Ab) ,
A To(Aa)To(Ab)

where we have made use of known relations between the functions.

%‘urther at a root of (%)

Ar A Jo(Ab) \
-”E,( 7,Ab) = RS f.(Ar;,2a)

Thus uwltimately the result required is

-‘.

X k¥t ATTY(AD) '
py = 2K £ (A ADS (A5 A0) (195)
o= o e On

where the summation is with regard to .all the positive roots

of the equatbion (19%).

Tf the initial temperature throughout 'the cylinder is

given by k=0, v=§() 0%rga, We see at once from this last result

that the solution in this case 1is

o '
= -KXt_ AT JoX(Ab) J : "(1qb)
2 (Ao, A NLAGA) LAy - (9
V= 22‘ C rey_ D) £ AT) of(r){—( vAa)ndy

s eqMHom see GMM - 82.. o

We select fhat

. { i forms.
This  result may be cxhibited in van?—u{s orm.

Ihis  resullr imay De <xumioras oo

whiclh wakes & appavedt that the resulk in the vegion 7w is the same.
t e/



The Second Problem, 102

(p). Suppose in the first place that the inner surface of the
cylinder #a=a 1is maintained at the periodic temperature eozbmz
The original train emanating from this surface is accordingly

represented by
CRE K (Av)
e Koo
This train and its various continuations by reflection at the
sﬁrfaces r=k and r=@ Dbuilds up the complete temperature system

at any point. Thus we find

RE € (ARY 4+ BIo(AY) (97

U= ¢
° | ~AB

where A and B the reflection coefficients at the surfaces r=a

and ¥=b are given by

A=—TeliAd) ¢ p_ KAKI(AY-WKo(AD) (qq)
Ko (A Q) KoA T, (Ab) 4+ ST, (Ab)

With these forms inserted we find that (¥q7) becomes after

necessary reduction

= po KAR(ABAY) —hfo(abAn)
= 0,¢
KAL(Ab, Aa) ~ fu fo (A, Aa)

—a ot BAY  say (q9)
-'eoe u(A)a/) ? 7

This result gives the effect due to the periodic temperabure
Goe,*k at the surface *=os . Thus the effect due to the instant-

taneous doublet of strength 2KG, per unit area over the surface
¥~a - or, what is the same thing, the effect due to the

instantaneous creation of the temperature 8, at r=a at 4=0 - is

given by



® ikt
feu Uine 4
U(Aa)

. ~KA
= 2xibo| o _‘_J_(_')"_I_)_Aotk (200)
U(A a)

the path of integration being that already used on numerous
occasions. The integration is effected in the usual manner

and yields

V= ~2kh f_'e"“ﬂ VA A (201
T Sivae)
dA » A

where the summation is with regard to all the positive roots

of the equation
U(A o) = KAf(AbAa)~ WfAbAa)= O, @02

At a root of this equation we find
UM = KA § (8N -RE(AbAY)

KA S£AbANE(bAD—£(AbANAB A = K f(AvAx)
=¥,(Ab,9~aa vc' % ° ' } b £, (Ab Aa)
Thus the above result becomes

< KNt KA fo (Ar, Aq)
=—2x0 > hd ! (203)
v=-te °Z b £, (AbAx) %{U(A,a,)}

From this result we obtain that finally required, the effect
when ﬁhe inner surface r=a of the hollow cylinder is kept at

the coknstant temperature b, from the instant X=o onwards. ...



This may be shown as

V=2 B, Z (—¢ -m KE (A A)
” b§ £ (o A) %U (Aa)
~s flogh + — + 26, Z N Kfo(Ar Aa) (201p
hlogb s % ' b £,(AbAa) G4 U(ha) -

where the first term on the right has been filled in from
direct considerationsv of the steady state ultimately attained.
The implication of this last result is the purely

mathematical theorem indicated by

flogb+ & s K (A, A) (205
hlogh 4 K T BAEOR A S U (M)

the summation being with regard %o all the positive roots of

the equation (202) . It might be useful to give a direct demons-

tration of this result._

We assume the possibility of the expansion

00 ‘
5("') - A’fo“'r’ Ala.).;-Az:f;(Az«; A @)+ = Z', Ami(kmr, Ama,) eob)

5

where A, A,... etc, are the succes/‘ive roots of the equation (202),

From this expansion we have

b S _
I Fof (A AT I = Z”i } AL A A i(ﬂ.,’g Aayrdr (207

. To evaluate the integral on the right of this equation we

observe that Wm‘:’.'l';(”\m":xm“‘), u =-e, being solutions off Bessel's



equation, satisfy respectively *

d""’m L dby, 2 —
Tde2 +F »df 4'A”u%"— 0

4y LA 42
dn? * 3 dr + A =0

whence u ! !
T(w ww_u’wul:) + (uwwmr"uku‘w)‘f' (Amz‘-' A:)ubnun‘rz o,

so that ‘ :
2 b b
(A“—A:)J w, . u, rdr = fr(w A du Y
R m o "df ‘m# . C; - E (20%)
At f=a P Uy = = 0, ” |

so that the wvalue of the form on the right of (208) at T=a

is zero,

diim — A, GAITAD +A,TANGAD
and therefore
(u“ %[?) = £05,A0-A, £ (A 5AM)]
=,_%ﬁmgmnﬂ%ghﬂ
since A is a root of the equation (202).
It is clear from the syrﬁmetrical form of this evaluation that
(u""‘-) has the sa;me value and consequently we have
J U, 1,7 dr = O, A A,

When A=Ay This result is replaced by

Ew;m... I __'._.[( b _ um%uﬂ"
"3T

[t it

@0q)

L}__-/_J

/], , A=A,

¥ et GMM v 69.90.




It is readily verified that
25_; S orf‘ (Ar, A0y + cx,f‘(Aa,M)
9

Thus (a‘*) =0 and since (4,)= 0, the value of the expression
= bt

in the square bracket at the lower limit is zero.
Again

(%‘-ﬁ) = - Af(Ab,m)
b

Hence we have

b , |
me, rdr = '2'%'.,. - Aﬁ(a&,ﬁ\«)%i (AoAa)— f co\b,a\@)%g-%(%,mﬂ

— bﬁ.(kb}‘,’)\q [& 9_4 (b, Aa»)q-a { Af(é«bmﬂ
24

_bEGbAD D {KA{-'(Ab,’/\a)-— B, (60)]

2. KA LN
=bh0bAD) 2 S0 @)
and finally
A, = QK’\I fWu,,. rdr @

bi.(Abra) 35 UKD}
We consider next the special form taken by A, when () is

given b
v hlogh + K
$) = Y !‘Z
b
hhog 2 + 3

It is easily proved that

X (b uﬂh,,..‘f_) q (Ardr
§ locow—ke 0] - [b +hdog E]Aa,wm)-» ne 00}

=1
e
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Likewise

b
[ (Wlog s ) Tt dr

N

—'zi (kAT (ALY~ b T,00)] - [—+8vzog.g.;1mmw)+ m(m}
Multiplying the first of these results by J,Aa) , the second
by G,(Aey , and remembering that A is a root of the equatibn

(202), we have

b
hloghy K
X —T by ®rdr "‘"3;;.
(" k%ﬂ%-&-
and therefore 2K

@12)

Aw= = TA%(b D S{UAD}
exactly as required by the equation (205) above.
An important verification of the result (204) is obtained
if we assume that ar and b are all very large, with (b-a»
finite and asvrsb . In these circumstances we can replace
each Bessel Function by the first term of its asymptotie
expansion and the form then taken by the result should give the

solution for the corresponding plane problem. Thus we find

! ~1) - (ArAa) becomes cosA(a-r)
&(M,m) becomes M_%_(@_;’!‘_l ; {: ) om hla

If these substitutions be made and if the origin is suitably

shifted after substitution it will be found that the eesult

faon) peduces to

K4 b (b=7) _. ~wNt Ry KA SuwAr | 3
V=4, { K+ b 22 (K4 bR)+bK2A* A } 3

all the positive roots of

the summation being with regard to
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the equation

| KA coorb + I powAb = O, @)
The solution (203) thus 6btéined is that for a finite‘rod of
iength b one end;of‘whiah T=o0 1is kept at constant temperature
0, while the other end 7=b radiates to =a medium at zero temp-
erature. The form of solution is in entire’égreement with that

obtained directly for this peoblem in a previous chapter.

Problems involving the long solid cylinder composed of two

materials of different conductivity.

v

The case contemplated is that in which we have an infin-
iﬁely long cylindrical core of radius a and conductivity C,
surrounded by a coaxial layer of thickness (b-a) and conduct-
ivity Cq .+

Postulating first a periodic source of strength %5 at
the surface 7T=Y within the inner medium, the surface T=b of
the cylinder being kept at zero temperature, we consider the
fundamental trains emanating from the source and their contin-
uations by reflection and transmission‘at the various boundaries;

in this way we find that the effects in the various parts of

the field can be r%presehted by - the notation being that

~ adopted in previous two-medium problems -

¥RI o 94b. N The wnotation C, e for conduchindiy 3 uihroduesd & avocd




| log

ozrz, W, q)ﬂc Iamgww)+AI<m>} |
| $ : (215)
farsa, qo.._,.%’_'-_e IO(LAn){K,(iAr)+A:E(M\r)}

7

asrzb v 9% SUAT AN | Ko (swirnT, (suiAe)
Cg_ I (Ml«/\b’

—K(wADL (mid} @b

where }L:J:‘éd'. Here it is to be understood that the second btern'm
in each of the first two of these results ‘includes (i) the
train reflected frbm the surface *=a at incidence of the
original diverging train and (ii) all the trains partially
retransmitted inwards across the surface ¥=a from the outer
medium after one or more reflections at the surface r=b .
Similarly the expression for 4, in (2b) includes the first
transmitted continuation of the original diverging train and
all the other trains set up by the reflections of ‘this one at

the surfaces r=b and r=a . To simplify the analysis we have -

chosen forms for ¥, and v, that at once satisfy the conditions

at 4=z, ,and a form for 4, that satisfies the condition at 7r=b .

It remains to choose A and A to satisfy the double condition

at the surface ¥=a ViZzZo.

~ Lt . Vs
°© or or

It is found that

with  d = CT (A (euha, AW — ipeC, T, (A (hay muAb)
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A= SiKiAa (Ao, wAb) 4+ e C, K, (Aa)fi( A, WA
a
A= CaTo(pmirb)irg (217)
’ d

#ith these forms substituted and the necessary reduction

performed we find that the results (*15),@1b) become

3; 3 =Cdi(Aa AYE(uha, pslo) +-mC o (Ao ArM (Ao, 1uAb)

osrs” , Uiy
G F(A)
- an Y

nsrso __6_ H’{Some expression, rand T, %femhanqtd} @s)
” |
asrsb |, = e Jo(An) fo(wxr @19)
- Ao F(A
where FA = CT AL (MAG, uAb) — s C, T (AR (nAay paab) (220)

These results apply when the periodic source is

located within the inner medium. It is of equal importance that

we obtain the corresponding results when the source is in the

outer medium.

Beginning with. the periodic surface source at T=rn, agy, r<h,

we write down tentative solutions in terms of the elementary

wave trains as follows

r
C, T.(uiAb) + E Ko(uiAb)
Bt < oo 30 P IT(uidn) + B (uire) S uAn, wab)
== 2= C2 IO(WAb’ -+ EKo(MAb)

rarsh, - &cr" ei,hl' { same expréssion, rand v (ﬂ(—erchanqu}' 222
2 N
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In writing down these results we have been guided by
the general principle of the interchangeability of + and # in

the forms for 4, in the regions " $% , by the zero temperature

condition at %=b and by the dual condition at the surface =7 .

t \
E is of the nature of transmission coefficient from the outer
to the inmer medium , E of the nature of reflection coefficient
at the surface T=a within the outer medium. When we take into

account the conditions at this surface we find

£ = = STADNT (mira) + uCT (AYT (pifa)

d (223)
G
T Tixad'
where &= CLianK, (wira) +mCo T (A Ky (puiAa)
ihen these forms are inserted in 21222 we obtain
ke
: ) o ol AL
0sr=a, = — %ﬂ,‘e;’ Je (Ar)é(({t;) r, MAb) Q2w

LR ,
an S Hlpan uib) Fluaa, mAr)
L —_— 2l e ” %
awren = FA |
an eékkf Same expression, r and in?zrchanqeol.}’ @25)
Ca *
F(AY having the form defined in (220) above -

Proceeding next to solutions of the type %Xoudh

correspondine to the existence of instantaneous surface sources
o (e}

within the inner and outer media respectively we find in
succession noting considerable simplifications in form when M
iz 2 voot of FN=O0.

*Fn = (Pha, pAb) = CTi(ARME(pA®, piAb) — ml, T AR (uhd, uAb).
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oo

Tnst. Source osTsT, Z Sealld Fo(pwira, AR To(ArR) o (Ar)
{ wsrsa, U= the same expression
Thner
Medium. agrab, = 2%* Z S8%E To(An)Fo(mAr puAb) (227)
\ FAA
. p ”
Tast Source 0sr=a, 0_ 29%,1; Z ~KN't &af)io([b%t‘., MAb) 22%)
a T F'O)
n ~<RE To(Aa) )
(Lé ‘.g,r , ‘U’:: 29%,% i e .....—.’—g'.__.
i ’ ¢ @ Z’ }o(MW/F‘Ab)
Outer X %o (pAn, Mb);’o(ﬁ"*rym) ; ax)
F'&a)
Medics . TLrh, Wy = e same expression, J

the summation in each case being with regard to all the

positive roots of the equation F(A)=0

The group of results exhibited above is of considerable
importancev. By using the known volume integral process we can
at once obtain the solutions corresponding to any symmetrical

initial state prescribed throughout the cylindrical core and

surrounding sheath. Thus e.g. if initially we have
v=3§(m,6 0T ® ; M= f(m, *Ersb,

the effect at any point in the inner medium at any later time

is obtained if we replace q in (22b) by %ﬁ(ﬁ)dﬁ and integrate

with respect to % from o to & ; replace ¢ in (228) by EAGL

and integrate from & tob and add these results. In like

manner slso we could obtain the ‘effect at any later time in

the outer medium.




"3

In the above results we have all the material for the
investigation €+gs of heat losses from long cylinders
surrounded by coaxial layers of lagging. The arithmetical
eXamination of the results obtained for various thicknesses
of the lagging and for various values of the relative
conductivity might Tead to results of interest and of
practical value. This aspect of the case is reserved for.
futuee consideration. |

It will be remembered also that the solutions here
obtained only apply on the assumption of the zero témperafure
surface condition at the outerrboundary. Cleafiy the tentative
solutions given in({15-6),(221-2)  and all the subsequent resuits
would be of entirely different form were this condition
otherwise. The general method of approach to any other problem

involving a different boundary condition has however been

sufficiently indicated.

Spherical~-Cylindrical analogues.

X . . .
In Green's fourth paper the attention is drawn to striking
structure resemblances between the solutions of certain

cylindrical problems on the one hand and the solutions of»the

corresponding sphérical flow cases on the other. %Fhese

% QT poye
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resemblances might conveniently be illustrated by the follow-
ing scheme, prepared in connection with the second of the

hollow cylinder problems investigated above.

Cylindricad. Spherical.
Fundamental train )
from source ByetkE ez"m' Ko(Ay) | 90 (a,)t Kg(lAr)
at surface *=a. ° Ko (AR o \r K- CAa)
Reflection coefficlent| _ ¥ _Aay< K, (IAa). — X1 (Aa)=+ Ki (Aa).
at surface =, z *

e 2 OO o Ka(AD = ReoAD) | KA KR (AL = K1 (46)

radiation condition. |KéAT,(Ab)~R I (iAb) K"AI-%("’W)‘ Ty (Ab)

Effect of periodic - :,_:'Qefkt,“w('x’V) ewdlfa Wyt (AY)
source. 7T B0 TN UL (Aa)

The subscripts w, n+3 denote that in the passage from
the chindrical case to the spherical any Bessel function
of order W is to be replaced by the corresponding function
of order w+3y .

Tt is clear that the analogy persists right up to the
final solutions. Hence if we adapt in this way the result
(nou) we obtain the soluﬁibn for the case of the hollow sphers,
the imnmer surface = of which 1s kept at the constant
temperature 6, wk;ile the ouber surface T=b radlates to a
medium at the temperature zero. The adapbtation is easily

carried out and leads to a result that is readlly verified.

Tt is of greater interest however to show the application of

E)




IS

the transformation to the group of cylindrical results
(a%)—(a'zé) and in this way to obtain a set of spherical flow
solutions known on other grounds to be correct.

e find e.g. that in the transition the cylindrical
funétions_{a(qugmb), ;[‘-,wq,,)wxb) are replaced by the spherical
functions }iwq,,”&b)’ ‘E%W(;\.,MAI)) respectively, where i

1 (phn, pAb) = Gy (uAn) Ty (uAb) — T3 (uAn) GL (pAb).

din pmA (b-) -

,w ,J"'
*%(/’"“"” pAD) = (g (UAa)TL (uhb) — :r%(mou)G:i(Mb) . i

U aiwph(o-0) bm0d
= T % = + coo pA( }
Thus we find that FA) as defined in (220) becomes___.—M;\wJ;‘?;;:F(A)

where £0= (C‘—Cz)%&w}b(b—@ﬁ C coohapin p(o-a) A
— mCy privAa, cos )w(b-w)k
of the set yields

Hence finally transformed the result (229)

S S i pa (o—tDA. v (=12 @30)
2AKY, eK Ao, o s (b~DA. .« .(230
Y= z o plb—aIA £

where the su@ation is with regard to all the positive roots ;
of the equation 0 =0

Thls pesult is in entire agreement with that obtained ‘
J*

by Green in the direct treatment of the spherical problem. ;

In exactly the same way we could transform the results (226), (227)

(229) to obtain the complete set of solutions relating to the

sphere surrounded by the concentric sheath of different

% GIN pp25%4.
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conductivity, Likewise by the adaptation here indicated

the solution of any spherlcal flow problem could be obtained
eylmdrical ' ’

by first obtaining that of its =H==esiz¥8 analogue., In this

connection the problem of the finite sphere imbedded in an

infinite mass of material of different conductivity, a case

discussed in a previous chapter, is noted for further

investigation.,

Continuous Heat Sources.

In the problems discussed above the wvarious sources
postulated have all been of the periodic or instantaneous
initial type. 1t is useful to show how, by direct time
integration, solutions corresponding to the existence of
continanous or permanent sources may be obtailned,

If eege in.the'result (195) - relating to the instant-
anebus surface source within the material of the hollow
cvlinder whose surfaces are kept at zero temperature - we
replace q by qdt’ , ¥ by @*-t') and integrate with regard to
¥ from o to X ,we obtain the solution for the case of a
surface source emitting q units of heat per unit area per
second from the iﬁéféﬁ%ui;o onwards. The integration is
easily effected. Writing down the form the result takes

when ¥ becomes indefinitely great, we obtain the " steady
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state" solution V as

= 29% To2 (A b) (g, Aa)f(AcA). .. (230
V= K S I2aa)— 3_1(“))'56 l .s;

the summation belng with regard to all the positive roots
of the equation (19¢). |

| ‘i‘his solutivon however is one that can be o‘b'tained direct-
ly from the differe.ntial equation and boundéry conditions

of the steady state and may be exhibited as

vey, =31 losb- l"‘\’ los"‘

¢ K lgb-
.(23¢2)
2% V=34 ggz;%;;;m%

The identity of the solutions (23t) and (232) is readily shown.

If we attempt the development
FM=vVv= A SWAri), asrzh

the summation being with respect to the positive roots of (@w),
and V having the form shown above we find, by the usual

method of determining the coefficients,that A,is given by

oh b
| Fthnie) Vrdr 4+ Sr:&,(ﬁw,é\m),\(,rolr
(v 3 (]

An=
b
X { 5 (Ax, Aa)}zrdr
7]
- T2 (Ao (An, Aa) , after necessary veduckion.
o (Aay = J(Ab) ‘

Clearly this form of A,,demonstrates the equivalence of the

two solutions.

It will thus be seen that (231) gives the correct
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normal- function development corresponding to Fhe existence

of a continuous source within the material of a hollow
cylinder whose surfaces are kept at zero temperature. If q
and ¥ be replaced by the corresponding electrostatic constants
the development in gquestion becomes that for the potential

- between coaxial conducting cylinders kept at zero potential
due to a coaxial distribution of electric charge{

Clearly we might apply the process indicated here to
any of the other cylindrical, spherical or plane flow
solutions already obtained snd thereby obtain in developed
form the " normal function'" expansion of the steady state in
each case. The mathematical agreement of the developed form
of this state with the undeveloped form obtained from first
principles would seem to afford important confirmation of

the various results to which our theory has led.






