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PREFACE.

The wave train theory of heat conduction in solids in
the sense in which the term is used in the present work, was
propounded by Dr. G. Green of Glasgow in a paper in the Phil-
osophical Magazine in April 1927. This paper was followed at

%
regular intervals by seven others, four by Dr. Green and 
three by the writer.

In the original paper which may be regarded as the most 
fundamental, the solutions for certain standard conduction 
problems were obtained on the hypothesis of this mode of 
heat transference as a form of wave motion. The medium was 

conceived of as being traversed by systems of temperature 
wave trains, and such matters as the reflection of these trains 
at fixed boundaries, and their transmission across surfaces of 
discontinuity of medium were fully investigated.

The facility with which wave train solutions of the
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heat-conduction equation - and summations of such solutions -
could be obtained, easily adjustable to take into account
quite complicated boundary conditions, prompted the general
survey of the whole field of investigation usually covered in
the standard works on the subject. This survey is represented
by the papers of the series numbered G. II, III, IV, V, and
R. I, II, III.

In papers G-. II, III, and. IV Dr. Green had dealt fully
with problems of heat flow in rods, spheres and cylinders.
Many particular cases were fully worked out and in addition
some results of a general character were obtained, the special

*aspects of which were left over for future consideration. At 
the suggestion of Dr Green these aspects were taken up by the 
writer and their discussion forms the matter of the papers 
R. I, II, and III. of the series.

These three papers in their published form hardly do 
justice to the subjects with which they deal. At the time of 
their compilation for the press the results obtained appeared 
to represent applications only of the fundamental theorems 
and processes explained in the previous papers, and while many 
considerations of physical and mathematical interest arose in 
the course of their investigation, these could not be dealt 
with satisfactorily in the restricted space allowed by the
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publishers* Moreover, with the experience gained in the latter 
part of the period over which the work has been spread, it 
became apparent that certain improvements in the treatment of 
some of the earlier problems were required* Thus for example, 
the solutions of all the problems involving rods, cylinders or 
spheres reduce to the evaluation of a type of contour integral* 
The treatment of this integral in the published papers was not 
altogether satisfactory* It is hoped that this matter has now 
been represented in a more acceptable manner*

The thesis now submitted, incorporating all the writer’s 
contributions to the literature, represents a more or less 
continuous work. The separate introductory statements 
necessary in the case of published writings appearing at wide 
intervals, are no longer required and have been omitted. On 
the other hand, a fullness of treatment formerly possible only 
in the writer’s notebook has been introduced and allows the 
inclusion of further illustrative examples, a fuller description 
of the processes and a greater degree of mathematical detail. 
These improvements were regarded as necessary and their inclusion 
should help to make the work more readable.

The first chapter is of introductory character and 
presents such a selection of fundamental processes and results 
as are required in the later chapters* Here, as elsewhere,



fV

the indebtedness of the author to the writings of Dr. Green 
is apparent and the necessary acknowledgment is indicated.

Chapter II is devoted to the study of one-dimensional 
flow. The brief treatment of the semi-infinite solid in which 
several well-known results are derived does not appear in any 
of the published papers. The disciission of the finite rod 
when one end is kept at a uniform temperature, is substantially 
that given in the corresponding published paper but the pro­
cesses are more fully explained and the integration treatment 
more satisfactorily disposed of.

Included also in this chapter is the theory of the cooling 
of a rod from a given initial state under prescribed end con­

ditions. This part of the work forms a section of Dr. Green’s 
third paper but its inclusion in a chapter having pretensions 
to completeness seemed warranted. The inclusion seems 
further warranted by the fact of the agreement of the results 
with those obtained by Green using analysis differing at least 
in detail from that used by the writer.

The investigation of the flow of heat across a surface of 
separation of two media of different conductivities seemed to 
be more satisfactory when an initial heat distribution was 

prescribed than when - as in the original paper - a definite 
temperature was maintained at a boundary surface. It is shown



however,'that the results in the latter case can he readily 
deduced from those in the former. The whole of this section 
of the chapter, dealing with two-medium problems has been 
rewritten. Certain useful results that lead to simplifications 
of what would otherwise be complicated summation processes, 
have been exhibited as definite theorems and ma.j be found useful 
in dealing with other problems of this class.

There is also included in this chapter, as in the corres­
ponding published paper, an original investigation of the theory 
of a well known experimental method of measuring conductivity.

Chapter III deals with radial flow in a sphere. This
*subject has been so fully dealt with in one of the other papers 

that no more work of a fundamental character was included than 

that required to give the necessary theorems to be used in the 
main - though restricted - problem of the chapter. Thus the 
treatment does not differ considerably from that given In the 
author's second paper. The revised treatment of the contour 
integrals required to give the complete solution of the problem, 
leads to the same results exactly as those previously obtained.

The fourth chapter deals with radial flow in infinitely
long cylinders. Considerable space is given to the study of
linear and cylindrical surface sources; from the solutions 
representing sources of the latter type many well known results,
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usually obtained by entirely different methods, have been built 
up. The Bessel Function analysis is of special interest and 
is shown in a degree of detail quite Imisossible in the corres­
ponding published part of the work. Of special note are (l), 
the discussion of flow in a cylindrical tube, the inner 
surface of which is kept at a constant temperature, - as by 
steam circulation - while at the outer surface heat losses 
take place by radiation; and (2-), the treatment of the cylin­
drical core surrounded by a coaxial sheath of different conduct­
ivity. These problems, clearly of some practical importance, 
have not previously been solved.

The section of this chapter on spherico-cylindrical 
analogues serves the purpose of linking together as a mathemati­
cal unity the various parts of the work, while the brief refer­
ence to permanent sources gives some indication of how the : 
methods we have employed in connection with heat-conductIon 
might be applied to obtain results in other branches of 
Mathematical Physics.

**■ /• 11 Ik. Jet.
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CHAPTER I.

INTRODUCTORY.

One of the commonest problems In Mathematical Physics 
is that of determining the M-state” at any point in a medium 
when the general law ind.icating how that state varies from 
point to point is given, and when definite initial and bound­
ary conditions are specified. The ,?state” may be literally 
the mere displacement of a particle of the medium from an 
equilibrium configuration or it may be the divergence from 
some normal condition at points in the medium due to the exist­
ence of special circumstances at other points in the medium 
or at its boundaries. Frequently it is defined by means of 
a differential equation, the solution of which, modified to 
take into account the initial and boundary conditions, may be 
regarded as the objective of the investigation.

In many cases it happens that the state can be explained 
on the hypothesis of the medium as the vehicle of systems 
of wave trains. The problem, e.g., might be that of finding 
the motion of a bounded mass of liquid arising from a single



impulse applied at a point on the boundary. In such a case 
we might regard the complicated after effect at any point 
in the medium as due to the propagation through it of the 
wave of disturbance initiated at the impulse centre. If 
the liquid were of infinite extent there would be little 
difficulty in accounting for the effect at any point. The 
single analytical expression for this initial wave would 
give the representation required. In practical affairs 
however, we have to take into account the existence of the 
boundaries of the medium. When a system of wave trains of 
any type is incident on a boundary there arises the compli­
cation of the reflected trains. Rarely indeed will the 
prescribed condition at a boundary be accounted for by the 
incidence on it of the primary disturbance train. We must 
therefore postulate a system of reflected trains of such a 
type that the resultant effect of the incident and reflected 
systems at the boundary shall be the maintenance of the 
condition specified there. Depending on the geometrical 
form of the wave fronts in the incident train and the form 
of the boundary, the determination of the reflected system 
may be a matter of great difficulty. If we suppose that 
this difficulty has been overcome it becomes possible, using 
the correct combination of incident and reflected systems 
to represent fully the effect at any point in the medium 
due to the original disturbance.



The process implied in these remarks is that usually 
adopted in connection with the solution of problems in 
Hydrodynamics, Acoustics, or Electromagnetic Theory. In 
these branches of Mathematical Physics a wave genesis of 
transmitted effects seems a most natural one when we con­
sider how many of the phenomena are governed by the funda­
mental wave-equation

- ? £  «  ***
The conception of flow of heat in a conducting medium

as a form of wave motion has recently received much attention
*at the hands of G, Green,, In cases where effects are due to 

applied surface temperatures or heat distributions of period­
ic type the conception is a perfectly natural one. General 
physical considerations would suggest that the propagated 
effects are likewise periodic and that the mode of trans­
mission is the train of waves emanating fromthe temperature 
or heat source. Even when the physical property in question 
is not vibratory it can frequently be represented by a summ­
ation of periodic terms each of which can be identified 
with a wave train passing through the medium. The problem 
of the mathematical theory is the determination ofthe par­
ticular summation of wave trains that will give the effects
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correctly at all points and at all instants of time and 
will account satisfactorily for the boundary and initial 
conditions•

To illustrate what is meant by a temperature wave- 
train in a conducting medium we take an example from one­
dimensional flow. The matter forms more correctly a part of 
the next chapter but is introduced for the purpose of draw­
ing attention to some general considerations of great imp­
ortance in all later parts of the work#

In one-dimensional flow the differential equation to 
be solved is

the notation being that usually adopted in heat-conduction 
theory.

If we suppose that ir varies with the time according 
to the factor o, where ft, represents the frequency of a 
periodic vibration, and search for solutions of the type 
e V , Vbeing a function ofx alone, it is found that V 
must satisfy the equation

the solutions of which are given by V «  e 
Thus we have, 0#being some constant,

#
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The real and imaginary parts of U, and are likewise solutions 
of (I ) and are exhibited as

Each, of the two solutions expressed in (4 ) represents a con­
tinuous train of waves of determinate length and frequency

cacpot’iei't Holly
advancing in the positive sense of x  . The amplitude decaysA 
as the depth advanced. In examination of the form taken by 
the first of (4) e.g. shows that the solution Rfa) is that for 
the case of flow in the semi-infinite medium when the face xs=o 
is kept at the temperature O0c©s kfc.

Similarly the two solutions contained in {5 ) represent 
trains of the same character advancing in the negative sense 
of x  . There are thus four fundamental trains altogether, 
two representing effects propagated in the positive direction, 
the remaining two effects propagated in the negative direction. 
It will be shown later that in all the other types of regions 
of space considered there are the four fundamental wave-trains 
having wave-fronts of the appropriate geometrical form and 
corresponding in all other respects to the plane waves obtained 
here.



The solutions (4) and (5) are appropriate in problems 
involving finite or semi-infinite rods when a temperature is 
prescribed at one end, The question of the correct manner of 
combining such solutions to represent flow in specific cases 
is that of placing the necessary restriction on the parameter 
k/ • In problems involving finite rods e,g, it will be found 
that when the boundary conditions are taken into account only 
certain values of with corresponding solutions of the types 
(4} and (5 ) are admissible. When these values of k are deter­
mined there still remains the question of the amount In which 
the various periodic terms corresponding to the admissible 
values of t appear in the solution, Numerous illustrations 
of how these questions are investigated are given in the later 
chapters,

THE INSTANTANEOUS PLANE SOURCE.

As a suitable introductory case we might show that the 
ordinary solutions for plane instantaneous temperature and 
heat sources can be expressed in terms of thw fundamental 
wave trains. When it is recalled that any initial state e.g 
can be represented by the appropriate distribution of instant­
aneous (t=o) sources the possibility of expressing all solutions 
of whatever type in terms of wave-trains is at once realised.

We begin by considering the solution *r of (!) given by
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The integrals appearing here have "been evaluated by Green 
without resorting to contour integration. The following 
demonstration is given for the purpose of introducing a process
of which frequent use is made.

f i ,  & _KX*fc~i-3C\Let the function :r(X̂  =  c 2.iK-X
ir / •»be integrated along the contour in the X plane (X s- % + nrj ss pe )

consisting of (fig.l.)
(O the line Q=s--~from o to B where O B s K ,
(2,) the arc BA of the circle I W  =  K.
(3) the real 4 axis from A  to O.

Since has no singularity within the contour, we have

J  £(X>dX sr O. 
0 6 A 0

%  G.x. jp, n%\o.
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Thus, noting that the integral round the contour is zero we 
have, on equating real and imaginary parts

'j.x09 IK
if**2* c Box 0~+Kt 

Jo .—  ' "  3IE
2"JrtKb3

Cl)

X ( n J « i s £ * ^  )ik-= _J « M j____J L - e ^ P ^ U * )
'n 'J  'T rV i iv ic fc  K *  J 0 j

The interpretation of the results (7) and ($) is postponed 
until we investigate a solution of (I ) of a slightly different 
type from those given in (A-) or (5). The solution referred to 
is

3C > O J

=*<o ;

AX _  q.

u —  3l

i,k fc—x J ic

wkt+atj^r

These results give
22^ =  I c(-K a*yx=0

( K *£) . i t 1
>■ 'dxJf— n 2‘bxJx.stO

The solutions and 4* accordingly represent flow in an infin­
ite medium due to the existence at the plane * = 0  of a heat
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source eimitfcing at the rate of ^  units per unit area per 
second, half of the emission taking place in the positive dir­
ection the other half in the negative direction.

Now consider the solution given by

i.e.

2i t K j ^Cfet— x,
r f k—3c'^2tCe2 re K i k *

L<14iC I~ooe.Zrr K  JI k *

dft ( io l

/• 00 — 2tC —• .

g cool i  -— 1 
21V K  t i  1 ^  U

S k t - x j k . .00

The evaluation of the integrals appearing here has been given 
by Green but it is again instructive to obtain the results by 
the contour integral process explained in connection with ((>) 
above.

' We, consider the integration round the contour of fig.I 
of the function given by

J -rr K
Thus we find

I
08 °.00

-  \ <L-X'l^'hi(ht~ ^ ’c~ ^  dk
2irK Je fe*.

tl'ie. cocj»ression on the WgM' of 00-



Also it can be shown that when the integral along the^
arc &A-*o •
Along o a  /

00e clt
o

a. X.jp JC
, - W  ; IViO

2KjffF " irKVF C c(c£.

where we have made use of the results given in the footnote 
to p. 9, #

Thus, when we make use of the fact that the integral 
round the contour is zero, we have

g/Wl_ t-IS --&T- m
~  2itK Jo It* * ^  * J 2KVSF

'°° -X*^ <“?“ -* <**-<* -xj-k x*
f  e  4 xjva/5 'k t  —jx  pL  — I L l t i k /    —  9 * ^  a

“ I S T J  V* X *2K 4 * KirVF
^  dtx, .,. (IB), 

o

The result on the right of (12.) is recognisable at once 
as the well known solution for the instantaneous plane source 
of strength ^ at ac^o o The equivalent solution - that expressed 
by the integral - indicates how effects due to such a source 
are ultimately explainable in terms of the fundamental wave- 
trains given in (9).

Commenting further on these results we observe



(i). The solution on the right of (12.) gives 'iTsO whentszo, xjsO. 
This san he readily shown using the evaluated form, or from 

the equivalent integral form, viz:-

1

*  -X,

k"1
^ Cos i c c IJL a-Jl 1 Ml/

— I e 
Jo

—  O as t z e j t u r e > O.

(i%)• The solution on the right of (»3 ) gives a certain temp­
erature distribution when O . When £-» O , the upper limit 
of integration-^— ' becomes very great a±td the value of the 
integral is sufficiently given by the first few terms of its

3jf-
asymptotic expansion. Thus the solution becomes

y . -ivg. ... 1
Kir̂ t ( 1 ** J
. — <Vk. i (viie'Vi 

Kif x

The same re si It is obtained from the integral form of the 

solution, viz:-

“LrrK
roo JE

Z00
~ itK

C CoS3t4)ci4  q,K> j  ̂ 3t^O.
ir'K Xo

( i i i ) .  When x = o  the solution on the right of (i2 ) becomes
^  see. e.g. “Bvownu>icKi, ScH es ^1̂ 08)  k, 352.



V =  ^4* , tio.
2K<dfft

while the corresponding solution of (13) is
3C=sO, ATrrO, t^O.

It appears ?in fact^that we have the purely mathematical results

- resuits known on other grounds to be correct.

INSTANTANEOUS AND CONTINUOUS DOUBLETS.

The interpretation of the result (7) obtained at an earlier 
stage is now considered. If we have an instantaneous plane 
source of strength <{ per unit area at Jt=o and a sink of corresp­
onding strength at the effect at any point is given by

X  X  x
'U ==  <2 4VCt —  M x  e  >icfc4K ^ t3" 4K ^ r

where we suppose that as Ax—* o , ^increases in such a way that
c^x— definite limit M the strength of the doublet.

eIt now becomes apparent that tĥ . solution given by (y) 
is that corresponding to an instantaneous doublet of strength

<•00 —
I <>!*.=£ 0
I  Vfe

4k: k
Whence
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2K0© '’located” at x®o . The definite integral form of that re­
sult shows how such a doublet is explainable in terms of the 
fundamental wave-trains.

If the doublet is continuous, i.e. if heat is supplied 
at the uniform rate of ^ units per unit area at the face x~o
and at an equal negative rate atx=-.axthe result is given by

t* kz *x*
ir—  bo* f 0~ ^

Jo
It is apparent from this form that so long as **70 the effect
of the continuous doublet is the same as if the face *=o were
kept at the uniform temperature 9C throughout*

The result {%) appears so far to be only of theoretical 
importance. It'stands in the same relationship to (7) as (13)̂ 
does to (to. ). All the problems discussed in the following 
pages bear directly on the results (7) and (12.). The corres­
ponding investigations based on the solutions (8) and (f3 ) 
have not yet been carried out.

SUMMARY of CHAPTER I.
Expressions for the instantaneous initial plane source, and 
the instantaneous or continuous plane doublet are obtained 
in terms of the fundamental wave-trains. Since any initial 
temperature state prescribed throughout a medium can be



is

represented, toy the appropriate distribution of instantaneous 

sources and any initial or continuous surface temperature 
by the corresponding distribution of initial or continuous 
doublets, the possibility of obtaining the solution of any 
problem in heat conduction injterms of wave trains is thereby 

indicated.
The instantaneous source and doublet solutions are 

particular cases of the general solution

v _ J. f I1*1' jck) dk ;
Jo

the heat source solution being that obtained when

to =  91---  „

and the doublet solution that obtained when

The question of the »®flection or transmission of wave 
trains is considered in the succeeding chapters. By suitable 
choice of ^Cfa^the train

may be made to represent a train reflected or transmitted 
at a boundary however simple or complicated the boundary 
condition may be.
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3> if? are .w H aA  E c ^ x a V io n s  o f  WcvVh«moLh'ccil P h y s ic s  ”o c\3 2 ')  -|v2i».c+^)e<j.



CHAPTER II.

PROBLEMS INVOLVING- OUE-DIMENSIONALFLOW.

The typical case considered is that of a rod of finite 
or semi-infinite length and of uniform cross section. The 
direction of heat flow is that of the length of the rod. The 
flow may be due to one end of the rod being maintained at some 
prescribed temperature or again it may be due to the cooling 
off of the rod from a given initial temperature on account of 
heat losses of a known character from the boundaries.

Many practical methods of determining conductivity 
depend on temperature observations on a heated rod. The full 
theory of some of these methods is a suitable subject of enquiry 
in the present connection and one well-known method is 
examined at some length.

In the earlier problems discussed the rod is of one 
material throughout its length. Opportunity is taken at a 
later stage of investigating the case of a rod consisting of 
two sections of different conductivity. It is found that the



wave-train analysis of heat flow is specially suitable in such 
cases as this where we have a surface of separation of two 

different media.

(<*) • Tto Semi-infinite Rod#

Some aspects of the semi-infinite rod have already been 
considered. To introduce the subject of reflection of temper­
ature wave trains we consider the case represented by

Xs^r x ,

o? x =r o ;

at the plane ac=-x, at fc-0 an instantaneous source of strength 
per unit area.

Let us suppose to begin withthat the source is periodic 
iktand of strength cje per unit area. Then first effects are 

accounted for by the wave train solution given by

x<X'l xr. ___
2K#

/\j" ___ %
to 2KJikf

-  0*0

K

It will be found that these expressions satisfy the required 
conditions at the surface x=xtviz.

ikt



If any addition be made to either of the expressions in (»*-) 
to represent secondary effects, it is clear that an equal 
addition must be made to the other if these conditions are to 
be maintained. Thus e.g. it is apparent that the train ^  on 
arrival a# the plane %so violates the zero temperature con­
dition there. We must therefore suppose that a corresponding 
reflected train is set up, the joint effect of the incident- 
reflected pair at this surface being the maintenance of the 
required condition. A suitable form of train is clearly

Thus we find that all the conditions are satisfied by the 
solution

2K#
or

o  ft f
2K.I5 I

—

* , 1
}

- (it)

If now we take the solution given by
f°°R ^ j O S W o U k .

it is clear that we will obtain that for the joint effect of 
the instantaneous source of strength ^ at XssXj and the equal 
" image” sink at x,, these sources now being supposed placed 
in the doubly infinite medium with no boundary at ae=sO • The 
effect is physically the same as that due to the original



source in presence of the reflecting boundary.
If we write J*-5* ^  and apply the integration process 

to %  in (it) we find that the required solution is given by

q f **(c\
_  _  AT _  — S e 2t Sf*vX,Xjcd\

Job
f •" ic\ t̂—3cC X . _ A i losin^X^X _ w „ _ £l7y
Je'ftK
Jo&

where the path of integration is the line OB of fig.l.
By adopting the method explained in connection with the corres­
ponding evaluation in Chapter I, we find that the required 
solution is

oaK. C"’-Kt€x-c*i . .
tr»= R - w j C

*KJ.
90 -tct£a 
& Sin Aii\.x,£>d£;

(x - x ,}5"
- w - J  . . . .  (|8)

ZK*Jnk

with, clearly, exactly the same result for the region 2e<x, #
If e.g.an initial state is prescribed throughout the rod 

given by
t  r= ATiszz £CX) 9 6  i

we replace ̂  by i|-£(x,Vbeand integrate with regard to from O <*>, 
In this way we obtain



- T i a - W *  -  * I '1'O
}
*r

. - . ('9)

 ̂    ___
2vicU 2 îct

It is of Interest to notice the form taken hy this result 
when the integration with regard to x, is effected .prior to 
that with regard to 4 • From (1$) we see that the required

form is r* r* -•*§*^  _  2. I ^
^  Jo Jo

With fco in this equation^we have at once Fourier’s well 
known Integral theorem

If now we take the particular case = aovxsVanl ■=.
the result (iq) yields * «.

^  «  _2£j_f . . . .  <&.
&  Jo

It should be noted also that if we take the solution given by 

v  =  'ir. } I -  g= ( c”1 <U. j , . . . .  (ii).
Je»

wejhave the solution corresponding to flow in the semi-infinite 
solid originally at the uniform temperature zero, when the 
facetso is kept at the temperature^throughout. In writing 
down this solution we have been guided by the general princi­
ple that if ir is a solution^df

T he  v e s u lY iw Hus Vs ^tve»v by B ye rly^  F o u ric rs  S e rie s  eVc (13^3) ju %u._



„ d V  
at ~ 5x*-

AJ-j-O, X *  O, £ =

then U, sc £(x) — V is a solution of

do. X?!*

U s  O, t ss O Utss •, f(*)= 0,

The rod of finite length a.

We examine in the first place some solutions obtained 
by supposing that the end « » 0  of the rod is kept at the 
periodic temperature:; . The condition obtaining at the end
acsscu may conveniently be stated later*

As we have seen in the previous chapter, a temperature 
wave train is propagated along from the heated end of the rod 
giving a first effect at distance ac indicated by

V *  e * * * - * &  _ _ . .  <w>
- ifet-OjJpThis train arrives at the boundary x=cu with the value fyz.

It is exceedingly improbable that this is the temperature 
condition prescribed there. We must therefore suppose thai^he 
train (it) is reflected at the boundary, thereby setting up a 
negatively travelling train whose effect ia given by

^ ® A 0pc. , . . . . . .
where A is a constant depending on the condition at the surface 

The total effect at any point (including x-cu ) is now 
given by ̂  +  . it is apparent however that the train (23),
converging towards oc*o would on its arrival, violate the condit-



- - V-' j. f-k

-ktion at that surface (viz* ATsr 0o.e )*
We must therefore again suppose that there is a corresponding 
reflected train. If we call this reflected t r a i n i t  is clear 
that a necessary condition is that at at=o? xx% and should just
neutralise one another* Clearly then is given by

Ckt — (act
(iff)

In writing down the expressions for and we have been 
guided by the physical consideration of phase equality at the 
boundary in any incident-reflected pair*

24
Continuing the process, we see that when the train (X)

arrives at it again sets up a negatively travelling train*
Denoting it byt^we have _

Alfl ikb-A*0oe  * . . .  (25).
So far the effect at any point is , but it is
apparent that the process we have indicated goes on indefinitely
The complete system of trains within the medium is conveniently

iktvisualised by means of the following scheme. ( p=T©0e ).

"Posi'hve Trams. Negative TvcuwS.

—Ape

-fcApe-(4a4-x)Ĵ

-Cztv-aoĴ
A p e

3 -(t>a-ac)V-frApe



Thus for the total effect of the periodic temperature 
X«o we have

-  V J r i T r j * - * * * - * ®  ...(ao »
The result (at) is perfectly general. For special cases, 
depending on the nature of the condition at the end ac=a, we 
modify it hy giving to A the appropriate form.
( i). Che end gsa> kept at zero temperature.

If ^ +1 represent respectively any incident train and the 
corresponding reflected train weiiave 

x*a,, +  °
whence A}<= o at A =  — I.

In this case the result (zfc) becomes

a v  M -  (2^+xvfS.

This is the form of result required when the periodic temp- 
a Merature is maintained atx=0 .The real or the imaginary

part of the right hand side of (2.7) is taken according as this 
temperature is0ocoskt or^s^kt •

Important results are obtained from (27) when we take the 
solution IT indicated by "



zii-

The solution required is
»*oI A w

'TT o clit
Ckt dk<

Using the result (7I, Chap.I., taking the real part of each
side5 we have

{Zvux+xY (2rto—x}21/ 00 —  <x> “  H'vrT 1
--(41)

(2wxn-x) (grta-oa (00 “~“Ipck“” 4»ct■RCv1) = 7 — ] T  (2na+x)e —  2_(lno.-*)c
24lTK-t3 (o * 1

If w^denote the terms of the first summation by S0 S,9S% &c,
and those in the second summation by tl7tlf he, we see that S© 
represents an instantaneous doublet of strength 2K0O at o , 
\s an equal and opposite doublet at the image of Sc in the plane 

a  ,  S, an etqual positive doublet at the image of t j  in the 
plane *= 0 and so on. The series in fact give the distribution 
of doublets in an infinite medium equivalent to an original 
doublet of strength 2K0O at x^o in presence of the boundary 
<c=a kept at zero temperature. See fig. 2. „

— 3a -2a —a

a $0

-ftg. %•
The result (£<t) may be rewritten in the form

4■« (

(V CUV 3a/

!*■ )-

R C O  =  — -
OO

(x+2nq)c
<aC4-2»IAt)4»Ct C3o)



*which,by adaptation of a "well known transformation,can be

exhibited
# tvV *\.

P ( u '\ —  2*0«. T  ng e . . . . (3l)
^  J a  v  a  &

We can build up from this solution that corresponding to
a continuous doublet of strength2K0o;f(t)at the end x*o of the rod*
operative from the instant t=o onwards. All we have to do
is to replace ̂  by i<M) dt‘ , t by (£-£*) and integrate with regard
to from o to t m In particular^ if constant =  \T0 , say,
the result would become

<* f *
a, 4 . <v ^  J0

oo _  /  —=r £i!s 
I t I

When *t? is indefinitely great i.e.when the steady state has 
become established this result takes the form

u' =V -it k- n-

This state however is that given by the system

=  O   ̂ d  = - ,  X «  0   ̂ 1T— O , X *  0 /,dx
whence y ' _  ^  ^

Thus the result (32-) may be shown 
I 00  ̂wVh-

tr =  ^  cT . - * (33).

The identity of the two forms for V^iven by 
^  See «.g. Carsl<vw>



90
N/'—  Vn6— —  ̂ X  -L vdMvw O') -jr h* a

is simply a restricted case of Fourier’s Theorem.
The method we have adopted above of building up solutions 

from the fundamental equation (at) is only suitable in cases 
where the reflection constant A is of very simple character.
In the cases that we go on to consider^this constant - or, as 
we should more properly designate it - this operator,may be a

A)I/
more or less complicated function ofk .As a consequence the
integrations corresponding to those we have in (**) would become

consideralmost intractable. We accordingly a useful alternative 
procedure for the obtaining of the results shown above , princ­
ipally with a view to its adoption in the further problems 
to be investigated.

The procedure consists in summing the infinite series in 
(a t) before considering the solutions obtained by means of the 
fe integrations. Thus, writing tX for in (it) we find that 
this result takes the form

o I
-  vtefc — Cac\ tkJb —foe**  - ^  A&.C.
1 + A « r ! r t  |

-fat — copA
*  0oe .  £---  •» A g  - - - (iff)

| +. A c -taii



This again is a fundamental result. If e.g. as in the case 
discussed above A= — I , ( 3it-) becomes

Ckl' -C2<a-x)i\
- V = 9 0e ~  ---l _  e"ia4,x

 g x)iw(a— A
(X-\

(35)

Again the result V* defined in (zfl ) takes the form

~ a*"' —  2̂ *c9o sc»v(a4x)A \J\ y . - - Qk)7T J sew cl\. 5
where the path of integration is the infinite radius ~  in

cOthe A plane. (X^Rc )•
Now integrate the function

f/*\ =  Aitv(a-x)\ \
* Su^oA

round the contour consisting of the path o& > the arc S/v , 
and the real axis AO indented at the points given byoA^*1̂ ;

4
see fig. 3 .

+i9. 3.

We demonstrate in the first place that when the value of
the integral along the arc BA—> o .
When R is very great it can be readily shown that



I Sil/V ( g - x )A  1 !  C oaly \ i n g }

I SU/VCtA I ' CO4&r$CV&4M*0l

; - 4  4 04o.
—(o»̂oc)K/dn̂ 0c_________  • _
^“(vR /3 VyvQ ^
acR/OMv̂

S= C'
r r  I P° -*^tR  coo20+xR/)C»v0accordingly we have I I H  I e r4<̂
1 6 A  I J - 5

the convergence of which when R-*̂ 00 has already been demonstrated 
Thus when Rr**> and when the radii of the indents — ^o,J»C0 f*

£ C Z ) M  + Z .  ;
© w

£00 <IA.
indent*OB

The value of the integral round the indent at aAsslOVC is
. t i W fc 

— 'jti l&H a a* JL <vttg
a* cv a>

Thus from (3t>) wefhave

U=s Tf
^  ^  .  00 — —5-ioL'

c _j_ lfO0» V  /7 af < t |  J -  M  e  ^  w i c x  fl7)5c^at a, a ao '
or, taking the real part of this result, that which gives the
solution for the case of the instantaneous doublet of strength
2K0, at x*o , „v-

IT r= *̂̂ 0  ̂T  12̂  c a AiAt, 'K'iras U Cl/ U
in agreement with the result obtained by the former method. 
Prom this point onwards the procedure is exactly as previously 
indicated. While we have used the doublet mode of expression, 
it need hardly be repeated that everything is just as if the

0oendxsO of the rod were kept at the temperature ̂ throughout.



(ii). The end Xaiv of the rod radiating to a medium at zero
temperature*

Analytically this condition is expressed byX  =r a ,  —  K  W  • * • ^
where tw is the coefficient of surface emissivity.
If we take as typical train emanating from the end at*o kept at

. iktthe periodic temperature0 a , and as continuation reflected 
from the surfaee acs=a the following expressions respectively

P«_XlA , A P
we find that A , to satisfy the above condition is given by

A =  KiA-ft/ . . . (3<I)K c A  +•
We have now to modify the fundamental result (3̂) by giving to 
A the above form* Properly reduced we find that the required 
result is

ir= l0
KA coocv\-4»̂ v /0 tvwcvA

Proceeding at once to the solution n/= jv*elk, , whose
real part represents the effect due to^Kie instantaneous
doublet of strength 2.K0oat ac=o,we have

2 k-u0o f  ^   ̂ K A c o a ( q u - a c ) A - f - ArlA (40
if I KA j&Cw c UKJoB

where the path of integration is again the line OBof fig* I. 
The integration is effected by integrating the function



round a contour like that in fig.3 , the only difference being 
that the semi-circular indents are round the points given by 
the positive roots of the equation

^ K \ c o s a \ + i ^ w v c u \ s =  O. . . .(42.)

Using the same theory as in corresponding previous evaluations

we have
f a s  [  I ( 4) d |  KXco- s +  ^

1 ~~ K X coo a A

* f - i r c f _ c  KXl_0<2?^LUi sin ad . . .(43)
Jo 1 (v(K+aM')‘4-a'K2A11

where the summation is with regard to all the positive roots
of the equation (4* ).

Thus, confining our attention to th© real part of the
result (43), we obtain

* -KXtR(bO as ILK&o^Z — (K^-h k̂ )x-----siv\xX . . . (44)
W K + a ^  +  a/KT

The effect of the continuous doublet of strength aK0o at -3c»o is 
given by

At mi>e f  JS&4-U-______ *" ̂  (\ - . . .<*51

The corresponding "steady state" solution is obtained by making 
■ir->a© • This state however, obtained from first principles is

+ - " • ( ' - i £ a r )
Thus can be exhibited in the form



ir_ R <, W  „V  f K>ft ( H V k ’l s U x k  1 . . . u l 's. k ( K + a U ) + a K 2 X  X  4  .
The equivalence indicated byi & X  _  ^  V  ( K * A X 4 »  It*') S u v x X  J 

K+fl'W' | lu ( K + o l i ) + X
the summation being with regard to all the positive roots of 
the equation (42.) is,in fact, a well known result.

In the foregoing problems relating to the finite rod the flow 
has been due to the maintenance of a prescribed temperature at 
one end, the temperature at all points of the rod except at this 
end being initially zero. A return to this class of problem 
is made later in the discussion of a practical method of 
determining conductivity.

It is equally important that we consider the case where an 
initial temperature state is prescribed throughout the rod.
The results for certain simple initial temperature distributions

•y»Care readily obtained from those shown above by using the prin­
ciple indicated in connection with the corresponding investiga­
tion involving the semi-infinite rod. (see p.fco). fbr general
purposes however it is necessary that we indicate in outline 

arê rcotcd
how such problemsAby the application of first principles.

%  Sec C<vv5\<vu> jqv <74 efr 5«<̂ .



Cooling of a finite rod from a given initial temperature state.

Jet the initial atate of the rod be given by
t s  O, O i X i O/. ' ' ■ C4’7̂

The condition obtaining at the ends oc=-o and Xso, of the rod may 
conveniently be specified later.
The procedure is indicated by the following steps which are 
considered in the order named.

ok t(i). $he effect due to a periodic source of strength cyi 
per unit area at the plane x=x,is fouhd.

(ii). ĵ rom this effect, that due to an instantaneous plane 
source of strength at x=x, is obtained.

(«»)• If Q be replaced by H-fCx̂ dx* in the result giving the
K

effect we obtain that due to the initial temper­
ature state prescribed above.

As previously Indicated (P 17), the first effects of the periodic 
source at x^=x, are given by

a, utefc-(oe|-x)u\ _(oc-a:)C\^ C =  pe
2Kl\

*>«,, V, q, _  -(ot-ae.ja
0 2tCcA r

► ' ' *«8)

.C-
* 2.K6A

Similarly, as previously remarked, if anŷ  addition be made to 
either of these trains to represent secondary reflection effects,
^  iwscrh M vc<̂ <wci Vo x( o fa <v.



an equal addition must be made to the other so that the dual 
condition at the source surface may be maintained. Thus we 
begin with the original negative train and write down the 
contributions made by it and its continuations by reflections 
at the surfaces x=?o and x=a to ^  and ̂  the resultant effect 
in both parts x^x, of the field.

X < X, X  OC i
pe-(X,+3t)iAFpe -(ae,+x)iA r pe„ _ -(2a+x.-x>iA Arpe AFf 4 (ia+*-x)iA

A V > h lta+Xr*,,A
* * *

where A and F  are the reflection coefficients applicable at the 
boundaries x-=cu , x-0 respectively.

Thus, resulting from the original negative train alone
we have the partial effects

— X ,tA  f XAs\l
2, ' C e ]

j - A F e '^

+  A eX  >», , Fpe
5 -(aa-xJiXl4,  A e ________  j

I -

Similarly if we tabulate the original positive train and its 
various continuations by reflection at x»o»and we obtain

sc < X,

AFpe
-(act -fX'XpiA Ape

pe
Ape



Hence the partial effect arising from the original positive

train is ....

X <  X, 9
-ocCX »C\1 

A p e  ire 4fc j

t

x > x ,  ?
oc.iA ' -acC\ -'(•2o-ac>«A pe e -4-Ae_____

I -AFe~2â x

Thus the total effect due to the periodic surface source is 
given by

These results are perfectly general. For special cases we give 
to A  and F forms appropriate to the conditions prescribed at 
X=-o» andxzo • As previously we take two cases s- 

(i). Both ends at zero temperature.
(2.), Both ends radiating to a medium at zero temperature.

In the first case we readily find A s F  =  -1
so that the first of (4**) becomes

* > x ,  ,  U =

I.e. x < x (y
II -AFc."2̂ ^

=  *<v»

x < x ,  ,  «■<.= p as P 3&V Auv ^
ScWoAI —  e'2a'iA



with a corresponding form for V 0 .

In the second casa we find KcA+
and the first of (4<0 "becomes after necessary reduction
x < x ir- =  p ̂  (K-A coa xX { KA co* (a - x,) A+ ^

» '  ^ 2  KVtA c o *  a A  +  Ctaa— K^X1)  /J w - a X

_  p F(A) , Sexy
Proceeding no?/ to the results for the case of the instantaneous 
source at Xs«, wejtInd that these are 

(I). Ends at zero temperature._

VO
whe-re the path of integration is the line OB of fig. I.
The evaluation of the integral is again effected by an integrat- 
tion round the complete contour of fig.3.
It is found also that the real part of the result is tlmt which 
arises from the integrals round the indents at the points given 
by aXs-u/Tf . Thus the result required is

_ OO ^

X < x, i it =  K a  ^ *?vuxX*ivi/a;,X , aA^vdf - . • (53)
with,clearly, exactly the same result for the region 

(a). Ends radiating to medium at zero temperature.

In this case we have

contour the path of fig. b, on the understanding that the indents

>̂u /OLW x\ /bKAtv
AC*t/

FfXHX

For the evaluation of the integral here, we take as closed



are round the points given by the^positive roots of the equation 

=  S K A ^ c o o a A  — (K l A4’~K/a ) au^aA  •=. o. . „ , (52J)

At a root of this equation the factor KAeoo(a-xl)\4-li/,<uA/t/(a-x,)A 

of the numerator of bee ome s K A coo x , A 4- 1^/OaW x, A.

Thus when we take the real part of the result (5*0,giving the 
solution for the case of the instantaneous source at Xsae, 
we obtain, moKvuj at a root —  |a (K aAa4.|^)4-2Kk}

<tr — ,̂ct*c' ^  ( KA coo xA -4- &» x \) (K A  co* x , A 4- . . . csQ

where the summatmon is with regard to all the positive roots of 
the equation (55}.
Finally,corresponding to the initial distribution given by

# t s r O ,

we have (t). Ends at zero temperature. 

from (53). ^ _*&.%* (*a •
tf =  j U'Uv Jix̂ . . . . (5T)

Clearly with-tssO , this result reduces to the familiar half­
range Fourier series for £<*) •

(g-). Radiation at both ends. 
from (5fc>),

Jo

The form taken by this result when t«o is a well known theorem.
%  CcVTOtiVtO.



Investigation of the theory of an experimental method of j
*

determining conductivity,
/  j

The investigation may be regarded as an application of the ; 
theory given on pp21-31 above, where we have considered the flow 
of heat in a rod, one end of which is maintained at a constant

i
temperature while at the other end heat losses take place 
according to some simple law.

One end of a rod of relatively low conductivity is kept j
at a constant temperature from the commencement of the experiment*1

i
To the other end is soldered a copper ball. It is assumed that !|
the whole ball instantaneously takes the temperature of the end * 
of the rod to which it is fixed. Part of the heat passing

i

from the rod to the ball is used in raising the temperature of I 
the ball, while the remaining part is radiated from the surface 
of the ball to a medium which we may suppose kept at zero - 
temperature. Thus we have, If ̂  ±s the cross sectional area !
of the rod, M the mass of the ball, S the specific heat of the !

j

ball,S the surface area of the ball,ft the coefficient of surface j 
emissivity , ;

3x 9t

see T H  <5roy ̂ Pvoc. Roy. Soc. I Mekkodf> V><xse<i a n I\\ok of- (*ir*ey ?uwe beew 

»vv ivse m tUe- IfytysiccU Lo-bordboiry cxV Glasgow U n iv e rs ity  fo r  Some tiwie. 

(.See *t* ir̂ rtnL. p V



The problem to be solved is that in which the end acsrO 
of the rod is kept at a constant temperature 0O while the 
condition at the end x«cu is that specified in the equation(54 ). 
The procedure to be adopted is that indicated in several prev­
ious caseso Thus the solution for heat flow in the rocl clue to 
the instantaneous creation of the temperature 0O at x=0 at the 
instant t— o is given by

. g-CKOo I e _ ±  ±Aj£ , xa\ . (<>o)
■|r 1 i +  A<r2atXOB

where A is the coefficient in any wave train reflected from the
surface Xsa under the condition expressed by (54) . By taking as
incident and reflected trains respectively the forms 

_ ikt—A.(aa-ac}Veoc- f A0oe-

we find quite readily that A  is given by
a-— KC\ —  . (6i)

KcX-v O  —
.Tnen this value of A is inserted in the integral in (6o ) the 
result we then have is

rtj-—  2.C>k.0o f ©  ̂ K\coa(a<-x)A -t- ^
^  Joft K X  coo ctV

By using the contour of fig. 3 where the understanding is that
the semicircular indents are round the points given by the
positive roots of the equation

tew*/ a\  -Jfo - - - - <&$)

we find that the above result yields after reduction



1T=S 2ic0,^AmC X/OM^acX ... (Ml

wWe- A -  f K-‘X"+ ---------
* 0,||W+ (K-<1^1,} +  K O + c ^ )

and where the summation is with regard to all the positive roots 

of the equation (&3).
When the temperature is maintained at the end X = O 

from the instant -t=0 onwards the last result above is replaced

by

where we have again availed ourselves of the device of filling 
in the first term from the direct consideration of the steady-
state.

To estimate the practical importance of the result (fcS)* 
we must consider how many terms of the series need be retained 
having regard to the numerical values of the various constants 
involved. For the sake of definiteness we make a brief 
arithmetical examination, taking values suggested by the 
apparatus used by Gray in the original investigation. Thus e*g* 
for an iron rod- selecting a relatively poor conductor-



K=o*it>7 , O-zoi.fe , (V=rfc>*2$ . ra(̂ iug 0f rod 0*2 •

radius of copper ball '*»'']$ ; O OOOS . with these values
we find that the equation ( )  becomes

tow X =  —  O-00135% _ . . . /£,4>)
0 - 0 0 t % 4 5 —

The first relevant root of this equation is given by
O' . n_0*04534 ; and the succeding roots approximately by ** =  ^

n/si92>3;4e to a degree of accuracy that increases as tv increases.
Thus if it is the intention to observe the temperature at
ac= a, > i.e. the temperature of the ball, we see that for this
value of ac all the terms on the right of (*>5) after the second
are practically zero. In fact we may exhibit this result in
the form

or numerically
r — 0*00041451' 1

V^ss 0ojCMO4.q - Oiofcqe +•* V

It would seem quite a justifiable conclusion from the 
practical point of view to take as a working formula

Vo.=£>4id h u r - 6^ }  ' • ' < w
The comparison of this result with that obtained by assuming 

- as in ordinary laboratory practice - a uniform temperature 
gradient along the bar, is of considerable interest. If in 
( 5 q )  we nut 0o-*q, for— and integrate this equation we (jet



V K+M' I- ̂
\J ass—ilSs 1 I — e* ** ^<0* K + fUX/ I J

or numerically,with, the same data as before,
I ^  ^_______________o  o o o l+ is s t  X
\J<x=s 0o|O*lOM-q~O'»o^qe S.

The conclusion reached in (bi ) would seem to indicate
some such process as follows^for the determination of the
constants K and .

We notice that K0o|(K+tva/') , the steady temperature, can
be observed directly or inferred from a temperature-time 
curve. Let the value be 0o/-f • Then = K(:f--0/a/ 0 Next we 

have
r\ .

so that if we take the ratio 9i/f* the values of ~  at two 
instants we get

kX^=: » * v. tc^ ;1 -u-t, ^

and may be determined from the temperature-time curve,
and in this way calculated. Finally, X, is the smallest
root of the equation

feemaAss—  ~  -— ~
a. ^

in which all the quantities are now known. The root may be 
obtained graphically and, since we know , k  can now be cal­
culated. The value of h is obtained by putting the calculated



value of ic in the formula -|v =  K ( - f •
In view of possible applications of the theory given, 

it should be remembered that the conclusions reached apply 
only to apparatus of the particular design specified. For rods 
of different length and section and for a ball of greater or 
smaller surface area we would have to consider again the 
special form taken by the general result (fcjf). The assumption 
also that the entire ball at once takes the temperature of the 
end of the rod would require further examination. In that res­
pect the theory is still incomplete®



PROBLEMS INVOLVING CHANGE OP MEDIUM

The case contemplated is that in which we have a rod of 
length one section of which^from to x=-a is of one
material, the other section from to x=b "being of another
material of different conductivity. The first section is 
referred to as medium I and has conductivity and diffusivity 
Kt and Kt respectively. The second section is denoted by medium 
II and to this the corresponding constants tc* apply.

The problem ultimately to be solved is indicated by the 
following system.

b - o r ^  a 5 x ^ b .
The temperature condition applying at the exposed surfaces oc2=0 
andocsb may conveniently be specified later.

We begin by considering the effect of a periodic surface

Medium, 1» This effect, so far as the first medium is concerned 
has already been found. (See the result (4<?) above.)
For convenience the result is reproduced.

- • * (7c0

ihfcsource of strength^ per unit area at the surface at*within

l - A F e r w x ' * <70.
X, >X, 7 >x)h — Same e*.pre-55iorv> CuVercViai/v



In these expressions the various symbols and operators have
the meanings previously assigned to them.

So far as the second medium is concerned we have now to 
take into account' that each positively travelling train com­
prised in is on arrival at the boundary x^a, partially trans­
mitted to medium II. The transmitted train by repeated reflect­
ions at the boundaries x«b and ac*o» builds up the complete 
first-effect system in medium.;li.

Theorem. (I ). Any positively travelling train oto, ■ in 
medium I builds up by partial transmission at x«(i the effect 
in medium II given by

i — £  . 1.
Vi —  A  oc a ■ I-

A1 Iwhere A is the coefficient for transmission atx=a, B andC 
are the coefficients for reflection at the surfaces x=b and. x = Cb 
respectively within the second medium.

1= {a +yu,(b-a.)} i\ ; /^ = 41\

<+ *  e +  B '

S,- I - B c V ^ h - 2”̂  .

The theorem is readily established. The original transmitted
train is ^ .. ,

r\ At .
The first reflected train from ac=b is
The next train, that reflected, from «=<v is A1 BClo££"‘M'x- M 4l>+x-3a),A



- J

The corresponding expressions for th© further trains set up by
reflections at the boundaries are easily written down. If the 
positive and the negative trains he summed separately, the 
result as stated above is at once obtained.

Theorem, (l). Any negatively travelling train Be 
in medium II,when partially retransmitted across the surface 

gives an effect oJj in medium I'isrhere
,

C being the coefficient for retransmission, 

and <J> =  Fe~icĉ  + elxV

S , =  I - A F c ' 5 ^  .

The proof follows at once by writing down the transmitted
continuation of the train Be as s

Reverting now to the problem proper, we now observe that 
all the positively travelling elements in the effect /V0 

indicated in (7f ) above,may be regarded*as one comprehensive 
train

P e " ^  (4;= F<f CxA+

By the theorerap I,we see .that the partial transmission of this 
train across the surface gives the effect \r in medium It

9.1

where
%, =  A’p c i i i i



<krAgain all the negatively trvelling trains comprised in this 

sum comstitute the single train
Aper l 4>.

S,Sa

and by theorem II,the retransmission of this train across the 
surface x = a ,  gives the first secondary effect in medium I

where
- 2 lV  =  p A'BC e~2 4'^ .12. e * Cs,a Ss

Continuing the process and noticing that the positively travelling
-CacXelement in <j) is Fe ? we find that the next-order effect in 

medium II is
- 3 t

The process continues indefinitely. She following table 
shows the successive order effects in the two media.

E .? fec tr No. Mectiu,wij X  

4>, C —xl\ +  A e (* ^ X}

p A B C er2l4>,4>

M eet IVLWl AC .

A’pe lidL s,s»
S * S a

PA‘ * B C F c -  3 t & ±

PA3Blc T V e_ * L h  s,3s3
It is at once seen that the successive order effects in medium II 
are given by the terms of an infinite geometrical progression.
If the anomalous first effect in medium I be excluded a like 
remark applies to this medium also. This effect is earthy



reduced to conformity by rewriting it in the form.

p A * .  F c ~ ” l X . t .c 6xX + A F g ~ (!Za~ * U X

F  I _ A F c - 2 a i X

=  p A £  p A eiIkFS, F

Thus summing the series we have
iaz\

- p l i c t  +  p i i l ---------- —  . —  ,  ■ <72)
r " r F S.S* -A'6CFe-2t

ifr- A‘pe-*».N> -g<Sa _ ; 6 CFe^ r - • • • •  <73)
T

These results apply when the periodic source is located in
medium I. For general purposes it is equally important that
we obtain the corresponding results when the source is in
m e d i u m  II. It is unnecessary to reproduce the details of the
analysis for this case; we remark that the anticipated
reciprocity between the sets of results is fully borne out and

Hiese* resu-lhs n
is at once apparent in the final form frhwy take. 3»hus we have

^  =  c P'e-V,4>--;"_;,BCFe.a *  - - - <74),

=  _ P!jgL.eMb~X)l/X +  ------ — 1!------- _ _  - - - (7s)
B 5  S ,S a -A 'B C F e “ a t - W

V )
The results we have obtained are perfectly general. Particular 
problems are solved by giving to the reflection constants Fa«d B  
forms appropriate to the conditions prevailing at the boundaries 
^-° and xsb . The coefficientsaX c c # applicable at oc=cu



are independent of the end conditions and always have the same 
fofaa. Thus if we take forms for and indicated by 
, Source. f « i =  <f'"xX ■+ Ae~(2a~MtA
ivt MediiMM/X. /

1 V1=

Source i V%- e -*-Ce^
im ; tv\edUu*v» 3L. 7") ^ — jw(b—a/}cX — (cc-cc}lA( *Uj —5 V»Ci
We have to choose the various constants so that at oc^ctwe may 
have

K , P =  K*|^* dx ** 3x
In this way we find

/\ ' ' *“ M* —. CT  1 « Q ^j£J-2jl£Lmm —« X
f C , + < r +1 K,+-KaM> (T-+I i/

< r = T < i :  ^  • <7t.)
a’= _ ^ _ = - ^ l  ) c ' = - a = - ^ = 4 -  ^K,+ Ka./̂  (T+1 I

with, clearly, such simple relationships as AC1—CA* = — I.
Next let us consider the case

Both ends of the rod kept at zero temperature.

In this case we readily find that the coefficients F and B 
are given by F =  B  -=r — I,

also a|/ *  2did-Udyu(b~x)X
4> =5 2d zÔidi/

with corresponding forms for a»*<A 4>,.



Similarly g, rr I -h/k<f2a*X S%sz I+c'e

Vi/hen these simplified forms are inserted in (72.), (7 3), (74 (̂75) we 
find,after considerable reduction that these results may be 

shown as

Source ih 

Medium X.

XT =x fyz. o • ̂ t‘n . y  ̂  Surv^az-x^Xcoa/uCb-Q^A -htcck) (a.-x)A /0̂ idyu(b~A/)X j
‘ 2 K,a ‘

 (77)

?r —  jg'^^ or. Ai^xA #ut//̂ (b-x)A . . , . (7g)
* 2K,a

where * &wvoJkco*f*'Qo-d)\ -f-<rcod aAo^ywdb-o^A. * - (80

a l s o :  f u ^  -a/ ^ u .rh -^ .n  xA y . . . .  (74)
Source ii/v j 2»K2|A/CA ‘fiCX)

Medium H J  n —  _<l * o ■' amaam̂ iy> St*vaAco^x-gJA-<-<rcoo aA dW^x>a)A
1 ZK2̂ c\ f,(\)

--.(So)

Likewise when we proceed to solutions representing 
instantaneous initial sources, obtained by taking the real 
part of the solution of the typeJiOOv,dKo
we obtain from the first of the above setJ Xij. isCw(a-xUco3yu(b-a/)A -i

e &iAcVi/XA------- 4r ouiyu( b-a^X.t^.

OB *<«
where the path of integration is the line <>6> of fig. I .
To evaluate the integral we take as a closed contour that of 
fig* 3 , on the understanding that the indents are round the



points given by the roots of the equation
-ftXJs v̂wa\cô ft(b-a)\4-v'C<»aA >0i4Vyu<b-c0Xs=:O - . - ($3)

It is found that the real part of the required integral is that 
which arises from the sum of the integrals round the semi­

circular indents.
At a root of (S3) we find that the expression 

Siw(a-x)\coo yu.(b-a) A -Hrcoo(a-x)\ a C**>/U'(b-a)\ 
becomes . ,, ,ASu*Ailb-a)i ^  ̂  f 

yd AAArO/S
v/hile the corresponding expression in (So) becomes

. . • Aon./u.(b-*AydUV/u(b~0<)X
Thus the complete set of results required is

XmsH f yy-    ^   ̂ X( A ,<3*4'l-acA A K M S j i lC b—
Source \ K af *  , A A * i s a \

iu
M e d iu w l] ^  ^  £q.K, y  £ K',^ k a W o /^ ( b - K > \

l * k5Av 4- f/ai

lash
Souvce

iw
Medium X.

(S4).

(S5>

n  2q*K>, V  3'Ur/jU'(b-xt)A /#iy%

y,r  V  v̂u/>û (b—x,)A<dAWyUy(b-x)\ ̂ aa/voA /Cr7.>
1— ------------

where the summations are with regard , to all the positive roots 
of the equation (S3).

These results are of very general character in the sense 
that we can obtain at once from them the solutions correspond-



ing to any initial distribution prescribed throughout the whole 
rod. If e.g. the initial state is that given by 

t-O, o = at - A>—

we replace q. in (Sif) and ( by il* 4>(C«,)dx( and integrate withICf
regard to x, from o to o> ; replace Q in ( )  and (27 ) byI ¥

and integrate with regard to x, from a> tola . The total effect 
in the first medium is then obtained by adding the first and 
third of these results, that in the second medium by adding the 
second and fourth.

We show the form the results take for two selected cases©

(O  . Coi/csb S? Vo Say.

It is found that at a root of (&3)
a)A -f- ̂(Jd— a-A ^

* Sma/OA Aw v yiA/ (b~-cxi)\
and finally the total effect in the first medium due to the 
initial temperature 1T0 throughout the whole rod is given by

=  Z v S  Z K<Xafc- ?“V(b-a)A   i •*&«).
i CTa x>U'iya(b-a)A+/̂ (b--a)4''t»a\ At

and the total effect in the second medium is given by

Ut=gtfJr«r,c'X>fc ^ b - i d ) i  _ ... cg<t).CO
—  —  « - i a  iC'

era d*W^c(b-a)A -+■ aA A L
<*).

I ̂  K2X _|
K((b-o/)+ Kaa  j  

<}>>) =  0-5 K ,(b -x ) 7
‘ K,(b-a.)+K»a- J



When the integration process is worked out for this case we 
find that the required results are

^r-- o0 T  <rcooeeV\ .. . (q0)
i ce4yu/(b-o)\+ <rcofaA) ^

yj — — y  fc crcooccaAigoaecM'tb-aDA ,a*vu/u^b—x)A
** 0 i A

If now we take the solution given by
v, -

we find thatV,,Va satisfy the conditions 
V ss 6L . X  — O ,

•. W O

V,= o , t= o
V2 SS O, -tsO

v; =  v*, *=a,
V2=: O, X =  fr

Thus V,,V2 are the solutions for the case where the end x=o is
kept at the constant temperature 90 throughout, the whole rod
being originally at the temperature zero, fhe result, in the
form shown, is in entire agreement with that obtained directly

%for this problem in the author’s Phil. Mag. paper.
In the above Illustrations it is assumed that both ends 

of the rod are kept at zero temperature. We now indicate 
briefly the corresponding results for the case

Both ends radiating to a medium at zero temperature.
We readily find p = vVrtfy — — ei\+ H |

a a . .tAr ifc e~2t̂ a
D h* ~

% K.X. ^ 5 4 .



where toM/0,=sA. , ; H,=r > Ha«

&,( and%*% being the emissivities at the ends Xtro and x  = b
respectively. The subsidiary angles 0t?0zare introduced merely
to simplify the remaining parts of the analysis.

Thus after ©eduction we find 
S,S4~A'BCr<rat —  (c = b-a)
(r-A) Hi | sci^fa+afyceofa+juck) 4-crc^o^e(+ a A V ^ ( % t ^ M ^

Also S24> becomes
(0,+xA)j(| -A}c<r3(0a+/u*A) +{, (i -+-A} At^(02+uc\)|

whence we have
Sqj>  _  SC»v(8( ctK> (9i+jivcX) 4- urAvns ( 0a4-/u^X)}_______

5|Sj—A* BC F scm,(0 l+aA')coo(02+/*ĉ *4'<rca3(0,+aÂ
Thus ultimately the result (72.), giving the effect in the first

medium may be shown as
1T sr P 2u AiWe + x »  St̂ ^Q~x^  CO*(Og-bucX) - p < r c o o ( q - x ) A (<t£i
‘ F,(A)

where F,(A) ~ 5iî (0(+aX)coo(0a+yueX)+(Tcoof0J+aÂ /a*4v(014-/ûX). (q3)
Similarly the result (73), giving the effect in the second 

medium due to the periodic source in the first, becomes 
ty* <Ff21xuVv(0(4-X,\) ^ F|

In the same,way, when the periodic source is in the second 
medium we find from . (.74.) and (is) that the effects are given

hj /  ' ,



^ Suv{fla . . («,s)
' F,(»

v _  pVi/j-uU8X+/Û fa-I1)x] je.-haX} c<n^(.x-a)\+<rcn{6,4.a\} Sc~t*Xx-a1\ ^

Finally the solutions for the corresponding instantaneous sources 

are given by

Ivtsb * y  aiiviQt+x+K)6i*v(fy+xS)
Source ' I ^MA.fR+aAlR‘(M

•rw«w x  q̂ ic, V  x)u^ffl-b^A)^xW^x+yu^b-x)X} . (qg)
L *“ ff'M

Insb f „r  a.fyi&i V ,7***̂  4A*is(6t+ocXl
^ er'/A\Source.
IUL
Mcxlituttlt ir=  _£±!h C SiW {Q̂ .-t-Â b-x̂ x}X5tu/{8x+yu<b-3c)>i}̂  -+aX)

4 » Siw, ^7(X)

where the summations are with regard to all the positive roots 
of the equation Ft(V}=:o
I.e. tt\c e<^<»Hon X 4* Hi tcu/uxA | ^  Hi — A tout/oX _X  +  H a  bcw/t^uxX H®.—  A  f e n w ^ ^

From the solutions indicated above we could obtein as 
previously those correspomding to any arbitrary initial heat 
distribution. The details for the working out in any particular 
case become very laborious. The principal interest, clearly, 
is the striking form analogy between the set^ of results (97)-(ioo) 

and the set . Clearly the latter could be deduced
from the former by writing 02=rO. throughout.



This section of the chapter is concluded with some 
observations on the types of problems whose complete solutions 
can conveniently, be obtained from the various sets of results 

arrived at above.
The result (S7 ) e.g., giving the effect in medium II of 

a given initial heat distribution in that medium could be used 
to calculate the insulation afforded by placing the end of that 
medium in contact with a layer of low conducting lagging.
The lagging corresponds to medium I in the analysis given 
above. The temperature gradient at x - a  within medium II at 
any instant can be calculated and its value in the circumstances 
compared with what it would be if the end were kept at zero 
temperature, or radiated according to any other law. The 
calculation of the protection afforded for various thicknesses 
of the lagging and various values of the relative conduct­
ivities would give results of practical value.

Similarly the result (87) could be used to estimate the 
inefficiency of a heater over the end of which has formed a 
layer of low conducting scale. The temperature gradient at 
x=Or - a measure of the heat passing to the heater proper - 
could be calculated and this result compared with the direct 
heat current at aĉ o, if there were no low conducting layer.

Again the result (<H>) could be used to calculate the



epoch or distance of any initial temperature "disturbance” at
a remote point in medium II say. If e.g. a layer at distance 
x, in medium II was brought suddenly at some past instant to a 
given high temperature &0 say, all the other parts of the two 
media being at zero temperature, it is clear that observations 
of the gradient at x=o in medium I now would enable us to infer 
the epoch of the original disturbance. The relation of this 
problem to the classical "Age of the Earth” problem invest­
igated by Kelvin is at once apparent. In the original calcul­
ations a uniform conductivity throughout the Earth was assumed. 
Later calculations by Perry and Heaviside were based on the 
assumption of an inner nucleus of one material surrounded by 
a concentric lorjev of different conductivity. The plane flow 
results of the present chapter are not, however, at once 
applicable to the classical problem; the necessary spherical 
analysis is given in a later chapter.

The present chapter is concluded by an examination of the 
case where medium II in the general problem discussed above 
extends to infinity.



The second meditti#'' extending to infinity.

It is possible to deduce the results for this case from 
those already obtained by simply making b infinitely great but 
it is more instructive to investigate the problem from first 
principles. The case is simpler in the respect that wave trains 
on transmission from medium I to medium II across the surface 
of separation at x=o proceed without Interruption to infinity. 
There is thus no complication corresponding to retransmission 
effects from medium II to medium I.

If, therefore we have a periodic source at x-=x, within 
medium I Tthe total effect In this medium Is given by what was 
called the first-effect in the previous investigation.

When the periodic source is located in medium II we have 
the corresponding results

Thus;- X < X " tr =  plZ£ :

=  pfC*,*.)
*>K„

• • • (10O
I - A F c ' 2aiX

. - - (102.)
Clearly also we have

(x,—Ô JLXl\ -cxvX

I - A F a T aw,x



(x,+X-2a.)/uP\

3a*we expression r, r, Cvtterchemqeci.

'.Che first term in is recognised as the original negative 
train emanating from the source, the second as the positive 
train set up by the partial reflection of the first at the 
surface > the third as the positive train set up by the
partial retransmission from medium I of the trains reflected 
at the surface x-o on incidence of the transmitted part of the 
original negative train.

If we confine our attention to the case where the end 
of the rod is kept at zero temperature we have F= — \p while 
the various other reflection and transmission coefficients 

have the forms already found, in these circumstances the above 
results become after some reduction

Source

i in q>g»u Zi Awi'xX (T coo (a -x Q X  -f- i - Go6)
2.K, £X creoo ctX 4 - C -dhvouX

MecUtuttX
— Sawe expressiow f rfXt interchatnqeol.



Source
\v\

Mcdiuml

S ource

in

a M  n * -atii-MJsK-*)1*
*r _  /. . a \  n>e 2x>34*fcxA e
1 " ( ,+ A )  2 M X  --------------- 1 -4- A e ~ *

_  <rg.e  iej______    , . . t,07)
*2. Kj C X arcoou-X-VC'S'iWcaA

ifel' -  a X  A - ^ o c j - a ^ t A
f  =■ (1 —A) —  2-Com^x A ^ ^1 2KayulX | 4

2lK2/c 6 X  c rc o o a A  4- C o f w a A

\r =  -3̂ — —  1 -̂(x,-x)yulX̂  ̂ -(Pc.+x-Sa^A 
*t 2K2/uXX J

Cl OS)

Medictvw 1E| A C c
-  Q.<xC\ _  ( x ,  +x.~'ZcC)/ulx,\

I -4- A e-IcU-X }
— Sit^aAcooyu^Gc—a)X 4-crg<yaci^>ol^wAc(x-a,)X

2Kâ u\ (TCad aA +  c Am-aA
. - - ( l o q )

y  —  S a tn e  e x p r e s s io n  r ,  r , iiAl-ercl/tcwqedl.*o
Proceeding next to the solutions representing the corresponding 
instantaneous initial sources, that arising from the first of 
of the above set isi— ic\afce  SLCot^xX crcc* >(a-acdX 4 -1, Wv(<x~x«)A ^

<rco^aA+L4A«/aAOB

with three others arising respectively from G°*7>-(ioq).
The contour of integration is again the line 0=-J in the X 
plane

To evaluate the integrals we must investigate the roots of



i-<r

the equation
X T c,oa ■4* o  A aaa> o Jk  a t O .

This equation may he rewritten
a.Ca.X+'KflO*' , a- 

<L — ■ ~ .l+r
iOUcwee cv\~ — 'H/lf— ~ ̂ "̂n-CT

If <r<l the logarithm is a real negative number;
if <r>l the logarithm is that of —  —  and the real part of
this log* is again negative* Thus in either case, all the roots 
of the equation (ill) lie in the upper half of the A plane*

If we assume that the integral along the arc of infinite radius 
is zero, the integral along the line o& may be replaced by 
that along the real axis. Hence we have

+  A,f inz)
1 1TK, T ,c o o a ^  +  C 4 < W o 4

When we take the real part of this result which is the part
required to represent the instantaneous initial source wehhave

,0O-»ct£a

‘ ~  ttKT 0*aCOÔ CL% 4-

Similarly

C /Oâ vX,̂  ^ ^  4- 0/4 /ûCac —a-) 4
c <r*-c<*3*a/4 4* xuV*0/4

(II4)
These results apply when the source is in the first medium* 
In the same way we obtain, when the source is in the second



medium
<rcodft/£ , - a ) g a 3/u>(x,-fl>)i

<raco<jaa/̂  ,
aq,*i

[crcooâ  /UÂ jû xt~o)% con jx{pc.i~ô % } *

(T̂ cô cv̂  4- /d-ŵ ct̂  - <H6).

An immediate verification of these results is obtained if we 
take the special case KpK^ic^ic*. It will be found that all 
four results reduce to

which is the correct form of solution for the instantaneous 
source in the semi- infinite mediumfwhen the face at a finite 
distance is kept at zero temperature.

The full investigation of the solutions 0‘3> —Cut) which 
we leave as definite integrals is not in the meantime attempted. 
Evaluations by successive approximation based on such assump­
tions as (i ),<r=si4-€ where a- is small, (2.)̂  cr very small9 
(3 ) , cT very large7could be obtained without a great deal of 
difficulty.

Aka* x !



CHAPTER III.

PROBLEMS INVOLVING SPHERICAL FLOW.

When there is complete symmetry about a point,as for 
example when we have a point source in an infinite medium,or 
at the centre of a finite sphere whose surface is kept at zero 
temperature the fundamental equation of heat conduction takes 
the form

The wave train solutions of this latter equation have been 
fully investigated in the previous chapters. If u, is any such 
solution then ~ represents the corresponding spherical wave 
train solution. Thus the solutions of (n8 ) required are

(H«)
By writing this equation becomes

3u. __ v 3au/
3fc dr2-

r

(»|<D



m

The real and imaginary parts of it, represent temperature trains 
travelling outwards from the centre of the sphere, the real 
and imaginary parts of ^  trains converging inwards on the 
centre* If e*g* the flow is due to a periodic point source 
of strength <£0e at the centre of the sphere we require

Thus we find
A —

Hence,since only the diverging train is required,the solution '
is

^ (120)
4ir Kr

If,on the other hand,the flow is due to a uniform distrib­
ution of periodic point sources over the spherical surface r=tj

Ctefc /the rate of emission being <\o* perfunit area, both the 
converging and the diverging trains are required. Thus we 
might exhibit the solution as

r<rt ,
A Lbl-Qr-'r̂ TZ

x >r; , X* =• £ie»o f

<i*0

These forms clearly satisfy the condition'UJ.-tt, . There is 
however, the further condition

z 3ir0 aih \ _ LhJ;
~ K ( ar ~  # 1  =  ^Tsslf

From this we readily find a   ^r»



It is clear however that the solution where 

*<r,, «
iKr#

is an incomplete representation. The expression becomes infinite 
like -j: at the origin and would accordingly indicate the presence
of a source there, contrary to hypothesis. Wp must therefore  ̂
suppose that the converging train is reflected at r= o,or, 
what is the same thing - passes through the origin, emanating 
as the corresponding diverging train it. , where

r  _  A^, ^-(r,+rlM

the constant A being chosen so that the r— o condition is 
satisfied. This condition may be stated

I r"f-r K +uO = ° -r->o
whence we readily find A=c — \.
Accordingly we have

r<v|7 xr̂ss. -> ?—-.e
ZKrC\ ZKrl\

2,KrC\

It will be seen however that the addition of the term Vi to<* v
as given in (t̂ 3) violates the conditionsat the source surface tsr;, 
These however,are at once restored if we add nh. likewise to V- i7 “T. *ov

thus we obtain
T* ^  nn -hy.  ̂ 4 ̂  ^



2 K rt \

^  M-Cr+rt)& 
2.K rC X  C

5=. ^  et'tet"ri:̂
2.Kr6\

(|2.3/)

It will be noticed that as given by this equation reduces to 
the correct form for the central point source when t;-̂ o . If 
we suppose that this limit is reached in such a way that^-Trr^-*^© 
the result becomes

a CHb~ri\ lh=. V -  e 4rr Kr
in agreement with (**o) above.

The result (123) applicable to the case of the spherical
surface source can be obtained by integrating the solution (•«<>)
for the point source,over the surface of the sphere of radius 17

P

It is clear that the effect at P due to a surface distribution 
Mof density is given by

r, - p
p

ZKrCX
i-kt

ZK rC\
0-5 vequ-i red.



When the point at which the effect is required is inside the 
sphere Trr, the only difference is that the limits in the last 
written integral are i\-v and tj+f \ this has the effect of inter­
changing r  and r, in the evaluated result.

Instantaneous point and spherical surface sources.

Consider the solution of (»*) given by
v r = - 4  f V ^ d f c  ------- « 44)

Jo
The integral appearing here is evaluated by integrating the

function -tctf-b-ra4YM =  Jf eJ 4lTaKY
round the contour of fig,1 .
The integral in (W) is equivalent to

f crK'ft'rCX xax
Jfl'OB

It can be shown that the Integral along the circular arc BA—>o 
asft-+o , Thus, since the integrand has no singularity within 
the contour we have

- ^ gct4 (ns

When we take the real part of this result we have

V _  4|K> e £<i£ = .
Jo SiU

0^)
Jo

This is at once recognised as the solution for the case of 
the instantaneous point source in the infinite medium.



In the same way if we take the solution

fr- f q,M  r,LX Ab Ozf)
XtrKr J0 «*

and evaluate the integral by the method just indicated we 

obtain _ &
f q  ̂ r Stf-o-ivi-rA as f  Qj  ̂ ' O2̂

irKr J a irKr J
JOB O

and on taking the real part of this result{,00 i (**» •*“**) 1
e K jco3(T,-v)4-ccrt(r,+r)g|a.? — . ^  /'T —| e  4lci' _  e 4 i  4Ml 
„ I J ZKrjrt I J

This is the well known solution for the case of the instant­
aneous surface source within the infinite medium.

It is again possible to deduce this last result by 
integrating the instantaneous point source solution over the 
surface of the Sphere of radius % •
Prom a figure It is at once apparent that the result required 
is ^  px

v =  ' e  " 4,ct ^ S c W .

r+r,<WV» f ■
I »

Jr-r,2. K r  *jn b Jr-r, 2tct

loUerc pa—  r%-r,a'— artjcod©.
Prom these observations we at once obtain the result in the form 
given in (laq ).

The deduction of the solutions for spherical surface 
sources from those for point sources of either the periodic



or instantaneous type suggests that likewise from the point 
source solution we might deduce that for the infinite plane 

source of given surface density*
It is readily seen from a figure that the required result is

Ckt- taking the periodic source of strength cyt per unit area-

In the same way from (i*4>) we could deduce the result 
for the instantaneous plane surface source*

With the various spherical results so far obtained (120),(ias), 

y we have all the material for the building up of solutions 
of problems in which the isothermals are concentric spherical 
surfaces. It will be found that when the boundary conditions 
do not involve the temperature gradient,the analysis in any 
particular problem is practically the same as that for the 
corresponding plane flow case. Thus e.g. the case of a finite 
sphere cooling from a given,symmetrical temperature state 
owing to its surface being kept at zero temperature corresponds 

S-H respects to that of a finite rod both ends of which are

% 2-frr Ay 
4irKp

f00

as recju/i red.



~ w

kept at zero temperature. Fundamentally this is due to two 
considerations already commented on ; (i).the fact that the
simple factor 1 converts a plane wave train into a spherical 
train and (Z). the fact that when a train is reflected at the 
centre of a sphere the reflection takes place under the con­
dition which when analytically expressed is the same as the
expression for the zero temperature condition when wfeftas the

4-
trains in question are plane*

Consider e.g. the case of the periodic source of strength
ufe-lr per unit area at the surface r̂ r, within a sphere of 

radius cu . If we start with the fundamental converging and 
diverging trains as given by(1*2.33 4 (rz.3') 9 emanating from this 
source, and follow out a course like that adopted in the 
compilation of the table on p.3>& , we find that the effect at
any point, the resultant of the original trains and all their
continuations by reflection at thesurface and at the centre
is given by '

n ikb -«At; -(2a-r()tA
y<Y. ---- Q.LaamlXy * 4~Ae________ _

ZK  ri\ i f A e ’ ^  (,3o)

V>T 1̂ —  ̂Sawe expression, r,r, infercUcmcjedl.l
‘ ZKriA I J ;

where A  is the reflection constant for the surface V-d, .
If we take as a typical incident-reflected pair

3fr St*- £ 61.
-t ^ 64-
§ cf Hie ewtrcspovicAing plane fCoio vcsu4Vs, -̂ 34.



*J0

Z K r t X  < J

we find (i) for the surface v-a> at zero temperature.
A =  -i.

(&) for the case of radiation at the surface r- ou to 
a medium at zero temperature.

- K f J . U ;  A -  i n f i l l

As previously, the solution given by R,JL|ihlk is that for theJo
instantaneous (ts=0 ) surface source of strength per unit area 
at fsf, . The result for the zero temperature surface condition 
need not detain us. Clearly it is obtained at once from (53)
by multiolying that result by _i .

y

With the second form of A shown above the required form
is

qliCr  f i \ coo(a-n3X—  l - j r - fcVw,(a-r,)Xtrf» R-J!-.!L e Zt^Xr --- ------ }* K' ■ dk., (131)ir K,r J X coi. «A <WaA

the path of integration again being the line 08 of fig* 3 . 
The evaluation is effected by contour integration taking the 
closed path/of fig*3^and regarding the indents as being round 
the points given by the roots of the equation

X cck>aA —  (cf ”■ ro. Cf3i-3



The real part of the result Is that which arises from the 
Integral round the indents and is exhibited Ivjthe final foyrn

ẑytcr, y /c^\xtA^\x — -~-r~--r <,33>
Kraa i

where the suimnatmon is with regard to all the positive roots 

of the equation (»3a.) •
Prom this result that corresponding to any arbitrary 

initial heat distribution prescribed throughout the sphere 
can be built up. If e.g. we havet=o, all we require
to do is to replace <jin (133) byKftr.^and integrate with regard 
to r( from o to <x> •

The sphere of one material surrounded by a concentric sheath 
of different conductivity.

This problem has been fully solved by Green fb-rrthe case where 
the outer sheath is of finite extent. The treatment need not 
be reproduced here. It is sufficient to remark that the 
procedure to be adopted resembles very closely that given in 
Chapter II where we have dealt with the corresponding plane- 
flow problem. There|is no fundamental difference between the two 
cases. The conditions at the surface of separation in the

Gr jJL |t/ 2 4$ c \ .  S e < l

IWQs Soluhovi Hiis form. t& gwcw by (cwsIrwo. ibid. j? (3c|.



spherical case , involving as they do the temperature gradient, 
are rather more complicated ( see-p. 73 ) but the correspondence 
between the results obtained irythe two cases at every stage is 
unmistakable. We therefore confine our attention to the special 
case where the outer medium is of infinite extent.

The problem is fully represented by the system 
0 <V<O/, ~  = jc,V2u, 9 ' O&tidt 3fc

r=a, 0;= v ami K, =■ ' - • 0351
f 1 a * dr *dr

We begin by writing down the results for the case of the peri-
iktodic source of strength cje, per unit area at the surface r— tj.

It will be realised from what has already been said that these 
results can be inferred at once from the corresponding set 
relating to the plane analogue of the present problem, (see p.52« 

Thus we have

» ,4.
Source*

r<r, » <£ =  dlLS — ---±*£----!--- (i3«’*■ 2.K,r iA I +

1 lv • j  t<T| j  | c corpression ; T'V CwfercViam)ed|
IVWV

. A'a - aiA- (r~a)/ui A

. 9 I —I— AI + A c
wl'icre liie various coyvsfrcml's and operators Kave the. (vicaniAgs 

previously Utewu,

(13?)



Source
it*

Medium Jt

^  _ C<tr, 0cfct-(r,-^l-^X UMAfl
'  2 H , r C X  

ikt

I +  A craaA
(I3«

«, < t< r,, *  «  - V * — {e‘ (T;- r W 4- ' 1 iK^rCXl

I -+• A e T ^ } 03̂ )

Tyr it — c ̂  (5g ivte compression/, t,tj uil-ercfocii/v̂ccil
4 2K,/*.ra ‘ J

We have now to investigate the forms of the reflection 
and transmission coeff icients A(A', C,C • Taking as typical 
incident-reflected pair and transmitted continuation Vj and 
respectively where

' 2K,r0X OK.wA

«i=

2.K,rCX

i  k t -  (<X-17)CX >A

2K2/H-h\

the source being inthe inner medium, we find that the conditions 
('35) yield

A  —  K'~K̂ + sk~(K|~Kl) •, A =  2K,^ 
cC «*

(14 o)

A *  K(+K*r - J zr(Kr KI).
Likewise when the source Is in the outer medium the 

typical solutions taken are
<*«■**{ * cv « +^ l

2Kĵ uriA 1 J
far iW»(rr  aWCi- (a-VJiA

1 2K,rCX
and the conditions (t35) yield



d

From the results O ^ - O W  > representing the effects 
in the two media due to the postulated periodic sources we 
obtain at once a further set to represent the corresponding 
instantaneous sources by taking solutions of the type

\ r =  RdrJ \rtdk - R ^ L f  irX dX  

. °  oe»
Thus from (*34>) ŵ p.ave

-CAti -(2a-r?)uA
\\ —  ^r|J0< c e H-Ae______ .»

^KrJo8 l+A « r ^

and this result becomes when the above form of A  is inserted7
— Zr,iCi

'ttKj t*
% K,<^(a-t;)A-(K,-K^^^l£}A+CKayvu>4vVv(a-t;)A „e 2»t^^Xr ---------------------- l-------i-dX

o& ^  * («4i)

u?(\crc> d  ~  Kj cos cvA — (K,—  -cMteckX ^
aX - - • (143)

The evaluation of the integral appearing here, and the three 
others like it arising from 0'S~0 —(t2.q) demands an investigation 
of the roots of the equation d ’ss. O . If we rewrite the equation 

ifr'the form
c o t  a A  =5c. ^y~~ ^  J— —  i  K?m, ( iK, O'X K|

and put aX = Xr+^ where oc and >y are real we find, on equating 
real and imaginary parts

-3fa _
■rt’ie fjcil-b of MegraHon/ boincj as usual f̂ e infinite/ radius 0=-^- 
in H\o X Jjlon©.



Sin Z'Xf 
cosk 2y —coj> 2ac/

Co<jk 2y— Cck> 2.x-

—  k j —K z je>
K, Xa+ ̂

Ki — Kz ^ i Kr/u/ 
K, K,

and by combining these
j$A*AH %x — X/frukk/gjj _ KẑUz
CcxĴv 2vj — Co<j2/X K, p

Corresponding to each solution of the first two of these
equations regarded as a simultaneous set we obtain the complex 
solution a\=ac+Ly of the equation (lip*). The original form of 
d! makes it plain that x = tj= 0  is inadmissible. Also the 
second equation shows that cj=o is inadmissible and thereby 
dismisses the possibility of (m-3) having real roots. On the 
other hand the first equation is satisfied by oc=o and consequent­
ly suggests the possibility of pure imaginary roots. Such a 
root of would be of the form where vj satisfies

cortvy =  J < ^ ^ +  ̂  

the roots of this equation depend on the magnitude of the 
constants involved and presumably could be found by a graphical 
method. We are only concerned however with such roots of (m3) 

as may lie within the closed contour formed by the real axis, 
the infinite radius 83= and the arc of infinite radius, i.e. 
the contour of fig. I . The real part x  of any such root is 
positive. It is apparent therefore from the third of the 
equations (11+4-), since



cosfo/ fc tj-e o o fc a c  2  O (o r  a l l  values o f x andy ?

the expression
?*mi / —  4î  ji\ is negative,3 v 2* 2tj '

Thus since oc is positive5the factors
U dlAxt / ^
3  ̂ 2.0C ~  2<J '

are of opposite sign. It is clear that th® bracketed tern is 
negative for all values of x  and ij and consequently^ must he 
positive. In this way we have shown that all the roots of the 
equation (IM̂ ) lie in the upper half of the \ plane#

The integral in (Ufi) taken along the line OB , if we 
assume convergence along the arc of infinite radius , may b© 
replaced by the integral along the real axis. Thus (14*1) 
yields

dtcr f-*S* . ■ i  K .c o o  (a -  OS -  ( K - K * ) +  6 <Im v(a-rtf.
 T ~ ------- M- (HD

Taking only the real part of this result as required to represent
the instantaneous source at the surface Tsr, , we obtain

^r _  2q,r,JC| k2/u> f  ^  ^

w  jc (k,^CV§ - (Kr Ka) > ^ 4 y-4.

In the same way from the results 0^-(i3q) we obtain^by repeating 
the argument used above, and after necessary reduction in each 
case



ifc.saas

j K, cos a4— (K— K2) £
,w ^

 >________ i:j ^ ± ± .g*f°^^^.L.<ig. 047)
W  |^K,coo^-(Kr  K?pA"&£

_ 2 îc,r, T e~K̂  r>£ {̂ >(f;--a)i 4({)}̂ ^ (147b
irr I RJo

Utero Rcoo<J>a5 K,co4flû -(Kl-'Ka)-^^i.  ̂ R W  <{> as K^^w.a/|;.

The pair of results (itf-(o) and (ftl-T) apply when the source is in 
the inner medium. In the same way we obtain, when the source 
is in the outer medium - adopting the notation just introduced

l^n-q^-np . * M„ g)

* * 1  K

G. 1 a)ytA/|4- - f - 4 ^ ^  044)

The full investigation of the integrals appearing in (i46)-
04*0 is not in the meantime attempted. Some useful idea of

15 obtained
the kind of results to be expected, however, if we consider 
their approximate evaluation. Of various possible approaches 
we take that suggested by the special case K(=.K2. yu^ I . it 
is readily verified that in this case all four results reduce 
to the form

if= f e  ̂A w r , % A (f5o>.

which is the correct form of solution for the case of the source



at the surface In the Infinite medium.
If e.g. there is an initial heat distribution between the

surfaces r^cuand T,ssb given by ^=5 -̂ - , the temperature at
any subsequent time is given by

fb . . .  I
ir— *2-*'x__\ dir. I - ♦ - 05*)

lT K ,r  1 )Jcv Jo

Following from the special case represented by the result 
(<50) , it seems natural to take next that in which there is a 
small difference between the conductivities of the two media. 

If, accordingly, we write

(r =  -n_ ; <r'= K‘~ Ka- i <r=i-t-*>K K'tjU'

where <r'/<r and fe are small quantities, we find e.g. that the
result (»4t>) becomes

vr ss f £, *** xvîvAr, /<HvvXr1 irK,r 1

X { I — fe c o a ^ a .A  +  t r 1^ ; ^ —  j d A . ,  . . <1623

to the first order of small quantities. To Interpret the 
various parts of this result we rewrite the second term as

e<\>
.eO

lc,’r' 1 ^ K’ «v<w\r ̂ ̂ vW(2a+r;)X— î«-C2.<v-r,)\l(i\ 
K,r ) ‘JotrK '©

and the third term as 
,«o

cr'fric.r, f  b A/^ /dir, (  c © o C 2 .a - i-r .n \
/rrK,r J. 1 aA J



This terra can again be rewritten 
.to *4a+n

jr 
itK

!oo 4 p-— T
e. ** AwvXr I d>$-dX.

o t a - r ,

. r*°+ri f» xat
-  di e' Au*.\lwKrdLk1ttCrcv I |

' J la - r , o

Thus, to the order of small quantities adopted, the effect 
at any point in the-inner medium, on the understanding that there 
is now no discontinuity of medium at fscu * is the same as that 
due to the following system of spherical sources in infinite 
continuous media.

(»)• She original surface source of strength in the in­
finite medium of conductivity K, ;

(it), a surface sink of strength JL^vvjQi<K-̂ r%') at the surface 
r^=2a,4-*j > together with a surface source of strength
-kecl'r»/(2a"“,7) at the surface r=  (2a-r0 , both in the
infinite medium of conductivity K, ;

(in) . a continuous distribution of surface sources between 
the surfaces and frsOcv+r, of strength varying
inversely as the distance from the centre.

In the same way we could treat the results 0413,04*̂  04*0, 
with a view to finding the various solutions in terms of ele­
mentary sources. As we are only concerned with the general 
character of the solutions at present, the details for the



other cases need not be reproduced.
With a view to obtaining partial verification of the 

general results 03^-03*0 or , obtained as the
solution of our problem, the forms taken by these results for 
such cases as (<w) Ki» 0  , rt<a' , (k) K,=sO f rx > «, 9 should be 

considered , and the results compared with those obtained by 
the direct application of first principles. It will be found 
that the results deduced from the general ones here obtained 
reduce to the required form in every case.

The same problem treated in terms of Bessel Functions.

Reverting again to the results OW'04^) , and having
regard to certain analogies existing between the solutions of
spherical problems and the corresponding cylindrical ones,

-jfe"pointed out by G-reen in his fourth paper , it might be useful 
to show that the results 7/e have obtained here are confirmed 
when we adopt the special method and notation of that paper. 
The notation referred to is that of Bessel’s Functions of 
half-odd-integral order. It is found that when the fundamen­
tal spherical wave trains are expressed in terms of these func­
tions the summation processes required when we use circular 
functions are no longer necessary.

*  <3-12 1



When there is symmetry about a point, the only functions 
required are those of the K1 and I i  type and their derivatives# 
Thus

With this notation we find that the two fundamental wave trains 
emanating from the periodic source at the surface in the
inner medium are given by

Taking the first of these as p-r , the meaning of
p being apparent, and representing the continuations by reflec­
tion and transmission respectively by

we remark that the first of these, travelling towards the centre
of the sphere, is reflected there, setting up the corresponding
reflected train of the type. As has already been pointed

t ^out, however, the converging train of the JLi type includes as 
part of itself a train of Kl type of just the amount required
to satisfy the condition at r— O • We can, therefore,
represent the temperature in the inner medium completely by

♦ (150)

iApr



r  > r, ? =  p r~ 2’ K ^ ( iA r ) -v -A p r  x Ij_ (C \r )

and that in the outer medium by

Af

We have now to find A and A* by taking into account 
conditions at the surface V= a» , stated in (135) above 
Noting that

jMr~*I±(iAr)} =  iAT~2 Ij(iAr)?

we find that A and A* are given by

Kt, K|(i\a).K^CwAa)—  K^. Kf Q*iAa) _  ^  ^
ct* (i

K tl K^CAa^XfCAa^ 4 -  K|.CC\cflXi.(CAa)} __ K t
dt‘ tA c u d *

>

where ,ssr K, (iAcv) Kr̂ iAtv) 4- K̂ yuuli (t\a) K^CjuaAcx,),
Prom these observations we have e.g.

-  t J- (y-)1'e qCiAr)-+- ̂ x .  C*Ae}

If now we use the forms

• I | W «  T )  • K|(P =  7S e 2(i +  i)

we find , after the necessary reduction

(151)

(15<>

the

- - U 53)

. , ,o«>

* * (155)



_/ui\a/
 ̂ i K- ̂  ̂  - CK - -4- C ^otAj,

d  K^OAv) +^Ii(£Xr) =  J j l  | K,co* (a-r)X

—  +  tK,M-<M^(a-r)A.|.

When these forms are inserted in (155) and when the subsequent
integration with respect to X is performed we are at once led
to the result above* In the same way we could verify the
remaining results Qif'ft-luKD •

This analysis, together with the results of Green*s 
investigations of the analogies already referred to, suggests 
that ultimately evaluation of the integrals in 0«+fe> —04*0 
ma.y be effected by working out in full the corresponding 
cylindrical problem and then replacing the Bessel Functions 
of integral order that appear in the solution by those of the 
half-odd-integral order as required for the spherical case*
The essential part of the analysis for the cylindrical problem 
is given in the next chapter.



CHAPTER IV.

PROBLEMS INVOLVING CYLINDRICAL FLOW.

We confine our attention in the first instance to prob­
lems where the effects are symmetrical about an axis (r=o). 
In the circumstances the equation of heat conduction becomes

set (I5£»)
0fc U r 1 r *r)

MTesting this equation for solutions of the type e R9 where R 

is a function of r alone we find that R must satisfy
4. i_  fJ l  — kk R =  O- 057)Sir4 t* sr ^

She solution of this equation is

R =  AX0(J3r) +  B  KoCJtI t) » 0M)
where the I0 and K0 functions are the modified Bessel Functions

*of zero order of the first and second kinds respectively.
Thus

■* bI c(z) *-1 +  iL +-4 -T- H— 2---- h * —° 2* 2*4- 2* if. C*

Gray, MaH*cio<o aw<t Mac Robert, Sessel Functions (1422.) p soelse^- 

Iw  "Hac Scx̂ ucl* Hiis work is denoted by GP1P1.



Kj« =  (H*-y)*LW- tn tI«(z’ +- £ . +  W (,+̂ + i S ^ ('+ ^+i)+ '" (,w)

where x is Euler’s constant* When the variable z. is large, 
these functions are sufficiently indicated by tl̂ e first few 
terms of their asymptotic expansions. Thus

It is apparent from these expansions that the K0(z) function is
infinite like --I03Z at z.*o and has the value zero when z is
infinite. On the other hand the X,. function is finite at z s o©
and infinite at -z.*s oo .

From these remarks we conclude that the two fundamental 
diverging cylindrical trains are the real and imaginary parts

°f a*

and the two fundamental converging trains the real and imaginary
parts of ., , _  .

« i.iji1') •

The Line Source in the Infinite Medium*

We might show e.g* how the well-known solutions for the 
periodic and instantaneous line sources can be expressed in 
terms of the fundamental train solutions we have just found*



%\o

Suppose that along the axis rso heat is being generated at the 
rate of units per unit length. Clearly only the diverging
trains are involved in this case. The required solution is 

given by

provided A is chosen to satisfy 
I (_K«rr |2  ) .

r —
By actually differentiating *£>(3 as given in (ifco), we find that 
X se.Ko* W * - »  • Hence clearly and the solution required
to represent the periodic line source is

Cftl'-vr=-i_c k
2irK

The instantaneous line source.

Consider the solution ,00

( j | r )  OfcO

t ̂ K 0(@r)afc
J o

»  ± i ! L  f
ir*K 06

the path of integration being the infinite radius OB of fig. I
Introducing the^o^G© functions, we have

K©(iAr) as Gu>(-Xr} «  Q©£Ar)— 7tv^(Air) 
so that the solution inquest ion is

-icVt /e | CUV) ~ Ttl 3; (A,v) }JU\ U t3 )

*'06
The integrand has no singularity within the closed contour of

i\
fTT*k J



*7

fig#A so that if we assume that the integral is zero along the 
arc of infinite radius, we have

by an adaptation of a well-known theorem. This result is at 
once recognised as the solution for the instantaneous line 
source in the infinite medium. The definite integral form of 
solution as given in (ib£) shows the infinite combination of 
fundamental cylindrical trains required to represent such a 
source•

The cylindrical surface source in the infinite medium#

Suppose that at the surface (T=s rj heat is being emitted 
Cfctat the rate of per unit area. To represent the effect

at any point we require both the diverging and the converging 
fundamental trains. Thus we take the solution given by

I 00 _ick£a'o
The imaginary part of is so that when we take the
real part only of the last result we obtain

4-rrKt

r<  fj ,

* >V ,
(!fc7)



These give

where the constants A and A1 are chosen to satisfy the conditions 

at the surface r=r, viz.
U  -

c * V 3 r  ) a

AX0(tArlW  A* KoCi'Ar])

KtX [ a1 K, C a O + A X , ( a r ,^ =  I

Whence. *  =  A* _ A X ,(iAO 4-A1 K|(CAO _  i/ kcX JQ_
Ko(A^ Xo(̂A»*i1i (KoX, +• X«>K,)̂  ̂ \ f i \ r % K

where we have made use of such well known Bessel Function
properties as

-  Ko' =  K, ; I^ =  X, > 1/4.

Thus the required solution for the periodic surface soufcee at 

f-r, is
M

oU)
/r<r, > -Lie Kolttr.JÎ cAr)is

ryr, } v =  IjSAtfKj&r).K

It is worthy of note that the expression for At violates no 
condition at the axis rso;(compare the analysis for the corres­
ponding spherical case p . W  )and that ̂  reduces to correct form 
in the limiting case when r,-Vo • If we suppose that this limit 
is reached in such a way that tends to a definite limit
<̂owe find that &0 then takes the form required to represent the



8 1

axial line source as shown in (iti) above#
It is also of interest to show that when r and tj are 

very great with (r-r,) finite,the above expressions for the 
converging and diverging trains representing the cylindrical 
periodic surface source reduce to the correct forms for the 
corresponding plane trains. In the circumstances the Bessel 
Functions are sufficiently represented by the first terms of
their asymptotic expansions# Thus

z. r r  -z .c . / . - /TT
' aT^T" * K(Z) -* 42T *

so that the above expression for tt,e#g«> becomes
... —  \v 
i'R-U Q, 0n -  vim, ^   = _

K [̂znCXr, JtnrcXr

The instantaneous surface source#

The solution in this case is obtained from (IW) by 
taking „M

J* »C Vt

the path ̂  integration again being the infinite radius o© of fig.t



<P

Making use of the identity
X a(CAr.) K^Xy) =  Ja C\y{) QJc ^y)

and using the same argument as in the evaluation of the integral 
in (IM.) we have

^ V p - f  e~Kl 1 { Q0(< t ) - TriJ0( . | ) } t < i | , (170).
Jo

and, on taking the real part of this result

- ^ - f  c'1014 3t(tiS)X(i-4)4cH.
Jo _ r,a

IfiCt
2 Kt ~ *J'° X2.K>t

_  <U T  i rr. ) 07a).
-*-<> VOlGfc /

*by an adaptation of a standard theorem*
The result obtained is in agreement with the known

solution of this problem. It has been obtained by Green using
+the wave train theory but a different analysis.

It is of interest to show that the result can also be 
obtained by integrating the instantaneous line source solution 
over the cylindrical surface of radius rt • Using fig.4,on 
the understanding that the circle represents a section of the 
cylinder of radius Tt , we see that the effect at P at distance 
v of the instantaneous line source of strength per unit
length on the surface v9rt is

'4K?
A'K K't

 91
Ae

t GU>^7-



where p* =  ri+ /tjx-'^Tr,co^0.

Thus the effect required is

4tt Kt

fcirKb

in agreement with (172. )  above.
In the present connection we might go a step further and 

show that the line source solution can itself be obtained by 
integrating the point source solution along an infinite line; 

thus ultimately the surface source solution is expressible in 
terms of the point source# The necessary demonstration is 
given by Green and need not be reproduced here#

Reflection of cylindrical trains#

Consider the case of a periodic surface source of strength

cylinder of radius ct. First effects within the cylinder are 
given by the solution shown in (1*>8). It is clear however that 
the arrival of the train V0 at the surface a> will in general
violate the temperature condition at this surface. We must

per unit area at the surface r=v, within the solid



therefore suppose that the train is reflected at this surface, 
initiating a reflected converging train, the total effect in 
the region *>t| being obtained by superposing this reflected 
train on the original diverging train %  « Clearly also?as has 
been indicated in corresponding plane and spherical aases this 
train must also be added to so that the source condition at 
the surface Tsf, may be maintained•

A suitable form of reflected train is

l\
where the constant A depends on the condition at the surface r®a,

(PC). The surface kept at zero temperature*

If the reflection takes place under this condition we 

require
X  (Av;) K.t'Ao-) -t-A I AAa,') =  o > w Uoce A = (173)
° ^uOAa)

With this form we find that (i£) becomes

r<r, , v. =  (174)
o * “

Introducing the notation
as K»(fcAt3lo(«Aa) — Xp(»Ar> KofrAa)

<= Got&r}T*C*<$-'To(M)<5Cl CAa) =  Xr)̂  (1750

the above result becomes
7 <r,, = ± L c ,'tet̂ g £ ( A r (Aa) d7«



The corresponding result for the region r>r( is obtained by 
interchanging r and r, in the various Bessel Functions,

(^), Radiation at the surface q .

If the train on arrival at the surface r= O/ is reflected
under the condition that there is radiation to a medium at zero
temperature we have

r=cv, - k | £ =  L < r  
dr

Applying this to ^  given by
Al-sr Xoii\r!SKo(i\r) 4- A l0(iAir)

we readily find

A  =• Xo l^nV (177*)
ICC\ X | ( i ’Aft')

and with this form of A,(*£ ) becomes

f < r, , » —  eVWX 0(ar)| * ~Xp(Air;) KofrAajl 1
v KvA X ,(iA a) +  J

Introducing the notation
C

£  CAa, All) S 11 Ko(^r,)| (nS)

= fi(CAa)Jo(Ar,\-0T(Act̂ p(At;3?
the result ̂  assumes the form

71 < r. , ^  K*^(ftq,Ar,)-'kJUAoi(,7q)
K K^T,(AoO~WoCAcO

with, as formerly a corresponding result in the region r>r, got 
by interchanging * and rt in the Bessel Functions,

*  taut) ; K,(ct) =  C & H 4  ss -  i r T ,( t )~



Instantaneous surface source at r=r, .

(oC) * In the case of the zero temperature surface condition, 
the required solution is that given by the real part of 
where

'i r K  Job °

the path of integration being the line of fig. I .
The evaluation is effected by integrating the function

round the closed contour of fig.$ 9on the understanding that the
indents are round the points given by the roots of the equation

CTo(*a}=o. Ote)
Assuming that the integral along the arc of infinite radius
vanishes, we find that the real part of the required integral
comprises two parts, (l), that arising from the integrals
round the indents and (2.), that arising from the integral
along the real axis of the imaginary part of F M  • Disposing
of the latter part first, we observe that if A is real,as it

is along the real 4 axis we have
+o CH fc «  Q* (r, %) X  (<v I) -  X  (% 

of which the imaginary part is - f  3.(U>T.(<vi>= O.



is

Accordingly the real part of the result arising from the source
(X) is zero.

The integral round an indent at A where 3 i( A a } « o  is

-ITi f*** Jo(Ar̂ oĈ t-,,AaVA
ttK aTilXcti

By using the general theorem
Qi(Ao)X(̂ o<)-Ti(Xq)Go(̂  =s ~%ci

we see that at a root of 0*4) , G©(Aa)s= Aq/3|CAcî

and Jo(Ar„Act} becomes — tTo(AtOG©(Aa,) -- _ CfelArfl .
A a. Cf|(Aci/) *

and the evaluation round the indent

K a1 Aa/)
Thus the final result is

£  „~>cXH J~otAr.-)T.(Ar) ' . .
K i c^Ji’tAo-)

where the summation is with regard to all the positive roots 

of the equation •

(p). In the case of the radiation condition at the surface 
T= <x the result, required id

‘' " XHX(At) KAf?(Aai,ATQ -  ft.&Aa/.Ar,') ^

ôs -6W)
In this case we must understand that the indents in fig. 3 are



round the points given by the roots of the equation
KAT,(Aa,)- U o (A a )= o ( 0 ^

The argument used in the evaluation is the same as that given 
in connection with (M ) above* It is readily shown that if 4 
is real,the imaginary part of

»s zero.

The part of IT arising from the integral round an indent is

— iri c KAf,(Aa,Ar<T~&/jfe(Aa/,Ar,) ̂

Also, at a root of (rtŜ we have

^  {KA tJXXo) - f c W }  * Ka* T<.(Aa) +  ( M  

_  _ » _ ( K IX1+  Xtta} KX

also KX f; ( Xa., AO — & £ ( Xa.,Xr,) becomes

< » . _  K 3i(Ar,)T.(AiOfKX<SlCAaJ-&'<5.(Aa)}=t aT„(Xa.)

With these simplifications we find that the required result is 
„r_  f  X(Ar,)T.tXr) (|gw

where the summation is with regard to all the positive roots 

of the equation OSS') *

Effects due to a prescribed initial heat distribution*

If e.g* we have o, o^rS^the results are



(o'). The exposed surface at zero temperature.

a* TtH M
cm)

the summation being with regard to all the positive roots of 
the equation (ifls.) •
(b). Radiation at the exposed surface.

the summation being with regard to all the positive roots of the 
equation (**s).

The results (l$7) and (IW) are known from other consider- 
ations to be correct* The special forms they take when ^ = 0  

give well known theorems in the expansion of functions in 
special types of Bessel’s Series.

The surface of the cylinder kept at a prescribed 
temperature.

It is of interest to investigate this case from first princi­
ples, beginning with the train converging inwards from the 
surface maintained at the periodic temperature and follow­
ing out an argument similar to that adopted in connection with 
the corresponding plane problem, but the solution can be 
obtained at once from that given in (i£7).

Set e.g. Ĵ .Wj

1*™ 

oK*Xx4-&*'



Consider V given by

V = f(r)-2£ e KXH' - | ^ 4 _ f  #r,)X.(Ar,)*;«U; (IS<»)» a j ; w  J0

This solution satisfies the heat conduction equation provided
V af(r) s o

0 Iso V =  o , t =  o ; ci/

V =• £(t0, t  =  co ; a n d  V ^  oo> r =  o.

— o gives j'Cr} =. A  £o*g t  4* 5 >ô j,

The, only way of satisfying these conditions is to take 
so that the required solution is

V as 1^1 —  £ 2 >     }* CJ» JJ (Ad) '
in agreement with the known result of this problem.

Problems involving heat flow in the infinitely long 
hollow cylinder,,

The internal and external radii being o>,b respectively 
we consider the two following cases#

(oc). An initial temperature prescribed throughout the
cylinder; the exposed surfaces T= a and Tssb kept at 
zero temperature #

(£). The inner surface maintained at a prescribed
temperature; radiation at the surface 'T-lo .



We begin again by considering the fundamental trains
£ btemanating from a periodic surface source of strength at

the surface • Representing these by
r < r l f  f T c ( i X r )  a n d  r > r , 9 p‘ K0(iAirt

where P ,  P ’ =  3 g e  ^  K > X r , ) , i
we next write down the various contributions tp V  the resultant 
effect at any point, made by the complete system of trains set 
up by the fundamentals^by their repeated reflections at the 
surfaces and r-b • In this way vie have, following up the
original converging train

T ,-c r, v >rt

p I*(£A r)

ApKo(CAtr) Ap Ko(CAr)

A B f I 0( £ \ r ) A B p X p(iA rt

AaB p K0(iAr> A*Bp K0(C\r)

AXB >  X 0(iAr) A’-B’f. J p(iAr)

K0C«Ar) <. •* *

where A and B are the reflection coefficients for the surfaces 
T=rCt and r=.b • thus the total partial effect due to the 

original converging train is
r < r  nlofArt-l-AK.t^r) an<i * >T( , Af K.(cAr)->-

19 I-Aft *- A d



too

In the same way if we tabulate the effects in both parts of the 
field due to the original diverging train and perform the 
summations we get

K X 1 Xo(,Ar)
* I —A 6

r >r, , f' *.«*>•)-t-61. ftAr)

Thus we obtain the total effects due to the periodic source 
at r-r, as

T<Tt 9 -VAKoĈ Ar)
I ~ A B

*>rt 9 .Ko(»Ar) -h BXo(tAr) /* -A_ _ _  v r
090

With the surfaces r=a/, r=b at zero temperature we find
A ___XolvXcQ Ko(iAb)
~  K*(C*a$ * Xo(tAb)*

Thus the first of (»qi ) becomes,after necessary reduction

T < Y  lT = r  3 ^ L e ^   ̂ ^  CA fi ? X b)
1 K £>(Aar,Ab)

the cor33sesponding result for the region r>rt being obtained 
by interchanging v andirj in the & functions#

The result corresponding to (iqft) for the case of the 
instantaneous source of strength q, per unit area at the surface 
v-r, , obtained as in various previous cases is

t . ^(Aa,Ar)X(AThAb) AaA (|c<3) 
•dCXcH, A b)OSirK

The integration is effected by using the contour of fig.



fche indents being understood to be at the positive roots of the
equation

4o(A<*,Abys  G o t t a * o

The theory of the evaluation of the integral appearing in (iqs) 

is the same as that given in previous cases. At a root of

- a  GiWcOToCAb) -bGoMaWKAb) +  a 3 ;(A ^ )(Ab) + .b3i(Aa.)<5,(AW
dA °

where we have made use of known relations between the functions. 

Further at a root of (»<?**-)

where the summation is .with regard to all the positive roots

of the equation (NWr) •
If the initial temperature throughout the cylinder is

we have

Thus ultimately the result required is

JU\o*Ar).£(A«?,Aa)

given by t = o, ax*J ( v ^ w e  see at once from this last result 

that the solution in this case is

fo(Aa-Ar)Jfeyf0(ArPAayrtcl*;
T«?(Aay- TcftAb)

For a <*i*cu*Siovt of roohs of- Se* $mm

n,,s rcalb m a r be e*bibd-«i m  various forms. We «*»-
rt«U' fee tesufl- in fee region- ryt, is Hti same.



*TU<£ Second "Problewi. ^

(p). Suppose in the first place that the inner surface of the 
cylinder x~a> is maintained at the periodic temperature •
The original train emanating from this surface is accordingly 
represented hy

q K»(.Ar) .
*  Ko(iAa)

This train and its various continuations hy reflection at the
surf aces Ts b and builds up the complete temperature system
at any point. Thus we find

. .  „ Ko(iAr) +  BX>Wrt davl
----- — A6

where A  and B the reflection coefficients at the surfaces

and 1rsb are given by
a * a s  KiA. ^  Ko (̂ b) (iqU)

Ko(iAa) ’ KuAX,(iAb>+

With these forms inserted we find that (Kf7) becomes after

necessary reduction

6 KH(Ab, Aa) -  fv f* (Ab, Acv)

—  a U(A,1r> a<M)
TJ?vT ’ 7

This result gives the effect due to the periodic temperature 
90^  at the surface T=cv • Thus the effect due to the instant- 
taneous doublet of strength 2K0O per unit area over the surface 
T-sCb - or, what is the same thing, the effect due to the 
instantaneous creation of the temperature B0 at r=a at - is 

given by ,



the path of integration being that already used on numerous 
occasions. The. integration is effected in the usual manner 
and yields

'\r  ss — 2. ice02 /e ~  wX"1 , ^  _  (2 o o

where the summation is with regard to all the positive roots 
of the equation

U (A ,» )  =5 K \£ C A b , 'M -  &/£(Ab,Xa)=s o . <S -° '£ >

At a root of this equation we find

U(M 3 K*
_ _ K \ _____ S t(Ab.Ar)f (AbAa)—.f(Ab Aitff{Ab,Aa)l =s K_fc(A%Xa)
•fjAbAc* I ' ' ♦ 1 J b£(Ab,Aa.)

Thus the above result becomes

i b -f„(Ab,A a) i - x { U ( \ a ) }

Prom this result we obtain that finally required, the effect 
when the inner surface of the hollow cylinder is kept at
the constant temperature B0 from the instant onwards.



This may be shown as

\1 =  -zQaf  . *<4 (Ar,\o)_______
' b X U x M ^ i U ^ o . )

ax

_  e +  10J e-K«  -------- (aoif.)
fctogb *  ̂ . V  bX {„(Ab,Xa.) i. U ( \ c u )

where the first term on the right has been filled in from 
direct considerations of the steady state ultimately attained.

The implication of this last result is the purely 
mathematical theorem indicated by

_ _ a J  K -F .C X -^X .x )______________ (%oS>
■*,*«,]> + £  1 bxtcxb, U (A,a)J a> b

the summation being with regard to all the positive roots of 
the equation (2^1). it might be useful to give a direct demons­

tration of this result.
We assume the possibility of the expansion

Oo
f ( r >  =  A ,£ ( \ r ,  V O -t-A s .p V ; A2a) + .......  *  5LAmi(-Kr’^ y  ( io l ’>

5
where - < etc. are the successive roots of the equation (aoz.),

Prom this expansion we have
•*b 00 f

•7)

To evaluate the integral on the right of this equation we 
observe that rtf ‘'Sw— '-1** being solutions ofl Bessel*s



equation, satisfy respectively ^

whence 

so that

d'tt'w, , l ctit̂v
dr4 r dr
d*û , , « diU
ctra r dir

( \ « w - ,<) -

-  o-

C2.o*)* V  “„ rdr —  -  it,,

At r= a ? «*»*«**=* o,
so that the value of the form on the right of (w8) at r-= cu 
is zeroo

and therefore
( a„ * £ l) «  f/V, \a){- Amjj (\,b, A„a)]

=  —  *».“)
since A^is a root of the equation (aoa).

It is clear from the symmetrical form of this evaluation that
(u iisJ has the same value and consequently we have 
' mdrJ. b

w ^ r d r  —  O, \+K,-
-Jd

When A=AW this result is replaced by 
/»b

a/ A„— >a ,* 1—  — ,a

sr 1 Ir 2^. ty + s .u<
L  dr K  A»Am.

* ej.. <3,mn



It is readily verified that
s  — vji ̂ r? (Aa, A*)

Thus 3-0 and since (u.̂  se 0 , the value of the expre;
in the square bracket at the lower limit is zero.
Again

=. -
bHence we have

til. r dr as
i " 2**u

b£>(Ab, \d) —  J l  i L  M b , A a )  -f- 9 _  
K 3 * 3 *2-v A

jL. 5KAff(Ab,Aa)- 
4KA 3^ £ 1

<2'01
and finally

A„ =  * K * L w > « V ^  (21|)
b£(Ab,XaJ § j{ U (M }

We consider next the special form taken by Aw when fCr) is

given by
^ Ji 4~ 

f C«\>«  r o
&  to<t — 4- J|£. *» <v b

It is easily proved that

rb 4-—0 <5,(Mr clr
—  4 t $ [kXG.^W— ^G^Ab̂ I- [£ +  * Aa,fflWo.) +  k.<30(Aa.)}

x-l -



/o7

Likewise

A H  •£+•£) XtVrt t cir

j  [ k X X ( X W -  fu J 0( ^ t o | +  fv C o ^ J lJ X a ^ a )  +  lv T „(X a )J

Multiplying the first of these results by f the second
by j remembering that A is a root of the equation
(aoi), we have

exactly as required by the equation (fto5) above®
An important verification of the result (3<>(f) is obtained 

if we assume that a,r and b are all very large, with (b-®^ 
finite ando^rgb . In these circumstances we can replace 
each Bessel Function by the first term of its asymptotie 
expansion and the form then taken by the result should give the 
solution for the corresponding plane problem. Thus we find

shifted after substitution it will be found that the eesult

f
and therefore

—  bA£(Ab,AaJ)

; f(A^Aaj) becomes ce?i>A(â .ri

If these substitutions be made and if the origin is suitably



the equation
KX coo\b -+- %  b s= O. (ai»f)

The solution (a«3) thus obtained is that for a finite rod of 
length b one end of which r-o is kept at constant temperature 
0O while the other end Tab radiates to a medium at zero temp­
erature. The form of solution is in entire agreement with that

%obtained directly for this problem in a previous chapter*

Problems involving the long solid cylinder composed of two 
materials of different conductivity*

The case contemplated is that in which we have an infin­
itely long cylindrical core of radius a, and conductivity C, 
surrounded by a coaxial layer of thickness (b-a) and conduct- 

ivity C ft•
itPostulating first a periodic source of strength at

the surface Tst; within the inner medium, the surface T=b of 
the cylinder being kept at zero temperature, we consider the 
fundamental trains emanating from the source and their contin­
uations by reflection and transmission at the various boundaries; 

in this way we find that the effects in the various parts of 
the field can be represented by - the notation being that 

adopted in previous two-medium problems -

*■ 1 ? X  +  TWe wofcvKcm, C, i c  *> fc
a-. k  4c u-Ofcot iyv he*4ei>



tOCf

Q±xtrx, W  e I(tA r)| tf0(^n)+AT0(i*r,)}

*1 £  r  *  a, i H e \ ( a ^ ) j  K6(«Art 4-A I  (*Ar)J
(2(5)

b, u  ==32Lei*

C* 

i AJ^(tAr>^ 5 K® (/AiAvOX (yuxAb)
Q  X 0(ywlAb)c

*• K̂ yu'CMOI© ̂tcXr)| Cm to

where Here it is to be understood that the second term
in each of the first two of these results includes (I ) the 
train reflected from the surface r=cu at incidence of the 
original diverging train and (i») all the trains partially 
retransmitted inwards across the surface from the outer
medium after one or more reflections at the surface fsb • 
Similarly the expression for in (mb) includes the first 
transmitted continuation of the original diverging train and 
all the other trains set up by the reflections of this one at 
the surfaces tvb and r=ou • To simplify the analysis we have 
chosen forms for and ^  that at once satisfy the conditionsl O

at 4=r, and a form for \  that satisfies the condition at r=-b . 
It remains to choose A  and A  to satisfy the double condition

at the surface V^at viz<»
srr 9 I — - s  v a — ■

*• dr 3T

It is found that
ufiKv d  =  ^ X ^ O ^ ^ C y u A o u y u A b )--i^ C ^ X  (iAcv)^(juAa//yw A b)
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A 2=2 n*Ab) 4-Cyu-Ca.K0(foa/)jj(jnAo/, juAb)
cl 

Xssa ^Xo(A^CAbVCAcv 
d

^  IT)

With these forms substituted and the necessary reduction 
performed we find that the results (m5),(LiW become

’g  % ? y -C tf,(Afl,Ar,)£(;uAaMAb)4-XA,Cfc(AgArtli;( /<AAcayuAM 
C, # F(A)

ri£ T2= a/ 9 tr|« ^ L e ^ | 30M1̂  expression, rand r, Cnterckanqedj (2i$)

**»  r =  ^ — ^ r »e *&&«•.) £(M/Arf uAb) &i<r)
* *a, R d )

where Fhto —  CjZJjlAâ jkyuAar (Ad̂ (ywAoufyuAb) (mto)
These results apply when the periodic source is 

located within the inner medium. It is of equal Importance that 
we obtain the corresponding results when the source is in the 

outer medium.
Beginning with, the periodic surface source at v=rlf <*£r,£b, 

we write down tentative solutions in terms of the elementary

wave trains as follows
i tfelr

0 £ r ̂  a/, <&% s- JLilLe  XoOAr)_________  (2.21)C ,  I ^ C y u X A b )  -+- E . K * ( y u x A b )
a & r ^ r  «■= V 1 r*** 4-EK.(^Xr>}£(^r„^b) ]

 ̂ ^©(^U-Ab} 4- ELK©(/*AAb)
r<<> ^  £ *^ 5  Scwie expression, ra n c tr j interchanqedj

c,
(ixU
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In writing down these results we have been guided by 
the general principle of the interchangeability of r and r( in 
the forms for in the regions ^ ̂  f by the zero temperature 
condition at Vsio and by the dual condition at the surface fsrfj 
E is of the nature of transmission coefficient from the outer 
to the inner medium , E of the nature of reflection coefficient 
at the surface t'-a/ within the outer medium. When we take into 
account the conditions at this surface we find

a/
E - Ci

tXcui*
where C,T,(iAa) KoCyufAct) fC/yntAâ

When these forms are inserted in obtain

04 r 4 To(Ar) $o(î \rt. /uAb)
' F(*>

- i t *

M

F(40

yt<. f  < b *t*i j  Sawie expression, r a n d * ;  tnhzrcfoancjed^
Ca.  ̂ ^

F(V) having the form defined in (2,2,0) above ^
Proceeding next to solutions 01 the type dl u cLk*

Jo
corresponding to the existence of instantaneous surface sources 
within the inner and outer media respectively we find in 
succession noting considerable simplifications in form when X

root of fcx:>«o .



Xvtsh Source

11*-

Inncr
Ple.cJiU'**'*.

Xwssh Source, 

Jn

O uU ar 

Hedlitvi

o & r < r t, it- . 2 4 ^  r  j;(M-Ag.Mb)Xan)J;ar-) 
a  • To(Aa-) F '( \i

f, 4 1*40/, U| ~  Wie same expression,.

a. 4 b, v2_ *jwrti £ „~KVlt Jo(Ar,)JgC**An ̂Afat
a ■ F'(X>

04f<a, ,v_ gq,!0,-n V r KX%l:yo<Ar)£,(MAr.MAW
*  ~ a V  fr'ft)

* a. £>(/uAa>,yu&b)a£.v< r,.
y fc(|wA»i, jwAbtfô Ar.̂ Ab) 

F'M

ftn)

(2 IS)

(M4)

Tf ̂  T£ b, W  game exp res siorv.

the summation in each case being with regard to all the 

positive roots of the equation FMrrO.
The group of results exhibited above is of considerable 

importance. By using the known volume integral process we can 
at once obtain the solutions corresponding to any symmetrical 
initial state prescribed throughout the cylindrical core and 

surrounding sheath. Thus e.g. if initially we have 
V-~ £ (r )  f o £  r  Z a* ; *> -& < "> , <*' = *’=*>,

the effect at any point in the inner medium at any later time 
is obtained if we replace cĵ in (nt) byC»£6;)dr; and integrate 
with respect to t! from o to a ; replace in {%%%) by' Kj.
and integrate from cx, to fo and add these results. In like 
manner also we could obtain the effect at any later time in

the outer medium.



1 1 3

In the above results we have all the material for the 
investigation e.g. of heat losses from long cylinders 

surrounded by coaxial layers of lagging. The arithmetical 
examination of the results obtained for various thicknesses 
of the lagging and for various values of the relative 
conductivity might lead to results of interest and of 
practical value. This aspect of the case is reserved for 
future consideration.

It will be remembered also that the solutions here 
obtained only apply on the assumption of the zero temperature 

surface condition at the outer boundary. Clearly the tentative 

solutions given inM-«,fcw^) and all the subsequent results 
would be of entirely different form were this condition 
otherwise. The general method of approach to any other problem 
involving a different boundary condition has however been 
sufficiently indicated.

Spherical-Cylindrical analogues.

*In G-reenfs fourth paper the attention is drawn to striking 
structure resemblances between the solutions of certain 
cylindrical problems on the one hand and the solutions of the 
corresponding spherical flow cases on the other, ffhese
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resemblances might conveniently be illustrated by the follow­
ing scheme, prepared in connection with the second of the 
hollow cylinder problems investigated above.

Ctjlindlrica/L Spherical.
Fundamental train 
from source 60etfet 
at surface cu. K„(aA<%3 fl

° r' Kl (vXa/)
Reflection coefficient 
at surface cv.
Reflection coefficient 
at surface T=b, KC\ K'i(iAb)— KiX K|(v\b)-
radiation condition. Ki\ XiO^W- ̂ Ii.(iAb)i a
Effect of periodic ~ 
source• B •V.CVt)

The subscripts denote that in the passage from ;
the cylindrical case to the spherical any Bessel function 
of order is to be replaced by the corresponding function

of order • |
It is clear that the analogy persists right up to the 

final solutions. Hence if we adapt in this way the result ;
(•voif) we obtain the solution for the case of the hollow sphere, j1
the inner surface T— <k> of which is kept at the constant ^
temperature 0O while the outer surface t=b radiates to a 
medium at the temperature zero. The adaptation is easily |J
carried out and leads to,a result that is readily verified. ||

!

It is of greater interest however to show the application of j



the transformation to the group of cylindrical results
and in this way to obtain a set of spherical flow

solutions known on other grounds to be correct.
We find e,g, that in the transition the cylindrical

functions -juAb} are replaced by the spherical
functions jM>) respectively, where2- ? ^

juAVO s  G lĈ v\r,̂ Tif̂ Ab) —  ((MA,b).

  I

(Ji QoAa)H.(̂ \bj —  Oa (iW-Act)Gia *■ a t 1

* " 7 ^ 6  +  e“ ' * M  _
Thus we find that F(X> as defined in (iao) becomes 4-tV)AtXa/WnXb *
where =  CCt~Cg)/M^^/oiVv/u-(b-c0X —  Cxcoo^./H^j^(b-a^ \

—  /tcC2 X<V CO*jU/(.b-(X<)X.
Hence finally transformed the result (M<f) of the set yields

00^  vs. 2=3^1L T  e K *<v. aaM'/A'(b~ihX,>v»v yuib-r)X . . .(23©)

where the summation is with regard to all the positive roots

of the equation i4(\)*o.
This result is in entire agreement with that obtained

*
by Green in the direct treatment of the spherical problem.
In exactly the same way we could transform the results (lit),fra?) 
(22$) to obtain the complete set of solutions relating to the 
sphere surrounded by the concentric sheath of different



conductivity. Likewise b£ the adaptation here indicated 
the solution of any spherical flow problem could be obtained

Cylin̂ ftcal
by first obtaining that of its analogue# In this
connection the problem of the finite sphere Imbedded in an 
infinite mass of material of different conductivity, a case 
discussed in a previous chapter, Is noted for further 
investigation#

Continuous Heat Sources,

In the problems discussed above the various sources 
postulated have all been of the periodic or instantaneous 
Initial type. It Is useful to show how, by direct time 
integration, solutions corresponding to the existence of 
continuous or permanent sources may be obtained.

If e.g# in the result (iqs) - relating to the instant­
aneous surface source within the material of the hollow 
cylinder whose surfaces are kept at zero temperature - we 
replace ^ by by (t-'fc1) and integrate with regard to
V  from o  to t'̂ we obtain the solution for the ease of a 
surface source emitting units of heat per unit area per 
second from the instant -t=o onwards# The integration is 
easily effected. Writing down the form the result takes 
when “t becomes indefinitely great, we obtain the ,f steady
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state" solution V as

V-Wi y  To*(Xb)__________________________. # (23o
K 1 To^x^-xUb) °

the summation being with regard to all the positive roots 
of the equation •

This solution however is one that can be obtained direct­
ly from the differential equation and boundary conditions 
of the steady state end may be exhibited as

~  ”  K  t o g b —  t&ya, * *
V — **30,- ̂ r| ̂  2-
0 K  b —  lo$a, b .<?**)

The identity of the solutions (*3t) and (tji) is readily shown®
If we attempt the development

F ( r )  s  V  ~  X  A m&»CAr, \ a ) ,  a  Is  r  ^  b,

the summation being with respect to the positive roots of (Mf#), 
and V having the form shown above we find, by the usual 
method of determining the coefficients,that A mis given by

p /»b
1 4- 1 f0(XrAoO.V0rolr

^  J g  __________________  JVt __________

j'p  (X r,,  Xa.)  ̂ a f te r  necesscM ry re c iu cH o n . 
T«,x(Xa)~X2CXb)

Clearly this form of A*,demonstrates th© equivalence of the 
two solutions.

It will thus be seen that (asi) gives the correct
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normal- function development corresponding to £he existence 
of a continuous source within the material of a hollow 
cylinder whose surfaces are kept at zero temperature. If 
and K he replaced by the corresponding electrostatic constants 
the development in question becomes that for the potential 
between coaxial conducting cylinders kept at zero potential 
due to a coaxial distribution of electric charge.

Clearly we might apply the process indicated here to 
any of the other cylindrical, spherical or plane flow 
solutions already obtained and thereby obtain in developed 
form the " normal function" expansion of the steady state in 
each case* The mathematical agreement of the developed form 
of this state with the undeveloped form obtained from first 
principles would seem to afford important confirmation of 
the various results to which our theory has led*




