Vidal Laveda, Josefa (2017) *Rational design of nanostructured electrodes for Li-ion batteries*. PhD thesis.

http://theses.gla.ac.uk/8051/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/
theses@gla.ac.uk
Rational Design of Nanostructured Electrodes for Li-ion Batteries

Josefa Vidal Laveda

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Chemistry
College of Science and Engineering
University of Glasgow

Supervisor: Dr. Serena A. Corr
February 2017
“This copy has been supplied on the understanding that it is the copyright material and that no quotation from the thesis may be published without proper acknowledgement”
Rational Design of Nanostructured Electrodes for Li-ion Batteries

Acknowledgements

Firstly, I would like to acknowledge the School of Chemistry at Glasgow University for giving me the opportunity to carry out this Doctorate of Philosophy in the area of materials chemistry and electrochemistry. In particular, I would like to give my deepest gratitude to my supervisor Dr. Serena A. Corr for all her enthusiasm, expertise, encouragement and guidance over the past three years and a half. I am very grateful for the opportunities of numerous beamtimes, conferences and research visits in which I have met excellent research scientists. Furthermore, I want to thank all the Corr group members for their support and interesting discussions that have made challenges endurable and enjoyable. Moreover, I also would like to thank Mr. Michael Beglan for his constant help in the lab, without his help this work would have never been possible. It has been a great pleasure to work as a part of this excellent research group.

I would like to thank Mr. Jim Gallagher in the School of Chemistry and Mr. Peter Chung in the School of Geographical and Earth Sciences at the University of Glasgow for their advice in the scanning electron microscopy analysis. Also, thank Dr. Gary Paterson and Dr. Donald MacLaren in the School of Physics and Astronomy at the University of Glasgow for their assistance on conducting the transmission electron microscopy measurements. Furthermore, I would also like to thank Dr. Claire Wilson for her contribution in the single crystal diffraction studies of the metal alkoxide precursors and Dr. Stephen Sproules and Dr. David Adam for their support on the NMR experiments.

I would like to highly acknowledge Dr. Matt Tucker and Dr. Helen Playford at ISIS pulsed Neutron and Muon source for their assistance in the high resolution neutron powder diffraction and neutron pair distribution function experiments of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures and subsequent data analysis. Your support has been fantastic and very fruitful. Moreover, thank you very much for getting me started on the Reverse Monte Carlo modeling. Furthermore, thank Dr. Peter Baker at ISIS for his cooperation in the muon spin resonance studies of the LiFe$_{1-x}$Mn$_x$PO$_4$ phases. Also, thank you very much to Dr. Claire Murray at Diamond Light Source for conducting high resolution X-ray diffraction measurements on some of our olivine nanostructures.

On the other hand, I would like to personally thank Prof. Simon Billinge and Prof. Kirsten Jensen for giving me the great opportunity of visiting Columbia University in order to learn pair distribution function (PDF) analysis with the world-leading experts in this technique. It has been a privilege to work with you. Your help, support and discussions have been invaluable. Also, thank Maxwell Terban in Prof. Billinge’s group for his guidance on X-ray PDF data analysis.

Finally, I would like to save my biggest gratitude for my family and all my friends for their constant support in the long distance and for always encouraging me over the time of this
PhD. Particularly my parents, whose support have been pivotal through this PhD and I would not have been able to do it without them.

This work was supported by funding from the EPSRC (EP/K026290/1 and EP/N001982/1). I also gratefully acknowledge the Kelvin Nanocharacterisation Centre for use of their facilities and the STFC for beamtime allocations at the Polaris, EMU and I11 beamlines at the ISIS Neutron and Muon Source and Diamond Light Source. Also thank National Synchrotron Light Source (NSLS) and the NSLS-II at Brookhaven National Laboratory for use of their facilities.
Abstract

This thesis focuses on the rational design of fast and low temperature synthetic routes for the preparation of energy storage nanostructures with potential applications as electrode materials for Li-ion batteries. The materials synthesised in this work have been fully investigated by powder X-ray diffraction, electron microscopy and potentiodynamic measurements. Where possible, high resolution powder X-ray and neutron diffraction, X-ray and neutron pair distribution function (PDF) analysis and muon spin relaxation ($\mu^+\text{SR}$) studies have been conducted in order to have a better understanding of the structure-property relationship and have a complete and detailed characterisation of these battery materials.

Chapter 1 includes a general introduction about Li-ion batteries and a brief analysis of the most promising electrode materials used in Li-ion batteries. Furthermore, a short description about different synthetic methodologies such as solid state, microwave-assisted and solvothermal syntheses is included. In particular, the benefits of single source precursor processes are highlighted. Finally, the main aims of this thesis are also discussed.

The objective of Chapter 2 is to provide detailed experimental procedures of all materials synthesis and also to briefly describe the main characterisation techniques employed during this research, exploring in more detail those not commonly used, such as pair distribution function analysis and muon spin relaxation.

In Chapter 3, a microwave-assisted solvothermal approach for the preparation of a family of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0, 0.25, 0.5, 0.75$ and 1) olivines using commercial starting materials is presented. To fully characterise and have a deeper insight of the structure-property relationship of these nanocrystalline phases, high resolution powder neutron diffraction and neutron PDF analyses of these phases are conducted, allowing the examination of the local structure, cation distribution, presence of defects and Li content. Moreover, muon spin relaxation is used for the first time to investigate the lithium diffusion in this series of olivine mixed metal phosphate phases. By understanding how this double transition metal system operates, it may be possible to synthesise high performing electrode nanomaterials with higher energy density than LiFePO$_4$ with no significant increase in cost and exhibiting charge/discharge rates acceptable for commercial applications.

Chapter 4 covers a fast and energy-efficient synthetic route to olivine nanostructured LiFe$_{1-x}$Mn$_x$PO$_4$ cathodes and Mn$_3$O$_4$ hausmannite conversion anodes for Li-ion batteries using a new class of metal alkoxides containing one or two transition metals. The main advantage of metal alkoxides over commercially available inorganic salt mixtures is that the different metals of the final product are already present in a single precursor, which significantly reduces the energy required for reaction of a multicomponent precursor.
mixture employed in conventional synthesis. Furthermore, thermal decomposition of these metal alkoxide compounds can be performed at relatively low temperatures, allowing decreased temperatures during synthesis and making the process more energy efficient. This work intends to emphasise the versatility of metal alkoxide precursors in the preparation of nanostructured Li-ion battery materials for both positive and negative electrodes through relatively fast and low temperature microwave and ultrasound-assisted methods.

In Chapter 5, having confirmed the suitability of employing transition metal alkoxide precursors for the preparation of nanostructured electrodes via microwave or ultrasound assisted methods, efforts have been directed to develop the synthesis of a series of heterometallic alkoxide complexes containing both Li and a transition metal (Fe, Mn). These heterometallic alkoxide precursors are then used for the generation of highly crystalline LiFe$_{1-x}$Mn$_x$PO$_4$ olivine nanostructures exhibiting an outstanding electrochemical performance. Co-location of all the required metals in these metallorganic precursors could bypass the need of diffusional mixing and allow the reactions to proceed faster and at lower temperatures generating better crystallised materials. X-ray PDF analyses of these LiFe$_{1-x}$Mn$_x$PO$_4$ olivine nanophases are conducted in an effort to examine the local structure, defect chemistry and show that microwave processes produce highly crystalline materials even after short reaction times. Finally, a ionothermal microwave-assisted synthesis of LiFePO$_4$ nanoparticles using heterometallic alkoxide precursors has been examined in order to study the influence of the solvent in the resulting electrochemical performance.

Chapter 6 explores the preparation of olivine LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures through conventional solvothermal processes using the same single source heterometallic alkoxide precursors. A reduction in particle size and an enhancement in the electrochemical behaviour are achieved when using single source precursor metallorganic complexes compared to commonly used commercial starting materials. Moreover, the fabrication of Fe$_3$O$_4$ magnetite nanoparticles by the room temperature hydrolysis of the [FeLi$_2$Br(O$^\cdot$Bu)$_4$(THF)$_2$], heterometallic alkoxide precursor and its application as anode material for Li-ion batteries is presented.

Chapter 7 further develops this family of heterometallic precursors by examining the preparation of olivine nanostructured Ni-doped LiFePO$_4$ cathodes via microwave processes. The effect of the addition of polyvinylpyrrolidone (PVP) in the reaction mixture, which could act as a capping and dispersing agent to prevent particle growth and agglomeration as well as a possible carbon source for all-in-one carbon coating procedures, is investigated. The preparation of a Li and Ni containing metal alkoxide and its utilisation as a Ni precursor for the preparation of nanostructured LiFe$_{1-x}$Ni$_x$PO$_4$ olivine cathodes and
NiO conversion anodes is presented, demonstrating again the versatility of single source precursor synthesis using heterometallic alkoxides in the preparation of both Li-ion battery cathode and anode materials.

Finally, Chapter 8 includes some general conclusions and an outlook for future work including some preliminary investigations on microwave syntheses of non-olivine β-LiFe$_{1-x}M_x$PO$_4$ ($M=$Fe, Co, Ni) and maricite NaFe$_{1-x}$Mn$_x$PO$_4$ nanostructures for Li and Na-ion battery applications.
Rational Design of Nanostructured Electrodes for Li-ion Batteries

Table of Contents

Acknowledgements .. II
Abstract ... IV
List of Tables .. XIII
List of Figures .. XVI
Abbreviations .. XXVIII
1 Introduction .. 1
 1.1 Basic aspects of Li-ion batteries ... 1
 1.2 Configuration and working principles of Li-ion batteries .. 2
 1.3 Key challenges in Li-ion batteries .. 2
 1.4 Cell voltage ... 3
 1.5 Electrode materials for Li-ion batteries .. 4
 1.5.1 Intercalation cathode materials ... 4
 1.5.1.1 Layered transition metal oxides LiMO₂ (M=Co, Mn, Ni) 5
 1.5.1.2 Spinel LiₓM₂O₄ .. 6
 1.5.1.3 Polyanionic compounds .. 8
 1.5.1.3.1 LiFePO₄ cathode material ... 8
 1.5.1.3.2 Li⁺ diffusion mechanisms in olivine LiFePO₄ ... 10
 1.5.1.4 High voltage olivine LiₓMPO₄ (M=Mn, Co, Ni) cathodes 13
 1.5.1.4.1 Olivine mixed metal phosphates LiFe₁₋ₓMₓPO₄ .. 15
 1.5.2 Anode materials .. 16
 1.5.2.1 Li metal ... 16
 1.5.2.2 Carbon ... 17
 1.5.2.3 Transition metal oxides as conversion anodes .. 17
 1.5.2.3.1 Fe₃O₄ magnetite .. 19
 1.5.2.3.2 Mn₃O₄ hausmannite ... 20
 1.5.2.3.3 NiO ... 20
 1.6 Synthesis of electrode materials ... 21
 1.6.2 Solid state synthesis ... 22
 1.6.3 Solvothermal synthesis ... 22
 1.6.4 Ultrasound synthesis ... 24
 1.6.5 Microwave synthesis ... 25
 1.6.6 Ionothermal synthesis .. 28
 1.6.7 Synthetic strategies to electrochemical performance enhancement 29
 1.6.8 Single source precursor (SSP) synthesis ... 33
 1.7 Aims .. 35
2 Materials and Characterisation Methods .. 36
2.1 Materials .. 36
2.2 Experimental procedure ... 36
 2.2.1 Synthesis of LiH₂PO₄ .. 36
 2.2.2 Microwave synthesis of C/LiFe₁₋ₓMₙPO₄ olivines from commercial starting materials .. 36
 2.2.2.1 Carbon coating of C/LiFe₁₋ₓMₙPO₄ olivines .. 37
 2.2.3 Synthesis of “[Fe₁₋ₓMₙ(ΟBu)₂(THF)]” (x=0, 0.5 and 1) metal alkoxide precursors .. 37
 2.2.4 Microwave synthesis of LiFe₁₋ₓMₙPO₄ nanostructures from “[Fe₁₋ₓMₙ(ΟBu)₂(THF)]” (x=0, 0.5 and 1) metal alkoxide precursors .. 38
 2.2.5 Ultrasonic-assisted synthesis of C/MₙO₄ hausmanite from “[Mn(ΟBu)₂(THF)]” metal alkoxide precursor .. 38
 2.2.6 Synthesis of “[MLₓX(OBu)₄(THF)]” (M=Fe, Mn, Ni; X=Br, Cl) heterometallic alkoxide precursors .. 39
 2.2.7 Microwave synthesis of LiFe₁₋ₓMₙPO₄ nanostructures from “[Fe₁₋ₓMₙLiBr(OBu)₄(THF)]” (x=0, 0.5 and 1) and “[FeLi₂Cl(OBu)₄(THF)]” heterometallic alkoxide precursors .. 39
 2.2.8 Solvothermal synthesis of LiFePO₄ nanostructures using “[FeLi₂Cl(OBu)₄(THF)]” heterometallic alkoxide precursor .. 40
 2.2.9 Solvothermal synthesis of LiFe₁₋ₓMₙPO₄ nanostructures from “[Fe₁₋ₓMₙLiBr(OBu)₄(THF)]” (x=0, 0.5 and 1) heterometallic alkoxide precursors .. 40
 2.2.10 Solvothermal synthesis of LiFePO₄ nanostructures from commercial starting materials .. 41
 2.2.11 Ultrasonic-assisted synthesis of Fe₃O₄ magnetite from [FeLi₂Br(OBu)₄(THF)] heterometallic alkoxide precursor .. 41
 2.2.12 Microwave synthesis of C/LiFe₁₋ₓNiPO₄ (x=0.05, 0.2, 0.15 and 0.2) nanostructures from heterometallic alkoxide precursor “[FeLi₂Cl(OBu)₄(THF)]” .. 41
 2.2.13 Ultrasound-assisted synthesis of C/NiO from “[NiLi₂Cl(OBu)₄(THF)]” heterometallic alkoxide precursor .. 42
2.3 Characterisation methods ... 42
 2.3.1 Structural characterisation .. 42
 2.3.1.1 Powder X-ray diffraction (PXRD) ... 42
 2.3.1.1.1 Rietveld Method .. 44
 2.3.1.2 Synchrotron powder X-ray diffraction ... 45
 2.3.1.3 High resolution powder neutron diffraction (PND) 46
 2.3.1.4 X-ray and neutron pair distribution function (PDF) 48
2.3.1.5 Single crystal X-ray diffraction (SCXRD) .. 52
2.3.2 Electron microscopy ... 53
2.3.2.1 Scanning electron microscopy (SEM) 53
2.3.2.2 Energy-dispersive X-ray spectroscopy (EDS) 53
2.3.2.3 Transmission electron microscopy (TEM) 54
2.3.3 Muon spin relaxation (μSR) .. 55
2.3.4 Electrochemical characterisation .. 57
 2.3.4.1 Galvanostatic cycling with potential limitations (GCPL) 57
 2.3.4.2 Cyclic voltammetry (CV) .. 59
2.3.5 Gas Uptake analysis ... 60
2.3.6 CHN elemental analysis .. 61
2.3.7 Atomic absorption spectroscopy (AAS) 61
2.3.8 1H NMR ... 62
2.3.9 FT-IR Spectroscopy ... 62
3 Local Structure and Li$^+$ Diffusion Studies of Microwave Synthesised LiFe$_{1-x}$Mn$_x$PO$_4$ olivines ... 64
 3.1 Introduction .. 64
 3.2 Results and discussion ... 64
 3.2.1 Synthesis and characterisation of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines 65
 3.2.1.1 PXRD of LiH$_2$PO$_4$ and LiFe$_{1-x}$Mn$_x$PO$_4$ phases 65
 3.2.1.2 SEM of LiH$_2$PO$_4$ and LiFe$_{1-x}$Mn$_x$PO$_4$ phases 73
 3.2.1.3 High resolution powder neutron diffraction of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines 76
 3.2.1.4 Neutron Pair Distribution Function (PDF) of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines ... 79
 3.2.1.5 Muon spin distribution function (μSR) of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines 88
 3.2.1.6 Electrochemical performance of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines 92
 3.3 Conclusions ... 98
4 Microwave Treatments of Single Source Alkoxides for Nanostructured Li-ion Battery Electrodes ... 100
 4.1 Introduction .. 100
 4.2 Results and discussion ... 100
 4.2.1 Synthesis and characterisation of [Fe(O'Bu)$_2$(THF)]$_2$ (I) 100
 4.2.2 Synthesis and characterisation of "[Mn(O'Bu)$_2$(THF)]$_2$" (II) 101
 4.2.3 Synthesis and characterisation of "[Fe$_{0.9}$Mn$_{0.1}$(O'Bu)$_2$(THF)]$_2$" (III) 102
 4.2.4 Synthesis and characterisation of LiFe$_{1-x}$Mn$_x$PO$_4$ and Mn$_3$O$_4$ nanostructures from "[M(O'Bu)$_2$(THF)]$_2$" (M=Fe, Mn) metal alkoxides .. 103
 4.2.4.1 PXRD of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from "[Fe$_{1-x}$Mn$_x$(O'Bu)$_2$(THF)]$_2$" ($x=0$, 0.5 and 1) .. 103
4.2.4.2 Electron microscopy of LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) nanostructures prepared from “[Fe$_{1-x}$Mn$_x$(O’Bu)$_2$(THF)]$_2$” (x=0, 0.5 and 1) .. 110

4.2.4.3 Electrochemical performance of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from “[Fe$_{1-x}$Mn$_x$(O’Bu)$_2$(THF)]$_2$” (x=0, 0.5 and 1) .. 113

4.2.4.4 PXRD and SEM of Mn$_3$O$_4$ nanoparticles prepared from hydrolysis of “[Mn(O’Bu)$_2$(THF)]$_2$” metal alkoxide .. 118

4.2.4.5 Electrochemical performance of Mn$_3$O$_4$ nanoparticles prepared from hydrolysis of “[Mn(O’Bu)$_2$(THF)]$_2$” .. 120

4.3 Conclusions ... 124

5 Microwave Treatments of Single Source Heterometallic Alkoxides for Nanostructured Li-ion Battery Electrodes ... 125

5.1 Introduction .. 125

5.2 Results and discussion ... 125

5.2.1 Synthesis and characterisation of “[MLi$_2$X(O’Bu)$_4$(THF)]$_n$” (M=Fe, Mn and X=Br, Cl) heterometallic alkoxide precursors .. 125

5.2.1.1 Synthesis and characterisation of [FeLi$_2$Br(O’Bu)$_4$(THF)]$_n$ (IV) ... 125

5.2.1.2 Synthesis and characterisation of “[FeLi$_2$Cl(O’Bu)$_4$(THF)]$_n$” (V) .. 127

5.2.1.3 Synthesis and characterisation of “[MnLi$_2$Br(O’Bu)$_4$(THF)]$_n$” (VI) 128

5.2.1.4 Synthesis and characterisation of “[Fe$_{0.3}$Mn$_{0.3}$Li$_2$Br(O’Bu)$_4$(THF)]$_n$” (VII) 128

5.2.2 Synthesis and characterisation of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures from “[MLi$_2$X(O’Bu)$_4$(THF)]$_n$” (M=Fe, Mn and X=Br, Cl) .. 129

5.2.2.1 PXRD and X-ray PDF analysis of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from “[MLi$_2$X(O’Bu)$_4$(THF)]$_n$” (M=Fe, Mn and X=Br, Cl) .. 132

5.2.2.2 Electron microscopy of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from “[MLi$_2$X(O’Bu)$_4$(THF)]$_n$” (M=Fe, Mn and X=Br, Cl) .. 144

5.2.2.3 Electrochemical performance of C/LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from “[MLi$_2$X(O’Bu)$_4$(THF)]$_n$” (M=Fe, Mn and X=Br, Cl) .. 146

5.2.3 Ionothermal microwave synthesis of LiFePO$_4$ nanostructures from “[FeLi$_2$Cl(O’Bu)$_4$(THF)]$_n$” heterometallic alkoxide precursor .. 153

5.2.3.1 PXRD of LiFePO$_4$ nanostructures prepared from ionothermal microwave synthesis using “[FeLi$_2$Cl(O’Bu)$_4$(THF)]$_n$” .. 154

5.2.3.2 SEM of LiFePO$_4$ nanostructures prepared from ionothermal microwave synthesis using “[FeLi$_2$Cl(O’Bu)$_4$(THF)]$_n$” .. 158

5.2.3.3 Electrochemical performance of LiFePO$_4$ nanostructures prepared from ionothermal microwave synthesis using “[FeLi$_2$Cl(O’Bu)$_4$(THF)]$_n$” .. 159

5.3 Conclusions .. 165
6 Solvothermal Treatments of Single Source Heterometallic Alkoxides to Nanostructured Li-ion Battery Electrodes ... 166
6.1 Introduction ... 166
6.2 Results and discussion .. 166
6.2.1 Synthesis and characterisation of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} and Fe\textsubscript{2}O\textsubscript{4} nanostructures prepared from heterometallic alkoxide precursors .. 166
6.2.1.1 PXRD of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures prepared from “[MLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” (M=Fe, Mn) .. 169
6.2.1.2 PXRD of LiFePO\textsubscript{4} nanostructures prepared from commercial starting materials ... 173
6.2.1.3 Electron microscopy of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures prepared from “[MLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” (M=Fe, Mn) .. 175
6.2.1.4 Electrochemical performance of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures from “[MLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” (M=Fe, Mn) ... 177
6.2.1.5 PXRD and SEM of Fe\textsubscript{2}O\textsubscript{4} nanoparticles prepared from hydrolysis of [FeLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]\textsubscript{n} .. 186
6.2.1.6 Electrochemical performance of Fe\textsubscript{2}O\textsubscript{4} nanoparticles prepared from hydrolysis of [FeLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]\textsubscript{n} .. 187
6.3 Conclusions ... 190
7 Single Source Heterometallic Alkoxide precursors to Nickel Olivine and Nickel Oxide electrodes .. 192
7.1 Introduction ... 192
7.2 Results and discussion .. 193
7.2.1 Synthesis and characterisation of “[NiLi\textsubscript{2}Cl(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” (VIII) 193
7.2.2 Synthesis and characterisation of LiFe\textsubscript{1-x}Ni\textsubscript{x}PO\textsubscript{4} and NiO nanostructures prepared from heterometallic alkoxide precursors .. 194
7.2.2.1 PXRD of LiFe\textsubscript{1-x}Ni\textsubscript{x}PO\textsubscript{4} nanostructures prepared from “[FeLi\textsubscript{2}Cl(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” and NiC\textsubscript{2}O\textsubscript{4}·2H\textsubscript{2}O precursors .. 197
7.2.2.2 PXRD of LiMn\textsubscript{0.95}Ni\textsubscript{0.05}PO\textsubscript{4} nanostructure prepared from “[MnLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” and NiC\textsubscript{2}O\textsubscript{4}·2H\textsubscript{2}O precursors .. 204
7.2.2.3 PXRD of LiFe\textsubscript{1-x}Ni\textsubscript{x}PO\textsubscript{4} nanostructures prepared from “[MnLi\textsubscript{2}Br(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” (M=Fe, Ni) .. 206
7.2.2.4 SEM and EDS of LiFe\textsubscript{0.95}Ni\textsubscript{0.05}PO\textsubscript{4} nanostructures ... 211
7.2.2.5 Electrochemical performance of LiFe\textsubscript{0.95}Ni\textsubscript{0.05}PO\textsubscript{4} nanostructures 215
7.2.2.6 PXRD and SEM of NiO nanoparticles prepared from hydrolysis of “[NiLi\textsubscript{2}Cl(O\textsubscript{2}Bu)\textsubscript{4}(THF)\textsubscript{2}]_n” .. 221
7.2.2.7 Electrochemical performance of NiO nanoparticles prepared from hydrolysis of “[NiLi₂Cl(O'Bu)₄(THF)₂]ₜ” ... 223

7.3 Conclusions .. 227

8 Overall Conclusions and Future Work .. 229

8.1 Overall conclusions .. 229

8.2 Future work ... 233

8.2.1 Microwave synthesis of non-olivine β-LiFe₁₋ₓMₓPO₄ (M=Fe, Co or Ni) nanostructures ... 235

8.2.2 Microwave treatments of single source heterometallic alkoxide precursors to maricite NaFe₁₋ₓMₓPO₄ nanostructures ... 236

Appendix .. 239

References .. 269
List of Tables
Table 1.1. Dielectric loss tangent tanδ (2.45 GHz, 20 °C) for common pure solvents .. 27
Table 3.1. List of LiH₂PO₄ and LiFeₓMn₁₋ₓPO₄ samples prepared from commercial starting materials. .. 66
Table 3.2. Calculated lattice parameters from Rietveld refinements for LiMnPO₄ phases prepared using using MnC₂O₄·H₂O or MnCO₃. .. 70
Table 3.3. Calculated lattice parameters for the LiFeₓMn₁₋ₓPO₄ olivine phases obtained from Rietveld refinements. .. 73
Table 3.4. Typical sizes of LiFeₓMn₁₋ₓPO₄ olivine phases obtained from SEM 76
Table 3.5. Li, Fe and Mn content in LiFeₓMn₁₋ₓPO₄ olivine phases from the Rietveld refinements of PND data at room temperature 79
Table 3.6. R_w values obtained from neutron PDF fits of single-phase LiFeₓMn₁₋ₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) olivines at different r ranges 86
Table 3.7. Scale factor values obtained from neutron PDF fits of single-phase LiFeₓMn₁₋ₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) olivines at different r ranges 86
Table 3.8. Specific Surface Area and Average Pore Size from BET analysis for LiFeₓMn₁₋ₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) olivine phases, as derived from their N₂ sorption isotherms. .. 88
Table 3.9. D_Li and E_acet at room temperature of LiFeₓMn₁₋ₓPO₄ (x=0.25, 0.5 and 0.75) samples from μSR data. .. 92
Table 4.1. Fe and Mn contents of “[Fe(O'Bu)₂(THF)]₂“ (I), “[Mn(O'Bu)₂(THF)]₂“ (II) and “[Fe₀.₅Mn₀.₅(O'Bu)₂(THF)]₂“ (III) metal alkoxide precursors obtained from AAS analysis. .. 103
Table 4.2. Preparation of “[M(O'Bu)₂(THF)]₂“ (M = Fe, Mn) (I, II and III) alkoxide precursors and the reactions attempted with these precursors to obtain LiFeₓMn₁₋ₓPO₄ (x = 0, 0.5 and 1) and Mn₃O₄ nanoparticles. .. 105
Table 4.3. Calculated lattice parameters from Rietveld refinements for the different lithium metal phosphates prepared from “[M(O'Bu)₂(THF)]₂“ (M=Fe, Mn) (I, II and III) metal alkoxide precursors. .. 111
Table 5.1. Crystal data and structure refinement of [FeLi₂Br(O'Bu)₄(THF)]ₙ (IV). 127
Table 5.2. CHN Microanalysis of [FeLi₂Br(O'Bu)₂(THF)]ₙ, “[MnLi₂Br(O'Bu)₂(THF)]ₙ“ and “[Fe₀.₅Mn₀.₅Li₂Br(O'Bu)₂(THF)]ₙ” heterometallic alkoxide precursors. .. 129
Table 5.3. Fe, Mn and Li contents of [FeLi₂Br(O'Bu)₂(THF)]ₙ (IV), “[FeLi₂Cl((O'Bu)₂(THF))ₙ“ (V), “[MnLi₂Br(O'Bu)₂(THF)]ₙ“ (VI) and “[Fe₀.₅Mn₀.₅Li₂Br(O'Bu)₂(THF)]ₙ“ (VII) heterometallic alkoxide precursors obtained from AAS analysis. .. 129
Table 5.4. Preparation of “[MLi₂X(O‘Bu)₄(THF)₂]ₙ” (M=Fe, Mn; X=Br, Cl) (IV, V, VI and VII) single source heterometallic alkoxide precursors ... 131

Table 5.5. Calculated lattice parameters from Rietveld refinements for the β and α-LiFePO₄_IV polymorphs, LiFePO₄_V and LiMnPO₄_VI nanostructures prepared from “[MLi₂X(O‘Bu)₄(THF)₂]ₙ” (M=Fe, Mn; X=Br, Cl) (IV, V and VI) heterometallic alkoxide precursors. ... 136

Table 5.6. Calculated lattice parameters from X-ray PDF fits for the β-LiFePO₄_IV, α-LiFePO₄_V and LiMnPO₄_VI nanostructures prepared using heterometallic alkoxide precursors. ... 139

Table 5.7. Calculated lattice parameters from Rietveld refinements for the different LiFe₀.₅Mn₀.₅PO₄ nanostructures. .. 141

Table 5.8. Calculated lattice parameters from X-ray PDF fits for the different LiFe₀.₅Mn₀.₅PO₄ nanostructures prepared using heterometallic alkoxide precursors…. 142

Table 5.9. Calculated lattice parameters, scale factors and R_w values from X-ray PDF fits at different r ranges for LiFePO₄_V, LiFe₀.₅Mn₀.₅PO₄_VII and LiFePO₄_VI nanostructures prepared through a fast microwave synthesis using heterometallic alkoxide precursors. ... 144

Table 5.10. Calculated lattice parameters from Rietveld refinements for LiFePO₄_V_IL olivines prepared through fast ionothermal microwave synthesis. 156

Table 5.11. Calculated lattice parameters, scale factors and R_w values from X-ray PDF fits at different r ranges for LiFePO₄_V_IL_10min nanostructure prepared through a fast ionothermal microwave synthesis. ... 157

Table 5.12. Calculated scale factor, amorphous content and spdiameters for the LiFe₁₋ₓMnₓPO₄ olivine phases obtained from two isostructural phases refinements of neutron PDF data from 1 to 15 Å. ... 158

Table 6.1. Preparation of solvothermally synthesised LiFe₁₋ₓMnₓPO₄ (x = 0, 0.5 and 1) nanostructures and Fe₂O₄ magnetite. ... 168

Table 6.2. Calculated lattice parameters from Rietveld refinements for the different LiFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[MLi₂Br(O‘Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors ... 170

Table 6.3. Calculated lattice parameters from Rietveld refinements for the different LiFePO₄ nanostructures prepared through a solvothermal synthesis at 220 °C using [FeLi₂Br(O‘Bu)₄(THF)₂]ₙ (IV) heterometallic alkoxide precursor at different reaction times. ... 172
Table 6.4. Calculated lattice parameters from Rietveld refinements for the different LiFePO₄ nanostructures prepared through a solvothermal synthesis at 220 °C for different reaction times (8, 10 and 12 hr) using commercial starting materials........174

Table 6.5. Calculated lattice parameters from Rietveld analysis of PXRD data for post-cycled LiFeₓ₋₀.₅MnₓPO₄ nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[MLi₂Br(O′Bu)₂(THF)]₂” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors..183

Table 7.1. Preparation of olivine LiFeₓ₋₀.₅NiₓPO₄ and C/NiO nanostructures from heterometallic alkoxide precursors..196

Table 7.2. Calculated lattice parameters from Rietveld refinements for LiFeₓ₋₀.₅NiₓPO₄ (x=0, 0.05 and 0.1) nanostructures after microwave synthesis using “[FeLi₂Cl(O′Bu)₄(THF)]₂” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and 10% PVP in ethylene glycol..199

Table 7.3. Calculated lattice parameters from Rietveld refinements for LiFe₀.₉₅Ni₀.₀₅PO₄ nanostructures after microwave synthesis using “[FeLi₂Cl(O′Bu)₄(THF)]₂” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and different PVP contents in ethylene glycol. ..202

Table 7.4. Calculated lattice parameters from Rietveld refinements for LiFe₀.₉₅Ni₀.₀₅PO₄₋₀.₀₅PVP nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar with and without sucrose.203

Table 7.5. CHN Microanalysis of LiFe₀.₉₅Ni₀.₀₅PO₄ nanostructures prepared through a microwave-assisted synthesis using “[FeLi₂Cl(O′Bu)₄(THF)]₂” (V) heterometallic alkoxide precursor with and without PVP. ..204

Table 7.6. Calculated lattice parameters from Rietveld refinements for LiMn₀.₉₅Ni₀.₀₅PO₄ nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar. Samples prepared with “[MnLi₂Br(O′Bu)₂(THF)]₂” (VI) heterometallic precursor, NiC₂O₄·H₂O, H₃PO₄ and 15% PVP in ethylene glycol.205

Table 7.7. Calculated lattice parameters from Rietveld refinements for LiFe₀.₉₅Ni₀.₀₅PO₄₋₀.₀₅PVP nanostructures after microwave synthesis without and with 15% PVP, and post-heat treatment for 1 hr at 700 °C under Ar without and with sucrose carbon coating. Samples prepared using “[FeLi₂Cl(O′Bu)₂(THF)]₂” (V) and “[NiLi₂Cl(O′Bu)₂(THF)]₂” (VIII) heterometallic alkoxide precursors, H₃PO₄ and PVP in ethylene glycol. ..208

Table 7.8. Calculated crystallite sizes from Scherrer broadening for Ni doped LiFePO₄ and LiMnPO₄ nanostructures. ..209
List of Figures

Figure 1.1. Gravimetric power and energy densities for different rechargeable batteries.\(^4\) ... 2

Figure 1.2. Li-ion battery schematic diagram. ... 3

Figure 1.3. Relative energy diagram of electrode potentials and electrolyte energy gap, \(E_g\), in LIBs.\(^1\) ... 4

Figure 1.4. Comparative energy diagrams of layered LiCoO\(_2\), LiNiO\(_2\) and LiMnO\(_2\).\(^{16}\) 6

Figure 1.5. Crystal structures of layered LiCoO\(_2\) and spinel LiMn\(_2\)O\(_4\).\(^{33}\) 7

Figure 1.6. Crystal structures of \(\alpha\) and \(\beta\)-LiFePO\(_4\) polymorphs................................. 10

Figure 1.7. Curved trajectories for Li\(^+\) migration in (a) LiFePO\(_4\)\(^{54}\) and (b) LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)\(^{55}\) between sites in the [010] direction. ... 11

Figure 1.8. Different classic two-phase models for olivine LiFePO\(_4\). (a) Shrinking-core model,\(^{59}\) (b) Mosaic model\(^{60}\) and (c) Domino-cascade model.\(^{38}\) ... 12

Figure 1.9. Crystal field splitting of the \(M^{2+}\) cations in octahedral coordination. The Fe compound delivers a lower voltage vs. Li\(^+\)/Li\(^0\) compared to the Mn compound because of the shift in the Fe\(^{3+}/2+\) redox energy due to the pairing energy of the sixth electron in the \(t_{2g}\) orbital.\(^{64, 71}\) .. 14

Figure 1.10. Voltage vs. capacity for positive and negative electrode materials used or under consideration for the next generation of rechargeable Li-based batteries.\(^3\) 21

Figure 1.11. Schematic drawing of an autoclave for solvothermal synthesis. 23

Figure 1.12. (a) Dipolar polarisation: dipolar molecules which try to align with an oscillating electric field. (b) Ionic conduction: charged particles in solution will follow the applied electric field. ... 27

Figure 1.13. General strategies for electrochemical performance enhancement and their rationale: (a) doping, (b) reducing dimensions of active material, (c) tuning particle morphology and (d) formation of conductive coatings around the active material.. 33

Figure 2.1. Schematic illustration of Bragg’s law condition.\(^{206}\) .. 43

Figure 2.2. Principle of the PDF. Interatomic distances \(r_i\) cause maxima in the PDF \(G(r)\). The area below the peaks correspond to the number of neighbors, scaled by the scattering power of the respective atom. ... 50

Figure 2.3. Schematic of a \(\mu\)SR experiment. A spin-polarised beam of muons is implanted in the sample. After muon decay, positrons are detected by the forwards and backwards detector. ... 55

Figure 2.4. Schematic showing Swagelok battery set-up. .. 59

Figure 2.5. (a) In CV a voltage is swept between two values (\(V_1\) and \(V_2\)) at a fixed rate. When the voltage reaches \(V_2\) the scan is reversed and the voltage swept back to \(V_1\). (b)
Typical CV for a reversible single electrode transfer reaction containing only a single electrochemical reactant.\(^6\) ... 60

Figure 3.1. PXRD patterns of LiFePO\(_4\) prepared using commercial LiH\(_2\)PO\(_4\) and LiFePO\(_4\) prepared using synthesised LiH\(_2\)PO\(_4\). * indicates Li\(_2\)PO\(_4\) impurities. ... 67

Figure 3.2. Comparative PXRD patterns of LiMnPO\(_4\) samples prepared using MnSO\(_4\)\(_2\)H\(_2\)O, MnCO\(_3\), MnC\(_2\)O\(_4\)\(_2\)H\(_2\)O and Mn(acac)\(_3\) after microwave synthesis for 3 hr at 220 °C. * indicates Li\(_2\)PO\(_4\) impurities and \(^\circ\) possible peaks coming from a Cmcm high pressure phase of LiMnPO\(_4\). ... 68

Figure 3.3. PXRD patterns of LiMnPO\(_4\) after the microwave synthesis for 3 hr at 220 °C, LiMnPO\(_4\) after the microwave synthesis and heat treatment for 1 hr at 500 °C and LiMnPO\(_4\) after the microwave synthesis, heat treatment for 1 hr at 500 °C and acetic acid 0.01M washing. (a) LiMnPO\(_4\) prepared using MnC\(_2\)O\(_4\)\(_2\)H\(_2\)O. (b) LiMnPO\(_4\) prepared using MnCO\(_3\). * indicates Li\(_2\)PO\(_4\) impurities and \(^\circ\) possible peaks from Cmcm LiMnPO\(_4\) high pressure phase. ... 69

Figure 3.4. Rietveld analysis of PXRD data from LiMnPO\(_4\) phases to an orthorhombic Pnma structure. Samples prepared through a microwave synthesis (3 hr 220 °C) and post-heat treatment for 1 hr at 500 °C using MnC\(_2\)O\(_4\)\(_2\)H\(_2\)O or MnCO\(_3\). ... 70

Figure 3.5. Comparative PXRD patterns of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0, 0.25, 0.5, 0.75, 1) olivine phases. Samples prepared by a solvothermal microwave-assisted synthesis (3 h at 220 °C) using a stoichiometric mixture of LiH\(_2\)PO\(_4\), Fe(acac)\(_3\), and MnC\(_2\)O\(_4\)\(_2\)H\(_2\)O in ethylene glycol (LiMnPO\(_4\) prepared using Mn(acac)\(_3\)). ... 71

Figure 3.6. Rietveld analysis of PXRD data from LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0, 0.25, 0.5, 0.75, 1) olivine phases to an orthorhombic Pnma structure. ... 72

Figure 3.7. SEM images of (a, b) commercial LiH\(_2\)PO\(_4\). (c, d) LiH\(_2\)PO\(_4\) powders prepared with LiOH\(\cdot\)H\(_2\)O and H\(_3\)PO\(_4\). ... 74

Figure 3.8. SEM images of LiFePO\(_4\) powders prepared using synthesised LiH\(_2\)PO\(_4\). ... 74

Figure 3.9. SEM images of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0.25, 0.5, 0.75, 1) olivine phases. (a, b) LiFe\(_{0.75}\)Mn\(_{0.25}\)PO\(_4\). (c, d) LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\). (e, f) LiFe\(_{0.25}\)Mn\(_{0.75}\)PO\(_4\). (g, h) LiMnPO\(_4\). ... 75

Figure 3.10. Rietveld refinements of high resolution powder neutron diffraction data collected at room temperature of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0, 0.25, 0.5, 0.75 and 1) olivine phases (detector bank 5). ... 77

Figure 3.11. Changes in the unit-cell parameters as a function of the Mn content obtained from after Rietveld refinements of high resolution PND data at room temperature of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0, 0.25, 0.50, 0.75, 1) olivine phases. ... 78

Figure 3.12. Raw neutron PDF data obtained for single-phase LiFePO\(_4\) and LiMnPO\(_4\) at room temperature in the range from 1 - 100 Å. The scattering data was terminated at Q\(_{\text{max}}\)=36 Å\(^{-1}\). ... 79
Figure 3.13. Raw neutron PDF data obtained for single-phases LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75, 1) at room temperature in the range from 1 to 5 Å. ... 82

Figure 3.14. Fits of neutron PDF data obtained for single-phase LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75 and 1) olivines at room temperature in the r range from 1 - 30 Å. 84

Figure 3.15. Fits of neutron PDF data obtained for single-phase LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75 and 1) olivines at room temperature in the r range from 1 Å to 5 Å. Dots represent observed data and solid line the calculated pattern. The lower line is the difference curve. .. 85

Figure 3.16. High resolution TEM images of (a, b) LiFe$_{0.25}$Mn$_{0.75}$PO$_4$ powders, with SAED confirming Pnma crystal structure. (d) Dark field imaging reveals pores in the particle of typically 10 nm in diameter. ... 87

Figure 3.17. N$_2$ sorption isotherms at 77 K for LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75 and 1) olivine phases. ... 88

Figure 3.18. (a) (b) (c) Raw µ+SR data for LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0.25$, 0.5 and 0.75) at 300 K at zero field (ZF) [circles] and applied longitudinal fields of 10 G [squares] and 20 G [diamonds]. Temperature dependence of (d) (e) (f) fluctuation rate (ν) and (g) (h) (i) field distribution width (Δ) at muon stopping site, measured from 100 K to 400 K at 0, 10 and 20 G longitudinal fields. ... 91

Figure 3.19. Raw µ+SR data for LiMnPO$_4$ at 300 K at zero field (ZF) and applied longitudinal fields of 10 G and 20 G. ... 92

Figure 3.20. (a) Voltage-capacity profile and (b) cycling stability of C/LiFePO$_4$ (15% wt. C from sucrose) with C black and PTFE in 60:30:10 % wt. ratio between 2.2 V and 4.0 V at C/20 rate. ... 93

Figure 3.21. Voltage-capacity profiles of C/LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0.25$, 0.50, 0.75 and 1) (15% wt. C from sucrose), C black and PTFE in 60:30:10 (%) wt.) between 2.2 V and 4.5 V (depending on Mn content) at C/20 rate. ... 94

Figure 3.22. (a) Cycling stability between 2.2 V and 4.5 V at C/20 rate of C/LiFe$_{1-x}$Mn$_x$PO$_4$ (15% wt. C sucrose), C black and PTFE in a 60:30:10 % wt. ratio. (b) PXRD of cycled C/LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures in the discharged state. ... 95

Figure 3.23. (a) Comparative rate performance of C/LiFe$_{1-x}$Mn$_x$PO$_4$ (15% wt. C from sucrose), C black and PTFE in 60:30:10 (%) wt.). (b) PXRD of cycled at different rates C/LiFe$_{1-x}$Mn$_x$PO$_4$ materials in the discharged state. ... 97

Figure 3.24. CVS at 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V of C/LiFe$_{1-x}$Mn$_x$PO$_4$ (15% wt. C from sucrose), C black and PTFE in 60:30:10 (%) wt.). (a) LiFePO$_4$, (b) LiFe$_{0.75}$Mn$_{0.25}$PO$_4$, (c) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, (d) LiFe$_{0.25}$Mn$_{0.75}$PO$_4$ and (e) LiMnPO$_4$ olivine phases. ... 98
Figure 4.1. PXRD patterns of LiFePO₄ samples prepared using a [Fe(O'Bu)₂(THF)]₂ precursor and different lithium and phosphate sources after fast microwave synthesis.

Figure 4.2. PXRD pattern of LiFePO₄ prepared using [Fe(O'Bu)₂(THF)]₂ (I) precursor, LiOH, H₂O and H₃PO₄ in a 1:2:2 molar ratio in benzyl alcohol.

Figure 4.3. PXRD pattern of LiMnPO₄ prepared using “[Mn(O'Bu)₂(THF)]₂” (II) precursor, LiOH, H₂O and H₃PO₄ in a 1:2:2 molar ratio in benzyl alcohol.

Figure 4.4. PXRD pattern of LiFe₀.₅Mn₀.₅PO₄-III prepared from stoichiometric mixture of [Fe(O'Bu)₂(THF)]₂ (I) and “[Mn(O'Bu)₂(THF)]₂” (II) alkoxide precursors. * indicates Fe₃O₄ impurities.

Figure 4.5. PXRD pattern of LiFe₀.₅Mn₀.₅PO₄-II prepared from stoichiometric mixture of [Fe(O'Bu)₂(THF)]₂ (I) and “[Mn(O'Bu)₂(THF)]₂” (II) alkoxide precursors.

Figure 4.6. PXRD pattern of LiFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures from “[M(O'Bu)₂(THF)]₂” (M=Fe, Mn) (I, II and III) after heat treatment for 1 hr at 500 °C in Ar.

Figure 4.7. Rietveld analysis of high resolution PXRD data of LiFePO₄-I, LiFe₀.₅Mn₀.₅PO₄-III and LiMnPO₄-II nanostructures after microwave-assisted synthesis and heating for 1 h at 500 °C under Ar flow.

Figure 4.8. SEM images of (a) LiFePO₄-I, (b) LiFe₀.₅Mn₀.₅PO₄-III, (c) LiMnPO₄-II and (d) Mn₃O₄ nanostructures from “[M(O'Bu)₂(THF)]₂” (M=Fe, Mn) (I, II and III) metal alkoxide precursors.

Figure 4.9. High resolution TEM images of (a, d) LiFePO₄-I, (b, e) LiFe₀.₅Mn₀.₅PO₄-III and (c, f) LiMnPO₄-II nanostructures from “[M(O'Bu)₂(THF)]₂” (M=Fe, Mn) (I, II and III).

Figure 4.10. Voltage-capacity profiles and cycling stability between 2.2 V and 4.0, 4.3 or 4.5 V at C/20 rate of (a) and (b) C/LiFePO₄-I (15% wt. C from sucrose), (c) and (d) C/LiFe₀.₅Mn₀.₅PO₄-III (15% wt. C from sucrose), and (e) and (f) C/LiMnPO₄-II (15% wt. C from sucrose).

Figure 4.11. Comparative rate behaviour of C/LiFePO₄-I, C/LiFe₀.₅Mn₀.₅PO₄-III and C/LiMnPO₄-II (15% wt. C from sucrose) with C black and PTFE in 60:30:10 wt. ratio at different charge-discharge C rates.

Figure 4.12. PXRD of post-cycled C/LiFePO₄-I, C/LiFe₀.₅Mn₀.₅PO₄-III and C/LiMnPO₄-II at different rates in the discharged state.

Figure 4.13. CVs at a 0.1 mV·s⁻¹ scan rate between 2.5 V and 4.5 V of (a) C/LiFePO₄-I, (b) C/LiMnPO₄-II, and (b) C/LiFe₀.₅Mn₀.₅PO₄-III nanostructures prepared with “[M(O'Bu)₂(THF)]₂” (M=Fe, Mn) (I, II and III) metal alkoxide precursors.

Figure 4.14. Rietveld analysis of PXRD data of hausmannite Mn₃O₄ nanostructure. [Rwp=19.5 %, Rexp=15.87 %, x²=1.51, a=5.7655(3) Å, b=5.7655(3) Å and c=9.4634(7) Å].

XIX
Figure 4.15. PXRD pattern of Mn$_3$O$_4$ hausmannite prepared through a room temperature ultrasound-assisted synthesis and post-heat treatment of Mn$_3$O$_4$ mixed with 15% wt. C from sucrose at 500 °C and 700 °C for 1 hr under air.119

Figure 4.16. PXRD pattern of Mn$_3$O$_4$ hausmannite prepared through a room temperature ultrasound-assisted synthesis and post-heat treatment of Mn$_3$O$_4$ hausmannite mixed with 15% wt. C from sucrose at 700 °C for 3 hr under Ar flow.120

Figure 4.17. (a) Voltage-composition profile, (b) voltage-capacity profile, (c) cycling stability of C/Mn$_3$O$_4$ (15% C from sucrose) with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at 100 mA·g$^{-1}$. (d) PXRD of cycled C/Mn$_3$O$_4$ in the charged state. ...122

Figure 4.18. Rate behavior of C/Mn$_3$O$_4$ (15% wt. C from sucrose) mixed with C black and PTFE in 60:30:10 % wt. ratio over the potential range between 0.01 V and 3.00 V at different charge/discharge rates. ...123

Figure 4.19. CV of C/Mn$_3$O$_4$ hausmannite at a 0.1 mV·s$^{-1}$ scan rate between 0.01 V and 3.00 V. ...123

Figure 5.1. Propagation of the crystal structure of [FeLi$_2$Br(OBu)$_4$(THF)$_2$]$_n$ (IV) in the c direction to form a polymeric chain. ..126

Figure 5.2. Rietveld analysis of pXRD data of α-LiFePO$_4$-IV and β-LiFePO$_4$-IV nanostructures prepared using [FeLi$_2$Br(OBu)$_4$(THF)$_2$]$_n$ (IV) alkoxide precursor.133

Figure 5.3. PXRD pattern of LiFePO$_4$-V after fast microwave synthesis and after heat treatment in tube furnace for 1 hr at 700 ºC under Ar atmosphere. Sample prepared using “[FeLi$_2$Cl(OBu)$_4$(THF)$_2$]$_n$“ (V) heterometallic precursor and H$_3$PO$_4$ in a 1:1 molar ratio in ethylene glycol. ...135

Figure 5.4. PXRD pattern of LiMnPO$_4$-VI after fast microwave synthesis and after heat treatment in tube furnace for 1 hr at 700 ºC under Ar atmosphere. Sample prepared using “[MnLi$_2$Br(OBu)$_4$(THF)$_2$]$_n$“ (VI) heterometallic alkoxide precursor and H$_3$PO$_4$ in a 1:1 molar ratio in ethylene glycol. ...135

Figure 5.5. Rietveld analysis of PXRD data of LiFePO$_4$-V and LiMnPO$_4$-VI nanostructures prepared using “[FeLi$_2$Cl(OBu)$_4$(THF)$_2$]$_n$“ (V) and “[MnLi$_2$Br(OBu)$_4$(THF)$_2$]$_n$“ (VI), respectively. ...136

Figure 5.6. Fits of X-ray PDF data collected at 100 K for B-LiFePO$_4$-IV, α-LiFePO$_4$-V, and LiMnPO$_4$-VI prepared through a fast microwave synthesis using heterometallic alkoxide precursors in the r range from 1-15 Å. ...138

Figure 5.7. Rietveld analysis of PXRD pattern of different LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures prepared from heterometallic alkoxide precursors “[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(OBu)$_4$(THF)$_2$]$_n$“ (VII), [FeLi$_2$Br(OBu)$_4$(THF)$_2$]$_n$ (IV), “[FeLi$_2$Cl(OBu)$_4$(THF)$_2$]$_n$“ (V), and “[MnLi$_2$Br(OBu)$_4$(THF)$_2$]$_n$“ (VI). ...140
Figure 5.8. Fits of X-ray PDF data collected at 100 K for LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures prepared through a fast microwave synthesis using heterometallic alkoxide precursors in the r range from 1-15 Å. ...141
Figure 5.9. (a) Fits of X-ray PDF data collected at 100 K for single-phase olivine LiFePO$_4$-V, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and LiMnPO$_4$-VI nanostructures prepared through a fast microwave synthesis using heterometallic alkoxide precursors in the r range from 1-5 Å. (b) Extention of the fit in the range from 1.3-2.5 Å. ...143
Figure 5.10. SEM images of (a) β-LiFePO$_4$-IV, (b) α-LiFePO$_4$-V, (c) LiMnPO$_4$-VI and (d) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII nanotubes. ...145
Figure 5.11. HR TEM images of (a, d) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII, (b, e) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VI and (c, f) LiMnPO$_4$-VI nanotubes. ...146
Figure 5.12. Voltage-capacity profiles and cycling stability at C/20 rate of (a, b) C/LiFePO$_4$-IV (15% wt. C from sucrose), (c, d) C/LiFePO$_4$-V (15% wt. C from sucrose), and (e, f) C/LiMnPO$_4$-VI (15% wt. C from sucrose). Samples prepared through a fast microwave synthesis (15 min 80 °C and 10 min at 240 °C) with from “[MLi$_2$X(O'Bu)$_2$(THF)]$_2$” (M=Fe, Mn; X=Br, Cl) (IV, V, VI) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).148
Figure 5.13. Voltage-capacity profiles and cycling stability at C/20 rate of (a, b) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-IV-VI (15% wt. C from sucrose), (c, d) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-V-VI (15% wt. C from sucrose), and (e, f) C/LiMnPO$_4$-VI (15% wt. C from sucrose). Samples prepared through a fast microwave synthesis (15 min 80 °C and 10 min at 240 °C) with from “[MLi$_2$X(O'Bu)$_2$(THF)]$_2$” (M=Fe, Mn; X=Br, Cl) (IV, V, VI, VII) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).151
Figure 5.14. (a) Comparative rate performance of C/LiFePO$_4$-V, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-Mix IV and VI, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and C/LiMnPO$_4$-VI (15% wt. C from sucrose) prepared with “[FeLi$_2$Cl(O'Bu)$_4$(THF)]_n$” (IV), “[Fe$_{0.5}Mn_{0.5}Li_2$Br(O'Bu)$_4$(THF)]_n$” (VII) and “[MnLi$_2$Br(O'Bu)$_4$(THF)]_n$” (VI) alkoxide precursors, respectively. (b) PXRD of cycled C/LiFePO$_4$-V, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-IV-VI and C/LiMnPO$_4$-VI at different C rates in the discharged state. ...152
Figure 5.15. CVs at a 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V of (a) C/LiFePO$_4$-IV, (b) C/LiFePO$_4$-V, (c) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and (d) C/LiMnPO$_4$-VI nanostructures. …..153
Figure 5.16. Rietveld analysis of PXRD data of LiFePO$_4$-V_IL olivines prepared using “[FeLi$_2$Cl(O'Bu)$_4$(THF)]_n$” (V) heterometallic precursor and H$_3$PO$_4$ in ionic liquid EMITFMS after 10 min and 1 hr of microwave irradiation at 240 °C. ...155
Figure 5.17. Fits at different r ranges of X-ray PDF data collected at 100 K for single-phase LiFePO$_4$-V_IL-10 min nanostructure prepared through a fast ionothermal microwave synthesis using heterometallic alkoxide precursors. ...157
Figure 5.18. High resolution SEM images of LiFePO_{4} _V_IL_10 min nanostructures prepared using “[FeLi_{2}Cl(O_Bu)_{4}(THF)_{2}]_n” (V) heterometallic precursor and H_{3}PO_{4} in ionic liquid EMI-TFMS after 10 min of microwave irradiation at 240 °C. .. 159

Figure 5.19. (a) Voltage-capacity profiles and (b) cycling stability of C/LiFePO_{4} _V_IL_10 min (15% wt. C from sucrose) prepared with “[FeLi_{2}Cl(O_Bu)_{4}(THF)_{2}]_n” (V) heterometallic alkoxide precursor in ionic liquid (EMI-TFMS) and mixed with C black and PTFE in 60:30:10 (% wt. ratio) between 2.2 V and 4.5 V at C/20 rate. .. 160

Figure 5.20. (a) Discharge capacity curves and (b) cycling stability at different charge-discharge C rates of C/LiFePO_{4} _V_IL_10 min (15% wt. C from sucrose) prepared with “[FeLi_{2}Cl(O_Bu)_{4}(THF)_{2}]_n” (V) alkoxide precursor in ionic liquid (EMI-TFMS) and mixed with C black and PTFE in 60:30:10 (% wt. ratio). .. 161

Figure 5.21. Rietveld analysis of PXRD data of post-cycled C/LiFePO_{4} _V_IL_10 min. [R_{wp}=60.4 %, R_{exp}=56.49 %, \chi^{2}=1.14, a=10.329(3) Å, b=6.007(2) Å and c=4.699(2) Å]. .. 162

Figure 5.22. (a) CV at a 0.1 mV\cdot s^{-1} scan rate between 2.2 V and 4.0 V of C/LiFePO_{4} _V_IL_10 min nanostructure prepared through a microwave-assisted ionothermal synthesis (15 min 80 °C and 10 min 240 °C) with “[FeLiCl(O_Bu)_{4}(THF)_{2}]_n” (V) heterometallic alkoxide precursor. (b) CV profiles of C/LiFePO_{4} _V_IL_10 min at different scan rates. .. 162

Figure 5.23. Peak current vs. square root of the scan rate for the C/LiFePO_{4} _V_IL_10 min (15% wt. C from sucrose) nanostructure prepared through an ionothermal microwave-assisted synthesis using “[FeLiCl(O_Bu)_{4}(THF)_{2}]_n” (V) heterometallic alkoxide precursor. .. 164

Figure 5.24. CVs at a 0.1 mV\cdot s^{-1} scan rate of C/LiFePO_{4} _V_IL_10 min (15% wt. C from sucrose) and C/LiFePO_{4} _V (15% wt. C from sucrose) nanostructures prepared through fast microwave-assisted synthesis using “[FeLiCl(O_Bu)_{4}(THF)_{2}]_n” (V) heterometallic alkoxide precursor. .. 164

Figure 6.1. Rietveld analysis of high resolution PXRD data of LiFe_{1-x}MnPO_{4} (x=0, 0.5 and 1) nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[MLi_{2}Br(O_Bu)_{4}(THF)_{2}]_n” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors. .. 170

Figure 6.2. Rietveld analysis of PXRD data of LiFePO_{4} nanostructures prepared at different reaction times (8, 10 and 12 hr) through a solvothermal synthesis at 220 °C using [FeLi_{3}Br(O_Bu)_{4}(THF)_{2}]_n (IV) heterometallic alkoxide precursor. .. 172

Figure 6.3. PXRD data of LiFePO_{4} nanostructures prepared at different reaction times (1 and 4 hr) through a solvothermal synthesis at 220 °C using single source [FeLi_{3}Br(O_Bu)_{4}(THF)_{2}]_n (IV) heterometallic alkoxide precursor. .. 173
Figure 6.4. Rietveld analysis of PXRD data of LiFePO₄ nanostructures prepared through a solvothermal synthesis at 220 °C for different reaction times (8, 10 and 12 hr) using commercial starting materials.174

Figure 6.5. High resolution SEM images of (a) LiFePO₄_S_IV_12 hr, (b) LiFe₀.₅Mn₀.₅PO₄_S_VII_12 hr and (c) LiMnPO₄_S_VI_12 hr nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using heterometallic alkoxide precursors “[ML₂Br(O'Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII). (d) LiFePO₄ sample prepared through a solvothermal synthesis (12 hr at 220 °C) using commercial starting materials176

Figure 6.6. Particle morphology evolution of LiFePO₄ with the acidity (pH) of the solvothermal synthesis environment. Rectangular nanoplates with main exposed (100) face gradually change to spindle plates predominantly exposed (010) face as pH of mother solutions increases from 2.56 to 5.80.176

Figure 6.7. High resolution TEM images of (a, d) LiFePO₄_S_IV_12 hr, (b, e) LiFe₀.₅Mn₀.₅PO₄_S_VII_12 hr, and (c, f) LiMnPO₄_S_VI_12 hr nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using heterometallic alkoxide precursors “[ML₂Br(O'Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII). ..177

Figure 6.8. Voltage capacity profiles and cycling stability between 2.2 V and 4.0, 4.3 or 4.5 V at C/20 rate of (a, b) C/LiFePO₄_S_IV_12 hr (15% wt. C from sucrose), (c, d) C/LiFe₀.₅Mn₀.₅PO₄_S_VII_12 hr (15% wt. C from sucrose), and (e, f) C/LiMnPO₄_S_VI_12 hr (15% wt. C from sucrose). Samples prepared through a solvothermal synthesis for 12 hr at 220 °C with “[ML₂Br(O'Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).181

Figure 6.9. Comparative rate performance of C/LiFe₁₋ₓMnₓPO₄ (15% wt. C from sucrose) nanostructures prepared with “[ML₂Br(O'Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors and C/LiFePO₄_S_Com._12 hr (15% wt. C from sucrose) sample prepared from commercial starting materials. ..182

Figure 6.10. Rietveld analysis of PXRD data of post-cycled C/LiFe₁₋ₓMnₓPO₄ (x = 0, 0.5 and 1) nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[ML₂Br(O'Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors. ...182

Figure 6.11. Comparative rate performance at room temperature and 50 °C of C/LiFePO₄_S_IV (15% wt. C from sucrose) nanostructure prepared with [FeLi₂Br(O'Bu)₄(THF)₂]ₙ (IV) heterometallic alkoxide precursors. ..184

Figure 6.12. CVs at a 0.1 mV·s⁻¹ scan rate between 2.5 V and 4.5 V of (a) C/LiFePO₄_S_IV_12 hr, (b) C/LiMnPO₄_S_VI_12 hr and (c) C/LiFe₀.₅Mn₀.₅PO₄_S_VII_12 hr nanostructures prepared through a solvothermal synthesis (12 hr 220 °C) with single
source “[MLiBr(O’Bu)₄(THF)₂]ₓ” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.

Figure 6.13. (a) Rietveld analysis of PXRD data of magnetite Fe₃O₄ nanostructure. [Rexp=50.8 %, Rexp=48.14 %, χ²=1.11, a=8.388(2) Å, b=8.388(2) Å and c=8.388(2) Å]. (b) SEM image of magnetite Fe₃O₄ nanostructure.

Figure 6.14. (a) Voltage-capacity proﬁle and (b) cycling stability of C/Fe₃O₄ magnetite (15% wt. C from sucrose) with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at 100 mA·g⁻¹.

Figure 6.15. Rate performance of C/Fe₃O₄ (15% wt. C from sucrose) mixed with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at at different charge/discharge rates.

Figure 6.16. CV of Fe₃O₄ magnetite at a 0.1 mV·s⁻¹ scan rate between 0.01 V and 3.00 V.

Figure 7.1. Comparative PXRD patterns of LiFeₓ₋ₓNiₓPO₄ (x=0, 0.05, 0.1, 0.15 and 0.2) nanostructures after microwave synthesis using “[FeLi₂Cl(O’Bu)₄(THF)₂]ₓ” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and 10% PVP in ethylene glycol. Top graph: Bragg positions LiFePO₄.

Figure 7.2. Rietveld analysis of PXRD patterns of LiFeₓ₋ₓNiₓPO₄ (x=0, 0.05 and 0.1) nanostructures after microwave synthesis using “[FeLi₂Cl(O’Bu)₄(THF)₂]ₓ” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and 10% PVP in ethylene glycol.

Figure 7.3. Variation of the refined lattice parameters and volume cell values for LiFeₓ₋ₓNiₓPO₄ (x=0, 0.05 and 0.1) nanostructures after microwave synthesis using “[FeLi₂Cl(O’Bu)₄(THF)₂]ₓ” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and 10% PVP in ethylene glycol.

Figure 7.4. Comparative PXRD patterns of LiFe₀.₉₅Ni₀.₀₅PO₄ nanostructures after microwave synthesis using “[FeLi₂Cl(O’Bu)₄(THF)₂]ₓ” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and different PVP contents in ethylene glycol. Top graph: Bragg positions for LiFePO₄.

Figure 7.5. Rietveld analysis of PXRD patterns of LiFe₀.₉₅Ni₀.₀₅PO₄ nanostructures after microwave synthesis using “[FeLi₂Cl(O’Bu)₄(THF)₂]ₓ” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and different PVP contents in ethylene glycol.

Figure 7.6. Rietveld analysis of PXRD patterns of LiFe₀.₉₅Ni₀.₀₅PO₄_V_15PVP nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar (without and with mixing with 15% wt. C from sucrose). Samples prepared using “[FeLi₂Cl(O’Bu)₄(THF)₂]ₓ” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and 15% PVP in ethylene glycol.
Figure 7.7. Rietveld analysis of PXRD patterns of LiMn_{0.95}Ni_{0.05}PO_4 nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar. Samples prepared using “[MnLi_2Br(O’Bu)_4(THF)]_2” (VI) heterometallic precursor, NiC_2O_4·H_2O, H_3PO_4 and 15% PVP in ethylene glycol.

Figure 7.8. Comparative PXRD patterns of LiFe_{0.95}Ni_{0.05}PO_4 nanostructures after microwave synthesis using different Ni starting materials. Samples prepared using “[FeLi_2Cl(O’Bu)_4(THF)]_2” (V) heterometallic alkoxide precursor, NiC_2O_4·2H_2O or “[NiLi_2Cl(O’Bu)_4(THF)]_2” (VIII), and H_3PO_4 in ethylene glycol.

Figure 7.9. Rietveld analysis of PXRD patterns of LiFe_{0.95}Ni_{0.05}PO_4·V-VIII nanostructures after microwave synthesis without and with 15% PVP, and post-heat treatment for 1 hr at 700 °C under Ar without and with sucrose carbon coating. Samples prepared using “[FeLi_2Cl(O’Bu)_4(THF)]_2” (V) and “[NiLi_2Cl(O’Bu)_4(THF)]_2” (VIII) heterometallic alkoxide precursors, H_3PO_4 and PVP in ethylene glycol.

Figure 7.10. Comparative PXRD patterns of LiFe_{0.95}Ni_{0.05}PO_4 nanostructures after microwave synthesis at different reaction times using “[FeLi_2Cl(O’Bu)_4(THF)]_2” (V) and “[NiLi_2Cl(O’Bu)_4(THF)]_2” (VIII) heterometallic alkoxide precursors, H_3PO_4 and 15% PVP in ethylene glycol.

Figure 7.11. PXRD patterns of LiNiPO_4 after microwave synthesis using “[NiLi_2Cl(O’Bu)_4(THF)]_2” (VIII) heterometallic alkoxide precursor and H_3PO_4 in ethylene glycol or EMI-TFMS.

Figure 7.12. SEM images of (a, b) LiFe_{0.95}Ni_{0.05}PO_4·V (No PVP), (c, d) LiFe_{0.95}Ni_{0.05}PO_4·V·15PVP nanostructures prepared through a microwave synthesis (1 hr at 240 °C) using heterometallic alkoxide precursor “[FeLi_2Cl(O’Bu)_4(THF)]_2” (V) and NiC_2O_4·2H_2O, (e, f) LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP nanostructures prepared through a microwave synthesis (1 hr at 240 °C) using heterometallic alkoxide precursors “[FeLi_2Cl(O’Bu)_4(THF)]_2” (V) and “[NiLi_2Cl(O’Bu)_4(THF)]_2” (VIII).

Figure 7.13. SEM images of (a) LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP and (b) LiMn_{0.95}Ni_{0.05}PO_4·VI·15PVP nanostructures after heat treatment for 1 hr at 700 °C under Ar. Particle size distribution of (c) LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP and (d) LiMn_{0.95}Ni_{0.05}PO_4·VI·15PVP nanostructures.

Figure 7.14. SEM images of (a) LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP and (b) LiMn_{0.95}Ni_{0.05}PO_4·VI·15PVP nanostructures. EDS spectra of (c) LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP and (d) LiMn_{0.95}Ni_{0.05}PO_4·VI·15PVP nanostructures.

Figure 7.15. (a, c, d) Charge/discharge capacity profiles and (b, d, f) cycling stability between 2.2 V and 4.2 V at C/20 rate of LiFe_{0.95}Ni_{0.05}PO_4·V·15PVP, LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP and LiFe_{0.95}Ni_{0.05}PO_4·V·VIII·15PVP (5% wt. C from sucrose), respectively, mixed with C black and PTFE in 60:30:10 (% wt. ratio).
Figure 7.16. (a) Charge/discharge capacities and (b) cycling stability of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V (15% wt. C from sucrose) prepared with “[FeLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O and 15% PVP, and mixed with C black and PTFE in 60:30:10 (% wt. ratio) between 2.2 V and 4.2 V at C/20 rate. ………………… 217
Figure 7.17. (a) Discharge capacity curves and (b) cycling stability at different charge-discharge C rates of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) nanostructures prepared with “[FeLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (V) and “[NiLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio). ….. 218
Figure 7.18. PXRD of post-cycled C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V and VIII_15PVP (5% wt. C from sucrose) in the discharged state. ….. 218
Figure 7.19. (a) CV at a 0.1 mVs$^{-1}$ scan rate between 2.5 V and 4.5 V of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) nanostructure prepared through a microwave-assisted synthesis with “[FeLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (V) and “[NiLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors. (b) CV profiles of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) at different scan rates. ………………… 219
Figure 7.20. Peak current vs. square root of the scan rate for the C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) nanostructure prepared through a microwave-assisted synthesis using “[FeLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (V) and “[NiLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors. ….. 220
Figure 7.21. CVs at a 0.1 mVs$^{-1}$ scan rate between 2.5 V and 4.5 V of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) and C/LiFePO$_4$-V (15% wt. C from sucrose) nanostructures prepared through microwave-assisted synthesis with “[FeLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (V) and “[NiLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors. ….. 221
Figure 7.22. PXRD of as-synthesised NiO precursor and C/NiO heat treated for 3 hr at 500 °C under air. ….. 222
Figure 7.23. Rietveld analysis of PXRD data of C/NiO sample. [R$_{wp}$=13.9 %, R$_{exp}$=10.76 %, x2=1.68, $a=4.1770(2)$ Å, $b=4.1770(2)$ Å and c=4.1770(2) Å]. ….. 223
Figure 7.24. SEM images of C/NiO prepared from hydrolysis of “[NiLiCl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursor. ….. 223
Figure 7.25. Voltage-capacity profile and (b) cycling stability of C/NiO (15% wt. C from sucrose) with C black and PTFE in 60:30:10 % weight ratio over the potential range of 0.01 V-3.00 V at 100 mA·g$^{-1}$. ….. 225
Figure 7.26. Rate performance of C/NiO (15% wt. C from sucrose) mixed with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at different charge/discharge rates. ….. 226

XXVI
Figure 7.27. PXRD of post-cycled C/NiO in the charged state. ...226

Figure 7.28. CV at a 0.1 mV·s⁻¹ scan rate between 0.01 V and 3.20 V of C/NiO nanostructures prepared through a ultrasound-assisted “[NiLi₂Cl(O'Bu)₄(THF)₂]ₙ” (VIII) alkoxide precursor. ...226

Figure 8.1. Comparative rate performance from 2.2 V to 4.0 V for C/LiFePO₄ (15% wt. C from sucrose) samples (LiFePO₄_MW_Com., LiFePO₄_MW_I (Hom. Alk.), LiFePO₄_MW_V (Het. Alk.), LiFePO₄_S_V (Het. Alk.), LiFePO₄_S_Com. and LiFePO₄_MW_V_IL (Het. Alk.)). ..227

Figure 8.2. Comparison rate performance from 2.2 V to 4.5 V for LiMnPO₄ (15% wt. C from sucrose) samples (LiMnPO₄_MW_Com., LiMnPO₄_MW_II (Hom. Alk.), LiMnPO₄_MW_VI (Het. Alk.) and LiMnPO₄_S_VI (Het. Alk.)) ..231

Figure 8.3. Comparative rate performance from 2.2 V to 4.3 V for LiFe₀.₅Mn₀.₅PO₄ (15% wt. C from sucrose) samples (LiFe₀.₅Mn₀.₅PO₄_MW_Com., LiFe₀.₅Mn₀.₅PO₄_MW_III (Hom. Alk.), LiFe₀.₅Mn₀.₅PO₄_MW_VII (Het. Alk.), LiFe₀.₅Mn₀.₅PO₄_MW_V-VI (Mix Het. Alk.) and LiFe₀.₅Mn₀.₅PO₄_S_VII (Het. Alk.)) ..232

Figure 8.4. Charge-discharge voltage profiles at C/20 of (a) β-LiFePO₄, (b) β-LiFe₀.₉Co₀.₁PO₄, (c) β-LiFe₀.₉Ni₀.₁PO₄ and (d) Comparative cycling performance of β-LiFe₀.₉Co₀.₁PO₄, β-LiFe₀.₉Co₀.₁PO₄ and β-LiFe₀.₉Co₀.₁PO₄. ..236

Figure 8.5. Voltage-capacity profile of maricite NaFePO₄ between 1.5 V and 4.5 V at C/20 rate. NaFePO₄ : C sp in 80:20 (% weight ratio) mixture ball milled for 2 hr.238
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIBs</td>
<td>Lithium-ion batteries</td>
</tr>
<tr>
<td>PXRD</td>
<td>Powder X-Ray Diffraction</td>
</tr>
<tr>
<td>SCXRD</td>
<td>Single crystal X-Ray Diffraction</td>
</tr>
<tr>
<td>HR SEM</td>
<td>High Resolution Scanning Electron Microscopy</td>
</tr>
<tr>
<td>HR TEM</td>
<td>High Resolution Transmission Electron Microscopy</td>
</tr>
<tr>
<td>PND</td>
<td>Powder Neutron Diffraction</td>
</tr>
<tr>
<td>μSR</td>
<td>Muon Spin Relaxation</td>
</tr>
<tr>
<td>PDF</td>
<td>Pair Distribution Function</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmet-Teller</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>FT IR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GCPL</td>
<td>Galvanostatic Cycling with Potential Limitation</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>Fe(acac)₃</td>
<td>Iron(III) acetylacetonate</td>
</tr>
<tr>
<td>Mn(acac)₃</td>
<td>Manganese (III) acetylacetonate</td>
</tr>
<tr>
<td>¹Bu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>EG</td>
<td>Ethylene glycol</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene carbonate</td>
</tr>
<tr>
<td>DMC</td>
<td>Dimethyl carbonate</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>EMI-TFMS</td>
<td>1-ethyl-3 methyl imidazolium trifluoromethanesulfonate</td>
</tr>
<tr>
<td>μλ</td>
<td>Microwaves</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>ZF</td>
<td>Zero field</td>
</tr>
<tr>
<td>LF</td>
<td>Longitudinal field</td>
</tr>
<tr>
<td>TF</td>
<td>Transverse field</td>
</tr>
<tr>
<td>TOF</td>
<td>Time-of-flight</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected Area Electron Diffraction</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive X-ray Spectroscopy</td>
</tr>
<tr>
<td>SEI</td>
<td>Solid electrolyte interface</td>
</tr>
<tr>
<td>ILs</td>
<td>Ionic liquids</td>
</tr>
<tr>
<td>SSP</td>
<td>Single Source Precursor</td>
</tr>
<tr>
<td>ICSD</td>
<td>Inorganic Crystal Structure Database</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width at Half Maximum</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Basic aspects of Li-ion batteries

Nowadays, owing to the urgent need of making a more efficient use of our scarce and finite natural resources, there is a growing interest in the development of high efficiency energy storage systems. In particular, electrochemical systems such as Li-ion batteries (LiBs), which can work as an energy storage device by converting electric energy into electrochemical energy, have revolutionised the portable electronics industry, propelling the study of high performance electrodes to the forefront of modern research. LiBs reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes.1 LiBs have evolved as the major power source since their commercialisation by Sony in 19912 and represent one of the major successes of materials electrochemistry. In view of the growing day-to-day demand for Li-ion batteries, intensive research is being pursued globally to develop new high performing, cost effective electrode materials without compromising on environmental issues and safety. LiBs are currently under intense investigation to meet the performance specifications required by consumers in portable electronic devices (cell phones, notebook computers, iPads, etc.), (hybrid) electric vehicles and stationary storage as a back-up for intermittent renewable energy generation technologies. LiB cells generally offer high energy density, flexible and lightweight design, and longer lifespan compared to other battery technologies. The energy storage properties for most of the common rechargeable batteries are shown in Figure 1.1. Li-ion batteries outperform (energy densities of approximately 210 Wh·kg-1, 650 Wh·l-1), by at least a factor of 2.5, compared with competing technologies (nickel (Ni)-metal hydride, Ni-cadmium (Cd), and lead (Pb)-acid) in terms of delivered energy while providing high specific power.3 The overwhelming appeal of Li-electrochemistry lies in the low molecular weight of lithium, its small ionic radius (which facilitates diffusion) and low redox potential (E^0(Li+/Li0)=-3.04 V vs. standard hydrogen electrode (SHE)), which enables high-output voltages and therefore high-energy densities.4 LiBs have an operating voltage of ~3.6 V with capacities ranging from 700 to 2400 mA·h. LiBs are usually charged and discharged at current rates between 0.2 C and 1 C, meaning that the full capacity of the cell is stored or used in five or one hour, respectively, with typical operating temperature ranges of 15 to 60 °C. At lower temperatures the capacity generally decreases, whereas at higher temperatures slow degradation of the electrode and/or electrolyte can take place. The 2010 annual worldwide production of LiBs was worth about US $ 11.8 billion5 and, with the expected use of large-scale LiBs for vehicles and stationary off-peak energy storage systems and other applications, the industry projected demands and growth is estimated to
dramatically increase to a market value up to US $53.7 billion in 2020. This has led to an exponential growth in the investigation of LIB materials.

1.2 Configuration and working principles of Li-ion batteries

A Li-ion cell consists of a positive and a negative electrode separated by an electrolyte solution containing dissociated salts, which enables ion transport between the two electrodes. The electrode reactions taking place in these electrochemical systems are based on the reversible insertion and extraction of Li$^+$ ions into the host electrode materials with a concomitant addition/removal of electrons into the host. Li$^+$ ions are extracted from the cathode and inserted into the anode during the charge process, and the reverse reaction occurs during discharge. The electrodes are then connected externally, enabling the current to be tapped by the user. A LIB schematic diagram is shown in Figure 1.2. In its most conventional structure, a LIB contains a graphite anode, a cathode formed by a lithium metal oxide and an electrolyte consisting of a solution of a lithium salt in a mixed organic solvent imbedded in a separator.

1.3 Key challenges in Li-ion batteries

A high level of safety, low environmental impact, good cycle life, low cost, large power generation and wide temperature operational range are the main requirements for the development of the most advanced LIB energy storage systems. Nowadays, scaling up the chemistry of common LIBs in view of their application for sustainable vehicles and renewable energy plants is still challenging. For example, an increase by a factor of 15 in the energy density delivered by a battery (180 Wh·kg$^{-1}$) is still needed in order to match
1 L of gasoline (3000 Wh·l⁻¹). Barriers of various nature including safety, cost, energy density, cyclability and materials availability present challenges to achieving this important step. Considerations on battery performance such as cell potential, capacity and energy density are strongly related to the intrinsic properties of the materials that form the positive and negative electrodes. This is a major driver for the development of green and energy-efficient synthesis of novel energy storage materials. The chances of drastically improving today’s Li-ion cells energy density are mainly rooted in identifying better electrode materials that could either display greater redox potentials or larger capacity (materials capable of reversibly inserting more than one electron per 3d transition metal). Current approaches to achieving better performance include: the replacement of the graphite anode and lithium cobalt oxide cathodes with alternative, higher power and lower cost electrode materials, and the substitution of the organic liquid electrolyte solutions with safer, more reliable and wider working voltage window electrolyte systems such as solid electrolytes.

Figure 1.2. Li-ion battery schematic diagram.

1.4 Cell voltage

The cell voltage of a battery is determined by the compatibility of the entire system, including the anode, cathode and electrolyte. The choice of electrode material depends mainly on the electrochemical potential (µₐ for the anode and µₐ for the cathode) as well as their positions relative to the energy gap (E_g) of the electrolyte. As shown in Figure 1.3, for a stable cell, µₐ should be lower in energy than the LUMO (lowest unoccupied
molecular orbital) of the electrolyte, otherwise the electrolyte will be reduced. On the other hand, μ_C should be higher in energy than the HOMO (highest occupied molecular orbital) of the electrolyte to inhibit the oxidation of the electrolyte. High energy storage density can be achieved in a cell with the maximum electrochemical potential difference between the anode and the cathode as well as their high lithium intercalation ability. The stability of the electrolyte must not be overlooked. The difference in chemical potential between the anode (μ_A) and the cathode (μ_C) is the working voltage (also known as the open voltage circuit) and can be calculated according to the following equation 1.1:

$$V_{OC} = \frac{\mu_A - \mu_C}{e}$$ \hspace{1cm} (1.1)

where e is the magnitude of the electric charge.\(^1\)

![Figure 1.3](image)

Figure 1.3. Relative energy diagram of electrode potentials and electrolyte energy gap, E_g, in LIBs.\(^1\)

1.5 Electrode materials for Li-ion batteries

1.5.1 Intercalation cathode materials

An intercalation cathode is a solid host framework capable of storing guest ions that can be reversibly inserted into and extracted from the host network. In a Li-ion rechargeable battery, Li\(^+\) are the guest ions that can diffuse along the host network lattice, which are typically metal chalcogenides, transition metal oxides and polyanionic compounds. Robust crystal structures with sufficient Li\(^+\) storing sites are required to generate a material with stable cyclability and high specific capacity.\(^10\) The key factors...
determining the Li\(^{+}\) storage capacity through intercalation are: (1) the electrode capability to change valence states; (2) the available space to accommodate Li\(^{+}\) ions; and (3) the reversibility of the intercalation reactions. Typical intercalation materials include layered oxides, spinels and olivines.

1.5.1.1 Layered transition metal oxides LiMO\(_2\) (M=Co, Mn, Ni)

LiCoO\(_2\) first introduced by Goodenough as cathode material,\(^{11}\) is the most commercially successful layered transition metal oxide cathode. The first LIB system using LiCoO\(_2\) as cathode and graphite as anode was commercialised in 1991 by Sony and is still used in the majority of commercial LIBs. The electrochemical reaction at the graphite anode can be described as:

\[
C_6 + x Li^+ + x e^- \leftrightarrow Li_xC_6
\]

while at the LiCoO\(_2\) cathode the following reaction is taking place:

\[
LiCoO_2 \leftrightarrow Li_{1-x}CoO_2 + x Li^+ + x e^-
\]

LiCoO\(_2\) is a very attractive cathode material due to its relatively high theoretical capacity of 274 mAh·g\(^{-1}\), low self-discharge and good cycling performance. The LiCoO\(_2\) structure consists of a close-packed network of oxygen ions in which the Li\(^{+}\) ions lie between slabs of [CoO\(_6\)] octahedra that form CoO\(_2\) sheets, allowing Li\(^+\) to diffuse in two-dimension between the CoO\(_2\) sheets.\(^{12, 13}\) Nevertheless, the main limitations are the high cost and toxicity of Co, low thermal stability and rapid capacity fade at high current rates or during deep cycling. Low thermal stability often leads to the exothermic release of oxygen when this cathode is heated above certain temperature, resulting in a runaway reaction in which the cell can overheat and burst into flames. The strong oxidising behaviour of this layered oxide cathode in an overcharged state when in contact with common organic electrolytes could lead to combustion or even explosion, with this effect even more pronounced for nanosized materials with high surface area. Furthermore, deep cycling (delithiation above 4.2 V) can induce a lattice distortion from hexagonal to monoclinic symmetry and the resulting volume change can deteriorate the cycling performance leading to a significant reduction in the capacity retention. Several reasons including lattice defects, oxygen loss, transition metal dissolution and structural degradation, which are associated with intensified electrolyte decomposition and electrode–electrolyte side reactions, are believed to account for the poor performance of LiCoO\(_2\) at high voltages. As a result, in practical Li\(_{1-x}\)CoO\(_2\) lithium ion cells only a reversible insertion/extraction of 0.5 lithium is possible delivering approximately 140 mAh·g\(^{-1}\) around 4 V vs. Li\(^+\)/Li\(^0\). Although this limitation was originally associated with structural transitions around (1-x)=0.5,\(^{14}\) several chemical delithiation investigations suggest that the limitation may be attributed primarily to chemical instability for (1-x)<0.5, arising from a significant overlap of the redox active Co\(^{3+/4+}\):t\(_{2g}\) band with the top of the O\(^2-\):2p band as depicted in Figure 1.4.\(^{15}\) When compared to other transition
metals, the redox active $\text{Ni}^{3+/4+}:e_g$ band only barely touches the top of the $\text{O}^{2-}:2p$ band in $\text{Li}_{1-x}\text{NiO}_2$, while the redox active $\text{Mn}^{3+/4+}:e_g$ band lies well above the top of the $\text{O}^{2-}:2p$ band in $\text{Li}_{1-x}\text{MnO}_2$. As a result, both the $\text{Ni}^{3+/4+}$ and $\text{Mn}^{3+/4+}$ couples generally exhibit better chemical stability than the $\text{Co}^{3+/4+}$ couple in $\text{Li}_{1-x}\text{MO}_2$.16 LiNiO_2 exhibits the same crystal structure than LiCoO_2 and has a similar specific theoretical capacity of 275 mAh·g$^{-1}$. Its relatively high energy density and lower cost in comparison to Co based materials are the main advantages. However, pure LiNiO_2 is not a suitable cathode because Ni^{2+} ions have a tendency to substitute Li^+ sites during synthesis and delithiation, blocking the Li^+ diffusion pathways.17 Furthermore, LiNiO_2 is even more thermally unstable than LiCoO_2 because Ni^{3+} is more readily reduced than Co^{3+}.18 On the other hand, $\text{Li}_{1-x}\text{MnO}_2$ suffers from a layered to spinel structural transition during the charge-discharge process.19, 20 In an effort to further improve the electrochemical properties of layered transition metal oxides, different $\text{LiNi}_x\text{Mn}_y\text{Co}_z\text{O}_2$ compositions have been investigated.21 Among the different layered lithium mixed transition metal oxides, $\text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2$ (NMC) consisting of Co^{3+}, Ni^{2+}, and Mn^{4+} has been shown to have high rate capability, excellent cyclability and high capacity due to unique electronic structure combined with a small change in lattice volume in the range of $0 < x < 2/3$ in $\text{Li}_{1-x}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2$.22 $\text{LiNi}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2$ exhibits a synergistic effect in which Ni could raise the charge/discharge capacity, Co could decrease the cation mixing improving the rate capabilities and Mn could enhance the thermal stability and reduce production costs, thus enhancing its applicability and safety.10, 23 Some recent efforts, such as formation of macroporous NMC, showed reversible specific capacity as high as 234 mAh·g$^{-1}$ and good cycle stability even at 50 °C.24

1.5.1.2 Spinel LiM_{2}O_4

An alternative cathode material based on layered oxides is spinel LiM_{2}O_4. This insertion electrode exhibits a three-dimensional Li^+ ion pathway, features high power
capability and excellent safety. Furthermore, it has the advantage of being cheap, environmentally friendly and non-toxic. Nevertheless, spinel LiMn$_2$O$_4$ displays a slightly lower reversible capacity of ~120 mAh·g$^{-1}$ at a working potential of ~3.8 V vs. Li$^+$/Li0 and its application as cathode material in LiIBs has been mainly hampered by the phase transition observed from cubic to tetragonal symmetry related to Jahn-Teller distortion of Mn$^{3+}$ ions, resulting in a huge volume change contributing to a severe capacity fading over cycling. LiMn$_2$O$_4$ adopts a spinel structure belonging to the $Fd\overline{3}m$ space group in which the Li and Mn occupy the tetrahedral and octahedral sites of the cubic close-packed oxygen ions, respectively. The edge-sharing Mn$_2$O$_4$ octahedra in this structure are highly stable and exhibit a series of intersecting tunnels formed by face-sharing tetrahedral lithium sites and empty octahedral sites facilitating the three-dimensional diffusion of lithium.25 The capacity of spinel LiMn$_2$O$_4$ is generally limited to < 120 mAh·g$^{-1}$ around 4 V vs. Li$^+$/Li0, which corresponds to a reversible insertion/extraction of ~0.8 lithiums per LiMn$_2$O$_4$ formula unit. Although an additional lithium could be inserted into the empty octahedral sites of the Mn$_2$O$_4$ framework at a lower voltage of ~3 V vs. Li$^+$/Li0, this is accompanied by the aforementioned phase transformation from cubic to tetragonal symmetry due to the associated Jahn-Teller distortion. Therefore, the capacity in the 3 V region could not be used in practical cells.26 Stabilisation of the cubic spinel structure has been possible by controlled formation of cationic defects,27 by lithium28 or 3d metal substitution29 into spinel lattice as well as by isoelectronic sulfur substitution.30,31 Finally, it should be noted that the instability of the high oxidation state of this transition metal in the charged state can lead to oxygen evolution (similarly to the layered oxide cathodes) and consequent side reactions with the electrolyte.32 Figure 1.5 illustrates the crystal structures of layered LiCoO$_2$ and spinel LiMn$_2$O$_4$.

![figure 1.5](image-url)
1.5.1.3 Polyanionic compounds

An interesting and promising group of insertion cathode materials are polyoxoanionic LiM\(\text{XO}_4\) (\(M=3d\) metal, \(X=S, P, As, Mo, W\)) type compounds. Large \(\text{XO}_4^3\) polyanions occupy lattice positions and increase redox potential while also stabilizing its structure. Compared to layered oxide compounds, the strong X-O bonding in polyanionic compounds can introduce ionicity in the \(M-O\) bond and the weaker \(M-O\) bond leads to high redox potentials. This is called the “inductive effect” in polyanion type electrode materials, where the strength of the X-O bond in the \(M-O-X-O-M\) linkage can influence the \(M-O\) covalency and thereby the relative position of the \(M^{3+}/M^{2+}\) redox potential. The stronger the X-O bonding, the weaker the \(M-O\) bonding and consequently the lower the \(M^{3+}/M^{2+}\) redox potential, which results in a higher cell voltage. Furthermore, such special framework compounds have been known to undergo topotactic insertion/extraction of Li\(^+\) ions, resulting in minimal structural rearrangements during cycling. Thanks to their structural diversity and stability, combined with the strong inductive effect of polyanions, such electrode materials generally have suitable operating potential and outstanding cycling performance. In particular, over the last decades phospho-olivine type (LiM\(\text{PO}_4\), \(M=Mn, Fe, Co, Ni\)) electrode materials, pioneered by Padhi and Goodenough, have been identified as serious contenders for high power electrode materials, with LiFePO\(_4\) being one of the most promising among them.

1.5.1.3.1 LiFePO\(_4\) cathode material

Olivine-structured LiFePO\(_4\) has emerged as an attractive positive insertion material for LIBs substituting current toxic, unsafe and expensive cathode materials such as LiCoO\(_2\). The main advantages of LiFePO\(_4\) include its relatively high theoretical capacity of 170 mAh·g\(^{-1}\), suitable flat voltage region of 3.45 V, safety, non-toxicity, environment friendliness, low production costs, rich source of raw materials and high thermal/electrochemical stability provided by the strong covalent P-O bonds. Moreover, this positive insertion electrode exhibits good cyclability and is complementary to most conventional polymer electrolytes. Nevertheless, the main drawbacks of this material are that it suffers from poor electronic conductivity (10\(^{\text{-9}}\) S·cm\(^{-1}\) at RT) and low ionic diffusivity (which often requires application of carbon coatings and composite formulation) and the fact that its olivine crystal structure only tolerates 1D Li-diffusion. Furthermore, the processing costs of LiFePO\(_4\) are generally high because carbon coating or small particle size are required in order to obtain the appropriate cycling performance at high current rates. LiFePO\(_4\) crystallizes in an olivine structure with an orthorhombic unit cell (\(Pnma\) space group), where oxygen atoms constitute a slightly distorted hexagonal close packing arrangement, and Fe and Li atoms are located in oxygen octahedral centers forming FeO\(_6\) and LiO\(_6\) octahedra. Phosphorus atoms in the center of four oxygen atoms form an edge-
shared PO₄ tetrahedral network which provides structural stability. A three-dimensional framework is formed by FeO₆ octahedra sharing common O-corners with PO₄ tetrahedra while LiO₄ groups form a linear chain of edge-shared octahedral parallel to the b axis. The delithiated phase FePO₄ has essentially the same structure as LiFePO₄. This structural similarity not only avoids capacity degradation resulting from severe volumetric changes during the charge-discharge process, but it also effectively compensates the volume changes during the delithiation and lithiation process. This could explain the excellent electrochemical cyclability of this olivine system to some extent. Finally, it should be highlighted that LiFePO₄ exhibiting a phase pure olivine structure can be easily fabricated through conventional synthetic approaches such as solid-state ceramic routes, sol-gel methods, solvothermal routes and fast and low temperature microwave-assisted reactions.

A polymorph of LiFePO₄ (β-LiFePO₄) with the same orthorhombic symmetry but belonging to a Cmcm space group has also been reported. The main structural differences between the two polymorphs concern the coordination and the alignment of the cations. In this structure, a FeO₆ octahedron shares two opposite edges with neighboring FeO₆ octahedra and two apical oxygen atoms with two LiO₄ and two phosphate groups. A PO₄ group shares two oxygen atoms with two different MO₆ polyhedra and one edge with a LiO₄ tetrahedron. Figure 1.6 illustrates the crystal structures of both α and β-LiFePO₄ polymorphs. Non-olivine β-LiFePO₄ is almost electrochemically inactive with no capacity for LIBs because the Li⁺ ions are stored in the tetrahedral LiO₄ groups with a very high activation barrier for migration. The one-dimensional migration channels of Li⁺ ions typically observed in the olivine α-LiFePO₄ phase disappear in β-LiFePO₄ polymorph. Previous experimental investigations have revealed that β-LiFePO₄ exhibits almost no electrochemical activation with very low capacity (10-20 mAh·g⁻¹). Nevertheless, it has recently been demonstrated that the β-LiFePO₄ polymorph can be activated through creation of effective paths of Li-ion migration by inducing optimised disordering such as FeLi antisite defects, crystal distortion and amorphous domains. Guo et al. mixed the as-made β-LiFePO₄ nanocrystals with acetylene black carbon and ball milled the mixture for different times as a treatment for controlled disorder. They demonstrated that the 8 hr ball milled β-LiFePO₄ sample achieved a capacity of 128 mAh·g⁻¹ at a 0.1 C rate with an extraordinary cycling performance in which 94.5 % of the initial capacity is retained after 1000 cycles at 1 C.
10

1.5.1.3.2 Li⁺ diffusion mechanisms in olivine LiFePO₄

The underlying Li⁺ transport properties and defect chemistry in LiFePO₄ are complex on the atomic scale. Atomistic modeling studies have revealed that the lowest energy Li⁺ migration pathway takes place along the [010] channel, following a nonlinear, “wavelike” trajectory between adjacent Li positions (see Figure 1.7 (a)). Furthermore, it has also been found that the most favourable intrinsic defect is a Li-Fe antisite pair consisting of a Li⁺ ion (on the M1 site) and an Fe²⁺ ion (on the M2 site) being interchanged. Antisite cation exchange is a typical lattice defect frequently observed in crystalline solids. Antisite defects can be particularly apparent in many lithium intercalation compounds in which lithium and transition metal cations of similar size usually maintain a well-ordered framework. Consequently, as the overall mobility of Li⁺ ions can be greatly affected by cation exchange, control of both the concentration and the distribution of antisite exchange defects is critical for improving lithium migration and reaching high rate (de)intercalation reactions. Knowing that, it is highly probable that the Li-Fe antisite defects in olivine LiFePO₄ could block the diffusion path through [010] channels leading to an inhibition of the long-range Li⁺ migration. Islam et al. also investigated the defect and transport properties of olivine mixed-metal phosphate LiFe₀.₅Mn₀.₅PO₄ by atomistic modeling methods and found that the Li⁺ diffusion in this mixed-metal system also occurs down the b axis channel following a curved path (see Figure 1.7 (b)). They also reported that the intrinsic defect type with the lowest energy is the cation antisite defect, in which Li and Fe/Mn ions exchange positions. Furthermore, migration energies for Fe and Mn antisite cations on Li sites suggested that Mn defects would impede bulk Li⁺ mobility in LiFe₀.₅Mn₀.₅PO₄ to a greater extent than Fe antisite defects in LiFePO₄. Yamada et al. provided experimental evidence for a curved one-dimensional chain for lithium motion by combining high-temperature neutron diffraction analysis and the
maximum entropy method visualising the lithium distribution along the [010] direction in Li$_x$FePO$_4$ (0<x<1).56

![Diagram of LiFePO$_4$ and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$](image)

Figure 1.7. Curved trajectories for Li$^+$ migration in (a) LiFePO$_4$54 and (b) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$55 between sites in the [010] direction.

Understanding the phase transformation mechanism as well as the lithium intercalation pathway in Li-ion electrode materials during the charge/discharge process is of crucial importance for battery performance, limiting high rate capabilities and life cycle. In the particular case of olivine LiFePO$_4$, the Li$^+$ deintercalation/intercalation process is generally believed to proceed through a two phase reaction between compositions very close to LiFePO$_4$ and FePO$_4$. As both endmembers are very poor ionic and electronic conductors, it is challenging to completely understand the intercalation mechanism at the microscopic scale.57,58 In the interpretation of the Li$^+$ insertion/extraction mechanism in LiFePO$_4$, several models have been proposed. Newmann et al. developed a mathematical model to describe the Li$^+$ intercalation process and phase transformation in a LiFePO$_4$ electrode. The juxtaposition of the two phases is assumed to follow the form of a shrinking core where a shell of one phase covers a core of the second phase. They report a “radial migration model” in which Li$^+$ is out and in of LiFePO$_4$ assuming a core shrinking movement at the FePO$_4$/LiFePO$_4$ interface (Figure 1.8 (a)).59 An alternative model proposed by Andersson et al. envisages that Li$^+$ extraction/insertion can take place at many sites within a given particle (mosaic model). During charge, separate lithium-extracted regions (FePO$_4$) are formed and they impinge on one another. On discharge, lithium re-enters the major part of these FePO$_4$ regions, leaving only the cores as unconverted FePO$_4$ (Figure 1.8 (b)). At the same time, some inactive LiFePO$_4$ regions may be left entrapped by a thin coating of some amorphous material.60 Andersson et al. also examined the extraction and insertion of Li$^+$ in solid state synthesised LiFePO$_4$ by in situ X-ray diffraction and Mössbauer spectroscopy. They concluded that the structural rearrangement on the Li$^+$ extraction/insertion is small, given that the change in the Fe-O
bond distance is minimal: the mean Fe-O distances are 2.17 Å and 2.04 Å for \(\text{LiFePO}_4 \) and \(\text{FePO}_4 \), respectively. This could explain to a large extent the excellent electrochemical cycling properties of the system.\(^{57}\) On the other hand, Delmas et al. investigated a family of deintercalated LiFePO\(_4\) nanomaterials by X-ray diffraction and electron microscopy and demonstrated the co-existence of fully intercalated and fully deintercalated individual particles. They argued that the peculiar olivine structure with edge sharing between each FeO\(_6\) octahedron and each PO\(_4\) tetrahedron potentially limits the structural flexibility required to allow the formation of a solid solution. As a result, during the charge/discharge process, all compositional and structural modifications are mainly localised within the interfacial zone between the two endmembers. With this in mind, they proposed a "domino-cascade model" described by a fast anisotropic lithium insertion/deinsertion process coupled to the LiFePO\(_4\)-FePO\(_4\) interface movement through a Li\(^+\) hopping mechanism in nanocrystallites (Figure 1.8 (c)). They reported that the very high concentration of Li\(^+\)/vacancies and Fe\(^{2+}\)/Fe\(^{3+}\) polarons localised in the interfacial zone enables a very fast Li\(^+\) transport.\(^{58}\)

Figure 1.8. Different classic two-phase models for olivine LiFePO\(_4\). (a) Shrinking-core model,\(^{59}\) (b) Mosaic model\(^{60}\) and (c) Domino-cascade model.\(^{58}\)

However, it must be taken into consideration that the two-phase coexistence mechanism may change with particle size, morphology and the electrochemical testing conditions (fast or slow charging rate).\(^{51}\) On the other hand, although the two-phase mechanism has been widely accepted, the contradiction between the theoretically low ion diffusion capability of LiFePO\(_4\) and its practically high rate capability has lead to the consideration of solid solution mechanisms in which the phase transformation between LiFePO\(_4\) and FePO\(_4\) may undergo a single-phase and not a two-phase mechanism. Orikasa et al. used \textit{in operando} synchrotron XRD techniques to track the phase transformation in olivine LiFePO\(_4\) and reported a metastable crystal phase in fast charging microsized LiFePO\(_4\), in addition to the thermodynamically stable LiFePO\(_4\) and FePO\(_4\) phases. Also, they found that this metastable phase exhibits a short life time (a couple of minutes), as it diminishes under open circuit conditions. Moreover, this metastable Li\(_x\)FePO\(_4\) \((x=0.6-0.75)\) phase only
appears at high charging rates and is absent at slow charging rates. Therefore, it is suggested that at high rates, the phase transformation in LiFePO$_4$ may take place through the metastable phase, which decreases the nucleation energy leading to a higher rate performance.62 Another of the latest \textit{in situ} XRD studies by Grey \textit{et al.} captured the metastable solid solution phase in fast-charging nanosized LiFePO$_4$. Different from the intermediate Li$_{x}$FePO$_4$ (x=0.6-0.75) phase at high rates in the microsized samples, the studies with nanosized LiFePO$_4$ demonstrated that the continuous solid solution phase can display a wide composition, Li$_{x}$FePO$_4$ (0 <x< 1), which is composed of the entire range between the two end members of LiFePO$_4$ and FePO$_4$ at high rates. This suggests that nanosized LiFePO$_4$ may undergo continuous structural change without the phase boundary movement and nucleation step, which can also explain the high rate performance of LiFePO$_4$.63

1.5.1.4 High voltage olivine LiMPO$_4$ (M=Mn, Co, Ni) cathodes

Nowadays high energy density for the next generation of energy storage devices is in growing demand and, therefore, the development of high voltage cathode materials is required. The fairly low reaction voltage of LiFePO$_4$ (3.45 V vs. Li$^+$/Li0) has encouraged the investigation of isostructural olivine-type LiMPO$_4$ (M=Mn, Co, Ni) with higher operating voltages. Transition metal ions such as Mn$^{2+}$, Co$^{2+}$ and Ni$^{2+}$ are good candidates for substitution because they are able to occupy the same crystallographic position as Fe$^{2+}$ due to their similar crystal-chemistry properties. In particular, LiMnPO$_4$ reacts at 4.1 V vs. Li$^+$/Li0 providing a ~20% higher energy density than LiFePO$_4$. The higher redox potential of LiMnPO$_4$ compared to LiFePO$_4$ could be explained by the d-orbital splitting of the Mn$^{3+}$ cations in octahedral coordination. The pairing energy of the sixth electron in the t_{2g} orbital in the Fe olivine lowers the voltage vs Li$^+$/Li0 compared to the Mn compound (Figure 1.9).64 The electronic and ionic conductivity of LiMnPO$_4$ is also insufficient for good electrochemical performance (<10$^{-10}$ S·cm$^{-1}$ and 1.8×10$^{-9}$ S·cm$^{-1}$ for LiMnPO$_4$ and LiFePO$_4$, respectively).65, 66 LiMnPO$_4$ also shows structural instability over cycling mainly originating the large volume changes between the lithiated and delithiated phases of the electrochemical couple LiMnPO$_4$ and MnPO$_4$ due to the Jahn-Teller distortion induced by Mn$^{3+}$ ions.67 For example, it has been reported that the lattice misfit between the equilibrium coexisting phases in the LiFePO$_4$/FePO$_4$ system is 6.6 vol %,68 while for its Mn counterpart LiMnPO$_4$/MnPO$_4$ the misfit is larger at ~11.7 %.69 Poper \textit{et al.} also investigated the nature of the Jahn-Teller distortions in Li$_x$MnPO$_4$ using a combination of density functional theory with soft and hard X-ray spectroscopy analysis and results suggested that the distortion of the MnO$_6$ octahedra in the Mn$^{3+}$ state is not a strict Jahn-Teller distortion but is instead a preferential elongation of the two equatorial Mn-O bonds (edge-sharing PO$_4$). They claim that the elongation of the equatorial bonds in the Mn$^{3+}$ charge
state is responsible for increasing the activation energy for the Li$^+$ diffusion, thereby accounting for the sluggish intrinsic kinetics of the Mn olivine compared to the Fe olivine.70

Figure 1.9. Crystal field splitting of the M$^{2+}$ cations in octahedral coordination. The Fe compound delivers a lower voltage vs. Li$^+$/Li0 compared to the Mn compound because of the shift in the Fe$^{3+/2+}$ redox energy due to the pairing energy of the sixth electron in the t$_{2g}$ orbital.64, 71 LiCoPO$_4$ and LiNiPO$_4$ exhibit higher reaction voltage at 4.8 V and 5.1 V, respectively, and high theoretical capacities of 167 mAh·g$^{-1}$. However, although this results in higher theoretical energy densities, those high operating potentials put at risk the stability of most conventional electrolyte solutions, as there is still a serious need of stable electrolytes at potential values of over 5 V vs. Li$^+$/Li0. Efforts to utilise LiCoPO$_4$ have demonstrated limited capacity and fast fading of the capacity upon repetitive cycles.72, 73 Furthermore, the synthesis of olivine LiCoPO$_4$ has been shown to be quite challenging since many of the available Co precursors can be easily reduced to form impurities such as Co metal, Co$_3$O$_4$ and Li$_3$PO$_4$ phases. A CoHPO$_{4-x}$·xH$_2$O nanoplate precursor has been used to simplify the synthesis process and minimise impurities, yielding LiCoPO$_4$/C cathode materials that delivered a specific capacity of 125 mAh·g$^{-1}$ at C/10 rate, but maintaining only 80 mAh·g$^{-1}$ after 50 cycles.74 The fast capacity fading in LiPF$_6$ containing electrolyte solutions can be due to the nucleophilic attack of the HF present in these electrolytes on the P atoms of the olivine compound in the delithiated state resulting in the formation of soluble PO$_3$F$^-$, PO$_2$F$_2^-$, POF$_3$ and H$_2$O. Here, the H$_2$O produced can react with PF$_6^-$, POF$_3$ and PO$_2$F$_2^-$ to generate more HF.73 Olivine C/LiMPO$_4$ (M=Co and Ni) nanocomposites have also been fabricated by a polyvinylpyrrolidone (PVP) assisted polyol method using acrylic acid to carbon coat the surface of the nanoparticles. Electrochemical testing showed initial discharge capacities of 180 and 97 mAh·g$^{-1}$ at 0.1 C rate for the C/LiCoPO$_4$ and
Chapter 1

C/LiNiPO₄ cathodes, respectively, with a noticeable capacity fading over cycling due to the instability of the electrolyte at higher potentials. A C/LiNiPO₄ nanocomposite has also been successfully synthesised by a solvothermal microwave-assisted technique demonstrating excellent stable discharge capacities of 150.2 mAh·g⁻¹ at a 0.1 C rate with a good capacity retention (92%) after 100 cycles.

1.5.1.4.1 Olivine mixed metal phosphates LiFe₁₋ₓMnₓPO₄

Olivine mixed transition metal phosphate systems have recently attracted considerable interest since such composite materials facilitate fine-tuning of the inherent properties of the pure analogues, such as the voltage and the stability of the cathode upon delithiation. Amongst these materials, LiFe₁₋ₓMnₓPO₄ has drawn much attention as it exhibits higher energy density and enhanced redox kinetics due to the improved electronic conductivity in comparison to the pure olivines. These mixed-metal phosphate phases are isostructural with the end-members LiFePO₄ and LiMnPO₄. Partial substitution of Fe by Mn in these olivine structures leads to electrode materials with increased voltage due to the higher Mn³⁺/²⁺ redox potential compared to the pair Fe²⁺/³⁺. Nevertheless, it should be highlighted that the existence of Mn³⁺ ions in delithiated MnPO₄ triggers a Jahn-Teller distortion and interfacial strain, detrimental to ion and electron hopping during the charge/discharge process. The Jahn-Teller effect induces volume and cell distortion of the electrode, leading to a rapid mechanical degradation of the electrode and consequently, poor electrochemical performance. Padhi et al. investigated the electrochemical performance of a series of LiFe₁₋ₓMnₓPO₄ (x=0.25, 0.50, 0.75, 1.0) materials and found that the specific capacity notably decreases when x > 0.75. Yamada et al. reported that Mn-rich LiFe₁₋ₓMnₓPO₄ (x > 0.8) phases are not the best performing mixed metal phosphates due to the large anisotropic distortion of Mn³⁺ during cycling. They also reported a phase diagram of Li₁₋ₓFe₁₋ₓMnₓPO₄ as a function of both lithium and manganese concentration, obtained by a chemical extraction of lithium from materials with compositions 0 ≤ y ≤ 1. Wu et al. have investigated a series of solvothermally synthesised LiFe₁₋ₓMnₓPO₄ by synchrotron radiation X-ray absorption spectroscopy combined with first-principles calculations and energy-dispersive X-ray spectroscopy measurements. Results demonstrated the coexistence of LiFePO₄ and LiMnPO₄ phases randomly stacked and characterised by a pronounced structural distortion of the MO₆ (M=Fe, Mn) octahedra. Furthermore, it was also observed that increasing the Mn doping concentration leads to an increased distortion of the MO₆ octahedra. Among different Fe/Mn compositions, electrochemical examination revealed that the LiFe₀.₇₅Mn₀.₂₅PO₄ material exhibits the best electrochemical performance. Previous experimental findings have also demonstrated that after a typical carbon coating process with heat treatments under reducing
atmosphere, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanophases usually undergo a rearrangement of their cations into Mn-rich and Fe-rich domains and it is only after such cation rearrangement via segregation that the redox processes evolve at two distinct potentials corresponding to the Fe$^{3+}$/Fe$^{2+}$ and Mn$^{3+}$/Mn$^{2+}$ redox pairs. On the contrary, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanoplatelets (∼10 nm thick) with Fe and Mn cations rather homogeneously distributed in the lattice displayed a single broad peak in the CV analysis, which could be explained by the synergistic effect on the redox potentials. Therefore, these results suggested that the degree of cation mixing in this olivine mixed metal olivine lattice directly influences the redox potentials, which in turn determines the charge/discharge characteristics.\(^{83}\) The phase stability of Li$_{1-x}$Fe$_{1-x}$Mn$_x$PO$_4$ (0 ≤ x, y ≤ 1) materials during the delithiation and lithiation process has been investigated as a function of temperature, Li composition and Fe/Mn content using temperature-controlled in situ XRD. Fully lithiated LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ remained stable up to high temperatures (>700 °C). On the other hand, the thermal stability of delithiated Li$_{1-x}$Fe$_{1-x}$Mn$_x$PO$_4$ (0 ≤ x, y ≤ 1) was significantly influenced by the Fe/Mn content in the structure. Furthermore, the delithiation mechanism (one phase vs. two phase reaction) was dependent on the Fe/Mn ratio. It was generally observed that higher Mn containing binary olivine materials exhibited inferior thermal stabilities in the charged states and a stronger preference for two-phase behavior.\(^ {84}\) In order to gain a deeper insight of the lithiation/delithiation mechanism in olivine mixed metal phosphates, in situ XAS in conjunction with \(^{57}\)Fe Mössbauer and \(^{7}\)Li NMR spectroscopy have been used to examine the evolution of the local structure and the oxidation states of the transition metals in a LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ sample during cycling. Results suggested a high reversibility of the reactions in this electrode material. Overall, a two-phase reaction mechanism with an intermediate, partially delithiated phase was observed. It was also found that while the oxidation/reduction of Fe$^{3+}$/Fe$^{2+}$ is complete, Mn is only partially oxidised/reduced.\(^ {65}\) On the other hand, recent mechanistic studies of the (de)lithiation process that occur in Co doped LiFe$_{0.5}$Co$_{0.5}$PO$_4$ olivine using in situ XRD and supporting ex situ \(^{31}\)P NMR suggested that two intermediate phases are formed during the first charge: Li$_{1-x}$(Fe$^{3+}$)(Co$^{2+}$)$_{1-x}$PO$_4$ for 0 < x < 1 (after oxidation of Fe$^{2+}$ to Fe$^{3+}$) and Li$_{2/3}$Fe$_{2/3}$PO$_4$ for 0 ≤ x ≤ 0.5 (Co-majority materials). These investigations demonstrated that in Fe-rich materials a single-phase mechanism occurred while in Co-majority materials a two phase mechanism is observed.\(^ {85}\)

1.5.2 Anode materials

1.5.2.1. Li metal

The most elementary anode material for LIBs is metallic lithium, which has been used for primary, non-rechargeable batteries since the early 1960s. Metallic lithium possesses a extremely high theoretical specific capacity (3860 mAh·g$^{-1}$), the lowest standard potential (-3.05 V vs. a standard hydrogen electrode (SHE)) and the lowest atomic weight (6.94 g·mol$^{-1}$; specific gravity: ρ= 0.53 g·cm$^{-3}$) among all metals, allowing
high energy densities.86 However, a severe limitation is the inhomogeneous lithium plating which occurs thereby hindering their commercial development. Furthermore, this inhomogeneous deposition of lithium onto the anode surface upon charge/discharge cycling leads to the formation of dendrites. These dendrites consist of highly branched lithium metal structures with high surface areas, which continuously grow and generate the risk of penetrating the separator and electrically connecting the anode and cathode to short circuit the cell. This spontaneous and uncontrolled event results in local heat evolution and in unfortunate cases the thermal runaway of the cell. In order to overcome this severe safety issue, the concept of lithium ion host structures was developed, thus significantly avoiding the risk of superficial (dendritic) lithium growth.87, 88

1.5.2.2 Carbon

Carbonaceous materials were the primary choice and have been the commercially most successful anode material as lithium-ion host framework in LiIBs. They could be categorised in different forms: graphite, non-graphitised carbon, soft carbon and hard carbon. Highly crystalline graphitic carbon can take in one Li atom per six C atoms in a completely reversible process with a theoretical capacity of \(372 \text{ mAh} \cdot \text{g}^{-1}\). However, several factors, such as SEI formation and solvated lithium insertion in the graphene layers, affects the reversibility of the intercalation reaction, increase cell resistance and thereby decreases the power density over cycling. Lithium diffusion entirely depends upon the crystal structure of the carbonaceous material and this fact drives the use of bulk carbonaceous materials to nano-carbon materials in different dimensions such as carbon nanotubes and carbon nanofibers for 1D, graphene nanosheets for 2D and porous carbon with pore sizes in the nanometer range.89, 90

1.5.2.3 Transition metal oxides as conversion anodes

Transition metal oxides have been widely recognised as the next generation anode materials for LiIBs due to their high energy and power density. Therefore, a variety of transition metal oxides (e.g. CoO, Co\(_2\)O\(_4\), FeO, Fe\(_2\)O\(_3\), Fe\(_3\)O\(_4\), NiO, Mn\(_3\)O\(_4\) and CuO) have been explored as alternatives to the commercial carbonaceous anodes.91 Since transition metal oxides can react with more than one Li\(^+\) per transition metal atom, exceptionally high specific capacities are theoretically possible.92 However, the low electronic conductivity and large volume expansion associated with these materials often leads to poor cycling performance. Drastic volume variations during charging/discharging can cause a progressive desintegration of the electrode and significantly decreases the capacity retention over cycling. Tarascon’s group first reported studies on MO (\(M=\text{Fe, Co, Ni and Cu}\)) as anode materials via the “conversion/displacement reaction” and demonstrated electrochemical capacities of \(\sim 700 \text{ mAh} \cdot \text{g}^{-1}\), with 100% capacity retention for up to 100 cycles at high charging rates.93 The mechanism of Li reactivity differs from the classical Li insertion/extraction or Li-alloying processes. Generally, these metal
oxides are converted to metallic clusters embedded in a Li$_2$O matrix during the lithiation process, and converted back to metal oxides at the subsequent delithiation, which involves reversible reduction and oxidation of metal oxides, accompanied by the formation and decomposition of Li$_2$O. The conversion reaction mechanism of metal oxides can be described by the following reaction:

$$M_xO_y + 2yLi^+ + 2ye^- \leftrightarrow yLi_2O + xM$$

where M represents a transition metal. Furthermore, it must be remarked that the phase structures of conversion reaction anode materials are usually changed after the lithiation process. It has been demonstrated that the reaction pathway for lithiation/delithiation of conversion reaction anode materials is affected by the discharge/charge rate and the texture of the active material (for example, crystallite size and specific surface area). In electrochemical conversion processes, usually large structural reorganisation and volumetric changes cause particle isolation and cracking. Disconnection of Li$_2$O and the metal particles results in a significant electrochemical capacity fading during cycling. Therefore, the main challenge for the implementation of high capacity conversion anode materials is control over the large volume expansion/contraction and severe particle agglomeration. To overcome this problem, several synthetic strategies have been proposed to circumvent the large volume variations issue. In comparison to bulk materials, nanostructured anode materials can efficiently accommodate the mechanical strains caused by the large volume change and particle crack, and promote electrochemical reactivity. In particular, the electrochemical lithium storage properties of conversion reaction anodes are strongly affected by their particle size and morphology. For example, Luo et al. demonstrated that a carbon nanotube-Mn$_3$O$_4$ composite displayed a reversible capacity of 701 and 561 mAh·g$^{-1}$ for 4 and 9 nm particles, respectively, compared to 367 mAh·g$^{-1}$ for 165 nm Mn$_3$O$_4$ particles. These results also showed that decreasing the particle size markedly reduces the polarisation displayed by the electrodes and improves the reversibility of the cycling process and the rate capability. Moreover, Li$^+$ ions could be stored at the interface, surface and in nanopores of the conversion reaction materials. Various nanostructures including nanoparticles, nanowires, nanorods, nanotubes, 3D porous particles and different nano-architectures have been employed to improve the electrochemical properties of conversion-type anode materials. On the other hand, multiphase composites with active materials and matrices have been designed to accommodate and buffer the large volume changes of active materials during the lithium insertion/extraction process. The main purpose of using matrices is to reduce the aggregation of active particles during cycling. Carbon-based materials are the main active matrices used in conversion anodes. The enhanced electrochemical performances of carbon-based nanocomposites are attributed to the low volume changes, good electronic and ionic conductivity, and the buffering effect from carbon. Also, compared to powder
materials, thin films can display commonly higher reversible capacities and improved cycling stability. The enhancement in the electrochemical properties such as capacity retention, cycling stability and rate capability are due to the strong adhesion of nanostructured films onto the substrate, which allows the active material and substrate to maintain a good electrical contact. Furthermore, the higher capacity delivered by thin films can also be attributed to the absence of inert additives such as polymer binder and the high contact of active materials. Finally, the electrochemical properties of thin films strongly depend on the thickness of the film, roughness of substrate-surface, substrate component, deposition conditions and heat treatment. For example, porous Fe$_3$O$_4$ thin films served as a high-performance binder-free anode for LIBs delivering specific capacities of 1100, 880 and 660 mAh·g$^{-1}$ at 0.1, 0.2 and 0.5 C rate, respectively.

1.5.2.3.1 Fe$_3$O$_4$ magnetite

Among the different transition metal oxides, iron oxides have received increased attention as anode materials for LIBs because of its very high theoretical capacity (for example, 1007 mAh·g$^{-1}$ for Fe$_2$O$_3$ hematite and 924 mAh g$^{-1}$ for Fe$_3$O$_4$ magnetite) as iron oxides can generally store 6-8 Li ions per formula unit via electrochemical conversion reactions. Furthermore, the main advantages of iron oxides are their low cost, low toxicity, natural abundance of raw materials, environmental benignity and high corrosion resistance. Nevertheless, in spite of these highly appealing features, the electrochemical reversibility of these electrodes was particularly much lower than the theoretical expectation, mainly due to severe volume expansion, low electrical conductivity, excessive SEI formation, fast capacity fading due to severe aggregation of iron oxide nanoparticles and low coulombic efficiency. The hybridisation of Fe$_3$O$_4$ nanoparticles with conductive matrices such as carbon and the fabrication of hollow structures have been adopted to overcome these problems. The very large capacities (above 900 mAh·g$^{-1}$) sustained for even up to 50-100 cycles that have been reported to date hold the promise of the applicability of these compounds. For example, Fe$_3$O$_4$ nanoparticles homogeneously dispersed into carbon nanotubes demonstrated negligible capacity loss up to 100 cycles and high discharge capacity of 930 mAh·g$^{-1}$ after 20 cycles at 100 mA·g$^{-1}$ current density. This composite also exhibited excellent rate capability where up to the 78.8 % of the original capacity was retained even at high current discharge rates of 1000 mA·g$^{-1}$. The outstanding electrochemical behaviour was attributed to the unique porous architecture based on homogeneous dispersion of Fe$_3$O$_4$ nanoparticles into carbon nanotubes networks, which leads to shorter Li$^+$ diffusion parthways, high electric conductivity and buffering space to accommodate large volume changes of Fe$_3$O$_4$ during the charge-discharge process. Also, Fe$_3$O$_4$ microspheres encapsulated in hollow graphene shells have recently delivered reversible specific capacities of 1480, 1270, 1100, 920, 760, and 533 mAh·g$^{-1}$ at the cycling rates of 0.1, 0.2, 0.5, 1, 2, and 5 mA·g$^{-1}$, respectively.
respectively, confirming the promising applicability of iron oxides as conversion anodes for LiBs. Even more sophisticated and complex composite formation such as a sandwich-like mesoporous graphene@Fe$_3$O$_4$@carbon nanosheets with a 2D nanoarchitecture has been successfully fabricated by a one-step solvothermal process, which displayed a very high discharge capacity of 913 mAh·g$^{-1}$ after 100 cycles at a current density of 200 mA·g$^{-1}$. This composite even exhibited a stable discharge capacity of 483 mAh·g$^{-1}$ at a rate of 1600 mA·g$^{-1}$. Particle downsizing has also shown to play a key role in reaching enhanced electrochemical performances. For example, graphene nanosheets decorated with ultra small Fe$_3$O$_4$ nanoparticles were synthesised via a facile hydrothermal method demonstrating superior cyclic ability, delivering 1177, 1096, 833, 488, 242, and 146 mAh·g$^{-1}$ at current densities of 90, 180, 900, 1800, 3600, and 7200 mA·g$^{-1}$, respectively. In this case, the excellent rate capability can be ascribed to the ultra-small size of active lithium storage sites of Fe$_3$O$_4$ with an average diameter less than 5 nm.

1.5.2.3.2 Mn$_3$O$_4$ hausmannite

Manganese oxides have also been investigated because of their high theoretical specific capacity, low reaction potential (0.2-0.5 V during the initial discharge) and low voltage hysteresis (<0.8 V) compared with other transition metal oxides. Manganese oxides exhibit a variety of crystallographic structures, which include cubic rock salt (MnO, 756 mAh·g$^{-1}$), inverse spinel (Mn$_2$O$_4$, 937 mAh·g$^{-1}$), hexagonal corundum (Mn$_2$O$_3$, 1019 mAh·g$^{-1}$), and a manganese dioxide structure (MnO$_2$, 1223 mAh·g$^{-1}$). They are also attractive candidates for use as anode material in LiBs due to the high abundance of Mn, its environmental-friendliness and low cost. However, full utilisation of manganese oxide is difficult due to the extremely low electrical conductivity (=10$^{-7}$-10$^{-8}$ S·cm$^{-1}$ for Mn$_3$O$_4$). Increased capacities can also be realised through the use of conductive coatings such as reduced graphene oxide and the growth of porous or hollow morphologies. A composite fabricated by combining 2D graphene nanosheets and 1D Mn$_3$O$_4$ nanowires manifested excellent electrochemical properties delivering 802 mAh·g$^{-1}$ at 100 mA·g$^{-1}$ and a high rate capacity of 308 mAh·g$^{-1}$ with good cycling stability at a current density of 2000 mA·g$^{-1}$. Also, 3-dimensional porous Mn$_3$O$_4$ nanosheet arrays reached reversible capacities of 1166.3 mAh·g$^{-1}$ and remained 667.9 mAh·g$^{-1}$ after 1000 cycles at 1000 mA·g$^{-1}$.

1.5.2.3.3 NiO

Nickel monoxide has also been exploited as an LiBs anode materials due to its high theoretical capacity of 718 mAh·g$^{-1}$ (in which NiO is reversibly decomposed and converted into metallic Ni nanoclusters and Li$_2$O) together with its relatively low price, abundance and acceptable toxicity. Recently, 3D NiO microspheres assembled from porous nanosheets exhibited an excellent electrochemical performance with reversible discharge
capacities up to 820 mAh·g⁻¹ after 100 cycles at a current density of 100 mA·g⁻¹ and even 634 mAh·g⁻¹ at 1000 mA·g⁻¹. The 3D microsphere architecture can contribute to enhanced electrochemical performance by improving the Li⁺ transfer with sufficient electrode/electrolyte contact areas and more efficiently accommodating the volume change occurring during the (de)lithiation process. Also, vertically aligned NiO nanowalls fabricated on nickel foils using a plasma-assisted oxidation method displayed capacities of ~638 mAh·g⁻¹ at 895 mA·g⁻¹ rate with excellent capacity retention up to 85 cycles. The superior electrochemical performance of NiO nanowalls can be ascribed to the large surface area and shorter diffusion path lengths for mass and charge transport. To summarise, Figure 1.10 illustrates the approximate range of discharge potentials and specific capacities for some of the most common cathode and anode materials for the next generation of rechargeable Li-based batteries.

1.6 Synthesis of electrode materials

New materials hold the key to fundamental advances in energy conversion and storage technologies, as the performance of energy devices depends intimately on the properties of their constituent materials. The properties of functional materials are directly linked to the material characteristics such as crystal structure, structural defects, crystallite and particle size, all of which strongly depend on the preparation method employed. One of the major goals in modern materials chemistry is thus to develop synthetic routes that allow for the precise control of the material characteristics, while ensuring that the synthesis is still cheap, environmentally-friendly and ideally capable of fast large scale production.

![Figure 1.10. Voltage vs. capacity for positive and negative electrode materials used or under consideration for the next generation of rechargeable Li-based batteries.](image)
1.6.2 Solid state synthesis

Conventional solid state state synthesis is the simplest and most traditional synthetic approach mainly because of its easy procedure and scalability. It generally involves intimate grinding of the reactants and their subsequent heating in air, oxidative, reducing or inert atmosphere, depending on the targeted material. However, the great disadvantages of this method are the requirement of high calcination temperatures (generally from 700 to 1500 °C) and long reaction times (up to several days) in order to overcome diffusion barriers and achieve homogeneous products. Moreover, high temperatures and long reaction times usually provoke the growth and sintering of the crystals, leading to micrometer-sized particles. Unfortunately, the macroscopic dimensions of as-synthesised particles in LIB electrode materials may lead to limited kinetics of Li⁺ insertion/extraction process during cycling. In the particular case of olivine LiFePO₄, the starting mixture often consists of a stoichiometric amount of iron salt (Fe(II) acetate, Fe(II) oxalate), a lithium compound (lithium carbonate or lithium hydroxide), and most commonly ammonium phosphates as a phosphorous source. The starting mixture initially decomposes at a temperature range of 300–400 °C to expel the gases, and, after being reground, it is calcined at temperatures from 400 to 800 °C for 10-24 hr. Before the second grinding step, some carbon containing compounds, for example carboxylic acid or sucrose, can be added to the precursor as a carbon source in the LiFePO₄/C composite formation. The purity of the material often depends on the growth parameters, such as the temperature of calcination and exposure time. During calcination, due to the Fe oxidation state (2+), the use of inert (usually nitrogen or argon) or slightly reductive atmosphere (argon or nitrogen with a small addition of hydrogen) is necessary. However, the presence of residual Fe³⁺ phases such as Fe₂O₃ and LiₓFe₂(PO₄)₃ are still possible and often reported. A family of LiFeₓ₋ₐMnₓPO₄/C (x=0, 0.2, 0.5, 0.8 and 1) phases have been successfully fabricated by solid state reactions using the appropriate quantity of citric acid and sugar. Electrochemical tests revealed that the energy density and rate capability of LiFeₓ₋ₐMnₓPO₄/C decreased with higher Mn contents, but the nanoporous LiFe₀.₂Mn₀.₈PO₄/C phase still displayed capacities of 138.3 mAh g⁻¹ at a rate of C/10. Uncontrollable particle growth and agglomeration associated with solid state synthesis has lead to the development of alternative solution chemistry methods that significantly reduce energy consumption, cost and processing times. In particular, solution-based routes generally result in smaller and more uniform particle sizes, higher purity, more homogeneous carbon coating and higher electrochemical capacities.

1.6.3 Solvothermal synthesis

A solvothermal process can be defined as a chemical reaction in a closed system in the presence of a solvent (aqueous or non-aqueous) at a temperature higher than that of the boiling point of such a solvent and at pressures above 1 bar. In general, synthesis
techniques that involve the dissolution of all reactants often promote greater homogeneity in the final product. Moreover, mass transport in the liquid phase is more favoured than in solids, and syntheses require much lower temperatures (generally lower than 200 °C). This can result in a better kinetic control of the products formed, and it is much easier to prepare metastable phases using this synthetic approach than it is using traditional solid state methods. Furthermore, by easily changing very simple synthesis parameters such as temperature, pressure, precursor concentration or using different solvent/cosolvent/surfactant systems, the particle characteristics can be tailored. In general, solvothermal synthesis is an effective method to afford well-crystallised materials with well defined morphologies, where no additional high post-heat treatment is needed. Moreover, solvothermal processes facilitate a wide range of reactions, such as multicomponent reactions, heat treatment reactions to modify or change the composition, phase transformation reactions, decomposition reactions, extraction, precipitation, disproportionation reactions, crystallisation and solidification. The most common method of accomplishing solvothermal synthesis is to seal the reactants mixture inside Teflon-lined autoclaves so that there is also significant autogenous solvothermal pressure produced, often up to 15 bar (Figure 1.11). Usually, for solvothermal reactions the precursors are either in solution, slurry or gel form.

![Schematic drawing of an autoclave for solvothermal synthesis.](image)

Figure 1.11. Schematic drawing of an autoclave for solvothermal synthesis. Solvothermal processes have been widely used for the preparation of promising electrode materials such as olivine LiFePO₄ with the possibility of easily tailoring particle sizes and morphology. For example, LiFePO₄ nanoparticles (~50 nm in size), nanoplates (100 nm thick and 800 nm wide) and microplates (300 nm thick and 3 μm wide) have been selectively synthesised by a solvothermal method in a water-polyethylene glycol (PEG) binary solvent using H₃PO₄, LiOH·H₂O and FeSO₄·7H₂O as precursors. The morphology and size of the LiFePO₄ particles were strongly dependent on synthetic parameters such as volume ratio of PEG to water, temperature, concentration and feeding sequence. A microspherical, hollow and monodispersed LiFePO₄ olivine material has also been
successfully synthesised by a solvothermal method using a spherical Li$_3$PO$_4$ template and FeCl$_2$·4H$_2$O as the Fe$^{2+}$ source. The electrochemical measurements demonstrated that the carbon coated LiFePO$_4$ materials could exhibit outstanding high charge/discharge capacities of 158, 144, 125, 101, and even 72 mAh g$^{-1}$ at 0.1 C, C, 5C, 20 C, and 50 C, respectively.136

The solvothermal technique is thus a promising method for the production of energy storage materials. Nevertheless, the mechanisms controlling the fundamental particle formation taking place during the solvothermal process are often poorly understood, and extensive trial-and-error experiments are usually required in order to design the synthesis of a certain material with tailor-made properties. As a deeper knowledge of these processes is crucial, *in situ* studies of solvothermal processes, which consist of investigations of the chemical reactions in real time, have become important in the understanding of material formation. The use of *in situ* techniques allow the observation of intermediate phases, which are generally difficult to isolate during an *ex situ* synthesis.137 For example, an *in situ* synchrotron XRD investigation of a one pot hydrothermal synthesis of olivine LiFePO$_4$ demonstrated that LiFePO$_4$ can be formed at temperatures as low as 105 °C. It was shown that the formation of LiFePO$_4$ occurs by a straightforward dissolution-reprecipitation process. Moreover, no obvious intermediate phases were formed during the synthesis, which fosters the rapid formation of olivine LiFePO$_4$ under hydrothermal conditions at low temperatures. They also examined the concentration of iron on lithium sites and the evolution of the lattice parameters by Rietveld analysis of the PXRD data as a function of the reaction temperature. Results revealed a competition between thermal expansion of the cell volume and cation ordering, which results in a contraction of the unit cell, as the cell volume decreases due to the elimination of antisite defects. At temperatures from 180 to 210 °C, less than 0.5% iron disorder was observed and nearly defect free material was obtained when the sample reached ~195 °C.138

1.6.4 Ultrasound synthesis

The utilisation of high intensity ultrasound irradiation (20 kHz-10 MHz) offers a facile, versatile synthetic technique for nanostructured materials that are not often available by traditional synthetic methods. The primary physical phenomena associated with ultrasound irradiation are cavitation and nebulisation. Acoustic cavitation, defined as the formation, growth and implosive collapse of bubbles in a liquid, creates extreme conditions inside the collapsing bubble. When liquids are irradiated with ultrasound, the alternating expansive and compressive acoustic waves creates bubbles and makes them oscillate. These oscillating bubbles can accumulate ultrasonic energy effectively while growing to a certain size (typically tens of mm). Under the right conditions, a bubble can overgrow and subsequently collapse, releasing the concentrated energy stored in the
bubble within a very short time (with a heating and cooling rate of \(>10^{10} \text{ K s}^{-1}\)). This cavitation implosion is generally very localised and transient with a temperature of \(~5000 \text{ K}\) and a pressure of \(~1000 \text{ bar}\). The sudden collapse results in an oxidative environment due to the generation of highly reactive species, including hydroxyl radicals (\(\cdot \text{OH}\)) and \(\cdot \text{H}\).\(^{139}\) Cavitation-induced sonochemistry provides a unique interaction between energy and matter under exceptional conditions that gives access to a range of chemical reactions normally not accessible allowing the generation of a wide variety of nanostructured materials.\(^{140}\) Compared to traditional energy sources, ultrasonic irradiation provides rather unusual reaction conditions such as a short duration of extremely high temperatures and pressures in liquids that cannot be created by other methods.\(^{140}\) The use of the sonochemical method for synthesis of different nanomaterials has become an important technique in recent years due to its simplicity, the low price of equipment and to the fact that in many cases crystalline materials are obtained at lower temperatures. The effects of ultrasound irradiation are particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogeneous dispersion.\(^{141}\) In particular, high intensity ultrasound can be used for the production of novel nanomaterials, including transition metal oxides.\(^{142}\) A myriad of metal oxides have been prepared by a sonochemical approach. Gedanken and co-workers have reported various nanostructured metal oxide syntheses including \(\text{TiO}_2\),\(^{143}\) \(\text{Fe}_3\text{O}_4\),\(^{144}\) \(\alpha\)-\(\text{Ni(OH)}_2\),\(^{145}\) \(\text{GaO(OH)}\),\(^{146}\) \(\text{In(OH)}_3\),\(^{147}\) and \(\text{BaFe}_{12}\text{O}_{19}\).\(^{148}\) In their syntheses, sonication of an aqueous metal salt solution is carried out under ambient conditions to prepare various forms of nanostructured metal oxides.\(^{140}\) Highly crystalline metal oxide nanoparticles such as \(\text{TiO}_2\), \(\text{WO}_3\) and \(\text{V}_2\text{O}_5\) have also been synthesised in just few minutes \textit{via} a sonochemical process by reacting transition metal chlorides with a non-aqueous solvent such as benzyl alcohol.\(^{149}\) Even a wet chemical co-precipitation process promoted by ultrasonic irradiation in aqueous solutions has also provided a simple and economic route to nanosized \(\text{LiFePO}_4/\text{C}\) composites exhibiting good cycling performance in which discharge capacities of 159, 147 and 135 mAh\(\cdot\)g\(^{-1}\) at 0.1 C, 0.5 C and 2 C rates, respectively, were reached.\(^{150}\)

1.6.5 Microwave synthesis

In the past decade, microwave-assisted solvothermal synthesis has shown to be a fast and low temperature route to prepare high quality functional nanomaterials by combining the strong interaction between polar/ionic solvents and microwave radiation. In traditional heating methods, energy is delivered to the material through conduction, convection and radiation processes. Nevertheless, in microwave dielectric heating the electromagnetic energy is volumetrically and instantaneously absorbed by all the parts of the mixture so that uniform and rapid increase of temperature can be achieved within a short period of time. In particular, the synthesis of nanoparticles, whose growth is
extremely sensitive to the reaction conditions, could benefit from the efficient and controlled heating provided by microwave irradiation. Furthermore, microwave processes can also suppress side reactions, improving the yield and reproducibility of the synthetic procedure. In general, microwave heating can offer the following advantages in comparison to conventional heating for chemical synthesis: high heating rates, excellent control of the reaction parameters (which is not only important with respect to the quality of the product, but also addresses a serious safety issue), selective heating in the case where the reaction mixture contains compounds with different microwave absorbing properties, higher yields, better selectivity due to reduced side reactions, improved reproducibility, possibility of automatisation and high throughput synthesis, and no direct contact between the heating source and the reactants and/or solvents. Finally, it is worth mentioning the simplicity of microwave-assisted methods in which a precursor mixture in an adequate solvent is taken inside a microwave vessel and irradiated. Modern commercially available dedicated microwave reactors feature built-in magnetic stirrers and direct temperature and pressure monitoring by various probes and sensors, contributing to a better understanding of the microwave process and increased safety. However, some of the major drawbacks of microwave chemistry are the high costs of dedicated microwave reactors and the size limitation of the reactors due to the short penetration depth of microwave irradiation, which could be a serious problem for scaling-up.

The microwave dielectric heating effect uses the ability of some liquids and solids to convert electromagnetic energy into heat and thereby drive reactions in which some control of the material’s properties and reaction selectivity can be achieved. In many instances, the use of microwaves has been demonstrated to significantly reduce processing times, increase product yields and enhance product purities compared to other conventional synthetic routes. The origin of the heating effect produced by high frequency electromagnetic waves (2.45 GHz in industrial microwave heaters) arises from the ability of an electric field to exert a force on charged particles. When the particles contained in a substance can move freely through it, a current is induced. However, if the charge carriers are bound to certain regions, they will move until a counter force balances them resulting in a dielectric polarisation. Both conduction and dielectric polarisation are sources of microwave heating. Microwave dielectric heating relies on the ability of an electric field to polarise charges in a material and the inability of this polarisation to follow fast reversals of an electric field. In dipolar polarisation, individual dipoles rotate due to the moment applied by the electric field (Figure 1.12 (a)) and heating occurs because of frictional losses as the molecule attempts to realign with the electric field, and these frictional losses can be considered to be analogous to the bulk viscosity of the liquid. At higher temperatures the molecular friction decreases because
the molecules can more easily follow the alternating electric field and consequently, less energy is dissipated as heat. In the case of ionic conduction the dissolved charged particles oscillate back and forth under the influence of the microwave irradiation, colliding with neighbouring molecules, and thus creating heat (Figure 1.12 (b)). The extent to which a material interacts with an electric field can be characterised by its dielectric properties, so elucidation of the dielectric properties of each component and the bulk reaction mixture is essential in understanding the interaction of electromagnetic waves with a material. The dielectric constant, ϵ' is the ability of a material to store electromagnetic energy through polarisation and the dielectric loss factor, ϵ'' is the ability to convert the stored energy into heat. The ratio ϵ'/ϵ'' is generally used to assess the heating ability of a material under microwave irradiation and this quantity is known as the loss tangent, $\tan \delta = \epsilon''/\epsilon'$. In general, media exhibiting high $\tan \delta$ values are characterised by high absorption ability and, respectively, efficiency of heating. In Table 1.1 the dielectric loss tangent of different solvents are listed. This information suggests that the high $\tan \delta$ of glycols and alcohols makes them ideal solvents for an effective microwave heating.

![Figure 1.12. (a) Dipolar polarization: dipolar molecules which try to align with an oscillating electric field. (b) Ionic conduction: charged particles in solution will follow the applied electric field.](image)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$\tan \delta$</th>
<th>Solvent</th>
<th>$\tan \delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene glycol</td>
<td>1.350</td>
<td>DMF</td>
<td>0.161</td>
</tr>
<tr>
<td>Ethanol</td>
<td>0.941</td>
<td>Acetonitrile</td>
<td>0.062</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.825</td>
<td>Acetone</td>
<td>0.054</td>
</tr>
<tr>
<td>Water</td>
<td>0.123</td>
<td>Chloroform</td>
<td>0.091</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.659</td>
<td>Dichlorometane</td>
<td>0.042</td>
</tr>
</tbody>
</table>
Solvothermal microwave-assisted have shown to yield high performing electrode materials for Li-ion batteries. For example, 3 min microwave-assisted liquid phase synthesis of highly crystalline LiFePO$_4$, LiMnPO$_4$ and mixed LiMn$_{0.65}$Fe$_{0.35}$O$_4$ olivines in benzyl alcohol has been reported by Niederberger et al. The LiFePO$_4$ electrode demonstrated an excellent initial discharge capacity of 150 mAh·g$^{-1}$ and very stable cycling performance, allowing a capacity retention with a decline of only 5-10% after 160 cycles. The initial specific charge of LiMnPO$_4$ was ~125 mAh·g$^{-1}$, however with a gradual capacity fade over cycling. In general, it has been found that microwave processed LiFePO$_4$ powders generally exhibit smaller particle size, more uniform size distribution, smoother surface morphology and higher discharge capacity. On the other hand, microwave processes allow access to kinetically driven reactions, which opens up the possibility of obtaining low-temperature metastable phases and polymorphs that could not be synthesised with conventional techniques. In particular, microwave synthesis has also been a facile approach to directly tailor two LiFePO$_4$ polymorphs in a controlled way under mild conditions. Employing a microwave-assisted non-aqueous route, highly crystalline olivine α-LiFePO$_4$ (Pnma space group) or non-olivine β-phase LiFePO$_4$ (Cmcm space group) have been efficiently synthesised by simply tuning the ratio of the solvents benzyl alcohol and 2-pyrrolidone. Also, orthorhombic but non-olivine polymorphs LiMPO$_4$ (M=Mn, Fe, Co and Ni) described by a Cmcm space group have been fabricated by a rapid microwave-assisted solvothermal synthesis using dry tetraethylene glycol. Our group also reported the formation of a mixture of α- and β-LiFePO$_4$ polymorphs through a solvothermal microwave-assisted approach using FeC$_2$O$_4$·2H$_2$O and LiH$_2$PO$_4$ in ethylene glycol.

1.6.6 Ionothermal synthesis

Ionic liquids (ILs) are a class of organic solvents with high polarity and a preorganised solvent structure. They are defined as room temperature molten salts that differ from inorganic salts such as NaCl (T$_{f}$=801 °C) because their melting temperature is lower than 100 °C. They are made of organic cations and anions, the choice and combination of which will mainly affect their melting point and their solvating properties. In recent years, ILs have received increased attention as novel green media in inorganic materials synthesis due to their excellent properties such as high thermal stability, low vapor pressure, wide temperature range for liquid state, low interfacial tension, and high ionic conductivity. Owing to the high thermal stability of ILs, reactions can be conducted at temperatures well beyond 100 °C in non-pressurised vessels. Moreover, the low interfacial tension provides good stabilisation or solvation of molecular species, resulting in high nucleation rates. It also has to be noted that ILs present, as solvents, great opportunities to purposely direct nucleation due to the flexible nature of the cationic/anionic pairs. Over the past decades, ionothermal synthesis has developed into
an advantageous synthetic technique for the preparation of zeotypes160 and other porous materials such as metal organic framework compounds (MOFs).161 However, there has been a very limited use of this synthetic approach in the generation of inorganic compounds. Tarascon \textit{et al.} explored the ionothermal synthesis of electrode materials and they assessed the effect of various ionic liquid architectures on the resulting morphology and electrochemical performances of olivines LiFePO\textsubscript{4} and LiMnPO\textsubscript{4} powders, addressing also the possibility of easily recovering and reusing the expensive ILs.162, 163 They also demonstrated the effectiveness of ionothermal synthesis in the preparation of nanometric Li-based fluorophosphates LiFePO\textsubscript{4}F and LiTiPO\textsubscript{4}F electrodes with structures isotopic to tavorite LiFePO\textsubscript{4}(OH) at temperatures of only 260 °C, while temperatures of 600–700 °C are required to obtain coarse powders via traditional ceramic methods.164 Various structures and morphologies of Li\textsubscript{3}V\textsubscript{2}(PO\textsubscript{4})\textsubscript{3} cathode materials have also been synthesised by a novel ionothermal method using three kinds of imidazolium-based ILs as both reaction media and structure-directing agents at ambient pressure. These materials presented excellent electrochemical performance with high rate capabilities and cycle stability.165 On the other hand, ionic liquids are highly susceptible to microwave irradiation because of their ionic character and high polarisability, making them excellent microwave adsorbers. The combination of microwave heating and ILs can provide superior benefits for the fast synthesis of high performing functional materials over the conventional heating methods, especially in terms of rapidness, energy-efficiency and increased crystallinity.166 Our group has successfully synthesised nanoparticulate olivine LiFePO\textsubscript{4} through a microwave route using FeC\textsubscript{2}O\textsubscript{4}·2H\textsubscript{2}O and LiH\textsubscript{2}PO\textsubscript{4} precursors in 1-ethyl-3-methyl imidazolium trifluoromethanesulfonate (EMI-TFMS).51

\textbf{1.6.7 Synthetic strategies to electrochemical performance enhancement}

Innovative materials chemistry lies at the heart of the main advances made in energy conversion and storage. Further breakthroughs in materials processing hold the key to new high performing energy storage and conversion devices. In particular, the poor electrical and ionic conductivity of some electrode materials are generally the main causes of poor rate performance during battery cycling. Therefore, exploring new synthetic strategies able to overcome these drawbacks has become an essential factor in the development of novel high performing electrode materials. Novel and creative approaches that can be used to improve LIB performance include:

(i) selective cationic doping can allow higher cell voltages, a faster ionic and electronic transport and even some enhancement in the chemical/thermal stability.167 For example, Li-sites in olivine LiFePO\textsubscript{4} have been substituted for ions with small ionic radius such as Na,168-170 Nb,171 and Al173 leading to an enhancement of the electrochemical performance. Li-site doping can increase the electronic conductivity and decrease the charge transfer resistance. However, the origin of the enhanced conductivity is under
debate. Controversy has centered on whether the ions are actually doped into the lattice or whether a conductive nanonetwork of metal-rich phosphides is responsible for the enhanced conductivity. First principle calculations have also demonstrated that Fe-site doping may facilitate the diffusion of lithium along the 1D channels and increase both the electronic and ionic conductivity of LiFePO₄ cathodes. The enhanced electronic and ionic conductivity may be ascribed to the weakening of the Li-O bond in LiFePO₄. Certain doping elements such as Ni and Zn can remarkably enhance the electrochemical performance of LiFePO₄ cathodes. Ornek et al. demonstrated that Ni doped LiNiₓFe₁₋ₓPO₄/C cathodes can exhibit a noticeable improvement in electrical conductivity and diffusion coefficient of lithium ions. Their LiFe₀.₉₅Ni₀.₀₅PO₄/C sample synthesised by sol-gel-assisted carbothermal reduction method displayed discharge capacities of 155 mAh·g⁻¹ in comparison to 122 mAh·g⁻¹ from the undoped LiFePO₄/C. Shenouda et al. investigated Zn-doped LiFePO₄ materials and reported that the undoped LiFePO₄ showed a decrease from 135 to 125 mAh·g⁻¹ after 150 cycles, while 2.5% ZnO-doped LiFePO₄ exhibited an initial capacity of 177 mAh·g⁻¹ and maintained 167 mAh·g⁻¹ after 150 cycles. Attempts to dope LiFePO₄ with more than one different transition metal have also been pursued. Recently, a grape-like LiFe₀.₉₇M₀.₀₃PO₄/C (M=Ni, Co, Mn) composite prepared by a wet-milling assisted carbothermal reduction method delivered an excellent rate capability with discharge capacities of 167.5 (0.2 C), 161.2 (0.5 C), 151.1 (1 C), 146.7 (2 C), 135.5 (5 C) and 124.9 mAh·g⁻¹ (10 C). The synergistic effect of Ni-Co-Mn doping, carbon coating and well-defined morphology are believed to be the reasons of the outstanding cycling behaviour.

(ii) Decreasing the particle size could be another way to obtain a greater capacities and rate capabilities, as smaller particle sizes allow shorter pathlengths for the Li⁺ ions to diffuse while the increased surface areas improve the electrode-electrolyte interactions. For example, Lee et al. fabricated LiFePO₄ samples with and without surfactant by vibratory milling followed by thermal heat treatment. The addition of a surfactant led to uniform-sized smaller particles with less agglomerates and higher specific surface area. Electrochemical impedance spectroscopy measurements showed a low charge transfer resistance in these electrodes, which led to a significantly enhanced cycling performance. Furthermore, particle minimisation can also relieve stress and improve the mechanical stability facilitating structural transformations. Therefore, nanostructured electrodes are proven to be effective in improving the kinetics of phase transformation and minimising undesirable consequences such as degraded flexibility for the insertion or extraction of Li⁺ ions and thus diminished capacity retention. For instance, when ultrathin LiMn₂O₄ nanowires with diameters less than 10 nm were used as cathodes, a more facile structural transformation was observed in a large composition range with high reversibility and good capacity retention. On the other hand, nanostructured
Chapter 1

materials can also lead to new Li-storage mechanisms, enabling higher capacities than conventional intercalation mechanisms. It has been demonstrated that Li\(^+\) ions can be stored on the surface,\(^{183}\) interface\(^{184, 185}\) and in nanopores\(^{186, 187}\) without causing any mechanical crumbling in the electrode, thus leading to excess lithium storage. Nevertheless, nanomaterials may incur high fabrication cost due to complex synthetic processes, low volumetric energy density due to reduced packing density of nanoparticles, and undesired side reactions between the electrode and the electrolyte due to large surface areas. Furthermore, nanomaterials tend to form agglomerates during the electrode fabrication process, making it difficult to uniformly disperse them in the electrodes.\(^{188}\)

(iii) Another alternative includes customising particle morphologies taking into account that the synthetic method followed and the solvent chosen are detrimental factors in the resulting morphology and particle size. Designing unique shapes and morphologies of electrode materials is important to enhance the electrochemical performance, as different morphologies can enlarge the electrode/electrolyte interface and shorten the transport path for lithium ions and electrons.\(^{189}\) Most conventional morphological control is based on a variety of nanostructures such as nanowires, nanoparticles, nanosheets and core-shell structures. In particular, the core-shell structured LiFePO\(_4\)/carbon composite allows fast lithium ion and electron transportation, enabling high rate performance. Zhou et al. designed a LiFePO\(_4\)/carbon nanocomposite with a core-shell structure and the obtained LiFePO\(_4\) showed a high rate capability and long life cycle (168 mAh·g\(^{-1}\) at 0.6 C and 90 mAh·g\(^{-1}\) at 60 C, and less than 5% discharge capacity loss over 1100 cycles).\(^{190}\) On the other hand, Peng et al. demonstrated that self-assembled single-crystalline LiFePO\(_4\) nanowires exhibited reversible capacities of 110 mAh·g\(^{-1}\) at a 30 C rate, showing the strong potential of 1D nanostructured electrode materials for LiBs.\(^{191}\) The nanowires morphology may enhance the contact with the electrolyte, improve permeation and mitigate the problem of slow Li\(^+\) transport.\(^{189}\)

(iv) Also, all-in-one carbon coating procedures using low cost and environmentally-friendly carbon sources have shown to increase the electronic conductivity of electrode materials and consequently enhance the electrochemical performance. Conductive coatings can stabilise surface reactions protecting the active materials from the electrolyte and potentially suppressing side reactions due to electrolyte decomposition.\(^{192}\)

A variety of carbon sources with different chemical and physical properties have been applied to the carbon coating process for electrode materials. Some classic carbon sources include some organics (glucose, citric acid and lactose) and some inorganic sources (acetylene black, carbon nanotubes and graphene). Organic carbon sources are advantageous in forming a homogeneous carbon-coating layer and allow for good control of the carbon layer structure (thickness, homogeneity, full coverage) during the pyrolysis
process at high temperatures, but the carbon quality (conductivity, graphitised degree) is hard to control. On the other side, inorganic carbon provides the opposite advantages and disadvantages. For example, a carbon coated LiFePO$_4$-porous carbon composite (C-LiFePO$_4$-PC) exhibited a much better rate capability compared to bare LiFePO$_4$-porous carbon (LiFePO$_4$-PC), displaying discharge capacities of 152 mAh g$^{-1}$ and 140 mAh g$^{-1}$ at 0.1 C rate, respectively. In addition, the C-LiFePO$_4$-PC electrodes exhibit a much better rate capability compared to the LiFePO$_4$-PC electrode operated at various rates between 0.2 C and 5 C. The carbon coating may enhance the structural stability and improve the lithium storage kinetics. Ramesh et al. studied the effect of carbon coating on the surface of LiMnP0$_4$ nanorods and also observed an improvement in battery performance compared to the bare sample (75 mAh g$^{-1}$ for bare LiMnPO$_4$ vs. 110 mAh g$^{-1}$ for C/LiMnPO$_4$). (v) Finally, high specific surface areas may improve the accessibility of the active electrode materials to the electrolyte, which could effectively enhance Li$^+$ transport and rate capability. Hollow nanostructured materials generally can offer higher capacity and rate capability compared to their bulk counterparts due to larger surface area, shorter path length for Li$^+$ migration and more freedom to accommodate volume changes, which can reduce the overpotential and allow faster reaction kinetic at the electrode surface. In particular, encapsulation of electrochemically active particles in a graphene hollow shell to form a core-void-shell composite is a promising way to improve the electrochemical performance of some battery materials such as transition metal oxides. It has been demonstrated that the continuous graphene shell may enhance the electrical conductivity of the electrodes and thus facilitate current collection and charge transfer associated with lithium storage. The unique shell structure may suppress particle aggregation of the core active particles while the void space between the core and shell may accommodate the large volume changes of the core material during the Li$^+$ insertion and extraction process. Figure 1.13 summarises the general strategies for performance enhancement of electrode materials.
Figure 1.13. General strategies for electrochemical performance enhancement and their rationale: (a) doping, (b) reducing dimensions of active material, (c) tuning particle morphology and (d) formation of conductive coatings around the active material.

1.6.8 Single source precursor (SSP) synthesis

Nowadays, intensive research is focused towards the development of novel synthetic methodologies that allow generalisable, large-scale, energy-efficient and low cost routes to high quality nanomaterials with targeted properties. The synthesis of inorganic nanocrystals with control over shape, size, composition, crystal structure and surface chemistry is crucial for the fundamental understanding of their structure-property relationship. However, the design of suitable synthetic processes for the growth of well-shaped, monodispersed crystalline nanoparticles still remains a challenge. A new direction for nanomaterials preparation being pursued is the use of single source precursors (SSP) which possess all the desired elements in a unique molecular precursor. Co-location of these desired elements in a single starting material can potentially shorten reaction times and temperatures due to a decrease in diffusional energy requirements usually needed for reactions to proceed. Furthermore, intimate mixing at the molecular level generally ensures product homogeneity. Therefore, the preparation of nanocomposite materials from single source precursors represents a highly promising approach towards tailor-made phase compositions, morphologies, microstructures and, consequently, specific properties. The fabrication of inorganic materials from metallorganic precursors often has advantages over “traditional routes” which include lower reaction temperatures and better compositional uniformity. Furthermore, the bridging or chelating organic ligands in the precursor molecules can help prevent molecular segregation and the loss of the volatile organic moiety in the course of decomposition may impart unusual and/or desirable structural features in the final product such as high surface area, low density, connected channels or the formation of metastable phases. In addition, the binding strength of the ligands on the single source
metal precursor can be tailored to tune the decomposition kinetics of the complex.196, 197 For example, metal alkoxides constitute an important class of metalorganic compounds characterised by the metal-oxygen-carbon bond system. Therefore, metal alkoxides \(\text{M(OR)}_n \) are ideal metalorganic precursors for the formation of metal oxides due to the fact that they already have the metal-oxygen bond templated in a single molecular precursor. The properties of metal alkoxides are dependent on numerous interrelated factors. The ratio of metal atoms to alkoxide residues (the number of OR groups per metal atom) and how closely that number approaches to the maximum coordination number possible for the metal atom, is very important and influences whether monomers \(\text{M(OR)}_x \), oligomers \(\text{[M(OR)}_x]_{2,3} \) or 4 or extended lattices \(\text{[M(OR)}_x]_n \) are likely, whatever the polarity of the M-O bond. The size and shape of the alkyl group also play a prominent role in determining the properties of the alkoxides. Another attractive feature of metal alkoxides is their solubility in a large variety of solvents and their ability to form heterometallic species, especially by mixing alkoxides of different metals. The formation of double metal alkoxides can be considered to be partially due to the tendency of the metal to form coordination complexes in order to achieve its maximum coordination number.198 Recently, single source precursor approaches have been successfully applied for the preparation of several metal oxide nanoparticles. In previous reports, novel aqueous-based, single source precursor methods for the synthesis of pure, room temperature-stable, nanocrystalline B-NiMoO\(_4\) with controlled composition has been reported. The soft-chemical nature of this synthetic approach and the crystal structure features of the bimetallic hydroxyisobutyrate precursor were found to play an essential role in the fabrication of this metastable oxide under mild reaction conditions.199 Transition metal doped titanium glycolates have been directly used as single source precursors for the preparation of porous metal-doped titania (\(\text{TiO}_2 \)) through a simple thermal treatment process. The obtained product demonstrated high crystallinity, a large surface area and appropriate transition metal doping, all of which were beneficial to the enhancement of the photocatalytic performance of the doped \(\text{TiO}_2 \) material.200 Deng et al. have also reported a controllable synthesis of spinel \(\text{ZnMn}_2\text{O}_4 \) nanoparticles prepared via a single source precursor route by calcination of a \(\text{Zn-Mn} \) citrate complex precursor. This potential conversion anode for \(\text{LiBs} \) exhibited attractive rate capabilities delivering 330 mAh·g\(^{-1}\) after more than 35 cycles at 600 mA·g\(^{-1}\).201 A new single source precursor approach to synthesise graphene-like MoS\(_2\) flakes with tunable layers (from mono- to multi layer) by thermal decomposition of a single source \(\text{Mo(Et}_2\text{NCS}_2)_4 \) precursor has also been reported. This graphene-like MoS\(_2\) retained high storage capacity of 330 mAh·g\(^{-1}\) after 100 cycles at a current density of 500 mA·g\(^{-1}\). This synthetic route opens up a new method to controlled and large-scale synthesis of graphene-like transition metal sulphides for energy storage applications.202 In this thesis, single source precursor synthetic strategy using metal
alkoxides has been applied to the fabrication of olivine nanostructured LiFe$_{1-x}$Mn$_x$PO$_4$ cathodes and transition metal oxide anodes for LIBs.

1.7 Aims

This PhD aims to develop environmentally-friendly and energy-efficient synthetic routes to high performing nanostructured electrodes for LIB applications. Generating high quality functional nanomaterials via fast, low temperature and inexpensive approaches offers a tremendous potential for developing high performance LIBs required to meet our growing energy storage needs. Principally, this research focuses on the design, synthesis, structure determination and electrochemical evaluation of LIB electrodes. In particular, olivine LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures and transition metal oxide nanoparticles are the main objective of this thesis due to their potential applications as electrode materials in LIBs. The aim is centred on examining the local structure of these electrode nanomaterials in order to gain further insights into their electrochemical behaviour. These investigations mainly concentrate on the fabrication of a series of tailored metal alkoxide precursors containing all the required metals in a single compound, which are then used for the preparation of nanostructured transition metal phosphate insertion cathodes and metal oxides conversion anodes via fast and low temperature microwave and ultrasound-assisted processes. This project aims to demonstrate that the use of single source heterometallic alkoxide precursors in conjunction with microwave heating yields non-defective and highly crystalline nanomaterials exhibiting excellent electrochemical performances. The structure, particle size and morphology, and electrochemical performance of the materials synthesised here is fully investigated by powder X-ray/neutron diffraction, electron microscopy and potentiostatic measurements. When possible, X-ray/neutron total scattering methods with pair distribution function analysis have been conducted to obtain a detailed characterisation of the local structure and a complete examination of atomic disorder in these olivine structured nanocrystallites. Elucidation of the local structure of these nanocrystalline phases strongly contributes to understand the cycling behavior of these electrodes and, consequently, provides essential information for the future development of high performing battery materials. Finally, the microscopic Li$^+$ diffusion properties in olivine LiFe$_{1-x}$Mn$_x$PO$_4$ phases are evaluated for the first time using muon spin relaxation (μSR) technique.
2 Materials and Characterisation Methods

2.1 Materials

The following chemicals and solvents were purchased and used without further purification: Fe(acac)₃ (Sigma Aldrich), FeSO₄·7H₂O (Sigma Aldrich), FeC₂O₄·2H₂O (Alfa Aesar), MnC₂O₄·2H₂O (Alfa Aesar), Mn(acac)₃ (Alfa Aesar), MnCO₃ (Sigma Aldrich), MnSO₄·H₂O (Sigma Aldrich), NiC₂O₄·H₂O (Alfa Aesar), CoC₂O₄·H₂O (Sigma Aldrich), LiH₂PO₄ (Alfa Aesar), NaO’Bu (Sigma Aldrich), LiO’Bu (Alfa Aesar), FeBr₂ anhydrous (Sigma Aldrich), MnBr₂ anhydrous (Alfa Aesar), FeCl₂ anhydrous (Sigma Aldrich), NiCl₂ anhydrous (98%, Alfa Aesar), LiOH·H₂O (Sigma Aldrich), LiOH·H₂O or ⁷LiOH·H₂O (9.00 g, 0.214 mol) were weighed and dissolved in 15 mL distilled H₂O. 16.7 mL H₃PO₄ (85 wt. % in H₂O) was added dropwise with a Pasteur pipette while thoroughly stirring. Some white precipitate was immediately formed and the mixture was heated until complete evaporation of the solvent. The precipitate was then cooled to room temperature and washed with few mL of acetone. Finally, the LiH₂PO₄ powders were dried overnight in a vacuum oven at 80 ºC and thoroughly ground prior to use in the subsequent syntheses. Enriched ⁷LiOH·H₂O was employed to prepare ⁷LiH₂PO₄, used for preparation of samples for high resolution powder neutron diffraction and neutron PDF experiments.

2.2 Experimental procedure

2.2.1 Synthesis of LiH₂PO₄

LiOH·H₂O or ⁷LiOH·H₂O (9.00 g, 0.214 mol) were weighed and dissolved in 15 mL distilled H₂O. 16.7 mL H₃PO₄ (85 wt. % in H₂O) was added dropwise with a Pasteur pipette while thoroughly stirring. Some white precipitate was immediately formed and the mixture was heated until complete evaporation of the solvent. The precipitate was then cooled to room temperature and washed with few mL of acetone. Finally, the LiH₂PO₄ powders were dried overnight in a vacuum oven at 80 ºC and thoroughly ground prior to use in the subsequent syntheses. Enriched ⁷LiOH·H₂O was employed to prepare ⁷LiH₂PO₄, used for preparation of samples for high resolution powder neutron diffraction and neutron PDF experiments.

2.2.2 Microwave synthesis of C/LiFe₁₋ₓMnₓPO₄ olivines from commercial starting materials

LiFe₁₋ₓMnₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) powders were prepared by weighing and grinding in an Ar filled glovebox the stoichiometric amounts of LiH₂PO₄ (0.208 g, 2 mmol),
Fe(acac)$_3$ and MnC$_2$O$_4$·2H$_2$O (2 mmol transition metal precursors) (Mn(acac)$_3$ for the LiMnPO$_4$ sample) in an agate pestle and mortar. The powders were transferred into 35 mL glass reaction vessels and 10 mL of ethylene glycol was added. The mixtures were stirred for 20 minutes before irradiation with microwaves in a CEM Discover SP microwave synthesiser (operating frequency of 2.45 GHz) for 3 hr at 220 °C. A pre-stirring step of two minutes was also used prior to microwave irradiation to ensure complete mixing. After the microwave-assisted synthesis, the obtained powders were washed with distilled H$_2$O (2 x 35 mL), ethanol (2 x 35 mL) and acetone (2 x 35 mL). Finally, the product was dried in a vacuum oven at 80 °C overnight and ground.

The product was annealed under an Ar atmosphere at 500 °C for 1 hr in a tube furnace to increase crystallinity and also to decrease possible Li$_3$PO$_4$ impurities remaining in the sample. Any remaining Li$_3$PO$_4$ could be removed with a weak acid such as acetic acid. The washing is carried out by adding 10 mL of acetic acid 0.01 M to the impure sample (around 0.20-0.25 g) and then stirring the mixture for 4 min. The mixture was centrifuged for 1 min at 4000 rpm and the pH was checked (should be around 3). Next, the sample was washed with distilled water (2 x 20 mL) and with acetone (1 x 20 mL). Finally, the product was dried overnight in the vacuum oven at 80 °C. In order to obtain the sufficient amount of sample for neutron diffraction experiments, multiple syntheses were conducted under identical conditions using the same starting materials, and the powders obtained were combined.

2.2.2.1 Carbon coating of C/LiFe$_{1-x}$Mn$_x$PO$_4$ olivines

For the battery cycling experiments, a carbon coating of the LiFe$_{1-x}$Mn$_x$PO$_4$ phases was conducted using sucrose in order to increase the conductivity of the electrode materials. LiFe$_{1-x}$Mn$_x$PO$_4$ powders were mixed with sucrose (based on 15% wt. carbon coming from sucrose) and a 1:1 mixture in v/v of distilled H$_2$O:ethanol was added. The resulting suspension was sonicated for 20 min and the solvent was evaporated by heating at 100 °C and stirring. Finally, the dried powder was transferred to a tube furnace equipped with flowing Ar gas and heat treated at 700 °C for 3 hr. During the heat treatment the sucrose carbonises forming a carbon layer coating the particles.

2.2.3 Synthesis of “[Fe$_{1-x}$Mn$_x$(O′Bu)$_2$(THF)]$_2$” (x=0, 0.5 and 1) metal alkoxide precursors

Synthesis of [Fe(O′Bu)$_2$(THF)]$_2$ (I)

NaO′Bu (5.667 g, 60 mmol) and FeBr$_2$ (6.470 g, 30 mmol) were weighed in an Ar-filled glovebox and transferred into a Schlenk flask. Dry THF (90 mL) was added and the mixture was stirred at room temperature for 24 hr. A grey precipitate of NaBr was formed.
and the liquid phase was transferred into a separate flask using a glass syringe. The solvent was evaporated under vacuum to yield extremely air sensitive grey-greenish crystals of $[\text{Fe}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (I). All the manipulations were performed using a Schlenk line.

Synthesis of $[\text{Mn}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (II)

The same preparation method was followed using MnBr$_2$ (6.443 g, 30 mmol) and NaO4Bu (5.766 g, 60 mmol) in 90 mL of THF in order to synthesise the equivalent Mn-containing alkoxide with expected formula $[\text{Mn}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (II).

Synthesis of $[\text{Fe}_{0.5}\text{Mn}_{0.5}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (III)

A similar salt elimination reaction was conducted to prepare the bimetallic alkoxide with suggested formula $[\text{Fe}_{0.5}\text{Mn}_{0.5}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (III). FeBr$_2$ (3.235 g, 15 mmol), MnBr$_2$ (3.221 g, 15 mmol) and NaO4Bu (5.766 g, 60 mmol) in 90 mL of THF were used in the preparation of $[\text{Fe}_{0.5}\text{Mn}_{0.5}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (III).

2.2.4 Microwave synthesis of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures from $[\text{Fe}_{1-x}\text{Mn}_x(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (x=0, 0.5 and 1) metal alkoxide precursors

The metal alkoxide precursors $[\text{Fe}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (I), $[\text{Mn}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (II) and $[\text{Fe}_{0.5}\text{Mn}_{0.5}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (III) (0.030 g, 0.07 mmol) were each independently mixed with LiOH·H$_2$O (0.007 g, 0.14 mmol) and H$_3$PO$_4$ (0.015 g, 0.14 mmol) in 4 mL benzyl alcohol. The mixtures were irradiated with microwaves for 15 min at 80 ºC then for 10 min at 240 ºC using a CEM Discover SP microwave synthesiser (2.45 GHz). The resulting products were washed thoroughly with ethanol (30 mL × 3) and acetone (30 mL × 3) and then dried overnight in a vacuum oven at 80 ºC to obtain the LiFePO$_4$-I, LiMnPO$_4$-II, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-I-II powders. The LiFePO$_4$-I, LiMnPO$_4$-II and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III samples were carbon coated as previously described in section 2.2.2.1 using 15% wt. C from sucrose (heat treatment for 1 hr at 700 ºC under Ar flow).

2.2.5 Ultrasonic-assisted synthesis of C/Mn$_3$O$_4$ hausmannite from $[\text{Mn}(\text{O}^4\text{Bu})_2(\text{THF})]_2$ metal alkoxide precursor

As previously reported by Gun’ko et al.,203,204 the careful hydrolysis and ultrasonic treatment of $[\text{Fe}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ affords nanoparticles of magnetite (Fe$_3$O$_4$). Knowing this, the remaining $[\text{Mn}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (II) and NaBr precipitate obtained after syringing out the $[\text{Mn}(\text{O}^3\text{Bu})_2(\text{THF})]_2$ (II) liquid phase was hydrolysed with 60 mL of degassed H$_2$O and kept in the ultrasonic bath for 1 hr to afford nanostructured Mn$_3$O$_4$ hausmannite. The addition of degassed H$_2$O and the ultrasonic treatment were repeated 6 times. After that, the obtained precipitate was washed again 4 times with 30 mL of distilled H$_2$O to completely remove the remaining NaBr. Mn$_3$O$_4$ powders were carbon coated using sucrose as previously described in section 2.2.2.1 by heating for 1 hr at 500 ºC under air.
2.2.6 Synthesis of “[MLi₂X(O₄Bu)₄(THF)₂]ₙ” (M=Fe, Mn, Ni; X=Br, Cl) heterometallic alkoxide precursors

Synthesis of [FeLi₂Br(O₄Bu)₄(THF)₂]ₙ (IV)

FeBr₂ (1.078 g, 5 mmol) and LiO₄Bu (1.201 g, 15 mmol) were weighed out in a glovebox and transferred into a Schlenk flask. The flask was then connected to a Schlenk line and cooled with an ice bath. 40 mL of dry THF were carefully added via glass syringe to the Schlenk flask. The resulting dark brownish mixture was stirred at room temperature for 24 hr, after which the mixture was filtered through Celite 535 to remove greyish LiBr precipitate formed. A small aliquot of solution (~3 mL) was transferred into a small Schlenk flask in order to grow suitable crystals for single crystal diffraction experiments. The aliquot was kept in the fridge to allow the recrystallisation and dark-brownish crystals of enough quality for single crystal measurements were obtained after three days. For the remaining sample, the solvent was slowly evaporated under vacuum and the obtained powder was thoroughly ground and used as a precursor for the preparation of LiFePO₄ nanostructures.

Synthesis of “[FeLi₂Cl(O₄Bu)₄(THF)₂]ₙ” (V)

The same synthetic procedure was followed using FeCl₂ (0.634 g, 5 mmol) and LiO₄Bu (1.201 g, 15 mmol) in 40 mL of THF in order to obtain the structural analogue “[FeLi₂Cl(O₄Bu)₄(THF)₂]ₙ” (V) heterometallic alkoxide precursor.

Synthesis of “[MnLi₂Br(O₄Bu)₄(THF)₂]ₙ” (VI)

A similar preparation method was also employed to perform the reaction of MnBr₂ (1.074 g, 5 mmol) and LiO₄Bu (1.201 g, 15 mmol) in 40 mL of THF to yield pinkish powders of “[MnLi₂Br(O₄Bu)₄(THF)₂]ₙ” (VI) heterometallic alkoxide precursor.

Synthesis of “[Fe₀.₅Mn₀.₅Li₂Br(O₄Bu)₄(THF)₂]ₙ” (VII)

The same synthetic approach was used to prepare the trimetallic alkoxide precursor “[Fe₀.₅Mn₀.₅Li₂Br(O₄Bu)₄(THF)₂]ₙ” (VII) by reaction of FeBr₂ (0.539 g, 2.5 mmol), MnBr₂ (0.537 g, 2.5 mmol) and LiO₄Bu (1.201 g, 15 mmol) in 40 mL of THF.

Synthesis of “[NiLi₂Cl(O₄Bu)₄(THF)₂]ₙ” (VIII)

A similar synthetic procedure was followed to perform the reaction between NiCl₂ (0.635 g, 5 mmol) and three molar equivalents of LiO₄Bu (1.201 g, 15 mmol) in 40 mL of THF to yield greyish-purplish powders of “[NiLi₂Cl(O₄Bu)₄(THF)₂]ₙ” (VIII) heterometallic alkoxide precursor.

2.2.7 Microwave synthesis of LiFe₁₋ₓMnₓPO₄ nanostructures from “[Fe₁₋ₓMnₓLi₂Br(O₄Bu)₄(THF)₂]ₙ” (x=0, 0.5 and 1) and “[FeLi₂Cl(O₄Bu)₄(THF)₂]ₙ” heterometallic alkoxide precursors

The different heterometallic alkoxide precursors [FeLi₂Br(O₄Bu)₄(THF)₂]ₙ (IV), “[FeLi₂Cl(O₄Bu)₄(THF)₂]ₙ” (V), “[MnLi₂Br(O₄Bu)₄(THF)₂]ₙ” (VI) and
“[Fe_{0.5}Mn_{0.5}Li_2Br(OtBu)_4(THF)_2]_n” (VII) (0.200 g, 0.340 mmol) were individually mixed with H\textsubscript{3}PO\textsubscript{4} (0.033 g, 0.340 mmol) in 10 mL of ethylene glycol and then irradiated with microwaves for 15 min at 80 °C and 10 min at 240 °C using a CEM Discover SP microwave synthesiser (2.45 GHz). The resulting products were washed thoroughly with ethanol (30 mL × 2), acetic acid glacial 0.01 M in order to dissolve and remove the Li\textsubscript{3}PO\textsubscript{4} formed during the microwave synthesis (10 mL × 1), distilled H\textsubscript{2}O (10 mL × 3) and acetone (40 mL × 3). The products were then dried overnight in a vacuum oven at 80 °C to yield the β-LiFePO\textsubscript{4}_\text{IV}, α-LiFePO\textsubscript{4}_\text{V}, LiMnPO\textsubscript{4}_\text{VI}, LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{VII}, LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{IV-VI} and LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{V-VI} powders.

The β-LiFePO\textsubscript{4}_\text{IV}, α-LiFePO\textsubscript{4}_\text{V}, LiMnPO\textsubscript{4}_\text{VI}, LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{VII}, LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{IV-VI} and LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{V-VI} samples were carbon coated as previously described in section 2.2.2.1 using 15% wt. C from sucrose (heat treatment for 1 hr at 700 °C under Ar flow).

2.2.8 Ionothermal microwave synthesis of LiFePO\textsubscript{4} nanostructures using “[FeLi\textsubscript{2}Cl(OtBu)_4(THF)_2]_n” heterometallic alkoxide precursor

The heterometallic alkoxide precursor “[FeLi\textsubscript{2}Cl(OtBu)_4(THF)_2]_n” (V) (0.150 g, 0.280 mmol) was mixed with H\textsubscript{3}PO\textsubscript{4} (0.027 g, 0.280 mmol) in 5 mL of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-TFMS) and then irradiated with microwaves for 10 min or 1 hr at 240 °C using a CEM Discover SP microwave synthesiser (2.45 GHz). The resulting products were washed thoroughly with ethanol (30 mL × 2), acetic acid glacial 0.01 M in order to dissolve and remove excess Li\textsubscript{3}PO\textsubscript{4} (5 mL × 1), distilled H\textsubscript{2}O (10 mL × 3) and acetone (30 mL × 3). The products were then dried overnight in a vacuum oven at 80 °C to yield the LiFePO\textsubscript{4}_\text{V-IL}_\text{10 min} or LiFePO\textsubscript{4}_\text{V-IL}_1 hr powders.

The LiFePO\textsubscript{4}_\text{V-IL}_\text{10 min} sample was carbon coated as previously described in section 2.2.2.1 using 15% wt. C from sucrose (heat treatment for 1 hr at 700 °C under Ar flow).

2.2.9 Solvothermal synthesis of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures from “[Fe\textsubscript{1-x}Mn\textsubscript{x}Li\textsubscript{2}Br(OtBu)_4(THF)_2]_n” (x=0, 0.5 and 1) heterometallic alkoxide precursors

The heterometallic alkoxide precursors FeLi\textsubscript{2}Br(OtBu)_4(THF)_2]_n (IV), “[MnLi\textsubscript{2}Br(OtBu)_4(THF)_2]_n” (VI) and “[Fe\textsubscript{0.5}Mn\textsubscript{0.5}Li\textsubscript{2}Br(OtBu)_4(THF)_2]_n” (VII) (0.400 g, 0.680 mmol) were individually weighed and mixed with H\textsubscript{3}PO\textsubscript{4} (0.067 g, 0.680 mmol) in an Ar-filled glovebox and transferred into a Teflon lined stainless-steel autoclave with a capacity of 50 mL. After that, 30 mL of ethylene glycol were added. The mixture was stirred approximately for 30 min and then heated for 12 hr at 220 °C in a Carbolite oven with a heating rate of 10 °C/min. The resulting products were washed thoroughly with ethanol (30 mL × 2) and acetone (30 mL × 3). After that, the products were dried overnight in a vacuum oven at 80 °C to yield the LiFePO\textsubscript{4}_\text{S-IV}_\text{12 hr}, LiMnPO\textsubscript{4}_\text{S-VI}_\text{12 hr} and LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}_\text{S-VII}_\text{12 hr} powders.
The LiFePO$_4$-S$_{	ext{IV}}$-12 hr, LiMnPO$_4$-S$_{	ext{VI}}$-12 hr and LiFe$_{0.5}Mn_{0.5}PO_4$-S$_{	ext{VII}}$-12 hr samples were carbon coated as previously described in section 2.2.2.1 using 15% wt. C from sucrose (heat treatment for 1 hr at 700 °C under Ar flow).

In an effort to decrease the reaction time for the preparation of LiFePO$_4$ nanostructures, similar solvothermal reactions using a Teflon lined reactor were conducted at 1, 4, 8 and 10 hr at 220 °C to yield the LiFePO$_4$-S$_{	ext{IV}}$-1 hr, LiFePO$_4$-S$_{	ext{IV}}$-4 hr, LiFePO$_4$-S$_{	ext{IV}}$-8 hr and LiFePO$_4$-S$_{	ext{IV}}$-10 hr products.

2.2.10 Solvothermal synthesis of LiFePO$_4$ nanostructures from commercial starting materials

FeSO$_4$·7H$_2$O (2 mmol, 0.556 g), LiOH·H$_2$O (4 mmol, 0.168 g) and H$_3$PO$_4$ (2 mmol, 0.196 g) were weighed and transferred into a Teflon lined reactor. After that, 30 mL of ethylene glycol were added. The mixture was stirred approximately for 30 min and then heated for 8, 10 or 12 hr at 220 °C in a Carbolite oven with a heating rate of 10 °C/min. The resulting products were washed thoroughly with ethanol (30 mL × 2) and acetone (30 mL × 3). The products were dried overnight in a vacuum oven at 80 °C to yield the LiFePO$_4$-S$_{\text{Com.}}$-8 hr, LiFePO$_4$-S$_{\text{Com.}}$-10 hr and LiFePO$_4$-S$_{\text{Com.}}$-12 hr powders.

The LiFePO$_4$-S$_{\text{Com.}}$-12 hr phase was carbon coated as previously described in section 2.2.2.1 using 15% wt. C from sucrose (heat treatment for 1 hr at 700 °C under Ar flow).

2.2.11 Ultrasonic-assisted synthesis of Fe$_3$O$_4$ magnetite from [FeLi$_2$Br(OEt)$_4$(THF)$_2$]$_n$ heterometallic alkoxide precursor

The remaining [FeLi$_2$Br(OEt)$_4$(THF)$_2$]$_n$ (IV) and LiBr precipitate was hydrolysed with 60 mL of degassed H$_2$O and kept in the ultrasonic bath for 1 hr at room temperature to afford nanostructured Fe$_3$O$_4$ magnetite. The addition of degassed H$_2$O and the ultrasonic treatment were repeated 4 times. After that, the obtained precipitate was washed again 4 times with 30 mL of distilled H$_2$O to completely remove the remaining LiBr.

The Fe$_3$O$_4$ nanoparticles were mixed with 15% wt. C from sucrose and thoroughly ground. The mixture was heat treated in a tube furnace for 3 hr at 500 °C under Ar atmosphere to yield C/Fe$_3$O$_4$ nanoparticles.

2.2.12 Microwave synthesis of C/LiFe$_{1-x}$Ni$_x$PO$_4$ (x=0.05, 0.2, 0.15 and 0.2) nanostructures from heterometallic alkoxide precursor “[FeLi$_2$Cl(OEt)$_4$(THF)$_2$]$_n$”

Stoichiometric amounts of heterometallic alkoxide precursor “[FeLi$_2$Cl(OEt)$_4$(THF)$_2$]$_n$” (V), NiC$_2$O$_4$·H$_2$O, H$_3$PO$_4$ and 10, 15 or 20 transition metal weight % of PVP were thoroughly mixed in 10 mL of ethylene glycol and then irradiated with microwaves for 1 hr at 240 °C using a CEM Discover SP microwave synthesiser (2.45 GHz). The resulting products were washed thoroughly with ethanol (30 mL × 2), acetic
acid glacial 0.01 M in order to dissolve any Li₃PO₄ formed during the microwave synthesis (5 mL × 1), distilled H₂O (10 mL × 3) and acetone (30 mL × 3). The powders were then dried overnight in a vacuum oven at 80 °C to yield the LiFe₀.₉₅Ni₀.₀₅PO₄, LiFe₀.₉Ni₀.₁PO₄, LiFe₀.₈₅Ni₀.₁₅PO₄ and LiFe₀.₈Ni₀.₂PO₄ nanostructures. Similar reactions for the preparation of LiFe₀.₉₅Ni₀.₀₅PO₄ were conducted using the “[NiLi₂Cl(OtBu)₄(THF)₂]n” heterometallic alkoxide precursor as Ni source. Finally, the powders were heat treated in a tube furnace for 1 hr at 700 °C under Ar flow in an effort to carbonise the PVP and form a uniform and thin carbon coating without the need of any additional carbon source.

The same synthetic procedure was followed for the preparation of LiMn₀.₉₅Ni₀.₀₅PO₄ nanostructures. Stoichiometric amounts of heterometallic alkoxide precursor “[MnLi₂Br(OtBu)₄(THF)₂]n” (VI), NiC₂O₄·H₂O, H₃PO₄ crystalline and 15 transition metal weight % of PVP were thoroughly mixed in 10 mL of ethylene glycol and then irradiated with microwaves for 1 hr at 240 °C. The obtained powders were also heat treated for 1 hr at 700 °C under Ar to carbonise the PVP.

2.2.13 Ultrasound-assisted synthesis of C/NiO from “[NiLi₂Cl(OtBu)₄(THF)₂]n” alkoxide precursor

The remaining “[NiLi₂Cl(OtBu)₄(THF)₂]n” (VIII) and LiCl precipitate was hydrolysed with 40 mL of degassed H₂O and then irradiated with ultrasound for 1 hr at room temperature. The H₂O was slowly evaporated by heating at 120 °C under vigorous stirring. After that, the dry precipitate was mixed with 15% wt. C from sucrose and a mixture 1:1 V:V of distilled H₂O:ethanol was added. The suspension was sonicated for 20 min and then the solvent was slowly evaporated by heating under vigorous stirring. The C/NiO powders were obtained by a heat treatment for 3 hr at 500 °C under air.

2.3 Characterisation methods

2.3.1 Structural characterisation

The main purpose of structural analysis is to relate the atomic structure to the properties displayed by the material, enabling the understanding of the materials properties from the atomistic point of view. This understanding can lead to important improvements of the material or even the design of new ones with enhanced properties. Various analytical techniques are required to fully characterise the nanomaterials on all length scales.

2.3.1.1 Powder X-ray diffraction (PXRD)

Powder X-ray diffraction (PXRD) is one of the most powerful characterisation tools and is a non-destructive technique for characterising the atomic structure of crystalline materials. It allows phase identification of a crystalline material and determination of the unit cell dimensions. The term “powder” relates to crystalline domains which are randomly oriented in the sample. In a PXRD experiment, the material under investigation
is finely ground, homogenised and the average bulk composition is determined. A monochromatic X-ray beam is focused onto a sample. Usually, crystalline materials are composed of repeating and uniform atomic planes which constitute their crystal structure. Polychromatic X-rays are normally produced within a closed tube under vacuum. Application of 15-60 kV current within the tube releases electrons which hit a Cr, Fe, Co, Cu, Mo or Ag anode, from which X-ray beams are generated. For X-ray diffraction, the metal most frequently used is copper. Copper emits two distinct wavelengths of X-rays, K_a and K_β, due to electrons decaying from the $2p$ and $3p$ orbitals. However, for diffraction purposes only K_a is selected and this is accomplished by passing the X-ray beam through a monochromator. Copper is generally chosen as the X-rays that are produced have a wavelength of 1.5406 Å, which is in similar size to the spacing of atoms in a crystal lattice. After filtering the polychromatic X-rays through a monochromator, monochromatic X-rays are produced, which are then collimated and directed onto the powder sample. Interactions of the incident X-rays with the samples create diffracted, transmitted, refracted and absorbed beams according to Bragg’s law:

$$n\lambda = 2d \sin \theta$$ \hspace{1cm} (2.1)

where n is an integer defining the order of the diffracted beam, λ represents the wavelength of the incident X-ray beam, d marks the distance between near atomic planes or d-spacing, and θ represents the angle of incident X-rays. Figure 2.1 depicts a schematic illustration of the Bragg’s law condition. Two beams with identical wavelength phase are directed towards a crystalline solid and are scattered by two different atoms within it. The lower beam traverses an extra length of $2d \sin \theta$. Constructive interference occurs when this length is equal to an integer multiple of the radiation wavelength.

![Figure 2.1. Schematic illustration of Bragg’s law condition.](image)

The degree of diffracted X-rays directly depends on the arrangement of the material’s atomic planes within the crystal lattice. Bragg’s law correlates diffraction angle and lattice atomic planes spacing at a specific wavelength of the electromagnetic radiation.
A detector is used to measure diffracted X-rays followed by processing and counting of the diffracted rays to give rise the diffracted pattern. Typically materials are identified by comparing the diffracted pattern beams with several reference patterns gathered in databases. In particular, the powder diffraction patterns of most inorganic solids can be found on the *Inorganic Crystal Structure Database (ICSD)*.\(^\text{207}\) Diffraction data are a set of intensity values measured at specific momentum transfer \(Q\) values which are usually expressed as degrees \(2\theta\). PXRD analysis can provide information about material’s identity, crystallinity, residual stress and textural features with minimum invasion. As a popular analytical tool, PXRD has widespread applications in a wide range of fields such as geology, pharmaceuticals, materials, polymers and environmental and forensic science.\(^\text{206}\)

The crystallite size can be estimated from the resulting PXRD pattern using the Scherrer equation. The Scherrer equation is a formula that relates the size of sub-micrometre particles, or crystallites, in a solid to the broadening of a peak in a PXRD pattern.\(^\text{208}\) The mathematical formula can be written as equation 2.2:

\[
\tau = \frac{K\lambda}{\beta \cos \theta} \quad (2.2)
\]

where \(\tau\) is the mean size of the ordered (crystalline) domains, which may be smaller or equal to the grain size; \(K\) is a dimensionless shape factor, with a value close to unity. The shape factor has a typical value of about 0.9, but varies with the actual shape of the crystallite; \(\lambda\) is the X-ray wavelength; \(\beta\) is the broadening at half the maximum (FWHM), in radians and \(\theta\) is the Bragg angle.

PXRD characterisation of the materials in this thesis were carried out using a PANalytical X’ Pert powder diffractometer using Cu Kα radiation operated at 40 kV and 40 mA. The diffraction data were collected in the \(2\theta\) range between 10 and 70° in steps size of 0.02 (2\(\theta\)) and an integration time of 2 s per step. When longer scan times were required, a step size of 0.00128 (2\(\theta\)) was used. The samples are mounted in a flat plate spinner stage or in a glass slide bracket stage depending on the amount of sample available.

2.3.1.1.1 Rietveld Method

To have a complete structural analysis of a material, a structure refinement is often required in order to assess how well the collected diffraction data agrees with a structural model. A structural analysis based on the Rietveld method is usually used to fit powder X-ray and neutron diffraction data. Rietveld analysis is a sophisticated form of crystallographic modeling that consists on fitting a structural model (or known crystal structure) to a powder diffraction data using a least squares minimisation algorithm. The method considers the entire powder X-ray diffraction pattern and by varying an array of refinable parameters aims to deliver a fitted structure. This process requires determining the structural parameters (unit cell, atom positions and displacement/thermal parameters, etc.) for all crystalline phases present, as well as different instrumental and
sample parameters that describe the experimental and sample conditions: scale factor, the background, peak broadening, atomic positions, thermal factors, preferred orientation, etc. In most cases, Rietveld analysis is mainly performed to determine the lattice parameters, but increasingly, the method is also employed to estimate relative amounts of the crystallographic phases, the amount and type of peak broadening, the preferred orientation or similar types of sample characterisation.

Rietveld analysis works by using non-linear least-squares fitting in order to optimise several instrumental and sample parameters. The refinement process must start with approximate values for all parameters that will be fit and this fit is subsequently optimised by allowing variation of a small subset of the parameters. The refinement is finally complete once a minimum difference between the calculated and observed profiles is reached. The process only works well if the starting model is sufficiently good. Scale factor, zero point, lattice parameters, atomic positions and thermal factors are frequently iteratively refined. During the refining process, statistical values are employed to judge the goodness of a refinement and the level of agreement between observed and calculated structure factors, which is often indicated by R factors and the Goodness of Fit (GoF) values. The Rietveld algorithm optimises the model function to minimise the weighted sum of squared differences between the observed and computed intensity values, for example, to minimise \(\Sigma w_i(Y_{C,i} - Y_{O,i})^2 \), where the weight labelled as \(w_i \) is \(w_i = 1/\sigma^2_i[Y_{O,i}] \), \(\sigma^2_i[Y_{O,i}] \) is an uncertainty estimate for \(Y_{O,i} \), \(i \) is the step, \(w_i \) is the weight, \(Y_{O,i} \) is the observed intensity and \(Y_{C,i} \) is the calculated intensity. The most straightforward discrepancy index, the weighted profile R-factor (\(R_{wp} \)), derives directly from the square root of the quantity minimised, scaled by the weighed intensities:

\[
R_{wp}^2 = \frac{\Sigma w_i(Y_{C,i} - Y_{O,i})^2}{\Sigma w_i(Y_{O,i})^2}
\]

The best possible \(R_{wp} \) value is the expected R factor (\(R_{exp} \)). \(R_{exp} \) is calculated with this expression \(R_{exp}^2 = N/ \Sigma w_i(Y_{O,i})^2 \), being \(N \) the number of data points. The smaller the \(R_{wp} \) and \(R_{exp} \) values implies a better fit. Also, the goodness of fit can be determined from the expected and weighed profile R factors as \(x^2 = (R_{wp}/R_{exp})^2 \). The value of \(x^2 \) indicates a better fit when is closer to 1. Visual inspection of the fit can also give an indication of how good is the fit. Throughout this thesis, in the Rietveld fits the observed intensity \(Y_{obs.} \) (experimental data) and the calculated intensity \(Y_{calc.} \) will be represented by blue circle signs and an orange solid line, respectively. The grey curve at the bottom will represent the residual difference, \(Y_{obs.} - Y_{calc.} \).

2.3.1.2 Synchrotron powder X-ray diffraction

A synchrotron is a circular particle accelerator and an extremely powerful source of X-rays. It works by accelerating charged particles (electrons) through sequences of focusing and bending magnets until they reach almost the speed of light. These fast-moving electrons generate very bright light (predominantly in the X-ray region), which is
millions of times brighter than light produced from conventional sources. When it comes to data quality, synchrotron X-ray diffraction can be generally superior to laboratory XRD in terms of angular resolution, counting statistics, energy tunability and fast acquisition time.

High resolution synchrotron powder X-ray diffraction (PXRD) were collected at room temperature at the I11 beamline at Diamond Light Source using 0.5 mm diameter glass capillaries using the multi-analysing crystal (MAC) system and robotic sample changer. Data were collected at an angular range of $2\theta=3-150^\circ$, binned at 0.001$^\circ$ step and a scan time of 30 min. These high intensity X-rays ($\lambda=0.825704$ Å) can probe more deeply into the sample than conventional laboratory diffractometers and allow one to perform a more detailed structural analysis of materials. Using these high intensity X-rays is especially beneficial because the common problem of fluorescence from Fe rich samples typically observed when using a Cu Kα source can be avoided. Furthermore, unit cell parameters can be more accurately determined and the presence of impurity phases or phase segregation can be examined more in detail.

2.3.1.3 **High resolution powder neutron diffraction (PND)**

Neutron diffraction or elastic neutron scattering experiments aim to determine the atomic and/or magnetic structure of a material. The sample to be studied is placed in a beam of neutrons to obtain a diffraction pattern that provides valuable information of the material under investigation. When a beam of neutrons is slowed down and selected properly by their speed, their wavelength lies near one angstrom (0.1 nanometer), the typical separation between atoms in a solid material. Impinging on a crystalline sample the beam will scatter under a limited number of well-defined angles according to Bragg’s law.\(^\text{213}\) Whereas X-rays are scattered from the electron cloud of the atoms, neutrons are scattered primarily by atomic nuclei. Furthermore, in the special case of magnetic materials, neutrons are also scattered by the interaction of the neutron magnetic moment with the magnetic moment(s) of the atoms. This means that the scattering power of an atom is not strongly related to its atomic number, unlike X-rays where the scattering power increases in proportion to the number of electrons in the atom. This has three main advantages: (i) It is easier to sense light atoms, such as hydrogen or lithium, in the presence of heavier ones. (ii) Neighbouring elements in the periodic table generally have substantially different scattering cross sections and can be distinguished (for example Fe and Mn). (iii) The nuclear dependence of scattering allows isotopes of the same element to have substantially different scattering lengths for neutrons. Isotopic substitution can be used to label different parts of the molecules making up a material. Moreover, the interaction of a neutron with the nucleus of an atom is weak, making them a highly penetrating probe and allowing the investigation of the interior of the materials rather than the surface layer probed by techniques such as X-ray scattering. Therefore, neutrons
are a non-destructive probe even to complex and delicate biological or polymeric samples. In addition, neutrons are weakly absorbed by most of the materials and the atom scattering power remains approximately constant with the angle.214 Neutrons are produced by accelerating “bunches” of protons in a synchrotron and then colliding these with a heavy tungsten metal target under a constant cooling load to dissipate the heat from the 160 kW proton beam. In particular, time-of-flight (TOF) neutron diffraction employs a polychromatic beam and a pulsed source of neutrons and exploits the fact that a neutron’s wavelength is inversely proportional to its velocity, as postulated by the De Broglie relationship. Long-wavelength neutrons are slower than short-wavelength neutrons and take more time to travel from the source to the detector. A TOF neutron diffraction experiment is carried out at a fixed angle and varying the energy (or wavelength) of the incident neutrons. The energy dispersion is obtained by measuring the time-of-flight t that a neutron takes to cover the distance L from the source to the detector. Under the assumption that the neutrons do not suffer a change in the energy during the scattering process, the time-of-flight values are directly related to the distance d between the crystallographic planes. By measuring the arrival time of each neutron of a particular pulse in the detector, its wavelength and the corresponding d-spacing of the diffracting planes can be calculated using the following equation 2.3:

$$\lambda = \frac{h}{m_n} = \frac{ht}{m_nL} = 2d \sin \theta \quad (2.3)$$

where t is the time-of-flight and L is the length of the flight path.215, 216 TOF instruments have no moving detectors, which can be an advantage with complex sample environments, such as high-pressure cells, where fixed entrance and exit windows can be designed into the apparatus. Banks of detectors covering a large proportion of the volume around the sample are common in TOF experiments.

High resolution powder neutron diffraction (NPD) data were collected at the Polaris beamline at the UK pulsed spallation neutron and muon source ISIS, at Rutherford Appleton Laboratory. The Polaris instrument is a high intensity, medium resolution powder diffractometer optimised for rapid structural characterisation, with the collection of data sets in short periods of times down to ~5 min. Isotopically enriched lithium (7Li) was used to prepare samples because of its lower neutron absorption cross section and to remove uncertainties in the correct bound coherent neutron scattering length that can exist with natural lithium. This can greatly improve data quality because the natural abundance of 7.5\% of 6Li can cause about $1.5 \cdot 10^{4}$ larger absorption, about 15\% decrease of coherent scattering length and larger incoherent scattering.56 Approximately 3 g of sample was transferred into vanadium cans (8 mm in diameter), which were loaded into a cryostat. Ideally the container should be made of a purely incoherent scattering
material such as vanadium, which hardly scatters neutrons. This material is needed otherwise the Bragg reflections from the container can be difficult to subtract completely.

2.3.1.4 X-ray and neutron pair distribution function (PDF)

Perfectly periodic materials are generally well described by traditional crystallographic characterisation techniques but, nowadays novel materials and their properties usually exhibit varying degrees of disorder, requiring alternative characterisation methods in which Bragg analysis can be complemented by local structure analysis. Therefore, new experimental techniques probing local structure details have gained increased importance in the crystallographic investigation.217-219

Traditionally, the local structure analysis of crystalline materials has been usually examined by extended X-ray absorption fine structure (EXAFS) and solid state nuclear magnetic resonance (NMR), which have different targets and sensitivities in comparison with crystallographic methods. The dominant contribution to these techniques is given by the structural correlations between nearest neighbours, providing very useful information on the coordination environment with respect to a reference atom but, on the other hand, they are unable to provide any information regarding longer distances. As a result, this difference in target information sometimes generates structural results which could be apparently in contradiction between EXAFS/NMR and crystallography.220 In this context, the need for a probe which can act as a bridge between the two domains of the average and local structures, providing an effective description of the structure of a material on different length scales considering both the long range order and the possible deviation from it at the local level, is evident. In order to meet this need, new experimental approaches have been recently developed. In particular, total scattering methods coupled with the pair distribution function analysis (PDF) are gaining a more central role in the understanding of the structure-property correlation of complex materials. It is clearly needed to go beyond the analysis of Bragg scattering and to explore the local atomic structure using total scattering techniques, which take into account both, Bragg and diffuse scattering. The Bragg component in the diffraction pattern reveals information about the average and periodic structure of a material. However, diffuse scattering is originated from scattering arising from any kind of departures from perfectly regular units and it contains valuable information regarding local deviations from the average structure. Diffuse scattering often appears as a smooth background in the diffraction pattern and mainly dominating at higher scattering angles. The limitation of conventional crystallographic structure solution approaches is the fact that it only yields the long range average structure of the material. Furthermore, the atomic structures of nanostructured materials are not always accessible by conventional crystallographic methods because of the absence of long-range order. Nowadays, this drawback is known as the “nanostructure problem”, as traditional crystallography breaks down on the nanoscale. For this reason
total scattering methods such as pair distribution function (PDF) are needed to elucidate the structures of nanostructured and complex materials.221 The study of both Bragg and diffuse scattering provides information about the local atomic arrangements, a key factor to understand increasingly complex materials. The PDF technique is therefore an essential complement to the traditional crystallographic approaches for structure determination that are mostly sensitive to the long-range ordering in materials and gives information on the atom-atom distance.

The pair distribution function analysis method is a powerful tool for the study of glasses, liquids and amorphous materials, as well as crystalline or partly crystalline materials. The pair distribution function analysis involves the direct Fourier transformation of X-ray or neutron total scattering data giving the probability of finding any two atoms at a given interatomic distance. Therefore, the PDF represents basically a histogram of interatomic spacings weighted by the relative concentration and scattering power of the different atom types present in the sample. Recently, this method has found many applications in the study of local structure in both crystalline and non-crystalline materials, yielding crucial information about atomic-scale structures of nanosized and disordered materials in real space.222 The position of a peak in the PDF indicates the existence of a pair of atoms with that separation. In crystals, because of the long-range order of the structure, all neighbors at all lengths are well defined and give rise to sharp PDF peaks. The positions of these peaks give the separations of pairs of atoms in the structure directly and the width contains information about thermal motion of the atoms, or static disorder. Moreover, when a well-defined PDF peak can be observed, it is possible to determine information about the number of neighbours in that coordination shell around an origin atom by integrating the intensity under that peak. Figure 2.2 illustrates a schematic of the PDF principle in which interatomic distances \(r \) cause maxima in the PDF \(G(r) \).
Figure 2.2. Principle of the PDF. Interatomic distances \(r_i \) cause maxima in the PDF \(G(r) \). The area below the peaks correspond to the number of neighbors, scaled by the scattering power of the respective atom.

The atomic PDF, \(G(r) \), is defined as equation 2.4:

\[
G(r) = 4\pi [\rho(r) - \rho_0]
\]
(2.4)

where \(\rho_0 \) is the average atomic number density, \(\rho(r) \) is the atomic pair density and \(r \) is a radial distance. The function \(G(r) \) gives information about the number of atoms in a spherical shell of unit thickness at a distance \(r \) from a reference atom. It peaks at characteristic distances separating pairs of atoms. \(G(r) \) is an experimentally accessible function and it is related to the measured X-ray or neutron powder diffraction pattern through a Fourier transform. PDFs are calculated from the Fourier transformation of the normalised scattering function \(S(Q) \) as described in equation 2.5:

\[
G(r) = \frac{2}{\pi} \int_0^{\infty} Q[S(Q) - 1] \sin(Qr) \, dQ
\]
(2.5)

where \(S(Q) \), the total scattering structure function, contains the measured intensity from an isotropic sample. \(Q \) is the magnitude of the scattering vector and is derived from the expression \(Q = 4\pi \sin(\theta)/\lambda \).

The structure function \(S(Q) \) is related to the coherent part of the total diffracted intensity of the material by the following equation 2.6:

\[
S(Q) = \frac{I_{coh}(Q) - \sum c_i |f_i(Q)|^2}{\sum c_i |f_i(Q)|^2} + 1
\]
(2.6)

where \(I_{coh}(Q) \) is the measured scattering intensity from a powder sample that has been properly corrected for background and other experimental effects and normalised by the flux and number of atoms in the sample. Here, \(c_i \) and \(f_i \) are the atomic concentration and X-ray atomic form factor, respectively, for the atomic species of type \(i \). In the case of neutron experiments the \(f_i \)'s are replaced by \(Q \)-independent neutron scattering lengths, \(b \), and the sums run over all isotopes and spin-states as well as over the atomic species. In PDF experiments, it is important to measure data over a wide range of momentum
transfer, \(Q \), in order to obtain high accuracy and adequate real-space resolution of the PDF peaks. This implies that short wavelength, high energy X-rays or neutrons are required. X-rays of > 45 keV (\(\lambda = 0.27 \) Å) and up to 100 keV (\(\lambda = 0.12 \) Å) or more are typically used.\(^{217, 223}\)

Here, data was collected using the Polaris diffractometer at ISIS. Data collected from all 5 detector banks was included to obtain the total scattering function \(S(Q) \) which was Fourier transformed using \(Q_{\text{max}} = 36 \) Å\(^{-1}\). Each data collection was run for 8 hr. Raw data were corrected for contributions from the background, empty container, attenuation, and multiple scattering to give the structure factor, \(S(Q) \), where the modulus of the scattering vector \(Q = 4\pi \sin \theta / \lambda \). Data processing including background subtraction to obtain \(S(Q) \) that can be Fourier transformed was carried out using GudrunN.\(^{224}\) High \(Q_{\text{max}} \) values are required, which results in the data extending over a wider range of \(r \). High-momentum transfers leads to high-real space resolution at short interatomic distances in the pair distribution function, which significantly aids to accurately distinguish between two average bond distances that are very close together. Moreover, termination ripples and other artefacts coming from improper data normalisation are not a problem if data are collected to high enough \(Q_{\text{max}} \) values. In order to reach higher \(Q_{\text{max}} \) it is necessary to use short wavelength particles, which can be obtained with higher energy X-rays and epithermal neutrons. Finally, the radial distribution function, \(G(r) \), was obtained from the Fourier transformation of \(S(Q) \) using stog programme.\(^{225}\)

An X-ray total scattering experiment is very similar to a standard X-ray powder diffraction experiment. However, to interpret the diffuse scattering signal in the data and thus obtain information about local structural order, it is necessary to obtain data to high values of momentum transfer \(Q (\leq 16 \) Å\(^{-1}\), where \(Q = 4\pi \sin \theta / \lambda \)). As mentioned before, the \(Q_{\text{max}} \) value affects the resolution of data analysis in real space on the order of \(\Delta r = \pi / Q_{\text{max}} \) and for this reason, high energy X-rays (40-100 keV) are required for total scattering experiments. In general, the rapid acquisition PDF (RA-PDF) method is usually applied, in which a large 2D detector combined with a small distance between sample and detector ensures fast data collection as well as good counting statistics at high \(Q \)-values.\(^{226}\) X-ray diffraction experiments were conducted using X-rays of energy 65.7065 keV (\(\lambda = 0.188682 \) Å) on the XPD beamline at National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. The high energy X-rays were used to extend the region of reciprocal space covered, which is required for high real-space resolution in the PDF. The data collection time was 20 min for each sample. Fit2D was used to integrate and convert 2D data to 1D intensity versus wave vector (\(Q \)).\(^{227}\) The sample-to-detector distance, the beam center position and the tilt angles of the detector, relative to the beam path, were calibrated using a Si standard. X-ray PDFs were calculated at \(Q_{\text{max}} = 18 \) Å\(^{-1}\) using xPDFsuite programme.\(^{228}\) Both the neutron and X-ray PDFs were modelled individually to an average
The olivine structure was modeled as for the Rietveld refinements, however with the difference that the metal occupancies were not refined. The structure was refined using PDFgui software. The pair distribution r-ranges from 1–5 Å, 1–15 Å and 5–30 Å were considered in the analysis. The scale factor, the structural parameters (lattice parameters and atomic positions) and the quadratic dynamic correlation factor (delta2) were refined. For the X-ray PDF analysis, the two instrumental resolution parameters, the damping (Q_{damp}) and broadening (Q_{broad}) factors, were fixed in the fits. These parameters (Q_{damp}=0.0284 Å^{-1}; Q_{broad}=0.0095 Å^{-1}) were derived by fitting the PDF of a Si standard. For the neutron data, Q_{damp} and Q_{broad} were allow to refine in the 5–30 Å r-range model and kept fixed in the obtained values for the 1–5 Å and 1–15 Å r-ranges. Q_{broad} models the PDF peak broadening and Q_{damp} the intensity dampening, both as a result of the Q resolution of the diffractometer.

The progress of the refinement is assessed by computing a reliability factor, R_w, which is calculated from equation 2.7:

$$R_w = \left(\frac{\sum w_i (G_{i}^{\text{exp}} - G_{i}^{\text{calc}})^2}{\sum w_i G_{i}^{\text{exp}}^2} \right)^{1/2} \quad (2.7)$$

where G_{i}^{\text{exp}} and G_{i}^{\text{calc}} are the experimental and calculated PDFs, respectively, and w_i are weighting factors reflecting the statistical quality of the individual data points. Real space Rietveld analysis was also performed to obtain information on the cell parameters and atomic positions.

2.3.1.5 Single crystal X-ray diffraction (SCXRD)

Single crystal X-ray diffraction (SCXRD) is a non-destructive structural characterisation technique which provides detailed information about the crystalline lattice of compounds including unit cell dimensions, bond lengths, bond angles and details of site-ordering. However, it is generally more complicated and time consuming (data collection generally takes between 24 and 72 hours) than PXRD. Furthermore, it requires higher degree of homogeneity of the selected crystal. Samples for single crystal diffraction should be unfractured and optically clear crystals, ideally of between 150 and 250 microns in size. The crystal is carefully mounted into the goniometer head and the X, Y and Z directions adjusted until the sample is centered for all crystal orientations. A single crystal refinement of the data generated is then conducted to solve the crystal structure.

SCXRD data were collected at 100 K on a Bruker APEX-II CCD diffractometer (Mo Kα radiation, λ=0.71073 Å) equipped with an Oxford Cryosystems N-Helix cooling device. The structure was solved using ShelXS and refined using full-matrix least-squares refinement on F^2 using SHELXL2014 in OLEX2. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. All CH₂ hydrogen atoms were placed in geometrically
calculated positions and included in the refinement as part of a riding model, CH$_3$ hydrogen atoms were refined as part of a rigid rotor. All hydrogen atoms were assigned Uiso values at 1.5 (Ueq) for the parent carbon atom.

2.3.2 Electron microscopy

Electron microscopy is a powerful characterisation technique for the visualisation of nanoparticles and their atomic arrangement. An electron microscope uses a beam of accelerated electrons as a source of illumination.

2.3.2.1 Scanning electron microscopy (SEM)

A scanning electron microscope (SEM) generates images of a sample by probing its surface with a focused beam of electrons. The electrons interact with atoms producing various signals that contain information about the surface topography and composition of the sample. When the electron beam interacts with the specimen, it loses energy by a variety of mechanisms. The lost energy is converted into alternative forms such as heat, emission of low-energy secondary electrons and high-energy backscattered electrons, light emission (cathodoluminescence) or X-ray emission, all of which provide signals carrying information about the properties of the specimen surface, such as its topography and composition.232

SEM images were taken in a Philips XL30 ESEM tungsten filament electron microscope operating at an acceleration voltage of 20 kV. Powder samples were deposited onto conductive carbon tabs mounted on an aluminium stub and coated using a Polaron SC7640 plasma sputter coater with a 99:1 Au:Pt target in order to avoid charging feedback. High resolution scanning electron microscopy (HR SEM) analysis of the powders was conducted using a Carl Zeiss Sigma variable pressure analytical SEM with Oxford microanalysis. The operating voltage was between 5 and 15 kV and an In-lens secondary detector was used.

2.3.2.2 Energy-dispersive X-ray spectroscopy (EDS)

Energy-dispersive X-ray spectroscopy (EDS) is an analytical technique used for the elemental analysis of a sample. In this technique, a high-energy beam of electrons is focused onto the sample to stimulate the emission of characteristic X-rays from the specimen. In this process the incident beam may excite an electron from an inner shell, ejecting it from that shell while creating an electron hole. An electron from an outer, higher-energy shell may fill the hole, and the difference in energy between the higher-energy shell and the lower energy shell may be released in the form of X-rays. The energies and number of the emitted X-rays are characteristic of the difference in energy between the two shells and the atomic structure of the emitting element, allowing the elemental composition of the specimen to be examined.233
2.3.2.3 Transmission electron microscopy (TEM)

The transmission electron microscope (TEM) uses a high voltage electron beam to generate an image. The electron beam is generally produced by an electron gun, commonly fitted with a tungsten filament cathode as the electron source. The electron beam is then accelerated by an anode typically at ~100 keV with respect to the cathode, focused by electrostatic and electromagnetic lenses, and transmitted through the sample that is in part transparent to electrons and in part scatters them out of the beam. The emerging electron beam carries information about the structure of the specimen that is magnified by the objective lens system of the microscope. The spatial variation in the image may be viewed by projecting the magnified electron image onto a fluorescent viewing screen coated with a phosphor or scintillator material such as zinc sulfide. TEM studies are often subject to several important limitations. First, the sample to be examined must be electron transparent, meaning that the sample thickness should be of the order of 100 nm or less. Careful and time consuming sample preparation may therefore be required. Furthermore, many samples are vulnerable to radiation damage caused by the incident beam of electrons.234

Because the wavelength of high-energy electrons is a few thousandths of a nanometer and the spacing between atoms in a solid is around a hundred times larger, the atoms can act as a diffraction grating to the electrons. Therefore, some fraction of the electron beam will be scattered to specific angles determined by the crystal structure of the sample while others will continue to pass through the sample without deflection. As a result, the image shows a series of spots corresponding to the satisfied conditions of the sample’s crystal structure. An aperture in the image plane is used to select the diffracted region of the specimen, providing site-selective diffraction analysis. Selected area electron diffraction (SAED) patterns are a projection of the reciprocal lattice, with lattice reflections showing sharp diffraction spots. Single diffraction spots appear only when the electron beam is diffracted by a single crystal. Polycrystalline materials give generally ring patterns analogous to those from PXRD.235

TEM and SAED were performed on a FEI Tecnai TF20 microscope in the School of Physics and Astronomy at Glasgow University. The microscope is fitted with a field emission gun, operated at 200 keV. A reduced TEM excitation voltage of 120 kV is sometimes used to reduce the rate of sample damage. The spherical aberration coefficient is 1.2 mm, giving a point resolution of 2.4 and line resolution of 1.5. Powder samples were dispersed in ethanol, sonicated for 2 min and the resulting solution was then dropped onto an amorphous holey carbon coated grid. Finally, the samples were heated at 80 °C for ~10 min in an oven to evaporate residual solvents.
2.3.3 Muon spin relaxation (μSR)

Muon spin relaxation (μSR) has been used as a local magnetic probe in magnetism, superconductivity and charge transport studies. Spin relaxation in solids is subject to essentially the same processes as for the case of nuclear magnetic resonance. μSR technique is based on the implantation of spin polarised muons in matter and the detection of the influence of atomic, molecular or crystalline surroundings on the muon spin motion. Muons stop at interstitial sites and decay with a mean lifetime of 2.2 μs. Whilst implanted in the sample, the muon spin direction is affected by the local magnetic field at the muon stopping site or by species diffusing nearby. After 2.2 μs the muon decays into a positron and two neutrinos. The positron is preferentially emitted in the direction of the muon spin at the instant of the decay and the time evolution of the muon polarisation can be measured by detecting the position of the decayed positrons. The muon spin polarisation is then followed as a function of time by measuring the asymmetry in the count rate of the decaying positrons, \(a(t) \), in two detector banks located on opposite sides of the sample. Figure 2.3 illustrates the fundamental working principle of a μSR experiment.

![Figure 2.3. Schematic of a μSR experiment. A spin-polarised beam of muons is implanted in the sample. After muon decay, positrons are detected by the forwards and backwards detector. The time evolution of the muon polarisation can be obtained by studying the number of positrons detected in the backward and forward detectors, and the difference between these normalised functions is the asymmetry function \(a(t) \), which is described by the following equation 2.8:](image)

\[
a(t) = a_0 G_x(t) = \frac{N_F(t) - aN_B(t)}{N_F(t) + aN_B(t)}
\] (2.8)
with \(a_0 \) being the initial asymmetry, \(G_2(t) \) the depolarisation function (defined as the average spin polarisation of an ensemble of muons spin at time \(t \) after the implantation of muons), \(N_F \) and \(N_B \) the number of decay positrons detected by the forward and backwards counters, respectively, and \(a \) an experimental constant that is dependent on sample position and detector efficiencies.

Since lithium diffusion is one of the primary parameters that govern the charge and discharge rates in LIBs, the \(\mu^+ \)SR technique has been employed here to probe the microscopic Li\(^+\) diffusion properties. As well as being a sensitive probe of magnetic ordering, \(\mu^+ \)SR provides a means of investigating diffusion processes of both the muon and other species that perturbs its environment such as the Li\(^+\) diffusion process. The transport of ions is a very complex process and a deeper understanding of the Li\(^+\) dynamics in the electrode nanostructures for Li-ion batteries is needed. Previous investigations have proved that Li\(^+\) diffusion can perturb the muon decay process and yield information about the Li\(^+\) kinetics. The Li\(^+\) diffusion coefficient and the activation energy for that process are key factors in helping to understand the electrochemical performance of electrode materials in Li-ion batteries. Muons are produced in a variety of high energy processes and elementary particle decays, however, the \(\mu^+ \)SR technique requires low energy muons that will stop in the samples being studied. Low energy muons are available in the required intensities only from ordinary two-body pion decay. Pions are produced in sufficient numbers from collisions of high-energy protons (\(>500 \) MeV) with the nuclei of an intermediate target. A light element such as carbon or beryllium is used for the primary target in order to maximise pion production, while minimising multiple scattering of the proton beam. The charged pions that are produced live for only about 26 billionths of a second and then they decay into a muon and muon neutrino. \(\mu^+ \)SR experiments were carried out using the EMU instrument at the ISIS pulsed neutron and muon source and data was analysed using the WIMDA program. EMU is a 96-detector \(\mu^+ \)SR spectrometer optimised for zero field and longitudinal field measurements. In this instrument fields of up to 4500 G can be applied and sample temperatures in the range of 50 mK to 1500 K can be produced using a variety of sample environment equipment. The samples were placed in titanium sample holders with a titanium foil window. Ti depolarises muons very weakly and allows an easy subtraction of the background. Measurements were carried out over a temperature range from 100 K to 400 K and at ZF (zero field) and LF (longitudinal field) of 5, 10 and 20 G. This temperature range was chosen because it includes the thermally activated region in which an increase in the lithium diffusion is observed. By applying different longitudinal magnetic fields parallel to the direction of the beam, any interactions between the muon and the local magnetic field distribution of the Fe and Mn magnetic moments can be eliminated. Furthermore, multiple magnetic field measurements at each temperature give more reliable
determinations of simultaneously fitted parameters. In previous muon spin resonance studies on LiFePO$_4$ samples, it was shown that a magnetic field of 10 G was strong enough to decouple the Fe(II) magnetic moment. However, in the present experiments, due to the presence of Mn in these materials, more intense magnetic fields were required to decouple the contributions coming from Mn and data were also collected at 20 G. Before collecting the μSR data for any new compound, measurements at applied TF (transverse field) of 20 G are required in order to obtain the calibration constant α_c and the background; otherwise, no reliable study when fitting the μSR data can be performed.

2.3.4 Electrochemical characterisation

Electrochemistry studies the loss of electrons (oxidation) or gain of electrons (reduction) that a material undergoes during the electrical stimulation. These reduction and oxidation reactions are commonly known as redox reactions and can provide information about the concentration, kinetics, reaction mechanisms and chemical status of the species under investigation.

2.3.4.1 Galvanostatic cycling with potential limitations (GCPL)

Galvanostatic cycling with potential limitation (GCPL) is a standard potentiodynamic technique used to investigate the electrochemical performance and cycling life of battery materials. GCPL experiments rely on the application of a constant current to a cell while the evolution of potential is measured. It is the most widely used tool to evaluate the ability of battery materials to retain their capacity upon extended cycling. Several charge and discharge cycles are performed at constant current over a set voltage range. The performance of a battery is determined as a function of its charge and discharge conditions: a given rate, within a given potential range. For batteries, the galvanostatic rate is usually expressed as C/h, with h being the number of hours at which the nominal charge or discharge of the battery will be passed through and C is the charge corresponding to the total expected reduction/oxidation of that electrode. Often the specific capacity of an electrode material is expressed per weight (mAh·g$^{-1}$) and the galvanostatic rate in current per active material mass (mA·g$^{-1}$). Therefore, knowing the electrode characteristics, the charge/discharge currents can be determined depending on the rate to be applied.239 The battery capacity is the total number of mA·h that can be withdrawn from a fully charged cell under specified charge-discharge conditions. It is basically a measure of the charge stored by the battery and is determined by the mass of active material contained in it. In short, the battery capacity represents the maximum amount of energy that can be extracted from the cell under certain conditions. However, the energy storage capabilities of the battery can vary significantly from the theoretical capacity, as the battery capacity depends strongly on the charging or discharging regimes and the temperature.240 For example, if the battery is being discharged very fast (the discharge current is high), then the amount of energy that can be extracted from the
battery is reduced and the battery capacity significantly decreases. This is mainly attributed to the fact that the required components for the reaction to occur do not necessarily have enough time to rearrange and only a fraction of the total reactants are converted to appropriate forms leading to a reduction of the energy available. On the other hand, if the battery is discharged at a very slow rate using a low current, more energy can generally be extracted from the battery and the battery capacity is higher.240

For the particular case of LiFePO$_4$, the theoretical capacity can be determined by Faraday’s law (Equation 2.9) knowing that the molecular weight (M_w) of LiFePO$_4$ is 157.76 g·mol$^{-1}$, $n = 1$ (one e$^-$ is exchanged in the process) and the Faraday constant (F) is 96485.3365 sA·mol$^{-1}$.

\[
Q = \frac{nF \times 1000}{3600 \times M_w} \text{mAh} \cdot \text{g}^{-1} \quad (2.9)
\]

The calculated theoretical capacity for the LiFe$_{1-x}$Mn$_x$PO$_4$ species is also \(\sim 170 \text{ mAh} \cdot \text{g}^{-1} \) due to the similar atomic weight of Fe and Mn.

Galvanostatic cycling experiments (constant current) of the electrode materials were conducted in a BioLogic VSP potentiostat using Swagelok type cells (Figure 2.4). The batteries were assembled in an Ar-filled glovebox using a pellet of the electrode material (active material:C black:PTFE 60:30:10 wt. % ratio), a Whatman glass microfiber filter as separator, 1 M lithium hexafluorophosphate (LiPF$_6$) in ethylene carbonate (EC) and dimethyl carbonate (DMC) 1:1 v/v as electrolyte and Li metal as counter electrode. High loading of conductive carbon reduces the volumetric energy but is effective in stabilising high rate capabilities of the active cathode material.241 The cells were disassembled after electrochemical test in an Ar-filled glovebox and the active electrodes collected, thoroughly washed with dry THF and dried prior to powder XRD analysis to study structural changes in post-cycled materials.
2.3.4.2 Cyclic voltammetry (CV)

Cyclic voltammetry (CV) is a common electrochemical technique used for the investigation of electroactive species. Its versatility combined with ease of measurement has resulted in extensive use of CV in the fields of electrochemistry, organic chemistry, inorganic chemistry and biochemistry. CV is a potentiodynamic electrochemical technique in which a cyclic linear potential sweep is imposed on the electrode and the resulting current is recorded. Once the set potential is reached, the working electrode’s potential is ramped in the opposite direction in order to return to the initial potential. During the potential sweep, the potentiostat measures the current intensity resulting from the electrochemical reactions (consecutive to the applied potential). The CV is the current response at the working electrode as a function of the applied potential, as shown in Figure 2.5. This technique provides information about redox active processes offering a rapid determination of the redox potential of electroactive species. A typical CV plot shows four important values: the cathodic peak height ($I_{p,c}$), the anodic peak height ($I_{p,a}$), the cathodic peak potential ($E_{p,c}$) and the anodic peak potential ($E_{p,a}$).
Figure 2.5. (a) In CV a voltage is swept between two values \((V_1\) and \(V_2\)) at a fixed rate. When the voltage reaches \(V_2\) the scan is reversed and the voltage swept back to \(V_1\). (b) Typical CV for a reversible single electrode transfer reaction containing only a single electrochemical reactant. When a redox couple is reversible, during the reverse scan the reduced species will start to be re-oxidised producing a current of reverse polarity. The more reversible the redox couple is, the more similar the oxidation peak will be in shape to the reduction peak. For a reversible electrochemical reaction, the recorded CV often has certain well defined characteristics: (i) the voltage separation between the current peaks is around 56 mV at 25 °C \((\Delta E = E^d_p - E^c_p = \frac{56}{n} \text{mV})\) and the positions of peak voltage do not alter as a function of voltage scan rate, (ii) the ratio of the cathodic and anodic peak currents is unity \(|I^c_p/I^a_p| = 1\) and (iii) the peak currents are proportional to the square root of the scan rate, based on a diffusion-controlled process. Reversibility is generally greater at slower scan rates where there is ample time for the reacting species to reach equilibrium. For a reversible reaction, the diffusion equation can be solved under a linear voltage sweep condition to give a relationship between peak current \((I_p)\) and diffusion constant \((D)\), as shown in equation 2.10:

\[
I_p = 0.4463F \left(\frac{F}{kT}\right)^{1/2} CV^{1/2} AD^{1/2} \quad (2.10)
\]

where \(I_p\) is the peak current in amperes, \(F\) is the Faraday constant, \(C\) is the initial concentration of Li in mol/cm\(^3\), \(v\) is scan rate in V/s, \(A\) is electrode area in cm\(^2\), and \(D\) is the diffusion constant in cm\(^2\)/s. The cyclic voltammetry experiments were also conducted in a BioLogic VSP potentiostat using the same Swagelok cells as for the galvanostatic cycling tests.

2.3.5 Gas Uptake analysis

Brunauer-Emmet-Teller (BET) analysis allows for the study of the physical adsorption process of gas molecules on a solid surface, by providing a measurement of the specific surface area of the material under study by nitrogen multilayer adsorption
measured as a function of relative pressure. The technique encompasses external area and pore area evaluations to determine the total specific surface area in m²/g, yielding important information in studying the effects of surface porosity and particle size. Barret-Joyner-Halenda (BJH) pore size and volume analysis can also be employed to determine specific pore volume using adsorption and desorption techniques. Physical adsorption results from relatively weak forces (van der Waals forces) between the adsorbate gas molecules and the adsorbent surface area of the test powder. The determination is usually performed at the temperature of liquid nitrogen. The amount of gas adsorbed can be measured by a volumetric or continuous flow procedure.²⁴⁵,²⁴⁶ For the gas uptake analysis, N₂ adsorption isotherms were conducted at 77 K using a Quantachrome Autosorb iQ gas sorption analyser. Samples were degassed under vacuum at 120 °C for 20 hours using the internal turbo pump. BET surface areas were calculated from the isotherms using the Micropore BET Assistant and pore-size distribution analysis was carried out using QSDFT (N₂ on carbon at 77 K, slit/cylindrical pore model) both in the Quantachrome ASiQwin operating software.

2.3.6 CHN elemental analysis

Elemental analysis is a process to determine the elemental and sometimes isotopic composition of a sample. This can be qualitative (determination of what elements are present), or quantitative (determination of how much of each element is present). CHN analysis is accomplished by combustion analysis of the sample where the sample is burned in excess oxygen and several traps are used to collect the combustion products: mainly carbon dioxide, water and nitric oxide. The masses of these combustion products can be then used to calculate the composition of the unknown sample.²⁴⁷ CHN analysis was conducted using an Exeter CE-440 Elemental analyser. To achieve a successful analysis approximately 5 mg of sample are required and the measurements are run in duplicate. For the results to verify the expected sample, the results must be within ±0.3% of the theoretical value.

2.3.7 Atomic absorption spectroscopy (AAS)

Atomic absorption spectroscopy (AAS) is a spectroanalytical technique used for the quantitative determination of chemical elements based on the absorption of optical radiation (light) by free atoms in the gaseous state. The sample is atomised using flames of electrothermal atomisers and then irradiated by optical radiation. The radiation passes through a monochromator in order to separate the element-specific radiation from any other radiation emitted, which is finally measured by a detector. The technique makes use of the absorption spectrometry to assess the concentration of an analyte in a sample. It requires standards with known analyte content to establish the relation between the measured absorbance and the analyte concentration and relies therefore on the Beer-Lambert law. Essentially, the electrons of the atoms in the atomiser can be promoted to
higher orbitals (excited states) for a short period of time by absorbing a defined quantity of energy. This amount of energy is element specific and particular to an electron transition. In general, each wavelength corresponds to only one element, and the width of an absorption line is only of the order of few picometers, which give the technique its elemental selectivity. The radiation flux with and without a sample in the atomiser is measured using a detector, and the ratio between the two values (absorbance) is converted to analyte concentration or mass using the Beer-Lambert law.248

AAS analysis was performed with a PerkinElmer AAAnalyst 400. The powder material was digested and diluted in aqua regia (6M HCl:69% H\textsubscript{2}NO\textsubscript{3} 3:1) for the analysis.

2.3.8 1H NMR

Nuclear magnetic resonance (NMR) is one of the most important techniques in chemistry for structure elucidation. It exploits the magnetic properties of certain atomic nuclei based on a physical phenomenon in which nuclei in a magnetic field absorb and re-emit electromagnetic radiation. NMR determines physical and chemical properties of atoms or the molecules in which they are contained providing detailed information about the structure, dynamics, reaction state and chemical environment of molecules. When placed in a magnetic field, NMR active nuclei (such as 1H or 13C) absorb electromagnetic radiation at a frequency characteristic of the isotope. The resonant frequency, energy of the absorption and the intensity of the signal are proportional to the strength of the magnetic field and the magnetic properties of the isotope of the atoms.

A solution of the sample in a uniform glass tube is oriented between the poles of a powerful magnet, and is spun to average any magnetic field variations, as well as tube imperfections. The majority of nuclei in a solution generally belong to the solvent and most regular solvents are hydrocarbons and contain NMR-reactive protons. Therefore, deuterated solvents are generally used in NMR experiments. Radio frequency radiation of appropriate energy is broadcast into the sample from an antenna coil. A receiver coil surrounds the sample tube, and emission of absorbed radio-frequency energy is monitored by dedicated electronic devices and a computer. Upon excitation of the sample with a radio frequency (60-100 MHz) pulse, a NMR response, a free induction decay, is obtained. A Fourier transform is carried out to extract the frequency-domain spectrum from the raw-time domain. The obtained NMR spectra is often calibrated against the known solvent residual proton peak.249, 250

1H NMR analysis of the metal alkoxide precursors was performed with a Bruker AVIII 400MHz or 500MHz Spectrometer using Young valve NMR tubes for air sensitive materials and dry benzene-d6.

2.3.9 FT-IR Spectroscopy

Fourier transform infrared spectroscopy (FT-IR) is a technique based on the vibration of the atoms in a molecule. Infrared radiation with wavelength of around 1000
and 4000 nm is shone through a sample and an infrared spectrum is commonly obtained by determining what fraction of the incident radiation is absorbed at a particular energy. FT-IR exploits the fact that molecules absorb specific frequencies that are characteristic of their structure. Some of the infrared radiation is absorbed by the sample and some of it is passed through (transmitted). These absorptions are resonant frequencies where the frequency of the absorbed radiation matches the transition energy of the bond or group of atoms that vibrates. An infrared spectrum therefore represents a fingerprint of a sample with absorption peaks corresponding to the frequencies of vibrations between the bonds of the atoms constituting the material. The energy at which any peak in an absorption spectrum appears corresponds to the frequency of a vibration of a specific part of a sample molecule. Because each different material constitutes a unique combination of atoms, each compound produce a characteristic infrared spectrum. FT-IR measurements were conducted with a FT-IR Shimadzu spectrophotometer. The powders were mixed with Nujol and placed between two NaCl plates. All the manipulations were conducted in an Ar-filed glovebox in order to avoid oxidation of the product.
Chapter 3

3 Local Structure and Li\(^+\) Diffusion Studies of Microwave Synthesised LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) olivines

3.1 Introduction

Olivine nanostructured LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) have received increasing attention as they exhibit higher energy density and enhanced redox kinetics, due to the improved electronic conductivity, in comparison to the pure olivines. These mixed-metal phosphates phases are isostructural with the end-members LiFePO\(_4\) and LiMnPO\(_4\), showing the same olivine-type lattice. Partial substitution of Fe by Mn in these olivine structures leads to electrode materials with increased voltage due to the higher Mn\(^{3+/2+}\) redox potential compared to the pair Fe\(^{3+/2+}\). However, the existence of Mn\(^{3+}\) ions in delithiated MnPO\(_4\) triggers a Jahn-Teller distortion leading to interfacial strain, which is detrimental to ion and electron hopping during the charge/discharge process. The Jahn-Teller effect induces volume and cell distortion of the electrode, leading to a rapid mechanical degradation of the electrode and consequently, poor electrochemical performance.

Previous investigations by Padhi et al. on the electrochemical performance of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0.25, 0.50, 0.75, 1.0) materials revealed that the specific capacity significantly decreases when x > 0.75. Yamada et al. also reported that Mn-rich LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x > 0.8) phases are not the best performing mixed metal phosphates due to the large anisotropic distortion of Mn\(^{3+}\) during cycling. Therefore there is much scope for the study and improvement of these important energy storage electrodes.

In this chapter, a simple and low cost microwave-assisted solvothermal synthesis of single-phase LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0.25, 0.50, 0.75, 1.0) olivines is presented, which allows for up to 4 times faster reaction times compared to traditional solvothermal methods. To have a complete characterisation and a better understanding of the structure-property relationship of these nanocrystalline phases, high resolution powder neutron diffraction (PND) and neutron pair distribution function (PDF) analyses of these microwave synthesised electrode materials have been conducted. These techniques allow elucidation of the local structure, the cation distribution, the presence of defects and the Li content. Furthermore, muon spin relaxation (\(\mu^+\)SR) has been successfully applied to examine the Li\(^+\) diffusion in these Li-ion battery materials, where the Li\(^+\) diffusion perturbs the muon environment. Also, of interest here is whether the microwave synthetic approach eliminates potential defects in these materials. The presence of, for example, antisite defects in this olivine structure precludes Li\(^+\) diffusion along the b-axis leading to a significant decrease in reversible capacities. Finally, the electrochemical performance as active electrodes in Li-ion batteries has also been examined.

3.2 Results and discussion
3.2.1 Synthesis and characterisation of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines

Single-phase LiH$_3$PO$_4$ and LiFe$_{1-x}$Mn$_x$PO$_4$ were prepared as described in sections 2.2.1 and 2.2.2. Schematic 3.1 depicts the reaction schematic for the synthetic procedure of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines and Table 3.1 lists the LiH$_3$PO$_4$ starting material and LiFe$_{1-x}$Mn$_x$PO$_4$ products prepared from commercial starting materials.

Schematic 3.1. Reaction schematic for the solvothermal microwave-assisted synthesis of LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.25, 0.5, 0.75, 1) olivines showing the CEM Discover/Explorer SP microwave synthesiser and the crystal structure of LiFePO$_4$.

3.2.1.1 PXRD of LiH$_3$PO$_4$ and LiFe$_{1-x}$Mn$_x$PO$_4$ phases

Initially, attempts to synthesise olivine LiFePO$_4$ phases through a solvothermal microwave-assisted route employing Fe(acac)$_3$ and commercial LiH$_3$PO$_4$ in ethylene glycol were investigated. The use of freshly prepared LiH$_3$PO$_4$ (made from reaction of LiOH·H$_2$O with H$_3$PO$_4$) in a similar synthesis of LiFePO$_4$ was also investigated to check the effect of the starting material in the resulting product (see Figure A3.1 for PXRD pattern confirming purity). Figure 3.1 shows that the synthesis of LiFePO$_4$ using the freshly prepared LiH$_3$PO$_4$ led to single-phase LiFePO$_4$ nanostructures, while employing the commercial LiH$_3$PO$_4$ gave rise to LiFePO$_4$ with undesirable Li$_3$PO$_4$ impurities. These results reveal that Li$_3$PO$_4$ is an important intermediate in this reaction. These observations could be explained by the significantly smaller particle size of the prepared LiH$_3$PO$_4$ compared to the commercial one, allowing the reaction to proceed easily, which will be confirmed later by scanning electron microscopy (SEM) analysis.
Table 3.1. List of LiH$_2$PO$_4$ and LiFe$_{1-x}$Mn$_x$PO$_4$ samples prepared from commercial starting materials.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Reactants</th>
<th>Reaction conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiH$_2$PO$_4$</td>
<td>LiOH·H$_2$O (9.00 g, 0.092 mol) + 16.7 mL H$_2$PO$_4$ (+ 1 mL excess) + 90 mL distilled H$_2$O</td>
<td>Microwave synthesis (2.45 GHz) 3 hr 220 °C</td>
</tr>
<tr>
<td>7LiH$_2$PO$_4$</td>
<td>7LiOH·H$_2$O (9.00 g, 0.092 mol) + 16.7 mL H$_2$PO$_4$ (+ 1 mL excess) + 90 mL distilled H$_2$O</td>
<td>Microwave synthesis (2.45 GHz) 3 hr 220 °C</td>
</tr>
</tbody>
</table>

LiFePO$_4$ _MW_Com.	Fe(acac)$_3$ (0.7063 g, 2 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ _MW_Com.	Fe(acac)$_3$ (0.5298 g, 1.5 mmol)+MnC$_2$O$_4$·2H$_2$O (0.0895 g, 0.5 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ _MW_Com.	Fe(acac)$_3$ (0.3532 g, 1 mmol)+MnC$_2$O$_4$·2H$_2$O (0.1790 g, 1 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ _MW_Com.	Fe(acac)$_3$ (0.1766 g, 0.5 mmol)+MnC$_2$O$_4$·2H$_2$O (0.2685 g, 1.5 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiMnPO$_4$ _MW_Com. (1)	Mn(acac)$_3$ (0.7045 g, 2 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiMnPO$_4$ _MW_Com. (2)	MnC$_2$O$_4$·2H$_2$O (0.3578 g, 2 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiMnPO$_4$ _MW_Com. (3)	MnCO$_2$·(0.2299 g, 2 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C
LiMnPO$_4$ _MW_Com. (4)	MnSO$_4$·H$_2$O (0.3380 g, 2 mmol)+LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG	Microwave synthesis (2.45 GHz) 3 hr 220 °C

7LiFePO$_4$ _MW_Com. | Fe(acac)$_3$ (0.7063 g, 2 mmol)+7LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 3 hr 220 °C |
7LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ _MW_Com. | Fe(acac)$_3$ (0.5298 g, 1.5 mmol)+MnC$_2$O$_4$·2H$_2$O (0.0895 g, 0.5 mmol)+7LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 3 hr 220 °C |
7LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ _MW_Com. | Fe(acac)$_3$ (0.3532 g, 1 mmol)+MnC$_2$O$_4$·2H$_2$O (0.1790 g, 1 mmol)+7LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 3 hr 220 °C |
7LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ _MW_Com. | Fe(acac)$_3$ (0.1766 g, 0.5 mmol)+MnC$_2$O$_4$·2H$_2$O (0.2685 g, 1.5 mmol)+7LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 3 hr 220 °C |
7LiMnPO$_4$ _MW_Com. | Mn(acac)$_3$ (0.7045 g, 2 mmol)+7LiH$_2$PO$_4$ (0.2079 g, 2 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 3 hr 220 °C |
Figure 3.1. PXRD patterns of LiFePO$_4$ prepared using commercial LiH$_2$PO$_4$ and LiFePO$_4$ prepared using synthesised LiH$_2$PO$_4$. * indicates Li$_3$PO$_4$ impurities.

In an effort to find a suitable Mn containing precursor for the preparation of single phase LiMnPO$_4$, different Mn based starting materials including MnSO$_4$·H$_2$O, MnCO$_3$, Mn(acac)$_3$ and MnC$_2$O$_4$·2H$_2$O were individually reacted with the freshly prepared LiH$_2$PO$_4$ in 10 mL of ethylene glycol to find the best synthesis conditions. As shown in Figure 3.2, PXRD characterisation of the reaction products revealed that only single phase LiMnPO$_4$ was obtained when Mn(acac)$_3$ was employed (LiMnPO$_4$ _MW_Com. (1)). The microwave reaction employing the other three Mn containing precursors MnCO$_3$, MnC$_2$O$_4$·2H$_2$O and MnSO$_4$·H$_2$O did not provide the desired olivine phase.
Figure 3.2. Comparative PXRD patterns of LiMnPO$_4$ samples prepared using MnSO$_4$·H$_2$O, MnCO$_3$, MnC$_2$O$_4$·2H$_2$O and Mn(acac)$_3$ after microwave synthesis for 3 hr at 220 °C. * indicates Li$_3$PO$_4$ impurities and o possible peaks coming from a Cmcm high pressure phase of LiMnPO$_4$.

Heat treatments of the LiMnPO$_4$ products obtained from MnC$_2$O$_4$·2H$_2$O and MnCO$_3$ were performed in a tube furnace at 500 °C for 1 hr under Ar atmosphere in an effort to obtain phase pure LiMnPO$_4$. PXRD analysis shown in Figure 3.3 (a) indicates that the product obtained after the microwave synthesis of LiMnPO$_4$ using MnC$_2$O$_4$·2H$_2$O (LiMnPO$_4$ _MW_Com. (2)) afforded a mixture of the Pnma and high pressure Cmcm phases, together with Li$_3$PO$_4$ impurity. After heat treatment, the desired Pnma LiMnPO$_4$ phase was obtained with some small amounts of Li$_3$PO$_4$. To overcome this problem, a quick washing with acetic acid 0.01 M was performed to dissolve this remaining impurity. As reported by Niederberger et al., when high pressure and elevated temperatures are applied, a high-pressure Cmcm space group phase denoted as β-LiFePO$_4$ may form. They have demonstrated that this β-phase irreversibly may transform into the α-phase upon heat treatment without alteration of the morphology. Moreover, it is also worth mentioning that the Li$^+$ diffusion behaviour is strikingly different in both phases. β-LiFePO$_4$ is significantly less electrochemically active than the α-phase, mainly due to the longer Li-Li hoping distances in the Cmcm space group phase. Recent muon studies on Li$^+$ diffusion indicate that the Li$^+$ diffusion is significantly more impeded in the presence of this high pressure Cmcm phase, showing a lower D$_{Li}$ of 3.96 x 10$^{-10}$ cm2 s$^{-1}$ compared to the D$_{Li}$ of 6.25 x 10$^{-10}$ cm2 s$^{-1}$ obtained for Pnma LiFePO$_4$ phase. In the present case, from the resulting PXRD pattern, the reaction
carried out employing MnC$_2$O$_4$·2H$_2$O proceeds through a reaction pathway in which the high pressure B-phase may be an important reaction intermediate, possibly due to a higher pressure generated in the microwave vessel by the two hydration water molecules contained in the MnC$_2$O$_4$·2H$_2$O precursor. Pressure readings during the microwave synthesis indicated a maximum pressure of 98 psi when using MnC$_2$O$_4$·2H$_2$O precursor instead of 42 psi for the reaction with Mn(acac)$_3$. The preparation of Cmcm LiMnPO$_4$ phase with some olivine LiMnPO$_4$ and Mn$_2$P$_2$O$_7$ impurities via a similar solvothermal microwave-assisted method has recently been reported using MnC$_2$O$_4$·2H$_2$O precursor in tetraethylene glycol. In the case of the LiMnPO$_4$ phase prepared with MnCO$_3$ (LiMnPO$_4$ _MW_Com. (3)), PXRD patterns in Figure 3.3 (b) indicate that the heat treatment transforms the product obtained after the microwave reaction into the desired Pnma LiMnPO$_4$ product. Furthermore, from these results, it can also be concluded that in this reaction process Li$_3$PO$_4$ could also potentially be an important reaction intermediate. There is no evidence for the formation of B-LiMnPO$_4$ Cmcm phase in this reaction.

Figure 3.3. PXRD patterns of LiMnPO$_4$ after the microwave synthesis for 3 hr at 220 °C, LiMnPO$_4$ after the microwave synthesis and heat treatment for 1 hr at 500 °C and LiMnPO$_4$ after the microwave synthesis, heat treatment for 1 hr at 500 °C and acetic acid 0.01M washing. (a) LiMnPO$_4$ prepared using MnC$_2$O$_4$·2H$_2$O. (b) LiMnPO$_4$ prepared using MnCO$_3$. * indicates Li$_3$PO$_4$ impurities and ° possible peaks from Cmcm LiMnPO$_4$ high pressure phase. Figure 3.4 shows the Rietveld analysis of the PXRD data from the two Pnma LiMnPO$_4$ phases prepared using MnCO$_3$ and MnC$_2$O$_4$·2H$_2$O after the heat treatments for 1 hr at 500 °C under Ar flow. The fitting was performed from 20 ° to 40 ° 2θ with Pnma LiMnPO$_4$ (ICSD No. 01-072-7844) as the starting structure. The good agreement between the experimental data and the calculated model (R$_{wp}$ values of 15%) indicates that phase pure LiMnPO$_4$ materials have been successfully obtained. Table 3.2 summarises the results from
the Rietveld analysis of LiMnPO$_4$ MW_Com. (2) and LiMnPO$_4$ MW_Com. (3) samples showing that similar values for the lattice parameters and cell volume are obtained.

![Figure 3.4. Rietveld analysis of PXRD data from LiMnPO$_4$ phases to an orthorhombic $Pnma$ structure. Samples prepared through a microwave synthesis (3 hr 220 °C) and post-heat treatment for 1 hr at 500 °C using MnC$_2$O$_4$·H$_2$O or MnCO$_3$.](image)

Table 3.2. Calculated lattice parameters from Rietveld refinements for LiMnPO$_4$ phases prepared using MnC$_2$O$_4$·H$_2$O or MnCO$_3$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiMnPO$_4$ MW_Com. (2)</th>
<th>LiMnPO$_4$ MW_Com. (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>$Pnma$</td>
<td>$Pnma$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.444(1)</td>
<td>10.454(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.100(1)</td>
<td>6.109(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.744(1)</td>
<td>4.751(2)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>302.2(1)</td>
<td>303.4(1)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>15.4 %</td>
<td>15.3 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>13.13 %</td>
<td>13.28 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.37</td>
<td>1.32</td>
</tr>
</tbody>
</table>

The possibility of improved energy density over LiFePO$_4$ has therefore generated continued interest in the mixed transition metal phosphates LiFe$_{1-x}$Mn$_x$PO$_4$. Despite the fact that MnC$_2$O$_4$·2H$_2$O was not a suitable precursor for the microwave synthesis of phase pure LiMnPO$_4$, mixed metal phosphates LiFe$_{0.75}$Mn$_{0.25}$PO$_4$, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ and LiFe$_{0.25}$Mn$_{0.75}$PO$_4$ were successfully prepared using stoichiometric amounts of Fe(acac)$_3$,
MnC2O4·2H2O and freshly prepared LiH2PO4 in ethylene glycol. In Figure 3.5, the PXRD patterns of the LiFe1−xMn xPO4 (x=0, 0.25, 0.5, 0.75 and 1) nanostructures are shown. These results reveal that all five LiFe1−xMn xPO4 samples were isostructural and exhibited a pure phase material with an olivine structure indexed to an orthorhombic Pnma space group. Moreover, no peaks of impurity phases or evidence of phase segregation were detected from PXRD analysis. A slight shifting of the peaks towards lower angles is noted with increasing Mn content. This is a signature of an increase in average lattice parameter due to the larger cation size of Mn2+ (83 pm ionic radius) in comparison to Fe2+ (78 pm ionic radius). According to the Bragg Formula 2d(sinθ)=nλ, a larger lattice parameter d corresponds to a smaller peak angle θ. This explains the slight shift of the peaks to smaller 2θ angles with increasing Mn content. Because of the smaller ionic radius of Fe2+, the average M-O (M=Fe and Mn) bond length increases after substitution of Fe with higher Mn contents. The shorter average bond length decreases the ionicity of the Fe-O bonds in LiFe1−xMn xPO4 relative to the Mn-O bonds in LiMnPO4, which could improve the electron polaron hopping between adjacent cationic centers. A slight peak broadening of the peaks in the PXRD patterns is observed when increasing the Mn content in LiFe1−xMn xPO4, which suggests a decrease in particle size with higher amounts of Mn in LiFe1−xMn xPO4.

Figure 3.5. Comparative PXRD patterns of LiFe1−xMn xPO4 (x=0, 0.25, 0.5, 0.75, 1) olivine phases. Samples prepared by a solvothermal microwave-assisted synthesis (3 h at 220 °C) using a stoichiometric mixture of LiH2PO4, Fe(acac)3, and MnC2O4·2H2O in ethylene glycol (LiMnPO4 prepared using Mn(acac)3).
PXRD data of this family of mixed metal phosphates was analysed by Rietveld refinements and fit to the orthorhombic \textit{Pnma} LiFePO$_4$ (ICSD No. 01-072-7845) and LiMnPO$_4$ (ICSD No. 01-072-7844) structures from the Inorganic Crystal Structure Database (ICSD)49 using GSAS.253 As observed in the difference curves in Figure 3.6, a good fit was obtained in all five compounds. Table 3.3 summarises the calculated lattice parameters of all LiFe$_{1-x}$Mn$_x$PO$_4$ olivine phases determined by Rietveld analysis, revealing a clear increase in the lattice parameters when doping LiFePO$_4$ with higher Mn content. These results imply that Fe$^{2+}$ atoms have been successfully substituted by Mn$^{2+}$ in and are effectively located in the olivine structure. Moreover, the determined lattices parameters are similar to previous values reported for microwave synthesised LiFePO$_4$ ($a=10.3175$ Å, $b=5.9935$ Å and $c=4.7016$ Å) and LiMnPO$_4$ ($a=10.4632$ Å, $b=6.1074$ Å and $c=4.7507$ Å) samples.45

Figure 3.6. Rietveld analysis of PXRD data from LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0, 0.25, 0.5, 0.75, 1$) olivine phases to an orthorhombic \textit{Pnma} structure.
Table 3.3. Calculated lattice parameters for the LiFe$_{1-x}$Mn$_x$PO$_4$ olivine phases obtained from Rietveld refinements.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO$_4$ M W_Com.</th>
<th>LiFe${0.75}$Mn${0.25}$PO$_4$ M W_Com.</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$ M W_Com.</th>
<th>LiFe${0.25}$Mn${0.75}$PO$_4$ M W_Com.</th>
<th>LiMnPO$_4$ M W_Com.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3303(5)</td>
<td>10.3628(5)</td>
<td>10.3899(7)</td>
<td>10.4213(9)</td>
<td>10.4504(8)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.0000(3)</td>
<td>6.0200(3)</td>
<td>6.0460(4)</td>
<td>6.0761(5)</td>
<td>6.1043(5)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.6948(3)</td>
<td>4.7052(3)</td>
<td>4.7197(4)</td>
<td>4.7344(5)</td>
<td>4.7471(5)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>291.00(4)</td>
<td>293.53(4)</td>
<td>296.48(5)</td>
<td>299.78(7)</td>
<td>302.83(7)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>0.0254</td>
<td>0.0272</td>
<td>0.0328</td>
<td>0.0400</td>
<td>0.0373</td>
</tr>
<tr>
<td>R_p</td>
<td>0.0202</td>
<td>0.0218</td>
<td>0.0260</td>
<td>0.0316</td>
<td>0.0298</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.164</td>
<td>1.196</td>
<td>1.360</td>
<td>1.577</td>
<td>1.293</td>
</tr>
</tbody>
</table>

3.2.1.2 SEM of LiH$_2$PO$_4$ and LiFe$_{1-x}$Mn$_x$PO$_4$ phases

The particle size and morphology of the LiH$_2$PO$_4$ starting material and LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.25, 0.5, 0.75, 1) phases were examined by SEM. From Figure 3.7, smaller particle size of the LiH$_2$PO$_4$ powders synthesised using LiOH·H$_2$O and H$_3$PO$_4$ (~80 µm) compared to commercial LiH$_2$PO$_4$ (~500 µm) are clearly observed. This significant decrease in the particle size is believed to make the reaction between Fe(acac)$_3$ and LiH$_2$PO$_4$ to proceed easily towards the formation of phase-pure LiFePO$_4$, as demonstrated by the PXRD experiments shown previously. SEM images shown in Figure 3.8 of the LiFePO$_4$ phase synthesised with the freshly prepared LiH$_2$PO$_4$ exhibited a non-uniform platelet-like morphology with average particle sizes in the order of 200-500 nm. SEM images of the LiFe$_{1-x}$Mn$_x$PO$_4$ powders highlight that increasing the Mn content in these olivine phases has a pronounced effect on the resulting particle morphology and size. From the SEM micrographs in Figure 3.9, it is interesting to note that increasing the Mn content clearly affords a reduction in the size and width of the oval-shaped platelets, going from larger crystallites to thin nanowires. For example, there is a clear reduction in the size and width of particles on going from LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ (larger oval-shaped particles, with typical widths of 580 and 540 nm, respectively) to LiFe$_{0.25}$Mn$_{0.75}$PO$_4$ (thinner and longer oval particles of typical width 220 nm) and LiMnPO$_4$ (wires, typically 150 nm wide). The typical sizes of these particles are given in Table 3.4. Between 10 and 30 particle sizes were measured. These results clearly evidence a control over particle size depending on the transition metal content (Fe/Mn) in these olivine LiFe$_{1-x}$Mn$_x$PO$_4$ phases.
Figure 3.7. SEM images of (a, b) commercial LiH$_2$PO$_4$, (c, d) LiH$_2$PO$_4$ powders prepared with LiOH·H$_2$O and H$_3$PO$_4$.

Figure 3.8. SEM images of LiFePO$_4$ powders prepared using synthesised LiH$_2$PO$_4$.
Figure 3.9. SEM images of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0.25, 0.5, 0.75, 1$) olivine phases. (a, b) LiFe$_{0.75}$Mn$_{0.25}$PO$_4$, (c, d) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, (e, f) LiFe$_{0.25}$Mn$_{0.75}$PO$_4$, (g, h) LiMnPO$_4$.

LiFe$_{0.75}$Mn$_{0.25}$PO$_4$, (a) LiFe$_{0.75}$Mn$_{0.25}$PO$_4$, (b) LiFe$_{0.6}$Mn$_{0.4}$PO$_4$, (c) LiFe$_{0.6}$Mn$_{0.4}$PO$_4$, (d) LiFe$_{0.25}$Mn$_{0.75}$PO$_4$, (e) LiFe$_{0.25}$Mn$_{0.75}$PO$_4$, (f) LiMnPO$_4$, (g) LiMnPO$_4$, (h) LiMnPO$_4$.

2 µm
Table 3.4. Typical sizes of LiFe$_{1-x}$Mn$_x$PO$_4$ olivine phases obtained from SEM.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Length (μm)</th>
<th>Width (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFe${0.75}$Mn${0.25}$PO$_4$</td>
<td>1.37±0.07</td>
<td>580±40</td>
</tr>
<tr>
<td>LiFe${0.5}$Mn${0.5}$PO$_4$</td>
<td>1.58±0.07</td>
<td>540±20</td>
</tr>
<tr>
<td>LiFe${0.25}$Mn${0.75}$PO$_4$</td>
<td>1.49±0.08</td>
<td>220±10</td>
</tr>
<tr>
<td>LiMnPO$_4$</td>
<td>2.64±0.19</td>
<td>150±10</td>
</tr>
</tbody>
</table>

3.2.1.3 High resolution powder neutron diffraction of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines

A detailed examination of the Li content and crystallographic properties of this family of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines is required in order to further understand their electrochemical behaviour. PXRD has already confirmed phase pure olivine LiFe$_{1-x}$Mn$_x$PO$_4$. However, X-ray based techniques are not able to reliably quantify the Li content because Li is too light to scatter X-rays. Furthermore, XRD methods can not sensibly distinguish between Fe and Mn atoms due to their similar scattering power. Neutron based methods allow evaluation of light atoms such as Li and also allows the distinction between neighbouring atoms in the periodic table. Therefore, the crystallographic properties of the LiFe$_{1-x}$Mn$_x$PO$_4$ phases and their detailed Li content were investigated using high resolution powder neutron diffraction (PND) experiments combined with Rietveld refinement analysis. The high resolution PND data of the series of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75 and 1) olivine was analysed by Rietveld refinements using GSAS in combination to the user interface EXPGUI.253, 254 Data collected in the detector banks 3, 4 and 5 from the POLARIS diffractometer at ISIS were simultaneously fitted in the refinement process. The structural and profile parameters were refined according to a pseudo-Voigt profile function and the refinement process order used was the following: (i) scale factor (ii) the background was carefully modelled using a 6-coefficient Shifted Chebyshev function (iii) the diffractometer constants DIFC and DIFA, (iv) cell parameters, (v) profile parameters, (vi) atomic positions (the crystallographic sites for Fe and Mn atoms were constrained to be the same in the mixed metal phosphates), (vii) fraction occupancies of Li, Fe and Mn atoms in which the total occupancy of Fe and Mn was constrained to 1, and finally (viii) isotropic atomic thermal displacement parameters (B$_{iso}$) constraining Li and Fe/Mn to have the same value and also the oxygen atoms to be same. Figure 3.10 shows that an excellent fit was obtained for all five LiFe$_{1-x}$Mn$_x$PO$_4$ mixed metal phosphates. Tables A3.1, A3.2, A3.3, A3.4 and A3.5 summarise the structural parameters of the LiFe$_{1-x}$Mn$_x$PO$_4$ samples determined from Rietveld analysis of high resolution PND data at room temperature. There is also excellent agreement between the calculated lattice parameter from Rietveld analysis of PXRD and the high resolution PND data.
Figure 3.10. Rietveld refinements of high resolution powder neutron diffraction data collected at room temperature of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75 and 1) olivine phases (detector bank 5).

The changes of the lattice parameters with the increasing amount of Mn in the LiFe$_{1-x}$Mn$_x$PO$_4$ olivines were studied considering Vegard’s law, an empirical rule which holds that a linear relation exists, at constant temperature, between the crystal lattice parameter of a compound and the content of the constituent elements. Results from the Rietveld refinements of the LiFe$_{1-x}$Mn$_x$PO$_4$ phases at room temperature revealed that these series of LiFe$_{1-x}$Mn$_x$PO$_4$ compounds obey Vegard’s law. Figure 3.11 shows a linear increase of the lattice parameters with higher Mn content due to the slightly larger ionic radius of Mn$^{2+}$ compared to Fe$^{2+}$. These results clearly confirm that substitution of Fe by Mn in LiFe$_{1-x}$Mn$_x$PO$_4$ linearly increases the unit cell volume.
Changes in the unit-cell parameters as a function of the Mn content obtained from after Rietveld refinements of high resolution PND data at room temperature of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.50, 0.75, 1) olivine phases. The Li, Fe and Mn content in these LiFe$_{1-x}$Mn$_x$PO$_4$ compound and the R factors obtained from the Rietveld refinements data of the PND experiments at room temperature are summarised in Table 3.5. Interestingly, it is observed that all samples display a slight Li deficiency with a Li:transition metal ratio consistently less than 1 and the Li deficiency decreases with increasing Mn content. This observation is in good agreement with previous high resolution PND analyses which showed a slight Li deficiency in LiFePO$_4$ samples and a lower Li deficiency in Mn containing LiFe$_{1-x}$Mn$_x$PO$_4$ phases.131 Moreover, in the mixed transition metal phases LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, the Fe content is slightly higher than the expected stoichiometric value, while the Mn content is lower. These results could be attributed to the fact that the Fe(acac)$_3$ precursor is more soluble than MnC$_2$O$_4$·2H$_2$O in ethylene glycol, which may facilitate the introduction of Fe in the olivine structure rather than Mn. These results may indicate that Fe atoms could also be occupying Li or interstitial positions, what could be explained by the fact that during the synthesis of these electrode materials Fe could potentially be introduced in the olivine structure faster than Mn.
Table 3.5. Li, Fe and Mn content in LiFe$_{1-x}$Mn$_x$PO$_4$ olivine phases from the Rietveld refinements of PND data at room temperature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Li content</th>
<th>Fe content</th>
<th>Mn content</th>
<th>R_{wp}</th>
<th>R_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO$_4$</td>
<td>0.777(7)</td>
<td>1.001(2)</td>
<td>0.000</td>
<td>0.0153</td>
<td>0.0193</td>
</tr>
<tr>
<td>LiFe${0.75}$Mn${0.25}$PO$_4$</td>
<td>0.839(7)</td>
<td>0.771(1)</td>
<td>0.229(1)</td>
<td>0.0144</td>
<td>0.0174</td>
</tr>
<tr>
<td>LiFe${0.5}$Mn${0.5}$PO$_4$</td>
<td>0.888(8)</td>
<td>0.521(1)</td>
<td>0.479(1)</td>
<td>0.0150</td>
<td>0.0176</td>
</tr>
<tr>
<td>LiFe${0.25}$Mn${0.75}$PO$_4$</td>
<td>0.913(8)</td>
<td>0.249(1)</td>
<td>0.751(1)</td>
<td>0.0169</td>
<td>0.0234</td>
</tr>
<tr>
<td>LiMnPO$_4$</td>
<td>0.975(13)</td>
<td>0.000</td>
<td>1.045(7)</td>
<td>0.0205</td>
<td>0.0287</td>
</tr>
</tbody>
</table>

3.2.1.4 Neutron Pair Distribution Function (PDF) of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines

In order to probe the presence of defects and changes in the local structure as a function of the Mn content, neutron PDFs were calculated from the time of flight PND data collected at room temperature for the LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.25, 0.5, 0.75 and 1) samples. Here, the raw neutron PDF data collected at room temperature for the LiFePO$_4$ and LiMnPO$_4$ samples in the range from 1 - 100 Å are shown in Figure 3.12.

Figure 3.12. Raw neutron PDF data obtained for single-phase LiFePO$_4$ and LiMnPO$_4$ at room temperature in the range from 1 - 100 Å. The scattering data was terminated at $Q_{max}=36$ Å$^{-1}$.

79
The peak seen at 1.5 Å originates from the P–O distance, while the range from 2 to 2.7 Å covers the first Li–O and Fe–O distances. The first metal–P distance is seen at around 3.2 Å. The noticeable dampening in the intensities of the peaks at higher r values indicates that the size of the particles is close to the nano range, as this indicates a decrease in long range order typically associated with crystalline materials. A sharper dampening in the intensities for the LiMnPO₄ sample in comparison to the LiFePO₄ is noted, suggesting smaller particle sizes for the Mn containing olivines, which is in agreement with the smaller particle size of LiMnPO₄ observed in the SEM analysis. Figure 3.13 shows a highlighted region from 1 Å to 5 Å in the neutron PDF data at room temperature of the LiFe₁₋ₓMnₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) phases, revealing a change in the peak at 2.1 Å, which goes from a positive peak to a negative peak when doping LiFePO₄ with increasing amounts of Mn. These results can be explained by the difference of sign in the neutron scattering length of the constituent atoms, which are Fe (+9.45 fm), Mn (-3.73 fm), ⁷Li (-2.22 fm), P (+5.13 fm) and O (+5.803 fm) (NIST scattering lengths).²⁵⁶ As a result, negative peaks for the Mn–O correlation and positive peaks for Fe–O and P–O correlations are observed.⁷⁹ With neutron diffraction, the scattering process involves an interaction between the neutron and the atomic nucleus over a distance very much shorter than the neutron’s wavelength, meaning that the scattering power is dependent on properties of the nucleus itself. In neutron diffraction, there is an almost random variation in scattering power, termed the scattering length, with atomic number. The scattering length b is an important quantity in neutron diffraction, which depends on the detailed nuclear structure of the element. The constant b measures the strength of the interaction between the neutron and the nucleus. The minus sign means that b is a positive number for a repulsive interaction between neutron and nucleus. In many cases, elements adjacent to each other in the periodic table (and even different isotopes of the same element) can have vastly different neutron scattering lengths, e.g. Fe, Co and O and in some cases the neutron scattering length is negative, e.g. Li, Mn and Ti.²¹⁴ The neutron PDF data collected for the LiFe₁₋ₓMnₓPO₄ phases was modelled by least-squares refinement to an average crystallographic structure using PDFgui.²²⁹ This program allows structural parameters such as lattice parameters, anisotropic atomic displacements parameters, positions and site occupancies to be refined. The resulting fits in the r range from 1 to 30 Å for the series of LiFe₁₋ₓMnₓPO₄ olivines is shown in Figure 3.14. As seen from the difference curves, a good fit (R_w values from 0.13-0.18) was obtained for the LiFe₁₋ₓMnₓPO₄ data sets in the r-range from 5 Å to 30 Å, indicating that in this region the average crystallographic model obtained form PND Rietveld analysis matches well to the experimental PDFs. The higher R_w value for the LiMnPO₄ (R_w =0.1849) compared to the rest of the samples (R_w values from 0.13-0.15) could be ascribed to the lack of enriched Li in the LiMnPO₄ sample (LiMnPO₄ was the only sample not prepared with
enriched Li), which would give more noise in the PDF and thus a worse fit. The slight dampening in the peak intensities at higher \(r \) values again suggests that the particle sizes of these insertion electrodes are close to the nano range. Changes in the lattice parameters with the increasing amount of Mn in the olivine \(\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4 \) phases were calculated from the neutron PDF fits from 1-30 Å and they also agreed with Vegard’s law (Table A3.6). Figure A3.2 shows a linear increase of the lattice parameters with higher amounts of Mn in these compounds, most likely due to the slightly larger ionic radius of \(\text{Mn}^{2+} \) compared to \(\text{Fe}^{2+} \). These results confirm that substitution of Fe by Mn increases the unit cell volume. Furthermore, there is an excellent agreement in the variation of the unit cell parameters of the \(\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4 \) nanostructures determined from Rietveld analysis of high resolution PND and neutron PDF data, suggesting that the average crystal structure and the local structure are similar. Table A3.7 summarises the bond length of the \(\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4 \) phases determined from the neutron PDF fits at room temperature. It is notable that the Li-Li distance slightly increases with higher Mn content. When fits to the model at \(r \) values below 5 Å are examined, some of the peak intensities in the experimental PDF are not so well described. This poorer fit at low \(r \) may suggest that local disorder could be induced by the presence of antisite defects (i.e. \(\text{Fe}^{2+} \) at the \(\text{Li}^+ \) sites) or distortions in the \(\text{MO}_6 \) (\(M=\text{Fe} \) or \(\text{Mn} \)) octahedra. It is important to note that the peak at 2.5 Å, which can be attributed to one of the oxygen-oxygen distances, is the poorest described peak in these fits, which may point to distortions in the \(\text{MO}_6 \) (\(M=\text{Fe} \) or \(\text{Mn} \)) octahedra and this is most pronounced in the \(\text{LiMnPO}_4 \) sample. Previous olivine \(\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4 \) compounds synthesised by a solvothermal method were characterised by synchrotron radiation-X-ray absorption spectroscopy combined with first principle calculations and energy-dispersive X-ray measurement and results indicated that when increasing the Mn doping concentration the distortion of the \(\text{MO}_6 \) octahedra was more evident. Considering the possibility of either Li/Fe antisite defects, a model allowing the occupancy of the Li and Fe atoms to be exchanged was applied. The results suggested that the \(\text{LiFePO}_4 \) was the only one which presented a small amount of Li/Fe antisite defects (~2%). No Mn-containing phases showed any evidence for the presence of antisite defects. When the fits were performed allowing some excess of Fe atoms to reside on the Li sites (full occupancy of the \(\text{Fe}^{2+} \) sites is assumed and the \(\text{Fe}^{2+} \) excess is occupying some \(\text{Li}^+ \) positions), it was found again that ~2% of Fe atoms could be located on the Li sites in Li defective \(\text{LiFePO}_4 \). However, no Fe on Li positions were observed in the Mn containing \(\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4 \) phases. It was also not seen any apparent presence of Mn on the Li sites in the case of \(\text{LiMnPO}_4 \). The possibility of a two phase model in which separate nanodomains of \(\text{LiFePO}_4 \) and \(\text{LiMnPO}_4 \) could be present in the mixed metal phases was also ruled out by fitting such a model to the data. However, this model did not lead to an improvement in the fits.
Chapter 3

Figure 3.13. Raw neutron PDF data obtained for single-phases LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.25, 0.5, 0.75, 1) at room temperature in the range from 1 to 5 Å.

In previous investigations carried out by Jensen et al., the crystal structure and defect chemistry of hydrothermally synthesised LiFe$_{1-x}$Mn$_x$PO$_4$ particles were characterised by simultaneous neutron and X-ray Rietveld refinement as well as X-ray and neutron pair distribution function analysis. These results indicated that the fast (from 40 min to 7 hr) hydrothermal synthesis of LiFePO$_4$ conducted at 170 °C triggers partial Fe occupancy and vacancies on the Li (M1) site, while the Fe (M2) site is always fully occupied by iron. They also found out that crystalline, defective Li$_x$Fe$_y$PO$_4$ coexists with amorphous lithium and iron phosphate structures displaying only short-range order. With this in mind, neutron PDF data were fitted in the r-ranges from 1 Å to 5 Å (Figure 3.15) and from 5 Å to 30 Å (Figure A3.3) independently, both using the same LiFePO$_4$. The resulting fits revealed that in both regions the average crystallographic model matches very well with the experimental PDFs. However, significant differences in the scale factors of both r-range modelled datasets were found, with the scale factor being larger in the low r-region fits. This may indicate that there could be some population of short-range ordered (i.e. amorphous) Li/Fe/Mn-PO$_4$ coexisting with highly crystalline LiFe$_{1-x}$Mn$_x$PO$_4$ nanoparticles. The lower r-region fits from 1 Å to 5 Å fitted well to the crystalline LiFe$_{1-x}$Mn$_x$PO$_4$ structural...
models, suggesting that the local structure of any amorphous component is very closely related to the bulk phase. From the ratio between the scale factors obtained for the 1 Å to 5 Å and the 5 Å to 30 Å, results showed that the LiMnPO₄ sample may have a higher amount of “amorphous LiMnPO₄” compared to the LiFePO₄ sample and also that the mixed metal phosphates presented a slightly lower “amorphous” content in comparison with both end members of this family of LiFe₁₋ₓMnₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) phases. Table 3.6 shows the R_w values obtained from neutron PDF fits of single-phase LiFe₁₋ₓMnₓPO₄ olivines at different r ranges and Table 3.7 the scale factor values. In general, these results are in agreement with previous PDF studies on hydrothermally synthesised LiFe₀.₅Mn₀.₅PO₄ sample conducted by Jensen et al., in which they believe that the poor fits to the lower r-region can be ascribed to the presence of amorphous content. Furthermore, they concluded that local disorder induced by the split of cation site (from both Fe, Mn and Li) was not apparent in their refinements.

To quantify the amorphous content in this series of LiFe₁₋ₓMnₓPO₄ olivines, two-phase model refinements from 1 to 30 Å in which the two phases have the same average olivine structure but allowing only the spdiometer (particle diameter for the PDF shape damping function) in one of the phases to refine were performed. When the second phase with a small spdiometer is included, that structure would represent the amorphous fraction in the material while the spdiometer would give the coherence length of the atomic structure in the amorphous phase. These refinements suggest that the amorphous phase has order to about ~1-2 nm. Table A3.8 shows the calculated scale factors and amorphous contents for the LiFe₁₋ₓMnₓPO₄ olivine phases obtained from these two isostructural phases refinements. Results suggested a higher presence of amorphous material in the LiMnPO₄ phase compared to the other Fe containing olivines (for example ~8% amorphous content in LiMnPO₄ vs. ~5% in LiFe₀.₇₅Mn₀.₂₅PO₄), which agrees with the trend observed from the refinement at different r ranges. A slight improvement in the fit quality was obtained when adding the second phase.
Figure 3.14. Fits of neutron PDF data obtained for single-phase Li$_{1-x}$Mn$_x$PO$_4$ ($x = 0$, 0.25, 0.5, 0.75 and 1) olivines at room temperature in the r range from 1 - 30 Å.
Figure 3.15. Fits of neutron PDF data obtained for single-phase LiFe$_{1-x}$Mn$_x$PO$_4$ ($x = 0, 0.25, 0.5, 0.75$ and 1) olivines at room temperature in the r range from 1 Å to 5 Å. Dots represent observed data and solid line the calculated pattern. The lower line is the difference curve.
Table 3.6. \(R_w \) values obtained from neutron PDF fits of single-phase LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (\(x = 0, 0.25, 0.5, 0.75 \) and 1) olivines at different \(r \) ranges.

<table>
<thead>
<tr>
<th>(R_w)</th>
<th>LiFePO(_4)</th>
<th>LiFe({0.75})Mn({0.25})PO(_4)</th>
<th>LiFe({0.5})Mn({0.5})PO(_4)</th>
<th>LiFe({0.25})Mn({0.75})PO(_4)</th>
<th>LiMnPO(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 5 Å</td>
<td>0.1244</td>
<td>0.1211</td>
<td>0.1140</td>
<td>0.1289</td>
<td>0.1085</td>
</tr>
<tr>
<td>5 - 30 Å</td>
<td>0.1074</td>
<td>0.1088</td>
<td>0.1336</td>
<td>0.124344</td>
<td>0.1776</td>
</tr>
<tr>
<td>1 - 30 Å</td>
<td>0.1299</td>
<td>0.1331</td>
<td>0.1577</td>
<td>0.1468</td>
<td>0.1849</td>
</tr>
</tbody>
</table>

Table 3.7. Scale factor values obtained from neutron PDF fits of single-phase LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (\(x = 0, 0.25, 0.5, 0.75 \) and 1) olivines at different \(r \) ranges.

<table>
<thead>
<tr>
<th>Scale factor</th>
<th>LiFePO(_4)</th>
<th>LiFe({0.75})Mn({0.25})PO(_4)</th>
<th>LiFe({0.5})Mn({0.5})PO(_4)</th>
<th>LiFe({0.25})Mn({0.75})PO(_4)</th>
<th>LiMnPO(_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 5 Å</td>
<td>0.76(8)</td>
<td>0.68(9)</td>
<td>0.72(7)</td>
<td>0.75(3)</td>
<td>0.82(2)</td>
</tr>
<tr>
<td>5 - 30 Å</td>
<td>0.69(5)</td>
<td>0.68(2)</td>
<td>0.69(3)</td>
<td>0.70(4)</td>
<td>0.66(3)</td>
</tr>
<tr>
<td>1 - 30 Å</td>
<td>0.70(4)</td>
<td>0.68(3)</td>
<td>0.70(3)</td>
<td>0.73(2)</td>
<td>0.68(2)</td>
</tr>
</tbody>
</table>

To examine the possible presence of amorphous material in the LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) series, high resolution TEM analysis was performed on the LiFe\(_{0.25}\)Mn\(_{0.75}\)PO\(_4\) sample. Analysis of the LiFe\(_{0.25}\)Mn\(_{0.75}\)PO\(_4\) sample revealed that most particles are crystalline with an elongated oval shape (Figure 3.16 (a)), and exhibit lattice fringes up to within less than ~1nm of the edge (Figure 3.16 (b)). Very few particles have a large amorphous coating or appear to be amorphous. The HRTEM fringe spacing in particle regions of a clear single layer is 0.39 nm. Electron diffraction measurements can be indexed to a \textit{Pnma} crystal structure (Figure 3.16 (c)). Dark field images showed elongated oval shaped porous particles ~225 nm in width and 1.5 \(\mu \)m in length. Interestingly, pores of approximately 10 nm could be observed (Figure 3.16 (d)).

To investigate how the surface area and pore size change in this family of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (\(x = 0, 0.25, 0.5, 0.75 \) and 1) olivines, \(\text{N}_2 \) adsorption isotherms at 77 K were conducted. Pore size distributions calculated using QSDFT revealed average pore size diameter in the range from 17 to 26 Å for the five LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) samples. Figure 3.17 illustrates the \(\text{N}_2 \) sorption isotherms for the LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) samples and Table 3.8 lists the specific surface area and average pore size from BET analysis, as derived from their \(\text{N}_2 \) sorption isotherms. The results show that the LiMnPO\(_4\) sample exhibited the highest surface area (23.5 m\(^2\)/g compared to LiFePO\(_4\) of 6.6 m\(^2\)/g, see Table 3.8). These results correlate well with observations from neutron PDF data, which suggest a higher degree of disorder in the LiMnPO\(_4\) phase. Larger surface areas are associated with progressively greater Mn content. Increasing the surface area of the particles leads to greater opportunities for disorder of the atoms at those surfaces, due to the potential for greater relaxation in the crystallinity at the surface. This hypothesis directly agrees with the observations from the neutron
PDF analysis, which showed that at a local level (below 5 Å), a greater deviation of the data from the average structural model provided from PND Rietveld analysis was observed. This is most likely an increased surface effect due to the emergence of porosity in these olivine samples and this nanostructured disorder drives changes in the total scattering function observed.

![Figure 3.16](image-url)

Figure 3.16. High resolution TEM images of (a, b) LiFe$_{0.25}$Mn$_{0.75}$PO$_4$ powders, with SAED confirming Pnma crystal structure. (d) Dark field imaging reveals pores in the particle of typically 10 nm in diameter.
Figure 3.17. N₂ sorption isotherms at 77 K for LiFe₁₋ₓMnₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) olivine phases.

Table 3.8. Specific Surface Area and Average Pore Size from BET analysis for LiFe₁₋ₓMnₓPO₄ (x=0, 0.25, 0.5, 0.75 and 1) olivine phases, as derived from their N₂ sorption isotherms.

<table>
<thead>
<tr>
<th>Sample</th>
<th>specific surface area (m²/g)</th>
<th>average pore size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO₄</td>
<td>6.6</td>
<td>20</td>
</tr>
<tr>
<td>LiFe₀.7₅Mn₀.₂₅PO₄</td>
<td>7.8</td>
<td>17</td>
</tr>
<tr>
<td>LiFe₀.₅Mn₀.₅PO₄</td>
<td>14.1</td>
<td>24</td>
</tr>
<tr>
<td>LiFe₀.2₅Mn₀.₇₅PO₄</td>
<td>11.6</td>
<td>26</td>
</tr>
<tr>
<td>LiMnPO₄</td>
<td>23.5</td>
<td>20</td>
</tr>
</tbody>
</table>

3.2.1.5 Muon spin spectroscopy (μ⁺SR) of LiFe₁₋ₓMnₓPO₄ olivines

Since lithium diffusion is one of the primary parameters that govern the charge and discharge rates in LIBs, the muon spin relaxation (μ⁺SR) technique has been employed here to probe the microscopic Li⁺ diffusion properties in the Mn-containing olivine LiFe₁₋ₓMnₓPO₄ (x=0.25, 0.5 and 0.75) samples. Spin polarised positive muons were implanted into LiFe₁₋ₓMnₓPO₄ samples and the data were fit using an exponentially relaxing dynamic Kubo-Toyabe function, which provides information on the Li⁺ diffusion behaviour in these materials, including the field fluctuation rate, ν, and the local field distribution at the muon stopping site, Δ. Figure 3.18 (a) (b) and (c) shows the obtained fits of the raw
μSR data for LiFe1-xMn xPO4 (x=0.25, 0.5 and 0.75) samples collected at 300 K and at 0, 5, 10 and 20 G. At each temperature, the ZF and LF spectra of the LiFe1-xMn xPO4 samples consist of a fast initial relaxation signal followed by a later slowly relaxing signal. The former trend can be explained by the muon interactions with the magnetic moments (H_{int}^N) due to the 3d electrons of the Fe^{2+} and Mn^{2+} ions, while the latter is caused by the interactions between the muon and the nuclear magnetic moments fields (H_{int}^N) from the ^6Li, ^7Li, ^57Fe, ^55Mn and ^31P. Also, the applied LF (5, 10 and 20 Gauss) clearly reduces the relaxation rate of the slowly relaxing signal. Attempts to measure the LiMnPO4 sample were not successful because contributions arising from the high magnetic moment on the Mn^{2+} were still present even when applying longitudinal magnetic fields up to 20 G (see Figure 3.19). Therefore, any contributions to the spectra from Li^+ ions diffusion were masked and the data could not be reliably described by any fitting functions. From the results of the fits at different temperatures shown in Figure 3.18 (d), (e), (f), (g), (h) and (i), the temperature dependence of ν follows a similar trend in the three mixed-metal phosphates studied, where a slight decrease from the lowest measured temperature at 100 K, followed by a significant rise from ~190 K to ~260 K over the thermally activated region, and then a sharp drop. The observed decrease of ν above 260 K could be explained from the Li^+ diffusion being too fast for μSR technique to be able to measure it. On the other hand, the Δ values show a trend in which a low-temperature plateau is followed by a smooth decrease to a high-temperature plateau. This slight decrease in the Δ values over the thermally activation region could be explained by changes in the local magnetic field distribution caused by the lithium diffusion process. Considering that the primary hopping pathway for Li^+ ions is along the b-axis in these compounds, the diffusion coefficient can be estimated taking into account the following equation D_{Li}=b^2 ν/4, where ν is the field fluctuation rate and b is the refined b lattice parameter obtained from Rietveld refinements of the high resolution PND data. Extrapolating the values to 300 K gives an estimation of the lithium hopping rate at room temperature. For the determination of the activation energy of Li^+ diffusion in these materials, the Arrhenius equation was plotted in order to represent the ln(ν) over 1/T over the thermally activated region to obtain E_{act}, considering the following expression for the Arrhenius equation 3.1:

\[
\ln(\nu) = \frac{-E_{act}}{K_BT} + \ln(A) \quad (3.1)
\]

where K_B is the Boltzmann constant (1.3806488 \times 10^{-23} \text{ J/K}) and A is a pre-exponential factor (prefactor). In Table 3.9, the estimated values of the Li^+ diffusion coefficients and the activation energies both at 300 K for the three LiFe1-xMn xPO4 (x=0.25, 0.5 and 0.75) mixed metal phosphates calculated from μSR studies are listed. These results reveal that the D_{Li} and E_{act} slightly decrease with higher Mn content. μSR has thus been used to provide a new method of investigating the diffusive properties of this series of LiFe1.
\(\text{Mn}_x\text{PO}_4 \) (\(x=0.25, 0.5 \) and 0.75) olivine phosphates, finding a lithium diffusion constant \(D_{\text{Li}} \) in the order of \(10^{-10} \text{ cm}^2\text{s}^{-1} \) and an energy barrier of \(E_{\text{a}} \ 100 \text{ meV} \). These results are in excellent agreement with previous \(\mu^+\text{SR} \) studies on LiFePO\(_4\) polymorphs also prepared through a solvothermal microwave-assisted approach.\(^{51}\) On the other hand, previous determinations of the \(D_{\text{Li}} \) constants in LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) phases using electrochemical impedance spectroscopy showed slightly lower values ranging from \(10^{-13} \text{ cm}^2\text{s}^{-1} \) to \(10^{-12} \text{ cm}^2\text{s}^{-1} \).\(^{259}\) The more elevated \(D_{\text{Li}} \) values obtained with \(\mu^+\text{SR} \) technique can be ascribed to the fact that in the \(\mu^+\text{SR} \) measurements there are no contributions from intragrain and grain boundaries. This could also explain the low activation energies of ionic conductivity obtained here (75-125 ± 10 meV) compared to other manganese-doped LiFePO\(_4\) olivines reported in the literature showing values in the range of 600 meV.\(^{81}\) Previous investigations of the lithium diffusion behaviour in battery materials indicate a significant difference between microscopic and bulk determinations of \(D_{\text{Li}} \) depending on the characterisation technique employed.\(^{260, 261}\) Di Lecce et al. carefully investigated the lithium transport properties in LiMn\(_{1-x}\)Fe\(_x\)PO\(_4\) olivines by cyclic voltammetry (\(10^{-12} \text{ cm}^2\text{s}^{-1} \) for LiMnPO\(_4\), \(10^{-9} \text{ cm}^2\text{s}^{-1} \) for LiFePO\(_4\) and \(10^{-11} \text{ cm}^2\text{s}^{-1} \) for LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)), electrochemical impedance spectroscopy (\(10^{-13} \text{ cm}^2\text{s}^{-1} \) for LiMnPO\(_4\), \(10^{-12} \text{ cm}^2\text{s}^{-1} \) for LiFePO\(_4\) and \(10^{-13} \text{ cm}^2\text{s}^{-1} \) for LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)) and galvanostatic intermittent titration techniques (\(10^{-14} - 10^{-10} \text{ cm}^2\text{s}^{-1} \) for LiMnPO\(_4\) and LiFePO\(_4\), and \(10^{-13} - 10^{-10} \text{ cm}^2\text{s}^{-1} \) for LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)) and concluded that the wide diffusion coefficient window obtained by changing the adopted characterisation technique suggested a complex trend of the lithium diffusion in olivines and revealed that the technique may significantly influence the materials evaluation.\(^{259}\)
Figure 3.18. (a) (b) (c) Raw μSR data for LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0.25$, 0.5 and 0.75) at 300 K at zero field (ZF) [circles] and applied longitudinal fields of 10 G [squares] and 20 G [diamonds]. Temperature dependence of (d) (e) (f) fluctuation rate (ν) and (g) (h) (i) field distribution width (Δ) at muon stopping site, measured from 100 K to 400 K at 0, 10 and 20 G longitudinal fields.
Figure 3.19. Raw μSR data for LiMnPO$_4$ at 300 K at zero field (ZF) and applied longitudinal fields of 10 G and 20 G.

Table 3.9. D_{Li} and E_{act} at room temperature of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x\approx0.25$, 0.5 and 0.75) samples from μSR data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>D_{Li} at 300 k (cm2s$^{-1}$)</th>
<th>E_{act} (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFe${0.75}$Mn${0.25}$PO$_4$</td>
<td>3.2×10^{-10}</td>
<td>122 ± 18</td>
</tr>
<tr>
<td>LiFe${0.5}$Mn${0.5}$PO$_4$</td>
<td>2.6×10^{-10}</td>
<td>100 ± 11</td>
</tr>
<tr>
<td>LiFe${0.25}$Mn${0.75}$PO$_4$</td>
<td>2.0×10^{-10}</td>
<td>75 ± 3</td>
</tr>
</tbody>
</table>

3.2.1.6 Electrochemical performance of LiFe$_{1-x}$Mn$_x$PO$_4$ olivines

Galvanostatic cycling with potential limitation (constant current) of the electrode nanostructures in a Swagelok type cell was conducted at a C/20 rate in a potential range from 2.2 V to 4.5 V depending on the Mn content. Moreover, galvanostatic cycling experiments at different charge-discharge rates were also performed to examine the rate capabilities of these olivine materials. Finally, CV studies were carried out to determine the oxidation and reduction potentials of the electrochemically active species and to confirm the reversibility of these electrochemical systems. Due to the poor electronic conductivity of these materials, the C/LiFe$_{1-x}$Mn$_x$PO$_4$ powders were mixed with conductive carbon black and polytetrafluoroethylene (PTFE) in 60:30:10 % wt. ratio and the mixture was then pressed into a pellet. Although such high carbon loadings are inappropriate for real batteries, they are useful in establishing the true rate capability of the active material and are commonly used in the testing of high-rate nanomaterials.63,262,263
In this electrochemical system using LiFePO₄, Li⁺ is extracted during charge and LiₓFePO₄ (x·1 and with Fe changing oxidation state from 2+ to 3+) is formed. After that, while discharging, Li⁺ is inserted back into the LiₓFePO₄ structure, where Fe³⁺ is reduced to Fe²⁺. The voltage-capacity profile from the galvanostatic cycling test of the C/LiFePO₄ sample (Figure 3.20 (a)) displays a clear flat voltage plateau at ~3.45 V corresponding to the Fe³⁺/Fe²⁺ redox pair. Moreover, charge and discharge capacities of approximately 160 mAh·g⁻¹ were reached, values that are quite close to the theoretical capacity of this electrode material (170 mAh·g⁻¹) and in accordance with data reported in similar electrochemical studies on microwave synthesised LiFePO₄ electrodes.⁴⁵, ⁴⁶ Furthermore, this cycling study revealed that this insertion electrode exhibits no capacity fading over at least 50 cycles (Figure 3.20(b)).

Figure 3.20. (a) Voltage-capacity profile and (b) cycling stability of C/LiFePO₄ (15% wt. C from sucrose) with C black and PTFE in 60:30:10 % wt. ratio between 2.2 V and 4.0 V at C/20 rate.

Cycling studies of the mixed metal phosphates C/LiFe₁₋ₓMnₓPO₄ were also conducted to examine the relationship between particle morphology, Mn content and electrochemical performance. Similar electrochemical tests for the different C/LiFe₁₋ₓMnₓPO₄ samples indicated a significantly better electrochemical performance of LiFePO₄ (~160 mAh·g⁻¹) in comparison to the Mn-containing phases (Figure 3.21). In particular, the LiMnPO₄ exhibited much lower discharge capacities (only ~50 mAh·g⁻¹). This capacity is markedly lower than the initial specific charge capacity of 125 mAh·g⁻¹ that faded to 75 mAh·g⁻¹ after 100 cycles reported by Niederberger et al on a C/LiMnPO₄ prepared through a 3 min microwave synthesis.⁴⁵ LiMnPO₄ is an insulator and exhibits more sluggish kinetics than LiFePO₄. The limiting factor in the reversible MnPO₄/LiMnPO₄ redox reaction is then mostly its low ionic and electronic transport within LiMnPO₄.²⁶⁴ Therefore, the generation of electrochemically LiMnPO₄ is more challenging and specific synthetic procedures are required to enhance its electrochemical performance. The Fe/Mn containing olivines also
delivered lower discharge capacities than the C/LiFePO₄ sample. As observed in Figure 3.21, the mixed transition metal phosphates displayed two clear voltage plateaus at ~3.45 V and ~4.1 V due to the Fe³⁺/Fe²⁺ and Mn³⁺/Mn²⁺ redox pair, respectively, the lengths of which are correlated to the Fe/Mn contents in C/LiFeₓ₋ₓMnₓPO₄. Reversible discharge capacities in the order of 120 mAh·g⁻¹ were obtained for the three C/LiFeₓ₋ₓMnₓPO₄ (x=0.25, 0.50 and 0.75) samples. Furthermore, it must be added that no capacity fading was observed in any of the C/LiFeₓ₋ₓMnₓPO₄ phases at least over the first 20 cycles (Figure 3.22 (a)). PXRD patterns of the post-cycled material in the discharge state shown in Figure 3.22 (b) indicated that the cycling process did not modify the structure of these materials, confirming the good structural stability of this family of mixed metal phosphates upon cycling. Furthermore, the slight shift of the diffraction peaks towards lower 2θ angles with higher Mn contents in C/LiFeₓ₋ₓMnₓPO₄ was still evident after the cycling process.

Figure 3.21. Voltage-capacity profiles of C/LiFeₓ₋ₓMnₓPO₄ (x=0.25, 0.50, 0.75 and 1) (15% wt. C from sucrose), C black and PTFE in 60:30:10 (% wt.) between 2.2 V and 4.5 V (depending on Mn content) at C/20 rate.
Figure 3.22. (a) Cycling stability between 2.2 V and 4.5 V at C/20 rate of C/LiFe$_{1-x}$Mn$_x$PO$_4$ (15% wt.C sucrose), C black and PTFE in a 60:30:10 % wt. ratio. (b) PXRD of cycled C/LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures in the discharged state.

The rate behaviour of the C/LiFe$_{1-x}$Mn$_x$PO$_4$ phases at room temperature was investigated in order to elucidate the rate capabilities as a function of particle morphology and Mn content. It was found that in all cases, the discharge capacity decreased regularly with increased rates and that the capacity was recovered when returned to a C/10 rate. Upon increasing the charge/discharge rates, the polarisation (displacement of the electrode potential from the equilibrium value) significantly increased and the amount of Li$^+$ reversibly inserted and extracted decreased. Slower charge/discharge rates allow major
structural rearrangements to take place and more Li\(^+\) can be exchanged during the lithium extraction/insertion process. The best rate performing material was again C/LiFePO\(_4\) compared to the other C/LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) composites (x=0.25, 0.5, 0.75 and 1) (Figure 3.23 (a)). This C/LiFePO\(_4\) sample displayed a regular decrease in the discharge capacity from 155 mAh·g\(^{-1}\) to 66 mAh·g\(^{-1}\) when increasing the discharge rates from 0.1 to 10 C. Similar rate capabilities have been reported by Hou et al. on LiFePO\(_4\) nanocrystals prepared through a liquid phase reduction synthesis (66.7 mAh·g\(^{-1}\) at 10 C after 80 cycles).\(^{265}\) Moreover, poorer rate capabilities were clearly observed when introducing Mn in the LiFePO\(_4\) structure, reaching only ~10 mAh·g\(^{-1}\) at 10 C in the case of the C/LiMnPO\(_4\) powders. Similar rate behaviour has been reported on LiMnPO\(_4\) olivines by Hong et al.\(^{132}\) Cycling results revealed slightly better rate capabilities for the C/LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\) phase at higher C rates in comparison to the C/LiFe\(_{0.75}\)Mn\(_{0.25}\)PO\(_4\) and C/LiFe\(_{0.25}\)Mn\(_{0.75}\)PO\(_4\) materials, yielding discharge capacities of ~120 mAh·g\(^{-1}\) and ~95 mAh·g\(^{-1}\) at C/10 and 2 C, respectively. Moreover, at the fastest C rates C/LiFe\(_{0.25}\)Mn\(_{0.75}\)PO\(_4\) showed a more pronounced decrease in discharge capacities that C/LiFe\(_{0.75}\)Mn\(_{0.25}\)PO\(_4\) and C/LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\), displaying only ~25 mAh·g\(^{-1}\) at 10 C. Comparable rate behavior in C/LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) (x=0.7, 0.8 and 0.9) samples has been observed by Zhang et al which delivered 90-70 mAh·g\(^{-1}\) at 2 C rate.\(^{266}\) Ex-situ PXRD characterisation of the C/LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) cycled material in the discharge state after the cycling experiment at different discharge/charge rates shown in Figure 3.23 (b) indicated that the Li\(^+\) (de)intercalation process did not affect the structure of these battery materials after the fast charge/discharge tests, confirming the structural stability of these family of mixed metal phosphates upon cycling at fast charge/discharge rates.

CV experiments at room temperature were performed at a scan rate of 0.1 mV·s\(^{-1}\) over a voltage range of 2.8–4.0 V vs. Li\(^+\)/Li\(^0\) for the C/LiFePO\(_4\) and 2.5–4.5 V vs. Li\(^+\)/Li\(^0\) for the Mn containing C/LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) olivines. The CVs for the C/LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) phases depicted in Figure 3.24 show the oxidation and reduction peaks around 3.5 and 4.1 V for Fe\(^{3+}/Fe^{2+}\) and Mn\(^{3+}/Mn^{2+}\) redox pairs, respectively, with varying peak intensities dependent on the degree of manganese substitution. The ratio between the Mn and Fe peak heights should correspond to the material’s composition. However, the CVs suggested a more pronounced participation of the Fe component over Mn in these electrochemical processes. Furthermore, the substitution of higher amounts of Fe by Mn in the LiFePO\(_4\) structure generally increases the Fe\(^{3+}/Fe^{2+}\) and Mn\(^{3+}/Mn^{2+}\) redox potentials. Similar studies by Kobayashi et al. have also shown a shift in the redox potential of Fe\(^{3+}/Fe^{2+}\) and Mn\(^{3+}/Mn^{2+}\) as the value of x in LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) is increased. This shift was attributed to the inductive effect in the M-O-P bonding, which increases the ionic character of the transition metal atoms.\(^{267}\) The overall volume expansion upon Mn substitution in the LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) system possibly increases the average metal-oxide bond length and hence the ionicity of each transition metal.\(^{267}\) These results are also in agreement with previous cyclic voltammetry
investigations on an array of LiFe$_{1.0}$Mn$_x$PO$_4$ samples prepared with different degrees of carbon coating to assist electron transfer. Finally, it must be remarked the good reversibility of this family of C/LiFe$_{1.0}$Mn$_x$PO$_4$ phases after the first cycle, as it can be observed by the excellent overlapping of the CV curves.

Figure 3.23. (a) Comparative rate performance of C/LiFe$_{1.0}$Mn$_x$PO$_4$ (15% wt. C from sucrose), C black and PTFE in 60:30:10 (% wt.). (b) PXRD of cycled at different rates C/LiFe$_{1.0}$Mn$_x$PO$_4$ materials in the discharged state.
Figure 3.24. CVs at 0.1 mV·s⁻¹ scan rate between 2.5 V and 4.5 V of C/LiFe₁₋ₓMnₓPO₄ (15% wt. C from sucrose), C black and PTFE in 60:30:10 (% wt.). (a) LiFePO₄, (b) LiFe₀.₇₅Mn₀.₂₅PO₄, (c) LiFe₀.₅Mn₀.₅PO₄, (d) LiFe₀.₂₅Mn₀.₇₅PO₄ and (e) LiMnP₀₄ olivine phases.

3.3 Conclusions

In this chapter, solvothermal microwave-assisted synthesis has been demonstrated as a powerful method for the preparation of phase-pure LiFe₁₋ₓMnₓPO₄ olivines for use as positive insertion electrodes in Li-ion batteries. First, the importance of reducing the particle size of the precursor materials (in this case LiH₂PO₄) for the preparation of single phase LiFePO₄ olivine materials has been highlighted. From a series of optimisation reactions for the best Mn-containing precursor for the preparation of single phase Pnma LiMnP0₄ via microwave processes, Mn(acac)₃ is the most suitable candidate in comparison to MnSO₄·H₂O, MnCO₃ and MnC₂O₄·2H₂O. Particle size and morphology has a strong
dependence on the transition metal content in these materials. After that, to better understand the structure-property relationship of these mixed metal phosphates, neutron total scattering measurements for Rietveld analysis, neutron PDF analysis and μSR experiments have been performed, which allow elucidation of the local structure, cation distribution, presence of defects, Li$^+$ content and Li$^+$ diffusion behaviour. The good fit observed in the neutron PDF refinements of this family of mixed metal phosphates suggested that the synthetic method presented here affords highly crystalline materials exhibiting less disorder or structural distortions than similar olivine structures synthesised through a conventional solvothermal approach. Interestingly, μSR analysis has been applied for the first time to Mn-containing olivine LiFe$_{1-x}$Mn$_x$PO$_4$ phases, suggesting that the D_{Li} and E_{act} slightly decreased with higher Mn content. Finally, electrochemical testing of this series of metal phosphates showed that the LiFePO$_4$ sample was the best performing material among this family of Fe/Mn containing olivines, reaching charge and discharge capacities near theoretical values (170 mAh·g$^{-1}$) with no capacity fading over at least 50 cycles.
4 Microwave Treatments of Single Source Alkoxides for Nanostructured Li-ion Battery Electrodes

4.1 Introduction

Control over the design of inorganic nanostructures of preferred crystal structure, particle size and particle morphology is highly desirable and challenges still remain in achieving this in a reliable and reproducible manner. In particular, fast and low temperature syntheses are highly desirable for the preparation of high quality functional inorganic nanoparticles. Previously, metal alkoxides and their derivatives have been shown to be excellent starting materials for the preparation of metal oxide thin films due to their easy hydrolysis and thermolysis. As previously reported by Gun'ko et al., Fe$^{2+}$ alkoxide complexes are considered promising precursors for the synthesis of important iron-based compounds and nanomaterials.

In this chapter, a series of metal alkoxide precursors have been prepared and employed for the preparation of nanostructured Li-ion battery electrodes. Microwave or ultrasonic treatment of metallorganic precursors has been investigated as a potentially fast and low cost route to both anode and cathode nanomaterials for Li-ion battery applications. In particular, the formation of LiMPO$_4$ (M=Fe, Mn) and Mn$_3$O$_4$ nanostructures via relatively fast and low temperature synthetic methods is examined. Realising such routes could open up a new avenue for the targeted design of nanoparticulate electrode materials, where co-location of the desired metals in a single starting material shortens reaction times and temperatures due to a decrease in diffusional energy requirements usually needed for such reactions to proceed. Furthermore, thermal decomposition of these metal alkoxides should be achievable at relatively low temperatures, allowing decreased temperatures during the synthesis and making the process more environmentally benign while also driving down reaction times.

4.2 Results and discussion

4.2.1 Synthesis and characterisation of [Fe(O'Bu)$_2$(THF)]$_2$ (I)

The metallorganic alkoxide precursor [Fe(O'Bu)$_2$(THF)]$_2$ (I) was synthesised via a straightforward salt elimination reaction at room temperature using two equivalents of NaO'Bu and one equivalent of FrBr$_2$ in dry THF, as previously reported by Gun'ko et al. (see Schematic 4.1 and section 2.2.3). This reaction results in the formation of a black-dark greenish solution and a greyish precipitate of NaBr. The [Fe(O'Bu)$_2$(THF)]$_2$ (I) is composed by two Fe$^{2+}$ centers coordinated to two bridging O'Bu groups and a terminal O'Bu group. The tetrahedral coordination Fe$^{2+}$ is then completed with a THF molecule. This metal alkoxide is extremely air and moisture sensitive and demonstrates a colour change from dark green to reddish orange upon exposure to air due the oxidation of Fe$^{2+}$ to Fe$^{3+}$.

Chapter 4

Schematic 4.1. Synthesis of $[\text{Fe(O}^\text{Bu})_2(\text{THF})]_2$ (I) metal alkoxide precursor. The obtained dry greenish powders of $[\text{Fe(O}^\text{Bu})_2(\text{THF})]_2$ (I) were characterised by ^1H NMR and FT-IR spectroscopy. The ^1H NMR spectrum conducted in dry C$_6$D$_6$ is shown in Figure A4.1 and revealed two peaks from the tert-butoxide protons, one at 0.3 ppm corresponding to the μ_2-O$^\text{Bu}$ bridging groups and another at 1.1 ppm representing the terminal O$^\text{Bu}$ groups. Two broad peaks corresponding to the THF group were found at 3.8 and 1.5 ppm. There is a significant broadening of the peaks due to the presence of paramagnetic Fe$^{2+}$ ions. The FT-IR spectra of $[\text{Fe(O}^\text{Bu})_2(\text{THF})]_2$ (I) was carried out in Nujol using NaCl plates to prevent oxidation of the transition metal. The FT-IR spectrum for the $[\text{Fe(O}^\text{Bu})_2(\text{THF})]_2$ (I) in Nujol is depicted in Figure A4.2. The Nujol bands at 1461 and 1385 cm$^{-1}$ are easily distinguishable (the Nujol major absorption bands appear between 2950-2800, 1465-1450, and 1380-1370 cm$^{-1}$). The 723 and 854 cm$^{-1}$ vibrations for this metal tert-butoxide could be assigned to a symmetrical skeletal vibration of the tert-butyl group. The asymmetric stretch due to the C-O-C group in THF was seen at 971 cm$^{-1}$. The 1133 cm$^{-1}$ band corresponds to a C-O stretch vibration characteristic of the tert-butoxy group. In general, the tert-butyl group is consistently characterised by strong absorptions at about 1200 - 1250 cm$^{-1}$.271, 272

4.2.2 Synthesis and characterisation of “$[\text{Mn(O}^\text{Bu})_2(\text{THF})]_2$“ (II)

The equivalent Mn containing alkoxide precursor with expected chemical formula “$[\text{Mn(O}^\text{Bu})_2(\text{THF})]_2$“ (II) (““ is used to denote suggested chemical formula in the absence of single crystal XRD data) was synthesised through a similar straightforward salt elimination reaction at room temperature using two equivalents of NaO$^\text{Bu}$ and one equivalent of MnBr$_2$ in dry THF. This reaction resulted in the formation of a dark brown-pinkish solution and a greyish precipitate of NaBr. The “$[\text{Mn(O}^\text{Bu})_2(\text{THF})]_2$“ (II) product was also air and moisture sensitive, as when exposing it to air the brown-pinkish Mn(II) ions could be oxidised to blackish Mn(III). The ^1H NMR spectrum of the “$[\text{Mn(O}^\text{Bu})_2(\text{THF})]_2$“ (II) dry product (Figure A4.3) revealed two peaks from the tert-butoxide protons, a major one at 0.3 ppm corresponding to the μ_2-O$^\text{Bu}$ bridging and other at 0.9 ppm representing the terminal O$^\text{Bu}$ groups. The higher intensity of the 0.3 ppm peak compared to the 0.9 ppm peak suggests a major presence of μ_2-O$^\text{Bu}$ bridging groups in comparison to O$^\text{Bu}$ terminal groups in the “$[\text{Mn(O}^\text{Bu})_2(\text{THF})]_2$“ (II) complex. Therefore, these results could indicate that a cubane architecture with $[\text{Mn}_4(\text{O}^\text{Bu})_4]^{2-}$ may be formed. Iron and manganese alkoxide cubes have already been fabricated by a similar single-step synthetic
approach presented here using MCl₂ (M=Fe, Mn), β-diketone and two equivalents of lithium alkoxide. The [M₄(OR)₄]⁺⁺ cores contain iron or manganese with triply bridging alkoxide ligands arranged at alternating vertices of a cube. The terminal positions are then completed by either alcohol or alkoxide and β-diketonate or benzoate ligands. A broad peak most likely corresponding to the THF group was found at 1.3 ppm. The FT-IR spectrum for the “[Mn(OtBu)₂(THF)]₂⁺ (II) in Nujol depicted in Figure A4.4 showed the Nujol bands at 1470 and 1379 cm⁻¹. The symmetrical skeletal vibration of the tert-butyl group was observed at 723 and 900 cm⁻¹. The asymmetric stretch from the C-O-C group in THF corresponds to the band 974 cm⁻¹. The 1128 cm⁻¹ band could be assigned to a C-O stretch vibration characteristic of the tert-butoxy group. The absorption band at 1205 cm⁻¹ is typical of the tert-butyl group.

4.2.3 Synthesis and characterisation of “[Fe₀.₅Mn₀.₅(OtBu)₂(THF)]₂⁺ (III)"

In an effort to prepare a bimetallic tert-butoxy compound containing Fe and Mn, a similar synthetic approach was followed by reacting four equivalents of NaO₂Bu, one equivalent of FeBr₂ and one equivalent of MnBr₂ in dry THF. The obtained dark-brownish product with expected chemical formula “[Fe₀.₅Mn₀.₅(OtBu)₂(THF)]₂⁺ (III) was also characterised by ¹H NMR and FT-IR spectroscopy. The ¹H NMR spectrum of the “[Fe₀.₅Mn₀.₅(OtBu)₂(THF)]₂⁺ (III) product (Figure A4.5) revealed three main peaks from the tert-butoxy protons, similar to those observed for the monometallic precursors (0.3 ppm corresponding to the µ₂-OtBu bridging and 0.9 and 1.0 ppm for the terminal OtBu groups). Peaks attributed to the THF groups were found at 1.4, 2.1 and 3.6 ppm. The FT-IR spectrum for the “[Fe₀.₅Mn₀.₅(OtBu)₂(THF)]₂⁺ (III) powder in Nujol depicted in Figure A4.6 showed the Nujol bands at 1463 and 1382 cm⁻¹. The 804, 879 and 1033 cm⁻¹ vibrations are assigned to a symmetrical skeletal vibration of the tert-butyl group. The asymmetric stretch of the C-O-C group in THF appears at 1102 cm⁻¹, with a band at 1186 cm⁻¹ for the C-O stretch vibration of the tert-butoxy group. The absorption band at 1265 cm⁻¹ is characteristic of the tert-butyl group.

The similar FT-IR spectra obtained for [Fe(OtBu)₂(THF)]₂ (I), “[Mn(OtBu)₂(THF)]₂⁺ (II) and “[Fe₀.₅Mn₀.₅(OtBu)₂(THF)]₂⁺ (III) metal alkoxides suggested that there are no differences in the functional groups of these transition metal complexes. Furthermore, ¹H NMR spectra of the three complexes showed the signals characteristic of the terminal and bridging tert-butoxy protons and the THF group. In order to quantify the transition metal content in these metal alkoxides, atomic absorption spectroscopy (AAS) measurements were conducted. The [Fe(OtBu)₂(THF)]₂ (I) metal alkoxide exhibited Fe contents close to the expected values. Nevertheless, the Mn contents in “[Mn(OtBu)₂(THF)]₂⁺ (II) were higher than the theoretical values. Results also showed that in the case of the mixed transition metal alkoxide precursor “[Fe₀.₅Mn₀.₅(OtBu)₂(THF)]₂⁺ (III) similar Fe and Mn contents are observed.
Ultimately, single crystal XRD analysis on each alkoxide precursor would be required to obtain a complete picture of the structure of each alkoxide precursor. Unfortunately, it has not been possible to obtain single crystals of sufficient quality for diffraction studies. It should also be noted that it would not be possible to discern between iron and manganese from single crystal XRD analysis. These precursors were therefore employed in subsequent syntheses on the basis of their predicted formulae.

Table 4.1. Fe and Mn contents of “[Fe(O’Bu)2(THF)]2” (I), “[Mn(O’Bu)2(THF)]2” (II) and “[Fe0.5Mn0.5(O’Bu)2(THF)]2” (III) metal alkoxide precursors obtained from AAS analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Found</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe (%)</td>
<td>Mn (%)</td>
</tr>
<tr>
<td>[Fe(O’Bu)2(THF)]2 (I)</td>
<td>23.13</td>
<td>-</td>
</tr>
<tr>
<td>“[Mn(O’Bu)2(THF)]2” (II)</td>
<td>-</td>
<td>44.70</td>
</tr>
<tr>
<td>“[Fe0.5Mn0.5(O’Bu)2(THF)]2” (III)</td>
<td>18.32</td>
<td>22.25</td>
</tr>
</tbody>
</table>

4.2.4 Synthesis and characterisation of LiFe_xMn_xPO₄ and Mn₃O₄ nanostructures from “[M(O’Bu)2(THF)]2” (M=Fe, Mn) metal alkoxides

The synthesis of single phase LiFe_xMn_xPO₄ and M₃O₄ hausmannite nanostructures was attempted using “[M(O’Bu)2(THF)]2” (M=Fe, Mn) (I, II and III) metal alkoxide precursors (see section 2.2.3), LiOH·H₂O and H₂PO₄ as reactants according to the reaction schematic 4.2 and experimental sections 2.2.4 and 2.2.5, respectively. Table 4.2 shows the full list of reactions attempted, including the nature of the metal alkoxide precursors “[M(O’Bu)2(THF)]2” (M=Fe, Mn) (I, II and III) and the LiFe_xMn_xPO₄ and Mn₃O₄ hausmannite nanophases prepared from each precursor.

4.2.4.1 PXRD of LiFe_xMn_xPO₄ nanostructures prepared from “[Fe_xMn_x0.5(O’Bu)2(THF)]2” (x=0, 0.5 and 1)

The microwave-assisted synthesis of LiFePO₄ nanoparticles from the metal alkoxide precursor [Fe(O’Bu)2(THF)]2 (I) as a starting material was attempted initially via a series of reactions using LiOH·H₂O, Li₂CO₃, LiH₂PO₄ and H₂PO₄ as Li⁺ and PO₄³⁻ sources in benzyl alcohol. Benzyl alcohol (tan^δ=0.667)¹²⁴ is a strong microwave absorbing solvent that has already been successfully used for the preparation of olivine LiFePO₄, LiMnPO₄ and LiMn_{0.60}Fe_{0.39}PO₄ nanostructures via fast microwave assisted methods.⁴⁵ These preliminary reactions were designed so as to identify the most suitable Li⁺ and PO₄³⁻ starting materials for the preparation of single phase nanocrystalline LiFePO₄ through fast microwave treatments of metal alkoxides. Reaction times and temperatures were limited to 10 mins and 240 °C, respectively. Furthermore, in an effort to demonstrate that metal alkoxide precursors yield better quality materials, a similar reaction using the commercial starting materials Fe(acac)₃ and LiH₂PO₄ in benzyl alcohol was also performed. PXRD patterns of the reaction products (shown in Figure 4.1) revealed that phase pure LiFePO₄ was only obtained when the [Fe(O’Bu)2(THF)]2 (I) metal alkoxide was reacted with
LiOH·H₂O and H₃PO₄ in benzyl alcohol. When reacted with Li₂CO₃, a mixture of LiFePO₄ and Li₃PO₄ was formed. When LiH₂PO₄ was employed, olivine LiFePO₄ was not obtained and instead Fe₃O₄ magnetite was the major product. These results could be explained by the fact that a slightly acidic pH provided by the phosphoric acid could potentially avoid the formation of iron oxide, leading to the phase pure olivine when LiOH·H₂O and H₃PO₄ were employed. Finally, the amorphous product obtained when using Fe(acac)₃ as a starting material, which was evidenced by the lack of diffraction peaks in the PXRD pattern, confirmed that reducing the reaction times to 10 min was only feasible when metal alkoxide precursors such as [Fe(O'Bu)₂(THF)]₂ are used. In the synthesis of LiFePO₄ using Fe(acac)₃ precursor, the reduction from Fe³⁺ to Fe²⁺ needs to take place, which is one possible reason why longer reaction times may be required.

Schematic 4.2. Reaction schematic for the synthesis of LiFeₓ₋ₓMnₓPO₄ (x=0, 0.5 and 1) and Mn₃O₄ hausmannite nanostructures using “[M(O'Bu)₂(THF)]₂” (I, II and III) metal alkoxide precursors.
Table 4.2. Preparation of “[M(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (M = Fe, Mn) (I, II and III) alkoxide precursors and the reactions attempted with these precursors to obtain LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} (x = 0, 0.5 and 1) and Mn\textsubscript{3}O\textsubscript{4} nanoparticles.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Reactants</th>
<th>Reaction conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Fe(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2} (I)</td>
<td>2 FeBr\textsubscript{2} (6.470 g, 30 mmol) + 4 NaO\textsubscript{t}Bu (5.766 g, 60 mmol) + 90 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
<tr>
<td>“[Mn(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (II)</td>
<td>2 MnBr\textsubscript{2} (6.443 g, 30 mmol) + 4 NaO\textsubscript{t}Bu (5.766 g, 60 mmol) + 90 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
<tr>
<td>“[Fe\textsubscript{0.5}Mn\textsubscript{0.5}(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (III)</td>
<td>MnBr\textsubscript{2} (3.221 g, 15 mmol) + FeBr\textsubscript{2} (3.235 g, 15 mmol) + 4 NaO\textsubscript{t}Bu (5.766 g, 60 mmol) + 90 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
<tr>
<td>LiFePO\textsubscript{4}-I</td>
<td>[Fe(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2} (0.0300 g, 0.07 mmol) + 2 H\textsubscript{3}PO\textsubscript{4} (0.0134 g, 0.14 mmol) + 2 LiOH-H\textsubscript{2}O (0.0057 g, 0.14 mmol) + 4 mL benzyl alcohol</td>
<td>Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C</td>
</tr>
<tr>
<td>LiMnPO\textsubscript{4}-II</td>
<td>“[Mn(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (0.0300 g, 0.07 mmol) + 2 H\textsubscript{3}PO\textsubscript{4} (0.0134 g, 0.14 mmol) + 2 LiOH-H\textsubscript{2}O (0.0058 g, 0.14 mmol) + 4 mL benzyl alcohol</td>
<td>Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C</td>
</tr>
<tr>
<td>LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}-I-III</td>
<td>“[Fe\textsubscript{0.5}Mn\textsubscript{0.5}(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (0.0150 g, 0.035 mmol) + “[Mn(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (0.0150 g, 0.035 mmol) + 2 H\textsubscript{3}PO\textsubscript{4} (0.0134 g, 0.14 mmol) + 2 LiOH-H\textsubscript{2}O (0.0057 g, 0.14 mmol) + 4 mL benzyl alcohol</td>
<td>Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C</td>
</tr>
<tr>
<td>LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4}-III</td>
<td>“[Fe\textsubscript{0.5}Mn\textsubscript{0.5}(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” (0.0300 g, 0.07 mmol) + 2 H\textsubscript{3}PO\textsubscript{4} (0.0134 g, 0.14 mmol) + 2 LiOH-H\textsubscript{2}O (0.0057 g, 0.14 mmol) + 4 mL benzyl alcohol</td>
<td>Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C</td>
</tr>
<tr>
<td>Mn\textsubscript{3}O\textsubscript{4} hausmannite</td>
<td>“[Mn(O\textsubscript{t}Bu)\textsubscript{2}(THF)]\textsubscript{2}” + degassed H\textsubscript{2}O (6 x 60 mL)</td>
<td>1 hr ultrasound</td>
</tr>
</tbody>
</table>
Having established the most suitable route, LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5, 1) nanostructures were prepared using “[M(OtBu)$_2$(THF)]$_2$” (M=Fe, Mn) metal alkoxide precursors, LiOH·H$_2$O and H$_3$PO$_4$ in benzyl alcohol. First, LiFePO$_4$-I and LiMnPO$_4$-II were prepared using the [Fe(OtBu)$_2$(THF)]$_2$ (I) and “[Mn(OtBu)$_2$(THF)]$_2$” (II) alkoxide precursors, respectively. Figure 4.2 and 4.3 show that single phase olivine materials were obtained after microwave treatment and also after a post-heat treatment for 1 hr at 500 °C under Ar atmosphere. The heat treatment is conducted to check the thermal stability of the materials and confirm that there are no changes in the crystallinity upon heating. Moreover, phase pure LiFePO$_4$ and LiMnPO$_4$ olivines were maintained after carbon coating with 15% wt. C from sucrose and heat treatment for 1 hr at 700 °C under Ar. Stoichiometric amounts of [Fe(OtBu)$_2$(THF)]$_2$ (I) and “[Mn(OtBu)$_2$(THF)]$_2$” (II) alkoxide precursors were reacted to prepare the mixed transition metal olivine LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-I-II following the same synthetic procedure. As observed in Figure 4.4, PXRD analysis of the resulting product indicated that LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ phase with some Fe$_3$O$_4$ magnetite impurities was obtained after the heating process for 1 hr at 500 °C under Ar flow.
Figure 4.2. PXRD pattern of LiFePO₄ prepared using [Fe(O'Bu)₂(THF)]₂ (I) precursor, LiOH.H₂O and H₃PO₄ in a 1:2:2 molar ratio in benzyl alcohol.

Figure 4.3. PXRD pattern of LiMnPO₄ prepared using "[Mn(O'Bu)₂(THF)]₂" (II) precursor, LiOH.H₂O and H₃PO₄ in a 1:2:2 molar ratio in benzyl alcohol.
In an effort to avoid the formation of undesired Fe$_3$O$_4$ during the preparation of transition mixed metal phosphates, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures were prepared through the same fast microwave synthesis using the bimetallic alkoxide precursor \([\text{Fe}_{0.5}\text{Mn}_{0.5}(\text{O}^{\text{tBu}})_2(\text{THF})]_2\) (III). Figure 4.5 shows the resulting PXRD pattern, which indicates that no undesirable side products were formed. These results demonstrate the suitability of having the two transition metals in a single source precursor for the preparation of phase pure LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ olivine nanomaterials. This also lends some evidence to the presumption that the mixed heterometallic alkoxide is not, in fact, simply a mixture of the iron and manganese homometallic precursors. Comparative PXRD patterns of the LiFePO$_4$, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ and LiMnPO$_4$ nanostructures in Figure 4.6 revealed that all three samples are single phase materials with an olivine structure indexed to an orthorhombic \(Pnma\) space group. The diffraction patterns were matched well with the standards LiFePO$_4$ (ICSD No. 01-072-7845), LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ (ICSD No. 01-073-7355) and LiMnPO$_4$ (ICSD No. 01-072-7844).

It is also interesting to note the slight shifting of the peaks towards lower angles when substituting Fe by Mn, a signature of the larger cation size of Mn$^{2+}$ (83 pm) in comparison to Fe2 (78 pm). There is also a significant broadening in the peaks observed in the PXRD pattern with increasing Mn content in LiFe$_{1-x}$Mn$_x$PO$_4$, which may suggest a smaller crystallite size for the Mn...
containing olivines. The estimated crystallite sizes of the LiFePO$_4$-I, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and LiMnP$_4$-II nanostructures were calculated using the Scherrer equation208 (equation 2.2) applied to the (200) diffraction peak and they were 105, 71 and 33 nm, respectively.

Figure 4.5. PXRD pattern of LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III prepared from stoichiometric mixture of [Fe(O'Bu)$_2$(THF)]$_2$ (I) and “[Mn(O'Bu)$_2$(THF)]$_2$” (II) alkoxide precursors.

Figure 4.6. PXRD pattern of LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) nanostructures from “[M(O'Bu)$_2$(THF)]$_2$” (M=Fe, Mn) (I, II and III) after heat treatment for 1 hr at 500 ºC in Ar.
High resolution PXRD analysis of the LiFePO$_4$-I, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and LiMnPO$_4$-II nanostructures prepared via a rapid microwave synthesis using “[M(OtBu)$_2$(THF)]$_2$” (M=Fe, Mn) (I, II and III) alkoxide precursors were conducted at the I11 beamline at the Diamond Light Source. High resolution PXRD patterns of the LiMPO$_4$ (M=Fe, Mn) nanophases confirmed that the three samples were phase pure materials with an olivine structure indexed to an orthorhombic $Pnma$ space group. Furthermore, no peaks of impurity phases or evidence of phase segregation were detected from PXRD analysis. PXRD data was fit by Rietveld analysis to the orthorhombic $Pnma$ space group using Fullprof programme. The structural and profile parameters were refined according to a pseudo-Voigt profile function and the refinement process order was the following: (i) scale factor (ii) the background was carefully modelled using a 6-coefficient polynomial function (iii) zero point and sample displacement correction, (iv) cell parameters, (v) profile parameters, (vi) atomic positions and finally (vii) isotropic atomic thermal displacement parameters (B_{iso}) constraining Li and Fe/Mn to have the same value and also the oxygen atoms to be same. As shown in Figure 4.7, an excellent agreement between the observed and calculated data was obtained, confirming the phase purity of these LiFe$_{1-x}$Mn$_x$PO$_4$ nanomaterials. Table 4.3 details the calculated lattice parameters for each sample, revealing an increase in the lattice parameters when doping LiFePO$_4$ with Mn. These results imply that Fe$^{2+}$ atoms have been successfully substituted by Mn$^{2+}$ in and are effectively located in the olivine structure.

4.2.4.2 Electron microscopy of LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) nanostructures prepared from “[Fe$_{1-x}$Mn$_x$(OtBu)$_2$(THF)]$_2$” (x=0, 0.5 and 1)

SEM analysis of the LiFePO$_4$-I, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and LiMnPO$_4$-II powders was conducted to examine the particle size and morphology. SEM images of the LiFePO$_4$-I sample revealed non-uniform platelet shaped morphology with particle sizes ranging from ~60 to 250 nm (Figure 4.8 (a)). The LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III powders appeared as thinner and slightly more elongated platelets (~130 nm wide and 300 nm long) (Figure 4.8 (b)). Finally, LiMnPO$_4$-II sample adopted a rod-like morphology (~60 nm width and 350-500 nm length), confirming the strong influence of the Mn content in the resulting particle morphology and size (Figure 4.8 (c)). HR TEM of the LiFePO$_4$-I, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and LiMnPO$_4$-II nanostructures confirmed the change in morphology and particle size with higher Mn content. TEM analysis shown in Figure 4.9 also confirmed the long-range crystallographic nature of these particles with lattice spacings consistent with the $Pnma$ LiMPO$_4$ space group observed. The visible fringes demonstrated that the samples are crystalline and that the lattice spacings are consistent with the planes indicated in the images. The calculated average interplanar distances for the LiFePO$_4$, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ and LiMnPO$_4$ samples were found to be 0.387 nm, 0.403 nm and 0.634 nm, corresponding to the (210),
(210) and (010) planes, respectively. The insets show Fourier transforms of the TEM images revealing these materials to be single crystals over the imaged area. Indexing of the electron diffraction patterns revealed that the crystal long-axis, indicated by the green lines in the images, lies within a few degrees of the [020], [112] and [101] axes for the LiFePO₄, LiFe₀.₅Mn₀.₅PO₄ and LiMnPO₄ samples, respectively.

![Figure 4.7](image)

Figure 4.7. Rietveld analysis of high resolution PXRD data of LiFePO₄-I, LiFe₀.₅Mn₀.₅PO₄-III and LiMnPPO₄-II nanostructures after microwave-assisted synthesis and heating for 1 h at 500 °C under Ar flow.

Table 4.3. Calculated lattice parameters from Rietveld refinements for the different lithium metal phosphates prepared from “[M(O’Bu)₂(THF)],” (M=Fe, Mn) (I, II and III) metal alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO₄-I</th>
<th>LiFe₀.₅Mn₀.₅PO₄-III</th>
<th>LiMnPPO₄-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3266(3)</td>
<td>10.36628(3)</td>
<td>10.44926(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.0058(2)</td>
<td>6.03484(2)</td>
<td>6.10167(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.6924(1)</td>
<td>4.70931(2)</td>
<td>4.74596(3)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>291.017(1)</td>
<td>294.609(1)</td>
<td>302.593(3)</td>
</tr>
<tr>
<td>Rwp</td>
<td>19.1 %</td>
<td>20.5 %</td>
<td>25.0 %</td>
</tr>
<tr>
<td>Rexp</td>
<td>10.80 %</td>
<td>13.45 %</td>
<td>16.88 %</td>
</tr>
<tr>
<td>χ²</td>
<td>3.10</td>
<td>2.32</td>
<td>2.19</td>
</tr>
</tbody>
</table>
Figure 4.8. SEM images of (a) LiFePO$_4$-I, (b) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III, (c) LiMnPO$_4$-II and (d) Mn$_3$O$_4$ nanostructures from “[M(O’Bu)$_2$(THF)]$_2$” (M=Fe, Mn) (I, II and III) metal alkoxide precursors.

Figure 4.9. High resolution TEM images of (a, d) LiFePO$_4$-I, (b, e) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and (c, f) LiMnPO$_4$-II nanostructures from “[M(O’Bu)$_2$(THF)]$_2$” (M=Fe, Mn) (I, II and III).
4.2.4.3 Electrochemical performance of LiFe_{1-x}Mn_xPO_4 nanostructures prepared from “[Fe_{1-x}Mn_x(O^tBu)_2(THF)]_2” (x = 0, 0.5 and 1)

The electrochemical behavior of the C/LiFePO_4-I, C/LiFe_{0.5}Mn_{0.5}PO_4-III and C/LiMnPO_4-II nanostructures was investigated via galvanostatic cycling and CV measurements. Galvanostatic cycling at room temperature of the C/LiFePO_4-I, C/LiFe_{0.5}Mn_{0.5}PO_4-III and C/LiMnPO_4-II samples was conducted over the voltage range of 2.2-4.0 V, 2.2-4.3 V and 2.2-4.5 V, respectively, at a C/20 rate. The positive electrodes consisted of a C/LiMPO_4:carbon black:PTFE mixture in a 60:30:10 weight ratio pressed into a pellet. The representative charge and discharge voltage profile for the C/LiFePO_4-I sample shown in Figure 4.10 (a) indicated that charge and discharge capacities of approximately 150 mAh·g^{-1} were reached. Furthermore, as shown in Figure 4.10 (b), this cycling study revealed that this electrode material exhibited almost no capacity fading over at least 20 cycles, with coulombic efficiencies of almost 99% observed. Galvanostatic cycling at room temperature of the C/LiFe_{0.5}Mn_{0.5}PO_4-III sample at C/20 from 2.2 to 4.3 V displayed discharge and charge capacities of around 140 mAh·g^{-1} and 180 mAh·g^{-1}, respectively, with no noticeable capacity fading over the first 10 charge/discharge cycles (Figure 4.10 (c) and (d)). A lower electrochemical activity was observed for the Mn^{3+}/Mn^{2+} redox pair in comparison to Fe^{3+}/Fe^{2+}, as evidenced by the shorter redox plateau at 4.0 V compared to the 3.45 V plateau. Furthermore, the appearance of an additional discharge plateau is noted at around 3.6 V over cycling, which has also been previously observed by Wang et al. They demonstrate by capacity analysis, CV and galvanostatic intermittent titration technique that the additional discharge plateau can still be attributed to Mn^{3+} reduction, but with a different mechanism than in pure LiMnPO_4.277 Galvanostatic cycling of the C/LiMnPO_4-II sample at C/20 from 2.2 V to 4.5 V demonstrated a poorer electrochemical performance delivering charge and discharge capacities of around 120 mAh·g^{-1} and 100 mAh·g^{-1}, respectively, over the first 20 charge/discharge cycles (Figure 4.10 (e) and (f)). In the cycling studies of C/LiFe_{0.5}Mn_{0.5}PO_4-III and C/LiMnPO_4-II a significant difference in charge and discharge capacities was observed, which may indicate that some electrolyte decomposition is taking place at voltages higher than 4 V vs. Li^+/Li^0.
Figure 4.10. Voltage-capacity profiles and cycling stability between 2.2 V and 4.0, 4.3 or 4.5 V at C/20 rate of (a) and (b) C/LiFePO$_4$-I (15% wt. C from sucrose), (c) and (d) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III (15% wt. C from sucrose), and (e) and (f) C/LiMnPO$_4$-II (15% wt. C from sucrose).

The rate behaviour of the C/LiFePO$_4$-I, C/LiMnPO$_4$-II and C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III phases was investigated to examine the rate capabilities as a function of Mn content and particle size and morphology. The results observed in Figure 4.11 indicated that the discharge capacity
regularly decreased with higher C rates. This effect was more pronounced for the LiMnPO₄ sample. High C rates up to 10 C delivered discharge capacities of 75 mAh·g⁻¹, 50 mAh·g⁻¹ and 25 mAh·g⁻¹ for the C/LiFe₀.₅Mn₀.₅PO₄₃₃, C/LiFePO₄₁ and C/LiMnPO₄₂ phases, respectively. The C/LiFe₀.₅Mn₀.₅PO₄ presented here showed an improved rate capability at 10 C in comparison to the ~55 mAh·g⁻¹ at 8 C reported previously for LiFe₀.₅Mn₀.₅PO₄ prepared via a more elaborate electrospun synthetic procedure.²⁷⁸ This suggests that the fast microwave treatment of metal alkoxide precursors presents a promising synthetic approach for the simple and low cost generation of olivine structured mixed metal phosphates with good electrochemical performance. In each of the three samples the capacity was fully recovered when the cycling rate returned back to C/10 rate after increasingly faster rates. An improved rate capability is clearly observed in the C/LiFe₀.₅Mn₀.₅PO₄ sample prepared using the “[Fe₀.₅Mn₀.₅(O’Bu)₂(THF)]₂” (III) metal alkoxide precursor in comparison to the LiFe₀.₅Mn₀.₅PO₄ sample synthesised with commercial starting materials presented in Chapter 3 (for example, 120 mAh·g⁻¹ vs. 80 mAh·g⁻¹ at C rate and 75 mAh·g⁻¹ vs. 50 mAh·g⁻¹ at 10 C rate). This could be attributed to the reduced particle size of C/LiFe₀.₅Mn₀.₅PO₄₃₃ (~130 nm in width) compared to C/LiFe₀.₅Mn₀.₅PO₄₂ (~540 nm in width). These results also suggest that partial substitution of Fe²⁺ by Mn²⁺ in the olivine structure affords a noticeable enhancement in the rate capability of these electrodes. The observed improvement in the electrochemical performance of the C/LiFe₀.₅Mn₀.₅PO₄ material in comparison to C/LiFePO₄ could also be related to the decrease in particle size. Zhao et al. have studied the effect of particle size on the electrochemical performance of LiFePO₄/C materials and demonstrated an increase in the discharge capacities of LiFePO₄/C as the particle size decreased, which may be due to the fact that reduced particle sizes shortened the Li⁺ diffusion distance through the LiFePO₄/C bulk.²⁷⁹ PXRD characterisation of the post-cycled materials in the discharge state shown in Figure 4.12 indicated that the Li⁺ extraction/insertion process did not affect the structure of the C/LiFe₀.₅Mn₀.₅PO₄ composites, confirming the good structural stability of these positive insertion electrodes upon cycling even at high C rates.
Figure 4.11. Comparative rate behaviour of C/LiFePO$_4$-I, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and C/LiMnPO$_4$-II (15% wt. C from sucrose) with C black and PTFE in 60:30:10 wt. ratio at different charge-discharge C rates.

Figure 4.12. PXRD of post-cycled C/LiFePO$_4$-I, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III and C/LiMnPO$_4$-II at different rates in the discharged state.
CV measurements for the C/LiFePO$_4$-I, C/LiMnPO$_4$-II, and C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III nanocomposites prepared with “[M(OtBu)$_2$(THF)$_2$]$_2$” (M=Fe, Mn) (I, II and III) metal alkoxide precursors were conducted at a scan rate of 0.1 mV·s$^{-1}$ between 2.5 V and 4.5 V. The CV results for the C/LiFePO$_4$-I sample showed anodic and cathodic peaks at ~3.60 V and 3.23 V, respectively, due to the Fe$^{3+}$/Fe$^{2+}$ redox pair (Figure 4.13 (a)). The CV curve for the C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III sample exhibited two oxidation (3.56 V and 4.14 V) and two reduction peaks (3.38 V and 3.84 V) characteristic from the Fe$^{3+}$/Fe$^{2+}$ and Mn$^{3+}$/Mn$^{2+}$ redox pairs (Figure 4.13 (c)). The significantly more intense peaks from the Fe$^{3+}$/Fe$^{2+}$ pair in comparison to the Mn$^{3+}$/Mn$^{2+}$ confirmed the stronger contribution of Fe over Mn in this electrochemical process. Furthermore, an additional reduction peak was observed at 3.6 V, in agreement with the additional discharge plateau observed in the galvanostatic cycling tests. This extra reduction peak has been also previously observed by Mathur et al, which they attribute to a Mn$_2$P$_2$O$_7$ impurity phase formed during the heat treatment process. However, this impurity could not be detected in the PXRD pattern. Finally, the CV for the C/LiMnPO$_4$-II compound showed the oxidation and reduction peaks at ~4.31 and 3.95 V, respectively, due to the Mn$^{3+}$/Mn$^{2+}$ redox pair (Figure 4.13 (b)). The good overlap of the CV curves after the first cycle confirmed the good reversibility of these electrochemical systems.

Figure 4.13. CVs at a 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V of (a) C/LiFePO$_4$-I, (b) C/LiMnPO$_4$-II, and (b) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-III nanostructures prepared with “[M(OtBu)$_2$(THF)$_2$]$_2$” (M=Fe, Mn) (I, II and III) metal alkoxide precursors.
4.2.4.4 PXRD and SEM of Mn₃O₄ nanoparticles prepared from hydrolysis of “[Mn(OᵗBu)₂(THF)]₂” metal alkoxide

Mn₃O₄ hausmannite has received increasing attention as promising alternative anode material to graphite due to its high theoretical capacity (937 mAh·g⁻¹), low conversion potential, natural abundance and environmental benignity, which are desirable for the practical application of LIBs. Mn₃O₄ has a spinel structure with Mn³⁺ and Mn²⁺ ions occupying the octahedral and tetrahedral positions, respectively. The brownish Mn₃O₄ powder synthesised through a room temperature ultrasound-assisted hydrolysis route of “[Mn(OᵗBu)₂(THF)]₂” was characterised by PXRD. The volatile metallorganic compound can fully dissociate their OᵗBu groups inside a bubble during the acoustic cavitation process of ultrasound and the resulting metal atoms can agglomerate to form the nanostructured oxide. Rietveld refinements to Mn₃O₄ (ICSD No 01-080-0382 24-734) tetragonal structure belonging to I4₁/amd space group confirmed that phase pure Mn₃O₄ hausmannite was obtained. Figure 4.14 indicates that a good fit between the experimental PXRD data and the calculated pattern was achieved. The estimated crystallite size of the Mn₃O₄ nanostructure was calculated using the Scherrer equation applied to the (211) diffraction peak and was ~37 nm. SEM images of the Mn₃O₄ powders demonstrated quasi-spherical discs with an average particle size of around 80 nm (Figure 4.8 (d)). Heat treatment in a tube furnace of the Mn₃O₄ powder mixed with 15 % wt. C from sucrose at 500 °C and 700 °C for 1 hr under air was conducted. As observed in Figure 4.15, PXRD patterns of this sample indicate that heating at 500 °C still afforded Mn₃O₄ hausmannite. However, heat treatment at elevated temperatures of 700 °C in air led to the complete oxidation of the Mn²⁺ ions in Mn₃O₄ to Mn³⁺ forming Mn₂O₃. Similar heat treatment performed under Ar flow afforded the formation of the reduced product MnO due to the reducing nature of the sucrose (Figure 4.16).
Figure 4.14. Rietveld analysis of PXRD data of hausmannite Mn$_3$O$_4$ nanostructure. [R_{wp}=19.5 %, R_{exp}=15.87 %, χ^2=1.51, a=5.7655(3) Å, b=5.7655(3) Å and c=9.4634(7) Å].

Figure 4.15. PXRD pattern of Mn$_3$O$_4$ hausmannite prepared through a room temperature ultrasound-assisted synthesis and post-heat treatment of Mn$_3$O$_4$ mixed with 15% wt. C from sucrose at 500 °C and 700 °C for 1 hr under air.
Figure 4.16. PXRD pattern of Mn$_3$O$_4$ hausmannite prepared through a room temperature ultrasound-assisted synthesis and post-heat treatment of Mn$_3$O$_4$ hausmannite mixed with 15% wt. C from sucrose at 700 °C for 3 hr under Ar flow.

4.2.4.5 Electrochemical performance of Mn$_3$O$_4$ nanoparticles prepared from hydrolysis of “[Mn(OtBu)$_2$(THF)]$_2$“

The electrochemical performance of bare Mn$_3$O$_4$ hausmannite and C/Mn$_3$O$_4$ composite prepared using 15% wt. C from sucrose were examined to investigate the influence of the carbon coating on the cycling capability. Galvanostatic cycling studies of the bare Mn$_3$O$_4$ sample as an anode at a current density of 100 mA·g$^{-1}$ over a voltage range between 0.01 V and 3.00 V revealed an initial discharge capacity of ~2300 mAh·g$^{-1}$ that sharply faded to ~750 mAh·g$^{-1}$ at the second cycle (Figure A4.7 (b)). By the 20th cycle, a discharge capacity of ~300 mAh·g$^{-1}$ was still obtained (Figure A4.7 (c)). On the other hand, electrochemical measurements on the C/Mn$_3$O$_4$ sample (carbon coated with 15% wt. C from sucrose) at a same current density of 100 mA·g$^{-1}$ over the same voltage range displayed a first discharge capacity of ~3200 mAh·g$^{-1}$ that sharply decreased to approximately 1300 mAh·g$^{-1}$ at the second cycle. These elevated initial discharge capacities of bare Mn$_3$O$_4$ and C/Mn$_3$O$_4$ hausmannite could be attributed to the contribution of carbon to the storage of Li$^+$ ions. Moreover, these first discharge capacities are significantly larger than in any previous reports. The large capacity drop after the first cycle could be attributed to inevitable irreversible processes such as solid electrolyte interface (SEI) formation and electrolyte decomposition. These irreversible processes still occurred irrespective of a change in the lower voltage limit. Figure A4.8 shows the
galvanostatic cycling test of the C/Mn$_3$O$_4$ sample at a current density of 100 mA·g$^{-1}$ over a voltage range between 0.1 V and 3.0 V, confirming that the marked capacity fading is still present even when increasing the lower voltage limit. The voltage-composition profile of the C/Mn$_3$O$_4$ sample indicates that approximately 8 Li$^+$ were inserted and extracted after the first cycle (Figure 4.17 (a)). Furthermore, Figure 4.17 (b) shows a marked decrease in capacity over cycling, although discharge capacities of around 460 mAh·g$^{-1}$ were still reached at the 20th cycle, which is still higher than the theoretical capacity of standard graphite anodes (372 mAh·g$^{-1}$).286,287 The sharp capacity loss upon cycling could be explained by the fact that amorphous Li$_2$O and Mn metal is formed during the cycling process. Transition metal oxides store and release Li$^+$ ions through the following conversion reaction: MO$_x$ + 2xe$^- + 2x$Li$^+ \leftrightarrow M^0 + xLi_2$O. The full reduction of the transition metal oxides results in the formation of a composite material composed of metallic nanoparticles dispersed in the amorphous Li$_2$O matrix.93,188 Moreover, some Mn dissolution in the electrolyte solution could be also contributing to the drastic capacity fading observed.288 These electrochemical studies clearly confirmed the improved cycling capability of C/Mn$_3$O$_4$ compared to bare Mn$_3$O$_4$, indicating that the presence of a carbon coating significantly enhances the electrochemical behavior of this electrode material. For example, well-dispersed ultrafine Mn$_3$O$_4$ nanocrystals on reduced graphene oxide delivered discharge capacities of 1912 mAh·g$^{-1}$ and 1198 mAh·g$^{-1}$ at 100 mA·g$^{-1}$ after the 1st and 10th cycle, respectively.282 Also, it has been reported that porous Mn$_3$O$_4$ nanorods displayed an outstanding electrochemical performance with high specific capacity (901.5 mAh·g$^{-1}$ at a current density of 500 mA·g$^{-1}$), long cycling stability (coulombic efficiency of 99.3% after 150 cycles) and high rate capability (387.5 mAh·g$^{-1}$ at 2000 mA·g$^{-1}$).116 PXRD pattern of the cycled C/Mn$_3$O$_4$ presented here clearly suggested that the significant volume changes occurring upon cycling degrades the structure, evidenced by the lack of diffraction peaks which suggest the formation of an amorphous material (Figure 4.17 (c)). Further examination of the PXRD pattern of C/Mn$_3$O$_4$ hausmannite after 20 cycles shows the possible presence of conversion product Li$_2$O after repeated cycles (see Figure A4.9). Moreover, rate behavior investigations on the C/Mn$_3$O$_4$ electrode material were conducted at current densities of 200 mA·g$^{-1}$, 400 mA·g$^{-1}$, 800 mA·g$^{-1}$, 1200 mA·g$^{-1}$, 2000 mA·g$^{-1}$ and 200 mA·g$^{-1}$ to probe the rate capabilities of this anode. Results showed a decrease in rate performance of this C/Mn$_3$O$_4$ nanostructure with increasing rate, displaying approximately 800 mAh·g$^{-1}$ at 200 mA·g$^{-1}$, 400 mAh·g$^{-1}$ at 400 mA·g$^{-1}$, 100 mAh·g$^{-1}$ at 800 mA·g$^{-1}$ and capacities lower than 50 mAh·g$^{-1}$ at 1200 and 2000 mA·g$^{-1}$ (Figure 4.18). Furthermore, a discharge capacity of ~350 mAh·g$^{-1}$ was reached when cycling back at the current density of 200 mA·g$^{-1}$.

121
Results from the CV studies of C/Mn$_3$O$_4$ at 0.1 mV·s$^{-1}$ scan rate between 0.01 V and 3.00 V indicated that the CV curves change significantly after the first cycle, with quite good overlap in subsequent cycles confirming the good reversibility of this electrochemical system during cycling (Figure 4.19). An intense cathodic peak at around 0.3 V and an anodic peak at approximately 1.38 V were observed in the CV scan, indicating the reversibility of the electrochemical reactions of Mn$_3$O$_4$ after the second cycle. In the anodic process, the broad peak that appeared at 1.38 V is attributed to the oxidation of metal Mn to MnO and the decomposition of Li$_2$O. The intense peak that emerges at low potential (0.3 V) is ascribed to the reduction of MnO to metallic Mn.116

![Figure 4.17](image_url)

Figure 4.17. (a) Voltage-composition profile, (b) voltage-capacity profile, (c) cycling stability of C/Mn$_3$O$_4$ (15% C from sucrose) with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at 100 mA·g$^{-1}$. (d) PXRD of cycled C/Mn$_3$O$_4$ in the charged state.
Figure 4.18. Rate behavior of C/Mn$_3$O$_4$ (15% wt. C from sucrose) mixed with C black and PTFE in 60:30:10 % wt. ratio over the potential range between 0.01 V and 3.00 V at different charge/discharge rates.

Figure 4.19. CV of C/Mn$_3$O$_4$ hausmannite at a 0.1 mV·s$^{-1}$ scan rate between 0.01 V and 3.00 V.
4.3 Conclusions

In this chapter, a low cost and energy-efficient synthetic approach for the preparation of metal alkoxides to be used as precursors in the synthesis of phase pure olivine nanostructured LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) and Mn$_3$O$_4$ hausmannite nanoparticles through fast microwave and ultrasound-assisted routes, respectively, has been presented. As previously observed for the LiFe$_{1-x}$Mn$_x$PO$_4$ olivines studied in Chapter 3, the particle size and morphology in the LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures has a strong dependence on the transition metal composition, going from larger platelets to thinner nanorods with increased Mn contents. Electrochemical testing of LiFePO$_4$ and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ samples revealed excellent cyclability with charge/discharge capacities close to theoretical values (~155 mAh g$^{-1}$ vs. 170 mAh g$^{-1}$ at C/20 rate). These positive insertion electrodes also displayed rate capabilities comparable to the best performing olivine-structured metal phosphates in the literature, demonstrating the suitability of the metal alkoxide precursors presented here in the generation of high performance olivine mixed-metal phosphates via a fast microwave-assisted synthesis. On the other hand, C/Mn$_3$O$_4$ hausmannite nanoparticles prepared by a straightforward room temperature ultrasound-assisted hydrolysis and carbon coated using sucrose (heat treatment for 1 hr at 500 °C under air, as higher temperatures or heating in Ar atmosphere led to the oxidised or reduced product, respectively) showed a good electrochemical behaviour displaying an initial discharge capacity of ~3200 mAh·g$^{-1}$ and reaching 460 mAh·g$^{-1}$ after the 20th cycle. Nevertheless, a sharp capacity fading over subsequent cycling and poor rate capabilities were observed. Further improvements in the carbon coating of this metal oxide nanoparticles synthesised may dramatically enhance the battery cycling performance.
5 Microwave Treatments of Single Source Heterometallic Alkoxides for Nanostructured Li-ion Battery Electrodes

5.1 Introduction

To expand the use of transition metal alkoxide precursors for the preparation of electrode nanomaterials, the current chapter details efforts towards designing a series of heterometallic alkoxides containing Li and one or two transition metals (Fe, Mn) in a single compound. Such heterometallic complexes have been of interest as precursors to oxide based thin films. Here, they are employed as single source precursors for the preparation of LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) olivine nanostructures via fast and low temperature microwave-assisted synthesis in ethylene glycol or a ionic liquid. Co-location of all required metals in these metallorganic precursors should further decrease reaction times and temperatures, an important consideration for industrial scale-up. X-ray PDF analyses of these olivine LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures have also been conducted to examine the local structure and defect chemistry as a function of the Mn content and the reaction media.

5.2 Results and discussion

5.2.1 Synthesis and characterisation of “[MLi$_2$X(OtBu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn and X=Br, Cl) heterometallic alkoxide precursors

5.2.1.1 Synthesis and characterisation of [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV)

Knowing that the reaction between FeBr$_2$ and three molar equivalents of NaOtBu in THF solution affords the heterometallic alkoxide [NaFe(OtBu)$_3$(THF)]$_2$ previously reported by Gun’ko et al., the preparation of the structural analogue “[LiFe(OtBu)$_3$(THF)]$_2$” was pursued. A similar reaction between FeBr$_2$ and three molar equivalents of LiOtBu in THF was carried out. As observed by Barley et al., this attempt failed and the product obtained was the bromide containing metallorganic compound [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (see Schematic 5.1 and section 2.2.6). The [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) product is very air and moisture sensitive and demonstrates a colour change from light green to reddish upon exposure to air due the oxidation of Fe$^{2+}$ to Fe$^{3+}$.

\[3 \text{LiO}^t\text{Bu} + \text{FeBr}_2 \xrightarrow{\text{THF}} \text{Ar atmosphere} \quad 24 \text{hr} \]

Schematic 5.1. Synthesis of [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) heterometallic alkoxide precursor.
Single crystal XRD studies of the heterometallic alkoxide confirmed the formation of the \([\text{FeLi}_2\text{Br(O}^\text{Bu})_4(\text{THF})_2]_n\) metallorganic complex previously reported by Barley et al.\(^{293}\) As shown in Figure 5.1, in this compound the lithium bound bromide acts as a bridge between lithium atoms in different four member ring systems, resulting in a 1D polymeric structure. The bonding at each Li atom is completed by complexation of a THF molecule. Table 5.1 summarises the crystallographic information obtained from the structure refinement of \([\text{FeLi}_2\text{Br(O}^\text{Bu})_4(\text{THF})_2]_n\) (IV).

The \(^1\text{H} \) NMR spectrum of the \([\text{FeLi}_2\text{Br(O}^\text{Bu})_4(\text{THF})_2]_n\) (IV) powder conducted in dry C\(_6\)D\(_6\) (Figure A5.1) showed two peaks at 0.3 and 1.2 ppm corresponding to the bridging and terminal O\(^{-}\text{Bu} \) groups, respectively. Broader peaks from the THF groups were found at 1.4 ppm and 3.6 ppm. FT-IR spectrum in Nujol of the dry powder \([\text{FeLi}_2\text{Br(O}^\text{Bu})_2(\text{THF})_2]_n\) (IV) heterometallic alkoxide precursor depicted in Figure A5.2 showed the characteristic Nujol bands at 1460 and 1370 cm\(^{-1}\). Considering previous infrared spectroscopy studies on metal alkoxides, the 724 and 772 cm\(^{-1}\) vibrations for this heterometallic tert-butoxide could be assigned to a symmetrical skeletal vibration of the tert-butyl group. The 893 cm\(^{-1}\) absorption band could also be attributed to a skeletal vibration of the tert-butoxy group. The asymmetric stretch from the C-O-C group in THF is seen at 962 cm\(^{-1}\). The band at 1048 cm\(^{-1}\) could correspond to a C-C vibration within the tert-butoxy group, while the 1191 cm\(^{-1}\) band could be due to a C-O stretch vibration typical of the tert-butyl group. In general, the tert-butyl group is often characterised by strong absorptions at about 1200 - 1250 cm\(^{-1}\).\(^{271, 272}\)

![Figure 5.1.](image-url)
Figure 5.1. Propagation of the crystal structure of \([\text{FeLi}_2\text{Br(O}^\text{Bu})_4(\text{THF})_2]_n\) (IV) in the c direction to form a polymeric chain.
Table 5.1. Crystal data and structure refinement of \([\text{FeLi}_2\text{Br(O}^\text{tBu})_4\text{(THF)}_2]_n\) (IV).

\[
\begin{array}{ll}
\text{[FeLi}_2\text{Br(O}^\text{tBu})_4\text{(THF)}_2]_n\ (\text{IV}) & \\
M_w=586.29 \text{ g/mol} & \text{Mo K}_\alpha \text{ Radiation (}\lambda=0.71073 \ \text{Å)} \\
\text{Monoclinic, P2}_1/c & \rho_{\text{cal}}=1.248 \text{ g/cm}^3 \\
a=18.635 (5) \ \text{Å} & \mu=1.79 \ \text{mm}^{-1} \\
b=9.087 (2) \ \text{Å} & \text{2} \theta \text{ range of data collection 2.186}^\circ \text{ to 50.05}^\circ \\
c=18.425 (4) \ \text{Å} & \text{Reflections collected 21611} \\
\beta=90.502 (6)^\circ & \text{Independent reflections 5352 (}R_{\text{int}}=0.1500, R_{\text{sigma}}=0.1636) \\
V=3119.7 (13) \ \text{Å}^3 & T=100 \ \text{K} \\
Z=4 & \text{Crystal size 0.35x0.3x0.11 mm} \\
F(000)=1244.0 & h=21 \rightarrow 22 \\
\text{Goodness of fit on }F^2=1.00 & k=10 \rightarrow 40 \\
R \text{ indexes } R_1=0.1600, wR_2=0.1644 & l=21 \rightarrow 21 \\
\end{array}
\]

5.2.1.2 Synthesis and characterisation of “[FeLi}_2\text{Cl(O}^\text{tBu})_4\text{(THF)}_2]_n” (V)

A similar heterometallic precursor to \([\text{FeLi}_2\text{Br(O}^\text{tBu})_4\text{(THF)}_2]_n\) (IV) was prepared using \(\text{FeCl}_2\) instead of \(\text{FeBr}_2\) in order to investigate the influence of the halogen in the resulting metal alkoxide complex. The different reactivity and ionic radius of Cl and Br may trigger some of the differences in the resulting heterometallic alkoxide. The heterometallic alkoxide with suggested formula “[FeLi}_2\text{Cl(O}^\text{tBu})_4\text{(THF)}_2]_n” (V) was synthesised as described in section 2.2.6.

Single crystal XRD data from the “[FeLi}_2\text{Cl(O}^\text{tBu})_4\text{(THF)}_2]_n” (V) crystals was not of enough quality to conduct a refinement sensibly, so unfortunately it was not possible to obtain a reliable crystal structure. Nevertheless, the data collected suggested that the “[FeLi}_2\text{Cl(O}^\text{tBu})_4\text{(THF)}_2]_n” (V) crystals exhibit an analogous crystal structure to the \([[\text{THF})_2\text{Li}_2\text{Al(O}^\text{tBu})_4\text{Cl}]]\) compound previously reported by Pauls et al., which was fabricated by reaction of four equivalents of \(\text{LiO}^\text{tBu}\) on \(\text{AlCl}_3\) in THF. The \([[\text{THF})_2\text{Li}_2\text{Al(O}^\text{tBu})_4\text{Cl}]]\) complex displays a similar structure to \([\text{FeLi}_2\text{Br(O}^\text{tBu})_4\text{(THF)}_2]_n\), but with Cl atoms acting as a bridge between Li atoms instead of Br. The 1H NMR spectrum of the “[FeLi}_2\text{Cl(O}^\text{tBu})_4\text{(THF)}_2]_n” (V) powder conducted in dry \(\text{C}_6\text{D}_6\) (Figure A5.3) revealed two peaks from the tert-butoxide protons, a major one at 0.3 ppm corresponding to the μ_2-O$^\text{tBu}$ bridging and other at 1.2 ppm representing the terminal O$^\text{tBu}$ groups. Broader peaks from the THF group again appeared at 1.4 and 3.6 ppm. The FT-IR spectrum in Nujol of the dry powder “[FeLi}_2\text{Cl(O}^\text{tBu})_2\text{(THF)}_2]_n” (V) depicted in Figure A5.4 showed 724 and 758 cm$^{-1}$ vibrations corresponding to a symmetrical skeletal vibration of the tert-butyl group. The 896 cm$^{-1}$ absorption band may be ascribed to a skeletal vibration of the tert-butoxy
group. The asymmetric stretch from the C-O-C group in THF appears at 958 cm\(^{-1}\). The band at 1046 cm\(^{-1}\) could be originated from a C-C vibration within the tert-butoxy group, while the 1199 cm\(^{-1}\) band could be assigned to a C-O stretch vibration from the tert-butyl group.

5.2.1.3 Synthesis and characterisation of “[MnLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VI)

The equivalent Mn containing alkoxide precursor with expected chemical formula “[MnLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VI) was prepared in a similar manner using three equivalents of LiO\(^t\)Bu and one equivalent of MnBr\(_2\) in dry THF. This reaction resulted in the formation of a light brown-pinkish solution and a greyish precipitate of LiBr. The “[MnLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VI) product was also air and moisture sensitive, as when exposing it to air pinkish Mn\(^{2+}\) ions could be oxidised to blackish Mn\(^{3+}\) ions.

Again, single crystals of the “[MnLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VI) heterometallic alkoxide with enough quality for single crystal XRD experiments were not obtained. However, similar \(^1\)H NMR and FT-IR spectra as the previous heterometallic compounds shown in this chapter were obtained for this complex (see Figure A5.5 and A5.6). From this, it may be inferred that a similar structure is formed and for the rest of this thesis the structure is referred as “[MnLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VI).

5.2.1.4 Synthesis and characterisation of “[Fe\(_{0.5}\)Mn\(_{0.5}\)Li\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VII)

Finally, in an effort to prepare a trimetallic tert-butoxy compound containing Li, Fe and Mn, a similar synthetic approach was followed by reacting six equivalents of LiO\(^t\)Bu, one equivalent of FeBr\(_2\) and one equivalent of MnBr\(_2\) in dry THF.

Single crystal XRD analysis on “[Fe\(_{0.5}\)Mn\(_{0.5}\)Li\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VII) crystals revealed a similar unit cell than [FeLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\) (IV), however, using X-ray based techniques it is not possible to reliably distinguish between Fe and Mn atoms. The obtained dark-brownish product with expected chemical formula “[Fe\(_{0.5}\)Mn\(_{0.5}\)Li\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VII) was also characterised by \(^1\)H NMR and FT-IR spectroscopy. Again similar \(^1\)H NMR and FT-IR spectra as the rest of heterometallic compounds presented here were obtained (see Figure A5.7 and A5.8). Therefore, this suggests that this metallorganic complex may exhibit a similar structure.

Results from the CHN microanalysis of the dry powders [FeLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\) (IV), “[MnLi\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VI) and “[Fe\(_{0.5}\)Mn\(_{0.5}\)Li\(_2\)Br(O\(^t\)Bu)\(_4\)(THF)\(_2\)]\(_n\)” (VII) heterometallic alkoxides shown in Table 5.2 revealed C and H contents lower than the expected theoretical values. The decrease in the C and H content could be attributed to the fact that during the drying process under vacuum some of the THF groups in these compounds could be removed leading to the noticeable decrease in the C and H content observed.
Results showed a better agreement to the expected C and H contents for the “FeLi$_2$Br(O‘Bu)$_4$” product assuming that the THF molecules are lost. AAS investigations to determine the metal contents in these heterometallic alkoxides confirmed that the “[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(O‘Bu)$_4$(THF)$_2$]”, “(VII) alkoxide precursor exhibited similar Fe and Mn contents, in excellent agreement with the expected stoichiometry for this compound. Each of the four [FeLi$_2$Br(O‘Bu)$_2$(THF)$_2$]$_n$ (IV), “[FeLi$_2$Cl(O‘Bu)$_2$(THF)$_2$]” (V), “[MnLi$_2$Br(O‘Bu)$_2$(THF)$_2$]” (VI) and “[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(O‘Bu)$_2$(THF)$_2$]” (VII) heterometallic alkoxide precursors had similar Li contents. The Li contents were higher than expected, what suggests that all the precursors may still contain some LiBr/LiCl.

Table 5.2. CHN Microanalysis of [FeLi$_2$Br(O‘Bu)$_2$(THF)$_2$]$_n$, “[MnLi$_2$Br(O‘Bu)$_2$(THF)$_2$]” and “[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(O‘Bu)$_2$(THF)$_2$]” heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Found</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>[FeLi$_2$Br(O‘Bu)$_4$(THF)$_2$]$_n$ (IV)</td>
<td>34.18 %</td>
<td>6.22 %</td>
</tr>
<tr>
<td>“[MnLi$_2$Br(O‘Bu)$_4$(THF)$_2$]” (VI)</td>
<td>37.94 %</td>
<td>6.93 %</td>
</tr>
<tr>
<td>“[Fe${0.5}$Mn${0.5}$Li$_2$Br(O‘Bu)$_4$(THF)$_2$]” (VII)</td>
<td>38.31 %</td>
<td>6.97 %</td>
</tr>
<tr>
<td>“FeLi$_2$Br(O‘Bu)$_4$”</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>“MnLi$_2$Br(O‘Bu)$_4$”</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>“Fe${0.5}$Mn${0.5}$Li$_2$Br(O‘Bu)$_4$”</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5.3. Fe, Mn and Li contents of [FeLi$_2$Br(O‘Bu)$_2$(THF)$_2$]$_n$, “[FeLi$_2$Cl(O‘Bu)$_2$(THF)$_2$]” (V), “[MnLi$_2$Br(O‘Bu)$_2$(THF)$_2$]” (VI) and “[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(O‘Bu)$_2$(THF)$_2$]” (VII) heterometallic alkoxide precursors obtained from AAS analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Found</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe (% mol)</td>
<td>Mn (% mol)</td>
</tr>
<tr>
<td>[FeLi$_2$Br(O‘Bu)$_4$(THF)$_2$]$_n$ (IV)</td>
<td>5.59</td>
<td>-</td>
</tr>
<tr>
<td>“[FeLi$_2$Cl(O‘Bu)$_4$(THF)$_2$]” (V)</td>
<td>9.07</td>
<td>-</td>
</tr>
<tr>
<td>“[MnLi$_2$Br(O‘Bu)$_2$(THF)$_2$]” (VI)</td>
<td>-</td>
<td>11.01</td>
</tr>
<tr>
<td>“[Fe${0.5}$Mn${0.5}$Li$_2$Br(O‘Bu)$_2$(THF)$_2$]” (VII)</td>
<td>4.02</td>
<td>4.15</td>
</tr>
</tbody>
</table>

5.2.2 Synthesis and characterisation of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures from “[MLi$_2$X(O‘Bu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn and X=Br, Cl)

Olivine LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) nanostructures were prepared using “[MLi$_2$X(O‘Bu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn; X=Br, Cl) heterometallic alkoxides (see section 2.2.6) and H$_3$PO$_4$ as reactants according to the reaction schematics 5.2 and 5.3, and as described in section 2.2.7. Table 5.4 lists the “[MLi$_2$X(O‘Bu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn, X=Br, Cl) heterometallic alkoxide precursors employed here and the attempted olivine LiFe$_{1-x}$Mn$_x$PO$_4$ nanophases prepared from these.
Chapter 5

Schematic 5.2. Reaction schematic for the preparation of LiFePO$_4$ polymorphs from $[\text{FeLi}_2\text{Br(O}^\text{tBu)}_4(\text{THF})_2]_n$ (IV) and $[\text{FeLi}_2\text{Cl(O}^\text{tBu)}_4(\text{THF})_2]_n$ (V) single source heterometallic alkoxide precursors using microwave methods.

Schematic 5.3. Reaction schematic for the preparation of LiFe$_{0.9}$Mn$_{0.1}$PO$_4$ and LiMnPO$_4$ from $[\text{MnLi}_2\text{Br(O}^\text{tBu)}_4(\text{THF})_2]_n$ (VI) and $[\text{Fe}_{0.9}\text{Mn}_{0.1}\text{Li}_2\text{Br(O}^\text{tBu)}_4(\text{THF})_2]_n$ (VII) single source heterometallic alkoxide precursors using microwave methods.
Table 5.4. Preparation of “[MLiX(O’Bu)₄(THF)]ₙ” (M=Fe, Mn; X=Br, Cl) (IV, V, VI and VII) single source heterometallic alkoxide precursors and the reactions attempted with these precursors to obtain LiFeₓ₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Reactants</th>
<th>Reaction conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FeLi₂Br(O’Bu)₄(THF)]₂₀ (IV)</td>
<td>FeBr₂ (1.078 g, 5 mmol) + 3 LiO’Bu (1.201 g, 15 mmol) + 40 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
<tr>
<td>“[FeLi₂Cl(O’Bu)₄(THF)]₂₀” (V)</td>
<td>FeCl₂ (0.634 g, 5 mmol) + 3 LiO’Bu (1.201 g, 15 mmol) + 40 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
<tr>
<td>“[MnLi₂Br(O’Bu)₄(THF)]₂₀” (VI)</td>
<td>MnBr₂ (1.074 g, 5 mmol) + 3 LiO’Bu (1.201 g, 15 mmol) + 40 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
<tr>
<td>“[Fe₀.₅Mn₀.₅Li₂Br(O’Bu)₄(THF)]₂₀” (VII)</td>
<td>MnBr₂ (0.537 g, 2.5 mmol) + MnBr₂ (0.539 g, 2.5 mmol) + 3 LiO’Bu (1.201 g, 15 mmol) + 40 mL THF</td>
<td>24 hr stirring at RT</td>
</tr>
</tbody>
</table>

β-LiFePO₄ IV | [FeLi₂Br(O’Bu)₄(THF)]₂₀ (0.2000 g, 0.34 mmol) + H₃PO₄ (0.0334 g, 0.34 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

α-LiFePO₄ V | “[FeLi₂Cl(O’Bu)₄(THF)]₂₀” (0.2000 g, 0.37 mmol) + H₃PO₄ (0.0362 g, 0.37 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

LiMnPO₄ VI | “[MnLi₂Br(O’Bu)₄(THF)]₂₀” (0.2000 g, 0.34 mmol) + H₃PO₄ (0.0335 g, 0.34 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

LiFe₀.₅Mn₀.₅PO₄ VII | “[Fe₀.₅Mn₀.₅(O’Bu)₄(THF)]₂₀” (0.3000 g, 0.51 mmol) + H₃PO₄ (0.0503 g, 0.51 mmol) + 15 mL EG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

LiFe₀.₅Mn₀.₅PO₄ IV-VI | 0.5 “[FeLi₂Br(O’Bu)₄(THF)]₂₀” (0.1500 g, 0.25 mmol) + 0.5 “[MnLi₂Br(O’Bu)₄(THF)]₂₀” (0.1500 g, 0.25 mmol) + H₃PO₄ (0.0501 g, 0.51 mmol) + 15 mL EG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

LiFe₀.₅Mn₀.₅PO₄ V-VI | 0.5 “[FeLi₂Cl(O’Bu)₄(THF)]₂₀” (0.1350 g, 0.25 mmol) + 0.5 “[MnLi₂Br(O’Bu)₄(THF)]₂₀” (0.1500 g, 0.25 mmol) + H₃PO₄ (0.0501 g, 0.51 mmol) + 15 mL EG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

LiFePO₄ V IL 10 min | “[FeLi₂Cl(O’Bu)₄(THF)]₂₀” (0.1500 g, 0.28 mmol) + H₃PO₄ (0.0271 g, 0.28 mmol) + 5 mL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |

LiFePO₄ V IL 1 hr | “[FeLi₂Cl(O’Bu)₄(THF)]₂₀” (0.1500 g, 0.28 mmol) + H₃PO₄ (0.0271 g, 0.28 mmol) + 5 mL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate | Microwave synthesis (2.45 GHz) 1 hr 240 °C |

β-LiFePO₄ IV TEG | [FeLi₂Br(O’Bu)₄(THF)]₂₀ (0.2000 g, 0.34 mmol) + H₃PO₄ (0.0334 g, 0.34 mmol) + 10 mL TEG | Microwave synthesis (2.45 GHz) 15 min 80 °C and 10 min 240 °C |
5.2.2.1 PXRD and X-ray PDF analysis of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from “[MLi$_2$X(OnBu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn and X=Br, Cl)

PXRD characterisation of LiFePO$_4$ obtained from the fast microwave-assisted synthesis (15 min 80 °C and 10 min 240 °C) employing the [FeLi$_2$Br(OnBu)$_4$(THF)$_2$]$_n$ (IV) heterometallic alkoxide precursor and H$_3$PO$_4$ in ethylene glycol revealed the formation of the B-LiFePO$_4$-IV polymorph belonging to the Cmcm space group. The formation energy for the B-LiFePO$_4$ phase is lower than that of α-LiFePO$_4$, making it an intermediate and metastable polymorph which usually displays a phase transformation to olivine α-LiFePO$_4$ when the temperature is increased above 475 °C. While the Li$^+$ ions in olivine-structured α-LiFePO$_4$ are in an octahedral [LiO$_6$] environment, the Li$^+$ ions in the B-LiFePO$_4$ are tetrahedrally coordinated and [LiO$_4$] tetrahedra share a corner with the nearest octahedral [FeO$_6$] and the nearest tetrahedral [PO$_4$]. Consequently, the 1D migration channels for Li-ion diffusion observed in α-LiFePO$_4$ along the b-axis direction disappear in the B-LiFePO$_4$ phase. Therefore, the Li$^+$ ions in B-LiFePO$_4$ stay in a more captive state and are surrounded by octahedral [FeO$_6$] and tetrahedral [PO$_4$]. As observed by Nierderberger et al., heat treatment of the B-LiFePO$_4$-IV polymorph with 15 % wt. C from sucrose in a tube furnace for 1 hr at 700 °C under Ar flow yielded a phase transformation to the phase pure electrochemically active olivine α-LiFePO$_4$-IV polymorph (Pnma space group). Unfortunately, several attempts to prepare the phase pure B-LiFePO$_4$ polymorph using [FeLi$_2$Br(OnBu)$_4$(THF)$_2$]$_n$ (IV) afforded a mixture of both α and β phases (see Figure A5.9).

Figure 5.2 depicts the Rietveld refinements of the PXRD data from the α and B-LiFePO$_4$-IV polymorphs to a Pnma LiFePO$_4$ (ICSD No. 01-072-7845) and Cmcm LiFePO$_4$ (ICSD No. 01-072-7847) crystal structures, respectively. Results indicated that a good fit between the experimental data and the calculated model was achieved, confirming the phase purity of both LiFePO$_4$ polymorphs. Recently, Wu et al. have investigated the phase transformation of solvothermally synthesised Cmcm type β-LiFePO$_4$ to Pnma type α-LiFePO$_4$ via thermal annealing. They propose that the conversion mechanism could be explained with reconstruction of PO$_4$ tetrahedra and FeO$_6$ octahedra taking place during the heat treatment as the coordination between the PO$_4$ tetrahedra and FeO$_6$ must be altered. TG-DSC and HRTEM analysis revealed that β-LiFePO$_4$ experiences a two-step phase transformation to α-LiFePO$_4$ rather than a direct conversion during the annealing process. The effect of the solvent in the microwave reaction using the single source [FeLi$_2$Br(OnBu)$_4$(THF)$_2$]$_n$ (IV) heterometallic alkoxide precursor was also evaluated by performing the same reaction in tetraethylene glycol instead of ethylene glycol, as previously Cmcm LiMPO$_4$ (M=Fe, Co, Ni) phases have been successfully fabricated by fast
microwave treatments in tetraethylene glycol.138 PXRD analysis of the product (β-LiFePO$_4$-IV TEG) shown in Figure A5.10 indicated that phase pure β-LiFePO$_4$ was obtained, suggesting that the higher viscosity of tetraethylene glycol (11.4 cP) compared to ethylene glycol (5.2 cP)296 may favour the formation of the metastable non-olivine β-LiFePO$_4$ polymorph. Solvents with elevated viscosities may allow highly localised temperatures during microwave heating facilitating the formation of metastable phases.

![Figure 5.2](image-url)

Figure 5.2. Rietveld analysis of pXRD data of α-LiFePO$_4$-IV and β-LiFePO$_4$-IV nanostructures prepared using [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) alkoxide precursor.

PXRD analysis of the LiFePO$_4$-V and LiMnPO$_4$-VI samples synthesised using the \textquotedblleft [FeLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (V) and \textquotedblleft [MnLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$” (VI) precursors in ethylene glycol, respectively, also showed phase pure olivine materials. The reaction using the \textquotedblleft [FeLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (V) heterometallic alkoxide precursor clearly proceeds towards the formation of the olivine α-LiFePO$_4$ polymorph with no evidence of β-LiFePO$_4$ phase, as no reflections associated to the Cmcm space group were observed.

In terms of the reactivity of Br or Cl containing precursors, the smaller ionic radius of Cl\(^{-}\) (1.81 pm) compared to Br\(^{-}\) (1.96 pm),252 both acting as a bridge between Li atoms in the polymeric \textquotedblleft [FeLi$_2$X(OtBu)$_4$(THF)$_2$]$_n$” (X= Cl\(^{-}\) or Br\(^{-}\)) heterometallic alkoxide precursors, may favour the formation of the olivine α-LiFePO$_4$ phase where the Li-Li distance is shorter than in β-LiFePO$_4$ (~3.00 Å for α-LiFePO$_4$ and ~4.31 Å for β-LiFePO$_4$). These results clearly demonstrate the versatility of these single source heterometallic alkoxide precursors for
the fast generation of both α and β-LiFePO₄ polymorphs. Figure 5.3 shows that single phase α-LiFePO₄_V was obtained after the 10 min microwave treatment at 240 °C, with no additional phases observed after the post-heat treatment for subsequent carbon coating. These results also confirm that the heat treatment of α-LiFePO₄_V with sucrose does not influence the olivine structure. PXRD analysis of the LiMnPO₄_VI sample depicted in Figure 5.4 shows that single phase olivine LiMnPO₄ was obtained after the fast microwave synthesis and also after heat treatment for carbon coating. There is a significant broadening of the diffraction peaks in the PXRD pattern of LiMnPO₄_VI compared to the LiFePO₄ samples, suggesting a smaller particle size compared to the LiFePO₄_V sample. The estimated crystallite sizes of the LiFePO₄_V and LiMnPO₄_VI samples were ~33 nm and 17 nm, respectively, which were calculated through the full width at the half maximum (FWHM) of the PXRD patterns using the Scherrer equation from the (211) diffraction peaks. Figure 5.5 illustrates the Rietveld fits of the PXRD data from the LiFePO₄_V and LiMnPO₄_VI nanostructures to a Pnma LiFePO₄ (ICSD No. 01-072-7845) and LiMnPO₄ (ICSD No. 01-072-7844) crystal structures, respectively. The results show that a good fit between the experimental data and the calculated model was achieved, with no evidence for any additional phases observed. Table 5.5 summarises the calculated lattice parameters from Rietveld refinements of these LiMPO₄ (M=Fe, Mn) samples prepared from single source heterometallic alkoxide precursors. As expected due to the larger ionic radius of Mn²⁺ in comparison to Fe²⁺, LiFePO₄_V exhibited smaller cell parameters than LiMnPO₄_VI. Furthermore, olivine α-LiFePO₄_IV fabricated from a heat treatment of β-LiFePO₄_IV showed slightly larger cell volume than LiFePO₄_V, suggesting that the heating process may lead towards an increase in the unit cell volume of the LiFePO₄ olivine structure.
Figure 5.3. PXRD pattern of LiFePO$_4$-V after fast microwave synthesis and after heat treatment in tube furnace for 1 hr at 700 °C under Ar atmosphere. Sample prepared using "[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]_n" (V) heterometallic precursor and H$_3$PO$_4$ in a 1:1 molar ratio in ethylene glycol.

Figure 5.4. PXRD pattern of LiMnPO$_4$-VI after fast microwave synthesis and after heat treatment in tube furnace for 1 hr at 700 °C under Ar atmosphere. Sample prepared using "[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]_n" (VI) heterometallic alkoxide precursor and H$_3$PO$_4$ in a 1:1 molar ratio in ethylene glycol.
Figure 5.5. Rietveld analysis of PXRD data of LiFePO₄-V and LiMnPO₄-VI nanostructures prepared using “[FeLi₂Cl(OtBu)₄(THF)₂]ₙ” (V) and “[MnLi₂Br(OtBu)₄(THF)₂]ₙ” (VI), respectively.

Table 5.5. Calculated lattice parameters from Rietveld refinements for the β and α-LiFePO₄-IV polymorphs, LiFePO₄-V and LiMnPO₄-VI nanostructures prepared from “[MLi₂X(OtBu)₄(THF)₂]ₙ” (M=Fe, Mn; X=Br, Cl) (IV, V and VI) heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>β-LiFePO₄-IV</th>
<th>α-LiFePO₄-IV</th>
<th>LiFePO₄-V</th>
<th>LiMnPO₄-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Cmcm</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>5.5115(4)</td>
<td>10.3212(8)</td>
<td>10.235(2)</td>
<td>10.457(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.2505(5)</td>
<td>6.0037(4)</td>
<td>5.969(1)</td>
<td>6.101(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>6.1936(3)</td>
<td>4.6957(4)</td>
<td>4.715(1)</td>
<td>4.753(1)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>281.64(3)</td>
<td>290.97(4)</td>
<td>288.07(9)</td>
<td>303.3(1)</td>
</tr>
<tr>
<td>Rwp</td>
<td>28.6 %</td>
<td>31.4 %</td>
<td>29.8 %</td>
<td>19.0 %</td>
</tr>
<tr>
<td>Resp</td>
<td>22.60 %</td>
<td>25.08 %</td>
<td>27.07 %</td>
<td>16.08 %</td>
</tr>
<tr>
<td>X²</td>
<td>1.61</td>
<td>1.57</td>
<td>1.21</td>
<td>1.40</td>
</tr>
</tbody>
</table>

Evaluation of the local structure and underlying defect chemistry in these olivine nanostructures is crucial to developing a greater understanding of their structure-property relationship and resulting electrochemical behavior. It has been reported that the most favorable intrinsic defect is Li-Fe antisite pair, in which a Li⁺ ion (M1 site) and the Fe²⁺ ion (M2 site) are exchanged.⁵⁴ Knowing that, it is highly probable that the Li-Fe
antisite defects can block the diffusion pathways down [010] channels leading to an inhibition of the long-range Li$^+$ migration. Total scattering methods can provide means to examining disordered materials at the local level, e.g. Jensen et al. 257 Theoretical calculations, for example by Gardiner et al., reported that migration energies for Fe and Mn for antisite cations on Li sites suggests that Mn defects would impede bulk Li mobility in LiFe$_{0.3}$Mn$_{0.7}$PO$_4$ to a greater extent than Fe antisite defects in LiFePO$_4$. 55 To study the local structure and presence of defects as a function of Mn content in these microwave synthesised LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures using single source heterometallic alkoxide precursors presented here, X-ray total scattering experiments were performed and PDF analysis carried out on the data collected. X-ray PDF investigations of the β-LiFePO$_4$-IV, α-LiFePO$_4$-V and LiMnPO$_4$-VI nanostructures prepared through a fast microwave synthesis using single source [FeLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$ (IV), “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]“ (V), and “[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]“ (VI) heterometallic alkoxide precursors, respectively, were conducted in an effort to study the local structure in different LiFePO$_4$ polymorphs and examine if fast microwave treatments of single source heterometallic alkoxides yield highly crystalline and non-defective electrode nanomaterials. From fitting the X-ray PDF data of the α-LiFePO$_4$-V nanostructure in the r range from 1 to 15 Å using a fully ordered olivine structured model, a good agreement (R$_w$=0.1806) between the experimental data and the calculated model was obtained, suggesting that there is no evident presence of defects or significant local structure deviations in α-LiFePO$_4$-V (Figure 5.6). The X-ray PDF based fit for the LiFePO$_4$-V nanostructure yielded structural parameters that are in excellent agreement with the Rietveld analysis results of the PXRD data, indicating that the local and average crystal structure are very similar. Nevertheless, a poorer fit (R$_w$=0.2679) was observed for the olivine LiMnPO$_4$-V nanophase, which may suggest that the presence of Mn in the olivine structure leads to a slightly more disordered olivine structure and/or higher content of amorphous material. The possibility of Mn$^{2+}$ disorder in LiMnPO$_4$ has also been studied using PXRD and X-ray absorption fine structure analysis. Results suggested some Mn$^{2+}$ excess on the Li$^+$ sites which could be suppressed by increasing the reaction temperature in the proposed hydrothermal synthesis. 297 Therefore, a model allowing some Mn$^{2+}$ ions on Li$^+$ positions was applied to the LiMnPO$_4$-VI X-ray PDF data but no improvement in the refinement process was observed. Also, refinements of the β-LiFePO$_4$-IV X-ray PDF data to a fully ordered non-olivine orthorhombic Cmcm crystal structure demonstrated smaller R$_w$ values for the olivine α-LiFePO$_4$-V (R$_w$=0.1806) in comparison to β-LiFePO$_4$-IV (R$_w$=0.2764), which could be an indication that the non-olivine β-LiFePO$_4$ polymorph is more prone to exhibit some short range disorder. Table 5.6 summarises the calculated lattice parameters and R$_w$ from the X-ray PDF fits for the LiFePO$_4$-IV, LiFePO$_4$-V and LiMnPO$_4$-VI nanostructures prepared using single source heterometallic alkoxide precursors. Previous X-ray PDF investigations
on microwave synthesised LiFePO₄ conducted by Bini et al revealed the presence of structural disorder possibly due to Li-Fe exchange. A 5% amount of Fe in the Li site was detected both by PDF as well as by Mossbauer spectroscopy, which showed a small percentage of Fe³⁺ on the regular sites.²⁹ A possible reason why less disordered olivine LiFePO₄ nanostructures have been obtained here in comparison to Bini et al. may be attributed to the higher reaction temperatures in which the microwave synthesis has been performed here (240 °C vs. 170 °C). Also, having the Li and Fe atoms initially closer at the atomic level by using single source precursors should contribute to the formation of a less defective olivine structure.

![Figure 5.6](image)

Figure 5.6. Fits of X-ray PDF data collected at 100 K for β-LiFePO₄, α-LiFePO₄, and LiMnPO₄ prepared through a fast microwave synthesis using heterometallic alkoxide precursors in the r range from 1-15 Å.
Several routes to mixed transition metal phosphates LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanoparticles were also investigated using a series of heterometallic alkoxide precursors:

1. LiFe$_{0.5}$Mn$_{0.5}$PO$_4_{-IV}$ was prepared with stoichiometric amounts of “[FeLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (IV) and “[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VI).

2. LiFe$_{0.5}$Mn$_{0.5}$PO$_4_{-V}$-VI was obtained by reaction of stoichiometric amounts of “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (V) and “[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VI).

3. LiFe$_{0.5}$Mn$_{0.5}$PO$_4_{-VII}$ was synthesised using the single-source trimetallic alkoxide “[Fe$_2$Mn$_2$Li$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VII).

PXRD patterns of the resulting LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ products indicate that phase pure olivine nanomaterials were obtained in all three cases. Rietveld analysis of the three LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ compounds confirmed the phase purity of these olivine mixed metal phosphates, as evidenced by the excellent agreement between the experimental data and the calculated model (Figure 5.15). Table 5.7 summarises the calculated lattice parameters from Rietveld refinements for the different LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures, indicating that there are no significant variations in the unit cell parameters. Moreover, slightly sharper peak intensities observed in the LiFe$_{0.5}$Mn$_{0.5}$PO$_4_{-VII}$ sample prepared using the “[Fe$_2$Mn$_2$Li$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VII) heterometallic precursor suggests the formation of better crystallised olivine LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ materials for this ternary metallic precursor route than for mixtures of bimetallic precursors. This suggests that the co-location of all metals in a single precursor may be favourable for the fast formation of more crystalline nanomaterials. Estimation of the crystallite sizes from the PXRD of the three LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures using the Scherrer equation applied to the (201) diffraction peak revealed crystallite sizes ranging from ~25 to 37 nm.

The local structure of the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanophases was also investigated by X-ray PDF analysis. Least-squares fits to the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ X-ray PDFs in the r range from 1 to 15 Å to a completely ordered olivine LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ structure also showed a good fit between the experimental data and the calculated model for the three olivine LiFe$_{0.5}$Mn$_{0.5}$PO$_4$.
Chapter 5

nanophases, although significantly higher R_w values than for LiFePO$_4$, V were obtained (Figure 5.8). These results confirmed that introducing Mn to the olivine LiFePO$_4$ may lead to significant local structural disorder. On the other hand, it must be highlighted that a slightly better fit was obtained for the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, VII nanophase in comparison to LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, IV-VI and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, V-VI. This may point to the theory that having all the required metals in a single source precursor may be beneficial towards the generation of highly crystalline and non-defective nanomaterials. Table 6.8 shows the calculated lattice parameters and R_w from X-ray PDF fits for the different LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures prepared using single source heterometallic alkoxide precursors. Similar cell parameters were obtained for the three LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures.

![Figure 5.7](image-url)

Figure 5.7. Rietveld analysis of PXRD pattern of different LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures prepared from heterometallic alkoxide precursors "[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(OtBu)$_4$(THF)$_2$]$_n$" (VII), [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV), "[FeLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$" (V), and "[MnLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$" (VI).
Table 5.7. Calculated lattice parameters from Rietveld refinements for the different LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$ IV-VI</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$ V-VI</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$ VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.398(1)</td>
<td>10.3608(8)</td>
<td>10.3718(8)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.0553(8)</td>
<td>6.0386(5)</td>
<td>6.0438(5)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.7444(9)</td>
<td>4.7351(5)</td>
<td>4.7338(5)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>298.72(8)</td>
<td>296.25(5)</td>
<td>296.74(5)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>27.8 %</td>
<td>24.7 %</td>
<td>18.8 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>25.46 %</td>
<td>21.82 %</td>
<td>15.45 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.19</td>
<td>1.28</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Figure 5.8. Fits of X-ray PDF data collected at 100 K for LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures prepared through a fast microwave synthesis using heterometallic alkoxide precursors in the r range from 1-15 Å.
Table 5.8. Calculated lattice parameters from X-ray PDF fits for the different LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures prepared using heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$-IV-VI</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$-V-VI</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$-VII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.40(2)</td>
<td>10.43(3)</td>
<td>10.39(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.11(1)</td>
<td>6.11(2)</td>
<td>6.09(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.77(1)</td>
<td>4.76(1)</td>
<td>4.76(1)</td>
</tr>
<tr>
<td>R_w</td>
<td>0.3200</td>
<td>0.2918</td>
<td>0.2608</td>
</tr>
</tbody>
</table>

To further examine changes in the local structure as a function of the Mn content, X-ray PDF data of the LiFePO$_4$-V, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and LiMnPO$_4$-VI nanostructures were also fitted at different r ranges from 1-5 Å and 1-10 Å. Good fits using a fully ordered olivine model were obtained in the 1-5 Å r range for the three LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures (R_w values from 0.13 to 0.16), as it can be observed in Figure 5.17. The better fit at lower r distances could be explained by the fact that crystalline defective LiFe$_{1-x}$Mn$_x$PO$_4$ could coexist with any possible amorphous Li/Fe/Mn-PO$_4$ structures which would exhibit short range order, as previously reported by Jensen et al.257 The slight shift of the peak at 2.1 Å (which corresponds to the transition metal-oxygen distance) towards high r values with higher Mn content in these LiFe$_{1-x}$Mn$_x$PO$_4$ olivine nanophases indicates that the transition metal-oxygen distance increased (Figure 5.9), possibly due to the higher ionic radius of Mn$^{2+}$ compared to Fe$^{3+}$. The Fe-O bond slightly decreased from 2.04(1) Å in the LiFePO$_4$ sample to 1.95(2) Å in LiFe$_{0.5}$Mn$_{0.5}$PO$_4$, while the Mn-O bond increased from 1.96(2) Å in the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructure to 2.17(1) Å in LiMnPO$_4$. A similar trend was observed for solvothermally synthesised olivine LiFe$_{1-x}$Mn$_x$PO$_4$ materials examined by a combination of synchrotron X-ray absorption spectroscopy, energy-dispersive X-ray spectroscopy and first-principle calculations.82 It is also worth noting the slight increase in the Li-Li distances with increased Mn content (2.99(3) Å in LiFePO$_4$-V, 3.06(1) Å in LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and 3.18(1) Å in LiMnPO$_4$-VI). Table A5.2 lists the atom-atom distances in the LiFe$_{1-x}$Mn$_x$PO$_4$ samples determined from fits of X-ray PDF data in the r range from 1-5 Å. On the other hand, the scale factors (which can be regarded as an indication of the amount of crystalline material present) decreased when increasing the r range in which the data were fitted. This may suggest that some amorphous material is present. These results are in good agreement with the neutron PDF data of LiFe$_{1-x}$Mn$_x$PO$_4$ phases prepared from commercial starting materials presented in Chapter 3, which also demonstrated a decrease in the scale factors when increasing the r range fitted. Especially significant was the variation in the scale factors for the LiMnPO$_4$-VI sample, which could be an indication that the
presence on Mn leads to the formation of more amorphous material. Table 5.9 shows the lattice parameters, the scale factors and R_w values obtained from X-ray PDF fits of LiFePO$_4$-V, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and LiMnPO$_4$-VI nanostructures at different r ranges. Furthermore, a more significant variation in the lattice parameters calculated from the refinements at different r ranges was observed for the LiMnPO$_4$-VI olivine compared to LiFePO$_4$-VI, further suggesting the more pronounced mismatch between the local and average structure when introducing Mn in olivine LiFePO$_4$.

Figure 5.9. (a) Fits of X-ray PDF data collected at 100 K for single-phase olivine LiFePO$_4$-V, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and LiMnPO$_4$-VI nanostructures prepared through a fast microwave synthesis using heterometallic alkoxide precursors in the r range from 1.5-5 Å. (b) Extent of the fit in the range from 1.3-2.5 Å.

Finally, to investigate if the heterometallic alkoxide precursors could provide some residual carbon in LiFe$_{1-x}$Mn$_x$PO$_4$ nanophases obtained after the fast microwave treatments, CHN microanalysis of the LiFePO$_4$-IV, LiFePO$_4$-V, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and LiFePO$_4$-VI powders was conducted to determine the carbon content. From the results gathered in Table A5.1 it is shown that the LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures have approximately 2% of carbon. This low carbon content may be attributed to some residual ethylene glycol left
from the synthesis and also to some decomposition product from the metal alkoxide precursors.

Table 5.9. Calculated lattice parameters, scale factors and \(R_w \) values from X-ray PDF fits at different \(r \) ranges for LiFePO\(_4\)\(_{\text{V}}\), LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)\(_{\text{VII}}\) and LiFePO\(_4\)\(_{\text{VI}}\) nanostructures prepared through a fast microwave synthesis using heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th></th>
<th>1-5 Å</th>
<th>1-10 Å</th>
<th>1-15 Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO(4)({\text{V}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>0.42(5)</td>
<td>0.37(4)</td>
<td>0.36(2)</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>10.24(2)</td>
<td>10.24(7)</td>
<td>10.23(3)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>5.99(7)</td>
<td>5.99(3)</td>
<td>6.00(2)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>4.71(4)</td>
<td>4.71(2)</td>
<td>4.71(1)</td>
</tr>
<tr>
<td>(R_w)</td>
<td>0.1348</td>
<td>0.1715</td>
<td>0.1806</td>
</tr>
<tr>
<td>LiFe({0.5})Mn({0.5})PO(4)({\text{VII}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>0.47(5)</td>
<td>0.41(3)</td>
<td>0.43(3)</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>10.25(9)</td>
<td>10.36(3)</td>
<td>10.39(2)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>6.11(3)</td>
<td>6.10(2)</td>
<td>6.09(1)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>4.74(4)</td>
<td>4.75(2)</td>
<td>4.76(1)</td>
</tr>
<tr>
<td>(R_w)</td>
<td>0.1642</td>
<td>0.2383</td>
<td>0.2609</td>
</tr>
<tr>
<td>LiMnPO(4)({\text{VI}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale factor</td>
<td>0.56(5)</td>
<td>0.34(3)</td>
<td>0.35(2)</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>10.36(8)</td>
<td>10.62(5)</td>
<td>10.49(2)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>6.36(1)</td>
<td>6.19(3)</td>
<td>6.16(1)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>4.73(3)</td>
<td>4.76(1)</td>
<td>4.78(1)</td>
</tr>
<tr>
<td>(R_w)</td>
<td>0.1251</td>
<td>0.2437</td>
<td>0.2679</td>
</tr>
</tbody>
</table>

5.2.2.2 Electron microscopy of LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) nanostructures prepared from “[MLi\(_2\)X(O\(_t\)Bu\(_4\))(THF)\(_2\)]” (\(M=\text{Fe, Mn} \) and \(X=\text{Br, Cl} \))

SEM analysis of the \(\beta \)-LiFePO\(_4\)\(_{\text{IV}}\) and \(\alpha \)-LiFePO\(_4\)\(_{\text{V}}\) powders revealed a clear dependence of the particle size and morphology on the heterometallic alkoxide precursor employed. SEM micrographs of the \(\beta \)-LiFePO\(_4\)\(_{\text{IV}}\) sample showed large, flat platelets with an average particle size of 200-300 nm in width and ~600 nm in length (Figure 5.10 (a)). In contrast, the \(\alpha \)-LiFePO\(_4\)\(_{\text{V}}\) nanostructures adopted a non-uniform and more elongated platelet morphology, with particles sizes ranging from approximately 40 to 150 nm (Figure 5.10 (b)). These results suggest that the nature of the single source metal alkoxide precursors has a strong influence in the resulting particle shape and size. Moreover, it must be highlighted that fast microwave processes using single source heterometallic alkoxide precursors afforded smaller olivine LiFePO\(_4\) particles in comparison to when homometallic alkoxides or commercial starting materials are used [40-150 nm for LiFePO\(_4\)\(_{\text{V}}\) (Heterometallic) vs. 60-250 nm for LiFePO\(_4\)\(_{\text{I}}\) (Homometallic) and 200-500 nm for LiFePO\(_4\)\(_{\text{MW_Comp}}\)]. Examination of the LiMnPO\(_4\)\(_{\text{VI}}\) and LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)\(_{\text{VII}}\) nanophases by electron microscopy also demonstrated a noticeable change in morphology...
and particle size depending on the transition metal content, going from larger platelet-shaped particles to thin nanowires with increasing Mn content. The detailed morphological and structural features of the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-V-VI and LiMnPO$_4$-VI nanostructures were also examined by HR TEM. More elongated particles with thickness around 15 nm were obtained for the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-V-VI nanophases (Figure 5.19 (a) and (b)). Finally, wires thinner than 15 nm were found for the LiMnPO$_4$-VI nanopowders (Figure 5.19 (c)). HRTEM imaging of the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-V-VI and LiMnPO$_4$-VI nanoparticles confirmed the long-range crystallographic order of the nanostructures with lattice spacings of 0.26, 0.55, and 0.45 nm, respectively. Electron diffraction also demonstrated the polycrystalline nature of these olivine phases.

![Figure 5.10. SEM images of (a) β-LiFePO$_4$-IV, (b) α-LiFePO$_4$-V, (c) LiMnPO$_4$-VI and (d) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII nanostructures.](image-url)
5.2.2.3 Electrochemical performance of C/LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) nanostructures prepared from \("[MLi_2X(O^tBu)_4(THF)_2]_n\) \((M=\text{Fe, Mn and } X=\text{Br, Cl})\)

Galvanostatic cycling tests and CV scans of the LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) \((x=0, 0.5 \text{ and } 1)\) nanostructures synthesised via fast microwave treatments of single source heterometallic alkoxide precursors \([\text{FeLi}_2\text{Br(O^tBu)}_4(\text{THF})_2]_n\) (IV), \("[\text{FeLi}_2\text{Cl(O^tBu)}_4(\text{THF})_2]_n\) \((V)\), "[\text{MnLi}_2\text{Br(O^tBu)}_4(\text{THF})_2]_n" \((VI)\) and "[Fe\(_{0.5}\)Mn\(_{0.5}\)Li\(_2\)Br(O^tBu)_4(THF)_2]_n" \((VII)\) were conducted to investigate the electrochemical behaviour and rate capabilities. Initially, the electrochemical performance of the \(\text{Cmcm} \beta\)-LiFePO\(_4\) \(_\text{IV}\) phase was evaluated. As previous reports have demonstrated, the ball milling can efficiently enhance the electrochemical performance of non-olivine \(\beta\)-LiFePO\(_4\).\(^{52}\) the pristine \(\beta\)-LiFePO\(_4\) \(_\text{IV}\) powders were mixed with C black (60:40 \% wt. ratio) and the mixture ball milled for 2 hr. Galvanostatic cycling at room temperature of the non-olivine \(\beta\)-LiFePO\(_4\) \(_\text{IV}\) phase at C/20 rate in the voltage range from 1.8 V to 4.0 V displayed charge and discharge capacities of around 70 mAh·g\(^{-1}\) and 50 mAh·g\(^{-1}\), respectively, over the first 20 cycles without a noticeable capacity loss (see Figure A5.11). Optimisation of the ball milling time and also the carbon content of the final electrode mixture could significantly increase the electrochemical performance of this \(\beta\)-LiFePO\(_4\) polymorph. Such materials activated by disorder could be promising candidate cathodes for LIBs, and the related mechanism of storage and effective migration of Li\(^+\) ions also provides new clues for future design of disordered-electrode materials with high capacity and energy density. On the other hand, galvanostatic cycling at room temperature of the olivine carbon coated (15\% C wt. from sucrose) C/LiFePO\(_4\) \(_\text{IV}\), C/LiFePO\(_4\) \(_\text{V}\) and C/LiMnPO\(_4\) \(_\text{VI}\) nanostructures prepared from the \([\text{FeLi}_2\text{Br(O^tBu)}_4(\text{THF})_2]_n\)
(IV), “[FeLi₂Cl(OC₄Bu)₄(THF)₂]ₙ” (V), “[MnLi₂Br(OC₄Bu)₄(THF)₂]ₙ” (VI) heterometallic alkoxide precursors, respectively, were conducted over the voltage range between 2.2 V and 4.5 V at a C/20 rate. The representative charge/discharge voltage profile for the C/LiFePO₄_IV sample shown in Figure 5.18 (a) indicated that capacities of around 138 mAh·g⁻¹ were reached with no significant capacity fading over 20 cycles. On the other hand, galvanostatic cycling at C/20 from 2.2 V to 4.0 V of the C/LiFePO₄_V sample delivered discharge capacities of approximately 142 mAh·g⁻¹ with a good capacity retention during the first 20 cycles (Figure 5.18 (c) and (d)). These results demonstrated that C/LiFePO₄_IV and C/LiFePO₄_V nanostructures displayed similar electrochemical behaviour. This suggests that using [FeLi₂Br(OC₄Bu)₄(THF)₂]ₙ (IV) instead of “[FeLi₂Cl(OC₄Bu)₄(THF)₂]ₙ” (V) in the presented fast microwave-assisted synthesis of olivine LiFePO₄ nanostructures does not lead to significant difference in the resulting electrochemical performance. Galvanostatic cycling of the C/LiMnPO₄_VI sample in the voltage range from 2.2 V to 4.5 V reveals that initial discharge capacities of approximately 150 mAh·g⁻¹ were reached, values that slowly faded to ~135 mAh·g⁻¹ over the first 20 cycles (Figure 5.18 (e) and (f)). However, charge capacities between 400 and 250 mAh·g⁻¹ were reached during the charge process. This may be attributed to some electrolyte decomposition and/or Mn dissolution taking place at high voltages in the charge process. Moreover, electrolyte decomposition can be intensified in the case of such small LiMnPO₄ nanoparticles (~15 nm thick nanorods). From these results, it must be highlighted that a significant improvement in the electrochemical behaviour of olivine LiMnPO₄ nanostructures is obtained when the synthesis is performed using the single source heterometallic alkoxide precursor “[MnLi₂Br(OC₄Bu)₄(THF)₂]ₙ” (VI) instead of the homometallic alkoxide “[Mn(OC₄Bu)₂(THF)]₂” (II) or commercial starting materials such as Mn(acac)₃ and LiH₂PO₄ (for example, 135 mAh·g⁻¹ for LiMnPO₄_VI (Heterometallic) vs. 100 mAh·g⁻¹ for LiMnPO₄_II (Homometallic) and 50 mAh·g⁻¹ for LiMnPO₄_MW_Commercial at C/20 rate). The electrochemical behaviour of LiMnPO₄_VI was also comparable to some C/LiMnPO₄ nanoparticles prepared by a two-stage microwave process which delivered an initial discharge capacity of 152.6 mAh·g⁻¹ at 0.1 C rate and 128.4 mAh·g⁻¹ after 100 cycles at 0.5 C. Therefore, it has been demonstrated that microwave-assisted single source processes are a promising synthetic approach for the generation of electrochemically optimised LiMnPO₄ nanoparticles with good electrochemical performance. Nevertheless, such a noticeable enhancement in the electrochemical performance has not been observed in the case of olivine LiFePO₄ nanophases, which delivered capacities of ~160 mAh·g⁻¹ when prepared with the commercial precursor Fe(acac)₃, ~148 mAh·g⁻¹ when using homometallic alkoxide [FeO(OC₄Bu)₂(THF)₂] (I) and ~140 mAh·g⁻¹ with heterometallic alkoxide precursors [FeLi₂X(OC₄Bu)₄(THF)₂] (X=Br, Cl).
Figure 5.12. Voltage-capacity profiles and cycling stability at C/20 rate of (a, b) C/LiFePO$_4$, (15% wt. C from sucrose), (c, d) C/LiFePO$_4$ (15% wt. C from sucrose), and (e, f) C/LiMnPO$_4$ (15% wt. C from sucrose). Samples prepared through a fast microwave synthesis (15 min 80 °C and 10 min at 240 °C) with from “[ML$_2$X(O'Bu)$_2$(THF)]_2” (M=Fe, Mn; X=Br, Cl) (IV, V, VI) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).
Galvanostatic cycling studies from 2.2 to 4.3 V at C/20 rate of the C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-IV-VI}, C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-V-VI} and C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-VII} nanostructures demonstrated in all three cases that discharge capacities of approximately 150 mAh·g-1 were reached over the first 20 charge/discharge cycles with no evident capacity fading (Figure 5.13). From the voltage-capacity curves, two flat plateaus at 3.45 V and 4.1 V can be clearly observed due to the Fe3+/Fe2+ and Mn3+/Mn2+ redox couples, respectively. Moreover, the capacity associated with both plateaus is nearly the same, consistent with the Fe/Mn ratio of the LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4} sample. These results suggest that using a mixture of [FeLi\textsubscript{3}Br(OBu)\textsubscript{4}(THF)\textsubscript{2}]n (IV)/“[FeLi\textsubscript{2}Cl(OBu)\textsubscript{4}(THF)\textsubscript{2}]” (V) and “[MnLi\textsubscript{2}Br(OBu)\textsubscript{4}(THF)\textsubscript{2}]” (VI) or the trimetallic alkoxide precursor “[Fe\textsubscript{0.5}Mn\textsubscript{0.5}Li\textsubscript{2}Br(OBu)\textsubscript{4}(THF)\textsubscript{2}]” (VII) does not result in any significant difference in the resulting electrochemical performance. It must be noted that enhanced rate capabilities in LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4} olivines may be reached with more specific surface coating processes. For example, a 1% wt Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12}-coated LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4}/C composite maintained high cycling stability at 1 C (141 mAh·g-1) and 10 C (133 mAh·g-1) rates at 55 °C after 100 cycles in contrast to bare LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4}/C, which delivered only 60 mAh·g-1 at 10 C also at 55 °C. Hybrid coating layers with a carbon layer and a Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12}-layer provide high conductivity for Li+ ions and electrons, facilitate Li+ solvation/desolvation via an ionic conductor layer, and provide reliable protection against HF attacks.300 The rate behaviour of the C/LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4} nanophases was also investigated to examine the rate capabilities as a function of Mn content, particle morphology and size. Figure 5.14 (a) shows that the discharge capacities of the C/LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures progressively decreased with increasing C rates, with a pronounced effect for the C/LiMnPO\textsubscript{4-VI} sample (especially at faster charge/discharge rates). High C rates up to 10 C delivered discharge capacities of 60 mAh g-1, 70 mAh·g-1, 75 mAh·g-1 and 35 mAh·g-1 for the C/LiFePO\textsubscript{4-V}, C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-VI-VI}, C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-VII} and C/LiMnPO\textsubscript{4-VI} phases, respectively. The C/LiFePO\textsubscript{4-V} exhibited excellent rate capability delivering ~125 mAh·g-1 at C/2, ~115 mAh·g-1 at 2 C and ~100 mAh·g-1 at 5 C. The mixed metal C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-VII} nanostructure presented here exhibited slightly improved rate capabilities in comparison to the C/LiFePO\textsubscript{4-V} and C/LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-IV-VI} nanophases, suggesting that substituting Fe by Mn in this series of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures can improve the rate behaviour. This enhancement of the rate capabilities could be attributed to the smaller particle sizes of the LiFeO\textsubscript{0.5}MnO\textsubscript{0.5}PO\textsubscript{4-VII} sample in comparison to LiFePO\textsubscript{4-V}. Furthermore, these cycling studies also suggested that having all the required metals in a single precursor may be beneficial in the achievement of high rate performing olivine materials. On the other hand, the C/LiMnPO\textsubscript{4} nanostructure displayed a significantly poorer rate performance, in which the discharge capacities markedly faded from ~160 mAh·g-1 at C/10 to ~110 mAh·g-1, 100 mAh·g-1, 85 mAh·g-1 and 35 mAh·g-1 at C/2, 2 C and
5 C and 10 C, respectively. Also, the capacity was not completely recovered when cycling back to C/10 rate after the increasingly faster rates. This behaviour may be explained by the significant volume changes occurring during the LiMnP04-MnP04 phase transition during the cycling process triggering a slow structural degradation. In a previous report, a fast microwave-assisted method with a ball-milling pre-step afforded a LiMnP04/C composite exhibiting a similar electrochemical performance of 109.2 mAh·g⁻¹ and 85.2 mAh·g⁻¹ at C and 5 C, respectively.³⁰¹ The simplicity of the single source precursor synthesis presented here still has room for a wide range of opportunities to enhance the electrochemical behaviour of these olivine materials by using more sophisticated processing techniques or by using tailored surfactants and coating agents to prepare specific composites. Recently, a LiFe₀.₅Mn₀.₅P0₄/C composite with a hierarchical porous structure was fabricated via a spray dry process and achieved discharge capacities of 161, 160, 157, 146, 137, and 115 mAh·g⁻¹ at 0.2, 0.5, 1, 3, 5, and 10 C, respectively.²³⁸ In the case of LiMnP04, plate-like nanocrystals synthesised by a one-spot solvothermal process exhibited a slightly enhanced electrochemical performance yielding discharge capacities of 108.2 mAh·g⁻¹ at 10 C and maintaining a discharge capacity of 133.5 mAh·g⁻¹ after 100 cycles at 0.5 C.³⁰² Hong et al. also reported high performance LiMnP04 nanorods prepared via an ethylene glycol-assisted solvothermal method displaying high reversible capacities of 168 mAh·g⁻¹ and 110 mAh·g⁻¹ at 0.05 C and 10 C, respectively. Such remarkable high performance can be attributed to the unique nanoscale rod-like morphology and to the uniform thin carbon layer on the surface.³⁰³ PXRD analysis of the post-cycled C/LiFeP0₄_V, C/LiFe₀.₅Mn₀.₅P0₄_VII and C/LiFe₀.₅Mn₀.₅P0₄_IV-VI products in the discharge state showed no evident degradation of the olivine structure over these cycling studies. PXRD characterisation of the post-cycled LiMnP04_VI in the discharge state showed some MnP04 product, indicating that the Li⁺ extraction/insertion process in the LiMnP04-MnP04 system may not be fully reversible (especially at faster charge/discharge rates). The formation of this MnP04 phase in the cycling process may lead to a progressive loss of the capacity retention and may explain why the capacity is not fully recovered when cycling back to C/10 rate after the increasingly faster rates. Figure 5.14 (b) shows the PXRD patterns of the post-cycled C/LiFeP0₄_V, C/LiFe₀.₅Mn₀.₅P0₄_VII, C/LiFe₀.₅Mn₀.₅P0₄_IV-VI and C/LiMnP04_VI materials.
Figure 5.13. Voltage-capacity profiles and cycling stability at C/20 rate of (a, b) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-IV-VI (15% wt. C from sucrose), (c, d) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-V-VI (15% wt. C from sucrose), and (e, f) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-VII (15% wt. C from sucrose). Samples prepared through a fast microwave synthesis (15 min 80 °C and 10 min at 240 °C) with from “[MLi$_2$X(O’Bu)$_2$(THF)]_2$“ (M=Fe, Mn; X=Br, Cl) (IV, V, VI, VII) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).
Figure 5.14. (a) Comparative rate performance of C/LiFePO$_4$ _IV, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _Mix IV and VI, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII and C/LiMnPO$_4$ _VI (15% wt. C from sucrose) prepared with “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (IV), “[Fe$_{0.5}$Mn$_{0.5}$Li$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VII) and “[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VI) alkoxide precursors, respectively. (b) PXRD of cycled C/LiFePO$_4$ _V, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _IV-VI and C/LiMnPO$_4$ _VI at different C rates in the discharged state.

CV experiments at room temperature of the C/LiFePO$_4$ _IV, C/LiFePO$_4$ _V, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII and C/LiMnPO$_4$ _VI nanophases were conducted at a scan rate of 0.1 mV·s$^{-1}$ over the voltage range from 2.5 V to 4.5 V vs. Li$^+$/Li0. The CV results for the C/LiFePO$_4$ _IV and C/LiFePO$_4$ _V samples showed anodic and cathodic peaks at ~3.53 V and 3.30 V, respectively, due to the Fe$^{3+}$/Fe$^{2+}$ redox pair (Figure 5.15 (a) and (b)). The CV for the C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII sample exhibited two oxidation (3.54 V and 4.15 V) and two reduction peaks (3.40 V and 3.96 V) corresponding to the Fe$^{2+}$/Fe$^{3+}$ and Mn$^{2+}$/Mn$^{3+}$ redox pairs, respectively (Figure 5.15 (c)). These results are in good agreement with the two discharge voltage plateaus at about 3.50 V and 4.10 V vs. Li$^+$/Li0 associated, respectively, to the redox pairs of Fe$^{3+}$/Fe$^{2+}$ and Mn$^{2+}$/Mn$^{3+}$. Finally, the CV curve of the C/LiMnPO$_4$ _VI nanostructure displayed the expected anodic and cathodic peaks at ~4.34 V and 3.94 V, respectively, due to the Mn$^{2+}$/Mn$^{3+}$ redox pair (Figure 5.15 (d)). The good superposition of all the CV curves confirmed the excellent reversibility of these electrochemical systems. Figure A5.12 depicts the superposition of the CV curves for the C/LiFePO$_4$ _IV, C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII and C/LiMnPO$_4$ _VI nanostructures showing a slight increase in the Fe$^{3+}$/Fe$^{2+}$ redox potential in C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII compared to C/LiFePO$_4$ _IV. Also, the anodic and cathodic Mn$^{3+}$/Mn$^{2+}$ peak separation in C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ _VII is significantly smaller than in C/LiMnPO$_4$ _VI, indicating a lower polarisation in the mixed metal phosphate olivine.
Figure 5.15. CVs at a 0.1 mV·s\(^{-1}\) scan rate between 2.5 V and 4.5 V of (a) C/LiFePO\(_4\)_IV, (b) C/LiFePO\(_4\)_V, (c) C/LiFe\(_{0.5}\)Mn\(_{0.5}\)PO\(_4\)_VII and (d) C/LiMnPO\(_4\)_VI nanostructures.

5.2.3 Ionothermal microwave synthesis of LiFePO\(_4\) nanostructures from “[FeLi\(_2\)Cl(OhBu)\(_4\)(THF)\(_2\)]\(_n\)” heterometallic alkoxide precursor

A rapid ionothermal microwave-assisted synthesis of LiFePO\(_4\) nanostructures using the single source “[FeLi\(_2\)Cl(OhBu)\(_4\)(THF)\(_2\)]\(_n\)” (V) heterometallic alkoxide precursor and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-TFMS) was conducted as depicted in Schematic 5.4 and according to the synthetic procedure detailed in section 2.2.8.
Schematic 5.4. Reaction schematic for the preparation of olivine LiFePO₄ via a fast ionothermal microwave synthesis using single source “[FeLi₂Cl(O'Bu)₄(THF)]ₙ“ (V) heterometallic alkoxide precursor.

5.2.3.1 PXRD of LiFePO₄ nanostructures prepared from ionothermal microwave synthesis using “[FeLi₂Cl(O'Bu)₄(THF)]ₙ“ (V) heterometallic alkoxide precursor with H₃PO₄ in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-TFMS) was conducted for 1 hr at 240 °C to yield LiFePO₄-V_IL₁ hr nanostructures. In an effort to reduce the reaction times, the same microwave-assisted ionothermal reaction was performed for 15 min at 80 °C and 10 min at 240 °C. The ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate was chosen as this has previously been employed by Tarascon et al in the preparation of olivine LiMnPO₄, exhibiting an excellent electrochemical performance. Furthermore, microwave dielectric measurements of EMI-TFMS revealed that it is an excellent microwave absorber to generate the temperatures required for this reaction to proceed. Rietveld refinements of the PXRD data shown in Figure 5.16 indicate that an excellent fit between the experimental and calculated data was achieved. The intense and sharp peaks observed in the PXRD patterns suggest that this ionothermal reaction affords better crystallised olivine LiFePO₄ nanomaterials compared to when ethylene glycol is used. Table 5.10 summarises the calculated lattice parameters from Rietveld refinements for LiFePO₄-V_IL₁0 min and LiFePO₄-V_IL₁ hr nanostructures prepared through this ionothermal microwave-assisted synthesis showing that increasing the reaction times
from 10 min to 1 hr slightly increases the lattice parameters of the LiFePO$_4$ nanophases. The estimated crystallite sizes of the LiFePO$_4$ V IL 10 min and LiFePO$_4$ V IL 1 hr samples were ~60 nm and 72 nm, respectively, which were calculated using the Scherrer equation208 from the (211) diffraction peaks. These results suggested that longer reaction times may favour particle growth leading to larger particles. It is also worth noting the increased crystallite size of ionothermally synthesised LiFePO$_4$ V IL 10 min (~70 nm) compared to LiFePO$_4$ V prepared using ethylene glycol under the same reaction conditions (~33 nm).

![Rietveld analysis of PXRD data of LiFePO$_4$ V IL olivines prepared using “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]” (V) heterometallic precursor and H$_3$PO$_4$ in ionic liquid EMI-TFMS after 10 min and 1 hr of microwave irradiation at 240 °C.](image)

Figure 5.16. Rietveld analysis of PXRD data of LiFePO$_4$ V IL olivines prepared using “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]” (V) heterometallic precursor and H$_3$PO$_4$ in ionic liquid EMI-TFMS after 10 min and 1 hr of microwave irradiation at 240 °C.
Table 5.10. Calculated lattice parameters from Rietveld refinements for LiFePO$_4$-V$_x$IL olivines prepared through fast ionothermal microwave synthesis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO$_4$-V$_x$IL-1 hr</th>
<th>LiFePO$_4$-V$_x$IL-10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3044(5)</td>
<td>10.2895(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.9999(3)</td>
<td>5.9922(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.6951(3)</td>
<td>4.6967(4)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>290.28(3)</td>
<td>289.58(4)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>29.2 %</td>
<td>25.2 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>25.96 %</td>
<td>20.88 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.27</td>
<td>1.45</td>
</tr>
</tbody>
</table>

The local structure of the LiFePO$_4$-V$_x$IL-10 min nanophase was also investigated by X-ray PDF analysis to demonstrate that this ionothermal process affords better crystallised nanostructures. From fitting the X-ray PDF data at different r ranges from 1 to 15 Å (1 to 15 Å, 1 to 10 Å and 1 to 5 Å) using a fully ordered olivine structured model, excellent agreements between the experimental data and the calculated models were obtained for the LiFePO$_4$-V$_x$IL-10 min sample (R_w values from 0.06 to 0.1), suggesting that the local and average structure are very similar and that there is no evidence of defects or significant local structure deviations (Figure 5.17). These results indicate that single source precursor ionothermal processes in conjunction with microwave heating yields highly crystalline and non-defective olivine LiFePO$_4$ nanomaterials. Table 5.11 lists the calculated lattice parameters, scale factors and R_w values from X-ray PDF fits at different r ranges for the LiFePO$_4$-V$_x$IL-10 min sample. The higher scale factor values for the LiFePO$_4$-V$_x$IL-10 min nanostructure (~0.60) in comparison to LiFePO$_4$-V (~0.36), suggests a higher crystallinity for the ionothermally synthesised LiFePO$_4$-V$_x$IL-10 min sample compared to the olivines prepared using ethylene glycol. Furthermore, a significant variation in the scale factors values when fitting the X-ray PDF data at varying r ranges is not observed in the LiFePO$_4$-V$_x$IL-10 min olivine synthesised with the ionic liquid, further indicating this sample has better crystallinity.
Figure 5.17. Fits at different r ranges of X-ray PDF data collected at 100 K for single-phase LiFePO$_4$_V_IL_10 min nanostructure prepared through a fast ionothermal microwave synthesis using heterometallic alkoxide precursors.

Table 5.11. Calculated lattice parameters, scale factors and R_w values from X-ray PDF fits at different r ranges for LiFePO$_4$_V_IL_10min nanostructure prepared through a fast ionothermal microwave synthesis.

<table>
<thead>
<tr>
<th>LiFePO$_4$_V_IL_10 min</th>
<th>1-5 Å</th>
<th>1-10 Å</th>
<th>1-15 Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factor</td>
<td>0.61(6)</td>
<td>0.60(3)</td>
<td>0.60(3)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.40(9)</td>
<td>10.27(3)</td>
<td>10.27(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.94(8)</td>
<td>5.99(1)</td>
<td>5.99(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.69(5)</td>
<td>4.68(1)</td>
<td>4.68(1)</td>
</tr>
<tr>
<td>R_w</td>
<td>0.0551</td>
<td>0.0940</td>
<td>0.1047</td>
</tr>
</tbody>
</table>

To quantify the amorphous content in this family of LiFePO$_4$_V, LiFe$_0.5$Mn$_0.5$PO$_4$_VII, LiMnPO$_4$_VI and LiFePO$_4$_V_IL_10 min olivines prepared from single source heterometallic alkoxide precursors, two phase model refinements from 1 to 15 Å in which the two phases have the same average olivine structure but allowing only the sp diameter in one of the phases to refine were performed as in Chapter 3. These refinements suggested that the amorphous phase has order to about ~1 nm. Table 5.12 shows the calculated scale factors,
amorphous contents and *spdiameters* for the LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) olivine phases obtained from these two isostructural phases refinements. Results indicated a higher presence of amorphous material in the olivine LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) nanophases prepared using ethylene glycol (~5–8% amorphous content) compared to the LiFePO\(_4\)_V_IL_10 min (~2% amorphous content), which confirms the higher crystallinity of the product obtained from the ionothermal synthesis. Also, a slight improvement in the fit quality was obtained when adding the second phase.

Table 5.12. Calculated scale factor, amorphous content and *spdiameters* for the LiFe\(_{1-x}\)Mn\(_x\)PO\(_4\) olivine phases obtained from two isostructural phases refinements of neutron PDF data from 1 to 15 Å.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO(_4)_V</th>
<th>LiFe({0.5})Mn({0.5})PO(_4)_V_II</th>
<th>LiMnPO(_4)_VI</th>
<th>LiFePO(_4)_V_IL_10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factor Phase 1</td>
<td>0.36(2)</td>
<td>0.36(3)</td>
<td>0.42(4)</td>
<td>0.60(3)</td>
</tr>
<tr>
<td>Scale factor Phase 2</td>
<td>0.03(2)</td>
<td>0.02(9)</td>
<td>0.04(9)</td>
<td>0.01(9)</td>
</tr>
<tr>
<td>Amorphous content (%)</td>
<td>7.1</td>
<td>5.1</td>
<td>8.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Spdiameter (Å)</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>(R_{wp})</td>
<td>0.1803</td>
<td>0.2672</td>
<td>0.2593</td>
<td>0.1046</td>
</tr>
</tbody>
</table>

5.2.3.2 **SEM of LiFePO\(_4\) nanostructures prepared from ionothermal microwave synthesis using “[FeLi\(_2\)Cl(OtBu)\(_4\)\(\text{THF})\(_2\)]_n”***

High resolution SEM micrographs of LiFePO\(_4\)_V_IL_10 min sample showed a clear dependence of the particle size and morphology on the choice of solvent. In comparison to the LiFePO\(_4\)_V sample prepared using ethylene glycol, where platelets with particle sizes around 40 to 150 nm were observed, the LiFePO\(_4\)_V_IL_10 min powders shown in Figure 5.18 adopted a non-uniform faceted morphology with particle sizes ranging from approximately 70 to 190 nm, similar to previous work conducted in the group where commercial starting materials (FeC\(_2\)O\(_4\)·2H\(_2\)O and LiH\(_2\)PO\(_4\)) and the same ionic liquid were employed.\(^5\) ILS could potentially facilitate mass transport, bringing the reacting species together and affording well defined facets with salient edges, as reported previously by Recham *et al.*\(^16\)\(^2\)\(^,\)\(^3\)\(^0\)
5.2.3.3 Electrochemical performance of LiFePO₄ nanostructures prepared from ionothermal microwave synthesis using “[FeLi₂Cl(O'Bu)₄(THF)]₂”

Galvanostatic cycling at C/20 from 2.2 V to 4.0 V of C/LiFePO₄_V_IL_10 min displayed charge and discharge capacities of approximately 180 mAh·g⁻¹ and 155 mAh·g⁻¹, respectively (Figure 5.19 (a)). The charge and discharge capacities were retained for at least 20 cycles (Figure 5.19 (b)). The slight improvement in the electrochemical performance of C/LiFePO₄_V_IL_10 min compared to C/LiFePO₄_V could be ascribed to the better crystallinity of the olivine LiFePO₄ phase in the ionothermal process. The low polarisation observed between the charge and discharge process for C/LiFePO₄_V_IL_10 min (ΔV=0.024 V) in comparison to LiFePO₄_V (ΔV=0.064 V) suggests a faster electron transfer process in the LiFePO₄ sample prepared using the IL. Similar electrochemical performance has been previously reported for ionothermally synthesised LiFePO₄ using 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, which showed a reversible and sustainable capacity of 150 mAh·g⁻¹ at C/10 rate.¹⁶²

Figure 5.18. High resolution SEM images of LiFePO₄_V_IL_10 min nanostructures prepared using “[FeLi₂Cl(O'Bu)₄(THF)]₂” (V) heterometallic precursor and H₃PO₄ in ionic liquid EMI-TFMS after 10 min of microwave irradiation at 240 °C.
Investigations at different charge and discharge rates demonstrated an excellent rate capability of C/LiFePO₄_V_IL_10 min, reaching discharge capacities of 110 mAh·g⁻¹ at 20 C (Figure 5.20). Slightly improved rate behaviour has been obtained in comparison to previously reported LiFePO₄ nanorods synthesised in an IL in the presence of ascorbic acid and dodecyl benzene sulfonic acid as surfactant, which delivered discharge capacities of 125 mAh·g⁻¹ at 4 C.\(^\text{305}\) Also, the ionothermally synthesised C/LiFePO₄_V_IL_10 min presented here displayed enhanced rate capabilities compared to LiFePO₄/C nano-plate thin films fabricated by drop casting a LiFePO₄ nano-plate/sucrose suspension, which delivered specific capacities of 162 mAh·g⁻¹, 90 mAh·g⁻¹, 67 mAh·g⁻¹ and 44 mAh·g⁻¹ at C, 10 C, 20 C and 50 C, respectively.\(^\text{306}\) Even LiFePO₄ nanorods prepared by a rapid microwave-assisted solvothermal approach at higher temperatures of 300 °C for 5 min, followed by coating with a mixed conducting polymer displayed a slightly lower rate performance than this C/LiFePO₄_V_IL_10 min nanostructure.\(^\text{307}\) Similar rate capabilities have also been observed in a nanoporous spherical LiFePO₄ prepared by spray pyrolysis, which delivered as high as 123 mAh·g⁻¹ and 106 mAh·g⁻¹ at 10 C and 20 C, respectively.\(^\text{308}\) These results indicated that the fast ionothermal microwave-assisted synthesis of LiFePO₄ employing single source heterometallic alkoxides affords among the best performing material at high C rates, establishing this synthetic approach as one to yield high performing electrode materials across the olivines. Furthermore, discharge capacities of 145 mAh·g⁻¹ were recovered when cycling back to C/10. The C/LiFePO₄_V_IL_10 min nanostructure displayed charge capacities of around 200 mAh·g⁻¹ at a C/10 rate after the increasingly faster C rates, suggesting that some decomposition processes contributing to a pronounced increase of the capacity may be taking place during charging. PXRD analysis
of the post-cycled C/LiFePO₄_V_IL_10 min material in the discharge state showed no degradation of the olivine structure over these cycling studies. Figure 5.21 depicts the Rietveld fit of the PXRD data of the post-cycled C/LiFePO₄_V_IL_10 min, suggesting that a slight increase in the unit cell parameters may have taken place after the cycling process.

![Figure 5.20](image)

Figure 5.20. (a) Discharge capacity curves and (b) cycling stability at different charge-discharge C rates of C/LiFePO₄_V_IL_10 min (15% wt. C from sucrose) prepared with “[FeLi₂Cl(O'Bu)₄(THF)]₇” (V) alkoxide precursor in ionic liquid (EMI-TFMS) and mixed with C black and PTFE in 60:30:10 (% wt. ratio).

CV measurements at a 0.1 mV·s⁻¹ scan rate between 2.2 V and 4.0 V of C/LiFePO₄_V_IL_10 min showed the anodic and cathodic peaks characteristic of the Fe³⁺/Fe²⁺ redox pair with excellent overlap of the CV curves over cycling (Figure 5.22 (a)). CV experiments at different scan rates going from 0.1 to 1 mV·s⁻¹ showed a slight shifting of the anodic peaks towards higher voltages at the same time that the cathodic peaks shifts towards smaller voltages, as expected for an electrode material exhibiting slow electron transfer processes. Furthermore, in Figure 5.22 (b) it is clearly shown that the intensity and area of the oxidation/reduction peak increase with scanning rate, suggesting that the electrode polarisation is also increasing.
Figure 5.21. Rietveld analysis of PXRD data of post-cycled C/LiFePO$_4$ _V_IL_10 min. [R$_{wp}$=60.4 %, R$_{exp}$=56.49 %, χ^2=1.14, a=10.329(3) Å, b=6.007(2) Å and c=4.699(2) Å].

Figure 5.22. (a) CV at a 0.1 mV·s$^{-1}$ scan rate between 2.2 V and 4.0 V of C/LiFePO$_4$ _V_IL_10 min nanostructure prepared through a microwave-assisted ionothermal synthesis (15 min 80 ºC and 10 min 240 ºC) with “[FeLiCl(O'Bu)$_4$](THF)$_2$” (V) heterometallic alkoxide precursor. (b) CV profiles of C/LiFePO$_4$ _V_IL_10 min at different scan rates.
A rough estimation of the lithium diffusion coefficient for the C/LiFePO₄-V_IL_10 min nanostructure was determined from the CV study at different rates. For this calculation, it was considered that the pellet of the working electrode was 20 µm thick with a surface area of 0.126 cm². A plot of the peak currents vs. the square root of the scan rates (v₀.⁵) (Figure 5.23) shows a linear dependence between the peak current and v₀.⁵. Equation 2.10 can be applied to estimate the diffusion constant of Li⁺ ions. Because the peak current of the CV profile is affected by the nature of the electrolyte, the obtained diffusion constant is an apparent value that incorporates both bulk Li⁺ diffusion constant and Li⁺ transfer through the interface in a particular electrolyte. The apparent anodic and cathodic diffusion constants of C/LiFePO₄-V_IL_10 min calculated using equation 2.10 with the slope of the peak current vs. v₀.⁵ plot were 5.12 x 10⁻⁹ and 3.41 x 10⁻⁹ cm²·s⁻¹, respectively. The difference in the anodic and cathodic lithium diffusion constants can be attributed to the fact that LiFePO₄ undergoes a two-phase process during charge and discharge, and Li⁺ ions are most easily transported through regions with FePO₄ or LiFePO₄.²⁹ Finally, similar lithium diffusion calculations by CV analysis at different scan rates applied the C/LiFePO₄-V nanostructure prepared in ethylene glycol revealed slightly smaller anodic and cathodic lithium diffusion coefficients of 4.61 x 10⁻⁹ and 3.40 x 10⁻⁹ cm²·s⁻¹, respectively, (see Figure A5.13), suggesting a slight improvement in the Li⁺ kinetics when using ILs as a reacting media. The smaller difference between the oxidation and reduction potentials in the CV curve of LiFePO₄-V_IL sample compared to LiFePO₄-V suggests a faster electron transfer process and lower resistance in the ionothermally synthesised LiFePO₄-V_IL10 min nanostructure (Figure 5.24). These results are in good agreement with the X-ray PDF data, which showed slightly shorter Li-Li distances and longer Li-O distances in LiFePO₄-V_IL_10 min (2.13(9) Å for Li-O and 2.97(4) Å for Li-Li) compared to LiFePO₄-V (2.05(4) Å for Li-O and 2.99(3) Å for Li-Li), factors with could potentially enhance the Li⁺ diffusion in these materials.
Figure 5.23. Peak current vs. square root of the scan rate for the C/LiFePO₄-V_IL-10 min (15% wt. C from sucrose) nanostructure prepared through an ionothermal microwave-assisted synthesis using “[FeLiCl(OtBu)_4(THF)]_n” (V) heterometallic alkoxide precursor.

Figure 5.24. CVs at a 0.1 mV·s⁻¹ scan rate of C/LiFePO₄-V_IL-10 min (15% wt. C from sucrose) and C/LiFePO₄-V (15% wt. C from sucrose) nanostructures prepared through fast microwave-assisted synthesis using “[FeLiCl(OtBu)_4(THF)]_n” (V) heterometallic alkoxide precursor.
5.3 Conclusions

A facile and eco-efficient synthetic procedure for the preparation of heterometalic alkoxides “[MLi2X(OtBu)4(THF)2]n” (M=Fe, Mn; X=Br, Cl) to be used as single source precursors in the fast microwave-assisted synthesis of single phase olivine LiFe1-xMnxPO4 (x=0, 0.5 and 1) nanostructures has been presented. Control over the LiFePO4 polymorph formed depending on the nature of the heterometallic alkoxide precursor used has been demonstrated, as fast microwave treatments of the [FeLiBr(OtBu)4(THF)2]n heterometallic alkoxide precursor generally afforded the B-LiFePO4 polymorph (Cmcm space group), while the similar Cl-containing heterometallic alkoxide precursor drove the microwave reaction towards the generation of olivine α-LiFePO4 phase (Pnma space group). Furthermore, the strong influence of the transition metal (Fe, Mn) content and the choice of solvent on the resulting particle size and morphology of these olivine nanomaterials has been confirmed. X-ray PDF analysis suggests the suitability of single source heterometallic alkoxide precursors in conjunction with straightforward microwave-assisted routes for the generation of highly crystalline olivine LiFePO4 with no evident presence of defects, especially when the ionic liquid EMI TFMS is used. Nevertheless, poorer fits to the X-ray PDF data were observed for the Mn containing olivine nanophases, which suggests that the presence of Mn could lead to a more disordered olivine structure and/or higher presence of amorphous material. Finally, electrochemical testing of LiFe1-xMnxPO4 (x=0, 0.5 and 1) nanostructures revealed outstanding electrochemical behaviour displaying rate capabilities comparable to the best performing olivine-structured metal phosphates in the literature. The improved electrochemical performance that can be achieved by employing single source precursor processes involving metal alkoxides precursors in comparison to conventional reactions employing commercial starting materials has therefore been confirmed. In particular, fast microwave treatments of single source heterometallic alkoxide precursor have been especially beneficial for the generation of electrochemically optimised LiMnPO4 olivine nanostructures. On the other hand, the ionothermal microwave-assisted synthesis of olivine LiFePO4 employing single source heterometallic alkoxide precursors afforded the best performing material at high C rates, establishing this synthetic approach as one to yield high performing electrode nanomaterials across the olivines.
6 Solvothermal Treatments of Single Source Heterometallic Alkoxides to Nanostructured Li-ion Battery Electrodes

6.1 Introduction

Low temperature solvothermal synthetic routes are increasingly being employed as a straightforward and energy-efficient synthetic method for the preparation of novel electrode materials exhibiting excellent electrochemical performances. In general, solvothermal syntheses allow for the precise control over the size, shape distribution, phase purity and crystallinity of nanostructures. In this chapter, the preparation of nanostructured olivine LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0, 0.5$ and 1) cathodes via a straightforward and conventional solvothermal process using single source “[MLi$_2$Br(OtBu)$_4$(THF)$_2”$ $(M=Fe, Mn)$ heterometallic alkoxide precursors in ethylene glycol is investigated. Ethylene glycol has been widely used in solvothermal syntheses of LiFePO$_4$ nanoparticles because it is a weak reducing agent that prevents the oxidation of Fe$^{2+}$ to Fe$^{3+}$ during the reaction process and helps to ensure the phase purity of the product. Ethylene glycol also has a much higher viscosity than common solvents such as water and ethanol, which slows down the ion diffusion rate and prevents large particle growth. Furthermore, ethylene glycol has been shown to be an optimal solvent for the solvothermal synthesis of LiFePO$_4$ nanoparticles with low defect concentration. The use of ethylene glycol in the preparation of nanostructured LiFe$_{1-x}$Mn$_x$PO$_4$ solid solutions has also been previously reported, with materials exhibiting reversible capacities as high as 153 mAh·g$^{-1}$ for LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanoplates. In order to demonstrate that the use of such tailored precursors indeed yields materials with enhanced electrochemical performance the same solvothermal reaction conducted using other common and commercially available starting materials was also investigated. Finally, in an effort to demonstrate the versatility of single source heterometallic alkoxide precursors in the generation of both cathode and anode materials, a simple ultrasound-assisted hydrolysis reaction of the [FeLi$_2$Br(OtBu)$_4$(THF)$_2”$ heterometallic alkoxide precursor at room temperature was employed to obtain the corresponding metal oxide conversion anode Fe$_3$O$_4$ magnetite nanoparticles.

6.2 Results and discussion

6.2.1 Synthesis and characterisation of LiFe$_{1-x}$Mn$_x$PO$_4$ and Fe$_3$O$_4$ nanostructures prepared from heterometallic alkoxide precursors

Olivine LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0, 0.5$ and 1) nanostructures were solvothermally synthesised using single source “[MLi$_2$Br(OtBu)$_4$(THF)$_2”$ $(M=Fe, Mn)$ (IV, VI, VII) heterometallic alkoxide precursors and H$_3$PO$_4$ as reactants in ethylene glycol according to Schematic 6.1 and as described in section 2.2.9. For comparison, LiFePO$_4$ powders were
also prepared under the same reaction conditions using the commercially available starting materials FeSO₄·7H₂O, LiOH·H₂O and H₃PO₄, as described in section 2.2.10. Alongside this, a hydrolysis reaction at room temperature of the [FeLi₂Br(O’Bu)₄(THF)₂]ₙ (IV) heterometallic alkoxide promoted by ultrasound irradiation was performed in order to obtain Fe₃O₄ magnetite nanostructures (see section 2.2.11). Table 6.1 lists the solvothermally synthesised LiFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) cathodes and the conversion anode Fe₃O₄ magnetite nanostructures prepared.

Schematic 6.1

Reaction schematic for the solvothermal synthesis of LiFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures and ultrasound synthesis of Fe₃O₄ nanoparticles using single source heterometallic alkoxide precursors “[MLi₂Br(O’Bu)₄(THF)₂]ₙ” (M=Fe, Mn) (IV, VI, VII).
Table 6.1. Preparation of solvothermally synthesised LiFe$_{1-x}$Mn$_x$PO$_4$ (x = 0, 0.5 and 1) nanostructures and Fe$_3$O$_4$ magnetite.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Reactants</th>
<th>Reaction conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO$_4$ S_Com._8</td>
<td>FeSO$_4$·7H$_2$O (0.5560 g, 2 mmol) + 2 LiOH·H$_2$O (0.1678 g, 4 mmol) + H$_3$PO$_4$ (0.1960 g, 2 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 8 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_Com._10</td>
<td>FeSO$_4$·7H$_2$O (0.5560 g, 2 mmol) + 2 LiOH·H$_2$O (0.1678 g, 4 mmol) + H$_3$PO$_4$ (0.1960 g, 2 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 10 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_Com._12</td>
<td>FeSO$_4$·7H$_2$O (0.5560 g, 2 mmol) + 2 LiOH·H$_2$O (0.1678 g, 4 mmol) + H$_3$PO$_4$ (0.1960 g, 2 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 12 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_IV._1</td>
<td>[FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0669 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 1 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_IV._4</td>
<td>[FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0669 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 4 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_IV._8</td>
<td>[FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0669 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 8 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_IV._10</td>
<td>[FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0669 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 10 hr at 220 °C</td>
</tr>
<tr>
<td>LiFePO$_4$ S_IV._12</td>
<td>[FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0669 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 12 hr at 220 °C</td>
</tr>
<tr>
<td>LiMnPO$_4$ S_VI._12 hr</td>
<td>“[MnLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$” (VI) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0670 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 12 hr at 220 °C</td>
</tr>
<tr>
<td>LiFe${0.5}$Mn${0.5}$PO$_4$ S_VII._12 hr</td>
<td>“[Fe${0.5}$Mn${0.5}$OtBu]$_4$(THF)$_2$]$_n$” (VII) (0.4000 g, 0.68 mmol) + H$_3$PO$_4$ (0.0665 g, 0.68 mmol) + 30 mL EG</td>
<td>Solvothermal synthesis 12 hr at 220 °C</td>
</tr>
<tr>
<td>Fe$_3$O$_4$ magnetite</td>
<td>[FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) + degassed H$_2$O (6 x 60 mL)</td>
<td>1 hr Ultrasound, room temperature</td>
</tr>
</tbody>
</table>
6.2.1.1 PXRD of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared from “[MLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn)

Initially, olivine LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures were solvothermally synthesised (12 hr, 220 °C) using single source “[MLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors in ethylene glycol. High resolution PXRD analysis of the LiFePO$_4$$_S$ IV 12 hr, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$$_S$ VII 12 hr and LiMnPO$_4$$_S$ VI 12 hr nanostructures conducted at the I11 beamline at the Diamond Light Source indicated that the three samples were isostructural phase pure materials with an olivine structure indexed to the orthorhombic $Pnma$ space group. No evidence of impurity phases or phase segregation was observed. PXRD data were fit by Rietveld analysis to LiFePO$_4$ (ICSD No. 01-072-7845) and LiMnPO$_4$ (ICSD No. 01-072-7844) orthorhombic $Pnma$ structures in a similar manner to that outlined in Chapter 4. Figure 6.1 shows that a good fit between the experimental data and the calculated model were obtained for these LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures (R_{exp} values of 10-12%). Again, slight shifting of the peaks towards lower angles is observed when comparing LiMnPO$_4$$_S$ VI 12 hr to LiFePO$_4$$_S$ IV 12 hr due to the larger Mn$^{2+}$ cation size. The calculated lattice parameters clearly increase with higher Mn content, confirming the successful incorporation of the Mn$^{2+}$ ions in the LiFePO$_4$ olivine structure. Results from the Rietveld analysis are summarised in Table 6.2. Estimation of the crystallite sizes for the LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures using the Scherrer equation applied to the (211) peak revealed crystallite sizes of ~35 nm for the three olivine nanophases. A previous report by Saravanan et al. showed that temperatures of 290 °C or above were required to obtain well crystallised LiMnPO$_4$ when using MnCO$_3$ precursor in a conventional solvothermal synthesis in ethylene glycol. Moreover, they also reported that using Mn(OAc)$_2$ required even higher temperatures to afford phase pure LiMnPO$_4$ nanoplates. Therefore, the single source precursor method presented here can substantially decrease reaction temperatures in the solvothermal synthesis of olivine LiMnPO$_4$ without compromising phase purity or particle crystallinity.
Figure 6.1. Rietveld analysis of high resolution PXRD data of LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[MLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.

Table 6.2. Calculated lattice parameters from Rietveld refinements for the different LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[MLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO4 S IV_ 12 hr</th>
<th>LiFe${0.5}$Mn${0.5}$PO4 S VII_ 12 hr</th>
<th>LiMnPO4 S VI_ 12 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3139(1)</td>
<td>10.3867(2)</td>
<td>10.4460(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.99802(6)</td>
<td>6.04582(9)</td>
<td>6.0966(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.69870(5)</td>
<td>4.72886(7)</td>
<td>4.7493(1)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>290.676(5)</td>
<td>296.955(8)</td>
<td>302.61 (1)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>23.5 %</td>
<td>23.2 %</td>
<td>33.8 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>11.09 %</td>
<td>10.97 %</td>
<td>12.03 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>4.50</td>
<td>4.46</td>
<td>7.89</td>
</tr>
</tbody>
</table>

The effect of reaction time on the quality of the resulting products was also investigated using the [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$ (IV) single source heterometallic alkoxide precursor over 8 and 10 hr at 220 °C. Rietveld refinements of the PXRD data indicate that phase pure
LiFePO$_4$ nanostructures were obtained at both reaction times (Figure 6.2). It was found that the diffraction peak at $2\theta=30^\circ$ corresponding to the (020) or (211) direction became slightly more intense with longer reaction times. This may be indicative of increased regularity in the horizontal arrangement of the LiFePO$_4$ nanoparticles with exposed (020) (corresponding also to (010) face) or (211) faces with longer processing times, as previously reported by Nan et al.313 These results are also in agreement with previous studies conducted by Qin et al., where they demonstrate preferential adsorption of ethylene glycol molecules in the (010) faces of the LiFePO$_4$ crystals inhibiting the growth along the [010] direction.317 This would effectively reduce the path length of Li$^+$ ion diffusion and electronic conduction due to the decreased thickness along the [010] direction, thereby resulting in a higher Li$^+$ ion diffusion coefficient and electronic conductivity. Table 6.3 summarises the calculated lattice parameters from Rietveld refinements for the LiFePO$_4$ nanostructures prepared at different reaction times, indicating that longer processing times leads to a slight decrease in the unit cell parameters. The observed lattice volume contraction could be ascribed to a reduced extent of Fe$^{2+}$ disorder on the Li$^+$ sites.$^{138, 319}$ Estimation of the crystallite sizes from the Scherrer equation applied to the (211) diffraction peak for the LiFePO$_4$-S_IV_12 hr, LiFePO$_4$-S_IV_10 hr and LiFePO$_4$-S_IV_8 hr nanoparticles suggests a slight decrease in the crystallite size with longer reaction times, with crystallite sizes ~35, 44 and 56 nm, respectively. From the solvothermal reactions for 1 and 4 hr at 220 °C using the heterometallic alkoxide precursor [FeLi$_2$Br(O$^\text{t}$Bu)$_4$(THF)$_2$]$_n$ (IV), the crystallisation of the Li$_3$PO$_4$ phase was observed after 1 hr. However, after 4 hr of solvothermal treatment, poorly crystalline olivine LiFePO$_4$ was formed (Figure 6.3). These results suggest that PO$_4^{3-}$ groups in the solution mixture may more readily react with Li$^+$ ions than with Fe$^{3+}$, since most of the Fe$^{2+}$ ions may be coordinated by ethylene glycol molecules to form complexes, leading to the initial formation of Li$_3$PO$_4$ product. Ethylene glycol molecules exist in long hydrogen bonded chains, which may trap cations in the reaction mixture. It has previously been reported that Li$_3$PO$_4$ impurities are commonly formed along with partially crystallised olivine LiFePO$_4$ when low temperatures are used in the solvothermal synthesis of LiFePO$_4$.$^{311, 312}$ This study confirms that the crystallisation of LiFePO$_4$ in conventional solvothermal process phases takes place slower than in microwave-assisted methods, as in previous chapters the formation of olivine LiFePO$_4$ has been demonstrated after only 10 min at 240 °C under microwave irradiation.
Figure 6.2. Rietveld analysis of PXRD data of LiFePO₄ nanostructures prepared at different reaction times (8, 10 and 12 hr) through a solvothermal synthesis at 220 °C using [FeLi₂Br(O'O'Bu)₄(THF)₂]ₙ (IV) heterometallic alkoxide precursor.

Table 6.3. Calculated lattice parameters from Rietveld refinements for the different LiFePO₄ nanostructures prepared through a solvothermal synthesis at 220 °C using [FeLi₂Br(O'O'Bu)₄(THF)₂]ₙ (IV) heterometallic alkoxide precursor at different reaction times.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO₄_S_IV_12 hr</th>
<th>LiFePO₄_S_IV_10 hr</th>
<th>LiFePO₄_S_IV_8 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.310(2)</td>
<td>10.3349(5)</td>
<td>10.3583(6)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.997(1)</td>
<td>6.0042(3)</td>
<td>6.0051(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.695(1)</td>
<td>4.7067(4)</td>
<td>4.7130(4)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>290.28(9)</td>
<td>292.06(3)</td>
<td>293.16(4)</td>
</tr>
<tr>
<td>Rwp</td>
<td>36.4 %</td>
<td>25.3 %</td>
<td>27.4 %</td>
</tr>
<tr>
<td>Rexp</td>
<td>34.41 %</td>
<td>24.01 %</td>
<td>24.44 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.12</td>
<td>1.11</td>
<td>1.25</td>
</tr>
</tbody>
</table>
Figure 6.3. PXRD data of LiFePO$_4$ nanostructures prepared at different reaction times (1 and 4 hr) through a solvothermal synthesis at 220 °C using single source [FeLi$_2$Br(O$^\text{t}$Bu)$_4$(THF)$_2$]$_n$ (IV) heterometallic alkoxide precursor.

6.2.1.2 PXRD of LiFePO$_4$ nanostructures prepared from commercial starting materials

In order to compare materials obtained from single source precursors with those obtained from common commercial starting materials, LiFePO$_4$ phases were prepared through a similar solvothermal process under the same reaction conditions (8, 10 and 12 hr at 220 °C) in an autoclave using FeSO$_4$·7H$_2$O, LiOH·H$_2$O and H$_3$PO$_4$ in ethylene glycol. Rietveld analysis of the PXRD data of the LiFePO$_4$ S_Com._8 hr, LiFePO$_4$ S_Com._10 hr and LiFePO$_4$ S_Com._12 hr samples prepared from commercial starting materials at 8, 10 and 12 hr, respectively, confirmed that single phase olivine nanostructured LiFePO$_4$ phases were formed (Figure 6.4). Results from the Rietveld analysis revealed a slight decrease in the lattice parameters of the LiFePO$_4$ phase prepared through the single source precursor route in comparison to the LiFePO$_4$ product from the conventional synthesis employing commercially available starting materials (Table 6.4). This reduction in the lattice parameters could potentially enhance the cycling performance of these olivine nanophases, as the Li$^+$ hopping process takes place along the b axis and shorter Li-Li distances are desirable to facilitate the Li$^+$ diffusion. The estimated crystallite sizes using the Scherrer equation for the LiFePO$_4$ S_Com._8 hr, LiFePO$_4$ S_Com._10 hr and LiFePO$_4$ S_Com._12 hr nanostructures were calculated to be 44, 43 and 65 nm, respectively. These results suggest that longer reaction times may favour crystal growth affording larger particle sizes. It must also be noted that the presented single source precursor solvothermal route using heterometallic alkoxide precursors yielded smaller
particles than those obtained using conventional starting materials (35 nm for LiFePO₄_S_IV_12 hr vs. 65 nm for LiFePO₄_S_Com._12 hr), suggesting that alkoxide based single source precursor processes are a promising synthetic approach for the generation of nanosized functional materials.

Figure 6.4. Rietveld analysis of PXRD data of LiFePO₄ nanostructures prepared through a solvothermal synthesis at 220 °C for different reaction times (8, 10 and 12 hr) using commercial starting materials.

Table 6.4. Calculated lattice parameters from Rietveld refinements for the different LiFePO₄ nanostructures prepared through a solvothermal synthesis at 220 °C for different reaction times (8, 10 and 12 hr) using commercial starting materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO₄_S_Com._12 hr</th>
<th>LiFePO₄_S_Com._10 hr</th>
<th>LiFePO₄_S_Com._8 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.330(1)</td>
<td>10.345(1)</td>
<td>10.350(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.0078(7)</td>
<td>6.0063(9)</td>
<td>6.010(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.7060(7)</td>
<td>4.717(1)</td>
<td>4.717(1)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>292.05(6)</td>
<td>293.08(9)</td>
<td>293.43(9)</td>
</tr>
<tr>
<td>Rwp</td>
<td>20.4 %</td>
<td>29.2 %</td>
<td>28.6 %</td>
</tr>
<tr>
<td>Rexp</td>
<td>15.32 %</td>
<td>24.39 %</td>
<td>24.89 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.78</td>
<td>1.44</td>
<td>1.32</td>
</tr>
</tbody>
</table>
6.2.1.3 Electron microscopy of LiFe_{1-x}Mn_{x}PO_{4} nanostructures prepared from “[MLi_{2}Br(O^tBu)_{4}(THF)_{2}]_n” \((M=\text{Fe, Mn}) \)

High resolution SEM images of the LiFePO_{4-S IV, 12 hr} sample revealed non-uniform rectangular platelets with sizes ranging from 40 to 80 nm width (Figure 6.5(a)). Slightly smaller particles (-20-50 nm) with similar shape to the LiFePO_{4-S IV, 12 hr} nanoparticles were obtained for LiFe_{0.5}Mn_{0.5}PO_{4-S VII, 12 hr} powders (Figure 6.5(b)). However, the LiMnPO_{4-S VI, 12 hr} sample was a mixture of bigger platelets of approximately ~400-600 nm in length and 150-200 nm in width, and quasi-spherical nanoparticles of around 20-40 nm (Figure 6.6(c)). This highlights the strong influence of the transition metal on the resulting particle size and morphology. SEM micrographs of the LiFePO_{4-S Com, 12 hr} powders synthesised from commercial starting materials shown in Figure 6.6 (d) were markedly larger spindle-shaped plates with particle sizes of ~1 µm in length and approximately 500 nm in width. These results confirmed the suitability of single source processes employing metal alkoxide precursors for the generation of nanoparticulate materials. Interestingly, the presented solvothermal process for LiFe_{1-x}Mn_{x}PO_{4} olivines using heterometallic alkoxide precursors “[MLi_{2}Br(O^tBu)_{4}(THF)_{2}]_n” \((M=\text{Fe, Mn}) \) [IV, VI, VII] [12 hr, 220 °C] also afforded slightly larger particles than the fast microwave treatments (15 min 80 °C and 10 min 240 °C) of a similar reaction mixture. These results could be ascribed to the fact that increased reaction times favours particle growth. Similar rectangular LiFePO_{4} nanoplates and oval-shaped plates have been observed in solvothermally synthesised LiFePO_{4} nanoparticles using ethylene glycol. In particular, Huang et al. studied the morphology evolution of solvothermally synthesised LiFePO_{4} powders primarily by varying the LiOH/H_{3}PO_{4} molar ratio and consequently the reaction acidity. They reported that predominantly rectangular LiFePO_{4} particles with (100) exposed faces gradually changed to spindle shaped particles with mainly (010) exposed faces when decreasing solution acidity, as shown in Figure 6.6. This is also in agreement with what is observed here, as a higher pH is possible during the preparation of LiFePO_{4-S Com, 12 hr} due to the utilisation of LiOH-H_{2}O in the synthesis. This afforded oval-shaped particles, while the lower pH when employing the heterometallic alkoxide precursor [FeLi_{2}Br(O^tBu)_{4}(THF)_{2}]_n yielded more rectangular nanoplates.
Figure 6.5. High resolution SEM images of (a) LiFePO$_4$ S IV 12 hr, (b) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S VII 12 hr and (c) LiMnPPO$_4$ S VI 12 hr nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using heterometallic alkoxide precursors “[MLiBr(O’Bu)$_n$(THF)$_2$]$_n$” (M=Fe, Mn) (IV, VI, VII). (d) LiFePO$_4$ sample prepared through a solvothermal synthesis (12 hr at 220 °C) using commercial starting materials.

Figure 6.6. Particle morphology evolution of LiFePO$_4$ with the acidity (pH) of the solvothermal synthesis environment. Rectangular nanoplates with main exposed (100) face gradually change to spindle plates predominantly exposed (010) face as pH of mother solutions increases from 2.56 to 5.80. 312
High resolution TEM images of the LiFePO$_4$ S IV 12 hr powders confirmed platelet-like particles with a wide range of sizes from 50 to 150 nm in length. The LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S VII 12 hr particles were slightly smaller platelets. The LiMnPO$_4$ S VI 12 hr nanostructures adopted an oval shaped morphology with sizes of around 1 µm in length and 200-400 in width (Figure 6.7). The visible lattice fringes in the TEM images confirmed the long range crystallographic nature of these LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) and suggested that uniform crystal structures exist over the imaged areas. The HR TEM fringe spacings for the LiFePO$_4$ S IV 12 hr, LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S VII 12 hr and LiMnPO$_4$ S VI 12 hr nanostructures are 0.46, 0.52 and 1.13 nm, corresponding to the (002), (220) and (101) planes, respectively. SAED over the imaged areas produced a pattern consistent with polycrystalline structures belonging to the Pnma space group. The LiFe$_{1-x}$Mn$_x$PO$_4$ nanoparticles showed no complete and uniform amorphous coatings over all the particles. However, where there is an amorphous coating, it is not continuous and is around 2 nm thick.

Figure 6.7. High resolution TEM images of (a, d) LiFePO$_4$ S IV 12 hr, (b, e) LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S VII 12 hr, and (c, f) LiMnPO$_4$ S VI 12 hr nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using heterometallic alkoxide precursors “[MLi$_2$Br(O^tBu)$_4$(THF)$_2$]_n” (M=Fe, Mn) (IV, VI, VII).

6.2.1.4 Electrochemical performance of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures from “[MLi$_2$Br(O^tBu)$_4$(THF)$_2$]_n” (M=Fe, Mn)

Galvanostatic cycling at room temperature of the C/LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.5 and 1) powders (carbon coated with 15% wt. C from sucrose) were conducted over the voltage range from 2.2 V to 4.0, 4.3 and 4.5 V (depending on the Mn content) and at a C/20 rate. From the galvanostatic cycling test at C/20 rate of the C/LiFePO$_4$ S IV 12 hr sample in
Figure 6.8 (a) and (b) it can be observed that discharge capacities of approximately 175 mAh·g⁻¹ are reached during the cycling process over at least the first 20 cycles with no capacity fading. The slightly higher than theoretical capacity observed for the C/LiFePO₄ nanostructures could be attributed to the additional carbon content present in this electrode material, which could be contributing to the reversible intercalation of Li⁺ ions. A test battery using only carbon black (no other active material) demonstrated that small amounts on lithium can be reversibly inserted and extracted from the carbon black (see Figure A6.1). Figure 6.8 (c) and (d) depict the voltage-capacity profile of the C/LiFe₀.₅Mn₀.₅PO₄ S VII 12 hr sample, indicating that capacities around 140 mAh·g⁻¹ were delivered over the first 20 charge/discharge cycles. The discharge curve showed two voltage plateaus at approximately 3.45 V and 4.10 V corresponding to the reduction from Fe³⁺ to Fe²⁺ and from Mn³⁺ to Mn²⁺, respectively. The relative capacities on the Fe³⁺/Fe²⁺ and Mn³⁺/Mn²⁺ plateaus correspond closely with the Fe/Mn ratio of the LiFe₀.₅Mn₀.₅PO₄ sample. This electrochemical behaviour is in agreement with previous reports for LiFe₀.₅Mn₀.₅PO₄ nanostructures. Finally, Figure 6.8 (e) and (f) show the electrochemical performance of the C/LiMnPO₄ S VI 12 hr nanostructures at C/20 over a voltage range from 2.2 V to 4.5 V, which exhibited an initial discharge capacity of 160 mAh·g⁻¹ which faded to 120 mAh·g⁻¹ after the first five charge/discharge cycles. After that, a more moderate decrease of the discharge capacities was observed, reaching 115 mAh·g⁻¹ after the 20th cycle. This capacity loss of the C/LiMnPO₄ S VI 12 hr sample during the cycling process is generally attributed to the existence of Mn³⁺ ions in delithiated MnPO₄, which triggers a Jahn-Teller distortion and the associated volume and cell distortions leading to a gradual mechanical degradation during cycling. Low coulombic efficiencies can be attributed to electrolyte decomposition under high voltages. This C/LiMnPO₄ S VI 12 hr nanostructure displayed an improved electrochemical performance compared to a C/LiMnPO₄ composite synthesised via an ion exchange method using citric acid as the carbon source and reducing agent, which only delivered discharge capacities of 70 mAh·g⁻¹ at a C/20 rate. Moreover, these C/LiFe₁ₓMnₓPO₄ nanophases demonstrated superior cycling performance compared to similarly synthesised C/LiMnPO₄ and C/LiFe₀.₅Mn₀.₅PO₄ samples prepared also in ethylene glycol, which delivered 47 mAh·g⁻¹ and 65 mAh·g⁻¹ at C/10 rate, respectively. The rate behaviour of the C/LiFe₁ₓMnₓPO₄ nanophases was also investigated to examine the rate capabilities as a function of Mn content, particle morphology and synthetic methodology. Figure 6.10 shows that the discharge capacities of the C/LiFe₁ₓMnₓPO₄ nanostructures progressively decrease with increasing C rates, with the most pronounced effect seen for the C/LiMnPO₄ S VI 12 hr sample. High C rates of up to 10 C delivered discharge capacities of 100 mAh·g⁻¹, 55 mAh·g⁻¹ and 30 mAh·g⁻¹ for the C/LiFePO₄ S IV 12 hr, C/LiFe₀.₅Mn₀.₅PO₄ S VII 12 hr and C/LiMnPO₄ S VI 12 hr phases, respectively. The
C/LiFePO₄_S_IV_12 hr exhibited an outstanding rate capability delivering ~170 mAh·g⁻¹ at
C/2, ~150 mAh·g⁻¹ at 2 C and ~135 mAh·g⁻¹ at 5 C. Time-resolved in situ PXRD studies
conducted by Grey et al. revealed the existence of a continuous metastable solid solution
phase in nanoparticulate LiFePO₄ during rapid Li⁺ extraction/insertion, providing a
nonequilibrium facile phase transformation route for reaching such high rate
performances in this electrode material that operate via two phase reactions.⁶³ The
C/LiFePO₄_S_IV_12 hr nanostructure presented here exhibited slightly improved rate
capabilities compared to the microwave synthesised C/LiFePO₄_I sample prepared using
the homometallic alkoxide precursor [Fe(O(°Bu))₂(THF)]₂ (I) (presented in Chapter 4).
Comparable rate capabilities have been previously reported in hollow and porous LiFePO₄
nanostructures prepared by similar solvothermal processes.⁴¹, ³²⁴ A novel microwave-
solvothermal process at 300 °C to LiFePO₄ nanorods followed by a carbon coating with a
heat treatment with sucrose at 700 °C for 1 hr similar to the one performed here displayed
similar rate capabilities (~100 mAh·g⁻¹ at 10 C) to C/LiFePO₄_S_IV_12 hr,³²⁵ evidencing the
suitability of using single source metal alkoxide precursors for the fabrication of high rate
performing olivine LiFePO₄ nanophases. On the other hand, the C/LiMnPO₄_S_VI_12 hr
nanocomposite displayed a poorer rate performance, in which the discharge capacities
markedly faded from ~150 mAh·g⁻¹ at C/10 to ~90 mAh·g⁻¹, 50 mAh·g⁻¹ and 35 mAh g⁻¹ at
C/2, 2 C and 5 C, respectively. A simple one-pot solvothermal approach to synthesise
nanosized LiMnPO₄ by using Li₃PO₄ nanorods and MnSO₄·H₂O as precursors delivered
slightly lower discharge capacities of 147 mAh·g⁻¹ at 0.05 C and 46.6 mAh·g⁻¹ at C rate.³²⁶
Even more sophisticated LiMnPO₄ thin nanoplate/graphene composites synthesised by a
solvothermal method in a mixed solvent of water and polyethylene glycol delivered
comparable capacities of 149 mAh·g⁻¹ at 0.1 C, 90 mAh·g⁻¹ at C and 64 mAh·g⁻¹ at 5 C
charge-discharge rate.³²⁷ These electrochemical studies suggested that introducing Mn in
this olivine LiFePO₄ nanostructure synthesised from a solvothermal route using a
heterometallic alkoxide precursor afforded a noticeable decrease in the rate behaviour
of the electrode material C/LiFe₀.₅Mn₀.₅PO₄. The C/LiFe₀.₅Mn₀.₅PO₄_S_VII_12 hr phase
displayed discharge capacities near 155 mAh·g⁻¹ at C/10, C/5 and C/2, after which
dropped to ~140 mAh g⁻¹, 115 mAh·g⁻¹ and ~75 mAh·g⁻¹ at C, 2 C and 5 C, respectively.
Similar rate behaviour has previously been observed in LiFe₀.₅Mn₀.₅PO₄ nanoplates (43
mAh·g⁻¹ at 13 C) prepared by a simple solvothermal synthesis in ethylene glycol.³¹¹ The
outstanding electrochemical performance delivered by these C/LiFe₁₋ₓMnxPO₄ phases
could be mainly attributed to the smaller particle sizes of these olivine structures, which
markedly increases the specific surface area in contact with the electrolyte and also
decreases the path length for the Li⁺ to diffuse. There is also a possibility for residual
amorphous carbon from the decomposition of the metal alkoxide precursors during the
solvothermal synthesis and post-heat treatment which may enhance the electron
conductivity of these battery materials and consequently lead to improved cycling behavior. Nevertheless, due to the simplicity of the single source precursor approach presented here using heterometallic alkoxides, there is still a wide range of synthetic strategies that can be applied in order to improve the electrochemical behaviour of these olivine LiFe$_{1-x}$Mn$_x$PO$_4$ nanomaterials. For example, slightly improved rate capabilities for LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanophases have been recently demonstrated in a LiFe$_{0.5}$Mn$_{0.5}$PO$_4$/C composite with macro/nano hierarchical porous structure fabricated via a more sophisticated spray dry process, which delivered discharge capacities of 161, 160, 157, 146, 137, and 115 mAh·g$^{-1}$ at 0.2, 0.5, 1, 3, 5, and 10 C, respectively. Also, LiFe$_{0.4}$Mn$_{0.6}$PO$_4$/C microspheres produced using a double carbon coating process displayed excellent rate capabilities of 132, 103, and 72 mAh·g$^{-1}$ at 5, 10, and 20 C, respectively. Furthermore, a cathode material based on C/LiFe$_{0.4}$Mn$_{0.6}$PO$_4$ and conducting composite binder poly(3,4-ethylenedioxythiopene):poly(styrenesulfonate)/carboxymethylcellulose (PEDOT:PSS/CMC) showed excellent rate behaviour yielding discharge capacities of 130 mAh·g$^{-1}$ at 5 C and 118 mAh·g$^{-1}$ at 10 C. Improved rate capabilities have also been observed in LiMn$_{0.75}$Fe$_{0.25}$PO$_4$ nanorods grown in graphene sheets, which delivered 132 mAh·g$^{-1}$, 107 mAh·g$^{-1}$ and 65 mAh·g$^{-1}$ at 30 C, 50 C and 100 C, respectively. The rate performance of the C/LiFePO$_4$ sample prepared from commercial starting materials was also investigated for comparison. Results from the galvanostatic cycling tests at different C rates included in Figure 6.9 confirmed the enhanced rate capability of the LiFePO$_4$ olivine material generated through the single source reaction using heterometallic alkoxides. These results clearly evidence the improved electrochemical performance that can be achieved by employing single source precursor processes with thermally labile starting materials such as alkoxide compounds. PXRD analysis of the C/LiFePO$_4$_S_Com._12 hr, C/LiFe$_{0.4}$Mn$_{0.6}$PO$_4$_S_VII_12 hr and C/LiMnPO$_4$_S_VI_12 hr cycled materials in the discharge state indicated that the extraction/insertion process did not degrade the olivine structure, confirming the good structural stability of these positive insertion electrodes upon cycling at high charge-discharge rates. Figure 6.10 depicts the Rietveld analysis of the PXRD data from post-cycled C/LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures. The quality of the PXRD patterns is affected by the high amorphous carbon content in the electrode, however, the cell parameters could be refined. Results suggested that no significant variation in the lattice parameters of these olivine nanostructures was observed after the cycling experiments. Furthermore, the increase in the cell parameters with higher Mn content in C/LiFe$_{1-x}$Mn$_x$PO$_4$ nanophases was still evident after the cycling process. Table 6.5 shows the crystallographic data of the post-cycled C/LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures determined by Rietveld analysis.
Figure 6.8. Voltage capacity profiles and cycling stability between 2.2 V and 4.0, 4.3 or 4.5 V at C/20 rate of (a, b) C/LiFePO$_4$ S-IV_12 hr (15% wt. C from sucrose), (c, d) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S-VII_12 hr (15% wt. C from sucrose), and (e, f) C/LiMnPO$_4$ S-VI_12 hr (15% wt. C from sucrose). Samples prepared through a solvothermal synthesis for 12 hr at 220 °C with \([ML_2Br(OBu)_4(THF)]_2\) \((M=Fe, Mn)\) (IV, VI, VII) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).
Figure 6.9. Comparative rate performance of C/LiFe$_{1-x}$Mn$_x$PO$_4$ (15% wt. C from sucrose) nanostructures prepared with "$[\text{MLi}_2\text{Br(OtBu)}_4(\text{THF})_2]_n$" ($M=$Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors and C/LiFePO$_4$-S-Com._12 hr (15% wt. C from sucrose) sample prepared from commercial starting materials.

Figure 6.10. Rietveld analysis of PXRD data of post-cycled C/LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures prepared through a solvothermal synthesis (12 hr at 220°C) using single source "$[\text{MLi}_2\text{Br(OtBu)}_4(\text{THF})_2]_n$" ($M=$Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.
Chapter 6

Table 6.5. Calculated lattice parameters from Rietveld analysis of PXRD data for post-cycled LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures prepared through a solvothermal synthesis (12 hr at 220 °C) using single source “[ML$_2$Br(O’Bu)$_4$(THF)]$_n$” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO$_4$ S IV 12 hr</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$ S VI 12 hr</th>
<th>LiMnPO$_4$ S VII 12 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.300(2)</td>
<td>10.388(2)</td>
<td>10.447(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.996(1)</td>
<td>6.053(1)</td>
<td>6.101 (1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.700(1)</td>
<td>4.723(1)</td>
<td>4.748 (1)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>290.3 (1)</td>
<td>297.0(1)</td>
<td>302.6 (1)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>50.3 %</td>
<td>46.3 %</td>
<td>32.5 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>45.24 %</td>
<td>43.91 %</td>
<td>30.36 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.24</td>
<td>1.11</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Temperature is known to have a significant impact on the performance, safety and cycle life of LIBs. Therefore, the rate performance of the LiFePO$_4$ S IV nanostructure was also investigated at 50 °C to study the effect of higher temperatures on the cycling behaviour. Galvanostatic cycling tests at increasingly faster charge-discharge rates indicated that although a poorer rate performance was observed at the slower C rates when cycling at 50 °C compared to room temperature measurements, markedly improved rate capabilities were displayed at the fastest C rates, delivering discharge capacities of 135 mAh g$^{-1}$ at 10 C (Figure 6.11). This improvement is most likely due to the higher ionic conductivity of the electrode at higher temperatures. However, the slightly worse rate performance at the slower C rates (C/10, C/5 and C/2) when cycling at 50 °C could be attributed to the decomposition of the electrolyte at higher temperatures leading to the formation of some HF which can trigger some Fe dissolution from LiFePO$_4$, as previously observed by Amine et al. To amend the adverse effect by Fe dissolution Amine et al. have shown that the high temperature cycle performance of LiFePO$_4$/graphite cell can be improved by using a lithium bis(oxolato)borate (LiBOB) electrolyte. Wu et al. also found that the addition of vinylene carbonate (VC) in the electrolyte solution can greatly improve the higher temperature 55 °C cycling performance of LiFePO$_4$-based LIBs. They reported that the VC additive significantly suppresses Fe dissolution from LiFePO$_4$ and hence, subsequent Fe deposition on the anode side. Also, efficient cycling at 150 °C was found possible when using molten salts electrolyte such as a lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), KTFSI and CsTFSI, demonstrating a large and reversible capacity with an extremely small polarisation. Guerfi et al. have used ambient-temperature ILs based on bis(fluorosulfonyl)imide (FSI) as anion and N-methyl-N-propylimidazolium as cations in LiFePO$_4$ cells with a graphite anode, and observed a reversible capacity of ~150 mAh g$^{-1}$ at 60 °C with negligible capacity fade. The excellent rate performance of the LiFePO$_4$ S IV nanostructure presented here at elevated temperatures using a standard
EC:DMC electrolyte was significantly better in comparison to a LiFePO₄ cell prepared with N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide electrolyte, which yielded specific capacities of 153 and 110 mAh g⁻¹ at C/10 and 4 C rates, respectively.³³⁵

![Graph showing comparative rate performance at room temperature and 50 °C of C/LiFePO₄-S-IV (15% wt. C from sucrose) nanostructure prepared with [FeLi₂Br(O'Bu)₄(THF)]ₙ (IV) heterometallic alkoxide precursors.](image)

Figure 6.11. Comparative rate performance at room temperature and 50 °C of C/LiFePO₄-S-IV (15% wt. C from sucrose) nanostructure prepared with [FeLi₂Br(O'Bu)₄(THF)]ₙ (IV) heterometallic alkoxide precursors.

CV measurements for the C/LiFeₓ₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures prepared with the “[MLi₂Br(O'Bu)₄(THF)]ₙ” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors were conducted at a scan rate of 0.1 mV·s⁻¹ between 2.5 and 4.5 V. The CV results in Figure 6.12 (a) for the C/LiFePO₄-S-IV₁₂ hr sample showed anodic and cathodic peaks at ~3.529 V and 3.279 V, respectively, due to the Fe³⁺/Fe²⁺ redox pair. The good superposition of the CV curves after the first cycle confirmed the excellent reversibility of this electrochemical process. CV for the C/LiFe₀.₅Mn₀.₅PO₄-S-VI₁₂ hr sample depicted in Figure 6.12 (b) exhibited two oxidation (3.559 V and 4.123 V) and two reduction peaks (3.397 V and 3.892 V) characteristic of the Fe³⁺/Fe²⁺ and Mn²⁺/Mn³⁺ redox pairs. These results are in agreement with the two discharge voltage plateaus at about 3.50 V and 4.10 V vs. Li⁺/Li⁰ corresponding respectively to the redox pairs of Fe³⁺/Fe²⁺ and Mn²⁺/Mn³⁺. Finally, the CV curve of the C/LiMnPO₄-S-VI₁₂ hr nanostructure in Figure 6.12 (c) displayed the expected anodic and cathodic peaks at ~4.314 V and 3.887 V, respectively, due to the Mn²⁺/Mn³⁺ redox pair. From these CV representations it can also be deduced that the substitution of Mn in the LiFePO₄ structure produces a slight shift of the anodic and cathodic peaks towards higher Fe³⁺/Fe²⁺ potentials. Similar studies by Kobayashi et
al. have also revealed a shift in the redox potential of Fe$^{3+}$/Fe$^{2+}$ and Mn$^{3+}$/Mn$^{2+}$ as the value of x in LiFe$_{1-x}$Mn$_x$PO$_4$ is increased. This shift was attributed to the inductive effect in the M-O-P bonding, which acts to increase the ionic character of the transition metal-oxygen bonds. The overall volume expansion upon Mn substitution in the LiFe$_{1-x}$Mn$_x$PO$_4$ system may increase the average transition-metal-oxygen bond length and hence the ionicity of each transition metal. This correlates well with the results from the Rietveld analysis of the high resolution PXRD data, which demonstrated an increase in the average transition metal-oxygen bond length with higher Mn contents in LiFe$_{1-x}$Mn$_x$PO$_4$ (3.273(5) Å for LiFePO$_4$ S_IV 12 hr, 3.296(6) Å for LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S_VII 12 and 3.314(9) Å for LiMnPO$_4$ S_VI 12). Similar results have also been previously reported on CV analysis of LiFe$_{1-x}$Mn$_x$PO$_4$ materials.

![CVs at a 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V of (a) C/LiFePO$_4$ S_IV 12 hr, (b) C/LiMnPO$_4$ S_VI 12 hr and (c) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S_VII 12 hr nanostructures prepared through a solvothermal synthesis (12 hr 220 °C) with single source “[MLiBr(O'Bu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.](image)

Figure 6.12. CVs at a 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V of (a) C/LiFePO$_4$ S_IV 12 hr, (b) C/LiMnPO$_4$ S_VI 12 hr and (c) C/LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ S_VII 12 hr nanostructures prepared through a solvothermal synthesis (12 hr 220 °C) with single source “[MLiBr(O'Bu)$_4$(THF)$_2$]$_n$” (M=Fe, Mn) (IV, VI, VII) heterometallic alkoxide precursors.
6.2.1.5 PXRD and SEM of Fe$_3$O$_4$ nanoparticles prepared from hydrolysis of [FeLi$_2$Br(O^tBu)$_4$(THF)$_2$]$_n$

Attempts to prepare Fe$_3$O$_4$ magnetite nanoparticles through a room temperature ultrasound-assisted hydrolysis reaction of the [FeLi$_2$Br(O^tBu)$_4$(THF)$_2$]$_n$ (IV) heterometallic alkoxide precursor were pursued, as the hydrolysis of similar metal alkoxides such as [Fe(O^tBu)$_2$(THF)]$_2$ and [NaFe(O^tBu)$_3$(THF)$_2$]$_2$ has already successfully lead to the formation of Fe$_3$O$_4$ magnetite nanostructures.$^{203, 292}$ The reaction mechanism for the formation of Fe$_3$O$_4$ nanoparticles involves ultrasonically generated radical and peroxide species from water or THF contributing to the partial oxidation of Fe$^{2+}$ into Fe$^{3+}$, as previously reported by Gedanken and co-workers.$^{336-338}$ Magnetite has an inverse-spinel structure with space group $Fd\cdot 3m$ where the O atoms form an approximate cubic close-packed array with one Fe$^{3+}$ per formula unit at the tetrahedrally coordinated position and Fe$^{2+}$ and the remaining Fe$^{3+}$ randomly distributed at the octahedral positions. Magnetite Fe$_3$O$_4$ powders synthesised here were characterised by PXRD. Rietveld refinements to a $Fd\cdot 3m$ space group Fe$_3$O$_4$ structure (ICSD No 01-074-0748 19-629)339 confirmed that Fe$_3$O$_4$ magnetite was obtained (Figure 6.13 (a)). The estimated crystallite size of the Fe$_3$O$_4$ nanostructure was calculated using the Scherrer equation208 applied to the (311) diffraction peak and was ~23 nm. SEM images of the magnetite Fe$_3$O$_4$ nanophase demonstrated irregular plates with an average particle size of approximately 68 nm (Figure 6.13 (b)). After that, to carbon coat the Fe$_3$O$_4$ nanoparticles, the Fe$_3$O$_4$ powders were mixed with 15% wt. C from sucrose and thoroughly ground. The mixture was then heat treated in a tube furnace for 3 hr at 500 °C under Ar atmosphere. PXRD analysis of the heat treated Fe$_3$O$_4$ product revealed that mainly Fe$_3$O$_4$ was still obtained with some evidence of α-Fe$_2$O$_3$ hematite, indicating some degree of oxidation of the Fe$^{2+}$ ions to Fe$^{3+}$ has taken place during the heating process (Figure A6.2). Previous reports have shown that heat treatment of the same [Fe(O^tBu)$_2$(THF)]$_2$ metal alkoxide precursor to 200 °C afforded γ-Fe$_2$O$_3$ maghemite.203 In this case, due to the presence of sucrose acting also as a reducing agent, the Fe$_3$O$_4$ magnetite phase could still be maintained after the heating process.
Figure 6.13. (a) Rietveld analysis of PXRD data of magnetite Fe$_3$O$_4$ nanostructure. [R_{wp}=50.8 %, R_{exp}=48.14 %, X^2=1.11, a=8.388(2) Å, b=8.388(2) Å and c=8.388(2) Å]. (b) SEM image of magnetite Fe$_3$O$_4$ nanostructure.

6.2.1.6 Electrochemical performance of Fe$_3$O$_4$ nanoparticles prepared from hydrolysis of [FeLi$_2$Br(OtBu)$_4$(THF)$_2$]$_n$

The electrochemical performance of bare Fe$_3$O$_4$ magnetite was examined by galvanostatic cycling with potential limitation and CV. The Fe$_3$O$_4$ nanostructure was galvanostatically cycled at a current density of 100 mA·g$^{-1}$ over a 0.01-3.00 V range, where the capacity was calculated based on the mass of Fe$_3$O$_4$. Galvanostatic cycling results illustrated in Figure A6.3 demonstrated a very high initial discharge capacity of ~3025 mAh·g$^{-1}$ that sharply faded to ~1430 mAh·g$^{-1}$ at the second cycle. Furthermore, a drastic capacity fading over cycling was observed and discharge capacities of approximately 785 mAh·g$^{-1}$ and 340 mAh·g$^{-1}$ were reached after the 10th and 20th cycle, respectively. The galvanostatic discharge and charge profiles show plateaus at approximately 0.9 V and 1.8 V attributed to the conversion reactions of Fe$_3$O$_4$ with Li metal into Fe metal and Li$_2$O. The downward sloping voltage curves below 0.9 V are commonly observed with many transition metal oxide anodes. This effect could be ascribed to combined effects of the formation of SEI layers, the reversible Li$^+$ storage in the carbon and possibly interfacial lithium storage.$^{340-342}$ Comparable electrochemical behavior has been previously observed in a Fe$_3$O$_4$ 3D composite prepared through a single-heating procedure using a metal-oleate complex.343 Similar electrochemical performance was found for Fe$_3$O$_4$ nanocystals.
Composite formation using the Fe$_3$O$_4$ magnetite product presented here with carbonaceous matrices could potentially alleviate the capacity loss and improve the capacity retention even at faster charge and discharge rates. For example, enhanced capacity retention was observed on carbon coated Fe$_3$O$_4$ nanoparticles homogeneously anchored to expanded graphite nanosheets prepared by a facile solution-free synthesis, which delivered 728 mAh·g$^{-1}$ after 100 cycles at a current density of 100 mA·g$^{-1}$.

Here, a significant improvement in the capacity retention was observed for the carbon coated C/Fe$_3$O$_4$ nanoparticles using 15% wt. C from sucrose, reaching discharge capacities of ~1078 mAh·g$^{-1}$ and 725 mAh·g$^{-1}$ after the 10th and 20th cycle, respectively (Figure 6.14). Comparable electrochemical behavior has been observed in a carbon coated C/Fe$_3$O$_4$ composite with ~30 nm Fe$_3$O$_4$ nanoparticles as cores and 3-7 nm carbon shells prepared using glucose as a carbon source, which delivered discharge capacities of 718 mAh·g$^{-1}$ after 100 cycles at a 0.1 C rate.

The rate capability of C/Fe$_3$O$_4$ nanocomposite was evaluated at various current densities in the range of 200-2000 mA·g$^{-1}$ at the cut-off voltage between 0.01 and 3.00 V. The discharge capacities of ~1350, 1050, 650, 470 and 260 mAh·g$^{-1}$ were retained at current densities of 200, 400, 800, 1200 and 2000 mA·g$^{-1}$, respectively (Figure 6.15). When the current was restored to 200 mA·g$^{-1}$, the C/Fe$_3$O$_4$ nanostructures still delivered 930 mAh·g$^{-1}$, which was about 69% of the initial capacity. This C/Fe$_3$O$_4$ nanocomposite displayed slightly enhanced rate performance compared to previous Fe$_3$O$_4$ nanocrystals in a mesoporous carbon foam, which delivered approximately 870, 780 and 570 mAh·g$^{-1}$ at current densities of 100, 200 and 500 mA·g$^{-1}$, respectively.

Also, C/Fe$_3$O$_4$ nanostructures prepared by a microwave-assisted process, which delivered 201 mAh·g$^{-1}$ after 30 cycles.
fabricated by pyrolysis of a metal-oxide/poly(acrylonitrile) nanocomposite exhibited similar rate capabilities. Carbon-encapsulated FeO nanoparticles homogeneously embedded in two-dimensional porous graphitic carbon nanosheets exhibited very high rate performance and excellent cycling stability, reaching 977 mAh·g⁻¹ when cycled at 1 C, 905 mAh·g⁻¹ at 2 C, 858 mAh·g⁻¹ at 5 C, 587 mAh·g⁻¹ at 10 C, 364 mAh·g⁻¹ at 15 C, 311 mAh·g⁻¹ at 20 C, and finally back to 975 mAh·g⁻¹ at 1 C. These results suggested that further improvement in the carbon coating of FeO nanoparticles can significantly enhance the rate capabilities of this material.

Figure 6.15. Rate performance of C/FeO (15% wt. C from sucrose) mixed with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at at different charge/discharge rates.

The representative CV of FeO magnetite shown in Figure 6.16 demonstrates that the cathodic process is characterised mainly by three reduction peaks. The first weak peak appears at around 1.75 V and could be associated with the initial insertion of the first Li⁺ ions into the interstitial octahedral sites in the cubic close-packed FeO structure and the reduction of one electron equivalent of Fe³⁺ to Fe²⁺. The second small and very broad peak at 1.38-1.45 V could be attributed to the second electron equivalent reduction of
Fe$^{3+}$ to Fe$^{2+}$ and shifting of the Fe ions from the tetrahedral to octahedral sites as additional Li$^+$ insertion occurs and the material displays a phase transformation from inverse-spinel Fe$_3$O$_4$ to a FeO rock-salt structure, as previously discussed by Bock et al.349 The third reduction peak at 0.6 V corresponds to the conversion process of $3\text{FeO} + 6\text{Li}^+ + 6\cdot\text{e}^- \rightarrow 3\text{Fe}^0 + 3\text{Li}_2\text{O}$, which occurs simultaneously with insertion of the Li$^+$ into carbon black as well as SEI formation. In the anodic process there are two overlapping peaks centered approximately at 1.75-2.00 V, which can be assigned to the conversion of Fe0 back to FeO-like structure and delithiation of carbon black. The CV curves after the first cycle were noticeably different from that of the initial cycle. The reduction peaks associated with the initial Li$^+$ insertion into the Fe$_3$O$_4$ host structure and phase change from Fe$_3$O$_4$ to FeO are no longer present. Only one intense reduction peak at around 0.80 V is visible and is probably associated with the FeO to Fe0 metal conversion process and carbon lithiation/SEI formation. Therefore, this CV analysis suggests that after the initial cycle, the reversible electrochemical process is mainly the $3\text{FeO} + 6\text{Li}^+ + 6\cdot\text{e}^- \leftrightarrow 3\text{Fe}^0 + 3\text{Li}_2\text{O}$ reaction, which is consistent with previous reports.104, 107, 349-352

![CV of Fe$_3$O$_4$ magnetite at a 0.1 mV·s$^{-1}$ scan rate between 0.01 V and 3.00 V.](image)

Figure 6.16. CV of Fe$_3$O$_4$ magnetite at a 0.1 mV·s$^{-1}$ scan rate between 0.01 V and 3.00 V.

6.3 Conclusions

Facile solvothermal and ultrasound-assisted synthetic approaches using single source heterometallic alkoxide precursors have been presented for the preparation of both high
performing olivine nanostructured LiFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) cathodes and Fe$_3$O$_4$ magnetite nanoparticles as a conversion anode. Investigation of the LiFePO$_4$ synthesis at different reaction times has shown that during the first hour of solvothermal treatment the crystallisation of the Li$_3$PO$_4$ intermediate takes place and it is only after 4 hr that the olivine LiFePO$_4$ nanophase is formed. Furthermore, estimation of the crystallite sizes suggests a decrease in the LiFePO$_4$ crystallite with longer reaction times. A strong influence of the transition metal (Fe, Mn) content and precursors used in the resulting particle size and morphology of LiFe$_{1-x}$Mn$_x$PO$_4$ nanostructures has also been observed. Electron microscopy analysis has demonstrated smaller LiFePO$_4$ particle size for the material prepared via the metal alkoxide based single source precursor route compared to when conventional starting materials are used. Electrochemical testing of these olivine positive insertion electrodes LiFe$_{1-x}$Mn$_x$PO$_4$ displayed rate capabilities comparable to the best performing olivine-structured metal phosphates in the literature, suggesting the suitability of the single source heterometallic alkoxide precursor processes presented here in the generation of high performing olivine mixed metal phosphates via a straightforward solvothermal route. Finally, the improved electrochemical performance that can be achieved by employing single source precursor approaches involving heterometallic alkoxides in comparison to conventional reactions employing commercial starting materials has been demonstrated. Moreover, the outstanding rate performance of the C/LiFePO$_4$ nanostructure also at high temperatures of 50 °C has been presented, yielding discharge capacities of 135 mAh g$^{-1}$ at 10 C. C/Fe$_3$O$_4$ magnetite nanoparticles fabricated from the room temperature hydrolysis of the [FeLi$_2$Br(0’Bu)$_4$(THF)$_2$]$_n$ heterometallic alkoxide exhibited a very high initial discharge capacity of 3020 mAh g$^{-1}$ that drastically faded to 725 mAh g$^{-1}$ after 20 cycles. Further investigation of composite formation using this Fe$_3$O$_4$ magnetite nanophase presented here with other carbon matrices could afford promising electrochemical performances with a noticeable enhancement of the capacity retention.
7 Single Source Heterometallic Alkoxide precursors to Nickel Olivine and Nickel Oxide electrodes

7.1 Introduction

Selective cationic doping of some electrode materials can result in higher cell voltages, a faster ionic and electronic transport and even some enhancement in the chemical and thermal stability. In particular, Fe-site doping in olivine LiFePO$_4$ cathodes may facilitate the diffusion of Li$^+$ along the 1D channels and increase both the electronic and ionic conductivity. The enhanced electronic and ionic conductivity may be attributed to the weakening of the Li-O bond in LiFePO$_4$. Previous investigations have revealed that doping LiFePO$_4$ with small amounts of V, Co, Mg, Zn or Cr resulted in improved electrochemical behaviour by enhancing the electronic conductivity. Lu et al. reported that LiFe$_{1-x}$Ni$_x$PO$_4$/C composites displayed better electrochemical performance compared to pristine LiFePO$_4$/C composites because Ni$^{2+}$ doping may stabilise the olivine structure, strengthen the P-O bond and decrease the particle resistance of the C/LiFe$_{1-x}$Ni$_x$PO$_4$ composites, leading to improvements in the charge-transfer process during cycling. Amongst several transition metal oxides as conversion anode materials, NiO has attracted substantial interest due to its high capacity, eco-benignity and low cost. Several NiO composites with different nanostructures such as mesoporous nanosheets, nanowall, nanotube, nanofibers and hollow microspheres have been successfully fabricated showing highly reversible capacities and long cycling life. Microwave or ultrasonic-assisted approaches can provide relatively low temperature routes to prepare LiFe$_{1-x}$Ni$_x$PO$_4$ and NiO nanostructures offering a significant reduction in reaction times and energy consumption. Niederberger et al. have reported a fast microwave-assisted route to LiFePO$_4$ doped with several divalent, trivalent and tetravalent metal ions in varying concentrations. In particular, they showed that 7 mol% Ni doped LiFePO$_4$ nanoparticles delivered a high initial charge capacity of 168 mAh·g$^{-1}$ with a capacity retention of 97% after 300 cycles. In the case of transition metal oxide electrodes, porous NiO hollow microspheres have been fabricated by a facile two-step method involving the ultrasound-assisted synthesis of nickel oxalate precursors and subsequent thermal annealing in air and retained capacities of 380 mAh·g$^{-1}$ after 30 cycles at 200 mA·g$^{-1}$. Here, non-ionic surfactant polyvinylpyrrolidone (PVP) was selected as both potential capping agent and a carbon source, to prepare nanostructured C/LiFe$_{1-x}$Ni$_x$PO$_4$ nanocomposites via microwave treatments of single source heterometallic alkoxide precursors. PVP could contribute to the formation of a homogeneous carbon coating and simultaneously control the particle size, morphology and distribution. Recently, LiFePO$_4$/C nanoparticles prepared by a supercritical hydrothermal method using PVP
displayed higher discharge capacities when comparing to those synthesised by the same synthetic approach with hexadecyl trimethyl ammonium bromide (CTAB) or sucrose, suggesting that the utilisation of PVP affords better-crystallised and smaller-sized LiFePO$_4$/C nanostructures.258 The preparation of nickel oxide nanoparticles using ultrasonic methods and its cycling performance as conversion anode in LIBs have also been investigated here.

7.2 Results and discussion

7.2.1 Synthesis and characterisation of “[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (VIII)

In previous chapters, the preparation of Li and Fe containing heterometallic alkoxides has been presented. Now, the fabrication of a similar heterometallic alkoxide with Ni instead of Fe was attempted. A straightforward room temperature salt elimination reaction using 3 equivalents of LiO'Bu and one equivalent of NiCl$_2$ in dry THF was performed as described in section 2.2.6 for the synthesis of the “[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (VIII) metallorganic compound. The Ni-Li heterometallic alkoxide in THF solution was kept in the freezer for several days and crystals were formed. The obtained single crystals were characterised by single crystal XRD. However, the results obtained demonstrated that the crystals obtained by this route contained no nickel and exhibited a [Li$_4$(O'Bu)$_3$(THF)$_2$Cl]·THF crystal structure similar to the previously reported by Pauls et al., where two heterocubanes [Li$_4$(O'Bu)$_3$(THF)$_2$Cl] are dimerised by Li-Cl bonds.294 These results suggest that the [Li$_4$(O'Bu)$_3$(THF)$_2$Cl]·THF compound will crystallise first out of the THF solvent with the nickel remaining in solution. Pauls et al. also attempted the reaction of four equivalents of LiO'Bu with one equivalent of InCl$_3$ in THF and only managed to isolate the [Li$_4$(O'Bu)$_3$(THF)$_2$Cl]·THF complex,294 which highlights the difficulty of obtaining pure double metal alkoxides. Efforts were pursued to crystallise the Li and Ni containing alkoxide in other solvents such as toluene or isopropanol, but have so far not been successful. It has been reported that double metal alkoxides with Ni are rare.269 For this reason, the Ni-Li species is referred to as “[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (compound VIII) with the quotation marks denoting that this is purely a suggested nomenclature and not the formula obtained from single crystal XRD. Reactions carried out using this precursor for the preparation of nickel-containing electrodes were done so assuming this speculative formula.

The dry “[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (VIII) powder obtained after evaporation of the solvent was characterised by 1H NMR and FT-IR spectroscopy. The 1H NMR spectrum of the “[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (VIII) dry product conducted in dry C$_6$D$_6$ (Figure A7.1) showed two peaks at 0.1 and 0.7 ppm, similar to those previously seen for the μ_2-O'Bu bridging groups in previous alkoxides. The peak at 1.2 ppm can be tentatively assigned to the terminal O'Bu groups. Peaks corresponding to tethered THF groups were found at 1.3 and
2.8 ppm. Although NMR studies can provide valuable information on the terminal and bridging groups, in large number of cases it is difficult to derive meaningful conclusions regarding the structures of metal alkoxides owing to various factors such as intermolecular bridging/terminal site exchange, overlapping resonances, signal broadening due to quadrupolar effects and the oligomeric nature of certain metal alkoxides. A slight shift of the chemical shift towards lower ppm values was observed for “[NiLi₂Cl(Ο'Bu)₄(THF)₂]ₙ” (VIII) in comparison to [FeLi₂Br(O'Bu)₄(THF)₂]ₙ (IV), “[FeLi₂Cl(O'Bu)₄(THF)₂]ₙ” (V), “[MnLi₂Br(O'Bu)₄(THF)₂]ₙ” (VI) and “[Fe₀.₅Mn₀.₅Li₂Br(O'Bu)₄(THF)₂]ₙ” (VII). However, since the chemical shift is the resultant of several contributing factors, there are generally no obvious correlations with metal oxidation state, atomic radius or co-ordination number. As previously observed in the FT-IR analysis for the “[MLi₃X(O'Bu)₄(THF)₂]ₙ” (M=Fe, Mn; X=Br, Cl) (IV, V, VI and VII) heterometallic alkoxides, the FT-IR spectrum in Nujol of the “[NiLi₂Cl(O'Bu)₂(THF)₂]ₙ” (VIII) dry powder exhibited the characteristic Nujol bands at 1460 and 1370 cm⁻¹ (Figure A7.2). Vibrations at 726 and 759 cm⁻¹ could be assigned to the symmetrical vibration of the tert-butoxy group, while those at 898 and 832 cm⁻¹ are attributed to tert-butoxy group vibrations. The asymmetric stretch from the C-O-C group in THF appears at 975 cm⁻¹. The band at 1036 cm⁻¹ corresponds to a C-C vibration (e.g. from the tert-butoxy group), while the 1208 cm⁻¹ band could be associated to a C-O stretch vibration characteristic of the tert-butoxy group. The good agreement of NMR and FTIR between the Ni-Li alkoxide and previous heterometallic alkoxides in preceeding chapters gives some confidence to the general assignment of “[NiLi₂Cl(O'Bu)₄(THF)₂]ₙ” (VIII) to this compound.

7.2.2 Synthesis and characterisation of LiFe₁₋ₓNiₓPO₄ and NiO nanostructures prepared from heterometallic alkoxide precursors

LiFe₁₋ₓNiₓPO₄ nanostructures were prepared via microwave-assisted single source precursor reactions using the “[FeLi₂Cl(O'Bu)₄(THF)₂]ₙ” (V) heterometallic alkoxide as an iron source and either NiC₂O₄·2H₂O or “[NiLi₂Cl(O'Bu)₄(THF)₂]ₙ” (VIII) as nickel sources, according to Schematic 7.1 and as described in section 2.2.12. Hydrolysis of the single source precursor “[NiLi₂Cl(O'Bu)₄(THF)₂]ₙ” (VIII) promoted by ultrasound irradiation and a post-heat treatment (3 hr at 500 °C under air) was followed for the synthesis of C/NiO nanoparticles (see section 2.2.13). Table 7.1 shows the list of C/LiFe₁₋ₓNiₓPO₄ and C/NiO nanophases prepared.
Schematic 7.1. Reaction schematic for the microwave synthesis of LiFe$_{1-x}$Ni$_x$PO$_4$ nanostructures and ultrasound synthesis of C/NiO nanoparticles using single source heterometallic alkoxide precursors “[MLi$_2$Cl(O’Bu)$_4$(THF)$_2$]_n” (M=Fe, Ni) (V, VIII).
| Table 7.1. Preparation of olivine LiFe$_{1-x}$Ni$_x$PO$_4$ and C/NiO nanostructures from heterometallic alkoxide precursors. |
| --- | --- | --- |
| Samples | Reactants | Reaction conditions |
| “[NiLi$_2$Br(O’Bu)$_4$(THF)$_3$]$_2$” (VIII) | NiCl$_2$ (0.648 g, 5 mmol) + 3 LiO’Bu (1.201 g, 15 mmol) + 40 mL THF | 24 hr stirring at RT |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V | 0.95 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.05 NiC$_6$O$_7$-2H$_2$O (0.0036 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) + 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFePO$_4$-V-10PVP | “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + H$_2$PO$_4$ (0.0362 g, 0.370 mmol) + 10% PVP (0.0026 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-10PVP | 0.95 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.05 NiC$_6$O$_7$-2H$_2$O (0.0036 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) + 10% PVP (0.0026 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-15PVP | 0.95 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.05 NiC$_6$O$_7$-2H$_2$O (0.0036 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) + 15% PVP (0.0035 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-20PVP | 0.95 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.05 NiC$_6$O$_7$-2H$_2$O (0.0036 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) + 20% PVP (0.0046 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-10PVP | 0.9 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.1 NiC$_6$O$_7$-2H$_2$O (0.0072 g, 0.039 mmol) + H$_2$PO$_4$ (0.0401 g, 0.409 mmol) + 10% PVP (0.0026 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.15}$PO$_4$-V-10PVP | 0.85 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.15 NiC$_6$O$_7$-2H$_2$O (0.0072 g, 0.057 mmol) + H$_2$PO$_4$ (0.0418 g, 0.427 mmol) + 10% PVP (0.0026 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-VIII | 0.95 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.05 “[NiLi$_2$Br(O’Bu)$_4$(THF)$_3$]$_2$” (0.0110 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-VIII-15PVP | 0.95 “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) (0.2000 g, 0.370 mmol) + 0.05 “[NiLi$_2$Br(O’Bu)$_4$(THF)$_3$]$_2$” (VIII) (0.0110 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) + 15% PVP (0.0035 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| LiMn$_{0.95}$Ni$_{0.05}$PO$_4$-VI-15PVP | 0.95 “[MnLi$_2$Br(O’Bu)$_4$(THF)$_3$]$_2$” (VI) (0.2000 g, 0.370 mmol) + 0.05 NiC$_6$O$_7$-2H$_2$O (0.0036 g, 0.019 mmol) + H$_2$PO$_4$ (0.0381 g, 0.389 mmol) + 15% PVP (0.0035 g) 10 mL EG | Microwave synthesis (2.45 GHz) 1 hr 240 °C |
| C/NiO | “[NiLi$_2$Cl(O’Bu)$_4$(THF)$_3$]$_2$” (VII) + degassed H$_2$O (2 x 40 mL) + 15 wt. C from sucrose | 1 hr Ultrasounds and post-heat treatment for 3 hr at 500 °C under air |
7.2.2.1 PXRD of LiFe$_{1-x}$Ni$_x$PO$_4$ nanostructures prepared from “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$“ and NiC$_2$O$_4$·2H$_2$O precursors

Doping olivine LiFePO$_4$ with small amounts of Ni has shown to be an effective strategy to enhance the electrochemical performance. Therefore, several microwave-assisted reactions using “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_2$]$_n$“ (V), NiC$_2$O$_4$·2H$_2$O and H$_2$PO$_4$ as starting materials were attempted in order to prepare a family of olivine LiFe$_{1-x}$Ni$_x$PO$_4$ nanophases. Initially, the preparation of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures was attempted. PXRD analysis of the products obtained after the 10 min microwave treatment at 240 °C showed an absence of crystalline product, suggesting that longer reaction times may be required for the generation of Ni doped LiFePO$_4$ olivine nanostructures. This may be due to the high insolubility of the NiC$_2$O$_4$·2H$_2$O precursor in ethylene glycol. Subsequent reactions were performed for longer duration (1 hr at 240 °C). Also studied was the effect of adding varying amounts of polyvinylpyrrolidone (PVP) in the reaction mixture, which could act as a capping agent limiting nanoparticle growth and preventing agglomeration. PVP may also be converted into a carbon coating by annealing in order to increase the electron conductivity of the underlying electrode materials. When comparing the PXRD patterns of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ samples prepared with 10 % PVP (LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V$_{10}$PVP) and without PVP (LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V), a noticeable improvement in the crystallisation of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ product is observed with the addition of PVP, as evidenced by the increased intensity of the diffraction peaks. These results could be explained by the fact that PVP exhibits high polarity which could couple effectively with incoming microwave irradiation, contributing to an improved microwave heating effect. Higher concentrations of Ni in the olivine LiFePO$_4$ structure were also explored (x=0, 0.05, 0.1, 0.15 and 0.2), together with 10 % PVP. PXRD analysis demonstrated that LiFe$_{0.9}$Ni$_{0.1}$PO$_4$·V$_{10}$PVP powders were obtained after microwave treatment for 1 hr at 240 °C. Figure 7.2 shows that in the case of LiFe$_{0.85}$Ni$_{0.15}$PO$_4$·V$_{10}$PVP poorly crystalline product was obtained. When the nickel concentration is above 15%, Ni metal is detected by PXRD. Other Ni-containing starting materials such as Ni(OH)$_2$, Ni(CH$_3$CO)$_2$·4H$_2$O and NiSO$_4$·6H$_2$O and less reducing solvents have previously been shown to afford LiFe$_{1-x}$Ni$_x$PO$_4$ olivine phases avoiding the reduction of Ni$^{2+}$ ions to Ni metal. For example, Qing et al. reported a solid state reaction route for the preparation of a series of phase-pure LiFe$_{1-x}$Ni$_x$PO$_4$ olivine-type solid solution materials using Ni(CH$_3$CO)$_2$·4H$_2$O. Rietveld analysis of the PXRD data of LiFePO$_4$·V$_{10}$PVP, LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V$_{10}$PVP and LiFe$_{0.9}$Ni$_{0.1}$PO$_4$·V$_{10}$PVP shown in Figure 7.2 reveals no evident presence of impurity phases. However, due to the high background in the PXRD patterns obtained, there may be some amorphous components that cannot be assigned. Furthermore, the high noise could also be ascribed to Fe fluorescence, as the
diffractometer employed has a Cu source. These reasons could also explain the elevated \(R_{wp} \) and \(R_{exp} \) values obtained in the Rietveld refinements. A slight shift of the peaks towards higher \(2\theta \) values was observed with increased Ni contents in \(\text{LiFe}_{1-x}\text{Ni}_x\text{PO}_4 \), as expected by the smaller cation size of \(\text{Ni}^{2+} \) (69 pm ionic radius) in comparison to \(\text{Fe}^{2+} \) (78 pm ionic radius) (see Figure A7.3 for a close up PXRD patterns of \(\text{LiFePO}_4_\text{V}_10\text{PVP} \), \(\text{LiFe}_{0.95}\text{Ni}_{0.05}\text{PO}_4_\text{V}_10\text{PVP} \) and \(\text{LiFe}_{0.9}\text{Ni}_{0.1}\text{PO}_4_\text{V}_10\text{PVP} \)). Table 7.2 summarises the calculated lattice parameters from the Rietveld refinements for the \(\text{LiFe}_{1-x}\text{Ni}_x\text{PO}_4 \) \((x=0, 0.05 \text{ and } 0.1) \) nanomaterials and show a slight contraction in the \(a \) and \(b \) lattice parameters with increasing Ni contents while the \(c \) lattice parameter remains almost constant (Figure 7.3). This is to be expected due to the smaller cation size of \(\text{Ni}^{2+} \) in comparison to \(\text{Fe}^{2+} \). This suggests incorporation of Ni in the olivine structure. Similar decrease in the unit cell volume of nanosized \(\text{LiFe}_{1-x}\text{Ni}_x\text{PO}_4 \) \((x=0.00-0.20) \) composites prepared via sol-gel-assisted carbothermal reduction method was observed by Örnek et al. \(^{176}\) Furthermore, the lattice parameters and unit cell volume of \(\text{LiFe}_{0.95}\text{Ni}_{0.05}\text{PO}_4_\text{V} \) are in very good agreement with values previously reported by Niederberger et al. on a microwave synthesised \(\text{LiFe}_{0.95}\text{Ni}_{0.05}\text{PO}_4 \) nanostructure \((a=10.3179(8) \text{ Å}, b=5.9903(3) \text{ Å}, c=4.6950(4) \text{ Å} \text{ and } V=290.18(4) \text{ Å}^3) \). \(^{46}\)

![Figure 7.1](image.png)

Figure 7.1. Comparative PXRD patterns of \(\text{LiFe}_{1-x}\text{Ni}_x\text{PO}_4 \) \((x=0, 0.05, 0.1, 0.15 \text{ and } 0.2) \) nanostructures after microwave synthesis using “\([\text{FeLi}_2\text{Cl}(\text{O'^Bu})_4(\text{THF})_2]_n\,” (V) heterometallic alkoxide precursor, \(\text{NiC}_2\text{O}_4\cdot2\text{H}_2\text{O}, \text{H}_3\text{PO}_4 \) and 10% PVP in ethylene glycol. Top graph: Bragg positions \(\text{LiFePO}_4 \).
Figure 7.2. Rietveld analysis of PXRD patterns of LiFe$_{1-x}$Ni$_x$PO$_4$ (x=0, 0.05 and 0.1) nanostructures after microwave synthesis using \('[\text{FeLi}_2\text{Cl(O}^\text{t} \text{Bu})_4(\text{THF})_2]_n\)’ (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and 10% PVP in ethylene glycol.

Table 7.2. Calculated lattice parameters from Rietveld refinements for LiFe$_{1-x}$Ni$_x$PO$_4$ (x=0, 0.05 and 0.1) nanostructures after microwave synthesis using \('[\text{FeLi}_2\text{Cl(O}^\text{t} \text{Bu})_4(\text{THF})_2]_n\)’ (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and 10% PVP in ethylene glycol.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO$_4$·V·10PVP</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$·V·10PVP</th>
<th>LiFe${0.9}$Ni${0.1}$PO$_4$·V·10PVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.340(1)</td>
<td>10.324(1)</td>
<td>10.315(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.0037(8)</td>
<td>5.996(1)</td>
<td>5.986(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.694(8)</td>
<td>4.697(1)</td>
<td>4.699(1)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>291.38(7)</td>
<td>290.84(8)</td>
<td>290.14(6)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>46.4 %</td>
<td>44.7 %</td>
<td>42.4 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>43.65 %</td>
<td>40.48 %</td>
<td>37.35 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.13</td>
<td>1.22</td>
<td>1.29</td>
</tr>
</tbody>
</table>
Figure 7.3. Variation of the refined lattice parameters and volume cell values for LiFe$_{1-x}$Ni$_x$PO$_4$ (x=0, 0.05 and 0.1) nanostructures after microwave synthesis using “[FeLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and 10% PVP in ethylene glycol.

To investigate the effect of increased PVP content, a series of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures were synthesised employing varying amounts of PVP from 10 to 20 % wt. transition metal content. PXRD analysis of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V$_{10}$PVP, LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V$_{15}$PVP and LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V$_{20}$PVP nanostructures revealed a slight increase in crystallinity when increasing the PVP content from 10 % to 15 % PVP. Similar results were obtained when using 15 % and 20 % PVP (Figure 7.4). Table 7.3 summarises the results from the Rietveld fits (Figure 7.5) for the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures fabricated with different PVP amounts. The structural analysis demonstrated that increasing the PVP up to 15% in the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ materials also lead to a significant reduction in the cell lattice parameters. No substantial changes were noted for 20% PVP.

Figure A7.4 illustrates the variation of the refined lattice parameters and volume cell values for the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures prepared with different PVP loadings. The LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V$_{15}$PVP powders were heated for 1 hr at 700 °C in Ar atmosphere in an attempt to anneal the surface PVP to provide a carbon coating. Carbon coating was also
attempted by adding sucrose (15% wt. C) to the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ V$_{15}$PVP sample under the same heat treatment conditions. Figure 7.6 shows the Rietveld refinements for both samples. Both reveal no obvious secondary phases. Results also indicated that the heat treatment slightly increases the cell volume (Table 7.4).

CHN microanalysis of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ V$_{15}$PVP and LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ V$_{0}$ PVP powders was conducted. Results reveal carbon content of ~3% wt in both cases, suggesting that the addition of PVP does not lead to an increased carbon content in the microwave synthesised LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ product (Table 7.5). The carbon may be mainly attributed to some remaining ethylene glycol from the synthesis and to some residual carbon from the decomposition of the metal alkoxide precursors. Therefore, the major effect of the PVP is that of enhanced microwave heating which leads to better crystallinity.

![Graph showing PXRD patterns](image)

Figure 7.4. Comparative PXRD patterns of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis using “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]n” (V) heterometallic alkoxide precursor, NiC$_2$O$_4$2H$_2$O, H$_3$PO$_4$ and different PVP contents in ethylene glycol. Top graph: Bragg positions for LiFePO$_4$.

Figure 7.5. Rietveld analysis of PXRD patterns of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis using “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$“ (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and different PVP contents in ethylene glycol.

Table 7.3. Calculated lattice parameters from Rietveld refinements for LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis using “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$“ (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and different PVP contents in ethylene glycol.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-V</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-V-15PVP</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-V-20PVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.336(2)</td>
<td>10.2696(9)</td>
<td>10.2737(9)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.000(1)</td>
<td>5.9777(5)</td>
<td>5.9815(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.702(1)</td>
<td>4.7005(5)</td>
<td>4.7009(6)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>291.3(1)</td>
<td>288.56(5)</td>
<td>288.88(5)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>65.2 %</td>
<td>35.0 %</td>
<td>36.6 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>61.71 %</td>
<td>32.75 %</td>
<td>34.04 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.12</td>
<td>1.14</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Figure 7.6. Rietveld analysis of PXRD patterns of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V$_{15}$PVP nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar (without and with mixing with 15% wt. C from sucrose). Samples prepared using “[FeLi$_2$Cl((O'Bu)$_4$(THF)$_2$)$_n$” (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and 15% PVP in ethylene glycol.

Table 7.4. Calculated lattice parameters from Rietveld refinements for LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V$_{15}$PVP nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar with and without sucrose.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFe${0.95}$Ni${0.05}$PO4-V${15}$PVP Post-heat treatment 1 hr 700 °C</th>
<th>LiFe${0.95}$Ni${0.05}$PO4-V${15}$PVP Post-heat treatment 1 hr 700 °C 15% wt. C sucrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>$Pnma$</td>
<td>$Pnma$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3098(5)</td>
<td>10.330(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.99965(3)</td>
<td>6.002(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.6973 (3)</td>
<td>4.712(1)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>290.40(3)</td>
<td>292.2(1)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>21.9 %</td>
<td>45.5 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>19.85 %</td>
<td>41.12 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.22</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Table 7.5. CHN Microanalysis of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures prepared through a microwave-assisted synthesis using “[FeLi$_2$Cl(O^t$Bu)$_4(THF)_2$]$_n$” (V) heterometallic alkoxide precursor with and without PVP.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C (wt. %)</th>
<th>H (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$ V No PVP</td>
<td>3.33</td>
<td>1.41</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$ V 15PVP</td>
<td>2.71</td>
<td>1.35</td>
</tr>
</tbody>
</table>

7.2.2.2 PXRD of LiMn$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures prepared from “[MnLi$_2$Br(O^t$Bu)$_4(THF)_2$]$_n$“ and NiC$_2O_4$·2H$_2$O precursors

As LiMnPO$_4$ has attracted much attention due to its higher operating voltage compared to LiFePO$_4$, attempts to prepare Ni doped LiMnPO$_4$ were also pursued. For example, LiMn$_{0.9}$Ni$_{0.1}$PO$_4$ nanoparticles have recently been prepared via a microwave-assisted hydrothermal process displaying a promising cycling performance with discharge capacities of 136 and 78 mAh·g$^{-1}$ at C/20 and 10 C rates, respectively. Here, olivine LiMn$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures were successfully synthesised via a 1 hr microwave treatment at 240 °C using a “[MnLi$_2$Br(O^t$Bu)$_4(THF)_2$]$_n$“ (VI) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and 15% PVP in ethylene glycol. Rietveld analysis of the PXRD patterns of LiMn$_{0.95}$Ni$_{0.05}$PO$_4$ _VI_15PVP after microwave-assisted synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar flow demonstrated a good fit between the experimental data and the calculated model (Figure 7.7). A broadening of the diffraction peaks was noted, which may indicate a decrease in crystallite size. A noticeable increase in crystallinity and a reduction in peak widths was observed after the heat treatment. Table 7.6 shows the lattice parameters of LiMn$_{0.95}$Ni$_{0.05}$PO$_4$ _VI_15PVP determined by Rietveld analysis, suggesting that there is no significant variation in the unit cell parameters after heat treatment.
Figure 7.7. Rietveld analysis of PXRD patterns of LiMn$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar. Samples prepared using “[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VI) heterometallic precursor, NiC$_2$O$_4$·H$_2$O, H$_3$PO$_4$ and 15% PVP in ethylene glycol.

Table 7.6. Calculated lattice parameters from Rietveld refinements for LiMn$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis using 15% PVP and post-heat treatment for 1 hr at 700 °C under Ar. Samples prepared with “[MnLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$” (VI) heterometallic precursor, NiC$_2$O$_4$·H$_2$O, H$_3$PO$_4$ and 15% PVP in ethylene glycol.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiMn${0.95}$Ni${0.05}$PO$_4$·VI·15PVP</th>
<th>LiMn${0.95}$Ni${0.05}$PO$_4$·VI·15PVPPost-heat treatment 1 hr 700 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.447(2)</td>
<td>10.4472(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.102(1)</td>
<td>6.0996(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.749(1)</td>
<td>4.7463(2)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>302.7(1)</td>
<td>302.45(2)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>31.5 %</td>
<td>22.4 %</td>
</tr>
<tr>
<td>R_{exp}</td>
<td>28.8 %</td>
<td>20.1 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.20</td>
<td>1.24</td>
</tr>
</tbody>
</table>
7.2.2.3 PXRD of LiFe$_{1-x}$Ni$_x$PO$_4$ nanostructures prepared from
"[MLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$" (M=Fe, Ni)

To examine the influence of the Ni precursor, similar reactions (1 hr at 240 °C) using the "[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$" (VIII) precursor instead of NiC$_2$O$_4$.2H$_2$O were carried out to yield LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII products. PXRD analysis of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII powders revealed that the synthesis route using the Li and Ni containing alkoxide precursor affords slightly better crystallised LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ material in comparison to when NiC$_2$O$_4$.2H$_2$O is used, as evidenced by the increase in the peak intensities (Figure 7.8). This may be due to an increased solubility of the "[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$" (VIII) precursor in ethylene glycol and its easy decomposition upon heat treatments in comparison to NiC$_2$O$_4$.2H$_2$O. Similar reactions with 15% added PVP were also carried out. Figure 7.9 depicts the Rietveld fits from the PXRD data of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII sample after microwave-assisted synthesis (1 hr at 240 °C) with and without using 15% PVP, after a post-heat treatment for 1 hr at 700 °C under Ar flow, and after the 5% wt. C from sucrose carbon coating process under the same heating conditions. An increase in the lattice parameters of this LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ phase is observed after the heat treatment and carbon coating process (Table 7.7). Again, the addition of PVP also results in a significant reduction of the cell parameters of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII.

![Figure 7.8. Comparative PXRD patterns of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis using different Ni starting materials. Samples prepared using "[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$" (V) heterometallic alkoxide precursor, NiC$_2$O$_4$.2H$_2$O or "[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$" (VIII), and H$_3$PO$_4$ in ethylene glycol.](image)
Figure 7.9. Rietveld analysis of PXRD patterns of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII nanostructures after microwave synthesis without and with 15% PVP, and post-heat treatment for 1 hr at 700 °C under Ar without and with sucrose carbon coating. Samples prepared using “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_2$]$_n$” (V) and “[NiLi$_2$Cl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors, H$_3$PO$_4$ and PVP in ethylene glycol.
Table 7.7. Calculated lattice parameters from Rietveld refinements for LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-VIII nanostructures after microwave synthesis without and with 15% PVP, and post-heat treatment for 1 hr at 700 °C under Ar without and with sucrose coating. Samples prepared using “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_2$]$_n$” (V) and “[NiLi$_2$Cl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors, H$_3$PO$_4$ and PVP in ethylene glycol.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-VIII</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-VIII V15PVP</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-VIII V15PVP Post-heat treatment 1 hr 700 °C</th>
<th>LiFe${0.95}$Ni${0.05}$PO$_4$-VIII V15PVP (5% wt. C sucrose) Post-heat treatment 1 hr 700 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.271(2)</td>
<td>10.212(2)</td>
<td>10.309(1)</td>
<td>10.318(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>5.969(1)</td>
<td>5.947(1)</td>
<td>5.9956(6)</td>
<td>6.001(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.704(1)</td>
<td>4.712(1)</td>
<td>4.7041(6)</td>
<td>4.714(1)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>288.4(1)</td>
<td>286.2(1)</td>
<td>290.75(5)</td>
<td>291.9(1)</td>
</tr>
<tr>
<td>R$_{wp}$</td>
<td>44.2 %</td>
<td>44.4 %</td>
<td>36.0 %</td>
<td>48.7 %</td>
</tr>
<tr>
<td>R$_{exp}$</td>
<td>41.31 %</td>
<td>40.28 %</td>
<td>32.85 %</td>
<td>43.73 %</td>
</tr>
<tr>
<td>χ^2</td>
<td>1.14</td>
<td>1.21</td>
<td>1.20</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Estimation of the crystallite sizes for the Ni doped LiFePO$_4$ nanostructures using the Scherrer equation208 applied to the (211) diffraction peaks suggested that the addition of PVP slightly decreases the crystallite sizes of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanophases from approximately 56 nm for LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V (No PVP) to ~50 nm for the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V10PVP, LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V15PVP and LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V20PVP. No significant reduction in the crystallite size of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ powders was observed when increasing the amount of PVP from 10 to 20 %. A slight increase in crystallite size was observed when increasing the Ni content to LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V10PVP. Interestingly, a smaller crystallite size (~34 nm) is noted when the Li and Ni containing metal alkoxide precursor is employed with 15% PVP in the preparation of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-VIII15PVP. Heat treatment of samples led to an increase in crystallite size of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V15PVP (~71 nm) and LiFe$_{0.95}$Ni$_{0.05}$O$_4$-VIII15PVP (~54 nm). Crystallite growth upon heat treatment was not observed for the carbon coated C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V15PVP powders (~48 nm), suggesting that the coating may inhibit the crystallite growth during the heating process. This has been previously similarly noted in the literature.$^{71, 365}$ The smallest crystallite sizes were calculated for the LiMn$_{0.95}$Ni$_{0.05}$PO$_4$-VI15PVP sample of ~22 nm. These results are in good agreement with the smaller crystallite size of LiMnPO$_4$-VI compared to LiFePO$_4$-V previously shown in Chapter 5. Table 7.8 summarises the calculated crystallite sizes from Scherrer broadening for Ni doped LiFePO$_4$ and LiMnPO$_4$ nanostructures.
Table 7.8. Calculated crystallite sizes from Scherrer broadening for Ni doped LiFePO$_4$ and LiMnPO$_4$ nanostructures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Estimated crystallite size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V</td>
<td>56</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V-10PVP</td>
<td>49</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V-15PVP</td>
<td>50</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V-15PVP post-heat treatment</td>
<td>71</td>
</tr>
<tr>
<td>C/LiFe${0.95}$Ni${0.05}$PO$_4$-V-15PVP post-heat treatment (carbon coated)</td>
<td>48</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V-20PVP</td>
<td>49</td>
</tr>
<tr>
<td>LiFe${0.9}$Ni${0.1}$PO$_4$-V-10PVP</td>
<td>63</td>
</tr>
<tr>
<td>LiFe${0.93}$Ni${0.05}$PO$_4$-V-VIII</td>
<td>37</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V-VIII-15PVP</td>
<td>34</td>
</tr>
<tr>
<td>LiFe${0.95}$Ni${0.05}$PO$_4$-V-VIII-15PVP-post heat treatment</td>
<td>54</td>
</tr>
<tr>
<td>LiMn${0.95}$Ni${0.05}$PO$_4$-VI-15PVP</td>
<td>22</td>
</tr>
</tbody>
</table>

The next aim was to try to reduce the reaction times. A reaction using a mixture of "[FeLi$_2$Cl(O$'$Bu)$_4$(THF)$_2$]$_n$" (V) and "[NiLi$_2$Cl(O$'$Bu)$_4$(THF)$_2$]$_n$" (VIII) alkoxide precursors was carried out for 30 min at 240 °C. PXRD analysis of the resulting powder reveals that a mixture of poorly crystalline LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ and some oxidised FePO$_4$ product was obtained (Figure 7.10). The formation of FePO$_4$ was also evidenced by the reddish colour of the obtained powder, which indicated that the oxidation from Fe$^{2+}$ and Fe$^{3+}$ had taken place during the synthesis process. These results suggested that longer reaction times were required and a 1 hour microwave treatment instead afforded the target LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ product.
Figure 7.10. Comparative PXRD patterns of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave synthesis at different reaction times using “[FeLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (V) and “[NiLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors, H$_3$PO$_4$ and 15% PVP in ethylene glycol. Finally, the synthesis of single-phase olivine LiNiPO$_4$ via a 1 hr microwave treatment at 240 °C of “[NiLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursor and H$_3$PO$_4$ in ethylene glycol was attempted (LiNiPO$_4$_VIII product). Unfortunately, as evidenced in the PXRD pattern in Figure 7.12, the reduction of Ni$^{2+}$ to Ni metal took place and a mixture of Ni metal polymorphs belonging to the Fm-3m (ICSD No 01-073-6826 4-850)366 and $P63/mmc$ (ICSD No 01-089-7129 45-102)367 space groups was formed. Further attempts to prepare single phase LiNiPO$_4$ through a single source precursor route were tried (e.g. using “[NiLi$_2$Cl(OtBu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide and the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate as solvent), but this also afforded Ni metal (see LiNiPO$_4$_VIII_IL in Figure 7.11). Even the less reducing conditions of the 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in comparison to ethylene glycol led to metallic Ni. Other synthetic strategies, the addition of surfactants or the utilisation of different phosphorous sources/solvents may afford phase pure olivine LiNiPO$_4$. For example LiNiPO$_4$ nanorods and nanoplates have been successfully prepared via a one-pot synthesis using supercritical fluid process with oleylamine or ascorbic acid.
as surfactant and reducing agents. Orthorombic \textit{Pnma} LiNiPO$_4$ has also been synthesised through a citric acid assisted modified sol-gel method using metal acetates and NH$_4$H$_2$PO$_4$ as starting materials.

Figure 7.11. PXRD patterns of LiNiPO$_4$ after microwave synthesis using \textquotedblleft[NiLi$_2$Cl(\textit{OtBu})$_4$(THF)$_2$]$_n$\textquotedblright (VIII) heterometallic alkoxide precursor and H$_3$PO$_4$ in ethylene glycol or EMI-TFMS.

\subsection*{7.2.2.4 \textit{SEM and EDS of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures}}

Particle agglomeration can be regarded as a possible cause of deterioration of electrochemical performance in olivine nanomaterials. By avoiding aggregation, larger surface areas are available for the Li (de)insertion and ultimately better electrochemical performance. Here, PVP has been used to control particle size and prevent agglomeration in LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanoparticles. The viscosity of PVP can limit the aggregation of the precursor particles. Another advantage to this route is the possible carbonisation of the PVP to generate a thin carbon coating on the surface of the formed LiFe$_{0.95}$Ni$_{0.05}$PO$_4$, which can impede particle growth and enhance conductivity.370 PVP has previously been used to control the particle size of nano-LiFePO$_4$/C via a simple electrospinning method. The PVP polymer matrix tailors the particle shape and also helps to maintain the connectivity
between nanoparticles as a result of its residual conductive carbon after high-
temperature pyrolysis, thereby limiting crystal growth and increasing the conductivity.\(^{371}\)

SEM images of the LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V (No PVP), LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-15PVP and LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII-15PVP powders prepared through a microwave synthesis (1 hr at 240 °C) using the heterometallic alkoxide “\([\text{FeLi}_2\text{Cl(O'Bu)}_4(\text{THF})_2]_n\)” (V) and NiCl\(_2\)·2H\(_2\)O or “\([\text{NiLi}_2\text{Cl(O'Bu)}_4(\text{THF})_2]_n\)” (VIII) revealed a non-uniform quasi-spherical morphology with particle sizes ranging from 20 to 60 nm (Figure 7.12). Particle morphology was similar in all three LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\) samples and, unfortunately, particle agglomeration was observed even when using PVP, which indicated that there was no significant dispersion effect for PVP in the established reaction conditions. Similar observations were also reported by Lei et al. on solvothermally synthesised LiFePO\(_4\)-carbon composites.\(^{372}\) The particle size distributions determined from measuring 70 particles in the SEM images are illustrated in Figure A7.5. From the plots, the mean particle sizes were calculated and results indicate that the particle sizes slightly decreased when using PVP (40.8 ± 9.3 nm for LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V (No PVP) against 35.9 ± 4.4 nm for LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-15PVP and 33.4 ± 4.0 nm for LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII-15PVP). These results correlate well with the crystallite size determinations using the Scherrer equation already performed, which showed a decrease in the crystallite in LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\) size when employing PVP. SEM images of the LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII-15PVP and LiMn\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_VI-15PVP nanostructures after the heat treatment for 1 hr at 700 °C under Ar confirmed a clear increase in the particles sizes after the heating process. Particle size analysis of the LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII-15PVP and LiMn\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_VI-15PVP samples showed average particle sizes of 67.6 ± 10.1 nm and 71.3 ± 12.0 nm, respectively (Figure 7.13). EDS analysis of the LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII-15PVP and LiMn\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_VI-15PVP nanoparticles confirmed the presence of Ni in both samples, indicating that Ni has been successfully introduced in the olivine LiFePO\(_4\) and LiMnPO\(_4\) structures (Figure 7.14).
Figure 7.12. SEM images of (a, b) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ V (No PVP), (c, d) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ V$_{15}$PVP nanostructures prepared through a microwave synthesis (1 hr at 240 °C) using heterometallic alkoxide precursor “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_2$]_n” (V) and NiC$_2$O$_4$·2H$_2$O, (e, f) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ V-VIII$_{15}$PVP nanostructures prepared through a microwave synthesis (1 hr at 240 °C) using heterometallic alkoxide precursors “[FeLi$_2$Cl(O’Bu)$_4$(THF)$_2$]_n” (V) and “[NiLi$_2$Cl(O’Bu)$_4$(THF)$_2$]_n” (VIII).
Figure 7.13. SEM images of (a) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V-VIII·15PVP and (b) LiMn$_{0.95}$Ni$_{0.05}$PO$_4$·VI·15PVP nanostructures after heat treatment for 1 hr at 700 °C under Ar. Particle size distribution of (c) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V-VIII·15PVP and (d) LiMn$_{0.95}$Ni$_{0.05}$PO$_4$·VI·15PVP nanostructures.

Figure 7.14. SEM images of (a) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V-VIII·15PVP and (b) LiMn$_{0.95}$Ni$_{0.05}$PO$_4$·VI·15PVP nanostructures. EDS spectra of (c) LiFe$_{0.95}$Ni$_{0.05}$PO$_4$·V-VIII·15PVP and (d) LiMn$_{0.95}$Ni$_{0.05}$PO$_4$·VI·15PVP nanostructures.
7.2.2.5 Electrochemical performance of LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures

The electrochemical behaviour of the C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures prepared with PVP was investigated in an effort to show that a good electrochemical performance can be obtained by only adding PVP in the microwave synthesis without the need for further carbon coating treatments. Galvanostatic cycling at C/20 rate from 2.2 V to 4.2 V of the C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-15PVP and C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP nanostructures after post-heat treatment for 1 hr at 700 °C delivered discharge capacities of approximately ~125 mAh·g$^{-1}$ and 120 mAh·g$^{-1}$, respectively, over the first 20 cycles. These results indicated that no noticeable differences in the resulting electrochemical behaviour were observed between the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures prepared by using NiC$_2$O$_4$·2H$_2$O or “[NiLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$” (VIII) as Ni precursors. The progressive improvement of the specific capacity over cycling in LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP could be ascribed to the better wetting of the active material with the electrolyte as the particles develop cracks and pores upon cycling. In order to improve the electronic conductivity and electrochemical performance of the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP nanoparticles, an additional carbon coating with sucrose was applied. The LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP powders were carbon coated with only 5 % wt. C from sucrose. These samples displayed a slightly enhanced electrochemical performance reaching around 140 mAh·g$^{-1}$ over the first 15 cycles with no evident capacity fading (Figure 7.15 (e) and (f)) and coulombic efficiencies of 98%. However, increasing the carbon coating content up to 15% wt. C did not lead to further enhancement of the electrochemical performance, yielding capacities of only ~80 mAh·g$^{-1}$ (Figure 7.16). This could be attributed to the fact that excessive amorphous carbon in the electrode mixture could hinder the Li$^+$ extraction insertion process from the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanoparticles. Ni et al. investigated the effect of different carbon contents in C/LiFePO$_4$ composites coated with carbon layers pyrolysed from sucrose and also reported that too much carbon loading could inhibit the diffusion of Li$^+$ ions.193 Previous investigations on microwave synthesised Ni doped LiFePO$_4$ conducted by Niederberger et al.46 demonstrated excellent electrochemical performance exhibiting capacities of 168 mAh·g$^{-1}$ and outstanding capacity retention after 300 cycles when cycling in a slightly wider voltage window between 2.0 V to 4.5 V. Furthermore, they reported that the level of metal doping in LiFePO$_4$ has a strong influence in the capacities delivered and the cycling stability. In the particular case of Ni doping, a concentration of 7 mol% Ni markedly outperformed in comparison to 5 mol% and 2 mol % Ni. These results suggest that other levels of Ni doping in LiFe$_{1-x}$Ni$_x$PO$_4$ may lead to enhanced electrochemical performances. On the other hand, the LiMn$_{0.95}$Ni$_{0.05}$PO$_4$-VI-15PVP nanostructure (heat treated for 1 hr at 700 °C under Ar) delivered a poor electrochemical performance reaching capacities of only around 40
mAh·g\(^{-1}\) (Figure A7.6). These results indicate that a carbon coating may still be required in order to further enhance the electrochemical performance of LiMn\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\) nanostructures.

Figure 7.15. (a, c, d) Charge/discharge capacity profiles and (b, d, f) cycling stability between 2.2 V and 4.2 V at C/20 rate of LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-15PVP, LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII_15PVP and LiFe\(_{0.95}\)Ni\(_{0.05}\)PO\(_4\)_V-VIII_15PVP (5% wt. C from sucrose), respectively, mixed with C black and PTFE in 60:30:10 (% wt. ratio).
Figure 7.16. (a) Charge/discharge capacities and (b) cycling stability of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V (15% wt. C from sucrose) prepared with “[FeLi$_2$Cl(OtBu)$_4$]_n” (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O and 15% PVP, and mixed with C black and PTFE in 60:30:10 (% wt. ratio) between 2.2 V and 4.2 V at C/20 rate.

The charge/discharge cycling performance under various discharge rates, ranging from C/10 to 30 C with five cycles at each rate, was tested for the LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) nanostructures and demonstrated an excellent rate capability (Figure 7.17). The specific capacities generally decreased along with an increase of the charge/discharge rates, delivering discharge capacities of approximately 158, 157, 152, 147.4, 142, 133, 121, 93 and 66 mAh·g$^{-1}$ at C/10, C/5, C/2, C, 2 C, 5 C, 10 C, 20 C and 30 C, respectively. This C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII_15PVP (5% wt. C from sucrose) nanostructure demonstrated enhanced rate capabilities compared to previously reported LiFe$_{0.98}$Ni$_{0.02}$PO$_4$ composite prepared by a ball-milled assisted solid-state reaction using glucose as a carbon sources, which displayed discharge capacities of 142 and 121 mAh·g$^{-1}$ at 0.1 C and 2 C, respectively. On the other hand, a Ni doped LiFePO$_4$/C nanocomposite prepared through a simple solid state reaction using polyvinyl alcohol exhibited a good electrochemical performance delivering discharge capacities of 170 mAh·g$^{-1}$ at 0.2 C. That cathode material also demonstrated outstanding rate capability and long-term cycling performance displaying capacities of 150 mAh·g$^{-1}$ at 10 C with a capacity retention up to 95% after 5500 cycles. Simultaneous carbon coating and Ni doping led to a great enhancement of electronic conductivity, and the reduced particle size distributed in the range of 20-60 nm improved the Li$^+$ diffusion process effectively. Consequently, the material exhibited an excellent electrochemical performance, especially the high rate performance. Also, a Ni and Mn co-doped LiFe$_{0.95}$Ni$_{0.02}$Mn$_{0.03}$PO$_4$/C synthesised by a simple solid state route was reported to deliver excellent electrochemical performance with discharge capacities of 154.2 (0.5 C), 146.1 (1 C), 140.9 (2 C) and 128.4 (5 C) mAh·g$^{-1}$. Ni and Mn co-doping can stabilise the olivine
crystal structure, lengthen the Li-O bond, decrease the charge transfer resistance, enhance the Li$^+$ diffusion and thus improve the cycling and high-rate capability of LiFePO$_4$178. PXRD analysis of the post-cycled LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-%V-VIII_15PVP (5% wt. C from sucrose) nanopowders in the discharge state showed weak reflections indexed to the olivine LiFePO$_4$ structure, suggesting that the olivine LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ phase may be preserved after the cycling process (Figure 7.18).

Figure 7.17. (a) Discharge capacity curves and (b) cycling stability at different charge-discharge C rates of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-%V-VII_15PVP (5% wt. C from sucrose) nanostructures prepared with “[FeLiCl(OtBu)$_4$(THF)$_2$]$_n$” (V) and “[NiLiCl(OtBu)$_4$(THF)$_2$]$_n$” (VIII) heterometallic alkoxide precursors and mixed with C black and PTFE in 60:30:10 (% wt. ratio).

Figure 7.18. PXRD of post-cycled C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-%V and VIII_15PVP (5% wt. C from sucrose) in the discharged state.
The CV for the C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) nanostructure at 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V displayed the anodic and cathodic peaks characteristic of the Fe$^{3+}$/Fe$^{2+}$ redox pair with an excellent overlap of the CV curves over cycling, demonstrating the good reversibility of the material (Figure 7.19 (a)). Figure 7.19 (b) shows the CV for the same material measured at 0.1, 0.2, 0.5 and 1 mV·s$^{-1}$ scan rates. Results showed that the peak separation and the cathodic and anodic peak currents increased with increasing scan rate. At higher scan rates, the polarisation rises, as evidenced by the increase in the oxidation potential and a decrease in the reduction potential for the Fe$^{3+}$/Fe$^{2+}$ redox couple.

Figure 7.19. (a) CV at a 0.1 mV·s$^{-1}$ scan rate between 2.5 V and 4.5 V of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) nanostructure prepared through a microwave-assisted synthesis with “[FeLiCl(O’Bu)$_4$(THF)$_2$]_n” (V) and “[NiLiCl(O’Bu)$_4$(THF)$_2$]_n” (VIII) heterometallic alkoxide precursors. (b) CV profiles of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) at different scan rates.

The lithium diffusion coefficient for the C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) nanostructure was estimated from the CV study at different scan rates. For this rough estimation of the lithium diffusion coefficient, it was considered that the pellet of the working electrode was 20 µm thick with a surface area of 0.126 cm2. Representation of the peak currents against the square root of the scan rates ($\nu^{0.5}$) shows a linear dependence between the peak current and $\nu^{0.5}$ (Figure 7.20). Application of Equation 2.10 allows the estimation of the Li$^+$ diffusion constant. The apparent anodic and cathodic Li$^+$ diffusion constants of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) calculated using equation 2.10 with the slope of the peak current vs. $\nu^{0.5}$ plot were 1.92 x 10$^{-9}$ and 1.55 x 10$^{-9}$ cm2·s$^{-1}$, respectively. In the particular case of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$, the possible presence of Ni-rich and Fe-rich domains may have an effect in the Li$^+$ transport.
characteristics during charge and discharge. The calculated lithium diffusion coefficient for the C/LiFe$_{0.99}$Ni$_{0.01}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) nanostructure measured here is significantly higher than the D_{Li} of 4.28×10^{-11} cm2·s$^{-1}$ for a C/LiFe$_{0.98}$Ni$_{0.02}$PO$_4$ composite determined by similar CV analysis.

![Graph showing peak current vs. square root of scan rate](image)

Figure 7.20. Peak current vs. square root of the scan rate for the C/LiFe$_{0.99}$Ni$_{0.01}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) nanostructure prepared through a microwave-assisted synthesis using "[FeLiCl(O'Bu)$_4$(THF)$_2$]$_n$" (V) and "[NiLiCl(O'Bu)$_4$(THF)$_2$]$_n$" (V) heterometallic alkoxide precursors.

Comparing the CV curves of C/LiFe$_{0.99}$Ni$_{0.01}$PO$_4$-V-VIII-15PVP (5% wt. C from sucrose) nanostructures with undoped C/LiFePO$_4$-V (15% wt. C from sucrose) reveals a slight enhancement in the Li$^+$ kinetics when substituting some Fe$^{2+}$ for Ni$^{2+}$, as evidenced by the narrower voltage difference between the cathodic and anodic peak in C/LiFe$_{0.99}$Ni$_{0.01}$PO$_4$-V-VIII-15PVP (Figure 7.21), which suggests a lower electron transfer resistance. Previous reports have shown that the presence of a small amount of Ni$^{2+}$ such as in the LiMn$_{0.8}$Fe$_{0.2}$Ni$_{0.1}$PO$_4$ olivine provided structural stability accommodating the volume change between the LiMnPO$_4$ and MnPO$_4$ phases, favouring the redox exchange and the reversible extraction–insertion of Li$^+$ ions. Moreover, relatively longer Li–O bonds with smaller binding energy would lead to an easier migration of Li$^+$ cations during the charge–discharge processes.
Chapter 7

7.2.2.6 PXRD and SEM of NiO nanoparticles prepared from hydrolysis of
“[NiLi2Cl(O'Bu)4(THF)]n" (VIII) heterometallic alkoxide precursor

The utilisation of the “[NiLi2Cl(O'Bu)4(THF)]n" (VIII) heterometallic alkoxide precursor for the generation of the transition metal oxide NiO has also been explored. The hydrolysis of “[NiLi2Cl(O'Bu)4(THF)]n" (VIII) promoted by ultrasound irradiation and a heat treatment with 15% wt. C from sucrose for 3 hr at 500 °C under air afforded single phase C/NiO nanostructures. Figure 7.22 shows the PXRD patterns of the as-synthesised NiO precursor and the thermally decomposed product after heat treatment for 3 hr at 500 °C under air. The PXRD pattern of the Ni oxide precursor shows a strong low-angle reflection with an intense peak at around 15° 2θ. Such feature in the PXRD pattern has also been previously found on other precursor materials used for the preparation of NiO. It has been considered a typical feature of the coordination of alkoxides to metal ions.374-376 The PXRD pattern of the calcined powder matches well with the face-centered cubic NiO phase. Rietveld refinements of the PXRD of the C/NiO powders to a NiO Fm-3m structure (ICSD No 01-075-0269 47-1049)377 (Figure 7.23) revealed a good fit (Rwp=13.9 %) between the experimental data and the calculated model. A weak reflection at 33 2θ°
indicates the small presence of an unknown impurity phase. The estimated crystallite size of the NiO nanostructure was calculated using the Scherrer equation applied to the (200) diffraction peak and was ~26 nm. SEM images of the C/NiO powders revealed irregular pebble shaped particles with sizes around 30-50 nm (Figure 7.24).

Figure 7.22. PXRD of as-synthesised NiO precursor and C/NiO heat treated for 3 hr at 500 °C under air.
Chapter 7

Figure 7.23. Rietveld analysis of PXRD data of C/NiO sample. \([R_{wp}=13.9 \%, R_{exp}=10.76 \%,\]
\(\chi^2=1.68, a=4.1770(2) \text{ Å}, b=4.1770(2) \text{ Å} \) and \(c=4.1770(2) \text{ Å}\).

Figure 7.24. SEM images of C/NiO prepared from hydrolysis of \(\text{[NiLi}_2\text{Cl(O}^\text{t}Bu)_4\text{(THF)}_2\text{]}_n\) \(\text{VIII}\) heterometallic alkoxide precursor.

7.2.2.7 Electrochemical performance of NiO nanoparticles prepared from hydrolysis of \(\text{[NiLi}_2\text{Cl(O}^\text{t}Bu)_4\text{(THF)}_2\text{]}_n\)

Galvanostatic cycling of the C/NiO sample (carbon coated with 15% C from sucrose) at a current density of 100 mAh\cdot g\(^{-1}\) over a 0.01-3.00 V range displayed a first
discharge capacity of ~3450 mAh·g⁻¹ that sharply decreased to approximately 1450 mAh·g⁻¹ at the second cycle. This initial discharge capacity of C/NiO is significantly larger than in previous reports. The large capacity drop after the first cycle could be attributed to inevitable irreversible processes such as SEI formation and electrolyte decomposition, and also to incomplete conversion reaction (a mixture of irreversible amorphous Li₂O and Ni metal could be formed during the cycling process). In Figure 7.25 (a) two potential regions can be observed in the discharge profile, one around 0.7 V, which is the result of the reduction of NiO to Ni and the formation of a SEI film, and other at around 0.8 V corresponding to the Li⁺ storage in the carbonaceous matrix and also SEI formation. The first charge curve exhibited a “plateau” at around 2.3 V, which could be assigned to the oxidation of Ni nanograins. Furthermore, Figure 7.25 (b) shows a significant decrease in capacity over cycling, but a discharge capacity of 970 mAh·g⁻¹ is still retained at the 20th cycle. Similar electrochemical performance has been previously observed in an ultrathin porous NiO nanosheets/graphene hierarchical structure, which displayed a reversible capacity of 982 mAh·g⁻¹ at a current density of 100 mA·g⁻¹ even after 50 cycles when cycled from 0.01 V to 3.00 V. This metal alkoxide precursor synthetic route even afforded C/NiO nanoparticles that showed slightly improved electrochemical behavior compared to nanostructured NiO electrodes fabricated by a direct thermal oxidation of Ni foams at 400 °C in air, which exhibited reversible capacities of 746 mAh·g⁻¹ at 0.2 C rate after 10 cycles. Comparable electrochemical performance was reported for NiO/multiwalled carbon nanotube composites prepared by direct thermal decomposition, demonstrating a lithium storage capacity of ~800 mAh·g⁻¹ after 50 cycles. However, enhanced capacity retention was observed in NiO 2D nanostructures obtained after calcination of the sonocrystallised β-Ni(OH)₂ precursor, which delivered ca. 1500 mAh·g⁻¹ after 30 cycles. The high rate electrochemical performance of the C/NiO nanostructure was investigated by multiple-step rate galvanostatic strategy and the results are shown in Figure 7.26. After 20 cycles at 100 mA·g⁻¹, five cycles on each step rate were measured to evaluate the capacity and the capacity retention at different charge/discharge current conditions (from 200 mA·g⁻¹ to 2000 mA·g⁻¹). The discharge and charge capacities of the nanostructured C/NiO electrode faded notably even at low current of 100 mA·g⁻¹, going from discharge capacitites of 1450 mAh·g⁻¹ at the second cycle to 970 mAh·g⁻¹ at the 20th cycle. After that, the charge/discharge capacities exhibited a drastic capacity loss upon cycling at higher C rates, delivering 740 mAh·g⁻¹ at 200 mA·g⁻¹, 390 mAh·g⁻¹ at 400 mA·g⁻¹, 210 mAh·g⁻¹ at 800 mA·g⁻¹, 120 mAh·g⁻¹ at 1200 mA·g⁻¹ and 80 mAh·g⁻¹ at 2000 mA·g⁻¹. After that, discharge capacities of 600 mAh·g⁻¹ were still retained when returning to the slower rate of 100 mA·g⁻¹. This C/NiO nanocomposite showed a comparable rate
capabilities to NiO microspheres with waxberry-like structure delivering 597.8 mAh·g⁻¹ after 100 cycles at a current density of 500 mA·g⁻¹.³⁸⁰ Discharge capacities of 712, 656, 607, 582, and 515 mA·g⁻¹ have been observed for a mesoporous NiO at 0.1 C, 0.2 C, 0.5 C, C, and 2 C, respectively, demonstrating the benefit of porous electrodes for excellent high rate performance for high power LIBs.³⁸¹ It has been demonstrated that porous C/NiO can reach discharge capacities of 864 mAh·g⁻¹ after 10 cycles at a current density of 718 mA·g⁻¹. The high reversibility and excellent cycling stability could be explained by the interconnected porous NiO structure, which would be favourable for Li⁺ diffusion. The sufficient void volume of the structure can help to accommodate the volume expansion during cycling.³⁸² PXRD pattern of the cycled C/NiO displayed very broad peaks corresponding to NiO and Ni metal phases (Figure 7.27), suggesting that some crystalline nanoparticulate NiO may still be present after the cycling process.

![Figure 7.25](image_url)

Figure 7.25. Voltage-capacity profile and (b) cycling stability of C/NiO (15% wt. C from sucrose) with C black and PTFE in 60:30:10 % weight ratio over the potential range of 0.01 V-3.00 V at 100 mA·g⁻¹.
Figure 7.26. Rate performance of C/NiO (15% wt. C from sucrose) mixed with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at different charge/discharge rates.

Figure 7.27. PXRD of post-cycled C/NiO in the charged state.
The CV plot at 0.1 mV·s⁻¹ scan rate between 0.01 V and 3.20 V of the C/NiO powders shows a reduction peak ranging from 0.3 V to 0.5 V in the first cycle corresponding to the
initial reduction of NiO to metallic Ni (Figure 7.28). In the subsequent cycles, the reduction peak is composed of a main peak at around 1.01 V and a shoulder peak near 1.3 V. In the oxidation scan, a very broad peak at 1.46 V and a more intense peak at ~2.33 V were observed, which could be assigned to the oxidation of the SEI layer and Ni metal nanograins, respectively. The well-known mechanisms for these reactions are the reversible reaction of NiO to Ni metal and Li$_2$O. The CV analysis suggests that after the initial cycle, the reversible electrochemical process is mainly the \(\text{NiO} + 2 \text{Li}^+ + 2\text{- e}^- \leftrightarrow \text{Ni}^0 + \text{Li}_2\text{O} \) reaction, which is consistent with previous reports. The good overlap of the CV curves confirms the good reversibility of this electrochemical process.

![Figure 7.28. CV at a 0.1 mV·s$^{-1}$ scan rate between 0.01 V and 3.20 V of C/NiO nanostructures prepared through a ultrasound-assisted “[NiLi$_2$Cl(O’Bu)$_4$(THF)$_2$]$_n$” (VIII) alkoxide precursor.](image)

7.3 Conclusions

In this chapter, a low cost and green synthetic approach for the preparation of olivine LiFe$_{1.3}$Ni$_x$PO$_4$ and C/NiO nanostructures through simple microwave and ultrasound-assisted routes using single source metal alkoxide precursors has been presented. Therefore, the versatility of using single source heterometallic alkoxide precursors for the synthesis of both nanocrystalline olivine cathodes and conversion anode materials for Li-ion batteries has again been demonstrated. Moreover, the effect of the addition of PVP
as a capping agent for the generation of LiFe\textsubscript{1-x}Ni\textsubscript{x}PO\textsubscript{4} nanophases has been examined, resulting in better crystallised and smaller sized LiFe\textsubscript{1-x}Ni\textsubscript{x}PO\textsubscript{4} nanoparticles. Furthermore, the PVP could also act as a carbon source contributing towards the formation of a conductive carbon coating on the olivine nanostructures. Finally, it has also been suggested that the utilisation of a Li and Ni containing alkoxide precursor instead of NiC\textsubscript{2}O\textsubscript{4}·2H\textsubscript{2}O may slightly increase the crystallinity of the LiFe\textsubscript{1-x}Ni\textsubscript{x}PO\textsubscript{4} nanophases prepared via microwave methods. Electrochemical testing of LiFe\textsubscript{0.95}Ni\textsubscript{0.05}PO\textsubscript{4} nanostructures prepared with 15\% PVP displayed a good cyclability with charge/discharge capacities around 130 mAh·g-1 at C/20 rate. An additional carbon coating using only 5\% wt. C from sucrose slightly enhanced the electrochemical performance, delivering discharge capacities of 140 mAh·g-1 at C/20 and 93 mAh·g-1 at 10 C rate. On the other hand, the ultrasound-assisted hydrolysis of the Li and Ni containing alkoxide precursor yielded C/NiO nanoparticles delivering an excellent electrochemical performance, reaching discharge capacities of 970 mAh·g-1 after the 20th cycle at 100 mA·g-1 current density.
8 Overall Conclusions and Future Work

8.1 Overall conclusions

In this thesis, microwave and ultrasonic treatments of single source metal alkoxide precursors have been proved as facile, rapid and low cost route to both anode and cathode nanomaterials for LIB applications. In particular, the formation of olivine LiFe$_{1-x}$M$_x$PO$_4$ \((M=\text{Mn, Ni})\) nanostructures and several transition metal oxide nanoparticles \((\text{Mn}_3\text{O}_4 \text{hausmannite}, \text{Fe}_3\text{O}_4 \text{magnetite and NiO})\) have been investigated, which afforded electrode nanomaterials exhibiting outstanding cycling performances. A significant reduction in processing times and energy consumption during the preparation of nanostructured battery materials when using single source metal alkoxides precursors instead of commercially available starting materials has been demonstrated. Efforts have been directed to co-locate all the required metals in these metalorganic precursors in order to overcome the need of diffusional mixing and allow the reactions to proceed faster and at lower temperatures generating highly crystalline nanomaterials. Furthermore, it has been shown that the presented metal alkoxide compounds are suitable single source precursors for the fabrication of LiFe$_{1-x}$M$_x$PO$_4$ nanostructures via both fast microwave-assisted processes and also in more conventional solvothermal synthesis using autoclaves. Moreover, the composition of the single source precursors can have a strong impact in the resulting polymorph chemistry, as modification of the nature of the metal alkoxide precursor has revealed that obtaining different LiFePO$_4$ polymorphs \((\text{Pnma} \text{ and } \text{Cmcm} \text{ space groups})\) is possible. On the other hand, the influence of the solvent (ethylene glycol vs. ionic liquid EMI-TFMS) in these fast microwave-assisted processes using single source metal alkoxides has also been examined. PXRD and X-ray PDF analyses in conjunction with cycling tests have demonstrated that better crystallised and electrochemically optimised LiFePO$_4$ can be obtained through the ionothermal microwave approach using EMI-TFMS. Finally, the utilisation of PVP as a capping agent in microwave treatments of single source metal alkoxide precursors for the fabrication of Ni doped LiFePO$_4$ nanoparticles has been explored, revealing that the addition of PVP can afford better crystallised and smaller sized LiFe$_{0.95}\text{Ni}_{0.05}$PO$_4$ nanostructures.

Throughout this thesis, PXRD analysis in combination with Rietveld refinements has confirmed the phase purity of the presented materials. After that, electron microscopy imaging has allowed examination of the particle size, morphology and agglomeration. In the case of LiFe$_{1-x}$M$_x$PO$_4$ nanostructures, SEM results have confirmed the smaller particle sizes of the olivine products prepared using single source heterometallic alkoxide precursor compared to when homometallic alkoxides or commercial starting materials are used. Therefore, these results suggest that single source metal alkoxides are ideal candidates for the generation of nanosized inorganic functional materials. Control over
morphology and particle size depending on the Mn content and choice of solvent has also
been demonstrated. Investigation of the local structure and the presence of defects or
amorphous material is crucial to gain a deeper insight into the electrochemical
performance of electrode materials. Neutron and X-ray PDF analyses of olivine LiFe$_1-x$Mn$_x$PO$_4$ nanophases have been conducted to examine the local structure and defect
chemistry. Results have shown that microwave processes afford highly crystalline olivine
structured nanomaterials. The suitability of single source precursor processes using
heterometallic alkoixdes in conjunction with microwave-assisted routes for the
generation of highly crystalline olivine mixed-metal phosphate nanostructuues has been
therefore demonstrated. µ$^+$SR has been applied for the first time as a local probe to
investigate the Li$^+$ diffusion properties in a family of LiFe$_1-x$Mn$_x$PO$_4$ olivine phases,
suggesting that the D$_{Li}$ may slightly decrease with higher Mn contents. Finally, cycling
studies of these nanostructured battery materials have been conducted in order to probe
the relationship between synthetic route, composition, particle size and morphology, and
electrochemical performance.

Galvanostatic cycling tests of the LiFe$_1-x$M$_x$PO$_4$ ($M=$Mn, Ni) nanostructures prepared from
metal alkoide precursors displayed a significant improvement in the electrochemical
performance in comparison to the olivine phases synthesised using commercial starting
materials and the rate capabilities exhibited were comparable to the best performing in
the literature. Figure 8.1 depicts the rate performance from C/10 to 10 C rates for all the
LiFePO$_4$ samples prepared in this thesis and some literature values for microwa
synthesised LiFePO$_4$ reported by Niederberger et al.45 When comparing the cycling
performance for the LiFePO$_4$ samples prepared using commercial starting materials via a
microwave-assisted method and a conventional solvothermal process (LiFePO$_4$ MW_Commercial vs. LiFePO$_4$ S_Commercial), results indicate that microwave
synthesised LiFePO$_4$ displayed a better rate performance at the fastests C rates,
confirming the suitability of microwave methods to yield high rate performing electrodes.

Fast microwave treatments of metal alkoixdes afforded LiFePO$_4$ nanostructures delivering
comparable rate behaviour to LiFePO$_4$ MW_Commercial prepared with commercial
starting materials. However, the reaction times were reduced from 3 hr to 10 min with
the metal alkoide precursor approach. Furthermore, a slight enhancement of the
electrochemical behaviour at high C rates was observed when single source
heterometallic alkoixdes were used instead of homometallic alkoixdes, suggesting that
having all of the required metals in a single source precursor may be beneficial to obtain
high performing LiFePO$_4$ nanostructures. LiFePO$_4$ S_IV (Heterometallic) nanphase
synthesised by conventional solvothermal treatments of single source heterometallic
alkoide precursors displayed an enhanced electrochemical behaviour in comparison to
LiFePO$_4$ S_Commercial, confirming the improvement in the electrochemical performance that can be achieved with single source heterometallic alkoxide precursors. Finally, the fast ionothermal microwave-assisted synthesis of olivine LiFePO$_4$ MW V IL employing single source heterometallic alkoxides and the ionic liquid EMI-TFMS afforded the best performing material at the fastest C rate even compared to previous reports on microwave synthesised LiFePO$_4$ by Niederberger et al.45 establishing this synthetic approach as one to yield high performance electrode materials across the olivines.

![Comparative electrochemical performances of LiFePO$_4$](image)

Figure 8.1. Comparative rate performance from 2.2 V to 4.0 V for C/LiFePO$_4$ (15% wt. C from sucrose) samples (LiFePO$_4$ MW_Com., LiFePO$_4$ MW I (Hom. Alk.), LiFePO$_4$ MW V (Het. Alk.), LiFePO$_4$ S V (Het. Alk.), LiFePO$_4$ S Com. and LiFePO$_4$ MW V IL (Het. Alk.)).

Olivine nanostructured LiMnPO$_4$ exhibited a significant improvement of the electrochemical performance when using the metal alkoxide precursors instead of other commercial starting materials (Figure 8.2). A noticeable enhancement of the rate capabilities was also observed when using single source heterometallic alkoxides compared to just homometallic alkoxides. Furthermore, microwave synthesised LiMnPO$_4$ MW VI (Heterometallic) displayed an improved rate behaviour compared to solvothermally synthesised LiMnPO$_4$ S VI (Heterometallic), confirming again that microwave methods are promising synthetic routes to high performing nanostructured electrodes. LiMnPO$_4$ MW VI (Heterometallic) even exhibited improved rate capabilities.
at the fastest C rates compared to previous microwaved synthesised LiMnPO$_4$ by Niederberger et al.45

![Figure 8.2](image)

Figure 8.2. Comparison rate performance from 2.2 V to 4.5 V for LiMnPO$_4$ (15% wt. C from sucrose) samples (LiMnPO$_4$-MW_Com., LiMnPO$_4$-MW-II (Hom. Alk.), LiMnPO$_4$-MW-VI (Het. Alk.) and LiMnPO$_4$-S-VI (Het. Alk.)).

A similar trend was observed for the mixed transition metal phosphate LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ samples, in which LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanophases synthesised through the metal alkoxide route demonstrated an enhanced rate performance compared to LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW-Commercial prepared from commercial starting materials (Figure 8.3). Moreover, a slight improvement in the rate capability of the LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW-VII (Heterometallic) powders prepared from a trimetallic alkoxide in comparison to LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW-V-VI (mixture of heterometallic alkoxide precursors) was observed, which suggests that having all the required metals closer together at the atomic level during the synthesis process may slightly improve the electrochemical properties of olivine nanomaterials. Furthermore, microwave synthesised LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW-VII (Heterometallic) again exhibited improved rate capabilities at the fastest C rates compared to solvothermally synthesised LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-S-VII (Heterometallic). These LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ nanostructures synthesised using metal alkoxides exhibited comparable rate capabilities to previous LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ phases reported in the literature.238
Chapter 8

Figure 8.3. Comparative rate performance from 2.2 V to 4.3 V for LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ (15% wt. C from sucrose) samples (LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW_Com., LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW_III (Hom. Alk.), LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW_VII (Het. Alk.), LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-MW_VI (Mix Het. Alk.) and LiFe$_{0.5}$Mn$_{0.5}$PO$_4$-S_VII (Het. Alk.)).

8.2 Future work

As ionothermal microwave-assisted methods has shown to afford the best performing LiFePO$_4$ olivine, further investigation on the utilisation of different ionic liquids in these fast microwave treatments of single source metal alkoxide precursors for the preparation of Ni and Mn doped LiFePO$_4$ nanoparticles could afford olivine nanostructures with increased cell voltage exhibiting enhanced rate capabilities. Studies on how to reuse the ionic liquids after the synthesis employing metal alkoxides would be necessary to reduce production costs and make this ionothermal process more environmentally-friendly, low cost and scalable. One pot single source precursor synthesis of LiFe$_{1-x}$Mn$_x$PO$_4$ nanocomposites with different carbon additives such as reduced graphene oxide or carbon nanotubes could also afford olivine nanostructures with enhanced electrochemical performances. Also, investigating a wider range of LiFe$_{1-x}$Mn$_x$PO$_4$ stoichiometries could contribute to find out the optimum Mn doping level leading to the best cycling behaviour and rate capabilities. For example, Ding et al. reported that LiFe$_{0.7}$Mn$_{0.3}$PO$_4$ displayed the best electrochemical performance among a series of LiFe$_{1-x}$Mn$_x$PO$_4$/C composites (x=0, 0.1, 0.3, 0.5, 1). The simple, facile and low cost
synthetic strategy using metal alkoxide precursors explored in this thesis to prepare metal oxide conversion anodes can be extended to fabricate other transition metal oxides \(C/\text{M}_x\text{O}_y \) (\(\text{M}=\text{Fe, Co, Ni, Mn…} \)) and mixed metal oxide nanocomposites, which may exhibit promising performances as high capacity LIB conversion anodes.

Understanding the fundamental processes of nanoparticle growth and the evolution of their morphology in solution is crucial for the development of synthetic methodologies leading to novel energy storage nanomaterials. The development of advanced \textit{in situ}\ characterisation techniques for real-time observation of synthesis are then very promising. Determination of the reaction mechanism underlying the formation and growth of the crystalline solid is essential in order to investigate the formation of intermediates between the reactants and product, the crystal’s growth rate, and the amount of structural disorder.137 This information is essential to improve the synthetic procedures and potentially reduce manufacturing costs of functional materials. For example, \textit{in situ}\ XRD can provide new and valuable insights into the chemical synthesis of electrode materials and greatly benefit Li-ion battery technology for materials synthesis. Moreover, this technique could provide important information in determining procedures and conditions required for preparing new metastable phases that are not easily generated by conventional syntheses. Therefore, \textit{in situ}\ XRD analysis during the synthesis of \(\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4 \) nanostructures using commercial starting materials or single source metal alkoxide precursors would unravel fundamental information regarding the reaction intermediates and mechanisms in these processes. Comparison of \textit{in situ}\ XRD studies in conventional solvothermal processes and in microwave-assisted solvothermal reactions would also help to understand the differences between the reaction mechanisms under different heating regimes. \textit{In-operando}\ diffraction studies during battery cycling can also provide valuable insights into the structural changes taking place during the \(\text{Li}^+ \) extraction-insertion process. Therefore, combining time series PDFs with voltage-current measurements could give key insights into the local structural changes in LIBs during charge-discharge cycles allowing a detailed understanding of the \(\text{Li}^+ \) extraction/insertion mechanism in nanostructured electrodes, especially in the case of transition metal oxide conversion anodes where a deeper understanding of the conversion reaction process could potentially help to improve their capacity retention. In general, these \textit{in operando}\ local structure studies can potentially contribute to the achievement of high-performing battery technology.

It would also be interesting to investigate the utilisation of single source heterometallic alkoxide precursors for the preparation of nanotstructured \(\text{Li}_x\text{Fe}_{1-x}\text{Mn}_x\text{SiO}_4 \) cathodes through relatively fast and low temperature processes. Lithium orthosilicates are currently attracting increasing attention as potential high capacity cathode materials for
Li-ion batteries due to the fact that two Li$^+$ ions (de)insertion per formula unit can take place raising the theoretical capacity of the material to 332 mAh g$^{-1}$. Furthermore, lithium orthosilicates offer the advantage of the abundance and low cost of silicon, environmental benignity and high safety from strong Si-O bonding.386

8.2.1 Microwave synthesis of non-olivine β-LiFe$_{1-x}$M$_x$PO$_4$ (M=Fe, Co or Ni) nanostructures

Previous experimental studies have demonstrated that β-LiFePO$_4$ exhibits almost no electrochemical activation with very low capacity (10-20 mAh g$^{-1}$)50, 295, 387 and, as a consequence, β-LiFePO$_4$ has not been pursued as a cathode material for LIBs. However, it has recently been shown that ball milling β-LiFePO$_4$ with conductive carbon can induce disorder such as Fe$_{0.1}$LiFe$_{0.9}$, antisite defects, crystal distortion and amorphous domains thus improving the cycling performance.52 The amorphous structure can facilitate Li$^+$ ions migration due to redistribution of the FeO$_4$ polyhedron and the PO$_4$ tetrahedrons resulting in much more space to create new migration passages for the imprisoned Li$^+$ ions. To date, the effect of transition metal site doping in β-LiFePO$_4$ has not been explored. Therefore, investigations of the electrochemical performances of Ni and Co doped β-LiFePO$_4$ nanostructures are planned, which will help to understand if transition metal doping can lead to enhanced Li$^+$ storage capabilities in β-LiFePO$_4$. β-LiFePO$_4$, β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ and β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ nanostructures have already been successfully synthesised by a facile microwave approach (15 min 70 °C and 30 min 280 °C) using LiH$_2$PO$_4$ and the appropriate transition metal oxalate (FeC$_2$O$_4$·2H$_2$O, CoC$_2$O$_4$·2H$_2$O, NiC$_2$O$_4$·2H$_2$O) precursors in tetraethylene glycol (see Figure A8.1 for PXRD patterns of β-LiFe$_{0.9}$M$_{0.1}$PO$_4$ (M=Fe, Co or Ni)). EDS analysis of β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ and β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ have also confirmed the presence of Co and Ni (Figure A8.2). Galvanostatic cycling of the ball milled (15 min) β-LiFePO$_4$, β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ and β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ powders with conductive carbon black (60:40 wt. ratio) at a C/20 rate demonstrated reversible discharge capacities of 120 mAh·g$^{-1}$, 145 mAh·g$^{-1}$ and 120 mAh·g$^{-1}$ for the β-LiFePO$_4$, β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ and β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ materials, respectively (Figure 8.4). No obvious capacity fading was observed over at least 10 cycles, confirming the good cyclability of these materials. These results suggested that Ni doping in β-LiFePO$_4$ does not lead to any enhancement of the electrochemical performance while β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ demonstrated that Co doping may be beneficial to increase the reversible specific capacity. Furthermore, the ball milling treatment markedly improved the electrochemical performance from ~60 mAh·g$^{-1}$ for non-ball milled β-LiFePO$_4$ to 120 mAh·g$^{-1}$ for β-LiFePO$_4$ ball milled for 15 min. This enhancement can be attributed to the fact that the amorphous domains formed during the ball milling process may benefit the Li$^+$ diffusion by creating new migration passages for the Li$^+$ ions.52 Figure A8.3 shows the voltage-composition profiles of the β-
LiFe$_{0.9}M_{0.1}$PO$_4$ ($M=\text{Fe, Co or Ni}$) nanostructures confirming the slightly improved Li$^+$ storage capabilities of β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ compared to β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ and β-LiFePO$_4$.

Figure 8.4. Charge-discharge voltage profiles at C/20 of (a) β-LiFePO$_4$, (b) β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$, (c) β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ and (d) Comparative cycling performance of β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$, β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ and β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$.

8.2.2 Microwave treatments of single source heterometallic alkoxide precursors to maricite NaFe$_{1-x}$Mn$_x$PO$_4$ nanostructures

The rapidly increasing demand for Li-ion batteries is starting to face nowadays the challenge of shortages in lithium resources. Therefore, the development of new types of energy storage technologies beyond lithium such as Na-ion, Mg-ion and Al-ion batteries using cost-effective and sustainable materials is urgently needed. Among them, Na-ion batteries have been regarded as a promising alternative to Li-ion batteries owing to the similar underlying electrochemical reaction to Li-ion batteries and to the unlimited sodium resources. In particular, NaFePO$_4$ can be regarded as a promising cathode material for Na-ion batteries due to its low cost, non-toxicity, safety and natural
abundance of Na and Fe. It has been recently demonstrated that hollow amorphous NaFePO₄ maricite nanospheres can function as an excellent cathode material for rechargeable Na batteries exhibiting high storage capacity of 152 mAh·g⁻¹ at 0.1 C after 300 cycles and also high rate capability. The development of energy-efficient synthetic routes to NaFePO₄ and further understanding of the NaFePO₄ maricite structure and its correlation to the electrochemical performance is needed to advance this promising cathode material.

In some preliminary work, a single source precursor microwave-assisted synthetic strategy using [NaM(OtBu)₃(THF)]₂ (M=Fe, Mn) heterometallic alkoxides has been applied for the preparation of maricite NaFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures (see Figure 8.4 for PXRD patterns). SEM images of the maricite NaFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures revealed a non-uniform round morphology with particle sizes of approximately 25-35 nm (Figure A8.5). For the first time, the preparation of single-phase maricite NaFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanoparticles via microwave methods at such low temperatures of 280 °C has been presented. With this, the suitability of fast microwave treatments of single source metal alkoxide precursors for the fabrication of nanostructured Na-ion battery electrodes is demonstrated. Preliminary galvanostatic cycling investigations at C/20 rate on the NaFePO₄ nanostructure (NaFePO₄ : C in 80:20 % weight ratio mixture ball milled for 2 hr) revealed that charge and discharge capacities of approximately 110 mAh·g⁻¹ were delivered with a slight capacity fading over cycling. More sophisticated synthetic strategies using surfactants or several carbon additives can be applied to the proposed single source precursor approach using metal alkoxides in order to afford electrochemically optimised maricite NaMPO₄ (M=Fe, Mn) nanoparticles. Moreover, optimisation of the carbon loading and ball milling times may lead to significant improvements in the electrochemical behaviour. Further electrochemical testing of this family of maricite NaFe₁₋ₓMnₓPO₄ (x=0, 0.5 and 1) nanostructures is under investigation and results will unravel if substituting Mn by Fe in maricite NaFePO₄ leads to any enhancement of the cycling performance. Also, in operando Mössbauer spectroscopy of maricite NaFePO₄ would confirm if the electrochemical activity is attributed to the oxidation/reduction of the Fe³⁺/Fe²⁺ redox pair.
Figure 8.5. Voltage-capacity profile of maricite NaFePO$_4$ between 1.5 V and 4.5 V at C/20 rate. NaFePO$_4$: C sp in 80:20 (% weight ratio) mixture ball milled for 2 hr.
Appendix

Figure A3.1. Comparative PXRD patterns of commercial LiH₂PO₄, LiH₂PO₄ prepared with LiOH·H₂O and ⁷LiH₂PO₄ prepared with ⁷LiOH·H₂O.

Table A3.1. Structural parameters of LiFePO₄ sample from Rietveld analysis of high resolution PND data at room temperature.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso (Å²)</th>
<th>Frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>⁷Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.015(1)</td>
<td>0.747(7)</td>
</tr>
<tr>
<td>Fe</td>
<td>4c</td>
<td>0.2819(1)</td>
<td>0.2500</td>
<td>0.9752(1)</td>
<td>0.0049(1)</td>
<td>1.001(2)</td>
</tr>
<tr>
<td>P</td>
<td>4c</td>
<td>0.0954(1)</td>
<td>0.2500</td>
<td>0.4182(1)</td>
<td>0.0029(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.0977(1)</td>
<td>0.2500</td>
<td>0.7420(2)</td>
<td>0.0068(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.4575(1)</td>
<td>0.2500</td>
<td>0.2057(2)</td>
<td>0.0066(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>8d</td>
<td>0.1658(1)</td>
<td>0.0474(1)</td>
<td>0.2854(1)</td>
<td>0.0062(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>⁶Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.015(1)</td>
<td>0.030</td>
</tr>
</tbody>
</table>
Table A3.2. Structural parameters of LiFe$_{0.75}$Mn$_{0.25}$PO$_4$ sample from the Rietveld analysis of high resolution powder neutron diffraction data at room temperature.

<table>
<thead>
<tr>
<th>LiFe${0.75}$Mn${0.25}$PO$_4$</th>
<th>$R_{\text{exp}}=0.0174$</th>
<th>$R_{\text{wp}}=0.0144$</th>
<th>$\chi^2=1.879$</th>
<th>$d=3.538$ mg/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnma</td>
<td>$a=10.3646(2)$ Å</td>
<td>$b=6.0222(1)$ Å</td>
<td>$c=4.7055(1)$ Å</td>
<td>$V=293.71(2)$ Å3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso} (Å2)</th>
<th>Frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.013(1)</td>
<td>0.807(7)</td>
</tr>
<tr>
<td>Fe</td>
<td>4c</td>
<td>0.2820(1)</td>
<td>0.2500</td>
<td>0.9735(1)</td>
<td>0.0052(1)</td>
<td>0.771(1)</td>
</tr>
<tr>
<td>Mn</td>
<td>4c</td>
<td>0.2820(1)</td>
<td>0.2500</td>
<td>0.9735(1)</td>
<td>0.0052(1)</td>
<td>0.229(1)</td>
</tr>
<tr>
<td>P</td>
<td>4c</td>
<td>0.0949(1)</td>
<td>0.2500</td>
<td>0.4158(1)</td>
<td>0.0029(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.0975(1)</td>
<td>0.2500</td>
<td>0.7393(2)</td>
<td>0.0067(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.4571(1)</td>
<td>0.2500</td>
<td>0.2073(2)</td>
<td>0.0071(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>8d</td>
<td>0.1651(1)</td>
<td>0.0479(1)</td>
<td>0.2839(1)</td>
<td>0.0066(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>6Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.013(1)</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Table A3.3. Structural parameters of LiFe$_{0.5}$Mn$_{0.5}$PO$_4$ sample from Rietveld analysis of high resolution PND data at room temperature.

<table>
<thead>
<tr>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$</th>
<th>$R_{\text{exp}}=0.0176$</th>
<th>$R_{\text{wp}}=0.0150$</th>
<th>$\chi^2=1.879$</th>
<th>$d=3.511$ mg/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnma</td>
<td>$a=10.3901(3)$ Å</td>
<td>$b=6.0454(2)$ Å</td>
<td>$c=4.7167(1)$ Å</td>
<td>$V=296.27(2)$ Å3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso} (Å2)</th>
<th>Frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.011(1)</td>
<td>0.858(8)</td>
</tr>
<tr>
<td>Fe</td>
<td>4c</td>
<td>0.2821(1)</td>
<td>0.2500</td>
<td>0.9714(3)</td>
<td>0.0070(3)</td>
<td>0.521(1)</td>
</tr>
<tr>
<td>Mn</td>
<td>4c</td>
<td>0.2821(1)</td>
<td>0.2500</td>
<td>0.9714(3)</td>
<td>0.0070(3)</td>
<td>0.479(1)</td>
</tr>
<tr>
<td>P</td>
<td>4c</td>
<td>0.0945(1)</td>
<td>0.2500</td>
<td>0.4129(2)</td>
<td>0.0025(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.0973(1)</td>
<td>0.2500</td>
<td>0.7355(2)</td>
<td>0.0066(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.4567(1)</td>
<td>0.2500</td>
<td>0.2091(2)</td>
<td>0.0076(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>8d</td>
<td>0.1640(1)</td>
<td>0.0487(1)</td>
<td>0.2820(1)</td>
<td>0.0068(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>6Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.011(1)</td>
<td>0.030</td>
</tr>
</tbody>
</table>
Table A3.4. Structural parameters of LiFe$_{0.25}$Mn$_{0.75}$PO$_4$ sample from Rietveld analysis of high resolution PND data at room temperature.

<table>
<thead>
<tr>
<th>LiFe${0.25}$Mn${0.75}$PO$_4$</th>
<th>R_{exp}=0.0234</th>
<th>R_{wp}=0.0169</th>
<th>χ^2=1.879</th>
<th>d=3.476 mg/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnma</td>
<td>a=10.4168(2) Å</td>
<td>b=6.0713(1) Å</td>
<td>c=4.7287(1) Å</td>
<td>V=299.06(3) Å3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso (Å2)</th>
<th>Frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.010(1)</td>
<td>0.883(8)</td>
</tr>
<tr>
<td>Fe</td>
<td>4c</td>
<td>0.280(1)</td>
<td>0.2500</td>
<td>0.977(3)</td>
<td>0.007</td>
<td>0.249(1)</td>
</tr>
<tr>
<td>Mn</td>
<td>4c</td>
<td>0.280(1)</td>
<td>0.2500</td>
<td>0.977(3)</td>
<td>0.007</td>
<td>0.751(1)</td>
</tr>
<tr>
<td>P</td>
<td>4c</td>
<td>0.0937(1)</td>
<td>0.2500</td>
<td>0.4103(2)</td>
<td>0.0029(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.0976(1)</td>
<td>0.2500</td>
<td>0.7317(2)</td>
<td>0.0068(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.4561(1)</td>
<td>0.2500</td>
<td>0.2106(2)</td>
<td>0.0066(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>8d</td>
<td>0.1629(1)</td>
<td>0.0497(1)</td>
<td>0.2796(1)</td>
<td>0.0062(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>6Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.010(1)</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Table A3.5. Structural parameters of LiMnPO$_4$ sample from Rietveld analysis of high resolution PND data at room temperature.

<table>
<thead>
<tr>
<th>LiMnPO$_4$</th>
<th>R_{exp}=0.0287</th>
<th>R_{wp}=0.0205</th>
<th>χ^2=1.879</th>
<th>d=3.496 mg/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnma</td>
<td>a=10.4470(5) Å</td>
<td>b=6.1012(3) Å</td>
<td>c=4.7440(2) Å</td>
<td>V=302.38(4) Å3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso (Å2)</th>
<th>Frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>4a</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0087(8)</td>
<td>0.98(1)</td>
</tr>
<tr>
<td>Mn</td>
<td>4c</td>
<td>0.2815(2)</td>
<td>0.2500</td>
<td>0.9694(4)</td>
<td>0.0037(3)</td>
<td>1.045(7)</td>
</tr>
<tr>
<td>P</td>
<td>4c</td>
<td>0.0928(1)</td>
<td>0.2500</td>
<td>0.4080(2)</td>
<td>0.0014(1)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.0988(1)</td>
<td>0.2500</td>
<td>0.7295(2)</td>
<td>0.0072(2)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>4c</td>
<td>0.4550(1)</td>
<td>0.2500</td>
<td>0.2108(3)</td>
<td>0.0064(2)</td>
<td>1.000</td>
</tr>
<tr>
<td>O</td>
<td>8d</td>
<td>0.1619(1)</td>
<td>0.0510(1)</td>
<td>0.2768(2)</td>
<td>0.0053(1)</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Figure A3.2. Changes in the unit-cell parameters as a function of the Mn content obtained from fitting neutron PDF data of LiFe$_{1-x}$Mn$_x$PO$_4$ (x=0, 0.25, 0.50, 0.75, 1) nanostructures.

Table A3.6. Calculated lattice parameters for the LiFe$_{1-x}$Mn$_x$PO$_4$ olivine phases obtained from real space Rietveld refinements of neutron PDF data from 1 to 30 Å.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO$_4$</th>
<th>LiFe${0.75}$Mn${0.25}$PO$_4$</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$</th>
<th>LiFe${0.25}$Mn${0.75}$PO$_4$</th>
<th>LiMnPO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
<td>Pnma</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.356(8)</td>
<td>10.386(7)</td>
<td>10.407(3)</td>
<td>10.435(6)</td>
<td>10.468(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.017(6)</td>
<td>6.037(5)</td>
<td>6.056(5)</td>
<td>6.084(4)</td>
<td>6.114(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>4.701(4)</td>
<td>4.713(3)</td>
<td>4.726(4)</td>
<td>4.736(3)</td>
<td>4.753(2)</td>
</tr>
<tr>
<td>Scale factor</td>
<td>0.69(3)</td>
<td>0.68(3)</td>
<td>0.70(3)</td>
<td>0.73(2)</td>
<td>0.68(2)</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>0.1299</td>
<td>0.1331</td>
<td>0.1577</td>
<td>0.1468</td>
<td>0.1849</td>
</tr>
</tbody>
</table>
Figure A3.3. Fits of neutron PDF data obtained for single-phase LiFe$_{1-x}$Mn$_x$PO$_4$ nanoparticles ($x=0$, 0.25, 0.5, 0.75 and 1) at room temperature in the r range from 5 Å to 30 Å. Dots represent observed data and solid line the calculated pattern. The lower line is the difference curve.
Table A3.7. Atom-atom distances in LiFe$_{1-x}$Mn$_x$PO$_4$ samples determined from fits of neutron PDF data in the r range from 1-30 Å.

<table>
<thead>
<tr>
<th>LiFePO$_4$</th>
<th>LiFe${0.75}$Mn${0.25}$PO$_4$</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$</th>
<th>LiFe${0.25}$Mn${0.75}$PO$_4$</th>
<th>LiMnPO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom-Atom distance (Å)</td>
</tr>
<tr>
<td>P-O</td>
<td>1.49(3)</td>
<td>P-O</td>
<td>1.50(1)</td>
<td>P-O</td>
</tr>
<tr>
<td>1.55(4)</td>
<td>1.54(2)</td>
<td>1.5476(2)</td>
<td>1.551(9)</td>
<td>1.5596(6)</td>
</tr>
<tr>
<td>1.56(3)</td>
<td>1.57(1)</td>
<td>1.557(1)</td>
<td>1.558(1)</td>
<td>1.5665(6)</td>
</tr>
<tr>
<td>Fe-O</td>
<td>2.07(2)</td>
<td>Mn-O</td>
<td>1.847(2)</td>
<td>Mn-O</td>
</tr>
<tr>
<td>2.10(4)</td>
<td>2.08(1)</td>
<td>Fe-O</td>
<td>2.093(2)</td>
<td>Mn-O</td>
</tr>
<tr>
<td>Li-O</td>
<td>2.10(2)</td>
<td>Li-O</td>
<td>2.104(2)</td>
<td>Li-O</td>
</tr>
<tr>
<td>2.19(2)</td>
<td>2.11(2)</td>
<td>Fe-O</td>
<td>2.1616(5)</td>
<td>Mn-O</td>
</tr>
<tr>
<td>Fe-O</td>
<td>2.21(4)</td>
<td>Li-O</td>
<td>2.189(2)</td>
<td>Mn-O</td>
</tr>
<tr>
<td>O-O</td>
<td>2.44(2)</td>
<td>2.200(2)</td>
<td>2.166(1)</td>
<td>2.170(1)</td>
</tr>
<tr>
<td>2.48(3)</td>
<td>Mn-O</td>
<td>2.206(2)</td>
<td>Li-O</td>
<td>2.1859(7)</td>
</tr>
<tr>
<td>2.53(5)</td>
<td>Fe-O</td>
<td>2.22(2)</td>
<td>Fe-O</td>
<td>2.1921(5)</td>
</tr>
<tr>
<td>2.56(4)</td>
<td>2.26(2)</td>
<td>Li-O</td>
<td>2.221(1)</td>
<td>O-O</td>
</tr>
<tr>
<td>Li-P</td>
<td>2.67(2)</td>
<td>Mn-O</td>
<td>2.301(2)</td>
<td>Fe-O</td>
</tr>
<tr>
<td>Fe-P</td>
<td>2.85(4)</td>
<td>O-O</td>
<td>2.452(2)</td>
<td>Mn-O</td>
</tr>
<tr>
<td>O-O</td>
<td>2.93(4)</td>
<td>2.487(2)</td>
<td>2.456(2)</td>
<td>2.540(2)</td>
</tr>
<tr>
<td>2.94(4)</td>
<td>2.537(2)</td>
<td>2.4885(6)</td>
<td>2.544(2)</td>
<td>O-O</td>
</tr>
<tr>
<td>2.98(4)</td>
<td>2.565(2)</td>
<td>2.526(1)</td>
<td>Mn-O</td>
<td>2.585(1)</td>
</tr>
<tr>
<td>3.01(5)</td>
<td>Li-O</td>
<td>2.67(2)</td>
<td>2.548(2)</td>
<td>Fe-O</td>
</tr>
<tr>
<td>Li-Li</td>
<td>3.009(3)</td>
<td>Mn-O</td>
<td>2.784(2)</td>
<td>Li-P</td>
</tr>
<tr>
<td>O-O</td>
<td>3.04(3)</td>
<td>Fe-P</td>
<td>2.87(4)</td>
<td>Mn-P</td>
</tr>
<tr>
<td>3.07(1)</td>
<td>O-O</td>
<td>2.935(2)</td>
<td>Fe-P</td>
<td>2.839(1)</td>
</tr>
<tr>
<td>P-O</td>
<td>3.21(3)</td>
<td>O-O</td>
<td>2.959(2)</td>
<td>O-O</td>
</tr>
<tr>
<td>Fe-P</td>
<td>3.24(4)</td>
<td>2.996(2)</td>
<td>2.965(2)</td>
<td>2.992(2)</td>
</tr>
<tr>
<td>Atom-Atom distance (Å)</td>
<td>LiFePO$_4$</td>
<td>LiFe${0.75}$Mn${0.25}$PO$_4$</td>
<td>LiFe${0.5}$Mn${0.5}$PO$_4$</td>
<td>LiFe${0.25}$Mn${0.75}$PO$_4$</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Li-P</td>
<td>3.26(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-O</td>
<td>3.27(3)</td>
<td>3.001(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-P</td>
<td>3.27(1)</td>
<td>3.013(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-O</td>
<td>3.28(3)</td>
<td>3.019(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-Fe</td>
<td>3.29(1)</td>
<td>3.056(2)</td>
<td>3.066(2)</td>
<td></td>
</tr>
<tr>
<td>Fe-P</td>
<td>3.29(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-O</td>
<td>3.33(2)</td>
<td>3.074(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe-O</td>
<td>3.43(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-O</td>
<td>3.49(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-O</td>
<td>3.49(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix
Table A3.8. Calculated scale factor and amorphous content for the LiFe$_{1-x}$Mn$_x$PO$_4$ olivine phases obtained from two isostructural phases refinements of neutron PDF data from 1 to 30 Å.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LiFePO$_4$</th>
<th>LiFe${0.75}$Mn${0.25}$PO$_4$</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$</th>
<th>LiFe${0.25}$Mn${0.75}$PO$_4$</th>
<th>LiMnPO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>0.68(3)</td>
<td>0.66(4)</td>
<td>0.68(3)</td>
<td>0.71(2)</td>
<td>0.66(2)</td>
</tr>
<tr>
<td>Scale factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td>0.05(7)</td>
<td>0.04(6)</td>
<td>0.05(6)</td>
<td>0.06(5)</td>
<td>0.06(3)</td>
</tr>
<tr>
<td>Amorphous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>content (%)</td>
<td>6.7</td>
<td>5.6</td>
<td>6.9</td>
<td>7.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Spdiameter (Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>R_{wp}</td>
<td>0.1284</td>
<td>0.1321</td>
<td>0.1560</td>
<td>0.1446</td>
<td>0.1825</td>
</tr>
</tbody>
</table>

Figure A4.1. 1H NMR spectrum of $[Fe(O^tBu)$_2(THF)]_2$ (I) (400 MHz, C$_6$D$_6$, 25 °C): δ=0.3 (s., μ_2-OtBu), 1.1 (br, terminal-OtBu), 1.5 (br., THF), 3.8 (br., THF) ppm.
Figure A4.2. FT-IR spectrum of $[\text{Fe(O}^\text{Bu})_2\text{(THF)}]_2$ (I) metal alkoxide.

Figure A4.3. ^1H NMR spectrum of “$[\text{Mn(O}^\text{Bu})_2\text{(THF)}]_2$” (II) (500 MHz, C_6D_6, 25 °C): $\delta=0.3$ (s., μ_2-O$^\text{Bu}$), 0.9 (br, terminal-O$^\text{Bu}$), 1.3 (br., THF) ppm.
Figure A4.4. FT-IR spectrum of “[Mn(O'Bu)₂(THF)]₂” (II) metal alkoxide precursor.

Figure A4.7. ¹H NMR spectrum of “[Fe₀.₃Mn₀.₇(O’Bu)₂(THF)]₂” (III) (500 MHz, C₆D₆, 25 °C): δ=0.3 (s., μ₂-O’Bu), 0.9 (br, terminal-O’Bu), 1.0 (br, terminal-O’Bu), 1.4 (br, THF), 2.1, 3.6 (br, THF) ppm.
Figure A4.6. FT-IR spectrum of “[Fe$_{0.5}$Mn$_{0.5}$O$_{1.5}$Bu$_2$(THF)$_2$]” (III) metal alkoxide precursor.

Figure A4.7. (a) Voltage-composition profile, (b) voltage-capacity profile and (c) cycling stability of Mn$_3$O$_4$ with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at 100 mA·g$^{-1}$.

249
Figure A4.8. (a) Voltage-composition profile, (b) voltage-capacity profile, (c) cycling stability of C/Mn$_3$O$_4$ (15% C from sucrose) with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.10 V-3.00 V at 100 mA·g$^{-1}$ current density.

Figure A4.9. Close up of PXRD pattern of C/Mn$_3$O$_4$ hausmannite after 20 cycles, showing the possible presence of conversion product Li$_2$O after repeated cycles.
Figure A5.1. 1H NMR spectrum of $[\text{FeLi}_2\text{Br(O}^\text{t}\text{Bu)}_4(\text{THF})_2]_n$ (IV) (500 MHz, C_6D_6, 25 °C): $\delta=0.3$ (s., μ_2-O$^\text{t}\text{Bu}$), 1.2 (br, terminal-O$^\text{t}\text{Bu}$), 1.4 (s., THF), 3.6 (br., THF) ppm.

Figure A5.2. FT-IR spectrum of $[\text{FeLi}_2\text{Br(O}^\text{t}\text{Bu)}_4(\text{THF})_2]_n$ (IV).
Figure A5.3. 1H NMR spectrum of “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$ “ (V) (500 MHz, C$_6$D$_6$, 25 °C): δ=0.3 (br., μ_2-O'Bu), 1.1 (br, terminal-O'Bu), 1.4 (br., THF), 3.6 (br., THF) ppm.

Figure A5.4. FT-IR spectrum of “[FeLi$_2$Cl(O'Bu)$_4$(THF)$_2$]$_n$ “ (V).
Figure A5.5. 1H NMR spectrum of “[MnLi$_2$Br(OtBu)$_4$(THF)$_2$]_n” (VI) (500 MHz, C$_6$D$_6$, 25 °C): δ=0.3 (s., μ_2-OtBu), 1.2 (br, terminal-OtBu), 1.4 (s., THF), 3.6 (br., THF) ppm.

Figure A5.6. FT-IR spectrum of “[MnLi$_2$Br(OtBu)$_4$(THF)$_2$]_n” (VI).
Figure A5.7. 1H NMR spectrum of $\left[\text{Fe}_{0.5}\text{Mn}_{0.5}\text{Li}_3\text{Br}(\text{O}^\text{tBu})_4(\text{THF})_2\right]_n$ (VII) (500 MHz, C_6D_6, $25 \degree C$): $\delta=0.3$ (s., μ_2-O$^\text{tBu}$), 1.2 (br, terminal-O$^\text{tBu}$), 1.4 (s., THF), 3.6 (br., THF) ppm.

Figure A5.8. FT-IR spectrum of $\left[\text{Fe}_{0.5}\text{Mn}_{0.5}\text{Li}_3\text{Br}(\text{O}^\text{tBu})_4(\text{THF})_2\right]_n$ (VII).
Figure A5.9. PXRD pattern of LiFePO$_4$ samples prepared from different batches of heterometallic alkoxide precursor \([\text{FeLi}_2\text{Br(O}^\text{Bu})_4\text{(THF)}_2]_n\).

Figure A5.10. PXRD pattern of \(\beta\)-LiFePO$_4$-IV-TEG sample prepared from single source heterometallic alkoxide precursor \([\text{FeLi}_2\text{Br(O}^\text{Bu})_4\text{(THF)}_2]_n\) in tetraethylene glycol.
Table A5.2. Atom-atom distances in LiFe$_{1-x}$Mn$_x$PO$_4$ samples determined from fits of X-ray PDF data in the r range from 1-5 Å.

<table>
<thead>
<tr>
<th>LiFePO$_4$ V</th>
<th>LiFe${0.5}$Mn${0.5}$PO$_4$ VII</th>
<th>LiMnPO$_4$ VI</th>
<th>LiFePO$_4$ IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom-Atom distance (Å)</td>
<td>Atom-Atom distance (Å)</td>
<td>Atom-Atom distance (Å)</td>
<td>Atom-Atom distance (Å)</td>
</tr>
<tr>
<td>P-O</td>
<td>1.56(3)</td>
<td>P-O</td>
<td>1.55(1)</td>
</tr>
<tr>
<td>1.56(4)</td>
<td>1.58(1)</td>
<td>1.64(1)</td>
<td>1.57(7)</td>
</tr>
<tr>
<td>Fe-O</td>
<td>2.04(2)</td>
<td>Fe-O</td>
<td>1.95(1)</td>
</tr>
<tr>
<td>2.04(2)</td>
<td>Mn-O</td>
<td>1.96(2)</td>
<td>2.03(1)</td>
</tr>
<tr>
<td>Li-O</td>
<td>2.05(4)</td>
<td>Fe-O</td>
<td>2.05(1)</td>
</tr>
<tr>
<td>2.05(4)</td>
<td>Li-O</td>
<td>2.05(1)</td>
<td>Mn-O</td>
</tr>
<tr>
<td>Fe-O</td>
<td>2.06(5)</td>
<td>Mn-O</td>
<td>2.14(1)</td>
</tr>
<tr>
<td>Li-O</td>
<td>2.09(4)</td>
<td>Li-O</td>
<td>2.15(1)</td>
</tr>
<tr>
<td>2.10(3)</td>
<td>Mn-O</td>
<td>2.16(1)</td>
<td>O-O</td>
</tr>
<tr>
<td>Fe-O</td>
<td>2.11(5)</td>
<td>Li-O</td>
<td>2.19(2)</td>
</tr>
<tr>
<td>2.30(5)</td>
<td>Mn-O</td>
<td>2.21(2)</td>
<td>Li-P</td>
</tr>
<tr>
<td>O-O</td>
<td>2.45(2)</td>
<td>Fe-O</td>
<td>2.24(2)</td>
</tr>
<tr>
<td>Li-P</td>
<td>2.64(4)</td>
<td>O-O</td>
<td>2.46(2)</td>
</tr>
<tr>
<td>O-O</td>
<td>2.72(6)</td>
<td>Mn-O</td>
<td>2.497(1)</td>
</tr>
<tr>
<td>2.75(4)</td>
<td>Mn-O</td>
<td>2.66(2)</td>
<td>2.87(2)</td>
</tr>
<tr>
<td>2.77(6)</td>
<td>Li-P</td>
<td>2.69(2)</td>
<td>Mn-P</td>
</tr>
<tr>
<td>Fe-P</td>
<td>2.84(3)</td>
<td>O-O</td>
<td>2.72(2)</td>
</tr>
<tr>
<td>O-O</td>
<td>2.88(5)</td>
<td>2.782</td>
<td>O-O</td>
</tr>
<tr>
<td>P-O</td>
<td>2.97(1)</td>
<td>2.84(2)</td>
<td>3.15(1)</td>
</tr>
<tr>
<td>Li-Li</td>
<td>2.99(3)</td>
<td>Fe-P</td>
<td>2.86(2)</td>
</tr>
<tr>
<td>O-O</td>
<td>3.05(6)</td>
<td>Li-Li</td>
<td>3.06(1)</td>
</tr>
</tbody>
</table>
Table A5.1. CHN Microanalysis of LiFe\textsubscript{1-x}Mn\textsubscript{x}PO\textsubscript{4} nanostructures prepared from fast microwave treatments using “[MLi\textsubscript{2}Br(OBu)\textsubscript{4}(THF)\textsubscript{2}]” (M=Fe, Mn) heterometallic alkoxide precursors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiFePO\textsubscript{4} IV</td>
<td>1.78 %</td>
<td>0.38 %</td>
</tr>
<tr>
<td>LiFePO\textsubscript{4} V</td>
<td>1.84 %</td>
<td>0.57 %</td>
</tr>
<tr>
<td>LiFe\textsubscript{0.5}Mn\textsubscript{0.5}PO\textsubscript{4} VII</td>
<td>1.57 %</td>
<td>0.41 %</td>
</tr>
<tr>
<td>LiMnPO\textsubscript{4} VI</td>
<td>2.76 %</td>
<td>1.11 %</td>
</tr>
</tbody>
</table>

Figure A5.11. (a) Voltage-capacity profile and (b) cycling stability of β-LiFePO\textsubscript{4} IV with C black in 60:40 % weight ratio (2 hr ball mill) over the potential range of 4.0 V-1.8 V at C/20 rate.
Figure A5.12. Comparative CVs at a 0.1 mV·s⁻¹ scan rate of C/LiFePO₄-IV, C/LiMnPO₄-VI and C/LiFe₀.₅Mn₀.₅PO₄-VII nanostructures.

Figure A5.13. (a) CV profiles of C/LiFePO₄-V at different scan rates. (b) Graph of peak current vs. square root of the scan rate for the C/LiFePO₄-V IL (15% wt. C from sucrose) nanostructure prepared through a microwave-assisted synthesis using “[FeLiCl(O'Bu)₄(THF)]ₙ” (V) heterometallic alkoxide precursor.
Figure A6.1. Galvanostatic cycling test of carbon black at C/20 rate from 2.2 V to 4.5 V.

Figure A6.2. PXRD pattern of Fe$_3$O$_4$ magnetite nanoparticles prepared from ultrasound-assisted hydrolysis of heterometallic alkoxide precursor [FeLi$_2$Br(O'Bu)$_4$(THF)$_2$]$_n$ and post heat treatment for 3 hr at 500 °C under Ar flow.
Figure A6.3. (a) Voltage-capacity profile and (b) cycling stability of bare Fe$_3$O$_4$ magnetite with C black and PTFE in 60:30:10 % wt. ratio over the potential range of 0.01 V-3.00 V at 100 mA·g$^{-1}$.

Figure A7.1. 1H NMR spectrum of “[NiLi$_2$Cl(OtBu)$_4$(THF)$_2$]_n” (VIII) (500 MHz, C$_6$D$_6$, 25 °C): δ=0.1 (s., μ_2-OtBu), 0.7 (br., terminal-OtBu), 1.2 (s., terminal-OtBu), 1.3 (br., THF), 2.9 (br., THF) ppm.
Figure A7.2. FT-IR spectrum of “[NiLi₂Cl(O'Bu)₄(THF)₂]₂” (VIII).

Figure A7.3. Close up of comparative PXRD patterns of LiFe₁ₓNiₓPO₄ (x=0, 0.05 and 0.1) nanostructures after microwave-assisted synthesis (1 hr at 240 °C) using “[FeLi₂Cl(O'Bu)₄(THF)₂]₄,” (V) heterometallic alkoxide precursor, NiC₂O₄·2H₂O, H₃PO₄ and 10% PVP in ethylene glycol.
Figure A7.4. Variation of the refined lattice parameters and volume cell values for LiFe$_{0.95}$Ni$_{0.05}$PO$_4$ nanostructures after microwave-assisted synthesis using "$[\text{FeLiCl(O'Bu)$_4(THF)_2$}]_n"$ (V) heterometallic alkoxide precursor, NiC$_2$O$_4$·2H$_2$O, H$_3$PO$_4$ and different PVP contents in ethylene glycol.
Figure A7.5. Particle size distribution of C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V No PVP, C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-15PVP and C/LiFe$_{0.95}$Ni$_{0.05}$PO$_4$-V-VIII-15PVP nanostructures.
Figure A7.6. (a) Voltage-capacity profile and (b) cycling stability of C/LiMn_{0.95}Ni_{0.05}PO_{4_VI} prepared with "[MnLi_{2}Br(O^\prime Bu)_{4}(THF)]_{n}\" (VI) alkoxide precursor, NiC_{2}O_{4_2}ZnO and 15% PVP, and mixed with C black and PTFE in 60:30:10 (% wt. ratio) between 2.2 V and 4.2 V at C/20 rate.

Figure A8.1. Rietveld analysis of PXRD data of non-olivine β-LiFe_{0.90}M_{0.1}_PO_{4} (M=Fe, Co or Ni) nanostructures.
Figure A8.2. EDS spectra of β-LiFe$_{0.9}$Co$_{0.1}$PO$_4$ and β-LiFe$_{0.9}$Ni$_{0.1}$PO$_4$ nanostructures.
Figure A8.3. Comparison of voltage-composition profiles at C/20 rate between 2.0 V and 4.5 V of non-olivine β-LiFe$_{0.90}M_{0.1}$PO$_4$ (M=Fe, Co or Ni) nanostructures.
Appendix

Figure OA8.4. Rietveld analysis of PXRD data of maricite NaFe$_{1-x}$Mn$_x$PO$_4$ ($x=0$, 0.5 and 1) nanostructures prepared using "[NaM(O'Bu)$_3$(THF)]$_2$" ($M=$Fe, Mn) heterometallic alkoxide precursors and H$_3$PO$_4$ a 1:2 molar ratio in tetraethylene glycol.
Figure A8.5. SEM images of (a, b) NaFePO₄, (c, d) NaFe₀.₅Mn₀.₅PO₄ and (e, f) NaMnPO₄ nanostructures prepared through a microwave synthesis (30 min at 280 °C) using “[NaM(O′Bu)₃(THF)]₂” (M=Fe, Mn) heterometallic alkoxide precursors.
References

64. A. Gutierrez, N. A. Benedek and A. Manthiram, Chem Mater, 2013, 25, 4010-4016.
References

References

142. R. V. Kumar, Y. Diamant and A. Gedanken, Chem Mater, 2000, 12, 2301-2305.
References

183. Y. S. Hu, L. Kienle, Y. G. Guo and J. Maier, Adv Mater, 2006, 18, 1421-+

258. R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki and R. Kubo,

 Phys Rev B, 2011, 84.

261. J. Sugiyama, H. Nozaki, M. Harada, K. Kamazawa, Y. Ikedo, Y. Miyake, O. Ofer,
 2012, 85.

264. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M.

 157, A381-A386.

 36, 2332-36.

274. C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead and D. M. P. Mingos, *Chem

 2, 553-559.

 683, 123-132.

 1636-1642.

282. H. Huang, L. Y. Zhang, Y. Xia, Y. P. Gan, X. Y. Tao, C. Liang and W. K. Zhang,

 Sources*, 2014, 248, 246-252.

 150, A905-A911.
References

References

